
IBM DB2 9.7
for Linux, UNIX, and Windows

Common Criteria Certification: Administration and User Documentation -
Volume 1 - Revision 6

SC14-7213-00

���

IBM DB2 9.7
for Linux, UNIX, and Windows

Common Criteria Certification: Administration and User Documentation -
Volume 1 - Revision 6

SC14-7213-00

���

Note
Before using this information and the product it supports, read the general information under Appendix C, “Notices,” on
page 1097.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Common Criteria certification of DB2
products ix

Supported interfaces for a Common
Criteria evaluated configuration xi

About this book xiii

Part 1. Overview of the DB2
environment 1

Chapter 1. DB2 architecture and process
overview 3

Chapter 2. The DB2 process model . . . 5

Chapter 3. Client-server processing
model 11

Chapter 4. Database agents. 17

Chapter 5. Database agent
management 19

Chapter 6. Naming rules 21
General naming rules 21
DB2 object naming rules 22
User, user ID and group naming rules 24
Naming rules in an NLS environment 24
Naming rules in a Unicode environment 25
Reserved schema names and reserved words . . . 26

Chapter 7. Naming conventions 29

Part 2. Partitioned database
environments 31

Chapter 8. Parallel database systems 33
Partitioned database environments 33
Parallelism 34
Database partition and processor environments . . 38

Chapter 9. Database partitioning across
multiple database partitions 45

Chapter 10. Database partition groups 47

Chapter 11. Execution parallelism . . . 49
Enabling inter-partition query parallelism 49

Configuration parameters that affect the number of
agents 50

Chapter 12. Synchronizing clocks in a
partitioned database environment . . . 51

Chapter 13. Restrictions on data
redistribution 53

Chapter 14. Scenario: Partitioning data
in a database 55

Part 3. DB2 security considerations 57

Chapter 15. What’s New 59
Authorities overview 59

System administrator (SYSADM) authority scope
has changed 63
Security administrator (SECADM) abilities have
been extended 64
Database administrator (DBADM) authority
scope has changed 66

SSLconfig.ini and SSLClientconfig.ini files replaced
with new database manager configuration
parameters 69
Security enhancements 70

DB2 authorization model has been enhanced to
allow separation of duties 70
SYSMON authority has been extended to LIST
commands and the db2mtrk command 72
SSL client support expanded and configuration
simplified 73
AES encryption of user ID and password
enhances security 75

Discontinued functionality 75
Type-1 indexes have been discontinued 75

Chapter 16. Authentications,
authorizations, privileges, and
authorities 77
Security 77
Authentication 77
Partitioned database authentication considerations 78
Authorization 78
Authorization IDs in different contexts 79
Authorization, privileges, and object ownership . . 81
Object creation, ownership, and privileges 86
Schemas 87
Details on privileges, authorities, and authorization 88

Default privileges granted on creating a database 88
System administration authority (SYSADM) . . 90
System control authority (SYSCTRL) 91
System maintenance authority (SYSMAINT) . . 92

© Copyright IBM Corp. 1993, 2009 iii

System monitor authority (SYSMON). 92
Database authorities 93
Security administration authority (SECADM) . . 94
Database administration authority (DBADM) . . 95
LOAD authority 97
Implicit schema authority (IMPLICIT_SCHEMA)
considerations 98
Schema privileges 98
Table space privileges 99
Table and view privileges 100
Package privileges. 101
Index privileges 102
Sequence privileges 102
Routine privileges 102
Authorizations and binding of routines that
contain SQL 103

Controlling database access. 106
Security considerations when installing and using
the DB2 database manager 106
Authentication methods for your server 108
Authentication considerations for remote clients 114
Details on controlling access to database objects 115

Granting privileges 115
Revoking privileges 116
Managing implicit authorizations by creating
and dropping objects 117
Establishing ownership of a package 117
Implicit privileges through a package 118
Indirect privileges through a package containing
nicknames 118
Controlling access to data with views 119
Controlling access for database administrators
(DBAs) 122

Data encryption 123
IBM Database Encryption Expert for encryption
of data at rest 124
Secure Sockets Layer (SSL) 127
Digital certificates and certificate authorities . . 128
Public-key cryptography 129
Supported cipher suites 129
GSKit return codes 130

Using an access token to acquire users’ group
information (Windows) 140
Details on security based on operating system . . 141

Defining which users hold SYSADM authority
(Windows) 141
DB2 and UNIX security 142

Chapter 17. Label-based access
control (LBAC) 143
Label-based access control (LBAC) 143
LBAC security policies 145
LBAC security label components 146

LBAC security label components overview . . 146
LBAC security label component type: SET . . . 147
LBAC security label component type: ARRAY 148
LBAC security label component type: TREE . . 148

LBAC security labels 151
Format for security label values 153
How LBAC security labels are compared 154
LBAC security label components 155

LBAC rule sets overview 155
LBAC rule set: DB2LBACRULES 155

LBAC rule exemptions 159
Built-in functions for managing LBAC security
labels 160
Protection of data using LBAC 161
Reading of LBAC protected data 163
Inserting of LBAC protected data. 165
Updating of LBAC protected data 168
Deleting or dropping of LBAC protected data . . 172
Removal of LBAC protection from data 175
LBAC-protected data load considerations 176

Chapter 18. Gaining access to data
through indirect means 179

Chapter 19. Authorization ID
privileges: SETSESSIONUSER 181

Chapter 20. User responsibilities for
security 183

Chapter 21. Extended Windows
security using the DB2ADMNS and
DB2USERS groups 185

Chapter 22. Roles 189
Roles 189

Creating and granting membership in roles . . 190
Role hierarchies 192
Effect of revoking privileges from roles 192
Delegating role maintenance by using the WITH
ADMIN OPTION clause. 194
Roles compared to groups 195
Using roles after migrating from IBM Informix
Dynamic Server 196

Chapter 23. Trusted contexts. 197
Using trusted contexts and trusted connections . . 197

Trusted contexts and trusted connections . . . 199
Role membership inheritance through a trusted
context 202
Rules for switching the user ID on an explicit
trusted connection. 203
Trusted context problem determination 205

Chapter 24. Firewall considerations 207
Firewall support 207
Screening router firewalls 207
Application proxy firewalls. 207
Circuit level firewalls 207
Stateful multi-layer inspection (SMLI) firewalls . . 208

Chapter 25. System catalogs and
security maintenance 209
System catalogs and security maintenance 209

System catalog views 209

iv Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Using the system catalog for security
information 209
Details on using the system catalog for security
issues 210
System catalog views 215

Chapter 26. Auditing database
activities 249
Auditing DB2 database activities 249

Introduction to the DB2 audit facility 249
Audit facility behavior 251
Working with DB2 audit data in DB2 tables . . 252
Audit facility record layouts 254
Details on audit facility record layouts 255
Audit facility tips and techniques. 282

Audit policies 285
Audit archive and extract stored procedures . . . 288
The EXECUTE category for auditing SQL
statements 290
Storage and analysis of audit logs 293
Audit log file names 297
AUDIT_LIST_LOGS table function - Lists archived
audit log files 297

Chapter 27. Setting up the database
environment 299
Considerations for Creating a Database System . . 299

Database directories and files 299
Space requirements for database objects . . . 301
Space requirements for user table data 301
Space requirements for indexes 303
Space requirements for log files 306
Database partition group design 308
Distribution maps 308
Distribution keys 309
Table collocation 311
Partition compatibility 311
Replicated materialized query tables. 312
Table spaces 313
System managed space 315
Database managed space 317
Comparison of SMS and DMS table spaces . . 319
Temporary table spaces 320

Before Creating the Database 322
Starting instances (Linux, UNIX) 322
Starting instances (Windows) 322
Grouping objects by schema 323
Stopping instances (Linux, UNIX) 323
Stopping instances (Windows) 324
Instances 325
Working with instances 326
Managing licenses 326
Additional considerations for partitioned
database environments 327

Creating a Database and Database Objects. . . . 331
Creating databases 331
Initial database partition groups 333
Defining initial table spaces on database
creation 334
System catalog tables 335

Database recovery log 335
Binding utilities to the database 335
Creating database partition groups 336
Creating table spaces 337
Table spaces in database partition groups . . . 340
Designing schemas 341
Creating schemas 343
Types of tables 343
Designing tables 345
Creating tables 345
Data types for columns 346
Generated columns 350
Tables in partitioned database environments . . 351
Designing views 353
Indexes 353
Designing indexes 355
Creating indexes 357

Configuring an instance to be Common Criteria
compliant 358

Configuring the DB2 database manager to be
Common Criteria compliant 358

Chapter 28. Altering a partitioned
database environment 361
Altering a database partition group 361
Scaling your configuration 361

Management of data server capacity. 361
Adding database partitions in partitioned
database environments 362
Adding a database partition to a running
database system 363
Adding a database partition to a stopped
database system (Windows) 364
Adding a database partition to a stopped
database system (UNIX) 365
Error recovery when adding database partitions 367
Dropping database partitions 368

Redistributing data across database partitions . . 368
Data redistribution 369
Determining if data redistribution is needed . . 369
Redistributing data across database partitions
using the REDISTRIBUTE DATABASE
PARTITION GROUP command 370
Log space requirements for data redistribution 372
Redistribution event log file 373
Redistributing database partition groups using
the STEPWISE_REDISTRIBUTE_DBPG
procedure 374

Using Windows database partition servers . . . 376
Listing database partition servers in an instance 376
Adding database partition servers to an instance
(Windows) 376
Changing database partitions (Windows) . . . 378
Dropping a database partition from an instance
(Windows) 379

Multiple logical partitions 380
Setting up multiple logical partitions 380
Configuring multiple logical partitions 380

Contents v

Chapter 29. Concurrency, isolation
levels, and locking 383
Concurrency, Isolation Levels, and Locking . . . 383

Deadlocks 383
Concurrency Control and Isolation Levels . . . 384
Concurrency Control and Locking 392
Factors that affect locking 410
Factors That Affect Locking 410
Evaluate uncommitted data through lock
deferral 412
Option to disregard uncommitted insertions . . 415
Table locking modes supported by the import
utility 415

Chapter 30. DB2 commands 417
Command Line Processor (CLP) 417

db2 - Command line processor invocation . . . 417
Command line processor options 418
Command line processor return codes 426
Command line processor features 426

Security considerations for utilities 432
Privileges and authorities required to use the
export utility 432
Privileges, authorities, and authorization
required to use backup 432
Privileges, authorities, and authorization
required to use recover 433
Privileges, authorities, and authorization
required to use restore 433
Authorization required for rollforward 433
Privileges and authorities required to use load 433

Issuing commands to multiple database partitions 434
Issuing commands in partitioned database
environments 434
rah and db2_all commands overview 435
rah and db2_all commands 435
Specifying the rah and db2_all commands. . . 436
Running commands in parallel (Linux, UNIX) 437
Monitoring rah processes (Linux, UNIX) . . . 438
Extension of the rah command to use tree logic
(AIX and Solaris) 438
rah command prefix sequences 439
Specifying the list of machines in a partitioned
database environment 441
Eliminating duplicate entries from a list of
machines in a partitioned database environment. 441
Controlling the rah command 442
Specifying which . files run with rah (Linux and
UNIX) 443
Setting the default environment profile for rah
on Windows. 444
Determining problems with rah (Linux, UNIX) 444

Load overview–partitioned database environments 446
DB2 UDB Commands for Administrators 448

ADD DBPARTITIONNUM 448
BACKUP DATABASE 450
BIND 462
CATALOG DATABASE 481
CREATE DATABASE 484
db2audit - Audit facility administrator tool . . 502

db2gpmap - Get distribution map 510
db2icrt - Create instance 511
db2iupdt - Update instances 515
db2nchg - Change database partition server
configuration 519
db2ncrt - Add database partition server to an
instance 520
db2ndrop - Drop database partition server from
an instance 522
db2rbind - Rebind all packages 523
db2extsec - Set permissions for DB2 objects . . 524
db2secGenerateInitialCred API - Generate initial
credentials 526
db2undgp - Revoke execute privilege 528
DROP DATABASE 528
DROP DBPARTITIONNUM VERIFY. 530
EXPORT 531
GET DATABASE CONFIGURATION 540
GET DATABASE MANAGER
CONFIGURATION 545
IMPORT 550
INSPECT 574
LIST APPLICATIONS 581
LIST DATABASE PARTITION GROUPS . . . 583
LIST PACKAGES/TABLES 585
LIST TABLESPACE CONTAINERS 587
LIST TABLESPACES 588
LOAD 602
UPGRADE DATABASE 635
QUIESCE. 636
QUIESCE TABLESPACES FOR TABLE 637
RECOVER DATABASE 640
REDISTRIBUTE DATABASE PARTITION
GROUP 645
REORG INDEXES/TABLE 665
RESTART DATABASE 691
RESTORE DATABASE 693
ROLLFORWARD DATABASE 710
SET RUNTIME DEGREE 720
SET WRITE 721
START DATABASE MANAGER 722
STOP DATABASE MANAGER 729
UNQUIESCE 732
UPDATE DATABASE CONFIGURATION . . . 733
UPDATE DATABASE MANAGER
CONFIGURATION 737

Commands for Users 740
ATTACH 740
DETACH 742
GET CONNECTION STATE 742
LIST DBPARTITIONNUMS. 743
PRECOMPILE 744
REBIND 769

Chapter 31. Application programming
interfaces (APIs) 775
DB2 UDB APIs for Administrators 775

db2Backup - Back up a database or table space 775
db2CfgGet - Get the database manager or
database configuration parameters 784

vi Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

db2CfgSet - Set the database manager or
database configuration parameters 787
db2DatabaseRestart - Restart database 790
db2DatabaseQuiesce - Quiesce the database . . 793
db2DatabaseUnquiesce - Unquiesce database 794
db2Export - Export data from a database . . . 796
db2Import - Import data into a table, hierarchy,
nickname or view 802
db2Inspect - Inspect database for architectural
integrity 815
db2InstanceQuiesce - Quiesce instance 822
db2InstanceStart - Start instance 824
db2InstanceStop - Stop instance 829
db2InstanceUnquiesce - Unquiesce instance . . 832
db2Load - Load data into a table 833
db2Recover - Restore and roll forward a
database 853
db2Reorg - Reorganize an index or a table. . . 859
db2Restore - Restore a database or table space 867
db2Rollforward - Roll forward a database . . . 880
db2SetWriteForDB - Suspend or resume I/O
writes for database 890
sqlabndx - Bind application program to create a
package 891
sqlbftpq - Fetch the query data for rows in a
table space 894
sqlbmtsq - Get the query data for all table
spaces 895
sqlbotcq - Open a table space container query 896
sqlbstpq - Get information about a single table
space 898
sqle_activate_db - Activate database 899
sqle_deactivate_db - Deactivate database . . . 901
sqleaddn - Add a database partition to the
partitioned database environment 903
sqlecadb - Catalog a database in the system
database directory 905
sqlecrea - Create database 910
sqledpan - Drop a database on a database
partition server 917
sqledrpd - Drop database 918
sqledrpn - Check whether a database partition
server can be dropped 920
sqlefrce - Force users and applications off the
system 921
sqlemgdb - Migrate previous version of DB2
database to current version 924
sqlesdeg - Set the maximum runtime
intra-partition parallelism level or degree for
SQL statements 925
sqlugrpn - Get the database partition server
number for a row 927
sqlugtpi - Get table distribution information . . 930
sqluvqdp - Quiesce table spaces for a table . . 931

DB2 APIs for Users 933
sqlaprep - Precompile application program . . 933
sqlarbnd - Rebind package 936
sqleatcp - Attach to instance and change
password. 938
sqleatin - Attach to instance 940
sqledtin - Detach from instance 942

Part 4. Appendixes 945

Appendix A. Related topics (linked to
from topics in this book) 947
SQL Reference topics 947

SYSCAT.ATTRIBUTES 947
SYSCAT.AUDITPOLICIES 948
SYSCAT.AUDITUSE 950
SYSCAT.BUFFERPOOLDBPARTITIONS . . . 950
SYSCAT.BUFFERPOOLS. 951
SYSCAT.CASTFUNCTIONS 951
SYSCAT.CHECKS 952
SYSCAT.COLCHECKS 953
SYSCAT.COLDIST 954
SYSCAT.COLGROUPCOLS 955
SYSCAT.COLGROUPDIST 955
SYSCAT.COLGROUPDISTCOUNTS 955
SYSCAT.COLGROUPS 956
SYSCAT.COLIDENTATTRIBUTES 956
SYSCAT.COLOPTIONS 957
SYSCAT.COLUMNS 957
SYSCAT.COLUSE 962
SYSCAT.CONDITIONS 963
SYSCAT.CONSTDEP 963
SYSCAT.CONTEXTATTRIBUTES 964
SYSCAT.CONTEXTS 964
SYSCAT.DATAPARTITIONEXPRESSION . . . 964
SYSCAT.DATAPARTITIONS 965
SYSCAT.DATATYPEDEP 967
SYSCAT.DATATYPES. 968
SYSCAT.DBPARTITIONGROUPDEF 971
SYSCAT.DBPARTITIONGROUPS 971
SYSCAT.EVENTMONITORS 972
SYSCAT.EVENTS 973
SYSCAT.EVENTTABLES. 974
SYSCAT.FULLHIERARCHIES 975
SYSCAT.FUNCMAPOPTIONS 976
SYSCAT.FUNCMAPPARMOPTIONS 976
SYSCAT.FUNCMAPPINGS 976
SYSCAT.HIERARCHIES 977
SYSCAT.HISTOGRAMTEMPLATEBINS . . . 978
SYSCAT.HISTOGRAMTEMPLATES 978
SYSCAT.HISTOGRAMTEMPLATEUSE 978
SYSCAT.INDEXCOLUSE 979
SYSCAT.INDEXDEP 980
SYSCAT.INDEXES 981
SYSCAT.INDEXEXPLOITRULES 986
SYSCAT.INDEXEXTENSIONDEP 987
SYSCAT.INDEXEXTENSIONMETHODS . . . 988
SYSCAT.INDEXEXTENSIONPARMS. 988
SYSCAT.INDEXEXTENSIONS 989
SYSCAT.INDEXOPTIONS 990
SYSCAT.INDEXPARTITIONS 990
SYSCAT.INDEXXMLPATTERNS 993
SYSCAT.INVALIDOBJECTS. 993
SYSCAT.KEYCOLUSE 994
SYSCAT.MODULEAUTH 994
SYSCAT.MODULEOBJECTS 995
SYSCAT.MODULES 996
SYSCAT.NAMEMAPPINGS 996

Contents vii

SYSCAT.NICKNAMES 997
SYSCAT.PACKAGES 1000
SYSCAT.PARTITIONMAPS 1004
SYSCAT.PREDICATESPECS 1005
SYSCAT.REFERENCES 1005
SYSCAT.ROLEAUTH 1006
SYSCAT.ROLES 1006
SYSCAT.ROUTINEDEP. 1007
SYSCAT.ROUTINEOPTIONS 1008
SYSCAT.ROWFIELDS 1009
SYSCAT.ROUTINEPARMOPTIONS 1010
SYSCAT.ROUTINEPARMS 1010
SYSCAT.ROUTINES 1012
SYSCAT.ROUTINESFEDERATED 1019
SYSCAT.SERVEROPTIONS 1021
SYSCAT.SERVERS 1021
SYSCAT.SERVICECLASSES 1021
SYSCAT.STATEMENTS 1023
SYSCAT.TABDEP. 1023
SYSCAT.TABDETACHEDDEP 1025
SYSCAT.TABOPTIONS 1025
SYSCAT.THRESHOLDS 1025
SYSCAT.TRANSFORMS 1027
SYSCAT.TRIGDEP 1028
SYSCAT.TRIGGERS 1029
SYSCAT.TYPEMAPPINGS. 1031
SYSCAT.VARIABLEAUTH 1033
SYSCAT.VARIABLEDEP 1034
SYSCAT.VARIABLES 1035
SYSCAT.VIEWS 1037
SYSCAT.WORKACTIONS 1037
SYSCAT.WORKACTIONSETS 1040
SYSCAT.WORKCLASSES 1040
SYSCAT.WORKCLASSSETS 1041
SYSCAT.WORKLOADAUTH 1042
SYSCAT.WORKLOADCONNATTR. 1042
SYSCAT.WORKLOADS. 1043
SYSCAT.WRAPOPTIONS 1045
SYSCAT.WRAPPERS 1045
SYSCAT.XDBMAPGRAPHS 1045
SYSCAT.XDBMAPSHREDTREES 1046
SYSCAT.XMLSTRINGS 1046
SYSCAT.XSROBJECTAUTH 1046
SYSCAT.XSROBJECTCOMPONENTS 1047
SYSCAT.XSROBJECTDETAILS 1047
SYSCAT.XSROBJECTDEP 1048
SYSCAT.XSROBJECTHIERARCHIES 1049

SYSCAT.XSROBJECTS 1049
SYSIBM.SYSDUMMY1 1050
SYSSTAT.COLDIST 1050
SYSSTAT.COLGROUPDIST 1051
SYSSTAT.COLGROUPDISTCOUNTS 1052
SYSSTAT.COLGROUPS. 1052
SYSSTAT.COLUMNS 1052
SYSSTAT.INDEXES 1054
SYSSTAT.ROUTINES 1057
SYSSTAT.TABLES 1058

Database object topics 1059
Automatic features 1059
Schema name restrictions and
recommendations 1061
Table partitioning and data organization
schemes 1061
Table spaces without file system caching . . . 1061
Setting the current instance environment
variables 1063
System environment variables 1064
General registry variables 1073

Administration configuration topics 1081
authentication - Authentication type 1081
svcename - TCP/IP service name 1083

Appendix B. Overview of the DB2
technical information 1085
DB2 technical library in hardcopy or PDF format 1085
Ordering printed DB2 books 1088
Displaying SQL state help from the command line
processor 1089
Accessing different versions of the DB2
Information Center 1089
Displaying topics in your preferred language in
the DB2 Information Center 1089
Updating the DB2 Information Center installed on
your computer or intranet server 1090
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 1091
DB2 tutorials 1093
DB2 troubleshooting information 1094
Terms and Conditions 1094

Appendix C. Notices 1097

Index 1101

viii Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Common Criteria certification of DB2 products

For Version 9.7, IBM® DB2® products are certified according to the Common
Criteria evaluation assurance level 4 (EAL4), augmented with Flaw remediation
ALC_FLR.1.

The following product is certified on the following operating systems:

Table 1.

Windows®

Server 2003

Red Hat
Enterprise
Linux® 5

SuSE Linux
Enterprise
Server 10 AIX® 6 Solaris 10

IBM DB2
Version 9.7
Enterprise
Server
Edition for
Linux,
UNIX®, and
Windows

Yes Yes Yes Yes Yes

Note:

1. For a Common Criteria certified DB2 environment, DB2 requires 64-bit
Windows Server 2003 x64, Red Hat Enterprise Linux 5, or SuSE Linux
Enterprise Server 10 operating systems for Intel® EM64T- and AMD64-based
systems.

2. In a Common Criteria certified DB2 environment, DB2 clients are supported on
the following operating systems:
v Windows 2003
v Red Hat Enterprise Linux 5
v SuSE Linux Enterprise Server 10
v AIX 6
v Solaris 10

For more information about Common Criteria, see the Common Criteria web site
at: http://www.commoncriteriaportal.org.

For information about installing and configuring a DB2 system that conforms to
the Common Criteria EAL4, see the following books:
v Installing IBM DB2 Enterprise Server Edition

v IBM DB2 Administration and User Documentation

These books are available in PDF format from the DB2 Information Management
Library.

© Copyright IBM Corp. 1993, 2009 ix

x Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Supported interfaces for a Common Criteria evaluated
configuration

The set of DB2 interfaces that are used in the Common Criteria evaluation of the
DB2 database manager are as follows:
v The DB2 install program
v The command line processor
v DB2 commands
v DB2 application programming interfaces (APIs)
v SQL statements

You can use these interfaces when installing and configuring a Common Criteria
compliant DB2 system.

Other interfaces that are provided by the DB2 database manager, such as the
Control Center or Command Editor were not used during the Common Criteria
evaluation of DB2 products, and must not be used in the Common Criteria
evaluation configuration.

Note:

v NOT FENCED routines are also not supported.
v Data encryption functions ENCRYPT, DECRYPT_BIN, DECRYPT_CHAR and

GETHINT must not be used.
v The user-written security plugins must not be used.
v Like table privileges (SELECT, INSERT, UPDATE, DELETE), Label-Based Access

Control (LBAC) has no control over access to physical files such as database files
and transaction logs. Given that these files contain database data including data
protected with LBAC and given that DB2 administrators have direct access to
these physical files, DB2 administrators should be treated as having the highest
level of access even though this is an indirect access and is outside the scope of
the LBAC model.

When using the DB2 Database Partition Feature (DPF), the external security
information that is used by the DB2 database manager to perform authentication
and authorization must be configured consistently on each partition. This
information depends on the authentication type in use. For operating system
security, this information is the username, password and group membership of
each user that can connect to the database. Identical usernames, passwords and
groups must be created at each partition. For LDAP authentication, this
information is stored in the LDAP configuration file for the LDAP-based
authentication plugin. The LDAP configuration file must have the same contents
on each partition. For Kerberos, in order to ensure that the same Key Distribution
Center (KDC) is used for each partition, this information is stored in the Kerberos
configuration file on the server where the DB2 product is installed. Failure to
provide consistent configuration information at each partition could result in users
being unable to authenticate, and hence connect to the DB2 database, or users
having reduced privileges, if incomplete group membership information is
obtained from the local operating system, or from LDAP, or from Kerberos.

© Copyright IBM Corp. 1993, 2009 xi

xii Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

About this book

This book, consisting of volumes 1 and 2, is intended for use by assessors
validating that specific DB2 database products conform to the Common Criteria
EAL4 specification augmented with Flaw remediation ALC_FLR.1. It is also
intended for those who want to set up a DB2 environment that conforms to the
characteristics of the evaluated environment.

Volume 1 describes:
v The DB2 process model
v The DB2 security model, and the facilities available to set up and maintain

security
v How to set up the DB2 environment so that it conforms to the requirements of

the Common Criteria EAL4 specification
v How to audit activity in the environment
v Background information that you should be familiar with before setting up the

DB2 database environment
v Security-related considerations that are applicable to users of the DB2 database

environment, including the type of authorization that the administrator must
give to a user before that user can work with DB2 utilities.

v DB2 commands.

Regarding security considerations on SQL statements and SQL routines (found in
chapters 5 and 6):
v Passwords appear in SQL statements in plain text. As such, any program or

script containing such statements needs appropriate protection with OS- and
DBMS-provided mechanisms.

v A major database vulnerability (generic) is SQL injection. As such, use caution
and validate any direct user input looking for SQL injection attacks—looking for
SQL statements, special characters such as {},; and quotes.

Note: This book does not provide information on how to install DB2 database
servers. For installation information, See the Version 9.7 Installing IBM DB2
Enterprise Server Edition.

Some topics in book link to related topics, which are either included in Appendix
A in order to resolve the links, or that are referenced outside of the Common
Criteria certification documentation. These are for informational purposes only, and
are not required for either installing or configuring a Common Criteria compliant
environment.

© Copyright IBM Corp. 1993, 2009 xiii

xiv Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Part 1. Overview of the DB2 environment

© Copyright IBM Corp. 1993, 2009 1

2 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 1. DB2 architecture and process overview

On the client side, local or remote applications are linked with the DB2 client
library. Local clients communicate using shared memory and semaphores; remote
clients use a protocol, such as named pipes (NPIPE) or TCP/IP. On the server side,
activity is controlled by engine dispatchable units (EDUs).

Figure 1 shows a general overview of the DB2 architecture and processes.

EDUs are shown as circles or groups of circles.

EDUs are implemented as threads on all platforms. DB2 agents are the most
common type of EDU. These agents perform most of the SQL and XQuery
processing on behalf of applications. Prefetchers and page cleaners are other
common EDUs.

A set of subagents might be assigned to process client application requests.
Multiple subagents can be assigned if the machine on which the server resides has

Figure 1. Client connections and database server components

© Copyright IBM Corp. 1993, 2009 3

multiple processors or is part of a partitioned database environment. For example,
in a symmetric multiprocessing (SMP) environment, multiple SMP subagents can
exploit multiple processors.

All agents and subagents are managed by a pooling algorithm that minimizes the
creation and destruction of EDUs.

Buffer pools are areas of database server memory where pages of user data, index
data, and catalog data are temporarily moved and can be modified. Buffer pools
are a key determinant of database performance, because data can be accessed
much faster from memory than from disk.

The configuration of buffer pools, as well as prefetcher and page cleaner EDUs,
controls how quickly data can be accessed by applications.
v Prefetchers retrieve data from disk and move it into a buffer pool before

applications need the data. For example, applications that need to scan through
large volumes of data would have to wait for data to be moved from disk into a
buffer pool if there were no data prefetchers. Agents of the application send
asynchronous read-ahead requests to a common prefetch queue. As prefetchers
become available, they implement those requests by using big-block or
scatter-read input operations to bring the requested pages from disk into the
buffer pool. If you have multiple disks for data storage, the data can be striped
across those disks. Striping enables the prefetchers to use multiple disks to
retrieve data simultaneously.

v Page cleaners move data from a buffer pool back to disk. Page cleaners are
background EDUs that are independent of the application agents. They look for
pages that have been modified, and write those changed pages out to disk. Page
cleaners ensure that there is room in the buffer pool for pages that are being
retrieved by prefetchers.

Without the independent prefetchers and page cleaner EDUs, the application
agents would have to do all of the reading and writing of data between a buffer
pool and disk storage.

4 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 2. The DB2 process model

Knowledge of the DB2 process model will help you to understand how the
database manager and its associated components interact, and this can help you to
troubleshoot problems that might arise.

The process model that is used by all DB2 database servers facilitates
communication between database servers and clients. It also ensures that database
applications are isolated from resources, such as database control blocks and
critical database files.

The DB2 database server must perform many different tasks, such as processing
database application requests or ensuring that log records are written out to disk.
Each task is typically performed by a separate engine dispatchable unit (EDU).

There are many advantages to using a multithreaded architecture for the DB2
database server. A new thread requires less memory and fewer operating system
resources than a process, because some operating system resources can be shared
among all threads within the same process. Moreover, on some platforms, the
context switch time for threads is less than that for processes, which can improve
performance. Using a threaded model on all platforms makes the DB2 database
server easier to configure, because it is simpler to allocate more EDUs when
needed, and it is possible to dynamically allocate memory that must be shared by
multiple EDUs.

For each database being accessed, separate EDUs are started to deal with various
database tasks such as prefetching, communication, and logging. Database agents
are a special class of EDU that are created to handle application requests for a
database.

In general, you can rely on the DB2 database server to manage the set of EDUs.
However, there are DB2 tools that look at the EDUs. For example, you can use the
db2pd command with the -edus option to list all EDU threads that are active.

Each client application connection has a single coordinator agent that operates on a
database. A coordinator agent works on behalf of an application, and communicates
to other agents using private memory, interprocess communication (IPC), or remote
communication protocols, as needed.

The DB2 architecture provides a firewall so that applications run in a different
address space than the DB2 database server (Figure 2 on page 6). The firewall
protects the database and the database manager from applications, stored
procedures, and user-defined functions (UDFs). The firewall maintains the integrity
of the data in the databases, because it prevents application programming errors
from overwriting internal buffers or database manager files. The firewall also
improves reliability, because application errors cannot crash the database manager.

© Copyright IBM Corp. 1993, 2009 5

Client programs

Client programs can be remote or local, running on the same machine as the
database server. Client programs make first contact with a database through a
communication listener.

Listeners

Communication listeners start when the DB2 database server starts. There is a
listener for each configured communications protocol, and an interprocess
communications (IPC) listener (db2ipccm) for local client programs. Listeners
include:
v db2ipccm, for local client connections
v db2tcpcm, for TCP/IP connections
v db2tcpdm, for TCP/IP discovery tool requests

Agents

All connection requests from local or remote client programs (applications) are
allocated a corresponding coordinator agent (db2agent). When the coordinator
agent is created, it performs all database requests on behalf of the application.

In partitioned database environments, or systems on which intraquery parallelism
has been enabled, the coordinator agent distributes database requests to subagents
(db2agntp and db2agnts, respectively). Subagents that are associated with an
application but that are currently idle are named db2agnta.

db2pfchr

db2pclnr

db2loggr

db2loggw

db2logts

db2dlock

db2fmp

db2vend

db2ipccm

db2sysc

Remote client
program

Local client
program

Per databasePer connectionPer instance

db2agent

db2agent

db2agntp

db2agntp

db2agntp

db2agntp

and p
Other threads

rocesses

Agent pool

Firewall

db2tcpcm

Figure 2. Process model for DB2 database systems

6 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

A coordinator agent might be:
v Connected to the database with an alias; for example, db2agent (DATA1) is

connected to the database alias DATA1.
v Attached to an instance; for example, db2agent (user1) is attached to the instance

user1.

The DB2 database server will instantiate other types of agents, such as
independent coordinator agents or subcoordinator agents, to execute specific
operations. For example, the independent coordinator agent db2agnti is used to
run event monitors, and the subcoordinator agent db2agnsc is used to parallelize
database restart operations following an abnormal shutdown.

Idle agents reside in an agent pool. These agents are available for requests from
coordinator agents operating on behalf of client programs, or from subagents
operating on behalf of existing coordinator agents. Having an appropriately-sized
idle agent pool can improve performance when there are significant application
workloads. In this case, idle agents can be used as soon as they are required, and
there is no need to allocate a completely new agent for each application
connection, which involves creating a thread and allocating and initializing
memory and other resources. The DB2 database server automatically manages the
size of the idle agent pool.

db2fmp

The fenced mode process is responsible for executing fenced stored procedures and
user-defined functions outside of the firewall. The db2fmp process is always a
separate process, but might be multithreaded, depending on the types of routines
that it executes.

db2vend

This is a process to execute vendor code on behalf of an EDU; for example, to
execute a user exit program for log archiving (UNIX only).

Database EDUs

The following list includes some of the important EDUs that are used by each
database:
v db2pfchr, for buffer pool prefetchers
v db2pclnr, for buffer pool page cleaners
v db2loggr, for manipulating log files to handle transaction processing and

recovery
v db2loggw, for writing log records to the log files
v db2logts, for tracking which table spaces have log records in which log files.

This information is recorded in the DB2TSCHG.HIS file in the database directory.
v db2dlock, for deadlock detection. In a partitioned database environment, an

additional thread (db2glock) is used to coordinate the information that is
collected by the db2dlock EDU on each partition; db2glock runs only on the
catalog partition.

v db2stmm, for the self-tuning memory management feature
v db2taskd, for the distribution of background database tasks. These tasks are

executed by threads called db2taskp.
v db2hadrp, the high availability disaster recovery (HADR) primary server thread

Chapter 2. The DB2 process model 7

v db2hadrs, the HADR standby server thread
v db2lfr, for log file readers that process individual log files
v db2shred, for processing individual log records within log pages
v db2redom, for the redo master. During recovery, it processes redo log records

and assigns log records to redo workers for processing.
v db2redow, for the redo workers. During recovery, it processes redo log records at

the request of the redo master.
v db2logmgr, for the log manager. Manages log files for a recoverable database.
v db2wlmd, for automatic collection of workload management statistics
v Event monitor threads are identified as follows:

– db2evm%1%2 (%3)
where %1 can be:
- g - global file event monitor
- gp - global piped event monitor
- l - local file event monitor
- lp - local piped event monitor
- t - table event monitor

and %2 can be:
- i - coordinator
- p - not coordinator

and %3 is the event monitor name
v Backup and restore threads are identified as follows:

– db2bm.%1.%2 (backup and restore buffer manipulator) and db2med.%1.%2
(backup and restore media controller), where:
- %1 is the EDU ID of the agent that controls the backup or restore session
- %2 is a sequential value that is used to distinguish among (possibly many)

threads belonging to a particular backup or restore session

For example: db2bm.13579.2 identifies the second db2bm thread that is
controlled by the db2agent thread with EDU ID 13579.

Database server threads and processes

The system controller (db2sysc on UNIX and db2syscs.exe on Windows operating
systems) must exist if the database server is to function. The following threads and
processes carry out a variety of tasks:
v db2resync, the resync agent that scans the global resync list
v db2wdog, the watchdog on UNIX and Linux operating systems that handles

abnormal terminations
v db2fcms, the fast communications manager sender daemon
v db2fcmr, the fast communications manager receiver daemon
v db2pdbc, the parallel system controller, which handles parallel requests from

remote database partitions (used only in a partitioned database environment)
v db2cart, for archiving log files (when the userexit database configuration

parameter is enabled)
v db2fmtlg, for formatting log files (when the logretain database configuration

parameter is enabled and the userexit database configuration parameter is
disabled)

8 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v db2panic, the panic agent, which handles urgent requests after agent limits have
been reached at a particular database partition (used only in a partitioned
database environment)

v db2srvlst, manages lists of addresses for systems such as DB2 for z/OS®

v db2fmd, the fault monitor daemon
v db2disp, the client connection concentrator dispatcher
v db2acd, an autonomic computing daemon that hosts the health monitor,

automatic maintenance utilities, and the administrative task scheduler. This
process was formerly known as db2hmon.

v db2licc, manages installed DB2 licenses
v db2thcln, recycles resources when an EDU terminates (UNIX only)
v db2aiothr, manages asynchronous I/O requests for a database partition (UNIX

only)
v db2alarm, notifies EDUs when their requested timer has expired (UNIX only)
v db2sysc, the main system controller EDU; it handles critical DB2 server events

Chapter 2. The DB2 process model 9

10 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 3. Client-server processing model

Both local and remote application processes can work with the same database. A
remote application is one that initiates a database action from a machine that is
remote from the machine on which the database server resides. Local applications
are directly attached to the database at the server machine.

How client connections are managed depends on whether the connection
concentrator is on or off. The connection concentrator is on whenever the value of
the max_connections database manager configuration parameter is larger than the
value of the max_coordagents configuration parameter.
v If the connection concentrator is off, each client application is assigned a unique

engine dispatchable unit (EDU) called a coordinator agent that coordinates the
processing for that application and communicates with it.

v If the connection concentrator is on, each coordinator agent can manage many
client connections, one at a time, and might coordinate the other worker agents
to do this work. For internet applications with many relatively transient
connections, or applications with many relatively small transactions, the
connection concentrator improves performance by allowing many more client
applications to be connected concurrently. It also reduces system resource use for
each connection.

In Figure 3 on page 12, each circle in the DB2 server represents an EDU that is
implemented using operating system threads.

© Copyright IBM Corp. 1993, 2009 11

v At A1, a local client establishes communications through db2ipccm.
v At A2, db2ipccm works with a db2agent EDU, which becomes the coordinator

agent for application requests from the local client.
v At A3, the coordinator agent contacts the client application to establish shared

memory communications between the client application and the coordinator.
v At A4, the application at the local client connects to the database.
v At B1, a remote client establishes communications through db2tcpcm. If another

communications protocol was chosen, the appropriate communications manager
is used.

v At B2, db2tcpcm works with a db2agent EDU, which becomes the coordinator
agent for the application and passes the connection to this agent.

v At B4, the coordinator agent contacts the remote client application.
v At B5, the remote client application connects to the database.

Note also that:

A1

Application A

Local client

Application A

EDUs per connectionEDUs per instance

db2agntp

db2agntp

Coordinator
agent

Application B

Active subagents

db2agntp

Idle subagents

db2agntp

Coordinator
agent

db2agent

logical
agents

db2tcpcm

A2

shared memory
and semaphores

Application B

Remote client

B1
B2

db2ipccm

A3

A4

B3

B4

B5

Unassociated
idle agents

db2agent

Server machine

db2agent

Figure 3. Client-server processing model overview

12 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v Worker agents carry out application requests. There are four types of worker
agents: active coordinator agents, active subagents, associated subagents, and
idle agents.

v Each client connection is linked to an active coordinator agent.
v In a partitioned database environment, or an environment in which

intra-partition parallelism is enabled, the coordinator agents distribute database
requests to subagents (db2agntp).

v There is an agent pool (db2agent) where idle agents wait for new work.
v Other EDUs manage client connections, logs, two-phase commit operations,

backup and restore operations, and other tasks.

Figure 4 shows additional EDUs that are part of the server machine environment.
Each active database has its own shared pool of prefetchers (db2pfchr) and page
cleaners (db2pclnr), and its own logger (db2loggr) and deadlock detector
(db2dlock).

Fenced user-defined functions (UDFs) and stored procedures, which are not shown
in the figure, are managed to minimize costs that are associated with their creation
and destruction. The default value of the keepfenced database manager
configuration parameter is YES, which keeps the stored procedure process
available for reuse at the next procedure call.

Figure 4. EDUs in the database server

Chapter 3. Client-server processing model 13

Note: Unfenced UDFs and stored procedures run directly in an agent’s address
space for better performance. However, because they have unrestricted access to
the agent’s address space, they must be rigorously tested before being used.

Figure 5 shows the similarities and differences between the single database
partition processing model and the multiple database partition processing model.

In a multiple database partition environment, the database partition on which the
CREATE DATABASE command was issued is called the catalog database partition. It
is on this database partition that the system catalog tables are stored. The system
catalog is a repository of all of the information about objects in the database.

As shown in Figure 5, because Application A creates the PROD database on
Node0000, the catalog for the PROD database is also created on this database
partition. Similarly, because Application B creates the TEST database on Node0001,
the catalog for the TEST database is created on this database partition. It is a good
idea to create your databases on different database partitions to balance the extra
activity that is associated with the catalog for each database across the database
partitions in your environment.

DB2 create database TEST
DB2 connect to TEST
DB2 load . . .
DB2 select . . .

App BDB2 create database PROD
2 connect to PROD
2 load . . .
2 select . . .

DB
DB
DB

db2pdbc db2pdbc

db2glock db2glock

db2fcmd db2fcmd

App A App A

PROD database PROD databaseTEST database TEST database

App B App B

Node0000 Node0001

App A

Catalog database partition for PROD Catalog database partition for TEST

Figure 5. Process model for multiple database partitions

14 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

There are additional EDUs (db2pdbc and db2fcmd) that are associated with the
instance, and these are found on each database partition in a multiple database
partition environment. These EDUs are needed to coordinate requests across
database partitions and to enable the fast communication manager (FCM).

There is an additional EDU (db2glock) that is associated with the catalog database
partition. This EDU controls global deadlocks across the database partitions on
which the active database is located.

Each connect request from an application is represented by a connection that is
associated with a coordinator agent. The coordinator agent is the agent that
communicates with the application, receiving requests and sending replies. It can
satisfy a request itself or coordinate multiple subagents to work on the request.
The database partition on which the coordinator agent resides is called the
coordinator database partition of that application.

Parts of the database requests from an application are sent by the coordinator
database partition to subagents at the other database partitions. All of the results
are consolidated at the coordinator database partition before being sent back to the
application.

Any number of database partitions can be configured to run on the same machine.
This is known as a multiple logical partition configuration. Such a configuration is
very useful on large symmetric multiprocessor (SMP) machines with very large
main memory. In this environment, communications between database partitions
can be optimized to use shared memory and semaphores.

Chapter 3. Client-server processing model 15

16 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 4. Database agents

When an application accesses a database, several processes or threads begin to
perform the various application tasks. These tasks include logging, communication,
and prefetching. Database agents are threads within the database manager that are
used to service application requests. In Version 9.5, agents are run as threads on all
platforms.

The maximum number of application connections is controlled by the
max_connections database manager configuration parameter. The work of each
application connection is coordinated by a single worker agent. A worker agent
carries out application requests but has no permanent attachment to any particular
application. Coordinator agents exhibit the longest association with an application,
because they remain attached to it until the application disconnects. The only
exception to this rule occurs when the engine concentrator is enabled, in which
case a coordinator agent can terminate that association at transaction boundaries
(COMMIT or ROLLBACK).

There are three types of worker agents:
v Idle agents

This is the simplest form of worker agent. It does not have an outbound
connection, and it does not have a local database connection or an instance
attachment.

v Active coordinator agents
Each database connection from a client application has a single active agent that
coordinates its work on the database. After the coordinator agent is created, it
performs all database requests on behalf of its application, and communicates to
other agents using interprocess communication (IPC) or remote communication
protocols. Each agent operates with its own private memory and shares database
manager and database global resources, such as the buffer pool, with other
agents. When a transaction completes, the active coordinator agent might
become an inactive agent. When a client disconnects from a database or detaches
from an instance, its coordinator agent will be:
– An active coordinator agent if other connections are waiting
– Freed and marked as idle if no connections are waiting, and the maximum

number of pool agents is being automatically managed or has not been
reached

– Terminated and its storage freed if no connections are waiting, and the
maximum number of pool agents has been reached

v Subagents
The coordinator agent distributes database requests to subagents, and these
subagents perform the requests for the application. After the coordinator agent is
created, it handles all database requests on behalf of its application by
coordinating the subagents that perform requests against the database. In DB2
Version 9.5, subagents can also exist in nonpartitioned environments and in
environments where intraquery parallelism is not enabled.

Agents that are not performing work for any application and that are waiting to be
assigned are considered to be idle agents and reside in an agent pool. These agents
are available for requests from coordinator agents operating on behalf of client

© Copyright IBM Corp. 1993, 2009 17

programs, or for subagents operating on behalf of existing coordinator agents. The
number of available agents depends on the value of the num_poolagents database
manager configuration parameter.

If no idle agents exist when an agent is required, a new agent is created
dynamically. Because creating a new agent requires a certain amount of overhead,
CONNECT and ATTACH performance is better if an idle agent can be activated
for a client.

When a subagent is performing work for an application, it is associated with that
application. After it completes the assigned work, it can be placed in the agent
pool, but it remains associated with the original application. When the application
requests additional work, the database manager first checks the idle pool for
associated agents before it creates a new agent.

18 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 5. Database agent management

Most applications establish a one-to-one relationship between the number of
connected applications and the number of application requests that can be
processed by the database server. Your environment, however, might require a
many-to-one relationship between the number of connected applications and the
number of application requests that can be processed.

Two database manager configuration parameters control these factors separately:
v The max_connections parameter specifies the maximum number of connected

applications
v The max_coordagents parameter specifies the maximum number of application

requests that can be processed concurrently

The connection concentrator is enabled when the value of max_connections is
greater than the value of max_coordagents. Because each active coordinating agent
requires global database resource overhead, the greater the number of these agents,
the greater the chance that the upper limits of available global resources will be
reached. To prevent this from occurring, set the value of max_connections to be
higher than the value of max_coordagents, or set both parameters to
AUTOMATIC.

There are two specific scenarios in which setting these parameters to AUTOMATIC
is a good idea:
v If you are confident that your system can handle all of the connections that

might be needed, but you want to limit the amount of global resources that are
used (by limiting the number of coordinating agents), set max_connections to
AUTOMATIC. When max_connections is greater than max_coordagents, the
connection concentrator is enabled.

v If you do not want to limit the maximum number of connections or coordinating
agents, but you know that your system requires or would benefit from a
many-to-one relationship between the number of connected applications and the
number of application requests that are processed, set both parameters to
AUTOMATIC. When both parameters are set to AUTOMATIC, the database
manager uses the values that you specify as an ideal ratio of connections to
coordinating agents. Note that both of these parameters can be configured with
a starting value and an AUTOMATIC setting. For example, the following
command associates both a value of 200 and AUTOMATIC with the
max_coordagents parameter:update dbm config using max_coordagents 200
automatic.

Example

Consider the following scenario:
v The max_connections parameter is set to AUTOMATIC and has a current value

of 300
v The max_coordagents parameter is set to AUTOMATIC and has a current value

of 100

© Copyright IBM Corp. 1993, 2009 19

The ratio of max_connections to max_coordagents is 300:100. The database
manager creates new coordinating agents as connections come in, and connection
concentration is applied only when needed. These settings result in the following
actions:
v Connections 1 to 100 create new coordinating agents
v Connections 101 to 300 do not create new coordinating agents; they share the

100 agents that have been created already
v Connections 301 to 400 create new coordinating agents
v Connections 401 to 600 do not create new coordinating agents; they share the

200 agents that have been created already
v and so on...

In this example, it is assumed that the connected applications are driving enough
work to warrant creation of new coordinating agents at each step. After some
period of time, if the connected applications are no longer driving sufficient
amounts of work, coordinating agents will become inactive and might be
terminated.

If the number of connections is reduced, but the amount of work being driven by
the remaining connections is high, the number of coordinating agents might not be
reduced right away. The max_connections and max_coordagents parameters do
not directly affect agent pooling or agent termination. Normal agent termination
rules still apply, meaning that the connections to coordinating agents ratio might
not correspond exactly to the values that you specified. Agents might return to the
agent pool to be reused before they are terminated.

If finer granularity of control is needed, specify a simpler ratio. For example, the
ratio of 300:100 from the previous example can be expressed as 3:1. If
max_connections is set to 3 (AUTOMATIC) and max_coordagents is set to 1
(AUTOMATIC), one coordinating agent can be created for every three connections.

20 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 6. Naming rules

General naming rules
Rules exist for the naming of all database objects, users, groups, files, and paths.
Some of these rules are specific to the platform you are working on.

For example, regarding the use of upper and lowercase letters in the names of
objects that are visible in the file system (databases, instances, and so on):
v On UNIX platforms, names are case-sensitive. For example, /data1 is not the

same directory as /DATA1 or /Data1

v On Windows platforms, names are not case-sensitive. For example, \data1 is the
same as \DATA1 and \Data1.

Unless otherwise specified, all names can include the following characters:
v The letters A through Z, and a through z, as defined in the basic (7-bit) ASCII

character set. When used in identifiers for objects created with SQL statements,
lowercase characters “a” through “z” are converted to uppercase unless they are
delimited with quotes (“)

v 0 through 9.
v ! % () { } . – ^ ~ _ (underscore) @, #, $, and space.
v \ (backslash).

Restrictions

v Do not begin names with a number or with the underscore character.
v Do not use SQL reserved words to name tables, views, columns, indexes, or

authorization IDs.
v Use only the letters defined in the basic ASCII character set for directory and file

names. While your computer’s operating system might support different code
pages, non-ASCII characters might not work reliably. Using non-ASCII
characters can be a particular problem in distributed environment, where
different computers might be using different code pages.

v There are other special characters that might work separately depending on your
operating system and where you are working with the DB2 database. However,
while they might work, there is no guarantee that they will work. It is not
recommended that you use these other special characters when naming objects
in your database.

v User and group names also must follow the rules imposed by specific operating
systems \. For example, on Linux and UNIX platforms, characters for user
names and primary group names must be lowercase a through z, 0 through 9,
and _ (underscore) for names not starting with 0 through 9.

v Lengths must be less than or equal to the lengths listed in “SQL and XML
limits” in the SQL Reference.

v Restrictions on the AUTHID identifier: Version 9.5, and later, of the DB2
database system allows you to have an 128-byte authorization ID, but when the
authorization ID is interpreted as an operating system user ID or group name,
the operating system naming restrictions apply (for example, Linux and UNIX
operating systems have a limitation to 8 characters and Windows operating
systems have a limitation of 30 characters for user IDs and group names).
Therefore, while you can grant an 128-byte authorization ID, it is not possible to

© Copyright IBM Corp. 1993, 2009 21

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

connect as a user that has that authorization ID. If you write your own security
plugin, you should be able to take full advantage of the extended sizes for the
authorization ID. For example, you can give your security plugin a 30-byte user
ID and it can return an 128-byte authorization ID during authentication that you
are able to connect with.

You also must consider object naming rules, naming rules in an NLS environment,
and naming rules in a Unicode environment.

DB2 object naming rules
All objects follow the general gaming rules. In addition, some objects have
additional restrictions shown in the accompanying tables.

Table 2. Database, database alias and instance naming rules

Objects Guidelines

v Databases

v Database aliases

v Instances

v Database names must be unique within the location in which they
are cataloged. On Linux and UNIX implementations, this location
is a directory path, whereas on Windows implementations, it is a
logical disk.

v Database alias names must be unique within the system database
directory. When a new database is created, the alias defaults to
the database name. As a result, you cannot create a database
using a name that exists as a database alias, even if there is no
database with that name.

v Database, database alias and instance name lengths must be less
than or equal to 8 bytes.

v On Windows, no instance can have the same name as a service
name.

Note: To avoid potential problems, do not use the special characters
@, #, and $ in a database name if you intend to use the database in
a communications environment. Also, because these characters are
not common to all keyboards, do not use them if you plan to use
the database in another language.

22 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 3. Database object naming rules

Objects Guidelines

v Aliases

v Audit policies

v Buffer pools

v Columns

v Event monitors

v Indexes

v Methods

v Nodegroups

v Packages

v Package versions

v Roles

v Schemas

v Stored procedures

v Tables

v Table spaces

v Triggers

v Trusted contexts

v UDFs

v UDTs

v Views

v Lengths for identifiers for these objects must be less than or equal
to the lengths listed in “SQL and XML limits” in the SQL
Reference. Object names can also include:

– Valid accented characters (such as ö)

– Multibyte characters, except multibyte spaces (for multibyte
environments)

v Package names and package versions can also include periods (.),
hyphens (-), and colons (:).

For more information, see “Identifiers” in the SQL Reference.

Table 4. Federated database object naming rules

Objects Guidelines

v Function
mappings

v Index
specifications

v Nicknames

v Servers

v Type mappings

v User mappings

v Wrappers

Lengths for these objects must be less than or equal to the lengths
listed in “SQL and XML limits” in the SQL Reference. Names for
federated database objects can also include:

v Valid accented letters (such as ö)

v Multibyte characters, except multibyte spaces (for multibyte
environments)

Delimited identifiers and object names

Keywords can be used. If a keyword is used in a context where it could also be
interpreted as an SQL keyword, it must be specified as a delimited identifier.

Using delimited identifiers, it is possible to create an object that violates these
naming rules; however, subsequent use of the object could result in errors. For
example, if you create a column with a + or - sign included in the name and you
subsequently use that column in an index, you will experience problems when you
attempt to reorganize the table.

Additional schema names information

Chapter 6. Naming rules 23

|

v User-defined types (UDTs) cannot have schema names longer than the lengths
listed in “SQL and XML limits” in the SQL Reference.

v The following schema names are reserved words and must not be used:
SYSCAT, SYSFUN, SYSIBM, SYSSTAT, SYSPUBLIC.

v To avoid potential problems upgrading databases in the future, do not use
schema names that begin with SYS. The database manager will not allow you to
create triggers, user-defined types or user-defined functions using a schema
name beginning with SYS.

v It is recommended that you not use SESSION as a schema name. Declared
temporary tables must be qualified by SESSION. It is therefore possible to have
an application declare a temporary table with a name identical to that of a
persistent table, in which case the application logic can become overly
complicated. Avoid the use of the schema SESSION, except when dealing with
declared temporary tables.

User, user ID and group naming rules
User, user ID and group names must follow naming guidelines.

Table 5. User, user ID and group naming rules

Objects Guidelines

v Group names

v User names

v User IDs

v Group names must be less than or equal to the group name length
listed in “SQL and XML limits” in the SQL Reference.

v User IDs on Linux and UNIX operating systems can contain up to
8 characters.

v User names on Windows can contain up to 30 characters.

v When not using Client authentication, non-Windows 32-bit clients
connecting to Windows with user names longer than the user
name length listed in “SQL and XML limits” in the SQL Reference
are supported when the user name and password are specified
explicitly.

v Names and IDs cannot:

– Be USERS, ADMINS, GUESTS, PUBLIC, LOCAL or any SQL
reserved word

– Begin with IBM, SQL or SYS.

Note:

1. Some operating systems allow case sensitive user IDs and passwords. You
should check your operating system documentation to see if this is the case.

2. The authorization ID returned from a successful CONNECT or ATTACH is
truncated to the authorization name length listed in “SQL and XML limits” in
the SQL Reference. An ellipsis (...) is appended to the authorization ID and the
SQLWARN fields contain warnings to indicate truncation.

3. Trailing blanks from user IDs and passwords are removed.

Naming rules in an NLS environment
The basic character set that can be used in database names consists of the
single-byte uppercase and lowercase Latin letters (A...Z, a...z), the Arabic numerals
(0...9) and the underscore character (_).

24 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

This list is augmented with three special characters (#, @, and $) to provide
compatibility with host database products. Use special characters #, @, and $ with
care in an NLS environment because they are not included in the NLS host
(EBCDIC) invariant character set. Characters from the extended character set can
also be used, depending on the code page that is being used. If you are using the
database in a multiple code page environment, you must ensure that all code
pages support any elements from the extended character set you plan to use.

When naming database objects (such as tables and views), program labels, host
variables, cursors, and elements from the extended character set (for example,
letters with diacritical marks) can also be used. Precisely which characters are
available depends on the code page in use.

Extended Character Set Definition for DBCS Identifiers: In DBCS environments,
the extended character set consists of all the characters in the basic character set,
plus the following:
v All double-byte characters in each DBCS code page, except the double-byte

space, are valid letters.
v The double-byte space is a special character.
v The single-byte characters available in each mixed code page are assigned to

various categories as follows:

Category Valid Code Points within each Mixed Code Page

Digits x30-39

Letters x23-24, x40-5A, x61-7A, xA6-DF (A6-DF for code pages 932 and 942 only)

Special
Characters

All other valid single-byte character code points

Naming rules in a Unicode environment
In a Unicode database, all identifiers are in multibyte UTF-8. Therefore, it is
possible to use any UCS-2 character in identifiers where the use of a character in
the extended character set (for example, an accented character, or a multibyte
character) is allowed by the DB2 database system.

Clients can enter any character that is supported by their environment, and all the
characters in the identifiers will be converted to UTF-8 by the database manager.
Two points must be taken into account when specifying national language
characters in identifiers for a Unicode database:
v Each non-ASCII character requires two to four bytes. Therefore, an n-byte

identifier can only hold somewhere between n/4 and n characters, depending on
the ratio of ASCII to non-ASCII characters. If you have only one or two
non-ASCII (for example, accented) characters, the limit is closer to n characters,
whereas for an identifier that is completely non-ASCII (for example, in
Japanese), only n/4 to n/3 characters can be used.

v If identifiers are to be entered from different client environments, they should be
defined using the common subset of characters available to those clients. For
example, if a Unicode database is to be accessed from Latin-1, Arabic, and
Japanese environments, all identifiers should realistically be limited to ASCII.

Chapter 6. Naming rules 25

Reserved schema names and reserved words

There are restrictions on the use of certain names that are required by the database
manager. In some cases, names are reserved, and cannot be used by application
programs. In other cases, certain names are not recommended for use by
application programs, although their use is not prevented by the database
manager.

The reserved schema names are:
v SYSCAT
v SYSFUN
v SYSIBM
v SYSIBMADM
v SYSPROC
v SYSPUBLIC
v SYSSTAT

It is strongly recommended that schema names never begin with the ’SYS’ prefix,
because ’SYS’, by convention, is used to indicate an area that is reserved by the
system. No aliases, global variables, triggers, user-defined functions, or
user-defined types can be placed into a schema whose name starts with ’SYS’
(SQLSTATE 42939).

The DB2QP schema and the SYSTOOLS schema are set aside for use by DB2 tools.
It is recommended that users not explicitly define objects in these schemas,
although their use is not prevented by the database manager.

It is also recommended that SESSION not be used as a schema name. Because
declared temporary tables must be qualified by SESSION, it is possible to have an
application declare a temporary table with a name that is identical to that of a
persistent table, complicating the application logic. To avoid this possibility, do not
use the schema SESSION except when dealing with declared temporary tables.

There are no specifically reserved words in DB2 Version 9. Keywords can be used
as ordinary identifiers, except in a context where they could also be interpreted as
SQL keywords. In such cases, the word must be specified as a delimited identifier.
For example, COUNT cannot be used as a column name in a SELECT statement,
unless it is delimited.

ISO/ANSI SQL2003 and other DB2 database products include reserved words that
are not enforced by DB2 Database for Linux, UNIX, and Windows; however, it is
recommended that these words not be used as ordinary identifiers, because it
reduces portability.

For portability across the DB2 database products, the following should be
considered reserved words:
ACTIVATE DOCUMENT LOCK ROUND_CEILING
ADD DOUBLE LOCKMAX ROUND_DOWN
AFTER DROP LOCKSIZE ROUND_FLOOR
ALIAS DSSIZE LONG ROUND_HALF_DOWN
ALL DYNAMIC LOOP ROUND_HALF_EVEN
ALLOCATE EACH MAINTAINED ROUND_HALF_UP
ALLOW EDITPROC MATERIALIZED ROUND_UP
ALTER ELSE MAXVALUE ROUTINE
AND ELSEIF MICROSECOND ROW

26 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

ANY ENABLE MICROSECONDS ROW_NUMBER
AS ENCODING MINUTE ROWNUMBER
ASENSITIVE ENCRYPTION MINUTES ROWS
ASSOCIATE END MINVALUE ROWSET
ASUTIME END-EXEC MODE RRN
AT ENDING MODIFIES RUN
ATTRIBUTES ERASE MONTH SAVEPOINT
AUDIT ESCAPE MONTHS SCHEMA
AUTHORIZATION EVERY NAN SCRATCHPAD
AUX EXCEPT NEW SCROLL
AUXILIARY EXCEPTION NEW_TABLE SEARCH
BEFORE EXCLUDING NEXTVAL SECOND
BEGIN EXCLUSIVE NO SECONDS
BETWEEN EXECUTE NOCACHE SECQTY
BINARY EXISTS NOCYCLE SECURITY
BUFFERPOOL EXIT NODENAME SELECT
BY EXPLAIN NODENUMBER SENSITIVE
CACHE EXTERNAL NOMAXVALUE SEQUENCE
CALL EXTRACT NOMINVALUE SESSION
CALLED FENCED NONE SESSION_USER
CAPTURE FETCH NOORDER SET
CARDINALITY FIELDPROC NORMALIZED SIGNAL
CASCADED FILE NOT SIMPLE
CASE FINAL NULL SNAN
CAST FOR NULLS SOME
CCSID FOREIGN NUMPARTS SOURCE
CHAR FREE OBID SPECIFIC
CHARACTER FROM OF SQL
CHECK FULL OLD SQLID
CLONE FUNCTION OLD_TABLE STACKED
CLOSE GENERAL ON STANDARD
CLUSTER GENERATED OPEN START
COLLECTION GET OPTIMIZATION STARTING
COLLID GLOBAL OPTIMIZE STATEMENT
COLUMN GO OPTION STATIC
COMMENT GOTO OR STATMENT
COMMIT GRANT ORDER STAY
CONCAT GRAPHIC OUT STOGROUP
CONDITION GROUP OUTER STORES
CONNECT HANDLER OVER STYLE
CONNECTION HASH OVERRIDING SUBSTRING
CONSTRAINT HASHED_VALUE PACKAGE SUMMARY
CONTAINS HAVING PADDED SYNONYM
CONTINUE HINT PAGESIZE SYSFUN
COUNT HOLD PARAMETER SYSIBM
COUNT_BIG HOUR PART SYSPROC
CREATE HOURS PARTITION SYSTEM
CROSS IDENTITY PARTITIONED SYSTEM_USER
CURRENT IF PARTITIONING TABLE
CURRENT_DATE IMMEDIATE PARTITIONS TABLESPACE
CURRENT_LC_CTYPE IN PASSWORD THEN
CURRENT_PATH INCLUDING PATH TIME
CURRENT_SCHEMA INCLUSIVE PIECESIZE TIMESTAMP
CURRENT_SERVER INCREMENT PLAN TO
CURRENT_TIME INDEX POSITION TRANSACTION
CURRENT_TIMESTAMP INDICATOR PRECISION TRIGGER
CURRENT_TIMEZONE INF PREPARE TRIM
CURRENT_USER INFINITY PREVVAL TRUNCATE
CURSOR INHERIT PRIMARY TYPE
CYCLE INNER PRIQTY UNDO
DATA INOUT PRIVILEGES UNION
DATABASE INSENSITIVE PROCEDURE UNIQUE
DATAPARTITIONNAME INSERT PROGRAM UNTIL
DATAPARTITIONNUM INTEGRITY PSID UPDATE
DATE INTERSECT PUBLIC USAGE
DAY INTO QUERY USER
DAYS IS QUERYNO USING

Chapter 6. Naming rules 27

DB2GENERAL ISOBID RANGE VALIDPROC
DB2GENRL ISOLATION RANK VALUE
DB2SQL ITERATE READ VALUES
DBINFO JAR READS VARIABLE
DBPARTITIONNAME JAVA RECOVERY VARIANT
DBPARTITIONNUM JOIN REFERENCES VCAT
DEALLOCATE KEEP REFERENCING VERSION
DECLARE KEY REFRESH VIEW
DEFAULT LABEL RELEASE VOLATILE
DEFAULTS LANGUAGE RENAME VOLUMES
DEFINITION LATERAL REPEAT WHEN
DELETE LC_CTYPE RESET WHENEVER
DENSE_RANK LEAVE RESIGNAL WHERE
DENSERANK LEFT RESTART WHILE
DESCRIBE LIKE RESTRICT WITH
DESCRIPTOR LINKTYPE RESULT WITHOUT
DETERMINISTIC LOCAL RESULT_SET_LOCATOR WLM
DIAGNOSTICS LOCALDATE RETURN WRITE
DISABLE LOCALE RETURNS XMLELEMENT
DISALLOW LOCALTIME REVOKE XMLEXISTS
DISCONNECT LOCALTIMESTAMP RIGHT XMLNAMESPACES
DISTINCT LOCATOR ROLE YEAR
DO LOCATORS ROLLBACK YEARS

The following list contains the ISO/ANSI SQL2003 reserved words that are not in
the previous list:
ABS GROUPING REGR_INTERCEPT
ARE INT REGR_R2
ARRAY INTEGER REGR_SLOPE
ASYMMETRIC INTERSECTION REGR_SXX
ATOMIC INTERVAL REGR_SXY
AVG LARGE REGR_SYY
BIGINT LEADING ROLLUP
BLOB LN SCOPE
BOOLEAN LOWER SIMILAR
BOTH MATCH SMALLINT
CEIL MAX SPECIFICTYPE
CEILING MEMBER SQLEXCEPTION
CHAR_LENGTH MERGE SQLSTATE
CHARACTER_LENGTH METHOD SQLWARNING
CLOB MIN SQRT
COALESCE MOD STDDEV_POP
COLLATE MODULE STDDEV_SAMP
COLLECT MULTISET SUBMULTISET
CONVERT NATIONAL SUM
CORR NATURAL SYMMETRIC
CORRESPONDING NCHAR TABLESAMPLE
COVAR_POP NCLOB TIMEZONE_HOUR
COVAR_SAMP NORMALIZE TIMEZONE_MINUTE
CUBE NULLIF TRAILING
CUME_DIST NUMERIC TRANSLATE
CURRENT_DEFAULT_TRANSFORM_GROUP OCTET_LENGTH TRANSLATION
CURRENT_ROLE ONLY TREAT
CURRENT_TRANSFORM_GROUP_FOR_TYPE OVERLAPS TRUE
DEC OVERLAY UESCAPE
DECIMAL PERCENT_RANK UNKNOWN
DEREF PERCENTILE_CONT UNNEST
ELEMENT PERCENTILE_DISC UPPER
EXEC POWER VAR_POP
EXP REAL VAR_SAMP
FALSE RECURSIVE VARCHAR
FILTER REF VARYING
FLOAT REGR_AVGX WIDTH_BUCKET
FLOOR REGR_AVGY WINDOW
FUSION REGR_COUNT WITHIN

28 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 7. Naming conventions

The following conventions apply when naming database manager objects, such as
databases and tables:
v Character strings that represent names of database manager objects can contain

any of the following: a-z, A-Z, 0-9, @, #, and $.
v Unless otherwise noted, names can be entered in lowercase letters; however, the

database manager processes them as if they were uppercase.
The exception to this convention is character strings that represent names under
the systems network architecture (SNA) which, as a communications protocol, is
no longer supported. Many values are case sensitive, such as logical unit names
(partner_lu and local_lu). The name must be entered exactly as it appears in the
SNA definitions that correspond to those terms.

v A database name or database alias is a unique character string containing from
one to eight letters, numbers, or keyboard characters from the set described
above.
Databases are cataloged in the system and local database directories by their
aliases in one field, and their original name in another. For most functions, the
database manager uses the name entered in the alias field of the database
directories. (The exceptions are CHANGE DATABASE COMMENT and CREATE
DATABASE, where a directory path must be specified.)

v The name or the alias name of a table or a view is an SQL identifier that is a
unique character string 1 to 128 bytes in length. Column names can be 1 to 128
bytes in length.
A fully qualified table name consists of the schema.tablename. The schema is the
unique user ID under which the table was created. The schema name for a
declared temporary table must be SESSION.

v Local aliases for remote nodes that are to be cataloged in the node directory
cannot exceed eight characters in length.

v The first character in the string must be an alphabetic character, @, #, or $; it
cannot be a number or the letter sequences SYS, DBM, or IBM.

The following conventions apply when naming user IDs and authentication IDs:
v Character strings that represent names of database manager objects can contain

any of the following: a-z, A-Z, 0-9, @, #, and $.
v User IDs and groups may also contain any of the following additional characters

when supported by the security plug-in: _, !, %, (,), {, }, –, ., ^.
v User IDs and groups containing any of the following characters must be

delimited with quotations when entered through the command line processor: !,
%, (,), {, }, –, ., ^,

v The first character in the string must be an alphabetic character, @, #, or $; it
cannot be a number or the letter sequences SYS, DBM, or IBM.

v Authentication IDs cannot exceed 128 bytes in length.
v Group IDs cannot exceed 128 bytes in length.

© Copyright IBM Corp. 1993, 2009 29

30 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Part 2. Partitioned database environments

© Copyright IBM Corp. 1993, 2009 31

32 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 8. Parallel database systems

Partitioned database environments
The Database Partitioning Feature (DPF) extends the database manager to the
parallel, multi-partition environment.
v A database partition is a part of a database that consists of its own data, indexes,

configuration files, and transaction logs. A database partition is sometimes called
a node or a database node. A partitioned database environment is a database
installation that supports the distribution of data across database partitions.

v A single-partition database is a database having only one database partition. All
data in the database is stored in that single database partition. In this case
database partition groups, while present, provide no additional capability.

v A multi-partition database is a database with two or more database partitions.
Tables can be located in one or more database partitions. When a table is in a
database partition group consisting of multiple database partitions, some of its
rows are stored in one database partition, and other rows are stored in other
database partitions.

Usually, a single database partition exists on each physical machine, and the
processors on each system are used by the database manager at each database
partition to manage its part of the total data in the database.

Because data is distributed across database partitions, you can use the power of
multiple processors on multiple physical machines to satisfy requests for
information. Data retrieval and update requests are decomposed automatically into
sub-requests, and executed in parallel among the applicable database partitions.
The fact that databases are split across database partitions is transparent to users
issuing SQL statements.

User interaction occurs through one database partition, known as the coordinator
partition for that user. The coordinator partition runs on the same database
partition as the application, or in the case of a remote application, the database
partition to which that application is connected. Any database partition can be
used as a coordinator partition.

The database manager allows you to store data across several database partitions
in the database. This means that the data is physically stored across more than one
database partition, and yet can be accessed as though it were located in the same
place. Applications and users accessing data in a multi-partition database do not
need to be aware of the physical location of the data.

The data, while physically split, is used and managed as a logical whole. Users can
choose how to distribute their data by declaring distribution keys. Users can also
determine across which and over how many database partitions their data is
distributed by selecting the table space and the associated database partition group
in which the data should be stored. Suggestions for distribution and replication can
be done using the DB2 Design Advisor. In addition, an updatable distribution map
is used with a hashing algorithm to specify the mapping of distribution key values
to database partitions, which determines the placement and retrieval of each row
of data. As a result, you can spread the workload across a multi-partition database
for large tables, while allowing smaller tables to be stored on one or more database

© Copyright IBM Corp. 1993, 2009 33

partitions. Each database partition has local indexes on the data it stores, resulting
in increased performance for local data access.

Note: You are not restricted to having all tables divided across all database
partitions in the database. The database manager supports partial declustering,
which means that you can divide tables and their table spaces across a subset of
database partitions in the system.

An alternative to consider when you want tables to be positioned on each database
partition, is to use materialized query tables and then replicate those tables. You
can create a materialized query table containing the information that you need,
and then replicate it to each database partition.

A non-root installation of a DB2 database product does not support database
partitioning. As a result, an add node operation cannot be run. You should not
manually update the db2nodes.cfg file. A manual update will result in the display
of a SQL6031N error.

Parallelism
Components of a task, such as a database query, can be run in parallel to
dramatically enhance performance. The nature of the task, the database
configuration, and the hardware environment, all determine how the DB2 database
product will perform a task in parallel.

These considerations are interrelated, and should be considered together when you
work on the physical and logical design of a database. The following types of
parallelism are supported by the DB2 database system:
v I/O
v Query
v Utility

Input/output parallelism

When there are multiple containers for a table space, the database manager can
exploit parallel I/O. Parallel I/O refers to the process of writing to, or reading from,
two or more I/O devices simultaneously; it can result in significant improvements
in throughput.

Query parallelism

There are two types of query parallelism: interquery parallelism and intraquery
parallelism.

Interquery parallelism refers to the ability of the database to accept queries from
multiple applications at the same time. Each query runs independently of the
others, but the database manager runs all of them at the same time. DB2 database
products have always supported this type of parallelism.

Intraquery parallelism refers to the simultaneous processing of parts of a single
query, using either intrapartition parallelism, interpartition parallelism, or both.

34 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Intrapartition parallelism

Intrapartition parallelism refers to the ability to break up a query into multiple parts.
Some DB2 utilities also perform this type of parallelism.

Intrapartition parallelism subdivides what is usually considered a single database
operation such as index creation, database loading, or SQL queries into multiple
parts, many or all of which can be run in parallel within a single database partition.

Figure 6 shows a query that is broken into four pieces that can be run in parallel,
with the results returned more quickly than if the query were run in serial fashion.
The pieces are copies of each other. To utilize intrapartition parallelism, you must
configure the database appropriately. You can choose the degree of parallelism or
let the system do it for you. The degree of parallelism represents the number of
pieces of a query running in parallel.

Interpartition parallelism

Interpartition parallelism refers to the ability to break up a query into multiple parts
across multiple partitions of a partitioned database, on one machine or multiple
machines. The query is run in parallel. Some DB2 utilities also perform this type of
parallelism.

Interpartition parallelism subdivides what is usually considered a single database
operation such as index creation, database loading, or SQL queries into multiple
parts, many or all of which can be run in parallel across multiple partitions of a
partitioned database on one machine or on multiple machines.

Figure 7 on page 36 shows a query that is broken into four pieces that can be run
in parallel, with the results returned more quickly than if the query were run in
serial fashion on a single database partition.

SELECT... FROM...

Database partition

Data

Query

Figure 6. Intrapartition parallelism

Chapter 8. Parallel database systems 35

The degree of parallelism is largely determined by the number of database
partitions you create and how you define your database partition groups.

Simultaneous intrapartition and interpartition parallelism

You can use intrapartition parallelism and interpartition parallelism at the same
time. This combination provides two dimensions of parallelism, resulting in an
even more dramatic increase in the speed at which queries are processed.

Database
partition

Database
partition

Database
partition

Data DataData

SELECT... FROM...

Query

Figure 7. Interpartition parallelism

36 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Utility parallelism

DB2 utilities can take advantage of intrapartition parallelism. They can also take
advantage of interpartition parallelism; where multiple database partitions exist,
the utilities execute in each of the database partitions in parallel.

The load utility can take advantage of intrapartition parallelism and I/O
parallelism. Loading data is a CPU-intensive task. The load utility takes advantage
of multiple processors for tasks such as parsing and formatting data. It can also
use parallel I/O servers to write the data to containers in parallel.

In a partitioned database environment, the LOAD command takes advantage of
intrapartition, interpartition, and I/O parallelism by parallel invocations at each
database partition where the table resides.

During index creation, the scanning and subsequent sorting of the data occurs in
parallel. The DB2 system exploits both I/O parallelism and intrapartition
parallelism when creating an index. This helps to speed up index creation when a
CREATE INDEX statement is issued, during restart (if an index is marked invalid),
and during the reorganization of data.

Backing up and restoring data are heavily I/O-bound tasks. The DB2 system
exploits both I/O parallelism and intrapartition parallelism when performing
backup and restore operations. Backup exploits I/O parallelism by reading from
multiple table space containers in parallel, and asynchronously writing to multiple
backup media in parallel.

Database
partition

Database
partition

DataData

SELECT... FROM...SELECT... FROM...

SELECT... FROM...SELECT... FROM...

Query

Figure 8. Simultaneous interpartition and intrapartition parallelism

Chapter 8. Parallel database systems 37

Database partition and processor environments
Capacity refers to the number of users and applications able to access the database.
This is in large part determined by memory, agents, locks, I/O, and storage
management. Scalability refers to the ability of a database to grow and continue to
exhibit the same operating characteristics and response times.

This section provides an overview of the following hardware environments:
v Single database partition on a single processor (uniprocessor)
v Single database partition with multiple processors (SMP)
v Multiple database partition configurations

– Database partitions with one processor (MPP)
– Database partitions with multiple processors (cluster of SMPs)
– Logical database partitions

Capacity and scalability are discussed for each environment.

Single database partition on a single processor

This environment is made up of memory and disk, but contains only a single CPU
(see Figure 9). It is referred to by many different names, including stand-alone
database, client/server database, serial database, uniprocessor system, and single
node or non-parallel environment.

The database in this environment serves the needs of a department or small office,
where the data and system resources (including a single processor or CPU) are
managed by a single database manager.

Capacity and scalability

In this environment you can add more disks. Having one or more I/O servers for
each disk allows for more than one I/O operation to take place at the same time.

A single-processor system is restricted by the amount of disk space the processor
can handle. As workload increases, a single CPU may not be able to process user

Database partition

Memory

CPU

Uniprocessor
environment

Disks

Figure 9. Single database partition on a single processor

38 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

requests any faster, regardless of other components, such as memory or disk, that
you may add. If you have reached maximum capacity or scalability, you can
consider moving to a single database partition system with multiple processors.

Single database partition with multiple processors

This environment is typically made up of several equally powerful processors
within the same machine (see Figure 10), and is called a symmetric multiprocessor
(SMP) system. Resources, such as disk space and memory, are shared.

With multiple processors available, different database operations can be completed
more quickly. DB2 database systems can also divide the work of a single query
among available processors to improve processing speed. Other database
operations, such as loading data, backing up and restoring table spaces, and
creating indexes on existing data, can take advantage of multiple processors.

Capacity and scalability

In this environment you can add more processors. However, since the different
processors may attempt to access the same data, limitations with this environment
can appear as your business operations grow. With shared memory and shared
disks, you are effectively sharing all of the database data.

You can increase the I/O capacity of the database partition associated with your
processor by increasing the number of disks. You can establish I/O servers to
specifically deal with I/O requests. Having one or more I/O servers for each disk
allows for more than one I/O operation to take place at the same time.

If you have reached maximum capacity or scalability, you can consider moving to
a system with multiple database partitions.

Symmetric multiprocessor
(SMP) environment

Disks

Database partition

Memory

CPU

CPU

CPU

CPU

Figure 10. Single partition database symmetric multiprocessor environment

Chapter 8. Parallel database systems 39

Multiple database partition configurations

You can divide a database into multiple database partitions, each on its own
machine. Multiple machines with multiple database partitions can be grouped
together. This section describes the following database partition configurations:
v Database partitions on systems with one processor
v Database partitions on systems with multiple processors
v Logical database partitions

Database partitions with one processor

In this environment, there are many database partitions. Each database partition
resides on its own machine, and has its own processor, memory, and disks
(Figure 11). All the machines are connected by a communications facility. This
environment is referred to by many different names, including: cluster, cluster of
uniprocessors, massively parallel processing (MPP) environment, and
shared-nothing configuration. The latter name accurately reflects the arrangement
of resources in this environment. Unlike an SMP environment, an MPP
environment has no shared memory or disks. The MPP environment removes the
limitations introduced through the sharing of memory and disks.

A partitioned database environment allows a database to remain a logical whole,
despite being physically divided across more than one database partition. The fact
that data is distributed remains transparent to most users. Work can be divided
among the database managers; each database manager in each database partition
works against its own part of the database.

Capacity and scalability

Disks DisksDisks

Uniprocessor
environment

Uniprocessor
environment

Uniprocessor
environment

. . .

Communications
facility

Memory MemoryMemory

CPU CPUCPU

Database partition Database partitionDatabase partition

Figure 11. Massively parallel processing (MPP) environment

40 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

In this environment you can add more database partitions (nodes) to your
configuration. On some platforms the maximum number is 512 nodes. However,
there may be practical limits on managing a high number of machines and
instances.

If you have reached maximum capacity or scalability, you can consider moving to
a system where each database partition has multiple processors.

Database partitions with multiple processors

An alternative to a configuration in which each database partition has a single
processor, is a configuration in which each database partition has multiple
processors. This is known as an SMP cluster (Figure 12).

This configuration combines the advantages of SMP and MPP parallelism. This
means that a query can be performed in a single database partition across multiple
processors. It also means that a query can be performed in parallel across multiple
database partitions.

