
IBM DB2 9.7

for Linux, UNIX, and Windows

Visual Explain Tutorial

SC27-2462-00

���

IBM DB2 9.7

for Linux, UNIX, and Windows

Visual Explain Tutorial

SC27-2462-00

���

Note

Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on

page 95.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002, 2009.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this tutorial v

Part 1. Visual Explain Tutorial 1

Chapter 1. Lesson 1. Creating explain

snapshots 3

Creating the explain tables 3

Using explain snapshots 4

Creating explain snapshots for dynamic SQL or

XQuery statements 5

Creating explain snapshots for static SQL or XQuery

statements 6

What’s Next 6

Chapter 2. Lesson 2. Displaying and

using an access plan graph 7

Displaying an access plan graph by choosing from a

list of previously explained SQL or XQuery

statements 7

Reading the symbols in an access plan graph . . . 7

Using the zoom slider to magnify parts of a graph . 8

Getting more details about the objects in a graph . . 8

Getting statistics for tables, indexes, and table

functions 9

Getting details about operators in a graph . . . 9

Getting statistics for functions 10

Getting statistics for table spaces 10

Getting statistics for columns in an SQL or

XQuery statement 10

Getting information about configuration

parameters and bind options 10

Changing the appearance of a graph 10

What’s Next 11

Chapter 3. Lesson 3. Improving an

access plan in a single-partition

database environment 13

Working with access plan graphs 13

Running a query with no indexes and no statistics

in a single-partition database environment 13

What’s Next 17

Collecting current statistics for the tables and

indexes using runstats in a single-partition database

environment 17

What’s Next 21

Creating indexes on columns used to join tables in a

query in a single-partition database environment . . 21

What’s Next 26

Creating additional indexes on table columns in a

single-partition database environment 26

What’s Next 29

Chapter 4. Lesson 4. Improving an

access plan in a partitioned database

environment 31

Working with access plan graphs 31

Running a query with no indexes and no statistics

in a partitioned database environment 31

What’s Next 34

Collecting current statistics for the tables and

indexes using runstats in a partitioned database

environment 34

What’s Next 38

Creating indexes on columns used to join tables in a

query in a partitioned database environment . . . 38

What’s Next 42

Creating additional indexes on table columns in a

partitioned database environment 42

What’s Next 45

Part 2. Reference 47

Chapter 5. Visual Explain operators . . 49

CMPEXP operator 49

DELETE operator 49

EISCAN operator 49

FETCH 50

FILTER operator 50

GENROW operator 50

GRPBY operator 51

HSJOIN operator 51

INSERT operator 52

IXAND operator 52

IXSCAN 52

MSJOIN operator 53

NLJOIN operator 53

PIPE operator 54

RETURN operator 54

RIDSCN operator 54

RPD operator 55

SHIP operator 55

SORT operator 55

TBSCAN operator 56

TEMP operator 56

TQ operator 57

UNION operator 58

UNIQUE operator 58

UPDATE operator 59

XANDOR operator 59

XISCAN operator 60

XSCAN operator 62

Chapter 6. Visual Explain concepts . . 63

Access plan 63

Access plan graph 63

Access plan graph node 64

© Copyright IBM Corp. 2002, 2009 iii

Clustering 64

Container 64

Cost 65

Cursor blocking 65

Database-managed table space 65

Dynamic SQL or XQuery 66

Explain snapshot 66

Explainable statement 67

Explained statement 67

Operand 67

Operator 67

Optimizer 69

Package 69

Predicate 69

Query optimization class 70

Sample XML document fragment for Explain XML

operators 70

Selectivity of predicates 71

Star join 71

Static SQL or XQuery 72

System-managed table spaces 72

Table spaces 73

Visual Explain 73

Chapter 7. Visual Explain tasks 75

Creating an access plan using the Command Editor 75

Viewing a graphical representation of an access plan 75

Viewing the history of previously explained query

statements 77

Viewing explainable statements for a package . . . 79

Guidelines for creating indexes 80

Out-of-date access plans 80

Retrieving the access plan when using

LONGDATACOMPAT 81

Using RUNSTATS 81

Visual Explain support for earlier and later releases 82

Part 3. Appendixes 83

Appendix A. Overview of the DB2

technical information 85

DB2 technical library in hardcopy or PDF format . . 85

Ordering printed DB2 books 88

Displaying SQL state help from the command line

processor 89

Accessing different versions of the DB2 Information

Center 89

Displaying topics in your preferred language in the

DB2 Information Center 89

Updating the DB2 Information Center installed on

your computer or intranet server 90

Manually updating the DB2 Information Center

installed on your computer or intranet server . . . 91

DB2 tutorials 93

DB2 troubleshooting information 93

Terms and Conditions 94

Appendix B. Notices 95

Index 99

iv Visual Explain Tutorial

About this tutorial

The following tutorial provides a guide to the features of DB2® Visual Explain. By

completing the lessons in this tutorial you will learn how Visual Explain lets you

view the access plan for explained SQL or XQuery statements as a graph.

You will also learn to use the information available from such a graph to tune your

SQL queries for better performance.

Important: Access to Visual Explain through the Control Center tools has been

deprecated in Version 9.7 and might be removed in a future release. For more

information, see the “Control Center tools and DB2 administration server (DAS)

have been deprecated” topic in the What’s New for DB2 Version 9.7 book. Accessing

Visual Explain functionality through the IBM® Data Studio toolset has not been

deprecated.

Using its optimizer, the database manager examines your SQL queries and

determines how best to access your data. This path to the data is called the access

plan. Visual Explain enables you to see what the optimizer has done by allowing

you to look at the access plan that it selected to perform a particular query. You

can use Visual Explain to display the access plan as a graph. The graph is a visual

presentation of the database objects involved in a query (for example, tables and

indexes). It also includes the operations performed on those objects (for example,

scans and sorts) and shows the flow of data.

You can improve a query’s access to data by performing any or all of the following

tuning activities:

1. Tune your table design and reorganizing table data.

2. Create appropriate indexes.

3. Use the RUNSTATS command to provide the optimizer with current statistics.

4. Choose appropriate configuration parameters.

5. Choose appropriate bind options.

6. Design queries to retrieve only required data.

7. Work with an access plan.

8. Create explain snapshots.

9. Use an access plan graph to improve an access plan.

These performance-related activities correspond to those shown in the following

illustration. (Broken lines indicate actions that are required for Visual Explain.)

© Copyright IBM Corp. 2002, 2009 v

Learning objectives

The tutorial contains lessons on:

v Creating explain snapshots. These are requirements for displaying access plan

graphs.

v Displaying and manipulating an access plan graph.

v Performing tuning activities and examining how these improve your access plan.

Note: Performance tuning is divided into a lesson for single-partition database

environments and a lesson for partitioned database environments.

You will use the supplied SAMPLE database to work through the lessons. If it is

not already created, see the section on installing the SAMPLE database in the DB2

Information Center.

Time required

This tutorial should take approximately 60 minutes to finish. If you explore other

concepts related to this tutorial, it could take longer to complete.

Skill level

Advanced

Audience

Database administrators or application developers responsible for tuning SQL

queries.

Environment-specific information

Information marked with this icon pertains only to single-partition database

environments.

vi Visual Explain Tutorial

Information marked with this icon pertains only to partitioned database

environments

About this tutorial vii

viii Visual Explain Tutorial

Part 1. Visual Explain Tutorial

Visual Explain lets you view the access plan for explained SQL or XQuery

statements as a graph.

Important: Access to Visual Explain through the Control Center tools has been

deprecated in Version 9.7 and might be removed in a future release. For more

information, see the “Control Center tools and DB2 administration server (DAS)

have been deprecated” topic in the What’s New for DB2 Version 9.7 book. Accessing

Visual Explain functionality through the IBM Data Studio toolset has not been

deprecated.

You can use the information in the graph to tune your queries by performing the

following tasks:

v Viewing the statistics that were used at the time of optimization. You can

compare these statistics to the current catalog statistics to help you determine

whether rebinding the package might improve performance.

v Determining whether or not an index was used to access a table. If an index was

not used, Visual Explain helps you to determine which columns might benefit

from being indexed.

v Viewing the effects of performing various types of tuning by comparing the

before and after versions of the access plan graph for a query.

v Obtaining information about each operation in the “Access plan” on page 63

including the total estimated cost and number of rows retrieved (cardinality).

The following illustration shows the interaction between the DB2 optimizer and

Visual Explain invoked from the Control Center. (Broken lines indicate actions that

are required for Visual Explain.)

To learn how to use Visual Explain, you can work through the scenarios in the

Visual Explain Tutorial.

© Copyright IBM Corp. 2002, 2009 1

Prerequisites

v To dynamically explain SQL or XQuery statements, you will need a minimum of

INSERT privilege on the explain tables. If explain tables do not exist, they will

be created when you explain the SQL or XQuery statements.

v To view the details of explained statements, including statistics, you will need a

minimum of SELECT privilege on both the explain tables and on the system

catalog tables.

v To change explained statements, you will need a minimum of UPDATE privilege

on the explain tables.

v To remove explained statements, you will need a minimum of DELETE privilege

on the explain tables.

To start Visual Explain:

v From the Control Center, right-click a database name and select either Show

Explained Statements History or Explain Query.

v From the Command Editor, execute an explainable statement on the Interactive

page or the Script page.

v From the Query Patroller, click Show Access Plan from either the Managed

Queries Properties notebook or from the Historical Queries Properties notebook.

Troubleshooting Tips

v “Retrieving the access plan when using LONGDATACOMPAT” on page 81

v “Visual Explain support for earlier and later releases” on page 82

2 Visual Explain Tutorial

Chapter 1. Lesson 1. Creating explain snapshots

Creating explain snapshots that will help you understand the structure and

potential execution performance of your SQL or XQuery statements.

The SQL explain facility is used to capture information about the environment in

which a static or dynamic SQL or XQuery statement is compiled. The information

captured allows you to understand the structure and potential execution

performance of your SQL or XQuery statements. An explain snapshot is

compressed information that is collected when an SQL or XQuery statement is

explained. It is stored as a binary large object (BLOB) in the

EXPLAIN_STATEMENT table and contains the following information:

v The internal representation of the access plan, including its operators and the

tables and indexes accessed.

v The decision criteria used by the optimizer, including statistics for database

objects and the cumulative cost for each operation.

In order to display an access plan graph, Visual Explain requires the information

contained in an explain snapshot.

Creating the explain tables

This section demonstrates how to create explain tables.

To create explain snapshots, you must ensure that the following explain tables exist

for your user ID:

v EXPLAIN_INSTANCE

v EXPLAIN_STATEMENT

To check if they exist, use the list tables command. If these tables do not exist, you

must create them using the following instructions:

1. If the DB2 database manager has not already been started, issue the db2start

command.

2. From the CLP prompt, connect to the database that you want to use.

For this tutorial, connect to the SAMPLE database using the connect to sample

command.

3. Create the explain tables, using the sample command file that is provided in

the EXPLAIN.DDL file. This file is located in the sqllib\misc directory.

To run the command file, go to this directory and issue the db2 -tf

EXPLAIN.DDL command. This command file creates explain tables that are

prefixed with the connected user ID. This user ID must have CREATETAB

privilege on the database, or DBADM authority.

Note: In Version 9, the Explain Statement History window displays explained

records from both the SYSTOOLS schema and the schema of the current

authorization ID. You must have read privilege on the SYSTOOLS explain

tables in order for Visual Explain to retrieve the SYSTOOLS records and display

them in the Explain Statement History window. If you do not have read access,

these records will not be displayed. Also, if you have migrated from an earlier

version of the DB2 database manager, you need to run db2exmig to migrate the

explain tables.

© Copyright IBM Corp. 2002, 2009 3

Using explain snapshots

This section demonstrates how to use explain snapshots.

Four sample snapshots are provided to help you learn about Visual Explain.

Information about creating your own snapshots is provided in the following

sections, but you do not need to create your own snapshots to work with this

tutorial:

v Creating explain snapshots for dynamic SQL or XQuery statements

v Creating explain snapshots for static SQL or XQuery statements

The query used for the sample snapshots lists the name, department, and earnings

for all non-manager employees who earn more than 90% of the highest-paid

manager’s salary.

SELECT S.ID,S.NAME,O.DEPTNAME,SALARY+COMM

FROM ORG O, STAFF S

WHERE

 O.DEPTNUM = S.DEPT AND

 S.JOB <> ’Mgr’ AND

 S.SALARY+S.COMM > ALL (SELECT ST.SALARY*.9

 FROM STAFF ST

 WHERE ST.JOB=’Mgr’)

The query has two parts:

1. The subquery (in parentheses) produces rows of data that consists of 90% of

each manager’s salary. Because the subquery is qualified by ALL, only the

largest value from this table is retrieved.

2. The main query joins all rows in the ORG and STAFF tables where the

department numbers are the same, JOB does not equal ’Mgr’, and salary plus

commission is greater than the value that was returned from the subquery.

The main query contains the following three predicates:

1. O.DEPTNUMB = S.DEPT

2. S.JOB <> ’Mgr’

3. S.SALARY+S.COMM > ALL (SELECT ST.SALARY*.9

 FROM STAFF ST

 WHERE ST.JOB=’Mgr’)

These predicates represent, respectively:

1. A join predicate, which joins the ORG and STAFF tables where department

numbers are equal

2. A local predicate on the JOB column of the STAFF table

3. A local predicate on the SALARY and COMM columns of the STAFF table that

uses the result of the subquery.

To load the sample snapshots:

1. If the database manager has not already been started, issue the db2start

command.

2. Ensure that explain tables exist in your database.

To do this, follow the instructions in Creating the explain tables.

3. Connect to the database that you want to use.

For this tutorial you will connect to the SAMPLE database. To connect to the

SAMPLE database, from the CLP prompt issue the connect to sample

command. If it is not already created, see the section on installing the SAMPLE

database in the DB2 Information Center.

4 Visual Explain Tutorial

4. To import the predefined snapshots, run the DB2 command file VESAMPL.DDL

v

This file is located in the sqllib\samples\ve directory.

v

This file is located in the sqllib\samples\ve\inter directory.

To run the command file, go to this directory and issue the db2 -tf vesampl.ddl

command.

v This command file must be run using the same user ID that was used to

create the explain tables.

v This command file only imports the predefined snapshots. It does not create

tables or data. The tuning activities described later (for example, CREATE

INDEX and runstats), will be run on tables and data in the SAMPLE

database.

You are now ready to display and use access plan graphs.

Creating explain snapshots for dynamic SQL or XQuery statements

This lesson outlines how to create explain snapshots for dynamic SQL or XQuery

statements

Note: The creating explain snapshot information in this section is provided for

your reference. Since you are provided with sample explain snapshots, it is not

necessary to complete this task in order to work through the tutorial.

Follow these steps to create an explain snapshot for a dynamic SQL or XQuery

statement:

1. If the database manager has not already been started, issue the db2start

command.

