IBM DB2 9.7
for Linux, UNIX, and Windows

Version 9 Release 7

| ®]
TS
(0 | ! =: S
\ -] / |
Y Fs 1
{]

SQL Procedural Languages: Application Enablement and Support
Updated September, 2010

SC27-2470-02

IBM DB2 9.7
for Linux, UNIX, and Windows

Version 9 Release 7

| ®]
TS
(0 | ! =: S
\ -] / |
Y Fs 1
{]

SQL Procedural Languages: Application Enablement and Support
Updated September, 2010

SC27-2470-02

Note
Before using this information and the product it supports, read the general information under|Appendix B, “Notices,” on|

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

* To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

* To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1993, 2010.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. SQL Procedural Language
(SQL PL) .
Inline SQL PL . .
SQL PL in SQL procedures
Inline SQL PL and SQL functions, trlggers and
compound SQL statements
SQL PL data types
Anchored data type .
Row types .
Array types
Cursor types .
Boolean data type .
SQL routines .
Overview of SQL routmes
SQL procedures .
SQL functions
Compound statements.
Restrictions on compound statements
Creating compound statements .

Chapter 2. PL/SQL support .
PL/SQL features.

Creating PL/SQL procedures and functlons from a

CLP script.
Restrictions on PL / SQL support
PL/SQL sample schema . .
Obfuscation . .
Blocks (PL/SQL) . .o
Anonymous block statement (PL/ SQL)
Procedures (PL/SQL). .
CREATE PROCEDURE statement (PL / SQL)
Procedure references (PL/SQL)

Function invocation syntax support (PL/ SQL)
Functions (PL/SQL) . . .
CREATE FUNCTION statement (PL / SQL)
Function references (PL/SQL) . .

Collections (PL/SQL). .
VARRAY collection type declaratlon (PL / SQL)
CREATE TYPE (VARRAY) statement (PL/SQL)
Associative arrays (PL/SQL) .
Collection methods (PL/SQL) .

Variables (PL/SQL) .
Variable declarations (PL/ SQL)
Parameter modes (PL/SQL)
Data types (PL/SQL). . .
%TYPE attribute in variable declaratrons
(PL/SQL).
Record variables based on user—defmed record
types (PL/SQL) .
%ROWTYPE attribute in record type
declarations (PL/SQL) .

Basic statements (PL/SQL) .
NULL statement (PL/SQL) .
Assignment statement (PL/SQL) . .
EXECUTE IMMEDIATE statement (PL/ SQL)

© Copyright IBM Corp. 1993, 2010

. 97
. 97

. .98
. 100
. 100
. 107
. 108
. 108
. 110
. 110
. 113

113

. 114
. 115
. 117
. 118

118
119

. 120
. 124
. 128
. 129
. 130
. 131

. 133
. 135
. 136
. 137

. 138
. 138

139

SQL statements (PL/SQL) . . .
BULK COLLECT INTO clause (PL/ SQL) .
RETURNING INTO clause (PL/SQL)
Statement attributes (PL/SQL).
Control statements (PL/SQL) .
IF statement (PL/SQL) .
CASE statement (PL/SQL) .
Loops (PL/SQL) .
Exception handling (PL/ SQL)
Raise application error (PL/SQL).
RAISE statement (PL/SQL). .
Oracle-DB2 error mapping (PL / SQL)
Cursors (PL/SQL). .
Static cursors (PL/SQL) .
Cursor variables (PL/SQL) .
Triggers (PL/SQL).
Types of triggers (PL/ SQL)
Trigger variables (PL/SQL). .
Transactions and exceptions (PL/SQL) .
CREATE TRIGGER statement (PL/SQL)
Dropping triggers (PL/SQL)
Examples: Triggers (PL/SQL) .
Packages (PL/SQL) .
Package components (PL/ SQL)
Creating packages (PL/SQL) .
Referencing package objects (PL/SQL) .
Dropping packages (PL/SQL) .

Chapter 3. System-defined modules
DBMS_ALERT module . .
REGISTER procedure - Reglster to receive a

specified alert .

REMOVE procedure - Remove reglstratlon for a

specified alert . .

REMOVEALL procedure Remove reglstratlon

for all alerts .

SET_DEFAULTS - Set the polhng 1nterva1 for

WAITONE and WAITANY . .

SIGNAL procedure - Signal occurrence of a

specified alert . .

WAITANY procedure - Wa1t for any reglstered

alerts .

WAITONE procedure Walt for a spec1f1ed alert
DBMS_DDL Module .

WRAP function — Obfuscate a DDL statement

CREATE_WRAPPED procedure - Deploy an

obfuscated object . . .
DBMS_JOB module

BROKEN procedure - Set the state of a]ob to

either broken or not broken .

CHANGE procedure - Modify job attrlbutes .

INTERVAL procedure - Set run frequency .

NEXT_DATE procedure - Set the date and time

when a job is run . e

. 142
. 143
. 144
. 146
. 147
. 147
. 151
. 154
. 161
. 162
. 163
. le4
. 166
. 166
. 172
. 178
. 178
. 178
. 179
. 179
. 182
. 182
. 185
. 185
. 185
. 191
. 195

197
. 197

. 198

. 199

. 200

. 200

. 201

. 201
203

. 204

205

. 206
. 208

. 210
. 210
. 211

. 212

iii

REMOVE procedure - Delete the job definition
from the database . . .
RUN procedure - Force a broken]ob to run
SUBMIT procedure - Create a job definition and
store it in the database .

WHAT procedure - Change the SQL statement
run by a job . .o o

DBMS_LOB module .

DBMS_OUTPUT module

DBMS_PIPE module .

iv

APPEND procedures - Append one large ob]ect
to another

CLOSE procedures Close an open large ob]ect
COMPARE function - Compare two large
objects. .
CONVERTTOBLOB procedure Convert
character data to binary . .
CONVERTTOCLOB procedure Convert bmary
data to character .

COPY procedures - Copy one large ob]ect to
another .

ERASE procedures - Erase a portron of a large
object .

GET_ STORAGE LIMIT functlon Return the
limit on the largest allowable large object .
GETLENGTH function - Return the length of
the large object .

INSTR function - Return the locatlon of the nth
occurrence of a given pattern . .
ISOPEN function - Test if the large ob]ect is
open .
OPEN procedures - Open a large ob]ect

READ procedures - Read a portlon of a large
object .

SUBSTR functlon Return a portron of a large
object .

TRIM procedures - Truncate a large ob]ect to the
specified length .

WRITE procedures - Write data to a large ob]ect
WRITEAPPEND procedures - Append data to
the end of a large object.

DISABLE procedure - Disable the message
buffer . .

ENABLE procedure Enable the message buffer
GET_LINE procedure - Get a line from the
message bulffer . .

GET_LINES procedure - Get multlple llnes from
the message buffer . .
NEW_LINE procedure - Put an end of lrne
character sequence in the message buffer .

PUT procedure - Put a partial line in the
message bulffer . .

PUT_LINE procedure - Put a complete lrne in
the message buffer . e

CREATE_PIPE function - Create a prpe .
NEXT_ITEM_TYPE function - Return the data
type code of the next item . .
PACK_MESSAGE function - Put a data 1tem in
the local message buffer . .
PACK_MESSAGE_RAW procedure - Put a data
item of type RAW in the local message buffer

SQL Procedural Languages: Application Enablement and Support

. 212
. 213

. 213

. 214

. 215

. 216
216

. 217

. 218

. 218

. 219

. 220

. 221

. 221

. 221

. 222
. 222

. 223

. 224

. 224
225

. 225
. 226

. 227
228

. 228

. 229
. 231
. 232
. 233
. 233
. 235
. 237
. 238

. 239

PURGE procedure - Remove unreceived
messages from a pipe .
RECEIVE_MESSAGE functlon Get a message
from a specified pipe. . .o
REMOVE_PIPE function - Delete a plpe
RESET_BUFFER procedure - Reset the local
message buffer .

SEND_MESSAGE procedure Send a message
to a specified pipe. .

UNIQUE_SESSION_ NAME functron Return a
unique session name . .
UNPACK_MESSAGE procedures - Get a data
item from the local message buffer .

DBMS_SQL module .

BIND_VARIABLE_BLOB procedure B1nd a
BLOB value to a variable .
BIND_VARIABLE_CHAR procedure - Bmd a
CHAR value to a variable . .
BIND_VARIABLE_CLOB procedure - Blnd a
CLOB value to a variable .
BIND_VARIABLE_DATE procedure - Bmd a
DATE value to a variable
BIND_VARIABLE_DOUBLE procedure B1nd a
DOUBLE value to a variable .
BIND_VARIABLE_INT procedure - Bmd an
INTEGER value to a variable . .
BIND_VARIABLE_NUMBER procedure - Bmd a
NUMBER value to a variable . . .
BIND_VARIABLE_RAW procedure - Brnd a
RAW value to a variable . .
BIND_VARIABLE_TIMESTAMP procedure -
Bind a TIMESTAMP value to a variable
BIND_VARIABLE_VARCHAR procedure - Bind
a VARCHAR value to a variable . .
CLOSE_CURSOR procedure - Close a cursor
COLUMN_VALUE_BLOB procedure - Return a
BLOB column value into a variable . .
COLUMN_VALUE_CHAR procedure - Return a
CHAR column value into a variable. .
COLUMN_VALUE_CLOB procedure - Return a
CLOB column value into a variable . .
COLUMN_VALUE_DATE procedure - Return a
DATE column value into a variable .
COLUMN_VALUE_DOUBLE procedure -

Return a DOUBLE column value into a variable.

COLUMN_VALUE_INT procedure - Return an
INTEGER column value into a variable.
COLUMN_VALUE_LONG procedure - Return a
LONG column value into a variable.
COLUMN_VALUE_NUMBER procedure -
Return a DECFLOAT column value into a
variable .

COLUMN_VALUE RAW procedure Return a
RAW column value into a variable . .
COLUMN_VALUE_TIMESTAMP procedure -
Return a TIMESTAMP column value into a
variable .

COLUMN_VALUE VARCHAR procedure -
Return a VARCHAR column value into a
variable

. 240

. 241
. 242

. 244

. 245

. 246

. 247
. 249

. 252

. 252

. 253

. 253

. 254

. 254

. 255

. 255

. 256

. 256

257

. 257

. 258

. 259

. 259

260

. 260

. 261

. 262

. 262

. 263

. 264

DEFINE_COLUMN_BLOB- Define a BLOB
column in the SELECT list . .
DEFINE_COLUMN_CHAR procedure - Deﬁne a
CHAR column in the SELECT list .
DEFINE_COLUMN_CLOB - Define a CLOB
column in the SELECT list . .
DEFINE_COLUMN_DATE - Define a DATE
column in the SELECT list . . .
DEFINE_COLUMN_DOUBLE - Defrne a
DOUBLE column in the SELECT list .
DEFINE_COLUMN_INT- Define an INTEGER
column in the SELECT list . .
DEFINE_COLUMN_LONG procedure - Defme a
LONG column in the SELECT list .
DEFINE_COLUMN_NUMBER procedure -
Define a DECFLOAT column in the SELECT list.
DEFINE_COLUMN_RAW procedure - Define a
RAW column or expression in the SELECT list
DEFINE_COLUMN_TIMESTAMP - Define a
TIMESTAMP column in the SELECT list
DEFINE_COLUMN_VARCHAR procedure -
Define a VARCHAR column in the SELECT list .
DESCRIBE_COLUMNS procedure - Retrieve a
description of the columns in a SELECT list .
DESCRIBE_COLUMNS2 procedure - Retrieve a
description of column names in a SELECT list
EXECUTE procedure - Run a parsed SQL
statement. .
EXECUTE_AND_ FETCH procedure Run a
parsed SELECT command and fetch one row.
FETCH_ROWS procedure - Retrieve a row from
a cursor .

IS_OPEN procedure Check 1f a cursor is open
LAST_ROW_COUNT procedure - return the
cumulative number of rows fetched .
OPEN_CURSOR procedure - Open a cursor .
PARSE procedure - Parse an SQL statement .
VARIABLE_VALUE_BLOB procedure - Return
the value of a BLOB INOUT or OUT parameter .
VARIABLE_VALUE_CHAR procedure - Return
the value of a CHAR INOUT or OUT parameter
VARIABLE_VALUE_CLOB procedure - Return
the value of a CLOB INOUT or OUT parameter.
VARIABLE_VALUE_DATE procedure - Return
the value of a DATE INOUT or OUT parameter .
VARIABLE_VALUE_DOUBLE procedure -
Return the value of a DOUBLE INOUT or OUT
parameter

VARIABLE VALUE INT procedure Return the
value of an INTEGER INOUT or OUT
parameter

VARIABLE VALUE NUMBER procedure -
Return the value of a DECFLOAT INOUT or
OUT parameter.

VARIABLE_VALUE_ RAW procedure Return
the value of a BLOB(32767) INOUT or OUT
parameter

VARIABLE_ VALUE TIMESTAMP procedure -
Return the value of a TIMESTAMP INOUT or
OUT parameter.

. 264

. 265

. 265

. 266

. 266

. 267

. 267

268

. 268

. 269

269

. 270

. 273

. 274

. 276

. 278

281

. 281
. 284
. 285

287

288

288

288

. 289

. 289

. 290

. 290

. 291

VARIABLE_VALUE_VARCHAR procedure -
Return the value of a VARCHAR INOUT or
OUT parameter.

DBMS_UTILITY module.
ANALYZE_DATABASE procedure Gather
statistics on tables, clusters, and indexes
ANALYZE_PART_OBJECT procedure - Gather
statistics on a partitioned table or partitioned
index . . .
ANALYZE_ SCHEMA procedure Gather
statistics on schema tables, clusters, and indexes.
CANONICALIZE procedure - Canonicalize a
string .
COMMA TO TABLE procedures Convert a
comma-delimited list of names into a table of
names .
COMPILE_ SCHEMA procedure Comprle all
functions, procedures, triggers, and packages in
a schema .
DB_VERSION procedure Retrleve the database
version
EXEC_DDL STATEMENT procedure Run a
DDL statement . .
GET_CPU_TIME functlon Retrleve the current
CPU time.
GET_ DEPENDENCY procedure Llst ob]ects
dependent on the given object. .
GET_HASH_VALUE function - Compute a hash
value for a given string .
GET_TIME function - Return the current t1me
NAME_RESOLVE procedure - Obtain the
schema and other membership information for a
database object .
NAME_TOKENIZE procedure Parse the glven
name into its component parts
TABLE_TO_COMMA procedures - Convert a
table of names into a comma-delimited list of
names . .
VALIDATE procedure Change an 1nva11d
routine into a valid routine. .

MONREPORT module
CONNECTION procedure - generate a report
on connection metrics
CURRENTAPPS procedure - generate a report
of point-in-time application processing metrics
CURRENTSQL procedure - generate a report
that summarizes activities .
DBSUMMARY procedure - generate a summary
report of system and application performance
metrics
LOCKWAIT procedure generate a report of
current lock waits . .
PKGCACHE procedure - generate a summary
report of package cache metrics

UTL_DIR module . . .
CREATE_DIRECTORY procedure Create a
directory alias . .
CREATE_OR_ REPLACE DIRECTORY
procedure - Create or replace a directory alias
DROP_DIRECTORY procedure Drop a
directory alias . .

Contents

. 291
. 292

. 293

. 294

295

. 296

. 298

. 299

. 300

. 301

. 301

. 302

. 303

304

. 305

. 309

. 312

. 314
. 314

. 316

. 317

. 317

. 318

. 319

. 321
. 322

. 322

. 323

. 324

A\

GET_DIRECTORY_PATH procedure - Get the
path for a directory alias o

UTL_FILE module. .
FCLOSE procedure - Close an open f11e
FCLOSE_ALL procedure - Close all open files
FCOPY procedure - Copy text from one file to
another .
FFLUSH procedure Flush unwr1tten data to a
file . .
FOPEN functlon Open a f11e
FREMOVE procedure - Remove a file
FRENAME procedure - Rename a file .
GET_LINE procedure - Get a line from a file
IS_OPEN function - Determine whether a
specified file is open .
NEW_LINE procedure - Wr1te an end of hne
character sequence to a file . .
PUT procedure - Write a string to a f11e
PUT_LINE procedure - Write a line of text to a
file .
PUTF procedure erte a formatted strlng to a
file . .
UTL_FILE. FILE TYPE

UTL_MAIL module
SEND procedure - Send an e-maﬂ to an SMTP
server . .)
SEND ATTACH RAW procedure Send an

e-mail with a BLOB attachment to an SMTP

server . .
SEND ATTACH VARCHAR2 procedure Send
an e-mail with a VARCHAR attachment to an
SMTP server.

UTL_SMTP module
CLOSE_DATA procedure End an e- ma11
message .
COMMAND procedure Run an SMTP
command .
COMMAND_ REPLIES procedure Run an
SMTP command where multiple reply lines are
expected .
DATA procedure - Spec1fy the body of an e- ma11
message .
EHLO procedure Perform 1n1t1a1 handshakmg
with an SMTP server and return extended
information .
HELO procedure - Perform 1n1t1a1 handshaklng
with an SMTP server . .
HELP procedure - Send the HELP command
MAIL procedure - Start a mail transaction.
NOOP procedure - Send the null command .
OPEN_CONNECTION function - Return a
connection handle to an SMTP server
OPEN_CONNECTION procedure - Open a
connection to an SMTP server . .
OPEN_DATA procedure - Send the DATA
command to the SMTP server . .
QUIT procedure - Close the session w1th the
SMTP server.
RCPT procedure - Prov1de the e- ma11 address of
the recipient. e

. 324
. 325
. 326

327

. 328

. 329
. 330
. 332
. 332

333

. 334

. 335
. 337

. 338
. 339
. 340
. 341

. 341

. 343

. 344
. 345
. 347

. 348

. 349

. 349

. 350

. 351

351

. 352
. 352

. 353

. 354

. 354

. 355

. 355

RSET procedure - End the current mail

transaction 356
VRFY procedure - Vahdate and ver1fy the

recipient's e-mail address 356
WRITE_DATA procedure - Write a portlon of an
e-mail message . . . 357
WRITE_RAW_DATA procedure Add RAW

data to an e-mail message357

Chapter 4. DB2 compatibility features 359
Introduction to DB2 compatibility features. . . . 359
DB2_COMPATIBILITY_VECTOR registry variable 360
Setting up DB2 for Oracle application enablement 363

Sybase application migration G 16
Data types 365
DATE data type based on TIMESTAMP(O) . . 365
NUMBER data type 367
VARCHAR?2 and NVARCHARZ data types .. 369
Character and graphic constant handling 372
Outer join operator373
Hierarchical queries 374
CONNECT_BY_ROOT unary operator ... 2379
PRIOR unary operator380
SYS_CONNECT_BY_PATH.381
Database configuration parameters 382
ROWNUM pseudocolumn38
DUAL table.38
Insensitive cursor384
INOUT parameter.38
Currently committed semantlcs 1mprove
concurrency 386
Oracle data d1ct1onary compat1ble views 387
DB2-Oracle terminology mapping 388

Chapter 5. DB2CI application

development. .« - . . . 395
IBM Data Server Driver for DBZCI39
Building DB2CI applications 39
DB2CI application compile and hnk optlons
(AIX) 397
DB2CI application complle and hnk optlons
HP-UX) 398
DB2CI application complle and hnk optlons
(Linux)39
DB2CI apphcatlon complle and hnk Optlons
(Solaris) 400
DB2CI application complle and hnk optlons
(Windows)401
Appendix A. Overview of the DB2
technical information . . 403

DB2 technical library in hardcopy or PDF format 403

Ordering printed DB2 books 406
Displaying SQL state help from the command hne
processor. 407
Accessing d1fferent versions of the DBZ

Information Center 407
Displaying topics in your preferred language in the
DB2 Information Center.407

Vi SQL Procedural Languages: Application Enablement and Support

Updating the DB2 Information Center installed on
your computer or intranet server .

Manually updating the DB2 Information Center
installed on your computer or intranet server
DB2 tutorials ..

DB2 troubleshooting mformahon

. 408

. 409
. 411
. 411

Terms and Conditions
Appendix B. Notices

Index .

. 412

. 413

. 417

Contents

vii

viii SQL Procedural Languages: Application Enablement and Support

Chapter 1. SQL Procedural Language (SQL PL)

The SQL Procedural Language (SQL PL) is a language extension of SQL that
consists of statements and language elements that can be used to implement
procedural logic in SQL statements. SQL PL provides statements for declaring
variables and condition handlers, assigning values to variables, and for
implementing procedural logic.

Inline SQL PL

Inline SQL PL is a subset of SQL PL features that can be used in compound SQL
(inlined) statements. Compound SQL (inlined) statements can be executed
independently or can be used to implement the body of a trigger, SQL function, or
SQL method. Compound SQL (inlined) statements can be executed independently
from the DB2® CLP when it is in interactive mode to provide support for a basic
SQL scripting language.

Inline SQL PL is described as "inline", because the logic is expanded into and
executed with the SQL statements that reference them.

The following SQL PL statements are considered to be part of the set of inline SQL
PL statements:

* Variable related statements
— DECLARE <variable>
— DECLARE <condition>
— SET statement (assignment statement)
* Conditional statements
- IF
— CASE expression
* Looping statements
- FOR
- WHILE
* Transfer of control statements
- GOTO
— ITERATE
- LEAVE
— RETURN
* Error management statements
— SIGNAL
— GET DIAGNOSTICS

Other SQL PL statements that are supported in SQL procedures are not supported
in compound SQL (inlined) statements. Cursors and condition handlers are not
supported in inline SQL PL and therefore neither is the RESIGNAL statement.

Because inline SQL PL statements must be executed in compound SQL (inlined)

statements, there is no support for PREPARE, EXECUTE, or EXECUTE
IMMEDIATE statements.

© Copyright IBM Corp. 1993, 2010 1

Also, because ATOMIC must be specified in a compound SQL (inlined) statement
that is dynamically prepared or executed, all or none of the member statements
must commit successfully. Therefore the COMMIT and ROLLBACK statements are
not supported either.

As for the LOOP and REPEAT statements, the WHILE statement can be used to
implement equivalent logic.

Standalone scripting with inline SQL PL consists of executing a compound SQL
(inlined) statement that is dynamically prepared or executed within a Command
Line Processor (CLP) script or directly from a CLP prompt. Compound SQL
(inlined) statements that are dynamically prepared or executed are bounded by the
keywords BEGIN and END and must end with a non-default terminator character.
They can contain SQL PL and other SQL statements.

Because inline SQL PL statements are expanded within the SQL statements that
reference them rather than being individually compiled, there are some minor
performance considerations that should be considered when you are planning on
whether to implement your procedural logic in SQL PL in an SQL procedure or
with inline SQL PL in a function, trigger, or compound SQL (compiled) statement
that is dynamically prepared or executed.

SQL PL in SQL procedures

SQL PL statements are primarily used in SQL procedures. SQL procedures can
contain basic SQL statements for querying and modifying data, but they can also
include SQL PL statements for implementing control flow logic around the other
SQL statements. The complete set of SQL PL statements can be used in SQL
procedures.

SQL procedures also support parameters, variables, assignment statements, a
powerful condition and error handling mechanism, nested and recursive calls,
transaction and savepoint support, and the ability to return multiple result sets to
the procedure caller or a client application.

SQL PL, when used within SQL procedures, allows you to effectively program in
SQL. The high-level language of SQL PL and the additional features that SQL
procedures provide makes programming with SQL PL fast and easy to do.

As a simple example of SQL PL statements being used in a SQL procedure,
consider the following example:

CREATE PROCEDURE UPDATE_SAL (IN empNum CHAR(6),
INOUT rating SMALLINT)
LANGUAGE SQL
BEGIN
IF rating = 1 THEN
UPDATE employee
SET salary = salary * 1.10, bonus
WHERE empno = empNum;
ELSEIF rating = 2 THEN
UPDATE employee
SET salary = salary * 1.05, bonus = 500
WHERE empno = empNum;

1000

ELSE
UPDATE employee
SET salary = salary * 1.03, bonus
WHERE empno = empNum;
END IF;
END

n
(<]

2 SQL Procedural Languages: Application Enablement and Support

Inline SQL PL and SQL functions, triggers, and compound SQL
statements

Inline SQL PL statements can be executed in compound SQL (compiled)
statements, compound SQL (inlined) statements, SQL functions, and triggers.

A compound SQL (inlined) statement is one that allows you to group multiple SQL
statements into an optionally atomic block in which you can declare variables, and
condition handling elements. These statements are compiled by DB2 as a single
SQL statement and can contain inline SQL PL statements.

The bodies of SQL functions and triggers can contain compound SQL (inlined)
statements and can also include some inline SQL PL statements.

On their own, compound SQL (inlined) statements are useful for creating short
scripts that perform small units of logical work with minimal control flow, but that
have significant data flow. Within functions and triggers, they allow for more
complex logic to be executed when those objects are used.

As an example of a compound SQL (inlined) statement that contains SQL PL,
consider the following:

BEGIN ATOMIC
FOR row AS
SELECT pk, cl, discretize(cl) AS v FROM source
DO
IF row.v is NULL THEN
INSERT INTO except VALUES(row.pk, row.cl);
ELSE
INSERT INTO target VALUES(row.pk, row.d);
END IF;
END FOR;
END

The compound SQL (inlined) statement is bounded by the keywords BEGIN and
END. It includes use of both the FOR and IF/ELSE control-statements that are part
of SQL PL. The FOR statement is used to iterate through a defined set of rows. For
each row a column's value is checked and conditionally, based on the value, a set
of values is inserted into another table.

As an example of a trigger that contains SQL PL, consider the following:

CREATE TRIGGER validate_sched

NO CASCADE BEFORE INSERT ON cl_sched
FOR EACH ROW

MODE DB2SQL

Vs: BEGIN ATOMIC

IF (n.ending IS NULL) THEN
SET n.ending = n.starting + 1 HOUR;
END IF;

IF (n.ending > '21:00') THEN
SIGNAL SQLSTATE '80000' SET MESSAGE_TEXT =
'Class ending time is after 9 PM';
ELSE IF (n.DAY=1 or n.DAY-7) THEN
SIGNAL SQLSTATE '80001' SET MESSAGE_TEXT =
'Class cannot be scheduled on a weekend';
END IF;
END vs;

Chapter 1. SQL PL support 3

This trigger is activated upon an insert to a table named cl_sched and uses SQL
PL to check for and provide a class end time if one has not been provided and to
raise an error if the class end time is after 9 pm or if the class is scheduled on a
weekend. As an example of a scalar SQL function that contains SQL PL, consider
the following:

CREATE FUNCTION GetPrice (Vendor CHAR(20), Pid INT)

RETURNS DECIMAL(10,3)

LANGUAGE SQL MODIFIES SQL

BEGIN
DECLARE price DECIMAL(10,3);

IF Vendor = 'Vendor 1'

THEN SET price = (SELECT ProdPrice FROM V1Table WHERE Id = Pid);
ELSE IF Vendor = 'Vendor 2'

THEN SET price = (SELECT Price FROM V2Table WHERE Pid = GetPrice.Pid);
END IF;

RETURN price;
END

This simple function returns a scalar price value, based on the value of an input
parameter that identifies a vendor. It also uses the IF statement.

For more complex logic that requires output parameters, the passing of result sets
or other more advanced procedural elements SQL procedures might be more
appropriate.

SQL PL data types

4

Anchored data type

An anchored data type is a data type that is defined to be the same as that of
another object. If the underlying object data type changes, the anchored data type
also changes.

The following topics provide more information about anchored data types:

Features of the anchored data type

An anchored type defines a data type based on another SQL object such as a
column, global variable, SQL variable, SQL parameter, or the row of a table or
view.

A data type defined using an anchored type definition maintains a dependency on
the object to which it is anchored. Any change in the data type of the anchor object
will impact the anchored data type. If anchored to the row of a table or view, the
anchored data type is ROW with the fields defined by the columns of the anchor
table or anchor view.

This data type is useful when declaring variables in cases where you require that
the variable have the same data type as another object, for example a column in a
table, but you do not know exactly what is the data type.

An anchored data type can be of the same type as one of:
* arow in a table

* arow in a view

* a cursor variable row definition

* a column in a table

SQL Procedural Languages: Application Enablement and Support

* acolumn in a view
* alocal variable, including a local cursor variable or row variable

* a global variable

Anchored data types can only be specified when declaring or creating one of the
following:

* a local variable in an SQL procedure, including a row variable

* a local variable in a compiled SQL function, including a row variable

* a routine parameter

* a user-defined cursor data type using the CREATE TYPE statement.
— It cannot be referenced in a DECLARE CURSOR statement.

* a function return data type

* a global variable

To define an anchored data type specify the ANCHOR DATA TYPE TO clause (or
the shorter form ANCHOR clause) to specify what the data type will be. If the
anchored data type is a row data type, the ANCHOR ROW OF clause, or one of its
synonyms, must be specified. These clauses are supported within the following
statements:

 DECLARE
* CREATE TYPE
* CREATE VARIABLE

— In this version, global variables can only be anchored to other global
variables, a column in a table, or a column in a view.

Restrictions on the anchored data type
Review the restrictions on the use of the anchored data type before declaring
variables of this type or when troubleshooting problems related to their use.

The following restrictions apply to the use of anchored data types, including types
specified using the PL/SQL %TYPE attribute:

* Anchored data types are not supported in inline SQL functions.
* Anchored data types cannot reference nicknames or columns in nicknames.

* Anchored data types cannot reference typed tables, columns of typed tables,
typed views, or columns of typed views.

* Anchored data types cannot reference declared temporary tables, or columns of
declared temporary tables.

* Anchored data types cannot reference row definitions associated with a weakly
typed cursor.

* Anchored data types cannot reference objects with a code page or collation that
is different from the database code page or database collation.

Anchored data type variables
An anchored variable is a local variable or parameter with a data type that is an
anchored data type.

Anchored variables are supported in the following contexts:
¢ SQL procedures

— In SQL procedures, parameters and local variables can be specified to be of an
anchored data type.

* Compiled SQL functions

Chapter 1. SQL PL support 5

6

— SQL functions created using the CREATE FUNCTION statement that specify
the BEGIN clause instead of the BEGIN ATOMIC clause can include
parameter or local variable specification that are of the anchored data type.

¢ Module variables

— Anchored variables can be specified as published or unpublished variables
defined within a module.

¢ Global variables

— Global variables can be created of the anchored data type.

Anchored variables are declared using the DECLARE statement.

Declaring local variables of the anchored data type

Declaring local variables or parameters of the anchored data type is a task that you
would perform whenever it is necessary that the data type of the variable or
parameter remain consistent with the data type of the object to which it is
anchored.

The object of the data type that the variable will be anchored to must be defined.
1. Formulate a DECLARE statement

a. Specify the name of the variable.

b. Specify the ANCHOR DATA TYPE TO clause.

C. Specify the name of the object that is of the data type that the variable is to
be anchored.

2. Execute the DECLARE statement from a supported DB2 interface.

If the DECLARE statement executes successfully, the variable is defined in the
database with the specified anchor data type.

The following is an example of an anchored data type declaration in which a
variable named v1 is anchored to the data type of a column named cl in a table
named emp:

DECLARE v1 ANCHOR DATA TYPE TO emp.cl;

Once the variable is defined it can be assigned a value, be referenced, or passed as
a parameter to routines.

Examples: Anchored data type use
Examples of anchored data type use can be useful as a reference when using this
data type.

The following topics include examples of anchored data type use:
Example: Variable declarations of anchored data types:

Examples of anchored data type declarations can be useful references when
declaring variables.

The following is an example of a declaration of a variable named v1 that has the
same data type as the column name in table staff:

DECLARE v1 ANCHOR DATA TYPE TO staff.name;

The following is an example of a CREATE TYPE statement that defines a type
named empRowl1 that is anchored to a row defined in a table named employee:

CREATE TYPE empRowl AS ROW ANCHOR DATA TYPE TO ROW OF employee;

SQL Procedural Languages: Application Enablement and Support

For variables declared of type empRow1, the field names are the same as the table
column names.

If the data type of the column name is VARCHAR(128), then the variable v1 will
also be of data type VARCHAR(128).

Examples: Anchored data type use in SQL routines:

Examples of anchored data type use in SQL routines are useful to reference when
creating your own SQL routines.

The set of examples below demonstrate various features and uses of anchored data
types in SQL routines. The anchored data type features are demonstrated more so
than the features of the SQL routines that contain them.

The following is an example that demonstrates a declared variable that is anchored
to the data type of a column in a table:

CREATE TABLE tabl(coll INT, col2 CHAR)@
INSERT INTO tabl VALUES (1,2)@

INSERT INTO tabl VALUES (3,4)@

CREATE TABLE tab2 (colla INT, col2a CHAR)@

CREATE PROCEDURE p1()

BEGIN
DECLARE varl ANCHOR tabl.coll;
SELECT coll INTO varl FROM tabl WHERE col2 = 2;
INSERT INTO tab2 VALUES (varl, 'a');

END@

CALL pl()e

When the procedure p1 is called, the value of the column coll for a particular row
is selected into the variable varl of the same type.

The following CLP script includes an example of a function that demonstrates the
use of an anchored data type for a parameter to a function:

-- Create a table with multiple columns
CREATE TABLE ttl (cl VARCHAR(18), c2 CHAR(8), c3 INT, c4 FLOAT)
@

INSERT INTO ttl VALUES ('aaabbb', 'ab', 1, 1.1)
@

INSERT INTO ttl VALUES ('cccddd', 'cd', 2, 2.2)
@

SELECT cl, c2, c3, c4 FROM ttl
@

-- Creation of the function
CREATE FUNCTION func_a(pl ANCHOR ttl.c3)
RETURNS INT
BEGIN
RETURN pl + 1;
END
@

-- Invocation of the function
SELECT cl, c2 FROM ttl WHERE c3 = func_a(2)

Chapter 1. SQL PL support 7

8

@

-- Another invocation of the function
SELECT c1, c2 FROM ttl WHERE c3 = func_a(l)
@

DROP FUNCTION func_a
¢

DROP TABLE tt1l
@

When the function func_a is invoked, the function performs a basic operation
using the value of the anchored data type parameter.

Row types

A row data type is a user-defined type containing an ordered sequence of named
fields each with an associated data type.

A row type can be used as the type for global variables, SQL variables, and SQL
parameters in SQL PL to provide flexible manipulation of the columns in a row of
data, typically retrieved using a query.

Features of the row data type
The features of the row data type make it useful for simplifying SQL PL code.

The row data type is supported for use with the SQL Procedural language only. It
is a structure composed of multiple fields each with their own name and data type
that can be used to store the column values of a row in a result set or other
similarly formatted data.

This data type can be used to:

* Simplify the coding of logic within SQL Procedural Language applications. For
example, database applications process records one at a time and require
parameters and variables to temporarily store records. A single row data type
can replace the multiple parameters and variables required to otherwise process
and store the record values. This greatly simplifies the ability to pass row values
as parameters within applications and routines.

* Facilitate the porting to DB2 SQL PL of code written in other procedural SQL
languages that support a similar data type.

* Reference row data in data-change statements and queries including: INSERT
statement, FETCH statement, VALUES INTO statement and SELECT INTO
statement.

Row data types must be created using the CREATE TYPE (ROW) statement. Once
created, variables of the defined data type can be declared within SQL PL contexts
using the DECLARE statements. These variables can then be used to store values
of the row type.

"o

Row field values can be explicitly assigned and referenced using single-dot, ".
notation.

Restrictions on the row data type
It is important to note the restrictions on the use of the row data type before using
it or when troubleshooting an error that might be related to its use.

The following restrictions apply to the row data type:

SQL Procedural Languages: Application Enablement and Support

¢ The maximum number of fields supported in a row data type is 1012.

* The row data type cannot be passed as an input parameter value to procedures
and functions from the CLP.

e The row data type cannot be passed as an input-output or output parameter
value from procedures and functions to the CLP.

* Row data type variables cannot be directly compared. To compare row type
variables, each field can be compared.

* The following data types are not supported for row fields:
- XML data type
- LONG VARCHAR
- LONG VARGRAPHIC
— structured data types
- row data types
- array data types

* Global variables of type row that contain one or more fields of type LOB are not
supported.

* Use of the CAST function to cast a parameter value to a row data type is not
supported.

Other general restrictions might apply related to the use of a data type,
authorizations, execution of SQL, scope of use of the data type or other causes.

Row variables

Row variables are variables based on user-defined row data types. Row variables
can be declared, assigned a value, set to another value, or passed as a parameter to
and from SQL procedures. Row variables inherit the properties of the row data
types upon which they are based. Row variables are used to hold a row of data
from within a result set or can be assigned other tuple-format data.

Row variables can be declared within SQL procedures using the DECLARE
statement.

Creating row variables

To create row variables you must first create the row type and then declare the
row variable.

The following topics show you how to create the row data type and variable:
Creating a row data type:

Creating a row data type is a prerequisite to creating a row variable.

Before you create a row data type:

+ Read:[“Row types” on page §|

* Read: [‘Restrictions on the row data type” on page §|

This task can be done from any interface that supports the execution of the
CREATE TYPE statement.

To create a row data type within a database, you must successfully execute the

CREATE TYPE (ROW) statement from any DB2 interface that supports the
execution of SQL statements.

Chapter 1. SQL PL support 9

10

1. Formulate a CREATE TYPE (ROW) statement:
a. Specify a name for the type.
b. Specify the row field definition for the row by specifying a name and data

type for each field in the row.

The following is an example of how to create a row data type that can be
associated with result sets with the same format as the empRow row data type:
CREATE TYPE empRow AS ROW (name VARCHAR(128), id VARCHAR(8));

2. Execute the CREATE TYPE statement from a supported DB2 interface.

If the CREATE TYPE statement executes successfully, the row data type is created
in the database. If the statement does not execute successfully, verify the syntax of

the statement and verify that the data type does not already exist.

Once the row data type is created, row variables can be declared based on this
data type.

Declaring local variables of type row:
Variables of type row can be declared once the row data type has been created.

Before you create a row data type:

+ Read: ["Row types” on page §|

* Read: [‘Restrictions on the row data type” on page 8|

Row data type variables can only be declared in SQL PL contexts including SQL
procedures and functions where execution of the DECLARE statement is
supported.

The following steps must be followed to declare a local row variable:
1. Formulate a declare statement:
a. Specify a name for the variable.
b. Specify the row data type that will define the variable. The specified row
data type must be already defined in the database.
The following is an example of how to formulate a DECLARE statement that
defines a row variable of type empRow:
DECLARE rl1 empRow;
2. Execute the DECLARE statement within a supported context.

If execution of the DECLARE statement is successful, the row variable is created.

Upon creation of a row variable each field in the row is initialized to a NULL
value.

The row variable can be assigned values, be referenced, or passed as a parameter.

Assigning values to row variables

Values can be assigned to variables of type row in multiple ways. A row variable
value can be assigned to another row variable. Variable field values can be
assigned and referenced. Field values of a row are referenced by using a single-dot

7

.” notation.

The following topics show how to assign values to row type variables and arrays
of row type variables:

SQL Procedural Languages: Application Enablement and Support

Supported assignments to row data types:

A variety of values are supported for assignment to rows and row fields.

When a row variable or parameter is declared, each field in the row has a default
value of NULL until a value is assigned to it.

The following types of values can be assigned to a row variable:

another row variable of the same row data type using the SET statement

— Row variable values can only be assigned to row variables if they are type
compatible. Two row variables are compatible if they are both of the same
row data type or if the source row variable is anchored to a table or view
definition. For two variables to be type compatible, it is not sufficient for
them to have the same field names and field data types.

For example, if a row data type named row] is created and another data type
named row? is created and they are identical in definition, the value of a
variable of type row1 cannot be assigned to the variable of type row2. Nor
can the value of the variable of type row?2 be assigned to the variable of type
rowl. However, the value of variable v1 of type row1 can be assigned to a
variable v2 that is also of type rowl.

A tuple with the same number of elements as the row and elements of the same

data types as the fields of the row.

— The following is an example of a literal tuple being assigned to a row:

SET vl = (1, 'abc')

expression that resolves to a row value

— An example of an expression that resolves to a row value that can be
assigned to a row variable is the resolved expression in a VALUES ... INTO
statement. The following is an example of such an assignment:

VALUES (1, 'abc') INTO rvl

the return type of a function (if it is of the same row data type as the target

variable):

— The following is an example where the return type of a function named foo is
of the same row data type as the target variable:

SET v1 = foo()

If the return data type is defined as an anchored data type, the anchored data
type assignment rules apply.

the single row result set of a query

— The result set must have the same number of elements as the row and the

columns must be assignable to the same data types as the fields of the row.
The following is an example of this type of assignment:

SET vl = (select c1, c2 from T)
NULL

— When NULL is assigned to a row variable, all the row fields are set to NULL
but the row variable itself remains NOT NULL.

The following types of values can be assigned to a row variable field:

literal
parameter
variable

expression

Chapter 1. SQL PL support 11

12

* NULL

Values can be assigned to row field values in the following ways:
* Using the SET statement

* Using a SELECT INTO statement that resolves to a row value
e Using a FETCH INTO statement that resolves to a row value

* Using a VALUES INTO statement that resolves to a row value

The ROW data type can be specified as the return-type of an SQL scalar function.
Assigning values to a row variable using the SET statement:

Assigning values to a row variable can be done using the SET statement. A row
value can be assigned to a row variable. A row field value or expression can be

assigned to a row field.

Row values can be assigned to row variables using the SET statement if they are
both of the same user-defined row data type.