Capacity and scalability

In this environment you can add more database partitions, and you can add more
processors to existing database partitions.

CPU

CPU

CPU

CPU

Memory

CPU

CPU

CPU

CPU

Memory

Communications
facility

SMP environment SMP environment

Disks Disks

Database partition Database partition

Figure 12. Several symmetric multiprocessor (SMP) environments in a cluster

Chapter 8. Parallel database systems 41

Logical database partitions

A logical database partition differs from a physical partition in that it is not given
control of an entire machine. Although the machine has shared resources, database
partitions do not share the resources. Processors are shared but disks and memory
are not.

Logical database partitions provide scalability. Multiple database managers running
on multiple logical partitions may make fuller use of available resources than a
single database manager could. Figure 13 illustrates the fact that you may gain
more scalability on an SMP machine by adding more database partitions; this is
particularly true for machines with many processors. By distributing the database,
you can administer and recover each database partition separately.

Figure 14 on page 43 illustrates that you can multiply the configuration shown in
Figure 13 to increase processing power.

Disks Disks

Big SMP environment

Database
partition 1

Database
partition 2

Memory Memory

CPU CPU

CPU CPU

Communications
facility

Figure 13. Partitioned database with symmetric multiprocessor environment

42 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Note: The ability to have two or more database partitions coexist on the same
machine (regardless of the number of processors) allows greater flexibility in
designing high availability configurations and failover strategies. Upon machine
failure, a database partition can be automatically moved and restarted on a second
machine that already contains another database partition of the same database.

Summary of parallelism best suited to each hardware
environment

The following table summarizes the types of parallelism best suited to take
advantage of the various hardware environments.

Table 6. Types of Parallelism Possible in Each Hardware Environment

Hardware Environment I/O Parallelism Intra-Query Parallelism

Intra-Partition
Parallelism

Inter-Partition
Parallelism

Single Database Partition, Single
Processor

Yes No(1) No

Single Database Partition, Multiple
Processors (SMP)

Yes Yes No

Multiple Database Partitions, One
Processor (MPP)

Yes No(1) Yes

Communications
facility

Disks DisksDisks Disks

Big SMP
environment

Big SMP
environment

Database
partition 1

Database
partition 1

Database
partition 2

Database
partition 2

Memory MemoryMemory Memory

CPU CPUCPU CPU

CPU CPUCPU CPU

Communications
facility

Communications
facility

Figure 14. Partitioned database with symmetric multiprocessor environments clustered
together

Chapter 8. Parallel database systems 43

Table 6. Types of Parallelism Possible in Each Hardware Environment (continued)

Hardware Environment I/O Parallelism Intra-Query Parallelism

Intra-Partition
Parallelism

Inter-Partition
Parallelism

Multiple Database Partitions,
Multiple Processors (cluster of
SMPs)

Yes Yes Yes

Logical Database Partitions Yes Yes Yes

Note: (1) There may be an advantage to setting the degree of parallelism (using one of the
configuration parameters) to some value greater than one, even on a single processor
system, especially if the queries you execute are not fully utilizing the CPU (for example, if
they are I/O bound).

44 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 9. Database partitioning across multiple database
partitions

The database manager allows great flexibility in spreading data across multiple
database partitions (nodes) of a partitioned database. Users can choose how to
distribute their data by declaring distribution keys, and can determine which and
how many database partitions their table data can be spread across by selecting the
database partition group and table space in which the data should be stored.

In addition, a distribution map (which is updatable) specifies the mapping of
distribution key values to database partitions. This makes it possible for flexible
workload parallelization across a partitioned database for large tables, while
allowing smaller tables to be stored on one or a small number of database
partitions if the application designer so chooses. Each local database partition may
have local indexes on the data it stores to provide high performance local data
access.

In a partitioned database, the distribution key is used to distribute table data
across a set of database partitions. Index data is also partitioned with its
corresponding tables, and stored locally at each database partition.

Before database partitions can be used to store data, they must be defined to the
database manager. Database partitions are defined in a file called db2nodes.cfg.

The distribution key for a table in a table space on a partitioned database partition
group is specified in the CREATE TABLE statement or the ALTER TABLE
statement. If not specified, a distribution key for a table is created by default from
the first column of the primary key. If no primary key is defined, the default
distribution key is the first column defined in that table that has a data type other
than a long or a LOB data type. Tables in partitioned databases must have at least
one column that is neither a long nor a LOB data type. A table in a table space that
is in a single partition database partition group will have a distribution key only if
it is explicitly specified.

Rows are placed in a database partition as follows:
1. A hashing algorithm (database partitioning function) is applied to all of the

columns of the distribution key, which results in the generation of a
distribution map index value.

2. The database partition number at that index value in the distribution map
identifies the database partition in which the row is to be stored.

The database manager supports partial declustering, which means that a table can be
distributed across a subset of database partitions in the system (that is, a database
partition group). Tables do not have to be distributed across all of the database
partitions in the system.

The database manager has the capability of recognizing when data being accessed
for a join or a subquery is located at the same database partition in the same
database partition group. This is known as table collocation. Rows in collocated
tables with the same distribution key values are located on the same database

© Copyright IBM Corp. 1993, 2009 45

partition. The database manager can choose to perform join or subquery processing
at the database partition in which the data is stored. This can have significant
performance advantages.

Collocated tables must:
v Be in the same database partition group, one that is not being redistributed.

(During redistribution, tables in the database partition group may be using
different distribution maps – they are not collocated.)

v Have distribution keys with the same number of columns.
v Have the corresponding columns of the distribution key be database

partition-compatible.
v Be in a single partition database partition group defined on the same database

partition.

46 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 10. Database partition groups

A database partition group is a set of one or more database partitions defined as
belonging to a database. When you want to create tables for the database, you first
create the database partition group where the table spaces will be stored, then you
create the table space where the tables will be stored.

You can define named subsets of one or more database partitions in a database.
Each subset you define is known as a database partition group. Each subset that
contains more than one database partition is known as a multiple partition database
partition group. Multiple partition database partition groups can only be defined
with database partitions that belong to the same instance. A database partition
group can contain as few as one database partition, or span all of the database
partitions in the database.

Figure 15 shows an example of a database with five database partitions in which:
v A database partition group spans all but one of the database partitions (Database

Partition Group 1).
v A database partition group contains one database partition (Database Partition

Group 2).
v A database partition group contains two database partitions. (Database Partition

Group 3).
v The database partition within Database Partition Group 2 is shared (and

overlaps) with Database Partition Group 1.
v There is a single database partition within Database Partition Group 3 that is

shared (and overlaps) with Database Partition Group 1.

You create a new database partition group using the CREATE DATABASE
PARTITION GROUP statement. You can modify it using the ALTER DATABASE
PARTITION GROUP statement. Data is divided across all the database partitions in
a database partition group, and you can add or drop one or more database

Database

Database
partition

Database
partition

Database
partition group 2

Database
partition group 3

Database
partition group 1

Database
partition

Database
partition

Database
partition

Figure 15. Database partition groups in a database

© Copyright IBM Corp. 1993, 2009 47

partitions from a database partition group. If you are using a multiple partition
database partition group, you must look at several database partition group design
considerations.

Each database partition that is part of the database system configuration must
already be defined in a database partition configuration file called db2nodes.cfg. A
database partition group can contain as few as one database partition, or as many
as the entire set of database partitions defined for the database system.

When a database partition group is created or modified, a distribution map is
associated with it. A distribution map, in conjunction with a distribution key and a
hashing algorithm, is used by the database manager to determine which database
partition in the database partition group will store a given row of data.

In a non-partitioned database, no distribution key or distribution map is required.
A database partition is a part of the database, complete with user data, indexes,
configuration files, and transaction logs. Default database partition groups that
were created when the database was created are used by the database manager.
IBMCATGROUP is the default database partition group for the table space
containing the system catalogs. IBMTEMPGROUP is the default database partition
group for system temporary table spaces. IBMDEFAULTGROUP is the default
database partition group for the table spaces containing the user defined tables that
you may choose to put there. A user temporary table space for a declared
temporary table or a created temporary table can be created in
IBMDEFAULTGROUP or any user-created database partition group but not in
IBMTEMPGROUP.

When working with database partition groups you can:
v Create a database partition group.
v Change the comment associated with a database partition group.
v Add database partitions to a database partition group.
v Drop database partitions from a database partition group.
v Redistribute table data within a database partition group.

48 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 11. Execution parallelism

You must modify configuration parameters to take advantage of parallelism within
a database partition or within a non-partitioned database. For example,
intra-partition parallelism can be used to take advantage of the multiple processors
on a symmetric multi-processor (SMP) machine.

Enabling inter-partition query parallelism
Inter-partition parallelism occurs automatically based on the number of database
partitions and the distribution of data across these database partitions.

About this task

Note: You must modify configuration parameters to take advantage of parallelism
within a database partition or within a non-partitioned database. For example,
intra-partition parallelism can be used to take advantage of the multiple processors
on a symmetric multi-processor (SMP) machine.

Enabling parallelism for loading data
The load utility automatically makes use of parallelism, or you can use the
following parameters on the LOAD command:
v CPU_PARALLELISM
v DISK_PARALLELISM

In a partitioned database environment, inter-partition parallelism for data
loading occurs automatically when the target table is defined on multiple
database partitions. Inter-partition parallelism for data loading can be
overridden by specifying OUTPUT_DBPARTNUMS. The load utility also
intelligently enables database partitioning parallelism depending on the
size of the target database partitions. MAX_NUM_PART_AGENTS can be
used to control the maximum degree of parallelism selected by the load
utility. Database partitioning parallelism can be overridden by specifying
PARTITIONING_DBPARTNUMS when ANYORDER is also specified.

Enabling parallelism when creating indexes
To enable parallelism when creating an index:
v The table must be large enough to benefit from parallelism
v Multiple processors must be enabled on an SMP computer.

Enabling I/O parallelism when backing up a database or table space
To enable I/O parallelism when backing up a database or table space:
1. Use more than one target media.
2. Configure table spaces for parallel I/O by defining multiple containers,

or use a single container with multiple disks, and the appropriate use
of the DB2_PARALLEL_IO registry variable. If you want to take
advantage of parallel I/O, you must consider the implications of what
must be done before you define any containers. This cannot be done
whenever you see a need; it must be planned for before you reach the
point where you need to backup your database or table space.

3. Use the PARALLELISM parameter on the BACKUP command to
specify the degree of parallelism.

© Copyright IBM Corp. 1993, 2009 49

4. Use the WITH num-buffers BUFFERS parameter on the BACKUP
command to ensure enough buffers are available to accommodate the
degree of parallelism. The number of buffers should equal the number
of target media you have plus the degree of parallelism selected plus a
few extra.
Also, use a backup buffer size that is:
v As large as feasible. 4 MB or 8 MB (1024 or 2048 pages) is a good

rule of thumb.
v At least as large as the largest (extentsize * number of containers)

product of the table spaces being backed up.

Enabling I/O parallelism when restoring a database or table space
To enable I/O parallelism when restoring a database or table space:
v Use more than one source media.
v Configure table spaces for parallel I/O. You must make the decision to

use this option before you define your containers. This cannot be done
whenever you see a need; it must be planned for before you reach the
point where you need to restore your database or table space.

v Use the PARALLELISM parameter on the RESTORE command to specify
the degree of parallelism.

v Use the WITH num-buffers BUFFERS parameter on the RESTORE
command to ensure enough buffers are available to accommodate the
degree of parallelism. The number of buffers should equal the number of
target media you have plus the degree of parallelism selected plus a few
extra.
Also, use a restore buffer size that is:
– As large as feasible. 4 MB or 8 MB (1024 or 2048 pages) is a good rule

of thumb.
– At least as large as the largest (extentsize * number of containers)

product of the table spaces being restored.
– The same as, or an even multiple of, the backup buffer size.

Configuration parameters that affect the number of agents
There are a number of database manager configuration parameters related to
database agents and how they are managed.

The following database manager configuration parameters determine how many
database agents are created and how they are managed:
v Agent Pool Size (num_poolagents): The total number of idle agents to pool that

are kept available in the system. The default value for this parameter is 100,
AUTOMATIC.

v Initial Number of Agents in Pool (num_initagents): When the database manager
is started, a pool of worker agents is created based on this value. This speeds up
performance for initial queries. The worker agents all begin as idle agents.

v Maximum Number of Connections (max_connections): specifies the maximum
number of connections allowed to the database manager system on each
database partition.

v Maximum Number of Coordinating Agents (max_coordagents): For partitioned
database environments and environments with intra-partition parallelism
enabled when Connection concentrator is enabled, this value limits the number
of coordinating agents.

50 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 12. Synchronizing clocks in a partitioned database
environment

You should maintain relatively synchronized system clocks across the database
partition servers to ensure smooth database operations and unlimited forward
recoverability. Time differences among the database partition servers, plus any
potential operational and communications delays for a transaction should be less
than the value specified for the max_time_diff (maximum time difference among
nodes) database manager configuration parameter.

To ensure that the log record time stamps reflect the sequence of transactions in a
partitioned database environment, DB2 uses the system clock and the virtual
timestamp stored in the SQLOGCTL.LFH file on each machine as the basis for the
time stamps in the log records. If, however, the system clock is set ahead, the log
clock is automatically set ahead with it. Although the system clock can be set back,
the clock for the logs cannot, and remains at the same advanced time until the
system clock matches this time. The clocks are then in synchrony. The implication
of this is that a short term system clock error on a database node can have a long
lasting effect on the time stamps of database logs.

For example, assume that the system clock on database partition server A is
mistakenly set to November 7, 2005 when the year is 2003, and assume that the
mistake is corrected after an update transaction is committed in the database
partition at that database partition server. If the database is in continual use, and is
regularly updated over time, any point between November 7, 2003 and November
7, 2005 is virtually unreachable through rollforward recovery. When the COMMIT
on database partition server A completes, the time stamp in the database log is set
to 2005, and the log clock remains at November 7, 2005 until the system clock
matches this time. If you attempt to roll forward to a point in time within this time
frame, the operation will stop at the first time stamp that is beyond the specified
stop point, which is November 7, 2003.

Although DB2 cannot control updates to the system clock, the max_time_diff
database manager configuration parameter reduces the chances of this type of
problem occurring:
v The configurable values for this parameter range from 1 minute to 24 hours.
v When the first connection request is made to a non-catalog partition, the

database partition server sends its time to the catalog partition for the database.
The catalog partition then checks that the time on the database partition
requesting the connection, and its own time are within the range specified by
the max_time_diff parameter. If this range is exceeded, the connection is refused.

v An update transaction that involves more than two database partition servers in
the database must verify that the clocks on the participating database partition
servers are in synchrony before the update can be committed. If two or more
database partition servers have a time difference that exceeds the limit allowed
by max_time_diff, the transaction is rolled back to prevent the incorrect time from
being propagated to other database partition servers.

© Copyright IBM Corp. 1993, 2009 51

52 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 13. Restrictions on data redistribution

Restrictions on data redistribution are important to note prior to proceeding with
data redistribution or when troubleshooting problems related to data
redistribution.

The following restrictions apply to data redistribution:
v Data redistribution on partitions where tables do not have partitioning key

definitions is restricted.
v When data redistribution is in progress:

– Starting another redistribution operation on the database partition group is
restricted.

– Dropping the database partition group is restricted.
– Altering the database partition group is restricted.
– Executing an ALTER TABLE statement on any table in the database partition

group is restricted.
– Creating new indexes in the table undergoing data redistribution is restricted.
– Dropping indexes defined on the table undergoing data redistribution is

restricted.
– Querying data in the table undergoing data redistribution is restricted.
– Updating the table undergoing data redistribution is restricted.

v Updating tables in a database undergoing a data redistribution that was started
using the REDISTRIBUTE DATABASE PARTITION GROUP command where the
NOT ROLLFORWARD RECOVERABLE option was specified is restricted.
Although the updates can be made, if data redistribution is interrupted the
changes made to the data might be lost and so this practice is strongly
discouraged.

v When the REDISTRIBUTE DATABASE PARTITION GROUP command is issued
and the NOT ROLLFORWARD RECOVERABLE option is specified:
– The data changes made as part of the data redistribution are not rollforward

recoverable.
– If the database is otherwise recoverable, the table space is put into the

BACKUP PENDING state after accessing the first table within the partition.
To remove the table from this state, you must take a backup of the table space
changes when the redistribution operation completes.

– During data redistribution, the data in the tables in the database partition
group being redistributed cannot be updated - the data is read-only. Tables
that are actively being redistributed are inaccessible.

v For typed (hierarchy) tables, if the REDISTRIBUTE DATABASE PARTITION
GROUP command is used and the TABLE option is specified with the value
ONLY, then the table name is restricted to being the name of the root table only.
Sub-table names cannot be specified.

v For range-partitioned tables, movement of data between ranges of a data
partitioned table is restricted. Data redistribution however is supported for the
movement of data between database partitions.

v For partitioned tables, redistribution of data is restricted unless both of the
following are true:

© Copyright IBM Corp. 1993, 2009 53

– The partitioned table has an access mode of FULL ACCESS in the
systables.access_mode catalog table.

– The partitioned table does not have any partitions currently being attached or
detached.

v For replicated materialized query tables, if the data in a database partition group
contains replicated materialized query tables, you must drop these tables before
you redistribute the data. After data is redistributed, you can recreate the
materialized query tables.

v For database partitions that contain multi-dimensional-clustered tables (MDCs)
use of the REDISTRIBUTE DATABASE PARTITION GROUP command is
restricted and will not proceed successfully if there are any multi-dimensional-
clustered tables in the database partition group that contain rolled out blocks
that are pending cleanup. These MDC tables must be cleaned up before data
redistribution can be resumed or restarted.

v Dropping tables that are currently marked in the DB2 catalog views as being in
the state ″Redistribute in Progress″ is restricted. To drop a table in this state, first
run the REDISTRIBUTE DATABASE PARTITION GROUP utility with the
ABORT or CONTINUE option and an appropriate table list so that redistribution
of the table is either completed or aborted.

54 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 14. Scenario: Partitioning data in a database

This scenario shows how to add new database partitions to a database and
redistribute data between the database partitions. The REDISTRIBUTE DATABASE
PARTITION GROUP command is demonstrated as part of showing how to
redistribute data on different table sets within a database partition group.

Scenario:
A database DBPG1 has 2 database partitions, specified as (0, 1) and a
database partition group definition (0, 1).

The following table spaces are defined on database partition group
DBPG_1:
v Table space TS1 - this table space has two tables, T1 and T2
v Table space TS2 - this table space has three tables defined, T3, T4, and

T5

Distribution of data between the database partitions in DBPG1:

To add three new database partitions to the database, issue the following
commands:
START DBM DBPARTITIONNUM 3 ADD DBPARTITIONNUM HOSTNAME <HOSTNAME3>
PORT <PORT3>;

START DBM DBPARTITIONNUM 4 ADD DBPARTITIONNUM HOSTNAME <HOSTNAME4>
PORT <PORT4>;

START DBM DBPARTITIONNUM 5 ADD DBPARTITIONNUM HOSTNAME <HOSTNAME5>
PORT <PORT5>;

STOP DBM;

START DBM;

The following redistribute command will change the DBPG_1 definition
from (0, 1) to (0, 1, 3, 4, 5) and redistribute the data as well:
DB2 REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1 NOT ROLLFORWARD RECOVERABLE
UNIFORM ADD DBPARTITIONNUM (3 TO 5) STOP AT 2006-03-10-07.00.00.000000;

Let us presume that the command ran successfully for tables T1, T2 and
T3, and then stopped due to the specification of the STOP AT option.

To abort the data redistribution for the database partition group and to
revert the changes made to tables T1, T2, and T3, issue the following
command:
DB2 REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1 NOT ROLLFORWARD
RECOVERABLE ABORT;

You might abort the data redistribution if an error or an interruption
occurred during the data redistribution and you do not wish to continue
the redistribute operation. For this scenario, presume that this command
was run successfully and that tables T1 and T2 were reverted to their
original state.

To redistribute T5 and T4 only with 5000 4K pages as DATA BUFFER:
DB2 REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1 NOT ROLLFORWARD RECOVERABLE
UNIFORM ADD DBPARTITIONNUM (3 TO 5) TABLE (T5, T4) ONLY DATA BUFFER 5000;

If the command ran successfully, the data in tables T4 and T5 will have
been redistributed successfully.

© Copyright IBM Corp. 1993, 2009 55

To complete the redistribution of data on table T1, T2, and T3 in a
specified order, issue:
DB2 REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1 NOT ROLLFORWARD RECOVERABLE
CONTINUE TABLE (T1) FIRST;

Specifying TABLE (T1) FIRST forces the database manager to process table
T1 first so that it can return to being online (read-only) before other tables.
All other tables are processed in an order determined by the database
manager.

Note:

v The ADD DBPARTITIONNUM option and the DROP
DBPARTITIONNUM option do not need to be specified. Instead, the
ALTER DATABASE PARTITION GROUP statement may be used to add
or drop database partitions prior to the REDISTRIBUTE DATABASE
PARTITION GROUP command being executed, in which case the
REDISTRIBUTE DATABASE PARTITION GROUP command will not
add or drop partitions, but will simply redistribute the data according to
the specified options.

v It is strongly recommended that the user take an offline database backup
of the database prior to executing the REDISTRIBUTE DATABASE
PARTITION GROUP command. This action is not shown in the
examples above.

v The REDISTRIBUTE DATABASE PARTITION GROUP command is not
rollforward recoverable. For a full discussion of this issue, refer to the
“REDISTRIBUTE DATABASE PARTITION GROUP command”.

v After the REDISTRIBUTE DATABASE PARTITION GROUP command
finishes, all the table spaces it accessed will be left in the BACKUP
PENDING state. Such table spaces must be backed up before the tables
they contain will be accessible for write activity.

The steps above illustrate how you can use variations of the redistribute command
to redistribute data between database partitions.

56 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Part 3. DB2 security considerations

© Copyright IBM Corp. 1993, 2009 57

58 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 15. What’s New

Authorities overview
Various administrative authorities exist at the instance level and at the database
level. These administrative authorities group together certain privileges and
authorities so that you can grant them to the users who are responsible for these
tasks in your database installation.

Instance level authorities

Instance level authorities enable you to perform instance-wide functions, such as
creating and upgrading databases, managing table spaces, and monitoring activity
and performance on your instance. No instance-level authority provides access to
data in database tables. The following diagram summarizes the abilities given by
each of the instance level administrative authorities:
v SYSADM –for users managing the instance as a whole
v SYSCTRL –for users administering a database manager instance
v SYSMAINT –for users maintaining databases within an instance
v SYSMON –for users monitoring the instance and its databases

A user with a higher-level authority also has the abilities given by the lower level
authorities. For example, a user with SYSCTRL authority can perform the functions
of users with SYSMAINT and SYSMON authority as well.

© Copyright IBM Corp. 1993, 2009 59

Database level authorities

Database level authorities enable you to perform functions within a specific
database, such as granting and revoking privileges, inserting, selecting, deleting
and updating data, and managing workloads. The following diagram summarizes
the abilities given by each of the database level authorities. The administrative
database authorities are:
v SECADM – for users managing security within a database
v DBADM – for users administering a database

SYSCTRL
- Update a database, node, or distributed connection services (DCS) directory
- Restore to a new or existing database
- Force users off the system
- Create or drop a database (NOTE: automatically gets DBADM authority)
- Create, drop, or alter a table space
- Restore to a new or existing database
- Use any table space

SYSADM
- Update and restore a database manager configuration parameters (DBM CFG) including specifying groups
that have SYSADM, SYSCTRL, SYSMAINT AND SYSMON
- Grant and revoke table space privileges
- Upgrade and restore a database

SYSMAINT
- Back up a database or table space
- Restore to an existing database
- Roll forward recovery
- Start or stop an instance
- Restore or quiesce a table space, and query it’s state
- Run tracing
- Database system monitor snapshots
- Reorganize tables
- Use RUNSTATS and update log history files

SYSMON
- GET DATABASE MANAGER MONITOR SWITCHES
- GET MONITOR SWITCHES
- GET SNAPSHOT
- LIST commands: ACTIVE DATABASES, APPLICATIONS,
DATABASE PARTITION GROUPS, DCS APPLICATIONS, PACKAGES,
TABLES, TABLESPACE CONTAINERS, TABLESPACES, UTILITIES−−
- RESET MONITOR
- UPDATE MONITOR SWITCHES
- APIs: db2GetSnapshot and db2GetSnapshotSize, db2MonitorSwitches,
db2mtrk, db2ResetMonitor
- All snapshot table functions, without running SNAP_WRITE_FILE
- Can connect to a database

Figure 16. Instance-level authorities

60 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v ACCESSCTRL – for users who need to grant and revoke authorities and
privileges (except for SECADM, DBADM, ACCESSCTRL, and DATAACCESS
authority, SECADM authority is required to grant and revoke these authorities)

v DATAACCESS – for users who need to access data
v SQLADM – for users who monitor and tune SQL queries
v WLMADM – for users who manage workloads
v EXPLAIN – for users who need to explain query plans (EXPLAIN authority

does not give access to the data itself)

The following diagram shows, where appropriate, which higher level authorities
include the abilities given by a lower level authority. For example, a user with
DBADM authority can perform the functions of users with SQLADM and
EXPLAIN authority, and all functions except granting USAGE privilege on
workloads, of users with WLMADM authority.

Chapter 15. What’s New 61

DATAACCESS

- Create, alter, drop and comment on security objects
- Grant and revoke all privileges and authorities
- TRANSFER OWNERSHIP statement
- EXECUTE privilege on audit system-defined routines
- Grant EXECUTE privilege on audit system-defined routines
- AUDIT statement
- SELECT privilege on system catalog tables and views
- CONNECT authority

SECADM

- SELECT privilege on system catalog tables and views
- Grant and revoke SQLADM, WLMADM, EXPLAIN, BINDADD,
CONNECT, CREATETAB, CREATE_EXTERNAL_ROUTINE,
CREATE_NOT_FENCED_ROUTINE, IMPLICIT_SCHEMA,
LOAD, QUIESCE_CONNECT
- Grant and revoke all privileges on global variables, indexes,
nicknames, packages, routines (except system-defined audit
routines), schemas, sequences, servers, tables, table spaces,
views, XSR objects

ACCESSCTRL

- LOAD authority
- SELECT, INSERT, UPDATE, AND DELETE
privileges on all tables, views, MQTs, and nicknames
- SELECT privilege on system catalog tables and views
- EXECUTE privilege on all routines
(except system-defined audit routines)
- EXECUTE privilege on all packages

DBADM
- Create, alter, drop non-security-related objects
- Read log files
- Create, activate, drop event monitors
- Query the state of a table space
- Update log history files
- Quiesce a table space
- Reorganize indexes/tables
- Use RUNSTATS

- BINDADD authority
- CONNECT authority
- CREATETAB authority
- CREATE_EXTERNAL_ROUTINE authority
- CREATE_NOT_FENCED_ROUTINE authority
- IMPLICIT_SCHEMA authority
- LOAD authority
- QUIESCE_CONNECT authority

SQLADM

- CREATE EVENT MONITOR
- DROP EVENT MONITOR
- FLUSH EVENT MONITOR
- SET EVENT MONITOR STATE
- FLUSH OPT. PROFILE CACHE
- FLUSH PACKAGE CACHE
- PREPARE
- REORG INDEXES/TABLES
- RUNSTATS
- EXECUTE privilege on all system-defined routines
(except audit routines)
- SELECT priv on sys catalog tables and views
- EXPLAIN
- Certain clauses of ALTER SERVICE CLASS,
ALTER THRESHOLD, ALTER WORK ACTION
SET, ALTER WORKLOAD

WLMADM
- Create, alter, comment on
and drop workload manager
objects
- Grant and revoke workload
privileges
- EXECUTE privilege on the
system-defined workload
management routines

Grant USAGE privilege on
workloads

EXPLAIN
- EXPLAIN statement
- PREPARE statement
- EXECUTE privilege on the
system-defined explain routines

Figure 17. Database-level authorities

62 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

System administrator (SYSADM) authority scope has changed
In DB2 Version 9.7, the authorization model has been updated to clearly separate
the duties of the system administrator, the database administrator, and the security
administrator. As part of this enhancement, the abilities given by the SYSADM
authority have been reduced.

Details

The changes for the SYSADM authority are as follows:
v A user who holds SYSADM authority no longer has implicit DBADM authority

and therefore has limited capabilities compared to those available in Version 9.5.
However, the UPGRADE DATABASE command and the RESTORE DATABASE
command (for a downlevel database) grants DBADM authority to the SYSADM
group. Privileges associated with groups are not considered for authorization
when a user creates views, triggers, materialized query tables (MQTs), packages
and SQL routines. Given these restrictions associated with groups, even though
the upgrade process grants DBADM authority to the SYSADM group, the
upgrade process alone does not ensure that every user with SYSADM authority
in Version 9.5 will have the exact same capabilities in Version 9.7. For a member
of the SYSADM group to be certain to retain the same privileges as in Version
9.5, they must be directly granted DBADM authority with DATAACCESS and
ACCESSCTRL authorities, or must possess these authorities through
membership of a role.

v If a user holding SYSADM authority creates a database, the user is automatically
granted DATAACCESS, ACCESSCTRL, SECADM and DBADM authority for
that database, which gives the user the same abilities as in Version 9.5.

v A user who holds SYSADM authority is no longer able to grant any authorities
or privileges, except table space privileges.

User response

For a user holding SYSADM authority to obtain the same capabilities as in Version
9.5 (other than the ability to grant SECADM authority), the security administrator
must explicitly grant the user DBADM authority and grant the user the new
DATAACCESS and ACCESSCTRL authorities. The new authorities can be granted
by using the GRANT DBADM ON DATABASE statement with the WITH
DATAACCESS and WITH ACCESSCTRL options of that statement, which are
default options. The DATAACCESS authority is the authority that allows access to
data within a specific database, and the ACCESSCTRL authority is the authority
that allows a user to grant and revoke privileges within a specific database.

For the user holding SYSADM authority to also be able to grant SECADM
authority, the security administrator must grant the user SECADM authority as
well. However, holding SECADM authority allows the user to perform more
actions than the user could as a Version 9.5 system administrator. For example, the
user can create objects such as roles, trusted contexts, and audit policies.

Tip: In addition to considering how these SYSADM authority changes impact your
security implementation, you should also review the new capabilities of the
database administrator (who holds DBADM authority) and the security
administrator (who holds SECADM authority) , and the new authorities introduced
in DB2 Version 9.7, so that you can decide how to organize responsibilities within
your system. DB2 Version 9.7 introduces the following new authorities in addition
to DATAACCESS and ACCESSCTRL:

Chapter 15. What’s New 63

v WLMADM, for managing workloads
v SQLADM, for tuning SQL statements
v EXPLAIN, for using the explain facility with SQL statements

These new authorities allow you to grant users responsibilities without granting
them DBADM authority or privileges on base tables, which would give those users
more privileges than they need to do their work.

Considerations for the Windows LocalSystem account

On Windows systems, when the sysadm_group database manager configuration
parameter is not specified, the LocalSystem account is considered a system
administrator (holding SYSADM authority). Any DB2 application that is run by
LocalSystem is affected by the change in scope of SYSADM authority in Version
9.7. These applications are typically written in the form of Windows services and
run under the LocalSystem account as the service logon account. If there is a need
for these applications to perform database actions that are no longer within the
scope of SYSADM, you must grant the LocalSystem account the required database
privileges or authorities. For example, if an application requires database
administrator capabilities, grant the LocalSystem account DBADM authority using
the GRANT (Database Authorities) statement. Note that the authorization ID for
the LocalSystem account is SYSTEM.

Security administrator (SECADM) abilities have been extended
In DB2 Version 9.7, the authorization model has been updated to clearly separate
the duties of the system administrator, the database administrator, and the security
administrator. As part of this enhancement, the abilities given by the SECADM
authority have been extended.

Details

The changes for the SECADM authority are as follows:
v A user who holds SECADM authority can now grant and revoke all authorities

and privileges, including DBADM and SECADM.
v The security administrator can now grant SECADM authority to roles and

groups. In Version 9.5, SECADM could be granted only to a user.
v The security administrator can delegate responsibility to run the audit stored

procedures and table functions (AUDIT_ARCHIVE, AUDIT_LIST_LOGS, and
AUDIT_DELIM_EXTRACT) by granting another user EXECUTE privilege on
them.

User response

The security administrator can allow another user to grant and revoke authorities
and privileges by granting that other user the new ACCESSCTRL authority.
However, only the security administrator can grant SECADM, DBADM, and
ACCESSCTRL authority. Also, only the security administrator can grant the new
authority DATAACCESS, which enables a user to access data within a specific
database.

In addition to considering how these SECADM authority changes impact your
security implementation, you should also review the new capabilities of the system
administrator (who holds SYSADM authority) and the database administrator
(who holds DBADM authority) , and the new authorities introduced in DB2

64 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Version 9.7, so that you can decide how you to organize responsibilities within
your system. DB2 Version 9.7 introduces the following new authorities in addition
to DATAACCESS and ACCESSCTRL:
v WLMADM, for managing workloads
v SQLADM, for tuning SQL statements
v EXPLAIN, for using the explain facility with SQL statements

These new authorities allow you to grant users responsibilities without granting
them DBADM authority or privileges on base tables, which would give those users
more privileges than they need to do their work.

Access control administration authority (ACCESSCTRL)
ACCESSCTRL authority is the authority required to grant and revoke privileges on
objects within a specific database. ACCESSCTRL authority has no inherent
privilege to access data stored in tables, except the catalog tables and views.

ACCESSCTRL authority can only be granted by the security administrator (who
holds SECADM authority). It can be granted to a user, a group, or a role. PUBLIC
cannot obtain the ACCESSCTRL authority either directly or indirectly.
ACCESSCTRL authority gives a user the ability to perform the following
operations:
v Grant and revoke the following administrative authorities:

– EXPLAIN
– SQLADM
– WLMADM

v Grant and revoke the following database authorities:
– BINDADD
– CONNECT
– CREATETAB
– CREATE_EXTERNAL_ROUTINE
– CREATE_NOT_FENCED_ROUTINE
– IMPLICIT_SCHEMA
– LOAD
– QUIESCE_CONNECT

v Grant and revoke all privileges on the following objects, regardless who granted
the privilege:
– Global Variable
– Index
– Nickname
– Package
– Routine (except audit routines)
– Schema
– Sequence
– Server
– Table
– Table Space
– View
– XSR Objects

v SELECT privilege on the system catalog tables and views

Chapter 15. What’s New 65

This authority is a subset of security administrator (SECADM) authority.

Data access administration authority (DATAACCESS)
DATAACCESS is the authority that allows access to data within a specific
database.

DATAACCESS authority can be granted only by the security administrator (who
holds SECADM authority). It can be granted to a user, a group, or a role. PUBLIC
cannot obtain the DATAACCESS authority either directly or indirectly.

For all tables, views, materialized query tables, and nicknames it gives these
authorities and privileges:
v LOAD authority on the database
v SELECT privilege (including system catalog tables and views)
v INSERT privilege
v UPDATE privilege
v DELETE privilege

In addition, DATAACCESS authority provides the following privileges:
v EXECUTE on all packages
v EXECUTE on all routines (except audit routines)

Database administrator (DBADM) authority scope has
changed

In DB2 Version 9.7, the authorization model has been updated to clearly separate
the duties of the system administrator, the database administrator, and the security
administrator. As part of this enhancement, the abilities given to the DBADM
authority have changed.

Details

The changes for the DBADM authority are as follows:
v DBADM authority no longer necessarily includes the ability to access data and

to grant and revoke privileges for a database.
v Granting DBADM authority no longer additionally grants the following separate

database authorities because they are already implicitly vested in the DBADM
authority level.
– BINDADD
– CONNECT
– CREATETAB
– CREATE_EXTERNAL_ROUTINE
– CREATE_NOT_FENCED_ROUTINE
– IMPLICIT_SCHEMA
– QUIESCE_CONNECT
– LOAD

User response

The new DATAACCESS authority provides the ability to access data in a database,
and the new ACCESSCTRL authority provides the ability to grant and revoke
privileges and authorities. These authorities are granted by default when a security

66 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

administrator grants DBADM authority. Also, the security administrator can use
the following options of the GRANT DBADM ON DATABASE statement to
provide or not provide the ACCESSCTRL and DATAACCESS authorities:
v WITH ACCESSCTRL
v WITHOUT ACCESSCTRL
v WITH DATAACCESS
v WITHOUT DATAACCESS

Tip: In addition to considering how these DBADM authority changes impact your
security implementation, you should also review the new capabilities of the system
administrator (who holds SYSADM authority) and security administrator (who
holds SECADM authority) , and the new authorities introduced in DB2 Version 9.7,
so that you can decide how you to organize responsibilities within your system.
DB2 Version 9.7 introduces the following new authorities in addition to
DATAACCESS and ACCESSCTRL:
v WLMADM, for managing workloads
v SQLADM, for tuning SQL statements
v EXPLAIN, for using the explain facility with SQL statements

These new authorities allow you to grant users responsibilities without granting
them DBADM authority or privileges on base tables, which would give those users
more privileges than they need to do their work.

SQL administration authority (SQLADM)
SQLADM authority is the authority required to monitor and tune SQL statements.

SQLADM authority can be granted by the security administrator (who holds
SECADM authority) or a user who possesses ACCESSCTRL authority. SQLADM
authority can be granted to a user, a group, a role, or to PUBLIC. SQLADM
authority gives a user the ability to perform the following functions:
v Execution of the following SQL statements:

– CREATE EVENT MONITOR
– DROP EVENT MONITOR
– EXPLAIN
– FLUSH EVENT MONITOR
– FLUSH OPTIMIZATION PROFILE CACHE
– FLUSH PACKAGE CACHE
– PREPARE
– REORG INDEXES/TABLE
– RUNSTATS
– SET EVENT MONITOR STATE

v Execution of certain clauses of the following workload manager SQL statements:
– The following clauses of the ALTER SERVICE CLASS statement:

- COLLECT AGGREGATE ACTIVITY DATA
- COLLECT AGGREGATE REQUEST DATA
- COLLECT REQUEST METRICS

– The following clause of the ALTER THRESHOLD statement
- WHEN EXCEEDED COLLECT ACTIVITY DATA

.

Chapter 15. What’s New 67

– The following clauses of the ALTER WORK ACTION SET statement that
allow you to alter a work action:
- ALTER WORK ACTION ... COLLECT ACTIVITY DATA
- ALTER WORK ACTION ... COLLECT AGGREGATE ACTIVITY DATA
- ALTER WORK ACTION ... WHEN EXCEEDED COLLECT ACTIVITY

DATA
– The following clauses of the ALTER WORKLOAD statement:

- COLLECT ACTIVITY METRICS
- COLLECT AGGREGATE ACTIVITY DATA
- COLLECT LOCK TIMEOUT DATA
- COLLECT LOCK WAIT DATA
- COLLECT UNIT OF WORK DATA

v SELECT privilege on the system catalog tables and views
v EXECUTE privilege on all system-defined DB2 routines (except audit routines)

SQLADM authority is a subset of the database administrator (DBADM) authority.

EXPLAIN authority is a subset of the SQLADM authority.

Explain administration authority (EXPLAIN)
EXPLAIN authority is the authority required to explain query plans without
gaining access to data for a specific database. This authority is a subset of the
database administrator authority and has no inherent privilege to access data
stored in tables.

EXPLAIN authority can be granted by the security administrator (who holds
SECADM authority) or by a user who possesses ACCESSCTRL authority. The
EXPLAIN authority can be granted to a user, a group, a role, or to PUBLIC. It
gives the ability to execute the following SQL statements:
v EXPLAIN
v PREPARE
v DESCRIBE on output of a SELECT statement or of an XQuery statement

EXPLAIN authority also provides EXECUTE privilege on the system-defined
explain routines.

EXPLAIN authority is a subset of the SQLADM authority.

Workload administration authority (WLMADM)
WLMADM authority is the authority required to manage workload objects for a
specific database. This authority allows you to create, alter, drop, comment on, and
grant and revoke access to workload manager objects.

WLMADM authority can be granted by the security administrator (who holds
SECADM authority) or a user who possesses ACCESSCTRL authority. WLMADM
authority can be granted to a user, a group, a role, or to PUBLIC. WLMADM
authority gives a user the ability to perform the following operations:
v Create, alter, comment on, and drop the following workload manager objects:

– Histogram templates
– Service classes
– Thresholds

68 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

– Work action sets
– Work class sets
– Workloads

v Grant and revoke workload privileges
v Execute the system-defined workload management routines.

WLMADM authority is a subset of the database administrator authority, DBADM.

SSLconfig.ini and SSLClientconfig.ini files replaced with new database
manager configuration parameters

You no longer need to use the SSLconfig.ini and SSLClientconfig.ini
configuration files to set up SSL support. The parameters that you used to set in
these files have been replaced with database manager configuration parameters.

Details

The new database manager configuration parameters for server-side SSL support
are as follows:
v ssl_svr_keydb specifies the fully qualified path of the key database file.
v ssl_svr_stash specifies the fully qualified path of the stash file that holds the

encrypted password to the key database.
v ssl_svr_label specifies the label of the digital certificate of the server in the key

database.
v ssl_svcename specifies the port that the database server uses to await

communications from remote clients using the SSL protocol.
v ssl_cipherspecs (optional) specifies the cipher suites that the server supports.
v ssl_versions (optional) specifies the SSL and TLS versions that the server

supports.

The new database manager configuration parameters for client-side SSL support
are as follows:
v ssl_clnt_keydb specifies the fully qualified path of the key database file on the

client.
v ssl_clnt_stash specifies the fully qualified path of the stash file on the client.

User response

To set up SSL support, set values for the new database manager configuration
parameters.

The following tables show how the parameters in the SSLconfig.ini and
SSLClientconfig.ini files map to these new database manager configuration
parameters. The ssl_cipherspecs and ssl_versions parameters do not have
equivalent parameters in these files; they provide new configuration options.

Table 7. Mapping of server-side SSL support parameters to new database manager
configuration parameters

Version 9.5 SSLconfig.ini parameters
Version 9.7 database manager configuration
parameters

DB2_SSL_KEYSTORE_FILE ssl_svr_keydb

DB2_SSL_KEYSTORE_PW ssl_svr_stash

Chapter 15. What’s New 69

Table 7. Mapping of server-side SSL support parameters to new database manager
configuration parameters (continued)

Version 9.5 SSLconfig.ini parameters
Version 9.7 database manager configuration
parameters

DB2_SSL_KEYSTORE_LABEL ssl_svr_label

DB2_SSL_LISTENER ssl_svcename

The ssl_svr_stash database manager configuration parameter is not exactly
equivalent to the DB2_SSL_KEYSTORE_PW parameter. The ssl_svr_stash
configuration parameter points to a stash file that holds the encrypted password to
a key database, whereas the DB2_SSL_KEYSTORE_PW parameter specifies the
password itself.

Table 8. Mapping of client-side SSL support parameters to new database manager
configuration parameters

Version 9.5 SSLClientconfig.ini parameters
Version 9.7 database manager configuration
parameters

DB2_SSL_KEYSTORE_FILE ssl_clnt_keydb

DB2_SSL_KEYRING_STASH_FILE ssl_clnt_stash

Security enhancements

DB2 authorization model has been enhanced to allow
separation of duties

Version 9.7 clearly divides the duties of the database administrator and the security
administrator and introduces new authorities that enable you to grant only the
access a user needs to do their work. These enhancements also make it easier to
meet government compliance requirements.

Version 9.7 introduces new authorities for workload management (WLMADM),
SQL tuning (SQLADM) and for using the explain facility with SQL statements
(EXPLAIN). These authorities allow you to grant users these responsibilities
without having to grant them DBADM authority or actual privileges on the base
tables, which would give those users more privileges than they need to do their
work. Therefore, by using these new authorities, you can minimize the risk of
exposing sensitive data.

Version 9.7 also introduces the new authorities DATAACCESS and ACCESSCTRL.
DATAACCESS authority is the authority that allows access to data within a
specific database. ACCESSCTRL authority is the authority that allows a user to
grant and revoke privileges on objects within a specific database. By default,
DATAACCESS and ACCESSCTRL authorities are included when the security
administrator grants DBADM authority. But if you do not want your database
administrator to have access to data, or to be able to grant privileges and
authorities, you can choose to not include these authorities.

Note: The creator of a database is automatically granted DBADM, SECADM,
DATAACCESS and ACCESSCTRL authorities within that database. If you do not
want this user to have any of these authorities, you must revoke them.

70 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Changes for the system administrator (who holds SYSADM
authority)

A user who holds SYSADM authority no longer has implicit DBADM authority, so
has limited capabilities compared to those available in Version 9.5.

A user who holds SYSADM authority is no longer able to grant any authorities or
privileges, except to grant table space privileges.

For a user holding SYSADM authority to obtain the same capabilities as in Version
9.5 (other than the ability to grant SECADM authority), the security administrator
must explicitly grant them DBADM authority. Note that when the security
administrator grants DBADM authority, the new DATAACCESS and ACCESSCTRL
authorities are included by default. This will give the user equivalent Version 9.5
capability. For this user to also be able to grant SECADM authority, they must be
granted SECADM authority as well. Note, however, that holding SECADM
authority will allow this user to perform more actions than they could as a Version
9.5 system administrator. For example, they will be able to create objects such as
roles, trusted contexts and audit policies.

On Windows systems, when the sysadm_group database manager configuration
parameter is not specified, the LocalSystem account is considered a system
administrator (holding SYSADM authority). Any DB2 application that is run by
LocalSystem is affected by the change in scope of SYSADM authority in Version
9.7. These applications are typically written in the form of Windows services and
run under the LocalSystem account as the service logon account. If there is a need
for these applications to perform database actions that are no longer within the
scope of SYSADM, you must grant the LocalSystem account the required database
privileges or authorities. For example, if an application requires database
administrator capabilities, grant the LocalSystem account DBADM authority using
the GRANT (Database Authorities) statement. Note that the authorization ID for
the LocalSystem account is SYSTEM.

Changes for the security administrator (who holds SECADM
authority)

A user who holds SECADM authority can now grant and revoke all authorities
and privileges including DBADM and SECADM authorities.

SECADM authority can now be granted to roles and groups (in Version 9.5,
SECADM could be granted only to a user).

SECADM authority is no longer necessary to run the audit stored procedures and
table functions:
v AUDIT_ARCHIVE
v AUDIT_LIST_LOGS
v AUDIT_DELIM_EXTRACT

In Version 9.7, EXECUTE privilege is sufficient to run these routines, however, only
the security administrator can grant the EXECUTE privilege on these routines. This
change allows the security administrator to delegate part of their responsibilities to
other users.

Chapter 15. What’s New 71

Changes for the database administrator (who holds DBADM
authority)

The following authorities will continue to be available to the database
administrator as long as the user holds DBADM authority, but will be lost if
DBADM authority is revoked. Granting DBADM authority no longer additionally
grants the following separate database authorities because they are already
implicitly vested in the DBADM authority level.
v BINDADD
v CONNECT
v CREATETAB
v CREATE_EXTERNAL_ROUTINE
v CREATE_NOT_FENCED_ROUTINE
v IMPLICIT_SCHEMA
v QUIESCE_CONNECT
v LOAD

When the security administrator grants DBADM authority, they can choose
whether to give the database administrator the ability to perform the following
operations:
v Accessing data within the database.
v Granting and revoking privileges and authorities.

The security administrator can use the following options of the GRANT DBADM
ON DATABASE statement to control these functions:
v WITH ACCESSCTRL
v WITHOUT ACCCESSCTRL
v WITH DATAACCESS
v WITHOUT DATAACCCESS

By default, DATAACCESS and ACCESSCTRL authorities are included if they are
not specified.

SYSMON authority has been extended to LIST commands and
the db2mtrk command

To improve the database monitoring capability of a user holding system monitor
(SYSMON) authority, SYSMON now includes the ability to run certain LIST
commands. Also, SYSMON authority enables you to run the db2mtrk command to
report memory pool allocation information.

The affected LIST commands are as follows:
v LIST DATABASE PARTITION GROUPS
v LIST DRDA INDOUBT TRANSACTIONS
v LIST PACKAGES
v LIST TABLES
v LIST TABLESPACE CONTAINERS
v LIST TABLESPACES
v LIST UTILITIES

72 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

SSL client support expanded and configuration simplified
In DB2 Version 9.7, enhanced support for Secure Sockets Layer (SSL) and its
successor, Transport Layer Security (TLS), improves the security of data
communication by making it easier to configure your server. Additionally, support
is expanded to all non-Java DB2 clients, such as CLI/ODBC, .Net Data Provider,
embedded SQL, and CLP.

Note: In this topic, references to SSL also apply to TLS.

TLS version 1.0 (RFC2246) and TLS version 1.1 (RFC4346) are supported.

Configuration enhancements

You no longer need to use separate configuration files to set up SSL support. The
parameters that you used to set in the SSLconfig.ini and SSLClientconfig.ini
files are now replaced by database manager configuration parameters and
connection string keywords.
v There are six new server-side configuration parameters:

– ssl_svr_keydb specifies the fully qualified path of the key database file.
– ssl_svr_stash specifies the fully qualified path of the stash file that holds the

encrypted password to the key database.
– ssl_svr_label specifies the label of the digital certificate of the server in the

key database.
– ssl_svcename specifies the port that the database server uses to await

communications from remote clients using the SSL protocol.
– ssl_cipherspecs (optional) specifies the cipher suites that the server supports.
– ssl_versions (optional) specifies the SSL and TLS versions that the server

supports.
v There are two new client-side database manager configuration parameters:

– ssl_clnt_keydb specifies the fully qualified path of the key database file on
the client.

– ssl_clnt_stash specifies the fully qualified path of the stash file on the client.
v There are two new connection string keywords for CLI/ODBC applications:

– ssl_client_keystoredb - Set ssl_client_keystoredb to the fully-qualified key
database file name.

– ssl_client_keystash - Set ssl_client_keystash to the fully-qualified stash file
name.

v There are three new connection string keywords for DB2 .Net Data Provider
applications:
– SSLClientKeystoredb - Set SSLClientKeystoredb to the fully-qualified key

database file name.
– SSLClientKeystash - Set SSLClientKeystash to the fully-qualified stash file

name.
– security - Set security to SSL.

Setting up SSL connections for CLI/ODBC applications

If you are using the IBM Data Server Driver for ODBC and CLI to connect to a
database using SSL, you use the connection string parameters

Chapter 15. What’s New 73

ssl_client_keystoredb, and ssl_client_keystash to set the path for the client key
database and for the stash file, and the connection string parameter security to set
the protocol to SSL.

If you are using the IBM Data Server Client or IBM Data Server Runtime Client to
connect to a database using SSL, you use the connection string parameter security
to set the protocol to SSL, and you can use either the connection string parameters
ssl_client_keystoredb and ssl_client_keystash, or the client-side database manager
configuration parameters ssl_clnt_keydb and ssl_clnt_stash, to set the path for the
client key database and for the stash file.

Setting up SSL connections for .Net Data Provider applications

For .Net Data Provider applications, you use the connection string parameters
SSLClientKeystoredb and SSLClientKeystash to set the path for the client key
database and for the stash file, and the connection string parameter security to set
the protocol to SSL

Setting up SSL connections for CLP clients and embedded SQL
clients

The SSL keyword has been added to the CATALOG TCPIP NODE command
SECURITY parameter. CLP clients and embedded SQL clients can use this keyword
and the client-side database manager configuration parameters ssl_clnt_keydb,
and ssl_clnt_stash to connect to a database using SSL.

security CLI/ODBC configuration keyword
Specifies whether or not SSL support is used for File DSN or in a DSN-less
connection.

db2cli.ini keyword syntax:
security = SSL

Default setting:
None.

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

This parameter specifies whether a TCP/IP communication will be with
SSL support or not. It can only be used with the protocols TCPIP, TCPIP4,
or TCPIP6. If not specified, a normal TCP/IP without SSL support will be
used.

SSL_client_keystoredb CLI/ODBC configuration keyword
Specifies the SSL key file that is used for File DSN or in a DSN-less connection.

db2cli.ini keyword syntax:
ssl_client_keystoredb = <fully qualified key file path>

Default setting:
None.

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

This parameter specifies the fully qualified path of the key file (.kdb). The
key file stores the signer certificate from the server personal certificate.

74 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v For a self-signed server personal certificate, the signer certificate is the
public key of the personal certificate.

v For a certificate authority signed server personal certificate, the signer
certificate is the root CA certificate of the CA that signed the personal
certificate.

If the SSL protocol (security=SSL) is used, this parameter must be defined.
The signer certificate from the server personal certificate must exist so that
the client can authenticate the server, otherwise the connection fails.

SSL_client_keystash CLI/ODBC configuration keyword
Specifies the SSL stash file used for File DSN or in a DSN-less connection.

db2cli.ini keyword syntax:
ssl_client_keystash = <fully qualified stash file path>

Default setting:
None.

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

This parameter specifies the fully qualified path of the stash file (.sth),
which stores an obfuscated version of the key database password. The file
will be used to access the SSL key file during the SSL handshake. This
parameter must be defined if the SSL protocol (security=SSL) is used,
otherwise the connection fails.

AES encryption of user ID and password enhances security
In Version 9.7, you can now encrypt the user ID and password using the Advanced
Encryption Standard (AES) algorithm with keys 256 bits long.

The user ID and password submitted for authentication to DB2 are encrypted
when the authentication method negotiated between the DB2 client and the DB2
server is SERVER_ENCRYPT. The authentication method negotiated depends on
the authentication type setting of the authentication configuration parameter on
the server and the authentication requested by the client. The choice of the
encryption algorithm used to encrypt the user ID and password, either DES or
AES, depends on the setting of the alternate_auth_enc database manager
configuration parameter:
v NOT_SPECIFIED (the default) means that the server accepts the encryption

algorithm that the client proposes.
v AES_CMP means that if the connecting client proposes DES but supports AES

encryption, the server renegotiates for AES encryption. Downlevel clients that do
not support AES will still be able to connect using DES.

v AES_ONLY means that the server accepts only AES encryption. If the client does
not support AES encryption, the connection is rejected.

Discontinued functionality

Type-1 indexes have been discontinued
Type-1 indexes are no longer supported. You must convert type-1 indexes to type-2
indexes.

Chapter 15. What’s New 75

Details

All indexes that you created by using DB2 releases earlier than Version 8 are type-1
indexes, unless you converted them to type-2 indexes in Version 8 or later via the
REORG INDEXES command with the CONVERT option. All indexes that you
created by using Version 8.2, Version 9.1, or Version 9.5 are type-2 indexes, unless
they were created in an instance with the DB2_INDEX_TYPE2 registry variable set
to NO, or unless you created an index on a table that already had a type-1 index.
In Version 9.7, all indexes that you create are type-2 indexes.

If you do not convert your type-1 indexes before upgrading a database, these
indexes are marked as invalid during the upgrade. If you set the indexrec
configuration parameter to RESTART, the indexes are rebuilt as type-2 indexes
when you restart the database. Otherwise, the rebuild occurs when you first access
a table, and you might experience an unexpected degradation in response time.
The table is inaccessible until the index rebuild is completed.

Also, the following related functionality is deprecated and might be removed in a
future release:
v The CONVERT option of the REORG INDEXES command
v The DB2LOADQUERY_TYPE1_INDEXES parameter of the

db2LoadQueryOutputStruct data structure and of the
db2LoadQueryOutputStruct64 data structure of the db2LoadQuery API

v The DB2REORG_CONVERT parameter of the db2ReorgStruct data structure of
the db2Reorg API

User response

Before upgrading to DB2 Version 9.7, convert type-1 indexes to type-2 indexes.
Ensure that you allocate enough time to convert all the indexes prior to upgrading.

You can convert type-1 indexes to type-2 indexes by using the CONVERT option
of the REORG INDEXES command or by using the output of the db2IdentifyType1
command. The db2IdentifyType1 command identifies and generates the
appropriate statements that you can use later to convert any type-1 indexes found
in tables or schemas for a specified database. For more information, see the
“Converting type-1 indexes to type-2 indexes” topic.

76 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 16. Authentications, authorizations, privileges, and
authorities

Security
To protect data and resources associated with a database server, the DB2 database
manager uses a combination of external security services and internal access
control information. To access a database server, you must pass some security
checks before you are given access to database data or resources. The first step in
database security is called authentication, where you must prove that you are who
you say you are. The second step is called authorization, where the database
manager decides if the validated user is allowed to perform the requested action,
or access the requested data.

Authentication
Authentication of a user is completed using a security facility outside of the DB2
database system. The security facility can be part of the operating system or a
separate product.

The security facility requires two items to authenticate a user: a user ID and a
password. The user ID identifies the user to the security facility. By supplying the
correct password, information known only to the user and the security facility, the
user’s identity (corresponding to the user ID) is verified.

Note: In non-root installations, operating system-based authentication must be
enabled by running the db2rfe command.

After being authenticated:
v The user must be identified to DB2 using an SQL authorization name or authid.

This name can be the same as the user ID, or a mapped value. For example, on
UNIX operating systems, when you are using the default security plug-in
module, a DB2 authid is derived by transforming to uppercase letters a UNIX
user ID that follows DB2 naming conventions.

v A list of groups to which the user belongs is obtained. Group membership may
be used when authorizing the user. Groups are security facility entities that must
also map to DB2 authorization names. This mapping is done in a method similar
to that used for user IDs.

The DB2 database manager uses the security facility to authenticate users in one of
two ways:
v A successful security system login is used as evidence of identity, and allows:

– Use of local commands to access local data
– Use of remote connections when the server trusts the client authentication.

v Successful validation of a user ID and password by the security facility is used
as evidence of identity and allows:
– Use of remote connections where the server requires proof of authentication
– Use of operations where the user wants to run a command under an identity

other than the identity used for login.

© Copyright IBM Corp. 1993, 2009 77

Note: On some UNIX systems, the DB2 database manager can log failed password
attempts with the operating system, and detect when a client has exceeded the
number of allowable login tries, as specified by the LOGINRETRIES parameter.

Partitioned database authentication considerations
In a partitioned database, each partition of the database must have the same set of
users and groups defined. If the definitions are not the same, the user may be
authorized to do different things on different partitions.

Consistency across all partitions is recommended.

Authorization
Authorization is performed using DB2 facilities. DB2 tables and configuration files
are used to record the permissions associated with each authorization name.

When an authenticated user tries to access data, these recorded permissions are
compared with the permissions of:
v The authorization name of the user
v The groups to which the user belongs
v The roles granted to the user directly or indirectly through a group or a role
v The permissions acquired through a trusted context

Based on this comparison, the DB2 server determines whether to allow the
requested access.

The types of permissions recorded are privileges, authority levels, and LBAC
credentials.

A privilege defines a single permission for an authorization name, enabling a user
to create or access database resources. Privileges are stored in the database
catalogs.

Authority levels provide a method of grouping privileges and control over database
manager operations. Database-specific authorities are stored in the database
catalogs; system authorities are associated with group membership, and the group
names that are associated with the authority levels are stored in the database
manager configuration file for a given instance.

LBAC credentials are LBAC security labels and LBAC rule exemptions that allow
access to data protected by label-based access control (LBAC). LBAC credentials
are stored in the database catalogs.

Groups provide a convenient means of performing authorization for a collection of
users without having to grant or revoke privileges for each user individually.
Unless otherwise specified, group authorization names can be used anywhere that
authorization names are used for authorization purposes. In general, group
membership is considered for dynamic SQL and non-database object authorizations
(such as instance level commands and utilities), but is not considered for static
SQL. The exception to this general case occurs when privileges are granted to
PUBLIC: these are considered when static SQL is processed. Specific cases where
group membership does not apply are noted throughout the DB2 documentation,
where applicable.

78 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

A role is a database object that groups together one or more privileges and can be
assigned to users, groups, PUBLIC, or other roles by using a GRANT statement or
to a trusted context by using a CREATE TRUSTED CONTEXT or ALTER
TRUSTED CONTEXT statement. A role can be specified for the SESSION_USER
ROLE connection attribute in a workload definition. When you use roles, you
associate access permissions on database objects with the roles. Users that are
members of those roles then have the privileges defined for the role with which to
access database objects.

Roles provide similar functionality as groups; they perform authorization for a
collection of users without having to grant or revoke privileges for each user
individually. One advantage of roles is that they are managed by the DB2 database
system. The permissions granted to roles are taken into consideration during the
authorization process for views, triggers, materialized query tables (MQTs),
packages and SQL routines, unlike the permissions granted to groups. Permissions
granted to groups are not considered during the authorization process for views,
triggers, MQTs, packages and SQL routines, because the DB2 database system
cannot discover when membership in a group changes, and so it cannot invalidate
the objects, above, if appropriate.

Note: Permissions granted to roles that are granted to groups are not considered
during the authorization process for views, triggers, MQTs, packages and SQL
routines.

During an SQL statement processing, the permissions that the DB2 authorization
model considers are the union of the following permissions:
1. The permissions granted to the primary authorization ID associated with the

SQL statement
2. The permissions granted to the secondary authorization IDs (groups or roles)

associated with the SQL statement
3. The permissions granted to PUBLIC, including roles that are granted to

PUBLIC, directly or indirectly through other roles.
4. The permissions granted to the trusted context role, if applicable.

Authorization IDs in different contexts
An authorization ID is used for two purposes: identification and authorization
checking. For example, the session authorization ID is used for initial authorization
checking.

When referring to the use of an authorization ID in a specific context, the reference
to the authorization is qualified to identify the context, as shown below.

Contextual reference to authorization ID
Definition

System authorization ID
The authorization ID used to do any initial authorization checking, such as
checking for CONNECT privilege during CONNECT processing. As part
of the authentication process during CONNECT processing, an
authorization ID compatible with DB2 naming requirements is produced
that represents the external user ID within the DB2 database system. The
system authorization ID represents the user that created the connection.
Use the SYSTEM_USER special register to see the current value of the
system authorization ID. The system authorization ID cannot be changed
for a connection.

Chapter 16. Authentications, authorizations, privileges, and authorities 79

Session authorization ID
The authorization ID used for any session authorization checking
subsequent to the initial checks performed during CONNECT processing.
The default value of the session authorization ID is the value of the system
authorization ID. Use the SESSION_USER special register to see the current
value of the session authorization ID. The USER special register is a
synonym for the SESSION_USER special register. The session authorization
ID can be changed by using the SET SESSION AUTHORIZATION
statement.

Package authorization ID
The authorization ID used to bind a package to the database. This
authorization ID is obtained from the value of the OWNER authorization id
option of the BIND command. The package authorization ID is sometimes
referred to as the package binder or package owner.

Routine owner authorization ID
The authorization ID listed in the system catalogs as the owner of the SQL
routine that has been invoked.

Routine invoker authorization ID
The authorization ID that is the statement authorization ID for the
statement that invoked an SQL routine.

Statement authorization ID
The authorization ID associated with a specific SQL statement that is to be
used for any authorization requirements as well as for determining object
ownership (where appropriate). It takes its value from the appropriate
source authorization ID, depending on the type of SQL statement:
v Static SQL

The package authorization ID is used.
v Dynamic SQL (from non-routine context)

The table shows which authorization ID is used in each case:

Value of DYNAMICRULES option for
issuing the package Authorization ID used

RUN Session authorization ID

BIND Package authorization ID

DEFINERUN, INVOKERUN Session authorization ID

DEFINEBIND, INVOKEBIND Package authorization ID

v Dynamic SQL (from routine context)
The table shows which authorization ID is used in each case:

Value of DYNAMICRULES option for
issuing the package Authorization ID used

DEFINERUN, DEFINEBIND Routine owner authorization ID

INVOKERUN, INVOKEBIND Routine invoker authorization ID

Use the CURRENT_USER special register to see the current value of the
statement authorization ID. The statement authorization ID cannot be
changed directly; it is changed automatically by the DB2 database system
to reflect the nature of each SQL statement.

80 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Authorization, privileges, and object ownership
Users (identified by an authorization ID) can successfully execute operations only
if they have the authority to perform the specified function. To create a table, a
user must be authorized to create tables; to alter a table, a user must be authorized
to alter the table; and so forth.

The database manager requires that each user be specifically authorized to use
each database function needed to perform a specific task. A user can acquire the
necessary authorization through a grant of that authorization to their user ID or
through membership in a role or a group that holds that authorization.

There are three forms of authorization, administrative authority, privileges, and LBAC
credentials. In addition, ownership of objects brings with it a degree of
authorization on the objects created. These forms of authorization are discussed
below.

Administrative authority

The person or persons holding administrative authority are charged with the task
of controlling the database manager and are responsible for the safety and integrity
of the data.

System-level authorization

The system-level authorities provide varying degrees of control over instance-level
functions:
v SYSADM (system administrator) authority

The SYSADM (system administrator) authority provides control over all the
resources created and maintained by the database manager. The system
administrator possesses all the authorities of SYSCTRL, SYSMAINT, and
SYSMON authority. The user who has SYSADM authority is responsible both for
controlling the database manager, and for ensuring the safety and integrity of
the data.

v SYSCTRL authority
The SYSCTRL authority provides control over operations that affect system
resources. For example, a user with SYSCTRL authority can create, update, start,
stop, or drop a database. This user can also start or stop an instance, but cannot
access table data. Users with SYSCTRL authority also have SYSMON authority.

v SYSMAINT authority
The SYSMAINT authority provides the authority required to perform
maintenance operations on all databases associated with an instance. A user with
SYSMAINT authority can update the database configuration, backup a database
or table space, restore an existing database, and monitor a database. Like
SYSCTRL, SYSMAINT does not provide access to table data. Users with
SYSMAINT authority also have SYSMON authority.

v SYSMON (system monitor) authority
The SYSMON (system monitor) authority provides the authority required to use
the database system monitor.

Database-level authorization

The database level authorities provide control within the database:
v DBADM (database administrator)

Chapter 16. Authentications, authorizations, privileges, and authorities 81

The DBADM authority level provides administrative authority over a single
database. This database administrator possesses the privileges required to create
objects and issue database commands.
The DBADM authority can only be granted by a user with SECADM authority.
The DBADM authority cannot be granted to PUBLIC.

v SECADM (security administrator)
The SECADM authority level provides administrative authority for security over
a single database. The security administrator authority possesses the ability to
manage database security objects (database roles, audit policies, trusted contexts,
security label components, and security labels) and grant and revoke all
database privileges and authorities. A user with SECADM authority can transfer
the ownership of objects that they do not own. They can also use the AUDIT
statement to associate an audit policy with a particular database or database
object at the server.
The SECADM authority has no inherent privilege to access data stored in tables.
It can only be granted by a user with SECADM authority. The SECADM
authority cannot be granted to PUBLIC.

v SQLADM (SQL administrator)
The SQLADM authority level provides administrative authority to monitor and
tune SQL statements within a single database. It can be granted by a user with
ACCESSCTRL or SECADM authority.

v WLMADM (workload management administrator)
The WLMADM authority provides administrative authority to manage workload
management objects, such as service classes, work action sets, work class sets,
and workloads. It can be granted by a user with ACCESSCTRL or SECADM
authority.

v EXPLAIN (explain authority)
The EXPLAIN authority level provides administrative authority to explain query
plans without gaining access to data. It can only be granted by a user with
ACCESSCTRL or SECADM authority.

v ACCESSCTRL (access control authority)
The ACCESSCTRL authority level provides administrative authority to issue the
following GRANT (and REVOKE) statements. ACCESSCTRL authority can only
be granted by a user with SECADM authority. The ACCESSCTRL authority
cannot be granted to PUBLIC.
– GRANT (Database Authorities)

ACCESSCTRL authority does not give the holder the ability to grant
ACCESSCTRL, DATAACCESS, DBADM, or SECADM authority. Only a user
who has SECADM authority can grant these authorities.

– GRANT (Global Variable Privileges)
– GRANT (Index Privileges)
– GRANT (Module Privileges)
– GRANT (Package Privileges)
– GRANT (Routine Privileges)
– GRANT (Schema Privileges)
– GRANT (Sequence Privileges)
– GRANT (Server Privileges)
– GRANT (Table, View, or Nickname Privileges)
– GRANT (Table Space Privileges)
– GRANT (Workload Privileges)

82 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

– GRANT (XSR Object Privileges)
v DATAACCESS (data access authority)

The DATAACCESS authority level provides the following privileges and
authorities. It can be granted only by a user who holds SECADM authority. The
DATAACCESS authority cannot be granted to PUBLIC.
– LOAD authority
– SELECT, INSERT, UPDATE, DELETE privilege on tables, views, nicknames,

and materialized query tables
– EXECUTE privilege on packages
– EXECUTE privilege on modules
– EXECUTE privilege on routines

Except on the audit routines: AUDIT_ARCHIVE, AUDIT_LIST_LOGS,
AUDIT_DELIM_EXTRACT.

v Database authorities (non-administrative)
To perform activities such as creating a table or a routine, or for loading data
into a table, specific database authorities are required. For example, the LOAD
database authority is required for use of the load utility to load data into tables
(a user must also have INSERT privilege on the table).

Privileges

A privilege is a permission to perform an action or a task. Authorized users can
create objects, have access to objects they own, and can pass on privileges on their
own objects to other users by using the GRANT statement.

Privileges may be granted to individual users, to groups, or to PUBLIC. PUBLIC is
a special group that consists of all users, including future users. Users that are
members of a group will indirectly take advantage of the privileges granted to the
group, where groups are supported.

The CONTROL privilege: Possessing the CONTROL privilege on an object allows a
user to access that database object, and to grant and revoke privileges to or from
other users on that object.

Note: The CONTROL privilege only apples to tables, views, nicknames, indexes,
and packages.

If a different user requires the CONTROL privilege to that object, a user with
SECADM or ACCESSCTRL authority could grant the CONTROL privilege to that
object. The CONTROL privilege cannot be revoked from the object owner,
however, the object owner can be changed by using the TRANSFER OWNERSHIP
statement.

Individual privileges: Individual privileges can be granted to allow a user to carry
out specific tasks on specific objects. Users with the administrative authorities
ACCESSCTRL or SECADM, or with the CONTROL privilege, can grant and revoke
privileges to and from users.

Individual privileges and database authorities allow a specific function, but do not
include the right to grant the same privileges or authorities to other users. The
right to grant table, view, schema, package, routine, and sequence privileges to
others can be extended to other users through the WITH GRANT OPTION on the
GRANT statement. However, the WITH GRANT OPTION does not allow the

Chapter 16. Authentications, authorizations, privileges, and authorities 83

person granting the privilege to revoke the privilege once granted. You must have
SECADM authority, ACCESSCTRL authority, or the CONTROL privilege to revoke
the privilege.

Privileges on objects in a package or routine: When a user has the privilege to execute
a package or routine, they do not necessarily require specific privileges on the
objects used in the package or routine. If the package or routine contains static
SQL or XQuery statements, the privileges of the owner of the package are used for
those statements. If the package or routine contains dynamic SQL or XQuery
statements, the authorization ID used for privilege checking depends on the setting
of the DYNAMICRULES BIND option of the package issuing the dynamic query
statements, and whether those statements are issued when the package is being
used in the context of a routine.

A user or group can be authorized for any combination of individual privileges or
authorities. When a privilege is associated with an object, that object must exist.
For example, a user cannot be given the SELECT privilege on a table unless that
table has previously been created.

Note: Care must be taken when an authorization name representing a user or
group is granted authorities and privileges in the following situation:
v A user or group with that name has not been created
v A user or group with that name has been deleted

At some later time, a user or group can be created with that name and
automatically receive all of the authorities and privileges associated with that
authorization name. For a user or group that is deleted, authorities and privileges
to the authorization name representing the user or group should be revoked.

The REVOKE statement is used to revoke previously granted privileges. The
revoking of a privilege from an authorization name revokes the privilege granted
by all authorization names.

Revoking a privilege from an authorization name does not revoke that same
privilege from any other authorization names that were granted the privilege by
that authorization name. For example, assume that CLAIRE grants SELECT WITH
GRANT OPTION to RICK, then RICK grants SELECT to BOBBY and CHRIS. If
CLAIRE revokes the SELECT privilege from RICK, BOBBY and CHRIS still retain
the SELECT privilege.

LBAC credentials

Label-based access control (LBAC) lets the security administrator decide exactly
who has write access and who has read access to individual rows and individual
columns. The security administrator configures the LBAC system by creating
security policies. A security policy describes the criteria used to decide who has
access to what data. Only one security policy can be used to protect any one table
but different tables can be protected by different security policies.

After creating a security policy, the security administrator creates database objects,
called security labels and exemptions that are part of that policy. A security label
describes a certain set of security criteria. An exemption allows a rule for
comparing security labels not to be enforced for the user who holds the exemption,
when they access data protected by that security policy.

84 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Once created, a security label can be associated with individual columns and rows
in a table to protect the data held there. Data that is protected by a security label is
called protected data. A security administrator allows users access to protected
data by granting them security labels. When a user tries to access protected data,
that user’s security label is compared to the security label protecting the data. The
protecting label blocks some security labels and does not block others.

Object ownership

When an object is created, one authorization ID is assigned ownership of the object.
Ownership means the user is authorized to reference the object in any applicable
SQL or XQuery statement.

When an object is created within a schema, the authorization ID of the statement
must have the required privilege to create objects in the implicitly or explicitly
specified schema. That is, the authorization name must either be the owner of the
schema, or possess the CREATEIN privilege on the schema.

Note: This requirement is not applicable when creating table spaces, buffer pools
or database partition groups. These objects are not created in schemas.

When an object is created, the authorization ID of the statement is the definer of
that object and by default becomes the owner of the object after it is created.

Note: One exception exists. If the AUTHORIZATION option is specified for the
CREATE SCHEMA statement, any other object that is created as part of the
CREATE SCHEMA operation is owned by the authorization ID specified by the
AUTHORIZATION option. Any objects that are created in the schema after the
initial CREATE SCHEMA operation, however, are owned by the authorization ID
associated with the specific CREATE statement.

For example, the statement CREATE SCHEMA SCOTTSTUFF AUTHORIZATION SCOTT
CREATE TABLE T1 (C1 INT) creates the schema SCOTTSTUFF and the table
SCOTTSTUFF.T1, which are both owned by SCOTT. Assume that the user BOBBY is
granted the CREATEIN privilege on the SCOTTSTUFF schema and creates an index
on the SCOTTSTUFF.T1 table. Because the index is created after the schema, BOBBY
owns the index on SCOTTSTUFF.T1.

Privileges are assigned to the object owner based on the type of object being
created:
v The CONTROL privilege is implicitly granted on newly created tables, indexes,

and packages. This privilege allows the object creator to access the database
object, and to grant and revoke privileges to or from other users on that object.
If a different user requires the CONTROL privilege to that object, a user with
ACCESSCTRL or SECADM authority must grant the CONTROL privilege to that
object. The CONTROL privilege cannot be revoked by the object owner.

v The CONTROL privilege is implicitly granted on newly created views if the
object owner has the CONTROL privilege on all the tables, views, and
nicknames referenced by the view definition.

v Other objects like triggers, routines, sequences, table spaces, and buffer pools do
not have a CONTROL privilege associated with them. The object owner does,
however, automatically receive each of the privileges associated with the object
and those privileges are with the WITH GRANT OPTION, where supported.
Therefore the object owner can provide these privileges to other users by using
the GRANT statement. For example, if USER1 creates a table space, USER1

Chapter 16. Authentications, authorizations, privileges, and authorities 85

automatically has the USEAUTH privilege with the WITH GRANT OPTION on
this table space and can grant the USEAUTH privilege to other users. In
addition, the object owner can alter, add a comment on, or drop the object.
These authorizations are implicit for the object owner and cannot be revoked.

Certain privileges on the object, such as altering a table, can be granted by the
owner, and can be revoked from the owner by a user who has ACCESSCTRL or
SECADM authority. Certain privileges on the object, such as commenting on a
table, cannot be granted by the owner and cannot be revoked from the owner. Use
the TRANSFER OWNERSHIP statement to move these privileges to another user.
When an object is created, the authorization ID of the statement is the definer of
that object and by default becomes the owner of the object after it is created.
However, when you use the BIND command to create a package and you specify
the OWNER authorization id option, the owner of objects created by the static SQL
statements in the package is the value of authorization id. In addition, if the
AUTHORIZATION clause is specified on a CREATE SCHEMA statement, the
authorization name specified after the AUTHORIZATION keyword is the owner of
the schema.

A security administrator or the object owner can use the TRANSFER OWNERSHIP
statement to change the ownership of a database object. An administrator can
therefore create an object on behalf of an authorization ID, by creating the object
using the authorization ID as the qualifier, and then using the TRANSFER
OWNERSHIP statement to transfer the ownership that the administrator has on the
object to the authorization ID.

Object creation, ownership, and privileges
When an object is created, one authorization name is assigned ownership of the
object. Ownership means that the user is authorized to reference the object in any
SQL or XQuery statement.

When an object is created within a schema, the authorization ID of the statement
must have the required privilege to create objects in the implicitly or explicitly
specified schema. That is, the authorization name must either be the owner of the
schema, or possess the CREATEIN privilege on the schema.

Note: This requirement is not applicable when creating table spaces, buffer pools
or database partition groups. These objects are not created in schemas.

When an object is created, the authorization ID of the statement is the owner of
that object.

Note: One exception exists. If the AUTHORIZATION option is specified for the
CREATE SCHEMA statement, any other object that is created as part of the
CREATE SCHEMA operation is owned by the authorization ID specified by the
AUTHORIZATION option. Any objects that are created in the schema after the
initial CREATE SCHEMA operation, however, are owned by the authorization ID
associated with the specific CREATE statement.

For example, the statement
CREATE SCHEMA SCOTTSTUFF AUTHORIZATION SCOTT CREATE TABLE T1 (C! INT)

creates the schema SCOTTSTUFF and the table SCOTTSTUFF.T1, which are both owned
by SCOTT. Assume that the user BOBBY is granted the CREATEIN privilege on the

86 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

SCOTTSTUFF schema and creates an index on the SCOTTSTUFF.T1 table. Because the
index is created after the schema, BOBBY owns the index on SCOTTSTUFF.T1.

Privileges are assigned to the object owner based on the type of object being
created:
v The CONTROL privilege is implicitly granted on newly created tables, indexes,

and packages. This privilege allows the object creator to access the database
object, and to grant and revoke privileges to or from other users on that object.
If a different user requires the CONTROL privilege to that object, a user with
SYSADM or DBADM authority must grant the CONTROL privilege to that
object. The CONTROL privilege cannot be revoked by the object owner.

v The CONTROL privilege is implicitly granted on newly created views if the
object owner has the CONTROL privilege on all the tables, views, and
nicknames referenced by the view definition.

v Other objects like triggers, routines, sequences, table spaces, and buffer pools do
not have a CONTROL privilege associated with them. The object owner does,
however, automatically receive each of the privileges associated with the object
(and can provide these privileges to other users, where supported, by using the
WITH GRANT option of the GRANT statement). In addition, the object owner
can alter, add a comment on, or drop the object. These authorizations are
implicit for the object owner and cannot be revoked.

Schemas
A schema is a collection of named objects; it provides a way to group those objects
logically. A schema is also a name qualifier; it provides a way to use the same
natural name for several objects, and to prevent ambiguous references to those
objects.

For example, the schema names ’INTERNAL’ and ’EXTERNAL’ make it easy to
distinguish two different SALES tables (INTERNAL.SALES, EXTERNAL.SALES).

Schemas also enable multiple applications to store data in a single database
without encountering namespace collisions.

A schema is distinct from, and should not be confused with, an XML schema,
which is a standard that describes the structure and validates the content of XML
documents.

A schema can contain tables, views, nicknames, triggers, functions, packages, and
other objects. A schema is itself a database object. It is explicitly created using the
CREATE SCHEMA statement, with the current user or a specified authorization ID
recorded as the schema owner. It can also be implicitly created when another
object is created, if the user has IMPLICIT_SCHEMA authority.

A schema name is used as the high order part of a two-part object name. If the
object is specifically qualified with a schema name when created, the object is
assigned to that schema. If no schema name is specified when the object is created,
the default schema name is used (specified in the CURRENT SCHEMA special
register).

For example, a user with DBADM authority creates a schema called C for user A:
CREATE SCHEMA C AUTHORIZATION A

Chapter 16. Authentications, authorizations, privileges, and authorities 87

User A can then issue the following statement to create a table called X in schema
C (provided that user A has the CREATETAB database authority):

CREATE TABLE C.X (COL1 INT)

Some schema names are reserved. For example, built-in functions belong to the
SYSIBM schema, and the pre-installed user-defined functions belong to the
SYSFUN schema.

When a database is created, if it is not created with the RESTRICTIVE option, all
users have IMPLICIT_SCHEMA authority. With this authority, users implicitly
create a schema whenever they create an object with a schema name that does not
already exist. When schemas are implicitly created, CREATEIN privileges are
granted which allows any user to create other objects in this schema. The ability to
create objects such as aliases, distinct types, functions, and triggers is extended to
implicitly-created schemas. The default privileges on an implicitly-created schema
provide backward compatibility with previous versions.