2. Ensure that explain tables exist in your database.

To do this, follow the instructions in “Creating the explain tables” on page 3.

3. From the CLP prompt, connect to the database that you want to use.

For example, to connect to the SAMPLE database, issue the connect to sample

command. To create the SAMPLE database, see the section on installing the

SAMPLE database in the DB2 Information Center.

4. Create an explain snapshot for a dynamic SQL or XQuery statement, using

either of the following commands from the CLP prompt:

v To create an explain snapshot without executing the SQL or XQuery

statement, issue the set current explain snapshot=explain command.

v To create an explain snapshot and execute the SQL or XQuery statement,

issue the set current explain snapshot=yes command.

This command sets the explain special register. Once it is set, all subsequent

SQL or XQuery statements are affected. For more information, see the

CURRENT EXPLAIN SNAPSHOT special register and the SET CURRENT

EXPLAIN SNAPSHOT statement.

5. Submit your SQL or XQuery statements from the CLP prompt.

6. To view the access plan graph for the snapshot, refresh the Explained

Statements History window (available from the Control Center), and

double-click on the snapshot.

7. Optional. To turn off the snapshot facility, issue the set current explain

snapshot=no command after you submit your SQL or XQuery statements.

Chapter 1. Creating explain snapshots 5

Creating explain snapshots for static SQL or XQuery statements

This lesson outlines how to create explain snapshots for static SQL or XQuery

statements

Note: The creating explain snapshot information in this section is provided for

your reference. Since you are provided with sample explain snapshots, it is not

necessary to complete this task in order to work through the tutorial.

Follow these steps to create an explain snapshot for a static SQL or XQuery

statement:

1. If the database manager has not already been started, issue the db2start

command.

2. Ensure that explain tables exist in your database.

To do this, follow the instructions in “Creating the explain tables” on page 3.

3. From the CLP prompt, connect to the database that you want to use.

For example, to connect to the SAMPLE database, issue the connect to sample

command.

4. Create an explain snapshot for a static SQL or XQuery statement by using the

EXPLSNAP option when binding or preparing your application.

For example, issue the bind your file explsnap yes command.

5. Optional. To view the access plan graph for the snapshot, refresh the Explained

Statements History window (available from the Control Center), and

double-click on the snapshot.

For information about using the EXPLSNAP option see “Bind considerations”,

CURRENT EXPLAIN SNAPSHOT special register, the BIND and REBIND

commands, and the EXPLAIN statement.

What’s Next

Moving on to lesson 2.

In ″Lesson 2. Displaying and using an access plan graph,″ you will learn how to

view an access plan graph and understand its contents.

6 Visual Explain Tutorial

Chapter 2. Lesson 2. Displaying and using an access plan

graph

In this lesson, you will use the Access Plan Graph window to display and use an

access plan graph.

An access plan graph is a graphical representation of an access plan. From it, you

can view the details for:

v Tables (and their associated columns) and indexes

v Operators (such as table scans, sorts, and joins)

v Table spaces and functions

You can display an access plan graph by:

v Choosing from a list of previously explained statements.

v Choosing from a list of explainable statements in a package.

v Dynamically explaining as SQL or XQuery statement.

Because you will be working with the access plan graphs for the sample explain

snapshots that you loaded in Lesson 1, you will choose from a list of previously

explained statements. For information on the other methods of displaying access

plan graphs refer to the Visual Explain Help.

Displaying an access plan graph by choosing from a list of previously

explained SQL or XQuery statements

The graph is read from bottom to top. The first step of the query is listed at the

bottom of the graph and the last step is listed at the top.

To display an access plan graph by choosing from a list of previously explained

statements:

1. In the Control Center, expand the object tree until you find the SAMPLE

database.

2. Right-click on the database and select Show explained statements history from

the pop-up menu.

The Explained Statements History window opens.

3. You can only display an access plan graph for a statement that has an explain

snapshot. Statements that qualify will have an entry of YES in the Explain

Snapshot column. Double-click on the entry identified as Query Number 1

(you might need to scroll to the right to find the Query Number column).

The Access Plan Graph window for the statement opens.

Reading the symbols in an access plan graph

The access plan graph shows the structure of an access plan as a tree.

The nodes of the tree represent:

v Tables, shown as rectangles

v Indexes, shown as diamonds

v Operators, shown as octagons. TQ operators, shown as parallelograms

© Copyright IBM Corp. 2002, 2009 7

v Table functions, shown as hexagons

For operators, the number in brackets to the right of the operator type, is a unique

identifier for each node. The number below the operator type, is the cumulative

cost.

Using the zoom slider to magnify parts of a graph

This section outlines the use of the zoom slider to magnify parts of the graph.

When you display an access plan graph, the entire graph is shown, and you may

not be able to see the details that distinguish each node.

From the Access Plan Graph window, use the zoom slider to magnify parts of a

graph:

1. Position the mouse pointer over the small scroll box in the Zoom slider bar at

the left side of the graph.

2. Left-click and drag the slider until the graph is at the level of magnification

you want.

To view different parts of the graph, use the scroll bar.

To view a large and complicated access plan graph, use the Graph Overview

window. You can use this window to see which part of the graph you are

viewing, and to zoom in on or scroll through the graph. The section in the

zoom box is shown in the access plan.

To scroll through the graph, position the mouse pointer over the highlighted

area in the Graph Overview window, press and hold mouse button 1, then

move the mouse until you see the part of the access graph you want.

Getting more details about the objects in a graph

This section shows you how to access more information about the objects in an

access plan graph.

8 Visual Explain Tutorial

You can access more information about the objects in an access plan graph.

You can display:

v System catalog statistics for objects such as:

– Tables, indexes, or table functions

– Information about operators, such as their costs, properties, and input

arguments

– Built-in functions or user-defined functions

– Table spaces

– Columns referenced in an SQL or XQuery statement
v Information about configuration parameters and bind options (optimizing

parameters).

Getting statistics for tables, indexes, and table functions

To view catalog statistics for a single table (rectangular), index (diamond), or table

function (hexagon) in a graph, double-click on its node. A Statistics window opens

for the selected objects, displaying information about the statistics that were in

effect at the time the snapshot was created, as well as those that currently exist in

the system catalog tables.

To view catalog statistics for multiple tables, indexes, or table functions in a graph,

select each one by clicking on it (it is high-lighted); then select Node->Show

Statistics. A statistics window opens for each of the selected objects. (The window

might be stacked and some dragging and dropping might be required in order to

access them all.)

If the entry for STATS_TIME in the Explained column contains the entry Statistics

not updated, then no statistics existed when the optimizer created the access plan.

Therefore, if the optimizer required certain statistics to create an access plan, it

used defaults. If default statistics were used by the optimizer, they are identified as

(default) in the Explained column.

Getting details about operators in a graph

To view catalog statistics for a single operator (octagon), double-click on its node.

An Operator details window opens for the selected operator, displaying

information such as:

v The estimated cumulative costs (I/O, CPU instructions, and total cost)

v The cardinality (that is, the estimated number of rows searched) so far

v Tables that have been accessed and joined so far in the plan

v Columns of those tables that have been accessed so far

v Predicates that have been applied so far, including their estimated selectivity

v The input arguments for each operator

To view details for multiple operators, select each one by clicking on it (it is

highlighted); then select Node->Show Details. A Statistics window opens for each

of the selected objects. (The windows might be stacked and some dragging and

dropping might be required in order to access them all.)

Chapter 2. Displaying and using an access plan graph 9

Getting statistics for functions

To view catalog statistics for built-in functions and user-defined functions, select

Statement->Show statistics->Functions. Select one or more entries from the list

displayed on the Functions window. A Function Statistics window opens for each

of the selected functions.

Getting statistics for table spaces

To view catalog statistics for table spaces, select Statement->Show statistics->Table

spaces. Select one or more entries from the list displayed on the Table Spaces

window. A Table Space Statistics window opens for each of the selected table

spaces.

Getting statistics for columns in an SQL or XQuery statement

To get statistics for the columns referenced in an SQL or XQuery statement:

1. Double-click on a table in the access plan graph.The Table Statistics window

opens.

2. Click the Referenced Columns push button. The Referenced Columns window

opens, listing that columns in the table.

3. Select one or more columns from the list.A Referenced Column Statistics

window opens for each of the columns selected.

Getting information about configuration parameters and bind

options

To view information about configuration parameters and bind options

(optimization parameters), select Statement->Show optimization parameters from

the Access Plan Graph window. The Optimization Parameters window opens,

displaying information about the parameter values that were in effect at the time

the snapshot was created, as well as the current values.

Changing the appearance of a graph

This section outlines the steps required to change the appearance of a graph.

To change various characteristics of how a graph appears:

1. From the Access Plan Graph window, select View->Settings. The Access Plan

Graph Settings notebook opens.

2. To change the background color, choose the Graph tab.

3. To change the color of various operators, use the Basic, Extend, Update, and

Miscellaneous tabs.

4. To change to color of table, index, or table function nodes, select the Operand

tab.

5. To specify which information is shown in operator nodes (types of cost or

cardinality, which is the estimated number of rows returned so far), choose the

Operator tab.

6. To specify whether the schema names or user IDs are shown in the table nodes,

select the Operand tab.

7. To specify whether nodes are shown two-dimensionally or three-dimensionally,

select the Node tab.

10 Visual Explain Tutorial

8. To update the graph with the options you chose and save the settings, click

Apply.

What’s Next

Moving on to lesson 3 or 4.

If you are working in a single-partition database environment, go to Chapter 3,

“Lesson 3. Improving an access plan in a single-partition database environment,”

on page 13, where you will learn how different tuning activities can change and

improve an access plan.

If you are working in a partitioned database environment, go to Chapter 4, “Lesson

4. Improving an access plan in a partitioned database environment,” on page 31,

where you will learn how different tuning activities can change and improve an

access plan.

Chapter 2. Displaying and using an access plan graph 11

12 Visual Explain Tutorial

Chapter 3. Lesson 3. Improving an access plan in a

single-partition database environment

In this lesson, you will learn how the access plan and related windows for the

basic query change when you perform various tuning activities.

Using a series of examples, accompanied by illustrations, you will learn how the

estimated total cost for the access plan of even a simple query can be improved by

using the RUNSTATS command and adding appropriate indexes.

As you gain experience with Visual Explain, you will discover other ways to tune

queries.

Working with access plan graphs

Using the four sample explain snapshots as examples, you will learn how tuning is

an important part of database performance.

The queries associated with the explain snapshots are numbered 1 - 4. Each query

uses the same SQL or XQuery statement (described in Lesson 1):

SELECT S.ID,S.NAME,O.DEPTNAME,SALARY+COMM

FROM ORG O, STAFF S

WHERE

 O.DEPTNUMB = S.DEPT AND

 S.JOB <> ’Mgr’ AND

 S.SALARY+S.COMM > ALL (SELECT ST.SALARY*.9

 FROM STAFF ST

 WHERE ST.JOB=’Mgr’)

But each iteration of the query uses more tuning technics than the previous

execution.

For example, Query 1 has had no performance tuning, while Query 4 has had the

most. The difference in the queries are described below:

Query 1

Running a query with no indexes and no statistics

Query 2

Collecting current statistics for the tables and indexes in a query

Query 3

Creating indexes on columns used to join tables in a query

Query 4

Creating additional indexes on table columns

Running a query with no indexes and no statistics in a single-partition

database environment

In this example, the access plan was created for the SQL query with no indexes

and no statistics.

To view the access plan graph for this query (Query 1):

© Copyright IBM Corp. 2002, 2009 13

1. In the Control Center, expand the object tree until you find the SAMPLE

database.

2. Right-click on the database and select Show explained statements history from

the pop-up menu.

The Explained Statements History window opens.

3. Double-click on the entry identified as Query Number 1 (you might need to

scroll to the right to find the Query Number column)

The Access Plan Graph window for the statement opens.

14 Visual Explain Tutorial

Answering the following questions will help you understand how to improve the

query.

1. Do current statistics exist for each table in the query?

To check if current statistics exist for each table in the query, double-click each

table node in the access plan graph. In the Table Statistics window that opens,

the STATS_TIME row under the Explained column contains the words

″Statistics not updated″ if no statistics had been collected at the time when the

snapshot was created.

If current statistics do not exist, the optimizer uses default statistics, which may

differ from the actual statistics. Default statistics are identified by the word

″default″ under the Explained column in the Table Statistics window.

According to the information in the Table Statistics window for the ORG table,

the optimizer used default statistics (as indicated next to the explained values).

Default statistics were used because actual statistics were not available when

the snapshots were created (as indicated in the STATS_TIME row).

Chapter 3. Improving an access plan in a single-partition database environment 15

2. Does this access plan use the most effective methods of accessing data?

This access plan contains table scans, not index scans. Table scans are shown as

octagons and are labeled “TBSCAN operator” on page 56. If Index scans had

been used they would appear as diamonds and would be labeled “IXSCAN”

on page 52. The use of an index that was created for a table is more

cost-effective than a table scan if small amounts of data are being extracted.

3. How effective is this access plan?

You can determine the effectiveness of an access plan only if it is based on

actual statistics. Since the optimizer used default statistics in the access plan,

you cannot determine how effective the plan is.

In general, you should make a note of the total estimated “Cost” on page 65 for

the access plan for later comparison with revised access plans. The cost listed in

each node is cumulative, from the first steps of your query up to and including

the node.

In the Access Plan Graph window, the total cost is approximately 1,067

timerons, shown in RETURN (1) at the top of the graph. The total estimated

cost is also shown in the top area of the window.

16 Visual Explain Tutorial

What’s Next

Moving on to query 2.

Query 2 looks at an access plan for the basic query after runstats has been run.

Using the runstats command provides the optimizer with current statistics on all

tables accessed by the query.

Collecting current statistics for the tables and indexes using runstats

in a single-partition database environment

This example builds on the access plan described in Query 1 by collecting current

statistics with the runstats command.

It is highly recommended that you use the runstats command to collect current

statistics on tables and indexes, especially if significant update activity has

occurred or new indexes have been created since the last time the runstats

command was executed. This provides the optimizer with the most accurate

information with which to determine the best access plan. If current statistics are

not available, the optimizer can choose an inefficient access plan based on

inaccurate default statistics.

Be sure to use runstats after making your table updates; otherwise, the table might

appear to the optimizer to be empty. This problem is evident if cardinality on the

Chapter 3. Improving an access plan in a single-partition database environment 17

Operator Details window equals zero. In this case, complete your table updates,

rerun the runstats command, and recreate the explain snapshots for affected tables.

To view the access plan graph for this query (Query 2), in the Explained

Statements History window, double-click on the entry identified as Query Number

2. The Access Plan Graph window for this execution of the statement opens.

Answering the following questions will help you understand how to improve the

query.