The following is an example of how to assign a row value to a row variable of the
same format:

SET empRow = newHire;

The row value newHire has the same format as the empRow variable - the number
and types of the row fields are identical:

empRow. TastName /* VARCHAR(128) =*/
empRow. firstName /* VARCHAR(128) =/
empRow. id /% VARCHAR(10) */
empRow.hireDate /* TIMESTAMP */
empRow. dept /* VARCHAR(3) =/

newHire.lastName /* VARCHAR(128) =/
newHire.firstName /* VARCHAR(128) =/

newHire.id /* VARCHAR(10) =/
newHire.hireDate /* TIMESTAMP */
newHire.dept /* VARCHAR(3) =/

If you attempt to assign a row value to a variable that does not have an identical
format an error will be raised.

Row values can be assigned by assigning values to the individual fields in a row.
The following is an example of how to assign values to the fields in the row
named empRow using the SET statement:

SET empRow.lastName = 'Brown'; // Literal value assignment
SET empRow.firstName = parmFirstName; // Parameter value of same type assignment
SET empRow.id = varl; // Local variable of same type assignment

SET empRow.hiredate = CURRENT_TIMESTAMP; // Special register expression assignment
SET empRow.dept = NULL; // NULL value assignment
Any supported field assignment can be used to initialize a row value.

Assigning row values to row variables using SELECT, VALUES, or FETCH
statements:

SQL Procedural Languages: Application Enablement and Support

A row value can be assigned to a variable of type row by using a SELECT INTO
statement, a VALUES INTO statement, or a FETCH INTO statement. The field
values of the source row value must be assignable to the field values of the target
row variable.

The following is an example of how to assign a single row value to a row variable
named empRow using a SELECT statement:

SELECT * FROM employee
INTO empRow
WHERE id=5;

If the select query resolves to more than one row value, an error is raised.

The following is an example of how to assign a row value to a row variable named
empEmpBasics using a VALUES INTO statement:

VALUES (5, 'Jane Doe', 10000) INTO empBasics;

The following is an example of how to assign a row value to a row variable named
empRow using a FETCH statement that references a cursor named curl that
defines a row with compatible field values as the variable empRow:

FETCH curl INTO empRow;

Other variations of use are possible with each of these statements.

Comparing row variables and row field values
Row variables cannot be directly compared even if they are the same row data
type, however individual row fields can be compared.

Individual fields within a row type can be compared to other values and the
comparison rules for the data type of the field apply.

To compare two row variables, individual corresponding field values must be
compared.

The following is an example of a comparison of two row values with compatible
field definitions in SQL PL:

IF ROW1.fieldl = ROW2.fieldl AND

ROW1.field2 = ROW2.field2 AND
ROW1.field3 = ROW2.field3
THEN
SET EQUAL = 1;
ELSE
SET EQUAL = 0;

In the example the IF statement is used to perform the procedural logic which sets
a local variable EQUAL to 1 if the field values are equal, or 0 if the field values are
not equal.

Referencing row values
Row values and row field values can be referenced within SQL and SQL
statements.

The following topics demonstrate where and how row values can be referenced:

Referencing row variables:

Chapter 1. SQL PL support 13

14

Row variable values can be referenced by name wherever row variable data type
references are supported.

Supported row variable reference contexts include the following;:
* Source or target of a SET statement

* INSERT statement

* Target of SELECT INTO, VALUES INTO, or FETCH statements

The following is an example of a row variable being assigned to another row
variable with the same definition using the SET statement:

-- Referencing row variables as source and
target of a SET statement
SET vl = v2;

The following is an example of row variables being referenced in an INSERT
statement that inserts two rows. The row variables vl and v2 have a field
definition that is type compatible with the column definition of the table that is the
target of the INSERT statement:

-- Referencing row variables in an INSERT statement
INSERT INTO employee VALUES vl1, v2;

The following is an example of a row variable being referenced in a FETCH
statement. The row variable empRow has the same column definition as the result
set associated with the cursor c1:

-- Referencing row variables in a FETCH statement
FETCH c1 INTO empRow;

The following is an example of a row variable named v3 being referenced in a
SELECT statement. Two column values in the employee table are being selected
into the two fields of the variable v3:

-- Referencing row variables in a SELECT statement
SELECT id, name INTO v3 FROM employee;

Referencing fields in row variables:
Field values can be referenced in multiple contexts.

A row field value can be referenced wherever a value of the field's data type is
permitted. The following contexts are supported for referencing row fields:

* Wherever a value of the field's data type is permitted including, but not limited
to:

— As the source of an assignment (SET statement)
— As the target of an assignment (SET statement)
— As the target of SELECT INTO, VALUES INTO, or FETCH INTO statement.

To reference the values of fields in a row variable a single-dot notation is used.
Field values are associated with variables as follows:

<row-variable-name>.<field-name>

The following is an example of how to access the field id of variable employee:

employee.id

Examples of supported references to row variable field values follow.

SQL Procedural Languages: Application Enablement and Support

The following is an example that shows how to assign a literal value to a field in
row variable v1:

-- Literal assignment to a row variable field
SET vl.cl = 53

The following example shows how to assign literal and expression values to
multiple row variable fields:

-- Literal assignment to fields of row variable
SET (emp.id, emp.name) = (vl.cl + 1, 'James');

The following example shows how to reference field values in an INSERT
statement:

-- Field references in an INSERT statement

INSERT INTO employee

VALUES(vl.cl, 'Beth'),
(emp.id, emp.name);

The following example shows how to reference field values in an UPDATE
statement:

-- Field references in an UPDATE statement

UPDATE employee

SET name = 'Susan'
WHERE id = vl.cl;

The following example shows how to reference field values in a SELECT INTO
statement:

-- Field references in a SELECT INTO statement

SELECT employee.firstname INTO vZ.cl

FROM employee
WHERE name=emp.name;

Referencing row variables in INSERT statements:

Row variables can be used in INSERT statements to append or modify an entire
table row.

The following is an example of an INSERT statement that inserts a row into tabled
employee:
INSERT INTO employee VALUES empRow;

For the INSERT statement, the number of fields in the row variable must match the
number of columns in the implicit or explicit target column list.

The INSERT statement shown above inserts into each column in the table, the
corresponding row field value. Thus the INSERT statement above is equivalent to
the following INSERT statement:
INSERT INTO employee VALUES (emp.id,

emp. name,

emp.salary,
emp.phone);

Passing rows as routine parameters

Row type values and arrays of row type variables can be passed as parameters to
procedures and functions. Procedures support these data types as IN, OUT, and
INOUT parameters.

Chapter 1. SQL PL support 15

16

The following is an example of a procedure that takes a CHAR type as an input
parameter, modifies a field in the output row parameter and then returns.

CREATE PROCEDURE p(IN basicChar CHAR, OUT outEmpRow empRow)
BEGIN
SET outEmpRow.field2 = basicChar;

END@

The following is an example of a CALL statement that invokes the procedure:
CALL p('1', myEmpRow)@

Dropping a row data type
Dropping a row data type is done when the row data type is no longer required or
when you want to reuse the name of an existing row data type.

The following prerequisites must be met before you can drop a row data type:
* A connection to the database must be established.
* The row data type must exist in the database.

Dropping a row data type is done when the row data type is no longer required or
when you want to reuse the name of an existing row data type. Dropping a row
can be done from any interface that supports the execution of the DROP statement.

1. Formulate a DROP statement that specifies the name of the row data type to be
dropped.

2. Execute the DROP statement from a supported DB2 interface.

The following is an example of how to drop a row data type named simpleRow.
DROP TYPE simpleRow;

If the DROP statement executes successfully, the row data type is dropped from
the database.

Examples: Row data type use
Examples of row data type use provide a useful reference for understanding how
and when to use the row data type.

The following topics demonstrate how to use the row data type:
Example: Row data type use in a CLP script:

Some basic features of row data types are shown within a DB2 CLP script to
demonstrate how row data types are most commonly used.

The following DB2 CLP script demonstrates the use of the row data type and its
related operations. It includes demonstrations of:

* Creating row data types
* Creating a table
* Creating a procedure that includes:
- Row data type declarations
— Inserting values to a type that include some row field values
— Updating row values based on a row field value
— Selecting values into a row field value

— Assigning a row value to a row

SQL Procedural Languages: Application Enablement and Support

— Assigning row field values to a parameter
* Calling the procedure
* Dropping the row data types and table
-- Creating row types
CREATE TYPE row01 AS ROW (cl INTEGER)@
CREATE TYPE empRow AS ROW (id INTEGER, name VARCHAR(10))@
CREATE TABLE employee (id INTEGER, name VARCHAR(10))e@
CREATE procedure procOl (OUT pO INTEGER, OUT pl INTEGER)
BEGIN

DECLARE v1, v2 row01;

DECLARE emp empRow;

-- Assigning values to row fields

SET vl.cl = 5;

SET (emp.id, emp.name) = (vl.cl + 1, 'James');

-- Using row fields in DML

INSERT INTO employee

VALUES (vl.cl, 'Beth'), (emp.id, emp.name);

UPDATE employee
SET name = 'Susan' where id = vl.cl;

-- SELECT INTO a row field
SELECT id INTO v2.cl

FROM employee

WHERE name = emp.name;

-- Row Tevel assignment
SET vl = v2;

-- Assignment to parameters
SET (p0, pl) = (vl.cl, emp.id);

END@

CALL procO1(?, ?)@
SELECT * FROM employee@
DROP procedure proc01@
DROP TABLE employee@

-- Dropping row types
DROP TYPE empRow@

DROP TYPE row01@

This script can be saved and run from a DB2 Command Line by issuing the
following:

DB2 -td@ -vf <filename>;

The following is the output of running the script:

CREATE TYPE row01 AS ROW (cl INTEGER)
DB20000I The SQL command completed successfully.

CREATE TYPE empRow AS ROW (id INTEGER, name VARCHAR(10))
DB20000I The SQL command completed successfully.

Chapter 1. SQL PL support 17

CREATE TABLE employee (id INTEGER, name VARCHAR(10))
DB20000I The SQL command completed successfully.

CREATE procedure proc0l (OUT p® INTEGER, OUT pl INTEGER)
BEGIN DECLARE v1, v2 row01;
DECLARE emp empRow;
SET vl.cl = 5;
SET (emp.id, emp.name) = (vl.cl + 1, 'James');
INSERT INTO employee VALUES (vl.cl, 'Beth'), (emp.id, emp.name);
UPDATE employee SET name = 'Susan' where id = vl.cl;
SELECT id INTO v2.cl FROM employee WHERE name = emp.name;
SET vl = v2;
SET (p0, pl) = (vl.cl, emp.id);

END

DB20000I The SQL command completed successfully.
CALL proc01(?, ?)
Value of output parameters

Parameter Name : PO
Parameter Value : 6

Parameter Name : Pl
Parameter Value : 6

Return Status = 0
SELECT * FROM employee

5 Susan
6 James

2 record(s) selected.
DROP procedure proc01
DB20000I The SQL command completed successfully.

DROP TABLE employee
DB20000I The SQL command completed successfully.

DROP TYPE empRow
DB20000I The SQL command completed successfully.

DROP TYPE row01
DB20000I The SQL command completed successfully.

Example: Row data type use in an SQL procedure:

The row data type can be used in SQL procedures to retrieve record data and pass
it as a parameter.

This topic contains an example of a CLP script that includes the definitions of
multiple SQL procedures that demonstrate some of the many uses of rows.

The procedure named ADD_EMP takes a row data type as an input parameter
which it then inserts into a table.

18 SQL Procedural Languages: Application Enablement and Support

The procedure named NEW_HIRE uses a SET statement to assign values to a row
variable and passes a row data type value as a parameter in a CALL statement that
invokes another procedure.

The procedure named FIRE_EMP selects a row of table data into a row variable
and inserts row field values into a table.

The following is the CLP script - it is followed by the output of running the script
from the CLP in verbose mode:
--#SET TERMINATOR @;
CREATE TABLE employee (id INT,
name VARCHAR(10),
salary DECIMAL(9,2))@

INSERT INTO employee VALUES (1, 'Mike', 35000),
(2, 'Susan', 35000)@

CREATE TABLE former_employee (id INT, name VARCHAR(10))@

CREATE TYPE empRow AS ROW ANCHOR ROW OF employee@
CREATE PROCEDURE ADD_EMP (IN newEmp empRow)
BEGIN
INSERT INTO employee VALUES newEmp;
END@

CREATE PROCEDURE NEW_HIRE (IN newName VARCHAR(10))
BEGIN

DECLARE newEmp empRow;

DECLARE maxID INT;

-- Find the current maximum ID;
SELECT MAX(id) INTO maxID FROM employee;

SET (newEmp.id, newEmp.name, newEmp.salary)
= (maxID + 1, newName, 30000);

-- Call a procedure to insert the new employee
CALL ADD_EMP (newEmp);

END@

CREATE PROCEDURE FIRE_EMP (IN empID INT)

BEGIN
DECLARE emp empRow;

-- SELECT INTO a row variable
SELECT * INTO emp FROM employee WHERE id = empID;

DELETE FROM employee WHERE id = empID;

INSERT INTO former_employee VALUES (emp.id, emp.name);
END@

CALL NEW_HIRE('Adam')@

CALL FIRE_EMP(1)e@

SELECT * FROM employee@

SELECT * FROM former_employee@

The following is the output of running the script from the CLP in verbose mode:

CREATE TABLE employee (id INT, name VARCHAR(10), salary DECIMAL(9,2))
DB20000I The SQL command completed successfully.

Chapter 1. SQL PL support 19

INSERT INTO employee VALUES (1, 'Mike', 35000), (2, 'Susan', 35000)
DB20000I The SQL command completed successfully.

CREATE TABLE former_employee (id INT, name VARCHAR(10))
DB20000I The SQL command completed successfully.

CREATE TYPE empRow AS ROW ANCHOR ROW OF employee
DB20000I The SQL command completed successfully.

CREATE PROCEDURE ADD_EMP (IN newEmp empRow)
BEGIN
INSERT INTO employee VALUES newEmp;
END
DB20000I The SQL command completed successfully.

CREATE PROCEDURE NEW_HIRE (IN newName VARCHAR(10))
BEGIN

DECLARE newEmp empRow;

DECLARE maxID INT;

-- Find the current maximum ID;
SELECT MAX(id) INTO maxID FROM employee;

SET (newEmp.id, newEmp.name, newEmp.salary) = (maxID + 1, newName, 30000);
-- Call a procedure to insert the new employee
CALL ADD_EMP (newEmp);
END
DB20000I The SQL command completed successfully.
CREATE PROCEDURE FIRE_EMPLOYEE (IN empID INT)
BEGIN
DECLARE emp empRow;

-- SELECT INTO a row variable
SELECT * INTO emp FROM employee WHERE id = empID;

DELETE FROM employee WHERE id = empID;

INSERT INTO former_employee VALUES (emp.id, emp.name);
52200001 The SQL command completed successfully.
CALL NEW_HIRE('Adam')

Return Status = 0
CALL FIRE_EMPLOYEE(1)

Return Status = 0

SELECT * FROM employee

ID NAME SALARY
2 Susan 35000.00
3 Adam 30000.00

2 record(s) selected.

SELECT * FROM former_employee

ID NAME

20 SQL Procedural Languages: Application Enablement and Support

1 record(s) selected.

Example: Row data type use in an SQL function:

Row data types can be used in SQL functions to construct, store, or modify record
data.

Variables based on row data types can be used as a simple way to hold a row
value that has the same format as a table. When used in this way;, it is helpful to
initialize the row variable upon its first use.

The following is an example of a DB2 CLP script that contains SQL statements that
create a table, a row data type, and a function that includes the declaration of a
row variable, a row reference and an invocation of the UDF:

CREATE TABLE t1 (deptNo VARCHAR(3),
reportNo VARCHAR(3),
deptName VARCHAR(29),
mgrNo VARCHAR (8),
location VARCHAR(128))@

INSERT INTO t1 VALUES ('123', 'MM1', 'Sales-1', '0112345', 'Miami')@
INSERT INTO t1 VALUES ('456', 'MM2', 'Sales-2', '0221345', 'Chicago')@
INSERT INTO t1 VALUES ('789', 'MM3', 'Marketing-1', '0331299', 'Toronto')@

CREATE TYPE deptRow AS ROW (r_deptNo VARCHAR(3),
r_reportNo VARCHAR(3),
r_depTName VARCHAR(29),
r_mgrNo VARCHAR (8),
r_Tocation VARCHAR(128))e@

CREATE FUNCTION getLocation(theDeptNo VARCHAR(3),
reportNo VARCHAR(3),
theName VARCHAR(29))

RETURNS VARCHAR(128)
BEGIN

-- Declare a row variable
DECLARE dept deptRow;

-- Assign values to the fields of the row variable
SET dept.r_deptno = theDeptNo;

SET dept.r_reportNo = reportNo;
SET dept.r_deptname = theName;
SET dept.r_mgrno = '';

SET dept.r_Tlocation = '';
RETURN

(SELECT location FROM tl WHERE deptNo = dept.r_deptno);
END@

VALUES (getLocation ('789', 'MM3','Marketing-1'))@

When executed this CLP script creates a table, inserts rows into the table, creates a
row data type, and a UDF.

The function getLocation is an SQL UDF that declares a row variable and assigns
values to it fields using the input parameter values. It references one of the fields
in the row variable within the SELECT statement that defines the scalar value
returned by the function.

Chapter 1. SQL PL support 21

When the VALUES statement is executed at the end of the script, the UDF is
invoked and the scalar return value is returned.

The following is the output of running this script from the CLP:

CREATE TABLE t1 (deptNo VARCHAR(3), reportNo VARCHAR(3),
deptName VARCHAR(29), mgrNo VARCHAR (8), Tocation VARCHAR(128))
DB20000I The SQL command completed successfully.

INSERT INTO t1 VALUES ('123', 'MM1', 'Sales-1', '0112345', 'Miami')
DB20000I The SQL command completed successfully.

INSERT INTO t1 VALUES ('456', 'MM2', 'Sales-2', '0221345', 'Chicago')
DB20000I The SQL command completed successfully.

INSERT INTO t1 VALUES ('789', 'MM3', 'Marketing-1', '0331299', 'Toronto')
DB20000I The SQL command completed successfully.

CREATE TYPE deptRow AS ROW (r_deptNo VARCHAR(3), r_reportNo VARCHAR(3), r_depTNa
me VARCHAR(29), r_mgrNo VARCHAR (8), r_location VARCHAR(128))
DB20000I The SQL command completed successfully.

CREATE FUNCTION getLocation(theDeptNo VARCHAR(3),
reportNo VARCHAR(3),
theName VARCHAR(29))

RETURNS VARCHAR(128)

BEGIN
DECLARE dept deptRow;
SET dept.r_deptno = theDeptNo;
SET dept.r_reportNo = reportNo;
SET dept.r_deptname = theName;
SET dept.r_mgrno = '';
SET dept.r_location 'y

RETURN
(SELECT location FROM t1 WHERE deptNo = dept.r_deptno);

END
DB20000I The SQL command completed successfully.

VALUES (getLocation ('789', 'MM3','Marketing-1'))

Toronto

1 record(s) selected.

Array types

An array type is a user-defined data type consisting of an ordered set of elements
of a single data type.

An ordinary array type has a defined upper bound on the number of elements and
uses the ordinal position as the array index.

An associative array type has no specific upper bound on the number of elements
and each element has an associated index value. The data type of the index value
can be an integer or a character string but is the same data type for the entire
array.

22 SQL Procedural Languages: Application Enablement and Support

An array type can be used as the type for global variables, SQL variables, and SQL
parameters in SQL PL to provide flexible manipulation of a collection of values of

a single data type.

Comparison of arrays and associative arrays
Simple arrays and associative arrays differ in multiple ways. Understanding the
differences can help you to choose the right data type to use.

The following table highlights the differences between arrays and associative

arrays:

Table 1. Comparison of arrays and associative arrays

Arrays

Associative arrays

The maximum cardinality of a simple array is defined
when the simple array is defined. When a value is
assigned to index N, the elements with indices between
the current cardinality of the array and N are implicitly
initialized to NULL.

There is no user-specified maximum cardinality and no
elements are initialized when an associative array
variable is declared. The maximum cardinality is limited
by the available free memory.

The index data type for a simple array must be an
integer value.

The index type for an associative array can be one of a
set of supported data types.

The index values in a simple array must be a contiguous
set of integer values.

In an associative array the index values can be sparse.

The CREATE TYPE statement for a simple array does not
require the specification of the array cardinality. For
example, in this statement, no cardinality is specified:

CREATE TYPE simple AS INTEGER ARRAY[];

In the CREATE TYPE statement for an associative array,
instead of requiring a specification of the array
cardinality, the index data type is required. For example,
in this statement, the cardinality for the index data type
is specified as INTEGER:

CREATE TYPE assoc AS INTEGER ARRAY[INTEGER];

A first assignment to a simple array results in the
initialization of array elements with index values
between 1 and the index value assigned to the array. The
following compound SQL (compiled) statement contains
the declaration of a simple array variable and the
assignment of a value to the variable:

BEGIN
DECLARE mySimpleA simple;

SET mySimpleA[100] = 123;

END

After the execution of the assignment statement, the
cardinality of mySimpleA is 100; the elements with indices
with values 1 to 99 are implicitly initialized to NULL.

A first assignment to an associative array results in the
initialization of a single element with a single index
value. The following compound SQL (compiled)
statement contains the declaration of an associative array
variable and the assignment of a value to the variable:

BEGIN
DECLARE myAssocA assoc;

SET myAssocA[100] = 123;
END

After the execution of the assignment statement, the
cardinality of the array is 1.

Example

Ordinary array data type
An ordinary array data type is a structure that contains an ordered collection of
data elements in which each element can be referenced by its ordinal position in

the collection.

If N is the cardinality (number of elements) in an array, the ordinal position
associated with each element, called the index, is an integer value greater than or
equal to 1 and less than or equal to N. All elements in an array have the same data

type.

Chapter 1. SQL PL support 23

24

Features of the array data type:
The many features of the array data type make it ideal for use in SQL PL logic.
An array type is a data type that is defined as an array of another data type.

Every array type has a maximum cardinality, which is specified on the CREATE
TYPE statement. If A is an array type with maximum cardinality M, the cardinality
of a value of type A can be any value between 0 and M, inclusive. Unlike the
maximum cardinality of arrays in programming languages such as C, the
maximum cardinality of SQL arrays is not related to their physical representation.
Instead, the maximum cardinality is used by the system at run time to ensure that
subscripts are within bounds. The amount of memory required to represent an
array value is usually proportional to its cardinality, and not to the maximum
cardinality of its type.

When an array is being referenced, all of the values in the array are stored in main
memory. Therefore, arrays that contain a large amount of data will consume large
amounts of main memory.

Array element values can be retrieved by specifying the element's corresponding
index value.

Array data types are useful when you want to store a set of values of a single data
type. This set of values can be used to greatly simplify the passing of values to
routines, because a single array value can be passed instead of multiple, possibly
numerous, individual parameters.

Array data types differ from associative array data types. Whereas array data types
are a simple collection of values, associative arrays are conceptually like an array
of arrays. That is associative arrays are ordered arrays that contain zero or more
subarray elements, such that the array elements are accessed by a primary index
and the subarray elements are accessed by a subindex.

Restrictions on the array data type:

It is important to note the restrictions on the array data type before you use it or
when troubleshooting problems with their declaration or use.

The following restrictions apply to the array data type:

* Use of the array data type in dynamic compound statements is not supported.
¢ Use of the ARRAY_AGG function outside of SQL procedures is not supported.
* Use of the UNNEST function outside of SQL procedures is not supported.

« Use of parameters of the array data type in external procedures other than Java™
procedures is not supported.

* The casting of an array to any data type other than a user-defined arrays data
type is not supported.

* The containment of elements of any data type other than that specified for the
array is not supported.

* The casting of an array with a cardinality larger than that of the target array is
not supported.

* The use of arrays as parameters or return types in methods is not supported.

* The use of arrays as parameters or return types in sourced or template functions
is not supported.

SQL Procedural Languages: Application Enablement and Support

* The use of arrays as parameters or return types in external scalar or external
table functions is not supported.

* The use of arrays as parameters or return types in SQL scalar functions, SQL
table functions, or SQL row functions is not supported.

* The assignment or casting of the result value of a TRIM_ARRAY function to any
data type other than an array is not supported.

* The assignment or casting of the result value of an ARRAY constructor or an
ARRAY_AGG function to any data type other than an array is not supported.

Array variables:
Array variables are variables based on user-defined array data types. Array
variables can be declared, assigned a value, set to another value, or passed as a

parameter to and from SQL procedures.

Array variables inherit the properties of the array data types upon which they are
based. Array variables are used to hold a set of data of the same data type.

Local array variables can be declared within SQL procedures using the DECLARE
statement.

Global array variables can be created using the CREATE VARIABLE statement.
Creating array variables:

To create array variables you must first create the array type and then declare the
local array variable or create the global array variable.

The following topics show you how to create array data types and array variables:
Creating an array data type (CREATE TYPE statement):

Creating an array data type is a task that you would perform as a prerequisite to
creating a variable of the array data type.

Before you create an array data type, ensure that you have the privileges required
to execute the CREATE TYPE statement.

Array data types can only be created in SQL PL contexts where execution of the
CREATE TYPE statement is supported.

Restrictions

See: [“Restrictions on the array data type” on page 24|
1. Define the CREATE TYPE statement
a. Specify a name for the array data type.

b. Specify the AS keyword followed by the keyword name for the data type of
the array element. For example, INTEGER, VARCHAR.

c. Specify the ARRAY keyword and the domain of the subindices in the array.
For example, if you specify 100, the valid indices will be from 1 to 100. This
number is the same as the cardinality of the array - the number of elements
in the array.

2. Execute the CREATE TYPE statement from a supported interface.

Chapter 1. SQL PL support 25

26

The CREATE type statement should execute successfully and the array type should
be created.

Example 1:
CREATE TYPE simpleArray AS INTEGER ARRAY[100];

This array data type can contain up to 100 integer values indexed by integer values
ranging from 1 to 100.
Example 2:

CREATE TYPE id_Phone AS VARCHAR(20) ARRAY[100];

This array data type can contain up to 100 phone values stored as VARCHAR(20)
data type values indexed by integer values ranging from 1 to 100.

After creating the array data type you can declare an array variable.
Declaring local variables of type array:

Declaring array data type variables is a task that you perform after creating array
data types if you want to be able to temporarily store or pass array data type
values.

Before you create a local variable of type row:

+ Read:|Array data types|

* Read: [“Restrictions on the array data type” on page 24|

* Read: [“Creating an array data type (CREATE TYPE statement)” on page 25|

* Ensure that you have the privileges required to execute the DECLARE
statement.

Declaring array data types can be done in supported contexts including within:
SQL procedures, SQL functions, and triggers.

1. Define the DECLARE statement.
a. Specify a name for the array data type variable.

b. Specify the name of the array data type that you used when you created the
array data type.

If the array data type was declared using the following CREATE TYPE

statement:

CREATE TYPE simpleArray AS INTEGER ARRAY[10];

You would declare a variable of this data type as follows:
DECLARE myArray simpleArray;

If the array data type was declared using the following CREATE TYPE
statement:

CREATE TYPE id_Phone AS VARCHAR(20) ARRAY[100];

You would create a variable of this data type as follows:
DECLARE id_Phone_Toronto List id_Phone;

This array can contain up to 100 phone values stored as VARCHAR(20) data
type values indexed by integer values ranging from 1 to 100. The variable name
indicates that the phone values are Toronto phone numbers.

SQL Procedural Languages: Application Enablement and Support

2. Include the DECLARE statement within a supported context. This can be

within a CREATE PROCEDURE, CREATE FUNCTION, or CREATE TRIGGER
statement.

3. Execute the statement which contains the DECLARE statement.
The statement should execute successfully.

If the statement does not execute successfully due to an error with the DECLARE
statement:

* Verify the SQL statement syntax of the DECLARE statement and execute the
statement again.

* Verify that no other variable with the same name has already been declared
within the same context.

* Verify that the array data type was created successfully.

After declaring associative array variables, you might want to assign values to
them.

Assigning values to arrays:

Values can be assigned to arrays in multiple ways. The following topics show you
how to assign values to arrays:

Assigning array values using the subindex and literal values:

Values can be assigned to associative arrays using subindices and literal values.

* Read: [“Ordinary array data type” on page 23|

* Read: [“Restrictions on the array data type” on page 24|

* Privileges required to execute the SET statement

You would perform this task before performing SQL PL that is conditional on the
variable having an assigned value or before passing the variable as a parameter to
a routine.

1. Define a SET statement.

a. Specify the array variable name.

b. Specify the assignment symbol, '=".
c. Specify the ARRAY keyword and specify within the required brackets sets
of paired values.

2. Execute the SET statement.

The following is an example of how to assign element values to an array named,
myArray:

SET myArray[1] = 123;
SET myArray[2] = 124;
SET myArray[100] = 223;

If the SET statements execute successfully, the array elements have been defined
successfully. To validate that the array was created you can attempt to retrieve
values from the array.

If the SET statement failed to execute successfully:

Chapter 1. SQL PL support 27

28

* Verify the SQL statement syntax of the SET statement and execute the statement
again.
* Verify that the data type was created successfully.

Retrieving array values:

Retrieving array values can be done in multiple ways. The following topics show
you how to retrieve values from arrays:

Retrieving array values using an index:

Retrieving array element values can be done directly by referencing the array and
specifying a sub-index value.

The following are prerequisites to this task:

+ Read:[“Ordinary array data type” on page 23|

* Read: [“Restrictions on the array data type” on page 24|

* Privileges required to execute the SET statement or any SQL statement that
contains the array reference

You would perform this task within SQL PL code in order to access values stored
within an array. You might access the array element value as part of an assignment
(SET) statement or directly within an expression.

1. Define a SET statement.
a. Specify a variable name of the same data type as the array element.
b. Specify the assignment symbol, "=".

C. Specify the name of the array, square brackets, and within the square
brackets an index value.

2. Execute the SET statement.

The following is an example of a SET statement that retrieves an array value:
SET mylocalVar = myArray[1];

If the SET statement executes successfully, the local variable should contain the
array element value.

If the SET statement failed to execute successfully:

* Verify the SQL statement syntax of the SET statement and execute the statement
again.

* Verify that the variable is of the same data type as the array element.

* Verify that the array was created successfully and currently exists.

Retrieving the number of array elements:

Retrieving the number of array elements in a simple array can most easily be done
by using the CARDINALITY function and retrieving the maximum allowed size of
an array can be done using the MAX_CARDINALITY function.

* Read:[“Ordinary array data type” on page 23|

* Read: [‘Restrictions on the array data type” on page 24|

* Privileges required to execute the SET statement

SQL Procedural Languages: Application Enablement and Support

You would perform this task within SQL PL code in order to access a count value
of the number of elements in an array. You might access the array element value as
part of an assignment (SET) statement or access the value directly within an
expression.

1. Define a SET statement.

a. Declare and specify a variable name of type integer that will hold the
cardinality value.

b. Specify the assignment symbol, ‘="

c. Specify the name of the CARDINALITY or MAX_CARDINALTIY function
and within the required brackets, the name of the array.

2. Execute the SET statement.

If the SET statement executes successfully, the local variable should contain the
count value of the number of elements in the array.

The following is an example of two SET statements that demonstrate these
assignments:

SET card = CARDINALITY (arrayName);

SET maxcard = MAX_CARDINALITY(arrayName);

If the SET statement failed to execute successfully:

* Verify the SQL statement syntax of the SET statement and execute the statement
again.

* Verify that the local variable is of the integer data type.

e Verify that the array was created successfully and currently exists.

Retrieving the first and last array elements (FIRST, LAST functions):

Retrieving the first and last elements in a simple array can most easily be done by
using the FIRST and LAST functions.

* Read: [“Ordinary array data type” on page 23|

* Read: [“Restrictions on the array data type” on page 24|

* Privileges required to execute the SET statement

You would perform this task within SQL PL code in order to quickly access the
first element in an array.

Define a SET statement:
1. Declare and specify a variable that is of the same type as the array element.
2. Specify the assignment symbol, ‘="

3. Specify the name of the FIRST or LAST function and within the required
brackets, the name of the array.

If the SET statement executes successfully, the local variable should contain the
value of the first or last (as appropriate) index value in the array.

For an array of phone numbers defined as:

firstPhone index 0 1 2 3
phone '416-223-2233' '416-933-9333"' '416-887-8887"' '416-722-7227'

If the following SQL statement is executed:
SET firstPhonelx = FIRST(phones);

Chapter 1. SQL PL support 29

30

The variable firstPhonelx will have the value 0. This would be true even if the
element value in this position was NULL.

The following SET statement accesses the element value in the first position in the
array:
SET firstPhone = A[FIRST(A)]

If the SET statement failed to execute successfully:

* Verify the SQL statement syntax of the SET statement and execute the statement
again.

* Verify that the local variable is of the correct data type.

* Verify that the array was created successfully and currently exists.

Retrieving the next and previous array elements:

Retrieving the next or previous elements in a simple array can most easily be done
by using the PREV and NEXT functions.

* Read: [’Ordinary array data type” on page 23|

* Read: [“Restrictions on the array data type” on page 24|

* Privileges required to execute the SET statement

You would perform this task within SQL PL code in order to quickly access the
immediately adjacent element value in an array.

1. Define a SET statement:
a. Declare and specify a variable that is of the same type as the array element.
b. Specify the assignment symbol, ‘=".

C. Specify the name of the NEXT or PREV function and within the required
brackets, the name of the array.

2. Execute the SET statement.

For an array of phone numbers defined as:

firstPhone index 0 1 2 3
phone '416-223-2233' '416-933-9333' '416-887-8887' '416-722-7227"

The following SQL statement sets the variable firstPhone to the value 0..
SET firstPhone = FIRST(phones);

The following SQL statement sets the variable nextPhone to the value 1.
SET nextPhone = NEXT(phones, firstPhone);

The following SQL statement sets the variable phoneNumber to the value of the
phone number at the next position in the array after nextPhone. This is the array
element value at index value position 2.

SET phoneNumber = phones[NEXT (phones, nextPhone)];

If the SET statement failed to execute successfully:

* Verify the SQL statement syntax of the SET statement and execute the statement
again.

* Verify that the local variable is of the correct data type.

* Verify that the array was created successfully and currently exists.

Trimming the array (TRIM_ARRAY function):

SQL Procedural Languages: Application Enablement and Support

Trimming an array is a task that you would perform using the TRIM_ARRAY
function when you want to remove unnecessary array elements from the end of an
array.

* Read: Array data types
* Read: Restrictions on array data types
* Privileges required to execute the SET statement

You would perform this task within SQL PL code in order to quickly remove array
elements from the end of an array.

1. Define a SET statement:

a. Declare and specify an array variable that is of the same type as the array
to be modified, or re-use the same array variable.

b. Specify the assignment symbol, ‘="

c. Specify the name of the TRIM_ARRAY function and within the required
brackets, the name of the array and the number of elements to be trimmed.

2. Execute the SET statement.

If the SET statement executes successfully, the array phones should contain the
updated value.

For an array of phone numbers defined as:

phones index 0 1 2 3
phone '416-223-2233' '416-933-9333' '416-887-8887' '416-722-7227"

After executing the following:
SET phones = TRIM_ARRAY (phones, 2);

The array, phones, will be defined as:

phones index 0 1
phone '416-223-2233' '416-933-9333'

If the SET statement failed to execute successfully:

* Verify the SQL statement syntax of the SET statement and execute the statement
again.

* Verify that the local variable is of the correct data type.

* Verify that the array was created successfully and currently exists.

Deleting an array element (ARRAY_DELETE):

Deleting an element permanently from an array can be done using the
ARRAY_DELETE function.

* Read: Array data types
* Read: Restrictions on array data types

* Privileges required to execute the SET statement

You would perform this task within SQL PL code in order to delete an element in
an array.

1. Define a SET statement:
a. Declare and specify a variable that is of the same type as the array element.
b. Specify the assignment symbol, ‘=".

Chapter 1. SQL PL support 31

32

C. Specify the name of the ARRAY_DELETE function and within the required
brackets, the name of the array, and the subindices that define the range of
the elements to be deleted.

2. Execute the SET statement.

If the SET statement executes successfully, the array phones should contain the
updated value.

For an array of phone numbers defined as:

phones index 0 1 2 3
phone '416-223-2233' '416-933-9333' '416-887-8887' '416-722-7227"

After executing the following SQL statement:
SET phones = ARRAY DELETE (phones, 1, 2);

The array, phones, will be defined as:

phones index 0 3
phone '416-223-2233' '416-722-7227'

If the SET statement failed to execute successfully:

* Verify the SQL statement syntax of the SET statement and execute the statement
again.

* Verify that the local variable is of the correct data type.

* Verify that the array was created successfully and currently exists.

Determining if an array element exists:

Determining if an array element exists and has a value is a task that can be done
using the ARRAY_EXISTS function.

* Read:[“Ordinary array data type” on page 23|

* Read: [“Restrictions on the array data type” on page 24|

* Privileges required to execute the IF statement or any SQL statement in which
the ARRAY_EXISTS function is referenced.

You would perform this task within SQL PL code in order to determine if an array
element exists within an array.
1. Define an IF statement:

a. Define a condition that includes the ARRAY_EXISTS function.

b. Specify the THEN clause and include any logic that you want to have

performed if the condition is true and add any ELSE caluse values you
want.

c. Close the IF statement with the END IF clause.
2. Execute the IF statement.

For an array of phone numbers defined as:

phones index 0 1 2 3
phone '416-223-2233' '416-933-9333' '416-887-8887' '416-722-7227'

After executing the following, the variable x will be set to 1.
IF (ARRAY_EXISTS(phones, 2)) THEN

SET x = 1;
END IF;

SQL Procedural Languages: Application Enablement and Support

If the SET statement failed to execute successfully:

* Verify the SQL statement syntax of the SET statement and execute the statement
again.

* Verify that the local variable is of the correct data type.

e Verify that the array was created successfully and currently exists.
Array support in SQL procedures:

SQL procedures support parameters and variables of array types. Arrays are a
convenient way of passing transient collections of data between an application and
a stored procedure or between two stored procedures.

Within SQL stored procedures, arrays can be manipulated as arrays in
conventional programming languages. Furthermore, arrays are integrated within
the relational model in such a way that data represented as an array can be easily
converted into a table and data in a table column can be aggregated into an array.
The examples below illustrate several operations on arrays. Both examples are
command line processor (CLP) scripts that use the percentage character (%) as a
statement terminator.

Example 1

This example shows two procedures, sub and main. Procedure main creates an
array of 6 integers using an array constructor. It then passes the array to procedure
sum, which computes the sum of all the elements in the input array and returns
the result to main. Procedure sum illustrates the use of array subindexing and of
the CARDINALITY function, which returns the number of elements in an array.

create type intArray as integer array[100] %

create procedure sum(in numList intArray, out total integer)
begin

declare i, n integer;

set n = CARDINALITY (numList);

set i = 1;
set total = 0;

while (i <= n) do

set total = total + numList[i];

set i =1 + 1;

end while;

end %

create procedure main(out total integer)
begin

declare numList intArray;

set numList = ARRAY[1,2,3,4,5,6];

call sum(numList, total);

end %
Example 2

In this example, we use two array data types (intArray and stringArray), and a
persons table with two columns (id and name). Procedure processPersons adds

Chapter 1. SQL PL support 33

34

three additional persons to the table, and returns an array with the person names
that contain letter 'o', ordered by id. The ids and name of the three persons to be
added are represented as two arrays (ids and names). These arrays are used as
arguments to the UNNEST function, which turns the arrays into a two-column
table, whose elements are then inserted into the persons table. Finally, the last set
statement in the procedure uses the ARRAY_AGG aggregate function to compute
the value of the output parameter.

create type intArray as integer array[100] %
create type stringArray as varchar(10) array[100] %

create table persons (id integer, name varchar(10)) %
insert into persons values(2, 'Tom') %
insert into persons values(4, 'Jill') %

0

insert into persons values(l, 'Joe') %
insert into persons values(3, 'Mary') %

create procedure processPersons(out witho stringArray)
begin

declare ids intArray;

declare names stringArray;

set ids = ARRAY[5,6,7];
set names = ARRAY['Bob', 'Ann', 'Sue'];

insert into persons(id, name)
(select T.i, T.n from UNNEST(ids, names) as T(i, n));

set witho = (select array_agg(name order by id)
from persons

where name Tike '%0%');

end %

Associative array data type

An associative array data type is a data type used to represent a generalized array

with no predefined cardinality. Associative arrays contain an ordered set of zero or
more elements of the same data type, where each element is ordered by and can be
referenced by an index value.

The index values of associative arrays are unique, are of the same data type, and
do not have to be contiguous.

The following topics provide more information about the associative array data
type:

Features of associative arrays:

The associative array data type is used to represent associative arrays. It has many
features which contribute to its utility.

The associative array data type supports the following associative array properties:

* No predefined cardinality is specified for associative arrays. This enables you to
continue adding elements to the array without concern for a maximum size
which is useful if you do not know in advance how many elements will
constitute a set.

* The array index value can be a non integer data type. VARCHAR and INTEGER
are supported index values for the associative array index.

* Index values do not have to be contiguous. In contrast to a conventional array
which is indexed by position, an associative array is an array that is indexed by
values of another data type and there are not necessarily index elements for all

SQL Procedural Languages: Application Enablement and Support

possible index values between the lowest and highest. This is useful if for
example you want to create a set that stores names and phone numbers. Pairs of
data can be added to the set in any order and be sorted using which ever data
item in the pair is defined as the index.