If IMPLICIT_SCHEMA authority is revoked from PUBLIC, schemas can be
explicitly created using the CREATE SCHEMA statement, or implicitly created by
users (such as those with DBADM authority) who have been granted
IMPLICIT_SCHEMA authority. Although revoking IMPLICIT_SCHEMA authority
from PUBLIC increases control over the use of schema names, it can result in
authorization errors when existing applications attempt to create objects.

Schemas also have privileges, allowing the schema owner to control which users
have the privilege to create, alter, copy, and drop objects in the schema. This
provides a way to control the manipulation of a subset of objects in the database.
A schema owner is initially given all of these privileges on the schema, with the
ability to grant the privileges to others. An implicitly-created schema is owned by
the system, and all users are initially given the privilege to create objects in such a
schema. A user with ACCESSCTRL or SECADM authority can change the
privileges that are held by users on any schema. Therefore, access to create, alter,
copy, and drop objects in any schema (even one that was implicitly created) can be
controlled.

Details on privileges, authorities, and authorization
Each authority is discussed in this section followed by the different privileges.

Default privileges granted on creating a database
When you create a database, default database level authorities and default object
level privileges are granted to you within that database.

The authorities and privileges that you are granted are listed according to the
system catalog views where they are recorded:
1. SYSCAT.DBAUTH
v The database creator is granted the following authorities:

– ACCESSCTRL
– DATAACCESS
– DBADM
– SECADM

v In a non-restrictive database, the special group PUBLIC is granted the
following authorities:

88 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

– CREATETAB
– BINDADD
– CONNECT
– IMPLICIT_SCHEMA

2. SYSCAT.TABAUTH
In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
v SELECT on all SYSCAT and SYSIBM tables
v SELECT and UPDATE on all SYSSTAT tables
v SELECT on the following views in schema SYSIBMADM:

– ALL_*
– USER_*
– ROLE_*
– SESSION_*
– DICTIONARY
– TAB

3. SYSCAT.ROUTINEAUTH
In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
v EXECUTE with GRANT on all procedures in schema SQLJ
v EXECUTE with GRANT on all functions and procedures in schema SYSFUN
v EXECUTE with GRANT on all functions and procedures in schema

SYSPROC (except audit routines)
v EXECUTE on all table functions in schema SYSIBM
v EXECUTE on all other procedures in schema SYSIBM
v EXECUTE on the following modules in schema SYSIBMADM:

– DBMS_JOB
– DBMS_LOB
– DBMS_OUTPUT
– DBMS_SQL
– DBMS_UTILITY

4. SYSCAT.PACKAGEAUTH
v The database creator is granted the following privileges:

– CONTROL on all packages created in the NULLID schema
– BIND with GRANT on all packages created in the NULLID schema
– EXECUTE with GRANT on all packages created in the NULLID schema

v In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
– BIND on all packages created in the NULLID schema
– EXECUTE on all packages created in the NULLID schema

5. SYSCAT.SCHEMAAUTH
In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
v CREATEIN on schema SQLJ
v CREATEIN on schema NULLID

6. SYSCAT.TBSPACEAUTH

Chapter 16. Authentications, authorizations, privileges, and authorities 89

In a non-restrictive database, the special group PUBLIC is granted the USE
privilege on table space USERSPACE1.

7. SYSCAT.WORKLOADAUTH
In a non-restrictive database, the special group PUBLIC is granted the USAGE
privilege on SYSDEFAULTUSERWORKLOAD.

A non-restrictive database is a database created without the RESTRICTIVE option
on the CREATE DATABASE command.

System administration authority (SYSADM)
The SYSADM authority level is the highest level of administrative authority at the
instance level. Users with SYSADM authority can run some utilities and issue
some database and database manager commands within the instance.

SYSADM authority is assigned to the group specified by the sysadm_group
configuration parameter. Membership in that group is controlled outside the
database manager through the security facility used on your platform.

Only a user with SYSADM authority can perform the following functions:
v Upgrade a database
v Restore a database
v Change the database manager configuration file (including specifying the groups

having SYSADM, SYSCTRL, SYSMAINT, or SYSMON authority)

A user with SYSADM authority can grant and revoke table space privileges and
can also use any table space.

Note: When a user with SYSADM authority creates a database, that user is
automatically granted ACCESSCTRL, DATAACCESS, DBADM and SECADM
authority on the database. If you want to prevent that user from accessing that
database as a database administrator or a security administrator, you must
explicitly revoke these database authorities from the user.

In releases prior to Version 9.7, SYSADM authority included implicit DBADM
authority and also provided the ability to grant and revoke all authorities and
privileges. In Version 9.7, the DB2 authorization model has been updated to clearly
separate the duties of the system administrator, the database administrator, and the
security administrator. As part of this enhancement, the abilities given by the
SYSADM authority have been reduced.

In Version 9.7, only SECADM authority provides the ability to grant and revoke all
authorities and privileges.

For a user holding SYSADM authority to obtain the same capabilities as in Version
9.5 (other than the ability to grant SECADM authority), the security administrator
must explicitly grant the user DBADM authority and grant the user the new
DATAACCESS and ACCESSCTRL authorities. These new authorities can be
granted by using the GRANT DBADM ON DATABASE statement with the WITH
DATAACCESS and WITH ACCESSCTRL options of that statement, which are
default options. The DATAACCESS authority is the authority that allows access to
data within a specific database, and the ACCESSCTRL authority is the authority
that allows a user to grant and revoke privileges and non-administrative
authorities within a specific database.

90 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Considerations for the Windows LocalSystem account

On Windows systems, when the sysadm_group database manager configuration
parameter is not specified, the LocalSystem account is considered a system
administrator (holding SYSADM authority). Any DB2 application that is run by
LocalSystem is affected by the change in scope of SYSADM authority in Version
9.7. These applications are typically written in the form of Windows services and
run under the LocalSystem account as the service logon account. If there is a need
for these applications to perform database actions that are no longer within the
scope of SYSADM, you must grant the LocalSystem account the required database
privileges or authorities. For example, if an application requires database
administrator capabilities, grant the LocalSystem account DBADM authority using
the GRANT (Database Authorities) statement. Note that the authorization ID for
the LocalSystem account is SYSTEM.

System control authority (SYSCTRL)
SYSCTRL authority is the highest level of system control authority. This authority
provides the ability to perform maintenance and utility operations against the
database manager instance and its databases. These operations can affect system
resources, but they do not allow direct access to data in the databases.

System control authority is designed for users administering a database manager
instance containing sensitive data.

SYSCTRL authority is assigned to the group specified by the sysctrl_group
configuration parameter. If a group is specified, membership in that group is
controlled outside the database manager through the security facility used on your
platform.

Only a user with SYSCTRL authority or higher can do the following:
v Update a database, node, or distributed connection services (DCS) directory
v Force users off the system
v Create or drop a database
v Drop, create, or alter a table space
v Use any table space
v Restore to a new or an existing database.

In addition, a user with SYSCTRL authority can perform the functions of users
with system maintenance authority (SYSMAINT) and system monitor authority
(SYSMON).

Users with SYSCTRL authority also have the implicit privilege to connect to a
database.

Note: When users with SYSCTRL authority create databases, they are
automatically granted explicit ACCESSCTRL, DATAACCESS, DBADM, and
SECADM authorities on the database. If the database creator is removed from the
SYSCTRL group, and if you want to also prevent them from accessing that
database as an administrator, you must explicitly revoke the four administrative
authorities, above.

Chapter 16. Authentications, authorizations, privileges, and authorities 91

System maintenance authority (SYSMAINT)
SYSMAINT authority is the second level of system control authority. This authority
provides the ability to perform maintenance and utility operations against the
database manager instance and its databases. These operations can affect system
resources, but they do not allow direct access to data in the databases.

System maintenance authority is designed for users maintaining databases within a
database manager instance that contains sensitive data.

SYSMAINT authority is assigned to the group specified by the sysmaint_group
configuration parameter. If a group is specified, membership in that group is
controlled outside the database manager through the security facility used on your
platform.

Only a user with SYSMAINT or higher system authority can do the following:
v Back up a database or table space
v Restore to an existing database
v Perform roll forward recovery
v Start or stop an instance
v Restore a table space
v Run a trace, using the db2trc command
v Take database system monitor snapshots of a database manager instance or its

databases.

A user with SYSMAINT authority can do the following:
v Query the state of a table space
v Update log history files
v Quiesce a table space
v Reorganize a table
v Collect catalog statistics using the RUNSTATS utility.

Users with SYSMAINT authority also have the implicit privilege to connect to a
database, and can perform the functions of users with system monitor authority
(SYSMON).

System monitor authority (SYSMON)
SYSMON authority provides the ability to take database system monitor snapshots
of a database manager instance or its databases.

SYSMON authority is assigned to the group specified by the sysmon_group
configuration parameter. If a group is specified, membership in that group is
controlled outside the database manager through the security facility used on your
platform.

SYSMON authority enables the user to run the following commands:
v GET DATABASE MANAGER MONITOR SWITCHES
v GET MONITOR SWITCHES
v GET SNAPSHOT
v LIST (some commands):

– LIST ACTIVE DATABASES
– LIST APPLICATIONS
– LIST DATABASE PARTITION GROUPS

92 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

– LIST DCS APPLICATIONS
– LIST PACKAGES
– LIST TABLES
– LIST TABLESPACE CONTAINERS
– LIST TABLESPACES
– LIST UTILITIES

v RESET MONITOR
v UPDATE MONITOR SWITCHES

SYSMON authority enables the user to use the following APIs:
v db2GetSnapshot - Get Snapshot
v db2GetSnapshotSize - Estimate Size Required for db2GetSnapshot() Output

Buffer
v db2MonitorSwitches - Get/Update Monitor Switches
v db2mtrk - Memory tracker
v db2ResetMonitor - Reset Monitor

SYSMON authority enables the user use the following SQL table functions:
v All snapshot table functions without previously running

SYSPROC.SNAP_WRITE_FILE
SYSPROC.SNAP_WRITE_FILE takes a snapshot and saves its content into a file.
If any snapshot table functions are called with null input parameters, the file
content is returned instead of a real-time system snapshot.

Database authorities
Each database authority allows the authorization ID holding it to perform some
particular type of action on the database as a whole. Database authorities are
different from privileges, which allow a certain action to be taken on a particular
database object, such as a table or an index.

These are the database authorities.

ACCESSCTRL
Allows the holder to grant and revoke all object privileges and database
authorities except for privileges on the audit routines, and ACCESSCTRL,
DATAACCESS, DBADM, and SECADM authority.

BINDADD
Allows the holder to create new packages in the database.

CONNECT
Allows the holder to connect to the database.

CREATETAB
Allows the holder to create new tables in the database.

CREATE_EXTERNAL_ROUTINE
Allows the holder to create a procedure for use by applications and other
users of the database.

CREATE_NOT_FENCED_ROUTINE
Allows the holder to create a user-defined function (UDF) or procedure
that is not fenced. CREATE_EXTERNAL_ROUTINE is automatically granted
to any user who is granted CREATE_NOT_FENCED_ROUTINE.

Chapter 16. Authentications, authorizations, privileges, and authorities 93

Attention: The database manager does not protect its storage or control
blocks from UDFs or procedures that are not fenced. A user with this
authority must, therefore, be very careful to test their UDF extremely well
before registering it as not fenced.

DATAACCESS
Allows the holder to access data stored in database tables.

DBADM
Allows the holder to act as the database administrator. In particular it
gives the holder all of the other database authorities except for
ACCESSCTRL, DATAACCESS, and SECADM.

EXPLAIN
Allows the holder to explain query plans without requiring them to hold
the privileges to access data in the tables referenced by those query plans.

IMPLICIT_SCHEMA
Allows any user to create a schema implicitly by creating an object using a
CREATE statement with a schema name that does not already exist.
SYSIBM becomes the owner of the implicitly created schema and PUBLIC
is given the privilege to create objects in this schema.

LOAD
Allows the holder to load data into a table

QUIESCE_CONNECT
Allows the holder to access the database while it is quiesced.

SECADM
Allows the holder to act as a security administrator for the database.

SQLADM
Allows the holder to monitor and tune SQL statements.

WLMADM
Allows the holder to act as a workload administrator. In particular, the
holder of WLMADM authority can create and drop workload manager
objects, grant and revoke workload manager privileges, and execute
workload manager routines.

Only authorization IDs with the SECADM authority can grant the ACCESSCTRL,
DATAACCESS, DBADM, and SECADM authorities. All other authorities can be
granted by authorization IDs that hold ACCESSCTRL or SECADM authorities.

To remove any database authority from PUBLIC, an authorization ID with
ACCESSCTRL or SECADM authority must explicitly revoke it.

Security administration authority (SECADM)
SECADM authority is the security administration authority for a specific database.
This authority allows you to create and manage security-related database objects
and to grant and revoke all database authorities and privileges. Additionally, the
security administrator can execute, and manage who else can execute, the audit
system routines.

SECADM authority has the ability to SELECT from the catalog tables and catalog
views, but cannot access data stored in user tables.

94 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

SECADM authority can be granted only by the security administrator (who holds
SECADM authority) and can be granted to a user, a group, or a role. PUBLIC
cannot obtain the SECADM authority directly or indirectly.

SECADM authority gives a user the ability to perform the following operations:
v Create, alter, comment on, and drop:

– Audit policies
– Security label components
– Security policies
– Trusted contexts

v Create, comment on, and drop:
– Roles
– Security labels

v Grant and revoke database privileges and authorities
v Execute the following audit routines to perform the specified tasks:

– The SYSPROC.AUDIT_ARCHIVE stored procedure and table function archive
audit logs.

– The SYSPROC.AUDIT_LIST_LOGS table function allows you to locate logs of
interest.

– The SYSPROC.AUDIT_DELIM_EXTRACT stored procedure extracts data into
delimited files for analysis.

Also, the security administrator can grant and revoke EXECUTE privilege on
these routines, therefore enabling the security administrator to delegate these
tasks, if desired. Only the security administrator can grant EXECUTE privilege
on these routines. EXECUTE privilege WITH GRANT OPTION cannot be
granted for these routines (SQLSTATE 42501).

v Use of the AUDIT statement to associate an audit policy with a particular
database or database object at the server

v Use of the TRANSFER OWNERSHIP statement to transfer objects not owned by
the authorization ID of the statement

No other authority gives these abilities.

The instance owner does not have SECADM authority by default.

Only the security administrator has the ability to grant other users, groups, or roles
the ACCESSCTRL, DATAACCESS, DBADM, and SECADM authorities.

In Version 9.7, the DB2 authorization model has been updated to clearly separate
the duties of the system administrator, the database administrator, and the security
administrator. As part of this enhancement, the abilities given by the SECADM
authority have been extended. In releases prior to Version 9.7, SECADM authority
did not provide the ability to grant and revoke all privileges and authorities. Also,
SECADM authority could be granted only to a user, not to a role or a group.
Additionally, SECADM authority did not provide the ability to grant EXECUTE
privilege to other users on the audit system-defined procedures and table function.

Database administration authority (DBADM)
DBADM authority is an administrative authority for a specific database. The
database administrator possesses the privileges required to create objects and issue
database commands. In addition, users with DBADM authority have SELECT

Chapter 16. Authentications, authorizations, privileges, and authorities 95

privilege on the system catalog tables and views, and can execute all
system-defined DB2 routines, except audit routines.

DBADM authority can only be granted or revoked by the security administrator
(who holds SECADM authority) and can be granted to a user, a group, or a role.
PUBLIC cannot obtain the DBADM authority either directly or indirectly.

Holding the DBADM authority for a database allows a user to perform these
actions on that database:
v Create, alter, and drop non-security related database objects
v Read log files
v Create, activate, and drop event monitors
v Query the state of a table space
v Update log history files
v Quiesce a table space
v Reorganize a table
v Collect catalog statistics using the RUNSTATS utility

SQLADM authority and WLMADM authority are subsets of the DBADM authority.
WLMADM authority has the additional ability to grant the USAGE privilege on
workloads.

Granting DATAACCESS authority with DBADM authority

The security administrator can specify whether a database administrator can access
data within the database. DATAACCESS authority is the authority that allows
access to data within a specific database. The security administrator can use the
WITH DATAACCESS option of the GRANT DBADM ON DATABASE statement to
provide a database administrator with this ability. If neither the WITH
DATAACCCESS or WITHOUT DATAACCCESS options are specified, by default
DATAACCESS authority is granted.

To grant database administrator authority without DATAACCESS authority, use
GRANT DBADM WITHOUT DATAACCESS in your SQL statement.

Granting ACCESSCTRL authority with DBADM authority

The security administrator can specify whether a database administrator can grant
and revoke privileges within the database. ACCESSCTRL authority is the authority
that allows a user to grant and revoke privileges and non-administrative
authorities within a specific database. The security administrator can use the WITH
ACCESSCTRL option of the GRANT DBADM ON DATABASE statement to
provide a database administrator with this ability. If neither the WITH
ACCCESSCTRL or WITHOUT ACCCESSCTRL options are specified, by default
ACCESSCTRL authority is granted.

To grant database administrator authority without ACCESSCTRL authority, use
GRANT DBADM WITHOUT ACCESSCTRL in your SQL statement.

Revoking DBADM authority

If a security administrator has granted DBADM authority that includes
DATAACCESS or ACCESSCTRL authority, to revoke these authorities, the security

96 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

administrator must explicitly revoke DATAACCESS or ACCESSCTRL authority. For
example, if the security administrator grants DBADM authority to a user:
GRANT DBADM ON DATABASE TO user1

By default, DATAACCESS and ACCESSCTRL authority are also granted to user1.

Later, the security administrator revokes DBADM authority from user1:
REVOKE DBADM ON DATABASE FROM user1

Now user1 no longer holds DBADM authority, but still has both DATAACCESS
and ACCESSCTRL authority.

To revoke these remaining authorities, the security administrator needs to revoke
them explicitly:
REVOKE ACCESSCTRL, DATAACCESS ON DATABASE FROM user1

Differences for DBADM authority in prior releases

In Version 9.7, the DB2 authorization model has been updated to clearly separate
the duties of the system administrator, the database administrator, and the security
administrator. As part of this enhancement, the abilities given by the DBADM
authority have changed. In releases prior to Version 9.7, DBADM authority
automatically included the ability to access data and to grant and revoke privileges
for a database. In Version 9.7, these abilities are given by the new authorities,
DATAACCESS and ACCESSCTRL, respectively, as explained earlier.

Also, in releases prior to Version 9.7, granting DBADM authority automatically
granted the following authorities too:
v BINDADD
v CONNECT
v CREATETAB
v CREATE_EXTERNAL_ROUTINE
v CREATE_NOT_FENCED_ROUTINE
v IMPLICIT_SCHEMA
v QUIESCE_CONNECT
v LOAD

Prior to Version 9.7, when DBADM authority was revoked these authorities were
not revoked.

In Version 9.7, these authorities are now part of DBADM authority. When DBADM
authority is revoked in Version 9.7, these authorities are lost.

However, if a user held DBADM authority when you upgraded to Version 9.7,
these authorities are not lost if DBADM authority is revoked. Revoking DBADM
authority in Version 9.7 causes a user to lose these authorities only if they acquired
them through holding DBADM authority that was granted in Version 9.7.

LOAD authority
Users having LOAD authority at the database level, as well as INSERT privilege on
a table, can use the LOAD command to load data into a table.

Chapter 16. Authentications, authorizations, privileges, and authorities 97

Note: Having DATAACCESS authority gives a user full access to the LOAD
command.

Users having LOAD authority at the database level, as well as INSERT privilege on
a table, can LOAD RESTART or LOAD TERMINATE if the previous load operation
is a load to insert data.

Users having LOAD authority at the database level, as well as the INSERT and
DELETE privileges on a table, can use the LOAD REPLACE command.

If the previous load operation was a load replace, the DELETE privilege must also
have been granted to that user before the user can LOAD RESTART or LOAD
TERMINATE.

If the exception tables are used as part of a load operation, the user must have
INSERT privilege on the exception tables.

The user with this authority can perform QUIESCE TABLESPACES FOR TABLE,
RUNSTATS, and LIST TABLESPACES commands.

Implicit schema authority (IMPLICIT_SCHEMA) considerations
When a new database is created, PUBLIC is given IMPLICIT_SCHEMA database
authority, unless the RESTRICTIVE option is specified on the CREATE
DATABASE command.

With the IMPLICIT_SCHEMA authority, a user can create a schema by creating an
object and specifying a schema name that does not already exist. SYSIBM becomes
the owner of the implicitly created schema and PUBLIC is given the privilege to
create objects in this schema.

If control of who can implicitly create schema objects is required for the database,
IMPLICIT_SCHEMA database authority should be revoked from PUBLIC. Once
this is done, there are only three (3) ways that a schema object is created:
v Any user can create a schema using their own authorization name on a CREATE

SCHEMA statement.
v Any user with DBADM authority can explicitly create any schema which does

not already exist, and can optionally specify another user as the owner of the
schema.

v Any user with DBADM authority has IMPLICIT_SCHEMA database authority,
so that they can implicitly create a schema with any name at the time they are
creating other database objects. SYSIBM becomes the owner of the implicitly
created schema and PUBLIC has the privilege to create objects in the schema.

Schema privileges
Schema privileges are in the object privilege category.

Object privileges are shown in Figure 18 on page 99.

98 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Schema privileges involve actions on schemas in a database. A user, group, role, or
PUBLIC can be granted any of the following privileges:
v CREATEIN allows the user to create objects within the schema.
v ALTERIN allows the user to alter objects within the schema.
v DROPIN allows the user to drop objects from within the schema.

The owner of the schema has all of these privileges and the ability to grant them to
others. The objects that are manipulated within the schema object include: tables,
views, indexes, packages, data types, functions, triggers, procedures, and aliases.

Table space privileges
The table space privileges involve actions on the table spaces in a database. A user
can be granted the USE privilege for a table space, which then allows them to
create tables within the table space.

The owner of the table space is granted USE privilege with the WITH GRANT
OPTION on the table space when it is created. Also, users who hold SECADM or
ACCESSCTRL authority have the ability to grant USE privilege on the table space.

Database
objects

CONTROL
(Tables)

CONTROL
(Indexes)

DELETE
INSERT
SELECT
UPDATE

CONTROL
(Views)

(Table spaces)

USE

(Schema
Owners)

ALTERIN
CREATEIN
DROPIN

(Server)

PASSTHRU

(Sequences)

USAGE

ALTER

CONTROL
(Nicknames)

BIND
EXECUTE

EXECUTE

CONTROL
(Packages)

(Procedures,
functions, methods)

ALTER
DELETE
INDEX

INSERT
REFERENCES

SELECT
UPDATE

ALTER
DELETE
INDEX

INSERT
REFERENCES

SELECT
UPDATE

Figure 18. Object Privileges

Chapter 16. Authentications, authorizations, privileges, and authorities 99

Users who hold SYSADM or SYSCTRL authority are able to use any table space.

By default, at database creation time the USE privilege for table space
USERSPACE1 is granted to PUBLIC, although this privilege can be revoked.

The USE privilege cannot be used with SYSCATSPACE or any system temporary
table spaces.

Table and view privileges
Table and view privileges involve actions on tables or views in a database.

A user must have CONNECT authority on the database to use any of the
following privileges:
v CONTROL provides the user with all privileges for a table or view including the

ability to drop it, and to grant and revoke individual table privileges. You must
have ACCESSCTRL or SECADM authority to grant CONTROL. The creator of a
table automatically receives CONTROL privilege on the table. The creator of a
view automatically receives CONTROL privilege only if they have CONTROL
privilege on all tables, views, and nicknames referenced in the view definition.

v ALTER allows the user to modify on a table, for example, to add columns or a
unique constraint to the table. A user with ALTER privilege can also COMMENT
ON a table, or on columns of the table. For information about the possible
modifications that can be performed on a table, see the ALTER TABLE and
COMMENT statements.

v DELETE allows the user to delete rows from a table or view.
v INDEX allows the user to create an index on a table. Creators of indexes

automatically have CONTROL privilege on the index.
v INSERT allows the user to insert a row into a table or view, and to run the

IMPORT utility.
v REFERENCES allows the user to create and drop a foreign key, specifying the

table as the parent in a relationship. The user might have this privilege only on
specific columns.

v SELECT allows the user to retrieve rows from a table or view, to create a view
on a table, and to run the EXPORT utility.

v UPDATE allows the user to change an entry in a table, a view, or for one or
more specific columns in a table or view. The user may have this privilege only
on specific columns.

The privilege to grant these privileges to others may also be granted using the
WITH GRANT OPTION on the GRANT statement.

Note: When a user or group is granted CONTROL privilege on a table, all other
privileges on that table are automatically granted WITH GRANT OPTION. If you
subsequently revoke the CONTROL privilege on the table from a user, that user
will still retain the other privileges that were automatically granted. To revoke all
the privileges that are granted with the CONTROL privilege, you must either
explicitly revoke each individual privilege or specify the ALL keyword on the
REVOKE statement, for example:

REVOKE ALL
ON EMPLOYEE FROM USER HERON

When working with typed tables, there are implications regarding table and view
privileges.

100 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Note: Privileges may be granted independently at every level of a table hierarchy.
As a result, a user granted a privilege on a supertable within a hierarchy of typed
tables may also indirectly affect any subtables. However, a user can only operate
directly on a subtable if the necessary privilege is held on that subtable.

The supertable/subtable relationships among the tables in a table hierarchy mean
that operations such as SELECT, UPDATE, and DELETE will affect the rows of the
operation’s target table and all its subtables (if any). This behavior can be called
substitutability. For example, suppose that you have created an Employee table of
type Employee_t with a subtable Manager of type Manager_t. A manager is a
(specialized) kind of employee, as indicated by the type/subtype relationship
between the structured types Employee_t and Manager_t and the corresponding
table/subtable relationship between the tables Employee and Manager. As a result
of this relationship, the SQL query:

SELECT * FROM Employee

will return the object identifier and Employee_t attributes for both employees and
managers. Similarly, the update operation:

UPDATE Employee SET Salary = Salary + 1000

will give a thousand dollar raise to managers as well as regular employees.

A user with SELECT privilege on Employee will be able to perform this SELECT
operation even if they do not have an explicit SELECT privilege on Manager.
However, such a user will not be permitted to perform a SELECT operation
directly on the Manager subtable, and will therefore not be able to access any of
the non-inherited columns of the Manager table.

Similarly, a user with UPDATE privilege on Employee will be able to perform an
UPDATE operation on Manager, thereby affecting both regular employees and
managers, even without having the explicit UPDATE privilege on the Manager
table. However, such a user will not be permitted to perform UPDATE operations
directly on the Manager subtable, and will therefore not be able to update
non-inherited columns of the Manager table.

Package privileges
A package is a database object that contains the information needed by the
database manager to access data in the most efficient way for a particular
application program. Package privileges enable a user to create and manipulate
packages.

The user must have CONNECT authority on the database to use any of the
following privileges:
v CONTROL provides the user with the ability to rebind, drop, or execute a

package as well as the ability to extend those privileges to others. The creator of
a package automatically receives this privilege. A user with CONTROL privilege
is granted the BIND and EXECUTE privileges, and can also grant these
privileges to other users by using the GRANT statement. (If a privilege is
granted using WITH GRANT OPTION, a user who receives the BIND or
EXECUTE privilege can, in turn, grant this privilege to other users.) To grant
CONTROL privilege, the user must have ACCESSCTRL or SECADM authority.

v BIND privilege on a package allows the user to rebind or bind that package and
to add new package versions of the same package name and creator.

v EXECUTE allows the user to execute or run a package.

Chapter 16. Authentications, authorizations, privileges, and authorities 101

Note: All package privileges apply to all VERSIONs that share the same package
name and creator.

In addition to these package privileges, the BINDADD database authority allows
users to create new packages or rebind an existing package in the database.

Objects referenced by nicknames need to pass authentication checks at the data
sources containing the objects. In addition, package users must have the
appropriate privileges or authority levels for data source objects at the data source.

It is possible that packages containing nicknames might require additional
authorization steps because DB2 database uses dynamic queries when
communicating with DB2 Family data sources. The authorization ID running the
package at the data source must have the appropriate authority to execute the
package dynamically at that data source.

Index privileges
The creator of an index or an index specification automatically receives CONTROL
privilege on the index. CONTROL privilege on an index is really the ability to
drop the index. To grant CONTROL privilege on an index, a user must have
ACCESSCTRL or SECADM authority.

The table-level INDEX privilege allows a user to create an index on that table.

The nickname-level INDEX privilege allows a user to create an index specification
on that nickname.

Sequence privileges
The creator of a sequence automatically receives the USAGE and ALTER privileges
on the sequence. The USAGE privilege is needed to use NEXT VALUE and
PREVIOUS VALUE expressions for the sequence.

To allow other users to use the NEXT VALUE and PREVIOUS VALUE expressions,
sequence privileges must be granted to PUBLIC. This allows all users to use the
expressions with the specified sequence.

ALTER privilege on the sequence allows the user to perform tasks such as
restarting the sequence or changing the increment for future sequence values. The
creator of the sequence can grant the ALTER privilege to other users, and if WITH
GRANT OPTION is used, these users can, in turn, grant these privileges to other
users.

Routine privileges
Execute privileges involve actions on all types of routines such as functions,
procedures, and methods within a database. Once having EXECUTE privilege, a
user can then invoke that routine, create a function that is sourced from that
routine (applies to functions only), and reference the routine in any DDL statement
such as CREATE VIEW or CREATE TRIGGER.

The user who defines the externally stored procedure, function, or method receives
EXECUTE WITH GRANT privilege. If the EXECUTE privilege is granted to
another user via WITH GRANT OPTION, that user can, in turn, grant the
EXECUTE privilege to another user.

102 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Authorizations and binding of routines that contain SQL
When discussing routine level authorization it is important to define some roles
related to routines, the determination of the roles, and the privileges related to
these roles:

Package Owner
The owner of a particular package that participates in the implementation
of a routine. The package owner is the user who executes the BIND
command to bind a package with a database, unless the OWNER
precompile/BIND option is used to override the package ownership and
set it to an alternate user. Upon execution of the BIND command, the
package owner is granted EXECUTE WITH GRANT privilege on the
package. A routine library or executable can be comprised of multiple
packages and therefore can have multiple package owners associated with
it.

Routine Definer

The ID that issues the CREATE statement to register a routine. The routine
definer is generally a DBA, but is also often the routine package owner.
When a routine is invoked, at package load time, the authorization to run
the routine is checked against the definer’s authorization to execute the
package or packages associated with the routine (not against the
authorization of the routine invoker). For a routine to be successfully
invoked, the routine definer must have one of:
v EXECUTE privilege on the package or packages of the routine and

EXECUTE privilege on the routine
v DATAACCESS authority

If the routine definer and the routine package owner are the same user,
then the routine definer will have the required EXECUTE privileges on the
packages. If the definer is not the package owner, the definer must be
explicitly granted EXECUTE privilege on the packages by any user with
ACCESSCTRL or SECADM authority, CONTROL or EXECUTE WITH
GRANT OPTION privilege on the package. (The creator of a package
automatically receives CONTROL and EXECUTE WITH GRANT OPTION
on the package.)

Upon issuing the CREATE statement that registers the routine, the definer
is implicitly granted the EXECUTE WITH GRANT OPTION privilege on
the routine.

The routine definer’s role is to encapsulate under one authorization ID, the
privileges of running the packages associated with a routine and the
privilege of granting EXECUTE privilege on the routine to PUBLIC or to
specific users that need to invoke the routine.

Note: For SQL routines the routine definer is also implicitly the package
owner. Therefore the definer will have EXECUTE WITH GRANT OPTION
on both the routine and on the routine package upon execution of the
CREATE statement for the routine.

Routine Invoker
The ID that invokes the routine. To determine which users will be invokers
of a routine, it is necessary to consider how a routine can be invoked.
Routines can be invoked from a command window or from within an
embedded SQL application. In the case of methods and UDFs the routine
reference will be embedded in another SQL statement. A procedure is

Chapter 16. Authentications, authorizations, privileges, and authorities 103

invoked by using the CALL statement. For dynamic SQL in an application,
the invoker is the runtime authorization ID of the immediately higher-level
routine or application containing the routine invocation (however, this ID
can also depend on the DYNAMICRULES option with which the
higher-level routine or application was bound). For static SQL, the invoker
is the value of the OWNER precompile/BIND option of the package that
contains the reference to the routine. To successfully invoke the routine,
these users will require EXECUTE privilege on the routine. This privilege
can be granted by any user with EXECUTE WITH GRANT OPTION
privilege on the routine (this includes the routine definer unless the
privilege has been explicitly revoked), ACCESSCTRL, or SECADM
authority, by explicitly issuing a GRANT statement.

As an example, if a package associated with an application containing dynamic
SQL was bound with DYNAMICRULES BIND, then its runtime authorization ID
will be its package owner, not the person invoking the package. Also, the package
owner will be the actual binder or the value of the OWNER precompile/bind
option. In this case, the invoker of the routine assumes this value rather than the
ID of the user who is executing the application.

Note:

1. For static SQL within a routine, the package owner’s privileges must be
sufficient to execute the SQL statements in the routine body. These SQL
statements might require table access privileges or execute privileges if there
are any nested references to routines.

2. For dynamic SQL within a routine, the userid whose privileges will be
validated are governed by the DYNAMICRULES option of the BIND of the
routine body.

3. The routine package owner must GRANT EXECUTE on the package to the
routine definer. This can be done before or after the routine is registered, but it
must be done before the routine is invoked otherwise an error (SQLSTATE
42051) will be returned.

The steps involved in managing the execute privilege on a routine are detailed in
the diagram and text that follows:

104 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

1. Definer performs the appropriate CREATE statement to register the routine.
This registers the routine in DB2 with its intended level of SQL access,
establishes the routine signature, and also points to the routine executable. The
definer, if not also the package owner, needs to communicate with the package
owners and authors of the routine programs to be clear on where the routine
libraries reside so that this can be correctly specified in the EXTERNAL clause
of the CREATE statement. By virtue of a successful CREATE statement, the
definer has EXECUTE WITH GRANT privilege on the routine, however the
definer does not yet have EXECUTE privilege on the packages of the routine.

2. Definer must grant EXECUTE privilege on the routine to any users who are to
be permitted use of the routine. (If the package for this routine will recursively
call this routine, then this step must be done before the next step.)

3. Package owners precompile and bind the routine program, or have it done on
their behalf. Upon a successful precompile and bind, the package owner is
implicitly granted EXECUTE WITH GRANT OPTION privilege on the
respective package. This step follows step one in this list only to cover the

Database
administrator 1 has:

User ID of the
routine invoker has:

EXECUTE on package
privilege

EXECUTE WITH GRANT
OPTION on routine privilege

Binds the routine package
using the BIND command

Discuss the
location of the
routine library

Grants the EXECUTE
on package privilege

Grants the EXECUTE on routine

privilege to the routine invoker

Database
administrator 1

Programmer 1

Creates the routine using
the CREATE statement

The routine is

successfully invoked

EXECUTE on
routine privilege

Invokes the routine

Programmer 1 has:

EXECUTE WITH GRANT
OPTION on package privilege

Figure 19. Managing the EXECUTE privilege on routines

Chapter 16. Authentications, authorizations, privileges, and authorities 105

possibility of SQL recursion in the routine. If such recursion does not exist in
any particular case, the precompile/bind could precede the issuing of the
CREATE statement for the routine.

4. Each package owner must explicitly grant EXECUTE privilege on their
respective routine package to the definer of the routine. This step must come at
some time after the previous step. If the package owner is also the routine
definer, this step can be skipped.

5. Static usage of the routine: the bind owner of the package referencing the
routine must have been given EXECUTE privilege on the routine, so the
previous step must be completed at this point. When the routine executes, DB2
verifies that the definer has the EXECUTE privilege on any package that is
needed, so step 3 must be completed for each such package.

6. Dynamic usage of the routine: the authorization ID as controlled by the
DYNAMICRULES option for the invoking application must have EXECUTE
privilege on the routine (step 4), and the definer of the routine must have the
EXECUTE privilege on the packages (step 3).

Controlling database access
One of the most important responsibilities of the database administrator and the
system administrator is database security.

Securing your database involves several activities:
v Preventing accidental loss of data or data integrity through equipment or system

malfunction.
v Preventing unauthorized access to valuable data. You must ensure that sensitive

information is not accessed by those without a “need to know”.
v Preventing unauthorized persons from committing mischief through malicious

deletion or tampering with data.
v Monitoring access of data by users.

Planning for Security: Start by defining your objectives for a database access
control plan, and specifying who shall have access to what and under what
circumstances. Your plan should also describe how to meet these objectives by
using database functions, functions of other programs, and administrative
procedures.

Security considerations when installing and using the DB2 database
manager

Security considerations are important to the DB2 administrator from the moment
the product is installed.

To complete the installation of the DB2 database manager, a user ID, a group
name, and a password are required. The GUI-based DB2 database manager install
program creates default values for different user IDs and the group. Different
defaults are created, depending on whether you are installing on Linux and UNIX
or Windows platforms:
v On UNIX and Linux platforms, if you choose to create a DB2 instance in the

instance setup window, the DB2 database install program creates, by default,
different users for the DAS (dasusr), the instance owner (db2inst), and the
fenced user (db2fenc). Optionally, you can specify different user names

106 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The DB2 database install program appends a number from 1-99 to the default
user name, until a user ID that does not already exist can be created. For
example, if the users db2inst1 and db2inst2 already exist, the DB2 database
install program creates the user db2inst3. If a number greater than 10 is used,
the character portion of the name is truncated in the default user ID. For
example, if the user ID db2fenc9 already exists, the DB2 database install
program truncates the c in the user ID, then appends the 10 (db2fen10).
Truncation does not occur when the numeric value is appended to the default
DAS user (for example, dasusr24).

v On Windows platforms, the DB2 database install program creates, by default, the
user db2admin for the DAS user, the instance owner, and fenced users (you can
specify a different user name during setup, if you want). Unlike Linux and
UNIX platforms, no numeric value is appended to the user ID.

To minimize the risk of a user other than the administrator from learning of the
defaults and using them in an improper fashion within databases and instances,
change the defaults during the install to a new or existing user ID of your choice.

Note: Response file installations do not use default values for user IDs or group
names. These values must be specified in the response file.

Passwords are very important when authenticating users. If no authentication
requirements are set at the operating system level and the database is using the
operating system to authenticate users, users will be allowed to connect. For
example on Linux and UNIX operating systems, undefined passwords are treated
as NULL. In this situation, any user without a defined password will be
considered to have a NULL password. From the operating system’s perspective,
this is a match and the user is validated and able to connect to the database. Use
passwords at the operating system level if you want the operating system to do
the authentication of users for your database.

When working with DB2 Database Partitioning Feature (DPF) on Linux and UNIX
operating system environments, the DB2 database manager by default uses the rsh
utility (remsh on HP-UX) to run some commands on remote nodes. The rsh utility
transmits passwords in clear text over the network, which can be a security
exposure if the DB2 server is not on a secure network. You can use the
DB2RSHCMD registry variable to set the remote shell program to a more secure
alternative that avoids this exposure. One example of a more secure alternative is
ssh. See the DB2RSHCMD registry variable documentation for restrictions on
remote shell configurations.

After installing the DB2 database manager, also review, and change (if required),
the default privileges that have been granted to users. By default, the installation
process grants system administration (SYSADM) privileges to the following users
on each operating system:

Linux and UNIX platforms
To a valid DB2 database user name that belongs to the primary group of
the instance owner.

Windows environments

v To members of the local Administrators group.
v If the DB2 database manager is configured to enumerate groups for

users at the location where the users are defined, to members of the
Administrators group at the Domain Controller. You use the

Chapter 16. Authentications, authorizations, privileges, and authorities 107

DB2_GRP_LOOKUP environment variable to configure group
enumeration on Windows platforms.

v If Windows extended security is enabled, to members of the
DB2ADMNS group. The location of the DB2ADMNS group is decided
during installation.

v To the LocalSystem account

By updating the database manager configuration parameter sysadm_group, the
administrator can control which group of users possesses SYSADM privileges. You
must follow the guidelines below to complete the security requirements for both
the DB2 database installation and the subsequent instance and database creation.

Any group defined as the system administration group (by updating
sysadm_group) must exist. The name of this group should allow for easy
identification as the group created for instance owners. User IDs and groups that
belong to this group have system administrator authority for their respective
instances.

The administrator should consider creating an instance owner user ID that is easily
recognized as being associated with a particular instance. This user ID should have
as one of its groups the name of the SYSADM group created above. Another
recommendation is to use this instance-owner user ID only as a member of the
instance owner group and not to use it in any other group. This should control the
proliferation of user IDs and groups that can modify the instance.

The created user ID must be associated with a password to provide authentication
before being permitted entry into the data and databases within the instance. The
recommendation when creating a password is to follow your organization’s
password naming guidelines.

Note: To avoid accidentally deleting or overwriting instance configuration or other
files, administrators should consider using another user account, which does not
belong to the same primary group as the instance owner, for day-to-day
administration tasks that are performed on the server directly.

Authentication methods for your server
Access to an instance or a database first requires that the user be authenticated. The
authentication type for each instance determines how and where a user will be
verified.

The authentication type is stored in the configuration file at the server. It is initially
set when the instance is created. There is one authentication type per instance,
which covers access to that database server and all the databases under its control.

If you intend to access data sources from a federated database, you must consider
data source authentication processing and definitions for federated authentication
types.

Note: You can check the following web site for certification information on the
cryptographic routines used by the DB2 database management system to perform
encryption of the userid and password when using SERVER_ENCRYPT
authentication, and of the userid, password and user data when using
DATA_ENCRYPT authentication: http://www.ibm.com/security/standards/
st_evaluations.shtml.

108 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

http://www.ibm.com/security/standards/st_evaluations.shtml
http://www.ibm.com/security/standards/st_evaluations.shtml

Switching User on an Explicit Trusted Connection

For CLI/ODBC and XA CLI/ODBC applications, the authentication mechanism
used when processing a switch user request that requires authentication is the
same as the mechanism used to originally establish the trusted connection itself.
Therefore, any other negotiated security attributes (for example, encryption
algorithm, encryption keys, and plug-in names) used during the establishment of
the explicit trusted connection are assumed to be the same for any authentication
required for a switch user request on that trusted connection. JAVA applications
allow the authentication method to be changed on a switch user request (by use of
a datasource property).

Because a trusted context object can be defined such that switching user on a
trusted connection does not require authentication, in order to take full advantage
of the switch user on an explicit trusted connection feature, user-written security
plug-ins must be able to:
v Accept a user ID-only token
v Return a valid DB2 authorization ID for that user ID

Note: An explicit trusted connection cannot be established if the CLIENT type of
authentication is in effect.

Authentication types provided

The following authentication types are provided:

SERVER
Specifies that authentication occurs on the server through the security
mechanism in effect for that configuration, for example, through a security
plug-in module. The default security mechanism is that if a user ID and
password are specified during the connection or attachment attempt, they
are sent to the server and compared to the valid user ID and password
combinations at the server to determine if the user is permitted to access
the instance.

Note: The server code detects whether a connection is local or remote. For
local connections, when authentication is SERVER, a user ID and password
are not required for authentication to be successful.

SERVER_ENCRYPT
Specifies that the server accepts encrypted SERVER authentication schemes.
If the client authentication is not specified, the client is authenticated using
the method selected at the server. The user ID and password are encrypted
when they are sent over the network from the client to the server.

When the resulting authentication method negotiated between the client
and server is SERVER_ENCRYPT, you can choose to encrypt the user ID
and password using an AES (Advanced Encryption Standard) 256–bit
algorithm. To do this, set the alternate_auth_enc database manager
configuration parameter. This configuration parameter has three settings:
v NOT_SPECIFIED (default) means that the server accepts the encryption

algorithm that the client proposes, including an AES 256-bit algorithm.
v AES_CMP means that if the connecting client proposes DES but

supports AES encryption, the server renegotiates for AES encryption.
v AES_ONLY means that the server only accepts AES encryption. If the

client does not support AES encryption, the connection is rejected.

Chapter 16. Authentications, authorizations, privileges, and authorities 109

AES encryption can be used only when the authentication method
negotiated between the client and server is SERVER_ENCRYPT.

CLIENT
Specifies that authentication occurs on the database partition where the
application is invoked using operating system security. The user ID and
password specified during a connection or attachment attempt are
compared with the valid user ID and password combinations on the client
node to determine if the user ID is permitted access to the instance. No
further authentication will take place on the database server. This is
sometimes called single signon.

If the user performs a local or client login, the user is known only to that
local client workstation.

If the remote instance has CLIENT authentication, two other parameters
determine the final authentication type: trust_allclnts and trust_clntauth.

CLIENT level security for TRUSTED clients only:

Trusted clients are clients that have a reliable, local security system.

When the authentication type of CLIENT has been selected, an additional
option may be selected to protect against clients whose operating
environment has no inherent security.

To protect against unsecured clients, the administrator can select Trusted
Client Authentication by setting the trust_allclnts parameter to NO. This
implies that all trusted platforms can authenticate the user on behalf of the
server. Untrusted clients are authenticated on the Server and must provide
a user ID and password. You use the trust_allclnts configuration parameter
to indicate whether you are trusting clients. The default for this parameter
is YES.

Note: It is possible to trust all clients (trust_allclnts is YES) yet have some
of those clients as those who do not have a native safe security system for
authentication.

You may also want to complete authentication at the server even for
trusted clients. To indicate where to validate trusted clients, you use the
trust_clntauth configuration parameter. The default for this parameter is
CLIENT.

Note: For trusted clients only, if no user ID or password is explicitly
provided when attempting to CONNECT or ATTACH, then validation of
the user takes place at the client. The trust_clntauth parameter is only used
to determine where to validate the information provided on the USER or
USING clauses.

To protect against all clients, including JCC type 4 clients on z/OS and
System i® but excluding native DB2 clients on z/OS, OS/390®, VM, VSE
and System i, set the trust_allclnts parameter to DRDAONLY. Only these
clients can be trusted to perform client-side authentication. All other clients
must provide a user ID and password to be authenticated by the server.

The trust_clntauth parameter is used to determine where the above clients
are authenticated: if trust_clntauth is ″client″, authentication takes place at
the client. If trust_clntauth is ″server″, authentication takes place at the
client when no user ID and password are provided and at the server when
a user ID and password are provided.

110 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 9. Authentication Modes using TRUST_ALLCLNTS and TRUST_CLNTAUTH Parameter Combinations.

TRUST_
ALLCLNTS

TRUST_
CLNTAUTH

Untrusted
non–
DRDA®

Client
Authen-
tication (no
user ID &
password)

Untrusted
non–
DRDA
Client
Authen-
tication
(with user
ID &
password)

Trusted
non–
DRDA
Client
Authen-
tication (no
user ID &
password)

Trusted
non–
DRDA
Client
Authen-
tication
(with user
ID &
password)

DRDA
Client
Authen-
tication (no
user ID &
password)

DRDA
Client
Authen-
tication
(with user
ID &
password)

YES CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT

YES SERVER CLIENT SERVER CLIENT SERVER CLIENT SERVER

NO CLIENT SERVER SERVER CLIENT CLIENT CLIENT CLIENT

NO SERVER SERVER SERVER CLIENT SERVER CLIENT SERVER

DRDAONLY CLIENT SERVER SERVER SERVER SERVER CLIENT CLIENT

DRDAONLY SERVER SERVER SERVER SERVER SERVER CLIENT SERVER

DATA_ENCRYPT
The server accepts encrypted SERVER authentication schemes and the
encryption of user data. The authentication works exactly the same way as
that shown with SERVER_ENCRYPT. The user ID and password are
encrypted when they are sent over the network from the client to the
server.

The following user data are encrypted when using this authentication type:
v SQL and XQuery statements.
v SQL program variable data.
v Output data from the server processing of an SQL or XQuery statement

and including a description of the data.
v Some or all of the answer set data resulting from a query.
v Large object (LOB) data streaming.
v SQLDA descriptors.

DATA_ENCRYPT_CMP
The server accepts encrypted SERVER authentication schemes and the
encryption of user data. In addition, this authentication type allows
compatibility with down level products not supporting DATA_ENCRYPT
authentication type. These products are permitted to connect with the
SERVER_ENCRYPT authentication type and without encrypting user data.
Products supporting the new authentication type must use it. This
authentication type is only valid in the server’s database manager
configuration file and is not valid when used on the CATALOG
DATABASE command.

KERBEROS
Used when both the DB2 client and server are on operating systems that
support the Kerberos security protocol. The Kerberos security protocol
performs authentication as a third party authentication service by using
conventional cryptography to create a shared secret key. This key becomes
a user’s credential and is used to verify the identity of users during all
occasions when local or network services are requested. The key eliminates
the need to pass the user name and password across the network as clear
text. Using the Kerberos security protocol enables the use of a single
sign-on to a remote DB2 database server. The KERBEROS authentication

Chapter 16. Authentications, authorizations, privileges, and authorities 111

type is supported on various operating systems, refer to the related
information section for more information.

Kerberos authentication works as follows:
1. A user logging on to the client machine using a domain account

authenticates to the Kerberos key distribution center (KDC) at the
domain controller. The key distribution center issues a ticket-granting
ticket (TGT) to the client.

2. During the first phase of the connection the server sends the target
principal name, which is the service account name for the DB2 database
server service, to the client. Using the server’s target principal name
and the target-granting ticket, the client requests a service ticket from
the ticket-granting service (TGS) which also resides at the domain
controller. If both the client’s ticket-granting ticket and the server’s
target principal name are valid, the TGS issues a service ticket to the
client. The principal name recorded in the database directory may be
specified as name/instance@REALM. (This is in addition to
DOMAIN\userID and userID@xxx.xxx.xxx.com formats accepted on
Windows.)

3. The client sends this service ticket to the server using the
communication channel (which may be, as an example, TCP/IP).

4. The server validates the client’s server ticket. If the client’s service
ticket is valid, then the authentication is completed.

It is possible to catalog the databases on the client machine and explicitly
specify the Kerberos authentication type with the server’s target principal
name. In this way, the first phase of the connection can be bypassed.

If a user ID and a password are specified, the client will request the
ticket-granting ticket for that user account and use it for authentication.

KRB_SERVER_ENCRYPT
Specifies that the server accepts KERBEROS authentication or encrypted
SERVER authentication schemes. If the client authentication is KERBEROS,
the client is authenticated using the Kerberos security system. If the client
authentication is SERVER_ENCRYPT, the client is authenticated using a
user ID and encryption password. If the client authentication is not
specified, then the client will use Kerberos if available, otherwise it will use
password encryption. For other client authentication types, an
authentication error is returned. The authentication type of the client
cannot be specified as KRB_SERVER_ENCRYPT

Note: The Kerberos authentication types are supported on clients and
servers running on specific operating systems, refer to the related
information section for more information. For Windows operating systems,
both client and server machines must either belong to the same Windows
domain or belong to trusted domains. This authentication type should be
used when the server supports Kerberos and some, but not all, of the client
machines support Kerberos authentication.

GSSPLUGIN
Specifies that the server uses a GSS-API plug-in to perform authentication.
If the client authentication is not specified, the server returns a list of
server-supported plug-ins, including any Kerberos plug-in that is listed in
the srvcon_gssplugin_list database manager configuration parameter, to the
client. The client selects the first plug-in found in the client plug-in
directory from the list. If the client does not support any plug-in in the list,

112 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

the client is authenticated using the Kerberos authentication scheme (if it is
returned). If the client authentication is the GSSPLUGIN authentication
scheme, the client is authenticated using the first supported plug-in in the
list.

GSS_SERVER_ENCRYPT
Specifies that the server accepts plug-in authentication or encrypted server
authentication schemes. If client authentication occurs through a plug-in,
the client is authenticated using the first client-supported plug-in in the list
of server-supported plug-ins.

If the client authentication is not specified and an implicit connect is being
performed (that is, the client does not supply a user ID and password
when making the connection), the server returns a list of server-supported
plug-ins, the Kerberos authentication scheme (if one of the plug-ins in the
list is Kerberos-based), and the encrypted server authentication scheme.
The client is authenticated using the first supported plug-in found in the
client plug-in directory. If the client does not support any of the plug-ins
that are in the list, the client is authenticated using the Kerberos
authentication scheme. If the client does not support the Kerberos
authentication scheme, the client is authenticated using the encrypted
server authentication scheme, and the connection will fail because of a
missing password. A client supports the Kerberos authentication scheme if
a DB2-supplied Kerberos plug-in exists for the operating system, or a
Kerberos-based plug-in is specified for the srvcon_gssplugin_list database
manager configuration parameter.

If the client authentication is not specified and an explicit connection is
being performed (that is, both the user ID and password are supplied), the
authentication type is equivalent to SERVER_ENCRYPT. In this case, the
choice of the encryption algorithm used to encrypt the user ID and
password depends on the setting of the alternate_auth_enc database
manager configuration parameter.

Note:

1. Do not inadvertently lock yourself out of your instance when you are changing
the authentication information, since access to the configuration file itself is
protected by information in the configuration file. The following database
manager configuration file parameters control access to the instance:
v AUTHENTICATION *
v SYSADM_GROUP *
v TRUST_ALLCLNTS
v TRUST_CLNTAUTH
v SYSCTRL_GROUP
v SYSMAINT_GROUP
* Indicates the two most important parameters.
There are some things that can be done to ensure this does not happen: If you
do accidentally lock yourself out of the DB2 database system, you have a
fail-safe option available on all platforms that will allow you to override the
usual DB2 database security checks to update the database manager
configuration file using a highly privileged local operating system security user.
This user always has the privilege to update the database manager
configuration file and thereby correct the problem. However, this security
bypass is restricted to a local update of the database manager configuration file.

Chapter 16. Authentications, authorizations, privileges, and authorities 113

You cannot use a fail-safe user remotely or for any other DB2 database
command. This special user is identified as follows:
v UNIX platforms: the instance owner
v Windows platform: someone belonging to the local “Administrators” group
v Other platforms: there is no local security on the other platforms, so all users

pass local security checks anyway

Authentication considerations for remote clients
When you catalog a database for remote access, you can specify the authentication
type in the database directory entry.

The authentication type is not required and if not specified, the client defaults to
SERVER_ENCRYPT. However, if the server does not support SERVER_ENCRYPT,
the client attempts to retry using a value supported by the server. If the server
supports multiple authentication types, the client will not choose among them, but
instead returns an error. The error is returned to ensure that the correct
authentication type is used. In this case, the client must catalog the database using
a supported authentication type. If an authentication type is specified,
authentication can begin immediately provided that value specified matches that at
the server. If a mismatch is detected, DB2 database attempts to recover. Recovery
may result in more flows to reconcile the difference, or in an error if the DB2
database cannot recover. In the case of a mismatch, the value at the server is
assumed to be correct.

The authentication type DATA_ENCRYPT_CMP is designed to allow clients from a
previous release that does not support data encryption to connect to a server using
SERVER_ENCRYPT authentication instead of DATA_ENCRYPT. This
authentication does not work when the following statements are true:
v The client level is Version 7.2.
v The gateway level is Version 8 FixPak7 or later.
v The server is Version 8 FixPak 7 or later.

When these are all true, the client cannot connect to the server. To allow the
connection, you must either upgrade your client to Version 8 or later, or have your
gateway level at Version 8 FixPak 6 or earlier.

The determination of the authentication type used when connecting is made by
specifying the appropriate authentication type as a database catalog entry at the
gateway. This is true for both DB2® Connect™ scenarios and for clients and servers
in a partitioned database environment where the client has set the DB2NODE
registry variable. You will catalog the authentication type at the catalog partition
with the intent to “hop” to the appropriate partition. In this scenario, the
authentication type cataloged at the gateway is not used because the negotiation is
solely between the client and the server.

You may have a need to catalog multiple database aliases at the gateway using
different authentication types if they need to have clients that use differing
authentication types. When deciding which authentication type to catalog at a
gateway, you can keep the authentication type the same as that used at the client
and server; or, you can use the NOTSPEC authentication type with the
understanding that NOTSPEC defaults to SERVER.

114 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Details on controlling access to database objects
The control of access to database objects is through the use of GRANT and
REVOKE statements. Implicit access authorization and indirect privileges are also
discussed.

Granting privileges
To grant privileges on most database objects, you must have ACCESSCTRL
authority, SECADM authority, or CONTROL privilege on that object; or, you must
hold the privilege WITH GRANT OPTION. Additionally, users with SYSADM or
SYSCTRL authority can grant table space privileges. You can grant privileges only
on existing objects.

About this task

To grant CONTROL privilege to someone else, you must have ACCESSCTRL or
SECADM authority. To grant ACCESSCTRL, DATAACCESS, DBADM or SECADM
authority, you must have SECADM authority.

The GRANT statement allows an authorized user to grant privileges. A privilege
can be granted to one or more authorization names in one statement; or to
PUBLIC, which makes the privileges available to all users. Note that an
authorization name can be either an individual user or a group.

On operating systems where users and groups exist with the same name, you
should specify whether you are granting the privilege to the user or group. Both
the GRANT and REVOKE statements support the keywords USER, GROUP, and
ROLE. If these optional keywords are not used, the database manager checks the
operating system security facility to determine whether the authorization name
identifies a user or a group; it also checks whether an authorization ID of type role
with the same name exists. If the database manager cannot determine whether the
authorization name refers to a user, a group, or a role, an error is returned. The
following example grants SELECT privileges on the EMPLOYEE table to the user
HERON:

GRANT SELECT
ON EMPLOYEE TO USER HERON

The following example grants SELECT privileges on the EMPLOYEE table to the
group HERON:

GRANT SELECT
ON EMPLOYEE TO GROUP HERON

In the Control Center, you can use the Schema Privileges notebook, the Table Space
Privileges notebook, and the View Privileges notebook to grant and revoke
privileges for these database objects. To open one of these notebooks, follow these
steps:
1. In the Control Center, expand the object tree until you find the folder

containing the objects you want to work with, for example, the Views folder.
2. Click the folder.

Any existing database objects in this folder are displayed in the contents pane.
3. Right-click the object of interest in the contents pane and select Privileges in

the pop-up menu.
The appropriate Privileges notebook opens.

Chapter 16. Authentications, authorizations, privileges, and authorities 115

Revoking privileges
The REVOKE statement allows authorized users to revoke privileges previously
granted to other users.

About this task

To revoke privileges on database objects, you must have ACCESSCTRL authority,
SECADM authority, or CONTROL privilege on that object. Table space privileges
can also be revoked by users with SYSADM and SYSCTRL authority. Note that
holding a privilege WITH GRANT OPTION is not sufficient to revoke that
privilege. To revoke CONTROL privilege from another user, you must have
ACCESSCTRL, or SECADM authority. To revoke ACCESSCTRL, DATAACCESS,
DBADM or SECADM authority, you must have SECADM authority. Table space
privileges can be revoked only by a user who holds SYSADM, or SYSCTRL
authority. Privileges can only be revoked on existing objects.

Note: A user without ACCESSCTRL authority, SECADM authority, or CONTROL
privilege is not able to revoke a privilege that they granted through their use of the
WITH GRANT OPTION. Also, there is no cascade on the revoke to those who
have received privileges granted by the person being revoked.
If an explicitly granted table (or view) privilege is revoked from a user with
DBADM authority, privileges will not be revoked from other views defined on that
table. This is because the view privileges are available through the DBADM
authority and are not dependent on explicit privileges on the underlying tables.

If a privilege has been granted to a user, a group, or a role with the same name,
you must specify the GROUP, USER, or ROLE keyword when revoking the
privilege. The following example revokes the SELECT privilege on the EMPLOYEE
table from the user HERON:

REVOKE SELECT
ON EMPLOYEE FROM USER HERON

The following example revokes the SELECT privilege on the EMPLOYEE table
from the group HERON:

REVOKE SELECT
ON EMPLOYEE FROM GROUP HERON

Note that revoking a privilege from a group may not revoke it from all members
of that group. If an individual name has been directly granted a privilege, it will
keep it until that privilege is directly revoked.

If a table privilege is revoked from a user, privileges are also revoked on any view
created by that user which depends on the revoked table privilege. However, only
the privileges implicitly granted by the system are revoked. If a privilege on the
view was granted directly by another user, the privilege is still held.

If a table privilege is revoked from a user, privileges are also revoked on any view
created by that user which depends on the revoked table privilege. However, only
the privileges implicitly granted by the system are revoked. If a privilege on the
view was granted directly by another user, the privilege is still held.

You may have a situation where you want to GRANT a privilege to a group and
then REVOKE the privilege from just one member of the group. There are only a
couple of ways to do that without receiving the error message SQL0556N:

116 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v You can remove the member from the group; or, create a new group with fewer
members and GRANT the privilege to the new group.

v You can REVOKE the privilege from the group and then GRANT it to individual
users (authorization IDs).

Note: When CONTROL privilege is revoked from a user on a table or a view, the
user continues to have the ability to grant privileges to others. When given
CONTROL privilege, the user also receives all other privileges WITH GRANT
OPTION. Once CONTROL is revoked, all of the other privileges remain WITH
GRANT OPTION until they are explicitly revoked.

All packages that are dependent on revoked privileges are marked invalid, but can
be validated if rebound by a user with appropriate authority. Packages can also be
rebuilt if the privileges are subsequently granted again to the binder of the
application; running the application will trigger a successful implicit rebind. If
privileges are revoked from PUBLIC, all packages bound by users having only
been able to bind based on PUBLIC privileges are invalidated. If DBADM
authority is revoked from a user, all packages bound by that user are invalidated
including those associated with database utilities. Attempting to use a package that
has been marked invalid causes the system to attempt to rebind the package. If
this rebind attempt fails, an error occurs (SQLCODE -727). In this case, the
packages must be explicitly rebound by a user with:
v Authority to rebind the packages
v Appropriate authority for the objects used within the packages

These packages should be rebound at the time the privileges are revoked.

If you define a trigger or SQL function based on one or more privileges and you
lose one or more of these privileges, the trigger or SQL function cannot be used.

Managing implicit authorizations by creating and dropping
objects

The database manager implicitly grants certain privileges to a user that creates a
database object such as a table or a package. Privileges are also granted when
objects are created by users with DBADM authority. Similarly, privileges are
removed when an object is dropped.

About this task

When the created object is a table, nickname, index, or package, the user receives
CONTROL privilege on the object. When the object is a view, the CONTROL
privilege for the view is granted implicitly only if the user has CONTROL
privilege for all tables, views, and nicknames referenced in the view definition.

When the object explicitly created is a schema, the schema owner is given
ALTERIN, CREATEIN, and DROPIN privileges WITH GRANT OPTION. An
implicitly created schema has CREATEIN granted to PUBLIC.

Establishing ownership of a package
The BIND and PRECOMPILE commands create or change an application package.
On either one, use the OWNER option to name the owner of the resulting
package.

Chapter 16. Authentications, authorizations, privileges, and authorities 117

About this task

There are simple rules for naming the owner of a package:
v Any user can name themselves as the owner. This is the default if the OWNER

option is not specified.
v A user ID with DBADM authority can name any authorization ID as the owner

using the OWNER option.

Not all operating systems that can bind a package using DB2 database products
support the OWNER option.

Implicit privileges through a package
Access to data within a database can be requested by application programs, as well
as by persons engaged in an interactive workstation session. A package contains
statements that allow users to perform a variety of actions on many database
objects. Each of these actions requires one or more privileges.

Privileges granted to individuals binding the package and to PUBLIC, as well as to
the roles granted to the individuals and to PUBLIC, are used for authorization
checking when static SQL and XQuery statements are bound. Privileges granted
through groups, and the roles granted to groups, are not used for authorization
checking when static SQL and XQuery statements are bound.

Unless VALIDATE RUN is specified when binding the package, the user with a
valid authorization ID who binds a package must either:
v Have been granted all the privileges required to execute the static SQL or

XQuery statements in the package.
v Have acquired the necessary privileges through membership in one or more of:

– PUBLIC
– The roles granted to PUBLIC
– The roles granted to the user

If VALIDATE RUN is specified at BIND time, all authorization failures for any
static SQL or XQuery statements within this package will not cause the BIND to
fail, and those SQL or XQuery statements are revalidated at run time. PUBLIC,
group, role, and user privileges are all used when checking to ensure the user has
the appropriate authorization (BIND or BINDADD privilege) to bind the package.

Packages may include both static and dynamic SQL and XQuery statements. To
process a package with static queries, a user need only have EXECUTE privilege
on the package. This user can then implicitly obtain the privileges of the package
binder for any static queries in the package but only within the restrictions
imposed by the package.

If the package includes dynamic SQL or XQuery statements, the required privileges
depend on the value that was specified for DYNAMICRULES when the package
was precompiled or bound. For more information, see the topic that describes the
effect of DYNAMICRULES on dynamic queries.

Indirect privileges through a package containing nicknames
When a package contains references to nicknames, authorization processing for
package creators and package users is slightly more complex.

118 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

When a package creator successfully binds packages that contain nicknames, the
package creator does not have to pass authentication checking or privilege
checking for the tables and views that the nicknames reference at the data source.
However, the package executor must pass authentication and authorization
checking at data sources.

For example, assume that a package creator’s .SQC file contains several SQL or
XQuery statements. One static statement references a local table. Another dynamic
statement references a nickname. When the package is bound, the package
creator’s authid is used to verify privileges for the local table and the nickname,
but no checking is done for the data source objects that the nickname identifies.
When another user executes the package, assuming they have the EXECUTE
privilege for that package, that user does not have to pass any additional privilege
checking for the statement referencing the table. However, for the statement
referencing the nickname, the user executing the package must pass authentication
checking and privilege checking at the data source.

When the .SQC file contains only dynamic SQL and XQuery statements and a
mixture of table and nickname references, DB2 database authorization checking for
local objects and nicknames is similar. Package users must pass privilege checking
for any local objects (tables, views) within the statements and also pass privilege
checking for nickname objects (package users must pass authentication and
privilege checking at the data source containing the objects that the nicknames
identify). In both cases, users of the package must have the EXECUTE privilege.

The authorization ID and password of the package executor is used for all data
source authentication and privilege processing. This information can be changed by
creating a user mapping.

Note: Nicknames cannot be specified in static SQL and XQuery statements. Do not
use the DYNAMICRULES option (set to BIND) with packages containing
nicknames.

It is possible that packages containing nicknames might require additional
authorization steps because DB2 database uses dynamic SQL when communicating
with DB2 Family data sources. The authorization ID running the package at the
data source must have the appropriate authority to execute the package
dynamically at that data source.

Controlling access to data with views
A view provides a means of controlling access or extending privileges to a table.

Using a view allows the following kinds of control over access to a table:
v Access only to designated columns of the table.

For users and application programs that require access only to specific columns
of a table, an authorized user can create a view to limit the columns addressed
only to those required.

v Access only to a subset of the rows of the table.
By specifying a WHERE clause in the subquery of a view definition, an
authorized user can limit the rows addressed through a view.

v Access only to a subset of the rows or columns in data source tables or views. If
you are accessing data sources through nicknames, you can create local DB2
database views that reference nicknames. These views can reference nicknames
from one or many data sources.

Chapter 16. Authentications, authorizations, privileges, and authorities 119

Note: Because you can create a view that contains nickname references for more
than one data source, your users can access data in multiple data sources from
one view. These views are called multi-location views. Such views are useful when
joining information in columns of sensitive tables across a distributed
environment or when individual users lack the privileges needed at data sources
for specific objects.

To create a view, a user must have DATAACCESS authority, or CONTROL or
SELECT privilege for each table, view, or nickname referenced in the view
definition. The user must also be able to create an object in the schema specified
for the view. That is, DBADM authority, CREATEIN privilege for an existing
schema, or IMPLICIT_SCHEMA authority on the database if the schema does not
already exist.

If you are creating views that reference nicknames, you do not need additional
authority on the data source objects (tables and views) referenced by nicknames in
the view; however, users of the view must have SELECT authority or the
equivalent authorization level for the underlying data source objects when they
access the view.

If your users do not have the proper authority at the data source for underlying
objects (tables and views), you can:
1. Create a data source view over those columns in the data source table that are

OK for the user to access
2. Grant the SELECT privilege on this view to users
3. Create a nickname to reference the view

Users can then access the columns by issuing a SELECT statement that references
the new nickname.

The following scenario provides a more detailed example of how views can be
used to restrict access to information.

Many people might require access to information in the STAFF table, for different
reasons. For example:
v The personnel department needs to be able to update and look at the entire

table.
This requirement can be easily met by granting SELECT and UPDATE privileges
on the STAFF table to the group PERSONNL:

GRANT SELECT,UPDATE ON TABLE STAFF TO GROUP PERSONNL

v Individual department managers need to look at the salary information for their
employees.
This requirement can be met by creating a view for each department manager.
For example, the following view can be created for the manager of department
number 51:

CREATE VIEW EMP051 AS
SELECT NAME,SALARY,JOB FROM STAFF
WHERE DEPT=51

GRANT SELECT ON TABLE EMP051 TO JANE

The manager with the authorization name JANE would query the EMP051 view
just like the STAFF table. When accessing the EMP051 view of the STAFF table,
this manager views the following information:

120 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

NAME SALARY JOB

Fraye 45150.0 Mgr

Williams 37156.5 Sales

Smith 35654.5 Sales

Lundquist 26369.8 Clerk

Wheeler 22460.0 Clerk

v All users need to be able to locate other employees. This requirement can be met
by creating a view on the NAME column of the STAFF table and the
LOCATION column of the ORG table, and by joining the two tables on their
respective DEPT and DEPTNUMB columns:

CREATE VIEW EMPLOCS AS
SELECT NAME, LOCATION FROM STAFF, ORG
WHERE STAFF.DEPT=ORG.DEPTNUMB

GRANT SELECT ON TABLE EMPLOCS TO PUBLIC

Users who access the employee location view will see the following information:

NAME LOCATION

Molinare New York

Lu New York

Daniels New York

Jones New York

Hanes Boston

Rothman Boston

Ngan Boston

Kermisch Boston

Sanders Washington

Pernal Washington

James Washington

Sneider Washington

Marenghi Atlanta

O’Brien Atlanta

Quigley Atlanta

Naughton Atlanta

Abrahams Atlanta

Koonitz Chicago

Plotz Chicago

Yamaguchi Chicago

Scoutten Chicago

Fraye Dallas

Williams Dallas

Smith Dallas

Lundquist Dallas

Wheeler Dallas

Lea San Francisco

Chapter 16. Authentications, authorizations, privileges, and authorities 121

NAME LOCATION

Wilson San Francisco

Graham San Francisco

Gonzales San Francisco

Burke San Francisco

Quill Denver

Davis Denver

Edwards Denver

Gafney Denver

Controlling access for database administrators (DBAs)
You may want to monitor, control, or prevent access to data by database
administrators (users holding DBADM authority).

Monitoring access to data

You can use the DB2 audit facility to monitor access by database administrators. To
do so, follow these steps:
1. Create an audit policy that monitors the events you want to capture for users

who hold DBADM authority.
2. Associate this audit policy with the DBADM authority.

Controlling access to data

You can use trusted contexts in conjunction with a role to control access by
database administrators. To do so, follow these steps:
1. Create a role and grant DBADM authority to that role.
2. Define a trusted context and make the role the default role for this trusted

context.
Do not grant membership in the role to any authorization ID explicitly. This
way, the role is available only through this trusted context and a user acquires
DBADM capability only when they are within the confines of the trusted
context.

3. There are two ways you can control how users access the trusted context:
v Implicit access: Create a unique trusted context for each user. When the user

establishes a regular connection that matches the attributes of the trusted
context, they are implicitly trusted and gain access to the role.

v Explicit access: Create a trusted context using the WITH USE FOR clause to
define all users who can access it. Create an application through which those
users can make database requests. The application establishes an explicit
trusted connection, and when a user issues a request, the application
switches to that user ID and executes the request as that user on the
database.

If you want to monitor the use of this trusted context, you can create an audit
policy that captures the events you are interested in for users of this trusted
context. Associate this audit policy with the trusted context.

122 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Preventing access to data

To prevent access to data in tables, choose one of these options:
v To prevent access to data in all tables, revoke DATAACCESS from your DBADM

user, role or group. Alternatively, you could grant DBADM to the user, role or
group of interest without the DATAACCESS option

v To prevent access to data in one particular table, follow these steps:
– Assign a security label to every column in the table.
– Grant that security label to a role.
– Grant that role to all users (or roles) that have a legitimate need to access the

table.
No user, regardless of their authority, will be able to access data in that table
unless they are a member in that role.

Data encryption
The DB2 database system offers several ways to encrypt data, both while in
storage, and while in transit over the network.

Encrypting data in storage

You have the following options for encrypting data in storage:
v You can use the encryption and decryption built-in functions ENCRYPT,

DECRYPT_BIN, DECRYPT_CHAR, and GETHINT to encrypt your data within
database tables.

v You can use IBM Database Encryption Expert to encrypt the underlying
operating system data and backup files.

v If you are running a DB2 Enterprise Server Edition system on the AIX operating
system, and you are interested in file-level encryption only, you can use
encrypted file system (EFS) to encrypt your operating system data and backup
files.

Encrypting data in transit

To encrypt data in-transit between clients and DB2 databases, you can use the
DATA_ENCRYPT authentication type, or, the DB2 database system support of
Secure Sockets Layer (SSL).

Using the ENCRYPT, DECRYPT_BIN, DECRYPT_CHAR, and
GETHINT functions

The ENCRYPT built-in function encrypts data using a password-based encryption
method. These functions also allow you to encapsulate a password hint. The
password hint is embedded in the encrypted data. Once encrypted, the only way
to decrypt the data is by using the correct password. Developers that choose to use
these functions should plan for the management of forgotten passwords and
unusable data.

The result of the ENCRYPT functions is VARCHAR FOR BIT DATA (with a limit of
32631).

Only CHAR, VARCHAR, and FOR BIT DATA can be encrypted.

Chapter 16. Authentications, authorizations, privileges, and authorities 123

The DECRYPT_BIN and DECRYPT_CHAR functions decrypt data using
password-based decryption.

DECRYPT_BIN always returns VARCHAR FOR BIT DATA while DECRYPT_CHAR
always returns VARCHAR. Since the first argument may be CHAR FOR BIT DATA
or VARCHAR FOR BIT DATA, there are cases where the result is not the same as
the first argument.

The length of the result depends on the bytes to the next 8 byte boundary. The
length of the result could be the length of the data argument plus 40 plus the
number of bytes to the next 8 byte boundary when the optional hint parameter is
specified. Or, the length of the result could be the length of the data argument plus
8 plus the number of bytes to the next 8 byte boundary when the optional hint
parameter is not specified.

The GETHINT function returns an encapsulated password hint. A password hint is
a phrase that will help data owners remember passwords. For example, the word
“Ocean” can be used as a hint to remember the password ″Pacific″.

The password that is used to encrypt the data is determined in one of two ways:
v Password Argument. The password is a string that is explicitly passed when the

ENCRYPT function is invoked. The data is encrypted and decrypted with the
given password.

v Encryption password special register. The SET ENCRYPTION PASSWORD
statement encrypts the password value and sends the encrypted password to the
database manager to store in a special register. ENCRYPT, DECRYPT_BIN and
DECRYPT_CHAR functions invoked without a password parameter use the
value in the ENCRYPTION PASSWORD special register. The ENCRYPTION
PASSWORD special register is only stored in encrypted form.
The initial or default value for the special register is an empty string.

Valid lengths for passwords are between 6 and 127 inclusive. Valid lengths for
hints are between 0 and 32 inclusive.

IBM Database Encryption Expert for encryption of data at rest
IBM Database Encryption Expert is a comprehensive software data security
solution that when used in conjunction with native DB2 security provides effective
protection of the data and the database application against a broad array of threats.

Database Encryption Expert helps organizations ensure that private and
confidential data is strongly protected and in compliance with regulations and
legislative acts. The key benefits of Database Encryption Expert are:
v Proven, strong data security for the DB2 database system
v Protection of live files, configuration files, log files and back-up data
v Transparent to application, database and storage environments
v Unified policy and key management for protecting data in both on-line and

off-line environments
v Meets performance requirements

Database Encryption Expert enables you to encrypt offline database backups and
to encrypt online (″live″) database files. This is encryption of data on the disk,
sometimes called “data at rest” as opposed to ″data in flight″, which is travelling
over the network.

124 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v For backups, data is encrypted as it is being backed up, so the data on the
backup device is encrypted. Should the data need to be recovered, the recovery
server recognizes that the data is encrypted and will un-encrypt the data.

v For database files, the operating system data files containing the data from the
DB2 database are encrypted. This protects the data files from unauthorized users
trying to read the “raw” database file.

Database Encryption Expert is transparent to users, databases, applications, and
storage. No code changes or changes to existing infrastructure are required.
Database Encryption Expert can protect data in any storage environment, while
users continue to access data the in the same way as before.

Database Encryption Expert can protect database applications, because it can
prevent changes to executable files, configuration files, libraries, and so on, thereby
preventing attacks on the application.

Architecture of Database Encryption Expert

Database Encryption Expert is a set of agent and server software packages that you
administer by using a Web-based user-interface and command-line utilities. The
Database Encryption Expert administrator configures security policies that govern
how security and encryption are implemented.

According to how these security policies are defined, the Database Encryption
Expert backup agent encrypts DB2 backups, and the Database Encryption Expert
file system agent encrypts DB2 data files.

The Encryption Expert Security Server stores the security policies, encryption keys
and event log files. Security policies contain sets of security rules that must be
satisfied in order to allow or deny access. Each security rule evaluates who, what,
when, and how protected data is accessed and, if these criteria match, the Security
Server either permits or denies access.

Figure 20 on page 126 illustrates the architecture of Database Encryption Expert.

Chapter 16. Authentications, authorizations, privileges, and authorities 125

File system agent

The Database Encryption Expert file system agent process is always running in the
background. The agent intercepts any attempt to access data files, directories, or
executables that you are protecting. The Database Encryption Expert file system
agent forwards the access attempt to the Security Server and, based upon the
applied policy, the Security Server grants or denies the attempted access.

Database Encryption Expert protection extends beyond simply allowing or denying
access to a file, you can also encrypt files. Just the file contents is encrypted, but
the file metadata is left intact. Therefore, you do not have to decrypt an encrypted
file just to see it’s name, timestamps, file type, and so on. This allows data
management applications to perform their functions without exposing the file
contents. For example, backup managers can backup specific data, without being
able to see the contents.

If an encrypted file is accessed by an unauthorized user, its contents are worthless
without the appropriate Security Server approval and encryption keys. However,
users with the correct policies and permissions are unaware that encryption and
decryption are taking place.

Backup agent

All database backup functions that are normally performed by the DB2 backup
API system are supported by the Database Encryption Expert server, including
native database compression. Other than an additional command-line argument,

Encryption Expert
Security Server

Web based
User-Interface

DB2 files

DB2 backup DB2 Server

Backup files

Encryption Expert
file system agent

Encryption Expert
backup agent

Figure 20. Architecture of Database Encryption Expert

126 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

DB2 backup operators are unaware of Database Encryption Expert intervention.
Database Encryption Expert backs up and restores static data-at-rest and active
online data.

Basic backup and restore configuration is supported. In the basic configuration,
data is encrypted and backed up with one server and multiple agents; data is
decrypted and restored on an agent that is configured with the same server that
was originally used to make the backup.

Single-site and multi-site configurations are also supported for backup and restore.
In a single-site scenario, configuration data is mirrored across multiple Security
Servers in a single data center. In a multi-site scenario, backups are restored on
different Encryption Expert servers in different data centers.

Audit logging

Database Encryption Expert agent activity is closely monitored and logged through
a centralized audit logging facility. All auditable events, including backups,
restores, and security administration operations can be logged. This includes
Database Encryption Expert system events, such as initialization, shut down and
restart; and network connects and disconnects between different Database
Encryption Expert components.

Database Encryption Expert documentation

For more information about Database Encryption Expert, go to the following web
page:http://publib.boulder.ibm.com/infocenter/mptoolic/v1r0/topic/
com.ibm.db2tools.eet.doc.ug/eetwelcome.htm.

Secure Sockets Layer (SSL)
The DB2 database system supports the use of Secure Sockets Layer (SSL) and it’s
successor, Transport Layer Security (TLS), to enable a client to authenticate a
server, and to provide private communication between the client and server by use
of encryption. Authentication is performed by the exchange of digital certificates.

Note: When this topic mentions SSL, the same information applies to TLS, unless
otherwise noted.

Without encryption, packets of information travel through networks in full view of
anyone who has access. You can use SSL to protect data in transit on all networks
that use TCP/IP (you can think of an SSL connection as a secured TCP/IP
connection).

A client and server establish a secure SSL connection by performing an ″SSL
handshake″.

Overview of the SSL handshake

During an SSL handshake, a public-key algorithm, usually RSA, is used to securely
exchange digital signatures and encryption keys between a client and a server. This
identity and key information is used to establish a secure connection for the
session between the client and the server. After the secure session is established,
data transmission between the client and server is encrypted using a symmetric
algorithm, such as AES.