1. Do current statistics exist for each table in the query?

The Table Statistics window for the ORG table shows that the optimizer used

actual statistics (the STATS_TIME value is the actual time that the statistics

were collected). The accuracy of the statistics depends on whether there was

significant changes to the contents of the tables since the runstats command

was run.

18 Visual Explain Tutorial

2. Does this access plan use the most effective methods of accessing data?

Like Query 1, the access plan in Query 2 uses table scans (“TBSCAN operator”

on page 56) not index scans (“IXSCAN” on page 52). Even though current

statistics exist, an index scan was not done because there are no indexes on the

columns that were used by the query. One way to improve the query would be

to provide the optimizer with indexes on columns that are used to join tables

(that is, on columns that are used in join “Predicate” on page 69). In this

example, this is the first merge scan join: HSJOIN (7).

Chapter 3. Improving an access plan in a single-partition database environment 19

In the Operator Details window for the HSJOIN (7) operator, look at the Join

predicates section under Input arguments. The columns used in this join

operation are listed under the Text column. In this example, these columns are

DEPTNUMB and DEPT.

20 Visual Explain Tutorial

3. How effective is this access plan?

Access plans based on up-to-date statistics always produce a realistic estimated

cost (measured in timerons). Because the estimated cost in Query 1 was based

on default statistics, the cost of the two access plan graphs cannot be compared

to determine which one is more effective. Whether the cost is higher or lower is

not relevant. You must compare the cost of access plans that are based on

actual statistics to get a valid measurement of effectiveness.

What’s Next

Moving on to query 3.

Query 3 looks at the effects of adding indexes on the DEPTNUMB and DEPT

columns. Adding indexes on the columns that are used in join predicates can

improve performance.

Creating indexes on columns used to join tables in a query in a

single-partition database environment

This example builds on the access plan described in Query 2 by creating indexes

on the DEPT column on that STAFF table and on the DEPTNUMB column on the

ORG table.

Note: Recommended indexes can be created using the Design Advisor.

To view the access plan graph for this query (Query 3): in the Explained

Statements History window, double-click the entry identified as Query Number 3.

The Access Plan Graph window for this execution of the statement opens.

Note: Even though an index was created for DEPTNUM, the optimizer did not use

it.

Chapter 3. Improving an access plan in a single-partition database environment 21

Answering the following questions will help you understand how to improve the

query.

1. What has changed in the access plan with indexes?

A “NLJOIN operator” on page 53, NLJOIN (7), has replaced the merge scan

join HSJOIN (7) that was used in Query 2. Using a nested loop join resulted in

a lower estimated cost than a merge scan join because this type of join does not

require any sort or temporary tables.

A new diamond-shaped node, I_DEPT, has been added just above the STAFF

table. This node represents the index that was created on DEPT, and it shows

that the optimizer used an index scan instead of a table scan to determine

which rows to retrieve.

22 Visual Explain Tutorial

In this portion of the access plan graph, notice that a new index (I_DEPT) was

created on the DEPT column and IXSCAN (17) was used to access the STAFF

table. In Query 2, a table scan was used to access the STAFF table.

2. Does this access plan use the most effective methods of accessing data?

As a result of adding indexes, an “IXSCAN” on page 52 node, IXSCAN (17),

was used to access the STAFF table. Query 2 did not have an index; therefore, a

table scan was used in that example.

The “FETCH” on page 50 node, FETCH (11), shows that in addition to using

the index scan to retrieve the column DEPT, the optimizer retrieved additional

columns from the STAFF table, using the index as a pointer. In this case, the

combination of index scan and fetch is calculated to be less costly than the full

table scan used in the previous access plans.

Note: The node for the STAFF table appears twice, to show its relationship

both to the index for DEPT and to the FETCH operation.

Chapter 3. Improving an access plan in a single-partition database environment 23

The access plan for this query shows the effect of creating indexes on columns

involved in join predicates. Indexes can also speed up the application of local

predicates. Let’s look at the local predicates for each table in this query to see

how adding indexes to columns referenced in local predicates might affect the

access plan.

In the Operator Details window for the FETCH (11) operator, look at the

columns under Cumulative Properties. The column used in the predicate for

this fetch operation is JOB, as shown in the Predicates section.

Note: The selectivity of this predicate is .69. This means that with this

predicate, 69% of the rows will be selected for further processing.

24 Visual Explain Tutorial

The Operator Details window for the FETCH (11) operator shows the columns

being used in this operation. You can see that DEPTNAME is listed in the first

row beside Columns retrieve under Input arguments.

3. How effective is this access plan?

Chapter 3. Improving an access plan in a single-partition database environment 25

This access plan is more cost effective than the one from the previous example.

The cumulative cost has been reduced from approximately 1,755 timerons in

Query 2 to approximately 959 timerons in Query 3.

However, the access plan for Query 3 shows an index scan IXSCAN (17) and a

FETCH (11) for the STAFF table. While an index scan combined with a fetch

operation is less costly than a full table scan, it means that for each row

retrieved, the table is accessed once and the index is accessed once. Let’s try to

reduce this double access on the STAFF table.

What’s Next

Moving on to query 4.

Query 4 reduces the fetch and index scan to a single index scan without a fetch.

Creating additional indexes might reduce the estimated cost for the access plan.

Creating additional indexes on table columns in a single-partition

database environment

This example builds on the access plan described in Query 3 by creating an index

on the JOB column in the STAFF table, and adding DEPTNAME to the existing

index in the ORG table. (Adding a separate index could cause an additional

access.)

To view the access plan graph for this query (Query 4): in the Explained

Statements History window, double-click the entry identified as Query Number 4.

The Access Plan Graph window for this execution of the statement opens.

26 Visual Explain Tutorial

Answering the following questions will help you understand how to improve the

query.

1. What changed in this access plan as a result of creating additional indexes?

The optimizer has taken advantage of the index created on the JOB column in

the STAFF table (represented by a diamond labeled I_JOB) to further refine this

access plan.

Chapter 3. Improving an access plan in a single-partition database environment 27

In the middle portion of the access plan graph, notice that for the ORG table,

the previous index scan and fetch have been changed to an index scan only

IXSCAN (9). Adding the DEPTNAME column to the index on the ORG table

has allowed the optimizer to eliminate the extra access involving the fetch.

28 Visual Explain Tutorial

2. How effective is this access plan?

This access plan is more cost effective than the one from the previous example.

The cumulative cost has been reduced from approximately 1,370 timerons in

Query 3 to approximately 959 timerons in Query 4.

What’s Next

Improving the performance of your own SQL or XQuery statements.

Refer to the DB2 Information Center to find detailed information on additional steps

that you can take to improve performance. You can then return to Visual Explain

to access the impact of your actions.

Chapter 3. Improving an access plan in a single-partition database environment 29

30 Visual Explain Tutorial

Chapter 4. Lesson 4. Improving an access plan in a

partitioned database environment

You will learn how the access plan and related windows for the basic query

change when you perform various tuning activities.

Using a series of examples, accompanied by illustrations, you will learn how the

estimated total cost for the access plan of even a simple query can be improved by

using the runstats command and adding appropriate indexes.

As you gain experience with Visual Explain, you will discover other ways to tune

queries.

Working with access plan graphs

Using the four sample explain snapshots as examples, you will learn how tuning is

an important part of database performance.

The queries associated with the explain snapshots are number 1 - 4. Each query

uses the same SQL or XQuery statement (described in Lesson 1):

SELECT S.ID,SNAME,O.DEPTNAME,SALARY+COMM

FROM ORG O, STAFF S

WHERE

 O.DEPTNUMB = S.DEPT AND

 S.JOB <> ’Mgr’ AND

 S.SALARY+S.COMM > ALL (SELECT ST.SALARY*.9

 FROM STAFF ST

 WHERE ST.JOB=’Mgr’)

ORDER BY S.NAME

But each iteration of the query uses more tuning technics than the previous

execution. For example, Query 1 has had no performance tuning, while Query 4

has had the most. The differences in the queries are described below:

Query 1

Running a query with no indexes and no statistics

Query 2

Collecting current statistics for the tables and indexes in a query

Query 3

Creating indexes on columns used to join tables in a query

Query 4

Creating additional indexes on table columns

These examples were produced on an RS/6000® SP™ machine with 7 physical

nodes using inter-partition parallelism.

Running a query with no indexes and no statistics in a partitioned

database environment

In this example, the access plan was created for the SQL query with no indexes

and no statistics.

To view the access plan graph for this query (Query 1):

© Copyright IBM Corp. 2002, 2009 31

1. In the Control Center, expand the object tree until you find the SAMPLE

database.

2. Right-click the database and select Show explained statements history from

the pop-up menu.

The Explained Statements History window opens.

3. Double-click the entry identified as Query Number 1 (you might need to scroll

to the right to find the Query Number column).

The Access Plan Graph window for the statement opens.

Answering the following questions will help you understand how to improve the

query:

1. Do current statistics exist for each table in the query?

To check if current statistics exist for each table in the query, double-click each

table node in the access plan graph. In the corresponding Table Statistics

window that opens, the STATS_TIME row under the Explained column

contains the words ″Statistics not updated″ indicating that no statistics had

been collected at the time when the snapshot was created.

If current statistics do not exist, the optimizer uses default statistics, which

might differ from the actual statistics. Default statistics are identified by the

word ″default″ under the Explained column in the Table Statistics window.

According to the information in the Table Statistics window for the ORG table,

the optimizer used default statistics (as indicated next to the explained values).

Default statistics were used because actual statistics were not available when

the snapshot was created (as indicated in the STATS_TIME row).

32 Visual Explain Tutorial

2. Does this access plan use the most effective methods of accessing data?

This access plan contains table scans, not index scans. Table scans are shown as

octagons and are labeled TBSCAN operator. If Index scans had been used they

would appear as diamonds and be labeled IXSCAN. The use of an index that

was created for a table is more cost-effective than a table scan if small amounts

of data are being extracted.

3. How effective is this plan?

You can determine the effectiveness of an access plan only if it is based on

actual statistics. Since the optimizer used default statistics in the access plan,

you cannot determine how effective the plan is.

In general, you should make note of the total estimated Cost for the access plan

for later comparison with revised access plans. The cost listed in each node is

cumulative, from the first steps of your query up to and including the node.

Note: For partitioned databases, this is the cumulative cost for the node that

uses the most resources.

In the Access Plan Graph window, the total cost is approximately 1,234

timerons, shown in RETURN (1) at the top of the graph. The total estimated

cost is also shown in the top area of the window.

Chapter 4. Improving an access plan in a partitioned database environment 33

What’s Next

Moving on to query 2.

Query 2 looks at an access plan for the basic query after runstats has been run.

Using the runstats command provides the optimizer with current statistics on all

tables accessed by the query.

Collecting current statistics for the tables and indexes using runstats

in a partitioned database environment

This example builds on the access plan described in Query 1 by collecting current

statistics with the runstats command.

It is highly recommended that you use the runstats command to collect current

statistics on tables and indexes, especially if significant update activity has

occurred or new indexes have been created since the last time the runstats

command was executed. This provides the optimizer with the most accurate

information with which to determine the best access plan. If current statistics are

not available, the optimizer can choose an inefficient access plan based on

inaccurate default statistics.

Be sure to use runstats after making your table updates; otherwise, the table might

appear to the optimizer to be empty. This problem is evident if cardinality on the

34 Visual Explain Tutorial

Operator Details window equals zero. In this case, complete your table updates,

rerun the runstats command, and recreate the explain snapshot for affected tables.

To view the access plan graph for this query (Query 2): in the Explain Statements

History window, double-click the entry identified as Query Number 2. The Access

Plan Graph window for this execution of the statement opens.

Answering the following questions will help you understand how to improve the

query.

1. Do current statistics exist for each table in the query?

The Table Statistics window for the ORG table shows that the optimizer used

actual statistics (the STATS_TIME value is the actual time that the statistics

were collected). The accuracy of the statistics depends on whether there were

significant changes to the contents of the tables since the runstats command

was run.

Chapter 4. Improving an access plan in a partitioned database environment 35

2. Does this access plan use the most effective methods of accessing data?

Like Query 1, the access plan in Query 2 uses table scans (TBSCAN operator)

not index scans (IXSCAN). Even though current statistics exist, an index scan

was not done because there are no indexes on the columns that were used by

the query. One way to improve the query would be to provide the optimizer

with indexes on columns that are used to join tables (that is, on columns that

are used in join Predicates). In this example, this is the first merge scan join:

HSJOIN (9).

36 Visual Explain Tutorial

In the Operator Details window for the HSJOIN (9) operator, look at the Join

predicates section under Input arguments. The columns used in this join

operation are listed under the Text column. in this example, these columns are

DEPTNUMB and DEPT.

Chapter 4. Improving an access plan in a partitioned database environment 37

3. How effective is this access plan?

Access plans based on up-to-date statistics always produce a realistic estimated

cost (measured in timerons). Because the estimated cost in Query 1 was based

on default statistics, the cost of the two access plan graphs cannot be compared

to determine which one is more effective. Whether the cost is higher or lower is

not relevant. You must compare the cost of access plans that are based on

actual statistics to get a valid measurement of effectiveness.

What’s Next

Moving on to query 3.

Query 3 looks at the effects of adding indexes on the DEPTNUMB and DEPT

columns. Adding indexes on the columns that are used in join predicates can

improve performance.

Creating indexes on columns used to join tables in a query in a

partitioned database environment

This example builds on the access plan described in Query 2 by creating indexes

on the DEPT column on the STAFF table and on the DEPTNUMB column on the

ORG table.

Note: Recommended indexes can be created using the Design Advisor.

To view the access plan graph for this query (Query 3): in the Explained

Statements History window, double-click the entry identified as Query Number 3.

The Access Plan Graph window for this execution of the statement opens.

Note: Even though an index was created for DEPTNUM, the optimizer did not use

it.

38 Visual Explain Tutorial

Answering the following questions will help you understand how to improve the

query.

1. What has changed in the access plan with indexes?

A new diamond-shaped node, I_DEPT, has been added just above the STAFF

table. This node represents the index that was created on DEPT, and it shows

that the optimizer used an index scan instead of a table scan to determine

which rows to retrieve.

Chapter 4. Improving an access plan in a partitioned database environment 39

2. Does this access plan use the most effective methods of accessing data?

The access plan for this query shows the effect of creating indexes on the

DEPTNUMB column of the ORG table, resulting in FETCH (15) and IXSCAN

(21) and on the DEPT column of the STAFF table. Query 2 did not have this

index; therefore, a table scan was used in that example.

40 Visual Explain Tutorial

The Operator Details window for the FETCH (15) operator shows the columns

being used in this operation.

Chapter 4. Improving an access plan in a partitioned database environment 41

The combination of index and fetch are calculated to be less costly than the full

table scans used in the previous access plans.

3. How effective is this access plan?

This access plan is more effective than the one from the previous example. The

cumulative cost has been reduced from approximately 1,214 timerons in Query

2 to approximately 755 timerons in Query 3.