* The elements in an associative array are sorted in ascending order of index
values. The insertion order of elements does not matter.

* Associative array data can be accessed and set using direct references or by
using a set of available scalar functions.

* Associative arrays are supported in SQL PL contexts.

* Associative arrays can be used to manage and pass sets of values of the same
kind in the form of a collection instead of having to:

— Reduce the data to scalar values and use one-element-at-a-time processing
which can cause network traffic problems.

- Use cursors passed as parameters.

— Reduce the data into scalar values and reconstitute them as a set using a
VALUES clause.

Restrictions on associative array data types:

It is important to note the restrictions on the array data type before you use it or
when troubleshooting problems with their declaration or use.

The following restrictions apply to the array data type:

* An associative array can only be declared, created, or referenced in SQL PL
contexts. The following is a list of SQL PL contexts in which this data type can
be used:

— Parameter to an SQL function that is defined in a module.

— Parameter to an SQL function that is not defined in a module, but that has a
compound SQL (compiled) statement as function body not defined in a
module.

— Return type from an SQL functions that is defined in a module.

— Return type from an SQL function that is not defined in a module, but that
has a compound SQL (compiled) statement as function body.

— Parameter to an SQL procedure.
— Local variable declared in an SQL function that is defined in a module.

— Local variable declared in an SQL function that is not defined in a module,
but that has a compound SQL (compiled) statement as function body.

— Local variable declared in an SQL procedure.

— Local variable declared in a trigger with a compound SQL (compiled)
statement as trigger body.

— Expressions in SQL statements within compound compiled (SQL) statements.
— Expressions in SQL statements in SQL PL contexts.
— Global variable.

Any use outside of one of the above SQL PL contexts is not valid.
* Associative arrays cannot be the type of a table column.
* NULL is not permitted as an index value.
* The maximum size of an associative array is limited by system resources.

* Associative arrays can not be input to the TRIM_ARRAY function. Associative
array values cannot be stored in table columns.

Chapter 1. SQL PL support 35

36

* The MAX_CARDINALITY function is supported for use with associative arrays,
but always returns null because associative arrays do not have a specified
maximum size.

Creating an associative array data type:

Creating an associative array data type is a task that you would perform as a
prerequisite to creating a variable of the associative array data type. Associative
array data types are created by executing the CREATE TYPE (array) statement.

Ensure you have the privileges required to execute the CREATE TYPE statement.

Associative array data types can only be used in certain contexts.
1. Define the CREATE TYPE statement:

a. Specify a name for the associative array data type. A good name is one that
clearly specifies the type of data stored in the array. For example: Products
might be a good name for an array that contains information about
products where the array index is the product identifier. As another
example, the name y_coordinate might be a good name for an array where
the array index is the x coordinate value in a graph function.

a. Specify the AS keyword followed by the keyword name for the data type of
the array elements (e.g. INTEGER).

b. Specify the ARRAY keyword. Within the square brackets of the ARRAY
clause, specify the data type of the array index. Note: With associative
arrays, there is no explicit limit on the number of. elements or on the
domain of the array index values.

2. Execute the CREATE TYPE statement from a supported interface.

Example 1:
The following is an example of a CREATE TYPE statement that creates an array
named assocArray with 20 elements and a array index of type VARCHAR.

CREATE TYPE assocArray AS INTEGER ARRAY[VARCHAR(20)];

Example 2:
The following is an example of a basic associative array definition that uses the
names of provinces for indices and where the elements are capital cities:

CREATE TYPE capitalsArray AS VARCHAR(12) ARRAY[VARCHAR(16)];

If the statement executes successfully the array data type is created in the database
and the array data type can be referenced..

After creating the array data type you might want to create an associative array
variable.

Declaring associative array variables:

Declaring associative array variables is a task that you perform after creating
associative array data typeso be able to temporarily store or pass associative array
data type values. Local variables are declared using the DECLARE statement.
Global variables are created using the CREATE VARIABLE statement.

* Read: Associative array data types
* Read: Restrictions on associative array data types
* Read: Creating the associative array data type

SQL Procedural Languages: Application Enablement and Support

* For global variables, you require the privilege to execute the CREATE
VARIABLE statement. For local variables, no privileges required to execute the
DECLARE statement

Associative array variables can be declared and used in supported contexts to store
sets of row data.

1. Define the DECLARE statement for a local variable or the CREATE TYPE
statement for a global variable:

a. Specify a name for the associative array data type.

b. Specify the name of the associative array data type that you used when you
created the associative array data type.

2. Execute the CREATE TYPE statement from a supported interface.

Example 1:
Consider an associative array data type defined as:

CREATE TYPE Representative_Location AS VARCHAR(20) ARRAY[VARCHAR(30)];

To declare a variable of this data type you would use the DECLARE statement as
follows:

DECLARE RepsByCity Representative_Location;

This array can contain up to the maximum number of associative array element
values stored as VARCHAR(20) data type values indexed by unique variable
character data type values. The variable name indicates that a set of names of sales
representatives is indexed by the name of the city that they represent. In this array,
no two sales representative names can be represented by the same city which is the
array index value.

Example 2:
Consider an associative array data type defined to store as element values, the
names of capital cities, where the indices are province names:

CREATE TYPE capitalsArray AS VARCHAR(12) ARRAY[VARCHAR(16)];

To create a variable of this data type you would use the CREATE VARIABLE
statement as follows:

CREATE VARIABLE capitals capitalsArray;

This array can contain up to the maximum number of associative array element
values stored as VARCHAR(20) data type values indexed by unique variable
character data type values. The variable name indicates that a set of names of sales
representatives is indexed by the name of the city that they represent. In this array,
no two sales representative names can be represented by the same city which is the
array index value.

If the DECLARE statement or CREATE VARIABLE statement executes successfully,
the array data type will have been defined successfully and can be referenced. To
validate that the associative array variables was created you can assign values to
the array or attempt to reference values in the array.

If the DECLARE statement or CREATE VARIABLE statement failed to execute
successfully, verify the SQL statement syntax of the DECLARE statement and
execute the statement again. See the DECLARE statement.

Assigning values to arrays using subindices and literal values:

Chapter 1. SQL PL support 37

38

Once an associative array variable has been created or declared, values can be
assigned to it. One way of assigning values to associative arrays is by direct
assignment.

* Read: Associative array data types
* Read: Restrictions on associative array data types
* Ensure that an associative array variable is in the current scope of use.

Assigning values to associative array variable elements can be done by using the
assignment statement in which the array is named, the index value is specified and
the corresponding element value is assigned.

1. Define the assignment statement for an associative array variable.
* Specify the variable name, the index value, and the element value.
* Specify another associative array variable.

2. Execute the assignment statement from a supported interface.

Example 1:
The following is an example of a variable declaration and a series of assignment
statements that define values in the array:

DECLARE capitals capitalsArray;

SET capitals['British Columbia'] = 'Victoria';
SET capitals['Alberta'] = 'Edmonton';

SET capitals['Manitoba'] = 'Winnipeg';

SET capitals['Ontario'] = 'Toronto';

SET capitals['Nova Scotia'] = 'Halifax';

In the capitals array, the array index values are province names and the associated
array element values are the names of the corresponding capital cities. Associative
arrays are sorted in ascending order of index value. The order in which values are
assigned to associative array elements does not matter.

Example 2:

An associative array variable can also be assigned an associative array variable
value of the same associative array data type. This can be done using the
assignment statement. For example, consider two associative array variables,
capitalsA and capitalsB defined as:

DECLARE capitalsA capitalsArray;
DECLARE capitalsB capitalsArray;

SET capitalsA['British Columbia'] = 'Victoria';
SET capitalsA['Alberta'] = 'Edmonton';

SET capitalsA['Manitoba'] = 'Winnipeg';

SET capitalsA['Ontario'] = 'Toronto';

SET capitalsA['Nova Scotia'] = 'Halifax';

The variable capitalsB can be assigned the value of the variable capitalsA by
executing the following assignment statement:

SET capitalsB = capitalsA;
Once executed, capitalsB will have the same value as capitalsA.

If the assignment statement executes successfully, the value has been successfully
assigned and the new variable value can be referenced.

SQL Procedural Languages: Application Enablement and Support

If the statement failed to execute successfully, verify and correct the SQL statement
syntax and verify that the variables named are defined before executing the
statement again.

Cursor types

A cursor type can be the built-in data type CURSOR or a user-defined type that is
based on the built-in CURSOR data type. A user-defined cursor type can also be
defined with a specific row type to restrict the attributes of the result row of the
associated cursor.

When a cursor type is associated with a row data structure (specified by a row), it
is called a strongly typed cursor. Only result sets that match the definition can be
assigned to and stored in a variable of a strongly typed cursor data type. When no
result set definition is associated with a cursor data type definition, the cursor data
type is said to be weakly typed. Any result set can be stored in a variable of a
weakly typed cursor data type.

The cursor data type is only supported for use with SQL PL. It is primarily used to
create cursor type definitions that can be used for cursor variable declarations.

This data type can be used to:
e Define cursor variable declarations.

* Simplify the coding of logic within SQL Procedural Language applications. For
example, database applications process sets of records called result sets and in
some cases the same result set might need to be referenced and processed in
different contexts. Passing defined result sets between interfaces can require
complex logic. A cursor data type permits the creation of cursor variables which
can be used to store result sets, process result sets, and pass result sets as
parameters.

* Facilitate the porting to DB2 SQL PL of code which has a similar data type.

Cursor data types must be created using the CREATE TYPE statement. Once this is
done variables of this data type can be declared and referenced. Cursor variables
can be assigned a row data structure definition, opened, closed, assigned a set of
rows from another cursor variable, or be passed as a parameter from SQL
procedures.

Overview of cursor data types

This overview of cursor data types introduces the types of cursor data types, the
scope in which they can be used, as well as provides information about the
restrictions and privileges that pertain to their use.

Types of cursor data types:

There are two main types of cursor data types: weakly-typed cursor data types and
strongly-typed cursor data types. The property of being strongly or weakly typed
is defined when the data type is created. This property is maintained in variables
created of each type.

The characteristics of strongly-typed cursor data types and weakly typed cursor
data types are provided here:

Strongly-typed cursor data types
A strongly-typed cursor data type is one that is created with a result set
definition specified by a row data structure. These data types are called

Chapter 1. SQL PL support 39

40

strongly typed, because when result set values are assigned to them the
data types of the result sets can be checked. Cursor data type result set
definitions can be defined by providing a row type definition. Only result
sets that match the definition can be assigned to and stored in a strongly
typed cursor data type. Strong type checking is performed at assignment
time and if there are any data type mismatches, an error is raised.

Result set definitions for strongly-typed cursor data types can be provided
by a row data type definition or an SQL statement definition.

The following is an example of a cursor data type definition that is defined
to return a result set with the same row format as the rowType data type:

CREATE TYPE cursorType AS rowType CURSOR@

Only result sets that contain columns of data with the same data type
definition as the rowType row definition can be successfully assigned to
variables declared to be of the cursorType cursor data type.

The following is an example of a cursor data type definition that is defined
to return a result set with the same row format as that which defines table
T1:

CREATE TABLE T1 (C1 INT)

CREATE TYPE cursorType AS ANCHOR ROW OF t1 CURSOR;

Only result sets that contain columns of data with the same data type
definition as the column definition for the table t1 can be successfully
assigned to variables declared to be of the cursorType cursor data type.

The row definition associated with a strongly typed cursor can be
referenced as the definition of an anchored data type. The following
example illustrates this:

CREATE TYPE r1 AS ROW (C1 INT);
CREATE TYPE c1 AS RTEST CURSOR;

DECLARE cl CTEST;
DECLARE r1 ANCHOR ROW OF CV1;

A row data type named r1 is defined, a cursor type named cl associated
with the row definition of rl is defined. The subsequent SQL statements
are examples of variable declarations might appear in an SQL procedure.
The second variable declaration is for a variable named r1 which is defined
to be of the anchored data type - it is anchored to the row type that was
used to define the cursor cvl.

Weakly-typed cursor data types

A weakly typed cursor type is not associated with any row data type
definition. No type checking is performed when values are assigned to
weakly typed cursor variables.

There is a system-defined weakly typed cursor data type named CURSOR
that can be used to declare weakly typed cursor variables or parameters.
The following is an example of a weakly typed cursor variable declaration
based on the system-defined weakly typed cursor data type CURSOR:

DECLARE cvl CURSOR;

Weakly typed cursor variables are useful when you must store a result set
with an unknown row definition.

To return a weakly typed cursor variable as an output parameter, the
cursor must be opened.

SQL Procedural Languages: Application Enablement and Support

In this version, variables based on weakly typed cursor data types cannot
be referenced as anchored data types.
User-defined weakly typed cursor data types can be defined.

All other characteristics of cursor variables are common for each type of cursor
variable.

Restrictions on cursor data types:

Restrictions on cursor data types and cursor variables limit cursor variable
functionality as well as where cursor variables can be defined and referenced.

The restrictions on cursor data types and variables are important to note before
implementing them. The restrictions can be important in determining whether a
cursor variable is appropriate for your needs and can be useful to review when
troubleshooting errors related to cursor data type and variable use.

The following restrictions apply to cursor data types in this version:
* Cursor data types can only be created as local types in SQL procedures.

The following restrictions apply to cursor variables in this version:

* Cursor variables are not supported for use in applications. Cursor variables can
only be declared and referenced in SQL PL contexts.

* Cursor variables are read-only cursors.
* Rows accessed through the use of a cursor variable are not updatable.
* Cursor variables are not scrollable cursors.

 Strongly typed cursor variable columns cannot be referenced as anchored data

types.

* There is no support for global cursor variables.
¢ XML columns cannot be referenced in cursor variable definitions.

* XQuery language statements cannot be used to define strongly-typed cursor
result sets.

Privileges related to cursor data type use:

Specific privileges related to cursor data types and variables exist to restrict and
control who can create them.

To create cursor data types, you require the following privilege:
* Privilege to execute the CREATE TYPE statement to create a cursor data type.

To declare cursor variables based on existing cursor data types, no privileges are
required.

To initialize cursor variables, to open the cursor referenced by a cursor variable, or
to fetch values from an opened cursor variable reference, you require the same
privileges as are required to execute the DECLARE CURSOR statement.

Cursor variables

Cursor variables are cursors based on predefined cursor data type. Cursor
variables can be un-initialized, initialized, assigned a value, set to another value, or
passed as a parameter from SQL procedures. Cursor variables inherit the
properties of the cursor data types upon which they are based. Cursor variables

Chapter 1. SQL PL support 41

42

can be strongly-typed or weakly-typed. Cursor variables hold a reference to the
context of the cursor defined by the cursor data type.

Cursor variables can be declared within SQL procedures using the DECLARE
statement.

Cursor predicates

Cursor predicates are SQL keywords that can be used to determine the state of a
cursor defined within the current scope. They provide a means for easily
referencing whether a cursor is open, closed or if there are rows associated with
the cursor.

Cursor predicates can be referenced in SQL and SQL PL statements wherever the
status of a cursor can be used as a predicate condition. The cursor predicates that
can be used include:

IS OPEN
This predicate can be used to determine if the cursor is in an open state.
This can be a useful predicate in cases where cursors are passed as
parameters to functions and procedures. Before attempting to open the
cursor, this predicate can be used to determine if the cursor is already
open.

IS NOT OPEN
This predicate can be used to determine if the cursor is closed. Its value is
the logical inverse of IS OPEN. This predicate can be useful to determine
whether a cursor is closed before attempting to actually close the cursor.

IS FOUND
This predicate can be used to determine if the cursor contains rows after
the execution of a FETCH statement. If the last FETCH statement executed
was successful, the IS FOUND predicate value is true. If the last FETCH
statement executed resulted in a condition where rows were not found, the
result is false. The result is unknown when:
e the value of cursor-variable-name is null
¢ the underlying cursor of cursor-variable-name is not open
* the predicate is evaluated before the first FETCH action was performed

on the underlying cursor

e the last FETCH action returned an error

The IS FOUND predicate can be useful within a portion of SQL PL logic
that loops and performs a fetch with each iteration. The predicate can be
used to determine if rows remain to be fetched. It provides an efficient
alternative to using a condition handler that checks for the error condition
that is raised when no more rows remain to be fetched.

An alternative to using IS FOUND is to use IS NOT FOUND which has the
opposite value.

Example

The following script defines an SQL procedure that contains references to these
predicates as well as the prerequisite objects required to successfully compile and
call the procedure:

CREATE TABLE T1 (cl INT, c2 INT, c3 INT)@

insert into tl1 values (1,1,1),(2,2,2),(3,3,3) @

SQL Procedural Languages: Application Enablement and Support

CREATE TYPE myRowType AS ROW(cl INT, c2 INT, c3 INT)@

CREATE TYPE myCursorType AS myRowType CURSOR@

CREATE PROCEDURE p(OUT count INT)
LANGUAGE SQL
BEGIN

DECLARE C1 cursor;

DECLARE 1varInt INT;

SET count = -1;
SET c1 = CURSOR FOR SELECT cl FROM t1;

IF (c1 IS NOT OPEN) THEN
OPEN cl1;

ELSE
set count = -2;

END IF;

set count = 0;
IF (c1 IS OPEN) THEN

FETCH cl1 into TvarInt;

WHILE (c1 IS FOUND) DO
SET count = count + 1;
FETCH c1 INTO TvarlInt;

END WHILE;

ELSE
SET count = 0;
END IF;

END@

CALL p()e

Creating cursor variables

To create cursor variables you must first create a cursor type and then create a
cursor variable based on the type. The following topics show you how to do these
tasks:

Creating cursor data types using the CREATE TYPE statement:

Creating a cursor data type is a prerequisite to creating a cursor variable. Cursor
data types are created using the CREATE TYPE (cursor) statement.

To perform this task you require:
* Privileges to execute the CREATE TYPE (cursor) statement.

* If creating a strongly typed cursor data type, you must either prepare a row
specification or base it on an existing row from a table, view, or cursor.

The CREATE TYPE (cursor) statement defines a cursor data type that can be used
in SQL PL to declare parameters and local variables of the cursor data type. A
strongly typed cursor data type is created if the row-type-name clause is specified
in the CREATE TYPE (cursor) statement. A weakly defined cursor data type is
created when the row-type-name clause is omitted.

As an alternative to creating a weakly defined cursor data type, the system-defined

weakly defined cursor data type CURSOR can be used when declaring cursor
variables.

Chapter 1. SQL PL support 43

44

CREATE TYPE weakCursorType AS CURSOR@

If you want to create a strongly-typed cursor data type, a row data type definition
must exist that will define the result set that can be associated with the cursor. A
row data type definition can be derived from an explicitly defined row data type, a
table or view, or strongly typed cursor. The following is an example of a row type
definition:

CREATE TYPE empRow AS ROW (name varchar(128), ID varchar(8))@

The following is an example of a table definition from which a row type definition
can be derived:

CREATE TABLE empTable AS ROW (name varchar(128), ID varchar(8))e

To define a strongly-typed cursor data type within a database you must
successfully execute the CREATE TYPE (CURSOR) statement from any DB2
interface that supports the execution of SQL statements.

1. Formulate a CREATE TYPE (CURSOR) statement:
a. Specify a name for the type.
b. Specify a row definition by doing one of: referencing the name of a row
data type, specifying that the type should be anchored to a table or view, or

anchored to the result set definition associated with an existing strong
cursor type.

2. Execute the CREATE TYPE statement from a supported DB2 interface.

If the CREATE TYPE statement executes successfully, the cursor data type is
created in the database.

The following is an example of how to create a weakly typed cursor data type that
can be associated with result sets with the same format as the empRow row data

type:
CREATE TYPE cursorType AS empRow CURSOR@

The following is an example of how to create a cursor data type that can be
associated with result sets with the same format as the table empTable :

CREATE TYPE cursorType AS ANCHOR ROW OF empTable@

Once the cursor data type is created, cursor variables can be declared based on this
data type.

Declaring local variables of type cursor:

Local variables of type cursor can be declared once a cursor data type has been
created.

A cursor data type definition must exist in the database. Cursor data types are
created by successfully executing the CREATE TYPE (CURSOR) statement. The
following is an example of a strongly-typed cursor type definition:

CREATE TYPE cursorType AS empRow CURSOR;

In this version, cursor variables can only be declared as local variables within SQL
procedures. Both strongly-typed and weakly-typed cursor variables can be
declared.

1. Formulate a DECLARE statement:
a. Specify a name for the variable.

SQL Procedural Languages: Application Enablement and Support

b. Specify the cursor data type that will define the variable. If the cursor
variable is to be weakly-typed, a user-defined weakly typed cursor data
type must be specified or the system-defined weakly-typed cursor data type
CURSOR. If the cursor variable is to be based on a strongly-typed cursor
data type, you can initialize the variable immediately.

The following is an example of how to formulate a DECLARE statement that
will define a cursor variable of type cursorType that is not initialized:
DECLARE Cvl cursorType@

The following is an example of how to formulate a DECLARE statement that
will define a cursor variable Cv2 with a type that is anchored to the type of the
existing cursor variable named Cvl1:

DECLARE Cv2 ANCHOR DATA TYPE TO Cvle

The following is an example of how to formulate a DECLARE statement that
will define a weakly-typed cursor variable:

DECLARE Cv1 CURSORE
2. Execute the DECLARE statement within a supported context.

If execution of the DECLARE statement is successful, the cursor variable is created.

Once this cursor variable is created, the cursor variable can be assigned values,
referenced, or passed as a parameter.

Assigning values to cursor variables
Result sets can be assigned to cursor variables at different times and in multiple
ways using the SET statement.

Assigning a query result set to a cursor variable

A result set of a select query can be assigned to a cursor variable by using the SET
statement and the CURSOR FOR keywords. The following is an example of how
the result set associated with a query on a table named T is assigned to a cursor
variable named c1 that has an identical row definition as the table:

If T is defined as:
CREATE TABLE T (C1 INT, C2 INT, C3 INT);

If C1 is a strongly-typed cursor variable that was defined as:

CREATE TYPE simpleRow AS ROW (cl INT, c2 INT, c3 INT);
CREATE TYPE simpleCur AS CURSOR RETURNS simpleRow;
DECLARE cl1 simpleCur;

The assignment can be done as follows:
SET c1 = CURSOR FOR SELECT * FROM T;

The strong type checking will be successful since c1 has a compatible definition to
table T. If c1 was a weakly-typed cursor this assignment would also be successful,
because no data type checking would be performed.

Assigning literal values to a cursor variable

A result set of a select query can be assigned to a cursor variable by using the SET
statement and the CURSOR FOR keywords. The following is an example of how

Chapter 1. SQL PL support 45

46

the result set associated with a query on a table named T is assigned to a cursor
variable named c1 that has an identical row definition as the table.

Let T be a table defined as:
CREATE TABLE T (C1 INT, C2 INT, C3 INT);

Let simpleRow be a row type and simpleCur be a cursor type that are respectively
created as:

CREATE TYPE simpleRow AS ROW (cl INT, c2 INT, c3 INT);
CREATE TYPE simpleCur AS CURSOR RETURNS simpleRow;

Let cl be a strongly-typed cursor variable that is declared within a procedure as:
DECLARE c1 simpleCur;

The assignment of literal values to cursor ¢l can be done as follows:
SET cl = CURSOR FOR VALUES (1, 2, 3);

The strong type checking will be successful since the literal values are compatible

with the cursor definition. The following is an example of an assignment of literal
values that will fail, because the literal data types are incompatible with the cursor
type definition:

SET cl = CURSOR FOR VALUES ('a', 'b', 'c');

Assigning cursor variable values to cursor variable values

A cursor variable value can be assigned to another cursor variable only if the
cursor variables have identical result set definitions. For example:

If c1 and c2 are strongly-typed cursor variable that was defined as:
CREATE TYPE simpleRow AS ROW (cl INT, c2 INT, c3 INT);

CREATE TYPE simpleCur AS CURSOR RETURNS simpleRow
DECLARE c1 simpleCur;

DECLARE c2 simpleCur;

If 2 has been assigned values as follows:
SET c2 = CURSOR FOR VALUES (1, 2, 3);

The assignment of the result set of c2 to cursor variable c1 can be done as follows:
SET cl = c2;

Once cursor variables have been assigned values, the cursor variables and cursor
variables field values can be assigned and referenced.

Referencing cursor variables

Cursor variables can be referenced in multiple ways as part of cursor operations
related to retrieving and accessing a result set or when calling a procedure and
passing cursor variables as parameters.

The following statements can be used to reference cursor variables within an SQL
PL context:

« CALL
e SET

SQL Procedural Languages: Application Enablement and Support

* OPEN
 FETCH
* CLOSE

The OPEN, FETCH, and CLOSE statements are most often used together when
accessing the result set associated with a cursor variable. The OPEN statement is
used to initialize the result set associated with the cursor variable. Upon successful
execution of this statement, the cursor variable is associated with the result set and
the rows in the result set can be accessed. The FETCH statement is used to
specifically retrieve the column values in the current row being accessed by the
cursor variable. The CLOSE statement is used to end the processing of the cursor
variable.

The following is an example of a created row data type definition and an SQL
procedure definition that contains a cursor variable definition. Use of the OPEN,
FETCH, and CLOSE statements with the cursor variable are demonstrated within
the SQL procedure:

CREATE TYPE simpleRow AS ROW (cl INT, c2 INT, c3 INT);
CREATE PROCEDURE P(OUT pl INT, OUT p2 INT, PUT p3 INT, OUT pRow simpleRow)
LANGUAGE SQL
BEGIN
CREATE TYPE simpleCur AS CURSOR RETURNS simpleRow
DECLARE c1 simpleCur;
DECLARE TlocalVarl INTEGER;
DECLARE TocalVar2 INTEGER;
DECLARE TocalVar3 INTEGER;
DECLARE TocalRow simpleRow;
SET ¢l = CURSOR FOR SELECT = FROM T;
OPEN C1;
FETCH c1 INTO localVarl, localVar2, localVar3;
FETCH cl into TocalRow;

SET pl

localVarl;

SET p2 = TocalVar2;

SET p3 = TocalVar3;

SET pRow = localRow;
CLOSE c1;

END;

Cursor variables can also be referenced as parameters in the CALL statement. As
with other parameters, cursor variable parameters are simply referenced by name.
The following is an example of a CALL statement within an SQL procedure that
references a cursor variable named curVar which is an output parameter:

CALL P2(curVar);

Determining the number of fetched rows for a cursor
Determining the number of rows associated with a cursor can be efficiently done
by using the cursor_rowCount scalar function which takes a cursor variable as a

Chapter 1. SQL PL support 47

48

parameter and returns an integer value as an output corresponding to the number
of rows that have been fetched since the cursor was opened.

The following prerequisites must be met before you use the cursor_rowCount
function:

* A cursor data type must be created.

* A cursor variable of the cursor data type must be declared.

* An OPEN statement referencing the cursor must have been executed.

You can use the cursor_rowCount function within SQL PL contexts and would
perform this task whenever in your procedural logic it is necessary to access the
count of the number of rows that have been fetched for a cursor so far or the total
count of rows fetched. The use of the cursor_rowCount function simplifies
accessing the fetched row count which otherwise might require that within looping
procedural logic you maintain the count with a declared variable and a repeatedly
executed SET statement.

Restrictions

The cursor_rowCount function can only be used in SQL PL contexts.

1. Formulate an SQL statement with a reference to the cursor_rowCount scalar
function. The following is an example of a SET statement that assigns the
output of the cursor_rowCount scalar function to a local variable named
rows_fetched:

SET rows_fetched = CURSOR_ROWCOUNT (curEmp)

2. Include the SQL statement containing the cursor_rowCount function reference
within a supported SQL PL context. This might be, for example, within a
CREATE PROCEDURE statement or a CREATE FUNCTION statement and
compile the statement.

3.
The statement should compile successfully.

The following is an example of an SQL procedure that includes a reference to the
cursor_rowCount function:

CREATE PROCEDURE p()

LANGUAGE SQL

BEGIN

SET rows_fetched = CURSOR_ROWCOUNT (curEmp)

END@

Execute the SQL procedure or invoke the SQL function.

Example: Cursor variable use
Referencing examples of cursor variable use an be useful when designing and
implementing cursor variables.

Cursor variable use within an SQL procedure:

Referencing examples that demonstrate cursor variable use is a good way to learn
how and where you can use cursor variables.

This example shows the following:

SQL Procedural Languages: Application Enablement and Support

* CREATE TYPE statement to create a ROW data type

* CREATE TYPE statement to create a strongly-typed cursor based on a row data
type specification

* CREATE PROCEDURE statement to create a procedure that has an output
cursor parameter

¢ CREATE PROCEDURE statement to create a procedure that calls another
procedure and passes a cursor as an input parameter

A prerequisite to running this example is that the SAMPLE database must exist. To
create the sample database, issue the following command from a DB2 Command
Window:

db2samp1;

The following is an example CLP script that demonstrates the core features of
cursor variable use within SQL procedures. The script contains a row data type
definition, a cursor type definition and two SQL procedure definitions. The
procedure P_CALLER contains a cursor variable definition and a call to a
procedure named P. The procedure P defines a cursor, opens the cursor and passes
the cursor as an output parameter value. The procedure P_CALLER receives the
cursor parameter, fetches the cursor value into a local variable, and then sets two
output parameter values named edlvel and lastname based on the local variable
value.

--#SET TERMINATOR @

update command options using c off @
connect to sample @

CREATE TYPE myRowType AS ROW (edlevel SMALLINT, name VARCHAR(128))@
CREATE TYPE myCursorType AS myRowType CURSOR@

CREATE PROCEDURE P(IN pempNo VARCHAR(8), OUT pcvl CURSOR)

LANGUAGE SQL

BEGIN
SET pcvl = CURSOR FOR SELECT edlevel, Tastname FROM employee WHERE empNo = pempNo;
OPEN pcvl;

END@

CREATE PROCEDURE P_CALLER(IN pempNo VARCHAR(8) ,
OUT edlevel SMALLINT,
OUT lastname VARCHAR(128))
LANGUAGE SQL
BEGIN
DECLARE rv1 myRowType;
DECLARE c1 CURSOR;

CALL P (pempNo,cl);
FETCH c1 INTO rvl;
CLOSE c1;

SET edlevel = rvl.edlevel;
SET lastname = rvl.name;

END @
CALL P_CALLER('000180',7,?) @
When the above script is run, the following output is generated:

update command options using c off
DB20000I The UPDATE COMMAND OPTIONS command completed successfully.

Chapter 1. SQL PL support 49

connect to sample
Database Connection Information
DB2/LINUXX8664 9.7.0

REGRESS5
SAMPLE

Database server
SQL authorization ID
Local database alias

CREATE TYPE myRowType AS ROW (edlevel SMALLINT, name VARCHAR(128))
DB20000I The SQL command completed successfully.

CREATE TYPE myCursorType AS myRowType CURSOR@
DB20000I The SQL command completed successfully.

CREATE PROCEDURE P(IN pempNo VARCHAR(8),0UT pcvl CURSOR)

LANGUAGE SQL

BEGIN
SET pcvl = CURSOR FOR SELECT edlevel, Tastname FROM employee WHERE empNo = pempNo;
OPEN pcvl;

END
DB20000I The SQL command completed successfully.

CREATE PROCEDURE P_CALLER(IN pempNo VARCHAR(8) ,
OUT edlevel SMALLINT,
OUT Tastname VARCHAR(128))
LANGUAGE SQL
BEGIN
DECLARE rvl myRowType;
DECLARE c1 CURSOR;

CALL P (pempNo,cl);
FETCH c1 INTO rvl;
CLOSE c1;

SET EDLEVEL = rvl.edlevel;
SET LASTNAME = rvl.name;

END
DB20000I The SQL command completed successfully.

CALL P_CALLER('000180',7?,?

Value of output parameters

Parameter Name : EDLEVEL
Parameter Value : 17

Parameter Name : LASTNAME
Parameter Value : SCOUTTEN

Return Status = 0

Boolean data type

The BOOLEAN type is a built-in data type that can only be used for local
variables, global variables, parameters, or return types in compound SQL
(compiled) statements. A Boolean value represents a truth value of TRUE or
FALSE. A Boolean expression or predicate can result in a value of unknown, which
is represented as the null value.

Restrictions on the Boolean data type
It is important to note the restrictions on the Boolean data type before you use it or
when troubleshooting problems with their use.

50 SQL Procedural Languages: Application Enablement and Support

The following restrictions apply to the boolean data type:
* The Boolean data type can only be referenced as:

— Local variables declared in SQL functions

— Local variables declared in SQL procedures

— Local variables declared in triggers with a compound SQL (compiled)
statement as trigger body

— Parameter to SQL functions with a compound SQL (compiled) statement as
function body

— Parameter to SQL procedure with a compound SQL (compiled) statement as
procedure body

— Return type
— Global variable in a module

* The Boolean data type cannot be used to define the data type of a column in a
table or view.

¢ The system-defined values TRUE and FALSE cannot be referenced as values to
be inserted into a table.

* The Boolean data type cannot be referenced in external routines or client
applications.
* The Boolean data type cannot be cast to other data types.

¢ The Boolean data type cannot be returned as a return code value from an SQL
procedure.

* Variables of the Boolean data type can only be assigned one of the following
values: TRUE, FALSE, or NULL. Numeric or other data type assignments are not
supported.

* Selecting or fetching values into variables of the Boolean data type is not
supported.

e The Boolean data type cannot be returned in a result set.

* A Boolean variable cannot be used as a predicate. For example, the following
SQL clause is not supported:
IF (gb) THEN ...

Use of predicates is only supported in the SET statement and RETURN
statement from a UDFE.

If these restrictions prevent you from using this data type consider using an
integer data type instead and assign it values such as 1 for TRUE, 0 for FALSE,
and -1 for NULL.

SQL routines

SQL routines are routines that have logic implemented with only SQL statements,
including SQL Procedural Language (SQL PL) statements. They are characterized
by having their routine-body logic contained within the CREATE statement that is
used to create them. This is in contrast with external routines that have their
routine logic implemented in a library built form programming source code. In
general SQL routines can contain and execute fewer SQL statements than external
routines; however they can be every bit as powerful and high performing when
implemented according to best practices.

You can create SQL procedures, SQL functions, and SQL methods. Although they
are all implemented in SQL, each routine functional type has different features.

Chapter 1. SQL PL support 51

52

Overview of SQL routines

SQL routines are routines that have logic implemented with only SQL statements,
including SQL Procedural Language (SQL PL) statements. They are characterized
by having their routine-body logic contained within the CREATE statement that is
used to create them. You can create SQL procedures, SQL functions, and SQL
methods. Although they are all implemented in SQL, each routine functional type
has different features.

Before deciding to implement a SQL routine, it is important that you first
understand what SQL routines are, how they are implemented, and used by
reading an "Overview of routines". With that knowledge you can then learn more
about SQL routine from the following concept topics so that you can make
informed decisions about when and how to use them in your database
environment:

* SQL procedures

* SQL functions

* Tools for developing SQL routines

* SQL Procedural Language (SQL PL)

* Comparison of SQL PL and inline SQL PL

* SQL PL statements and features

* Supported inline SQL PL statements and features

* Determining when to use SQL procedures or SQL functions
¢ Restrictions on SQL routines

After having learned about SQL routines, you might want to do one of the
following tasks:

* Develop SQL procedures
* Develop SQL functions
* Develop SQL methods

CREATE statements for SQL routines

SQL routines are created by executing the appropriate CREATE statement for the
routine type. In the CREATE statement you also specify the routine body, which
for an SQL routine must be composed only of SQL or SQL PL statements. You can
use the IBM® DB2 Development Center to help you create, debug, and run SQL
procedures. SQL procedures, functions, and methods can also be created using the
DB2 command line processor.

SQL procedures, functions, and methods each have a respective CREATE
statement. Although the syntax for these statements is different, there are some
common elements to them. In each you must specify the routine name, and
parameters if there are to be any as well as a return type. You can also specify
additional keywords that provide DB2 with information about the logic contained
in the routine. DB2 uses the routine prototype and the additional keywords to
identify the routine at invocation time, and to execute the routine with the required
feature support and best performance possible.

For specific information on creating SQL procedures in the DB2 Development
Center or from the Command Line Processor, or on creating functions and
methods, refer to the related topics.

SQL Procedural Languages: Application Enablement and Support

Determining when to use SQL routines or external routines

When implementing routine logic you can choose to implement SQL routines or
external routines. There are reasons for choosing each of these two
implementations.

To determine when to choose to implement an SQL routine or an external routine,
read the following to determine what if any factors might limit your choice.

* Choose to implement SQL routines if:

SQL PL and SQL statements provide adequate support to implement the logic
that you require.

The routine logic consists primarily of SQL statements that query or modify
data and performance is a concern. Logic that contains a relatively small
amount of control-flow logic relative to the number of SQL statements that
query or modify database data will generally perform better with an SQL
routine implementation. SQL PL is intended to be used for implementing
procedural logic around database operations and not primarily for
programming complex logic.

The SQL statements that you need to execute can be executed in an external
routine implementation.

You want to make the modules highly portable between operating system
environments and minimize the dependency on programming language code
compilers and script interpreters.

You want to implement the logic quickly and easily using a high level
programming language.

You are more comfortable working with SQL than with scripting or
programming languages.

You want to secure the logic within the database management system.

You want to minimize routine maintenance and routine package maintenance
upon release upgrades or operating system upgrades.

You want to minimize the amount of code required to implement the logic.
You want to maximize the safety of the code that is implemented by
minimizing the risk of memory management, pointer manipulation, or other
common programming pitfalls.

You want to benefit from special SQL caching support made available when
SQL PL is used.

¢ Choose to implement an external procedure if:

If the routine logic is very complex and consists of few SQL statements and
routine performance is a concern. Logic such as a complex math algorithm,
that involves a large amount of string manipulation, or that does not access
the database will generally perform better with an external routine
implementation.

If the SQL statements that you need to execute can be executed in an external
routine implementation.

The routine logic will make operating system calls - this can only be done
with external routines.

The routine logic must read from or write to files - this can only be done with
external routines.

Write to the server file system. Do this only with caution.
Invoke an application or script that resides on the database server.

Issue particular SQL statements that are not supported in SQL procedures.

Chapter 1. SQL PL support 53

54

— You are more comfortable programming in a programming language other
than SQL PL.

By default if SQL routines can meet your needs, use them. Generally it is a
requirement to implement complex logic or to access files or scripts on the
database server that motivates the decision to use external routines. Particularly
since SQL PL is fast and easy to learn and implement.

Determining when to use SQL procedures or SQL functions

When faced with the choice of implementing logic with SQL PL in an SQL
procedure or an SQL function, there are reasons for choosing each of these two
implementations.

Read the following to determine when to choose to use an SQL procedure or an
SQL function.
Choose to implement an SQL function if:

Functional requirements can be met by an SQL function and you don't anticipate
later requiring the features provided by an SQL procedure.

Performance is a priority and the logic to be contained in the routine consists
only of queries or returns only a single result set.

When they only contain queries or the return of a single result set an SQL
function performs better than a logically equivalent SQL procedure, because of
how SQL functions are compiled.

In SQL procedures, static queries in the form of SELECT statements and
full-select statements are compiled individually, such that each query becomes a
section of a query access plan in a package when the SQL procedure is created.
There is no recompilation of this package until the SQL procedure is recreated or
the package is rebound to the database. This means that the performance of the
queries is determined based on information available to the database manager at
a time earlier than the SQL procedure execution time and hence might not be
optimal. Also with an SQL procedure there is also a small overhead entailed
when the database manager transfers between executing procedural flow
statements and SQL statements that query or modify data.

SQL functions however are expanded and compiled within the SQL statement
that references them which means that they are compiled each time that SQL
statement is compiled which depending on the statement might happen
dynamically. Because SQL functions are not directly associated with a package,
there is no overhead entailed when the database manager transfers between
executing procedural flow statements and SQL statements that query or modify
data.

Choose to implement an SQL procedure if:

SQL PL features that are only supported in SQL procedures are required. This
includes: output parameter support, use of a cursor, the ability to return
multiple result sets to the caller, full condition handling support, transaction and
savepoint control, or other features.

You want to execute non-SQL PL statements that can only be executed in SQL
procedures.

You want to modify data and modifying data is not supported for the type of
function you need.

Although it isn't always obvious, you can often easily re-write SQL procedures as
SQL functions that perform equivalent logic. This can be an effective way to
maximize performance when every little performance improvement counts.

SQL Procedural Languages: Application Enablement and Support

Determining when to use SQL routines or dynamically prepared
compound SQL statements

When determining how to implement an atomic block of SQL PL and other SQL
statements you might be faced with a choice between using SQL routines or
dynamically prepared compound SQL statements. Although SQL routines
internally make use of compound SQL statements, the choice of which to use
might depend on other factors.

Performance

If a dynamically prepared compound SQL statement can functionally meet your
needs, using one is preferable, because the SQL statements that appear in
dynamically prepared compound SQL statements are compiled and executed as a
single block. Also these statements generally perform better than CALL statements
to logically equivalent SQL procedures.

At SQL procedure creation time, the procedure is compiled and a package is
created. The package contains the best execution path for accessing data as of the
SQL procedure compile time. Dynamically prepared compound SQL statements are
compiled when they are executed. The best execution path for accessing data for
these statements is determined using the most up to date database information
which can mean that their access plan can be better than that of a logically
equivalent SQL procedure that was created at an earlier time which means that
they might perform better.

Complexity of the required logic

If the logic is quite simple and the number of SQL statements is relatively small,
consider using inline SQL PL in a dynamically prepared compound SQL statement
(specifying ATOMIC) or in an SQL function. SQL procedures can also handle
simple logic, but use of SQL procedures incurs some overhead, such as creating the
procedure and calling it, that, if not required, is best avoided.