Chapter 16. Authentications, authorizations, privileges, and authorities 127

http://publib.boulder.ibm.com/infocenter/mptoolic/v1r0/topic/com.ibm.db2tools.eet.doc.ug/eetwelcome.htm
http://publib.boulder.ibm.com/infocenter/mptoolic/v1r0/topic/com.ibm.db2tools.eet.doc.ug/eetwelcome.htm

The client and server perform the following steps during the SSL handshake:
1. The client requests an SSL connection and lists its supported cipher suites.
2. The server responds with a selected cipher suite.
3. The server sends its digital certificate to the client.
4. The client verifies the validity of the server certificate, for authentication

purposes. It can do this by checking with the trusted certificate authority that
issued the server certificate or by checking in its own key database.

5. The client and server securely negotiate a session key and a message
authentication code (MAC).

6. The client and server securely exchange information using the key and MAC
selected.

Note: The DB2 database system does not support the (optional) authentication of
the client during the SSL handshake.

Using SSL encryption with DB2 authentication

You can use SSL encryption in conjunction with all existing DB2 authentication
methods, such as KERBEROS or SERVER. You do this as usual by setting the
authentication type for the instance in the DBM configuration parameters to the
authentication method of your choice.

Digital certificates and certificate authorities
Digital certificates are issued by trusted parties, called certificate authorities, to
verify the identity of an entity, such as a client or server.

The digital certificate serves two purposes: it verifies the owner’s identity and it
makes the owner’s public key available. It is issued with an expiration date, after
which it is no longer guaranteed by the certificate authority (CA).

To obtain a digital certificate, you send a request to the CA of your choice, such as
Verisign, or RSA. The request includes your distinguished name, your public key,
and your signature. A distinguished name (DN) is a unique identifier for each user
or host for which you are applying for a certificate. The CA checks your signature
using your public key and performs some level of verification of your identity (this
varies with different CAs). After verification, the CA sends you a signed digital
certificate that contains your distinguished name, your public key, the CA’s
distinguished name, and the signature of the certificate authority. You store this
signed certificate in your key database.

When you send this certificate to a receiver, the receiver performs two steps to
verify your identity:
1. Uses your public key that comes with the certificate to check your digital

signature.
2. Verifies that the CA that issued your certificate is legitimate and trustworthy. To

do this, the receiver needs the public key of the CA. The receiver might already
hold an assured copy of the public key of the CA in their key database, but if
not, the receiver must acquire an additional digital certificate to obtain the
public key of the CA. This certificate might in turn depend on the digital
certificate of another CA; there might be a hierarchy of certificates issued by
multiple CAs, each depending on the validity of the next. Eventually, however,
the receiver needs the public key of the root CA. The root CA is the CA at the
top of the hierarchy. To trust the validity of the digital certificate of the root

128 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

CA, the public-key user must receive that digital certificate in a secure manner,
such as through a download from an authenticated server, or with preloaded
software received from a reliable source, or on a securely delivered diskette.

Many applications that send a digital certificate to a receiver send not just their
own certificate, but also all of the CA digital certificates necessary to verify the
hierarchy of certificates up to the root CA certificate.

For a digital certificate to be entirely trustworthy, the owner of the digital
certificate must have carefully protected their private key, for example, by
encrypting it on their computer’s hard drive. If their private key has been
compromised, an imposter could misuse their digital certificate.

You can use self-signed digital certificates for testing purposes. A self-signed digital
certificate contains your distinguished name, your public key, and your signature.

Public-key cryptography
SSL uses public-key algorithms to exchange encryption key information and digital
certificate information for authentication. Public-key cryptography (also known as
asymmetric cryptography) uses two different encryption keys: a public key to
encrypt data and an associated private key to decrypt it.

Conversely, symmetric key cryptography uses just one key, which is shared by all
parties involved in the secure communication. This secret key is used both to
encrypt and decrypt information. The key must be safely distributed to, and stored
by, all parties, which is difficult to guarantee. With public-key cryptography, the
public key is not secret, but the messages it encrypts can only be decrypted by
using it’s associated private key. The private key must be securely stored, for
example, in your key database, or encrypted on your computer’s hard drive.

Public-key algorithms alone do not guarantee secure communication, you also
need to verify the identity of whoever is communicating with you. To perform this
authentication, SSL uses digital certificates. When you send your digital certificate
to someone, the certificate provides them with your public key. You have used
your private key to digitally sign your certificate and so the receiver of the
communication can use your public key to verify your signature. The validity of
the digital certificate itself is guaranteed by the certificate authority (CA) that
issued it.

Supported cipher suites
During an SSL handshake, the client and server negotiate which cipher suite to use
to exchange data. A cipher suite is a set of algorithms that are used to provide
authentication, encryption, and data integrity.

The DB2 database system uses GSKit running in FIPS mode to provide SSL
support. GSKit supports the following cipher suites:
v TLS_RSA_WITH_AES_256_CBC_SHA
v TLS_RSA_WITH_AES_128_CBC_SHA
v TLS_RSA_WITH_3DES_EDE_CBC_SHA

The name of each cipher suite specifies the algorithms that it uses for
authentication, encryption, and data integrity checking. For example, the cipher

Chapter 16. Authentications, authorizations, privileges, and authorities 129

suite TLS_RSA_WITH_AES_256_CBC_SHA uses RSA for authentication; AES
256-bit and CBC for encryption algorithms; and SHA-1 for the hash function for
data integrity.

During the SSL handshake, the DB2 database system automatically picks the
strongest cipher suite supported by both the client and the server. If you want the
server to accept only one or more specific cipher suites, you can set the
ssl_cipherspecs configuration parameter to any of the following values:
v TLS_RSA_WITH_AES_256_CBC_SHA
v TLS_RSA_WITH_AES_128_CBC_SHA
v TLS_RSA_WITH_3DES_EDE_CBC_SHA
v Any combination of these three values. To set multiple values, separate each

value by a comma but do not put a space between the values.
v Null. In this case, the strongest available algorithm is automatically picked.

You cannot prioritize which cipher suite is selected. If you set the ssl_cipherspecs
configuration parameter, the DB2 database system picks the strongest available
cipher suite; this selection does not depend on the order you specify the cipher
suites when you set ssl_cipherspecs.

GSKit return codes
Some DB2 database manager messages might display a return code from the IBM
Global Security Kit (GSKit).

General GSKit return codes

Table 10. GSKit general return codes

Return code
(hexadecimal)

Return
code
(decimal) Constant Explanation

0x00000000 0 GSK_OK The task completed successfully.
Issued by every function call that
completes successfully.

0x00000001 1 GSK_INVALID_HANDLE The environment or SSL handle is
not valid. The specified handle
was not the result of a successful
open function call.

0x00000002 2 GSK_API_NOT_AVAILABLE The dynamic link library (DLL)
has been unloaded and is not
available. (Windows only.)

0x00000003 3 GSK_INTERNAL_ERROR Internal error. Report this error to
service.

0x00000004 4 GSK_INSUFFICIENT_STORAGE Insufficient memory is available to
perform the operation.

0x00000005 5 GSK_INVALID_STATE The handle is in an invalid state
for operation, such as performing
an init operation on a handle
twice.

0x00000006 6 GSK_KEY_LABEL_NOT_FOUND Specified key label not found in
key file.

0x00000007 7 GSK_CERTIFICATE_NOT_AVAILABLE Certificate not received from
partner.

130 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 10. GSKit general return codes (continued)

Return code
(hexadecimal)

Return
code
(decimal) Constant Explanation

0x00000008 8 GSK_ERROR_CERT_VALIDATION Certificate validation error.

0x00000009 9 GSK_ERROR_CRYPTO Error processing cryptography.

0x0000000a 10 GSK_ERROR_ASN Error validating ASN fields in
certificate.

0x0000000b 11 GSK_ERROR_LDAP Error connecting to LDAP server.

0x0000000c 12 GSK_ERROR_UNKNOWN_ERROR Internal error. Report this error to
service.

0x00000065 101 GSK_OPEN_CIPHER_ERROR Internal error. Report this error to
service.

0x00000066 102 GSK_KEYFILE_IO_ERROR I/O error reading the key file.

0x00000067 103 GSK_KEYFILE_INVALID_FORMAT The key file has an invalid
internal format. Re-create the key
file.

0x00000068 104 GSK_KEYFILE_DUPLICATE_KEY The key file has two entries with
the same key. Use the iKeyman
utility to remove the duplicate
key.

0x00000069 105 GSK_KEYFILE_DUPLICATE_LABEL The key file has two entries with
the same label. Use the iKeyman
utility to remove the duplicate
label.

0x0000006a 106 GSK_BAD_FORMAT_OR_
INVALID_PASSWORD

The key file password is used as
an integrity check. Either the
keyfile has become corrupted or
the password ID is incorrect.

0x0000006b 107 GSK_KEYFILE_CERT_EXPIRED The default key in the key file has
an expired certificate. Use the
iKeyman utility to remove
certificates that are expired.

0x0000006c 108 GSK_ERROR_LOAD_GSKLIB An error occurred loading one of
the GSKit dynamic link libraries.
Be sure GSKit was installed
correctly.

0x0000006d 109 GSK_PENDING_CLOSE_ERROR Indicates that a connection is
trying to be made in a GSKit
environment after the
GSK_ENVIRONMENT_
CLOSE_OPTIONS has been set to
GSK_DELAYED_
ENVIRONMENT_CLOSE and
gsk_environment_close() function
has been called.

0x000000c9 201 GSK_NO_KEYFILE_PASSWORD Neither the password nor the
stash-file name was specified, so
the key file could not be
initialized.

Chapter 16. Authentications, authorizations, privileges, and authorities 131

Table 10. GSKit general return codes (continued)

Return code
(hexadecimal)

Return
code
(decimal) Constant Explanation

0x000000ca 202 GSK_KEYRING_OPEN_ERROR Unable to open the key file or the
Microsoft® Certificate Store. The
path was specified incorrectly, or
the file permissions did not allow
the file to be opened, or the file
format is incorrect.

0x000000cb 203 GSK_RSA_TEMP_KEY_PAIR Unable to generate a temporary
key pair. Report this error to
service.

0x000000cc 204 GSK_ERROR_LDAP_NO_SUCH_OBJECT A User Name object was specified
that is not found.

0x000000cd 205 GSK_ERROR_LDAP_INVALID_
CREDENTIALS

A Password used for an LDAP
query is not correct.

0x000000ce 206 GSK_ERROR_BAD_INDEX An index into the Fail Over list of
LDAP servers was not correct.

0x000000cd 207 GSK_ERROR_FIPS_NOT_SUPPORTED Attempt to put GSKit into FIPS
mode has failed.

0x0000012d 301 GSK_CLOSE_FAILED Indicates that the GSKit
environment close request was not
properly handled. This is most
likely due to a
gsk_secure_socket*() command
being attempted after a
gsk_close_environment() call.

0x00000191 401 GSK_ERROR_BAD_DATE The system date was set to an
invalid value.

0x00000192 402 GSK_ERROR_NO_CIPHERS Neither SSLV2 nor SSLV3 is
enabled.

0x00000193 403 GSK_ERROR_NO_CERTIFICATE The required certificate was not
received from partner.

0x00000194 404 GSK_ERROR_BAD_CERTIFICATE The received certificate was
formatted incorrectly.

0x00000195 405 GSK_ERROR_UNSUPPORTED_
CERTIFICATE_TYPE

The received certificate type was
not supported.

0x00000196 406 GSK_ERROR_IO An I/O error occurred on a data
read or write operation.

0x00000197 407 GSK_ERROR_BAD_KEYFILE_LABEL The specified label in the key file
could not be found.

0x00000198 408 GSK_ERROR_BAD_KEYFILE_
PASSWORD

The specified key file password is
incorrect. The key file could not be
used. The key file also might be
corrupt.

0x00000199 409 GSK_ERROR_BAD_KEY_LEN_
FOR_EXPORT

In a restricted cryptography
environment, the key size is too
long to be supported.

0x0000019a 410 GSK_ERROR_BAD_MESSAGE An incorrectly formatted SSL
message was received from the
partner.

132 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 10. GSKit general return codes (continued)

Return code
(hexadecimal)

Return
code
(decimal) Constant Explanation

0x0000019b 411 GSK_ERROR_BAD_MAC The message authentication code
(MAC) was not successfully
verified.

0x0000019c 412 GSK_ERROR_UNSUPPORTED Unsupported SSL protocol or
unsupported certificate type.

0x0000019d 413 GSK_ERROR_BAD_CERT_SIG The received certificate contained
an incorrect signature.

0x0000019e 414 GSK_ERROR_BAD_CERT Incorrectly formatted certificate
received from partner.

0x0000019f 415 GSK_ERROR_BAD_PEER Invalid SSL protocol received from
partner.

0x000001a0 416 GSK_ERROR_PERMISSION_DENIED Report this internal error to
service.

0x000001a1 417 GSK_ERROR_SELF_SIGNED The self-signed certificate is not
valid.

0x000001a2 418 GSK_ERROR_NO_READ_FUNCTION The read operation failed. Report
this internal error to service.

0x000001a3 419 GSK_ERROR_NO_WRITE_FUNCTION The write operation failed. Report
this internal error to service.

0x000001a4 420 GSK_ERROR_SOCKET_CLOSED The partner closed the socket
before the protocol completed.

0x000001a5 421 GSK_ERROR_BAD_V2_CIPHER The specified V2 cipher is not
valid.

0x000001a6 422 GSK_ERROR_BAD_V3_CIPHER The specified V3 cipher is not
valid.

0x000001a7 423 GSK_ERROR_BAD_SEC_TYPE Report this internal error to
service.

0x000001a8 424 GSK_ERROR_BAD_SEC_
TYPE_COMBINATION

Report this internal error to
service.

0x000001a9 425 GSK_ERROR_HANDLE_
CREATION_FAILED

The handle could not be created.
Report this internal error to
service.

0x000001aa 426 GSK_ERROR_INITIALIZATION_
FAILED

Initialization failed. Report this
internal error to service.

0x000001ab 427 GSK_ERROR_LDAP_NOT_AVAILABLE When validating a certificate,
unable to access the specified
LDAP directory.

0x000001ac 428 GSK_ERROR_NO_PRIVATE_KEY The specified key did not contain
a private key.

0x000001ad 429 GSK_ERROR_PKCS11_
LIBRARY_NOTLOADED

A failed attempt was made to load
the specified PKCS11 shared
library.

0x000001ae 430 GSK_ERROR_PKCS11_TOKEN_
LABELMISMATCH

The PKCS #11 driver failed to find
the token specified by the caller.

0x000001af 431 GSK_ERROR_PKCS11_TOKEN_
NOTPRESENT

A PKCS #11 token is not present
in the slot.

Chapter 16. Authentications, authorizations, privileges, and authorities 133

Table 10. GSKit general return codes (continued)

Return code
(hexadecimal)

Return
code
(decimal) Constant Explanation

0x000001b0 432 GSK_ERROR_PKCS11_TOKEN_
BADPASSWORD

The password/pin to access the
PKCS #11 token is invalid.

0x000001b1 433 GSK_ERROR_INVALID_V2_HEADER The SSL header received was not a
properly SSLV2 formatted header.

0x000001b2 434 GSK_CSP_OPEN_ERROR Unable to access the
hardware-based cryptographic
service provider (CSP). Either the
given CSP name is not registered
in the system or the specified CSP
name is registered but the
certificate store failed to open.

0x000001b3 435 GSK_CONFLICTING_ATTRIBUTE_
SETTING

Attribute setting conflict between
PKCS11, CMS key database, and
Microsoft Crypto API.

0x000001b4 436 GSK_UNSUPPORTED_PLATFORM The requested function is not
supported on the platform that the
application is running. For
example, the Microsoft Crypto API
is not supported on platforms
other than Windows 2000.

0x000001b5 437 GSK_ERROR_INCORRECT_
SESSION_TYPE

Incorrect value is returned from
the reset session type callback
function.
Only GSKit
GSK_SERVER_SESSION or
GSK_SERVER_SESSION_
WITH_CL_AUTH is
allowed.

0x000001f5 501 GSK_INVALID_BUFFER_SIZE The buffer size is negative or zero.

0x000001f6 502 GSK_WOULD_BLOCK Used with non-blocking I/O.

0x00000259 601 GSK_ERROR_NOT_SSLV3 SSLV3 is required for reset_cipher,
and the connection uses SSLV2.

0x0000025a 602 GSK_MISC_INVALID_ID An invalid ID was specified for
the gsk_secure_soc_misc function
call.

0x000002bd 701 GSK_ATTRIBUTE_INVALID_ID The function call has an invalid
ID. This also might be caused by
specifying an environment handle
when a handle for a SSL
connection should be used.

0x000002be 702 GSK_ATTRIBUTE_INVALID_LENGTH The attribute has a negative
length, which is invalid.

0x000002bf 703 GSK_ATTRIBUTE_INVALID_
ENUMERATION

The enumeration value is invalid
for the specified enumeration
type.

0x000002c0 704 GSK_ATTRIBUTE_INVALID_
SID_CACHE

Invalid parameter list for replacing
the Session ID (SID) cache
routines.

134 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 10. GSKit general return codes (continued)

Return code
(hexadecimal)

Return
code
(decimal) Constant Explanation

0x000002c1 705 GSK_ATTRIBUTE_INVALID_
NUMERIC_VALUE

When setting a numeric attribute,
the specified value is invalid for
the specific attribute being set.

0x000002c2 706 GSK_CONFLICTING_VALIDATION_
SETTING

Conflicting parameters have been
set for additional certificate
validation.

0x000002c3 707 GSK_AES_UNSUPPORTED The cipher specification included
an AES cipher that is not
supported on the system of
execution.

0x000002c4 708 GSK_PEERID_LENGTH_ERROR The length of the peer ID is
incorrect. It must be less than or
equal to 16 bytes.

0x000002c5 709 GSK_CIPHER_INVALID_WHEN_
FIPS_MODE_OFF

Given cipher is not allowed when
FIPS mode is off.

0x000002c6 710 GSK_CIPHER_INVALID_WHEN_
FIPS_MODE_ON

No FIPS approved cipher have
been selected in FIPS mode.

0x00000641 1601 GSK_TRACE_STARTED The trace started successfully.

0x00000642 1602 GSK_TRACE_STOPPED The trace stopped successfully.

0x00000643 1603 GSK_TRACE_NOT_STARTED No trace file was previously
started so it cannot be stopped.

0x00000644 1604 GSK_TRACE_ALREADY_STARTED Trace file already started so it
cannot be started again.

0x00000645 1605 GSK_TRACE_OPEN_FAILED Trace file can not be opened. The
first parameter of gsk_start_trace()
must be a valid full path file
name.

Key management return codes

Table 11. Key management return codes

Return code
(hexadecimal)

Return code
(decimal) Constant

0x00000000 0 GSKKM_ERR_OK

0x00000000 0 GSKKM_ERR_SUCCESS

0x00000001 1 GSKKM_ERR_UNKNOWN

0x00000002 2 GSKKM_ERR_ASN

0x00000003 3 GSKKM_ERR_ASN_INITIALIZATION

0x00000004 4 GSKKM_ERR_ASN_PARAMETER

0x00000005 5 GSKKM_ERR_DATABASE

0x00000006 6 GSKKM_ERR_DATABASE_OPEN

0x00000007 7 GSKKM_ERR_DATABASE_RE_OPEN

0x00000008 8 GSKKM_ERR_DATABASE_CREATE

0x00000009 9 GSKKM_ERR_DATABASE_ALREADY_EXISTS

Chapter 16. Authentications, authorizations, privileges, and authorities 135

Table 11. Key management return codes (continued)

Return code
(hexadecimal)

Return code
(decimal) Constant

0x0000000a 10 GSKKM_ERR_DATABASE_DELETE

0x0000000b 11 GSKKM_ERR_DATABASE_NOT_OPENED

0x0000000c 12 GSKKM_ERR_DATABASE_READ

0x0000000d 13 GSKKM_ERR_DATABASE_WRITE

0x0000000e 14 GSKKM_ERR_DATABASE_VALIDATION

0x0000000f 15 GSKKM_ERR_DATABASE_INVALID_VERSION

0x00000010 16 GSKKM_ERR_DATABASE_INVALID_PASSWORD

0x00000011 17 GSKKM_ERR_DATABASE_INVALID_FILE_TYPE

0x00000012 18 GSKKM_ERR_DATABASE_CORRUPTION

0x00000013 19 GSKKM_ERR_DATABASE_PASSWORD_
CORRUPTION

0x00000014 20 GSKKM_ERR_DATABASE_KEY_INTEGRITY

0x00000015 21 GSKKM_ERR_DATABASE_DUPLICATE_KEY

0x00000016 22 GSKKM_ERR_DATABASE_DUPLICATE_
KEY_RECORD_ID

0x00000017 23 GSKKM_ERR_DATABASE_DUPLICATE_
KEY_LABEL

0x00000018 24 GSKKM_ERR_DATABASE_DUPLICATE_
KEY_SIGNATURE

0x00000019 25 GSKKM_ERR_DATABASE_DUPLICATE_
KEY_UNSIGNED_CERTIFICATE

0x0000001a 26 GSKKM_ERR_DATABASE_DUPLICATE_KEY_
ISSUER_AND_SERIAL_NUMBER

0x0000001b 27 GSKKM_ERR_DATABASE_DUPLICATE_KEY_
SUBJECT_PUBLIC_KEY_INFO

0x0000001c 28 GSKKM_ERR_DATABASE_DUPLICATE_KEY_
UNSIGNED_CRL

0x0000001d 29 GSKKM_ERR_DATABASE_DUPLICATE_LABEL

0x0000001e 30 GSKKM_ERR_DATABASE_PASSWORD_
ENCRYPTION

0x0000001f 31 GSKKM_ERR_DATABASE_LDAP

0x00000020 32 GSKKM_ERR_CRYPTO

0x00000021 33 GSKKM_ERR_CRYPTO_ENGINE

0x00000022 34 GSKKM_ERR_CRYPTO_ALGORITHM

0x00000023 35 GSKKM_ERR_CRYPTO_SIGN

0x00000024 36 GSKKM_ERR_CRYPTO_VERIFY

0x00000025 37 GSKKM_ERR_CRYPTO_DIGEST

0x00000026 38 GSKKM_ERR_CRYPTO_PARAMETER

0x00000027 39 GSKKM_ERR_CRYPTO_UNSUPPORTED_
ALGORITHM

0x00000028 40 GSKKM_ERR_CRYPTO_INPUT_GREATER_
THAN_MODULUS

136 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 11. Key management return codes (continued)

Return code
(hexadecimal)

Return code
(decimal) Constant

0x00000029 41 GSKKM_ERR_CRYPTO_UNSUPPORTED_
MODULUS_SIZE

0x0000002a 42 GSKKM_ERR_VALIDATION

0x0000002b 43 GSKKM_ERR_VALIDATION_KEY

0x0000002c 44 GSKKM_ERR_VALIDATION_DUPLICATE_
EXTENSIONS

0x0000002d 45 GSKKM_ERR_VALIDATION_KEY_WRONG_
VERSION

0x0000002e 46 GSKKM_ERR_VALIDATION_KEY_
EXTENSIONS_REQUIRED

0x0000002f 47 GSKKM_ERR_VALIDATION_KEY_VALIDITY

0x00000030 48 GSKKM_ERR_VALIDATION_KEY_VALIDITY_
PERIOD

0x00000031 49 GSKKM_ERR_VALIDATION_KEY_VALIDITY_
PRIVATE_KEY_USAGE

0x00000032 50 GSKKM_ERR_VALIDATION_KEY_ISSUER_
NOT_FOUND

0x00000033 51 GSKKM_ERR_VALIDATION_KEY_MISSING_
REQUIRED_EXTENSIONS

0x00000034 52 GSKKM_ERR_VALIDATION_KEY_BASIC_
CONSTRAINTS

0x00000035 53 GSKKM_ERR_VALIDATION_KEY_SIGNATURE

0x00000036 54 GSKKM_ERR_VALIDATION_KEY_ROOT_KEY_
NOT_TRUSTED

0x00000037 55 GSKKM_ERR_VALIDATION_KEY_IS_REVOKED

0x00000038 56 GSKKM_ERR_VALIDATION_KEY_AUTHORITY_
KEY_IDENTIFIER

0x00000039 57 GSKKM_ERR_VALIDATION_KEY_PRIVATE_KEY_
USAGE_PERIOD

0x0000003a 58 GSKKM_ERR_VALIDATION_SUBJECT_
ALTERNATIVE_NAME

0x0000003b 59 GSKKM_ERR_VALIDATION_ISSUER_
ALTERNATIVE_NAME

0x0000003c 60 GSKKM_ERR_VALIDATION_KEY_USAGE

0x0000003d 61 GSKKM_ERR_VALIDATION_KEY_
UNKNOWN_CRITICAL_EXTENSION

0x0000003e 62 GSKKM_ERR_VALIDATION_KEY_PAIR

0x0000003f 63 GSKKM_ERR_VALIDATION_CRL

0x00000040 64 GSKKM_ERR_MUTEX

0x00000041 65 GSKKM_ERR_PARAMETER

0x00000042 66 GSKKM_ERR_NULL_PARAMETER

0x00000043 67 GSKKM_ERR_NUMBER_SIZE

0x00000044 68 GSKKM_ERR_OLD_PASSWORD

0x00000045 69 GSKKM_ERR_NEW_PASSWORD

Chapter 16. Authentications, authorizations, privileges, and authorities 137

Table 11. Key management return codes (continued)

Return code
(hexadecimal)

Return code
(decimal) Constant

0x00000046 70 GSKKM_ERR_PASSWORD_EXPIRATION_TIME

0x00000047 71 GSKKM_ERR_THREAD

0x00000048 72 GSKKM_ERR_THREAD_CREATE

0x00000049 73 GSKKM_ERR_THREAD_WAIT_FOR_EXIT

0x0000004a 74 GSKKM_ERR_IO

0x0000004b 75 GSKKM_ERR_LOAD

0x0000004c 76 GSKKM_ERR_PKCS11

0x0000004d 77 GSKKM_ERR_NOT_INITIALIZED

0x0000004e 78 GSKKM_ERR_DB_TABLE_CORRUPTED

0x0000004f 79 GSKKM_ERR_MEMORY_ALLOCATE

0x00000050 80 GSKKM_ERR_UNSUPPORTED_OPTION

0x00000051 81 GSKKM_ERR_GET_TIME

0x00000052 82 GSKKM_ERR_CREATE_MUTEX

0x00000053 83 GSKKM_ERR_CMDCAT_OPEN

0x00000054 84 GSKKM_ERR_ERRCAT_OPEN

0x00000055 85 GSKKM_ERR_FILENAME_NULL

0x00000056 86 GSKKM_ERR_FILE_OPEN

0x00000057 87 GSKKM_ERR_FILE_OPEN_TO_READ

0x00000058 88 GSKKM_ERR_FILE_OPEN_TO_WRITE

0x00000059 89 GSKKM_ERR_FILE_OPEN_NOT_EXIST

0x0000005a 90 GSKKM_ERR_FILE_OPEN_NOT_ALLOWED

0x0000005b 91 GSKKM_ERR_FILE_WRITE

0x0000005c 92 GSKKM_ERR_FILE_REMOVE

0x0000005d 93 GSKKM_ERR_BASE64_INVALID_DATA

0x0000005e 94 GSKKM_ERR_BASE64_INVALID_MSGTYPE

0x0000005f 95 GSKKM_ERR_BASE64_ENCODING

0x00000060 96 GSKKM_ERR_BASE64_DECODING

0x00000061 97 GSKKM_ERR_DN_TAG_NULL

0x00000062 98 GSKKM_ERR_DN_CN_NULL

0x00000063 99 GSKKM_ERR_DN_C_NULL

0x00000064 100 GSKKM_ERR_INVALID_DB_HANDLE

0x00000065 101 GSKKM_ERR_KEYDB_NOT_EXIST

0x00000066 102 GSKKM_ERR_KEYPAIRDB_NOT_EXIST

0x00000067 103 GSKKM_ERR_PWDFILE_NOT_EXIST

0x00000068 104 GSKKM_ERR_PASSWORD_CHANGE_MATCH

0x00000069 105 GSKKM_ERR_KEYDB_NULL

0x0000006a 106 GSKKM_ERR_REQKEYDB_NULL

0x0000006b 107 GSKKM_ERR_KEYDB_TRUSTCA_NULL

0x0000006c 108 GSKKM_ERR_REQKEY_FOR_CERT_NULL

138 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 11. Key management return codes (continued)

Return code
(hexadecimal)

Return code
(decimal) Constant

0x0000006d 109 GSKKM_ERR_KEYDB_PRIVATE_KEY_NULL

0x0000006e 110 GSKKM_ERR_KEYDB_DEFAULT_KEY_NULL

0x0000006f 111 GSKKM_ERR_KEYREC_PRIVATE_KEY_NULL

0x00000070 112 GSKKM_ERR_KEYREC_CERTIFICATE_NULL

0x00000071 113 GSKKM_ERR_CRLS_NULL

0x00000072 114 GSKKM_ERR_INVALID_KEYDB_NAME

0x00000073 115 GSKKM_ERR_UNDEFINED_KEY_TYPE

0x00000074 116 GSKKM_ERR_INVALID_DN_INPUT

0x00000075 117 GSKKM_ERR_KEY_GET_BY_LABEL

0x00000076 118 GSKKM_ERR_LABEL_LIST_CORRUPT

0x00000077 119 GSKKM_ERR_INVALID_PKCS12_DATA

0x00000078 120 GSKKM_ERR_PKCS12_PWD_CORRUPTION

0x00000079 121 GSKKM_ERR_EXPORT_TYPE

0x0000007a 122 GSKKM_ERR_PBE_ALG_UNSUPPORT

0x0000007b 123 GSKKM_ERR_KYR2KDB

0x0000007c 124 GSKKM_ERR_KDB2KYR

0x0000007d 125 GSKKM_ERR_ISSUING_CERTIFICATE

0x0000007e 126 GSKKM_ERR_FIND_ISSUER_CHAIN

0x0000007f 127 GSKKM_ERR_WEBDB_DATA_BAD_FORMAT

0x00000080 128 GSKKM_ERR_WEBDB_NOTHING_TO_WRITE

0x00000081 129 GSKKM_ERR_EXPIRE_DAYS_TOO_LARGE

0x00000082 130 GSKKM_ERR_PWD_TOO_SHORT

0x00000083 131 GSKKM_ERR_PWD_NO_NUMBER

0x00000084 132 GSKKM_ERR_PWD_NO_CONTROL_KEY

0x00000085 133 GSKKM_ERR_SIGNATURE_ALGORITHM

0x00000086 134 GSKKM_ERR_INVALID_DATABASE_TYPE

0x00000087 135 GSKKM_ERR_SECONDARY_KEYDB_TO_OTHER

0x00000088 136 GSKKM_ERR_NO_SECONDARY_KEYDB

0x00000089 137 GSKKM_ERR_CRYPTOGRAPHIC_TOKEN_
LABEL_NOT_EXIST

0x0000008a 138 GSKKM_ERR_CRYPTOGRAPHIC_TOKEN_
PASSWORD_REQUIRED

0x0000008b 139 GSKKM_ERR_CRYPTOGRAPHIC_TOKEN_
PASSWORD_NOT_REQUIRED

0x0000008c 140 GSKKM_ERR_CRYPTOGRAPHIC_TOKEN_
LIBRARY_NOT_LOADED

0x0000008d 141 GSKKM_ERR_CRYPTOGRAPHIC_TOKEN_
NOT_SUPPORT

0x0000008e 142 GSKKM_ERR_CRYPTOGRAPHIC_TOKEN_
FUNCTION_FAILED

0x0000008f 143 GSKKM_ERR_LDAP_USER_NOT_FOUND

Chapter 16. Authentications, authorizations, privileges, and authorities 139

Table 11. Key management return codes (continued)

Return code
(hexadecimal)

Return code
(decimal) Constant

0x00000090 144 GSKKM_ERR_LDAP_INVALID_PASSWORD

0x00000091 145 GSKKM_ERR_LDAP_QUERY_ENTRY_FAILED

0x00000092 146 GSKKM_ERR_INVALID_CERT_CHAIN

0x00000093 147 GSKKM_ERR_CERT_ROOT_NOT_TRUSTED

0x00000094 148 GSKKM_ERR_CERT_REVOKED

0x00000095 149 GSKKM_ERR_CRYPTOGRAPHIC_OBJECT_
FUNCTION_FAILED

0x00000096 150 GSKKM_ERR_NO_AVAILABLE_CRL_
DATASOURCE

0x00000097 151 GSKKM_ERR_NO_TOKEN_PRESENT

0x00000098 152 GSKKM_ERR_FIPS_NOT_SUPPORTED

0x00000099 153 GSKKM_ERR_FIPS_CONFLICT_SETTING

0x0000009a 154 GSKKM_ERR_PASSWORD_STRENGTH_FAILED

Using an access token to acquire users’ group information (Windows)
An access token is an object that describes the security context of a process or
thread. The information in an access token includes the identity and privileges of
the user account associated with the process or thread.

When you log on, the system verifies your password by comparing it with
information stored in a security database. If the password is authenticated, the
system produces an access token. Every process run on your behalf uses a copy of
this access token.

An access token can also be acquired based on cached credentials. After you have
been authenticated to the system, your credentials are cached by the operating
system. The access token of the last logon can be referenced in the cache when it is
not possible to contact the domain controller.

The access token includes information about all of the groups you belong to: local
groups and various domain groups (global groups, domain local groups, and
universal groups).

Note: Group lookup using client authentication is not supported using a remote
connection even though access token support is enabled.

To enable access token support, you must use the db2set command to update the
DB2_GRP_LOOKUP registry variable. DB2_GRP_LOOKUP can have up to two
parameters, separated by a comma:
v The first parameter is for conventional group lookup and can take the values: ″

″, ″LOCAL″, or ″DOMAIN″.
v The second parameter is for token style group lookup and can take the values:

″TOKEN″, ″TOKENDOMAIN″, or ″TOKENLOCAL″.

140 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

If the second parameter (TOKEN, TOKENDOMAIN, or TOKENLOCAL) is
specified, it takes precedence over conventional group enumeration. If token group
enumeration fails, conventional group lookup occurs, if the first parameter of
DB2_GRP_LOOKUP was specified.

The meaning of the values TOKEN, TOKENDOMAIN, and TOKENLOCAL are as
follows:
v TOKENLOCAL

The token is used to enumerate groups at the local machine (this is equivalent to
conventional ″LOCAL″ group lookup).

v TOKENDOMAIN
The token is used to enumerate groups at the location where the user is defined
(at local machine for a local user and at the domain for a domain user). This is
equivalent to conventional ″ ″, or ″DOMAIN″ group lookup.

v TOKEN
The token is used to enumerate groups at both the domain and on the local
machine. For a local user, the groups returned will contain local groups. For a
domain user, the groups returned will contain both domain and local groups.
There is no equivalent in conventional group lookup.

For example, the following setting of DB2_GRP_LOOKUP enables access token
support for enumerating local groups:

db2set DB2_GRP_LOOKUP=LOCAL,TOKENLOCAL

The next example enables access token support for enumerating groups at both the
local machine as well as the location where the user ID is defined (if the account is
defined at the domain):

db2set DB2_GRP_LOOKUP=,TOKEN

This final example enables access token support for enumerating domain groups at
the location where the user ID is defined:

db2set DB2_GRP_LOOKUP=DOMAIN,TOKENDOMAIN

Note: Access token support can be enabled with all authentications types except
CLIENT authentication.

Details on security based on operating system
Each operating system provides ways to manage security. Some of the security
issues associated with the operating systems are discussed in this section.

Defining which users hold SYSADM authority (Windows)
Certain users have SYSADM authority if the sysadm_group database manager
configuration parameter is not set (that is, it is NULL).

These users are:
v Members of the local Administrators group
v Members of the Administrators group at the Domain Controller, if the DB2

database manager is configured to enumerate groups for users at the location
where the users are defined (you can use the DB2_GRP_LOOKUP environment
variable to configure group enumeration)

v Members of the DB2ADMNS group, if Windows extended security is enabled.
The location of the DB2ADMNS group is decided during installation.

Chapter 16. Authentications, authorizations, privileges, and authorities 141

v The LocalSystem account

There are cases where the above default behavior is not desirable. You can use the
sysadm_group database manager configuration parameter to override this
behavior by using one of the following methods:
v Create a local group on the DB2 server machine and add to it users (domain

users or local users) that you want to have SYSADM authority. The DB2
database manager should be configured to enumerate groups for the user on the
local machine.

v Create a domain group and add to it the users that you want to have SYSADM
authority. The DB2 database manager should be configured to enumerate groups
for users at the location where the users are defined.

Then update the sysadm_group database manager configuration parameter to this
group, using the following commands:

db2stop
DB2 UPDATE DBM CFG USING SYSADM_GROUP group_name
db2start

DB2 and UNIX security
There are some security considerations specific to UNIX platforms that you need to
be aware of.

The DB2 database does not support root acting directly as a database
administrator. You should use su - <instance owner> as the database administrator.

For security reasons, in general, do not use the instance name as the Fenced ID.
However, if you are not planning to use fenced UDFs or stored procedures, you
can set the Fenced ID to the instance name instead of creating another user ID.

The recommendation is to create a user ID that is recognized as being associated
with this group. The user for fenced UDFs and stored procedures is specified as a
parameter of the instance creation script (db2icrt ... -u <FencedID>). This is not
required if you install the DB2 Clients or the DB2 Software Developer’s Kit.

142 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 17. Label-based access control (LBAC)

This section explains what you need to know in order to use label-based access
control (LBAC).

Label-based access control (LBAC)
Label-based access control (LBAC) greatly increases the control you have over who
can access your data. LBAC lets you decide exactly who has write access and who
has read access to individual rows and individual columns.

What LBAC does

The LBAC capability is very configurable and can be tailored to match your
particular security environment. All LBAC configuration is performed by a security
administrator, which is a user that has been granted the SECADM authority.

A security administrator configures the LBAC system by creating security label
components. A security label component is a database object that represents a
criterion you want to use to determine if a user should access a piece of data. For
example, the criterion can be whether the user is in a certain department, or
whether they are working on a certain project. A security policy describes the
criteria that will be used to decide who has access to what data. A security policy
contains one or more security label components. Only one security policy can be
used to protect any one table but different tables can be protected by different
security policies.

After creating a security policy, a security administrator creates objects, called
security labels that are part of that policy. Security labels contain security label
components. Exactly what makes up a security label is determined by the security
policy and can be configured to represent the criteria that your organization uses
to decide who should have access to particular data items. If you decide, for
instance, that you want to look at a person’s position in the company and what
projects they are part of to decide what data they should see, then you can
configure your security labels so that each label can include that information.
LBAC is flexible enough to let you set up anything from very complicated criteria,
to a very simple system where each label represents either a ″high″ or a ″low″ level
of trust.

Once created, a security label can be associated with individual columns and rows
in a table to protect the data held there. Data that is protected by a security label is
called protected data. A security administrator allows users access to protected data
by granting them security labels. When a user tries to access protected data, that
user’s security label is compared to the security label protecting the data. The
protecting label will block some security labels and not block others.

A user, a role, or a group is allowed to hold security labels for multiple security
policies at once. For any given security policy, however, a use, a role, or a group
can hold at most one label for read access and one label for write access.

© Copyright IBM Corp. 1993, 2009 143

A security administrator can also grant exemptions to users. An exemption allows
you to access protected data that your security labels might otherwise prevent you
from accessing. Together your security labels and exemptions are called your LBAC
credentials.

If you try to access a protected column that your LBAC credentials do not allow
you to access then the access will fail and you will get an error message.

If you try to read protected rows that your LBAC credentials do not allow you to
read then DB2 acts as if those rows do not exist. Those rows cannot be selected as
part of any SQL statement that you run, including SELECT, UPDATE, or DELETE.
Even the aggregate functions ignore rows that your LBAC credentials do not allow
you to read. The COUNT(*) function, for example, will return a count only of the
rows that you have read access to.

Views and LBAC

You can define a view on a protected table the same way you can define one on a
non-protected table. When such a view is accessed the LBAC protection on the
underlying table is enforced. The LBAC credentials used are those of the session
authorization ID. Two users accessing the same view might see different rows
depending on their LBAC credentials.

Referential integrity constraints and LBAC

The following rules explain how LBAC rules are enforced in the presence of
referential integrity constraints:
v Rule 1: The LBAC read access rules are NOT applied for internally generated

scans of child tables. This is to avoid having orphan children.
v Rule 2: The LBAC read access rules are NOT applied for internally generated

scans of parent tables
v Rule 3: The LBAC write rules are applied when a CASCADE operation is

performed on child tables. For example, If a user deletes a parent, but cannot
delete any of the children because of an LBAC write rule violation, then the
delete should be rolled-back and an error raised.

Storage overhead when using LBAC

When you use LBAC to protect a table at the row level, the additional storage cost
is the cost of the row security label column. This cost depends on the type of
security label chosen. For example, if you create a security policy with two
components to protect a table, a security label from that security policy will occupy
16 bytes (8 bytes for each component). Because the row security label column is
treated as a not nullable VARCHAR column, the total cost in this case would be 20
bytes per row. In general, the total cost per row is (N*8 + 4) bytes where N is the
number of components in the security policy protecting the table.

When you use LBAC to protect a table at the column level, the column security
label is meta-data (that is, it is stored together with the column’s meta-data in the
SYSCOLUMNS catalog table). This meta-data is simply the ID of the security label
protecting the column. The user table does not incur any storage overhead in this
case.

144 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

What LBAC does not do
v LBAC will never allow access to data that is forbidden by discretionary access

control.

Example: If you do not have permission to read from a table then you will not
be allowed to read data from that table--even the rows and columns to which
LBAC would otherwise allow you access.

v Your LBAC credentials only limit your access to protected data. They have no
effect on your access to unprotected data.

v LBAC credentials are not checked when you drop a table or a database, even if
the table or database contains protected data.

v LBAC credentials are not checked when you back up your data. If you can run a
backup on a table, which rows are backed up is not limited in any way by the
LBAC protection on the data. Also, data on the backup media is not protected
by LBAC. Only data in the database is protected.

v LBAC cannot be used to protect any of the following types of tables:
– A materialized query table (MQT)
– A table that a materialized query table (MQT) depends on
– A staging table
– A table that a staging table depends on
– A typed table

v LBAC protection cannot be applied to a nickname.

LBAC tutorial

A tutorial leading you through the basics of using LBAC is available online at
http://www.ibm.com/developerworks/db2 and is called DB2 Label-Based Access
Control, a practical guide.

LBAC security policies
The security administrator uses a security policy to define criteria that determine
who has write access and who has read access to individual rows and individual
columns of tables.

A security policy includes this information:
v What security label components are used in the security labels that are part of

the policy
v What rules are used when comparing those security label components
v Which of certain optional behaviors are used when accessing data protected by

the policy
v What additional security labels and exemptions are to be considered when

enforcing access to data protected by the security policy. For example, the option
to consider or not to consider security labels granted to roles and groups is
controlled through the security policy.

Every protected table must have one and only one security policy associated with
it. Rows and columns in that table can only be protected with security labels that
are part of that security policy and all access of protected data follows the rules of
that policy. You can have multiple security policies in a single database but you
cannot have more than one security policy protecting any given table.

Chapter 17. Label-based access control (LBAC) 145

http://www.ibm.com/developerworks/db2
http://www.ibm.com/developerworks/edu/dm-dw-dm-0605wong-i.html
http://www.ibm.com/developerworks/edu/dm-dw-dm-0605wong-i.html

Creating a security policy

You must be a security administrator to create a security policy. You create a
security policy with the SQL statement CREATE SECURITY POLICY. The security
label components listed in a security policy must be created before the CREATE
SECURITY POLICY statement is executed. The order in which the components are
listed when a security policy is created does not indicate any sort of precedence or
other relationship among the components but it is important to know the order
when creating security labels with built-in functions like SECLABEL.

From the security policy you have created, you can create security labels to protect
your data.

Altering a security policy

A security administrator can use the ALTER SECURITY POLICY statement to
modify a security policy.

Dropping a security policy

You must be a security administrator to drop a security policy. You drop a security
policy using the SQL statement DROP.

You cannot drop a security policy if it is associated with (added to) any table.

LBAC security label components
This section explains what you need to know in order to use LBAC security label
components.

LBAC security label components overview
A security label component is a database object that is part of label-based access
control (LBAC). You use security label components to model your organization’s
security structure.

A security label component can represent any criteria that you might use to decide
if a user should have access to a given piece of data. Typical examples of such
criteria include:
v How well trusted the user is
v What department the user is in
v Whether the user is involved in a particular project

Example: If you want the department that a user is in to affect which data they
can access, you could create a component named dept and define elements for that
component that name the various departments in your company. You would then
include the component dept in your security policy.

An element of a security label component is one particular ″setting″ that is allowed
for that component.

Example: A security label component that represents a level of trust might have
the four elements: Top Secret, Secret, Classified, and Unclassified.

146 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Creating a security label component

You must be a security administrator to create a security label component. You
create security label components with the SQL statement CREATE SECURITY
LABEL COMPONENT.

When you create a security label component you must provide:
v A name for the component
v What type of component it is (ARRAY, TREE, or SET)
v A complete list of allowed elements
v For types ARRAY and TREE you must describe how each element fits into the

structure of the component

After creating your security label components, you can create a security policy
based on these components. From this security policy, you can create security
labels to protect your data.

Types of components

There are three types of security label components:
v TREE: Each element represents a node in a tree structure
v ARRAY: Each element represents a point on a linear scale
v SET: Each element represents one member of a set

The types are used to model the different ways in which elements can relate to
each other. For example, if you are creating a component to describe one or more
departments in a company you would probably want to use a component type of
TREE because most business structures are in the form of a tree. If you are creating
a component to represent the level of trust that a person has, you would probably
use a component of type ARRAY because for any two levels of trust, one will
always be higher than the other.

The details of each type, including detailed descriptions of the relationships that
the elements can have with each other, are described in their own section.

Altering security label components

The security administrator can use the ALTER SECURITY LABEL COMPONENT
statement to modify a security label component.

Dropping a security label component

You must be a security administrator to drop a security label component. You drop
a security label component with the SQL statement DROP.

LBAC security label component type: SET
SET is one type of security label component that can be used in a label-based
access control (LBAC) security policy.

Components of type SET are unordered lists of elements. The only comparison that
can be made for elements of this type of component is whether or not a given
element is in the list.

Chapter 17. Label-based access control (LBAC) 147

LBAC security label component type: ARRAY
ARRAY is one type of security label component.

In the ARRAY type of component the order in which the elements are listed when
the component is created defines a scale with the first element listed being the
highest value and the last being the lowest.

Example: If the component mycomp is defined in this way:
CREATE SECURITY LABEL COMPONENT mycomp

ARRAY ['Top Secret', 'Secret', 'Employee', 'Public']

Then the elements are treated as if they are organized in a structure like this:

In a component of type ARRAY, the elements can have these sorts of relationships
to each other:

Higher than
Element A is higher than element B if element A is listed earlier in the
ARRAY clause than element B.

Lower than
Element A is lower than element B if element A is listed later in the
ARRAY clause than element B

LBAC security label component type: TREE
TREE is one type of security label component that can be used in a label-based
access control (LBAC) security policy.

In the TREE type of component the elements are treated as if they are arranged in
a tree structure. When you specify an element that is part of a component of type
TREE you must also specify which other element it is under. The one exception is
the first element which must be specified as being the ROOT of the tree. This
allows you to organize the elements in a tree structure.

Example: If the component mycomp is defined this way:
CREATE SECURITY LABEL COMPONENT mycomp
TREE (

'Corporate' ROOT,
'Publishing' UNDER 'Corporate',

Secret

Employee

Top Secret

Public

Highest

Lowest

148 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

'Software' UNDER 'Corporate',
'Development' UNDER 'Software',
'Sales' UNDER 'Software',
'Support' UNDER 'Software'
'Business Sales' UNDER 'Sales'
'Home Sales' UNDER 'Sales'

)

Then the elements are treated as if they are organized in a tree structure like this:

In a component of type TREE, the elements can have these types of relationships to
each other:

Parent Element A is a parent of element B if element B is UNDER element A.

Example: This diagram shows the parent of the Business Sales element:

Child Element A is a child of element B if element A is UNDER element B.

Example: This diagram shows the children of the Software element:

Publishing Software

Development Support

Business
Sales

Home Sales

Sales

Corporate

Publishing Software

Development Support

Business
Sales

Home Sales

Sales

Corporate

Chapter 17. Label-based access control (LBAC) 149

Sibling
Two elements are siblings of each other if they have the same parent.

Example: This diagram shows the siblings of the Development element:

Ancestor
Element A is an ancestor of element B if it is the parent of B, or if it is the
parent of the parent of B, and so on. The root element is an ancestor of all
other elements in the tree.

Example: This diagram shows the ancestors of the Home Sales element:

Publishing Software

Business
Sales

Home Sales

Corporate

SalesDevelopment Support

Publishing Software

Development

Business
Sales

Home Sales

Corporate

Sales Support

150 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Descendent
Element A is a descendent of element B if it is the child of B, or if it is the
child of a child of B, and so on.

Example: This diagram shows the descendents of the Software element:

LBAC security labels
In label-based access control (LBAC) a security label is a database object that
describes a certain set of security criteria. Security labels are applied to data in
order to protect the data. They are granted to users to allow them to access
protected data.

When a user tries to access protected data, their security label is compared to the
security label that is protecting the data. The protecting security label will block
some security labels and not block others. If a user’s security label is blocked then
the user cannot access the data.

Every security label is part of exactly one security policy and includes one value
for each component in that security policy. A value in the context of a security label
component is a list of zero or more of the elements allowed by that component.

Publishing

Development Support

Business
Sales

Home Sales

Sales

Software

Corporate

Publishing Software

Corporate

SalesDevelopment Support

Business
Sales

Home Sales

Chapter 17. Label-based access control (LBAC) 151

Values for ARRAY type components can contain zero or one element, values for
other types can have zero or more elements. A value that does not include any
elements is called an empty value.

Example: If a TREE type component has the three elements Human Resources,
Sales, and Shipping then these are some of the valid values for that component:
v Human Resources (or any of the elements by itself)
v Human Resources, Shipping (or any other combination of the elements as long

as no element is included more than once)
v An empty value

Whether a particular security label will block another is determined by the values
of each component in the labels and the LBAC rule set that is specified in the
security policy of the table. The details of how the comparison is made are given
in the topic that discusses how LBAC security labels are compared.

When security labels are converted to a text string they use the format described in
the topic that discusses the format for security label values.

Creating security labels

You must be a security administrator to create a security label. You create a
security label with the SQL statement CREATE SECURITY LABEL. When you
create a security label you provide:
v A name for the label
v The security policy that the label is part of
v Values for one or more of the components included in the security policy

Any components for which a value is not specified is assumed to have an empty
value. A security label must have at least one non-empty value.

Altering security labels

Security labels cannot be altered. The only way to change a security label is to
drop it and re-create it. However, the components of a security label can be
modified by a security administrator (using the ALTER SECURITY LABEL
COMPONENT statement).

Dropping security labels

You must be a security administrator to drop a security label. You drop a security
label with the SQL statement DROP. You cannot drop a security label that is being
used to protect data anywhere in the database or that is currently held by one or
more users.

Granting security labels

You must be a security administrator to grant a security label to a user, a group, or
a role. You grant a security label with the SQL statement GRANT SECURITY
LABEL. When you grant a security label you can grant it for read access, for write
access, or for both read and write access. A user, a group, or a role cannot hold
more than one security label from the same security policy for the same type of
access.

152 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Revoking security labels

You must be a security administrator to revoke a security label from a user, group,
or role. To revoke a security label, use the SQL statement REVOKE SECURITY
LABEL.

Data types compatible with security labels

Security labels have a data type of SYSPROC.DB2SECURITYLABEL. Data
conversion is supported between SYSPROC.DB2SECURITYLABEL and
VARCHAR(128) FOR BIT DATA.

Determining the security labels held by users

You can use the following query to determine the security labels that are held by
users:
SELECT A.grantee, B.secpolicyname, c.seclabelname
FROM syscat.securitylabelaccess A, syscat.securitypolicies B, syscat.securitylabels C
WHERE A.seclabelid = C.seclabelid and B.secpolicyid = C.secpolicyid

Format for security label values
Sometimes the values in a security label are represented in the form of a character
string, for example when using the built-in function SECLABEL.

When the values in a security label are represented as a string, they are in the
following format:
v The values of the components are listed from left to right in the same order that

the components are listed in the CREATE SECURITY POLICY statement for the
security policy

v An element is represented by the name of that element
v Elements for different components are separated by a colon (:)
v If more than one element are given for the same component the elements are

enclosed in parentheses (()) and are separated by a comma (,)
v Empty values are represented by a set of empty parentheses (())

Example: A security label is part of a security policy that has these three
components in this order: Level, Department, and Projects. The security label has
these values:

Table 12. Example values for a security label

Component Values

Level Secret

Department Empty value

Projects v Epsilon 37

v Megaphone

v Cloverleaf

This security label values look like this as a string:
'Secret:():(Epsilon 37,Megaphone,Cloverleaf)'

Chapter 17. Label-based access control (LBAC) 153

How LBAC security labels are compared
When you try to access data protected by label-based access control (LBAC), your
LBAC credentials are compared to one or more security labels to see if the access is
blocked. Your LBAC credentials are any security labels you hold plus any
exemptions that you hold.

There are only two types of comparison that can be made. Your LBAC credentials
can be compared to a single security label for read access or your LBAC credentials
compared to a single security label for write access. Updating and deleting are
treated as being a read followed by a write. When an operation requires multiple
comparisons to be made, each is made separately.

Which of your security labels is used

Even though you might hold multiple security labels only one is compared to the
protecting security label. The label used is the one that meets these criteria:
v It is part of the security policy that is protecting the table being accessed.
v It was granted for the type of access (read or write).

If you do not have a security label that meets these criteria then a default security
label is assumed that has empty values for all components.

How the comparison is made

Security labels are compared component by component. If a security label does not
have a value for one of the components then an empty value is assumed. As each
component is examined, the appropriate rules of the LBAC rule set are used to
decide if the elements in your value for that component should be blocked by the
elements in the value for the same component in the protecting label. If any of
your values are blocked then your LBAC credentials are blocked by the protecting
security label.

The LBAC rule set used in the comparison is designated in the security policy. To
find out what the rules are and when each one is used, see the description of that
rule set.

How exemptions affect comparisons

If you hold an exemption for the rule that is being used to compare two values
then that comparison is not done and the protecting value is assumed not to block
the value in your security label.

Example: The LBAC rule set is DB2LBACRULES and the security policy has two
components. One component is of type ARRAY and the other is of type TREE. The
user has been granted an exemption on the rule DB2LBACREADTREE, which is
the rule used for read access when comparing values of components of type TREE.
If the user attempts to read protected data then whatever value the user has for the
TREE component, even if it is an empty value, will not block access because that
rule is not used. Whether the user can read the data depends entirely on the values
of the ARRAY component of the labels.

154 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

LBAC security label components
This section explains what you need to know in order to use LBAC security label
components.

LBAC rule sets overview
An LBAC rule set is a predefined set of rules that are used when comparing
security labels. When the values of a two security labels are being compared, one
or more of the rules in the rule set will be used to determine if one value blocks
another.

Each LBAC rule set is identified by a unique name. When you create a security
policy you must specify the LBAC rule set that will be used with that policy. Any
comparison of security labels that are part of that policy will use that LBAC rule
set.

Each rule in a rule set is also identified by a unique name. You use the name of a
rule when you are granting an exemption on that rule.

How many rules are in a set and when each rule is used can vary from rule set to
rule set.

There is currently only one supported LBAC rule set. The name of that rule set is
DB2LBACRULES.

LBAC rule set: DB2LBACRULES
The DB2LBACRULES LBAC rule set provides a traditional set of rules for
comparing the values of security label components. It protects from both write-up
and write-down.

What are write-up and write down?

Write-up and write-down apply only to components of type ARRAY and only to
write access. Write up occurs when the value protecting data that you are writing
to is higher than your value. Write-down is when the value protecting the data is
lower than yours. By default neither write-up nor write-down is allowed, meaning
that you can only write data that is protected by the same value that you have.

When comparing two values for the same component, which rules are used
depends on the type of the component (ARRAY, SET, or TREE) and what type of
access is being attempted (read, or write). This table lists the rules, tells when each
is used, and describes how the rule determines if access is blocked.

Table 13. Summary of the DB2LBACRULES rules

Rule name

Used when
comparing the
values of this
type of
component

Used when
attempting
this type of
access Access is blocked when this condition is met

DB2LBACREADARRAY ARRAY Read The user’s value is lower than the protecting value.

DB2LBACREADSET SET Read There are one or more protecting values that the user
does not hold.

Chapter 17. Label-based access control (LBAC) 155

Table 13. Summary of the DB2LBACRULES rules (continued)

Rule name

Used when
comparing the
values of this
type of
component

Used when
attempting
this type of
access Access is blocked when this condition is met

DB2LBACREADTREE TREE Read None of the user’s values is equal to or an ancestor of
one of the protecting values.

DB2LBACWRITEARRAY ARRAY Write The user’s value is higher than the protecting value or
lower than the protecting value.1

DB2LBACWRITESET SET Write There are one or more protecting values that the user
does not hold.

DB2LBACWRITETREE TREE Write None of the user’s values is equal to or an ancestor of
one of the protecting values.

Note:

1. The DB2LBACWRITEARRAY rule can be thought of as being two different
rules combined. One prevents writing to data that is higher than your level
(write-up) and the other prevents writing to data that is lower than your level
(write-down). When granting an exemption to this rule you can exempt the
user from either of these rules or from both.

How the rules handle empty values

All rules treat empty values the same way. An empty value blocks no other values
and is blocked by any non-empty value.

DB2LBACREADSET and DB2LBACWRITESET examples

These examples are valid for a user trying to read or trying to write protected data.
They assume that the values are for a component of type SET that has these
elements: one two three four

Table 14. Examples of applying the DB2LBACREADSET and DB2LBACWRITESET rules.

User’s value Protecting value Access blocked?

’one’ ’one’ Not blocked. The values are the same.

’(one,two,three)’ ’one’ Not blocked. The user’s value contains
the element ’one’.

’(one,two)’ ’(one,two,four)’ Blocked. The element ’four’ is in the
protecting value but not in the user’s
value.

’()’ ’one’ Blocked. An empty value is blocked
by any non-empty value.

’one’ ’()’ Not blocked. No value is blocked by
an empty value.

’()’ ’()’ Not blocked. No value is blocked by
an empty value.

156 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

DB2LBACREADTREE and DB2LBACWRITETREE

These examples are valid for both read access and write access. They assume that
the values are for a component of type TREE that was defined in this way:
CREATE SECURITY LABEL COMPONENT mycomp
TREE (

'Corporate' ROOT,
'Publishing' UNDER 'Corporate',
'Software' UNDER 'Corporate',
'Development' UNDER 'Software',
'Sales' UNDER 'Software',
'Support' UNDER 'Software'
'Business Sales' UNDER 'Sales'
'Home Sales' UNDER 'Sales'

)

This means the elements are in this arrangement:

Table 15. Examples of applying the DB2LBACREADTREE and DB2LBACWRITETREE
rules.

User’s value Protecting value Access blocked?

’(Support,Sales)’ ’Development’ Blocked. The element
’Development’ is not one of the
user’s values and neither
’Support’ nor ’Sales’ is an
ancestor of ’Development’.

’(Development,Software)’ ’(Business Sales,Publishing)’ Not blocked. The element
’Software’ is an ancestor of
’Business Sales’.

’(Publishing,Sales)’ ’(Publishing,Support)’ Not blocked. The element
’Publishing’ is in both sets of
values.

’Corporate’ ’Development’ Not blocked. The root value is
an ancestor of all other values.

’()’ ’Sales’ Blocked. An empty value is
blocked by any non-empty
value.

’Home Sales’ ’()’ Not blocked. No value is
blocked by an empty value.

Publishing Software

Development Support

Business
Sales

Home Sales

Sales

Corporate

Chapter 17. Label-based access control (LBAC) 157

Table 15. Examples of applying the DB2LBACREADTREE and DB2LBACWRITETREE
rules. (continued)

User’s value Protecting value Access blocked?

’()’ ’()’ Not blocked. No value is
blocked by an empty value.

DB2LBACREADARRAY examples

These examples are for read access only. They assume that the values are for a
component of type ARRAY that includes these elements in this arrangement:

Table 16. Examples of applying the DB2LBACREADARRAY rule.

User’s value Protecting value Read access blocked?

’Secret’ ’Employee’ Not blocked. The element ’Secret’ is higher
than the element ’Employee’.

’Secret’ ’Secret’ Not blocked. The values are the same.

’Secret’ ’Top Secret’ Blocked. The element ’Top Secret’ is higher
than the element ’Secret’.

’()’ ’Public’ Blocked. An empty value is blocked by any
non-empty value.

’Public’ ’()’ Not blocked. No value is blocked by an
empty value.

’()’ ’()’ Not blocked. No value is blocked by an
empty value.

DB2LBACWRITEARRAY examples

These examples are for write access only. They assume that the values are for a
component of type ARRAY that includes these elements in this arrangement:

Secret

Employee

Top Secret

Public

Highest

Lowest

158 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 17. Examples of applying the DB2LBACWRITEARRAY rule.

User’s value Protecting value Write access blocked?

’Secret’ ’Employee’ Blocked. The element ’Employee’ is lower
than the element ’Secret’.

’Secret’ ’Secret’ Not blocked. The values are the same.

’Secret’ ’Top Secret’ Blocked. The element ’Top Secret’ is higher
than the element ’Secret’.

’()’ ’Public’ Blocked. An empty value is blocked by any
non-empty value.

’Public’ ’()’ Not blocked. No value is blocked by an
empty value.

’()’ ’()’ Not blocked. No value is blocked by an
empty value.

LBAC rule exemptions
When you hold an LBAC rule exemption on a particular rule of a particular
security policy, that rule is not enforced when you try to access data protected by
that security policy.

An exemption has no effect when comparing security labels of any security policy
other than the one for which it was granted.

Example:

There are two tables: T1 and T2. T1 is protected by security policy P1 and T2 is
protected by security policy P2. Both security policies have one component. The
component of each is of type ARRAY. T1 and T2 each contain only one row of
data. The security label that you hold for read access under security policy P1 does
not allow you access to the row in T1. The security label that you hold for read
access under security policy P2 does not allow you read access to the row in T2.

Now you are granted an exemption on DB2LBACREADARRAY under P1. You can
now read the row from T1 but not the row from T2 because T2 is protected by a
different security policy and you do not hold an exemption to the
DB2LBACREADARRAY rule in that policy.

Secret

Employee

Top Secret

Public

Highest

Lowest

Chapter 17. Label-based access control (LBAC) 159

You can hold multiple exemptions. If you hold an exemption to every rule used by
a security policy then you will have complete access to all data protected by that
security policy.

Granting LBAC rule exemptions

You must be a security administrator to grant an LBAC rule exemption. To grant
an LBAC rule exemption, use the SQL statement GRANT EXEMPTION ON RULE.

When you grant an LBAC rule exemption you provide this information:
v The rule or rules that the exemption is for
v The security policy that the exemption is for
v The user, group, or role to which you are granting the exemption

Important: LBAC rule exemptions provide very powerful access. Do not grant
them without careful consideration.

Revoking LBAC rule exemptions

You must be a security administrator to revoke an LBAC rule exemption. To
revoke an LBAC rule exemption, use the SQL statement REVOKE EXEMPTION
ON RULE.

Determining the rule exemptions held by users

You can use the following query to determine the rule exemptions that are held by
users:
SELECT A.grantee, A.accessrulename, B.secpolicyname
FROM syscat.securitypolicyexemptions A, syscat.securitypolicies B
WHERE A.secpolicyid = B.secpolicyid

Built-in functions for managing LBAC security labels
The built-in functions SECLABEL, SECLABEL_BY_NAME, and
SECLABEL_TO_CHAR are provided for managing label-based access control
(LBAC) security labels.

Each is described briefly here and in detail in the SQL Reference

SECLABEL

This built-in function is used to build a security label by specifying a security
policy and values for each of the components in the label. The returned value has
a data type of DB2SECURITYLABEL and is a security label that is part of the
indicated security policy and has the indicated values for the components. It is not
necessary that a security label with the indicated values already exists.

Example: Table T1 has two columns, the first has a data type of
DB2SECURITYLABEL and the second has a data type of INTEGER. T1 is protected
by security policy P1, which has three security label components: level,
departments, and groups. If UNCLASSIFIED is an element of the component level,
ALPHA and SIGMA are both elements of the component departments, and G2 is
an element of the component groups then a security label could be inserted like
this:

160 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

INSERT INTO T1 VALUES
(SECLABEL('P1', 'UNCLASSIFIED:(ALPHA,SIGMA):G2'), 22)

SECLABEL_BY_NAME

This built-in function accepts the name of a security policy and the name of a
security label that is part of that security policy. It then returns the indicated
security label as a DB2SECURITYLABEL. You must use this function when
inserting an existing security label into a column that has a data type of
DB2SECURITYLABEL.

Example: Table T1 has two columns, the first has a data type of
DB2SECURITYLABEL and the second has a data type of INTEGER. The security
label named L1 is part of security policy P1. This SQL inserts the security label:
INSERT INTO T1 VALUES (SECLABEL_BY_NAME('P1', 'L1'), 22)

This SQL statement does not work:
INSERT INTO T1 VALUES (P1.L1, 22) // Syntax Error!

SECLABEL_TO_CHAR

This built-in function returns a string representation of the values that make up a
security label.

Example: Column C1 in table T1 has a data type of DB2SECURITYLABEL. T1 is
protected by security policy P1, which has three security label components: level,
departments, and groups. There is one row in T1 and the value in column C1 that
has these elements for each of the components:

Component Elements

level SECRET

departments DELTA and SIGMA

groups G3

A user that has LBAC credentials that allow reading the row executes this SQL
statement:
SELECT SECLABEL_TO_CHAR('P1', C1) AS C1 FROM T1

The output looks like this:
C1

'SECRET:(DELTA,SIGMA):G3'

Protection of data using LBAC
Label-based access control (LBAC) can be used to protect rows of data, columns of
data, or both. Data in a table can only be protected by security labels that are part
of the security policy protecting the table. Data protection, including adding a
security policy, can be done when creating the table or later by altering the table.

You can add a security policy to a table and protect data in that table as part of the
same CREATE TABLE or ALTER TABLE statement.

Chapter 17. Label-based access control (LBAC) 161

As a general rule you are not allowed to protect data in such a way that your
current LBAC credentials do not allow you to write to that data.

Adding a security policy to a table

You can add a security policy to a table when you create the table by using the
SECURITY POLICY clause of the CREATE TABLE statement. You can add a
security policy to an existing table by using the ADD SECURITY POLICY clause of
the ALTER TABLE statement. You do not need to have SECADM authority or have
LBAC credentials to add a security policy to a table.

Security policies cannot be added to types of tables that cannot be protected by
LBAC. See the overview of LBAC for a list of table types that cannot be protected
by LBAC.

No more than one security policy can be added to any table.

Protecting rows

You can allow protected rows in a new table by including a column with a data
type of DB2SECURITYLABEL when you create the table. The CREATE TABLE
statement must also add a security policy to the table. You do not need to have
SECADM authority or have any LBAC credentials to create such a table.

You can allow protected rows in an existing table by adding a column that has a
data type of DB2SECURITYLABEL. To add such a column, either the table must
already be protected by a security policy or the ALTER TABLE statement that adds
the column must also add a security policy to the table. When the column is
added, the security label you hold for write access is used to protect all existing
rows. If you do not hold a security label for write access that is part of the security
policy protecting the table then you cannot add a column that has a data type of
DB2SECURITYLABEL.

After a table has a column of type DB2SECURITYLABEL you protect each new
row of data by storing a security label in that column. The details of how this
works are described in the topics about inserting and updating LBAC protected
data. You must have LBAC credentials to insert rows into a table that has a column
of type DB2SECURITYLABEL.

A column that has a data type of DB2SECURITYLABEL cannot be dropped and
cannot be changed to any other data type.

Protecting columns

You can protect a column when you create the table by using the SECURED WITH
column option of the CREATE TABLE statement. You can add protection to an
existing column by using the SECURED WITH option in an ALTER TABLE
statement.

To protect a column with a particular security label you must have LBAC
credentials that allow you to write to data protected by that security label. You do
not have to have SECADM authority.

Columns can only be protected by security labels that are part of the security
policy protecting the table. You cannot protect columns in a table that has no

162 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

security policy. You are allowed to protect a table with a security policy and
protect one or more columns in the same statement.

You can protect any number of the columns in a table but a column can be
protected by no more than one security label.

Reading of LBAC protected data
When you try to read data protected by label-based access control (LBAC), your
LBAC credentials for reading are compared to the security label that is protecting
the data. If the protecting label does not block your credentials you are allowed to
read the data.

In the case of a protected column the protecting security label is defined in the
schema of the table. The protecting security label for that column is the same for
every row in the table. In the case of a protected row the protecting security label
is stored in the row in a column of type DB2SECURITYLABEL. It can be different
for every row in the table.

The details of how your LBAC credentials are compared to a security label are
given in the topic about how LBAC security labels are compared.

Reading protected columns

When you try to read from a protected column your LBAC credentials are
compared with the security label protecting the column. Based on this comparison
access will either be blocked or allowed. If access is blocked then an error is
returned and the statement fails. Otherwise, the statement proceeds as usual.

Trying to read a column that your LBAC credentials do not allow you to read,
causes the entire statement to fail.

Example:

Table T1 has two protected columns. The column C1 is protected by the security
label L1. The column C2 is protected by the security label L2.

Assume that user Jyoti has LBAC credentials for reading that allow access to
security label L1 but not to L2. If Jyoti issues the following SQL statement, the
statement will fail:
SELECT * FROM T1

The statement fails because column C2 is included in the SELECT clause as part of
the wildcard (*).

If Jyoti issues the following SQL statement it will succeed:
SELECT C1 FROM T1

The only protected column in the SELECT clause is C1, and Jyoti’s LBAC
credentials allow her to read that column.

Reading protected rows

If you do not have LBAC credentials that allow you to read a row it is as if that
row does not exist for you.

Chapter 17. Label-based access control (LBAC) 163

When you read protected rows, only those rows to which your LBAC credentials
allow read access are returned. This is true even if the column of type
DB2SECURITYLABEL is not part of the SELECT clause.

Depending on their LBAC credentials, different users might see different rows in a
table that has protected rows. For example, two users executing the statement
SELECT COUNT(*) FROM T1 may get different results if T1 has protected rows and
the users have different LBAC credentials.

Your LBAC credentials affect not only SELECT statements but also other SQL
statements like UPDATE, and DELETE. If you do not have LBAC credentials that
allow you to read a row, you cannot affect that row.

Example:

Table T1 has these rows and columns. The column ROWSECURITYLABEL has a
data type of DB2SECURITYLABEL.

Table 18. Example values in table T1

LASTNAME DEPTNO ROWSECURITYLABEL

Rjaibi 55 L2

Miller 77 L1

Fielding 11 L3

Bird 55 L2

Assume that user Dan has LBAC credentials that allow him to read data that is
protected by security label L1 but not data protected by L2 or L3.

Dan issues the following SQL statement:
SELECT * FROM T1

The SELECT statement returns only the row for Miller. No error messages or
warning are returned.

Dan’s view of table T1 is this:

Table 19. Example values in view of table T1

LASTNAME DEPTNO ROWSECURITYLABEL

Miller 77 L1

The rows for Rjaibi, Fielding, and Bird are not returned because read access is
blocked by their security labels. Dan cannot delete or update these rows. They will
also not be included in any aggregate functions. For Dan it is as if those rows do
not exist.

Dan issues this SQL statement:
SELECT COUNT(*) FROM T1

The statement returns a value of 1 because only the row for Miller can be read by
the user Dan.

164 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Reading protected rows that contain protected columns

Column access is checked before row access. If your LBAC credentials for read
access are blocked by the security label protecting one of the columns you are
selecting then the entire statement fails. If not, the statement continues and only
the rows protected by security labels to which your LBAC credentials allow read
access are returned.

Example

The column LASTNAME of table T1 is protected with the security label L1. The
column DEPTNO is protected with security label L2. The column
ROWSECURITYLABEL has a data type of DB2SECURITYLABEL. T1, including the
data, looks like this:

Table 20. Example values in table T1

LASTNAME
Protected by L1

DEPTNO
Protected by L2 ROWSECURITYLABEL

Rjaibi 55 L2

Miller 77 L1

Fielding 11 L3

Assume that user Sakari has LBAC credentials that allow reading data protected
by security label L1 but not L2 or L3.

Sakari issues this SQL statement:
SELECT * FROM T1

The statement fails because the SELECT clause uses the wildcard (*) which
includes the column DEPTNO. The column DEPTNO is protected by security label
L2, which Sakari’s LBAC credentials do not allow her to read.

Sakari next issues this SQL statement:
SELECT LASTNAME, ROWSECURITYLABEL FROM T1

The select clause does not include any columns that Sakari is not able to read so
the statement continues. Only one row is returned, however, because each of the
other rows is protected by security label L2 or L3.

Table 21. Example output from query on table T1

LASTNAME ROWSECURITYLABEL

Miller L1

Inserting of LBAC protected data
When you try to insert data into a protected column, or to insert a new row into a
table with protected rows, your LBAC credentials determine how that INSERT
statement is handled.

Chapter 17. Label-based access control (LBAC) 165

Inserting to protected columns

When you try to insert data into a protected column your LBAC credentials for
writing are compared with the security label protecting that column. Based on this
comparison access will either be blocked or allowed.

The details of how two security labels are compared are given in the topic about
how LBAC security labels are compared.

If access is allowed, the statement proceeds as usual. If access is blocked, then the
insert fails and an error is returned.

If you are inserting a row but do not provide a value for a protected column then
a default value is inserted if one is available. This happens even if your LBAC
credentials do not allow write access to that column. A default is available in the
following cases:
v The column was declared with the WITH DEFAULT option
v The column is a generated column
v The column has a default value that is given through a BEFORE trigger
v The column has a data type of DB2SECURITYLABEL, in which case security

label that you hold for write access is the default value

Inserting to protected rows

When you insert a new row into a table with protected rows, you do not have to
provide a value for the column that is of type DB2SECURITYLABEL. If you do not
provide a value for that column, the column is automatically populated with the
security label you have been granted for write access. If you have not been granted
a security label for write access, an error is returned and the insert fails.

By using built-in functions like SECLABEL, you can explicitly provide a security
label to be inserted in a column of type DB2SECURITYLABEL. The provided
security label is only used, however, if your LBAC credentials would allow you to
write to data that is protected with the security label you are trying to insert.

If you provide a security label that you would not be able to write, then what
happens depends on the security policy that is protecting the table. If the security
policy has the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option,
then the insert fails and an error is returned. If the security policy does not have
the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option or if it
instead has the OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option,
then the security label you provide is ignored and if you hold a security label for
write access, it is used instead. If you do not hold a security label for write access,
an error is returned.

Examples

Table T1 is protected by a security policy named P1 that was created without the
RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option. Table T1 has
two columns but no rows. The columns are LASTNAME and LABEL. The column
LABEL has a data type of DB2SECURITYLABEL.

User Joe holds a security label L2 for write access. Assume that the security label
L2 allows him to write to data protected by security label L2 but not to data
protected by security labels L1 or L3.

166 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Joe issues the following SQL statement:
INSERT INTO T1 (LASTNAME, DEPTNO) VALUES ('Rjaibi', 11)

Because no security label was included in the INSERT statement, Joe’s security
label for write access is inserted into the LABEL row.

Table T1 now looks like this:

Table 22. Values in the example table T1 after first INSERT statement

LASTNAME LABEL

Rjaibi L2

Joe issues the following SQL statement, in which he explicitly provides the security
label to be inserted into the column LABEL:
INSERT INTO T1 VALUES ('Miller', SECLABEL_BY_NAME('P1', 'L1'))

The SECLABEL_BY_NAME function in the statement returns a security label that
is part of security policy P1 and is named L1. Joe is not allowed to write to data
that is protected with L1 so he is not allowed to insert L1 into the column LABEL.

Because the security policy protecting T1 was created without the RESTRICT NOT
AUTHORIZED WRITE SECURITY LABEL option the security label that Joe holds
for writing is inserted instead. No error or message is returned.

The table now looks like this:

Table 23. Values in example table T1 after second INSERT statement

LASTNAME LABEL

Rjaibi L2

Miller L2

If the security policy protecting the table had been created with the RESTRICT
NOT AUTHORIZED WRITE SECURITY LABEL option then the insert would have
failed and an error would have been returned.

Next Joe is granted an exemption to one of the LBAC rules. Assume that his new
LBAC credentials allow him to write to data that is protected with security labels
L1 and L2. The security label granted to Joe for write access does not change, it is
still L2.

Joe issues the following SQL statement:
INSERT INTO T1 VALUES ('Bird', SECLABEL_BY_NAME('P1', 'L1'))

Because of his new LBAC credentials Joe is able to write to data that is protected
by the security label L1. The insertion of L1 is therefore allowed. The table now
looks like this:

Table 24. Values in example table T1 after third INSERT statement

LASTNAME LABEL

Rjaibi L2

Miller L2

Bird L1

Chapter 17. Label-based access control (LBAC) 167

Updating of LBAC protected data
Your LBAC credentials must allow you write access to data before you can update
it. In the case of updating a protected row, your LBAC credentials must also allow
read access to the row.

Updating protected columns

When you try to update data in a protected column, your LBAC credentials are
compared to the security label protecting the column. The comparison made is for
write access. If write access is blocked then an error is returned and the statement
fails, otherwise the update continues.

The details of how your LBAC credentials are compared to a security label are
given in the topic about how LBAC security labels are compared.

Example:

Assume there is a table T1 in which column DEPTNO is protected by a security
label L2 and column PAYSCALE is protected by a security label L3. T1, including
its data, looks like this:

Table 25. Table T1

EMPNO LASTNAME

DEPTNO
Protected by
L2

PAYSCALE
Protected by
L3

1 Rjaibi 11 4

2 Miller 11 7

3 Bird 11 9

User Lhakpa has no LBAC credentials. He issues this SQL statement:
UPDATE T1 SET EMPNO = 4

WHERE LASTNAME = "Bird"

This statement executes without error because it does not update any protected
columns. T1 now looks like this:

Table 26. Table T1 After Update

EMPNO LASTNAME

DEPTNO
Protected by
L2

PAYSCALE
Protected by
L3

1 Rjaibi 11 4

2 Miller 11 7

4 Bird 11 9

Lhakpa next issues this SQL statement:
UPDATE T1 SET DEPTNO = 55

WHERE LASTNAME = "Miller"

168 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

This statement fails and an error is returned because DEPTNO is protected and
Lhakpa has no LBAC credentials.

Assume Lhakpa is granted LBAC credentials and that allow the access
summarized in the following table. The details of what those credentials are and
what elements are in the security labels are not important for this example.

Security label protecting the data Can read? Can Write?

L2 No Yes

L3 No No

Lhakpa issues this SQL statement again:
UPDATE T1 SET DEPTNO = 55

WHERE LASTNAME = "Miller"

This time the statement executes without error because Lhakpa’s LBAC credentials
allow him to write to data protected by the security label that is protecting the
column DEPTNO. It does not matter that he is not able to read from that same
column. The data in T1 now looks like this:

Table 27. Table T1 After Second Update

EMPNO LASTNAME

DEPTNO
Protected by
L2

PAYSCALE
Protected by
L3

1 Rjaibi 11 4

2 Miller 55 7

4 Bird 11 9

Next Lhakpa issues this SQL statement:
UPDATE T1 SET DEPTNO = 55, PAYSCALE = 4

WHERE LASTNAME = "Bird"

The column PAYSCALE is protected by the security label L3 and Lhakpa’s LBAC
credentials do not allow him to write to it. Because Lhakpa is unable to write to
the column, the update fails and no data is changed.

Updating protected rows

If your LBAC credentials do not allow you to read a row, then it is as if that row
does not exist for you so there is no way for you to update that row. For rows that
you are able to read, you must also be able to write to the row in order to update
it.

When you try to update a row, your LBAC credentials for writing are compared to
the security label protecting the row. If write access is blocked, the update fails and
an error is returned. If write access is not blocked, then the update continues.

The update that is performed is done the same way as an update to a
non-protected row except for the treatment of the column that has a data type of
DB2SECURITYLABEL. If you do not explicitly set the value of that column, it is
automatically set to the security label that you hold for write access. If you do not
have a security label for write access, an error is returned and the statement fails.

Chapter 17. Label-based access control (LBAC) 169

If the update explicitly sets the column that has a data type of
DB2SECURITYLABEL, then your LBAC credentials are checked again. If the
update you are trying to perform would create a row that your current LBAC
credentials would not allow you to write to, then what happens depends on the
security policy that is protecting the table. If the security policy has the RESTRICT
NOT AUTHORIZED WRITE SECURITY LABEL option, then the update fails and
an error is returned. If the security policy does not have the RESTRICT NOT
AUTHORIZED WRITE SECURITY LABEL option or if it instead has the
OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option, then the
security label you provide is ignored and if you hold a security label for write
access, it is used instead. If you do not hold a security label for write access, an
error is returned.