What’s Next

Moving on to query 4.

Query 4 reduces the fetch and index scan to a single index scan without a fetch.

Creating additional indexes can reduce the estimated cost for the access plan.

Creating additional indexes on table columns in a partitioned database

environment

This example builds on the access plan described in Query 3 by creating an index

on the JOB column in the STAFF table, and adding DEPTNAME to the existing

index in the ORG table. (Adding a separate index could cause an additional

access.)

42 Visual Explain Tutorial

To view the access plan graph for this query (Query 4): in the Explained

Statements History window, double-click the entry identified as Query Number 4.

The Access Plan Graph window for this execution of the statement opens.

Answering the following questions will help you understand how to improve the

query.

1. What changes in this process plan as a result of creating additional indexes?

In the middle portion of the access plan graph, notice that for the ORG table,

the previous table scan has been changed to an index scan, IXSCAN (7).

Adding the DEPTNAME column to the index on the ORG table has allowed

the optimizer to refine the access involving the table scan.

Chapter 4. Improving an access plan in a partitioned database environment 43

In the bottom portion of the access plan graph, note that for the STAFF table

the previous index scan and fetch have been changed to an index scan only

IXSCAN (39). Creating the JOB index on the STAFF table has allowed the

optimizer to eliminate the extra access involving the fetch.

44 Visual Explain Tutorial

2. How effective is this access plan?

This access plan is more cost effective than the one from the previous example.

The cumulative cost has been reduced from approximately 753 timerons in

Query 3 to approximately 288 timerons in Query 4.

What’s Next

Improving the performance of your own SQL or XQuery statements.

Refer to the DB2 Information Center to find detailed information on additional steps

that you can take to improve performance. You can then return to Visual Explain

to access the impact of your actions.

Chapter 4. Improving an access plan in a partitioned database environment 45

46 Visual Explain Tutorial

Part 2. Reference

© Copyright IBM Corp. 2002, 2009 47

48 Visual Explain Tutorial

Chapter 5. Visual Explain operators

An operator is either an action that must be performed on data, or the output from

a table or an index, when the access plan for an SQL or XQuery statement is

executed. This section contains a list of the operators that can appear in an access

plan graph.

CMPEXP operator

This operator is for debug mode only.

Operator name: CMPEXP

Represents: The computation of expressions required for intermediate or final

results.

DELETE operator

This operator represents the deletion of rows from a table.

Operator name: DELETE

Represents: The deletion of rows from a table.

This operator represents a necessary operation. To improve access plan costs,

concentrate on other operators (such as scans and joins) that define the set of rows

to be deleted.

Performance Suggestion:

v If you are deleting all rows from a table, consider using the DROP TABLE

statement or the LOAD REPLACE command.

EISCAN operator

This operator scans a user defined index to produce a reduced stream of rows.

Operator name: EISCAN

Represents: The scanning uses the multiple start/stop conditions from the user

supplied range producer function.

This operation is performed to narrow down the set of qualifying rows before

accessing the base table (based on predicates).

Performance Suggestion:

v Over time, database updates can cause an index to become fragmented, resulting

in more index pages than necessary. This can be corrected by dropping and

recreating the index, or reorganizing the index.

v If statistics are not current, update them using the runstats command.

© Copyright IBM Corp. 2002, 2009 49

FETCH

This operator represents the fetching of columns from a table.

Operator name: FETCH

Represents: The fetching of columns from a table using a specific row identifier

(RID).

Performance suggestions:

v Expand index keys to include the fetched columns so that the data pages do not

have to be accessed.

v Find the index related to the fetch, and double-click on its node to display its

statistics window. Ensure that the degree of clustering is high for the index.

v Increase the buffer size if the input/output (I/O) incurred by the fetch is greater

than the number of pages in the table.

v If statistics are not current, update them.

The quantile and frequent value statistics provide information on the selectivity

of predicates, which determines when index scans are chosen over table scans.

To update these statistics, use the runstats command on a table with the WITH

DISTRIBUTION clause.

FILTER operator

This operator represents how data is filtered.

Operator name: FILTER

Represents: The application of residual predicates so that data is filtered based on

the criteria supplied by the predicates.

Performance suggestions:

v Ensure that you have used predicates that retrieve only the data you need. For

example, ensure that the selectivity value for the predicates represents the

portion of the table that you want returned.

v Ensure that the optimization class is at least 3 so that the optimizer uses a join

instead of a subquery. If this is not possible, try rewriting the SQL query by

hand to eliminate the subquery.

GENROW operator

This operator is used by the optimizer to generate rows of data.

Operator name: GENROW

Represents: A built-in function that generates a table of rows, using no input from

tables, indexes, or operators.

GENROW can be used by the optimizer to generate rows of data (for example, for

an INSERT statement or for some IN-lists that are transformed into joins).

To view the estimated statistics for the tables generated by the GENROW function,

double-click on its node.

50 Visual Explain Tutorial

GRPBY operator

This operator represents the grouping of rows.

Operator name: GRPBY

Represents: The grouping of rows according to common values of designated

columns or functions. This operation is required to produce a group of values, or

to evaluate set functions.

If no GROUP BY columns are specified, the GRPBY operator can still be used if

there are aggregation functions in the SELECT list, indicating that the entire table

is treated as a single group when doing that aggregation.

Performance suggestions:

v This operator represents a necessary operation. To improve access plan costs,

concentrate on other operators (such as scans and joins) that define the set of

rows to be grouped.

v To improve the performance of a SELECT statement that contains a single

aggregate function but no GROUP BY clause, try the following:

– For a MIN(C) aggregate function, create an ascending index on C.

– For a MAX(C) aggregate function, create a descending index on C.

HSJOIN operator

This operator represents hash joins for which the qualified rows from tables are

hashed.

Operator name: HSJOIN

Represents: A hash join for which the qualified rows from tables are hashed to

allow direct joining, without pre-ordering the content of the tables.

A join is necessary whenever there is more than one table referenced in a FROM

clause. A hash join is possible whenever there is a join predicate that equates

columns from two different tables. The join predicates need to be exactly the same

data type. Hash joins can also arise from a rewritten subquery, as is the case with

NLJOIN .

A hash join does not require the input tables be ordered. The join is performed by

scanning the inner table of the hash join and generating a lookup table by hashing

the join column values. It then reads the outer table, hashing the join column

values, and checking in the lookup table generated for the inner table.

Performance suggestions:

v Use local predicates (that is, predicates that reference one table) to reduce the

number of rows to be joined.

v Increase the size of the sort heap to make it large enough to hold the hash

lookup table in memory.

v If statistics are not current, update them using the runstats command.

Chapter 5. Operators 51

INSERT operator

This operator represents the insertion of rows into a table.

Operator name: INSERT

Represents: This operator represents a necessary operation. To improve access plan

costs, concentrate on other operators (such as scans and joins) that define the set of

rows to be inserted.

IXAND operator

This operator represents the ANDing of the results of multiple index scans.

Operator name: IXAND

Represents: The ANDing of the results of multiple index scans using Dynamic

Bitmap techniques. The operator allows ANDed predicates to be applied to

multiple indexes, in order to reduce underlying table accesses to a minimum.

This operator is performed to:

v Narrow down the set of rows before accessing the base table

v AND together predicates applied to multiple indexes

v AND together the results of semijoins, used in star joins.

Performance suggestions:

v Over time, database updates can cause an index to become fragmented, resulting

in more index pages than necessary. This can be corrected by dropping and

recreating the index, or reorganizing the index.

v If statistics are not current, update them using the runstats command .

v In general, index scans are most effective when only a few rows qualify. To

estimate the number of qualifying rows, the optimizer uses the statistics that are

available for the columns referenced in predicates. If some values occur more

frequently than others, it is important to request distribution statistics by using

the WITH DISTRIBUTION clause for the runstats command. By using the

non-uniform distribution statistics, the optimizer can distinguish among

frequently and infrequently occurring values.

v IXAND can best exploit single column indexes, as start and stop keys are critical

in the use of IXAND.

v For star joins, create single-column indexes for each of the most selective

columns in the fact table and the related dimension tables.

IXSCAN

This operator represents the scanning of an index.

Operator name: IXSCAN

Represents: The scanning of an index to produce a reduced stream of row IDs. The

scanning can use optional start/stop conditions, or might apply to indexable

predicates that reference columns of the index.

This operation is performed to narrow down the set of qualifying row IDs before

accessing the base table (based on predicates).

52 Visual Explain Tutorial

Performance suggestions:

v Over time, database updates can cause an index to become fragmented, resulting

in more index pages than necessary. This can be corrected by dropping and

recreating the index, or reorganizing the index.

v When two or more tables are being accessed, access to the inner table via an

index can be made more efficient by providing an index on the join column of

the outer table.

For more guidelines about indexes, see the online help for Visual Explain.

v If statistics are not current, update them using the runstats command.

v In general, index scans are most effective when only a few row IDs qualify. To

estimate the number of qualifying row IDs, the optimizer uses the statistics that

are available for the columns referenced in predicates. If some values occur more

frequently than others, it is important to request distribution statistics by using

the WITH DISTRIBUTION clause for the runstats command. By using the

non-uniform distribution statistics, the optimizer can distinguish among

frequently and infrequently occurring values.

MSJOIN operator

This operator represents a merge join.

Operator name: MSJOIN

Represents: A merge join for which the qualified rows from both outer and inner

tables must be in join-predicate order. A merge join is also called a merge scan join

or a sorted merge join .

A join is necessary whenever there is more than one table referenced in a FROM

clause. A merge join is possible whenever there is a join predicate that equates

columns from two different tables. It can also arise from a rewritten subquery.

A merge join requires ordered input on joining columns, since the tables are

typically scanned only once. This ordered input is obtained by accessing an index

or a sorted table.

Performance suggestions:

v Use local predicates (that is, predicates that reference one table) to reduce the

number of rows to be joined.

v If statistics are not current, update them using the runstats command.

NLJOIN operator

This operator represents a nested loop join.

Operator name: NLJOIN

Represents: A nested loop join that scans (usually with an index scan) the inner

table once for each row of the outer table.

A join is necessary whenever there is more than one table referenced in a FROM

clause. A nested loop join does not require a join predicate, but generally performs

better with one.

A nested loop join is performed either:

Chapter 5. Operators 53

v By scanning through the inner table for each accessed row of the outer table.

v By performing an index lookup on the inner table for each accessed row of the

outer table.

Performance suggestions:

v A nested loop join is likely to be more efficient if there is an index on the

join-predicate columns of the inner table (the table displayed to the right of the

NLJOIN operator). Check to see if the inner table is a TBSCAN rather than an

IXSCAN. If it is, consider adding an index on its join columns.

Another (less important) way to make the join more efficient is to create an

index on the join columns of the outer table so that the outer table is ordered.

v If statistics are not current, update them using the runstats command.

PIPE operator

This operator is for debug mode only.

Operator name: PIPE

Represents: The transfer of rows to other operators without any change to the

rows.

RETURN operator

This operator represents the return of data from a query.

Operator name: RETURN

Represents: The return of data from a query to the user. This is the final operator

in the access plan graph and shows the total accumulated values and costs for the

access plan.

This operator represents a necessary operation.

Performance Suggestion:

v Ensure that you have used predicates that retrieve only the data you need. For

example, ensure that the selectivity value for the predicates represents the

portion of the table that you want returned.

RIDSCN operator

This operator represents the scan of a list of row identifiers (RIDs).

Operator name: RIDSCN

Represents: The scan of a list of row identifiers (RIDs) obtained from one or more

indexes.

This operator is considered by the optimizer when:

v Predicates are connected by OR keywords, or there is an IN predicate. A

technique called index ORing can be used, which combines results from multiple

index accesses on the same table.

v It is beneficial to use list prefetch for a single index access, since sorting the row

identifiers before accessing the base rows makes the I/O more efficient.

54 Visual Explain Tutorial

RPD operator

This operator retrieves data from a remote data source.

Operator name: RPD

Represents: An operator used in the federated system to retrieve data from a

remote data source via a non-relational wrapper.

This operator is considered by the optimizer when it contains a remote plan that

will not be inspected by the optimizer. An RPD operator sends a request to a

remote non-relational data source to retrieve the query result. The request is

generated by the non-relational wrapper using the API supported by the data

source.

SHIP operator

This operator retrieves data from a remote data source.

Operator name: SHIP

Represents: An operator used in the federated system to retrieve data from a

remote data source. This operator is considered by the optimizer when it contains

a remote plan that will not be inspected by the optimizer. A SHIP operator sends

an SQL or XQuery SELECT statement to a remote data source to retrieve the query

result. The SELECT statement is generated using the SQL or XQuery dialect

supported by the data source, and can contain any valid query as allowed by the

data source.

SORT operator

This operator represents the sorting of rows in a table.

Operator name: SORT

Represents: The sorting of the rows in a table into the order of one or more of its

columns, optionally eliminating duplicate entries.

Sorting is required when no index exists that satisfies the requested ordering, or

when sorting would be less expensive than an index scan. Sorting is usually

performed as a final operation once the required rows are fetched, or to sort data

prior to a join or a group by.

If the number of rows is high or if the sorted data cannot be piped, the operation

requires the costly generation of temporary tables.

Performance suggestions:

v Consider adding an index on the sort columns.

v Ensure that you have used predicates that retrieve only the data you need. For

example, ensure that the selectivity value for the predicates represents the

portion of the table that you want returned.

v Check that the prefetch size of the system temporary table space is adequate,

that is, it is not I/O bound. (To check this, select Statement–>Show

Statistics–>Table Spaces.)

Chapter 5. Operators 55

v If frequent large sorts are required, consider increasing the values of the

following configuration parameters:

– Sort heap size (sortheap). To change this parameter, right-click on the

database in the Control Center, and then select Configure from its pop-up

menu. Select the Performance tab from the notebook that opens.

– Sort heap threshold (sheapthres). To change this parameter, right-click on the

database instance in the Control Center, and then select Configure from its

pop-up menu. Select the Performance tab from the notebook that opens.
v If statistics are not current, update them using the runstats command.

TBSCAN operator

This operator represents table scans.

Operator name: TBSCAN

Represents: A table scan (relation scan) that retrieves rows by reading all the

required data directly from the data pages.

This type of scan is chosen by the optimizer over an index scan when:

v The range of values scanned occurs frequently (that is, most of the table must be

accessed)

v The table is small

v Index clustering is low

v An index does not exist

Performance suggestions:

v An index scan is more efficient than a table scan if the table is large, with most

of the table’s rows not being accessed. To increase the possibility that an index

scan will be used by the optimizer for this situation, consider adding indexes on

columns for which there are selective predicates.

v If an index already exists but was not used, check that there are selective

predicates on each of its leading columns. If these predicates do exist, next check

that the degree of clustering is high for the index. (To see this statistic, open the

Table Statistics window for the table beneath the sort, and select its Indexes push

button to bring up the Index Statistics window.)

v Check that the prefetch size of the table space is adequate that is, it is not I/O

bound. (To check this, select Statement–>Show Statistics–>Table Spaces.)

v If the statistics are not current, update them using the runstats command.