Number of SQL statements to be executed

In cases where only one or two SQL statements are to be executed, there might be
no benefit in using an SQL procedure. This might actually negatively impact the
total performance required to execute these statements. In such a case, it is better
to use inline SQL PL in a dynamically prepared compound SQL statement.

Atomicity and transaction control

Atomicity is another consideration. A compound SQL (inlined) statement must be
atomic. Commits and rollbacks are not supported in compound SQL (inlined)
statements. If transaction control is required or if support for rollback to a
savepoint is required, SQL procedures must be used.

Security

Security can also be a consideration. SQL procedures can only be executed by users
with EXECUTE privilege on the procedure. This can be useful if you need to limit
who can execute a particular piece of logic. The ability to execute a dynamically
prepared compound SQL statement can also be managed. However SQL procedure
execution authorization provides an extra layer of security control.

Chapter 1. SQL PL support 55

Feature support
If you need to return one or more result sets, you must use SQL procedures.
Modularity, longevity, and re-use

SQL procedures are database objects that are persistently stored in the database
and can be consistently referenced by multiple applications or scripts. Dynamically
prepared compound SQL statements are not stored in the database and therefore
the logic they contain cannot be readily re-used.

If SQL procedures can meet your needs, use them. Generally it is a requirement to
implement complex logic or to use the features supported by SQL procedures, but
not available to dynamically prepared compound SQL statements that motivates
the decision to use SQL procedures.

Rewriting SQL procedures as SQL user-defined functions

To maximize performance in a database management system, if possible, it can
sometimes be beneficial to rewrite simple SQL procedures as SQL functions.
Procedures and functions share the fact that their routine-bodies are implemented
with a compound block that can contain SQL PL. In both, the same SQL PL
statements are included within compound blocks bounded by BEGIN and END
keywords.

There are some things to note when translating an SQL procedure into an SQL
function:

* The primary and only reason to do this is to improve routine performance when
the logic only queries data.

* In a scalar function you might have to declare variables to hold the return value
to get around the fact that you cannot directly assign a value to any output
parameter of the function. The output value of a user-defined scalar function is
only specified in the RETURN statement for the function.

* If an SQL function is going to modify data, it must be explicitly created using
the MODIFIES SQL clause so that is can contain SQL statements that modify
data.

In the example that follows an SQL procedure and an SQL scalar function that are
logically equivalent are shown. These two routines functionally provide the same
output value given the same input values, however they are implemented and
invoked in slightly different ways.

CREATE PROCEDURE GetPrice (IN Vendor CHAR(20),

IN Pid INT,

OUT price DECIMAL(10,3))
LANGUAGE SQL
BEGIN

IF Vendor = 'Vendor 1'
THEN SET price = (SELECT ProdPrice FROM V1Table WHERE Id = Pid);
ELSE IF Vendor = 'Vendor 2'
THEN SET price = (SELECT Price FROM V2Table
WHERE Pid = GetPrice.Pid);
END IF;
END

This procedure takes in two input parameter values and returns an output
parameter value that is conditionally determined based on the input parameter

56 SQL Procedural Languages: Application Enablement and Support

values. It uses the IF statement. This SQL procedure is invoked by executing the
CALL statement. For example from the CLP, you might execute the following:

CALL GetPrice('Vendor 1', 9456, ?)

The SQL procedure can be rewritten as a logically-equivalent SQL table-function as
follows:
CREATE FUNCTION GetPrice (Vendor CHAR(20), Pid INT)
RETURNS DECIMAL(10,3)
LANGUAGE SQL MODIFIES SQL
BEGIN
DECLARE price DECIMAL(10,3);

IF Vendor = 'Vendor 1'
THEN SET price = (SELECT ProdPrice FROM V1Table WHERE Id = Pid);
ELSE IF Vendor = 'Vendor 2'
THEN SET price = (SELECT Price FROM V2Table
WHERE Pid = GetPrice.Pid);
END IF;

RETURN price;
END

This function takes in two input parameters and returns a single scalar value,
conditionally based on the input parameter values. It requires the declaration and
use of a local variable named price to hold the value to be returned until the
function returns whereas the SQL procedure can use the output parameter as a
variable. Functionally these two routines are performing the same logic.

Now, of course the execution interface for each of these routines is different.
Instead of simply calling the SQL procedure with the CALL statement, the SQL
function must be invoked within an SQL statement where an expression is
allowed. In most cases this isn't a problem and might actually be beneficial if the
intention is to immediately operate on the data returned by the routine. Here are
two examples of how the SQL function can be invoked.

It can be invoked using the VALUES statement:
VALUES (GetPrice('Vendor 1', 9456))

It can also be invoked in a SELECT statement that for example might select values
from a table and filter rows based on the result of the function:

SELECT VName FROM Vendors WHERE GetPrice(Vname, Pid) < 10

SQL procedures

SQL procedures are procedures implemented completely with SQL that can be
used to encapsulate logic that can be invoked like a programming sub-routine.
There are many useful applications of SQL procedures within a database or
database application architecture. SQL procedures can be used to create simple
scripts for quickly querying transforming, and updating data or for generating
basic reports, for improving application performance, for modularizing
applications, and for improving overall database design, and database security.

There are many features of SQL procedures which make them powerful routine
options.

Before deciding to implement a SQL procedure, it is important that you
understand what SQL procedures are in the context of SQL routines, how they are

Chapter 1. SQL PL support 57

58

implemented, and how they can be used, by first learning about routines and then
by referring to the topic, "Overview of SQL procedures".

Features of SQL procedures
SQL procedures are characterized by many features. SQL procedures:

* Can contain SQL Procedural Language statements and features which support
the implementation of control-flow logic around traditional static and dynamic
SQL statements.

¢ Are supported in the entire DB2 family brand of database products in which
many if not all of the features supported in DB2 Version 9 are supported.

* Are easy to implement, because they use a simple high-level, strongly typed
language.

* SQL procedures are more reliable than equivalent external procedures.

e Adhere to the SQL99 ANSI/ISO/IEC SQL standard.

e Support input, output, and input-output parameter passing modes.

* Support a simple, but powerful condition and error-handling model.

* Allow you to return multiple result sets to the caller or to a client application.

* Allow you to easily access the SQLSTATE and SQLCODE values as special
variables.

* Reside in the database and are automatically backed up and restored.
* Can be invoked wherever the CALL statement is supported.

* Support nested procedure calls to other SQL procedures or procedures
implemented in other languages.

* Support recursion.

* Support savepoints and the rolling back of executed SQL statements to provide
extensive transaction control.

* Can be called from triggers.

SQL procedures provide extensive support not limited to what is listed above.
When implemented according to best practices, they can play an essential role in
database architecture, database application design, and in database system
performance.

Designing SQL procedures

Designing SQL procedures requires an understanding of your requirements, SQL
procedure features, how to use the SQL features, and knowledge of any restrictions
that might impede your design. The following topics about SQL procedure design
will help you learn how to design SQL procedures that make best use of SQL
procedure features.

* Parts of SQL procedures

¢ Cross-platform SQL stored procedure considerations

* Supported SQL PL statements and language features in SQL procedures

e OLTP considerations for SQL procedures

* Performance of SQL procedures

* Rewriting SQL procedures as SQL user-defined functions

* Handling DB2 errors and warnings

Parts of SQL procedures: To understand SQL procedures, it helps to understand
the parts of an SQL procedure. The following are just some of the parts of SQL

procedures:

SQL Procedural Languages: Application Enablement and Support

e Structure of SQL procedures

* Parameters in SQL procedures

* Variables in SQL procedures

* SQLCODE and SQLSTATE in SQL procedures

* Atomic blocks and scope of variables in SQL procedures
* Cursors in SQL procedures

* Logic elements in SQL PL

* Condition and error handlers in SQL procedures

¢ SQL statements that can be executed in SQL procedures

Structure of SQL procedures: SQL procedures consist of several logic parts and
SQL procedure development requires you to implement these parts according to a
structured format. The format is quite straight-forward and easy to follow and is
intended to simplify the design and semantics of routines.

The core of an SQL procedure is a compound statement. Compound statements are
bounded by the keywords BEGIN and END. These statements can be ATOMIC or
NOT ATOMIC. By default they are NOT ATOMIC.

Within a compound statement, multiple optional SQL PL objects can be declared
and referenced with SQL statements. The following diagram illustrates the
structured format of a compound statement within SQL procedures:
label: BEGIN
Variable declarations
Condition declarations
Cursor declarations
Condition handler declarations
Assignment, flow of control, SQL statements and other compound statements
END Tabel

The diagram shows that SQL procedures can consist of one or more optionally
atomic compound statements (or blocks) and that these blocks can be nested or
serially introduced within a single SQL procedure. Within each of these atomic
blocks there is a prescribed order for the optional variable, condition, and handler
declarations. These must precede the introduction of procedural logic implemented
with SQL-control statements and other SQL statements and cursor declarations.
Cursors can be declared anywhere with the set of SQL statements contained in the
SQL procedure body.

To clarify control-flow, SQL procedure atomic blocks can be labeled as can many of
the SQL control-statements contained within them. This makes it easier to be
precise when referencing variables and transfer of control statement references.

Here is an example of an SQL procedure that demonstrates each of the elements
listed above:

CREATE PROCEDURE DEL_INV_FOR_PROD (IN prod INT, OUT err_buffer VARCHAR(128))
LANGUAGE SQL

DYNAMIC RESULT SETS 1

BEGIN

DECLARE SQLSTATE CHAR(5) DEFAULT '00000';
DECLARE SQLCODE integer DEFAULT 0;
DECLARE NO_TABLE CONDITION FOR SQLSTATE '42704';
DECLARE curl CURSOR WITH RETURN TO CALLER

FOR SELECT = FROM Inv;

A: BEGIN ATOMIC

Chapter 1. SQL PL support 59

60

DECLARE EXIT HANDLER FOR NO_TABLE
BEGIN
SET ERR_BUFFER='Table Inv does not exist';
END;

SET err_buffer = '';

IF (prod < 200)

DELETE FROM Inv WHERE product = prod;
ELSE IF (prod < 400)

UPDATE Inv SET quantity = 0 WHERE product = prod;
ELSE

UPDATE Inv SET quantity
END IF;

NULL WHERE product = prod;

B: OPEN curl;

END
NOT ATOMIC compound statements in SQL procedures

The previous example illustrated a NOT ATOMIC compound statement and is the
default type used in SQL procedures. If an unhandled error condition occurs
within the compound statement, any work that is completed before the error will
not be rolled back, but will not be committed either. The group of statements can
only be rolled back if the unit of work is explicitly rolled back using ROLLBACK
or ROLLBACK TO SAVEPOINT statements. You can also use the COMMIT
statement to commit successful statements if it makes sense to do so.

Here is an example of an SQL procedure with a NOT ATOMIC compound
statement:

CREATE PROCEDURE not_atomic_proc ()

LANGUAGE SQL

SPECIFIC not_atomic_proc

nap: BEGIN NOT ATOMIC

INSERT INTO cl_sched (class_code, day)
VALUES ('R11:TAA', 1);

SIGNAL SQLSTATE '70000';

INSERT INTO cl_sched (class_code, day)
VALUES ('R22:TBB', 1);

END nap

When the SIGNAL statement is executed it explicitly raises an error that is not
handled. The procedure returns immediately afterwards. After the procedure
returns, although an error occurred, the first INSERT statement did successfully
execute and inserted a row into the c1_sched table. The procedure neither
committed, nor rolled back the row insert and this remains to be done for the
complete unit of work in which the SQL procedure was called.

ATOMIC compound statements in SQL procedures

As the name suggests, ATOMIC compound statements, can be thought of as a
singular whole. If any unhandled error conditions arise within it, all statements
that have executed up to that point are considered to have failed as well and are
therefore rolled back.

SQL Procedural Languages: Application Enablement and Support

Atomic compound statements cannot be nested inside other ATOMIC compound
statements.

You cannot use the SAVEPOINT statement, the COMMIT statement, or the
ROLLBACK statement from within an ATOMIC compound statement. These are
only supported in NOT ATOMIC compound statements within SQL procedures.

Here is an example of an SQL procedure with an ATOMIC compound statement:

CREATE PROCEDURE atomic_proc ()
LANGUAGE SQL
SPECIFIC atomic_proc

ap: BEGIN ATOMIC

INSERT INTO cl sched (class_code, day)
VALUES ('R33:TCC', 1);

SIGNAL SQLSTATE '70000';

INSERT INTO cl_sched (class_code, day)
VALUES ('R44:TDD', 1);

END ap

When the SIGNAL statement is executed it explicitly raises an error that is not
handled. The procedure returns immediately afterwards. The first INSERT
statement is rolled back despite successfully executing resulting in a table with no
inserted rows for this procedure.

Labels and SQL procedure compound statements

Labels can optionally be used to name any executable statement in an SQL
procedure, including compound statements and loops. By referencing labels in
other statements you can force the flow of execution to jump out of a compound
statement or loop or additionally to jump to the beginning of a compound
statement or loop. Labels can be referenced by the GOTO, ITERATE, and LEAVE
statements.

Optionally you can supply a corresponding label for the END of a compound
statement. If an ending label is supplied, it must be same as the label used at its
beginning.

Each label must be unique within the body of an SQL procedure.
Labels can also be used to avoid ambiguity if a variable with the same name has
been declared in more than one compound statement if the stored procedure. A

label can be used to qualify the name of an SQL variable.

Parameters in SQL procedures: SQL procedures support parameters for the
passing of SQL values into and out of procedures.

Parameters can be useful in SQL procedures when implementing logic that is
conditional on a particular input or set of input scalar values or when you need to

return one or more output scalar values and you do not want to return a result set.

It is good to understand the features of and limitations of parameters in SQL
procedures when designing or creating SQL procedures.

Chapter 1. SQL PL support 61

* DB2 supports the optional use of a large number of input, output, and
input-output parameters in SQL procedures. The keywords IN, OUT, and
INOUT in the routine signature portion of CREATE PROCEDURE statements
indicate the mode or intended use of the parameter. IN and OUT parameters are
passed by value, and INOUT parameters are passed by reference.

* When multiple parameters are specified for a procedure they must each have a
unique name.

e If a variable is to be declared within the procedure with the same name as a
parameter, the variable must be declared within a labeled atomic block nested
within the procedure. Otherwise DB2 will detect what would otherwise be an
ambiguous name reference.

¢ Parameters to SQL procedures cannot be named either of SQLSTATE or
SQLCODE regardless of the data type for the parameter.

Refer to the CREATE PROCEDURE (SQL) statement for complete details about
parameter references in SQL procedures.

The following SQL procedure named myparams illustrates the use of IN, INOUT,
and OUT parameter modes. Let us say that SQL procedure is defined in a CLP file
named myfile.db2 and that we are using the command line.

CREATE PROCEDURE myparams (IN pl INT, INOUT p2 INT, OUT p3 INT)
LANGUAGE SQL

BEGIN
SET p2 = pl + 1;
SET p3 = 2 * p2;
END@

Parameter markers: A parameter marker, often denoted by a question mark (?) or
a colon followed by a variable name (:varl), is a place holder in an SQL statement
whose value is obtained during statement execution. An application associates
parameter markers to application variables. During the execution of the statement,
the values of these variables replace each respective parameter marker. Data
conversion might take place during the process.

Benefits of parameter markers

For SQL statements that need to be executed many times, it is often beneficial to
prepare the SQL statement once, and reuse the query plan by using parameter
markers to substitute the input values during runtime. In DB2® 9, a parameter
marker is represented in one of two ways:

* The first style, with a "?" character, is used in dynamic SQL execution (dynamic
Embedded SQL, CLI, Perl, etc).

* The second style represents the embedded SQL standard construction where the
name of the variable is prefixed with a colon (:varl) . This style is used in static
SQL execution and is commonly referred to as a host variable.

Use of either style indicates where an application variable is to be substituted
inside an SQL statement. Parameter markers are referenced by number, and are
numbered sequentially from left to right, starting at one. Before the SQL statement
is executed, the application must bind a variable storage area to each parameter
marker specified in the SQL statement. In addition, the bound variables must be a
valid storage area, and must contain input data values when the prepared
statement is executed against the database.

62 SQL Procedural Languages: Application Enablement and Support

The following example illustrates an SQL statement containing two parameter
markers.

SELECT = FROM customers WHERE custid = ? AND Tastname = ?
Supported types

DB2 supports untyped parameter markers, which can be used in selected locations
of an SQL statement. Table 1 lists the restrictions on parameter marker usage.

Table 2. Restrictions on parameter marker usage

Untyped parameter marker location Data type

Expression: Alone in a select list Error

Expression: Both operands of an arithmetic | Error
operator

Predicate: Left-hand side operand of an IN | Error
predicate

Predicate: Both operands of a relational Error
operator

Function: Operand of an aggregation Error
function

Examples

DB2® provides a rich set of standard interfaces including CLI/ODBC, JDBC, and
ADO.NET to access data efficiently. The following code snippets show the use of
prepared statement with parameter markers for each data access APL

Consider the following table schema for table t1, where column c1 is the primary
key for table t1.

Table 3. Example table schema

Column name DB2 data type Nullable
cl INTEGER false
2 SMALLINT true
3 CHAR(20) true
c4 VARCHAR(20) true
c5 DECIMAL(S8,2) true
c6 DATE true
c7 TIME true
c8 TIMESTAMP true
9 BLOB(30) true

The following examples illustrate how to insert a row into table t1 using a
prepared statement.

CLI Example
void parameterExamplel(void)

{
SQLHENV henv;

Chapter 1. SQL PL support 63

64

SQLHDBC hdbc;

SQLHSTMT hstmt;
SQLRETURN rc;
TCHAR server[]
TCHAR uid[] =
TCHAR pwd[]
long pl = 10;

short p2 = 100;
TCHAR p3[100];
TCHAR p4[100];
TCHAR p5[100];
TCHAR p6[100];
TCHAR p7[100];
TCHAR p8[100];
char p9[100];
long len = 0;

_T("C:\\mysample\\");
("dee");

T
_T("db2e");

_tescpy(p3, _T("datal"));

_tcscpy(p4, _T("data2"));

_tescpy(p5, _T("10.12"));

_tcscpy(p6, _T("2003-06-30"));

_tescpy(p7, _T("12:12:12"));

_tescpy(p8, _T("2003-06-30-17.54.27.710000"));

memset (p9, 0, sizeof(p9));

po[e] = 'X';
po[1] = 'Y';
p9f2] = '7';

rc = SQLA1TocEnv(&henv);
// check return code ...

rc = SQLA1locConnect (henv, &hdbc);
// check return code ...

rc = SQLConnect (hdbc, (SQLTCHAR*)server, SQL NTS,
(SQLTCHAR*)uid, SQL_NTS, (SQLTCHAR*)pwd, SQL_NTS);
// check return code ...

rc = SQLA11ocStmt (hdbc, &hstmt);
// check return code ...

// prepare the statement

rc = SQLPrepare(hstmt, _T("INSERT INTO tl VALUES (?,?,?,?7,?7,?7,2,2,?)"), SQL_NTS);

// check return code ...

// bind input parameters

rc = SQLBindParameter(hstmt, (unsigned short)1l, SQL_PARAM_INPUT,
SQL_C_LONG, SQL_INTEGER, 4, 0, &pl, sizeof(pl), &len);

// check return code ...

rc = SQLBindParameter(hstmt, (unsigned short)2, SQL_PARAM_INPUT,
SQL_SMALLINT, 2, 0, &p2, sizeof(p2), &len);
// check return code ...

len = SQL_NTS;

rc = SQLBindParameter(hstmt, (unsigned short)3, SQL_PARAM INPUT,
SQL_CHAR, 0, 0, &p3[0], 100, &len);

// check return code ...

rc = SQLBindParameter(hstmt, (unsigned short)4, SQL_PARAM_INPUT,
SQL_VARCHAR, 0, 0, &p4[0], 100, &len);
// check return code ...

rc = SQLBindParameter(hstmt, (unsigned short)5, SQL_PARAM_INPUT,
SQL_DECIMAL, 8, 2, &p5[0], 100, &len);
// check return code ...

SQL Procedural Languages: Application Enablement and Support

SQL_C_LONG,

SQL_C_TCHAR,

SQL_C_TCHAR,

SQL_C_TCHAR,

rc = SQLBindParameter(hstmt, (unsigned short)6, SQL_PARAM_INPUT, SQL_C_TCHAR,

SQL_TYPE_DATE, 0, 0, &p6[0], 100, &len);
// check return code ...

rc = SQLBindParameter(hstmt, (unsigned short)7, SQL_PARAM_INPUT, SQL C_TCHAR,

SQL_TYPE_TIME, 0, 0, &p7[0], 100, &len);
// check return code ...

rc = SQLBindParameter(hstmt, (unsigned short)8, SQL_PARAM INPUT, SQL C TCHAR,

SQL_TYPE_TIMESTAMP, 0, 0, &p8[0], 100, &len);
// check return code ...

len = 3;

rc = SQLBindParameter(hstmt, (unsigned short)9, SQL_PARAM INPUT, SQL_C BINARY,

SQL_BINARY, 0, 0, &p9[0], 100, &len);
// check return code ...

// execute the prepared statement
rc = SQLExecute(hstmt);
// check return code ...

rc = SQLFreeStmt (hstmt, SQL_DROP);
// check return code ...

rc = SQLDisconnect (hdbc);
// check return code ...

rc = SQLFreeConnect (hdbc);
// check return code ...

rc = SQLFreeEnv(henv);
// check return code ...

C Example

EXEC SQL BEGIN DECLARE SECTION;
char hostVarStmt1[50];
short hostVarDeptnumb;

EXEC SQL END DECLARE SECTION;

/* prepare the statement with a parameter marker */
strcpy (hostVarStmtl, "DELETE FROM org WHERE deptnumb
EXEC SQL PREPARE Stmtl FROM :hostVarStmtl;

/* execute the statement for hostVarDeptnumb = 15 */
hostVarDeptnumb = 15;
EXEC SQL EXECUTE Stmtl USING :hostVarDeptnumb;

JDBC Example

public static void parameterExamplel() {
String driver = "com.ibm.db2e.jdbc.DB2eDriver";
String url = "jdbc:db2e:mysample";

Connection conn = null;
PreparedStatement pstmt = null;

try
{
Class.forName(driver);

conn = DriverManager.getConnection(url);

// prepare the statement

-)3

pstmt = conn.prepareStatement ("INSERT INTO t1 VALUES

(¢, 2,7,2,2,2,2,2, 9)");

Chapter 1. SQL PL support 65

// bind the input parameters

pstmt.setInt(1, 1);

pstmt.setShort(2, (short)2);

pstmt.setString(3, "datal");

pstmt.setString(4, "data2");

pstmt.setBigDecimal (5, new java.math.BigDecimal("12.34"));

pstmt.setDate(6, new java.sql.Date(System.currentTimeMillis()));
pstmt.setTime(7, new java.sql.Time(System.currentTimeMillis()));
pstmt.setTimestamp (8, new java.sql.Timestamp(System.currentTimeMillis()));
pstmt.setBytes(9, new byte[] { (byte)'X', (byte)'Y', (byte)'z' });

// execute the statement
pstmt.execute();

pstmt.close();
conn.close();

1
catch (SQLException sqlEx)
{

while(sqlEx != null)

{

System.out.printIn("SQLERROR: \n" + sqlEx.getErrorCode() +
", SQLState: " + sqlEx.getSQLState() +
", Message: " + sqlEx.getMessage() +
", Vendor: " + sqlEx.getErrorCode());
sqlEx = sqlEx.getNextException();
}

}
catch (Exception ex)
{
ex.printStackTrace();
}

}

ADO.NET Example [C#]
public static void ParameterExamplel()

{
DB2eConnection conn = null;
DB2eCommand cmd = null;
String connString = @"database=.\; uid=db2e; pwd=db2e";
int i =1;

try
{

conn = new DB2eConnection(connString);
conn.Open();

cmd = new DB2eCommand ("INSERT INTO t1 VALUES
(?9 ?9 ?, ?’ ?3 ?, ?, ?, ?)", Conn);

// prepare the command
cmd.Prepare();

// bind the input parameters

DB2eParameter pl = new DB2eParameter("@pl", DB2eType.Integer);
pl.Value = ++i;

cmd. Parameters.Add(pl);

DB2eParameter p2 = new DB2eParameter("@p2", DB2eType.Smalllnt);
p2.Value = 100;
cmd. Parameters.Add(p2);

DB2eParameter p3 = new DB2eParameter("@p3", DB2eType.Char);
p3.Value = "datal";

66 SQL Procedural Languages: Application Enablement and Support

cmd. Parameters.Add(p3);

DB2eParameter p4 = new DB2eParameter("@p4", DB2eType.VarChar);
p4.Value = "data2";
cmd. Parameters.Add(p4) ;

DB2eParameter p5 = new DB2eParameter("@p5", DB2eType.Decimal);
p5.Value = 20.25;
cmd. Parameters.Add(p5);

DB2eParameter p6 = new DB2eParameter("@p6", DB2eType.Date);
p6.Value = DateTime.Now;
cmd.Parameters.Add(p6) ;

DB2eParameter p7 = new DB2eParameter("@p7", DB2eType.Time);
p7.Value = new TimeSpan(23, 23, 23);
cmd. Parameters.Add(p7);

DB2eParameter p8 = new DB2eParameter("@p8", DB2eType.Timestamp);
p8.Value = DateTime.Now;
cmd. Parameters.Add(p8) ;

byte [Ibarr = new byte[3];
barr[0] = (byte)'X';
barr[1] (byte)'Y';
barr[2] (byte)'Z';

DB2eParameter p9 = new DB2eParameter("@p9", DB2eType.Blob);
p9.Value = barr;
cmd.Parameters.Add(p9);

// execute the prepared command
cmd. ExecuteNonQuery () ;

catch (DB2eException el)
{
for (int i=0; i < el.Errors.Count; i++)
{
Console.WriteLine("Error #" + i + "\n" +
"Message: " + el.Errors[i].Message + "\n" +
"Native: " + el.Errors[i].NativeError.ToString() + "\n" +
"SQL: " + el.Errors[i].SQLState + "\n");
}
1
catch (Exception e2)

Console.WriteLine(e2.Message);
1
finally
{
if (conn != null && conn.State != ConnectionState.Closed)
{
conn.Close();
conn = null;
}
}

Variables in SQL procedures (DECLARE, SET statements): Local variable
support in SQL procedures allows you to assign and retrieve SQL values in
support of SQL procedure logic.

Variables in SQL procedures are defined by using the DECLARE statement.

Chapter 1. SQL PL support

67

68

Values can be assigned to variables using the SET statement or the SELECT INTO
statement or as a default value when the variable is declared. Literals, expressions,
the result of a query, and special register values can be assigned to variables.

Variable values can be assigned to SQL procedure parameters, other variables in
the SQL procedure, and can be referenced as parameters within SQL statements
that executed within the routine.

The following example demonstrates various methods for assigning and retrieving
variable values.

CREATE PROCEDURE proc_vars()
SPECIFIC proc_vars
LANGUAGE SQL
BEGIN
DECLARE v_rcount INTEGER;
DECLARE v_max DECIMAL (9,2);
DECLARE v_adate, v_another DATE;
DECLARE v_total INTEGER DEFAULT 0; -- (1)

DECLARE v_rowsChanged BOOLEAN DEFAULT FALSE; -- (2)

SET v_total = v_total + 1 -- (3)

SELECT MAX(salary) -- (8)
INTO v_max FROM employee;

VALUES CURRENT_DATE INTO v_date; -- (5)

SELECT CURRENT DATE, CURRENT DATE -- (6)

INTO v_adate, v_another
FROM SYSIBM.SYSDUMMY1;

DELETE FROM T;

GET DIAGNOSTICS v_rcount = ROW_COUNT; -- (7)
IF v_rcount > O THEN -- (8)
SET is_done = TRUE;
END IF;
END

When declaring a variable, you can specify a default value using the DEFAULT
clause as in line (1). Line (2) shows the declaration of a variable of the Boolean
data type with a default value of FALSE. Line (3) shows that a SET statement can
be used to assign a single variable value. Variables can also be set by executing a
SELECT or FETCH statement in combination with the INTO clause as shown in
line (4). Lines (5) and (6) show how the VALUES INTO statement can be used to
evaluate a function or special register and assign the value to a variable or to
multiple variables.

You can also assign the result of a GET DIAGNOSTICS statement to a variable.
GET DIAGNOSTICS can be used to get a handle on the number of affected rows
(updated for an UPDATE statement, DELETE for a DELETE statement) or to get
the return status of a just executed SQL statement. Line (7) shows how the number
of rows modified by the just previously executed DELETE statement can be
assigned to a variable.

SQL Procedural Languages: Application Enablement and Support

Line (8) demonstrates how a piece of logic can be used to determine the value to
be assigned to a variable. In this case, if rows were changed as part of the earlier
DELETE statement and the GET DIAGNOSTICS statement execution resulted in
the variable v_rcount being assigned a value greater than zero, the variable
is_done is assigned the value TRUE.

SQLCODE and SQLSTATE variables in SQL procedures: To perform error
handling or to help you debug your SQL procedures, you might find it useful to
test the value of the SQLCODE or SQLSTATE values, return these values as output
parameters or as part of a diagnostic message string, or insert these values into a
table to provide basic tracing support.

To use the SQLCODE and SQLSTATE values within SQL procedures, you must
declare the following SQL variables in the SQL procedure body:

DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE SQLSTATE CHAR(5) DEFAULT '00000';

DB2 implicitly sets these variables whenever a statement is executed. If a statement
raises a condition for which a handler exists, the values of the SQLSTATE and
SQLCODE variables are available at the beginning of the handler execution.
However, the variables are reset as soon as the first statement in the handler is
executed. Therefore, it is common practice to copy the values of SQLSTATE and
SQLCODE into local variables in the first statement of the handler. In the following
example, a CONTINUE handler for any condition is used to copy the SQLCODE
variable into another variable named retcode. The variable retcode can then be
used in the executable statements to control procedural logic, or pass the value
back as an output parameter.

BEGIN

DECLARE SQLCODE INTEGER DEFAULT 03
DECLARE retcode INTEGER DEFAULT 0;

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION, SQLWARNING, NOT FOUND
SET retcode = SQLCODE;

executable-statements
END

Note: When you access the SQLCODE or SQLSTATE variables in an SQL
procedure, DB2 sets the value of SQLCODE to 0 and SQLSTATE to ‘00000' for the
subsequent statement.

Compound statements and scope of variables in SQL procedures: SQL
procedures can contain one or more compound statements. They can be introduced
in serial or can be nested within another compound statement. Each compound
statement introduces a new scope in which variables might or might not be
available for use.

The use of labels to identify a compound statement is important as the label can be
used to qualify and uniquely identify variables declared within the compound
statement. This is particularly important when referencing of variables in different
compound statements or in nested compound statements.

In the following example there are two declarations of the variable a. One instance
of it is declared in the outer compound statement that is labelled by lab1, and the
second instance is declared in the inner compound statement labelled by lab2. As it
is written, DB2 will presume that the reference to a in the assignment-statement is
the one which is in the local scope of the compound block, labelled by lab2.

Chapter 1. SQL PL support 69

70

However, if the intended instance of the variable a is the one declared in the
compound statement block labeled with labl, then to correctly reference it in the
innermost compound block, the variable should be qualified with the label of that
block. That is, it should be qualified as: labl.a.
CREATE PROCEDURE P1 ()
LANGUAGE SQL
Tabl: BEGIN
DECLARE a INT DEFAULT 100;
lab2: BEGIN
DECLARE a INT DEFAULT NULL;

SET a = a + labl.a;

UPDATE T1
SET T1.b = 5
WHERE T1.b = a; <-- Variable a refers to lab2.a
unless qualified otherwise

END lab2;
END Tabl

The outermost compound statement in an SQL procedure can be declared to be
atomic, by adding the keyword ATOMIC after the BEGIN keyword. If any error
occurs in the execution of the statements that comprise the atomic compound
statement, then the entire compound statement is rolled back.

Cursors in SQL procedures: In SQL procedures, a cursor make it possible to
define a result set (a set of data rows) and perform complex logic on a row by row
basis. By using the same mechanics, an SQL procedure can also define a result set
and return it directly to the caller of the SQL procedure or to a client application.

A cursor can be viewed as a pointer to one row in a set of rows. The cursor can
only reference one row at a time, but can move to other rows of the result set as
needed.

To use cursors in SQL procedures, you need to do the following;:

1. Declare a cursor that defines a result set.

2. Open the cursor to establish the result set.

3. Fetch the data into local variables as needed from the cursor, one row at a time.
4. Close the cursor when done

To work with cursors you must use the following SQL statements:
* DECLARE CURSOR

* OPEN

* FETCH

* CLOSE

The following example demonstrates the basic use of a read-only cursor within an
SQL procedure:

CREATE PROCEDURE sum_salaries(OUT sum INTEGER)
LANGUAGE SQL
BEGIN
DECLARE p_sum INTEGER;
DECLARE p_sal INTEGER;
DECLARE ¢ CURSOR FOR SELECT SALARY FROM EMPLOYEE;
DECLARE SQLSTATE CHAR(5) DEFAULT '00000';

SET p_sum = 03

SQL Procedural Languages: Application Enablement and Support

OPEN c;
FETCH FROM ¢ INTO p_sal;

WHILE(SQLSTATE = '00000') DO
SET p_sum = p_sum + p_sal;
FETCH FROM c INTO p_sal;

END WHILE;

CLOSE c;
SET sum = p_sum;

END%

Here is a more complex example of use of a cursor within an SQL procedure. This
example demonstrates the combined use of a cursor and SQL PL statements.

SQL PL logic elements in the SQL-procedure body: Sequential execution is the
most basic path that program execution can take. With this method, the program
starts execution at the first line of the code, followed by the next, and continues
until the final statement in the code has been executed. This approach works fine
for very simple tasks, but tends to lack usefulness because it can only handle one
situation. Programs often need to be able to decide what to do in response to
changing circumstances. By controlling a code's execution path, a specific piece of
code can then be used to intelligently handle more than one situation.

SQL PL provides support for variables and flow of control statements that can be
used to control the sequence of statement execution. Statements such as IF and
CASE are used to conditionally execute blocks of SQL PL statements, while other
statements, such as WHILE and REPEAT, are typically used to execute a set of
statements repetitively until a task is complete.

Although there are many types of SQL PL statements, there are a few categories
into which these can be sorted:

e Variable related statements
¢ Conditional statements
¢ Loop statements

e Transfer of control statements

Variable related statements in SQL procedures: Variable related SQL statements are
used to declare variables and to assign values to variables. There are a few types of
variable related statements:

* DECLARE <variable> statement in SQL procedures

¢ DECLARE <condition> statement in SQL procedures

* DECLARE <condition handler> statement in SQL procedures
¢ DECLARE CURSOR in SQL procedures

e SET (assignment-statement) in SQL procedures

These statements provide the necessary support required to make use of the other

types of SQL PL statements and SQL statements that will make use of variable
values.

Chapter 1. SQL PL support 71

Conditional statements in SQL procedures: Conditional statements are used to define
what logic is to be executed based on the status of some condition being satisfied.
There are two types of conditional statements supported in SQL procedures:

+ CASE

* JF

These statements are similar; however the CASE statements extends the IF
statement.

CASE statement in SQL procedures: CASE statements can be used to conditionally
enter into some logic based on the status of a condition being satisfied. There are
two types of CASE statements:

* Simple case statement: used to enter into some logic based on a literal value

* Searched case statement: used to enter into some logic based on the value of an
expression

The WHEN clause of the CASE statement defines the value that when satisfied
determines the flow of control.

Here is an example of an SQL procedure with a CASE statement with a
simple-case-statement-when-clause:
CREATE PROCEDURE UPDATE_DEPT (IN p_workdept)

LANGUAGE SQL
BEGIN

DECLARE v_workdept CHAR(3);
SET v_workdept = p_workdept;

CASE v_workdept
WHEN 'AGO' THEN

UPDATE department SET deptname = 'D1';
WHEN 'BO1' THEN
UPDATE department SET deptname = 'D2';
ELSE
UPDATE department SET deptname = 'D3';
END CASE
END

Here is an example of CASE statement with a searched-case-statement-when-
clause:
CREATE PROCEDURE UPDATE_DEPT (IN p_workdept)

LANGUAGE SQL
BEGIN

DECLARE v_workdept CHAR(3);
SET v_workdept = p_workdept;

CASE
WHEN v_workdept = 'A0GO' THEN

UPDATE department SET deptname = 'D1';
WHEN v_workdept = 'BO1' THEN
UPDATE department SET deptname = 'D2';
ELSE
UPDATE department SET deptname = 'D3';
END CASE
END

72 SQL Procedural Languages: Application Enablement and Support

The examples provided above are logically equivalent, however it is important to
note that CASE statements with a searched-case-statement-when-clause can be very
powerful. Any supported SQL expression can be used here. These expressions can
contain references to variables, parameters, special registers, and more.

IF statement in SQL procedures: IF statements can be used to conditionally enter
into some logic based on the status of a condition being satisfied. The IF statement
is logically equivalent to a CASE statements with a searched-case-statement-when
clause.

The IF statement supports the use of optional ELSE IF clauses and a default ELSE
clause. An END IF clause is required to indicate the end of the statement.

Here is an example of procedure that contains an IF statement:

CREATE PROCEDURE UPDATE_SAL (IN empNum CHAR(6),
INOUT rating SMALLINT)
LANGUAGE SQL
BEGIN
IF rating = 1 THEN
UPDATE employee
SET salary = salary * 1.10, bonus = 1000
WHERE empno = empNum;
ELSEIF rating = 2 THEN
UPDATE employee

SET salary = salary * 1.05, bonus = 500
WHERE empno = empNum;
ELSE
UPDATE employee
SET salary = salary * 1.03, bonus = 0

WHERE empno = empNum;
END IF;
END

Looping statements in SQL procedures: Looping statements provide support for
repeatedly executing some logic until a condition is met. The following looping
statements are supported in SQL PL:

* FOR
* LOOP
* REPEAT
 WHILE

The FOR statement is distinct from the others, because it is used to iterate over
rows of a defined result set, whereas the others are using for iterating over a series
of SQL statements until for each a condition is satisfied.

Labels can be defined for all loop-control-statements to identify them.

FOR statement in SQL procedures: FOR statements are a special type of looping
statement, because they are used to iterate over rows in a defined read-only result
set. When a FOR statement is executed a cursor is implicitly declared such that for
each iteration of the FOR-loop the next row is the result set if fetched. Looping
continues until there are no rows left in the result set.

The FOR statement simplifies the implementation of a cursor and makes it easy to

retrieve a set of column values for a set of rows upon which logical operations can
be performed.

Chapter 1. SQL PL support 73

74

Here is an example of an SQL procedure that contains only a simple FOR
statement:

CREATE PROCEDURE P()

LANGUAGE SQL

BEGIN ATOMIC
DECLARE fullname CHAR(40);

FOR v AS curl CURSOR FOR
SELECT firstnme, midinit, Tastname FROM employee

DO
SET fullname = v.lastname || ',' || v.firstnme
[" ' || v.midinit;
INSERT INTO tnames VALUES (fullname);
END FOR;
END

Note: Logic such as is shown in the example above would be better implemented
using the CONCAT function. The simple example serves to demonstrate the
syntax.

The for-loop-name specifies a label for the implicit compound statement generated
to implemented the FOR statement. It follows the rules for the label of a
compound statement. The for-loop-name can be used to qualify the column names
in the result set as returned by the select-statement.

The cursor-name simply names the cursor that is used to select the rows from the
result set. If it is not specified, the DB2 database manager will automatically
generate a unique cursor name internally.

The column names of the select statement must be unique and a FROM clause
specifying a table (or multiple tables if doing some kind of JOIN or UNION) is
required. The tables and columns referenced must exist prior to the loop being
executed. Global temporary tables and declared temporary tables can be
referenced.

Positioned updates and deletes, and searched updates and deletes are supported in
the FOR loop. To ensure correct results, the FOR loop cursor specification must
include a FOR UPDATE clause.

The cursor that is created in support of the FOR statement cannot be referenced
outside of the FOR loop.

LOOP statement in SQL procedures: The LOOP statement is a special type of
looping statement, because has no terminating condition clause. It defines a series
of statements that are executed repeatedly until another piece of logic, generally a
transfer of control statement, forces the flow of control to jump to some point
outside of the loop.

The LOOP statement is generally used in conjunction with one of the following
statements: LEAVE, GOTO, ITERATE, or RETURN. These statements can force
control to just after the loop, to a specified location in the SQL procedure, to the
start of the loop to begin another iteration of the loop, or to exit the SQL
procedure. To indicate where to pass flow to when using these statements, labels
are used.

The LOOP statement is useful when you have complicated logic in a loop which
you might need to exit in more than one way, however it should be used with care
to avoid instances of infinite loops.

SQL Procedural Languages: Application Enablement and Support

If the LOOP statement is used alone without a transfer of control statement, the
series of statements included in the loop will be executed indefinitely or until a
database condition occurs that raises a condition handler that forces a change in
the control flow or a condition occurs that is not handled that forces the return of
the SQL procedure.

Here is an example of an SQL procedure that contains a LOOP statement. It also
uses the ITERATE and LEAVE statements.