Example:

Assume that table T1 is protected by a security policy named P1 and has a column
named LABEL that has a data type of DB2SECURITYLABEL.

T1, including its data, looks like this:

Table 28. Table T1

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 11 L1

2 Miller 11 L2

3 Bird 11 L3

Assume that user Jenni has LBAC credentials that allow her to read and write data
protected by the security labels L0 and L1 but not data protected by any other
security labels. The security label she holds for both read and write is L0. The
details of her full credentials and of what elements are in the labels are not
important for this example.

Jenni issues this SQL statement:
SELECT * FROM T1

Jenni sees only one row in the table:

Table 29. Jenni’s SELECT Query Result

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 11 L1

The rows protected by labels L2 and L3 are not included in the result set because
Jenni’s LBAC credentials do not allow her to read those rows. For Jenni it is as if
those rows do not exist.

Jenni issues these SQL statements:
UPDATE T1 SET DEPTNO = 44 WHERE DEPTNO = 11;
SELECT * FROM T1;

170 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The result set returned by the query looks like this:

Table 30. Jenni’s UPDATE & SELECT Query Result

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L0

The actual data in the table looks like this:

Table 31. Table T1

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L0

2 Miller 11 L2

3 Bird 11 L3

The statement executed without error but affected only the first row. The second
and third rows are not readable by Jenni so they are not selected for update by the
statement even though they meet the condition in the WHERE clause.

Notice that the value of the LABEL column in the updated row has changed even
though that column was not explicitly set in the UPDATE statement. The column
was set to the security label that Jenni held for writing.

Now Jenni is granted LBAC credentials that allow her to read data protected by
any security label. Her LBAC credentials for writing do not change. She is still
only able to write to data protected by L0 and L1.

Jenni again issues this SQL statement:
UPDATE T1 SET DEPTNO = 44 WHERE DEPTNO = 11

This time the update fails because of the second and third rows. Jenni is able to
read those rows, so they are selected for update by the statement. She is not,
however, able to write to them because they are protected by security labels L2
and L3. The update does not occur and an error is returned.

Jenni now issues this SQL statement:
UPDATE T1
SET DEPTNO = 55, LABEL = SECLABEL_BY_NAME('P1', 'L2')
WHERE LASTNAME = "Rjaibi"

The SECLABEL_BY_NAME function in the statement returns the security label
named L2. Jenni is trying to explicitly set the security label protecting the first row.
Jenni’s LBAC credentials allow her to read the first row, so it is selected for update.
Her LBAC credentials allow her to write to rows protected by the security label L0
so she is allowed to update the row. Her LBAC credentials would not, however,
allow her to write to a row protected by the security label L2, so she is not allowed
to set the column LABEL to that value. The statement fails and an error is
returned. No columns in the row are updated.

Jenni now issues this SQL statement:
UPDATE T1 SET LABEL = SECLABEL_BY_NAME('P1', 'L1') WHERE LASTNAME = "Rjaibi"

The statement succeeds because she would be able to write to a row protected by
the security label L1.

Chapter 17. Label-based access control (LBAC) 171

T1 now looks like this:

Table 32. Table T1

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L1

2 Miller 11 L2

3 Bird 11 L3

Updating protected rows that contain protected columns

If you try to update protected columns in a table with protected rows then your
LBAC credentials must allow writing to of all of the protected columns affected by
the update, otherwise the update fails and an error is returned. This is as described
in section about updating protected columns, earlier. If you are allowed to update
all of the protected columns affected by the update you will still only be able to
update rows that your LBAC credentials allow you to both read from and write to.
This is as described in the section about updating protected rows, earlier. The
handling of a column with a data type of DB2SECURITYLABEL is the same
whether the update affects protected columns or not.

If the column that has a data type of DB2SECURITYLABEL is itself a protected
column then your LBAC credentials must allow you to write to that column or you
cannot update any of the rows in the table.

Deleting or dropping of LBAC protected data
Your ability to delete data in tables protected by LBAC depend on your LBAC
credentials.

Deleting protected rows

If your LBAC credentials do not allow you to read a row, it is as if that row does
not exist for you so there is no way for you to delete it. To delete a row that you
are able to read, your LBAC credentials must also allow you to write to the row.
To delete any row in a table that has protected columns you must have LBAC
credentials that allow you to write to all protected columns in the table.

When you try to delete a row, your LBAC credentials for writing are compared to
the security label protecting the row. If the protecting security label blocks write
access by your LBAC credentials, the DELETE statement fails, an error is returned,
and no rows are deleted.

Example

Protected table T1 has these rows:

LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Miller 77 L1

Bird 55 L2

Fielding 77 L3

172 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Assume that user Pat has LBAC credentials such that her access is as summarized
in this table:

Security label Read access? Write access?

L1 Yes Yes

L2 Yes No

L3 No No

The exact details of her LBAC credentials and of the security labels are
unimportant for this example.

Pat issues the following SQL statement:
SELECT * FROM T1 WHERE DEPTNO != 999

The statement executes and returns this result set:

LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Miller 77 L1

Bird 55 L2

The last row of T1 is not included in the results because Pat does not have read
access to that row. It is as if that row does not exist for Pat.

Pat issues this SQL statement:
DELETE FROM T1 WHERE DEPTNO != 999

Pat does not have write access to the first or third row, both of which are protected
by L2. So even though she can read the rows she cannot delete them. The DELETE
statement fails and no rows are deleted.

Pat issues this SQL statement:
DELETE FROM T1 WHERE DEPTNO = 77;

This statement succeeds because Pat is able to write to the row with Miller in the
LASTNAME column. That is the only row selected by the statement. The row with
Fielding in the LASTNAME column is not selected because Pat’s LBAC credentials
do not allow her to read that row. That row is never considered for the delete so
no error occurs.

The actual rows of the table now look like this:

LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Bird 55 L2

Fielding 77 L3

Chapter 17. Label-based access control (LBAC) 173

Deleting rows that have protected columns

To delete any row in a table that has protected columns you must have LBAC
credentials that allow you to write to all protected columns in the table. If there is
any row in the table that your LBAC credentials do not allow you to write to then
the delete will fail and an error will be returned.

If the table has both protected columns and protected rows then to delete a
particular row you must have LBAC credentials that allow you to write to every
protected column in the table and also to read from and write to the row that you
want to delete.

Example

In protected table T1, the column DEPTNO is protected by the security label L2. T1
contains these rows:

LASTNAME
DEPTNO
Protected by L2 LABEL

Rjaibi 55 L2

Miller 77 L1

Bird 55 L2

Fielding 77 L3

Assume that user Benny has LBAC credentials that allow him the access
summarized in this table:

Security label Read access? Write access?

L1 Yes Yes

L2 Yes No

L3 No No

The exact details of his LBAC credentials and of the security labels are
unimportant for this example.

Benny issues the following SQL statement:
DELETE FROM T1 WHERE DEPTNO = 77

The statement fails because Benny does not have write access to the column
DEPTNO.

Now Benny’s LBAC credentials are changed so that he has access as summarized
in this table:

Security label Read access? Write access?

L1 Yes Yes

L2 Yes Yes

L3 Yes No

Benny issues this SQL statement again:

174 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

DELETE FROM T1 WHERE DEPTNO = 77

This time Benny has write access to the column DEPTNO so the delete continues.
The delete statement selects only the row that has a value of Miller in the
LASTNAME column. The row that has a value of Fielding in the LASTNAME
column is not selected because Benny’s LBAC credentials do not allow him to read
that row. Because the row is not selected for deletion by the statement it does not
matter that Benny is unable to write to the row.

The one row selected is protected by the security label L1. Benny’s LBAC
credentials allow him to write to data protected by L1 so the delete is successful.

The actual rows in table T1 now look like this:

LASTNAME
DEPTNO
Protected by L2 LABEL

Rjaibi 55 L2

Bird 55 L2

Fielding 77 L3

Dropping protected data

You cannot drop a column that is protected by a security label unless your LBAC
credentials allow you to write to that column.

A column with a data type of DB2SECURITYLABEL cannot be dropped from a
table. To remove it you must first drop the security policy from the table. When
you drop the security policy the table is no longer protected with LBAC and the
data type of the column is automatically changed from DB2SECURITYLABEL to
VARCHAR(128) FOR BIT DATA. The column can then be dropped.

Your LBAC credentials do not prevent you from dropping entire tables or
databases that contain protected data. If you would normally have permission to
drop a table or a database you do not need any LBAC credentials to do so, even if
the database contains protected data.

Removal of LBAC protection from data
You must have SECADM authority to remove the security policy from a table. To
remove the security policy from a table you use the DROP SECURITY POLICY
clause of the ALTER TABLE statement. This also automatically removes protection
from all rows and all columns of the table.

Removing protection from rows

In a table that has protected rows every row must be protected by a security label.
There is no way to remove LBAC protection from individual rows.

A column of type DB2SECURITYLABEL cannot be altered or removed except by
removing the security policy from the table.

Chapter 17. Label-based access control (LBAC) 175

Removing protection from columns

Protection of a column can be removed using the DROP COLUMN SECURITY
clause of the SQL statement ALTER TABLE. To remove the protection from a
column you must have LBAC credentials that allow you to read from and write to
that column in addition to the normal privileges and authorities needed to alter a
table.

LBAC-protected data load considerations
For a successful load operation into a table with protected rows, you must have
LBAC (label-based access control) credentials. You must also provide a valid
security label, or a security label that can be converted to a valid label, for the
security policy currently associated with the target table.

If you do not have valid LBAC credentials, the load fails and an error (SQLSTATE
42512) is returned. In cases where the input data does not contain a security label
or that security label is not in its internal binary format, you can use several file
type modifiers to allow your load to proceed.

When you load data into a table with protected rows, the target table has one
column with a data type of DB2SECURITYLABEL. If the input row of data does
not contain a value for that column, that row is rejected unless the usedefaults file
type modifier is specified in the load command, in which case the security label
you hold for write access from the security policy protecting the table is used. If
you do not hold a security label for write access, the row is rejected and processing
continues on to the next row.

When you load data into a table that has protected rows and the input data does
include a value for the column with a data type of DB2SECURITYLABEL, the
same rules are followed as when you insert data into that table. If the security
label protecting the row being loaded (the one in that row of the data file) is one
that you are able to write to, then that security label is used to protect the row. (In
other words, it is written to the column that has a data type of
DB2SECURITYLABEL.) If you are not able to write to a row protected by that
security label, what happens depends on how the security policy protecting the
source table was created:
v If the CREATE SECURITY POLICY statement that created the policy included

the option RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL, the row
is rejected.

v If the CREATE SECURITY POLICY statement did not include the option or if it
instead included the OVERRIDE NOT AUTHORIZED WRITE SECURITY
LABEL option, the security label in the data file for that row is ignored and the
security label you hold for write access is used to protect that row. No error or
warning is issued in this case. If you do not hold a security label for write
access, the row is rejected and processing continues on to the next row.

Delimiter considerations
When loading data into a column with a data type of DB2SECURITYLABEL, the
value in the data file is assumed by default to be the actual bytes that make up the
internal representation of that security label. However, some raw data might
contain newline characters which could be misinterpreted by the LOAD command
as delimiting the row. If you have this problem, use the delprioritychar file type
modifier to ensure that the character delimiter takes precedence over the row
delimiter. When you use delprioritychar, any record or column delimiters that

176 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

are contained within character delimiters are not recognized as being delimiters.
Using the delprioritychar file type modifier is safe to do even if none of the
values contain a newline character, but it does slow the load down slightly.

If the data being loaded is in ASC format, you might have to take an extra step in
order to prevent any trailing white space from being included in the loaded
security labels and security label names. ASCII format uses column positions as
delimiters, so this might occur when loading into variable-length fields. Use the
striptblanks file type modifier to truncate any trailing blank spaces.

Nonstandard security label values
You can also load data files in which the values for the security labels are strings
containing the values of the components in the security label, for example,
S:(ALPHA,BETA). To do so you must use the file type modifier seclabelchar.
When you use seclabelchar, a value for a column with a data type of
DB2SECURITYLABEL is assumed to be a string constant containing the security
label in the string format for security labels. If a string is not in the proper format,
the row is not inserted and a warning (SQLSTATE 01H53) is returned. If the string
does not represent a valid security label that is part of the security policy
protecting the table, the row is not inserted and a warning (SQLSTATE 01H53) is
returned.

You can also load a data file in which the values of the security label column are
security label names. To load this sort of file you must use the file type modifier
seclabelname. When you use seclabelname, all values for columns with a data type
of DB2SECURITYLABEL are assumed to be string constants containing the names
of existing security labels. If no security label exists with the indicated name for
the security policy protecting the table, the row is not loaded and a warning
(SQLSTATE 01H53) is returned.

Rejected rows
Rows that are rejected during the load are sent to either a dumpfile or an
exception table (if they are specified in the LOAD command), depending on the
reason why the rows were rejected. Rows that are rejected due to parsing errors
are sent to the dumpfile. Rows that violate security policies are sent to the
exception table.

Note: You cannot specify an exception table if the target table contains an XML
column.

Examples

For all examples, the input data file myfile.del is in DEL format. All are loading
data into a table named REPS, which was created with this statement:
create table reps (row_label db2securitylabel,
id integer,
name char(30))
security policy data_access_policy

For this example, the input file is assumed to contain security labels in the default
format:
db2 load from myfile.del of del modified by delprioritychar insert into reps

For this example, the input file is assumed to contain security labels in the security
label string format:
db2 load from myfile.del of del modified by seclabelchar insert into reps

Chapter 17. Label-based access control (LBAC) 177

For this example, the input file is assumed to contain security labels names for the
security label column:
db2 load from myfile.del of del modified by seclabelname insert into reps

178 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 18. Gaining access to data through indirect means

To successfully manage security, you need to be aware of indirect ways that users
can gain access to data.

The following are indirect means through which users can gain access to data they
might not be authorized to access:
v Catalog views: The DB2 database system catalog views store metadata and

statistics about database objects. Users with SELECT access to the catalog views
can gain some knowledge about data that they might not be qualified for. For
better security, make sure that only qualified users have access to the catalog
views.

Note: In DB2® Universal Database™ Version 8, or earlier, SELECT access on the
catalog views was granted to PUBLIC by default. In DB2 Version 9.1, or later,
database systems, users can choose whether SELECT access to the catalog views
is granted to PUBLIC or not by using the new RESTRICTIVE option on the
CREATE DATABASE command.

v Visual explain: Visual explain shows the access plan chosen by the query
optimizer for a particular query. The visual explain information also includes
statistics about columns referenced in the query. These statistics can reveal
information about a table’s contents.

v Explain snapshot: The explain snapshot is compressed information that is
collected when an SQL or XQuery statement is explained. It is stored as a binary
large object (BLOB) in the EXPLAIN_STATEMENT table, and contains column
statistics that can reveal information about table data. For better security, access
to the explain tables should be granted to qualified users only.

v Log reader functions: A user authorized to run a function that reads the logs
can gain access to data they might not be authorized for if they are able to
understand the format of a log record. These functions read the logs:

Function Authority needed in order to execute the function

db2ReadLog SYSADM or DBADM

db2ReadLogNoConn None.

v Replication: When you replicate data, even the protected data is reproduced at
the target location. For better security, make sure that the target location is at
least as secure as the source location.

v Exception tables: When you specify an exception table while loading data into a
table, users with access to the exception table can gain information that they
might not be authorized for. For better security, only grant access to the
exception table to authorized users and drop the exception table as soon as you
are done with it.

v Backup table space or database: Users with the authority to run the BACKUP
DATABASE command can take a backup of a database or a table space,
including any protected data, and restore the data somewhere else. The backup
can include data that the user might not otherwise have access to.
The BACKUP DATABASE command can be executed by users with SYSADM,
SYSCTRL, or SYSMAINT authority.

v Set session authorization: In DB2 Universal Database Version 8, or earlier, a
user with DBADM authority could use the SET SESSION AUTHORIZATION

© Copyright IBM Corp. 1993, 2009 179

SQL statement to set the session authorization ID to any database user. In DB2
Version 9.1, or later, database systems a user must be explicitly authorized
through the GRANT SETSESSIONUSER statement before they can set the
session authorization ID.
When upgrading an existing Version 8 database to a DB2 Version 9.1, or later,
database system, however, a user with existing explicit DBADM authority (for
example, granted in SYSCAT.DBAUTH) will keep the ability to set the session
authorization to any database user. This is allowed so that existing applications
will continue to work. Being able to set the session authorization potentially
allows access to all protected data. For more restrictive security, you can
override this setting by executing the REVOKE SETSESSIONUSER SQL
statement.

v Statement and deadlock monitoring: As part of the deadlock monitoring
activity of DB2 database management systems, values associated with parameter
markers are written to the monitoring output when the WITH VALUES clause is
specified. A user with access to the monitoring output can gain access to
information for which they might not be authorized.

v Traces: A trace can contain table data. A user with access to such a trace can
gain access to information that they might not be authorized for.

v Dump files: To help in debugging certain problems, DB2 database products
might generate memory dump files in the sqllib\db2dump directory. These
memory dump files might contain table data. If they do, users with access to the
files can gain access to information that they might not be authorized for. For
better security you should limit access to the sqllib\db2dump directory.

v db2dart: The db2dart tool examines a database and reports any architectural
errors that it finds. The tool can access table data and DB2 does not enforce
access control for that access. A user with the authority to run the db2dart tool
or with access to the db2dart output can gain access to information that they
might not be authorized for.

v REOPT bind option: When the REOPT bind option is specified, explain
snapshot information for each reoptimizable incremental bind SQL statement is
placed in the explain tables at run time. The explain will also show input data
values.

v db2cat: The db2cat tool is used to dump a table’s packed descriptor. The table’s
packed descriptor contains statistics that can reveal information about a table’s
contents. A user who runs the db2cat tool or has access to the output can gain
access to information that they might not be authorized for.

180 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 19. Authorization ID privileges: SETSESSIONUSER

Authorization ID privileges involve actions on authorization IDs. There is currently
only one such privilege: the SETSESSIONUSER privilege.

The SETSESSIONUSER privilege can be granted to a user or to a group and allows
the holder to switch identities to any of the authorization IDs on which the
privilege was granted. The identity switch is made by using the SQL statement
SET SESSION AUTHORIZATION. The SETSESSIONUSER privilege can only be
granted by a user holding SECADM authority.

Note: When you upgrade a Version 8 database to Version 9.1, or later,
authorization IDs with explicit DBADM authority on that database are
automatically granted SETSESSIONUSER privilege on PUBLIC. This prevents
breaking applications that rely on authorization IDs with DBADM authority being
able to set the session authorization ID to any authorization ID. This does not
happen when the authorization ID has SYSADM authority but has not been
explicitly granted DBADM.

© Copyright IBM Corp. 1993, 2009 181

182 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 20. User responsibilities for security

In the DB2 database manager, access to the database and its resources are typically
controlled by the system administrator (SYSADM) or database administrator
(DBADM) through the use facilities such as the GRANT and REVOKE statements.

Database users also have an important role in maintaining the security of the
database, and the objects and data in the database. At a minimum, you should
implement the following guidelines to protect against unauthorized access to your
workstation, the database, and data within the database:
v Lock your workstation when you are away from your desk.
v Ensure that you use a user ID and a password to log on to your computer and

to log on to the database manager.
If you are working on an operating system that allows for NULL passwords
(that is, you do not have to supply a password to log on to your machine),
explicitly define a password for your user ID.
Passwords are ordinarily a minimum of 8 characters, and should be changed
regularly. If you are not certain about the practices followed at your site, check
your site’s security regulations.

v Do not give your password to unauthorized users.
Some sites require that you provide your manager with your password. If you
are not certain about the practices followed at your site, check your site’s
security regulations.

v If an unexpected event occurs, or you suspect that an unauthorized individual
has accessed either your workstation or the database manager, contact your
manager or database administrator immediately.

v When using the CONNECT statement to connect to the database from the
command line processor (CLP), allow the database manager to prompt you for
the password, rather than entering it with the CONNECT statement. This
practice prevents the password from being entered into the command history of
the operating system.

v Do not hardcode passwords into applications that connect to the database.

© Copyright IBM Corp. 1993, 2009 183

184 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 21. Extended Windows security using the DB2ADMNS
and DB2USERS groups

Extended security is enabled by default in all DB2 database products on Windows
operating systems except IBM Data Server Runtime Client and DB2 Drivers. IBM
Data Server Runtime Client and DB2 Drivers do not support extended security on
Windows platforms.

An Enable operating system security check box appears on the Enable operating
system security for DB2 objects panel when you install DB2 database products.
Unless you disable this option, the installer creates two new groups, DB2ADMNS
and DB2USERS. DB2ADMNS and DB2USERS are the default group names;
optionally, you can specify different names for these groups at installation time (if
you select silent install, you can change these names within the install response
file). If you choose to use groups that already exist on your system, be aware that
the privileges of these groups will be modified. They will be given the privileges,
as required, listed in the table, below. It is important to understand that these
groups are used for protection at the operating-system level and are in no way
associated with DB2 authority levels, such as SYSADM, SYSMAINT, and SYSCTRL.
However, instead of using the default Administrator’s group, your database
administrator can use the DB2ADMNS group for one or all of the DB2 authority
levels, at the discretion of the installer or administrator. It is recommended that if
you are specifying a SYSADM group, then that should be the DB2ADMNS group.
This can be established during installation or subsequently, by an administrator.

Note: You can specify your DB2 Administrators Group (DB2ADMNS or the name
you chose during installation) and DB2 Users Group (DB2USERS or the name you
chose during installation) either as local groups or as domain groups. Both groups
must be of the same type, so either both local or both domain.

If you change the computer name, and the computer groups DB2ADMNS and
DB2USERS are local computer groups, you must update the DB2_ADMINGROUP
and DB2_USERSGROUP global registries. To update the registry variables after
renaming and restarting the computer run the following command:
1. Open a command prompt.
2. Run the db2extsec command to update security settings:

db2extsec -a new computer name\DB2ADMNS -u new computer name\DB2USERS

Note: If extended security is enabled in DB2 database products on Windows Vista,
only users that belong to the DB2ADMNS group can run the graphical DB2
administration tools. In addition, members of the DB2ADMNS group need to
launch the tools with full administrator privileges. This is accomplished by
right-clicking on the shortcut and then choosing ″Run as administrator″.

Abilities acquired through the DB2ADMNS and DB2USERS
groups

The DB2ADMNS and DB2USERS groups provide members with the following
abilities:
v DB2ADMNS

Full control over all DB2 objects (see the list of protected objects, below)

© Copyright IBM Corp. 1993, 2009 185

v DB2USERS
Read and Execute access for all DB2 objects located in the installation and
instance directories, but no access to objects under the database system directory
and limited access to IPC resources
For certain objects, there may be additional privileges available, as required (for
example, write privileges, add or update file privileges, and so on). Members of
this group have no access to objects under the database system directory.

Note: The meaning of Execute access depends on the object; for example, for a
.dll or .exe file having Execute access means you have authority to execute the
file, however, for a directory it means you have authority to traverse the
directory.

Ideally, all DB2 administrators should be members of the DB2ADMNS group (as
well as being members of the local Administrators group), but this is not a strict
requirement. Everyone else who requires access to the DB2 database system must
be a member of the DB2USERS group. To add a user to one of these groups:
1. Launch the Users and Passwords Manager tool.
2. Select the user name to add from the list.
3. Click Properties. In the Properties window, click the Group membership tab.
4. Select the Other radio button.
5. Select the appropriate group from the drop-down list.

Adding extended security after installation (db2extsec command)

If the DB2 database system was installed without extended security enabled, you
can enable it by executing the command db2extsec. To execute the db2extsec
command you must be a member of the local Administrators group so that you
have the authority to modify the ACL of the protected objects.

You can run the db2extsec command multiple times, if necessary, however, if this
is done, you cannot disable extended security unless you issue the db2extsec –r
command immediately after each execution of db2extsec.

Removing extended security

CAUTION:
Do not remove extended security after it has been enabled unless absolutely
necessary.

You can remove extended security by running the command db2extsec -r,
however, this will only succeed if no other database operations (such as creating a
database, creating a new instance, adding table spaces, and so on) have been
performed after enabling extended security. The safest way to remove the extended
security option is to uninstall the DB2 database system, delete all the relevant DB2
directories (including the database directories) and then reinstall the DB2 database
system without extended security enabled.

Protected objects

The static objects that can be protected using the DB2ADMNS and DB2USERS
groups are:
v File system

– File

186 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

– Directory
v Services
v Registry keys

The dynamic objects that can be protected using the DB2ADMNS and DB2USERS
groups are:
v IPC resources, including:

– Pipes
– Semaphores
– Events

v Shared memory

Privileges owned by the DB2ADMNS and DB2USERS groups

The privileges assigned to the DB2ADMNS and DB2USERS groups are listed in the
following table:

Table 33. Privileges for DB2ADMNS and DB2USERS groups

Privilege DB2ADMNS DB2USERS Reason

Create a token object
(SeCreateTokenPrivilege)

Y N Token manipulation (required for certain
token manipulation operations and used in
authentication and authorization)

Replace a process level token
(SeAssignPrimaryTokenPrivilege)

Y N Create process as another user

Increase quotas
(SeIncreaseQuotaPrivilege)

Y N Create process as another user

Act as part of the operating system
(SeTcbPrivilege)

Y N LogonUser (required prior to Windows XP
in order to execute the LogonUser API for
authentication purposes)

Generate security audits
(SeSecurityPrivilege)

Y N Manipulate audit and security log

Take ownership of files or other
objects (SeTakeOwnershipPrivilege)

Y N Modify object ACLs

Increase scheduling priority
(SeIncreaseBasePriorityPrivilege)

Y N Modify the process working set

Backup files and directories
(SeBackupPrivilege)

Y N Profile/Registry manipulation (required to
perform certain user profile and registry
manipulation routines: LoadUserProfile,
RegSaveKey(Ex), RegRestoreKey,
RegReplaceKey, RegLoadKey(Ex))

Restore files and directories
(SeRestorePrivilege)

Y N Profile/Registry manipulation (required to
perform certain user profile and registry
manipulation routines: LoadUserProfile,
RegSaveKey(Ex), RegRestoreKey,
RegReplaceKey, RegLoadKey(Ex))

Debug programs (SeDebugPrivilege) Y N Token manipulation (required for certain
token manipulation operations and used in
authentication and authorization)

Manage auditing and security log
(SeAuditPrivilege)

Y N Generate auditing log entries

Log on as a service
(SeServiceLogonRight)

Y N Run DB2 as a service

Chapter 21. Extended Windows security using DB2ADMNS and DB2USERS groups 187

Table 33. Privileges for DB2ADMNS and DB2USERS groups (continued)

Privilege DB2ADMNS DB2USERS Reason

Access this computer from the
network (SeNetworkLogonRight)

Y Y Allow network credentials (allows the DB2
database manager to use the
LOGON32_LOGON_NETWORK option to
authenticate, which has performance
implications)

Impersonate a client after
authentication
(SeImpersonatePrivilege)

Y N Client impersonation (required for
Windowsto allow use of certain APIs to
impersonate DB2 clients:
ImpersonateLoggedOnUser, ImpersonateSelf,
RevertToSelf, and so on)

Lock pages in memory
(SeLockMemoryPrivilege)

Y N Large Page support

Create global objects
(SeCreateGlobalPrivilege)

Y Y Terminal Server support (required on
Windows)

188 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 22. Roles

Roles
Roles simplify the administration and management of privileges by offering an
equivalent capability as groups but without the same restrictions.

A role is a database object that groups together one or more privileges and can be
assigned to users, groups, PUBLIC, or other roles by using a GRANT statement, or
can be assigned to a trusted context by using a CREATE TRUSTED CONTEXT or
ALTER TRUSTED CONTEXT statement. A role can be specified for the
SESSION_USER ROLE connection attribute in a workload definition.

Roles provide several advantages that make it easier to manage privileges in a
database system:
v Security administrators can control access to their databases in a way that

mirrors the structure of their organizations (they can create roles in the database
that map directly to the job functions in their organizations).

v Users are granted membership in the roles that reflect their job responsibilities.
As their job responsibilities change, their membership in roles can be easily
granted and revoked.

v The assignment of privileges is simplified. Instead of granting the same set of
privileges to each individual user in a particular job function, the administrator
can grant this set of privileges to a role representing that job function and then
grant that role to each user in that job function.

v A role’s privileges can be updated and all users who have been granted that role
receive the update; the administrator does not need to update the privileges for
every user on an individual basis.

v The privileges and authorities granted to roles are always used when you create
views, triggers, materialized query tables (MQTs), static SQL and SQL routines,
whereas privileges and authorities granted to groups (directly or indirectly) are
not used.
This is because the DB2 database system cannot determine when membership in
a group changes, as the group is managed by third-party software (for example,
the operating system or an LDAP directory). Because roles are managed inside
the database, the DB2 database system can determine when authorization
changes and act accordingly. Roles granted to groups are not considered, due to
the same reason groups are not considered.

v All the roles assigned to a user are enabled when that user establishes a
connection, so all privileges and authorities granted to roles are taken into
account when a user connects. Roles cannot be explicitly enabled or disabled.

v The security administrator can delegate management of a role to others.

All DB2 privileges and authorities that can be granted within a database can be
granted to a role. For example, a role can be granted any of the following
authorities and privileges:
v DBADM, SECADM, DATAACCESS, ACCESSCTRL, SQLADM, WLMADM,

LOAD, and IMPLICIT_SCHEMA database authorities
v CONNECT, CREATETAB, CREATE_NOT_FENCED, BINDADD,

CREATE_EXTERNAL_ROUTINE, or QUIESCE_CONNECT database authorities

© Copyright IBM Corp. 1993, 2009 189

v Any database object privilege (including CONTROL)

A user’s roles are automatically enabled and considered for authorization when a
user connects to a database; you do not need to activate a role by using the SET
ROLE statement. For example, when you create a view, a materialized query table
(MQT), a trigger, a package, or an SQL routine, the privileges that you gain
through roles apply. However, privileges that you gain through roles granted to
groups of which you are a member do not apply.

A role does not have an owner. The security administrator can use the WITH
ADMIN OPTION clause of the GRANT statement to delegate management of the
role to another user, so that the other user can control the role membership.

Restrictions

There are a few restrictions in the use of roles:
v A role cannot own database objects.
v Permissions and roles granted to groups are not considered when you create the

following database objects:
– Packages containing static SQL
– Views
– Materialized query tables (MQT)
– Triggers
– SQL Routines

Only roles granted to the user creating the object or to PUBLIC, directly or
indirectly (such as through a role hierarchy), are considered when creating these
objects.

Creating and granting membership in roles
The security administrator holds the authority to create, drop, grant, revoke, and
comment on a role. The security administrator uses the GRANT (Role) statement to
grant membership in a role to an authorization ID and uses the REVOKE (Role)
statement to revoke membership in a role from an authorization ID.

The security administrator can delegate the management of membership in a role
to an authorization ID by granting the authorization ID membership in the role
with the WITH ADMIN OPTION. The WITH ADMIN OPTION clause of the
GRANT (Role) statement gives another user the ability to:
v Grant roles to others.
v Revoke roles from others.
v Comment on the role.

The WITH ADMIN OPTION clause does not give the ability to:
v Drop the role.
v Revoke the WITH ADMIN OPTION for a role from an authorization ID.
v Grant WITH ADMIN OPTION to someone else (if you do not hold SECADM

authority).

After the security administrator has created a role, the database administrator can
use the GRANT statement to assign authorities and privileges to the role. All DB2

190 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

privileges and authorities that can be granted within a database can be granted to
a role. Instance level authorities, such as SYSADM authority, cannot be assigned to
a role.

The security administrator, or any user who the security administrator has granted
membership in a role with WITH ADMIN OPTION can use the GRANT (Role)
statement to grant membership in that role to other users, groups, PUBLIC or
roles. A user may have been granted membership in a role with WITH ADMIN
OPTION either directly, or indirectly through PUBLIC, a group or a role.

All the roles assigned to a user are enabled when that user establishes a session.
All the privileges and authorities associated with a user’s roles are taken into
account when the DB2 database system checks for authorization. Some database
systems use the SET ROLE statement to activate a particular role. The DB2
database system supports SET ROLE to provide compatibility with other products
using the SET ROLE statement. In a DB2 database system, the SET ROLE
statement checks whether the session user is a member of the role and returns an
error if they are not.

To revoke a user’s membership in a role, the security administrator, or a user who
holds WITH ADMIN OPTION privilege on the role, uses the REVOKE (Role)
statement.

Example

A role has a certain set of privileges and a user who is granted membership in this
role inherits those privileges. This inheritance of privileges eliminates managing
individual privileges when reassigning the privileges of one user to another user.
The only operations required when using roles is to revoke membership in the role
from one user and grant membership in the role to the other user.

For example, the employees BOB and ALICE, working in department DEV, have
the privilege to SELECT on the tables SERVER, CLIENT and TOOLS. One day,
management decides to move them to a new department, QA, and the database
administrator has to revoke their privilege to select on tables SERVER, CLIENT
and TOOLS. Department DEV later hires a new employee, TOM, and the database
administrator has to grant SELECT privilege on tables SERVER, CLIENT and
TOOLS to TOM.

When using roles, the following steps occur:
1. The security administrator creates a role, DEVELOPER:

CREATE ROLE DEVELOPER

2. The database administrator (who holds DBADM authority) grants SELECT on
tables SERVER, CLIENT, and TOOLS to role DEVELOPER:
GRANT SELECT ON TABLE SERVER TO ROLE DEVELOPER
GRANT SELECT ON TABLE CLIENT TO ROLE DEVELOPER
GRANT SELECT ON TABLE TOOLS TO ROLE DEVELOPER

3. The security administrator grants the role DEVELOPER to the users in
department DEV, BOB and ALICE:
GRANT ROLE DEVELOPER TO USER BOB, USER ALICE

4. When BOB and ALICE leave department DEV, the security administrator
revokes the role DEVELOPER from users BOB and ALICE:
REVOKE ROLE DEVELOPER FROM USER BOB, USER ALICE

Chapter 22. Roles 191

5. When TOM is hired in department DEV, the security administrator grants the
role DEVELOPER to user TOM:
GRANT ROLE DEVELOPER TO USER TOM

Role hierarchies
A role hierarchy is formed when one role is granted membership in another role.

A role contains another role when the other role is granted to the first role. The
other role inherits all of the privileges of the first role. For example, if the role
DOCTOR is granted to the role SURGEON, then SURGEON is said to contain
DOCTOR. The role SURGEON inherits all the privileges of role DOCTOR.

Cycles in role hierarchies are not allowed. A cycle occurs if a role is granted in
circular way such that one role is granted to another role and that other role is
granted to the original role. For example, the role DOCTOR is granted to role
SURGEON, and then the role SURGEON is granted back to the role DOCTOR. If
you create a cycle in a role hierarchy, an error is returned (SQLSTATE 428GF).

Example of building a role hierarchy

The following example shows how to build a role hierarchy to represent the
medical levels in a hospital.

Consider the following roles: DOCTOR, SPECIALIST, and SURGEON. A role
hierarchy is built by granting a role to another role, but without creating cycles.
The role DOCTOR is granted to role SPECIALIST, and role SPECIALIST is granted
to role SURGEON.

Granting role SURGEON to role DOCTOR would create a cycle and is not allowed.

The security administrator runs the following SQL statements to build the role
hierarchy:
CREATE ROLE DOCTOR
CREATE ROLE SPECIALIST
CREATE ROLE SURGEON

GRANT ROLE DOCTOR TO ROLE SPECIALIST

GRANT ROLE SPECIALIST TO ROLE SURGEON

Effect of revoking privileges from roles
When privileges are revoked, this can sometimes cause dependent database objects,
such as views, packages or triggers, to become invalid or inoperative.

The following examples show what happens to a database object when some
privileges are revoked from an authorization identifier and privileges are held
through a role or through different means.

Example of revoking privileges from roles
1. The security administrator creates the role DEVELOPER and grants the user

BOB membership in this role:
CREATE ROLE DEVELOPER
GRANT ROLE DEVELOPER TO USER BOB

2. User ALICE creates a table, WORKITEM:
CREATE TABLE WORKITEM (x int)

192 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

3. The database administrator grants SELECT and INSERT privileges on table
WORKITEM to PUBLIC and also to the role DEVELOPER:
GRANT SELECT ON TABLE ALICE.WORKITEM TO PUBLIC
GRANT INSERT ON TABLE ALICE.WORKITEM TO PUBLIC
GRANT SELECT ON TABLE ALICE.WORKITEM TO ROLE DEVELOPER
GRANT INSERT ON TABLE ALICE.WORKITEM TO ROLE DEVELOPER

4. User BOB creates a view, PROJECT, that uses the table WORKITEM, and a
package, PKG1, that depends on the table WORKITEM:
CREATE VIEW PROJECT AS SELECT * FROM ALICE.WORKITEM
PREP emb001.sqc BINDFILE PACKAGE USING PKG1 VERSION 1

5. If the database administrator revokes SELECT privilege on table
ALICE.WORKITEM from PUBLIC, then the view BOB.PROJECT remains
operative and package PKG1 remains valid because the view definer, BOB, still
holds the privileges required through his membership in the role DEVELOPER:
REVOKE SELECT ON TABLE ALICE.WORKITEM FROM PUBLIC

6. If the database administrator revokes SELECT privilege on table
ALICE.WORKITEM from the role DEVELOPER, the view BOB.PROJECT
becomes inoperative and package PKG1 becomes invalid because the view and
package definer, BOB, does not hold the required privileges through other
means:
REVOKE SELECT ON TABLE ALICE.WORKITEM FROM ROLE DEVELOPER

Example of revoking DBADM authority

In this example, the role DEVELOPER holds DBADM authority and is granted to
user BOB.
1. The security administrator creates the role DEVELOPER:

CREATE ROLE DEVELOPER

2. The system administrator grants DBADM authority to the role DEVELOPER:
GRANT DBADM ON DATABASE TO ROLE DEVELOPER

3. The security administrator grants user BOB membership in this role:
GRANT ROLE DEVELOPER TO USER BOB

4. User ALICE creates a table, WORKITEM:
CREATE TABLE WORKITEM (x int)

5. User BOB creates a view PROJECT that uses table WORKITEM, a package
PKG1 that depends on table WORKITEM, and a trigger, TRG1, that also
depends on table WORKITEM:
CREATE VIEW PROJECT AS SELECT * FROM ALICE.WORKITEM
PREP emb001.sqc BINDFILE PACKAGE USING PKG1 VERSION 1
CREATE TRIGGER TRG1 AFTER DELETE ON ALICE.WORKITEM

FOR EACH STATEMENT MODE DB2SQL
INSERT INTO ALICE.WORKITEM VALUES (1)

6. The security administrator revokes the role DEVELOPER from user BOB:
REVOKE ROLE DEVELOPER FROM USER BOB

Revoking the role DEVELOPER causes the user BOB to lose DBADM authority
because the role that held that authority was revoked. The view, package, and
trigger are affected as follows:
v View BOB. PROJECT is still valid.
v Package PKG1 becomes invalid.
v Trigger BOB.TRG1 is still valid.

Chapter 22. Roles 193

View BOB.PROJECT and trigger BOB.TRG1 are usable while package PKG1 is
not usable. View and trigger objects created by an authorization ID holding
DBADM authority are not affected when DBADM authority is lost.

Delegating role maintenance by using the WITH ADMIN
OPTION clause

Using the WITH ADMIN OPTION clause of the GRANT (Role) SQL statement, the
security administrator can delegate the management and control of membership in
a role to someone else.

The WITH ADMIN OPTION clause gives another user the authority to grant
membership in the role to other users, to revoke membership in the role from
other members of the role, and to comment on a role, but not to drop the role.

The WITH ADMIN OPTION clause does not give another user the authority to
grant WITH ADMIN OPTION on a role to another user. It also does not give the
authority to revoke WITH ADMIN OPTION for a role from another authorization
ID.

Example demonstrating use of the WITH ADMIN OPTION clause
1. A security administrator creates the role, DEVELOPER, and grants the new role

to user BOB using the WITH ADMIN OPTION clause:
CREATE ROLE DEVELOPER
GRANT ROLE DEVELOPER TO USER BOB WITH ADMIN OPTION

2. User BOB can grant membership in the role to and revoke membership from
the role from other users, for example, ALICE:
GRANT ROLE DEVELOPER TO USER ALICE
REVOKE ROLE DEVELOPER FROM USER ALICE

3. User BOB cannot drop the role or grant WITH ADMIN OPTION to another
user (only a security administrator can perform these two operations). These
commands issued by BOB will fail:
DROP ROLE DEVELOPER - FAILURE!

- only a security administrator is allowed to drop the role
GRANT ROLE DEVELOPER TO USER ALICE WITH ADMIN OPTION - FAILURE!

- only a security administrator can grant WITH ADMIN OPTION

4. User BOB cannot revoke role administration privileges (conferred by WITH
ADMIN OPTION) from users for role DEVELOPER, because he does not have
security administrator (SECADM) authority. When BOB issues the following
command, it fails:
REVOKE ADMIN OPTION FOR ROLE DEVELOPER FROM USER SANJAY - FAILURE!

5. A security administrator is allowed to revoke the role administration privileges
for role DEVELOPER (conferred by WITH ADMIN OPTION) from user BOB ,
and user BOB still has the role DEVELOPER granted:
REVOKE ADMIN OPTION FOR ROLE DEVELOPER FROM USER BOB

Alternatively, if a security administrator simply revokes the role DEVELOPER
from user BOB, then BOB loses all the privileges he received by being a
member of the role DEVELOPER and the authority on the role he received
through the WITH ADMIN OPTION clause:
REVOKE ROLE DEVELOPER FROM USER BOB

194 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Roles compared to groups
Privileges and authorities granted to groups are not considered when creating
views, materialized query tables (MQTs), SQL routines, triggers, and packages
containing static SQL. Avoid this restriction by using roles instead of groups.

Roles allow users to create database objects using their privileges acquired through
roles, which are controlled by the DB2 database system. Groups and users are
controlled externally from the DB2 database system, for example, by an operating
system or an LDAP server.

Example of replacing the use of groups with roles

This example shows how you can replace groups by using roles.

Assume there are three groups, DEVELOPER_G, TESTER_G and SALES_G. The
users BOB, ALICE, and TOM are members of these groups, as shown in the
following table:

Table 34. Example groups and users

Group Users belonging to this group

DEVELOPER_G BOB

TESTER_G ALICE, TOM

SALES_G ALICE, BOB

1. The security administrator creates the roles DEVELOPER, TESTER and SALES
to be used instead of the groups.
CREATE ROLE DEVELOPER
CREATE ROLE TESTER
CREATE ROLE SALES

2. The security administrator grants membership in these roles to users (setting
the membership of users in groups was the system administrator’s
responsibility):
GRANT ROLE DEVELOPER TO USER BOB
GRANT ROLE TESTER TO USER ALICE, USER TOM
GRANT ROLE SALES TO USER BOB, USER ALICE

3. The database administrator can grant to the roles similar privileges or
authorities as were held by the groups, for example:
GRANT <privilege> ON <object> TO ROLE DEVELOPER

The database administrator can then revoke these privileges from the groups,
as well as ask the system administrator to remove the groups from the system.

Example of creating a trigger using privileges acquired through a
role

This example shows that user BOB can successfully create a trigger, TRG1, when
he holds the necessary privilege through the role DEVELOPER.
1. First, user ALICE creates the table, WORKITEM:

CREATE TABLE WORKITEM (x int)

2. Then, the privilege to alter ALICE’s table is granted to role DEVELOPER by the
database administrator.
GRANT ALTER ON ALICE.WORKITEM TO ROLE DEVELOPER

Chapter 22. Roles 195

3. User BOB successfully creates the trigger, TRG1, because he is a member of the
role, DEVELOPER.
CREATE TRIGGER TRG1 AFTER DELETE ON ALICE.WORKITEM

FOR EACH STATEMENT MODE DB2SQL INSERT INTO ALICE.WORKITEM VALUES (1)

Using roles after migrating from IBM Informix Dynamic Server
If you have migrated from IBM Informix® Dynamic Server to the DB2 database
system and are using roles there are a few things you need to be aware of.

The Informix Dynamic Server (IDS) SQL statement, GRANT ROLE, provides the
clause WITH GRANT OPTION. The DB2 database system GRANT ROLE
statement provides the clause WITH ADMIN OPTION (this conforms to the SQL
standard) that provides the same functionality. During an IDS to DB2 database
system migration, after the dbschema tool generates CREATE ROLE and GRANT
ROLE statements, the dbschema tool replaces any occurrences of WITH GRANT
OPTION with WITH ADMIN OPTION.

In an IDS database system, the SET ROLE statement activates a particular role. The
DB2 database system supports the SET ROLE statement, but only to provide
compatibility with other products using that SQL statement. The SET ROLE
statement checks whether the session user is a member of the role and returns an
error if they are not.

Example dbschema output

Assume that an IDS database contains the roles DEVELOPER, TESTER and SALES.
Users BOB, ALICE, and TOM have different roles granted to each of them; the role
DEVELOPER is granted to BOB, the role TESTER granted to ALICE, and the roles
TESTER and SALES granted to TOM. To migrate to the DB2 database system, use
the dbschema tool to generate the CREATE ROLE and GRANT ROLE statements
for the database:
CREATE ROLE DEVELOPER
CREATE ROLE TESTER
CREATE ROLE SALES

GRANT DEVELOPER TO BOB
GRANT TESTER TO ALICE, TOM
GRANT SALES TO TOM

You must create the database in the DB2 database system, and then you can run
the above statements in that database to recreate the roles and assignment of the
roles.

196 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 23. Trusted contexts

Using trusted contexts and trusted connections
You can establish an explicit trusted connection by making a request within an
application when a connection to a DB2 database is established. The security
administrator must have previously defined a trusted context, using the CREATE
TRUSTED CONTEXT statement, with attributes matching those of the connection
you are establishing (see Step 1, later).

Before you begin

The API you use to request an explicit trusted connection when you establish a
connection depends on the type of application you are using (see the table in Step
2).

After you have established an explicit trusted connection, the application can
switch the user ID of the connection to a different user ID using the appropriate
API for the type of application (see the table in Step 3).
1. The security administrator defines a trusted context in the server by using the

CREATE TRUSTED CONTEXT statement. For example:
CREATE TRUSTED CONTEXT MYTCX

BASED UPON CONNECTION USING SYSTEM AUTHID NEWTON
ATTRIBUTES (ADDRESS '192.0.2.1')
WITH USE FOR PUBLIC WITHOUT AUTHENTICATION
ENABLE

2. To establish a trusted connection, use one of the following APIs in your
application:

Option Description

Application API

CLI/ODBC SQLConnect, SQLSetConnectAttr

XA CLI/ODBC Xa_open

JAVA getDB2TrustedPooledConnection,
getDB2TrustedXAConnection

3. To switch to a different user, with or without authentication, use one of the
following APIs in your application:

Option Description

Application API

CLI/ODBC SQLSetConnectAttr

XA CLI/ODBC SQLSetConnectAttr

JAVA getDB2Connection, reuseDB2Connection

.NET DB2Connection.ConnectionString keywords:
TrustedContextSystemUserID and
TrustedContextSystemPassword

The switching can be done either with or without authenticating the new user
ID, depending on the definition of the trusted context object associated with the

© Copyright IBM Corp. 1993, 2009 197

explicit trusted connection. For example, suppose that the security
administrator creates the following trusted context object:
CREATE TRUSTED CONTEXT CTX1
BASED UPON CONNECTION USING SYSTEM AUTHID USER1
ATTRIBUTES (ADDRESS '192.0.2.1')
WITH USE FOR USER2 WITH AUTHENTICATION,

USER3 WITHOUT AUTHENTICATION
ENABLE

Further, suppose that an explicit trusted connection is established. A request to
switch the user ID on the trusted connection to USER3 without providing
authentication information is allowed because USER3 is defined as a user of
trusted context CTX1 for whom authentication is not required. However, a
request to switch the user ID on the trusted connection to USER2 without
providing authentication information will fail because USER2 is defined as a
user of trusted context CTX1 for whom authentication information must be
provided.

Example of establishing an explicit trusted connection and
switching the user

In the following example, a middle-tier server needs to issue some database
requests on behalf of an end-user, but does not have access to the end-user’s
credentials to establish a database connection on behalf of that end-user.

You can create a trusted context object on the database server that allows the
middle-tier server to establish an explicit trusted connection to the database. After
establishing an explicit trusted connection, the middle-tier server can switch the
current user ID of the connection to a new user ID without the need to
authenticate the new user ID at the database server. The following CLI code
snippet demonstrates how to establish a trusted connection using the trusted
context, MYTCX, defined in Step 1, earlier, and how to switch the user on the
trusted connection without authentication.
int main(int argc, char *argv[])
{
SQLHANDLE henv; /* environment handle */
SQLHANDLE hdbc1; /* connection handle */
char origUserid[10] = "newton";
char password[10] = "test";
char switchUserid[10] = "zurbie";

char dbName[10] = "testdb";

// Allocate the handles
SQLAllocHandle(SQL_HANDLE_ENV, &henv);
SQLAllocHandle(SQL_HANDLE_DBC, &hdbc1);

// Set the trusted connection attribute
SQLSetConnectAttr(hdbc1, SQL_ATTR_USE_TRUSTED_CONTEXT,
SQL_TRUE, SQL_IS_INTEGER);

// Establish a trusted connection
SQLConnect(hdbc1, dbName, SQL_NTS, origUserid, SQL_NTS,
password, SQL_NTS);

//Perform some work under user ID "newton"
.

// Commit the work
SQLEndTran(SQL_HANDLE_DBC, hdbc1, SQL_COMMIT);

198 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

// Switch the user ID on the trusted connection
SQLSetConnectAttr(hdbc1,
SQL_ATTR_TRUSTED_CONTEXT_USERID, switchUserid,
SQL_IS_POINTER
);

//Perform new work using user ID "zurbie"
.

//Commit the work
SQLEndTranSQL_HANDLE_DBC, hdbc1, SQL_COMMIT);

// Disconnect from database
SQLDisconnect(hdbc1);

return 0;

} /* end of main */

What to do next

When does the user ID actually get switched?

After the command to switch the user on the trusted connection is issued, the
switch user request is not performed until the next statement is sent to the server.
This is demonstrated by the following example where the list applications
command shows the original user ID until the next statement is issued.
1. Establish an explicit trusted connection with USERID1.
2. Issue the switch user command, such as getDB2Connection for USERID2.
3. Run db2 list applications. It still shows that USERID1 is connected.
4. Issue a statement on the trusted connection, such as executeQuery("values

current sqlid"), to perform the switch user request at the server.
5. Run db2 list applications again. It now shows that USERID2 is connected.

Trusted contexts and trusted connections
A trusted context is a database object that defines a trust relationship for a
connection between the database and an external entity such as an application
server.

The trust relationship is based upon the following set of attributes:
v System authorization ID: Represents the user that establishes a database

connection
v IP address (or domain name): Represents the host from which a database

connection is established
v Data stream encryption: Represents the encryption setting (if any) for the data

communication between the database server and the database client

When a user establishes a database connection, the DB2 database system checks
whether the connection matches the definition of a trusted context object in the
database. When a match occurs, the database connection is said to be trusted.

A trusted connection allows the initiator of this trusted connection to acquire
additional capabilities that may not be available outside the scope of the trusted
connection. The additional capabilities vary depending on whether the trusted
connection is explicit or implicit.

The initiator of an explicit trusted connection has the ability to:

Chapter 23. Trusted contexts 199

v Switch the current user ID on the connection to a different user ID with or
without authentication

v Acquire additional privileges via the role inheritance feature of trusted contexts

An implicit trusted connection is a trusted connection that is not explicitly
requested; the implicit trusted connection results from a normal connection request
rather than an explicit trusted connection request. No application code changes are
needed to obtain an implicit connection. Also, whether you obtain an implicit
trusted connection or not has no effect on the connect return code (when you
request an explicit trusted connection, the connect return code indicates whether
the request succeeds or not). The initiator of an implicit trusted connection can
only acquire additional privileges via the role inheritance feature of trusted
contexts; they cannot switch the user ID.

How using trusted contexts enhances security

The three-tiered application model extends the standard two-tiered client and
server model by placing a middle tier between the client application and the
database server. It has gained great popularity in recent years particularly with the
emergence of web-based technologies and the Java™ 2 Enterprise Edition (J2EE)
platform. An example of a software product that supports the three-tier application
model is IBM WebSphere® Application Server (WAS).

In a three-tiered application model, the middle tier is responsible for authenticating
the users running the client applications and for managing the interactions with
the database server. Traditionally, all the interactions with the database server
occur through a database connection established by the middle tier using a
combination of a user ID and a credential that identify that middle tier to the
database server. In other words, the database server uses the database privileges
associated with the middle tier’s user ID for all authorization checking and
auditing that must occur for any database access, including access performed by
the middle tier on behalf of a user.

While the three-tiered application model has many benefits, having all interactions
with the database server (for example, a user request) occur under the middle
tier’s authorization ID raises several security concerns, which can be summarized
as follows:
v Loss of user identity

Some enterprises prefer to know the identity of the actual user accessing the
database for access control purposes.

v Diminished user accountability
Accountability through auditing is a basic principle in database security. Not
knowing the user’s identity makes it difficult to distinguish the transactions
performed by the middle tier for its own purpose from those performed by the
middle tier on behalf of a user.

v Over granting of privileges to the middle tier’s authorization ID
The middle tier’s authorization ID must have all the privileges necessary to
execute all the requests from all the users. This has the security issue of enabling
users who do not need access to certain information to obtain access anyway.

v Weakened security
In addition to the privilege issue raised in the previous point, the current
approach requires that the authorization ID used by the middle tier to connect

200 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

must be granted privileges on all resources that might be accessed by user
requests. If that middle-tier authorization ID is ever compromised, then all those
resources will be exposed.

v ″Spill over″ between users of the same connection
Changes by a previous user can affect the current user.

Clearly, there is a need for a mechanism whereby the actual user’s identity and
database privileges are used for database requests performed by the middle tier on
behalf of that user. The most straightforward approach of achieving this goal
would be for the middle-tier to establish a new connection using the user’s ID and
password, and then direct the user’s requests through that connection. Although
simple, this approach suffers from several drawbacks which include the following:
v Inapplicability for certain middle tiers. Many middle-tier servers do not have

the user authentication credentials needed to establish a connection.
v Performance overhead. There is an obvious performance overhead associated

with creating a new physical connection and re-authenticating the user at the
database server.

v Maintenance overhead. In situations where you are not using a centralized
security set up or are not using single sign-on, there is maintenance overhead in
having two user definitions (one on the middle tier and one at the server). This
requires changing passwords at different places.

The trusted contexts capability addresses this problem. The security administrator
can create a trusted context object in the database that defines a trust relationship
between the database and the middle-tier. The middle-tier can then establish an
explicit trusted connection to the database, which gives the middle tier the ability
to switch the current user ID on the connection to a different user ID, with or
without authentication. In addition to solving the end-user identity assertion
problem, trusted contexts offer another advantage. This is the ability to control
when a privilege is made available to a database user. The lack of control on when
privileges are available to a user can weaken overall security. For example,
privileges may be used for purposes other than they were originally intended. The
security administrator can assign one or more privileges to a role and assign that
role to a trusted context object. Only trusted database connections (explicit or
implicit) that match the definition of that trusted context can take advantage of the
privileges associated with that role.

Enhancing performance

When you use trusted connections, you can maximize performance because of the
following advantages:
v No new connection is established when the current user ID of the connection is

switched.
v If the trusted context definition does not require authentication of the user ID to

switch to, then the overhead associated with authenticating a new user at the
database server is not incurred.

Example of creating a trusted context

Suppose that the security administrator creates the following trusted context object:
CREATE TRUSTED CONTEXT CTX1

BASED UPON CONNECTION USING SYSTEM AUTHID USER2
ATTRIBUTES (ADDRESS '192.0.2.1')
DEFAULT ROLE managerRole
ENABLE

Chapter 23. Trusted contexts 201

If user user1 requests a trusted connection from IP address 192.0.2.1, the DB2
database system returns a warning (SQLSTATE 01679, SQLCODE +20360) to
indicate that a trusted connection could not be established, and that user user1
simply got a non-trusted connection. However, if user user2 requests a trusted
connection from IP address 192.0.2.1, the request is honored because the connection
attributes are satisfied by the trusted context CTX1. Now that use user2 has
established a trusted connection, he or she can now acquire all the privileges and
authorities associated with the trusted context role managerRole. These privileges
and authorities may not be available to user user2 outside the scope of this trusted
connection

Role membership inheritance through a trusted context
The current user of a trusted connection can acquire additional privileges through
the automatic inheritance of a role through the trusted context, if this was specified
by the security administrator as part of the relevant trusted context definition.

A role can be inherited by all users of the trusted connection by default. The
security administrator can also use the trusted context definition to specify a role
for specific users to inherit.

The active roles that a session authorization ID can hold while on a trusted
connection are:
v The roles of which the session authorization ID is normally considered a

member, plus
v Either the trusted context default role or the trusted context user-specific role, if

they are defined

Note:

v If you configure user authentication using a custom security plugin that is built
such that the system authorization ID and the session authorization ID produced
by this security plugin upon a successful connection are different from each
other, then a trusted contexts role cannot be inherited through that connection,
even if it is a trusted connection.

v Trusted context privileges acquired through a role are effective only for dynamic
DML operations. They are not effective for:
– DDL operations
– Non-dynamic SQL (operations involving static SQL statements such as BIND,

REBIND, implicit rebind, incremental bind, and so on)

Acquiring trusted context user-specific privileges

The security administrator can use the trusted context definition to associate roles
with a trusted context so that:
v All users of the trusted connection can inherit a specified role by default
v Specific users of the trusted connection can inherit a specified role

When the user on a trusted connection is switched to a new authorization ID and a
trusted context user-specific role exists for this new authorization ID, the
user-specific role overrides the trusted context default role, if one exists, as
demonstrated in the example.

202 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Example of creating a trusted context that assigns a default role
and a user-specific role

Suppose that the security administrator creates the following trusted context object:
CREATE TRUSTED CONTEXT CTX1

BASED UPON CONNECTION USING SYSTEM AUTHID USER1
ATTRIBUTES (ADDRESS '192.0.2.1')
WITH USE FOR USER2 WITH AUTHENTICATION,

USER3 WITHOUT AUTHENTICATION
DEFAULT ROLE AUDITOR
ENABLE

When USER1 establishes a trusted connection, the privileges granted to the role
AUDITOR are inherited by this authorization ID. Similarly, these same privileges
are also inherited by USER3 when the current authorization ID on the trusted
connection is switched to his or her user ID. (If the user ID of the connection is
switched to USER2 at some point, then USER2 would also inherit the trusted
context default role, AUDITOR.) The security administrator may choose to have
USER3 inherit a different role than the trusted context default role. They can do so
by assigning a specific role to this user as follows:
CREATE TRUSTED CONTEXT CTX1
BASED UPON CONNECTION USING SYSTEM AUTHID USER1
ATTRIBUTES (ADDRESS '192.0.2.1')
WITH USE FOR USER2 WITH AUTHENTICATION,

USER3 WITHOUT AUTHENTICATION ROLE OTHER_ROLE
DEFAULT ROLE AUDITOR
ENABLE

When the current user ID on the trusted connection is switched to USER3, this
user no longer inherits the trusted context default role. Rather, they inherit the
specific role, OTHER_ROLE, assigned to him or her by the security administrator.

Rules for switching the user ID on an explicit trusted
connection

On an explicit trusted connection, you can switch the user ID of the connection to
a different user ID. Certain rules apply.
1. If the switch request is not made from an explicit trusted connection, and the

switch request is sent to the server for processing, the connection is shut
down and an error message is returned (SQLSTATE 08001, SQLCODE -30082
with reason code 41).

2. If the switch request is not made on a transaction boundary, the transaction is
rolled back, and the switch request is sent to the server for processing, the
connection is put into an unconnected state and an error message is returned
(SQLSTATE 58009, SQLCODE -30020).

3. If the switch request is made from within a stored procedure, an error
message is returned (SQLCODE -30090, reason code 29), indicating this is an
illegal operation in this environment. The connection state is maintained and
the connection is not placed into an unconnected state. Subsequent requests
may be processed.

4. If the switch request is delivered to the server on an instance attach (rather
than a database connection), the attachment is shut down and an error
message is returned (SQLCODE -30005).

5. If the switch request is made with an authorization ID that is not allowed on
the trusted connection, error (SQLSTATE 42517, SQLCODE -20361) is returned,
and the connection is put in an unconnected state.

Chapter 23. Trusted contexts 203

6. If the switch request is made with an authorization ID that is allowed on the
trusted connection WITH AUTHENTICATION, but the appropriate
authentication token is not provided, error (SQLSTATE 42517, SQLCODE
-20361) is returned, and the connection is put in an unconnected state.

7. If the trusted context object associated with the trusted connection is disabled,
and a switch request for that trusted connection is made, error (SQLSTATE
42517, SQLCODE -20361) is returned, and the connection is put in an
unconnected state.
In this case, the only switch user request that is accepted is one that specifies
the user ID that established the trusted connection or the NULL user ID. If a
switch to the user ID that established the trusted connection is made, this user
ID does not inherit any trusted context role (neither the trusted context default
role nor the trusted context user-specific role).

8. If the system authorization ID attribute of the trusted context object associated
with the trusted connection is changed, and a switch request for that trusted
connection is made, error (SQLSTATE 42517, SQLCODE -20361) is returned,
and the connection is put in an unconnected state.
In this case, the only switch user request that is accepted is one that specifies
the user ID that established the trusted connection or the NULL user ID. If a
switch to the user ID that established the trusted connection is made, this user
ID does not inherit any trusted context role (neither the trusted context default
role nor the trusted context user-specific role).

9. If the trusted context object associated with the trusted connection is dropped,
and a switch request for that trusted connection is made, error (SQLSTATE
42517, SQLCODE -20361) is returned, and the connection is put in an
unconnected state.
In this case, the only switch user request that is accepted is one that specifies
the user ID that established the trusted connection or the NULL user ID. If a
switch to the user ID that established the trusted connection is made, this user
ID does not inherit any trusted context role (neither the trusted context default
role nor the trusted context user-specific role).

10. If the switch request is made with a user ID allowed on the trusted
connection, but that user ID does not hold CONNECT privilege on the
database, the connection is put in an unconnected state and an error message
is returned (SQLSTATE 08004, SQLCODE -1060).

11. If the trusted context system authorization ID appears in the WITH USE FOR
clause, the DB2 database system honors the authentication setting for the
system authorization ID on switch user request to switch back to the system
authorization ID. If the trusted context system authorization ID does not
appear in the WITH USE FOR clause, then a switch user request to switch
back to the system authorization ID is always allowed even without
authentication.

Note: When the connection is put in the unconnected state, the only requests that
are accepted and do not result in returning the error ″The application state is in
error. A database connection does not exist.″ (SQLCODE -900) are:
v A switch user request
v A COMMIT or ROLLBACK statement
v A DISCONNECT, CONNECT RESET or CONNECT request

Note: When the user ID on the trusted connection is switched to a new user ID,
all traces of the connection environment under the old user are gone. In other
words, the switching of user IDs results in an environment that is identical to a

204 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

new connection environment. For example, if the old user ID on the connection
had any temporary tables or WITH HOLD cursors open, these objects are
completely lost when the user ID on that connection is switched to a new user ID.

Trusted context problem determination
An explicit trusted connection is a connection that is successfully established by a
specific, explicit request for a trusted connection. When you request an explicit
trusted connection and you do not qualify for one, you get a regular connection
and a warning (+20360).

To determine why a user could not establish a trusted connection, the security
administrator needs to look at the trusted context definition in the system catalogs
and at the connection attributes. In particular, the IP address from which the
connection is established, the encryption level of the data stream or network, and
the system authorization ID making the connection. The -application option of the
db2pd utility returns this information, as well as the following additional
information:
v Connection Trust Type: Indicates whether the connection is trusted or not. When

the connection is trusted, this also indicates whether this is an explicit trusted
connection or an implicit trusted connection.

v Trusted Context name: The name of the trusted context associated with the
trusted connection.

v Role Inherited: The role inherited through the trusted connection.

The following are the most common causes of failing to obtain an explicit trusted
connection:
v The client application is not using TCP/IP to communicate with the DB2 server.

TCP/IP is the only supported protocol for a client application to communicate
with the DB2 server that can be used to establish a trusted connection (explicit
or implicit).

v The database server authentication type is set to CLIENT.
v The database server does not have an enabled trusted context object. The

definition of the trusted context object must explicitly state ENABLE in order for
that trusted context to be considered for matching the attributes of an incoming
connection.

v The trusted context objects on the database server do not match the trust
attributes that are presented. For example, one of the following situations may
apply:
– The system authorization ID of the connection does not match any trusted

context object system authorization ID.
– The IP address from which the connection originated does not match any IP

address in the trusted context object considered for the connection.
– The data stream encryption used by the connection does not match the value

of the ENCRYPTION attribute in the trusted context object considered for the
connection.

You can use the db2pd tool to find out the IP address from which the connection
is established, the encryption level of the data stream or network used by the
connection, and the system authorization ID making the connection. You can
consult the SYSCAT.CONTEXTS and SYSCAT.CONTEXTATTRIBUTES catalog
views to find out the definition of a particular trusted context object, such as its
system authorization ID, its set of allowed IP addresses and the value of its
ENCRYPTION attribute.

Chapter 23. Trusted contexts 205

The following are the most common causes of a switch user failure:
v The user ID to switch to does not have CONNECT privileges on the database. In

this case, SQL1060N is returned.
v The user ID to switch to, or PUBLIC, is not defined in the WITH USE FOR

clause of the trusted context object associated with the explicit trusted
connection.

v Switching the user is allowed with authentication, but the user presents no
credentials or the wrong credentials.

v A switch-user request is not made on a transaction boundary.
v The trusted context that is associated with a trusted connection has been

disabled, dropped, or altered. In this case, only switching to the user ID that
established the trusted connection is allowed.

206 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 24. Firewall considerations

Firewall support
A firewall is a set of related programs, located at a network gateway server, that are
used to prevent unauthorized access to a system or network.

There are four types of firewalls:
1. Network level, packet-filter, or screening router firewalls
2. Classical application level proxy firewalls
3. Circuit level or transparent proxy firewalls
4. Stateful multi-layer inspection (SMLI) firewalls

There are existing firewall products that incorporate one of the firewall types listed
above. There are many other firewall products that incorporate some combination
of the above types.

Screening router firewalls
The screening router firewall is also known as a network level or packet-filter
firewall. Such a firewall works by screening incoming packets by protocol
attributes. The protocol attributes screened may include source or destination
address, type of protocol, source or destination port, or some other
protocol-specific attributes.

For all firewall solutions (except SOCKS), you need to ensure that all the ports
used by DB2 database are open for incoming and outgoing packets. DB2 database
uses port 523 for the DB2 Administration Server (DAS), which is used by the DB2
database tools. Determine the ports used by all your server instances by using the
services file to map the service name in the server database manager configuration
file to its port number.

Application proxy firewalls
A proxy or proxy server is a technique that acts as an intermediary between a Web
client and a Web server. A proxy firewall acts as a gateway for requests arriving
from clients.

When client requests are received at the firewall, the final server destination
address is determined by the proxy software. The application proxy translates the
address, performs additional access control checking and logging as necessary, and
connects to the server on behalf of the client.

The DB2 Connect product on a firewall machine can act as a proxy to the
destination server. Also, a DB2 database server on the firewall, acting as a hop
server to the final destination server, acts like an application proxy.

Circuit level firewalls
The circuit level firewall is also known as a transparent proxy firewall.

© Copyright IBM Corp. 1993, 2009 207

A transparent proxy firewall does not modify the request or response beyond what
is required for proxy authentication and identification. An example of a transparent
proxy firewall is SOCKS.

The DB2 database system supports SOCKS Version 4.

Stateful multi-layer inspection (SMLI) firewalls
The stateful multi-layer inspection (SMLI) firewall uses a sophisticated form of
packet-filtering that examines all seven layers of the Open System Interconnection
(OSI) model.

Each packet is examined and compared against known states of friendly packets.
While screening router firewalls only examine the packet header, SMLI firewalls
examine the entire packet including the data.

208 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 25. System catalogs and security maintenance

System catalogs and security maintenance

System catalog views
The database manager maintains a set of tables and views that contain information
about the data under its control. These tables and views are collectively known as
the system catalog.

The system catalog contains information about the logical and physical structure of
database objects such as tables, views, indexes, packages, and functions. It also
contains statistical information. The database manager ensures that the descriptions
in the system catalog are always accurate.

The system catalog views are like any other database view. SQL statements can be
used to query the data in the system catalog views. A set of updatable system
catalog views can be used to modify certain values in the system catalog.

Using the system catalog for security information
Information about each database is automatically maintained in a set of views
called the system catalog, which is created when the database is created. This
system catalog describes tables, columns, indexes, programs, privileges, and other
objects.

The following views and table functions list information about privileges held by
users, identities of users granting privileges, and object ownership:

SYSCAT.COLAUTH
Lists the column privileges

SYSCAT.DBAUTH
Lists the database privileges

SYSCAT.INDEXAUTH
Lists the index privileges

SYSCAT.MODULEAUTH
Lists the module privileges

SYSCAT.PACKAGEAUTH
Lists the package privileges

SYSCAT.PASSTHRUAUTH
Lists the server privilege

SYSCAT.ROLEAUTH
Lists the role privileges

SYSCAT.ROUTINEAUTH
Lists the routine (functions, methods, and stored procedures) privileges

SYSCAT.SCHEMAAUTH
Lists the schema privileges

SYSCAT.SEQUENCEAUTH
Lists the sequence privileges

© Copyright IBM Corp. 1993, 2009 209

SYSCAT.SURROGATEAUTHIDS
Lists the authorization IDs for which another authorization ID can act as a
surrogate.

SYSCAT.TABAUTH
Lists the table and view privileges

SYSCAT.TBSPACEAUTH
Lists the table space privileges

SYSCAT.VARIABLEAUTH
Lists the variable privileges

SYSCAT.WORKLOADAUTH
Lists the workload privileges

SYSCAT.XSROBJECTAUTH
Lists the XSR object privileges

Privileges granted to users by the system will have SYSIBM as the grantor.
SYSADM, SYSMAINT SYSCTRL, and SYSMON are not listed in the system
catalog.

The CREATE and GRANT statements place privileges in the system catalog. Users
with ACCESSCTRL and SECADM authority can grant and revoke SELECT
privilege on the system catalog views.

Details on using the system catalog for security issues

Retrieving authorization names with granted privileges
You can use the PRIVILEGES and other administrative views to retrieve
information about the authorization names that have been granted privileges in a
database.

About this task

For example, the following query retrieves all explicit privileges and the
authorization IDs to which they were granted, plus other information, from the
PRIVILEGES administrative view:

SELECT AUTHID, PRIVILEGE, OBJECTNAME, OBJECTSCHEMA, OBJECTTYPE FROM SYSIBMADM.PRIVILEGES

The following query uses the AUTHORIZATIONIDS administrative view to find
all the authorization IDs that have been granted privileges or authorities, and to
show their types:
SELECT AUTHID, AUTHIDTYPE FROM SYSIBMADM.AUTHORIZATIONIDS

You can also use the SYSIBMADM.OBJECTOWNERS administrative view and the
SYSPROC.AUTH_LIST_GROUPS_FOR_AUTHID table function to find
security-related information.

Prior to Version 9.1, no single system catalog view contained information about all
privileges. For releases earlier than version 9.1, the following statement retrieves all
authorization names with privileges:

SELECT DISTINCT GRANTEE, GRANTEETYPE, 'DATABASE' FROM SYSCAT.DBAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'TABLE ' FROM SYSCAT.TABAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'PACKAGE ' FROM SYSCAT.PACKAGEAUTH
UNION

210 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

SELECT DISTINCT GRANTEE, GRANTEETYPE, 'INDEX ' FROM SYSCAT.INDEXAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'COLUMN ' FROM SYSCAT.COLAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'SCHEMA ' FROM SYSCAT.SCHEMAAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'SERVER ' FROM SYSCAT.PASSTHRUAUTH
ORDER BY GRANTEE, GRANTEETYPE, 3

Periodically, the list retrieved by this statement should be compared with lists of
user and group names defined in the system security facility. You can then identify
those authorization names that are no longer valid.

Note: If you are supporting remote database clients, it is possible that the
authorization name is defined at the remote client only and not on your database
server machine.

Retrieving all names with DBADM authority
The following statement retrieves all authorization names that have been directly
granted DBADM authority:

About this task
SELECT DISTINCT GRANTEE, GRANTEETYPE FROM SYSCAT.DBAUTH

WHERE DBADMAUTH = 'Y'

Retrieving names authorized to access a table
You can use the PRIVILEGES and other administrative views to retrieve
information about the authorization names that have been granted privileges in a
database.

About this task

The following statement retrieves all authorization names (and their types) that are
directly authorized to access the table EMPLOYEE with the qualifier JAMES:
SELECT DISTINCT AUTHID, AUTHIDTYPE FROM SYSIBMADM.PRIVILEGES

WHERE OBJECTNAME = 'EMPLOYEE' AND OBJECTSCHEMA = 'JAMES'

For releases earlier than Version 9.1, the following query retrieves the same
information:

SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH
WHERE TABNAME = 'EMPLOYEE'

AND TABSCHEMA = 'JAMES'
UNION
SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH

WHERE TABNAME = 'EMPLOYEE'
AND TABSCHEMA = 'JAMES'

To find out who can update the table EMPLOYEE with the qualifier JAMES, issue
the following statement:

SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH
WHERE TABNAME = 'EMPLOYEE' AND TABSCHEMA = 'JAMES' AND

(CONTROLAUTH = 'Y' OR
UPDATEAUTH IN ('G','Y'))

UNION
SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.DBAUTH

WHERE DBADMAUTH = 'Y'
UNION
SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH

WHERE TABNAME = 'EMPLOYEE' AND TABSCHEMA = 'JAMES' AND
PRIVTYPE = 'U'

Chapter 25. System catalogs and security maintenance 211

This retrieves any authorization names with DBADM authority, as well as those
names to which CONTROL or UPDATE privileges have been directly granted.

Remember that some of the authorization names may be groups, not just
individual users.

Retrieving all privileges granted to users
By making queries on the system catalog views, users can retrieve a list of the
privileges they hold and a list of the privileges they have granted to other users.

About this task

You can use the PRIVILEGES and other administrative views to retrieve
information about the authorization names that have been granted privileges in a
database. For example, the following query retrieves all the privileges granted to
the current session authorization ID:
SELECT * FROM SYSIBMADM.PRIVILEGES
WHERE AUTHID = SESSION_USER AND AUTHIDTYPE = 'U'

The keyword SESSION_USER in this statement is a special register that is equal to
the value of the current user’s authorization name.

For releases earlier than Version 9.1, the following examples provide similar
information. For example, the following statement retrieves a list of the database
privileges that have been directly granted to the individual authorization name
JAMES:

SELECT * FROM SYSCAT.DBAUTH
WHERE GRANTEE = 'JAMES' AND GRANTEETYPE = 'U'

The following statement retrieves a list of the table privileges that were directly
granted by the user JAMES:

SELECT * FROM SYSCAT.TABAUTH
WHERE GRANTOR = 'JAMES'

The following statement retrieves a list of the individual column privileges that
were directly granted by the user JAMES:

SELECT * FROM SYSCAT.COLAUTH
WHERE GRANTOR = 'JAMES'

Securing the system catalog view
Because the system catalog views describe every object in the database, if you have
sensitive data, you might want to restrict their access.

About this task

The following authorities have SELECT privilege on all catalog tables:
v ACCESSCTRL
v DATAACCESS
v DBADM
v SECADM
v SQLADM

In addition, the following instance level authorities have the ability to select from
SYSCAT.BUFFERPOOLS, SYSCAT.DBPARTITIONGROUPS,
SYSCAT.DBPARTITIONGROUPDEF, SYSCAT.PACKAGES, and SYSCAT.TABLES:

212 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v SYSADM
v SYSCTRL
v SYSMAINT
v SYSMON

You can use the CREATE DATABASE ... RESTRICTIVE command to create a
database in which no privileges are automatically granted to PUBLIC. In this case,
none of the following normal default grant actions occur:
v CREATETAB
v BINDADD
v CONNECT
v IMPLICIT_SCHEMA
v EXECUTE with GRANT on all procedures in schema SQLJ
v EXECUTE with GRANT on all functions and procedures in schema SYSPROC
v BIND on all packages created in the NULLID schema
v EXECUTE on all packages created in the NULLID schema
v CREATEIN on schema SQLJ
v CREATEIN on schema NULLID
v USE on table space USERSPACE1
v SELECT access to the SYSIBM catalog tables
v SELECT access to the SYSCAT catalog views
v SELECT access to the SYSIBMADM administrative views
v SELECT access to the SYSSTAT catalog views
v UPDATE access to the SYSSTAT catalog views

If you have created a database using the RESTRICTIVE option, and you want to
check that the permissions granted to PUBLIC are limited, you can issue the
following query to verify which schemas PUBLIC can access:

SELECT DISTINCT OBJECTSCHEMA FROM SYSIBMADM.PRIVILEGES WHERE AUTHID='PUBLIC'

OBJECTSCHEMA

SYSFUN
SYSIBM
SYSPROC

To see what access PUBLIC still has to SYSIBM, you can issue the following query
to check what privileges are granted on SYSIBM. The results show that only
EXECUTE on certain procedures and functions is granted.

SELECT * FROM SYSIBMADM.PRIVILEGES WHERE OBJECTSCHEMA = 'SYSIBM'

AUTHID AUTHIDTYPE PRIVILEGE GRANTABLE OBJECTNAME OBJECTSCHEMA OBJECTTYPE
---------... ---------- ---------- --------- ---------------... ------------... ----------
PUBLIC G EXECUTE N SQL060207192129400 SYSPROC FUNCTION
PUBLIC G EXECUTE N SQL060207192129700 SYSPROC FUNCTION
PUBLIC G EXECUTE N SQL060207192129701 SYSPROC
...
PUBLIC G EXECUTE Y TABLES SYSIBM PROCEDURE
PUBLIC G EXECUTE Y TABLEPRIVILEGES SYSIBM PROCEDURE
PUBLIC G EXECUTE Y STATISTICS SYSIBM PROCEDURE
PUBLIC G EXECUTE Y SPECIALCOLUMNS SYSIBM PROCEDURE
PUBLIC G EXECUTE Y PROCEDURES SYSIBM PROCEDURE
PUBLIC G EXECUTE Y PROCEDURECOLS SYSIBM PROCEDURE
PUBLIC G EXECUTE Y PRIMARYKEYS SYSIBM PROCEDURE
PUBLIC G EXECUTE Y FOREIGNKEYS SYSIBM PROCEDURE
PUBLIC G EXECUTE Y COLUMNS SYSIBM PROCEDURE

Chapter 25. System catalogs and security maintenance 213

PUBLIC G EXECUTE Y COLPRIVILEGES SYSIBM PROCEDURE
PUBLIC G EXECUTE Y UDTS SYSIBM PROCEDURE
PUBLIC G EXECUTE Y GETTYPEINFO SYSIBM PROCEDURE
PUBLIC G EXECUTE Y SQLCAMESSAGE SYSIBM PROCEDURE
PUBLIC G EXECUTE Y SQLCAMESSAGECCSID SYSIBM PROCEDURE

Note: The SYSIBMADM.PRIVILEGES administrative view is available starting
with Version 9.1 of the DB2 database manager.

For releases earlier than Version 9.1 of the DB2 database manager, during database
creation, SELECT privilege on the system catalog views is granted to PUBLIC. In
most cases, this does not present any security problems. For very sensitive data,
however, it may be inappropriate, as these tables describe every object in the
database. If this is the case, consider revoking the SELECT privilege from PUBLIC;
then grant the SELECT privilege as required to specific users. Granting and
revoking SELECT on the system catalog views is done in the same way as for any
view, but you must have either ACCESSCTRL or SECADM authority to do this.

At a minimum, if you don’t want any user to be able to know what objects other
users have access to, you should consider restricting access to the following catalog
and administrative views:
v SYSCAT.COLAUTH
v SYSCAT.DBAUTH
v SYSCAT.INDEXAUTH
v SYSCAT.PACKAGEAUTH
v SYSCAT.PASSTHRUAUTH
v SYSCAT.ROUTINEAUTH
v SYSCAT.SCHEMAAUTH
v SYSCAT.SECURITYLABELACCESS
v SYSCAT.SECURITYPOLICYEXEMPTIONS
v SYSCAT.SEQUENCEAUTH
v SYSCAT.SURROGATEAUTHIDS
v SYSCAT.TABAUTH
v SYSCAT.TBSPACEAUTH
v SYSCAT.XSROBJECTAUTH
v SYSIBMADM.AUTHORIZATIONIDS
v SYSIBMADM.OBJECTOWNERS
v SYSIBMADM.PRIVILEGES

This would prevent information on user privileges from becoming available to
everyone with access to the database.