The quantile and frequent value statistics provide information on the selectivity

of predicates. For example, these statistics would be used to determine when

index scans are chosen over table scans. To update these values, use the runstats

command on a table with the WITH DISTRIBUTION clause.

TEMP operator

This operator represents the storage of data in a temporary table.

Operator name: TEMP

Represents: The action of storing data in a temporary table, to be read back out by

another operator (possibly multiple times). The table is removed after the SQL or

XQuery statement is processed, if not before.

56 Visual Explain Tutorial

This operator is required to evaluate subqueries or to store intermediate results. In

some situations (such as when the statement can be updated), it might be

mandatory.

TQ operator

This operator represents a table queue.

Operator name: TQ

Represents: A table queue that is used to pass table data from one database agent

to another when there are multiple database agents processing a query. Multiple

database agents are used to process a query when parallelism is involved. The

table queue types are:

v Local: The table queue is used to pass data between database agents within a

single node. A local table queue is used for intrapartition parallelism.

v Non-Local: The table queue is used to pass data between database agents on

different nodes.

There are two types of TQ operators:

v ATQ - Asynchronous TQ operator

v XTQ - XML aggregation TQ Operator

The ATQ operator enables asynchronous execution of a subplan.

The XTQ operator is a table queue that constructs a XML sequence from XML

documents stored on database partitions.

In the following example, US_ORDERS is a partitioned table that is spread across

several database partitions, and US_ORDERS.DETAILS is an XML column. The

following XQuery statement returns all orders if the total number of products sold

exceeds 100:

Xquery let $all_orders := db2-fn:xmlcolumn(’US_ORDERS.DETAILS’)

Xquery let $all_orders := db2-fn:xmlcolumn(’US_ORDERS.DETAILS’)

where

sum($all_orders//product/qty) > 100

return

$all_orders

For the XQuery statement, the db2exfmt command produces the following access

plan output that contains an XTQ operator. In the plan output, references to all the

XML documents stored in US_ORDERS.DETAILS column are routed to the

coordinator partition and aggregated into a global sequence, later each item in the

global sequence is routed back to its original partition for navigation and the

results are aggregated together into a new output global sequence.

 Rows

 RETURN

 (1)

 Cost

 I/O

 |

 1

 NLJOIN

Chapter 5. Operators 57

(2)

 98.171

 8

 /-+-\

 1 2000

 FILTER XTQ

 (3) (7)

 37.4289 60.7421

 1 7

 | |

 1 0.5

 GRPBY XSCAN

 (4) (8)

 37.3755 57.2

 1 7

 |

 360

 DTQ

 (5)

 33.7655

 1

 |

 180

 TBSCAN

 (6)

 22.051

 1

 |

 180

 TABLE: USER1

 US_ORDERS

UNION operator

This operator represents the concatenation of steams of rows from multiple tables.

Operator name: UNION

Represents: This operator represents a necessary operation. To improve access plan

costs, concentrate on other operators (such as scans and joins) that define the set of

rows to be concatenated.

UNIQUE operator

This operator represents rows with duplicate values.

Operator name: UNIQUE

Represents: The elimination of rows having duplicate values for specified columns.

Performance Suggestion:

v This operator is not necessary only if a unique index exists on appropriate

columns.

For guidelines about indexes, see Creating appropriate indexes in the online help

for Visual Explain.

58 Visual Explain Tutorial

UPDATE operator

This operator represents the updating of data in the rows of a table.

Operator name: UPDATE

Represents: This operator represents a necessary operation. To improve access plan

costs, concentrate on other operators (such as scans and joins) that define the set of

rows to be updated.

XANDOR operator

This operator allows ANDed predicates to be applied to multiple indexes to reduce

underlying table accesses to a minimum.

Operator name: XANDOR

Represents: The index over XML data ANDing of the results of multiple index

scans, used for the evaluation of complex predicates from a single query.

In order for the XANDOR operator to be used, the following conditions must be

met:

v Only equality predicates are used.

v There are no wildcards in the index lookup path.

v All predicates are used on the same XML column.

If any of these conditions are not met the IXAND operator will be used instead.

An access plan with multiple XANDORed index over XML data scans as shown by

the db2exfmt tool might look like this:

 Rows

 RETURN

 (1)

 Cost

 I/O

 |

 0.00915933

 NLJOIN

 (2)

 985.789

 98.9779

 /--+--\

 2.96215 0.00309213

 FETCH XSCAN

 (3) (11)

 340.113 217.976

 19 27

 /---+---\

 2.96215 210000

 RIDSCN TABLE: DB2XML

 (4) TPCHX

 332.008

 18

 |

 2.96215

 SORT

 (5)

 331.957

 18

 |

Chapter 5. Operators 59

2.96215

 XANDOR

 (6)

 331.784

 18

 +----------------+--------+-------+----------------+

 355.62 6996.81 105000 105000

 XISCAN XISCAN XISCAN XISCAN

 (7) (8) (9) (10)

 165.892 3017.54 1.6473e+06 851554

 9 81 27768 14898

 | | | |

 210000 210000 210000 210000

 XMLIN: DB2XML XMLIN: DB2XML XMLIN: DB2XML XMLIN: DB2XML

 TPCHX_IDX TPCHX_IDX TPCHX_IDX TPCHX_IDX

Each XISCAN operator will perform an index scan and feed the XANDOR

operator with the XML node IDs that qualify. The XANDOR operator will apply

the AND and OR predicates and return the XML nodes that satisfy the XML

pattern for the query.

Performance suggestions:

v Over time, database updates can cause an index to become fragmented, resulting

in more index pages than necessary. This can be corrected by dropping and

recreating the index, or by reorganizing it.

v If statistics are not current, update them using the RUNSTATS command.

v In general, index scans are most effective when only a few rows qualify. To

estimate the number of qualifying rows, the optimizer uses the statistics that are

available for the columns referenced in predicates. If some values occur more

frequently than others, it is important to request distribution statistics by using

the WITH DISTRIBUTION clause with the RUNSTATS command. By using the

non-uniform distribution statistics, the optimizer can distinguish among

frequently and infrequently occurring values.

XISCAN operator

This operation is performed for a single query predicate.

Operator name: XISCAN

Represents: Its evaluation narrows down the qualifying return set of rows IDs and

XML node IDs by range scanning any associated index over XML data before

accessing the base table. The use of an index can improve the performance of a

query because the compiler determines whether and how to use index information

to complete the query. This typically results in:

v The sorting of nodes by document and the elimination of any duplicates.

v The fetching of each row of the table that contains the qualifying documents.

v An XSCAN operation on the XML document.

For example, if you want to find the first name of all of the people listed in the

sample XML document fragments who have the last name ″Murphy″, a valid

XQuery statement to fetch the correct results is:

 db2-fn:column("EMPLOYEE.XMLCOL")/emp//name[last="Murphy"]/first

Assume that you had previously created an index over XML data on all last names

by using the following statement:

60 Visual Explain Tutorial

CREATE INDEX empname on EMPLOYEE(XMLCOL)

 GENERATE KEY USING XMLPATTERN ’//name/last’

 AS SQL VARCHAR(50)

The query compiler can choose an XISCAN operator to evaluate the query, which

will receive the pattern: /emp//name/last, the operator ″=″, and the value

″Murphy″. The index will help to quickly locate the nodes associated with the last

name ″Murphy″. The resulting plan fragment as output by db2exfmt might look

like this:

 Rows

 RETURN

 (1)

 Cost

 I/O

 |

 6454.4

 NLJOIN

 (2)

 1.53351e+06

 189180

 /--+-\

 6996.81 0.922477

 FETCH XSCAN

 (3) (7)

 4091.76 218.587

 266 27

 /---+---\

 6996.81 210000

 RIDSCN TABLE: DB2XML

 (4) TX

 3609.39

 81

 |

 6996.81

 SORT

 (5)

 3609.34

 81

 |

 6996.81

 XISCAN

 (6)

 3017.54

 81

 |

 210000

 XMLIN: DB2XML

 TX_IDX

Performance suggestions:

v Over time, database updates might cause an index to become fragmented,

resulting in more index pages than necessary. This can be corrected by dropping

and recreating the index, or reorganizing the index.

v When two or more tables are being accessed, access to the inner table via an

index can be made more efficient by providing an index on the join column of

the outer table.

v If statistics are not current, update them using the RUNSTATS command.

Chapter 5. Operators 61

XSCAN operator

This operator is used to navigate XML fragments to evaluate XPath expressions

and to extract document fragments if needed.

Operator name: XSCAN

Represents: This operator processes node references passed by a nested-loop join

operator (NLJOIN). It is not represented with a direct input in the access plan.

For example, consider the following XQuery statement:

XQUERY for $i in db2-fn:xmlcolumn("MOVIES.XMLCOL")//actor return $i

The access plan for this statement as provided by the db2exfmt utility shows an

XSCAN operator processing document node references retrieved by a table scan on

the table TELIAZ.MOVIES. The XSCAN operator in this case returns actor node

references found within the TELIAZ.MOVIES.XMLCOL collection.

 Rows

 RETURN

 (1)

 Cost

 I/O

 |

 180

 NLJOIN

 (2)

 10137.9

 1261

 /-+\

 180 1

 TBSCAN XSCAN

 (3) (4)

 21.931 56.2

 1 7

 |

 180

 TABLE: TELIAZ

 MOVIES

62 Visual Explain Tutorial

Chapter 6. Visual Explain concepts

This section contains Visual Explain conceptual information.

Access plan

Certain data is necessary to resolve an explainable statement. An access plan specifies

an order of operations for accessing this data.

An access plan lets you view statistics for selected tables, indexes, or columns;

properties for operators; global information such as table space and function

statistics; and configuration parameters relevant to optimization. With Visual

Explain, you can view the access plan for an SQL or XQuery statement in graphical

form.

The optimizer produces an access plan whenever you compile an explainable SQL

or XQuery statement. This happens at prep/bind time for static statements, and at

run time for dynamic statements.

It is important to understand that an access plan is an estimate based on the

information that is available. The optimizer bases its estimations on information

such as the following:

v Statistics in system catalog tables (if statistics are not current, update them using

the RUNSTATS command.)

v Configuration parameters

v Bind options

v The query optimization class

Cost information associated with an access plan is the optimizer’s best estimate of

the resource usage for a query. The actual elapsed time for a query might vary

depending on factors outside the scope of the database manager (for example, the

number of other applications running at the same time). Actual elapsed time can

be measured while running the query, by using performance monitoring.

Access plan graph

Visual Explain uses information from a number of sources in order to produce an

access plan graph

Based on various inputs, as shown in the illustration below, the optimizer chooses

an access plan, and Visual Explain displays it in an access plan graph. The nodes in

the graph represent tables and indexes and each operation on them. The links

between the nodes represent the flow of data.

© Copyright IBM Corp. 2002, 2009 63

Access plan graph node

The access plan graph consists of a tree displaying nodes.

These nodes represent:

v Tables, shown as rectangles

v Indexes, shown as diamonds

v Operators, shown as octagons (8 sides). TQ operators, shown as parallelograms

v Table functions, shown as hexagons(6 sides).

Clustering

Over time, updates might cause rows on data pages to change location lowering

the degree of clustering that exists between an index and the data pages.

Reorganizing a table with respect to a chosen index re-clusters the data. A

clustered index is most useful for columns that have range predicates because it

allows better sequential access of data in the base table. This results in fewer page

fetches, since like values are on the same data page.

In general, only one of the indexes in a table can have a high degree of clustering.

To check the degree of clustering for an index, double-click on its node to display

the Index Statistics window. The cluster ratio or cluster factor values are shown in

this window. If the value is low, consider reorganizing the table’s data.

Container

A container is a physical storage location of the data.

It is associated with a table space, and can be a file or a directory or a device.

Containers are numbered sequentially, starting at 0.

64 Visual Explain Tutorial

Cost

Cost, in the context of access plans access plans, is the estimated total resource

usage necessary to execute the access plan for a statement (or the elements of a

statement).

Cost is derived from a combination of CPU cost (in number of instructions) and

I/O (in numbers of seeks and page transfers).

The unit of cost is the timeron. A timeron does not directly equate to any actual

elapsed time, but gives a rough relative estimate of the resources (cost) required by

the database manager to execute two plans for the same query.

The cost shown in each operator node of an access plan graph is the cumulative

cost, from the start of access plan execution up to and including the execution of

that particular operator. It does not reflect factors such as the workload on the

system or the cost of returning rows of data to the user.

Cursor blocking

Cursor blocking is a technique that reduces overhead by having the database

manager retrieve a block of rows in a single operation.

These rows are stored in a cache in the DB2 client while they are processed. The

cache is allocated when an application issues an OPEN CURSOR request, and is

de-allocated when the cursor is closed. When all the rows have been processed,

another block of rows is retrieved.

Use the BLOCKING option on the PREP or BIND commands along with the

following parameters to specify the type of cursor blocking:

UNAMBIG

For cursors that are specified with the FOR READ ONLY clause, blocking

occurs.

 Cursors that are not declared with the FOR READ ONLY or FOR UPDATE

clause which are not ambiguous and are read-only will be blocked.

Ambiguous cursors will not be blocked.

ALL For cursors that are specified with the FOR READ ONLY clause or are not

specified as FOR UPDATE, blocking occurs.

NO Blocking does not occur for any cursor.

 For the definition of a read-only cursor and an ambiguous cursor, refer to

the DECLARE CURSOR statement.

Database-managed table space

There are two types of table spaces that can exist in a database: database-managed

space (DMS), and system-managed space (SMS).

DMS table spaces are managed by the database manager. and are designed and

tuned to meet its requirements.

The DMS table space definition includes a list of files (or devices) into which the

database data is stored in its DMS table space format.

Chapter 6. Concepts 65

You can add pre-allocated files (or devices) to an existing DMS table space in order

to increase its storage capacity. The database manager automatically rebalances

existing data in all the containers belonging to that table space.

DMS and SMS table spaces can coexist in the same database.

Dynamic SQL or XQuery

Dynamic SQL or XQuery statements are statements that are prepared and executed

within an application program while the program is running.

In dynamic SQL or XQuery, either:

v You issue the SQL or XQuery statement interactively, using CLI or CLP

v The SQL or XQuery source is contained in host language variables that are

embedded in an application program.

When the database manager runs a dynamic SQL or XQuery statement, it creates

an access plan that is based on current catalog statistics and configuration

parameters. This access plan might change from one execution of the statements

application program to the next.

The alternative to dynamic SQL or XQuery is static SQL or XQuery.