CREATE PROCEDURE ITERATOR()

LANGUAGE SQL

BEGIN
DECLARE v_deptno CHAR(3); DECLARE v_deptname VARCHAR(29);
DECLARE at_end INTEGER DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE '02000';

DECLARE cl1 CURSOR FOR SELECT deptno, deptname

FROM department ORDER BY deptno;
DECLARE CONTINUE HANDLER FOR not_found SET at_end = 1;
OPEN c1;

ins_loop: LOOP
FETCH c1 INTO v_deptno, v_deptname;

IF at_end = 1 THEN
LEAVE ins_Toop;

ELSEIF v_dept = 'D11' THEN
ITERATE ins_loop;

END IF;

INSERT INTO department (deptno, deptname)
VALUES ('NEW', v_deptname);

END LOOP;

CLOSE c1;
END

WHILE statement in SQL procedures: The WHILE statement defines a set of
statements to be executed until a condition that is evaluated at the beginning of
the WHILE loop is false. The while-loop-condition (an expression) is evaluated
before each iteration of the loop.

Here is an example of an SQL procedure with a simple WHILE loop:

CREATE PROCEDURE sum_mn (IN p_start INT
,IN p_end INT
,OUT p_sum INT)

SPECIFIC sum_mn

LANGUAGE SQL

smn: BEGIN

DECLARE v_temp INTEGER DEFAULT 0;
DECLARE v_current INTEGER;

SET v_current = p_start;

WHILE (v_current <= p_end) DO
SET v_temp = v_temp + v_current;
SET v_current = v_current + 1;
END WHILE;
p_sum = v_current;
END smn;

Chapter 1. SQL PL support 75

76

Note: Logic such as is shown in the example above would be better implemented
using a mathematical formula. The simple example serves to demonstrate the
syntax.

REPEAT statement in SQL procedures: The REPEAT statement defines a set of
statements to be executed until a condition that is evaluated at the end of the
REPEAT loop is true. The repeat-loop-condition is evaluated at the completion of
each iteration of the loop.

With a WHILE statement, the loop is not entered if the while-loop-condition is
false at 1st pass. The REPEAT statement is useful alternative; however it is
noteworthy that while-loop logic can be rewritten as a REPEAT statement.

Here is an SQL procedure that includes a REPEAT statement:

CREATE PROCEDURE sum_mn2 (IN p_start INT
,IN p_end INT
,OUT p_sum INT)

SPECIFIC sum_mn2

LANGUAGE SQL

smn2: BEGIN

DECLARE v_temp INTEGER DEFAULT 0;
DECLARE v_current INTEGER;

SET v_current = p_start;

REPEAT
SET v_temp = v_temp + v_current;
SET v_current = v_current + 1;
UNTIL (v_current > p_end)
END REPEAT;
END

Transfer of control statements in SQL procedures: Transfer of control statements are
used to redirect the flow of control within an SQL procedure. This unconditional
branching can be used to cause the flow of control to jump from one point to
another point, which can either precede or follow the transfer of control statement.
The supported transfer of control statements in SQL procedures are:

* GOTO
* ITERATE
* LEAVE
* RETURN

Transfer of control statements can be used anywhere within an SQL procedure,
however ITERATE and LEAVE are generally used in conjunction with a LOOP
statement or other looping statements.

GOTO statement in SQL procedures: The GOTO statement is a straightforward and
basic flow of control statement that causes an unconditional change in the flow of
control. It is used to branch to a specific user-defined location using labels defined
in the SQL procedure.

Use of the GOTO statement is generally considered to be poor programming
practice and is not recommended. Extensive use of GOTO tends to lead to
unreadable code especially when procedures grow long. Besides, GOTO is not
necessary because there are better statements available to control the execution
path. There are no specific situations that require the use of GOTO; instead it is
more often used for convenience.

SQL Procedural Languages: Application Enablement and Support

Here is an example of an SQL procedure that contains a GOTO statement:

CREATE PROCEDURE adjust_salary (IN p_empno CHAR(6),
IN p_rating INTEGER,
OUT p_adjusted_salary DECIMAL (8,2))
LANGUAGE SQL

BEGIN
DECLARE new_salary DECIMAL (9,2);
DECLARE service DATE; -- start date

SELECT salary, hiredate INTO v_new_salary, v_service
FROM employee
WHERE empno = p_empno;

IF service > (CURRENT DATE - 1 year) THEN
GOTO exit;
END IF;
IF p_rating = 1 THEN
SET new_salary = new_salary + (new_salary * .10);
END IF;
UPDATE employee SET salary = new_salary WHERE empno = p_empno;
exit:

SET p_adjusted_salary = v_new_salary;

END

This example demonstrates what of the good uses of the GOTO statement:
skipping almost to the end of a procedure or loop so as not to execute some logic,
but to ensure that some other logic does still get executed.

You should be aware of a few additional scope considerations when using the
GOTO statement:

If the GOTO statement is defined in a FOR statement, the label must be defined
inside the same FOR statement, unless it is in a nested FOR statement or nested
compound statement.

If the GOTO statement is defined in a compound statement, the label must be
defined in side the same compound statement, unless it is in a nested FOR
statement or nested compound statement.

If the GOTO statement is defined in a handler, the label must be defined in the
same handler, following the other scope rules.

If the GOTO statement is defined outside of a handler, the label must not be
defined within a handler.

If the label is not defined within a scope that the GOTO statement can reach, an
error is returned (SQLSTATE 42736).

ITERATE statement in SQL procedures: The ITERATE statement is used to cause the
flow of control to return to the beginning of a labeled LOOP statement.

Here is an example of an SQL procedure that contains an ITERATE statement:

CREATE PROCEDURE ITERATOR()

LANGUAGE SQL

BEGIN
DECLARE v_deptno CHAR(3); DECLARE v_deptname VARCHAR(29);
DECLARE at_end INTEGER DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE '02000';

DECLARE cl CURSOR FOR SELECT deptno, deptname

Chapter 1. SQL PL support 77

78

FROM department ORDER BY deptno;
DECLARE CONTINUE HANDLER FOR not_found SET at_end = 1;
OPEN c1;

ins_loop: LOOP
FETCH c1 INTO v_deptno, v_deptname;
IF at_end = 1 THEN
LEAVE ins_loop;
ELSEIF v_dept = 'D11' THEN
ITERATE ins_Toop;
END IF;

INSERT INTO department (deptno, deptname)
VALUES ('NEW', v_deptname);

END LOOP;
CLOSE c1;

END

In the example, the ITERATE statement is used to return the flow of control to the
LOOP statement defined with label ins_loop when a column value in a fetched
row matches a certain value. The position of the ITERATE statement ensures that
no values are inserted into the department table.

LEAVE statement in SQL procedures: The LEAVE statement is used to transfer the
flow of control out of a loop or compound statement.

Here is an example of an SQL procedure that contain a LEAVE statement:

CREATE PROCEDURE ITERATOR()

LANGUAGE SQL

BEGIN
DECLARE v_deptno CHAR(3); DECLARE v_deptname VARCHAR(29);
DECLARE at_end INTEGER DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE '02000';

DECLARE cl CURSOR FOR SELECT deptno, deptname
FROM department ORDER BY deptno;
DECLARE CONTINUE HANDLER FOR not_found SET at_end = 1;

OPEN cl1;
ins_loop: LOOP
FETCH c1 INTO v_deptno, v_deptname;
IF at_end = 1 THEN
LEAVE ins_loop;
ELSEIF v_dept = 'D11' THEN
ITERATE ins_loop;
END IF;

INSERT INTO department (deptno, deptname)
VALUES ('NEW', v_deptname);

END LOOP;

CLOSE cl;
END

In the example, the LEAVE statement is used to exit the LOOP statement defined
with label ins_loop. It is nested within an IF statement and therefore is
conditionally executed when the IF-condition is true which becomes true when

SQL Procedural Languages: Application Enablement and Support

there are no more rows found in the cursor. The position of the LEAVE statement
ensures that no further iterations of the loop are executed once a NOT FOUND
error is raised.

RETURN statement in SQL procedures: The RETURN statement is used to
unconditionally and immediately terminate an SQL procedure by returning the
flow of control to the caller of the stored procedure.

It is mandatory that when the RETURN statement is executed that it return an
integer value. If the return value is not provided, the default is 0. The value is
typically used to indicate success or failure of the procedure's execution. The value
can be a literal, variable, or an expression that evaluates to an integer value.

You can use one or more RETURN statements in a stored procedure. The RETURN
statement can be used anywhere after the declaration blocks within the
SQL-procedure-body.

To return multiple output values, parameters can be used instead. Parameter
values must be set prior to the RETURN statement being executed.

Here is an example of an SQL procedure that uses the RETURN statement:

CREATE PROCEDURE return_test (IN p_empno CHAR(6),
IN p_emplastname VARCHAR(15))
LANGUAGE SQL
SPECIFIC return_test
BEGIN

DECLARE v_lastname VARCHAR (15);

SELECT Tastname INTO v_lastname
FROM employee
WHERE empno = p_empno;

IF v_Tastname = p_emplastname THEN
RETURN 1;

ELSE
RETURN -1;

END IF;

END rt

In the example, if the parameter p_emplastname matches the value stored in table
employee, the procedure returns 1. If it does not match, it returns -1.

Condition handlers in SQL procedures: Condition handlers determine the behavior of
your SQL procedure when a condition occurs. You can declare one or more
condition handlers in your SQL procedure for general conditions, named
conditions, or specific SQLSTATE values.

If a statement in your SQL procedure raises an SQLWARNING or NOT FOUND
condition, and you have declared a handler for the respective condition, DB2
passes control to the corresponding handler. If you have not declared a handler for
such a condition, DB2 passes control to the next statement in the SQL procedure
body. If the SQLCODE and SQLSTATE variables have been declared, they will
contain the corresponding values for the condition.

If a statement in your SQL procedure raises an SQLEXCEPTION condition, and
you declared a handler for the specific SQLSTATE or the SQLEXCEPTION

Chapter 1. SQL PL support 79

condition, DB2 passes control to that handler. If the SQLSTATE and SQLCODE
variables have been declared, their values after the successful execution of a
handler will be ‘00000" and 0 respectively.

If a statement in your SQL procedure raises an SQLEXCEPTION condition, and
you have not declared a handler for the specific SQLSTATE or the
SQLEXCEPTION condition, DB2 terminates the SQL procedure and returns to the
caller.

The handler declaration syntax for condition handlers is described in Compound
SQL (Procedure) statement.

Returning result sets from SQL procedures:

In SQL procedures, cursors can be used to do more than iterate through rows of a
result set. They can also be used to return result sets to the calling program. Result
sets can be retrieved by SQL procedures (in the case of a nested procedure calls) or
client applications programmed in C using the CLI application programming
interface, Java, CLI, or .NET CLR languages.

Prerequisites

* Authority to create an SQL procedure

To return a result set from an SQL procedure, you must:

1. Specify the DYNAMIC RESULT SETS clause in the CREATE PROCEDURE
statement

2. DECLARE the cursor using the WITH RETURN clause
3. Open the cursor in the SQL procedure
4. Keep the cursor open for the client application - do not close it

Here is an example of an SQL procedure that only returns a single result set:

CREATE PROCEDURE read_emp()
SPECIFIC read_emp

LANGUAGE SQL

DYNAMIC RESULT SETS 1

Re: BEGIN

DECLARE c_emp CURSOR WITH RETURN FOR
SELECT salary, bonus, comm.
FROM employee
WHERE job != 'PRES';

OPEN c_emp;

END Re

If the cursor is closed using the CLOSE statement prior to the return of the SQL
procedure, the cursor result set will not be returned to the caller or client
application.

Multiple result sets can be returned from an SQL procedure by using multiple
cursors. To return multiple cursors the following must be done:

* Specify the DYNAMIC RESULT SETS clause in the CREATE PROCEDURE
statement. Specify the maximum possible number of result sets likely to be
returned. The number of results sets actually returned must not exceed this
number.

80 SQL Procedural Languages: Application Enablement and Support

* Declare cursors for each of the result sets to be returned that specify the WITH
RETURN clause.

* Open the cursors to be returned.
* Keep the cursor open for the client application - do not close them.

One cursor is required per result set that is to be returned.
Result sets are returned to the caller in the order in which they are opened.

Once you have created the SQL procedure that returns a result set you might want
to call it and retrieve the result set.

Multiple result sets can also be returned by enabling multiple instances of a same
cursor. You must DECLARE the cursor using the WITH RETURN TO CLIENT.

An example to enable multiple instances of an open cursor using the WITH
RETURN TO CLIENT:
CREATE PROCEDURE PROC(IN a INT)
BEGIN
DECLARE index INTEGER DEFAULT 1;
WHILE index < a DO
BEGIN
DECLARE cur CURSOR WITH RETURN TO CLIENT FOR SELECT = FROM T WHERE pk = index;
OPEN cur;
SET index = index + 1;
END;
END WHILE;
END
¢

Receiving procedure result sets in SQL routines:

You can receive result sets from procedures you invoke from within an SQL-bodied
routine.

You must know how many result sets the invoked procedure will return. For each
result set that the invoking routine receives, a result set must be declared.

To accept procedure result sets from within an SQL-bodied routine:

1. DECLARE result set locators for each result set that the procedure will return.
For example:

DECLARE resultl RESULT_SET_LOCATOR VARYING;
DECLARE result2 RESULT_SET_LOCATOR VARYING;
DECLARE result3 RESULT_SET_LOCATOR VARYING;

2. Invoke the procedure. For example:
CALL targetProcedure();

3. ASSOCIATE the result set locator variables (defined above) with the invoked
procedure. For example:

ASSOCIATE RESULT SET LOCATORS(resultl, result2, result3)
WITH PROCEDURE targetProcedure;

4. ALLOCATE the result set cursors passed from the invoked procedure to the
result set locators. For example:

ALLOCATE rsCur CURSOR FOR RESULT SET resultl;
5. FETCH rows from the result sets. For example:
FETCH rsCur INTO ...

Chapter 1. SQL PL support 81

Creating SQL procedures

Creating SQL procedures is similar to creating any database object in that it
consists of executing a DDL SQL statement.

SQL procedures are created by executing the CREATE PROCEDURE statement
which can be done using graphical development environment tools or by directly
executing the statement from the DB2 Command Line Processor (CLP), a DB2
Command Window, the DB2 Command Editor, or another DB2 interface.

When creating SQL procedures, you can specify how the precompiler and binder
should generate the procedure package, what authorization ID should be used to
set the SQL procedure definer in the DB2 catalog views, and to set other package
options.

Creating SQL procedures from the command line:

* The user must have the privileges required to execute the CREATE
PROCEDURE statement for an SQL procedure.

* Privileges to execute all of the SQL statements included within the
SQL-procedure-body of the procedure.

* Any database objects referenced in the CREATE PROCEDURE statement for the
SQL procedure must exist prior to the execution of the statement.

* Select an alternate terminating character for the Command Line Processor (DB2
CLP) other than the default terminating character, which is a semicolon (}'), to
use in the script that you will prepare in the next step.

This is required so that the CLP can distinguish the end of SQL statements that
appear within the body of a routine's CREATE statement from the end of the
CREATE PROCEDURE statement itself. The semicolon character must be used to
terminate SQL statements within the SQL routine body and the chosen alternate
terminating character should be used to terminate the CREATE statement and
any other SQL statements that you might contain within your CLP script.

For example, in the following CREATE PROCEDURE statement, the 'at;' sign
(@) is used as the terminating character for a DB2 CLP script named
myCLPscript.db2:

CREATE PROCEDURE UPDATE_SALARY_IF
(IN employee_number CHAR(6), IN rating SMALLINT)
LANGUAGE SQL
BEGIN
DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE EXIT HANDLER FOR not_found
SIGNAL SQLSTATE '20000' SET MESSAGE_TEXT = 'Employee not found';

IF (rating = 1)
THEN UPDATE employee
SET salary = salary * 1.10, bonus = 1000
WHERE empno = employee_number;
ELSEIF (rating = 2)
THEN UPDATE employee
SET salary = salary * 1.05, bonus
WHERE empno = employee number;
ELSE UPDATE employee
SET salary = salary * 1.03, bonus = 0
WHERE empno = employee_number;
END IF;
END

500

e

* Run the DB2 CLP script containing the CREATE PROCEDURE statement for the
procedure from the command line, using the following CLP command:

82 SQL Procedural Languages: Application Enablement and Support

db2 -td terminating-character -vf CLP-script-name

where terminating-character is the terminating character used in the CLP script
file CLP-script-name that is to be run.

The DB2 CLP option -td indicates that the CLP terminator default is to be reset
with terminating-character. The -vf indicates that the CLP's optional verbose (-v)
option is to be used, which will cause each SQL statement or command in the
script to be displayed to the screen as it is run, along with any output that
results from its execution. The -f option indicates that the target of the command
is a file.

To run the specific script shown in the first step, issue the following command
from the system command prompt:

db2 -td@ -vf myCLPscript.db2
Customizing precompile and bind options for compiled SQL objects:

The precompile and bind options for SQL procedures, compiled functions,
compiled triggers and compound SQL (complied) statements can be customized by
setting the instance-wide DB2 registry variable, DB2_SQLROUTINE_PREPOPTS with the
command:

db2set DB2_SQLROUTINE_PREPOPTS=<options>

The options can be changed at the procedure level with the SET_ROUTINE_OPTS
stored procedure. The values of the options set for the creation of SQL procedures
in the current session can be obtained with the GET_ROUTINE_OPTS function.

The options used to compile a given routine are stored in the system catalog table
ROUTINES.PRECOMPILE_OPTIONS, in the row corresponding to the routine. If
the routine is revalidated, those stored options are also used during the
revalidation.

After a routine is created, the compile options can be altered using the
SYSPROC.ALTER_ROUTINE_PACKAGE and
SYSPROC.REBIND_ROUTINE_PACKAGE procedures. The altered options are
reflected in the ROUTINES_PRECOMPILE_OPTIONS system catalog table.

Note: Cursor blocking is disabled in SQL procedures for cursors referenced in
FETCH statements and for implicit cursors in FOR statements. Regardless of the
value specified for the BLOCKING bind option, data will be retrieved one row at a
time in an optimized, highly efficient manner.

Example.

The SQL procedures used in this example will be defined in CLP scripts
(given below). These scripts are not in the sqlpl samples directory, but you
can easily create these files by cutting-and-pasting the CREATE procedure
statements into your own files.

The examples use a table named "expenses”, which you can create in the
sample database as follows:
db2 connect to sample

db2 CREATE TABLE expenses(amount DOUBLE, date DATE)
db2 connect reset

To begin, specify the use of ISO format for dates as an instance-wide
setting:
db2set DB2_SQLROUTINE_PREPOPTS="DATETIME ISO"

db2stop
db2start

Chapter 1. SQL PL support 83

84

Stopping and restarting DB2 is necessary for the change to take affect.

Then connect to the database:

db2 connect to sample

The first procedure is defined in CLP script maxamount.db2 as follows:

CREATE PROCEDURE maxamount (OUT maxamnt DOUBLE)
BEGIN

SELECT max(amount) INTO maxamnt FROM expenses;
END @

It will be created with options DATETIME ISO and ISOLATION UR:

db2 "CALL SET_ROUTINE_OPTS(GET_ROUTINE_OPTS() || ' ISOLATION UR')"
db2 -td@ -vf maxamount.db2

The next procedure is defined in CLP script fullamount.db2 as follows:

CREATE PROCEDURE fullamount(OUT fullamnt DOUBLE)
BEGIN

SELECT sum(amount) INTO fullamnt FROM expenses;
END @

It will be created with option ISOLATION CS (note that we are not using the
instance-wide DATETIME ISO setting in this case):

CALL SET_ROUTINE_OPTS('ISOLATION CS')
db2 -td@ -vf fullamount.db2

The last procedure in the example is defined in CLP script perday.db2 as
follows:
CREATE PROCEDURE perday ()
BEGIN
DECLARE curl CURSOR WITH RETURN FOR
SELECT date, sum(amount)
FROM expenses
GROUP BY date;

OPEN curl;
END @

The last SET_ROUTINE_OPTS call uses the NULL value as the argument. This
restores the global setting specified in the DB2_SQLROUTINE_PREPOPTS
registry, so the last procedure will be created with option DATETIME ISO:

CALL SET_ROUTINE_OPTS(NULL)
db2 -td@ -vf perday.db2

Improving the performance of SQL procedures
Overview of how DB2 compiles SQL PL and inline SQL PL

Before discussing how to improve the performance of SQL procedures we should
discuss how DB2 compiles them upon the execution of the CREATE PROCEDURE
statement.

When an SQL procedure is created, DB2 separates the SQL queries in the
procedure body from the procedural logic. To maximize performance, the SQL
queries are statically compiled into sections in a package. For a statically compiled
query, a section consists mainly of the access plan selected by the DB2 optimizer
for that query. A package is a collection of sections. For more information on
packages and sections, please refer to the DB2 SQL Reference. The procedural logic
is compiled into a dynamically linked library.

SQL Procedural Languages: Application Enablement and Support

During the execution of a procedure, every time control flows from the procedural
logic to an SQL statement, there is a "context switch" between the DLL and the
DB2 engine. As of DB2 Version 8.1, SQL procedures run in "unfenced mode". That
is they run in the same addressing space as the DB2 engine. Therefore the context
switch we refer to here is not a full context switch at the operating system level,
but rather a change of layer within DB2. Reducing the number of context switches
in procedures that are invoked very often, such as procedures in an OLTP
application, or that process large numbers of rows, such as procedures that
perform data cleansing, can have a noticeable impact on their performance.

Whereas an SQL procedure containing SQL PL is implemented by statically
compiling its individual SQL queries into sections in a package, an inline SQL PL
function is implemented, as the name suggests, by inlining the body of the
function into the query that uses it. Queries in SQL functions are compiled
together, as if the function body were a single query. The compilation occurs every
time a statement that uses the function is compiled. Unlike what happens in SQL
procedures, procedural statements in SQL functions are not executed in a different
layer than dataflow statements. Therefore, there is no context switch every time
control flows from a procedural to a dataflow statement or vice versa.

If there are no side-effects in your logic use an SQL function instead

Because of the difference in compilation between SQL PL in procedures and inline
SQL PL in functions, it is reasonable to presume that a piece of procedural code
will execute faster in a function than in a procedure if it only queries SQL data and
does no data modifications - that is it has no side-effects on the data in the
database or external to the database.

That is only good news if all the statements that you need to execute are
supported in SQL functions. SQL functions can not contain SQL statements that
modify the database. As well, only a subset of SQL PL is available in the inline
SQL PL of functions. For example, you cannot execute CALL statements, declare
cursors, or return result sets in SQL functions.

Here is an example of an SQL procedure containing SQL PL that was a good
candidate for conversion to an SQL function to maximize performance:

CREATE PROCEDURE GetPrice (IN Vendor CHAR&(20&),
IN Pid INT, OUT price DECIMAL(10,3))
LANGUAGE SQL
BEGIN
IF Vendor eq; ssq;Vendor 1ssq;
THEN SET price eq; (SELECT ProdPrice
FROM ViTable
WHERE Id = Pid);
ELSE IF Vendor eq; ssq;Vendor 2ssq;
THEN SET price eq; (SELECT Price FROM V2Table
WHERE Pid eq; GetPrice.Pid);
END IF;
END

Here is the rewritten SQL function:

CREATE FUNCTION GetPrice (Vendor CHAR(20), Pid INT)
RETURNS DECIMAL(10,3)
LANGUAGE SQL
BEGIN

DECLARE price DECIMAL(10,3);

IF Vendor = 'Vendor 1'

THEN SET price = (SELECT ProdPrice
FROM V1Table

Chapter 1. SQL PL support 85

86

WHERE Id = Pid);
ELSE IF Vendor = 'Vendor 2'
THEN SET price = (SELECT Price FROM V2Table
WHERE Pid = GetPrice.Pid);
END IF;
RETURN price;
END

Remember that the invocation of a function is different than a procedure. To
invoke the function, use the VALUES statement or invoke the function where an
expression is valid, such as in a SELECT or SET statement. Any of the following
are valid ways of invoking the new function:

VALUES (GetPrice('IBM', 324))
SELECT VName FROM Vendors WHERE GetPrice(Vname, Pid) < 10

SET price = GetPrice(Vname, Pid)

Avoid multiple statements in an SQL PL procedure when just one is
sufficient

Although it is generally a good idea to write concise SQL, it is very ease to forget
to do this in practice. For example the following SQL statements:
INSERT INTO tab_comp VALUES (iteml, pricel, qtyl);

INSERT INTO tab_comp VALUES (item2, price2, qty2);
INSERT INTO tab_comp VALUES (item3, price3, qty3);

can be rewritten as a single statement:
INSERT INTO tab_comp VALUES (iteml, pricel, qtyl),
(item2, price2, qty2),
(item3, price3, qty3);

The multi-row insert will require roughly one third of the time required to execute
the three original statements. Isolated, this improvement might seem negligible,
but if the code fragment is executed repeatedly, for example in a loop or in a
trigger body, the improvement can be significant.

Similarly, a sequence of SET statements like:

SET A = exprl;
SET B = expr2;
SET C = expr3;

can be written as a single VALUES statement:
VALUES exprl, expr2, expr3 INTO A, B, C;

This transformation preserves the semantics of the original sequence if there are no
dependencies between any two statements. To illustrate this, consider:

SET A
SET B

monthly avg * 12;
(A / 2) * correction_factor;

Converting the previous two statements to:
VALUES (monthly avg * 12, (A / 2) * correction_factor) INTO A, B;

does not preserve the original semantics because the expressions before the INTO
keyword are evaluated 'in parallel'. This means that the value assigned to B is not
based on the value assigned to A, which was the intended semantics of the original
statements.

SQL Procedural Languages: Application Enablement and Support

Reduce multiple SQL statements to a single SQL expression

Like other programming languages, the SQL language provides two types of
conditional constructs: procedural (IF and CASE statements) and functional (CASE
expressions). In most circumstances where either type can be used to express a
computation, using one or the other is a matter of taste. However, logic written
using CASE expressions is not only more compact, but also more efficient than
logic written using CASE or IF statements.

Consider the following fragment of SQL PL code:

IF (Price <= MaxPrice) THEN

INSERT INTO tab_comp(Id, Val) VALUES(Oid, Price);
ELSE

INSERT INTO tab_comp(Id, Val) VALUES(0id, MaxPrice);
END IF;

The condition in the IF clause is only being used to decide what value is inserted
in the tab_comp.Val column. To avoid the context switch between the procedural
and the dataflow layers, the same logic can be expressed as a single INSERT with a
CASE expression:
INSERT INTO tab_comp(Id, Val)
VALUES (0id,
CASE
WHEN (Price <= MaxPrice) THEN Price
ELSE MaxPrice
END) ;

It's worth noting that CASE expressions can be used in any context where a scalar
value is expected. In particular, they can be used on the right-hand side of
assignments. For example:
IF (Name IS NOT NULL) THEN
SET ProdName = Name;
ELSEIF (NameStr IS NOT NULL) THEN
SET ProdName = NameStr;
ELSE
SET ProdName = DefaultName;
END IF;

can be rewritten as:

SET ProdName = (CASE
WHEN (Name IS NOT NULL) THEN Name
WHEN (NameStr IS NOT NULL) THEN NameStr
ELSE DefaultName
END) ;

In fact, this particular example admits an even better solution:
SET ProdName = COALESCE(Name, NameStr, DefaultName);

Don't underestimate the benefit of taking the time to analyze and consider
rewriting your SQL. The performance benefits will pay you back many times over
for the time invested in analyzing and rewriting your procedure.

Exploit the set-at-a-time semantics of SQL
Procedural constructs such as loops, assignment and cursors allow us to express
computations that would not be possible to express using just SQL DML

statements. But when we have procedural statements at our disposal, there is a
risk that we could turn to them even when the computation at hand can, in fact,

Chapter 1. SQL PL support 87

be expressed using just SQL DML statements. As we've mentioned earlier, the
performance of a procedural computation can be orders of magnitude slower than
the performance of an equivalent computation expressed using DML statements.
Consider the following fragment of code:

DECLARE curl CURSOR FOR SELECT coll, col2 FROM tab_comp;
OPEN curl;
FETCH curl INTO v1, v2;
WHILE SQLCODE <> 100 DO
IF (vl > 20) THEN
INSERT INTO tab_sel VALUES (20, v2);
ELSE
INSERT INTO tab_sel VALUES (v1, v2);
END IF;
FETCH curl INTO vl, v2;
END WHILE;

To begin with, the loop body can be improved by applying the transformation
discussed in the last section - "Reduce multiple SQL statements to a single SQL
expression':

DECLARE curl CURSOR FOR SELECT coll, col2 FROM tab_comp;
OPEN curl;
FETCH curl INTO v1, v2;
WHILE SQLCODE <> 100 DO
INSERT INTO tab_sel VALUES (CASE
WHEN v1 > 20 THEN 20
ELSE v1
END, v2);
FETCH curl INTO v1, v2;
END WHILE;

But upon closer inspection, the whole block of code can be written as an INSERT
with a sub-SELECT:

INSERT INTO tab_sel (SELECT (CASE
WHEN coll > 20 THEN 20
ELSE coll
END),
col2
FROM tab_comp);

In the original formulation, there was a context switch between the procedural and
the dataflow layers for each row in the SELECT statements. In the last formulation,
there is no context switch at all, and the optimizer has a chance to globally
optimize the full computation.

On the other hand, this dramatic simplification would not have been possible if
each of the INSERT statements targeted a different table, as shown below:

DECLARE curl CURSOR FOR SELECT coll, col2 FROM tab_comp;
OPEN curl;
FETCH curl INTO vl, v2;
WHILE SQLCODE <> 100 DO
IF (vl > 20) THEN
INSERT INTO tab_default VALUES (20, v2);
ELSE
INSERT INTO tab_sel VALUES (v1, v2);
END IF;
FETCH curl INTO v1, v2;
END WHILE;

However, the set-at-a-time nature of SQL can also be exploited here:

88 SQL Procedural Languages: Application Enablement and Support

INSERT INTO tab_sel (SELECT coll, col2
FROM tab_comp
WHERE coll <= 20);
INSERT INTO tab_default (SELECT coll, col2
FROM tab_comp
WHERE coll > 20);

When looking at improving the performance of existing procedural logic, any time
spent in eliminating cursor loops will likely pay off.

Keep the DB2 optimizer informed

When a procedure is created, its individual SQL queries are compiled into sections
in a package. The DB2 optimizer chooses an execution plan for a query based,
among other things, on table statistics (for example, table sizes or the relative
frequency of data values in a column) and indexes available at the time the query
is compiled. When tables suffer significant changes, it may be a good idea to let
DB2 collect statistics on these tables again. And when statistics are updated or new
indexes are created, it may also be a good idea to rebind the packages associated
with SQL procedures that use the tables, to let DB2 create plans that exploit the
latest statistics and indexes.

Table statistics can be updated using the RUNSTATS command. To rebind the
package associated with an SQL procedure, you can use the
REBIND_ROUTINE_PACKAGE built-in procedure that is available in DB2 Version
8.1. For example, the following command can be used to rebind the package for
procedure MYSCHEMA MYPROC:

CALL SYSPROC.REBIND ROUTINE_PACKAGE('P', 'MYSCHEMA.MYPROC', 'ANY')

where 'P' indicates that the package corresponds to a procedure and 'ANY"
indicates that any of the functions and types in the SQL path are considered for
function and type resolution. See the Command Reference entry for the REBIND
command for more details.

Use arrays

You can use arrays to efficiently pass collections of data between applications and
stored procedures and to store and manipulate transient collections of data within
SQL procedures without having to use relational tables. Operators on arrays
available within SQL procedures allow for the efficient storage and retrieval of
data. Applications that create arrays of moderate size will experience significantly
better performance than applications that create very large arrays (on the scale of
multiple megabytes), as the entire array is stored in main memory. See Related links
section for additional information.

SQL functions

SQL functions are functions implemented completely with SQL that can be used to
encapsulate logic that can be invoked like a programming sub-routine. You can
create SQL scalar functions and SQL table functions.

There are many useful applications for SQL functions within a database or
database application architecture. SQL functions can be used to create operators on
column data, for extending the support of built-in functions, for making
application logic more modular, and for improving overall database design, and
database security.

Chapter 1. SQL PL support 89

90

The following topics provide more information about SQL functions:

Features of SQL functions
SQL functions are characterized by many general features:

SQL functions:

* Can contain SQL Procedural Language statements and features which support
the implementation of control-flow logic around traditional static and dynamic
SQL statements.

* Are supported in the entire DB2 family brand of database products in which
many if not all of the features supported in DB2 Version 9 are supported.

* Are easy to implement, because they use a simple high-level, strongly typed
language.

* SQL functions are more reliable than equivalent external functions.

* Support input parameters.

* SQL scalar functions return a scalar value.

e SQL table functions return a table result set.

e Support a simple, but powerful condition and error-handling model.

* Allow you to easily access the SQLSTATE and SQLCODE values as special
variables.

* Reside in the database and are automatically backed up and restored as part of
backup and restore operations.

* Can be invoked wherever expressions in an SQL statement are supported.

* Support nested functions calls to other SQL functions or functions implemented
in other languages.

* Support recursion (when dynamic SQL is used in compiled functions).
* Can be invoked from triggers.

* Many SQL statements can be included within SQL functions, however there are
exceptions. For the complete list of SQL statements that can included and
executed in SQL functions, seejSQL statements that can be executed in routines|

SQL functions provide extensive support not limited to what is listed above. When
implemented according to best practices, they can play an essential role in
database architecture, database application design, and in database system
performance.

Designing SQL functions
Designing SQL functions is a task that you perform before creating SQL functions
in a database.

To design SQL functions it is important to be familiar with the features of SQL
functions. The following topics provide more information about SQL function
design concepts:

Inlined SQL functions and compiled SQL functions:

There are two implementation types for SQL functions: inlined SQL functions and
compiled SQL functions.

Inlined SQL functions

Inlined SQL functions are SQL functions that are created using the
CREATE FUNCTION statement with a body that is either a RETURN

SQL Procedural Languages: Application Enablement and Support

statement or an inline compound statement. Inline compound statements
are defined with the BEGIN ATOMIC and END keywords.

Inlined SQL functions can contain SQL statements and inline SQL PL
statements - a subset of SQL PL statements.

Compiled SQL functions

Compiled SQL functions are SQL functions that are created using the
CREATE FUNCTION statement with a body that is either a RETURN
statement or a compiled compound statement. Compiled compound
statements are defined with the BEGIN and END keywords.

When the ATOMIC clause is omitted, SQL functions are compiled and as
such can include or reference more SQL PL features than inlined SQL
functions. Compiled SQL functions can include the following features
which are not supported in inlined SQL functions:

¢ SQL PL statements, including:
— CASE statement
— REPEAT statement

* Cursor processing

¢ Dynamic SQL

* Condition handlers

Restrictions on SQL functions:

It is important to note the restrictions on SQL functions before creating them or
when troubleshooting problems related to their implementation and use.

The following restrictions apply to SQL functions:
* SQL table functions cannot contain compiled compound statements.

* SQL scalar functions containing compiled compound statements cannot be
invoked in partitioned database environments.

* By definition, SQL functions cannot contain cursors defined with the WITH
RETURN clause.

¢ Compiled SQL scalar functions cannot be invoked in partitioned database
environments.

* The following data types are not supported within compiled SQL functions:
structured data types, XML data type, LONG VARCHAR data type, and LONG
VARGRAPHIC data type.

* In this version, use of the DECLARE TYPE statement within compiled SQL
functions is not supported.

Creating SQL scalar functions

Creating SQL scalar functions is a task that you would perform when designing a
database or when developing applications. SOL scalar functions are generally
created when there is an identifiable benefit in encapsulating a piece of reusable
logic so that it can be referenced within SQL statements in multiple applications or
within database objects.

Before you create an SQL function:
+ Read: [“SQL functions” on page 89|
+ Read: [“Features of SQL functions” on page 90|

Chapter 1. SQL PL support 91

* Ensure that you have the privileges required to execute the CREATE
FUNCTION (scalar) statement.

Restrictions

See{“Restrictions on SQL functions” on page 91|
1. Define the CREATE FUNCTION (scalar) statement:

a. Specify a name for the function.

b. Specify a name and data type for each input parameter.
c. Specify the RETURNS keyword and the data type of the scalar return value.
d

Specify the BEGIN keyword to introduce the function-body. Note: Use of
the BEGIN ATOMIC keyword is not recommended for new functions.

e. Specify the function body. Specify the RETURN clause and a scalar return
value or variable.

f. Specify the END keyword.
2. Execute the CREATE FUNCTION (scalar) statement from a supported interface.

The CREATE FUNCTION (scalar) statement should execute successfully and the
scalar function should be created.

Example 1:

The following is an example of a compiled SQL function:

CREATE FUNCTION GetPrice (Vendor CHAR(20), Pid INT)
RETURNS DECIMAL(10,3)
LANGUAGE SQL
MODIFIES SQL
BEGIN
DECLARE price DECIMAL(10,3);

IF Vendor = 'Vendor 1'
THEN SET price = (SELECT ProdPrice FROM V1Table WHERE Id = Pid);
ELSE IF Vendor = 'Vendor 2'
THEN SET price = (SELECT Price
FROM V2Table
GetPrice.Pid);

WHERE Pid
END IF;

RETURN price;
END

This function takes in two input parameters and returns a single scalar value,
conditionally based on the input parameter values. It requires the declaration and
use of a local variable named price to hold the value to be returned until the
function returns.

Example 2:

The following example demonstrates a compiled SQL function definition
containing a cursor, condition handler statement, and a REPEAT statement:

CREATE FUNCTION exit_func(a INTEGER)
SPECIFIC exit_func
LANGUAGE SQL
RETURNS INTEGER
BEGIN
DECLARE val INTEGER DEFAULT 0;

92 SQL Procedural Languages: Application Enablement and Support

DECLARE myint INTEGER DEFAULT 0;

DECLARE cur2 CURSOR FOR
SELECT c2 FROM udfdl
WHERE cl1 <= a
ORDER BY c1;

DECLARE EXIT HANDLER FOR NOT FOUND
BEGIN
SIGNAL SQLSTATE '70001'
SET MESSAGE_TEXT =
'"Exit handler for not found fired';
END;

OPEN cur?;
REPEAT
FETCH cur2 INTO val;
SET myint = myint + val;
UNTIL (myint >= a)
END REPEAT;
CLOSE cur2;
RETURN myint;

END@

After creating the scalar function you might want to invoke the function to test it.

Creating SQL table functions

The task of creating SQL table functions can be done at any time.

Before you create an SQL table function ensure that you have the privileges
required to execute the CREATE FUNCTION (table) statement.

Restrictions

See: [“Restrictions on SQL functions” on page 91|
1. Define the CREATE FUNCTION (table) statement:

a. Specify a name for the function.

b. Specify a name and data type for each input parameter.

C. Specify the routine attributes.

d. Specify the RETURNS TABLE keyword.

e. Specify the BEGIN ATOMIC keyword to introduce the function-body.
f. Specify the function body.

g

Specify the RETURN clause with brackets in which you specify a query
that defines the result set to be returned.

h. Specify the END keyword.
2. Execute the CREATE FUNCTION (table) statement from a supported interface.

The CREATE FUNCTION (table) statement should execute successfully and the
table function should be created.

Example 1:

The following is an example of a compiled SQL table function that is used to track
and audit updates made to employee salary data:

Chapter 1. SQL PL support 93

CREATE FUNCTION update_salary (updEmpNum CHAR(4), amount INTEGER)
RETURNS TABLE (emp_lastname VARCHAR(10),
emp_firstname VARCHAR(10),
newSalary INTEGER)
LANGUAGE SQL
MODIFIES SQL DATA
NO EXTERNAL ACTION
NOT DETERMINISTIC
BEGIN ATOMIC

INSERT INTO audit_table(user, table, action, time)
VALUES (USER, 'EMPLOYEE',
'Salary update. Values: ' || updEmpNum || ' ' || char(amount), CURRENT TIMESTAMP);

RETURN (SELECT Tlastname, firstname, salary
FROM FINAL TABLE(UPDATE employee SET salary = salary + amount WHERE employee.empnum = updEmpNum));

END

This function updates the salary of an employee specified by updEmpNum, by the
amount specified by amount, and also records in an audit table named audit_table,
the user that invoked the routine, the name of the table that was modified, and the
type of modification made by the user. A SELECT statement that references a data
change statement in the FROM clause is used to get back the updated row values.

Example 2:

The following is an example of a compiled SQL table function:
CREATE TABLE t1(pk INT

CREATE TABLE t1_archive LIKE T1%
CREATE FUNCTION archive_tb1_t1(ppk INT)
RETURNS TABLE(pk INT, cl INT, date)
LANGUAGE SQL
MODIFIES SQL DATA
BEGIN ATOMIC
DECLARE cl INT;
DECLARE date DATE;
SET (cl, date) = (SELECT * FROM OLD TABLE(DELETE FROM t1 WHERE tl.pk = ppk));
INSERT INTO T1 ARCHIVE VALUES (ppk, cl, date);

RETURN VALUES (pk, cl, date);
END%

After creating the table function you might want to invoke the function to test it.

Compound statements

A compound statement groups other statements together into an executable block.
Compound statements can be executed independently or be included in the
definitions of database objects such as procedures, functions, methods, and
triggers. There are different SQL statements for these because there are unique
differences and restrictions that apply to each.

Compound statements can be either inline compound statements (formerly called
dynamic compound statements) or compiled compound statements. The
differences between these two statements are shown below.

94 SQL Procedural Languages: Application Enablement and Support

Inline compound statements
Inline compound statements are atomic and are defined with the BEGIN
ATOMIC and END keywords, between which other SQL statements can be
defined and executed. Inline compound statements can contain variable
declarations, SQL statements and the subset of SQL PL statements known
as inline SQL PL statements.