You should also examine the columns for which statistics are gathered. Some of the
statistics recorded in the system catalog contain data values which could be
sensitive information in your environment. If these statistics contain sensitive data,
you may wish to revoke SELECT privilege from PUBLIC for the
SYSCAT.COLUMNS and SYSCAT.COLDIST catalog views.

If you wish to limit access to the system catalog views, you could define views to
let each authorization name retrieve information about its own privileges.

214 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

For example, the following view MYSELECTS includes the owner and name of
every table on which a user’s authorization name has been directly granted
SELECT privilege:

CREATE VIEW MYSELECTS AS
SELECT TABSCHEMA, TABNAME FROM SYSCAT.TABAUTH
WHERE GRANTEETYPE = 'U'

AND GRANTEE = USER
AND SELECTAUTH = 'Y'

The keyword USER in this statement is equal to the value of the current session
authorization name.

The following statement makes the view available to every authorization name:
GRANT SELECT ON TABLE MYSELECTS TO PUBLIC

And finally, remember to revoke SELECT privilege on the view and base table by
issuing the following two statements:

REVOKE SELECT ON TABLE SYSCAT.TABAUTH FROM PUBLIC

REVOKE SELECT ON TABLE SYSIBM.SYSTABAUTH FROM PUBLIC

System catalog views

System catalog views

The database manager creates and maintains two sets of system catalog views that
are defined on top of the base system catalog tables.
v SYSCAT views are read-only catalog views that are found in the SYSCAT

schema. The RESTRICT option on CREATE DATABASE statement determines
how SELECT privilege is granted. When the RESTRICT option is not specified,
SELECT privilege is granted to PUBLIC.

v SYSSTAT views are updatable catalog views that are found in the SYSSTAT
schema. The updatable views contain statistical information that is used by the
optimizer. The values in some columns in these views can be changed to test
performance. (Before changing any statistics, it is recommended that the
RUNSTATS command be invoked so that all the statistics reflect the current
state.)

Applications should be written to the SYSCAT and SYSSTAT views rather than the
base catalog tables.

All the system catalog views are created at database creation time. The catalog
views cannot be explicitly created or dropped. In a Unicode database, the catalog
views are created with IDENTITY collation. In non-Unicode databases, the catalog
views are created with the database collation. The views are updated during
normal operation in response to SQL data definition statements, environment
routines, and certain utilities. Data in the system catalog views is available through
normal SQL query facilities. The system catalog views (with the exception of some
updatable catalog views) cannot be modified using normal SQL data manipulation
statements.

A object table, column, or index object will appear in a user’s updatable SYSSTAT
catalog view only if that user holds CONTROL privilege on the object, or holds
explicit DATAACCESS authority. A routine object will appear in a user’s updatable
SYSSTAT.ROUTINES catalog view if that user owns the routine or holds SQLADM
authority.

Chapter 25. System catalogs and security maintenance 215

The order of columns in the views may change from release to release. To prevent
this from affecting programming logic, specify the columns in a select list explicitly,
and avoid using SELECT *. Columns have consistent names based on the types of
objects that they describe.

Table 35. Samples of consistent column names for objects they descibe

Described
Object Column Names

Table TABSCHEMA, TABNAME

Index INDSCHEMA, INDNAME

Index extension IESCHEMA, IENAME

View VIEWSCHEMA, VIEWNAME

Constraint CONSTSCHEMA, CONSTNAME

Trigger TRIGSCHEMA, TRIGNAME

Package PKGSCHEMA, PKGNAME

Type TYPESCHEMA, TYPENAME, TYPEID

Function ROUTINESCHEMA, ROUTINEMODULENAME, ROUTINENAME,
ROUTINEID

Method ROUTINESCHEMA, ROUTINEMODULENAME, ROUTINENAME,
ROUTINEID

Procedure ROUTINESCHEMA, ROUTINEMODULENAME, ROUTINENAME,
ROUTINEID

Column COLNAME

Schema SCHEMANAME

Table Space TBSPACE

Database
partition group

DBPGNAME

Audit policy AUDITPOLICYNAME, AUDITPOLICYID

Buffer pool BPNAME

Event Monitor EVMONNAME

Condition CONDSCHEMA, CONDMODULENAME, CONDNAME,
CONDMODULEID

Data source SERVERNAME, SERVERTYPE, SERVERVERSION

Global variable VARSCHEMA, VARMODULENAME, VARNAME, VARMODULEID

Histogram
template

TEMPLATENAME, TEMPLATEID

Module MODULESCHEMA, MODULENAME, MODULEID

Role ROLENAME, ROLEID

Security label SECLABELNAME, SECLABELID

Security policy SECPOLICYNAME, SECPOLICYID

Sequence SEQSCHEMA, SEQNAME

Threshold THRESHOLDNAME, THRESHOLDID

Trusted context CONTEXTNAME, CONTEXTID

Work action ACTIONNAME, ACTIONID

Work action set ACTIONSETNAME, ACTIONSETID

Work class WORKCLASSNAME, WORKCLASSID

216 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 35. Samples of consistent column names for objects they descibe (continued)

Described
Object Column Names

Work class set WORKCLASSSETNAME, WORKCLASSSETID

Workload WORKLOADID, WORKLOADNAME

Wrapper WRAPNAME

Alteration
Timestamp

ALTER_TIME

Creation
Timestamp

CREATE_TIME

Road map to the catalog views
Table 36. Road map to the read-only catalog views

Description Catalog View

attributes of structured data types “SYSCAT.ATTRIBUTES” on page 947

audit policies “SYSCAT.AUDITPOLICIES” on page 221

“SYSCAT.AUDITUSE” on page 222

authorities on database “SYSCAT.DBAUTH” on page 224

buffer pool configuration on database partition group “SYSCAT.BUFFERPOOLS” on page 951

buffer pool size on database partition “SYSCAT.BUFFERPOOLDBPARTITIONS” on page 950

cast functions “SYSCAT.CASTFUNCTIONS” on page 951

check constraints “SYSCAT.CHECKS” on page 952

column privileges “SYSCAT.COLAUTH” on page 223

columns “SYSCAT.COLUMNS” on page 957

columns referenced by check constraints “SYSCAT.COLCHECKS” on page 953

columns used in dimensions “SYSCAT.COLUSE” on page 962

columns used in keys “SYSCAT.KEYCOLUSE” on page 994

conditions “SYSCAT.CONDITIONS” on page 963

constraint dependencies “SYSCAT.CONSTDEP” on page 963

database partition group database partitions “SYSCAT.DBPARTITIONGROUPDEF” on page 971

database partition group definitions “SYSCAT.DBPARTITIONGROUPS” on page 971

data partitions “SYSCAT.DATAPARTITIONEXPRESSION” on page 964

“SYSCAT.DATAPARTITIONS” on page 965

data type dependencies “SYSCAT.DATATYPEDEP” on page 967

data types “SYSCAT.DATATYPES” on page 968

detailed column group statistics “SYSCAT.COLGROUPCOLS” on page 955

“SYSCAT.COLGROUPDIST” on page 955

“SYSCAT.COLGROUPDISTCOUNTS” on page 955

“SYSCAT.COLGROUPS” on page 956

detailed column options “SYSCAT.COLOPTIONS” on page 957

detailed column statistics “SYSCAT.COLDIST” on page 954

distribution maps “SYSCAT.PARTITIONMAPS” on page 1004

event monitor definitions “SYSCAT.EVENTMONITORS” on page 972

Chapter 25. System catalogs and security maintenance 217

Table 36. Road map to the read-only catalog views (continued)

Description Catalog View

events currently monitored “SYSCAT.EVENTS” on page 973

“SYSCAT.EVENTTABLES” on page 974

fields of row data types “SYSCAT.ROWFIELDS” on page 1009

function dependencies1 “SYSCAT.ROUTINEDEP” on page 1007

function mapping “SYSCAT.FUNCMAPPINGS” on page 976

function mapping options “SYSCAT.FUNCMAPOPTIONS” on page 976

function parameter mapping options “SYSCAT.FUNCMAPPARMOPTIONS” on page 976

function parameters1 “SYSCAT.ROUTINEPARMS” on page 1010

functions1 “SYSCAT.ROUTINES” on page 1012

global variables “SYSCAT.VARIABLEAUTH” on page 246

“SYSCAT.VARIABLEDEP” on page 1034

“SYSCAT.VARIABLES” on page 1035

hierarchies (types, tables, views) “SYSCAT.HIERARCHIES” on page 977

“SYSCAT.FULLHIERARCHIES” on page 975

identity columns “SYSCAT.COLIDENTATTRIBUTES” on page 956

index columns “SYSCAT.INDEXCOLUSE” on page 979

index data partitions “SYSCAT.INDEXPARTITIONS” on page 990

index dependencies “SYSCAT.INDEXDEP” on page 980

index exploitation “SYSCAT.INDEXEXPLOITRULES” on page 986

index extension dependencies “SYSCAT.INDEXEXTENSIONDEP” on page 987

index extension parameters “SYSCAT.INDEXEXTENSIONPARMS” on page 988

index extension search methods “SYSCAT.INDEXEXTENSIONMETHODS” on page 988

index extensions “SYSCAT.INDEXEXTENSIONS” on page 989

index options “SYSCAT.INDEXOPTIONS” on page 990

index privileges “SYSCAT.INDEXAUTH” on page 225

indexes “SYSCAT.INDEXES” on page 981

invalid objects “SYSCAT.INVALIDOBJECTS” on page 993

method dependencies1 “SYSCAT.ROUTINEDEP” on page 1007

method parameters1 “SYSCAT.ROUTINES” on page 1012

methods1 “SYSCAT.ROUTINES” on page 1012

module objects “SYSCAT.MODULEOBJECTS” on page 995

module privileges “SYSCAT.MODULEAUTH” on page 994

modules “SYSCAT.MODULES” on page 996

nicknames “SYSCAT.NICKNAMES” on page 997

object mapping “SYSCAT.NAMEMAPPINGS” on page 996

package dependencies “SYSCAT.PACKAGEDEP” on page 226

package privileges “SYSCAT.PACKAGEAUTH” on page 226

packages “SYSCAT.PACKAGES” on page 1000

partitioned tables “SYSCAT.TABDETACHEDDEP” on page 1025

pass-through privileges “SYSCAT.PASSTHRUAUTH” on page 228

218 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 36. Road map to the read-only catalog views (continued)

Description Catalog View

predicate specifications “SYSCAT.PREDICATESPECS” on page 1005

procedure options “SYSCAT.ROUTINEOPTIONS” on page 1008

procedure parameter options “SYSCAT.ROUTINEPARMOPTIONS” on page 1010

procedure parameters1 “SYSCAT.ROUTINEPARMS” on page 1010

procedures1 “SYSCAT.ROUTINES” on page 1012

protected tables “SYSCAT.SECURITYLABELACCESS” on page 232

“SYSCAT.SECURITYLABELCOMPONENTELEMENTS”
on page 232

“SYSCAT.SECURITYLABELCOMPONENTS” on page 233

“SYSCAT.SECURITYLABELS” on page 233

“SYSCAT.SECURITYPOLICIES” on page 233

“SYSCAT.SECURITYPOLICYCOMPONENTRULES” on
page 234

“SYSCAT.SECURITYPOLICYEXEMPTIONS” on page 235

“SYSCAT.SURROGATEAUTHIDS” on page 235

provides DB2 for z/OS compatibility “SYSIBM.SYSDUMMY1” on page 1050

referential constraints “SYSCAT.REFERENCES” on page 1005

remote table options “SYSCAT.TABOPTIONS” on page 1025

roles “SYSCAT.ROLEAUTH” on page 228

“SYSCAT.ROLES” on page 229

routine dependencies “SYSCAT.ROUTINEDEP” on page 1007

routine parameters1 “SYSCAT.ROUTINEPARMS” on page 1010

routine privileges “SYSCAT.ROUTINEAUTH” on page 230

routines1 “SYSCAT.ROUTINES” on page 1012

“SYSCAT.ROUTINESFEDERATED” on page 1019

schema privileges “SYSCAT.SCHEMAAUTH” on page 229

schemas “SYSCAT.SCHEMATA” on page 231

sequence privileges “SYSCAT.SEQUENCEAUTH” on page 231

sequences “SYSCAT.SEQUENCES” on page 236

server options “SYSCAT.SERVEROPTIONS” on page 1021

server-specific user options “SYSCAT.USEROPTIONS” on page 246

statements in packages “SYSCAT.STATEMENTS” on page 1023

stored procedures “SYSCAT.ROUTINES” on page 1012

system servers “SYSCAT.SERVERS” on page 1021

table constraints “SYSCAT.TABCONST” on page 238

table dependencies “SYSCAT.TABDEP” on page 1023

table privileges “SYSCAT.TABAUTH” on page 247

table space use privileges “SYSCAT.TBSPACEAUTH” on page 245

table spaces “SYSCAT.TABLESPACES” on page 244

tables “SYSCAT.TABLES” on page 239

Chapter 25. System catalogs and security maintenance 219

Table 36. Road map to the read-only catalog views (continued)

Description Catalog View

transforms “SYSCAT.TRANSFORMS” on page 1027

trigger dependencies “SYSCAT.TRIGDEP” on page 1028

triggers “SYSCAT.TRIGGERS” on page 1029

trusted contexts “SYSCAT.CONTEXTATTRIBUTES” on page 964

“SYSCAT.CONTEXTS” on page 964

type mapping “SYSCAT.TYPEMAPPINGS” on page 1031

user-defined functions “SYSCAT.ROUTINES” on page 1012

view dependencies “SYSCAT.TABDEP” on page 1023

views “SYSCAT.TABLES” on page 239

“SYSCAT.VIEWS” on page 1037

workload management “SYSCAT.HISTOGRAMTEMPLATEBINS” on page 978

“SYSCAT.HISTOGRAMTEMPLATES” on page 978

“SYSCAT.HISTOGRAMTEMPLATEUSE” on page 978

“SYSCAT.SERVICECLASSES” on page 1021

“SYSCAT.THRESHOLDS” on page 1025

“SYSCAT.WORKACTIONS” on page 1037

“SYSCAT.WORKACTIONSETS” on page 1040

“SYSCAT.WORKCLASSES” on page 1040

“SYSCAT.WORKCLASSSETS” on page 1041

“SYSCAT.WORKLOADAUTH” on page 1042

“SYSCAT.WORKLOADCONNATTR” on page 1042

“SYSCAT.WORKLOADS” on page 1043

wrapper options “SYSCAT.WRAPOPTIONS” on page 1045

wrappers “SYSCAT.WRAPPERS” on page 1045

XML strings “SYSCAT.XMLSTRINGS” on page 1046

XML values index “SYSCAT.INDEXXMLPATTERNS” on page 993

XSR objects “SYSCAT.XDBMAPGRAPHS” on page 1045

“SYSCAT.XDBMAPSHREDTREES” on page 1046

“SYSCAT.XSROBJECTAUTH” on page 1046

“SYSCAT.XSROBJECTCOMPONENTS” on page 1047

“SYSCAT.XSROBJECTDEP” on page 1048

“SYSCAT.XSROBJECTDETAILS” on page 1047

“SYSCAT.XSROBJECTHIERARCHIES” on page 1049

“SYSCAT.XSROBJECTS” on page 1049
1 The following catalog views for functions, methods, and procedures defined in DB2 Version 7.1 and earlier are still
available:

Functions: SYSCAT.FUNCTIONS, SYSCAT.FUNCDEP, SYSCAT.FUNCPARMS
Methods: SYSCAT.FUNCTIONS, SYSCAT.FUNCDEP, SYSCAT.FUNCPARMS
Procedures: SYSCAT.PROCEDURES, SYSCAT.PROCPARMS

However, these views have not been updated since DB2 Version 7.1. Use the SYSCAT.ROUTINES,
SYSCAT.ROUTINEDEP, or SYSCAT.ROUTINEPARMS catalog view instead.

220 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 37. Road map to the updatable catalog views

Description Catalog View

columns “SYSSTAT.COLUMNS” on page 1052

detailed column group statistics “SYSSTAT.COLGROUPDIST” on page 1051

“SYSSTAT.COLGROUPDISTCOUNTS” on page 1052

“SYSSTAT.COLGROUPS” on page 1052

detailed column statistics “SYSSTAT.COLDIST” on page 1050

indexes “SYSSTAT.INDEXES” on page 1054

routines1 “SYSSTAT.ROUTINES” on page 1057

tables “SYSSTAT.TABLES” on page 1058
1 The SYSSTAT.FUNCTIONS catalog view still exists for updating the statistics for functions and methods. This view,
however, does not reflect any changes since DB2 Version 7.1.

SYSCAT.AUDITPOLICIES

Each row represents an audit policy.

Table 38. SYSCAT.AUDITPOLICIES Catalog View

Column Name Data Type Nullable Description

AUDITPOLICYNAME VARCHAR (128) Name of the audit policy.

AUDITPOLICYID INTEGER Identifier for the audit policy.

CREATE_TIME TIMESTAMP Time at which the audit policy was created.

ALTER_TIME TIMESTAMP Time at which the audit policy was last
altered.

AUDITSTATUS CHAR (1) Status for the AUDIT category.

v B = Both

v F = Failure

v N = None

v S = Success

CONTEXTSTATUS CHAR (1) Status for the CONTEXT category.

v B = Both

v F = Failure

v N = None

v S = Success

VALIDATESTATUS CHAR (1) Status for the VALIDATE category.

v B = Both

v F = Failure

v N = None

v S = Success

CHECKINGSTATUS CHAR (1) Status for the CHECKING category.

v B = Both

v F = Failure

v N = None

v S = Success

Chapter 25. System catalogs and security maintenance 221

Table 38. SYSCAT.AUDITPOLICIES Catalog View (continued)

Column Name Data Type Nullable Description

SECMAINTSTATUS CHAR (1) Status for the SECMAINT category.

v B = Both

v F = Failure

v N = None

v S = Success

OBJMAINTSTATUS CHAR (1) Status for the OBJMAINT category.

v B = Both

v F = Failure

v N = None

v S = Success

SYSADMINSTATUS CHAR (1) Status for the SYSADMIN category.

v B = Both

v F = Failure

v N = None

v S = Success

EXECUTESTATUS CHAR (1) Status for the EXECUTE category.

v B = Both

v F = Failure

v N = None

v S = Success

EXECUTEWITHDATA CHAR (1) Host variables and parameter markers
logged with EXECUTE category.

v N = No

v Y = Yes

ERRORTYPE CHAR (1) The audit error type.

v A = Audit

v N = Normal

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.AUDITUSE

Each row represents an audit policy that is associated with a non-database object,
such as USER, GROUP, or authority (SYSADM, SYSCTRL, SYSMAINT).

Table 39. SYSCAT.AUDITUSE Catalog View

Column Name Data Type Nullable Description

AUDITPOLICYNAME VARCHAR (128) Name of the audit policy.

AUDITPOLICYID INTEGER Identifier for the audit policy.

222 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 39. SYSCAT.AUDITUSE Catalog View (continued)

Column Name Data Type Nullable Description

OBJECTTYPE CHAR(1) The type of object with which this audit
policy is associated.

v S = MQT

v T = Table

v g = Authority

v i = Authorization ID

v x = Trusted context

v Blank = Database

SUBOBJECTTYPE CHAR(1) If OBJECTTYPE is ’i’, this is the type that the
authorization ID represents.

v G = Group

v R = Role

v U = User

v Blank = Not applicable

OBJECTSCHEMA VARCHAR (128) Schema name of the object for which the
audit policy is in use. OBJECTSCHEMA is
null if OBJECTTYPE identifies an object to
which a schema does not apply.

OBJECTNAME VARCHAR (128) Unqualified name of the object for which
this audit policy is in use.

SYSCAT.COLAUTH

Each row represents a user, group, or role that has been granted one or more
privileges on a column.

Table 40. SYSCAT.COLAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of a privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of a privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

TABSCHEMA VARCHAR (128) Schema name of the table or view on which
the privilege is held.

TABNAME VARCHAR (128) Unqualified name of the table or view on
which the privilege is held.

COLNAME VARCHAR (128) Name of the column to which this privilege
applies.

COLNO SMALLINT Column number of this column within the
table (starting with 0).

PRIVTYPE CHAR (1) v R = Reference privilege

v U = Update privilege

Chapter 25. System catalogs and security maintenance 223

Table 40. SYSCAT.COLAUTH Catalog View (continued)

Column Name Data Type Nullable Description

GRANTABLE CHAR (1) v G = Privilege is grantable

v N = Privilege is not grantable

Note:

1. Privileges can be granted by column, but can be revoked only on a table-wide basis.

SYSCAT.DBAUTH

Each row represents a user, group, or role that has been granted one or more
database-level authorities.

Table 41. SYSCAT.DBAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the authority.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the authority.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

BINDADDAUTH CHAR (1) Authority to create packages.

v N = Not held

v Y = Held

CONNECTAUTH CHAR (1) Authority to connect to the database.

v N = Not held

v Y = Held

CREATETABAUTH CHAR (1) Authority to create tables.

v N = Not held

v Y = Held

DBADMAUTH CHAR (1) DBADM authority.

v N = Not held

v Y = Held

EXTERNALROUTINEAUTH CHAR (1) Authority to create external routines.

v N = Not held

v Y = Held

IMPLSCHEMAAUTH CHAR (1) Authority to implicitly create schemas by
creating objects in non-existent schemas.

v N = Not held

v Y = Held

LOADAUTH CHAR (1) Authority to use the DB2 load utility.

v N = Not held

v Y = Held

224 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 41. SYSCAT.DBAUTH Catalog View (continued)

Column Name Data Type Nullable Description

NOFENCEAUTH CHAR (1) Authority to create non-fenced user-defined
functions.

v N = Not held

v Y = Held

QUIESCECONNECTAUTH CHAR (1) Authority to access the database when it is
quiesced.

v N = Not held

v Y = Held

LIBRARYADMAUTH CHAR (1) Reserved for future use.

SECURITYADMAUTH CHAR (1) Authority to administer database security.

v N = Not held

v Y = Held

SQLADMAUTH CHAR (1) Authority to monitor and tune SQL
statements.

v N = Not held

v Y = Held

WLMADMAUTH CHAR (1) Authority to manage WLM objects.

v N = Not held

v Y = Held

EXPLAINAUTH CHAR (1) Authority to explain SQL statements without
requiring actual privileges on the objects in
the statement.

v N = Not held

v Y = Held

DATAACCESSAUTH CHAR (1) Authority to access data.

v N = Not held

v Y = Held

ACCESSCTRLAUTH CHAR (1) Authority to grant and revoke database
object privileges.

v N = Not held

v Y = Held

SYSCAT.INDEXAUTH

Each row represents a user, group, or role that has been granted CONTROL
privilege on an index.

Table 42. SYSCAT.INDEXAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

Chapter 25. System catalogs and security maintenance 225

Table 42. SYSCAT.INDEXAUTH Catalog View (continued)

Column Name Data Type Nullable Description

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

CONTROLAUTH CHAR (1) CONTROL privilege.

v N = Not held

v Y = Held

SYSCAT.PACKAGEAUTH

Each row represents a user, group, or role that has been granted one or more
privileges on a package.

Table 43. SYSCAT.PACKAGEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

PKGSCHEMA VARCHAR (128) Schema name of the package.

PKGNAME VARCHAR (128) Unqualified name of the package.

CONTROLAUTH CHAR (1) CONTROL privilege.

v N = Not held

v Y = Held

BINDAUTH CHAR (1) Privilege to bind the package.

v G = Held and grantable

v N = Not held

v Y = Held

EXECUTEAUTH CHAR (1) Privilege to execute the package.

v G = Held and grantable

v N = Not held

v Y = Held

SYSCAT.PACKAGEDEP

Each row represents a dependency of a package on some other object. The package
depends on the object of type BTYPE of name BNAME, so a change to the object
affects the package.

226 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 44. SYSCAT.PACKAGEDEP Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR (128) Schema name of the package.

PKGNAME VARCHAR (128) Unqualified name of the package.

BINDER VARCHAR (128) Binder of the package.

BINDERTYPE CHAR (1) v U = Binder is an individual user

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

v A = Table alias

v B = Trigger

v D = Server definition

v F = Routine

v G = User temporary table

v I = Index

v M = Function mapping

v N = Nickname

v O = Privilege dependency on all subtables
or subviews in a table or view hierarchy

v P = Page size

v Q = Sequence object

v R = User-defined data type

v S = Materialized query table

v T = Table (untyped)

v U = Typed table

v V = View (untyped)

v W = Typed view

v Z = XSR object

v m = Module

v n = Database partition group

v q = Sequence alias

v u = Module alias

v v = Global variable

BSCHEMA VARCHAR (128) Schema name of an object on which the
package depends.

BMODULENAME VARCHAR(128) Y Unqualified name of the module to which
the object on which a dependency belongs.
The null value if not a module object.

BNAME VARCHAR (128) Unqualified name of an object on which the
package depends.

BMODULEID INTEGER Y Identifier for the module of the object on
which there is a dependency.

TABAUTH SMALLINT Y If BTYPE is ’O’, ’S’, ’T’, ’U’, ’V’, or ’W’,
encodes the privileges that are required by
this package (SELECT, INSERT, UPDATE, or
DELETE). Bit vector is defined in SQL.H.

VARAUTH SMALLINT Y If BTYPE is ’v’, encodes the privileges that
are required by this package (READ or
WRITE). Bit vector is defined in SQL.H.

Chapter 25. System catalogs and security maintenance 227

|

|

|

Table 44. SYSCAT.PACKAGEDEP Catalog View (continued)

Column Name Data Type Nullable Description

UNIQUE_ID CHAR (8) FOR BIT
DATA

Identifier for a specific package when
multiple packages having the same name
exist.

PKGVERSION VARCHAR (64) Y Version identifier for the package.

Note:

1. If a function instance with dependencies is dropped, the package is put into an ″inoperative″ state, and it must be
explicitly rebound. If any other object with dependencies is dropped, the package is put into an ″invalid″ state,
and the system will attempt to rebind the package automatically when it is first referenced.

SYSCAT.PASSTHRUAUTH

Each row represents a user, group, or role that has been granted pass-through
authorization to query a data source.

Table 45. SYSCAT.PASSTHRUAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

SERVERNAME VARCHAR (128) Name of the data source to which
authorization is being granted.

SYSCAT.ROLEAUTH

Each row represents a role granted to a user, group, role, or PUBLIC.

Table 46. SYSCAT.ROLEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Authorization ID that granted the role.

GRANTORTYPE CHAR (1) v U = Grantor is an individual user

GRANTEE VARCHAR (128) Authorization ID to which the role was
granted.

GRANTEETYPE CHAR (1) v G = The grantee is a group

v R = The grantee is a role

v U = The grantee is an individual user

ROLENAME VARCHAR (128) Name of the role.

ROLEID INTEGER Identifier for the role.

ADMIN CHAR (1) Privilege to grant or revoke the role to or
from others, or to comment on the role.

v N = Not held

v Y = Held

228 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

SYSCAT.ROLES

Each row represents a role.

Table 47. SYSCAT.ROLES Catalog View

Column Name Data Type Nullable Description

ROLENAME VARCHAR (128) Name of the role.

ROLEID INTEGER Identifier for the role.

CREATE_TIME TIMESTAMP Time when the role was created.

AUDITPOLICYID INTEGER Y Identifier for the audit policy.

AUDITPOLICYNAME VARCHAR (128) Y Name of the audit policy.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.SCHEMAAUTH

Each row represents a user, group, or role that has been granted one or more
privileges on a schema.

Table 48. SYSCAT.SCHEMAAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of a privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of a privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

SCHEMANAME VARCHAR (128) Name of the schema to which this privilege
applies.

ALTERINAUTH CHAR (1) Privilege to alter or comment on objects in
the named schema.

v G = Held and grantable

v N = Not held

v Y = Held

CREATEINAUTH CHAR (1) Privilege to create objects in the named
schema.

v G = Held and grantable

v N = Not held

v Y = Held

DROPINAUTH CHAR (1) Privilege to drop objects from the named
schema.

v G = Held and grantable

v N = Not held

v Y = Held

Chapter 25. System catalogs and security maintenance 229

SYSCAT.ROUTINEAUTH

Each row represents a user, group, or role that has been granted EXECUTE
privilege on:
v a particular routine (function, method, or procedure) in the database that is not

defined in a module
v all routines in a particular schema in the database that are not defined in a

module

Table 49. SYSCAT.ROUTINEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege. ’SYSIBM’ if the
privilege was granted by the system.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

SCHEMA VARCHAR (128) Schema name of the routine.

SPECIFICNAME VARCHAR (128) Y Specific name of the routine. If
SPECIFICNAME is the null value and
ROUTINETYPE is not ’M’, the privilege
applies to all routines of the type specified in
ROUTINETYPE in the schema specified in
SCHEMA. If SPECIFICNAME is the null
value and ROUTINETYPE is ’M’, the
privilege applies to all methods for the
subject type specified by TYPENAME in the
schema specified by TYPESCHEMA. If
SPECIFICNAME is the null value,
ROUTINETYPE is ’M’, and both
TYPENAME and TYPESCHEMA are null
values, the privilege applies to all methods
for all types in the schema.

TYPESCHEMA VARCHAR (128) Y Schema name of the type for the method.
The null value if ROUTINETYPE is not ’M’.

TYPENAME VARCHAR (128) Y Unqualified name of the type for the
method. The null value if ROUTINETYPE is
not ’M’. If TYPENAME is the null value and
ROUTINETYPE is ’M’, the privilege applies
to all methods for any subject type if they
are in the schema specified by SCHEMA.

ROUTINETYPE CHAR (1) Type of the routine.

v F = Function

v M = Method

v P = Procedure

EXECUTEAUTH CHAR (1) Privilege to execute the routine.

v G = Held and grantable

v N = Not held

v Y = Held

230 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 49. SYSCAT.ROUTINEAUTH Catalog View (continued)

Column Name Data Type Nullable Description

GRANT_TIME TIMESTAMP Time at which the privilege was granted.

SYSCAT.SCHEMATA

Each row represents a schema.

Table 50. SYSCAT.SCHEMATA Catalog View

Column Name Data Type Nullable Description

SCHEMANAME VARCHAR (128) Name of the schema.

OWNER VARCHAR (128) Authorization ID of the owner of the
schema.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

DEFINER VARCHAR (128) Authorization ID of the definer of the
schema or authorization ID of the owner of
the schema if the ownership of the schema
has been transferred.

DEFINERTYPE CHAR (1) v S = The definer is the system

v U = The definer is an individual user

CREATE_TIME TIMESTAMP Time at which the schema was created.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.SEQUENCEAUTH

Each row represents a user, group, or role that has been granted one or more
privileges on a sequence.

Table 51. SYSCAT.SEQUENCEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of a privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of a privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

SEQSCHEMA VARCHAR (128) Schema name of the sequence.

SEQNAME VARCHAR (128) Unqualified name of the sequence.

ALTERAUTH CHAR (1) Privilege to alter the sequence.

v G = Held and grantable

v N = Not held

v Y = Held

Chapter 25. System catalogs and security maintenance 231

Table 51. SYSCAT.SEQUENCEAUTH Catalog View (continued)

Column Name Data Type Nullable Description

USAGEAUTH CHAR (1) Privilege to reference the sequence.

v G = Held and grantable

v N = Not held

v Y = Held

SYSCAT.SECURITYLABELACCESS

Each row represents a security label that was granted to the database authorization
ID.

Table 52. SYSCAT.SECURITYLABELACCESS Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the security label.

GRANTEE VARCHAR (128) Holder of the security label.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

SECLABELID INTEGER Identifier for the security label. For the name
of the security label, select the
SECLABELNAME column for the
corresponding SECLABELID value in the
SYSCAT.SECURITYLABELS catalog view.

SECPOLICYID INTEGER Identifier for the security policy that is
associated with the security label. For the
name of the security policy, select the
SECPOLICYNAME column for the
corresponding SECPOLICYID value in the
SYSCAT.SECURITYPOLICIES catalog view.

ACCESSTYPE CHAR (1) v B = Both read and write access

v R = Read access

v W = Write access

GRANT_TIME TIMESTAMP Time at which the security label was
granted.

SYSCAT.SECURITYLABELCOMPONENTELEMENTS

Each row represents an element value for a security label component.

Table 53. SYSCAT.SECURITYLABELCOMPONENTELEMENTS Catalog View

Column Name Data Type Nullable Description

COMPID INTEGER Identifier for the security label component.

ELEMENTVALUE VARCHAR (32) Element value for the security label
component.

ELEMENTVALUEENCODING CHAR (8) FOR BIT
DATA

Encoded form of the element value.

232 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 53. SYSCAT.SECURITYLABELCOMPONENTELEMENTS Catalog View (continued)

Column Name Data Type Nullable Description

PARENTELEMENTVALUE VARCHAR (32) Y Name of the parent of an element for tree
components; the null value for set and array
components, and for the ROOT node of a
tree component.

SYSCAT.SECURITYLABELCOMPONENTS

Each row represents a security label component.

Table 54. SYSCAT.SECURITYLABELCOMPONENTS Catalog View

Column Name Data Type Nullable Description

COMPNAME VARCHAR (128) Name of the security label component.

COMPID INTEGER Identifier for the security label component.

COMPTYPE CHAR (1) Security label component type.

v A = Array

v S = Set

v T = Tree

NUMELEMENTS INTEGER Number of elements in the security label
component.

CREATE_TIME TIMESTAMP Time at which the security label component
was created.

REMARKS VARCHAR (254) User-provided comments, or the null value.

SYSCAT.SECURITYLABELS

Each row represents a security label.

Table 55. SYSCAT.SECURITYLABELS Catalog View

Column Name Data Type Nullable Description

SECLABELNAME VARCHAR (128) Name of the security label.

SECLABELID INTEGER Identifier for the security label.

SECPOLICYID INTEGER Identifier for the security policy to which the
security label belongs.

SECLABEL SYSPROC.
DB2SECURITYLABEL

Internal representation of the security label.

CREATE_TIME TIMESTAMP Time at which the security label was created.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.SECURITYPOLICIES

Each row represents a security policy.

Table 56. SYSCAT.SECURITYPOLICIES Catalog View

Column Name Data Type Nullable Description

SECPOLICYNAME VARCHAR (128) Name of the security policy.

SECPOLICYID INTEGER Identifier for the security policy.

Chapter 25. System catalogs and security maintenance 233

Table 56. SYSCAT.SECURITYPOLICIES Catalog View (continued)

Column Name Data Type Nullable Description

NUMSECLABELCOMP INTEGER Number of security label components in the
security policy.

RWSECLABELREL CHAR (1) Relationship between the security labels for
read and write access granted to the same
authorization ID.

v S = The security label for write access
granted to a user is a subset of the
security label for read access granted to
that same user

NOTAUTHWRITESECLABEL CHAR (1) Action to take when a user is not authorized
to write the security label that is specified in
the INSERT or UPDATE statement.

v O = Override

v R = Restrict

CREATE_TIME TIMESTAMP Time at which the security policy was
created.

GROUPAUTHS CHAR (1) Indicates if authorizations of security labels
and exemptions granted to an authorization
ID that represents a group will be used or
ignored.

v I = Ignored

v U = Used

ROLEAUTHS CHAR (1) Indicates if authorizations of security labels
and exemptions granted to an authorization
ID that represents a role will be used or
ignored.

v I = Ignored

v U = Used

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.SECURITYPOLICYCOMPONENTRULES

Each row represents the read and write access rules for a security label component
of the security policy.

Table 57. SYSCAT.SECURITYPOLICYCOMPONENTRULES Catalog View

Column Name Data Type Nullable Description

SECPOLICYID INTEGER Identifier for the security policy.

COMPID INTEGER Identifier for the security label component of
the security policy.

ORDINAL INTEGER Position of the security label component as it
appears in the security policy, starting with
1.

READACCESSRULENAME VARCHAR (128) Name of the read access rule that is
associated with the security label component.

READACCESSRULETEXT VARCHAR (512) Text of the read access rule that is associated
with the security label component.

WRITEACCESSRULENAME VARCHAR (128) Name of the write access rule that is
associated with the security label component.

234 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 57. SYSCAT.SECURITYPOLICYCOMPONENTRULES Catalog View (continued)

Column Name Data Type Nullable Description

WRITEACCESSRULETEXT VARCHAR (512) Text of the write access rule that is
associated with the security label component.

SYSCAT.SECURITYPOLICYEXEMPTIONS

Each row represents a security policy exemption that was granted to a database
authorization ID.

Table 58. SYSCAT.SECURITYPOLICYEXEMPTIONS Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the exemption.

GRANTEE VARCHAR (128) Holder of the exemption.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

SECPOLICYID INTEGER Identifier for the security policy for which
the exemption was granted. For the name of
the security policy, select the
SECPOLICYNAME column for the
corresponding SECPOLICYID value in the
SYSCAT.SECURITYPOLICIES catalog view.

ACCESSRULENAME VARCHAR (128) Name of the access rule for which the
exemption was granted.

ACCESSTYPE CHAR (1) Type of access to which the rule applies.

v R = Read access

v W = Write access

ORDINAL INTEGER Position of the security label component in
the security policy to which the rule applies.

ACTIONALLOWED CHAR (1) If the rule is DB2LBACWRITEARRAY, then:

v D = Write down

v U = Write up

Blank otherwise.

GRANT_TIME TIMESTAMP Time at which the exemption was granted.

SYSCAT.SURROGATEAUTHIDS

Each row represents a user or a group that has been granted SETSESSIONUSER
privilege on a user or PUBLIC.

Table 59. SYSCAT.SURROGATEAUTHIDS Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Authorization ID that granted TRUSTEDID
the ability to act as a surrogate. When the
TRUSTEDID represents a trusted context
object, this field represents the authorization
ID that created or altered the trusted context
object.

Chapter 25. System catalogs and security maintenance 235

Table 59. SYSCAT.SURROGATEAUTHIDS Catalog View (continued)

Column Name Data Type Nullable Description

TRUSTEDID VARCHAR (128) Identifier for the entity that is trusted to act
as a surrogate.

TRUSTEDIDTYPE CHAR (1) v C = Trusted context

v G = Group

v U = User

SURROGATEAUTHID VARCHAR (128) Surrogate authorization ID that can be
assumed by TRUSTEDID. ’PUBLIC’ indicates
that TRUSTEDID can assume any
authorization ID.

SURROGATEAUTHIDTYPE CHAR (1) v G = Group

v U = User

AUTHENTICATE CHAR (1) v N = No authentication is required

v Y = Authentication token is required with
the authorization ID to authenticate the
user before the authorization ID can be
assumed

v Blank = TRUSTEDIDTYPE is not ’C’

CONTEXTROLE VARCHAR (128) Y A specific role to be assigned to the assumed
authorization ID, which supercedes the
default role, if any, that is defined for the
trusted context. Null value when
TRUSTEDIDTYPE is not ’C’.

GRANT_TIME TIMESTAMP Time at which the grant was made .

SYSCAT.SEQUENCES

Each row represents a sequence or alias.

Table 60. SYSCAT.SEQUENCES Catalog View

Column Name Data Type Nullable Description

SEQSCHEMA VARCHAR (128) Schema name of the sequence.

SEQNAME VARCHAR (128) Unqualified name of the sequence.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the
sequence.

DEFINERTYPE CHAR (1) v S = The definer is the system

v U = The definer is an individual user

OWNER VARCHAR (128) Authorization ID of the owner of the
sequence.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

SEQID INTEGER Identifier for the sequence or alias.

SEQTYPE CHAR (1) Type of sequence.

v A = Alias

v I = Identity sequence

v S = Sequence

236 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 60. SYSCAT.SEQUENCES Catalog View (continued)

Column Name Data Type Nullable Description

BASE_SEQSCHEMA VARCHAR (128) Y If SEQTYPE is ’A’, contains the schema
name of the sequence or alias that is
referenced by this alias; the null value
otherwise.

BASE_SEQNAME VARCHAR (128) Y If SEQTYPE is ’A’, contains the unqualified
name of the sequence or alias that is
referenced by this alias; the null value
otherwise.

INCREMENT DECIMAL (31,0) Y Increment value. The null value if the
sequence is an alias.

START DECIMAL (31,0) Y Start value of the sequence. The null value if
the sequence is an alias.

MAXVALUE DECIMAL (31,0) Y Maximum value of the sequence. The null
value if the sequence is an alias.

MINVALUE DECIMAL (31,0) Y Minimum value of the sequence. The null
value if the sequence is an alias.

NEXTCACHEFIRSTVALUE DECIMAL (31,0) Y The first value available to be assigned in
the next cache block. If no caching, the next
value available to be assigned.

CYCLE CHAR (1) Indicates whether or not the sequence can
continue to generate values after reaching its
maximum or minimum value.

v N = Sequence cannot cycle

v Y = Sequence can cycle

v Blank = Sequence is an alias.

CACHE INTEGER Number of sequence values to pre-allocate in
memory for faster access. 0 indicates that
values of the sequence are not to be
preallocated. In a partitioned database, this
value applies to each database partition. -1 if
the sequence is an alias.

ORDER CHAR (1) Indicates whether or not the sequence
numbers must be generated in order of
request.

v N = Sequence numbers are not required to
be generated in order of request

v Y = Sequence numbers must be generated
in order of request

v Blank = Sequence is an alias.

DATATYPEID INTEGER For built-in types, the internal identifier of
the built-in type. For distinct types, the
internal identifier of the distinct type. 0 if the
sequence is an alias.

SOURCETYPEID INTEGER For a built-in type or if the sequence is an
alias, this has a value of 0. For a distinct
type, this is the internal identifier of the
built-in type that is the source type for the
distinct type.

CREATE_TIME TIMESTAMP Time at which the sequence was created.

ALTER_TIME TIMESTAMP Time at which the sequence was last altered.

Chapter 25. System catalogs and security maintenance 237

Table 60. SYSCAT.SEQUENCES Catalog View (continued)

Column Name Data Type Nullable Description

PRECISION SMALLINT Precision of the data type of the sequence.
Possible values are:

v 5 = SMALLINT

v 10 = INTEGER

v 19 = BIGINT

For DECIMAL, it is the precision of the
specified DECIMAL data type. 0 if the
sequence is an alias.

ORIGIN CHAR (1) Origin of the sequence.

v S = System-generated sequence

v U = User-generated sequence

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.TABCONST

Each row represents a table constraint of type CHECK, UNIQUE, PRIMARY KEY,
or FOREIGN KEY. For table hierarchies, each constraint is recorded only at the
level of the hierarchy where the constraint was created.

Table 61. SYSCAT.TABCONST Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Name of the constraint.

TABSCHEMA VARCHAR (128) Schema name of the table to which this
constraint applies.

TABNAME VARCHAR (128) Unqualified name of the table to which this
constraint applies.

OWNER VARCHAR (128) Authorization ID of the owner of the
constraint.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

TYPE CHAR (1) Indicates the constraint type.

v F = Foreign key

v I = Functional dependency

v K = Check

v P = Primary key

v U = Unique

ENFORCED CHAR (1) v N = Do not enforce constraint

v Y = Enforce constraint

CHECKEXISTINGDATA CHAR (1) v D = Defer checking any existing data

v I = Immediately check existing data

v N = Never check existing data

ENABLEQUERYOPT CHAR (1) v N = Query optimization is disabled

v Y = Query optimization is enabled

238 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 61. SYSCAT.TABCONST Catalog View (continued)

Column Name Data Type Nullable Description

DEFINER1 VARCHAR (128) Authorization ID of the owner of the
constraint.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.TABLES

Each row represents a table, view, alias, or nickname. Each table or view hierarchy
has one additional row representing the hierarchy table or hierarchy view that
implements the hierarchy. Catalog tables and views are included.

Table 62. SYSCAT.TABLES Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the object.

TABNAME VARCHAR (128) Unqualified name of the object.

OWNER VARCHAR (128) Authorization ID of the owner of the table, view,
alias, or nickname.

OWNERTYPE CHAR (1)
v S = The owner is the system

v U = The owner is an individual user

TYPE CHAR (1) Type of object.

v A = Alias

v G = Created temporary table

v H = Hierarchy table

v L = Detached table

v N = Nickname

v S = Materialized query table

v T = Table (untyped)

v U = Typed table

v V = View (untyped)

v W = Typed view

STATUS CHAR (1) Status of the object.

v C = Set integrity pending

v N = Normal

v X = Inoperative

BASE_TABSCHEMA VARCHAR (128) Y If TYPE = ’A’, contains the schema name of the
table, view, alias, or nickname that is referenced by
this alias; null value otherwise.

BASE_TABNAME VARCHAR (128) Y If TYPE = ’A’, contains the unqualified name of
the table, view, alias, or nickname that is
referenced by this alias; null value otherwise.

ROWTYPESCHEMA VARCHAR (128) Y Schema name of the row type for this table, if
applicable; null value otherwise.

ROWTYPENAME VARCHAR (128) Y Unqualified name of the row type for this table, if
applicable; null value otherwise.

CREATE_TIME TIMESTAMP Time at which the object was created.

ALTER_TIME TIMESTAMP Time at which the object was last altered.

INVALIDATE_TIME TIMESTAMP Time at which the object was last invalidated.

Chapter 25. System catalogs and security maintenance 239

Table 62. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

STATS_TIME TIMESTAMP Y Time at which any change was last made to
recorded statistics for this object. The null value if
statistics are not collected.

COLCOUNT SMALLINT Number of columns, including inherited columns
(if any).

TABLEID SMALLINT Internal logical object identifier.

TBSPACEID SMALLINT Internal logical identifier for the primary table
space for this object.

CARD BIGINT Total number of rows in the table; -1 if statistics
are not collected.

NPAGES BIGINT Total number of pages on which the rows of the
table exist; -1 for a view or alias, or if statistics are
not collected; -2 for a subtable or hierarchy table.

FPAGES BIGINT Total number of pages; -1 for a view or alias, or if
statistics are not collected; -2 for a subtable or
hierarchy table.

OVERFLOW BIGINT Total number of overflow records in the table; -1
for a view or alias, or if statistics are not collected;
-2 for a subtable or hierarchy table.

TBSPACE VARCHAR (128) Y Name of the primary table space for the table. If
no other table space is specified, all parts of the
table are stored in this table space. The null value
for aliases, views, and partitioned tables.

INDEX_TBSPACE VARCHAR (128) Y Name of the table space that holds all indexes
created on this table. The null value for aliases,
views, and partitioned tables, or if the INDEX IN
clause was omitted or specified with the same
value as the IN clause of the CREATE TABLE
statement.

LONG_TBSPACE VARCHAR (128) Y Name of the table space that holds all long data
(LONG or LOB column types) for this table. The
null value for aliases, views, and partitioned
tables, or if the LONG IN clause was omitted or
specified with the same value as the IN clause of
the CREATE TABLE statement.

PARENTS SMALLINT Y Number of parent tables for this object; that is, the
number of referential constraints in which this
object is a dependent.

CHILDREN SMALLINT Y Number of dependent tables for this object; that is,
the number of referential constraints in which this
object is a parent.

SELFREFS SMALLINT Y Number of self-referencing referential constraints
for this object; that is, the number of referential
constraints in which this object is both a parent
and a dependent.

KEYCOLUMNS SMALLINT Y Number of columns in the primary key.

KEYINDEXID SMALLINT Y Index identifier for the primary key index; 0 or the
null value if there is no primary key.

KEYUNIQUE SMALLINT Number of unique key constraints (other than the
primary key constraint) defined on this object.

CHECKCOUNT SMALLINT Number of check constraints defined on this
object.

240 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 62. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

DATACAPTURE CHAR (1)
v L = Table participates in data replication,

including replication of LONG VARCHAR and
LONG VARGRAPHIC columns

v N = Table does not participate in data
replication

v Y = Table participates in data replication,
excluding replication of LONG VARCHAR and
LONG VARGRAPHIC columns

CONST_CHECKED CHAR (32)
v Byte 1 represents foreign key constraint.

v Byte 2 represents check constraint.

v Byte 5 represents materialized query table.

v Byte 6 represents generated column.

v Byte 7 represents staging table.

v Byte 8 represents data partitioning constraint.

v Other bytes are reserved for future use.

Possible values are:

v F = In byte 5, the materialized query table
cannot be refreshed incrementally. In byte 7, the
content of the staging table is incomplete and
cannot be used for incremental refresh of the
associated materialized query table.

v N = Not checked

v U = Checked by user

v W = Was in ’U’ state when the table was placed
in set integrity pending state

v Y = Checked by system

PMAP_ID SMALLINT Y Identifier for the distribution map that is currently
in use by this table (the null value for aliases or
views).

PARTITION_MODE CHAR (1) Indicates how data is distributed among database
partitions in a partitioned database system.

v H = Hashing

v R = Replicated across database partitions

v Blank = No database partitioning

LOG_ATTRIBUTE CHAR (1)
v Always 0. This column is no longer used.

PCTFREE SMALLINT Percentage of each page to be reserved for future
inserts.

APPEND_MODE CHAR (1) Controls how rows are inserted into pages.

v N = New rows are inserted into existing spaces,
if available

v Y = New rows are appended to the end of the
data

REFRESH CHAR (1) Refresh mode.

v D = Deferred

v I = Immediate

v O = Once

v Blank = Not a materialized query table

REFRESH_TIME TIMESTAMP Y For REFRESH = ’D’ or ’O’, time at which the data
was last refreshed (REFRESH TABLE statement);
null value otherwise.

Chapter 25. System catalogs and security maintenance 241

Table 62. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

LOCKSIZE CHAR (1) Indicates the preferred lock granularity for tables
that are accessed by data manipulation language
(DML) statements. Applies to tables only. Possible
values are:

v I = Block insert

v R = Row

v T = Table

v Blank = Not applicable

VOLATILE CHAR (1)
v C = Cardinality of the table is volatile

v Blank = Not applicable

ROW_FORMAT CHAR (1) Not used.

PROPERTY VARCHAR (32) Properties for a table. A single blank indicates that
the table has no properties. The following is
position within string, value, and meaning:

v 1, Y = User maintained materialized query table

v 2, Y = Staging table

v 3, Y = Propagate immediate

v 11, Y = Nickname that will not be cached

STATISTICS_PROFILE CLOB (10M) Y RUNSTATS command used to register a statistical
profile for the object.

COMPRESSION CHAR (1)
v B = Both value and row compression are

activated

v N = No compression is activated; a row format
that does not support compression is used

v R = Row compression is activated if licensed; a
row format that supports compression might be
used

v V = Value compression is activated; a row
format that supports compression is used

v Blank = Not applicable

ACCESS_MODE CHAR (1) Access restriction state of the object. These states
only apply to objects that are in set integrity
pending state or to objects that were processed by
a SET INTEGRITY statement. Possible values are:

v D = No data movement

v F = Full access

v N = No access

v R = Read-only access

CLUSTERED CHAR (1) Y
v Y = Table is multidimensionally clustered (even

if only by one dimension)

v Null value = Table is not multidimensionally
clustered

ACTIVE_BLOCKS BIGINT Total number of active blocks in the table, or -1.
Applies to multidimensional clustering (MDC)
tables only.

DROPRULE CHAR (1)
v N = No rule

v R = Restrict rule applies on drop

MAXFREESPACESEARCH SMALLINT Reserved for future use.

AVGCOMPRESSEDROWSIZE SMALLINT Average length (in bytes) of compressed rows in
this table; -1 if statistics are not collected.

242 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 62. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

AVGROWCOMPRESSIONRATIO REAL For compressed rows in the table, this is the
average compression ratio by row; that is, the
average uncompressed row length divided by the
average compressed row length; -1 if statistics are
not collected.

AVGROWSIZE SMALLINT Average length (in bytes) of both compressed and
uncompressed rows in this table; -1 if statistics are
not collected.

PCTROWSCOMPRESSED REAL Compressed rows as a percentage of the total
number of rows in the table; -1 if statistics are not
collected.

LOGINDEXBUILD VARCHAR (3) Y Level of logging that is to be performed during
create, recreate, or reorganize index operations on
the table.

v OFF = Index build operations on the table will
be logged minimally

v ON = Index build operations on the table will
be logged completely

v Null value = Value of the logindexbuild database
configuration parameter will be used to
determine whether or not index build
operations are to be completely logged

CODEPAGE SMALLINT Code page of the object. This is the default code
page used for all character columns, triggers,
check constraints, and expression-generated
columns.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the table.

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for the table.

COLLATIONSCHEMA_ORDERBY VARCHAR (128) Schema name of the collation for ORDER BY
clauses in the table.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for ORDER BY
clauses in the table.

ENCODING_SCHEME CHAR (1)
v A = CCSID ASCII was specified

v U = CCSID UNICODE was specified

v Blank = CCSID clause was not specified

PCTPAGESSAVED SMALLINT Approximate percentage of pages saved in the
table as a result of row compression. This value
includes overhead bytes for each user data row in
the table, but does not include the space that is
consumed by dictionary overhead; -1 if statistics
are not collected.

LAST_REGEN_TIME TIMESTAMP Y Time at which any views or check constraints on
the table were last regenerated.

SECPOLICYID INTEGER Identifier for the security policy protecting the
table; 0 for non-protected tables.

PROTECTIONGRANULARITY CHAR (1)
v B = Both column- and row-level granularity

v C = Column-level granularity

v R = Row-level granularity

v Blank = Non-protected table

AUDITPOLICYID INTEGER Y Identifier for the audit policy.

AUDITPOLICYNAME VARCHAR (128) Y Name of the audit policy.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the table, view,
alias, or nickname.

Chapter 25. System catalogs and security maintenance 243

Table 62. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

ONCOMMIT CHAR (1) Specifies the action taken on the created
temporary table when a COMMIT operation is
performed.

v D = Delete rows

v P = Preserve rows

v Blank = Table is not a created temporary table

LOGGED CHAR (1) Specifies whether the created temporary table is
logged.

v N = Not logged

v Y = Logged

v Blank = Table is not a created temporary table

ONROLLBACK CHAR (1) Specifies the action taken on the created
temporary table when a ROLLBACK operation is
performed.

v D = Delete rows

v P = Preserve rows

v Blank = Table is not a created temporary table

LASTUSED DATE Reserved for future use.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.TABLESPACES

Each row represents a table space.

Table 63. SYSCAT.TABLESPACES Catalog View

Column Name Data Type Nullable Description

TBSPACE VARCHAR (128) Name of the table space.

OWNER VARCHAR (128) Authorization ID of the owner of the table
space.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

CREATE_TIME TIMESTAMP Time at which the table space was created.

TBSPACEID INTEGER Identifier for the table space.

TBSPACETYPE CHAR (1) Type of table space.

v D = Database-managed space

v S = System-managed space

DATATYPE CHAR (1) Type of data that can be stored in this table
space.

v A = All types of permanent data; regular
table space

v L = All types of permanent data; large
table space

v T = System temporary tables only

v U = Created temporary tables or declared
temporary tables only

244 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 63. SYSCAT.TABLESPACES Catalog View (continued)

Column Name Data Type Nullable Description

EXTENTSIZE INTEGER Size of each extent, in pages of size
PAGESIZE. This many pages are written to
one container in the table space before
switching to the next container.

PREFETCHSIZE INTEGER Number of pages of size PAGESIZE to be
read when prefetching is performed; -1 when
AUTOMATIC.

OVERHEAD DOUBLE Controller overhead and disk seek and
latency time, in milliseconds (average for the
containers in this table space).

TRANSFERRATE DOUBLE Time to read one page of size PAGESIZE
into the buffer (average for the containers in
this table space).

WRITEOVERHEAD DOUBLE Y Reserved for future use.

WRITETRANSFERRATE DOUBLE Y Time to write one page of size PAGESIZE
from the buffer to the table space (average
for the containers in this table space). The
null value means the same value as
TRANSFERRATE will be used.

PAGESIZE INTEGER Size (in bytes) of pages in this table space.

DBPGNAME VARCHAR (128) Name of the database partition group that is
associated with this table space.

BUFFERPOOLID INTEGER Identifier for the buffer pool that is used by
this table space (1 indicates the default buffer
pool).

DROP_RECOVERY CHAR (1) Indicates whether or not tables in this table
space can be recovered after a drop table
operation.

v N = Tables are not recoverable

v Y = Tables are recoverable

NGNAME1 VARCHAR (128) Name of the database partition group that is
associated with this table space.

DEFINER2 VARCHAR (128) Authorization ID of the owner of the table
space.

DATAPRIORITY CHAR (1) Reserved for future use.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The NGNAME column is included for backwards compatibility. See DBPGNAME.

2. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.TBSPACEAUTH

Each row represents a user, group, or role that has been granted the USE privilege
on a particular table space in the database.

Table 64. SYSCAT.TBSPACEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

Chapter 25. System catalogs and security maintenance 245

Table 64. SYSCAT.TBSPACEAUTH Catalog View (continued)

Column Name Data Type Nullable Description

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

TBSPACE VARCHAR (128) Name of the table space.

USEAUTH CHAR (1) Privilege to create tables within the table
space.

v G = Held and grantable

v N = Not held

v Y = Held

SYSCAT.USEROPTIONS

Each row represents a server-specific user option value.

Table 65. SYSCAT.USEROPTIONS Catalog View

Column Name Data Type Nullable Description

AUTHID VARCHAR (128) Local authorization ID, in uppercase
characters.

AUTHIDTYPE CHAR (1) v U = Grantee is an individual user

SERVERNAME VARCHAR (128) Name of the server on which the user is
defined.

OPTION VARCHAR (128) Name of the user option.

SETTING VARCHAR (2048) Value of the user option.

SYSCAT.VARIABLEAUTH

Each row represents a user, group, or role that has been granted one or more
privileges by a specific grantor on a global variable in the database that is not
defined in a module.

Table 66. SYSCAT.VARIABLEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

246 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 66. SYSCAT.VARIABLEAUTH Catalog View (continued)

Column Name Data Type Nullable Description

VARSCHEMA VARCHAR (128) Schema name of the global variable if
VARMODULEID is null; otherwise schema
name of the module to which the global
variable belongs.

VARNAME VARCHAR (128) Unqualified name of the global variable.

VARID INTEGER Identifier for the global variable.

READAUTH CHAR (1) Privilege to read the global variable.

v G = Held and grantable

v N = Not held

v Y = Held

WRITEAUTH CHAR (1) Privilege to write the global variable.

v G = Held and grantable

v N = Not held

v Y = Held

SYSCAT.TABAUTH

Each row represents a user, group, or role that has been granted one or more
privileges on a table or view.

Table 67. SYSCAT.TABAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

TABSCHEMA VARCHAR (128) Schema name of the table or view.

TABNAME VARCHAR (128) Unqualified name of the table or view.

CONTROLAUTH CHAR (1) CONTROL privilege.

v N = Not held

v Y = Held but not grantable

ALTERAUTH CHAR (1) Privilege to alter the table; allow a parent
table to this table to drop its primary key or
unique constraint; allow a table to become a
materialized query table that references this
table or view in the materialized query; or
allow a table that references this table or
view in its materialized query to no longer
be a materialized query table.

v G = Held and grantable

v N = Not held

v Y = Held

Chapter 25. System catalogs and security maintenance 247

Table 67. SYSCAT.TABAUTH Catalog View (continued)

Column Name Data Type Nullable Description

DELETEAUTH CHAR (1) Privilege to delete rows from a table or
updatable view.

v G = Held and grantable

v N = Not held

v Y = Held

INDEXAUTH CHAR (1) Privilege to create an index on a table.

v G = Held and grantable

v N = Not held

v Y = Held

INSERTAUTH CHAR (1) Privilege to insert rows into a table or
updatable view, or to run the import utility
against a table or view.

v G = Held and grantable

v N = Not held

v Y = Held

REFAUTH CHAR (1) Privilege to create and drop a foreign key
referencing a table as the parent.

v G = Held and grantable

v N = Not held

v Y = Held

SELECTAUTH CHAR (1) Privilege to retrieve rows from a table or
view, create views on a table, or to run the
export utility against a table or view.

v G = Held and grantable

v N = Not held

v Y = Held

UPDATEAUTH CHAR (1) Privilege to run the UPDATE statement
against a table or updatable view.

v G = Held and grantable

v N = Not held

v Y = Held

248 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 26. Auditing database activities

Auditing DB2 database activities
DB2 database manager auditing activities are shown in this section.

Introduction to the DB2 audit facility
To manage access to your sensitive data, you can use a variety of authentication
and access control mechanisms to establish rules and controls for acceptable data
access. But to protect against and discover unknown or unacceptable behaviors
you can monitor data access by using the DB2 audit facility.

Successful monitoring of unwanted data access and subsequent analysis can lead
to improvements in the control of data access and the ultimate prevention of
malicious or careless unauthorized access to data. The monitoring of application
and individual user access, including system administration actions, can provide a
historical record of activity on your database systems.

The DB2 audit facility generates, and allows you to maintain, an audit trail for a
series of predefined database events. The records generated from this facility are
kept in an audit log file. The analysis of these records can reveal usage patterns
that would identify system misuse. Once identified, actions can be taken to reduce
or eliminate such system misuse.

The audit facility provides the ability to audit at both the instance and the
individual database level, independently recording all instance and database level
activities with separate logs for each. The system administrator (who holds
SYSADM authority) can use the db2audit tool to configure audit at the instance
level as well as to control when such audit information is collected. The system
administrator can use the db2audit tool to archive both instance and database
audit logs as well as to extract audit data from archived logs of either type.

The security administrator (who holds SECADM authority within a database) can
use audit policies in conjunction with the SQL statement, AUDIT, to configure and
control the audit requirements for an individual database. The security
administrator can use the following audit routines to perform the specified tasks:
v The SYSPROC.AUDIT_ARCHIVE stored procedure archives audit logs.
v The SYSPROC.AUDIT_LIST_LOGS table function allows you to locate logs of

interest.
v The SYSPROC.AUDIT_DELIM_EXTRACT stored procedure extracts data into

delimited files for analysis.

The security administrator can grant EXECUTE privilege on these routines to
another user, therefore enabling the security administrator to delegate these tasks,
if desired.

When working in a partitioned database environment, many of the auditable
events occur at the database partition at which the user is connected (the
coordinator partition) or at the catalog partition (if they are not the same database
partition). The implication of this is that audit records can be generated by more

© Copyright IBM Corp. 1993, 2009 249

than one database partition. Part of each audit record contains information
identifying the coordinator partition and originating partition (the partition where
audit record originated).

At the instance level, the audit facility must be stopped and started explicitly by
use of the db2audit start and db2audit stop commands. When you start
instance-level auditing, the audit facility uses existing audit configuration
information. Since the audit facility is independent of the DB2 database server, it
will remain active even if the instance is stopped. In fact, when the instance is
stopped, an audit record may be generated in the audit log. To start auditing at the
database level, first you need to create an audit policy, then you associate this
audit policy with the objects you want to monitor, such as, authorization IDs,
database authorities, trusted contexts or particular tables.

Categories of audit records

There are different categories of audit records that may be generated. In the
following description of the categories of events available for auditing, you should
notice that following the name of each category is a one-word keyword used to
identify the category type. The categories of events available for auditing are:
v Audit (AUDIT). Generates records when audit settings are changed or when the

audit log is accessed.
v Authorization Checking (CHECKING). Generates records during authorization

checking of attempts to access or manipulate DB2 database objects or functions.
v Object Maintenance (OBJMAINT). Generates records when creating or dropping

data objects, and when altering certain objects.
v Security Maintenance (SECMAINT). Generates records when:

– Granting or revoking object privileges or database authorities
– Granting or revoking security labels or exemptions
– Altering the group authorization, role authorization, or override or restrict

attributes of an LBAC security policy
– Granting or revoking the SETSESSIONUSER privilege
– Modifying any of the SYSADM_GROUP, SYSCTRL_GROUP,

SYSMAINT_GROUP, or SYSMON_GROUP configuration parameters.
v System Administration (SYSADMIN). Generates records when operations

requiring SYSADM, SYSMAINT, or SYSCTRL authority are performed.
v User Validation (VALIDATE). Generates records when authenticating users or

retrieving system security information.
v Operation Context (CONTEXT). Generates records to show the operation context

when a database operation is performed. This category allows for better
interpretation of the audit log file. When used with the log’s event correlator
field, a group of events can be associated back to a single database operation.
For example, a query statement for dynamic queries, a package identifier for
static queries, or an indicator of the type of operation being performed, such as
CONNECT, can provide needed context when analyzing audit results.

Note: The SQL or XQuery statement providing the operation context might be
very long and is completely shown within the CONTEXT record. This can make
the CONTEXT record very large.

v Execute (EXECUTE). Generates records during the execution of SQL statements.

For any of the above categories, you can audit failures, successes, or both.

250 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Any operations on the database server may generate several records. The actual
number of records generated in the audit log depends on the number of categories
of events to be recorded as specified by the audit facility configuration. It also
depends on whether successes, failures, or both, are audited. For this reason, it is
important to be selective of the events to audit.

Audit facility behavior
This topic provides background information to help you understand how the
timing of writing audit records to the log can affect database performance; how to
manage errors that occur within the audit facility; and how audit records are
generated in different situations.

Controlling the timing of writing audit records to the active log

The writing of the audit records to the active log can take place synchronously or
asynchronously with the occurrence of the events causing the generation of those
records. The value of the audit_buf_sz database manager configuration parameter
determines when the writing of audit records is done.

If the value of audit_buf_sz is zero (0), the writing is done synchronously. The event
generating the audit record waits until the record is written to disk. The wait
associated with each record causes the performance of the DB2 database to
decrease.

If the value of audit_buf_sz is greater than zero, the record writing is done
asynchronously. The value of the audit_buf_sz when it is greater than zero is the
number of 4 KB pages used to create an internal buffer. The internal buffer is used
to keep a number of audit records before writing a group of them out to disk. The
statement generating the audit record as a result of an audit event will not wait
until the record is written to disk, and can continue its operation.

In the asynchronous case, it could be possible for audit records to remain in an
unfilled buffer for some time. To prevent this from happening for an extended
period, the database manager forces the writing of the audit records regularly. An
authorized user of the audit facility may also flush the audit buffer with an explicit
request. Also, the buffers are automatically flushed during an archive operation.

There are differences when an error occurs dependent on whether there is
synchronous or asynchronous record writing. In asynchronous mode there may be
some records lost because the audit records are buffered before being written to
disk. In synchronous mode there may be one record lost because the error could
only prevent at most one audit record from being written.

Managing audit facility errors

The setting of the ERRORTYPE audit facility parameter controls how errors are
managed between the DB2 database system and the audit facility. When the audit
facility is active, and the setting of the ERRORTYPE audit facility parameter is
AUDIT, then the audit facility is treated in the same way as any other part of DB2
database. An audit record must be written (to disk in synchronous mode; or to the
audit buffer in asynchronous mode) for an audit event associated with a statement
to be considered successful. Whenever an error is encountered when running in
this mode, a negative SQLCODE is returned to the application for the statement
generating an audit record.

Chapter 26. Auditing database activities 251

If the error type is set to NORMAL, then any error from db2audit is ignored and the
operation’s SQLCODE is returned.

Audit records generated in different situations

Depending on the API or query statement and the audit settings, none, one, or
several audit records may be generated for a particular event. For example, an SQL
UPDATE statement with a SELECT subquery may result in one audit record
containing the results of the authorization check for UPDATE privilege on a table
and another record containing the results of the authorization check for SELECT
privilege on a table.

For dynamic data manipulation language (DML) statements, audit records are
generated for all authorization checking at the time that the statement is prepared.
Reuse of those statements by the same user will not be audited again since no
authorization checking takes place at that time. However, if a change has been
made to one of the catalog tables containing privilege information, then in the next
unit of work, the statement privileges for the cached dynamic SQL or XQuery
statements are checked again and one or more new audit records created.

For a package containing only static DML statements, the only auditable event that
could generate an audit record is the authorization check to see if a user has the
privilege to execute that package. The authorization checking and possible audit
record creation required for the static SQL or XQuery statements in the package is
carried out at the time the package is precompiled or bound. The execution of the
static SQL or XQuery statements within the package is auditable using the
EXECUTE category. When a package is bound again either explicitly by the user,
or implicitly by the system, audit records are generated for the authorization
checks required by the static SQL or XQuery statements.

For statements where authorization checking is performed at statement execution
time (for example, data definition language (DDL), GRANT, and REVOKE
statements), audit records are generated whenever these statements are used.

Note: When executing DDL, the section number recorded for all events (except the
context events) in the audit record will be zero (0) no matter what the actual
section number of the statement might have been.

Working with DB2 audit data in DB2 tables
The following topics describe how to create DB2 audit data, how to create tables to
hold this data, how to populate the tables with the DB2 audit data, and how to
select the DB2 audit data from the tables.

Creating tables to hold the DB2 audit data
Before you can work with audit data in database tables, you need to create the
tables to hold the data. You should consider creating these tables in a separate
schema to isolate the data in the tables from unauthorized users.

Before you begin
v See the CREATE SCHEMA statement for the authorities and privileges that you

require to create a schema.
v See the CREATE TABLE statement for the authorities and privileges that you

require to create a table.
v Decide which table space you want to use to hold the tables. (This topic does

not describe how to create table spaces.)

252 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Note: The format of the tables you need to create to hold the audit data may
change from release to release. New columns may be added or the size of an
existing column may change. The script, db2audit.ddl, creates tables of the correct
format to contain the audit records.

About this task

The examples that follow show how to create the tables to hold the records from
the delimited files. If you want, you can create a separate schema to contain these
tables.

If you do not want to use all of the data that is contained in the files, you can omit
columns from the table definitions, or bypass creating certain tables, as required. If
you omit columns from the table definitions, you must modify the commands that
you use to load data into these tables.
1. Issue the db2 command to open a DB2 command window.
2. Optional. Create a schema to hold the tables. For this example, the schema is

called AUDIT:
CREATE SCHEMA AUDIT

3. Optional. If you created the AUDIT schema, switch to the schema before
creating any tables:

SET CURRENT SCHEMA = 'AUDIT'

4. Run the script, db2audit.ddl, to create the tables that will contain the audit
records.
The script db2audit.ddl is located in the sqllib/misc directory (sqllib\misc on
Windows). The script assumes that a connection to the database exists and that
an 8K table space is available. The command to run the script is: db2 +o -tf
sqllib/misc/db2audit.ddl The tables that the script creates are: AUDIT,
CHECKING, OBJMAINT, SECMAINT, SYSADMIN, VALIDATE, CONTEXT and
EXECUTE.

5. After you have created the tables, the security administrator can use the
SYSPROC.AUDIT_DELIM_EXTRACT stored procedure, or the system
administrator can use the db2audit extract command, to extract the audit
records from the archived audit log files into delimited files. You can load the
audit data from the delimited files into the database tables you just created.

Loading DB2 audit data into tables
After you have archived and extracted the audit log file into delimited files, and
you have created the database tables to hold the audit data, you can load the audit
data from the delimited files into the database tables for analysis.

About this task

You use the load utility to load the audit data into the tables. Issue a separate load
command for each table. If you omitted one or more columns from the table
definitions, you must modify the version of the LOAD command that you use to
successfully load the data. Also, if you specified a delimiter character other than
the default when you extracted the audit data, you must also modify the version
of the LOAD command that you use.
1. Issue the db2 command to open a DB2 command window.
2. To load the AUDIT table, issue the following command:

LOAD FROM audit.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE
INSERT INTO schema.AUDIT

Chapter 26. Auditing database activities 253

Note: Specify the DELPRIORITYCHAR modifier to ensure proper parsing of
binary data.

Note: Specify the LOBSINFILE option of the LOAD command (due to the
restriction that any inline data for large objects must be limited to 32K). In
some situations, you might also need to use the LOBS FROM option.

Note: When specifying the file name, use the fully qualified path name. For
example, if you have the DB2 database system installed on the C: drive of a
Windows-based computer, you would specify C:\Program
Files\IBM\SQLLIB\instance\security\audit.del as the fully qualified file
name for the audit.del file.

3. To load the CHECKING table, issue the following command:
LOAD FROM checking.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

INSERT INTO schema.CHECKING

4. To load the OBJMAINT table, issue the following command:
LOAD FROM objmaint.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

INSERT INTO schema.OBJMAINT

5. To load the SECMAINT table, issue the following command:
LOAD FROM secmaint.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

INSERT INTO schema.SECMAINT

6. To load the SYSADMIN table, issue the following command:
LOAD FROM sysadmin.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

INSERT INTO schema.SYSADMIN

7. To load the VALIDATE table, issue the following command:
LOAD FROM validate.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

INSERT INTO schema.VALIDATE

8. To load the CONTEXT table, issue the following command:
LOAD FROM context.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

INSERT INTO schema.CONTEXT

9. To load the EXECUTE table, issue the following command:
LOAD FROM execute.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

INSERT INTO schema.EXECUTE

10. After you finish loading the data into the tables, delete the .del files from the
security/auditdata subdirectory of the sqllib directory.

11. When you have loaded the audit data into the tables, you are ready to select
data from these tables for analysis.

If you have already populated the tables a first time, and want to do so again, use
the INSERT option to have the new table data added to the existing table data. If
you want to have the records from the previous db2audit extract operation
removed from the tables, load the tables again using the REPLACE option.

Audit facility record layouts
When an audit record is extracted from the audit log, each record has one of the
formats shown in the following tables. Each table is preceded by a sample record.

The description of each item in the record is shown one row at a time in the
associated table. Each item is shown in the table in the same order as it is output
in the delimited file after the extract operation.

Note:

254 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

1. Depending on the audit event, not all fields in the audit records will have
values. When there is no values in the field, the field will not be shown in the
audit output.

2. Some fields such as “Access Attempted” are stored in the delimited ASCII
format as bit maps. In this flat report file, however, these fields appear as a set
of strings representing the bit map values.

Details on audit facility record layouts
The various audit facility record layouts are shown in this section.

Audit record layout for AUDIT events
The following table shows the layout of the audit record for AUDIT events.

Sample audit record:
timestamp=2007-04-10-08.29.52.000001;
category=AUDIT;
audit event=START;
event correlator=0;
event status=0;
userid=newton;
authid=NEWTON;
application id=*LOCAL_APPLICATION;
application name=db2audit.exe;

Table 68. Audit Record Layout for AUDIT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

AUDIT

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the AUDIT
category in “Audit events” on page 276.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

Successful event > = 0
Failed event < 0

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Chapter 26. Auditing database activities 255

|
|
|

Table 68. Audit Record Layout for AUDIT Events (continued)

NAME FORMAT DESCRIPTION

Package Section SMALLINT Section number in package being used at the time the audit event
occurred

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event occurred.
This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that is
part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register
at the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted
connection.

Connection Trust Type INTEGER Possible values are:
IMPLICIT_TRUSTED_CONNECTION
EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Policy Name VARCHAR(128) The audit policy name.

Policy Association
Object Type

CHAR(1) The type of the object that the audit policy is associated with.
Possible values include:

v N = Nickname

v S = MQT

v T = Table (untyped)

v i = Authorization ID

v g= Authority

v x = Trusted context

v blank = Database

Policy Association
Subobject Type

CHAR(1) The type of sub-object that the audit policy is associated with. If the
Object Type is ? (authorization id), then possible values are:

v U = User

v G = Group

v R = Role

Policy Association
Object Name

VARCHAR(128) The name of the object that the audit policy is associated with.

Policy Association
Object Schema

VARCHAR(128) The schema name of the object that the audit policy is associated
with. This is NULL if the Policy Association Object Type identifies
an object to which a schema does not apply.

256 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 68. Audit Record Layout for AUDIT Events (continued)

NAME FORMAT DESCRIPTION

Audit Status CHAR(1) The status of the AUDIT category in an audit policy. Possible values
are:

v B-Both

v F-Failure

v N-None

v S-Success

Checking Status CHAR(1) The status of the CHECKING category in an audit policy. Possible
values are:

v B-Both

v F-Failure

v N-None

v S-Success

Context Status CHAR(1) The status of the CONTEXT category in an audit policy. Possible
values are:

v B-Both

v F-Failure

v N-None

v S-Success

Execute Status CHAR(1) The status of the EXECUTE category in an audit policy. Possible
values are:

v B-Both

v F-Failure

v N-None

v S-Success

Execute With Data CHAR(1) The WITH DATA option of the EXECUTE category in the audit
policy. Possible values are:

v Y-WITH DATA

v N-WITHOUT DATA

Objmaint Status CHAR(1) The status of the OBJMAINT category in an audit policy. Possible
values are:

v B-Both

v F-Failure

v N-None

v S-Success

Secmaint Status CHAR(1) The status of the SECMAINT category in an audit policy. See Audit
Status field for possible values.

Sysadmin Status CHAR(1) The status of the SYSADMIN category in an audit policy. Possible
values are:

v B-Both

v F-Failure

v N-None

v S-Success

Chapter 26. Auditing database activities 257

Table 68. Audit Record Layout for AUDIT Events (continued)

NAME FORMAT DESCRIPTION

Validate Status CHAR(1) The status of the VALIDATE category in an audit policy. Possible
values are:

v B-Both

v F-Failure

v N-None

v S-Success

Error Type CHAR(8) The error type in an audit policy. Possible values are: AUDIT and
NORMAL.

Data Path VARCHAR(1024) The path to the active audit logs specified on the db2audit
configure command.

Archive Path VARCHAR(1024) The path to the archived audit logs specified on the db2audit
configure command

Audit record layout for CHECKING events
The format of the audit record for CHECKING events is shown in the following
table.

Sample audit record:
timestamp=1998-06-24-08.42.11.622984;
category=CHECKING;
audit event=CHECKING_OBJECT;
event correlator=2;
event status=0;
database=FOO;
userid=boss;
authid=BOSS;
application id=*LOCAL.newton.980624124210;
application name=testapp;
package schema=NULLID;
package name=SYSSH200;
package section=0;
object schema=GSTAGER;
object name=NONE;
object type=REOPT_VALUES;
access approval reason=DBADM;
access attempted=STORE;

Table 69. Audit record layout for CHECKING events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

CHECKING

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the CHECKING
category in “Audit events” on page 276.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

Successful event > = 0
Failed event < 0

258 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 69. Audit record layout for CHECKING events (continued)

NAME FORMAT DESCRIPTION

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

Object Schema VARCHAR(128) Schema of the object for which the audit event was generated.

Object Name VARCHAR(128) Name of object for which the audit event was generated.

Object Type VARCHAR(32) Type of object for which the audit event was generated. Possible
values include: those shown in the topic titled “Audit record object
types”.

Access Approval
Reason

CHAR(18) Indicates the reason why access was approved for this audit event.
Possible values include: those shown in the topic titled “List of
possible CHECKING access approval reasons”.

Access Attempted CHAR(18) Indicates the type of access that was attempted. Possible values
include: those shown in the topic titled “List of possible
CHECKING access attempted types”.

Package Version VARCHAR (64) Version of the package in use at the time that the audit event
occurred.

Checked
Authorization ID

VARCHAR(128) Authorization ID is checked when it is different than the
authorization ID at the time of the audit event. For example, this
can be the target owner in a TRANSFER OWNERSHIP statement.

When the audit event is SWITCH_USER, this field represents the
authorization ID that is switched to.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event occurred.
This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that is
part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register
at the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted
connection.

Chapter 26. Auditing database activities 259

Table 69. Audit record layout for CHECKING events (continued)

NAME FORMAT DESCRIPTION

Connection Trust Type INTEGER Possible values are:
IMPLICIT_TRUSTED_CONNECTION
EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Audit record object types
The following table shows for each audit record object type whether it can
generate CHECKING, OBJMAINT, and SECMAINT events.

Table 70. Audit Record Object Types Based on Audit Events

Object type CHECKING events OBJMAINT events SECMAINT events

ACCESS_RULE X

ALIAS X X

ALL X

AUDIT_POLICY X X

BUFFERPOOL X X

CHECK_CONSTRAINT X

DATABASE X X

DATA TYPE X

EVENT_MONITOR X X

FOREIGN_KEY X

FUNCTION X X X

FUNCTION MAPPING X X

GLOBAL_VARIABLE X X X

HISTOGRAM TEMPLATE X X

INDEX X X X

INDEX EXTENSION X

INSTANCE X

JAR_FILE X

METHOD_BODY X X X

MODULE X X X

NICKNAME X X X

NODEGROUP X X

NONE X X X

OPTIMIZATION PROFILE X

PACKAGE X X X

PACKAGE CACHE X

PRIMARY_KEY X

REOPT_VALUES X

ROLE X X X

SCHEMA X X X

SECURITY LABEL X X

260 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 70. Audit Record Object Types Based on Audit Events (continued)

Object type CHECKING events OBJMAINT events SECMAINT events

SECURITY LABEL COMPONENT X

SECURITY POLICY X X

SEQUENCE X X

SERVER X X X

SERVER OPTION X X

SERVICE CLASS X X

STORED_PROCEDURE X X X

SUMMARY TABLES X X X

TABLE X X X

TABLESPACE X X X

THRESHOLD X X

TRIGGER X

TRUSTED CONTEXT X X X

TYPE MAPPING X X

TYPE&TRANSFORM X X

UNIQUE_CONSTRAINT X

USER MAPPING X X

VIEW X X X

WORK ACTION SET X X

WORK CLASS SET X X

WORKLOAD X X X

WRAPPER X X

XSR object X X X

CHECKING access approval reasons
The following list shows the possible CHECKING access approval reasons.