Explain snapshot

With Visual Explain, you can examine the contents of an explain snapshot. An

explain snapshot is compressed information that is collected when an SQL statement

is explained.

It is stored as a binary large object (BLOB) in the EXPLAIN_STATEMENT table,

and contains the following information:

v The internal representation of the access plan, including its operators and the

tables and indexes accessed

v The decision criteria used by the optimizer, including statistics for database

objects and the cumulative cost for each operation.

An explain snapshot is required if you want to display the graphical representation

of an SQL statement’s access plan. To ensure that an explain snapshot is created:

1. Explain tables must exist in the database manager to store the explain

snapshots. For information on how to create these tables, see Creating explain

tables in the online help.

2. For a package containing static SQL or XQuery statements, set the EXPLSNAP

option to ALL or YES when you bind or prep the package. You will get an

explain snapshot for each explainable SQL statement in the package. For more

information, see the BIND and PREP commands.

3. For dynamic SQL statements, set the EXPLSNAP option to ALL when you bind

the application that issues them, or set the CURRENT EXPLAIN SNAPSHOT

special register to YES or EXPLAIN before you issue them interactively. For

more information, see the CURRENT EXPLAIN SNAPSHOT special register

and the SET CURRENT EXPLAIN SNAPSHOT statement.

66 Visual Explain Tutorial

Explainable statement

An explainable statement is an SQL or XQuery statement for which an explain

operation can be performed.

Explainable SQL or XQuery statements are:

v DELETE

v INSERT

v MERGE

v REFRESH TABLE

v SELECT

v SET INTEGRITY

v UPDATE

v VALUES

Explained statement

An explained statement is an SQL or XQuery statement for which an explain

operation has been performed.

Explained statements are shown in the Explained Statements History window.

Operand

An operand is an entity on which an operation is performed.

For example, a table or an index is an operand of various operators such as

TBSCAN and IXSCAN.

Operator

An operator is either an action that must be performed on data, or the output from

a table or an index, when the access plan for an SQL or XQuery statement is

executed.

The following operators can appear in the access plan graph:

DELETE

Deletes rows from a table.

EISCAN

Scans a user defined index to produce a reduced stream of rows.

FETCH

Fetches columns from a table using a specific record identifier.

FILTER

Filters data by applying one or more predicates to it.

GENROW

Generates a table of rows.

GRPBY

Groups rows by common values of designated columns or functions, and

evaluates set functions.

Chapter 6. Concepts 67

HSJOIN

Represents a hash join, where two or more tables are hashed on the join

columns.

INSERT

Inserts rows into a table.

IXAND

ANDs together the row identifiers (RIDs) from two or more index scans.

IXSCAN

Scans an index of a table with optional start/stop conditions, producing an

ordered stream of rows.

MSJOIN

Represents a merge join, where both outer and inner tables must be in

join-predicate order.

NLJOIN

Represents a nested loop join that accesses an inner table once for each row

of the outer table.

RETURN

Represents the return of data from the query to the user.

RIDSCN

Scans a list of row identifiers (RIDs) obtained from one or more indexes.

RPD (Remote PushDown)

An operator for remote plans. It is very similar to the SHIP operator in

Version 8 (RQUERY operator in previous versions), except that it does not

contain an SQL or XQuery statement.

SHIP Retrieves data from a remote database source. Used in the federated

system.

SORT Sorts rows in the order of specified columns, and optionally eliminates

duplicate entries.

TBSCAN

Retrieves rows by reading all required data directly from the data pages.

TEMP Stores data in a temporary table to be read back out (possibly multiple

times).

TQ Transfers table data between database agents.

UNION

Concatenates streams of rows from multiple tables.

UNIQUE

Eliminates rows with duplicate values, for specified columns.

UPDATE

Updates rows in a table.

XISCAN

Scans an index of an XML table.

XSCAN

Navigates an XML document node subtrees.

XANDOR

Allows ANDed and ORed predicates to be applied to multiple XML

indexes.

68 Visual Explain Tutorial

Optimizer

The optimizer is the component of the SQL compiler that chooses an access plan for

a data manipulation language (DML) SQL statement.

It does this by modeling the execution cost of many alternative access plans, and

choosing the one with the minimal estimated cost.

Package

A package is an object stored in the database that includes the information needed

to process the SQL statements associated with one source file of an application

program.

It is generated by either:

v Precompiling a source file with the PREP command

v Binding a bind file that was generated by the precompiler with the BIND

command.

Predicate

A predicate is an element of a search condition that expresses or implies a

comparison operation. Predicates are included in clauses beginning with WHERE

or HAVING.

For example, in the following SQL statement:

SELECT * FROM SAMPLE

 WHERE NAME = ’SMITH’ AND

 DEPT = 895 AND YEARS > 5

The following are predicates: NAME = ’SMITH’; DEPT = 895; and YEARS > 5.

Predicates fall into one of the following categories, ordered from most efficient to

least efficient:

1. Starting and stopping conditions bracket (narrow down) an index scan. (These

conditions are also called range-delimiting predicates.)

2. Index-page (also known as index sargable) predicates can be evaluated from an

index because the columns involved in the predicate are part of the index key.

3. Data-page (also known as data sargable) predicates cannot be evaluated from

an index, but can be evaluated while rows remain in the buffer.

4. Residual predicates typically require I/O beyond the simple accessing of a base

table, and must be applied after data is copied out of the buffer page. They

include predicates that contain subqueries, or those that read LONG

VARCHAR or LOB data stored in files separate from the table.

When designing predicates, you should aim for the highest selectivity possible so

that the fewest rows are returned.

The following types of predicates are the most effective and the most commonly

used:

v A simple equality join predicate is required for a merge join. It is of the form

table1.column = table2.column, and allows columns in two different tables to be

equated so that the tables can be joined.

v A local predicate is applied to one table only.

Chapter 6. Concepts 69

Query optimization class

A query optimization class is a set of query rewrite rules and optimization techniques

for compiling queries.

The primary query optimization classes are:

1 Restricted optimization. Useful when memory and processing resources are

severely restrained. Roughly equivalent to the optimization provided by

Version 1.

2 Slight optimization. Specifies a level of optimization higher than that of

Version 1, but at significantly less optimization cost than levels 3 and

above, especially for very complex queries.

3 Moderate optimization. Comes closest to matching the query optimization

characteristics of DB2 for z/OS®.

5 Normal optimization. Recommended for a mixed environment using both

simple transactions and complex queries.

7 Normal optimization. The same as query optimization 5 except that it does

not reduce the amount of query optimization for complex dynamic queries.

Other query optimization classes, to be used only under special circumstances, are:

0 Minimal optimization. Use only when little or no optimization is required

(that is, for very simple queries on well-indexed tables).

9 Maximum optimization. Uses substantial memory and processing

resources. Use only if class 5 is insufficient (that is, for very complex and

long-running queries that do not perform well at class 5).

In general, use a higher optimization class for static queries and for queries that

you anticipate will take a long time to execute, and a lower optimization class for

simple queries that are submitted dynamically or that are run only a few times.

To set the query optimization for dynamic SQL or XQuery statements, enter the

following command in the command line processor:

SET CURRENT QUERY OPTIMIZATION = n;

where ’n’ is the desired query optimization class.

To set the query optimization for static SQL or XQuery statements, use the

QUERYOPT option on the BIND or PREP commands.

Sample XML document fragment for Explain XML operators

This sample XML document fragment is used in the discussion of the Explain XML

operators XSCAN, XISCAN, and XANDOR.

<emp id=’12345’ salary=’60000’>

 <name>

 <first>William</first>

 <last>Murphy</last>

 </name>

 <spouse>

 <name>

 <first>Cecilia</first>

 <last>Murphy</last>

 </name>

 </spouse>

70 Visual Explain Tutorial

<dept id=’K55’>

 Finance

 </dept>

</emp>

<emp id=’12345’ salary=’40000’>

 <name>

 <first>Patricio</first>

 <last>Murphy</last>

 </name>

 <dept id=’A15’>

 Sales

 </dept>

</emp>

<emp id=’12346’ salary=’70000’>

 <name>

 <first>Victoria</first>

 <last>Zubiri</last>

 </name>

 <dept id=’B11’>

 Marketing

 </dept>

</emp>

Selectivity of predicates

Selectivity refers to the probability that any row will satisfy a predicate (that is, be

true).

For example, a selectivity of 0.01 (1%) for a predicate operating on a table with

1,000,000 rows means that the predicate returns an estimated 10,000 rows (1% of

1,000,000), and discards an estimated 990,000 rows.

A highly selective predicate (one with a selectivity of 0.10 or less) is desirable. Such

predicates return fewer rows for future operators to work on, thereby requiring

less CPU and I/O to satisfy the query.

Example: Suppose that you have a table of 1,000,000 rows, and that the original

query contains an ’ORDER BY’ clause requiring an additional sorting step. With a

predicate that has a selectivity of 0.01, the sort would have to be done on an

estimated 10,000 rows. However, with a less selective predicate of 0.50, the sort

would have to be done on an estimated 500,000 rows, thus requiring more CPU

and I/O time.

Star join

A set of joins are considered to be a star join when a fact table (large central table)

is joined to two or more dimension tables (smaller tables containing descriptions of

the column values in the fact table).

A Star join is comprised of 3 main parts:

v Semijoins

v Index ANDing of the results of the Semijoins

v Completing the semijoins.

It shows up as two or more joins feeding an “IXAND operator” on page 52

operator.

Chapter 6. Concepts 71

A Semijoin is a special form of join in which the result of the join is only the Row

Identifier (RID) of the inner table, instead of the joining of the inner and outer

table columns.

Star joins use Semijoins to supply Row Identifiers to an Index ANDing operator.

The Index ANDing operator accumulates the filtering affect of the various joins.

The output from the Index ANDing operator is fed into an Index ORing operator,

which orders the Row Identifiers, and eliminates any duplicate rows that may have

resulted from the joins feeding the Index ANDing operator. The rows from the fact

table are then fetched, using a Fetch operator. Finally, the reduced fact table is

joined to all of the dimension tables, to complete the joins.

Performance suggestions:

v Create indexes on the fact table for each of the dimension table joins.

v Ensure the sort heap threshold is high enough to allow allocating the Index

ANDing operator’s bit filter. For star joins, this could require as much as 12MB,

or 3000 4K pages. For Intra-partition parallelism, the bit filter is allocated from

the same shared memory segment as the shared sort heap, and it is bounded by

the sortheap database configuration parameter and the sheapthres_shr database

configuration parameter.

v Apply filtering predicates against the dimension tables. If statistics are not

current, update them using the runstats command.

Static SQL or XQuery

A static SQL or XQuery statement is embedded within an application program. All

these embedded statements must be precompiled and bound into a package before

the application can be executed.

To execute XQuery expressions in static SQL, use the XMLQUERY function.

When the database manager compiles these statements, it creates an access plan for

each one that is based on the catalog statistics and configuration parameters at the

time that the statements were precompiled and bound.

These access plans are always used when the application is run; they do not

change until the package is bound again.

The alternative to static SQL or XQuery is dynamic SQL or XQuery.

System-managed table spaces

There are two types of table spaces that can exist in a database: system-managed space

(SMS) and database-managed space (DMS).

An SMS table space is managed by the operating system, which stores the

database data into a space that is assigned when a table space is created. The table

space definition includes a list of one or more of the directory paths where this

data is stored.

The file system manages the allocation and management of media storage.

SMS and DMS table spaces can coexist in the same database.

72 Visual Explain Tutorial

Table spaces

It is easier to manage very large databases if you partition them into separately

managed parts called table spaces. A table space lets you assign the location of data

to particular logical devices or portions thereof.

For example, when creating a table you can specify that its indexes or its long

columns with long or large object (LOB) data be kept away from the rest of the

table data.

A table space can be spread over one or more physical storage devices (containers)

for increased performance. However, it is recommended that all the devices or

containers within a table space have similar performance characteristics.

A table space can be managed in two different ways: as a system-managed space

(SMS) or as a database-managed space (DMS).

Visual Explain

Visual Explain lets you view the access plan for explained SQL or XQuery

statements as a graph. You can use the information available from the graph to

tune your queries for better performance.

Important: Access to Visual Explain through the Control Center tools has been

deprecated in Version 9.7 and might be removed in a future release. For more

information, see the “Control Center tools and DB2 administration server (DAS)

have been deprecated” topic in the What’s New for DB2 Version 9.7 book. Accessing

Visual Explain functionality through the IBM Data Studio toolset has not been

deprecated.

You can use Visual Explain to:

v View the statistics that were used at the time of optimization. You can then

compare these statistics to the current catalog statistics to help you determine

whether rebinding the package might improve performance.

v Determine whether or not an index was used to access a table. If an index was

not used, Visual Explain can help you determine which columns might benefit

from being indexed.

v View the effects of performing various tuning techniques by comparing the

before and after versions of the access plan graph for a query.

v Obtain information about each operation in the access plan, including the total

estimated cost and number of rows retrieved (cardinality).

An access plan graph shows details of:

v Tables (and their associated columns) and indexes

v Operators (such as table scans, sorts, and joins)

v Table spaces and functions.

Note: Note that Visual Explain cannot be invoked from the command line, but

only from various database objects in the Control Center.

To start Visual Explain:

v From the Control Center, right-click a database name and select either Show

Explained Statements History or Explain Query.

Chapter 6. Concepts 73

v From the Command Editor, execute an explainable statement on the Interactive

page or the Script page.

v From the Query Patroller, click Show Access Plan from either the Managed

Queries Properties notebook or from the Historical Queries Properties notebook.

74 Visual Explain Tutorial

Chapter 7. Visual Explain tasks

This section contains a list of related tasks that you can also perform using Visual

Explain.

Creating an access plan using the Command Editor

Use the Command Editor to generate, edit, execute, and manipulate SQL and

XQuery statements, IMS™ commands, and DB2 commands.

You can also use the Command Editor to work with the resulting output and to

view a graphical representation of the access plan for explained SQL statements.

You can execute commands and SQL statements on DB2 databases for Linux® and

Windows®, for z/OS and OS/390® systems and subsystems, and for IMSplexes.

To create an access plan using the Command Editor:

1. Open the Command Editor: To open a stand-alone Command Editor, select

Start –> Programs –> IBM DB2 –> Command Line Tools –> Command Editor.

2. Select either the Interactive or Script tab, and do the following:

a. Connect to a database. (Type the connect command in the text area and

select Execute from the Interactive or Script menu, depending on which

page you selected in step 2., or click on the

icon, or press the

Ctrl+Enter keys to execute the command.)

b. To create an access plan without executing the statement, type an

explainable statement explainable statement in the text area and select

Create access plan, from the Interactive or Script menu, or click on the

icon. The access plan graph is displayed on the Access Plan page.