Compiled compound statements
Compiled compound statements are not atomic and are defined with the
BEGIN and END keywords, between which other SQL statements can be
defined and executed. Compiled compound statements can contain SQL
statements and all SQL PL statements.

You would choose to use a compiled compound statement instead of an inline
compound statement if you want to make use of the additional features available
with compiled compound statements.

Uses of compound statements

Compound statements are primarily useful for creating short scripts that can be
executed from the DB2 Command Line Processor. They are also used to define the
body of a routine or trigger.

Restrictions on compound statements

It is important to note the restrictions on compound statements before creating
them or when troubleshooting problems related to their implementation and use.

The following restrictions apply to inlined SQL functions:
* Only a subset of SQL PL statements are supported.
¢ The DECLARE TYPE statement is not supported.

The following restrictions apply to compiled SQL functions:
* SQL table functions cannot contain compiled compound statements.

¢ SQL scalar functions containing compiled compound statements cannot be
invoked in partitioned database environments.

* The DECLARE TYPE statement is supported, but the following data types are
not supported with its use: structured data types, XML data type, LONG
VARCHAR data type, and LONG VARGRAPHIC data type.

Creating compound statements

Creating and executing compound statements is a task that you would perform
when you need to run a script consisting of SQL statements.

Before you create a compound statement:

+ Read: [“Compound statements” on page 94|

* Ensure that you have the privileges required to execute the Compound
statement.

Restrictions

For a list of restrictions on compound statements, so:

* [“Restrictions on compound statements”]

1. Define a compound SQL statement.

Chapter 1. SQL PL support 95

96

2. Execute the compound SQL statement from a supported interface.
If executed dynamically, the SQL statement should execute successfully.

The following is an example of an inlined compound SQL statement that contains
SQL PL:

BEGIN
FOR row AS
SELECT pk, cl, discretize(cl) AS v FROM source
DO
IF row.v is NULL THEN
INSERT INTO except VALUES(row.pk, row.cl);
ELSE
INSERT INTO target VALUES(row.pk, row.d);
END IF;
END FOR;
END

The compound statement is bounded by the keywords BEGIN and END. It
includes use of both the FOR and IF/ELSE control-statements that are part of SQL
PL. The FOR statement is used to iterate through a defined set of rows. For each
row a column's value is checked and conditionally, based on the value, a set of
values is inserted into another table.

SQL Procedural Languages: Application Enablement and Support

Chapter 2. PL/SQL support

PL/SQL (Procedural Language/Structured Query Language) statements can be
compiled and executed using DB2 interfaces. This support reduces the complexity
of enabling existing PL/SQL solutions so that they will work with the DB2 data
server.

The supported interfaces include:

¢ DB2 command line processor (CLP)
+ DB2 CLPPlus

* IBM Data Studio

« IBM Optim™" Development Studio

PL/SQL statement execution is not enabled from these interfaces by default.
PL/SQL statement execution support must be enabled on the DB2 data server.

PL/SQL features

PL/SQL statements and scripts can be compiled and executed using DB2
interfaces.

You can execute the following PL/SQL statements:

* Anonymous blocks; for example, DECLARE...BEGIN...END
e CREATE OR REPLACE FUNCTION statement

* CREATE OR REPLACE PACKAGE statement

* CREATE OR REPLACE PACKAGE BODY statement

* CREATE OR REPLACE PROCEDURE statement

* CREATE OR REPLACE TRIGGER statement

* DROP PACKAGE statement

* DROP PACKAGE BODY statement

PL/SQL procedures and functions can be invoked from other PL/SQL statements
or from DB2 SQL PL statements. You can call a PL/SQL procedure from SQL PL
by using the CALL statement.

The following statements and language elements are supported in PL/SQL
contexts:

* Type declarations (In this version, type declarations are only supported within
packages. They are not supported within procedures, functions, triggers, or
anonymous blocks.)

— Associative arrays
— Record types
— VARRAY types
* Variable declarations:
- %ROWTYPE
- %TYPE
* Basic statements, clauses, and statement attributes:
— Assignment statement

© Copyright IBM Corp. 1993, 2010 97

NULL statement
RETURNING INTO clause

Statement attributes, including SQL%FOUND, SQL%NOTFOUND, and
SQL%ROWCOUNT

¢ Control statements and structures:

e S

CASE statements:
- Simple CASE statement
- Searched CASE statement
Exception handling
EXIT statement
FOR statement
GOTO statement
IF statement
LOOP statement
WHILE statement
tatic cursors:
CLOSE statement
Cursor FOR loop statement
FETCH statement (including FETCH INTO a %ROWTYPE variable)
OPEN statement
Parameterized cursors

Cursor attributes

* REF CURSOR support:

Variables and parameters of type REF CURSOR
Strong REF CURSORs
OPEN FOR statement
Returning REF CURSORs to JDBC applications

* Error support:

RAISE_APPLICATION_ERROR procedure
RAISE statement

SQLCODE function

SQLERRM function

Creating PL/SQL procedures and functions from a CLP script

98

You can create PL/SQL procedures and functions from a DB2 command line
processor (CLP) script.

1.

Formulate PL/SQL procedure or function definitions within a CLP script file.
Terminate each statement with a new line and a forward slash character (/).
Other statement termination characters are also supported.

Save the file. In this example, the file name is script.db2.

Execute the script from the CLP. If a forward slash character or a semicolon
was used to terminate statements, issue the following command:

db2 -td/ -vf script.db2

SQL Procedural Languages: Application Enablement and Support

If another statement termination character (for example, the @ character) was
used in the script file, you must specify that character in the command string.
For example:

db2 -td@ -vf script.db2
The CLP script should execute successfully if there are no syntax errors.

The following example of a CLP script creates a PL/SQL function and procedure,
and then calls the PL/SQL procedure.

CONNECT TO mydb

/
CREATE TABLE emp (
name VARCHAR2(10),
salary NUMBER,
comm NUMBER,
tot_comp NUMBER
)
/
INSERT INTO emp VALUES ('Larry', 1000, 50, 0)
/
INSERT INTO emp VALUES ('Curly', 200, 5, 0)
/
INSERT INTO emp VALUES ('Moe', 10000, 1000, 0)
/
CREATE OR REPLACE FUNCTION emp_comp (
p_sal NUMBER,
p_comm NUMBER)
RETURN NUMBER
IS
BEGIN

RETURN (p_sal + NVL(p_comm, 0)) * 24;
END emp_comp
/

CREATE OR REPLACE PROCEDURE update_comp(p_name IN VARCHAR) AS
BEGIN
UPDATE emp SET tot_comp = emp_comp(salary, comm)
WHERE name = p_name;
END update_comp
/

CALL update_comp('Curly')
/

SELECT * FROM emp
/

CONNECT RESET
/

This script produces the following sample output:
CALL update_comp('Curly')

Return Status = 0
SELECT * FROM emp

NAME SALARY COMM TOT_COMP

Chapter 2. PL/SQL support 99

Curly 200 5 4920
Moe 10000 1000 0

3 record(s) selected.

Test your new procedures or functions by invoking them. For procedures, use the
CALL statement. For functions, execute queries or other SQL statements that
contain references to those functions.

Restrictions on PL/SQL support

It is important to note the restrictions on PL/SQL compilation support before
performing PL/SQL compilation, or when troubleshooting PL/SQL compilation or
runtime problems.

In this version:

* PL/SQL statement compilation and execution for the following product editions
is not supported:
— DB2 Express-C

* PL/SQL functions and triggers cannot be created in a partitioned database
environment.

* The NCLOB data type is not supported for use in PL/SQL statements or in
PL/SQL contexts when the database is not defined as a Unicode database. In
Unicode databases, the NCLOB data type is mapped to a DB2 DBCLOB data
type.

e The XMLTYPE data type is not supported.

* TYPE declaration is not supported in a function, procedure, trigger, or
anonymous block.

* The FOR EACH STATEMENT option is not supported for PL/SQL triggers.

PL/SQL sample schema

100

Most of the PL/SQL examples are based on a PL/SQL sample schema that
represents employees in an organization.

The following script (p1sql_sample.sql) defines that PL/SQL sample schema.

-- Script that creates the 'sample' tables, views, procedures,
-- functions, triggers, and so on.

-- Create and populate tables used in the documentation examples.

-- Create the 'dept' table

CREATE TABLE dept (

deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
dname VARCHAR2 (14) NOT NULL CONSTRAINT dept_dname_uq UNIQUE,
Toc VARCHAR2 (13)

-- Create the 'emp' table

CREATE TABLE emp (

empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
ename VARCHAR2(10),

job VARCHAR2(9) ,

mgr NUMBER(4),

hiredate DATE,

SQL Procedural Languages: Application Enablement and Support

sal NUMBER(7,2) CONSTRAINT emp_sal _ck CHECK (sal > 0),
comm NUMBER(7,2),
deptno NUMBER(2) CONSTRAINT emp ref dept fk

REFERENCES dept (deptno)

-- Create the 'jobhist' table

CREATE TABLE jobhist (

empno NUMBER(4) NOT NULL,
startdate DATE NOT NULL,
enddate DATE,

job VARCHAR2 (9) ,

sal NUMBER(7,2),

comm NUMBER(7,2),
deptno NUMBER(2) ,

chgdesc VARCHAR2 (80) ,

CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate),

CONSTRAINT jobhist ref_emp_fk FOREIGN KEY (empno)
REFERENCES emp(empno) ON DELETE CASCADE,

CONSTRAINT jobhist_ref_dept_fk FOREIGN KEY (deptno)
REFERENCES dept (deptno) ON DELETE SET NULL,

CONSTRAINT jobhist_date_chk CHECK (startdate <= enddate)

-- Create the 'salesemp' view

CREATE OR REPLACE VIEW salesemp AS
SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job = 'SALESMAN';

-- Sequence to generate values for function 'new_empno'

CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;

-- Issue PUBLIC grants

GRANT ALL ON emp TO PUBLIC;
GRANT ALL ON dept TO PUBLIC;
GRANT ALL ON jobhist TO PUBLIC;
GRANT ALL ON salesemp TO PUBLIC;

-- Load the 'dept' table

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');
INSERT INTO dept VALUES (20, 'RESEARCH','DALLAS');
INSERT INTO dept VALUES (30, 'SALES','CHICAGO');
INSERT INTO dept VALUES (40, 'OPERATIONS','BOSTON');

-- Load the 'emp' table

INSERT INTO emp VALUES (7369, 'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);
INSERT INTO emp VALUES (7499, 'ALLEN','SALESMAN',7698,'20-FEB-81"',1600,300,30);
INSERT INTO emp VALUES (7521, 'WARD','SALESMAN',7698,'22-FEB-81"',1250,500,30);
INSERT INTO emp VALUES (7566, 'JONES', 'MANAGER',7839,'02-APR-81"',2975,NULL,20);
INSERT INTO emp VALUES (7654, 'MARTIN','SALESMAN',7698,'28-SEP-81',1250,1400,30);
INSERT INTO emp VALUES (7698, 'BLAKE','MANAGER',7839,'01-MAY-81"',2850,NULL,30);
INSERT INTO emp VALUES (7782, 'CLARK','MANAGER',7839,'09-JUN-81",2450,NULL,10);
INSERT INTO emp VALUES (7788,'SCOTT','ANALYST',7566,'19-APR-87"',3000,NULL,20);
INSERT INTO emp VALUES (7839, 'KING','PRESIDENT',NULL,'17-NOV-81"',5000,NULL,10);
INSERT INTO emp VALUES (7844, 'TURNER','SALESMAN',7698,'08-SEP-81',1500,0,30);
INSERT INTO emp VALUES (7876, 'ADAMS','CLERK',7788,'23-MAY-87"',1100,NULL,20);
INSERT INTO emp VALUES (7900, 'JAMES','CLERK',7698,'03-DEC-81"',950,NULL,30);
INSERT INTO emp VALUES (7962, 'FORD','ANALYST',7566,'03-DEC-81"',3000,NULL,20);
INSERT INTO emp VALUES (7934, 'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);

-- Load the 'jobhist' table

Chapter 2. PL/SQL support

101

102

INSERT INTO jobhist VALUES (7369,'17-DEC-80',NULL,'CLERK',800,NULL,20,
"New Hire');

INSERT INTO jobhist VALUES (7499, '20-FEB-81',NULL,'SALESMAN',1600,300,30,
"New Hire');

INSERT INTO jobhist VALUES (7521,'22-FEB-81',NULL,'SALESMAN',1250,500,30,
"New Hire');

INSERT INTO jobhist VALUES (7566,'02-APR-81"',NULL, 'MANAGER',2975,NULL,20,
"New Hire');

INSERT INTO jobhist VALUES (7654,'28-SEP-81',NULL,'SALESMAN',1250,1400,30,
"New Hire');

INSERT INTO jobhist VALUES (7698,'01-MAY-81',NULL, 'MANAGER',2850,NULL,30,
"New Hire');

INSERT INTO jobhist VALUES (7782,'09-JUN-81',NULL, 'MANAGER',2450,NULL,10,
'"New Hire');

INSERT INTO jobhist VALUES (7788,'19-APR-87','12-APR-88"','CLERK',1000,NULL,?20,
'"New Hire');

INSERT INTO jobhist VALUES (7788,'13-APR-88','04-MAY-89','CLERK',1040,NULL,?20,
'Raise');

INSERT INTO jobhist VALUES (7788,'05-MAY-90',NULL, 'ANALYST',3000,NULL,20,
'"Promoted to Analyst');

INSERT INTO jobhist VALUES (7839,'17-NOV-81',NULL,'PRESIDENT',5000,NULL,10,
'"New Hire');

INSERT INTO jobhist VALUES (7844,'08-SEP-81',NULL,'SALESMAN',1500,0,30,
"New Hire');

INSERT INTO jobhist VALUES (7876,'23-MAY-87',NULL,'CLERK',1100,NULL,20,
"New Hire');

INSERT INTO jobhist VALUES (7900,'03-DEC-81','14-JAN-83"','CLERK',950,NULL,10,
"New Hire');

INSERT INTO jobhist VALUES (7900, '15-JAN-83',NULL,'CLERK',950,NULL,30,
'Changed to Dept 30');

INSERT INTO jobhist VALUES (7902,'03-DEC-81',NULL,'ANALYST',3000,NULL,20,
"New Hire');

INSERT INTO jobhist VALUES (7934,'23-JAN-82',NULL,'CLERK',1300,NULL,10,
"New Hire');

SET SQLCOMPAT PLSQL;
-- Procedure that Tists all employees' numbers and names
-- from the 'emp' table using a cursor

CREATE OR REPLACE PROCEDURE Tist_emp
IS
v_empno NUMBER (4) ;
v_ename VARCHAR2(10) ;
CURSOR emp_cur IS
SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
OPEN emp_cur;
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME') ;
DBMS _OUTPUT.PUT_LINE('----- =------ ")
LOOP
FETCH emp_cur INTO v_empno, v_ename;
EXIT WHEN emp_cur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno || " || v_ename);
END LOOP;
CLOSE emp_cur;
END;
/
-- Procedure that selects an employee row given the employee
-- number and displays certain columns

CREATE OR REPLACE PROCEDURE select_emp (

p_empno IN NUMBER
IS
V_ename emp.ename%TYPE;

SQL Procedural Languages: Application Enablement and Support

v_hiredate

emp.hiredate%TYPE;

v_sal emp.sal%TYPE;

v_comm emp.comm%TYPE;

v_dname dept.dname%TYPE;

v_disp_date VARCHAR2(10) ;
BEGIN

SELECT ename, hiredate, sal, NVL(comm, 0), dname
INTO v_ename, v_hiredate, v_sal, v_comm, v_dname
FROM emp e, dept d
WHERE empno = p_empno

AND e.deptno = d.deptno;

v_disp_date := TO_CHAR(v_hiredate, 'YYYY/MM/DD');
DBMS_OUTPUT.PUT_LINE('Number ' p_empno) ;
DBMS_OUTPUT.PUT_LINE('Name . v_ename) ;
DBMS_OUTPUT.PUT LINE('Hire Date : ' || v_disp_date);
DBMS_OUTPUT.PUT_LINE('Salary Cl| visal)s
DBMS_OUTPUT.PUT_LINE('Commission: ' v_comm) ;
DBMS_OUTPUT.PUT_LINE('Department: ' v_dname) ;

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
DBMS_OUTPUT.PUT_LINE(SQLERRM) ;
DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
DBMS_OUTPUT.PUT_LINE(SQLCODE);

-- Procedure that queries the 'emp' table based on

-- department number and employee number or name. Returns
-- employee number and name as IN OUT parameters and job,
-- hire date, and salary as OUT parameters.

CREATE OR REPLACE PROCEDURE emp_query (
p_deptno IN NUMBER,
p_empno IN OUT NUMBER,
p_ename IN OUT VARCHARZ2,
p_job ouT VARCHAR2,
p_hiredate ouT DATE,
p_sal ouT NUMBER
)
IS
BEGIN
SELECT empno, ename, job, hiredate, sal
INTO p_empno, p_ename, p_job, p_hiredate, p_sal
FROM emp
WHERE deptno =
AND (empno =
OR ename

p_deptno
p_empno
UPPER(p_ename)) ;

-- Procedure to call 'emp_query_caller' with IN and IN OUT
-- parameters. Displays the results received from IN OUT and
-- OUT parameters.

CREATE OR REPLACE PROCEDURE emp_query_caller

IS
v_deptno NUMBER(2) ;
v_empno NUMBER(4) ;
V_ename VARCHAR2 (10) ;
v_job VARCHAR2 (9) ;
v_hiredate DATE;
v_sal NUMBER;

BEGIN
v_deptno := 30;

Chapter 2. PL/SQL support

103

v_empno := 0;

v_ename := 'Martin';

emp_query(v_deptno, v_empno, v_ename, v_job, v_hiredate, v_sal);
DBMS_OUTPUT.PUT_LINE('Department : ' v_deptno);
DBMS_OUTPUT.PUT_LINE('Employee No: ' v_empno) ;
DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
DBMS_OUTPUT.PUT_LINE("'Job "] v_job);
DBMS_OUTPUT.PUT_LINE('Hire Date ! v_hiredate);
DBMS_OUTPUT.PUT_LINE('Salary '] visal);

EXCEPTION
WHEN TOO_MANY_ROWS THEN
DBMS_OUTPUT.PUT_LINE('More than one employee was selected');
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE('No employees were selected');
END;
/
-- Function to compute yearly compensation based on semimonthly
-- salary

CREATE OR REPLACE FUNCTION emp_comp (

p_sal NUMBER,
p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
RETURN (p_sal + NVL(p_comm, 0)) * 24;
END;
/

-- After statement-level triggers that display a message after
-- an insert, update, or deletion to the 'emp' table. One message
-- per SQL command is displayed.

CREATE OR REPLACE TRIGGER user_ins_audit_trig
AFTER INSERT ON emp
FOR EACH ROW
DECLARE
v_action VARCHAR2 (24) ;
BEGIN
v_action := ' added employee(s) on ';
DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action ||
TO _CHAR(SYSDATE, 'YYYY-MM-DD'));
END;
/
CREATE OR REPLACE TRIGGER user_upd_audit_trig
AFTER UPDATE ON emp
FOR EACH ROW
DECLARE
v_action VARCHAR2 (24) ;
BEGIN
v_action := ' updated employee(s) on ';
DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action |]
TO_CHAR(SYSDATE, 'YYYY-MM-DD'));
END;
/
CREATE OR REPLACE TRIGGER user_del audit_trig
AFTER DELETE ON emp
FOR EACH ROW
DECLARE
v_action VARCHAR2 (24) ;
BEGIN
v_action := ' deleted employee(s) on ';
DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action ||
TO_CHAR(SYSDATE, 'YYYY-MM-DD'));
END;
/

104 SQL Procedural Languages: Application Enablement and Support

-- Before row-level triggers that display employee number and
-- salary of an employee that is about to be added, updated,
-- or deleted in the 'emp' table

CREATE OR REPLACE TRIGGER emp_ins_sal_trig
BEFORE INSERT ON emp
FOR EACH ROW

DECLARE
sal_diff NUMBER;

BEGIN
DBMS_OUTPUT.PUT _LINE('Inserting employee ' || :NEW.empno);
DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);

END;

/

CREATE OR REPLACE TRIGGER emp_upd_sal_trig
BEFORE UPDATE ON emp
FOR EACH ROW

DECLARE
sal_diff NUMBER;

BEGIN
sal_diff := :NEW.sal - :0LD.sal;
DBMS_OUTPUT.PUT_LINE('Updating employee ' || :0LD.empno);
DBMS_OUTPUT.PUT _LINE('..01d salary: ' :0LD.sal);
DBMS_OUTPUT.PUT_LINE('..New salary: ' :NEW.sal);
DBMS_OUTPUT.PUT _LINE('..Raise : ! sal_diff);

END;

/

CREATE OR REPLACE TRIGGER emp_del_sal trig
BEFORE DELETE ON emp
FOR EACH ROW

DECLARE
sal_diff NUMBER;

BEGIN
DBMS_OUTPUT.PUT_LINE('Deleting employee ' || :0LD.empno);
DBMS_OUTPUT.PUT_LINE('..01d salary: ' || :0LD.sal);

END;

/

-- Package specification for the 'emp_admin' package

CREATE OR REPLACE PACKAGE emp_admin
IS

FUNCTION get_dept_name (
p_deptno NUMBER

) RETURN VARCHAR2;

FUNCTION update_emp_sal (
p_empno NUMBER,
p_raise NUMBER

) RETURN NUMBER;

PROCEDURE hire_emp (

p_empno NUMBER,
p_ename VARCHAR2,
p_job VARCHARZ,
p_sal NUMBER,
p_hiredate DATE,
p_comm NUMBER,
p_mgr NUMBER,
p_deptno NUMBER

)s
PROCEDURE fire_emp (
p_empno NUMBER

END emp_admin;

/

-- Package body for the 'emp_admin' package

Chapter 2. PL/SQL support

105

106

CREATE OR REPLACE PACKAGE BODY emp_admin

IS

-- Function that queries the 'dept' table based on the department
-- number and returns the corresponding department name

FUNCTION get_dept_name (
p_deptno IN NUMBER
) RETURN VARCHAR2
IS
v_dname VARCHAR2 (14) ;
BEGIN
SELECT dname INTO v_dname FROM dept WHERE deptno = p_deptno;
RETURN v_dname;
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE('Invalid department number ' || p_deptno);
RETURN '';

-- Function that updates an employee's salary based on the
-- employee number and salary increment/decrement passed

-- as IN parameters. Upon successful completion the function
-- returns the new updated salary.

FUNCTION update_emp_sal (
p_empno IN NUMBER,
p_raise IN NUMBER
) RETURN NUMBER
IS
v_sal NUMBER := 0;
BEGIN
SELECT sal INTO v_sal FROM emp WHERE empno = p_empno;
v_sal := v_sal + p_raise;
UPDATE emp SET sal = v_sal WHERE empno = p_empno;
RETURN v_sal;
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
RETURN -1;
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
DBMS_OUTPUT.PUT_LINE(SQLERRM) ;
DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
DBMS_OUTPUT.PUT_LINE(SQLCODE)
RETURN -1;

-- Procedure that inserts a new employee record into the 'emp' table

PROCEDURE hire_emp (

p_empno NUMBER,
p_ename VARCHARZ,
p_Jjob VARCHAR2,
p_sal NUMBER,
p_hiredate DATE,
p_comm NUMBER,
p_mgr NUMBER,
p_deptno NUMBER

)

AS

BEGIN

INSERT INTO emp(empno, ename, job, sal, hiredate, comm, mgr, deptno)
VALUES (p_empno, p_ename, p_job, p_sal,
p_hiredate, p_comm, p_mgr, p_deptno);
END;

SQL Procedural Languages: Application Enablement and Support

END;
/

-- Procedure that deletes an employee record from the 'emp' table based

-- on the employee number
PROCEDURE fire_emp (
p_empno NUMBER

AS
BEGIN

DELETE FROM emp WHERE empno = p_empno;
END;

SET SQLCOMPAT DB2Z;

Obfuscation

Obfuscation encodes the body of the DDL statements for database objects such as
routines, triggers, views, and PL/SQL packages. Obfuscating your code helps
protect your intellectual property because users cannot read the code, but DB2
Database for Linux®, UNIX®, and Windows® can still understand it.

The DBMS_DDL module provides two routines for obfuscating your routines,
triggers, views, or your PL/SQL packages:

WRAP function

Takes a routine, trigger, PL/SQL package, or PL/SQL package body
definition as an argument and produces a string containing the initial
header followed by an obfuscated version of the rest of the statement. For
example, input like:

CREATE PROCEDURE P(a INT)

BEGIN

INSERT INTO T1 VALUES (a);
END

using the DBMS_DDL.WRAP function might result in:

CREATE PROCEDURE P(a INT) WRAPPED SQL09072
aBcDefgl2AbcasHGJG6JIKHhgkjFGHHkkkTj13k878979HJIHui99

The obfuscated portion of the DDL statement contains codepage invariant
characters, ensuring that it is valid for any codepage.

CREATE_WRAPPED procedure

Takes the same input as the WRAP function described above, but instead
of returning the obfuscated text, an object is created in the database.
Internally the object is not obfuscated so that it can be processed by the
compiler, but in catalog views like SYSCAT.ROUTINES or
SYSCAT.TRIGGERS the content of the TEXT column is obfuscated.

An obfuscated statement can be used in CLP scripts and can be submitted as
dynamic SQL using other client interfaces.

Obfuscation is available for the following statements:

* db2look by using the -wrap option
* CREATE FUNCTION

* CREATE PACKAGE

* CREATE PACKAGE BODY

Chapter 2. PL/SQL support 107

* CREATE PROCEDURE
* CREATE TRIGGER

* CREATE VIEW

* ALTER MODULE

The db2look tool obfuscates all the above statements when the -wrap option is
used.

Blocks (PL/SQL)

PL/SQL block structures can be included within PL/SQL procedure, function, or
trigger definitions or executed independently as an anonymous block statement.

PL/SQL block structures and the anonymous block statement contain one or more
of the following sections:

* An optional declaration section
* A mandatory executable section

* An optional exception section

These sections can include SQL statements, PL/SQL statements, data type and
variable declarations, or other PL/SQL language elements.

Anonymous block statement (PL/SQL)

The PL/SQL anonymous block statement is an executable statement that can
contain PL/SQL control statements and SQL statements. It can be used to
implement procedural logic in a scripting language. In PL/SQL contexts, this
statement can be compiled and executed by the DB2 data server.

The anonymous block statement, which does not persist in the database, can
consist of up to three sections: an optional declaration section, a mandatory
executable section, and an optional exception section.

The optional declaration section, which can contain the declaration of variables,
cursors, and types that are to be used by statements within the executable and
exception sections, is inserted before the executable BEGIN-END block.

The optional exception section can be inserted near the end of the BEGIN-END
block. The exception section must begin with the keyword EXCEPTION, and
continues until the end of the block in which it appears.

Invocation

This statement can be executed from an interactive tool or command line interface
such as the CLP. This statement can also be embedded within a PL/SQL procedure
definition, function definition, or trigger definition. Within these contexts, the
statement is called a block structure instead of an anonymous block statement.

Authorization
No privileges are required to invoke an anonymous block. However, the privileges

held by the authorization ID of the statement must include all necessary privileges
to invoke the SQL statements that are embedded within the anonymous block.

108 SQL Procedural Languages: Application Enablement and Support

Syntax

>>- BEGIN statement >
—L—_l—'declaration]—|
DECLARE

> END: ><

LEXCEPTION—'—WHEN A2 exception-conditionﬁ—LTHEN Y _handler-statement
OR

Description

DECLARE
An optional keyword that starts the DECLARE statement, which can be used
to declare data types, variables, or cursors. The use of this keyword depends
upon the context in which the block appears.

declaration
Specifies a variable, cursor, or type declaration whose scope is local to the
block. Each declaration must be terminated by a semicolon.

BEGIN
A mandatory keyword that introduces the executable section, which can
include one or more SQL or PL/SQL statements. A BEGIN-END block can
contain nested BEGIN-END blocks.

statement
Specifies a PL/SQL or SQL statement. Each statement must be terminated by a
semicolon.

EXCEPTION
An optional keyword that introduces the exception section.

WHEN exception-condition
Specifies a conditional expression that tests for one or more types of
exceptions.

THEN handler-statement
Specifies a PL/SQL or SQL statement that is executed if a thrown exception
matches an exception in exception-condition. Each statement must be terminated
by a semicolon.

END
A mandatory keyword that ends the block.

Examples

The following example shows the simplest possible anonymous block statement
that the DB2 data server can compile:
BEGIN

NULL;
END;

The following example shows an anonymous block that you can enter interactively
through the DB2 CLP:

Chapter 2. PL/SQL support 109

SET SERVEROUTPUT ON;

BEGIN
dbms_output.put_Tline('Hello');
END;

The following example shows an anonymous block with a declaration section that
you can enter interactively through the DB2 CLP:

SET SERVEROUTPUT ON;

DECLARE
current_date DATE := SYSDATE;
BEGIN
dbms_output.put_Tline(current date);
END;

Procedures (PL/SQL)

110

The DB2 data server supports the compilation and execution of PL/SQL
procedures. PL/SQL procedures are database objects that contain PL/SQL
procedural logic and SQL statements that can be invoked in contexts where the
CALL statement or procedure references are valid.

PL/SQL procedures are created by executing the PL/SQL CREATE PROCEDURE
statement. Such procedures can be dropped from the database by using the DB2
SQL DROP statement. If you want to replace the implementation for a procedure,
you do not need to drop it. You can use the CREATE PROCEDURE statement and
specify the OR REPLACE option to replace the procedure implementation.

CREATE PROCEDURE statement (PL/SQL)

The CREATE PROCEDURE statement defines a procedure that is stored in the
database.

Invocation

This statement can be executed from the DB2 command line processor (CLP), any
supported interactive SQL interface, an application, or a routine.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following;:

¢ If the schema name of the procedure does not exist, IMPLICIT_SCHEMA
authority on the database

e If the schema name of the procedure refers to an existing schema, CREATEIN
privilege on the schema

* DBADM authority
The privileges held by the authorization ID of the statement must also include all

of the privileges necessary to invoke the SQL statements that are specified in the
procedure body.

The authorization ID of the statement must be the owner of the matched procedure
if OR REPLACE is specified (SQLSTATE 42501).

SQL Procedural Languages: Application Enablement and Support

Syntax

»>—CREATE

»>.

PROCEDURE >

I—OR REPLACE—|

L

|_, IN——

Lparameter-name —data-type
UT— |—| default-clause 'J
IN OUT-

BEGIN—Y—statement >

o I v
I—READS SQL DATA—I I—AS—I l—declaration—l

».

EXCEPTION—WHEN—exception THEN——statement

v
I—O R—excepti on—I

»—END ra

I—procedure—name—I

Description
PROCEDURE procedure-name

Specifies an identifier for the procedure. The unqualified form of
procedure-name is an SQL identifier with a maximum length of 128. In dynamic
SQL statements, the value of the CURRENT SCHEMA special register is used
to qualify an unqualified object name. In static SQL statements, the
QUALIFIER precompile or bind option implicitly specifies the qualifier for
unqualified object names. The qualified form of procedure-name is a schema
name followed by a period character and an SQL identifier. If a two-part name
is specified, the schema name cannot begin with 'SYS'; otherwise, an error is
returned (SQLSTATE 42939).

The name (including an implicit or explicit qualifier), together with the number
of parameters, must not identify a procedure that is described in the catalog
(SQLSTATE 42723). The unqualified name, together with the number of
parameters, is unique within its schema, but does not need to be unique across
schemas.

parameter-name

Specifies the name of a parameter. The parameter name must be unique for
this procedure (SQLSTATE 42734).

data-type

Specifies one of the supported PL/SQL data types.

READS SQL DATA

Indicates that SQL statements that do not modify SQL data can be included in
the procedure. This clause is a DB2 extension.

Chapter 2. PL/SQL support 111

IS or AS
Introduces the procedure body definition.

declaration
Specifies one or more variable, cursor, or REF CURSOR type declarations.

BEGIN
Introduces the executable block. The BEGIN-END block can contain an
EXCEPTION section.

Statement
Specifies a PL/SQL or SQL statement. The statement must be terminated by a
semicolon.

EXCEPTION
An optional keyword that introduces the exception section.

WHEN exception-condition
Specifies a conditional expression that tests for one or more types of
exceptions.

Sstatement
Specifies a PL/SQL or SQL statement. The statement must be terminated by a
semicolon.

END
A mandatory keyword that ends the block. You can optionally specify the
name of the procedure.

Notes

The CREATE PROCEDURE statement can be submitted in obfuscated form. In an
obfuscated statement, only the procedure name is readable. The rest of the
statement is encoded in such a way that it is not readable, but can be decoded by

the database server. Obfuscated statements can be produced by calling the
DBMS_DDL.WRAP function.

Examples

The following example shows a simple procedure that takes no parameters:

CREATE OR REPLACE PROCEDURE simple_procedure
IS
BEGIN

DBMS_OUTPUT.PUT_LINE('That''s all folks!');
END simple_procedure;

The following example shows a procedure that takes an IN and an OUT parameter,
and that has GOTO statements whose labels are of the standard PL/SQL form
(<<label>>):

CREATE OR REPLACE PROCEDURE test _goto
(pl IN INTEGER, outl OUT VARCHAR2(30))
IS
BEGIN

<<LABEL2ABOVE>>

IF pl = 1 THEN

outl := outl || 'one';

GOTO LABELI1BELOW;

END IF;

if outl IS NULL THEN

outl := outl || "two';

GOTO LABEL2ABOVE;

END IF;

112 SQL Procedural Languages: Application Enablement and Support

outl := outl || 'three';

<<LABEL1BELOW>>
outl := outl || 'four';

END test_goto;

Procedure references (PL/SQL)

Invocation references to PL/SQL procedures within PL/SQL contexts can be
compiled by the DB2 data server.

A valid PL/SQL procedure reference consists of the procedure name followed by
its parameters, if any.

Syntax

»»—procedure-name L J <
(—)

|—parameter-valueJ

Description

procedure-name
Specifies an identifier for the procedure.

parameter-value
Specifies a parameter value. If no parameters are to be passed, the procedure
can be called either with or without parentheses.

Example

The following example shows how to call a PL/SQL procedure within a PL/SQL
context:

BEGIN
simple_procedure;
END;

After a PL/SQL procedure has been created in a DB2 database, it can also be called
using the CALL statement, which is supported in DB2 SQL contexts and
applications using supported DB2 application programming interfaces.

Function invocation syntax support (PL/SQL)

A number of procedures support function invocation syntax in a PL/SQL
assignment statement.

These procedures include:

* DBMS_SQL.EXECUTE

+ DBMS_SQL.EXECUTE_AND_FETCH
* DBMS_SQL.FETCH_ROWS

« DBMS_SQL.IS_OPEN

» DBMS_SQL.LAST_ERROR_POSITION
* DBMS_SQL.LAST_ROW_COUNT

Chapter 2. PL/SQL support 113

* DBMS_SQL.OPEN_CURSOR
e UTL_SMTP.CLOSE_DATA

* UTL_SMTP.COMMAND
 UTL_SMTP.COMMAND_REPLIES
* UTL_SMTP.DATA
 UTL_SMTP.EHLO

e UTL_SMTP.HELO

e UTL_SMTP.HELP
 UTL_SMTPMAIL

e UTL_SMTP.NOOP

* UTL_SMTP.OPEN_DATA

e UTL_SMTP.QUIT

e UTL_SMTPRCPT

* UTL_SMTPRSET

* UTL_SMTP.VRFY

Examples

DECLARE
cursorl NUMBER;
rowsProcessed NUMBER;

BEGIN
cursorl := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(cursorl, 'INSERT INTO T1 VALUES (10)', DBMS_SQL.NATIVE);
rowsProcessed := DBMS_SQL.EXECUTE(cursorl);
DBMS_SQL.CLOSE_CURSOR(cursorl);

END;

/

DECLARE
v_connection UTL_SMTP.CONNECTION;
v_reply UTL_SMTP.REPLY;

BEGIN
UTL_SMTP.OPEN_CONNECTION('127.0.0.1', 25, v_connection, 10, v_reply);
UTL_SMTP.HELO(v_connection,'127.0.0.1");
UTL_SMTP.MAIL(v_connection, 'senderl@ca.ibm.com');
UTL_SMTP.RCPT(v_connection, 'receiverl@ca.ibm.com');
v_reply := UTL_SMTP.OPEN_DATA (v_connection);
UTL_SMTP.WRITE_DATA (v_connection, 'Test message');
UTL_SMTP.CLOSE_DATA (v_connection);
UTL_SMTP.QUIT(v_connection);

END;

/

Functions (PL/SQL)

114

The DB2 data server supports the compilation and execution of PL/SQL functions.
PL/SQL functions are database objects that contain PL/SQL procedural logic and
SQL statements that can be invoked in contexts where expressions are valid. When
evaluated, a PL/SQL function returns a value that is substituted within the
expression in which the function is embedded.

PL/SQL functions are created by executing the CREATE FUNCTION statement.
Such functions can be dropped from the database by using the DB2 SQL DROP
statement. If you want to replace the implementation for a function, you do not
need to drop it. You can use the CREATE FUNCTION statement and specify the
OR REPLACE option to replace the function implementation.

SQL Procedural Languages: Application Enablement and Support

CREATE FUNCTION statement (PL/SQL)

The CREATE FUNCTION statement defines an SQL scalar function that is stored
in the database. A scalar function returns a single value each time it is invoked,
and is generally valid wherever an SQL expression is valid. PL/SQL functions do
not support output parameters.

Invocation

This statement can be executed from the DB2 command line processor, any
supported interactive SQL interface, an application, or routine.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:

¢ If the schema name of the function does not exist, IMPLICIT_SCHEMA authority
on the database

* If the schema name of the function refers to an existing schema, CREATEIN
privilege on the schema

* DBADM authority
The privileges held by the authorization ID of the statement must also include all
of the privileges necessary to invoke the SQL statements that are specified in the

function body.

The authorization ID of the statement must be the owner of the matched function
if OR REPLACE is specified (SQLSTATE 42501).

Syntax

»—CREATE—L—_l—FUNCTION—name
OR REPLACE

> >

L)

I I

Lpurumeter—nume —| data-type i
UT— |—| default-clause 'J
IN oUT—-

»—RETURN—return-type IS ?
|—MODIFIES SQL DATAJ I—ASJ I—declarationJ

»—BEGIN—statement >

Chapter 2. PL/SQL support 115

116

». >

LEXCEPTION—'—WHEN—exception A THEN—C-statement

v
|—0R—except ionJ

»—END: »><

I—n GIIIEJ

Description

The CREATE FUNCTION statement specifies the name of the function, the
optional parameters, the return type of the function, and the body of the function.
The body of the function is a block that is enclosed by the BEGIN and END
keywords. It can contain an optional EXCEPTION section that defines an action to
be taken when a defined exception condition occurs.

OR REPLACE
Indicates that if a function with the same name already exists in the schema,
the new function is to replace the existing one. If this option is not specified,
the new function cannot replace an existing one with the same name in the
same schema.

FUNCTION name
Specifies an identifier for the function.

parameter-name
Specifies the name of a parameter. The name cannot be the same as any other
parameter-name in the parameter list (SQLSTATE 42734).

data-type
Specifies one of the supported PL/SQL data types.

RETURN return-type
Specifies the data type of the scalar value that is returned by the function.

MODIFIES SQL DATA
Indicates that the function can issue any SQL statement except statements that
are not supported in functions (SQLSTATE 38002 or 42985).

This clause is a DB2 extension. It must be used when dynamic SQL statements
that could modify SQL data are specified in statement, otherwise issuing of a
dynamic statement that attempts to modify SQL data will fail during function
invocation (SQLSTATE 38002).

IS or AS
Introduces the block that defines the function body.

declaration
Specifies one or more variable, cursor, or REF CURSOR type declarations.

statement
Specifies one or more PL/SQL program statements. Each statement must be
terminated by a semicolon.

exception
Specifies an exception condition name.

SQL Procedural Languages: Application Enablement and Support

Notes

A PL/SQL function cannot take any action that changes the state of an object that
the database manager does not manage.

The CREATE FUNCTION statement can be submitted in obfuscated form. In an
obfuscated statement, only the function name is readable. The rest of the statement
is encoded in such a way that it is not readable, but can be decoded by the

database server. Obfuscated statements can be produced by calling the
DBMS_DDL.WRAP function.

Examples

The following example shows a basic function that takes no parameters:

CREATE OR REPLACE FUNCTION simple_function
RETURN VARCHAR2

IS

BEGIN
RETURN 'That''s A1l Folks!';

END simple_function;

The following example shows a function that takes two input parameters:
CREATE OR REPLACE FUNCTION emp_comp (

p_sal NUMBER,
p_comm NUMBER)
RETURN NUMBER
IS
BEGIN

RETURN (p_sal + NVL(p_comm, 0)) =* 24;
END emp_comp;

Function references (PL/SQL)

PL/SQL functions can be referenced wherever an expression is supported.

Syntax

»»>—function-name L J
(—Y-parameter-value——)

Description

A\
A

function-name
Specifies an identifier for the function.

parameter-value
Specifies a value for a parameter.