Note that an audit record might contain multiple access approval reasons, for
example: access approval reason=DATAACCESS,ACCESSCTRL;. When multiple access
approval reasons are present, the user must have all stated authorities and
privileges in order to pass the authorization check for the attempted access.

0x0000000000000001 ACCESS DENIED
Access is not approved; rather, it was denied.

0x0000000000000002 SYSADM
Access is approved; the application or user has SYSADM authority.

0x0000000000000004 SYSCTRL
Access is approved; the application or user has SYSCTRL authority.

0x0000000000000008 SYSMAINT
Access is approved; the application or user has SYSMAINT authority.

0x0000000000000010 DBADM
Access is approved; the application or user has DBADM authority.

Chapter 26. Auditing database activities 261

0x0000000000000020 DATABASE
Access is approved; the application or user has an explicit privilege on the
database.

0x0000000000000040 OBJECT
Access is approved; the application or user has a privilege on the object or
function.

0x0000000000000080 DEFINER
Access is approved; the application or user is the definer of the object or
function.

0x0000000000000100 OWNER
Access is approved; the application or user is the owner of the object or
function.

0x0000000000000200 CONTROL
Access is approved; the application or user has CONTROL privilege on the
object or function.

0x0000000000000400 BIND
Access is approved; the application or user has bind privilege on the
package.

0x0000000000000800 SYSQUIESCE
Access is approved; if the instance or database is in quiesce mode, the
application or user may connect or attach.

0x0000000000001000 SYSMON
Access is approved; the application or user has SYSMON authority.

0x0000000000002000 SECADM
Access is approved; the application or user has SECADM authority.

0x0000000000004000 SETSESSIONUSER
Access is approved; the application or user has SETSESSIONUSER
authority.

0x0000000000008000 TRUSTED_CONTEXT_MATCH
Connection attributes matched the attributes of a unique trusted context
defined at the DB2 server.

0x0000000000010000 TRUSTED_CONTEXT_USE
Access is approved to use a trusted context.

0x0000000000020000 SQLADM
Access is approved; the application or user has SQLADM authority.

0x0000000000040000 WLMADM
Access is approved; the application or user has WLMADM authority.

0x0000000000080000 EXPLAIN
Access is approved; the application or user has EXPLAIN authority.

0x0000000000100000 DATAACCESS
Access is approved; the application or user has DATAACCESS authority.

0x0000000000200000 ACCESSCTRL
Access is approved; the application or user has ACCESSSCTRL authority.

CHECKING access attempted types
The following list shows the possible CHECKING access attempted types.

262 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

If Audit Event is CHECKING_TRANSFER, then the audit entry reflects that a
privilege is held or not.

0x0000000000000001 CONTROL
Attempt to verify if CONTROL privilege is held.

0x0000000000000002 ALTER
Attempt to alter an object or to verify if ALTER privilege is held if Audit
Event is CHECKING_TRANSFER.

0x0000000000000004 DELETE
Attempt to delete an object or to verify if DELETE privilege is held if
Audit Event is CHECKING_TRANSFER.

0x0000000000000008 INDEX
Attempt to use an index or to verify if INDEX privilege is held if Audit
Event is CHECKING_TRANSFER.

0x0000000000000010 INSERT
Attempt to insert into an object or to verify if INSERT privilege is held if
Audit Event is CHECKING_TRANSFER.

0x0000000000000020 SELECT
Attempt to query a table or view or to verify if SELECT privilege is held if
Audit Event is CHECKING_TRANSFER.

0x0000000000000040 UPDATE
Attempt to update data in an object or to verify if UPDATE privilege is
held if Audit Event is CHECKING_TRANSFER.

0x0000000000000080 REFERENCE
Attempt to establish referential constraints between objects or to verify if
REFERENCE privilege is held if Audit Event is CHECKING_TRANSFER.

0x0000000000000100 CREATE
Attempt to create an object.

0x0000000000000200 DROP
Attempt to drop an object.

0x0000000000000400 CREATEIN
Attempt to create an object within another schema.

0x0000000000000800 DROPIN
Attempt to drop an object found within another schema.

0x0000000000001000 ALTERIN
Attempt to alter or modify an object found within another schema.

0x0000000000002000 EXECUTE
Attempt to execute or run an application or to invoke a routine, create a
function sourced from the routine (applies to functions only), or reference a
routine in any DDL statement or to verify if EXECUTE privilege is held if
Audit Event is CHECKING_TRANSFER.

0x0000000000004000 BIND
Attempt to bind or prepare an application.

0x0000000000008000 SET EVENT MONITOR
Attempt to set event monitor switches.

0x0000000000010000 SET CONSTRAINTS
Attempt to set constraints on an object.

Chapter 26. Auditing database activities 263

0x0000000000020000 COMMENT ON
Attempt to create comments on an object.

0x0000000000040000 GRANT
Attempt to grant privileges or roles on an object to another authorization
ID.

0x0000000000080000 REVOKE
Attempt to revoke privileges or roles from an object from an authorization
ID.

0x0000000000100000 LOCK
Attempt to lock an object.

0x0000000000200000 RENAME
Attempt to rename an object.

0x0000000000400000 CONNECT
Attempt to connect to a database.

0x0000000000800000 Member of SYS Group
Attempt to access or use a member of the SYS group.

0x0000000001000000 Access All
Attempt to execute a statement with all required privileges on objects held
(only used for DBADM/SYSADM).

0x0000000002000000 Drop All
Attempt to drop multiple objects.

0x0000000004000000 LOAD
Attempt to load a table in a table space.

0x0000000008000000 USE
Attempt to create a table in a table space or to verify if USE privilege is
held if Audit Event is CHECKING_TRANSFER.

0x0000000010000000 SET SESSION_USER
Attempt to execute the SET SESSION_USER statement.

0x0000000020000000 FLUSH
Attempt to execute the FLUSH statement.

0x0000000040000000 STORE
Attempt to view the values of a re-optimized statement in the
EXPLAIN_PREDICATE table.

0x0000000400000000 TRANSFER
Attempt to transfer an object.

0x0000000800000000 ALTER_WITH_GRANT
Attempt to verify if ALTER with GRANT privilege is held.

0x0000001000000000 DELETE_WITH_GRANT
Attempt to verify if DELETE with GRANT privilege is held.

0x0000002000000000 INDEX_WITH_GRANT
Attempt to verify if INDEX with GRANT privilege is held

0x0000004000000000 INSERT_WITH_GRANT
Attempt to verify if INSERT with GRANT privilege is held.

0x0000008000000000 SELECT_WITH_GRANT
Attempt to verify if SELECT with GRANT privilege is held.

264 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

|

0x0000010000000000 UPDATE_WITH_GRANT
Attempt to verify if UPDATE with GRANT privilege is held.

0x0000020000000000 REFERENCE_WITH_GRANT
Attempt to verify if REFERENCE with GRANT privilege is held.

0x0000040000000000 USAGE
Attempt to use a sequence or an XSR object or to verify if USAGE
privilege is held if Audit Event is CHECKING_TRANSFER.

0x0000080000000000 SET ROLE
Attempt to set a role.

0x0000100000000000 EXPLICIT_TRUSTED_CONNECTION
Attempt to establish an explicit trusted connection.

0x0000200000000000 IMPLICIT_TRUSTED_CONNECTION
Attempt to establish an implicit trusted connection.

0x0000400000000000 READ
Attempt to read a global variable.

0x0000800000000000 WRITE
Attempt to write a global variable.

0x0001000000000000 SWITCH_USER
Attempt to switch a user ID on an explicit trusted connection.

0x0002000000000000 AUDIT_USING
Attempt to associate an audit policy with an object.

0x0004000000000000 AUDIT_REPLACE
Attempt to replace an audit policy association with an object.

0x0008000000000000 AUDIT_REMOVE
Attempt to remove an audit policy association with an object.

0x0010000000000000 AUDIT_ARCHIVE
Attempt to archive the audit log.

0x0020000000000000 AUDIT_EXTRACT
Attempt to extract the audit log.

0x0040000000000000 AUDIT_LIST_LOGS
Attempt to list the audit logs.

0x0080000000000000 IGNORE_TRIGGERS
Attempt to ignore the triggers associated with a database object.

0x0100000000000000 PREPARE
Attempt to prepare an SQL statement and the user does not hold the
necessary object level privilege or DATAACCESS authority.

0x0200000000000000 DESCRIBE
Attempt to describe a statement and the user does not hold the necessary
object level privilege or DATAACCESS authority.

Audit record layout for OBJMAINT events
The format of the audit record for OBJMAINT events is shown in the following
table.

Sample audit record:
timestamp=1998-06-24-08.42.41.957524;
category=OBJMAINT;
audit event=CREATE_OBJECT;

Chapter 26. Auditing database activities 265

event correlator=3;
event status=0;
database=FOO;
userid=boss;
authid=BOSS;
application id=*LOCAL.newton.980624124210;
application name=testapp;
package schema=NULLID;
package name=SQLC28A1;
package section=0;
object schema=BOSS;
object name=AUDIT;
object type=TABLE;

Table 71. Audit Record Layout for OBJMAINT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

OBJMAINT

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the OBJMAINT
category in “Audit events” on page 276.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(256) Name of package in use at the time the audit event occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

Object Schema VARCHAR(128) Schema of the object for which the audit event was generated.

Object Name VARCHAR(128) Name of object for which the audit event was generated.

Object Type VARCHAR(32) Type of object for which the audit event was generated. Possible
values include: those shown in the topic titled “Audit record object
types”.

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Security Policy Name VARCHAR(128) The name of the security policy if the object type is TABLE and that
table is associated with a security policy.

266 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 71. Audit Record Layout for OBJMAINT Events (continued)

NAME FORMAT DESCRIPTION

Alter Action VARCHAR(32) Specific Alter operation

Possible values include:

v ADD_PROTECTED_COLUMN

v ADD_COLUMN_PROTECTION

v DROP_COLUMN_PROTECTION

v ADD_ROW_PROTECTION

v ADD_SECURITY_POLICY

v ADD_ELEMENT

v ADD COMPONENT

v USE GROUP AUTHORIZATIONS

v IGNORE GROUP AUTHORIZATIONS

v USE ROLE AUTHORIZATIONS

v IGNORE ROLE AUTHORIZATIONS

v OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

v RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

Protected Column
Name

VARCHAR(128) If the Alter Action is ADD_COLUMN_PROTECTION or
DROP_COLUMN_PROTECTION this is the name of the affected
column.

Column Security
Label

VARCHAR(128) The security label protecting the column specified in the field
Column Name.

Security Label
Column Name

VARCHAR(128) Name of the column containing the security label protecting the
row.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event occurred.
This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that is
part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register
at the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted
connection.

Connection Trust Type INTEGER Possible values are:
IMPLICIT_TRUSTED_CONNECTION
EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Object Module VARCHAR(128) Name of module to which the object belongs.

Audit record layout for SECMAINT events
The format of the audit record for SECMAINT events is shown in the following
table.

Chapter 26. Auditing database activities 267

Sample audit record:
timestamp=1998-06-24-11.57.45.188101;
category=SECMAINT;
audit event=GRANT;
event correlator=4;
event status=0;
database=FOO;
userid=boss;
authid=BOSS;
application id=*LOCAL.boss.980624155728;
application name=db2bp;
package schema=NULLID;
package name=SQLC28A1;
package section=0;
object schema=BOSS;
object name=T1;
object type=TABLE;
grantor=BOSS;
grantee=WORKER;
grantee type=USER;
privilege=SELECT;

Table 72. Audit Record Layout for SECMAINT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

SECMAINT

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the SECMAINT
category in “Audit events” on page 276.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

268 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 72. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Object Schema VARCHAR(128) Schema of the object for which the audit event was generated.

If the object type field is ACCESS_RULE then this field contains the
security policy name associated with the rule. The name of the rule
is stored in the field Object Name.

If the object type field is SECURITY_LABEL, then this field contains
the name of the security policy that the security label is part of. The
name of the security label is stored in the field Object Name.

Object Name VARCHAR(128) Name of object for which the audit event was generated.

Represents a role name when the audit event is any of:

v ADD_DEFAULT_ROLE

v DROP_DEFAULT_ROLE

v ALTER_DEFAULT_ROLE

v ADD_USER

v DROP_USER

v ALTER_USER_ADD_ROLE

v ALTER_USER_DROP_ROLE

v ALTER_USER_AUTHENTICATION

If the object type field is ACCESS_RULE then this field contains the
name of the rule. The security policy name associated with the rule
is stored in the field Object Schema.

If the object type field is SECURITY_LABEL, then this field contains
the name of the security label. The name of the security policy that
it is part of is stored in the field Object Schema.

Object Type VARCHAR(32) Type of object for which the audit event was generated. Possible
values include: those shown in the topic titled “Audit record object
types”.

The value is ROLE when the audit event is any of:

v ADD_DEFAULT_ROLE

v DROP_DEFAULT_ROLE

v ALTER_DEFAULT_ROLE

v ADD_USER

v DROP_USER

v ALTER_USER_ADD_ROLE

v ALTER_USER_DROP_ROLE

v ALTER_USER_AUTHENTICATION

Grantor VARCHAR(128) The ID of the grantor or the revoker of the privilege or authority.

Chapter 26. Auditing database activities 269

Table 72. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Grantee VARCHAR(128) Grantee ID for which a privilege or authority was granted or
revoked.

Represents a trusted context object when the audit event is any of:

v ADD_DEFAULT_ROLE

v DROP_DEFAULT_ROLE

v ALTER_DEFAULT_ROLE

v ADD_USER, DROP_USER

v ALTER_USER_ADD_ROLE

v ALTER_USER_DROP_ROLE

v ALTER_USER_AUTHENTICATION

Grantee Type VARCHAR(32) Type of the grantee that was granted to or revoked from. Possible
values include: USER, GROUP, ROLE, AMBIGUOUS, or is
TRUSTED_CONTEXT when the audit event is any of:

v ADD_DEFAULT_ROLE

v DROP_DEFAULT_ROLE

v ALTER_DEFAULT_ROLE

v ADD_USER

v DROP_USER

v ALTER_USER_ADD_ROLE

v ALTER_USER_DROP_ROLE

v ALTER_USER_AUTHENTICATION

Privilege or Authority CHAR(34) Indicates the type of privilege or authority granted or revoked.
Possible values include: those shown in the topic titled “List of
possible SECMAINT privileges or authorities”.

The value is ROLE MEMBERSHIP when the audit event is any of
the following:

v ADD_DEFAULT_ROLE, DROP_DEFAULT_ROLE

v ALTER_DEFAULT_ROLE

v ADD_USER

v DROP_USER

v ALTER_USER_ADD_ROLE

v ALTER_USER_DROP_ROLE

v ALTER_USER_AUTHENTICATION

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

270 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 72. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Access Type VARCHAR(32) The access type for which a security label is granted.

Possible values:

v READ

v WRITE

v ALL

The access type for which a security policy is altered. Possible
values:

v USE GROUP AUTHORIZATIONS

v IGNORE GROUP AUTHORIZATIONS

v USE ROLE AUTHORIZATIONS

v IGNORE ROLE AUTHORIZATIONS

v OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

v RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

Assumable Authid VARCHAR(128) When the privilege granted is a SETSESSIONUSER privilege this is
the authorization ID that the grantee is allowed to set as the session
user.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event occurred.
This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that is
part of the transaction logs.

Grantor Type VARCHAR(32) Type of the grantor. Possible values include: USER.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register
at the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context User VARCHAR(128) Identifies a trusted context user when the audit event is
ADD_USER or DROP_USER.

Trusted Context User
Authentication

INTEGER Specifies the authentication setting for a trusted context user when
the audit event is ADD_USER, DROP_USER or
ALTER_USER_AUTHENTICATION
1 : Authentication is required
0 : Authentication is not required

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted
connection.

Connection Trust Type INTEGER Possible values are:
IMPLICIT_TRUSTED_CONNECTION
EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

SECMAINT privileges or authorities
The following list shows the possible SECMAINT privileges or authorities.

Chapter 26. Auditing database activities 271

0x00000000000000000000000000000001 Control Table
Control privilege granted or revoked on or from a table or view.

0x00000000000000000000000000000002 ALTER
Privilege granted or revoked to alter a table or sequence.

0x00000000000000000000000000000004 ALTER with GRANT
Privilege granted or revoked to alter a table or sequence with granting of
privileges allowed.

0x00000000000000000000000000000008 DELETE TABLE
Privilege granted or revoked to drop a table or view.

0x00000000000000000000000000000010 DELETE TABLE with GRANT
Privilege granted or revoked to drop a table with granting of privileges
allowed.

0x00000000000000000000000000000020 Table Index
Privilege granted or revoked on or from an index.

0x00000000000000000000000000000040 Table Index with GRANT
Privilege granted or revoked on or from an index with granting of
privileges allowed.

0x00000000000000000000000000000080 Table INSERT
Privilege granted or revoked on or from an insert on a table or view.

0x00000000000000000000000000000100 Table INSERT with GRANT
Privilege granted or revoked on or from an insert on a table with granting
of privileges allowed.

0x00000000000000000000000000000200 Table SELECT
Privilege granted or revoked on or from a select on a table.

0x00000000000000000000000000000400 Table SELECT with GRANT
Privilege granted or revoked on or from a select on a table with granting
of privileges allowed.

0x00000000000000000000000000000800 Table UPDATE
Privilege granted or revoked on or from an update on a table or view.

0x00000000000000000000000000001000 Table UPDATE with GRANT
Privilege granted or revoked on or from an update on a table or view with
granting of privileges allowed.

0x00000000000000000000000000002000 Table REFERENCE
Privilege granted or revoked on or from a reference on a table.

0x00000000000000000000000000004000 Table REFERENCE with GRANT
Privilege granted or revoked on or from a reference on a table with
granting of privileges allowed.

0x00000000000000000000000000020000 CREATEIN Schema
CREATEIN privilege granted or revoked on or from a schema.

0x00000000000000000000000000040000 CREATEIN Schema with GRANT
CREATEIN privilege granted or revoked on or from a schema with
granting of privileges allowed.

0x00000000000000000000000000080000 DROPIN Schema
DROPIN privilege granted or revoked on or from a schema.

0x00000000000000000000000000100000 DROPIN Schema with GRANT
DROPIN privilege granted or revoked on or from a schema with granting
of privileges allowed.

272 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

0x00000000000000000000000000200000 ALTERIN Schema
ALTERIN privilege granted or revoked on or from a schema.

0x00000000000000000000000000400000 ALTERIN Schema with GRANT
ALTERIN privilege granted or revoked on or from a schema with granting
of privileges allowed.

0x00000000000000000000000000800000 DBADM Authority
DBADM authority granted or revoked.

0x00000000000000000000000001000000 CREATETAB Authority
Createtab authority granted or revoked.

0x00000000000000000000000002000000 BINDADD Authority
Bindadd authority granted or revoked.

0x00000000000000000000000004000000 CONNECT Authority
CONNECT authority granted or revoked.

0x00000000000000000000000008000000 Create not fenced Authority
Create not fenced authority granted or revoked.

0x00000000000000000000000010000000 Implicit Schema Authority
Implicit schema authority granted or revoked.

0x00000000000000000000000020000000 Server PASSTHRU
Privilege granted or revoked to use the pass-through facility with this
server (federated database data source).

0x00000000000000000000000040000000 ESTABLISH TRUSTED CONNECTION
Trusted connection was created

0x00000000000000000000000100000000 Table Space USE
Privilege granted or revoked to create a table in a table space.

0x00000000000000000000000200000000 Table Space USE with GRANT
Privilege granted or revoked to create a table in a table space with granting
of privileges allowed.

0x00000000000000000000000400000000 Column UPDATE
Privilege granted or revoked on or from an update on one or more specific
columns of a table.

0x00000000000000000000000800000000 Column UPDATE with GRANT
Privilege granted or revoked on or from an update on one or more specific
columns of a table with granting of privileges allowed.

0x00000000000000000000001000000000 Column REFERENCE
Privilege granted or revoked on or from a reference on one or more
specific columns of a table.

0x00000000000000000000002000000000 Column REFERENCE with GRANT
Privilege granted or revoked on or from a reference on one or more
specific columns of a table with granting of privileges allowed.

0x00000000000000000000004000000000 LOAD Authority
LOAD authority granted or revoked.

0x00000000000000000000008000000000 Package BIND
BIND privilege granted or revoked on or from a package.

0x00000000000000000000010000000000 Package BIND with GRANT
BIND privilege granted or revoked on or from a package with granting of
privileges allowed.

Chapter 26. Auditing database activities 273

0x00000000000000000000020000000000 EXECUTE
EXECUTE privilege granted or revoked on or from a package or a routine.

0x00000000000000000000040000000000 EXECUTE with GRANT
EXECUTE privilege granted or revoked on or from a package or a routine
with granting of privileges allowed.

0x00000000000000000000080000000000 EXECUTE IN SCHEMA
EXECUTE privilege granted or revoked for all routines in a schema.

0x00000000000000000000100000000000 EXECUTE IN SCHEMA with GRANT
EXECUTE privilege granted or revoked for all routines in a schema with
granting of privileges allowed.

0x00000000000000000000200000000000 EXECUTE IN TYPE
EXECUTE privilege granted or revoked for all routines in a type.

0x00000000000000000000400000000000 EXECUTE IN TYPE with GRANT
EXECUTE privilege granted or revoked for all routines in a type with
granting of privileges allowed.

0x00000000000000000000800000000000 CREATE EXTERNAL ROUTINE
CREATE EXTERNAL ROUTINE privilege granted or revoked.

0x00000000000000000001000000000000 QUIESCE_CONNECT
QUIESCE_CONNECT privilege granted or revoked.

0x00000000000000000004000000000000 SECADM Authority
SECADM authority granted or revoked

0x00000000000000000008000000000000 USAGE Authority
USAGE privilege granted or revoked on or from a sequence

0x00000000000000000010000000000000 USAGE with GRANT Authority
USAGE privilege granted or revoked on or from a sequence with granting
of privileges allowed.

0x00000000000000000020000000000000 WITH ADMIN Option
WITH ADMIN Option is granted or revoked to or from a role.

0x00000000000000000040000000000000 SETSESSIONUSER Privilege
SETSESSIONUSER granted or revoked

0x00000000000000000080000000000000 Exemption
Exemption granted or revoked

0x00000000000000000100000000000000 Security label
Security label granted or revoked

0x00000000000000000200000000000000 WRITE with GRANT
Privilege granted or revoked to write a global variable with granting of
privileges allowed.

0x00000000000000000400000000000000 Role Membership
Role membership that is granted or revoked

0x00000000000000000800000000000000 Role Membership with ADMIN Option
Role membership with ADMIN Option that is granted or revoked

0x00000000000000001000000000000000 READ
Privilege granted or revoked to read a global variable.

0x00000000000000002000000000000000 READ with GRANT
Privilege granted or revoked to read a global variable with granting of
privileges allowed.

274 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

0x00000000000000004000000000000000 WRITE
Privilege granted or revoked to write a global variable.

0x00000000000000010000000000000000 SQLADM
SQLADM authority granted or revoked.

0x00000000000000020000000000000000 WLMADM
WLMADM authority granted or revoked.

0x00000000000000040000000000000000 EXPLAIN
EXPLAIN authority granted or revoked.

0x00000000000000080000000000000000 DATAACCESS
DATAACCESS authority granted or revoked.

0x00000000000000100000000000000000 ACCESSCTRL
ACCESSCTRL authority granted or revoked.

Audit record layout for SYSADMIN events
The following table shows the audit record layout for SYSADMIN events.

Sample audit record:
timestamp=1998-06-24-11.54.04.129923;
category=SYSADMIN;
audit event=DB2AUDIT;
event correlator=1;
event status=0;
userid=boss;authid=BOSS;
application id=*LOCAL.boss.980624155404;
application name=db2audit;

Table 73. Audit Record Layout for SYSADMIN Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

SYSADMIN

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the SYSADMIN
category in “Audit events” on page 276.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Chapter 26. Auditing database activities 275

Table 73. Audit Record Layout for SYSADMIN Events (continued)

NAME FORMAT DESCRIPTION

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event occurred.
This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that is
part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register
at the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted
connection.

Connection Trust Type INTEGER Possible values are:
IMPLICIT_TRUSTED_CONNECTION
EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Audit events
For each audit category, certain types of events can create audit records.

Events for the AUDIT category
v ALTER_AUDIT_POLICY
v ARCHIVE
v AUDIT_REMOVE
v AUDIT_REPLACE
v AUDIT_USING
v CONFIGURE
v CREATE_AUDIT_POLICY
v DB2AUD
v DROP_AUDIT_POLICY
v EXTRACT
v FLUSH
v LIST_LOGS
v PRUNE (not generated in Version 9.5, and later).
v START
v STOP
v UPDATE_DBM_CFG

276 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Events for the CHECKING category
v CHECKING_FUNCTION
v CHECKING_MEMBERSHIP_IN_ROLES
v CHECKING_OBJECT
v CHECKING_TRANSFER

Events for the CONTEXT category

Table 74. Events for the CONTEXT category

CONNECT
CONNECT_RESET
ATTACH
DETACH
DARI_START
DARI_STOP
BACKUP_DB
RESTORE_DB
ROLLFORWARD_DB
OPEN_TABLESPACE_QUERY
FETCH_TABLESPACE
CLOSE_TABLESPACE_QUERY
OPEN_CONTAINER_QUERY
CLOSE_CONTAINER_QUERY
FETCH_CONTAINER_QUERY
SET_TABLESPACE_CONTAINERS
GET_TABLESPACE_STATISTIC
READ_ASYNC_LOG_RECORD
QUIESCE_TABLESPACE
LOAD_TABLE
UNLOAD_TABLE
UPDATE_RECOVERY_HISTORY
PRUNE_RECOVERY_HISTORY
SINGLE_TABLESPACE_QUERY
LOAD_MSG_FILE
UNQUIESCE_TABLESPACE
ENABLE_MULTIPAGE
DESCRIBE_DATABASE
DROP_DATABASE
CREATE_DATABASE
ADD_NODE
FORCE_APPLICATION

SET_APPL_PRIORITY
RESET_DB_CFG
GET_DB_CFG
GET_DFLT_CFG
UPDATE_DBM_CFG
SET_MONITOR
GET_SNAPSHOT
ESTIMATE_SNAPSHOT_SIZE
RESET_MONITOR
OPEN_HISTORY_FILE
CLOSE_HISTORY_FILE
FETCH_HISTORY_FILE
SET_RUNTIME_DEGREE
UPDATE_AUDIT
DBM_CFG_OPERATION
DISCOVER
OPEN_CURSOR
CLOSE_CURSOR
FETCH_CURSOR
EXECUTE
EXECUTE_IMMEDIATE
PREPARE
DESCRIBE
BIND
REBIND
RUNSTATS
REORG
REDISTRIBUTE
COMMIT
ROLLBACK
REQUEST_ROLLBACK
IMPLICIT_REBIND
EXTERNAL_CANCEL
SWITCH_USER

Events for the EXECUTE category
v COMMIT Execution of a COMMIT statement
v CONNECT Establishment of a database connection
v CONNECT RESET Termination of a database connection
v DATA A host variable or parameter marker data values for the statement

This event is repeated for each host variable or parameter marker that is part of
the statement. It is only present in a delimited extract of an audit log.

v GLOBAL COMMIT Execution of a COMMIT within a global transaction
v GLOBAL ROLLBACK Execution of a ROLLBACK within a global transaction
v RELEASE SAVEPOINT Execution of a RELEASE SAVEPOINT statement

Chapter 26. Auditing database activities 277

v ROLLBACK Execution of a ROLLBACK statement
v SAVEPOINT Execution of a SAVEPOINT statement
v STATEMENT Execution of an SQL statement
v SWITCH USER Switching of a user within a trusted connection

Events for the OBJMAINT category
v ALTER_OBJECT (generated when altering protected tables and when altering

modules)
v CREATE_OBJECT
v DROP_OBJECT
v RENAME_OBJECT

Events for the SECMAINT category
v ADD_DEFAULT_ROLE
v ADD_USER
v ALTER_DEFAULT_ROLE
v ALTER SECURITY POLICY
v ALTER_USER_ADD_ROLE
v ALTER_USER_AUTHENTICATION
v ALTER_USER_DROP_ROLE
v DROP_DEFAULT_ROLE
v DROP_USER
v GRANT
v IMPLICIT_GRANT
v IMPLICIT_REVOKE
v REVOKE
v SET_SESSION_USER
v TRANSFER_OWNERSHIP
v UPDATE_DBM_CFG

278 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Events for the SYSADMIN category

Table 75. Events for the SYSADMIN category

START_DB2
STOP_DB2
CREATE_DATABASE
ALTER_DATABASE
DROP_DATABASE
UPDATE_DBM_CFG
UPDATE_DB_CFG
CREATE_TABLESPACE
DROP_TABLESPACE
ALTER_TABLESPACE
RENAME_TABLESPACE
CREATE_NODEGROUP
DROP_NODEGROUP
ALTER_NODEGROUP
CREATE_BUFFERPOOL
DROP_BUFFERPOOL
ALTER_BUFFERPOOL
CREATE_EVENT_MONITOR
DROP_EVENT_MONITOR
ENABLE_MULTIPAGE
MIGRATE_DB_DIR
DB2TRC
DB2SET
ACTIVATE_DB
ADD_NODE
BACKUP_DB
CATALOG_NODE
CATALOG_DB
CATALOG_DCS_DB
CHANGE_DB_COMMENT
DEACTIVATE_DB
DROP_NODE_VERIFY
FORCE_APPLICATION
GET_SNAPSHOT
LIST_DRDA_INDOUBT_TRANSACTIONS
MIGRATE_DB
RESET_ADMIN_CFG
RESET_DB_CFG
RESET_DBM_CFG
RESET_MONITOR
RESTORE_DB

ROLLFORWARD_DB
SET_RUNTIME_DEGREE
SET_TABLESPACE_CONTAINERS
UNCATALOG_DB
UNCATALOG_DCS_DB
UNCATALOG_NODE
UPDATE_ADMIN_CFG
UPDATE_MON_SWITCHES
LOAD_TABLE
DB2AUDIT
SET_APPL_PRIORITY
CREATE_DB_AT_NODE
KILLDBM
MIGRATE_SYSTEM_DIRECTORY
DB2REMOT
DB2AUD
MERGE_DBM_CONFIG_FILE
UPDATE_CLI_CONFIGURATION
OPEN_TABLESPACE_QUERY
SINGLE_TABLESPACE_QUERY
CLOSE_TABLESPACE_QUERY
FETCH_TABLESPACE
OPEN_CONTAINER_QUERY
FETCH_CONTAINER_QUERY
CLOSE_CONTAINER_QUERY
GET_TABLESPACE_STATISTICS
DESCRIBE_DATABASE
ESTIMATE_SNAPSHOT_SIZE
READ_ASYNC_LOG_RECORD
PRUNE_RECOVERY_HISTORY
UPDATE_RECOVERY_HISTORY
QUIESCE_TABLESPACE
UNLOAD_TABLE
UPDATE_DATABASE_VERSION
CREATE_INSTANCE
DELETE_INSTANCE
SET_EVENT_MONITOR
GRANT_DBADM (V97:no longer generated)
REVOKE_DBADM (V97:no longer generated)
GRANT_DB_AUTH (V97:no longer generated)
REVOKE_DB_AUTH (V97:no longer generated)
REDISTRIBUTE_NODEGROUP

Events for the VALIDATE category
v AUTHENTICATE
v CHECK_GROUP_MEMBERSHIP (not generated in Version 9.5, and later)
v GET_USERMAPPING_FROM_PLUGIN
v GET_GROUPS (not generated in Version 9.5, and later)
v GET_USERID (not generated in Version 9.5, and later)

Audit record layout for VALIDATE events
The format of the audit record for VALIDATE events is shown in the following
table.

Chapter 26. Auditing database activities 279

Sample audit record:
timestamp=2007-05-07-10.30.51.585626;
category=VALIDATE;
audit event=AUTHENTICATION;
event correlator=1;
event status=0;
userid=newton;
authid=NEWTON;
execution id=gstager;
application id=*LOCAL.gstager.070507143051;
application name=db2bp;
auth type=SERVER;
plugin name=IBMOSauthserver;

Table 76. Audit Record Layout for VALIDATE Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

VALIDATE

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: GET_GROUPS, GET_USERID,
AUTHENTICATE_PASSWORD, VALIDATE_USER,
AUTHENTICATION and GET_USERMAPPING_FROM_PLUGIN.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Execution ID VARCHAR(1024) Execution ID in use at the time of the audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Authentication Type VARCHAR(32) Authentication type at the time of the audit event.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Plug-in Name VARCHAR(32) The name of the plug-in in use at the time the audit event occurred.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event occurred.
This is the SQLU_TID structure that is part of the transaction logs.

280 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 76. Audit Record Layout for VALIDATE Events (continued)

NAME FORMAT DESCRIPTION

Global Transaction ID VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that is
part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register
at the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted
connection.

Connection Trust Type INTEGER Possible values are:
IMPLICIT_TRUSTED_CONNECTION
EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The name of the role inherited through the trusted context.

Audit record layout for CONTEXT events
The following table shows the audit record layout for CONTEXT events.

Sample audit record:
timestamp=1998-06-24-08.42.41.476840;
category=CONTEXT;
audit event=EXECUTE_IMMEDIATE;
event correlator=3;
database=FOO;
userid=boss;
authid=BOSS;
application id=*LOCAL.newton.980624124210;
application name=testapp;
package schema=NULLID;
package name=SQLC28A1;
package section=203;
text=create table audit(c1 char(10), c2 integer);

Table 77. Audit Record Layout for CONTEXT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

CONTEXT

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the CONTEXT
category in “Audit events” on page 276.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

Chapter 26. Auditing database activities 281

Table 77. Audit Record Layout for CONTEXT Events (continued)

NAME FORMAT DESCRIPTION

User ID VARCHAR(1024) User ID at time of audit event.

When the audit event is SWITCH_USER, this field
represents the user ID that is switched to.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

When the audit event is SWITCH_USER, this field
represents the authorization ID that is switched to.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

Statement Text CLOB(8M) Text of the SQL or XQuery statement, if applicable. Null if no SQL
or XQuery statement text is available.

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event occurred.
This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that is
part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register
at the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the
trusted connection.

Connection Trust Type INTEGER Possible values are:
IMPLICIT_TRUSTED_CONNECTION
EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Audit facility tips and techniques
Best practices for managing your audit include regularly archiving the audit log,
using the error type AUDIT when you create an audit policy, and other tips as
described here.

282 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Archiving the audit log

You should archive the audit log on a regular basis. Archiving the audit log moves
the current audit log to an archive directory while the server begins writing to a
new, active audit log. The name of each archived log file includes a timestamp that
helps you identify log files of interest for later analysis.

For long term storage, you may want to compress groups of archived files.

For archived audit logs that you are no longer interested in, the instance owner can
simply delete the files from the operating system.

Error handling

When you create an audit policy, you should use the error type AUDIT, unless you
are just creating a test audit policy. For example, if the error type is set to AUDIT,
and an error occurs, such as running out of disk space, then an error is returned.
The error condition must be corrected before any more auditable actions can
continue. However, if the error type had been set to NORMAL, the logging would
simply fail and no error is returned to the user. Operation continues as if the error
did not happen.

If a problem occurs during archive, such as running out of disk space in the
archive path, or the archive path does not exist, the archive process fails and an
interim log file with the file extension .bk is generated in the audit log data path,
for example, db2audit.instance.log.0.20070508172043640941.bk. After the
problem is resolved (by allocating sufficient disk space in the archive path, or by
creating the archive path) you must move this interim log to the archive path.
Then, you can treat it in the same way as a successfully archived log.

DDL statement restrictions

Some data definition language (DDL) statements, called AUDIT exclusive SQL
statements, do not take effect until the next unit of work. Therefore, you are
advised to use a COMMIT statement immediately after each of these statements.

The AUDIT exclusive SQL statements are:
v AUDIT
v CREATE AUDIT POLICY, ALTER AUDIT POLICY, and DROP AUDIT POLICY
v DROP ROLE and DROP TRUSTED CONTEXT, if the role or trusted context

being dropped is associated with an audit policy

Table format for holding archived data may change

The security administrator can use the SYSPROC.AUDIT_DEL_EXTRACT stored
procedure, or the system administrator can use the db2audit extract command, to
extract audit records from the archived audit log files into delimited files. You can
load the audit data from the delimited files into DB2 database tables for analysis.
The format of the tables you need to create to hold the audit data may change
from release to release.

Important: The script, db2audit.ddl, creates tables of the correct format to contain
the audit records. You should expect to run db2audit.ddl for each release, as
columns may be added or the size of an existing column may change.

Chapter 26. Auditing database activities 283

Using CHECKING events

In most cases, when working with CHECKING events, the object type field in the
audit record is the object being checked to see if the required privilege or authority
is held by the user ID attempting to access the object. For example, if a user
attempts to ALTER a table by adding a column, then the CHECKING event audit
record indicates the access attempted was “ALTER” and the object type being
checked was “TABLE” (not the column, because it is table privileges that are
checked).

However, when the checking involves verifying if a database authority exists to
allow a user ID to CREATE or BIND an object, or to DROP an object, then
although there is a check against the database, the object type field will specify the
object being created, bound, or dropped (rather than the database itself).

When creating an index on a table, the privilege to create an index is required,
therefore the CHECKING event audit record has an access attempt type of “index”
rather than “create”.

Audit records created for binding a package

When binding a package that already exists, then an OBJMAINT event audit
record is created for the DROP of the package and then another OBJMAINT event
audit record is created for the CREATE of the new copy of the package.

Using CONTEXT event information after ROLLBACK

Data Definition Language (DDL) may generate OBJMAINT or SECMAINT events
that are logged as successful. It is possible however that following the logging of
the event, a subsequent error may cause a ROLLBACK to occur. This would leave
the object as not created; or the GRANT or REVOKE actions as incomplete. The
use of CONTEXT events becomes important in this case. Such CONTEXT event
audit records, especially the statement that ends the event, indicates the nature of
the completion of the attempted operation.

The load delimiter

When extracting audit records in a delimited format suitable for loading into a
DB2 database table, you should be clear regarding the delimiter used within the
statement text field. This can be done when extracting the delimited file, using:

db2audit extract delasc delimiter <load delimiter>

The load delimiter can be a single character (such as ″) or a four-byte string
representing a hexadecimal value (such as “0xff”). Examples of valid commands
are:

db2audit extract delasc
db2audit extract delasc delimiter !
db2audit extract delasc delimiter 0xff

If you have used anything other than the default load delimiter as the delimiter
when extracting, you should use the MODIFIED BY option on the LOAD
command. A partial example of the LOAD command with “0xff” used as the
delimiter follows:

db2 load from context.del of del modified by chardel0xff replace into ...

284 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

This will override the default load character string delimiter which is ″ (double
quote).

Audit policies
The security administrator can use audit policies to configure the audit facility to
gather information only about the data and objects that are needed.

The security administrator can create audit policies to control what is audited
within an individual database. The following objects can have an audit policy
associated with them:
v The whole database

All auditable events that occur within the database are audited according to the
audit policy.

v Tables
All data manipulation language (DML) and XQUERY access to the table
(untyped), MQT (materialized query table), or nickname is audited. Only
EXECUTE category audit events with or without data are generated when the
table is accessed even if the policy indicates that other categories should be
audited.

v Trusted contexts
All auditable events that happen within a trusted connection defined by the
particular trusted context are audited according to the audit policy.

v Authorization IDs representing users, groups, or roles
All auditable events that are initiated by the specified user are audited according
to the audit policy.
All auditable events that are initiated by users that are a member of the group
or role are audited according to the audit policy. Indirect role membership, such
as through other roles or groups, is also included.
You can capture similar data by using the Work Load Management event
monitors by defining a work load for a group and capturing the activity details.
You should be aware that the mapping to workloads can involve attributes in
addition to just the authorization ID, which can cause you to not achieve the
desired granularity in auditing, or if those other attributes are modified,
connections may map to different (possibly unmonitored) workloads. The
auditing solution provides a guarantee that a user, group or role will be audited.

v Authorities (SYSADM, SECADM, DBADM, SQLADM, WLMADM,
ACCESSCTRL, DATAACCESS, SYSCTRL, SYSMAINT, SYSMON)
All auditable events that are initiated by a user that holds the specified
authority, even if that authority is unnecessary for the event, are audited
according to the audit policy.

The security administrator can create multiple audit policies. For example, your
company might want a policy for auditing sensitive data and a policy for auditing
the activity of users holding DBADM authority. If multiple audit policies are in
effect for a statement, all events required to be audited by each of the audit
policies are audited (but audited only once). For example, if the database’s audit
policy requires auditing successful EXECUTE events for a particular table and the
user’s audit policy requires auditing failures of EXECUTE events for that same
table, both successful and failed attempts at accessing that table are audited.

Chapter 26. Auditing database activities 285

For a specific object, there can only be one audit policy in effect. For example, you
cannot have multiple audit policies associated with the same table at the same
time.

An audit policy cannot be associated with a view or a typed table. Views that
access a table that has an associated audit policy are audited according to the
underlying table’s policy.

The audit policy that applies to a table does not automatically apply to a MQT
based on that table. If you associate an audit policy with a table, associate the
same policy with any MQT based on that table.

Auditing performed during a transaction is done based on the audit policies and
their associations at the start of the transaction. For example, if the security
administrator associates an audit policy with a user and that user is in a
transaction at the time, the audit policy does not affect any remaining statements
performed within that transaction. Also, changes to an audit policy do not take
effect until they are committed. If the security administrator issues an ALTER
AUDIT POLICY statement, it does not take effect until the statement is committed.

The security administrator uses the CREATE AUDIT POLICY statement to create
an audit policy, and the ALTER AUDIT POLICY statement to modify an audit
policy. These statements can specify:
v The status values for events to be audited: None, Success, Failure, or Both.

Only auditable events that match the specified status value are audited.
v The server behavior when errors occur during auditing.

The security administrator uses the AUDIT statement to associate an audit policy
with the current database or with a database object, at the current server. Any time
the object is in use, it is audited according to this audit policy.

To delete an audit policy, the security administrator uses the DROP statement. You
cannot drop an audit policy if it is associated with any object. Use the AUDIT
REMOVE statement to remove any remaining association with an object. To add
metadata to an audit policy, the security administrator uses the COMMENT
statement.

Events generated before a full connection has been established

For some events generated during connect and a switch user operation, the only
audit policy information available is the policy that is associated with the database.
These events are shown in the following table:

Table 78. Connection events

Event
Audit
category Comment

CONNECT CONTEXT

CONNECT_RESET CONTEXT

AUTHENTICATION VALIDATE This includes authentication during both
connect and switch user within a trusted
connection.

CHECKING_FUNC CHECKING The access attempted is SWITCH_USER.

286 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

These events are audited based only on the audit policy associated with the
database and not with audit policies associated with any other object such as a
user, their groups, or authorities. For the CONNECT and AUTHENTICATION
events that occur during connect, the instance-level audit settings are used until
the database is activated. The database is activated either during the first
connection or when the ACTIVATE DATABASE command is issued.

Effect of switching user

If a user is switched within a trusted connection, no remnants of the original user
are left behind. In this case, the audit policies associated with the original user are
no longer considered, and the applicable audit policies are re-evaluated according
to the new user. Any audit policy associated with the trusted connection is still in
effect.

If a SET SESSION USER statement is used, only the session authorization ID is
switched. The audit policy of the authorization ID of the original user (the system
authorization ID) remains in effect and the audit policy of the new user is used as
well. If multiple SET SESSION USER statements are issued within a session, only
the audit policies associated with the original user (the system authorization ID)
and the current user (the session authorization ID) are considered.

Data definition language restrictions

The following data definition language (DDL) statements are called AUDIT
exclusive SQL statements:
v AUDIT
v CREATE AUDIT POLICY, ALTER AUDIT POLICY, and DROP AUDIT POLICY
v DROP ROLE and DROP TRUSTED CONTEXT, if the role or trusted context

being dropped is associated with an audit policy

AUDIT exclusive SQL statements have some restrictions in their use:
v Each statement must be followed by a COMMIT or ROLLBACK.
v These statements cannot be issued within a global transaction, for example an

XA transaction.

Only one uncommitted AUDIT exclusive DDL statement is allowed at a time
across all partitions. If an uncommitted AUDIT exclusive DDL statement is
executing, subsequent AUDIT exclusive DDL statements wait until the current
AUDIT exclusive DDL statement commits or rolls back.

Note: Changes are written to the catalog, but do not take effect until COMMIT,
even for the connection that issues the statement.

Example of auditing any access to a specific table

Consider a company where the EMPLOYEE table contains extremely sensitive
information and the company wants to audit any and all SQL access to the data in
that table. The EXECUTE category can be used to track all access to a table; it
audits the SQL statement, and optionally the input data value provided at
execution time for that statement.

There are two steps to track activity on the table. First, the security administrator
creates an audit policy that specifies the EXECUTE category, and then the security
administrator associates that policy with the table:

Chapter 26. Auditing database activities 287

CREATE AUDIT POLICY SENSITIVEDATAPOLICY
CATEGORIES EXECUTE STATUS BOTH ERROR TYPE AUDIT

COMMIT

AUDIT TABLE EMPLOYEE USING POLICY SENSITIVEDATAPOLICY
COMMIT

Example of auditing any actions by SYSADM or DBADM

In order to complete their security compliance certification, a company must show
that any and all activities within the database by those people holding system
administration (SYSADM) or database administrative (DBADM) authority can be
monitored.

To capture all actions within the database, both the EXECUTE and SYSADMIN
categories should be audited. The security administrator creates an audit policy
that audits these two categories. The security administrator can use the AUDIT
statement to associate this audit policy with the SYSADM and DBADM authorities.
Any user that holds either SYSADM or DBADM authority will then have any
auditable events logged. The following example shows how to create such an audit
policy and associate it with the SYSADM and DBADM authorities:
CREATE AUDIT POLICY ADMINSPOLICY CATEGORIES EXECUTE STATUS BOTH,

SYSADMIN STATUS BOTH ERROR TYPE AUDIT
COMMIT
AUDIT SYSADM, DBADM USING POLICY ADMINSPOLICY
COMMIT

Example of auditing any access by a specific role

A company has allowed its web applications access to their corporate database.
The exact individuals using the web applications are unknown. Only the role that
is used is known and that role is used to manage the database authorizations. The
company wants to monitor the actions of anyone who is a member of that role in
order to examine the requests they are submitting to the database and to ensure
that they only access the database through the web applications.

The EXECUTE category contains the necessary level of auditing to track the
activity of the users for this situation. The first step is to create the appropriate
audit policy and associate it with the roles that are used by the web applications
(in this example, the roles are TELLER and CLERK):
CREATE AUDIT POLICY WEBAPPPOLICY CATEGORIES EXECUTE WITH DATA

STATUS BOTH ERROR TYPE AUDIT
COMMIT
AUDIT ROLE TELLER, ROLE CLERK USING POLICY WEBAPPPOLICY
COMMIT

Audit archive and extract stored procedures
The security administrator can use the SYSPROC.AUDIT_ARCHIVE stored
procedure and table function, the SYSPROC.AUDIT_DELIM_EXTRACT stored
procedure, and the SYSPROC.AUDIT_LIST_LOGS table function to archive audit
logs and extract data to delimited files.

The security administrator can delegate use of these routines to another user by
granting the user EXECUTE privilege on these routines. Only the security
administrator can grant EXECUTE privilege on these routines. EXECUTE privilege
WITH GRANT OPTION cannot be granted for these routines (SQLSTATE 42501).

288 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

You must be connected to a database in order to use these stored procedures and
table functions to archive or list that database’s audit logs.

If you copy the archived files to another database system, and you want to use the
stored procedures and table functions to access them, ensure that the database
name is the same, or rename the files to include the same database name.

These stored procedures and table functions do not archive or list the instance
level audit log. The system administrator must use the db2audit command to
archive and extract the instance level audit log.

You can use these stored procedures and table functions to perform the following
operations:

Table 79. Audit system stored procedures and table functions

Stored procedure and
table function Operation Comments

AUDIT_ARCHIVE Archives the current audit
log.

Takes the archive path as input.
If the archive path is not
supplied, this stored procedure
takes the archive path from the
audit configuration file.

The archive is run on each node,
and a synchronized timestamp
is appended to the name of the
audit log file.

AUDIT_LIST_LOGS Returns a list of the archived
audit logs at the specified
path, for the current
database.

Chapter 26. Auditing database activities 289

Table 79. Audit system stored procedures and table functions (continued)

Stored procedure and
table function Operation Comments

AUDIT_
DELIM_EXTRACT

Extracts data from the binary
archived logs and loads it
into delimited files.

The extracted audit records are
placed in a delimited format
suitable for loading into DB2
database tables. The output is
placed in separate files, one for
each category. In addition, the
file auditlobs is created to hold
any large objects that are
included in the audit data. The
file names are:

v audit.del

v checking.del

v objmaint.del

v secmaint.del

v sysadmin.del

v validate.del

v context.del

v execute.del

v auditlobs

If the files already exist, the
output is appended to them.
The auditlobs file is created if
the CONTEXT or EXECUTE
categories are extracted. Only
archived audit logs for the
current database can be
extracted. Only files that are
visible to the coordinator node
are extracted.

Only the instance owner can
delete archived audit logs.

The EXECUTE category for auditing SQL statements
The EXECUTE category allows you to accurately track the SQL statements a user
issues (prior to Version 9.5, you had to use the CONTEXT category to find this
information).

This EXECUTE category captures the SQL statement text as well as the compilation
environment and other values that are needed to replay the statement at a later
date. For example, replaying the statement can show you exactly which rows a
SELECT statement returned. In order to re-run a statement, the database tables
must first be restored to their state when the statement was issued.

When you audit using the EXECUTE category, the statement text for both static
and dynamic SQL is recorded, as are input parameter markers and host variables.
You can configure the EXECUTE category to be audited with or without input
values.

Note: Global variables are not audited.

290 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The auditing of EXECUTE events takes place at the completion of the event (for
SELECT statements this is on cursor close). The status that the event completed
with is also stored. Because EXECUTE events are audited at completion,
long-running queries do not immediately appear in the audit log.

Note: The preparation of a statement is not considered part of the execution. Most
authorization checks are performed at prepare time (for example, SELECT
privilege). This means that statements that fail during prepare due to authorization
errors do not generate EXECUTE events.

Statement Value Index, Statement Value Type and Statement Value Data fields may
be repeated for a given execute record. For the report format generated by the
extraction, each record lists multiple values. For the delimited file format, multiple
rows are used. The first row has an event type of STATEMENT and no values.
Following rows have an event type of DATA, with one row for each data value
associated with the SQL statement. You can use the event correlator and
application ID fields to link STATEMENT and DATA rows together. The columns
Statement Text, Statement Isolation Level, and Compilation Environment
Description are not present in the DATA events.

The statement text and input data values that are audited are converted into the
database code page when they are stored on disk (all audited fields are stored in
the database code page). No error is returned if the code page of the input data is
not compatible with the database code page; the unconverted data will be logged
instead. Because each database has it’s own audit log, databases having different
code pages does not cause a problem.

ROLLBACK and COMMIT are audited when executed by the application, and also
when issued implicitly as part of another command, such as BIND.

After an EXECUTE event has been audited due to access to an audited table, all
statements that affect which other statements are executed within a unit of work,
are audited. These statements are COMMIT, ROLLBACK, ROLLBACK TO
SAVEPOINT and SAVEPOINT.

Savepoint ID field

You can use the Savepoint ID field to track which statements were affected by a
ROLLBACK TO SAVEPOINT statement. An ordinary DML statement (such as
SELECT, INSERT, and so on) has the current savepoint ID audited. However, for
the ROLLBACK TO SAVEPOINT statement, the savepoint ID that is rolled back to
will be audited instead. Therefore, every statement with a savepoint ID greater
than or equal to that ID will be rolled back, as demonstrated by the following
example. The table shows the sequence of statements run; all events with a
Savepoint ID greater than or equal to 2 will be rolled back. Only the value of 3
(from the first INSERT statement) is inserted into the table T1.

Table 80. Sequence of statements to demonstrate effect of ROLLBACK TO SAVEPOINT
statement

Statement Savepoint ID

INSERT INTO T1 VALUES (3) 1

SAVEPOINT A 2

INSERT INTO T1 VALUES (5) 2

SAVEPOINT B 3

Chapter 26. Auditing database activities 291

Table 80. Sequence of statements to demonstrate effect of ROLLBACK TO SAVEPOINT
statement (continued)

Statement Savepoint ID

INSERT INTO T1 VALUES (6) 3

ROLLBACK TO SAVEPOINT A 2

COMMIT

WITH DATA option

Not all input values are audited when you specify the WITH DATA option. LOB,
LONG, XML and structured type parameters appear as NULL.

Date, time, and timestamp fields are recorded in ISO format.

If WITH DATA is specified in one policy, but WITHOUT DATA is specified in
another policy associated with objects involved in the execution of the SQL
statement, then WITH DATA takes precedence and data is audited for that
particular statement. For example, if the audit policy associated with a user
specifies WITHOUT DATA, but the policy associated with a table specifies WITH
DATA, when that user accesses that table, the input data used for the statement is
audited.

You are not able to determine which rows were modified on a positioned-update
or positioned-delete statement. Only the execution of the underlying SELECT
statement is logged, not the individual FETCH. It is not possible from the
EXECUTE record to determine which row the cursor is on when the statement is
issued. When replaying the statement at a later time, it is only possible to issue the
SELECT statement to see what range of rows may have been affected.

Example of replaying past activities

Consider in this example that as part of their comprehensive security policy, a
company requires that they retain the ability to retroactively go back up to seven
years to analyze the effects of any particular request against certain tables in their
database. To do this, they institute a policy of archiving their weekly backups and
associated log files such that they can reconstitute the database for any chosen
moment in time. They require that the database audit capture sufficient
information about every request made against the database to allow the replay and
analysis of any request against the relevant, restored database. This requirement
covers both static and dynamic SQL statements.

This example shows the audit policy that must be in place at the time the SQL
statement is issued, and the steps to archive the audit logs and later to extract and
analyze them.
1. Create an audit policy that audits the EXECUTE category and apply this policy

to the database:
CREATE AUDIT POLICY STATEMENTS CATEGORIES EXECUTE WITH DATA

STATUS BOTH ERROR TYPE AUDIT
COMMIT

AUDIT DATABASE USING POLICY STATEMENTS
COMMIT

2. Regularly archive the audit log to create an archive copy.

292 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The following statement should be run by the security administrator, or a user
to whom they grant EXECUTE privilege for the SYSPROC.AUDIT_ARCHIVE
stored procedure, on a regular basis, for example, once a week or once a day,
depending on the amount of data logged. These archived files can be kept for
whatever period is required. The AUDIT_ARCHIVE procedure is called with
two input parameters: the path to the archive directory and -2, to indicate that
the archive should be run on all nodes:
CALL SYSPROC.AUDIT_ARCHIVE('/auditarchive', -2)

3. The security administrator, or a user to whom they grant EXECUTE privilege
for the SYSPROC.AUDIT_LIST_LOGS table function, uses AUDIT_LIST_LOGS
to examine all of the available audit logs from April 2006, to determine which
logs may contain the necessary data:
SELECT FILE FROM TABLE(SYSPROC.AUDIT_LIST_LOGS('/auditarchive'))

AS T WHERE FILE LIKE 'db2audit.dbname.log.0.200604%'
FILE

...
db2audit.dbname.log.0.20060418235612
db2audit.dbname.log.0.20060419234937
db2audit.dbname.log.0.20060420235128

4. From this output, the security administrator observes that the necessary logs
should be in one file: db2audit.dbname.log.20060419234937. The timestamp
shows this file was archived at the end of the day for the day the auditors
want to see.
The security administrator, or a user to whom they grant EXECUTE privilege
for the SYSPROC.AUDIT_DELIM_EXTRACT stored procedure, uses this
filename as input to AUDIT_DELIM_EXTRACT to extract the audit data into
delimited files. The audit data in these files can be loaded into DB2 database
tables, where it can be analyzed to find the particular statement the auditors
are interested in. Even though the auditors are only interested in a single SQL
statement, multiple statements from the unit of work may need to be examined
in case they have any impact on the statement of interest.

5. In order to replay the statement, the security administrator must take the
following actions:
v Determine the exact statement to be issued from the audit record.
v Determine the user who issued the statement from the audit record.
v Recreate the exact permissions of the user at the time they issued the

statement, including any LBAC protection.
v Reproduce the compilation environment, by using the compilation

environment column in the audit record in combination with the SET
COMPILATION ENVIRONMENT statement.

v Restore the database to its exact state at the time the statement was issued.

To avoid disturbing the production system, any restore of the database and
replay of the statement should be done on a second database system. The
security administrator, running as the user who issued the statement, can
reissue the statement as found in the statement text with any input variables
that are provided in the statement value data elements.

Storage and analysis of audit logs
Archiving the audit log moves the active audit log to an archive directory while
the server begins writing to a new, active audit log. Later, you can extract data
from the archived log into delimited files and then load data from these files into
DB2 database tables for analysis.

Chapter 26. Auditing database activities 293

Configuring the location of the audit logs allows you to place the audit logs on a
large, high-speed disk, with the option of having separate disks for each node in a
database partitioning feature (DPF) installation. In a DPF environment, the path for
the active audit log can be a directory that is unique to each node. Having a
unique directory for each node helps to avoid file contention, because each node is
writing to a different disk.

The default path for the audit logs on Windows operating systems is
instance\security\auditdata and on Linux and UNIX operating systems is
instance/security/auditdata. If you do not want to use the default location, you
can choose different directories (you can create new directories on your system to
use as alternative locations, if they do not already exist). To set the path for the
active audit log location and the archived audit log location, use the db2audit
configure command with the datapath and archivepath parameters, as shown in
this example:
db2audit configure datapath /auditlog archivepath /auditarchive

The audit log storage locations you set using db2audit apply to all databases in the
instance.

Note: If there are multiple instances on the server, then each instance should each
have separate data and archive paths.

The path for active audit logs (datapath) in a DPF environment

In a DPF environment, the same active audit log location (set by the datapath
parameter) must be used on each partition. There are two ways to accomplish this:
1. Use database partition expressions when you specify the datapath parameter.

Using database partition expressions allows the partition number to be
included in the path of the audit log files and results in a different path on
each database partition.

2. Use a shared drive that is the same on all nodes.

You can use database partition expressions anywhere within the value you specify
for the datapath parameter. For example, on a three node system, where the
database partition number is 10, the following command:
db2audit configure datapath '/pathForNode $N'

creates the following files:
v /pathForNode10

v /pathForNode20

v /pathForNode30

Note: You cannot use database partition expressions to specify the archive log file
path (archivepath parameter).

Archiving active audit logs

The system administrator can use the db2audit tool to archive both instance and
database audit logs as well as to extract audit data from archived logs of either
type.

The security administrator, or a user to whom the security administrator has
granted EXECUTE privilege on the audit routines, can archive the active audit log

294 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

by running the SYSPROC.AUDIT_ARCHIVE stored procedure. To extract data
from the log and load it into delimited files, they can use the
SYSPROC.AUDIT_DELIM_EXTRACT stored procedure.

These are the steps to archive and extract the audit logs using the audit routines:
1. Schedule an application to perform regular archives of the active audit log

using the stored procedure SYSPROC.AUDIT_ARCHIVE.
2. Determine which archived log files are of interest. Use the

SYSPROC.AUDIT_LIST_LOGS table function to list all of the archived audit
logs.

3. Pass the file name as a parameter to the SYSPROC.AUDIT_DELIM_EXTRACT
stored procedure to extract data from the log and load it into delimited files.

4. Load the audit data into DB2 database tables for analysis.

The archived log files do not need to be immediately loaded into tables for
analysis; they can be saved for future analysis. For example, they may only need to
be looked at when a corporate audit is taking place.

If a problem occurs during archive, such as running out of disk space in the
archive path, or the archive path does not exist, the archive process fails and an
interim log file with the file extension .bk is generated in the audit log data path,
for example, db2audit.instance.log.0.20070508172043640941.bk. After the
problem is resolved (by allocating sufficient disk space in the archive path, or by
creating the archive path) you must move this interim log to the archive path.
Then, you can treat it in the same way as a successfully archived log.

Archiving active audit logs in a DPF environment

In a DPF environment, if the archive command is issued while the instance is
running, the archive process automatically runs on every node. The same
timestamp is used in the archived log file name on all nodes. For example, on a
three node system, where the database partition number is 10, the following
command:
db2audit archive to /auditarchive

creates the following files:
v /auditarchive/db2audit.log.10.timestamp

v /auditarchive/db2audit.log.20.timestamp

v /auditarchive/db2audit.log.30.timestamp

If the archive command is issued while the instance is not running, you can control
on which node the archive is run by one of the following methods:
v Use the node option with the db2audit command to perform the archive for the

current node only.
v Use the db2_all command to run the archive on all nodes.

For example:
db2_all db2audit archive node to /auditarchive

This sets the DB2NODE environment variable to indicate on which nodes the
command is invoked.

Alternatively, you can issue an individual archive command on each node
separately. For example:

Chapter 26. Auditing database activities 295

v On node 10:
db2audit archive node 10 to /auditarchive

v On node 20:
db2audit archive node 20 to /auditarchive

v On node 30:
db2audit archive node 30 to /auditarchive

Note: When the instance is not running, the timestamps in the archived audit log
file names are not the same on each node.

Note: It is recommended that the archive path is shared across all nodes, but it is
not required.

Note: The AUDIT_DELIM_EXTRACT stored procedure and AUDIT_LIST_LOGS
table function can only access the archived log files that are visible from the
current (coordinator) node.

Example of archiving a log and extracting data to a table

To ensure their audit data is captured and stored for future use, a company needs
to create a new audit log every six hours and archive the current audit log to a
WORM drive. The company schedules the following call to the
SYSPROC.AUDIT_ARCHIVE stored procedure to be issued every six hours by the
security administrator, or by a user to whom the security administrator has
granted EXECUTE privilege on the AUDIT_ARCHIVE stored procedure. The path
to the archived log is the default archive path, /auditarchive, and the archive runs
on all nodes:
CALL SYSPROC.AUDIT_ARCHIVE('/auditarchive', -2)

As part of their security procedures, the company has identified and defined a
number of suspicious behaviors or disallowed activities that it needs to watch for
in the audit data. They want to extract all the data from the one or more audit
logs, place it in a relational table, and then use SQL queries to look for these
activities. The company has decided on appropriate categories to audit and has
associated the necessary audit policies with the database or other database objects.

For example, they can call the SYSPROC.AUDIT_DELIM_EXTRACT stored
procedure to extract the archived audit logs for all categories from all nodes that
were created with a timestamp in April 2006, using the default delimiter:
CALL SYSPROC.AUDIT_DELIM_EXTRACT(

'', '', '/auditarchive', 'db2audit.%.200604%', '')

In another example, they can call the SYSPROC.AUDIT_DELIM_EXTRACT stored
procedure to extract the archived audit records with success events from the
EXECUTE category and failure events from the CHECKING category, from a file
with the timestamp they are interested in:
CALL SYSPROC.AUDIT_DELIM_EXTRACT('', '', '/auditarchive',

'db2audit.%.20060419034937', 'categories
execute status success, checking status failure);

296 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Audit log file names
The audit log files have names that distinguish whether they are instance-level or
database-level logs and which partition they originate from in a database
partitioning feature (DPF) environment. Archived audit logs have the timestamp of
when the archive command was run appended to their file name.

Active audit log file names

In a DPF environment, the path for the active audit log can be a directory that is
unique to each partition so that each partition writes to an individual file. In order
to accurately track the origin of audit records, the partition number is included as
part of the audit log file name. For example, on partition 20, the instance level
audit log file name is db2audit.instance.log.20. For a database called testdb in
this instance, the audit log file is db2audit.db.testdb.log.20.

In a non-DPF environment the partition number is considered to be 0 (zero). In
this case, the instance level audit log file name is db2audit.instance.log.0. For a
database called testdb in this instance, the audit log file is
db2audit.db.testdb.log.0.

Archived audit log file names

When the active audit log is archived, the current timestamp in the following
format is appended to the filename: YYYYMMDDHHMMSS (where YYYY is the
year, MM is the month, DD is the day, HH is the hour, MM is the minutes, and SS
is the seconds.

The file name format for an archive audit log depends on the level of the audit log:

instance-level archived audit log
The file name of the instance-level archived audit log is:
db2audit.instance.log.partition.YYYYMMDDHHMMSS.

database-level archived audit log
The file name of the database-level archived audit log is:
db2audit.dbdatabase.log.partition.YYYYMMDDHHMMSS.

In a non-DPF environment, the value for partition is 0 (zero).

The timestamp represents the time that the archive command was run, therefore it
does not always precisely reflect the time of the last record in the log. The archived
audit log file may contain records with timestamps a few seconds later than the
timestamp in the log file name because:
v When the archive command is issued, the audit facility waits for the writing of

any in-process records to complete before creating the archived log file.
v In a multi-machine environment, the system time on a remote machine may not

be synchronized with the machine where the archive command is issued.

In a DPF environment, if the server is running when archive is run, the timestamp
is consistent across partitions and reflects the timestamp generated at the partition
at which the archive was performed.

AUDIT_LIST_LOGS table function - Lists archived audit log files
The AUDIT_LIST_LOGS table function lists the archived audit log files for a
database which are present in the specified directory.

Chapter 26. Auditing database activities 297

Syntax

�� AUDIT_LIST_LOGS (directory) ��

The schema is SYSPROC.

Procedure parameters

directory
An optional input argument of type VARCHAR(1024) that specifies the
directory where the archived audit file(s) will be written. The directory must
exist on the server and the instance owner must be able to create files in that
directory. If the argument is null or an empty string, then the search default
directory is used.

Authorization

EXECUTE privilege on AUDIT_LIST_LOGS table function.

Examples

Example 1: Lists all archived audit logs in the default audit archive directory:
SELECT * FROM TABLE(SYSPROC.AUDIT_LIST_LOGS('')) AS T1

Note: This only lists the logs in the directory for database on which the query is
run. Archived files have the format db2audit.db.<dbname>.log.<timestamp>

Information Returned

Table 81. The information returned for AUDIT_LIST_LOGS

Column Name Data Type Description

PATH VARCHAR(1024) Path location of the archived file.

FILE VARCHAR(1024) Filename of the archived file.

SIZE BIGINT File size of the archived file.

298 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 27. Setting up the database environment

Considerations for Creating a Database System

Database directories and files
When you create a database, information about the database including default
information is stored in a directory hierarchy.

The hierarchical directory structure is created for you at a location that is
determined by the information you provide in the CREATE DATABASE command.
If you do not specify the location of the directory path or drive when you create
the database, the default location is used.

In the directory you specify as the database path in the CREATE DATABASE
command, a subdirectory that uses the name of the instance is created. This
subdirectory ensures that databases created in different instances under the same
directory do not use the same path. Below the instance-name subdirectory, a
subdirectory named NODE0000 is created. This subdirectory differentiates database
partitions in a logically partitioned database environment. Below the node-name
directory, a subdirectory named SQL00001 is created. This name of this subdirectory
uses the database token and represents the database being created. SQL00001
contains objects associated with the first database created, and subsequent
databases are given higher numbers: SQL00002, and so on. These subdirectories
differentiate databases created in this instance on the directory that you specified
in the CREATE DATABASE command.

The directory structure appears as follows: your_database_path/your_instance/
NODE0000/SQL00001/

The database directory contains the following files that are created as part of the
CREATE DATABASE command.
v The files SQLBP.1 and SQLBP.2 contain buffer pool information. These files are

duplicates of each other for backup purposes.
v The files SQLSPCS.1 and SQLSPCS.2 contain table space information. These files

are duplicates of each other for backup purposes.
v The files SQLSGF.1 and SQLSGF.2 contain storage path information associated

with the automatic storage feature of a database. These files are duplicates of
each other for maintenance and backup purposes. The files are created for
databases when automatic storage is enabled following a CREATE DATABASE
dbname AUTOMATIC STORAGE YES command or ALTER DATABASE dbname
ADD STORAGE ON statement.

v The SQLDBCONF file contains database configuration information. Do not edit this
file.

Note: The SQLDBCON file was used in previous releases and contains similar
information that can be used if SQLDBCONF is corrupted.
To change configuration parameters, use the UPDATE DATABASE
CONFIGURATION and RESET DATABASE CONFIGURATION commands.

v The DB2RHIST.ASC history file and its backup DB2RHIST.BAK contain history
information about backups, restores, loading of tables, reorganization of tables,
altering of a table space, and other changes to a database.

© Copyright IBM Corp. 1993, 2009 299

The DB2TSCHG.HIS file contains a history of table space changes at a log-file level.
For each log file, DB2TSCHG.HIS contains information that helps to identify which
table spaces are affected by the log file. Table space recovery uses information
from this file to determine which log files to process during table space recovery.
You can examine the contents of both history files in a text editor.

v The log control files, SQLOGCTL.LFH.1, its mirror copy SQLOGCTL.LFH.2, and
SQLOGMIR.LFH, contain information about the active logs.
Recovery processing uses information from these files to determine how far back
in the logs to begin recovery. The SQLOGDIR subdirectory contains the actual log
files.

Note: You should ensure the log subdirectory is mapped to different disks than
those used for your data. A disk problem could then be restricted to your data
or the logs but not both. This can provide a substantial performance benefit
because the log files and database containers do not compete for movement of
the same disk heads. To change the location of the log subdirectory, change the
newlogpath database configuration parameter.

v The SQLINSLK file helps to ensure that a database is used by only one instance of
the database manager.

At the same time a database is created, a detailed deadlocks event monitor is also
created. The detailed deadlocks event monitor files are stored in the database
directory of the catalog node. When the event monitor reaches its maximum
number of files to output, it will deactivate and a message is written to the
notification log. This prevents the event monitor from consuming too much disk
space. Removing output files that are no longer needed will allow the event
monitor to activate again on the next database activation.

Additional information for SMS database directories in
non-automatic storage databases

In non-automatic storage databases, the SQLT* subdirectories contain the default
System Managed Space (SMS) table spaces required for an operational database.
Three default table spaces are created:
v SQLT0000.0 subdirectory contains the catalog table space with the system catalog

tables.
v SQLT0001.0 subdirectory contains the default temporary table space.
v SQLT0002.0 subdirectory contains the default user data table space.

Each subdirectory or container has a file created in it called SQLTAG.NAM. This file
marks the subdirectory as being in use so that subsequent table space creation does
not attempt to use these subdirectories.

In addition, a file called SQL*.DAT stores information about each table that the
subdirectory or container contains. The asterisk (*) is replaced by a unique set of
digits that identifies each table. For each SQL*.DAT file there might be one or more
of the following files, depending on the table type, the reorganization status of the
table, or whether indexes, LOB, or LONG fields exist for the table:
v SQL*.BKM (contains block allocation information if it is an MDC table)
v SQL*.LF (contains LONG VARCHAR or LONG VARGRAPHIC data)
v SQL*.LB (contains BLOB, CLOB, or DBCLOB data)
v SQL*.XDA (contains XML data)
v SQL*.LBA (contains allocation and free space information about SQL*.LB files)

300 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v SQL*.INX (contains index table data)
v SQL*.IN1 (contains index table data)
v SQL*.DTR (contains temporary data for a reorganization of an SQL*.DAT file)
v SQL*.LFR (contains temporary data for a reorganization of an SQL*.LF file)
v SQL*.RLB (contains temporary data for a reorganization of an SQL*.LB file)
v SQL*.RBA (contains temporary data for a reorganization of an SQL*.LBA file)

Space requirements for database objects
Estimating the size of database objects is an imprecise undertaking. Overhead
caused by disk fragmentation, free space, and the use of variable length columns
makes size estimation difficult, because there is such a wide range of possibilities
for column types and row lengths.

After initially estimating your database size, create a test database and populate it
with representative data. Then use the db2look utility to generate data definition
statements for the database.

When estimating the size of a database, the contribution of the following must be
considered:
v System catalog tables
v User table data
v Long field (LF) data
v Large object (LOB) data
v XML data
v Index space
v Log file space
v Temporary work space

Also consider the overhead and space requirements for the following:
v The local database directory file
v The system database directory file
v The file management overhead required by the operating system, including:

– File block size
– Directory control space

Space requirements for user table data
By default, table data is stored based on the table space page size in which the
table is in. Each page (regardless of page size) contains 68 bytes of overhead for
the database manager. A row will not span multiple pages. You can have a
maximum of 500 columns when using a 4-KB page size.

Table data pages do not contain the data for columns defined with LONG
VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, or XML data types.
The rows in a table data page do, however, contain a descriptor for these columns.

Note: Some LOB data can be placed into the base table row through the use of the
INLINE LENGTH option of the CREATE and ALTER TABLE statements.

Rows are usually inserted into a regular table in first-fit order. The file is searched
(using a free space map) for the first available space that is large enough to hold

Chapter 27. Setting up the database environment 301

the new row. When a row is updated, it is updated in place, unless there is
insufficient space left on the page to contain it. If this is the case, a record is
created in the original row location that points to the new location in the table file
of the updated row.

If the ALTER TABLE statement is issued with the APPEND ON option, data is
always appended, and information about any free space on the data pages is not
kept.

If the table has a clustering index defined on it, the database manager will attempt
to physically cluster the data according to the key order of that clustering index.
When a row is inserted into the table, the database manager will first look up its
key value in the clustering index. If the key value is found, the database manager
attempts to insert the record on the data page pointed to by that key; if the key
value is not found, the next higher key value is used, so that the record is inserted
on the page containing records having the next higher key value. If there is
insufficient space on the target page in the table, the free space map is used to
search neighboring pages for space. Over time, as space on the data pages is
completely used up, records are placed further and further from the target page in
the table. The table data would then be considered unclustered, and a table
reorganization can be used to restore clustered order.

If the table is a multidimensional clustering (MDC) table, the database manager
will guarantee that records are always physically clustered along one or more
defined dimensions, or clustering indexes. When an MDC table is defined with
certain dimensions, a block index is created for each of the dimensions, and a
composite block index is created which maps cells (unique combinations of
dimension values) to blocks. This composite block index is used to determine to
which cell a particular record belongs, and exactly which blocks or extents in the
table contains records belonging to that cell. As a result, when inserting records,
the database manager searches the composite block index for the list of blocks
containing records having the same dimension values, and limits the search for
space to those blocks only. If the cell does not yet exist, or if there is insufficient
space in the cell’s existing blocks, then another block is assigned to the cell and the
record is inserted into it. A free space map is still used within blocks to quickly
find available space in the blocks.

The number of 4-KB pages for each user table in the database can be estimated by
calculating:

ROUND DOWN(4028/(average row size + 10)) = records_per_page

and then inserting the result into:
(number_of_records/records_per_page) * 1.1 = number_of_pages

where the average row size is the sum of the average column sizes, and the factor
of ″1.1″ is for overhead.

Note: This formula provides only an estimate. The estimate’s accuracy is reduced
if the record length varies because of fragmentation and overflow records.

You also have the option to create buffer pools or table spaces that have an 8 KB,
16 KB, or 32 KB page size. All tables created within a table space of a particular
size have a matching page size. A single table or index object can be as large as 64
TB, assuming a 32 KB page size. You can have a maximum of 1012 columns when
using an 8 KB, 16 KB, or 32 KB page size. The maximum number of columns is
500 for a 4-KB page size. Maximum row lengths also vary, depending on page size:

302 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v When the page size is 4-KB, the row length can be up to 4005 bytes.
v When the page size is 8 KB, the row length can be up to 8101 bytes.
v When the page size is 16 KB, the row length can be up to 16 293 bytes.
v When the page size is 32 KB, the row length can be up to 32 677 bytes.

A larger page size facilitates a reduction in the number of levels in any index. If
you are working with OLTP (online transaction processing) applications, that
perform random row reads and writes, a smaller page size is better, because it
consumes less buffer space with undesired rows. If you are working with DSS
(decision support system) applications, which access large numbers of consecutive
rows at a time, a larger page size is better because it reduces the number of I/O
requests required to read a specific number of rows.

You cannot restore a backup image to a different page size.

You cannot import IXF data files that represent more than 755 columns.

Declared or created temporary tables can be declared or created only in their own
user temporary table space type. There is no default user temporary table space.
The temporary tables are dropped implicitly when an application disconnects from
the database, and estimates of the space requirements for these tables should take
this into account.

Space requirements for indexes
When designing indexes, you must be aware of their space requirements. For
compressed indexes, the estimates you derive from the formulas in this topic can
be used as an upper bound, however, it will likely be much smaller.

Space requirements for uncompressed indexes

For each uncompressed index, the space needed can be estimated as:
(average index key size + index key overhead) × number of rows × 2

where:
v The average index key size is the byte count of each column in the index key.

When estimating the average column size for VARCHAR and VARGRAPHIC
columns, use an average of the current data size, plus two bytes.

v The index key overhead depends on the type of table on which the index is
created:

Table 82. Index key overhead for different tables

Type of table
space Table type Index type Index key overhead

Any Any XML paths or regions 11 bytes

Regular Nonpartitioned Any 9 bytes

Partitioned Partitioned 9

Nonpartitioned 11

Large Partitioned Partitioned 11

Nonpartitioned 13

v The number of rows is the number of rows in a table or the number of rows in a
given data partition. Using the number of rows in the entire table in this

Chapter 27. Setting up the database environment 303

calculation will give you an estimate the size for the index (for a nonpartitioned
index) or for all index partitions combined (for a partitioned index). Using the
number of rows in a data partition will give you an estimate of the size for the
index partition.

v The factor of “2” is for overhead, such as non-leaf pages and free space.

Note:

1. For every column that allows null values, add one extra byte for the null
indicator.

2. For block indexes created internally for multidimensional clustering (MDC)
tables, the “number of rows” would be replaced by the “number of blocks”.

Space requirements for XML indexes

For each index on an XML column, the space needed can be estimated as:
(average index key + index key overhead) × number of indexed nodes × 2

where:
v The average index key is the sum of the key parts that make up the index. The

XML index is made up of several XML key parts plus a value (sql-data-type):
14 + variable overhead + byte count of sql-data-type

where:
– 14 represents the number of bytes of fixed overhead
– The variable overhead is the average depth of the indexed node plus 4 bytes.
– The byte count of sql-data-type follows the same rules as SQL.

v The number of indexed nodes is the number of documents to be inserted
multiplied by the number of nodes in a sample document that satisfy the XML
pattern expression (XMLPATTERN) in the index definition. The number of indexed
nodes could be the number of nodes in a partition or the entire table.

Temporary space requirements for index creation

Temporary space is required when creating the index. The maximum amount of
temporary space required during index creation can be estimated as:

(average index key size + index key overhead) × number of rows × 3.2

For those indexes for which there could be more than one index key per row, such
as spatial indexes, indexes on XML columns and internal XML regions indexes, the
temporary space required can be estimated as:

(average index key size + index key overhead) × number of indexed nodes × 3.2

where the factor of “3.2” is for index overhead, and space required for sorting
during index creation. The number of rows or the number of indexed nodes is the
number in an entire table or in a given data partition.

Note: In the case of non-unique indexes, only one copy of a given duplicate key
entry is stored on any given leaf node. For indexes on tables in LARGE table
spaces the size for duplicate keys is 9 for nonpartitioned indexes, 7 for partitioned
indexes and indexes on nonpartitioned tables. For indexes on tables in REGULAR
table spaces these values are 7 for nonpartitioned indexes, 5 for partitioned indexes
and indexes on nonpartitioned tables. The only exception to these rules are XML
paths and XML regions indexes where the size of duplicate keys is always 7.The

304 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

estimate shown above assumes no duplicates. The space required to store an index
might be over-estimated by the formula shown above.

Temporary space is required when inserting if the number of index nodes exceeds
64 KB of data. The amount of temporary space can be estimated as:

average index key size × number of indexed nodes × 1.2

Estimating the number of keys per leaf page

The following two formulas can be used to estimate the number of keys per index
leaf page (the second provides a more accurate estimate). The accuracy of these
estimates depends largely on how well the averages reflect the actual data.

Note: For SMS table spaces, the minimum required space for leaf pages is three
times the page size. For DMS table spaces, the minimum is an extent.
1. A rough estimate of the average number of keys per leaf page is:

((.9 * (U - (M×2))) × (D + 1)) ÷ (K + 7 + (Ds × D))

where:
v U, the usable space on a page, is approximately equal to the page size minus

100. For example, with a page size of 4096, U would be 3996.
v M = U ÷ (9 + minimumKeySize)
v Ds = duplicateKeySize (See the note under “Temporary space requirements for

index creation”.)
v D = average number of duplicates per key value
v K = averageKeySize

Remember that minimumKeySize and averageKeysize must include an extra byte
for each nullable key part, and an extra two bytes for the length of each
variable length key part.
If there are include columns, they should be accounted for in minimumKeySize
and averageKeySize.
The minimum key size is the sum of the key parts that make up the index:

fixed overhead + variable overhead + byte count of sql-data-type

where:
v The fixed overhead is 13 bytes.
v The variable overhead is the minimum depth of the indexed node plus 4 bytes.
v The byte count of sql-data-type value follows the same rules as SQL.
The .9 can be replaced by any (100 - pctfree)/100 value, if a percent free value
other than the default value of ten percent is specified during index creation.