You can also select an explainable statement from an existing script.
3. To create an access plan and also execute the statement:

a. Select Options from the Interactive or Script menu. The Command Center

Options notebook opens. Click on the Access Plan tab. Select the

Automatically generate access plan check box.

b. Type an explainable statement in the text area or select an existing statement.

Select Execute from the Interactive or Script menu, or click the

icon.

The results are displayed on the Results page. To view the generated access

plan, click on the Access Plan tab.

Viewing a graphical representation of an access plan

Use the Access Plan Graph window to view a graphical representation of the access

plan of an explained SQL or XQuery statement.

The nodes in the graph represent tables and indexes and each operation on them.

The links between the nodes represent the flow of data.

Tasks

© Copyright IBM Corp. 2002, 2009 75

v Use the Statement menu to print the graph, to dynamically explain an SQL or

XQuery statement, to view the text or optimized text, or to view optimization

parameters or statistics.

v Use the Node menu to view details or statistics on the nodes, or to get

additional help on each of the operators.

v Use the View menu to change the graph settings or to see an overview of the

graph. This is particularly useful for large graphs.

From this window, you can view details about the following objects:

v Table spaces and table space statistics

v Functions and function statistics

v Operators

v Partitioned databases

v Operands

– Column distribution statistics

– Index and index statistics

– Page fetch pairs statistics

– Column groups

– Referenced columns, referenced column groups, and referenced column

statistics

– Table function statistics and table statistics

To open the Access Plan Graph window, use one of the following methods:

1. Open either the Explainable Statements, or the Explained Statements History

window. Select Statement–>Show Access Plan. The Access Plan Graph

window opens.

2. Invoke Explain Query from either the Explainable Statements or the Explained

Statements History window. The Explain Query statement window opens as a

result of the dynamic explain.

Reading the contents of the Access Plan Graph window

Top area of the window

The top area of the Access Plan Graph window identifies the statement whose

access plan is displayed on the graph.

This part of the window also shows:

v The statement’s explain date, time, package name, and version.

v If the Federated function was enabled at the time the statement was created.

v Its total estimated cost.

v The type of parallelism of the system in which this statement is explained. It can

be one of the following types:

– None

– Intra-partition parallelism

– Inter-partition parallelism

– Full parallelism (intra-partition and inter-partition)

The graph

76 Visual Explain Tutorial

The nodes in the graph represent operands (tables, indexes, or table functions), and

the operators that act on them. To view detailed statistical information for a node,

double-click on it.

To view the information shown in the graph in more detail, drag the zoom slider

up or down.

Float values might be presented in scientific notation.

Troubleshooting Tips

v Retrieving the access plan when using LONGDATACOMPAT

v Visual Explain support for earlier and later releases

Viewing the history of previously explained query statements

Use the Explained Statements History window to view the history of previously

explained SQL or XQuery statements for a selected database.

Each entry is an explained statement that is associated with either:

v A static SQL or XQuery statement in a package

v A dynamic SQL or XQuery statement.

Tasks

v Use the Statement menu to view a graphical representation of an access plan, to

dynamically explain a query statement, to view text for a query statement, or to

change or remove a query statement.

v Use the View menu, or the icons on the secondary toolbar to sort, filter, or

customize the explainable statements. You can also save the contents of this

window using the options in this menu.

To open Explained Statements History window, do one of the following:

v From the Control Center, expand the object tree until you find the Databases

folder, expand the folder until you find the database you want, and then do one

of the following:

– Right-click the database and select Show Explained Statements History from

the pop-up menu, or select Selected–>Show Explained Statements History.

– Highlight the database and select Selected–>Show Explained Statements

History.
v From the Control Center, expand the object tree until you find the Packages

folder (under the Application Objects folder). Then:

– click the Packages folder. Any existing package objects are displayed on the

right side of the window.

– Right-click the package that you want, and select Show Explained

Statements History from the pop-up menu; or highlight the package and

select Selected–>Show Explained Statements History; or simply double-click

the package.
v From the Explainable Statements window, select Statement–>Show Explained

Statements History.

If a statement is selected in the Explainable Statements window, the Explained

Statements History window shows all of the explained statements that are

related to the selected SQL statements.

Chapter 7. Tasks 77

If no statement is selected, the Explained Statements History window shows all

the explained statements that are related to the package that the explainable

statements are in.

The Explained Statements History window might or might not contain explained

statements, depending on whether the explain tables exist.

Reading the contents of the Explained Statements History window

The columns in the window provide the following information about the query

statements that have been explained:

Package name

The name of the package that either:

v Contains the SQL or XQuery statement (in the case of a static query)

v Issued the SQL or XQuery statement (in the case of a dynamic query).

Package creator

The user ID of the user who created the package.

Package version

The version number of the package.

Explain snapshot

States whether an explain snapshot has been taken for the SQL or XQuery

statement. (If it has not, you cannot view an access plan graph for the

statement.)

Latest bind

If the statement is contained in a package, this field indicates whether or

not the statement is associated with the latest bound package.

Dynamic explain

States whether the explained query statement was dynamic. (If it was not,

it was a static or SQL or XQuery statement in a package.)

Explain date

The date when the statement had an explain operation performed on it.

Explain time

The time when the statement had an explain operation performed on it.

Total cost

The estimated total cost (in timerons) of the statement.

Statement number

The line number of the SQL or XQuery statement in the source module of

the application program.

Section number

The number of the section within the package that is associated with the

SQL or XQuery statement.

Query number

The query number that is associated with the statement.

Query tag

The query tag that is associated with the statement.

Query text

The first 100 characters of the original SQL or XQuery statement. (Use the

78 Visual Explain Tutorial

scroll bar at the bottom of the window to scroll through it.) To view the

complete SQL or XQuery statement, select Statement–>Show Query Text.

Remarks

Any remarks associated with the statement. (For example, for a static

query statement, the remark associated with the package containing the

statement.)

Troubleshooting Tips

v “Retrieving the access plan when using LONGDATACOMPAT” on page 81

v “Visual Explain support for earlier and later releases” on page 82

Viewing explainable statements for a package

Use the Explainable Statements window to view the explainable query statements

for a selected package.

If an explain snapshot has been taken for a statement, you can use this list to view

additional information about that statement (such as its total cost and a graphical

view of its access plan).

Tasks

v Use the Statement menu to view the history of previously explained SQL or

XQuery statements, to view a graphical representation of the access plan, to

dynamically explain a query statement, and to view text for a query statement.

v Use the View menu, or the icons on the secondary toolbar to sort, filter, or

customize the explainable statements. You can also save the contents of this

window using the options in this menu.

To open the Explainable Statements window, do the following:

v From the Control Center, expand the object tree until you find the Packages

folder (under the Application Objects folder).

v click the Packages folder. Any existing package objects are displayed in the pane

on the right side of the window.

v Do one of the following:

– Right-click the package you want and select Show Explainable Statements

from the pop-up menu.

– Highlight the package and select Selected–>Show Explainable Statements.

– Double-click the package.

Reading the contents of the Explainable Statements window

The columns in the window provide the following information about SQL or

XQuery statements:

Statement number

The line number of the SQL or XQuery statement in the source module of

the application program. For static queries, this number corresponds to the

STMTNO column in the SYSCAT.STATEMENTS table.

Section number

The number of the section within the package that is associated with the

SQL or XQuery statement.

Chapter 7. Tasks 79

Explain snapshot

States whether an explain snapshot has been taken for the SQL or XQuery

statement. (If it has not been taken, you cannot view an access plan graph

for the statement.)

Total cost

The estimated total cost(in timerons) of returning the query results for the

selected SQL or XQuery statement. (Available only if the

packagecontaining the statement has been explained previously.)

Query text

The first 100 characters of the query statement. (Use the scroll bar at the

bottom of the window to scroll through it.) To view the complete SQL or

XQuery statement, select Statement–>Show Query Text.

Troubleshooting Tips

v “Retrieving the access plan when using LONGDATACOMPAT” on page 81

v “Visual Explain support for earlier and later releases” on page 82

Guidelines for creating indexes

Creating appropriate indexes allows the optimizer to choose an index scan for

those cases where it would be more efficient than a table scan.

Some guidelines for creating indexes include:

v Define primary keys and unique indexes wherever they apply.

v Create an index on any column that the query uses to join tables (join predicate).

v Create an index on any column from which you search for particular values on a

regular basis.

v Create an index on columns that are commonly used in ORDER BY clauses.

v Ensure that you have used predicates that retrieve only the data you need. For

example, ensure that the selectivity of predicates value for the predicates represents

the portion of the table that you want returned.

v When creating a multicolumn index, the first columns of the index should be the

ones that are used most often by the predicates in your query.

v Ensure that the disk and update maintenance overhead an index introduces will

not be too high.

Out-of-date access plans

If your access plans are out-of-date, you need to update the statistics; then rebind

the package.

Symptom

The STATS_TIME row indicates that the statistics are not updated.

Possible cause

The optimizer used default values. (These default values are displayed

with the keyword ″default″.) This situation can result in an out-of-date

access plan.

Action

It is recommended that you use the runstats command to update the

statistics; then rebind the package.

80 Visual Explain Tutorial

Retrieving the access plan when using LONGDATACOMPAT

If you cannot retrieve the access plan when using LONGDATACOMPAT, create a

database alias and try again.

Symptom

No explained statement history or access plan can be displayed using Visual

Explain.

Possible cause

If the value for LONGDATACOMPAT is set to 1 in the db2cli.ini file, the Visual

Explain access plan can be generated but cannot be retrieved.

Action

As a work around, a database alias can be created for that database with

LONGDATACOMPAT set to 0. For example:

 DB2 UPDATE CLI CFG FOR SECTION db-alias-name USING LONGDATACOMPAT 0

To check the CLI configuration values, the following command can be used:

 GET CLI CONFIGURATION [AT GLOBAL LEVEL] [FOR SECTION section-name]

For instance, if the database name is called sample:

 GET CLI CONFIGURATION FOR SECTION sample

Using RUNSTATS

The optimizer uses the catalog tables from a database to obtain information about

the database, the amount of data in it, and other characteristics, and uses this

information to choose the best way to access the data.

If current statistics are not available, the optimizer might choose an inefficient

access plan based on inaccurate default statistics.

It is highly recommended that you use the runstats command to collect current

statistics on tables and indexes, especially if significant update activity has

occurred or new indexes have been created since the last time the runstats

command was executed. This provides the optimizer with the most accurate

information with which to determine the best access plan.

Be sure to use runstats after making your table updates; otherwise, the table might

appear to the optimizer to be empty. This problem is evident if cardinality on the

Operator Details window equals zero. In this case, complete your table updates,

rerun the runstats command and recreate the explain snapshots for affected tables.

Note:

v Use runstats on all tables and indexes that might be accessed by a query.

v The quantile and frequent value statistics determine when data is unevenly

distributed. To update these values, use runstats on a table with the WITH

DISTRIBUTION clause.

v In addition to statistics, other factors (such as the ordering of qualifying rows,

table size, and buffer pool size) might influence how an access plan is selected.

Chapter 7. Tasks 81

v Applications should be rebound (and their statements optionally re-explained)

after you run the runstats command or change configuration parameters.

The runstats command (which can be entered from the CLP prompt) can provide

different levels of statistics as shown in the following syntax:

Basic Statistics

Table:

RUNSTATS ON TABLE tablename

Index:

RUNSTATS ON TABLE tablename FOR INDEXES ALL

Both tables and indexes:

RUNSTATS ON TABLE tablename AND INDEXES ALL

Enhanced Statistics

Table:

RUNSTATS ON TABLE tablename WITH DISTRIBUTION

Index:

RUNSTATS ON TABLE tablename FOR DETAILED INDEXES ALL

Both tables and indexes:

RUNSTATS ON TABLE tablename WITH DISTRIBUTION AND

DETAILED INDEXES ALL

Note: In each of the above commands, the tablename must be fully qualified with

the schema name.

Visual Explain support for earlier and later releases

The snapshots generated by Version 9 are different from those generated by Version

8.

If you are running Visual Explain on a Version 9 client accessing a Version 8

database, Visual Explain does handle the Version 8 snapshots. Visual Explain

supports earlier release compatibility.

However, if you are running Visual Explain on a Version 8 client accessing a

Version 9 database, Visual Explain returns an error when it tries to parse the

Version 9 data. Visual Explain does not support this upward level compatibility

since the snapshots generated by Version 9 are different from those generated by

Version 8.

82 Visual Explain Tutorial

Part 3. Appendixes

© Copyright IBM Corp. 2002, 2009 83

84 Visual Explain Tutorial

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hardcopy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks® publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an e-mail to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a

DB2 technical issue that the documentation does not resolve, contact your local

IBM service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English and translated DB2

Version 9.7 manuals in PDF format can be downloaded from www.ibm.com/
support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be

available in your country or region.

© Copyright IBM Corp. 2002, 2009 85

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

The form number increases each time a manual is updated. Ensure that you are

reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF

or the hard-copy books.