Examples

The following example shows how a function named SIMPLE_FUNCTION,
defined in the PL/SQL sample schema, can be called from a PL/SQL anonymous
block:

BEGIN

DBMS_OUTPUT.PUT_LINE(simple_function);
END;

Chapter 2. PL/SQL support 117

The following example shows how a function can be used within an SQL
statement:

SELECT
empno "EMPNO", ename "ENAME", sal "SAL", comm "COMM",
emp_comp(sal, comm) "YEARLY COMPENSATION"

FROM emp

Collections (PL/SQL)

118

The use of PL/SQL collections is supported by the DB2 data server. A PL/SQL
collection is a set of ordered data elements with the same data type. Individual data
items in the set can be referenced by using subscript notation within parentheses.

In PL/SQL contexts, the DB2 server supports both the VARRAY collection type and
associative arrays.

VARRAY collection type declaration (PL/SQL)

A VARRAY is a type of collection in which each element is referenced by a positive
integer called the array index. The maximum cardinality of the VARRAY is specified
in the type definition.

The TYPE IS VARRAY statement is used to define a VARRAY collection type.

Syntax

v
A

»»—TYPE—varraytype—IS VARRAY—(—n—)—O0F—datatype—;

Description

varraytype
An identifier that is assigned to the array type.

n The maximum number of elements in the array type.

datatype
A supported data type, such as NUMBER, VARCHAR?, or a record type. The
%TYPE attribute and the %ROWTYPE attribute are also supported.

Example

The following example reads employee names from the EMP table, stores the
names in an array variable of type VARRAY, and then displays the results. The
EMP table contains one column named ENAME. The code is executed from a DB2
script (script.db2). The following commands should be issued from the DB2
command window before executing the script (db2 -tvf script.db2):

db2set DB2_COMPATIBILITY_VECTOR=FFF

db2stop
db2start

The script contains the following code:
SET SQLCOMPAT PLSQL;

connect to mydb

/

CREATE PACKAGE foo
AS

SQL Procedural Languages: Application Enablement and Support

TYPE emp_arr_typ IS VARRAY(5) OF VARCHAR2(10);

END;
/
SET SERVEROUTPUT ON
/
DECLARE
emp_arr foo.emp_arr_typ;
CURSOR emp_cur IS SELECT ename FROM emp WHERE ROWNUM <= 5;
i INTEGER := 0;
BEGIN
FOR r_emp IN emp_cur LOOP
i=9+ 1
emp_arr(i) := r_emp.ename;
END LOOP;

FOR j IN 1..5 LOOP
DBMS_OUTPUT.PUT_LINE(emp_arr(j));
END LOOP;
END;
/

DROP PACKAGE foo
/

connect reset

/

This script produces the following sample output:

Curly
Larry
Moe
Shemp
Joe

CREATE TYPE (VARRAY) statement (PL/SQL)
The CREATE TYPE (VARRAY) statement defines a VARRAY data type.

Invocation

This statement can be executed from the DB2 command line processor (CLP), any
supported interactive SQL interface, an application, or a routine.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following;:

e If the schema name of the VARRAY type does not exist, IMPLICIT_SCHEMA
authority on the database

¢ If the schema name of the VARRAY type refers to an existing schema,
CREATEIN privilege on the schema

* DBADM authority
Syntax

»»—CREATE

TYPE—varraytype—[IS VARRAY—(—n—)——»
|-—OR REPL/-\CE—-| AS

Chapter 2. PL/SQL support 119

120

»—0F—datatype

v
A

Description

OR REPLACE
Indicates that if a user-defined data type with the same name already exists in
the schema, the new data type is to replace the existing one. If this option is
not specified, the new data type cannot replace an existing one with the same
name in the same schema.

varraytype
Specifies an identifier for the VARRAY type. The unqualified form of varraytype
is an SQL identifier with a maximum length of 128. The value of the
CURRENT SCHEMA special register is used to qualify an unqualified object
name. The qualified form of varraytype is a schema name followed by a period
character and an SQL identifier. If a two-part name is specified, the schema
name cannot begin with 'SYS'; otherwise, an error is returned (SQLSTATE
42939). The name (including an implicit or explicit qualifier) must not identify
a user-defined data type that is described in the catalog (SQLSTATE 42723).
The unqualified name is unique within its schema, but does not need to be
unique across schemas.

n Specifies the maximum number of elements in the array type. The maximum
cardinality of an array on a given system is limited by the total amount of
memory that is available to DB2 applications. As such, although arrays of large
cardinalities (up to 2,147,483,647) can be created, not all elements might be
available for use.

datatype
Specifies a supported data type, such as NUMBER, VARCHAR?2, or a record
type. The %TYPE attribute and the %ROWTYPE attribute are also supported.

Example

The following example creates a VARRAY data type with a maximum of 10
elements, where each element has the data type NUMBER:

CREATE TYPE NUMARRAY1 AS VARRAY (10) OF NUMBER

Associative arrays (PL/SQL)

A PL/SQL associative array is a collection type that associates a unique key with a
value.

An associative array has the following characteristics:

* An associative array type must be defined before array variables of that array
type can be declared. Data manipulation occurs in the array variable.

* The array does not need to be initialized; simply assign values to array elements.

* There is no defined limit on the number of elements in the array; it grows
dynamically as elements are added.

* The array can be sparse; there can be gaps in the assignment of values to keys.

* An attempt to reference an array element that has not been assigned a value
results in an exception.

Use the TYPE IS TABLE OF statement to define an associative array type.

SQL Procedural Languages: Application Enablement and Support

Syntax

»»—TYPE—assoctype—IS TABLE OF—[datatypeJ >
rectype

v
A

PLS_INTEGER
VARCHAR2— (—n—)—

»—INDEX BY—EBINARY_INTEGER

Description

TYPE assoctype
Specifies an identifer for the array type.

datatype
Specifies a scalar data type, such as VARCHAR?2 or NUMBER. The %TYPE
attribute is also supported.

rectype
Specifies a previously defined record type. The %ROWTYPE attribute is also
supported.

INDEX BY
Specifies that the associative array is to be indexed by one of the data types
introduced by this clause.

BINARY INTEGER
Integer numeric data.

PLS_INTEGER
Integer numeric data.

VARCHAR?2 (n)
A variable-length character string of maximum length n. The %TYPE
attribute is also supported if the object to which the %TYPE attribute is
being applied is of the BINARY_INTEGER, PLS_INTEGER, or VARCHAR?2
data type.

To declare a variable with an associative array type, specify array-name assoctype,
where array-name represents an identifier that is assigned to the associative array,
and assoctype represents the identifier for a previously declared array type.

To reference a particular element of the array, specify array-name(n), where
array-name represents the identifier for a previously declared array, and n
represents a value of INDEX BY data type of assoctype. If the array is defined from
a record type, the reference becomes array-name (n) .field, where field is defined
within the record type from which the array type is defined. To reference the entire
record, omit field.

Examples

The following example reads the first ten employee names from the EMP table,
stores them in an array, and then displays the contents of the array.

SET SERVEROUTPUT ON
/

CREATE OR REPLACE PACKAGE pkg_test typel
IS

TYPE emp_arr_typ IS TABLE OF VARCHAR2(10) INDEX BY BINARY_INTEGER;
END pkg_test_typel

Chapter 2. PL/SQL support 121

/

DECLARE
emp_arr pkg_test_typel.emp_arr_typ;
CURSOR emp_cur IS SELECT ename FROM emp WHERE ROWNUM <= 10;
i INTEGER := 0;
BEGIN
FOR r_emp IN emp_cur LOOP
i=9+ 1
emp_arr(i) := r_emp.ename;
END LOOP;

FOR j IN 1..10 LOOP
DBMS_OUTPUT.PUT_LINE (emp_arr(j));
END LOOP;
END
/

This code generates the following sample output:

SMITH
ALLEN
WARD
JONES
MARTIN
BLAKE
CLARK
ScoTT
KING
TURNER

The example can be modified to use a record type in the array definition.

SET SERVEROUTPUT ON
/

CREATE OR REPLACE PACKAGE pkg_test_type2

IS
TYPE emp_rec_typ IS RECORD (
empno INTEGER,
ename VARCHAR2 (10)

)s
END pkg_test_type2
/

CREATE OR REPLACE PACKAGE pkg_test_type3
IS
TYPE emp_arr_typ IS TABLE OF pkg_test_type2.emp_rec_typ INDEX BY BINARY_INTEGER;
END pkg_test_type3
/

DECLARE
emp_arr pkg_test_type3.emp_arr_typ;
CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
i INTEGER := 03
BEGIN
DBMS_OUTPUT.PUT_LINE("'EMPNO ENAME') 5
DBMS_OUTPUT.PUT_LINE('----- ------- ")
FOR r_emp IN emp_cur LOOP
i=1+ 1

emp_arr(i).empno := r_emp.empno;
emp_arr(i).ename := r_emp.ename;
END LOOP;
FOR j IN 1..10 LOOP
DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || C
emp_arr(j).ename);
END LOOP;
END
/

122 SQL Procedural Languages: Application Enablement and Support

The modified code generates the following sample output:
EMPNO ENAME

1001 SMITH
1002 ALLEN
1003 WARD

1004 JONES
1005 MARTIN
1006 BLAKE
1007 CLARK
1008 SCOTT
1009 KING

1010 TURNER

This example can be further modified to use the emp%ROWTYPE attribute to
define emp_arr_typ, instead of using the emp_rec_typ record type.

SET SERVEROUTPUT ON
/

CREATE OR REPLACE PACKAGE pkg_test_typed
IS
TYPE emp_arr_typ IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;
END pkg_test_type4
/

DECLARE
emp_arr pkg_test_typed.emp_arr_typ;
CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
i INTEGER := 0;
BEGIN
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME') ;
DBMS_OUTPUT.PUT_LINE('----- -------)
FOR r_emp IN emp_cur LOOP
i=9 0+ 1

emp_arr(i).empno :
emp_arr(i).ename :
END LOOP;
FOR j IN 1..10 LOOP
DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || .
emp_arr(j).ename);
END LOOP;
END
/

r_emp.empno;
r_emp.ename;

In this case, the sample output is identical to that of the previous example.

Finally, instead of assigning each field of the record individually, a record-level
assignment can be made from r_emp to emp_arr:

SET SERVEROUTPUT ON
/

CREATE OR REPLACE PACKAGE pkg_test type5

IS
TYPE emp_rec_typ IS RECORD (
empno INTEGER,
ename VARCHAR2 (10)

)3
END pkg_test_typeb
/

CREATE OR REPLACE PACKAGE pkg_test_typeb
IS

TYPE emp_arr_typ IS TABLE OF pkg test type5.emp_rec_typ INDEX BY BINARY_INTEGER;
END pkg_test_typeb

Chapter 2. PL/SQL support 123

124

/

DECLARE
emp_arr pkg_test_type6.emp_arr_typ;
CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
i INTEGER := 03
BEGIN
DBMS_OUTPUT.PUT_LINE("'EMPNO ENAME') s
DBMS_OUTPUT.PUT_LINE('----- -------)5
FOR r_emp IN emp_cur LOOP
i=1+ 1
emp_arr(i) := r_emp;
END LOOP;

FOR j IN 1..10 LOOP
DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' "
emp_arr(j).ename);
END LOOP;
END
/

Collection methods (PL/SQL)

Collection methods can be used to obtain information about collections or to
modify collections.

The following commands should be executed before attempting to run the
examples in [Table 4 on page 125}

db2set DB2_COMPATIBILITY_VECTOR=0RA

db2stop

db2start
db2 connect to mydb

The MYDB database has one table, EMP, which has one column, ENAME (defined
as VARCHAR(10)):

db2 select * from emp

5 record(s) selected.

SQL Procedural Languages: Application Enablement and Support

Table 4. Collection methods that are supported (or tolerated) by the DB2 data server in a PL/SQL context

Collection method | Description Example

COUNT Returns the CREATE PACKAGE foo
number of AS
elements in a TYPE sparse_arr_typ IS TABLE OF NUMBER
collection. INDEX BY BINARY_INTEGER;

END;
/

SET SERVEROUTPUT ON
/

DECLARE
sparse_arr

BEGIN
sparse_arr(-10) 1= -10;
sparse_arr(0) := 03
sparse_arr(10) ;= 10;
DBMS_OUTPUT.PUT_LINE('COUNT: ' ||

sparse_arr.COUNT);

foo.sparse_arr_typ;

END;
/
DELETE Removes all CREATE PACKAGE foo
elements from a AS

collection.

TYPE names_typ IS TABLE OF VARCHAR2(10)
INDEX BY BINARY INTEGER;
END;
/

SET SERVEROUTPUT ON
/

DECLARE
actor_names foo.names_typ;
BEGIN

'"Chris';
'Steve';
'Kate';
"Naomi';
'Peter';
"Philip';
'"Michael';
'Gary';

actor names (1) :=
actor_names(2) :=
actor_names(3) :=
actor_names(4) :=
actor_names(5) :=
actor_names(6) :=
actor_names(7) :=
actor_names(8) :=

DBMS_OUTPUT.PUT_LINE('COUNT: ' ||
actor_names.COUNT) ;

actor _names.DELETE(2);
DBMS_OUTPUT.PUT_LINE('COUNT: ' ||
actor_names.COUNT);

actor_names.DELETE(3, 5);
DBMS_OUTPUT.PUT_LINE('COUNT: ' ||
actor_names.COUNT);

actor_names.DELETE;
DBMS_OUTPUT.PUT_LINE('COUNT: ' ||
actor_names.COUNT) ;

END;

Chapter 2. PL/SQL support

125

Table 4. Collection methods that are supported (or tolerated) by the DB2 data server in a PL/SQL context (continued)

Collection method

Description

Example

DELETE (n)

Removes element n
from an associative
array. You cannot
delete individual
elements from a
VARRAY collection

type.

See “DELETE".

DELETE (n1, n2)

Removes all
elements from nl
to n2 from an
associative array.
You cannot delete

See “DELETE”.

of the n2™ element
to a collection.

individual
elements from a
VARRAY collection
type.
EXISTS (n) Returns TRUE if CREATE PACKAGE foo
the specified AS
element exists. TYPE emp_arr_typ IS VARRAY(5) OF VARCHAR2(10);
END;
/
SET SERVEROUTPUT ON
/
DECLARE
emp_arr foo.emp_arr_typ;
CURSOR emp_cur IS SELECT ename FROM emp
WHERE ROWNUM <= 5;
i INTEGER := 0;
BEGIN
FOR r_emp IN emp_cur LOOP
i=i+ 1
emp_arr(i) := r_emp.ename;
END LOOP;
emp_arr.TRIM;
FOR j IN 1..5 LOOP
IF emp_arr.EXISTS(j) = true THEN
DBMS_OUTPUT.PUT_LINE(emp_arr(j));
ELSE
DBMS_OUTPUT.PUT_LINE('THIS ELEMENT
HAS BEEN DELETED');
END IF;
END LOOP;
END;
/
EXTEND Appends a single | No-op
NULL element to a
collection.
EXTEND (n) Appends n NULL | No-op
elements to a
collection.
EXTEND (n1, n2) | Appends nl copies | No-op

126

SQL Procedural Languages: Application Enablement and Support

Table 4. Collection methods that are supported (or tolerated) by the DB2 data server in a PL/SQL context (continued)

Collection method | Description Example
FIRST Returns the CREATE PACKAGE foo
smallest index AS

number in a
collection.

TYPE emp_arr_typ IS VARRAY(5) OF VARCHAR2(10);
END;
/

SET SERVEROUTPUT ON
/

DECLARE
emp_arr foo.emp_arr_typ;

CURSOR emp_cur IS SELECT ename FROM emp

WHERE ROWNUM <= 5;

i INTEGER :
k INTEGER :
1 INTEGER :
N

0;
0;
0

FOR r_emp IN emp_cur LOOP
i=1+ 1
emp_arr(i) := r_emp.ename;
END LOOP;

-- Use FIRST and LAST to specify the Tower and

-- upper bounds of a loop range:

FOR j IN emp_arr.FIRST..emp_arr.LAST LOOP
DBMS_OUTPUT.PUT_LINE(emp_arr(j));

END LOOP;

-- Use NEXT(n) to obtain the subscript of
-- the next element:
k := emp_arr.FIRST;
WHILE k IS NOT NULL LOOP
DBMS_OUTPUT.PUT_LINE(emp_arr(k));
k := emp_arr.NEXT(k);
END LOOP;

-- Use PRIOR(n) to obtain the subscript of
-- the previous element:
1 := emp_arr.LAST;
WHILE T IS NOT NULL LOOP
DBMS_OUTPUT.PUT_LINE(emp_arr(1));
1 := emp_arr.PRIOR(T);
END LOOP;

DBMS_OUTPUT.PUT_LINE('COUNT: ' || emp_arr.COUNT);

emp_arr.TRIM;
DBMS_OUTPUT.PUT_LINE('COUNT: ' || emp_arr.COUNT);

emp_arr.TRIM(2);

DBMS_OUTPUT.PUT_LINE('COUNT: ' || emp_arr.COUNT);
DBMS_OUTPUT.PUT_LINE('Max. no. elements = ' ||
emp_arr.LIMIT);

END;
/

LAST

Returns the largest
index number in a
collection.

See “FIRST”.

Chapter 2. PL/SQL support

127

Table 4. Collection methods that are supported (or tolerated) by the DB2 data server in a PL/SQL context (continued)

Collection method

Description

Example

LIMIT

Returns the
maximum number
of elements for a
VARRAY, or NULL
for nested tables.

See “FIRST”.

NEXT (1)

Returns the index
number of the
element
immediately
following the
specified element.

See “FIRST”.

PRIOR (n)

Returns the index
number of the
element
immediately prior
to the specified
element.

See “FIRST”.

TRIM

Removes a single
element from the
end of a collection.
You cannot trim
elements from an
associative array
collection type.

See “FIRST”.

TRIM (1)

Removes n
elements from the
end of a collection.
You cannot trim
elements from an
associative array
collection type.

See “FIRST”.

Variables (PL/SQL)

128

Variables must be declared before they are referenced.

Variables that are used in a block must generally be defined in the declaration
section of the block unless they are global variables or package-level variables. The
declaration section contains the definitions of variables, cursors, and other types
that can be used in PL/SQL statements within the block. A variable declaration
consists of a name that is assigned to the variable and the data type of the
variable. Optionally, the variable can be initialized to a default value within the
variable declaration.

Procedures and functions can have parameters for passing input values.
Procedures can also have parameters for passing output values, or parameters for
passing both input and output values.

PL/SQL also includes variable data types to match the data types of existing
columns, rows, or cursors using the %TYPE and %ROWTYPE qualifiers.

SQL Procedural Languages: Application Enablement and Support

Variable declarations (PL/SQL)

Variables that are used in a block must generally be defined in the declaration
section of the block unless they are global variables or package-level variables. A
variable declaration consists of a name that is assigned to the variable and the data
type of the variable. Optionally, the variable can be initialized to a default value
within the variable declaration.

Syntax

»>—name type
|—CONSTANT—| |—NOT NULL—| I—I:: = expression]J
DEFAULT NULL

Description

v
A

name
Specifies an identifier that is assigned to the variable.

CONSTANT
Specifies that the variable value is constant. A default expression must be
assigned, and a new value cannot be assigned to the variable within the
application program.

type
Specifies a data type for the variable.

NOT NULL
Specifies that the variable cannot have a null value. If NOT NULL is specified,
a default expression must be assigned, and the variable cannot be made null
within the application program.

DEFAULT
Specifies a default value for the variable. This default is evaluated every time
that the block is entered. For example, if SYSDATE has been assigned to a
variable of type DATE, the variable resolves to the current invocation time, not
to the time at which the procedure or function was precompiled.

:= The assignment operator is a synonym for the DEFAULT keyword. However, if
this operator is specified without expression, the variable is initialized to the
value NULL.

expression
Specifies the initial value that is to be assigned to the variable when the block
is entered.

NULL
Specifies the SQL value NULL, which has a null value.

Example

The following procedure shows variable declarations that utilize defaults consisting
of string and numeric expressions:

CREATE OR REPLACE PROCEDURE dept_salary_rpt (

p_deptno NUMBER
IS
todays_date DATE := SYSDATE;
rpt_title VARCHAR2(60) := 'Report For Department # ' || p_deptno
"on ' || todays date;
base_sal INTEGER := 35525;

Chapter 2. PL/SQL support 129

base_comm_rate NUMBER 1.33333;

base_annual NUMBER := ROUND(base_sal * base_comm_rate, 2);
BEGIN

DBMS_OUTPUT.PUT_LINE(rpt_title);

DBMS_OUTPUT.PUT_LINE('Base Annual Salary: ' || base annual);
END;

The following sample output was obtained by calling this procedure:
CALL dept_salary rpt(20);

Report For Department # 20 on 10-JUL-07 16:44:45
Base Annual Salary: 47366.55

Parameter modes (PL/SQL)

PL/SQL procedure parameters can have one of three possible modes: IN, OUT, or
IN OUT. PL/SQL function parameters can only be IN.

* An IN formal parameter is initialized to the actual parameter with which it was
called, unless it was explicitly initialized with a default value. The IN parameter
can be referenced within the called program; however, the called program
cannot assign a new value to the IN parameter. After control returns to the
calling program, the actual parameter always contains the value to which it was
set prior to the call.

* An OUT formal parameter is initialized to the actual parameter with which it
was called. The called program can reference and assign new values to the
formal parameter. If the called program terminates without an exception, the
actual parameter takes on the value to which the formal parameter was last set.
If a handled exception occurs, the actual parameter takes on the last value to
which the formal parameter was set. If an unhandled exception occurs, the value
of the actual parameter remains what it was prior to the call.

* Like an IN parameter, an IN OUT formal parameter is initialized to the actual
parameter with which it was called. Like an OUT parameter, an IN OUT formal
parameter is modifiable by the called program, and the last value of the formal
parameter is passed to the calling program's actual parameter if the called
program terminates without an exception. If a handled exception occurs, the
actual parameter takes on the last value to which the formal parameter was set.
If an unhandled exception occurs, the value of the actual parameter remains
what it was prior to the call.

summarizes this behavior.

Table 5. Parameter modes

Mode property IN IN OUT ouT

Formal parameter Actual parameter Actual parameter Actual parameter
initialized to: value value value

Formal parameter No Yes Yes

modifiable by the
called program?

After normal
termination of the
called program,
actual parameter
contains:

Original actual
parameter value
prior to the call

Last value of the
formal parameter

Last value of the
formal parameter

SQL Procedural Languages: Application Enablement and Support

Table 5. Parameter modes (continued)

Mode property

IN

IN OUT

ouT

After a handled

exception in the

called program,

actual parameter
contains:

Original actual
parameter value
prior to the call

Last value of the
formal parameter

Last value of the
formal parameter

After an unhandled
exception in the
called program,

Original actual
parameter value
prior to the call

Original actual
parameter value
prior to the call

Original actual
parameter value
prior to the call

actual parameter
contains:

Data types (PL/SQL)

The DB2 data server supports a wide range of data types that can be used to
declare variables in a PL/SQL block.

Table 6. Supported scalar data types that are available in PL/SQL

PL/SQL data type

DB2 SQL data type

Description

BINARY_INTEGER

INTEGER

Integer numeric data

BLOB BLOB (4096) Binary data
BLOB (n) BLOB (n) Binary large object data
n =1 to 2 147 483 647
BOOLEAN BOOLEAN Logical Boolean (true or
false)
CHAR CHAR (1) Fixed-length character string
data of length 1
CHAR (n) CHAR (n) Fixed-length character string
n =1 to 254 data of length n

CHAR VARYING (n)

VARCHAR (n)

Variable-length character
string data of maximum
length n

CHARACTER

CHARACTER (1)

Fixed-length character string
data of length 1

CHARACTER (n)

CHARACTER (n)
n =1 to 254

Fixed-length character string
data of length n

CHARACTER VARYING (n)

VARCHAR (1)
n=1to 32 672

Variable-length character
string data of maximum
length n

CLOB CLOB (1M) Character large object data

CLOB (n) CLOB (n) Fixed-length long character
n =1 to 2 147 483 647 string data of length n

DATE DATE ! Date and time data

(expressed to the second)

DEC DEC (9, 2) Decimal numeric data

DEC (p) DEC (p) Decimal numeric data of
p=1to 31 precision p

DEC (p, s) DEC (p, s) Decimal numeric data of

p=1t 31, s =1 to 31

precision p and scale s

Chapter 2. PL/SQL support 131

Table 6. Supported scalar data types that are available in PL/SQL (continued)

PL/SQL data type

DB2 SQL data type

Description

DECIMAL

DECIMAL (9, 2)

Decimal numeric data

DECIMAL (p)

DECIMAL (p)
p =1+t 31

Decimal numeric data of
precision p

DECIMAL (p, s)

DECIMAL (p, s)
p=1t 31, s =1 to 31

Decimal numeric data of
precision p and scale s

DOUBLE

DOUBLE

Double precision
floating-point number

DOUBLE PRECISION

DOUBLE PRECISION

Double precision
floating-point number

FLOAT FLOAT Float numeric data

FLOAT (n) REAL Real numeric data

n=1t 24

FLOAT (n) DOUBLE Double numeric data

n = 25 to 53

INT INT Signed four-byte integer
numeric data

INTEGER INTEGER Signed four-byte integer
numeric data

LONG CLOB (32760) Character large object data

LONG RAW BLOB (32760) Binary large object data

LONG VARCHAR CLOB (32760) Character large object data

NATURAL INTEGER Signed four-byte integer
numeric data

NCHAR GRAPHIC (127) Fixed-length graphic string
data

NCHAR (n) GRAPHIC (n) Fixed-length graphic string

n =1 to 2000 n =1 to 127 data of length n

NCLOB 2 DBCLOB (1M) Double-byte character large
object data

NCLOB (n) DBCLOB (2000) Double-byte long character
string data of maximum
length n

NVARCHAR?2 VARGRAPHIC (2048) Variable-length graphic

string data

NVARCHAR? (1)

VARGRAPHIC (n)

Variable-length graphic
string data of maximum
length n

NUMBER

NUMBER *

Exact numeric data

NUMBER (p)

NUMBER (p) ?

Exact numeric data of
maximum precision p

NUMBER (p, s)

NUMBER (p, s) *
p=1to 31

Exact numeric data of
maximum precision p and
scale s

NUMERIC

NUMERIC (9.2)

Exact numeric data

NUMERIC (p)

NUMERIC (p)
p=1to3l

Exact numeric data of
maximum precision p

SQL Procedural Languages: Application Enablement and Support

Table 6. Supported scalar data types that are available in PL/SQL (continued)

PL/SQL data type

DB2 SQL data type

Description

NUMERIC (p, s)

NUMERIC (p, s)
p=1t 31;s =0 to 31

Exact numeric data of
maximum precision p and
scale s

PLS_INTEGER INTEGER Integer numeric data

RAW BLOB (32767) Binary large object data

RAW (n) BLOB (n) Binary large object data
n=1to 32 767

SMALLINT SMALLINT Signed two-byte integer data

TIMESTAMP (0)

TIMESTAMP (0)

Date data with timestamp
information

TIMESTAMP (p)

TIMESTAMP (p)

Date and time data with
optional fractional seconds
and precision p

VARCHAR

VARCHAR (4096)

Variable-length character
string data with a maximum
length of 4096 characters

VARCHAR (1)

VARCHAR (1)

Variable-length character
string data with a maximum
length of n characters

VARCHAR? (1)

VARCHAR? (1) *

Variable-length character
string data with a maximum
length of n characters

1. When the DB2_COMPATIBILITY_VECTOR registry variable is set for the DATE data
type, DATE is equivalent to TIMESTAMP (0).

2. For restrictions on the NCLOB data type in certain database environments,
see “Restrictions on PL/SQL support”.

3. This data type is supported when the number_compat database configuration
parameter set to ON.

4. This data type is supported when the varchar2_compat database configuration
parameter set to ON.

In addition to the scalar data types described in [Table 6 on page 131} the DB2 data
server also supports collection types, record types, and REF CURSOR types.

%TYPE attribute in variable declarations (PL/SQL)

The %TYPE attribute, used in PL/SQL variable and parameter declarations, is
supported by the DB2 data server. Use of this attribute ensures that type
compatibility between table columns and PL/SQL variables is maintained.

A qualified column name in dot notation or the name of a previously declared
variable must be specified as a prefix to the %TYPE attribute. The data type of this
column or variable is assigned to the variable being declared. If the data type of
the column or variable changes, there is no need to modify the declaration code.

The %TYPE attribute can also be used with formal parameter declarations.

Chapter 2. PL/SQL support

133

134

Syntax

»>—name table .—column %TYPE
| |:view
variagble——M

Description

v
A

name
Specifies an identifier for the variable or formal parameter that is being
declared.

table
Specifies an identifier for the table whose column is to be referenced.

view
Specifies an identifier for the view whose column is to be referenced.

column
Specifies an identifier for the table or view column that is to be referenced.

variable
Specifies an identifier for a previously declared variable that is to be
referenced. The variable does not inherit any other column attributes, such as,
for example, the nullability attribute.

Example

The following example shows a procedure that queries the EMP table using an
employee number, displays the employee's data, finds the average salary of all
employees in the department to which the employee belongs, and then compares
the chosen employee's salary with the department average.

CREATE OR REPLACE PROCEDURE emp_sal_query (

p_empno IN NUMBER
IS
v_ename VARCHAR2(10) ;
v_job VARCHAR2(9) ;
v_hiredate DATE;
v_sal NUMBER(7,2) ;
v_deptno NUMBER(2) ;
v_avgsal NUMBER(7,2) ;
BEGIN

SELECT ename, job, hiredate, sal, deptno

INTO v_ename, v_job, v_hiredate, v_sal, v_deptno

FROM emp WHERE empno = p_empno;
DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
DBMS_OUTPUT.PUT_LINE('Name : ! v_ename) ;
DBMS_OUTPUT.PUT_LINE('Job . v_job);
DBMS_OUTPUT.PUT_LINE('Hire Date ' v_hiredate);
DBMS_OUTPUT.PUT_LINE('Salary ' v_sal);
DBMS_OUTPUT.PUT_LINE('Dept # " || v_deptno);

SELECT AVG(sal) INTO v_avgsal
FROM emp WHERE deptno = v_deptno;
IF v_sal > v_avgsal THEN
DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the department '
T| ‘average of ' || v_avgsal);
ELSE

SQL Procedural Languages: Application Enablement and Support

DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the department '
Tl 'average of ' || v_avgsal);
END IF;
END;

This procedure could be rewritten without explicitly coding the EMP table data
types in the declaration section.

CREATE OR REPLACE PROCEDURE emp_sal_query (
p_empno IN emp.empno%TYPE

IS
v_ename emp.ename%TYPE;
v_job emp.job%TYPE;
v_hiredate emp.hiredate%TYPE;
v_sal emp.sal%TYPE;
v_deptno emp.deptno%TYPE;
v_avgsal v_sal%TYPE;
BEGIN
SELECT ename, job, hiredate, sal, deptno
INTO v_ename, v_job, v_hiredate, v_sal, v_deptno
FROM emp WHERE empno = p_empno;
DBMS_OUTPUT.PUT_LINE('Employee # : '
DBMS_OUTPUT.PUT_LINE('Name : ! v_ename) ;
DBMS_OUTPUT.PUT_LINE('Job ! v_job);
DBMS_OUTPUT.PUT_LINE('Hire Date : ' v_hiredate);
DBMS_OUTPUT.PUT_LINE('Salary ! v_sal);
DBMS_OUTPUT.PUT_LINE('Dept # ' v_deptno);

p_empno) ;

SELECT AVG(sal) INTO v_avgsal
FROM emp WHERE deptno = v_deptno;
IF v_sal > v_avgsal THEN
DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the department '
T| 'average of ' || v_avgsal);
ELSE
DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the department '
|| 'average of ' || v_avgsal);
END IF;
END;

The p_empno parameter is an example of a formal parameter that is defined using
the %TYPE attribute. The v_avgsal variable is an example of the %TYPE attribute
referring to another variable instead of a table column.

The following sample output is generated by a call to the EMP_SAL_QUERY
procedure:

CALL emp_sal_query(7698);

Employee # : 7698

Name : BLAKE

Job : MANAGER

Hire Date : 01-MAY-81 00:00:00
Salary : 2850.00

Dept # : 30

Employee's salary is more than the department average of 1566.67

Record variables based on user-defined record types
(PL/SQL)

PL/SQL record variable declarations based on user-defined record type definitions
are supported by the DB2 data server in PL/SQL contexts.

A record type is a definition of a record that consists of one or more identifiers and
their corresponding data types. A record type cannot, by itself, be used to

Chapter 2. PL/SQL support 135

136

manipulate data. You can declare PL/SQL record variables that are based on
existing user-defined record types, and you can create user-defined record types by
using the PL/SQL TYPE IS RECORD statement. A record type definition is only
supported in the CREATE PACKAGE or CREATE PACKAGE BODY statement.

A record variable (or record) is an instance of a record type. A record variable is
declared from a record type. The properties of the record, such as its field names
and types, are inherited from the record type.

Dot notation is used to reference fields in a record. For example, record.field.

Syntax

»»—TYPE—rectype—IS RECORD—(——field—datatype) >

Description

TYPE rectype IS RECORD
Specifies an identifier for the record type.

field
Specifies an identifier for a field of the record type.

datatype
Specifies the corresponding data type of the field. The %TYPE attribute is
supported; the %ROWTYPE attribute is not supported.

Example

The following example shows a package that references a user-defined record type:

CREATE OR REPLACE PACKAGE pkg7a
IS
TYPE t1_typ IS RECORD (
cl T1.CI%TYPE,
c2 VARCHAR(10)
)s
END;

%ROWTYPE attribute in record type declarations (PL/SQL)

The %ROWTYPE attribute, used to declare PL/SQL variables of type record with
fields that correspond to the columns of a table or view, is supported by the DB2
data server. Each field in a PL/SQL record assumes the data type of the
corresponding column in the table.

A record is a named, ordered collection of fields. A field is similar to a variable; it
has an identifier and a data type, but it also belongs to a record, and must be

referenced using dot notation, with the record name as a qualifier.

Syntax

»—record—[tab Ze_—I—%RONTYPE |
view

SQL Procedural Languages: Application Enablement and Support

Description

record
Specifies an identifier for the record.

table
Specifies an identifier for the table whose column definitions will be used to
define the fields in the record.

view
Specifies an identifier for the view whose column definitions will be used to
define the fields in the record.

%ROWTYPE
Specifies that the record field data types are to be derived from the column
data types that are associated with the identified table or view. Record fields
do not inherit any other column attributes, such as, for example, the nullability
attribute.

Example

The following example shows how to use the %ROWTYPE attribute to create a
record (named r_emp) instead of declaring individual variables for the columns in
the EMP table.

CREATE OR REPLACE PROCEDURE emp_sal_query (

p_empno IN emp.empno%TYPE
IS
r_emp emp%ROWTYPE ;
v_avgsal emp.sal%TYPE;
BEGIN
SELECT ename, job, hiredate, sal, deptno
INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno
FROM emp WHERE empno = p_empno;
DBMS_OUTPUT.PUT_LINE('Employee # : ' p_empno) ;
DBMS_OUTPUT.PUT_LINE('Name : ! r_emp.ename) ;
DBMS_OUTPUT.PUT_LINE("'Job . r_emp.job);
DBMS_OUTPUT.PUT_LINE('Hire Date ' r_emp.hiredate);
DBMS_OUTPUT.PUT_LINE('Salary ' r_emp.sal);
DBMS_OUTPUT.PUT_LINE('Dept # ' r_emp.deptno);
SELECT AVG(sal) INTO v_avgsal
FROM emp WHERE deptno = r_emp.deptno;
IF r_emp.sal > v_avgsal THEN
DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the department '
T| 'average of ' || v_avgsal);
ELSE
DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the department '
T| 'average of ' || v_avgsal);
END IF;
END;

Basic statements (PL/SQL)

The programming statements that can be used in a PL/SQL application include:
assignment, DELETE, EXECUTE IMMEDIATE, INSERT, NULL, SELECT INTO, and
UPDATE.

Chapter 2. PL/SQL support 137

138

NULL statement (PL/SQL)

The NULL statement is an executable statement that does nothing. The NULL
statement can act as a placeholder whenever an executable statement is required,
but no SQL operation is wanted; for example, within a branch of the
IF-THEN-ELSE statement.

Syntax

»»—NULL e

Examples

The following example shows the simplest valid PL/SQL program that the DB2
data server can compile:
BEGIN

NULL;
END;

The following example shows the NULL statement within an IF.. THEN...ELSE
statement:
CREATE OR REPLACE PROCEDURE divide it (

p_numerator IN NUMBER,
p_denominator IN NUMBER,

p_result OUT NUMBER
)
IS
BEGIN
IF p_denominator = O THEN
NULL;
ELSE
p_result := p_numerator / p_denominator;
END IF;
END;

Assignment statement (PL/SQL)

The assignment statement sets a previously-declared variable or formal OUT or IN
OUT parameter to the value of an expression.

Syntax

»»>—variable—:=—expression

v
A

Description

variable
Specifies an identifier for a previously-declared variable, OUT formal
parameter, or IN OUT formal parameter.

expression
Specifies an expression that evaluates to a single value. The data type of this
value must be compatible with the data type of variable.

Example

The following example shows assighment statements in the executable section of a
procedure:

SQL Procedural Languages: Application Enablement and Support

CREATE OR REPLACE PROCEDURE dept_salary_ rpt (

p_deptno IN NUMBER,
p_base_annual OUT NUMBER
)
IS
todays_date DATE;
rpt_title VARCHAR2 (60) 3
base_sal INTEGER;
base_comm_rate NUMBER;
BEGIN
todays_date := SYSDATE;
rpt_title := 'Report For Department # ' || p_deptno || ' on '
|| todays date;
base_sal := 35525;
base_comm_rate := 1.33333;
p_base_annual := ROUND(base_sal * base_comm_ rate, 2);
DBMS_OUTPUT.PUT_LINE(rpt_title);
DBMS_OUTPUT.PUT_LINE('Base Annual Salary: ' || p_base_annual);
END
/

EXECUTE IMMEDIATE statement (PL/SQL)
The EXECUTE IMMEDIATE statement prepares an executable form of an SQL

statement from a character string form of the statement and then executes the SQL
statement. EXECUTE IMMEDIATE combines the basic functions of the PREPARE

and EXECUTE state

Invocation

ments.

This statement can only be specified in a PL/SQL context.

Authorization

The authorization rules are those defined for the specified SQL statement.

The authorization ID of the statement might be affected by the DYNAMICRULES

bind option.
Syntax

»»—EXECUTE IMMEDIAT

| 2

E—sql-expression

\{

—INTO—Y—variable

LBULK COLLECT INTO—Y—array-variable

Yy

IN OU

OUT—variable

[
L USING—Y [] expression

T—variable—

Chapter 2. PL/SQL support

139

Description
sql-expression
An expression returning the statement string to be executed. The expression
must return a character-string type that is less than the maximum statement
size of 2 097 152 bytes. Note that a CLOB(2097152) can contain a maximum
size statement, but a VARCHAR cannot.
The statement string must be one of the following SQL statements:
* ALTER
 CALL
* COMMENT
+ COMMIT
¢ Compound SQL (compiled)
* Compound SQL (inlined)
* CREATE
¢ DECLARE GLOBAL TEMPORARY TABLE
* DELETE
* DROP
¢ EXPLAIN
» FLUSH EVENT MONITOR
* FLUSH PACKAGE CACHE
* GRANT
» INSERT
* LOCK TABLE
* MERGE
* REFRESH TABLE
¢ RELEASE SAVEPOINT
*+ RENAME
* REVOKE
¢ ROLLBACK
* SAVEPOINT

e SELECT (only when the EXECUTE IMMEDIATE statement also specifies the
BULK COLLECT INTO clause)

e SET COMPILATION ENVIRONMENT

* SET CURRENT DECFLOAT ROUNDING MODE
e SET CURRENT DEFAULT TRANSFORM GROUP
e SET CURRENT DEGREE

* SET CURRENT FEDERATED ASYNCHRONY

e SET CURRENT EXPLAIN MODE

e SET CURRENT EXPLAIN SNAPSHOT

e SET CURRENT IMPLICIT XMLPARSE OPTION

e SET CURRENT ISOLATION

e SET CURRENT LOCALE LC_TIME

e SET CURRENT LOCK TIMEOUT

e SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
* SET CURRENT MDC ROLLOUT MODE

140 SQL Procedural Languages: Application Enablement and Support

* SET CURRENT OPTIMIZATION PROFILE

e SET CURRENT QUERY OPTIMIZATION

« SET CURRENT REFRESH AGE

* SET CURRENT SQL_CCFLAGS

* SET ROLE (only if DYNAMICRULES run behavior is in effect for the
package)

* SET ENCRYPTION PASSWORD

¢ SET EVENT MONITOR STATE (only if DYNAMICRULES run behavior is in
effect for the package)

* SET INTEGRITY

* SET PASSTHRU

* SET PATH

* SET SCHEMA

* SET SERVER OPTION

* SET SESSION AUTHORIZATION
» SET variable

* TRANSFER OWNERSHIP (only if DYNAMICRULES run behavior is in
effect for the package)

¢ TRUNCATE (only if DYNAMICRULES run behavior is in effect for the
package)

* UPDATE

The statement string must not contain a statement terminator, with the
exception of compound SQL statements which can contain semicolons (;) to
separate statements within the compound block. A compound SQL statement is
used within some CREATE and ALTER statements which, therefore, can also
contain semicolons.

When an EXECUTE IMMEDIATE statement is executed, the specified
statement string is parsed and checked for errors. If the SQL statement is
invalid, it is not executed, and an exception is thrown.