 Table 1. DB2 technical information

Name Form Number Available in print Last updated

Administrative API

Reference

SC27-2435-00 Yes August, 2009

Administrative Routines

and Views

SC27-2436-00 No August, 2009

Call Level Interface

Guide and Reference,

Volume 1

SC27-2437-00 Yes August, 2009

Call Level Interface

Guide and Reference,

Volume 2

SC27-2438-00 Yes August, 2009

Command Reference SC27-2439-00 Yes August, 2009

Data Movement Utilities

Guide and Reference

SC27-2440-00 Yes August, 2009

Data Recovery and High

Availability Guide and

Reference

SC27-2441-00 Yes August, 2009

Database Administration

Concepts and

Configuration Reference

SC27-2442-00 Yes August, 2009

Database Monitoring

Guide and Reference

SC27-2458-00 Yes August, 2009

Database Security Guide SC27-2443-00 Yes August, 2009

DB2 Text Search Guide SC27-2459-00 Yes August, 2009

Developing ADO.NET

and OLE DB

Applications

SC27-2444-00 Yes August, 2009

Developing Embedded

SQL Applications

SC27-2445-00 Yes August, 2009

Developing Java

Applications

SC27-2446-00 Yes August, 2009

Developing Perl, PHP,

Python, and Ruby on

Rails Applications

SC27-2447-00 No August, 2009

Developing User-defined

Routines (SQL and

External)

SC27-2448-00 Yes August, 2009

Getting Started with

Database Application

Development

GI11-9410-00 Yes August, 2009

Getting Started with

DB2 Installation and

Administration on Linux

and Windows

GI11-9411-00 Yes August, 2009

86 Visual Explain Tutorial

Table 1. DB2 technical information (continued)

Name Form Number Available in print Last updated

Globalization Guide SC27-2449-00 Yes August, 2009

Installing DB2 Servers GC27-2455-00 Yes August, 2009

Installing IBM Data

Server Clients

GC27-2454-00 No August, 2009

Message Reference

Volume 1

SC27-2450-00 No August, 2009

Message Reference

Volume 2

SC27-2451-00 No August, 2009

Net Search Extender

Administration and

User’s Guide

SC27-2469-00 No August, 2009

Partitioning and

Clustering Guide

SC27-2453-00 Yes August, 2009

pureXML Guide SC27-2465-00 Yes August, 2009

Query Patroller

Administration and

User’s Guide

SC27-2467-00 No August, 2009

Spatial Extender and

Geodetic Data

Management Feature

User’s Guide and

Reference

SC27-2468-00 No August, 2009

SQL Procedural

Languages: Application

Enablement and Support

SC27-2470-00 Yes August, 2009

SQL Reference, Volume 1 SC27-2456-00 Yes August, 2009

SQL Reference, Volume 2 SC27-2457-00 Yes August, 2009

Troubleshooting and

Tuning Database

Performance

SC27-2461-00 Yes August, 2009

Upgrading to DB2

Version 9.7

SC27-2452-00 Yes August, 2009

Visual Explain Tutorial SC27-2462-00 No August, 2009

What’s New for DB2

Version 9.7

SC27-2463-00 Yes August, 2009

Workload Manager

Guide and Reference

SC27-2464-00 Yes August, 2009

XQuery Reference SC27-2466-00 No August, 2009

 Table 2. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Installing and

Configuring DB2

Connect Personal Edition

SC27-2432-00 Yes August, 2009

Installing and

Configuring DB2

Connect Servers

SC27-2433-00 Yes August, 2009

Appendix A. Overview of the DB2 technical information 87

Table 2. DB2 Connect-specific technical information (continued)

Name Form Number Available in print Last updated

DB2 Connect User’s

Guide

SC27-2434-00 Yes August, 2009

 Table 3. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-02 Yes August, 2009

Information Integration:

ASNCLP Program

Reference for Replication

and Event Publishing

SC19-1018-04 Yes August, 2009

Information Integration:

Configuration Guide for

Federated Data Sources

SC19-1034-02 No August, 2009

Information Integration:

SQL Replication Guide

and Reference

SC19-1030-02 Yes August, 2009

Information Integration:

Introduction to

Replication and Event

Publishing

GC19-1028-02 Yes August, 2009

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r7.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

88 Visual Explain Tutorial

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 85.

Displaying SQL state help from the command line processor

DB2 products return an SQLSTATE value for conditions that can be the result of an

SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state

class codes.

To start SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

Accessing different versions of the DB2 Information Center

For DB2 Version 9.7 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Appendix A. Overview of the DB2 technical information 89

http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you must also change the

regional settings of your operating system to the locale and language of your

choice.

Updating the DB2 Information Center installed on your computer or

intranet server

A locally installed DB2 Information Center must be updated periodically.

Before you begin

A DB2 Version 9.7 Information Center must already be installed. For details, see

the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in

Installing DB2 Servers. All prerequisites and restrictions that applied to installing

the Information Center also apply to updating the Information Center.

About this task

An existing DB2 Information Center can be updated automatically or manually:

v Automatic updates - updates existing Information Center features and

languages. An additional benefit of automatic updates is that the Information

Center is unavailable for a minimal period of time during the update. In

addition, automatic updates can be set to run as part of other batch jobs that run

periodically.

v Manual updates - should be used when you want to add features or languages

during the update process. For example, a local Information Center was

originally installed with both English and French languages, and now you want

to also install the German language; a manual update will install German, as

well as, update the existing Information Center features and languages.

However, a manual update requires you to manually stop, update, and restart

the Information Center. The Information Center is unavailable during the entire

update process.

Procedure

90 Visual Explain Tutorial

This topic details the process for automatic updates. For manual update

instructions, see the “Manually updating the DB2 Information Center installed on

your computer or intranet server” topic.

To automatically update the DB2 Information Center installed on your computer or

intranet server:

1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7

directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the ic-update script:

ic-update

2. On Windows operating systems,

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2

Information Center\Version 9.7 directory, where <Program Files> represents

the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the ic-update.bat file:

ic-update.bat

Results

The DB2 Information Center restarts automatically. If updates were available, the

Information Center displays the new and updated topics. If Information Center

updates were not available, a message is added to the log. The log file is located in

doc\eclipse\configuration directory. The log file name is a randomly generated

number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your

computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install

documentation updates from IBM.

Updating your locally-installed DB2 Information Center manually requires that

you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to apply updates. The Workstation version of the DB2

Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates

that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, mirror the update

site to a local file system using a machine that is connected to the internet and

has the DB2 Information Center installed. If many users on your network will

be installing the documentation updates, you can reduce the time required for

Appendix A. Overview of the DB2 technical information 91

individuals to perform the updates by also mirroring the update site locally

and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.

However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later

in this section must be run as an administrator. To open a command prompt or

graphical tool with full administrator privileges, right-click the shortcut and then

select Run as administrator.

To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv97 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the <Program

Files>\IBM\DB2 Information Center\Version 9.7 directory, where

<Program Files> represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.7 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information

Center.

3. Click the Update button (

). (JavaScript™ must be enabled in your browser.)

On the right panel of the Information Center, click Find Updates. A list of

updates for existing documentation displays.

4. To initiate the installation process, check the selections you want to install, then

click Install Updates.

5. After the installation process has completed, click Finish.

6. Stop the stand-alone Information Center:

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

92 Visual Explain Tutorial

Note: The help_end batch file contains the commands required to safely stop

the processes that were started with the help_start batch file. Do not use

Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely stop the

processes that were started with the help_start script. Do not use any other

method to stop the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv97 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML®” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 database products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting Guide

or the Database fundamentals section of the DB2 Information Center. There

you will find information about how to isolate and identify problems using

DB2 diagnostic tools and utilities, solutions to some of the most common

problems, and other advice on how to solve problems you might encounter

with your DB2 database products.

Appendix A. Overview of the DB2 technical information 93

http://publib.boulder.ibm.com/infocenter/db2luw/v9

DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/support/db2_9/

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

94 Visual Explain Tutorial

http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

Information about non-IBM products is based on information available at the time

of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,

contact the IBM Intellectual Property Department in your country or send

inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan, Ltd.

3-2-12, Roppongi, Minato-ku, Tokyo 106-8711 Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 2002, 2009 95

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

96 Visual Explain Tutorial

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. The sample

programs are provided ″AS IS″, without warranty of any kind. IBM shall not be

liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of

International Business Machines Corp., registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web at “Copyright and

trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

v Java™ and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

v UNIX® is a registered trademark of The Open Group in the United States and

other countries.

v Intel®, Intel logo, Intel Inside®, Intel Inside logo, Intel® Centrino®, Intel Centrino

logo, Celeron®, Intel® Xeon®, Intel SpeedStep®, Itanium®, and Pentium® are

trademarks or registered trademarks of Intel Corporation or its subsidiaries in

the United States and other countries.

v Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix B. Notices 97

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

98 Visual Explain Tutorial

Index

A
access plan graph 63

changing appearance 10

for a list of previously explained SQL or XQuery

statements 7

getting more details 9

magnifying 8

nodes 64

reading the symbols 7

access plan graphs
displaying and using 7

access plans
collecting current statistics

in a partitioned database environment 34

in a single-partition database environment 17

creating additional indexes
in a partitioned database environment 43

in a single-partition database environment 26

creating from Command Editor 75

creating indexes on columns used to join tables
in a partitioned database environment 38

in a single-partition database environment 21

improving
in a partitioned database environment 31

in a single-partition database environment 13

out-of-date 80

overview 63

query with no indexes and no statistics
in a partitioned database environment 31

in a single-partition database environment 13

retrieving when using LONGDATACOMPAT 81

viewing graphical presentation 75

B
books

printed
ordering 88

C
clustering

definition 64

Command Editor
adding access plans 75

commands
EXPLAIN.DDL 3

RUNSTATS, using 81

vesampl.ddl 4

containers
definition 64

cost
definition 65

CREATE INDEX statement
overview 80

creating
indexes 80

cursors
blocking

definition 65

D
database managed space (DMS)

definition 65

DB2 Information Center
languages 89

updating 90, 91

versions 89

viewing in different languages 89

DELETE operator
definition 49

documentation
overview 85

PDF 85

printed 85

terms and conditions of use 94

dynamic SQL or XQuery statements
definition 66

E
EISCAN operator

definition 49

explain facility
sample XML document fragment 70

explain snapshots 3

definition 66

for dynamic SQL or XQuery statements 5

for static SQL or XQuery statements 6

for Visual Explain tutorial 4

explain tables
creating 3

EXPLAIN.DDL
command 3

explainable statements
definition 67

viewing 79

explained SQL statements
definition 67

viewing history 77

explained XQuery statements
definition 67

viewing history 77

explsnap option 6

F
FETCH operator

definition 50

FILTER operator
definition 50

G
GENROW operator

definition 50

GRPBY operator
definition 51

© Copyright IBM Corp. 2002, 2009 99

H
help

configuring language 89

SQL statements 89

HSJOIN operator
definition 51

I
indexes

creating 80

on table columns in a partitioned database

environment 43

INSERT operator
definition 52

IXAND operator
definition 52

IXSCAN operator
definition 52

L
LONGDATACOMPAT

retrieving access plan 81

M
MSJOIN operator

definition 53

N
NLJOIN operator

definition 53

notices 95

O
operands

definition 67

operators
definition 67

DELETE 49

EISCAN 49

FETCH 50

FILTER 50

GENROW 50

GRPBY 51

HSJOIN 51

INSERT 52

IXAND 52

IXSCAN 52

MSJOIN 53

NLJOIN 53

RETURN 54

RIDSCN 54

RPD 55

SHIP 55

SORT 55

TBSCAN 56

TEMP 56

TQ 57

UNION 58

UNIQUE 58

operators (continued)
UPDATE 59

XANDOR 59

XISCAN 60

XSCAN 62

optimizer
definition 69

ordering DB2 books 88

P
packages

definition 69

viewing explainable statements 79

predicates
definition 69

problem determination
information available 93

tutorials 93

Q
query optimization class

definition 70

R
RETURN operator

definition 54

RIDSCN operator
definition 54

row blocking
see cursor blocking 65

RPD operator
definition 55

RUNSTATS command
using 81

S
selectivity of predicates

definition 71

SHIP operator
definition 55

SORT operator
definition 55

SQL statements
displaying help 89

explained
viewing history 77

star joins
definition 71

static SQL or XQuery statements
definition 72

system-managed table spaces
definition 72

T
table spaces

definition 73

TBSCAN operator
definition 56

TEMP operator
definition 56

100 Visual Explain Tutorial

terms and conditions
use of publications 94

TQ operator
definition 57

troubleshooting
online information 93

tutorials 93

tutorials
problem determination 93

troubleshooting 93

Visual Explain v, 93

U
UNION operator

definition 58

UNIQUE operator
definition 58

UPDATE operator
definition 59

updates
DB2 Information Center 90, 91

V
vesampl.ddl command 4

Visual Explain
access plan graph 63

access plans 63

definition 73

support for earlier and later releases 82

tutorial v, 1, 93

Visual Explain tutorial
concepts 63

tasks 49, 75

X
XANDOR operator

definition 59

sample document 70

XISCAN operator
definition 60

sample document 70

XQuery statements
explained

viewing history 77

XSCAN operator
definition 62

sample document 70

Index 101

102 Visual Explain Tutorial

����

Printed in USA

SC27-2462-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

DB

2
9.

7
fo

r L
in

ux
, U

NI
X,

an

d
W

in
do

w
s

Vi
su

al

Ex

pl
ai

n
Tu

to
ria

l
�
�

�

	Contents
	About this tutorial
	Part 1. Visual Explain Tutorial
	Chapter 1. Lesson 1. Creating explain snapshots
	Creating the explain tables
	Using explain snapshots
	Creating explain snapshots for dynamic SQL or XQuery statements
	Creating explain snapshots for static SQL or XQuery statements
	What's Next

	Chapter 2. Lesson 2. Displaying and using an access plan graph
	Displaying an access plan graph by choosing from a list of previously explained SQL or XQuery statements
	Reading the symbols in an access plan graph
	Using the zoom slider to magnify parts of a graph
	Getting more details about the objects in a graph
	Getting statistics for tables, indexes, and table functions
	Getting details about operators in a graph
	Getting statistics for functions
	Getting statistics for table spaces
	Getting statistics for columns in an SQL or XQuery statement
	Getting information about configuration parameters and bind options

	Changing the appearance of a graph
	What's Next

	Chapter 3. Lesson 3. Improving an access plan in a single-partition database environment
	Working with access plan graphs
	Running a query with no indexes and no statistics in a single-partition database environment
	What's Next

	Collecting current statistics for the tables and indexes using runstats in a single-partition database environment
	What's Next

	Creating indexes on columns used to join tables in a query in a single-partition database environment
	What's Next

	Creating additional indexes on table columns in a single-partition database environment
	What's Next

	Chapter 4. Lesson 4. Improving an access plan in a partitioned database environment
	Working with access plan graphs
	Running a query with no indexes and no statistics in a partitioned database environment
	What's Next

	Collecting current statistics for the tables and indexes using runstats in a partitioned database environment
	What's Next

	Creating indexes on columns used to join tables in a query in a partitioned database environment
	What's Next

	Creating additional indexes on table columns in a partitioned database environment
	What's Next

	Part 2. Reference
	Chapter 5. Visual Explain operators
	CMPEXP operator
	DELETE operator
	EISCAN operator
	FETCH
	FILTER operator
	GENROW operator
	GRPBY operator
	HSJOIN operator
	INSERT operator
	IXAND operator
	IXSCAN
	MSJOIN operator
	NLJOIN operator
	PIPE operator
	RETURN operator
	RIDSCN operator
	RPD operator
	SHIP operator
	SORT operator
	TBSCAN operator
	TEMP operator
	TQ operator
	UNION operator
	UNIQUE operator
	UPDATE operator
	XANDOR operator
	XISCAN operator
	XSCAN operator

	Chapter 6. Visual Explain concepts
	Access plan
	Access plan graph
	Access plan graph node
	Clustering
	Container
	Cost
	Cursor blocking
	Database-managed table space
	Dynamic SQL or XQuery
	Explain snapshot
	Explainable statement
	Explained statement
	Operand
	Operator
	Optimizer
	Package
	Predicate
	Query optimization class
	Sample XML document fragment for Explain XML operators
	Selectivity of predicates
	Star join
	Static SQL or XQuery
	System-managed table spaces
	Table spaces
	Visual Explain

	Chapter 7. Visual Explain tasks
	Creating an access plan using the Command Editor
	Viewing a graphical representation of an access plan
	Viewing the history of previously explained query statements
	Viewing explainable statements for a package
	Guidelines for creating indexes
	Out-of-date access plans
	Retrieving the access plan when using LONGDATACOMPAT
	Using RUNSTATS
	Visual Explain support for earlier and later releases

	Part 3. Appendixes
	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index