INTO variable
Specifies the name of a variable that is to receive an output value from the
corresponding parameter marker.

BULK COLLECT INTO array-variable
Identifies one or more variables with an array data type. Each row of the
query is assigned to an element in each array in the order of the result set,
with the array index assigned in sequence.

¢ If exactly one array-variable is specified:

— If the data type of the array-variable element is not a record type, the
SELECT list must have exactly one column and the column data type
must be assignable to the array element data type.

— If the data type of the array-variable element is a record type, the SELECT
list must be assignable to the record type.

e If multiple array variables are specified:
— The data type of the array-variable element must not be a record type.
— There must be an array-variable for each column in the SELECT list.

— The data type of each column in the SELECT list must be assignable to
the array element data type of the corresponding array-variable.

Chapter 2. PL/SQL support 141

If the data type of array-variable is an ordinary array, the maximum cardinality
must be greater than or equal to the number of rows that are returned by the

query.

This clause can only be used if the sql-expression is a SELECT statement.
USING

IN expression
Specifies a value that is passed to an input parameter marker. IN is the
default.

IN OUT variable
Specifies the name of a variable that is to provide an input value to, or
receive an output value from the corresponding parameter marker.

OUT variable
Specifies the name of a variable that is to receive an output value from the
corresponding parameter marker.

The number and order of evaluated expressions or variables must match the
number and order of—and be type-compatible with—the parameter markers in
sql-expression.

Notes
 Statement caching affects the behavior of an EXECUTE IMMEDIATE statement.

Example
CREATE OR REPLACE PROCEDURE procl(pl IN NUMBER, p2 IN OUT NUMBER, p3 OUT NUMBER)
IS
BEGIN
p3 := pl + 1;
p2 := p2 + 1;
END;
/

EXECUTE IMMEDIATE 'BEGIN procl(:1, :2, :3); END' USING IN pl + 10, IN OUT p3,
ouT p2;

EXECUTE IMMEDIATE 'BEGIN procl(:1, :2, :3); END' INTO p3, p2 USING pl + 10, p3;

SQL statements (PL/SQL)

SQL statements that are supported within PL/SQL contexts can be used to modify
data or to specify the manner in which statements are to be executed.

lists these statements. The behavior of these statements when executed in
PL/SQL contexts is equivalent to the behavior of the corresponding DB2 SQL
statements.

Table 7. SQL statements that can be executed by the DB2 server within PL/SQL contexts

Command Description

DELETE Deletes rows from a table

INSERT Inserts rows into a table

MERGE Updates a target (a table or view) using data
from a source (result of a table reference)

SELECT INTO Retrieves rows from a table

UPDATE Updates rows in a table

142 SQL Procedural Languages: Application Enablement and Support

BULK COLLECT INTO clause (PL/SQL)

A SELECT INTO statement with the optional BULK COLLECT keywords
preceding the INTO keyword retrieves multiple rows into an array.

Syntax

»»>—BULK COLLECT INTO—Y—array-variable >

Description

BULK COLLECT INTO array-variable
Identifies one or more variables with an array data type. Each row of the result
is assigned to an element in each array in the order of the result set, with the
array index assigned in sequence.

¢ If exactly one array-variable is specified:

— If the data type of the array-variable element is not a record type, the
SELECT list must have exactly one column, and the column data type
must be assignable to the array element data type.

— If the data type of the array-variable element is a record type, the SELECT
list must be assignable to the record type.
e If multiple array variables are specified:
— The data type of the array-variable element must not be a record type.
— There must be an array-variable for each column in the SELECT list.

— The data type of each column in the SELECT list must be assignable to
the array element data type of the corresponding array-variable.

If the data type of array-variable is an ordinary array, the maximum cardinality
must be greater than or equal to the number of rows that are returned by the

query.

Notes

* Variations of the BULK COLLECT INTO clause are also supported with the
FETCH statement and the EXECUTE IMMEDIATE statement.

Example

The following example shows a procedure that uses the BULK COLLECT INTO
clause to return an array of rows from the procedure. The procedure and the type
for the array are defined in a package.

CREATE OR REPLACE PACAKGE bci_sample

IS
TYPE emps_array IS VARRAY (30) OF VARCHAR2(6);

PROCEDURE get_dept_empno (

dno IN emp.deptno%TYPE,
emps_dno OUT emps_array

)3

END bci_sample;

CREATE OR REPLACE PACKAGE BODY bci_sample
IS

Chapter 2. PL/SQL support 143

144

PROCEDURE get_dept_empno (
dno IN emp.deptno%TYPE,
emps_dno OUT emps_array
)
IS
BEGIN
SELECT empno BULK COLLECT INTO emps_dno
FROM emp
WHERE deptno=dno;
END get_dept_empno;
END bci_sample;

RETURNING INTO clause (PL/SQL)

INSERT, UPDATE, and DELETE statements that are appended with the optional
RETURNING INTO clause can be compiled by the DB2 data server. When used in
PL/SQL contexts, this clause captures the newly added, modified, or deleted
values from executing INSERT, UPDATE, or DELETE statements, respectively.

Syntax
insert-statement RETURNING * INTO record »><
Eupdate—statement:‘ , ,
delete-statement F F
LY expr Y field
Description

insert-statement
Specifies a valid INSERT statement. An exception is raised if the INSERT
statement returns a result set that contains more than one row.

update-statement
Specifies a valid UPDATE statement. An exception is raised if the UPDATE
statement returns a result set that contains more than one row.

delete-statement
Specifies a valid DELETE statement. An exception is raised if the DELETE
statement returns a result set that contains more than one row.

RETURNING *
Specifies that all of the values from the row that is affected by the INSERT,
UPDATE, or DELETE statement are to be made available for assignment.

RETURNING expr
Specifies an expression to be evaluated against the row that is affected by the
INSERT, UPDATE, or DELETE statement. The evaluated results are assigned to
a specified record or fields.

INTO record
Specifies that the returned values are to be stored in a record with compatible
fields and data types. The fields must match in number, order, and data type
those values that are specified with the RETURNING clause. If the result set
contains no rows, the fields in the record are set to the null value.

INTO field
Specifies that the returned values are to be stored in a set of variables with
compatible fields and data types. The fields must match in number, order, and
data type those values that are specified with the RETURNING clause. If the
result set contains no rows, the fields are set to the null value.

SQL Procedural Languages: Application Enablement and Support

Examples

The following example shows a procedure that uses the RETURNING INTO
clause:

CREATE OR REPLACE PROCEDURE emp_comp_update (

p_empno IN emp.empno%TYPE,
p_sal IN emp.sal%TYPE,
p_comm IN emp.comm%TYPE
)
IS
v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;
v_job emp.Jjob%TYPE;
v_sal emp.sal%TYPE;
v_comm emp.comm%TYPE;
v_deptno emp.deptno%TYPE;
BEGIN
UPDATE emp SET sal = p_sal, comm = p_comm WHERE empno = p_empno
RETURNING
empno,
ename,
job,
sal,
comm,
deptno
INTO
v_empno,
v_ename,
v_job,
v_sal,
v_comm,
v_deptno;
IF SQL%FOUND THEN
DBMS_OUTPUT.PUT_LINE('Updated Employee # : ' v_empno) ;
DBMS_OUTPUT.PUT_LINE('Name . v_ename) ;
DBMS_OUTPUT.PUT_LINE('Job ' v_job);
DBMS_OUTPUT.PUT_LINE('Department ! v_deptno);
DBMS_OUTPUT.PUT_LINE('New Salary ' v_sal);
DBMS_OUTPUT.PUT_LINE('New Commission ! v_comm) ;
ELSE
DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
END IF;
END;

This procedure returns the following sample output:
EXEC emp_comp_update (9503, 6540, 1200);

Updated Employee # : 9503

Name : PETERSON
Job : ANALYST
Department : 40

New Salary : 6540.00
New Commission : 1200.00

The following example shows a procedure that uses the RETURNING INTO clause
with record types:

CREATE OR REPLACE PROCEDURE emp_delete (

p_empno IN emp.empno%TYPE
IS

r_emp emp%ROWTYPE ;
BEGIN

DELETE FROM emp WHERE empno = p_empno

Chapter 2. PL/SQL support 145

146

RETURNING
*

INTO
r_emp;

IF SQL%FOUND THEN
DBMS_OUTPUT.PUT_LINE('Deleted Employee # : ' r_emp.empno) ;
DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);

DBMS_OUTPUT.PUT_LINE('Job ! r_emp.job);

DBMS_OUTPUT.PUT_LINE('Manager : ! r_emp.mgr);

DBMS_OUTPUT.PUT_LINE('Hire Date ! r_emp.hiredate);

DBMS_OUTPUT.PUT_LINE('Salary ' r_emp.sal);

DBMS_OUTPUT.PUT_LINE('Commission ! r_emp.comm) ;

DBMS_OUTPUT.PUT_LINE('Department 2! r_emp.deptno);

ELSE
DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
END IF;
END;

This procedure returns the following sample output:
EXEC emp_delete(9503);

Deleted Employee # : 9503

Name : PETERSON

Job ¢ ANALYST

Manager : 7902

Hire Date : 31-MAR-05 00:00:00
Salary : 6540.00

Commission : 1200.00

Department : 40

Statement attributes (PL/SQL)

SQL%FOUND, SQL%NOTFOUND, and SQL%ROWCOUNT are PL/SQL attributes

that can be used to determine the effect of an SQL statement.

* The SQL%FOUND attribute has a Boolean value that returns TRUE if at least
one row was affected by an INSERT, UPDATE, or DELETE statement, or if a
SELECT INTO statement retrieved one row. The following example shows an
anonymous block in which a row is inserted and a status message is displayed.

BEGIN
INSERT INTO emp (empno,ename,job,sal,deptno)
VALUES (9001, 'JONES', 'CLERK', 850.00, 40);
IF SQL%FOUND THEN
DBMS_OUTPUT.PUT_LINE('Row has been inserted');
END IF;
END;

* The SQL%NOTFOUND attribute has a Boolean value that returns TRUE if no
rows were affected by an INSERT, UPDATE, or DELETE statement, or if a

SELECT INTO statement did not retrieve a row. For example:

BEGIN
UPDATE emp SET hiredate = '03-JUN-07' WHERE empno = 9000;
IF SQL%NOTFOUND THEN
DBMS_OUTPUT.PUT_LINE('No rows were updated');
END IF;
END;

* The SQL%ROWCOUNT attribute has an integer value that represents the
number of rows that were affected by an INSERT, UPDATE, or DELETE

statement. For example:

BEGIN
UPDATE emp SET hiredate = '03-JUN-07' WHERE empno = 9001;
DBMS_OUTPUT.PUT_LINE('# rows updated: ' || SQLROWCOUNT);
END;

SQL Procedural Languages: Application Enablement and Support

Control statements (PL/SQL)

Control statements are the programming statements that make PL/SQL a full
procedural complement to SQL.

A number of PL/SQL control statements can be compiled by the DB2 data server.

IF statement (PL/SQL)

Use the IF statement within PL/SQL contexts to execute SQL statements on the
basis of certain criteria.

The four forms of the IF statement are:

e IF..THEN...END IF

» IF. THEN..ELSE..END IF

e IFE..THEN...ELSE IE..END IF

e IF. THEN..ELSIE..THEN...ELSE...END IF

IF...THEN...END IF

The syntax of this statement is:

IF boolean-expression THEN
statements
END IF;

IE..THEN statements are the simplest form of IF. The statements between THEN
and END IF are executed only if the condition evaluates to TRUE. In the following
example, an IE..THEN statement is used to test for and to display those employees
who have a commission.

DECLARE

V_empno emp.empno%TYPE;

v_comm emp.comm%TYPE;

CURSOR emp_cursor IS SELECT empno, comm FROM emp;
BEGIN

OPEN emp_cursors;
DBMS_OUTPUT.PUT_LINE('EMPNO CoMM') 5
DBMS_OUTPUT.PUT_LINE('----- =------- ")
LOOP
FETCH emp_cursor INTO v_empno, v_comm;
EXIT WHEN emp_cursor%NOTFOUND;

-- Test whether or not the employee gets a commission
IF v_comm IS NOT NULL AND v_comm > O THEN
DBMS_OUTPUT.PUT_LINE(v_empno || * ' ||
TO_CHAR(v_comm, '$99999.99"'));
END IF;
END LOOP;
CLOSE emp_cursor;
END;

This program generates the following sample output:
EMPNO COMM

7499 $300.00
7521 $500.00
7654 $1400.00

Chapter 2. PL/SQL support 147

IF...THEN...ELSE...END IF

The syntax of this statement is:

IF boolean-expression THEN
statements

ELSE
statements

END IF;

IE..THEN...ELSE statements specify an alternative set of statements that should be
executed if the condition evaluates to FALSE. In the following example, the
previous example is modified so that an IF.. THEN...ELSE statement is used to
display the text “Non-commission” if an employee does not have a commission.

DECLARE

V_empno emp.empno%TYPE;

v_comm emp.comm%TYPE;

CURSOR emp_cursor IS SELECT empno, comm FROM emp;
BEGIN

OPEN emp_cursor;
DBMS_OUTPUT.PUT_LINE('EMPNO COMM') 5
DBMS_OUTPUT.PUT_LINE('----- =------- ")
LOOP
FETCH emp_cursor INTO v_empno, v_comm;
EXIT WHEN emp_cursor%NOTFOUND;

-- Test whether or not the employee gets a commission

IF v_comm IS NOT NULL AND v_comm > O THEN
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
TO_CHAR(v_comm, '$99999.99'));
ELSE
DBMS_OUTPUT.PUT_LINE(v_empno || " || 'Non-commission');
END IF;
END LOOP;
CLOSE emp_cursor;
END;

This program generates the following sample output:
EMPNO COMM

7369 Non-commission
7499 § 300.00
7521 $ 500.00

7566 Non-commission
7654 § 1400.00

7698 Non-commission
7782 Non-commission
7788 Non-commission
7839 Non-commission
7844 Non-commission
7876 Non-commission
7900 Non-commission
7902 Non-commission
7934 Non-commission

IF...THEN...ELSE IF...END IF

The syntax of this statement is:

IF boolean-expression THEN
IF boolean-expression THEN
statements

148 SQL Procedural Languages: Application Enablement and Support

ELSE
IF boolean-expression THEN
statements
END IF;

You can nest IF statements so that alternative IF statements are invoked, depending
on whether the conditions of an outer IF statement evaluate to TRUE or FALSE. In
the following example, the outer IF.. THEN...ELSE statement tests whether or not
an employee has a commission. The inner IF.. THEN...ELSE statements
subsequently test whether the employee's total compensation exceeds or is less
than the company average. When you use this form of the IF statement, you are
actually nesting an IF statement inside of the ELSE part of an outer IF statement.
You therefore need one END IF for each nested IF and one for the parent IF... ELSE.
(Note that the logic in this program can be simplified considerably by calculating
each employee's yearly compensation using an NVL function within the SELECT
statement of the cursor declaration; however, the purpose of this example is to
demonstrate how IF statements can be used.)

DECLARE

V_empno emp.empno%TYPE;

v_sal emp.sal%TYPE;

v_comm emp.comm%TYPE;

v_avg NUMBER(7,2) ;

CURSOR emp_cursor IS SELECT empno, sal, comm FROM emp;
BEGIN

-- Calculate the average yearly compensation
SELECT AVG((sal + NVL(comm,0)) * 24) INTO v_avg FROM emp;
DBMS_OUTPUT.PUT_LINE('Average Yearly Compensation: ' ||
TO _CHAR(v_avg,'$999,999.99'));
OPEN emp_cursors;
DBMS_OUTPUT.PUT_LINE('EMPNO YEARLY COMP');
DBMS_OUTPUT.PUT_LINE('----- ==----muom-)
LOOP
FETCH emp_cursor INTO v_empno, v_sal, v_comm;
EXIT WHEN emp_cursor%NOTFOUND;

-- Test whether or not the employee gets a commission
IF v_comm IS NOT NULL AND v_comm > O THEN

-- Test whether the employee's compensation with commission exceeds
-- the company average

IF (v_sal + v_comm) * 24 > v_avg THEN
DBMS_OUTPUT.PUT_LINE(v_empno || '
TO_CHAR((v_sal + v_comm) * 24,'$999,999.99') ||
' Exceeds Average');
ELSE
DBMS_OUTPUT.PUT_LINE(v_empno || '
TO_CHAR((v_sal + v_comm) * 24,'$999,999.99') ||
' Below Average');
END IF;
ELSE

-- Test whether the employee's compensation without commission exceeds
-- the company average

IF v_sal = 24 > v_avg THEN
DBMS_OUTPUT.PUT_LINE(v_empno || '
TO_CHAR(v_sal = 24,'$999,999.99') || ' Exceeds Average');

ELSE
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' |
TO_CHAR(v_sal = 24,'$999,999.99') || ' Below Average');

Chapter 2. PL/SQL support 149

150

END IF;
END IF;
END LOOP;
CLOSE emp_cursor;
END;

This program generates the following sample output:

Average Yearly Compensation: § 53,528.57
EMPNO YEARLY COMP

7369 $ 19,200.00 Below Average
7499 $ 45,600.00 Below Average
7521 § 42,000.00 Below Average
7566 $ 71,400.00 Exceeds Average
7654 § 63,600.00 Exceeds Average
7698 $ 68,400.00 Exceeds Average
7782 $ 58,800.00 Exceeds Average
7788 $ 72,000.00 Exceeds Average
7839 $ 120,000.00 Exceeds Average
7844 § 36,000.00 Below Average
7876 $ 26,400.00 Below Average
7900 § 22,800.00 Below Average
7902 $ 72,000.00 Exceeds Average
7934 $ 31,200.00 Below Average

IF...THEN...ELSIF...THEN...ELSE...END IF

The syntax of this statement is:

IF boolean-expression THEN
statements

[ELSIF boolean-expression THEN
statements

[ELSIF boolean-expression THEN
statements] ...]

[ELSE
statements]

END IF;

IF..THEN...ELSIF..ELSE statements provide the means for checking many
alternatives in one statement. Formally, this statement is equivalent to nested
IF..THEN...ELSE...IF..THEN statements, but only one END IF is needed. The
following example uses an IE. THEN...ELSIF.. . ELSE statement to count the number
of employees by compensation, in steps of $25,000.

DECLARE

v_empno emp.empno%TYPE;
v_comp NUMBER(8,2) ;

v_1t_25K SMALLINT := 0;
v_25K 50K SMALLINT := 0;
v_50K_75K SMALLINT := 0;
v_75K_100K SMALLINT := 0;
v_ge 100K SMALLINT := 0;

CURSOR emp_cursor IS SELECT empno, (sal + NVL(comm,0)) * 24 FROM emp;
BEGIN
OPEN emp_cursor;
LOOP
FETCH emp_cursor INTO v_empno, v_comp;
EXIT WHEN emp_cursor%NOTFOUND;
IF v_comp < 25000 THEN
v_1t 25K := v_1t_25K + 1;
ELSIF v_comp < 50000 THEN
v_25K 50K := v_25K 50K + 1;
ELSIF v_comp < 75000 THEN
v_50K_75K := v_50K_75K + 1;
ELSIF v_comp < 100000 THEN

SQL Procedural Languages: Application Enablement and Support

v_75K 100K := v_75K 100K + 1;
ELSE
v_ge 100K := v_ge 100K + 1;
END IF;
END LOOP;
CLOSE emp_cursor;
DBMS_OUTPUT.PUT_LINE('Number of emp]oyees by yearly compensation');
DBMS_OUTPUT.PUT_LINE('Less than 25,000 : ' v_1t _25K);
DBMS_OUTPUT.PUT_LINE('25,000 - 49,9999 : ' v_25K_50K),
DBMS_OUTPUT.PUT_LINE('50,000 - 74,9999 : ' v_50K 75K);
DBMS_OUTPUT.PUT_LINE('75,000 - 99,9999 : ' v_75K_100K);
DBMS_OUTPUT.PUT_LINE('100,000 and over : ' v_ge_100K);
END;

This program generates the following sample output:

Number of employees by yearly compensation
Less than 25,000 :
25,000 - 49,9999 :
50,000 - 74,9999 :
75,000 - 99,9999 :
100,000 and over :

CASE statement (PL/SQL)

The CASE statement executes a set of one or more statements when a specified
search condition is true. CASE is a standalone statement that is distinct from the
CASE expression, which must appear as part of an expression.

R OO oI

There are two forms of the CASE statement: the simple CASE statement and the
searched CASE statement.

Simple CASE statement (PL/SQL)

The simple CASE statement attempts to match an expression (known as the
selector) to another expression that is specified in one or more WHEN clauses. A
match results in the execution of one or more corresponding statements.

Syntax

v

»»>—CASE—selector-expression

ELSE—Y-statements

»—END CASE ><

Description

CASE selector-expression
Specifies an expression whose value has a data type that is compatible with

Chapter 2. PL/SQL support 151

each match-expression. If the value of selector-expression matches the first
match-expression, the statements in the corresponding THEN clause are
executed. If there are no matches, the statements in the corresponding ELSE
clause are executed. If there are no matches and there is no ELSE clause, an
exception is thrown.

WHEN match-expression
Specifies an expression that is evaluated within the CASE statement. If
selector-expression matches a match-expression, the statements in the
corresponding THEN clause are executed.

THEN
A keyword that introduces the statements that are to be executed when the
corresponding Boolean expression evaluates to TRUE.

statements
Specifies one or more SQL or PL/SQL statements, each terminated with a
semicolon.

ELSE
A keyword that introduces the default case of the CASE statement.

Example

The following example uses a simple CASE statement to assign a department
name and location to a variable that is based upon the department number.

DECLARE

v_empno emp.empno%TYPE;

v_ename emp.ename%TYPE;

v_deptno emp.deptno%TYPE;

v_dname dept.dname%TYPE;

v_Toc dept.Toc%TYPE;

CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN

OPEN emp_cursor;

DBMS_OUTPUT.PUT_LINE("'EMPNO ENAME DEPTNO DNAME !
T LOC");

DBMS OUTPUT.PUT_LINE('----- = =====-= —--ooe oo !

LOoOP
FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
EXIT WHEN emp_cursor%NOTFOUND;
CASE v_deptno

WHEN 10 THEN v_dname := 'Accounting';

v_loc = 'New York';
WHEN 20 THEN v_dname := 'Research';

v_Toc = 'Dallas';
WHEN 30 THEN v_dname := 'Sales';

v_Toc = 'Chicago';
WHEN 40 THEN v_dname := 'Operations';

v_loc = 'Boston';
ELSE v_dname := 'unknown';

v_Toc :='"

END CASE;

DBMS_OUTPUT.PUT_LINE(v_empno || " || RPAD(v_ename, 10)
"' || v_deptno |T " || RPAD(v_dname, 14) ||
v_loc);

END LOOP;
CLOSE emp_cursor;

END;

This program returns the following sample output:

152 SQL Procedural Languages: Application Enablement and Support

EMPNO ENAME DEPTNO DNAME LoC

7369 SMITH 20 Research Dallas
7499 ALLEN 30 Sales Chicago
7521 WARD 30 Sales Chicago
7566 JONES 20 Research Dallas
7654 MARTIN 30 Sales Chicago
7698 BLAKE 30 Sales Chicago
7782 CLARK 10 Accounting New York
7788 SCOTT 20 Research Dallas
7839 KING 10 Accounting New York
7844 TURNER 30 Sales Chicago
7876 ADAMS 20 Research Dallas
7900 JAMES 30 Sales Chicago
7902 FORD 20 Research Dallas
7934 MILLER 10 Accounting New York

Searched CASE statement (PL/SQL)

A searched CASE statement uses one or more Boolean expressions to determine
which statements to execute.

Syntax

»»—CASE—"WHEN—boolean-expression—THEN—statements——ELSE—statements——»

»—END CASE >

Description

CASE
A keyword that introduces the first WHEN clause in the CASE statement.

WHEN boolean-expression
Specifies an expression that is evaluated when control flow enters the WHEN
clause in which the expression is defined. If boolean-expression evaluates to
TRUE, the statements in the corresponding THEN clause are executed. If
boolean-expression does not evaluate to TRUE, the statements in the
corresponding ELSE clause are executed.

THEN
A keyword that introduces the statements that are to be executed when the
corresponding Boolean expression evaluates to TRUE.

statements
Specifies one or more SQL or PL/SQL statements, each terminated with a
semicolon.

ELSE
A keyword that introduces the default case of the CASE statement.

Example

The following example uses a searched CASE statement to assign a department
name and location to a variable that is based upon the department number.

DECLARE
V_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;

Chapter 2. PL/SQL support 153

154

v_deptno emp.deptno%TYPE;

v_dname dept.dname%TYPE;

v_Toc dept.loc%TYPE;

CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN

OPEN emp_cursors;

DBMS OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME !
Tl LOC');

DBMS_OUTPUT.PUT LINE('-==-= =mcm=== =mccoe commeoee- '

LoOP
FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
EXIT WHEN emp_cursor%NOTFOUND;

CASE
WHEN v_deptno = 10 THEN v_dname := 'Accounting';

v_Tloc = '"New York';
WHEN v_deptno = 20 THEN v_dname := 'Research';

v_Tloc = 'Dallas';
WHEN v_deptno = 30 THEN v_dname := 'Sales';

v_Tloc = 'Chicago';
WHEN v_deptno = 40 THEN v_dname := 'Operations';

v_Tloc = 'Boston';
ELSE v_dname := 'unknown';

v_Tloc =y

END CASE;

DBMS_OUTPUT.PUT_LINE(v_empno || " || RPAD(v_ename, 10)
"' || v_deptno |T ' || RPAD(v_dname, 14) ||
v_loc);

END LOOP;
CLOSE emp_cursor;

END;

This program returns the following sample output:

EMPNO ENAME DEPTNO DNAME LoC

7369 SMITH 20 Research Dallas
7499 ALLEN 30 Sales Chicago
7521 WARD 30 Sales Chicago
7566 JONES 20 Research Dallas
7654 MARTIN 30 Sales Chicago
7698 BLAKE 30 Sales Chicago
7782 CLARK 10 Accounting New York
7788 SCOTT 20 Research Dallas
7839 KING 10 Accounting New York
7844 TURNER 30 Sales Chicago
7876 ADAMS 20 Research Dallas
7900 JAMES 30 Sales Chicago
7902 FORD 20 Research Dallas
7934 MILLER 10 Accounting New York

Loops (PL/SQL)
Use the EXIT, FOR, LOOP, and WHILE statements to repeat a series of commands
in your PL/SQL program.

FOR (cursor variant) statement (PL/SQL)

The cursor FOR loop statement opens a previously declared cursor, fetches all rows
in the cursor result set, and then closes the cursor.

Use this statement instead of separate SQL statements to open a cursor, define a

loop construct to retrieve each row of the result set, test for the end of the result
set, and then finally close the cursor.

SQL Procedural Languages: Application Enablement and Support

Invocation

This statement can be invoked within a PL/SQL procedure, function, trigger, or
anonymous block.

Authorization

No specific authorization is required to reference a row expression within an SQL
statement; however, for successful statement execution, all other authorization
requirements for processing a cursor are required.

Syntax

»»—FOR—record—IN—cursor—L00P—statements—END LOOP >

Description

FOR
Introduces the condition that must be true if the FOR loop is to proceed.

record
Specifies an identifier that was assigned to an implicitly declared record with
definition cursor’%o ROWTYPE.

IN cursor
Specifies the name of a previously declared cursor.

LOOP and END LOOP
Starts and ends the loop containing SQL statements that are to be executed
during each iteration through the loop.

statements
One or more PL/SQL statements. A minimum of one statement is required.

Example

The following example shows a procedure that contains a cursor FOR loop:
CREATE OR REPLACE PROCEDURE cursor_example

IS
CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME') ;
DBMS_OUTPUT.PUT_LINE('----- ------- ")
FOR v_emp_rec IN emp_cur_1 LOOP
DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' " || v_emp_rec.ename);
END LOOP;
END;

FOR (integer variant) statement (PL/SQL)

Use the FOR statement to execute a set of SQL statements more than once.
Invocation

This statement can be embedded within a PL/SQL procedure, function, or
anonymous block statement.

Chapter 2. PL/SQL support 155

156

Authorization

No privileges are required to invoke the FOR statement; however, the
authorization ID of the statement must hold the necessary privileges to invoke the
SQL statements that are embedded in the FOR statement.

Syntax

»»—FOR—integer-variable—IN |_ _| expressionl—..—expression2———»
REVERSE

»—L 00P—statements—END LOOP ><

Description

integer-variable
An automatically defined integer variable that is used during loop processing.
The initial value of integer-variable is expressionl. After the initial iteration, the
value of integer-variable is incremented at the beginning of each subsequent
iteration. Both expression1 and expression2 are evaluated when entering the loop,
and loop processing stops when integer-variable is equal to expression2.

IN Introduces the optional REVERSE keyword and expressions that define the
range of integer variables for the loop.

REVERSE
Specifies that the iteration is to proceed from expression2 to expressionl. Note
that expression2 must have a higher value than expressionl, regardless of
whether the REVERSE keyword is specified, if the statements in the loop are to
be processed.

expressionl
Specifies the initial value of the range of integer variables for the loop. If the
REVERSE keyword is specified, expressionl specifies the end value of the range
of integer variables for the loop.

expression2
Specifies the end value of the range of integer variables for the loop. If the
REVERSE keyword is specified, expression2 specifies the initial value of the
range of integer variables for the loop.

statements
Specifies the PL/SQL and SQL statements that are executed each time that the
loop is processed.

Examples

The following example shows a basic FOR statement within an anonymous block:

BEGIN
FOR i IN 1 .. 10 LOOP
DBMS_OUTPUT.PUT LINE('Iteration # ' || 1);
END LOOP;
END;

This example generates the following output:

Iteration # 1
Iteration # 2
Iteration # 3
Iteration # 4

SQL Procedural Languages: Application Enablement and Support

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

= e F H= H
= O 00N oY

If the start value is greater than the end value, the loop body is not executed at
but no error is returned, as shown by the following example:

BEGIN
FOR i IN 10 .. 1 LOOP
DBMS_OUTPUT.PUT_LINE('Iteration # ' || 1);
END LOOP;
END;

This example generates no output, because the loop body is never executed.

The following example uses the REVERSE keyword:

BEGIN
FOR i IN REVERSE 1 .. 10 LOOP
DBMS_OUTPUT.PUT_LINE('Iteration # ' || 1);
END LOOP;
END;

This example generates the following output:

Iteration # 10
Iteration # 9
Iteration # 8
Iteration # 7
Iteration # 6
Iteration # 5
Iteration # 4
Iteration # 3
Iteration # 2
#1

Iteration

FORALL statement (PL/SQL)

The FORALL statement executes a data change statement for all elements of an
array or for a range of elements of an array.

Invocation
This statement can only be specified in a PL/SQL block.

Authorization

all,

The privileges held by the authorization ID of the statement must include all of the

privileges necessary to invoke the data change statement that is specified in the
FORALL statement.

Syntax
»»>—FORALL—index-variable—IN lower-bound—. .—upper-bound >
EI NDICES OF—indexing-array—
VALUES OF—indexing-array

Chapter 2. PL/SQL support

157

158

insert-statement
searched-delete-statement
searched-update-statement
execute-immediate-statement

v
A

Description

index-variable
Identifies a name to be used as an array index. It is implicitly declared as an
INTEGER and it can only be referenced in the FORALL statement.

lower-bound .. upper-bound
Identifies a range of index values that are assignable to the index-variable with
lower-bound less than upper-bound. The range represents every integer value
starting with lower-bound and incrementing by 1 up to and including
upper-bound.

INDICES OF indexing-array
Identifies the set of array index values of the array identified by indexing—array.
If indexing-array is an associative array, array index values must be assignable
to index-variable and could be a sparse set.

VALUES OF indexing-array
Identifies the set of element values of the array identified by indexing—array.
The element values must be assignable to index-variable and could be an
unordered sparse set.

insert-statement
Specifies an INSERT statement that is effectively executed for each
index-variable value.

searched-delete-statement
Specifies a searched DELETE statement that is effectively executed for each
index-variable value.

searched-update-statement
Specifies a searched UPDATE statement that is effectively executed for each
index-variable value.

execute-immediate-statement
Specifies an EXECUTE IMMEDIATE statement that is effectively executed for
each index-variable value.

Notes

* FORALL statement processing is not atomic. If an error occurs while iterating in
the FORALL statement, any data change operations that have already been
processed are not implicitly rolled back. An application can use a ROLLBACK
statement to roll back the entire transaction when an error occurs in the
FORALL statement.

Example

The following example shows a basic FORALL statement:

FORALL x
IN in_customer_list.FIRST..in_customer_Tist.LAST
DELETE FROM customer
WHERE cust_id IN in_customer_Tist(x);

SQL Procedural Languages: Application Enablement and Support

EXIT statement (PL/SQL)
The EXIT statement terminates execution of a loop within a PL/SQL code block.

Invocation

This statement can be embedded within a FOR, LOOP, or WHILE statement, or
within a PL/SQL procedure, function, or anonymous block statement.

Authorization
No privileges are required to invoke the EXIT statement. However, the
authorization ID of the statement must hold the necessary privileges to invoke the

SQL statements that are embedded within the FOR, LOOP, or WHILE statement.

Syntax

»»—EXIT ><

Example

The following example shows a basic LOOP statement with an EXIT statement
within an anonymous block:
DECLARE
sum PLS_INTEGER := 0;
BEGIN
LOOP
sum := sum + 1;
IF sum > 10 THEN
EXIT;
END IF;
END LOOP;
END

LOOP statement (PL/SQL)

The LOOP statement executes a sequence of statements within a PL/SQL code
block multiple times.

Invocation

This statement can be embedded in a PL/SQL procedure, function, or anonymous
block statement.

Authorization

No privileges are required to invoke the LOOP statement. However, the
authorization ID of the statement must hold the necessary privileges to invoke the
SQL statements that are embedded within the LOOP statement.

Syntax

»»>—| 00P—statements—END—LOOP: »><

Chapter 2. PL/SQL support 159

160

Description

statements
Specifies one or more PL/SQL or SQL statements. These statements are
executed during each iteration of the loop.

Example

The following example shows a basic LOOP statement within an anonymous
block:
DECLARE
sum INTEGER := 0;
BEGIN
LOOP
sum := sum + 1;
IF sum > 10 THEN
EXIT;
END IF;
END LOOP;
END

WHILE statement (PL/SQL)

The WHILE statement repeats a set of SQL statements as long as a specified
expression is true. The condition is evaluated immediately before each entry into
the loop body.

Invocation

This statement can be embedded within a PL/SQL procedure, function, or
anonymous block statement.

Authorization
No privileges are required to invoke the WHILE statement; however, the
authorization ID of the statement must hold the necessary privileges to invoke the

SQL statements that are embedded in the WHILE statement.

Syntax

»»—WHILE—expression—L00P—statements—END LOOP ><

Description

expression
Specifies an expression that is evaluated immediately before each entry into the
loop body to determine whether or not the loop is to be executed. If the
expression is logically true, the loop is executed. If the expression is logically
false, loop processing ends. An EXIT statement can be used to terminate the
loop while the expression is true.

statements
Specifies the PL/SQL and SQL statements that are executed each time that the
loop is processed.

Example

The following example shows a basic WHILE statement within an anonymous
block:

SQL Procedural Languages: Application Enablement and Support

DECLARE
sum INTEGER := 0;

BEGIN
WHILE sum < 11 LOOP
sum := sum + 1;
END LOOP;
END

The WHILE statement within this anonymous block executes until sum is equal to
11; loop processing then ends, and processing of the anonymous block proceeds to
completion.

Exception handling (PL/SQL)

By default, any error encountered in a PL/SQL program stops execution of the
program. You can trap and recover from errors by using an EXCEPTION section.

The syntax for exception handlers is an extension of the syntax for a BEGIN block.

Syntax

>>- BEGIN— >

L ,—/IJ I—statemeni.‘J
DECLARE—Y—declaration

> END <

THEN——handler-statemen t»\J

LEXCEPTION—WHEN—exception-condi tion—Y

|—OR—condi 1.‘z'on—I

If no error occurs, the block simply executes statement, and control passes to the
statement after END. But if an error occurs while executing a statement, further
processing of the statement is abandoned, and control passes to the EXCEPTION
list. The list is searched for the first condition matching the error that occurred. If a
match is found, the corresponding handler-statement is executed, and control passes
to the statement after END. If no match is found, the program stops executing.

If a new error occurs during execution of the handler-statement, it can only be
caught by a surrounding EXCEPTION clause.

summarizes the system-defined conditions that you can use. The special
condition name OTHERS matches every error type. Condition names are not case
sensitive.

Table 8. System-defined exception condition names

Condition name Description

CASE_NOT_FOUND None of the cases in a CASE statement
evaluates to “true”, and there is no ELSE
condition.

CURSOR_ALREADY_OPEN An attempt was made to open a cursor that
is already open.

DUP_VAL_ON_INDEX There are duplicate values for the index key.

INVALID_CURSOR An attempt was made to access an
unopened cursor.

Chapter 2. PL/SQL support 161

162

Table 8. System-defined exception condition names (continued)

Condition name

Description

INVALID_NUMBER

The numeric value is invalid.

LOGIN_DENIED

The user name or password is invalid.

NO_DATA_FOUND

No rows satisfied the selection criteria.

NOT_LOGGED_ON

A database connection does not exist.

OTHERS

For any exception that has not been caught
by a prior condition in the exception section.

SUBSCRIPT_BEYOND_COUNT

An array index is out of range or does not
exist.

SUBSCRIPT_OUTSIDE_LIMIT

The data type of an array index expression
is not assignable to the array index type.

TOO_MANY_ROWS

More than one row satisfied the selection
criteria, but only one row is allowed to be
returned.

VALUE_ERROR

The value is invalid.

ZERO_DIVIDE

Division by zero was attempted.

Raise application error (PL/SQL)

The RAISE_APPLICATION_ERROR procedure makes a user-defined code and
error message available to the program which can then be used to identify the
exception. This procedure is only supported in PL/SQL contexts.

Syntax

»>—RAISE_APPLICATION ERROR—(—error-number—,—message—)—;

Description

error-number

A vendor-specific number (expressed as a literal) that is mapped to a DB2 error
code before it is stored in a variable named SQLCODE. The
RAISE_APPLICATION_ERROR procedure accepts user-defined error-number
values from -20000 to -20999. The SQLCODE that is returned in the error
message is SQL0438N. The SQLSTATE contains class 'UD' plus three characters
that correspond to the last three digits of the error-number value.

message

A user-defined message with a maximum length of 70 bytes.

Example

The following example uses the RAISE_APPLICATION_ERROR procedure to
display error codes and messages that are specific to missing employee

information:

CREATE OR REPLACE PROCEDURE verify emp (
p_empno NUMBER

IS
V_ename emp.ename%TYPE;
v_job emp.job%TYPE;
v_mgr emp.mgr%sTYPE;

SQL Procedural Languages: Application Enablement and Support

v_hiredate emp.hiredate%TYPE;
BEGIN
SELECT ename, job, mgr, hiredate
INTO v_ename, v_job, v_mgr, v_hiredate FROM emp
WHERE empno = p_empno;
IF v_ename IS NULL THEN
RAISE_APPLICATION_ERROR(-20010, 'No name for ' || p_empno);
END IF;
IF v_job IS NULL THEN
RAISE_APPLICATION_ERROR(-20020, 'No job for' || p_empno);
END IF;
IF v_mgr IS NULL THEN
RAISE_APPLICATION_ERROR(-20030, 'No manager for ' || p_empno);
END IF;
IF v_hiredate IS NULL THEN
RAISE_APPLICATION_ERROR(-20040, 'No hire date for ' || p_empno);
END IF;
DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno ||
' validated without errors');
EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('SQLCODE: ' | SQLCODE) ;
DBMS_OUTPUT.PUT_LINE('SQLERRM: ' SQLERRM) ;
END;

CALL verify emp(7839);
SQLCODE: -438

SQLERRM: SQL0O438N Application raised error or warning with
diagnostic text: "No manager for 7839". SQLSTATE=UD030

RAISE statement (PL/SQL)

The RAISE statement raises a previously-defined condition.

Syntax

A\
A

»»—RAISE—condition

Description

condition
Specifies a previously-defined condition.

Example

The following example shows a procedure that raises a defined condition:

CREATE OR REPLACE PROCEDURE raise_demo (inval NUMBER) IS
evenno EXCEPTION;
oddno EXCEPTION;
BEGIN
IF MOD(inval, 2) = 1 THEN
RAISE oddno;
ELSE
RAISE evenno;
END IF;
EXCEPTION
WHEN evenno THEN
dbms_output.put_line(TO_CHAR(inval) || ' is even');
WHEN oddno THEN
dbms_output.put_line(TO_CHAR(inval) || ' is odd');
END raise_demo;

/

Chapter 2. PL/SQL support 163

SET SERVEROUTPUT ON;

CALL raise_demo;

Oracle-DB2 error mapping (PL/SQL)

PL/SQL error codes and exception names have corresponding DB2 error codes and
SQLSTATE values.

These error codes, exception names, and SQLSTATE values are summarized in

Table 9. Mapping of PL/SQL error codes and exception names to DB2 error codes and
SQLSTATE values

plsqlCode plsqlName db2Code db2State
-1 DUP_VAL_ON_INDEX -803 23505
+100 NO_DATA_FOUND +100 02000
-1012 NOT_LOGGED_ON -1024 08003
-1017 LOGIN_DENIED -30082 08001
-1476 ZERO_DIVIDE -801 22