2. A more accurate estimate of the average number of keys per leaf page is:
number of leaf pages = x / (avg number of keys on leaf page)

where x is the total number of rows in the table or partition.
For the index on an XML column, x is the total number of indexed nodes in the
column.
You can estimate the original size of an index as:

(L + 2L/(average number of keys on leaf page)) × pagesize

For DMS table spaces, add the sizes of all indexes on a table and round up to a
multiple of the extent size for the table space on which the index resides.
You should provide additional space for index growth due to
INSERT/UPDATE activity, from which page splits might result.

Chapter 27. Setting up the database environment 305

Use the following calculation to obtain a more accurate estimate of the original
index size, as well as an estimate of the number of levels in the index. (This
might be of particular interest if include columns are being used in the index
definition.) The average number of keys per non-leaf page is roughly:

((.9 × (U - (M × 2))) × (D + 1))÷(K + 13 + (9 * D))

where:
v U, the usable space on a page, is approximately equal to the page size minus

100. For a page size of 4096, U is 3996.
v D is the average number of duplicates per key value on non-leaf pages (this

will be much smaller than on leaf pages, and you might want to simplify the
calculation by setting the value to 0).

v M = U ÷ (9 + minimumKeySize for non-leaf pages)
v K = averageKeySize for non-leaf pages
The minimumKeySize and the averageKeySize for non-leaf pages will be the same
as for leaf pages, except when there are include columns. Include columns are
not stored on non-leaf pages.
You should not replace .9 with (100 - pctfree)÷100, unless this value is greater
than .9, because a maximum of 10 percent free space will be left on non-leaf
pages during index creation.
The number of non-leaf pages can be estimated as follows:

if L > 1 then {P++; Z++}
While (Y > 1)
{

P = P + Y
Y = Y / N

Z++
}

where:
v P is the number of pages (0 initially).
v L is the number of leaf pages.
v N is the number of keys for each non-leaf page.
v Y = L ÷ N

v Z is the number of levels in the index tree (1 initially).

Note: The calculation above applies to a single, nonpartitioned indexes, or to a
single index partition for partitioned indexes.
Total number of pages is:

T = (L + P + 2) × 1.0002

The additional 0.02% (1.0002) is for overhead, including space map pages.
The amount of space required to create the index is estimated as:

T × page size

Space requirements for log files
Space requirements for log files varies depending on your needs and on
configuration parameter settings.

You will require 56 KB of space for log control files. You will also need at least
enough space for your active log configuration, which you can calculate as

(logprimary + logsecond) × (logfilsiz + 2) × 4096

306 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

where:
v logprimary is the number of primary log files, defined in the database

configuration file
v logsecond is the number of secondary log files, defined in the database

configuration file; in this calculation, logsecond cannot be set to -1. (When
logsecond is set to -1, you are requesting an infinite active log space.)

v logfilsiz is the number of pages in each log file, defined in the database
configuration file

v 2 is the number of header pages required for each log file
v 4096 is the number of bytes in one page.

Roll-forward recovery
If the database is enabled for roll-forward recovery, special log space
requirements should be taken into consideration:
v With the logarchmeth1 configuration parameter set to LOGRETAIN, the

log files will be archived in the log path directory. The online disk space
will eventually fill up, unless you move the log files to a different
location.

v With the logarchmeth1 configuration parameter set to USEREXIT, DISK,
or VENDOR, a user exit program moves the archived log files to a
different location. Extra log space is still required to allow for:
– Online archived logs that are waiting to be moved by the user exit

program
– New log files being formatted for future use

Circular logging
If the database is enabled for circular logging, the result of this formula is
all the space that will be allocated for logging; that is, more space will not
be allocated, and you will not receive insufficient disk space errors for any
of your log files.

Infinite logging
If the database is enabled for infinite logging (that is, you set the
logsecond configuration parameter to -1), the logarchmeth1 configuration
parameter must be set to a value other than OFF or logretain to enable
archive logging. The database manager will keep at least the number of
active log files specified by the logprimary configuration parameter in the
log path, therefore, you should not use the value of -1 for the logsecond
configuration parameter in the above formula. Ensure that you provide
extra disk space to allow for the delay caused by archiving log files.

Mirroring log paths
If you are mirroring the log path, you will need to double the estimated
log file space requirements.

Currently committed
If queries return the currently committed value of the data, more log space
is required for logging the first update of a data row during a transaction
when the cur_commit configuration parameter is not set to DISABLED.
Depending on the size of the workload, the total log space used can vary
significantly. This affects the log I/O required for a given workload, the
amount of active log space required, and the amount of log archive space
required.

Chapter 27. Setting up the database environment 307

Note: Setting the cur_commit configuration parameter to DISABLED,
maintains the same behavior as in previous releases, and results in no
changes to the log space required.

Database partition group design
There are no database partition group design considerations if you are using a
single-partition database. The DB2 Design Advisor is a tool that can be used to
recommend database partition groups. The DB2 Design Advisor can be accessed
from the Control Center and using db2advis from the command line processor.

If you are using a multiple partition database partition group, consider the
following design points:
v In a multiple partition database partition group, you can only create a unique

index if it is a superset of the distribution key.
v Depending on the number of database partitions in the database, you may have

one or more single-partition database partition groups, and one or more multiple
partition database partition groups present.

v Each database partition must be assigned a unique number. The same database
partition may be found in one or more database partition groups.

v To ensure fast recovery of the database partition containing system catalog
tables, avoid placing user tables on the same database partition. This is
accomplished by placing user tables in database partition groups that do not
include the database partition in the IBMCATGROUP database partition group.

You should place small tables in single-partition database partition groups, except
when you want to take advantage of collocation with a larger table. Collocation is
the placement of rows from different tables that contain related data in the same
database partition. Collocated tables allow DB2 Database for Linux, UNIX, and
Windows to utilize more efficient join strategies. Collocated tables can reside in a
single-partition database partition group. Tables are considered collocated if they
reside in a multiple partition database partition group, have the same number of
columns in the distribution key, and if the data types of the corresponding
columns are compatible. Rows in collocated tables with the same distribution key
value are placed on the same database partition. Tables can be in separate table
spaces in the same database partition group, and still be considered collocated.

You should avoid extending medium-sized tables across too many database
partitions. For example, a 100 MB table may perform better on a 16-partition
database partition group than on a 32-partition database partition group.

You can use database partition groups to separate online transaction processing
(OLTP) tables from decision support (DSS) tables, to ensure that the performance
of OLTP transactions is not adversely affected.

Distribution maps
In a partitioned database environment, the database manager must know where to
find the data it needs. The database manager uses a map, called a distribution map,
to find the data.

A distribution map is an internally generated array containing either 32 768 entries
for multiple-partition database partition groups, or a single entry for
single-partition database partition groups. For a single-partition database partition
group, the distribution map has only one entry containing the number of the
database partition where all the rows of a database table are stored. For

308 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

multiple-partition database partition groups, the numbers of the database partition
group are specified in a way such that each database partition is used one after the
other to ensure an even distribution across the entire map. Just as a city map is
organized into sections using a grid, the database manager uses a distribution key to
determine the location (the database partition) where the data is stored.

For example, assume that you have a database created on four database partitions
(numbered 0–3). The distribution map for the IBMDEFAULTGROUP database
partition group of this database would be:

0 1 2 3 0 1 2 ...

If a database partition group had been created in the database using database
partitions 1 and 2, the distribution map for that database partition group would be:

1 2 1 2 1 2 1 ...

If the distribution key for a table to be loaded into the database is an integer with
possible values between 1 and 500 000, the distribution key is hashed to a number
between 0 and 32 767. That number is used as an index into the distribution map
to select the database partition for that row.

Figure 21 shows how the row with the distribution key value (c1, c2, c3) is mapped
to number 2, which, in turn, references database partition n5.

A distribution map is a flexible way of controlling where data is stored in a
multi-partition database. If you need to change the data distribution across the
database partitions in your database, you can use the data redistribution utility.
This utility allows you to rebalance or introduce skew into the data distribution.

You can use the db2GetDistMap API to obtain a copy of a distribution map that
you can view. If you continue to use the sqlugtpi API to obtain the distribution
information, this API might return error message SQL2768N, since it can only
retrieve distribution maps containing 4096 entries

Distribution keys
A distribution key is a column (or group of columns) that is used to determine the
database partition in which a particular row of data is stored. A distribution key is
defined on a table using the CREATE TABLE statement. If a distribution key is not

n0 n2 n5 n0 n6

1 2 3 40 32767

Row: (... c1, c2, c3, ...)

Partition number

Distribution map

Distribution key

Figure 21. Data distribution using a distribution map

Chapter 27. Setting up the database environment 309

defined for a table in a table space that is divided across more than one database
partition in a database partition group, one is created by default from the first
column of the primary key.

If no primary key is specified, the default distribution key is the first non-long
field column defined on that table. (Long includes all long data types and all large
object (LOB) data types). If you are creating a table in a table space associated with
a single-partition database partition group, and you want to have a distribution
key, you must define the distribution key explicitly. One is not created by default.

If no columns satisfy the requirement for a default distribution key, the table is
created without one. Tables without a distribution key are only allowed in
single-partition database partition groups. You can add or drop distribution keys
later, using the ALTER TABLE statement. Altering the distribution key can only be
done to a table whose table space is associated with a single-partition database
partition group.

Choosing a good distribution key is important. You should take into consideration:
v How tables are to be accessed
v The nature of the query workload
v The join strategies employed by the database system.

If collocation is not a major consideration, a good distribution key for a table is one
that spreads the data evenly across all database partitions in the database partition
group. The distribution key for each table in a table space that is associated with a
database partition group determines if the tables are collocated. Tables are
considered collocated when:
v The tables are placed in table spaces that are in the same database partition

group
v The distribution keys in each table have the same number of columns
v The data types of the corresponding columns are partition-compatible.

These characteristics ensure that rows of collocated tables with the same
distribution key values are located on the same database partition.

An inappropriate distribution key can cause uneven data distribution. Columns
with unevenly distributed data, and columns with a small number of distinct
values should not be chosen as distribution keys. The number of distinct values
must be great enough to ensure an even distribution of rows across all database
partitions in the database partition group. The cost of applying the distribution
algorithm is proportional to the size of the distribution key. The distribution key
cannot be more than 16 columns, but fewer columns result in better performance.
Unnecessary columns should not be included in the distribution key.

The following points should be considered when defining distribution keys:
v Creation of a multiple-partition table that contains only BLOB, CLOB, DBCLOB,

LONG VARCHAR, LONG VARGRAPHIC, XML, or structured data types is not
supported.

v The distribution key definition cannot be altered.
v The distribution key should include the most frequently joined columns.
v The distribution key should be made up of columns that often participate in a

GROUP BY clause.

310 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v Any unique key or primary key must contain all of the distribution key
columns.

v In an online transaction processing (OLTP) environment, all columns in the
distribution key should participate in the transaction by using equal (=)
predicates with constants or host variables. For example, assume you have an
employee number, emp_no, that is often used in transactions such as:

UPDATE emp_table SET ... WHERE
emp_no = host-variable

In this case, the EMP_NO column would make a good single column
distribution key for EMP_TABLE.

Database partitioning is the method by which the placement of each row in the table
is determined. The method works as follows:
1. A hashing algorithm is applied to the value of the distribution key, and

generates a number between zero (0) and 32 767.
2. The distribution map is created when a database partition group is created.

Each of the numbers is sequentially repeated in a round-robin fashion to fill the
distribution map.

3. The number is used as an index into the distribution map. The number at that
location in the distribution map is the number of the database partition where
the row is stored.

Table collocation
You may discover that two or more tables frequently contribute data in response to
certain queries. In this case, you will want related data from such tables to be
located as close together as possible. In an environment where the database is
physically divided among two or more database partitions, there must be a way to
keep the related pieces of the divided tables as close together as possible. The
ability to do this is called table collocation.

Tables are collocated when they are stored in the same database partition group,
and when their distribution keys are compatible. Placing both tables in the same
database partition group ensures a common distribution map. The tables may be in
different table spaces, but the table spaces must be associated with the same
database partition group. The data types of the corresponding columns in each
distribution key must be partition-compatible.

DB2 Database for Linux, UNIX, and Windowssoftware can recognize, when
accessing more than one table for a join or a subquery, that the data to be joined is
located at the same database partition. When this happens, DB2 can perform the
join or subquery at the database partition where the data is stored, instead of
having to move data between database partitions. This ability has significant
performance advantages.

Partition compatibility
The base data types of corresponding columns of distribution keys are compared
and can be declared partition-compatible. Partition-compatible data types have the
property that two variables, one of each type, with the same value, are mapped to
the same number by the same partitioning algorithm.

Partition-compatibility has the following characteristics:
v A base data type is compatible with another of the same base data type.

Chapter 27. Setting up the database environment 311

v Internal formats are used for DATE, TIME, and TIMESTAMP data types. They
are not compatible with each other, and none are compatible with character or
graphic data types.

v Partition compatibility is not affected by the nullability of a column.
v Partition-compatibility is affected by collation. Locale-sensitive UCA-based

collations require an exact match in collation, except that the strength (S)
attribute of the collation is ignored. All other collations are considered equivalent
for the purposes of determining partition compatibility.

v Character columns defined with FOR BIT DATA are only compatible with
character columns without FOR BIT DATA when a collation other than a
locale-sensitive UCA-based collation is used.

v NULL values of compatible data types are treated identically; those of
non-compatible data types may not be.

v Base data types of a user-defined type are used to analyze partition-
compatibility.

v Decimals of the same value in the distribution key are treated identically, even if
their scale and precision differ.

v Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC, or
VARGRAPHIC) are ignored by the hashing algorithm.

v BIGINT, SMALLINT, and INTEGER are compatible data types.
v When a locale-sensitive UCA-based collation is used, CHAR, VARCHAR,

GRAPHIC, and VARGRAPHIC are compatible data types. When another
collation is used, CHAR and VARCHAR of different lengths are compatible
types and GRAPHIC and VARGRAPHIC are compatible types, but CHAR and
VARCHAR are not compatible types with GRAPHIC and VARGRAPHIC.

v Partition-compatibility does not apply to LONG VARCHAR, LONG
VARGRAPHIC, CLOB, DBCLOB, and BLOB data types, because they are not
supported as distribution keys.

Replicated materialized query tables
A materialized query table is a table that is defined by a query that is also used to
determine the data in the table. Materialized query tables can be used to improve
the performance of queries. If the database manager determines that a portion of a
query could be resolved using a materialized query table, the query may be
rewritten to use the materialized query table.

In a partitioned database environment, you can replicate materialized query tables
and use them to improve query performance. A replicated materialized query table is
based on a table that may have been created in a single-partition database partition
group, but that you want replicated across all of the database partitions in another
database partition group. To create the replicated materialized query table, invoke
the CREATE TABLE statement with the REPLICATED keyword.

By using replicated materialized query tables, you can obtain collocation between
tables that are not typically collocated. Replicated materialized query tables are
particularly useful for joins in which you have a large fact table and small
dimension tables. To minimize the extra storage required, as well as the impact of
having to update every replica, tables that are to be replicated should be small and
updated infrequently.

Note: You should also consider replicating larger tables that are updated
infrequently: the one-time cost of replication is offset by the performance benefits
that can be obtained through collocation.

312 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

By specifying a suitable predicate in the subselect clause used to define the
replicated table, you can replicate selected columns, selected rows, or both.

Table spaces
A table space is a storage structure containing tables, indexes, large objects, and long
data. They are used to organize data in a database into logical storage groupings
that relate to where data is stored on a system. Table spaces are stored in database
partition groups.

Using table spaces to organize storage offers a number of benefits:

Recoverability
Putting objects that must be backed up or restored together into the same
table space makes backup and restore operations more convenient, since
you can backup or restore all the objects in table spaces with a single
command. If you have partitioned tables and indexes that are distributed
across table spaces, you can backup or restore only the data and index
partitions that reside in a given table space.

More tables
There are limits to the number of tables that can be stored in any one table
space; if you have a need for more tables than can be contained in a table
space, you need only to create additional table spaces for them.

Storage flexibility
With DMS and SMS table spaces, you can specify which storage devices
are used to store data. You could choose, for example, choose to store
current, operational data in table spaces that reside on faster devices, and
historical data in table spaces that reside on slower (and less expensive)
devices.

Ability to isolate data in buffer pools for improved performance or memory
utilization

If you have a set of objects (for example, tables, indexes) that are queried
frequently, you can assign the table space in which they reside a buffer
pool with a single CREATE or ALTER TABLESPACE statement. You can
assign temporary table spaces to their own buffer pool to increase the
performance of activities such as sorts or joins. In some cases, it might
make sense to define smaller buffer pools for seldom-accessed data, or for
applications that require very random access into a very large table; in
such cases, data need not be kept in the buffer pool for longer than a
single query

Table spaces consist of one or more containers. A container can be a directory name,
a device name, or a file name. A single table space can have several containers. It
is possible for multiple containers (from one or more table spaces) to be created on
the same physical storage device (although you will get the best performance if
each container you create uses a different storage device). If you are using
automatic storage table spaces, the creation and management of containers is
handled automatically by the database manager. If you are not using automatic
storage table spaces, you must define and manage containers yourself.

Figure 22 on page 314 illustrates the relationship between tables and table spaces
within a database, and the containers associated with that database.

Chapter 27. Setting up the database environment 313

The EMPLOYEE and DEPARTMENT tables are in the HUMANRES table space,
which spans containers 0, 1, 2 and 3. The PROJECT table is in the SCHED table
space in container 4. This example shows each container existing on a separate
disk.

The database manager attempts to balance the data load across containers. As a
result, all containers are used to store data. The number of pages that the database
manager writes to a container before using a different container is called the extent
size. The database manager does not always start storing table data in the first
container.

Figure 23 on page 315 shows the HUMANRES table space with an extent size of
two 4 KB pages, and four containers, each with a small number of allocated
extents. The DEPARTMENT and EMPLOYEE tables both have seven pages, and
span all four containers.

Database partition group

Database

SCHED
table space

HUMANRES
table space

DEPARTMENT
table

PROJECT
table

EMPLOYEE
table

Container
4

Container
0

Container
1

Container
2

Container
3

Figure 22. Table spaces and tables in a database

314 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

System managed space
In an SMS (System Managed Space) table space, the operating system’s file system
manager allocates and manages the space where the table is stored. Unlike
database managed (DMS) table spaces, storage space is not pre-allocated when the
table space is created; it is allocated on demand.

The SMS storage model consists of files representing database objects; for example,
each table has at least one physical file associated with it. When you set up the
table space, you decide the location of the files by creating containers. Each
container in an SMS table space is associated with an absolute or relative directory
name. Each of these directories can be located on a different physical storage
device or file system. The database manager controls the names of files created for
objects in each container, and the file system is responsible for managing them. By
controlling the amount of data written to each file, the database manager
distributes the data evenly across the table space containers.

How space is allocated

In an SMS table space, space for tables is allocated on demand. The amount of
space that is allocated is dependent on the setting of the multipage_alloc database
configuration parameter. If this configuration parameter is set to YES (the default),
then a full extent (typically made up of two or more pages) will be allocated when
space is required. Otherwise, space will be allocated one page at a time.

Multi-page file allocation only affects the data and index portions of a table. This
means that the files used for long data (LONG VARCHAR, LONG VAR
GRAPHIC), large objects (LOBs) are not extended one extent at a time.

Note: Multipage file allocation is not applicable to temporary table spaces that use
system managed space.

When all space in a single container in an SMS table space has been consumed, the
table space is considered full, even if space remains in other containers. Unlike
DMS table spaces, containers cannot be added to an SMS table space after it has

HUMANRES table space

DEPARTMENT DEPARTMENT

EMPLOYEE EMPLOYEEEMPLOYEE

Container 0 Container 1 Container 2 Container 3

Extent size

EMPLOYEE

DEPARTMENT

4 KB page

DEPARTMENT

Figure 23. Containers and extents in a table space

Chapter 27. Setting up the database environment 315

been created. Add more space to the underlying file system to provide more space
to the SMS container.

Planning SMS table spaces

When considering the use of SMS table spaces, you must consider two factors:
v The number of containers the table space will need. When you create an SMS

table space, you must specify the number of containers that you want your table
space to use. It is very important to identify all the containers you want to use,
because you cannot add or delete containers after an SMS table space is created.
The one exception to this is in a partitioned database environment; when a new
database partition is added to the database partition group for an SMS table
space, the ALTER TABLESPACE statement can be used to add containers to the
new database partition.
The maximum size of the table space can be estimated by the formula:

n × maxFileSystemSize

where n is the number of containers and maxFileSystemSize represents the
maximum file system size supported by the operating system.
This formula assumes that each container is mapped to a distinct file system,
and that each file system has the maximum amount of space available, and that
each file system is of the same size. In practice, this might not be the case, and
the maximum table space size might be much smaller. There are also SQL limits
on the size of database objects, which might affect the maximum size of a table
space.
Attention: The path you specify for the SMS table space must not contain any
other files or directories.

v The extent size for the table space. The extent size is the number of pages that
the database manager writes to a container before using a different container.
The extent size can only be specified when the table space is created. Because it
cannot be changed later, it is important to select an appropriate value for the
extent size.
If you do not specify the extent size when creating a table space, the database
manager will create the table space using the default extent size, defined by the
dft_extent_sz database configuration parameter. This configuration parameter is
initially set based on information provided when the database is created. If the
value for DFT_EXTENT_SZ is not specified for the CREATE DATABASE
command, the default extent size will be set to 32.

Containers and extent size

To choose appropriate number of containers and the extent size for the table space,
you must understand:
v The limitation that your operating system imposes on the size of a logical file

system. For example, some operating systems have a 2 GB limit. Therefore, if
you want a 64 GB table object, you will need at least 32 containers on this type
of system. When you create the table space, you can specify containers that
reside on different file systems and, as a result, increase the amount of data that
can be stored in the database.

v How the database manager manages the data files and containers associated
with a table space. The first table data file (by convention, SQL00002.DAT) is
created in one of the table space containers. The database manager determines
which one, based on an algorithm that takes into account the total number of
containers together with the table identifier. This file is allowed to grow to the

316 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

extent size. After it reaches this size, the database manager writes data to
SQL00002.DAT in the next container. This process continues until all of the
containers contain SQL00002.DAT files, at which time the database manager
returns to the starting container. This process, known as striping, continues
through the container directories until a container becomes full (SQL0289N), or
no more space can be allocated from the operating system (disk full error).
Striping applies to the block map files (SQLnnnnn.BKM), to index objects, as
well as other objects used to store table data. If you choose to implement disk
striping along with the striping provided by the database manager, the extent
size of the table space and the strip size of the disk should be identical.

Note: The SMS table space is deemed to be full as soon as any one of its
containers is full. Thus, it is important to have the same amount of space
available to each container.
SMS table spaces are defined using the MANAGED BY SYSTEM option on the
CREATE DATABASE command, or on the CREATE TABLESPACE statement.

Database managed space
In a DMS (database managed space) table space, the database manager controls the
storage space. Unlike SMS table spaces, storage space is pre-allocated on the file
system based on container definitions that you specify when you create the DMS
table space.

The DMS storage model consists of a limited number of files or devices where
space is managed by the database manager. You decide which files and devices to
use when creating containers, and you manage the space for those files and
devices.

A DMS table space containing user defined tables and data can be defined as a
large (the default) or regular table space that stores any table data or index data.
The maximum size of a regular table space is 512 GB for 32 KB pages. The
maximum size of a large table space is 64 TB. See “SQL and XML limits” in the
SQL Reference for the maximum size of regular table spaces for other page sizes.

There are two options for containers when working with DMS table spaces: files
and raw devices. When working with file containers, the database manager
allocates the entire container at table space creation time. A result of this initial
allocation of the entire table space is that the physical allocation is typically, but
not guaranteed to be, contiguous even though the file system is doing the
allocation. When working with raw device containers, the database manager takes
control of the entire device and always ensures the pages in an extent are
contiguous. (An extent is defined as the number of pages that the database
manager writes to a container before using a different container.)

Planning DMS table spaces

When designing your DMS table spaces and containers, you should consider the
following:
v The database manager uses striping to ensure an even distribution of data across

all containers. This writes the data evenly across all containers in the table space,
placing the extents for tables in round-robin fashion across all containers. DB2
striping is recommended when writing data into multiple containers. If you
choose to implement disk striping along with DB2 striping, the extent size of the
table space and the strip size of the disk should be identical.

Chapter 27. Setting up the database environment 317

v Unlike SMS table spaces, the containers that make up a DMS table space are not
required to be the same size; however, this is not normally recommended,
because it results in uneven striping across the containers, and sub-optimal
performance. If any container is full, DMS table spaces use available free space
from other containers.

v Because space is pre-allocated, it must be available before the table space can be
created. When using device containers, the device must also exist with enough
space for the definition of the container. Each device can have only one
container defined on it. To avoid wasted space, the size of the device and the
size of the container should be equivalent. For example, if the device is has a
storage capacity equivalent to 5000 pages, and the device container is defined to
be 3000 pages, 2000 pages on the device will not be usable.

v By default, one extent in every container is reserved for overhead. Only full
extents are used, so for optimal space management, you can use the following
formula to determine an appropriate size to use when allocating a container:

extent_size * (n + 1)

where extent_size is the size of each extent in the table space, and n is the
number of extents that you want to store in the container.

v The minimum size of a DMS table space is five extents.
– Three extents in the table space are reserved for overhead:
– At least two extents are required to store any user table data. (These extents

are required for the regular data for one table, and not for any index, long
field or large object data, which require their own extents.)

Attempting to create a table space smaller than five extents will result in an
error (SQL1422N).

v Device containers must use logical volumes with a “character special interface,”
not physical volumes.

v You can use files instead of devices with DMS table spaces. The default table
space attribute - NO FILE SYSTEM CACHING in Version 9.5 allows files to
perform close to devices with the advantage of not requiring to set up devices.
For more information, see “Table spaces without file system caching” on page
1061.

v If your workload involves LOBs or LONG VARCHAR data, you might derive
performance benefits from file system caching.

Note: LOBs and LONG VARCHARs are not buffered by the database manager’s
buffer pool.

v Some operating systems allow you to have physical devices greater than 2 GB in
size. You should consider dividing the physical device into multiple logical
devices, so that no container is larger than the size allowed by the operating
system.

When working with DMS table spaces, you should consider associating each
container with a different disk. This allows for a larger table space capacity and the
ability to take advantage of parallel I/O operations.

The CREATE TABLESPACE statement creates a new table space within a database,
assigns containers to the table space, and records the table space definition and
attributes in the catalog. When you create a table space, the extent size is defined
as a number of contiguous pages. Only one table or object, such as an index, can
use the pages in any single extent. All objects created in the table space are
allocated extents in a logical table space address map. Extent allocation is managed
through space map pages.

318 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The first extent in the logical table space address map is a header for the table
space containing internal control information. The second extent is the first extent
of space map pages (SMP) for the table space. SMP extents are spread at regular
intervals throughout the table space. Each SMP extent is a bit map of the extents
from the current SMP extent to the next SMP extent. The bit map is used to track
which of the intermediate extents are in use.

The next extent following the SMP is the object table for the table space. The object
table is an internal table that tracks which user objects exist in the table space and
where their first extent map page (EMP) extent is located. Each object has its own
EMPs which provide a map to each page of the object that is stored in the logical
table space address map. Figure 24 shows how extents are allocated in a logical
table space address map.

Comparison of SMS and DMS table spaces
There are a number of trade-offs to consider when determining which type of table
space you should use to store your data.

Advantages of an SMS Table Space:

v Space is not allocated by the system until it is required, thus data may not be
held in contiguous pages.

v Creating a table space requires less initial work, because you do not have to
predefine the containers

Figure 24. Logical table space address map

Chapter 27. Setting up the database environment 319

v Indexes created on range partitioned data can be stored in a different table space
than the table data

Advantages of a DMS Table Space:

v The size of a table space can be increased by adding or extending containers,
using the ALTER TABLESPACE statement. Existing data can be automatically
rebalanced across the new set of containers to retain optimal I/O efficiency.

v Data can be split across multiple table spaces, based on the type of data being
stored:
– Long field (LF) and large object (LOB) data
– Indexes
– Regular table data
You might want to separate your table data for performance reasons, or to
increase the amount of data stored for a table. For example, if you are using
large table spaces with a 4 KB page size, you can have a table with 8 TB of
regular table data, a separate table space with 8 TB of index data, and another
separate table space with 8 TB of long data. If these three types of data were
stored in one table space instead, the total space would be limited to 8 TB. Using
larger page sizes allows you to store even more data. See the related links for
the complete list of database manager page size limits.

v Indexes created on range partitioned data can be stored in a different table space
than the table data.

v The location of the data on the disk can be controlled, if this is allowed by the
operating system.

v In general, a well-tuned set of DMS table spaces will outperform SMS table
spaces.

Note: For performance-sensitive applications, particularly those involving a large
number of insert operations, it is suggested that you use DMS table spaces.

Also, placement of data can differ on the two types of table spaces. For example,
consider the need for efficient table scans: it is important that the pages in an
extent are physically contiguous. With SMS, the file system of the operating system
decides where each logical file page is physically placed. The pages might be
allocated contiguously depending on the level of other activity on the file system
and the algorithm used to determine placement. With DMS, however, the database
manager can ensure the pages are physically contiguous because it interfaces with
the disk directly.

In general, small personal databases are easiest to manage with SMS table spaces.
On the other hand, for large, growing databases you will probably only want to
use SMS table spaces for the temporary table spaces and catalog table space, and
separate DMS table spaces, with multiple containers, for each table. In addition,
you will probably want to store long field (LF) data and indexes on their own table
spaces.

If you choose to use DMS table spaces with device containers, you must be willing
to tune and administer your environment.

Temporary table spaces
Temporary table spaces hold temporary data required by the database manager
when performing operations such as sorts or joins, since these activities require
extra space to process the results set.

320 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

A database must have at least one system temporary table space with the same
page size as the catalog table space. By default, one system temporary table space
called TEMPSPACE1 is created at database creation time. IBMTEMPGROUP is the
default database partition group for this table space. The page size for
TEMPSPACE1 is whatever was specified when the database itself was created (by
default, 4 kilobytes).

User temporary table spaces hold temporary data from tables created with a
DECLARE GLOBAL TEMPORARY TABLE or CREATE GLOBAL TEMPORARY
TABLE statement. User temporary table spaces are not created by default at the
time of database creation. They also hold instantiated versions of created
temporary tables.

It is recommended that you define a single temporary table space with a page size
equal to the page size used in the majority of your user table spaces. This should
be suitable for typical environments and workloads. However, it can be
advantageous to experiment with different temporary table space configurations
and workloads. The following points should be considered:
v Temporary tables are in most cases accessed in batches and sequentially. That is,

a batch of rows are inserted, or a batch of sequential rows are fetched. Therefore,
a larger page size typically results in better performance, because fewer logical
and physical page requests are required to read a given amount of data.

v When reorganizing a table using a temporary table space, the page size of the
temporary table space must match that of the table. For this reason, you should
ensure that there are temporary table spaces defined for each different page size
used by existing tables that you might reorganize using a temporary table space.
You can also reorganize without a temporary table space by reorganizing the
table directly in the same table space. This type of reorganization requires that
there be extra space in the table space(s) of the table for the reorganization
process.

v When using SMS system temporary table spaces, you might want to consider
using the registry variable DB2_SMS_TRUNC_TMPTABLE_THRESH. When
dropped, files created for the system temporary tables are truncated to a size of
0. The DB2_SMS_TRUNC_TMPTABLE_THRESH can be used to avoid visiting
the file systems and potentially leave the files at a non-zero size to avoid the
performance cost of repeated extensions and truncations of the files.

v In general, when temporary table spaces of different page sizes exist, the
optimizer will choose the temporary table space whose buffer pool can hold the
most number of rows (in most cases that means the largest buffer pool). In such
cases, it is often wise to assign an ample buffer pool to one of the temporary
table spaces, and leave any others with a smaller buffer pool. Such a buffer pool
assignment will help ensure efficient utilization of main memory. For example, if
your catalog table space uses 4 KB pages, and the remaining table spaces use 8
KB pages, the best temporary table space configuration might be a single 8 KB
temporary table space with a large buffer pool, and a single 4 KB table space
with a small buffer pool.

v There is generally no advantage to defining more than one temporary table
space of any single page size.

Chapter 27. Setting up the database environment 321

Before Creating the Database

Starting instances (Linux, UNIX)
You might need to start or stop a DB2 database during normal business operations,
for example, you must start an instance before you can perform some of the
following tasks: connect to a database on the instance, precompile an application,
bind a package to a database, or access host databases.

Before you begin

Before you start an instance on your Linux or UNIX system:
1. Log in with a user ID or name that has SYSADM, SYSCTRL, or SYSMAINT

authority on the instance; or log in as the instance owner.
2. Run the startup script as follows, where INSTHOME is the home directory of the

instance you want to use:
. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

About this task

To start the instance using the command line, enter:
db2start

Note: When you run commands to start or stop an instance’s database manager,
the DB2 database manager applies the command to the current instance.

Starting instances (Windows)
You might need to start or stop a DB2 instance during normal business operations,
for example, you must start an instance before you can perform some of the
following tasks: connect to a database on the instance, precompile an application,
bind a package to a database, or access a host database.

Before you begin

In order to successfully launch the DB2 database instance as a service from
db2start, the user account must have the correct privilege as defined by the
Windows operating system to start a Windows service. The user account can be a
member of the Administrators, Server Operators, or Power Users group. When
extended security is enabled, only members of the DB2ADMNS and
Administrators groups can start the database by default.

About this task

To start an instance using the command line, enter:
db2start

Note: When you run commands to start or stop an instance’s database manager,
the DB2 database manager applies the command to the current instance.

The db2start command will launch the DB2 database instance as a Windows
service. The DB2 database instance on Windows can still be run as a process by
specifying the ″/D″ switch when invoking db2start. The DB2 database instance can
also be started as a service using the Control Panel or the NET START command.

322 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

When running in a partitioned database environment, each database partition
server is started as a Windows service. You can not use the ″/D″ switch to start a
DB2 instance as a process in a partitioned database environment.

Grouping objects by schema
Database object names might be made up of a single identifier or they might be
schema-qualified objects made up of two identifiers. The schema, or high-order part,
of a schema-qualified object provides a means to classify or group objects in the
database. When an object such as a table, view, alias, distinct type, function, index,
package or trigger is created, it is assigned to a schema. This assignment is done
either explicitly or implicitly.

Explicit use of the schema occurs when you use the high-order part of a two-part
object name when referring to that object in a statement. For example, USER A
issues a CREATE TABLE statement in schema C as follows:

CREATE TABLE C.X (COL1 INT)

Implicit use of the schema occurs when you do not use the high-order part of a
two-part object name. When this happens, the CURRENT SCHEMA special register
is used to identify the schema name used to complete the high-order part of the
object name. The initial value of CURRENT SCHEMA is the authorization ID of
the current session user. If you want to change this during the current session, you
can use the SET SCHEMA statement to set the special register to another schema
name.

Some objects are created within certain schemas and stored in the system catalog
tables when the database is created.

You do not have to explicitly specify in which schema an object is to be created; if
not specified, the authorization ID of the statement is used. For example, for the
following CREATE TABLE statement, the schema name defaults to the
authorization ID that is currently logged on (that is, the CURRENT SCHEMA
special register value):

CREATE TABLE X (COL1 INT)

Dynamic SQL and XQuery statements typically use the CURRENT SCHEMA
special register value to implicitly qualify any unqualified object name references.

Before creating your own objects, you must consider whether you want to create
them in your own schema or by using a different schema that logically groups the
objects. If you are creating objects that will be shared, using a different schema
name can be very beneficial.

Stopping instances (Linux, UNIX)
You might need to stop the current instance of the database manager.

Before you begin

To stop an instance on your Linux or UNIX system, you must do the following:
1. Log in or attach to an instance with a user ID or name that has SYSADM,

SYSCTRL, or SYSMAINT authority on the instance; or, log in as the instance
owner.

Chapter 27. Setting up the database environment 323

2. Display all applications and users that are connected to the specific database
that you want to stop. To ensure that no vital or critical applications are
running, list applications. You need SYSADM, SYSCTRL, or SYSMAINT
authority for this.

3. Force all applications and users off the database. You require SYSADM or
SYSCTRL authority to force users.

About this task

The db2stop command can only be run at the server. No database connections are
allowed when running this command; however, if there are any instance
attachments, they are forced off before the instance is stopped.

Note: If command line processor sessions are attached to an instance, you must
run the terminate command to end each session before running the db2stop
command. The db2stop command stops the instance defined by the
DB2INSTANCE environment variable.

To stop the instance using the command line, enter:
db2stop

You can use the db2stop command to stop, or drop, individual database partitions
within a partitioned database environment. When working in a partitioned
database environment and you are attempting to drop a logical partition using

db2stop drop nodenum <0>

You must ensure that no users are attempting to access the database. If they are,
you will receive an error message SQL6030N.

Note: When you run commands to start or stop an instance’s database manager,
the DB2 database manager applies the command to the current instance. For more
information, see “Setting the current instance environment variables” on page 1063.

Stopping instances (Windows)
You might need to stop the current instance of the database manager.

Before you begin

To stop an instance on your system, you must do the following:
1. The user account stopping the DB2 database service must have the correct

privilege as defined by the Windows operating system. The user account can be
a member of the Administrators, Server Operators, or Power Users group.

2. Display all applications and users that are connected to the specific database
that you want to stop. To ensure that no vital or critical applications are
running, list applications. You need SYSADM, SYSCTRL, or SYSMAINT
authority for this.

3. Force all applications and users off the database. You require SYSADM or
SYSCTRL authority to force users.

About this task

The db2stop command can only be run at the server. No database connections are
allowed when running this command; however, if there are any instance
attachments, they are forced off before the DB2 database service is stopped.

324 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Note: If command line processor sessions are attached to an instance, you must
run the terminate command to end each session before running the db2stop
command. The db2stop command stops the instance defined by the
DB2INSTANCE environment variable.

To stop an instance on your system, use one of the following methods:
v Stop using the db2stop command.
v Stop using the NET STOP command.
v Stop the instance from within an application.

Recall that when you are using the database manager in a partitioned database
environment, each database partition server is started as a service. Each service
must be stopped.

Note: When you run commands to start or stop an instance’s database manager,
the database manager applies the command to the current instance. For more
information, see “Setting the current instance environment variables” on page 1063.

Instances
An instance is a logical database manager environment where you catalog
databases and set configuration parameters. Depending on your needs, you can
create more than one instance on the same physical server providing a unique
database server environment for each instance.

Note: For non-root installations on Linux and UNIX operating systems, a single
instance is created during the installation of your DB2 product. Additional
instances cannot be created.

You can use multiple instances to do the following:
v Use one instance for a development environment and another instance for a

production environment.
v Tune an instance for a particular environment.
v Restrict access to sensitive information.
v Control the assignment of SYSADM, SYSCTRL, and SYSMAINT authority for

each instance.
v Optimize the database manager configuration for each instance.
v Limit the impact of an instance failure. In the event of an instance failure, only

one instance is affected. Other instances can continue to function normally.

Multiple instances will require:
v Additional system resources (virtual memory and disk space) for each instance.
v More administration because of the additional instances to manage.

The instance directory stores all information that pertains to a database instance.
You cannot change the location of the instance directory once it is created. The
directory contains:
v The database manager configuration file
v The system database directory
v The node directory
v The node configuration file (db2nodes.cfg)

Chapter 27. Setting up the database environment 325

v Any other files that contain debugging information, such as the exception or
register dump or the call stack for the DB2 database processes.

Terminology:

Bit-width
The number of bits used to address virtual memory: 32-bit and 64-bit are
the most common. This term might be used to refer to the bit-width of an
instance, application code, external routine code. 32-bit application means
the same things as 32-bit width application.

32-bit DB2 instance
A DB2 instance that contains all 32-bit binaries including 32-bit shared
libraries and executables.

64-bit DB2 instance
A DB2 instance that contains 64-bit shared libraries and executables, and
also all 32-bit client application libraries (included for both client and
server), and 32-bit external routine support (included only on a server
instance).

Working with instances
When working with instances, you can start or stop instances, and attach to or
detach from instances.

About this task

Each instance is managed by users who belong to the SYSADM_GROUP defined in
the instance configuration file, also known as the database manager configuration file.
Creating user IDs and user groups is different for each operating environment.

Managing licenses
The management of licenses for your DB2 database products is done primarily
through the License Center within the Control Center of the online interface to the
product. From the License Center you can check the license information, statistics,
and current users for each of the installed products.

In addition to the License Center, the command line licensing tool db2licm can be
used to perform license functions. With this command, you are able to add,
remove, list, and modify licenses and policies installed on your local system.

To assist you in managing your licenses, a compliance report lists the compliance
or noncompliance of DB2 features with your current product entitlement. To be in
compliance with your license agreement, you should apply the license key.
However, even without applying a license key, your DB2 database product will
continue to operate without interruption or restriction, unless you installed a DB2
database product trial image or a DB2 fix pack installation image. A trial DB2
database product will stop working after a 90 day trial period. If you installed a
DB2 fix pack installation image over an existing DB2 database product acquired
from Passport Advantage®, the fix pack installation image will continue to operate
uninterrupted.

DB2 database product trial images include access to all features available in the
edition you are using. You can download a DB2 try and buy image from Trials and
demos.

326 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

http://www.ibm.com/software/data/db2/9/download.html
http://www.ibm.com/software/data/db2/9/download.html

If you installed a DB2 database product with a trial license and now want to
upgrade to a full license, you do not need to reinstall the DB2 database product.
You simply upgrade your license.

Note: The trial license for DB2 Enterprise Server Edition on 32-bit Linux cannot be
upgraded to a full production license.

Additional considerations for partitioned database
environments

Setting up partitioned database environments
The decision to create a multi-partition database must be made before you create
your database. As part of the database design decisions you make, you will have
to determine if you should take advantage of the performance improvements
database partitioning can offer.

About this task

In a partitioned database environment, you still use the CREATE DATABASE
command or the sqlecrea() function to create a database. Whichever method is
used, the request can be made through any of the partitions listed in the
db2nodes.cfg file. The db2nodes.cfg file is the database partition server
configuration file. (Formerly it was known as the node configuration file.)

Except on the Windows operating system environment, any editor can be used to
view and update the contents of the database partition server configuration file
(db2nodes.cfg). On the Windows operating system environment, use db2ncrt and
db2nchg commands to create and change the database partition server
configuration file

Before creating a multi-partition database, you must select which database partition
will be the catalog partition for the database. You can then create the database
directly from that database partition, or from a remote client that is attached to
that database partition. The database partition to which you attach and execute the
CREATE DATABASE command becomes the catalog partition for that particular
database.

The catalog partition is the database partition on which all system catalog tables
are stored. All access to system tables must go through this database partition. All
federated database objects (for example, wrappers, servers, and nicknames) are
stored in the system catalog tables at this database partition.

If possible, you should create each database in a separate instance. If this is not
possible (that is, you must create more than one database per instance), you should
spread the catalog partitions among the available database partitions. Doing this
reduces contention for catalog information at a single database partition.

Note: You should regularly do a backup of the catalog partition and avoid putting
user data on it (whenever possible), because other data increases the time required
for the backup.

When you create a database, it is automatically created across all the database
partitions defined in the db2nodes.cfg file.

Chapter 27. Setting up the database environment 327

When the first database in the system is created, a system database directory is
formed. It is appended with information about any other databases that you create.
When working on UNIX, the system database directory is sqldbdir and is located
in the sqllib directory under your home directory, or under the directory where
DB2 database was installed. When working on UNIX, this directory must reside on
a shared file system, (for example, NFS on UNIX platforms) because there is only
one system database directory for all the database partitions that make up the
partitioned database environment. When working on Windows, the system
database directory is located in the instance directory.

Also resident in the sqldbdir directory is the system intention file. It is called
sqldbins, and ensures that the database partitions remain synchronized. The file
must also reside on a shared file system since there is only one directory across all
database partitions. The file is shared by all the database partitions making up the
database.

Configuration parameters have to be modified to take advantage of database
partitioning. Use the GET DATABASE CONFIGURATION and the GET
DATABASE MANAGER CONFIGURATION commands to find out the values of
individual entries in a specific database, or in the database manager configuration
file. To modify individual entries in a specific database, or in the database manager
configuration file, use the UPDATE DATABASE CONFIGURATION and the
UPDATE DATABASE MANAGER CONFIGURATION commands respectively.

The database manager configuration parameters affecting a partitioned database
environment include conn_elapse, fcm_num_buffers, fcm_num_channels,
max_connretries, max_coordagents, max_time_diff, num_poolagents, and
stop_start_time.

Creating node configuration files
If your database is to operate in a partitioned database environment, you must
create a node configuration file called db2nodes.cfg.

About this task

To enable database partitioning, the db2nodes.cfg file must be located in the
sqllib subdirectory of the home directory for the instance before you start the
database manager. This file contains configuration information for all database
partitions in an instance, and is shared by all database partitions for that instance.

Windows considerations

If you are using DB2 Enterprise Server Edition on Windows, the node
configuration file is created for you when you create the instance. You should not
attempt to create or modify the node configuration file manually. You can use the
db2ncrt command to add a database partition server to an instance. You can use
the db2ndrop command to drop a database partition server from an instance. You
can use the db2nchg command to modify a database partition server configuration
including moving the database partition server from one computer to another;
changing the TCP/IP host name; or, selecting a different logical port or network
name.

Note: You should not create files or directories under the sqllib subdirectory
other than those created by the database manager to prevent the loss of data if an
instance is deleted. There are two exceptions. If your system supports stored
procedures, put the stored procedure applications in the function subdirectory

328 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

|
|
|
|

under the sqllib subdirectory. The other exception is when user-defined functions
(UDFs) have been created. UDF executables are allowed in the same directory.

The file contains one line for each database partition that belongs to an instance.
Each line has the following format:
dbpartitionnum hostname [logical-port [netname]]

Tokens are delimited by blanks. The variables are:

dbpartitionnum
The database partition number, which can be from 0 to 999, uniquely
defines a database partition. Database partition numbers must be in
ascending sequence. You can have gaps in the sequence.

Once a database partition number is assigned, it cannot be changed.
(Otherwise the information in the distribution map, which specifies how
data is distributed, would be compromised.)

If you drop a database partition, its database partition number can be used
again for any new database partition that you add.

The database partition number is used to generate a database partition
name in the database directory. It has the format:
NODE nnnn

The nnnn is the database partition number, which is left-padded with
zeros. This database partition number is also used by the CREATE
DATABASE and DROP DATABASE commands.

hostname
The hostname of the IP address for inter-partition communications. Use the
fully-qualified name for the hostname. The /etc/hosts file also should use
the fully-qualified name. If the fully-qualified name is not used in the
db2nodes.cfg file and in the /etc/hosts file, you might receive error
message SQL30082N RC=3.

(There is an exception when netname is specified. In this situation,
netname is used for most communications, with hostname only being used
for db2start, db2stop, and db2_all.)

logical-port
This parameter is optional, and specifies the logical port number for the
database partition. This number is used with the database manager
instance name to identify a TCP/IP service name entry in the etc/services
file.

The combination of the IP address and the logical port is used as a
well-known address, and must be unique among all applications to
support communications connections between database partitions.

For each hostname, one logical-port must be either 0 (zero) or blank (which
defaults to 0). The database partition associated with this logical-port is the
default node on the host to which clients connect. You can override this
with the DB2NODE environment variable in db2profile script, or with the
sqlesetc() API.

netname
This parameter is optional, and is used to support a host that has more
than one active TCP/IP interface, each with its own hostname.

Chapter 27. Setting up the database environment 329

The following example shows a possible node configuration file for a system on
which SP2EN1 has multiple TCP/IP interfaces, two logical partitions, and uses
SP2SW1 as the DB2 database interface. It also shows the database partition
numbers starting at 1 (rather than at 0), and a gap in the dbpartitionnum sequence:

Table 83. Database partition number example table.

dbpartitionnum hostname logical-port netname

1 SP2EN1.mach1.xxx.com 0 SP2SW1

2 SP2EN1.mach1.xxx.com 1 SP2SW1

4 SP2EN2.mach1.xxx.com 0

5 SP2EN3.mach1.xxx.com

You can update the db2nodes.cfg file using an editor of your choice. (The
exception is: an editor should not be used on Windows.) You must be careful,
however, to protect the integrity of the information in the file, as database
partitioning requires that the node configuration file is locked when you issue
START DBM and unlocked after STOP DBM ends the database manager. The
START DBM command can update the file, if necessary, when the file is locked.
For example, you can issue START DBM with the RESTART option or the ADD
DBPARTITIONNUM option.

Note: If the STOP DBM command is not successful and does not unlock the node
configuration file, issue STOP DBM FORCE to unlock it.

Enabling communication between database partitions using FCM
communications
In a partitioned database environment, most communication between database
partitions is handled by the fast communications manager (FCM).

To enable the FCM at a database partition and allow communication with other
database partitions, you must create a service entry in the database partition’s
services file of the etc directory as shown below. The FCM uses the specified port
to communicate. If you have defined multiple database partitions on the same
host, you must define a range of ports as shown below.

Before attempting to manually configure memory for the fast communications
manager (FCM), it is recommended that you start with the automatic setting,
which is also the default setting, for the number of FCM Buffers (fcm_num_buffers)
and for the number of FCM Channels (fcm_num_channels). Use the system monitor
data for FCM activity to determine if this setting is appropriate.

Windows Considerations
If you are using DB2 Enterprise Server Edition in the Windows
environment, the TCP/IP port range is automatically added to the services
file by:
v The install program when it creates the instance or adds a new database

partition
v The db2icrt utility when it creates a new instance
v The db2ncrt utility when it adds the first database partition on the

computer

The syntax of a service entry is as follows:
DB2_instance port/tcp #comment

330 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

DB2_instance
The value for instance is the name of the database manager instance. All
characters in the name must be lowercase. Assuming an instance name of
db2puser, you would specify DB2_db2puser

port/tcp
The TCP/IP port that you want to reserve for the database partition.

#comment
Any comment that you want to associate with the entry. The comment
must be preceded by a pound sign (#).

If the services file of the etc directory is shared, you must ensure that the number
of ports allocated in the file is either greater than or equal to the largest number of
multiple database partitions in the instance. When allocating ports, also ensure that
you account for any processor that can be used as a backup.

If the services file of the etc directory is not shared, the same considerations
apply, with one additional consideration: you must ensure that the entries defined
for the DB2 database instance are the same in all services files of the etc directory
(though other entries that do not apply to your partitioned database environment
do not have to be the same).

If you have multiple database partitions on the same host in an instance, you must
define more than one port for the FCM to use. To do this, include two lines in the
services file of the etc directory to indicate the range of ports you are allocating.
The first line specifies the first port, while the second line indicates the end of the
block of ports. In the following example, five ports are allocated for the instance
sales. This means no processor in the instance has more than five database
partitions. For example,

DB2_sales 9000/tcp
DB2_sales_END 9004/tcp

Note: You must specify END in uppercase only. Also you must ensure that you
include both underscore (_) characters.

FCM considerations for a Common Criteria compliant
environment
When the Database Partitioning Feature (DPF) is used with multiple physical
nodes (that is, two or more physically separate computers), communication
between the physical nodes occurs over a network using TCP/IP. The DB2
database manager does not protect that communication (that is, it is not encrypted
or otherwise secured).

Therefore, the DB2 database manager should be installed and operated in an
environment where such protections are provided by the hardware or operating
system associated with the DB2 instance. For example, DPF-related network traffic
could be isolated to a separate network (wholly contained in the same secure
environment where the DB2 servers reside), or encrypted either using IPsec or
through the use of a hardware based network encryption solution.

Creating a Database and Database Objects

Creating databases
You create a database using the CREATE DATABASE command. To create a
database from a client application, call the sqlecrea API.

Chapter 27. Setting up the database environment 331

Before you begin

Before you begin

It is important to plan your database, keeping in mind the contents, layout,
potential growth, and how it will be used before you create it. Once it has been
created and populated with data, changes can be made. However depending on
how you set up the database initially, it will likely require more effort and make
your data unavailable for use while the changes are being made.

The following database privileges are automatically granted to PUBLIC:
CREATETAB, BINDADD, CONNECT, IMPLICIT_SCHEMA, and SELECT on the
system catalog views. However, if the RESTRICTIVE option is present, no
privileges are automatically granted to PUBLIC. For more information on the
RESTRICTIVE option, see the CREATE DATABASE command.

About this task

About this task

When you create a database, each of the following tasks are done for you:
v Setting up of all the system catalog tables that are needed by the database
v Allocation of the database recovery log
v Creation of the database configuration file and the default values are set
v Binding of the database utilities to the database

Procedure

v To create a database from a client application, call the sqlecrea API.
v To create a database using the command line processor, issue the CREATE

DATABASE command.
For example, the following command creates a database called PERSON1, in the
default location, with the associated comment ″Personnel DB for BSchiefer Co″.
CREATE DATABASE personl

WITH "Personnel DB for BSchiefer Co"

What to do next

What to do next

Configuration Advisor
The Configuration Advisor helps you to tune performance and to balance
memory requirements for a single database per instance by suggesting
which configuration parameters to modify and providing suggested values
for them. The Configuration Advisor is automatically invoked by default
when you create a database.

You can override this default so that the configuration advisor is not
automatically invoked by using one of the following methods:
v Issue the CREATE DATABASE command with the AUTOCONFIGURE

APPLY NONE parameter.
v Set the DB2_ENABLE_AUTOCONFIG_DEFAULT registry variable to

NO:
db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO

332 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

|
|
|
|
|

|
|

|
|

|
|

|

However, if you specify the AUTOCONFIGURE parameter with the
CREATE DATABASE command, the setting of this registry variable is
ignored.

See “Automatic features” on page 1059 for other features that are enabled
by default when you create a database.

Event Monitor
At the same time a database is created, a detailed deadlocks event monitor
is also created. As with any monitor, there is some overhead associated
with this event monitor. If you do not want the detailed deadlocks event
monitor, then the event monitor can be dropped using the command:
DROP EVENT MONITOR db2detaildeadlock

To limit the amount of disk space that this event monitor consumes, the
event monitor deactivates, and a message is written to the administration
notification log, once it has reached its maximum number of output files.
Removing output files that are no longer needed allows the event monitor
to activate again on the next database activation.

Remote databases

You have the ability to create a database in a different, possibly remote,
instance. To create a database at another (remote) database partition server,
you must first attach to that server. A database connection is temporarily
established by the following command during processing:
CREATE DATABASE database_name AT DBPARTITIONNUM options

In this type of environment you can perform instance-level administration
against an instance other than your default instance, including remote
instances. For instructions on how to do this, see the db2iupdt (update
instance) command.

Database code pages

By default, databases are created in the UTF-8 (Unicode) code set.

To override the default code page for the database, it is necessary to
specify the desired code set and territory when creating the database. See
the CREATE DATABASE command or the sqlecrea API for information on
setting the code set and territory.

Initial database partition groups
When a database is initially created, database partitions are created for all database
partitions specified in the db2nodes.cfg file. Other database partitions can be added
or removed with the ADD DBPARTITIONNUM and DROP DBPARTITIONNUM
VERIFY commands.

Three database partition groups are defined:
v IBMCATGROUP for the SYSCATSPACE table space, holding system catalog

tables
v IBMTEMPGROUP for the TEMPSPACE1 table space, holding temporary tables

created during database processing
v IBMDEFAULTGROUP for the USERSPACE1 table space, by default holding user

tables and indexes.

Chapter 27. Setting up the database environment 333

|
|
|

|
|

Defining initial table spaces on database creation
When a database is created, three table spaces are defined: (1) SYSCATSPACE for
the system catalog tables, (2) TEMPSPACE1 for system temporary tables created
during database processing, and (3) USERSPACE1 for user-defined tables and
indexes. You can also create additional user table spaces at the same time.

About this task

Note: When you first create a database no user temporary table space is created.

Unless otherwise specified, the three default table spaces are managed by
automatic storage.

Using the CREATE DATABASE command, you can specify the page size for the
default buffer pool and the initial table spaces. This default also represents the
default page size for all future CREATE BUFFERPOOL and CREATE TABLESPACE
statements. If you do not specify the page size when creating the database, the
default page size is 4 KB.

To define initial table spaces using the command line, enter:
CREATE DATABASE name

PAGESIZE page size
CATALOG TABLESPACE

MANAGED BY SYSTEM USING ('path')
EXTENTSIZE value PREFETCHSIZE value

USER TABLESPACE
MANAGED BY DATABASE USING (FILE 'path' 5000,

FILE 'path' 5000)
EXTENTSIZE value PREFETCHSIZE value

TEMPORARY TABLESPACE
MANAGED BY SYSTEM USING ('path')

WITH "comment"

If you do not want to use the default definition for these table spaces, you might
specify their characteristics on the CREATE DATABASE command. For example,
the following command could be used to create your database on Windows:

CREATE DATABASE PERSONL
PAGESIZE 16384
CATALOG TABLESPACE

MANAGED BY SYSTEM USING ('d:\pcatalog','e:\pcatalog')
EXTENTSIZE 16 PREFETCHSIZE 32

USER TABLESPACE
MANAGED BY DATABASE USING (FILE'd:\db2data\personl' 5000,

FILE'd:\db2data\personl' 5000)
EXTENTSIZE 32 PREFETCHSIZE 64

TEMPORARY TABLESPACE
MANAGED BY SYSTEM USING ('f:\db2temp\personl')

WITH "Personnel DB for BSchiefer Co"

In this example, the default page size is set to 16 384 bytes, and the definition for
each of the initial table spaces is explicitly provided. You only need to specify the
table space definitions for those table spaces for which you do not want to use the
default definition.

Note: When working in a partitioned database environment, you cannot create or
assign containers to specific database partitions. First, you must create the database
with default user and temporary table spaces. Then you should use the CREATE
TABLESPACE statement to create the required table spaces. Finally, you can drop
the default table spaces.

334 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The coding of the MANAGED BY phrase on the CREATE DATABASE command
follows the same format as the MANAGED BY phrase on the CREATE
TABLESPACE statement.

You can add additional user and temporary table spaces if you want. You cannot
drop the catalog table space SYSCATSPACE, or create another one; and there must
always be at least one system temporary table space with a page size of 4 KB. You
can create other system temporary table spaces. You also cannot change the page
size or the extent size of a table space after it has been created.

System catalog tables
A set of system catalog tables is created and maintained for each database. These
tables contain information about the definitions of the database objects (for
example, tables, views, indexes, and packages), and security information about the
type of access that users have to these objects. These tables are stored in the
SYSCATSPACE table space.

These tables are updated during the operation of a database; for example, when a
table is created. You cannot explicitly create or drop these tables, but you can
query and view their content. When the database is created, in addition to the
system catalog table objects, the following database objects are defined in the
system catalog:
v A set of routines (functions and procedures) in the schemas SYSIBM, SYSFUN,

and SYSPROC.
v A set of read-only views for the system catalog tables is created in the SYSCAT

schema.
v A set of updatable catalog views is created in the SYSSTAT schema. These

updatable views allow you to update certain statistical information to investigate
the performance of a hypothetical database, or to update statistics without using
the RUNSTATS utility.

After your database has been created, you might want to limit the access to the
system catalog views.

Database recovery log
A database recovery log keeps a record of all changes made to a database, including
the addition of new tables or updates to existing ones.

This log is made up of a number of log extents, each contained in a separate file
called a log file.

The database recovery log can be used to ensure that a failure (for example, a
system power outage or application error) does not leave the database in an
inconsistent state. In case of a failure, the changes already made but not committed
are rolled back, and all committed transactions, which might not have been
physically written to disk, are redone. These actions ensure the integrity of the
database.

Binding utilities to the database
When a database is created, the database manager attempts to bind the utilities in
db2ubind.lst and in db2cli.lst to the database. These files are stored in the bnd
subdirectory of your sqllib directory.

Chapter 27. Setting up the database environment 335

About this task

Binding a utility creates a package, which is an object that includes all the
information needed to process specific SQL and XQuery statements from a single
source file.

Note: If you want to use these utilities from a client, you must bind them
explicitly. You must be in the directory where these files reside to create the
packages in the sample database. The bind files are found in the bnd subdirectory
of the sqllib directory. You must also bind the db2schema.bnd file when you create
or upgrade the database from a client. Refer to ″DB2 CLI bind files and package
names″ for details.

To bind or rebind the utilities to a database, from the command line, invoke the
following commands, where sample is the name of the database:

connect to sample
bind @db2ubind.lst

Creating database partition groups
You create a database partition group with the CREATE DATABASE PARTITION
GROUP statement. This statement specifies the set of database partitions on which
the table space containers and table data are to reside.

Before you begin

The computers and systems must be available and capable of handling a
partitioned database environment. You have purchased and installed DB2
Enterprise Server Edition. The database must exist.

About this task

This statement also:
v Creates a distribution map for the database partition group.
v Generates a distribution map ID.
v Inserts records into the following catalog tables:

– SYSCAT.DBPARTITIONGROUPS
– SYSCAT.PARTITIONMAPS
– SYSCAT.DBPARTITIONGROUPDEF

To create a database partition group using the Control Center:
1. Expand the object tree until you see the Database partition groups folder.
2. Right-click the Database partition groups folder, and select Create from the

pop-up menu.
3. On the Create Database partition groups window, complete the information,

use the arrows to move database partitions from the Available database
partitions box to the Selected database partitions box, and click OK.

To create a database partition group using the command line, enter:
CREATE DATABASE PARTITION GROUP db-partition-group-name

ON DBPARTITIONNUM (db-partition-number1,db-partition-number1)

or

336 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

CREATE DATABASE PARTITION GROUP db-partition-group-name
ON DBPARTITIONNUMS (db-partition-number1
TO db-partition-number2)

For example, assume that you want to load some tables on a subset of the database
partitions in your database. You would use the following command to create a
database partition group of two database partitions (1 and 2) in a database
consisting of at least three (0 to 2) database partitions:

CREATE DATABASE PARTITION GROUP mixng12 ON DBPARTITIONNUM (1,2)

or
CREATE DATABASE PARTITION GROUP mixng12 ON DBPARTITIONNUMS (1 TO 2)

The CREATE DATABASE command or sqlecrea() API also create the default
system database partition groups, IBMDEFAULTGROUP, IBMCATGROUP, and
IBMTEMPGROUP.

Creating table spaces
Creating a table space within a database assigns containers to the table space and
records its definitions and attributes in the database system catalog.

About this task

About this task

For automatic storage table spaces, the database manager assigns containers to the
table space based on the storage paths associated with the database.

For non-automatic storage table spaces, you must know the path, device or file
names for the containers that you will use when creating your table spaces. In
addition, for each device or file container you create for DMS table spaces, you
must know the how much storage space you can allocate to each container.

Procedure

v To create an SMS table space using the command line, enter:
CREATE TABLESPACE name

MANAGED BY SYSTEM
USING ('path')

v To create a DMS table space using the command line, enter:
CREATE TABLESPACE name

MANAGED BY DATABASE
USING (FILE 'path' size)

Note that by default, DMS table spaces are created as large table spaces
v To create an automatic storage table space using the command line, enter either

of the following statements:
CREATE TABLESPACE name

or
CREATE TABLESPACE name

MANAGED BY AUTOMATIC STORAGE

Assuming the table space is created in an automatic storage database, each of
the two statements above is equivalent; table spaces created in such a database
will, by default, be automatic storage table spaces unless you specify otherwise.

Chapter 27. Setting up the database environment 337

Example

Example 1: Creating an SMS table space on Windows. The following SQL statement
creates an SMS table space called RESOURCE with containers in three directories
on three separate drives:
CREATE TABLESPACE RESOURCE

MANAGED BY SYSTEM
USING ('d:\acc_tbsp', 'e:\acc_tbsp', 'f:\acc_tbsp')

Example 2: Creating a DMS table space on Windows. The following SQL statement
creates a DMS table space with two file containers, each with 5 000 pages:
CREATE TABLESPACE RESOURCE

MANAGED BY DATABASE
USING (FILE'd:\db2data\acc_tbsp' 5000,

FILE'e:\db2data\acc_tbsp' 5000)

In the previous two examples, explicit names are provided for the containers.
However, if you specify relative container names, the container is created in the
subdirectory created for the database.

When creating table space containers, the database manager creates any directory
levels that do not exist. For example, if a container is specified as
/project/user_data/container1, and the directory /project does not exist, then
the database manager creates the directories /project and /project/user_data.

Any directories created by the database manager are created with PERMISSION
700. This means that only the instance owner has read, write, and execute access.
Because only the instance owner has this access, the following scenario might
occur when multiple instances are being created:
v Using the same directory structure as described above, suppose that directory

levels /project/user_data do not exist.
v user1 creates an instance, named user1 by default, then creates a database, and

then creates a table space with /project/user_data/container1 as one of its
containers.

v user2 creates an instance, named user2 by default, then creates a database, and
then attempts to create a table space with /project/user_data/container2 as
one of its containers.

Because the database manager created directory levels /project/user_data with
PERMISSION 700 from the first request, user2 does not have access to these
directory levels and cannot create container2 in those directories. In this case, the
CREATE TABLESPACE operation fails.

There are two methods to resolve this conflict:
1. Create the directory /project/user_data before creating the table spaces and

set the permission to whatever access is needed for both user1 and user2 to
create the table spaces. If all levels of table space directory exist, the database
manager does not modify the access.

2. After user1 creates /project/user_data/container1, set the permission of
/project/user_data to whatever access is needed for user2 to create the table
space.

If a subdirectory is created by the database manager, it might also be deleted by
the database manager when the table space is dropped.

338 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The assumption in this scenario is that the table spaces are not associated with a
specific database partition group. The default database partition group
IBMDEFAULTGROUP is used when the following parameter is not specified in the
statement:
IN database_partition_group_name

Example 3: Creating DMS table spaces on AIX. The following SQL statement creates a
DMS table space on an AIX system using three logical volumes of 10 000 pages
each, and specifies their I/O characteristics:
CREATE TABLESPACE RESOURCE

MANAGED BY DATABASE
USING (DEVICE '/dev/rdblv6' 10000,

DEVICE '/dev/rdblv7' 10000,
DEVICE '/dev/rdblv8' 10000)

OVERHEAD 7.5
TRANSFERRATE 0.06

The UNIX devices mentioned in this SQL statement must already exist, and the
instance owner and the SYSADM group must be able to write to them.

Example 4: Creating a DMS table space on a UNIX system. The following example
creates a DMS table space on a database partition group called ODDGROUP in a
UNIX multi-partition database. ODDGROUP must be previously created with a
CREATE DATABASE PARTITION GROUP statement. In this case, the ODDGROUP
database partition group is assumed to be made up of database partitions
numbered 1, 3, and 5. On all database partitions, use the device /dev/hdisk0 for
10 000 4 KB pages. In addition, declare a device for each database partition of
40 000 4 KB pages.
CREATE TABLESPACE PLANS IN ODDGROUP

MANAGED BY DATABASE
USING (DEVICE '/dev/HDISK0' 10000, DEVICE '/dev/n1hd01' 40000)

ON DBPARTITIONNUM 1
(DEVICE '/dev/HDISK0' 10000, DEVICE '/dev/n3hd03' 40000)
ON DBPARTITIONNUM 3
(DEVICE '/dev/HDISK0' 10000, DEVICE '/dev/n5hd05' 40000)
ON DBPARTITIONNUM 5

The database manager can greatly improve the performance of sequential I/O
using the sequential prefetch facility, which uses parallel I/O.

Example 5: Creating an SMS table space with a page size larger than the default. You can
also create a table space that uses a page size larger than the default 4 KB size. The
following SQL statement creates an SMS table space on a Linux and UNIX system
with an 8 KB page size.
CREATE TABLESPACE SMS8K

PAGESIZE 8192
MANAGED BY SYSTEM
USING ('FSMS_8K_1')
BUFFERPOOL BUFFPOOL8K

Notice that the associated buffer pool must also have the same 8 KB page size.

The created table space cannot be used until the buffer pool it references is
activated.

You can use the ALTER TABLESPACE statement to add, drop, or resize containers
to a DMS table space and modify the PREFETCHSIZE, OVERHEAD, and
TRANSFERRATE settings for a table space. You should commit the transaction

Chapter 27. Setting up the database environment 339

issuing the table space statement as soon as possible following the ALTER
TABLESPACE SQL statement to prevent system catalog contention.

Note: The PREFETCHSIZE value should be a multiple of the EXTENTSIZE value.
For example if the EXTENTSIZE is 10, the PREFETCHSIZE should be 20 or 30. You
should also consider letting the database manager automatically determine the
prefetch size, by setting PREFETCHSIZE to AUTOMATIC.

Direct I/O (DIO) improves memory performance because it bypasses caching at
the file system level. This process reduces CPU overhead and makes more memory
available to the database instance.

Concurrent I/O (CIO) includes the advantages of DIO and also relieves the
serialization of write accesses.

DIO and CIO are supported on AIX; DIO is supported on HP-UX, Solaris, Linux,
and Windows operating systems.

The keywords NO FILE SYSTEM CACHING and FILE SYSTEM CACHING are
part of the CREATE and ALTER TABLESPACE SQL statements to allow you to
specify whether DIO or CIO is to be used with each table space. When NO FILE
SYSTEM CACHING is in effect, the database manager attempts to use Concurrent
I/O (CIO) wherever possible. In cases where CIO is not supported (for example, if
JFS is used), DIO is used instead.

When you issue the CREATE TABLESPACE statement, the dropped table recovery
feature is turned on by default. This feature lets you recover dropped table data
using table space-level restore and rollforward operations. This is useful because it
is faster than database-level recovery, and your database can remain available to
users.

However, the dropped table recovery feature can have some performance impact
on forward recovery when there are many drop table operations to recover or
when the history file is very large.

You might want to disable this feature if you plan to run numerous drop table
operations, and you either use circular logging or you do not think you will want
to recover any of the dropped tables. To disable this feature, you can explicitly set
the DROPPED TABLE RECOVERY option to OFF when you issue the CREATE
TABLESPACE statement. Alternatively, you can turn off the dropped table recovery
feature for an existing table space using the ALTER TABLESPACE statement.

Table spaces in database partition groups
By placing a table space in a multiple-partition database partition group, all of the
tables within the table space are divided or partitioned across each database
partition in the database partition group.

The table space is created into a database partition group. Once in a database
partition group, the table space must remain there; it cannot be changed to another
database partition group. The CREATE TABLESPACE statement is used to
associate a table space with a database partition group.

340 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

|
|
|
|

Designing schemas
when organizing your data into tables, it might be beneficial to group the tables
and other related objects together. This is done by defining a schema through the
use of the CREATE SCHEMA statement.

Information about the schema is kept in the system catalog tables of the database
to which you are connected. As other objects are created, they can be placed within
the schemas you create, however, note that an object can exist in only one schema.

Schemas can be compared to directories, with the current schema being the current
directory. Using this analogy, SET SCHEMA is equivalent to the change directory
command.

Important: It is important to understand that there is no relation between
authorization IDs and schemas except for the default CURRENT SCHEMA setting
(described below).

when designing your databases and tables, you should also consider the schemas
in your system, including their names and the objects that will be associated with
each of them.

Most objects in a database are assigned a unique name that consists of two parts.
The first (leftmost) part is called the qualifier or schema, and the second
(rightmost) part is called the simple (or unqualified) name. Syntactically, these two
parts are concatenated as a single string of characters separated by a period. When
any object that can be qualified by a schema name (such as a table, index, view,
user-defined data type, user-defined function, nickname, package, or trigger) is
first created, it is assigned to a particular schema based on the qualifier in its
name.

For example, the following diagram illustrates how a table is assigned to a
particular schema during the table creation process:

Index

Table

Payroll (Schema)

Table

Index

Sales (Schema)

Staff

'CREATE TABLE 'PAYROLL.STAFF

Table Name

Schema Name

You should also be familiar with how schema access is granted, in order to give
your users the correct authority and instructions:

Chapter 27. Setting up the database environment 341

Schema names
When creating a new schema, the name must not identify a schema name
already described in the catalog and the name cannot begin with ″SYS″.
For other restrictions and recommendations, see “Schema name restrictions
and recommendations” on page 1061.

Access to schemas

Unqualified access to objects within a schema is not allowed since the
schema is used to enforce uniqueness in the database. This becomes clear
when considering the possibility that two users could create two tables (or
other objects) with the same name. Without a schema to enforce
uniqueness, ambiguity would exist if a third user attempted to query the
table. It is not possible to determine which table to use without some
further qualification.

The definer of any objects created as part of the CREATE SCHEMA
statement is the schema owner. This owner can GRANT and REVOKE
schema privileges to other users.

If a user has DBADM authority, then that user can create a schema with
any valid name. When a database is created, IMPLICIT_SCHEMA
authority is granted to PUBLIC (that is, to all users).

If users do not have IMPLICIT_SCHEMA or DBADM authority, the only
schema they can create is one that has the same name as their own
authorization ID.

Default schema

If a schema or qualifier is not specified as part of the name of the object to
be created, that object is assigned to the default schema as indicated in the
CURRENT SCHEMA special register. The default value of this special
register is the value of the session authorization ID.

A default schema is needed by unqualified object references in dynamic
statements. You can set a default schema for a specific DB2 connection by
setting the CURRENT SCHEMA special register to the schema that you
want as the default. No designated authorization is required to set this
special register, so any user can set the CURRENT SCHEMA.

The syntax of the SET SCHEMA statement is:
SET SCHEMA = <schema-name>

You can issue this statement interactively or from within an application.
The initial value of the CURRENT SCHEMA special register is equal to the
authorization ID of the current session user. For more information, see the
SET SCHEMA statement.

Note:

v There are other ways to set the default schema upon connection. For
example, by using the cli.ini file for CLI/ODBC applications, or by
using the connection properties for the JDBC application programming
interface.

v The default schema record is not created in the system catalogs, but it
exists only as a value that the database manager can obtain (from the
CURRENT SCHEMA special register) whenever a schema or qualifier is
not specified as part of the name of the object to be created.

Implicit creation

342 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

You can implicitly create schemas if you have IMPLICIT_SCHEMA
authority. With this authority, you can implicitly create a schema whenever
you create an object with a schema name that does not already exist. Often
schemas are implicitly created the first time a data object in the schema is
created, provided the user creating the object holds the
IMPLICIT_SCHEMA authority.

Explicit creation

Schemas can also be explicitly created and dropped by executing the
CREATE SCHEMA and DROP SCHEMA statements from the command
line or from an application program. For more information, see the
CREATE SCHEMA and DROP SCHEMA statements.

Table and view aliases by schema

To allow another user to access a table or view without entering the
schema name as part of the qualification on the table or view name
requires that a an alias be established for that user. The definition of the
alias would define the fully-qualified table or view name including the
user’s schema; then the user queries using the alias name. The alias would
be fully-qualified by the user’s schema as part of the alias definition.

Creating schemas
You can use schemas to group objects as you create those objects. An object can
belong to only one schema. Use the CREATE SCHEMA statement to create
schemas. Information about the schemas is kept in the system catalog tables of the
database to which you are connected.

Before you begin

To create a schema and optionally make another user the owner of the schema,
you need DBADM authority. If you do not hold DBADM authority, you can still
create a schema using your own authorization ID. The definer of any objects
created as part of the CREATE SCHEMA statement is the schema owner. This
owner can GRANT and REVOKE schema privileges to other users.

About this task

To create a schema from the command line, enter the following statement:
CREATE SCHEMA <schema-name> [AUTHORIZATION <schema-owner-name>]

Where <schema-name> is the name of the schema. This name must be unique within
the schemas already recorded in the catalog, and the name cannot begin with SYS.
If the optional AUTHORIZATION clause is specified, the <schema-owner-name>
becomes the owner of the schema. If this clause is not specified, the authorization
ID that issued this statement becomes the owner of the schema.

For more information, see the CREATE SCHEMA statement. See also “Schema
name restrictions and recommendations” on page 1061.

Types of tables
DB2 databases store data in tables. In addition to tables used to store persistent
data, there are also tables that are used for presenting results, summary tables and
temporary tables; multidimensional clustering tables offer specific advantages in a
warehouse environment, whereas partitioned tables let you spread data across
more than one database partition.

Chapter 27. Setting up the database environment 343

Base tables
These types of tables hold persistent data. There are different kinds of base
tables, including

Regular tables
Regular tables with indexes are the ″general purpose″ table choice.

Multidimensional clustering (MDC) tables
These types of tables are implemented as tables that are physically
clustered on more than one key, or dimension, at the same time.
MDC tables are used in data warehousing and large database
environments. Clustering indexes on regular tables support
single-dimensional clustering of data. MDC tables provide the
benefits of data clustering across more than one dimension. MDC
tables provide guaranteed clustering within the composite
dimensions. By contrast, although you can have a clustered index
with regular tables, clustering in this case is attempted by the
database manager, but not guaranteed and it typically degrades
over time. MDC tables can coexist with partitioned tables and can
themselves be partitioned tables.

Range-clustered tables (RCT)
These types of tables are implemented as sequential clusters of
data that provide fast, direct access. Each record in the table has a
predetermined record ID (RID) which is an internal identifier used
to locate a record in a table. RCT tables are used where the data is
tightly clustered across one or more columns in the table. The
largest and smallest values in the columns define the range of
possible values. You use these columns to access records in the
table; this is the most optimal method of utilizing the
predetermined record identifier (RID) aspect of RCT tables.

Temporary tables
These types of tables are used as temporary work tables for a variety of
database operations. Declared temporary tables (DGTTs) do not appear in the
system catalog, which makes them not persistent for use by, and not able
to be shared with other applications. When the application using this table
terminates or disconnects from the database, any data in the table is
deleted and the table is dropped. By contrast, created temporary tables
(CGTTs) do appear in the system catalog and are not required to be
defined in every session where they are used. As a result, they are
persistent and able to be shared with other applications across different
connections.

Neither type of temporary table supports
v User-defined reference or user-defined structured type columns
v LONG VARCHAR columns

In addition XML columns cannot be used in created temporary tables.

Materialized query tables
These types of tables are defined by a query that is also used to determine
the data in the table. Materialized query tables can be used to improve the
performance of queries. If the database manager determines that a portion
of a query can be resolved using a summary table, the database manager
can rewrite the query to use the summary table. This decision is based on
database configuration settings, such as the CURRENT REFRESH AGE and
the CURRENT QUERY OPTIMIZATION special registers. A summary table
is a specialized type of materialized query table.

344 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

You can create all of the preceding types of tables using the CREATE TABLE
statement.

Depending on what your data is going to look like, you might find one table type
offers specific capabilities that can optimize storage and query performance. For
example, if you have data records that will be loosely clustered (not monotonically
increasing), consider using a regular table and indexes. If you have data records
that will have duplicate (but not unique) values in the key, you should not use a
range-clustered table. Also, if you cannot afford to preallocate a fixed amount of
storage on disk for the range-clustered tables you might want, you should not use
this type of table. If you have data that has the potential for being clustered along
multiple dimensions, such as a table tracking retail sales by geographic region,
division and supplier, a multidimensional clustering table might suit your
purposes.

In addition to the various table types described above, you also have options for
such characteristics as partitioning, which can improve performance for tasks such
as rolling in table data. Partitioned tables can also hold much more information
than a regular, nonpartitioned table. You can also exploit capabilities such as
compression, which can help you significantly reduce your data storage costs.

Designing tables
When designing tables, you must be familiar with certain concepts, determine the
space requirements for tables and user data, and determine whether you will take
advantage of certain features, such as compression and optimistic locking.

When designing partitioned tables, you must be familiar with the partitioning
concepts, such as:
v Data organization schemes
v table-partitioning keys
v Keys used for distributing data across data partitions
v Keys used for MDC dimensions

For these and other partitioning concepts, see “Table partitioning and data
organization schemes” on page 1061.

Creating tables
The database manager controls changes and access to the data stored in the tables.
You can create tables using the CREATE TABLE statement. Complex statements
can be used to define all the attributes and qualities of tables. However, if all the
defaults are used, the statement to create a table is quite simple.

Example
CREATE TABLE <table name> (<column name> <data type> <column options>,

(<column name> <data type> <column options>, ...)

The <table name> may or may not include a qualifier. The name must be unique
when compared to all table, view, and alias names in the system catalog. The name
must also not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT.

The <column name> names the columns in the table. This name cannot be qualified
and must be unique within the other columns of the table.

Chapter 27. Setting up the database environment 345

Any <column options> that exist for a column further define the attributes of the
column. The options include NOT NULL in order to prevent the column from
containing null values, specific options for LOB data types, and the SCOPE of the
reference type columns, any constraints on the columns, and any defaults for the
columns. For more information, see the CREATE TABLE statement.

Data types for columns
When defining columns, you need to name the columns, define the type of data
that will be included in those columns (called data types), and define the length of
the data for each column in the table you are creating.

About this task

Character data stored as binary data

Small integer
This data type is used to store binary integer values that have a
precision of 15 bits. The range for a small integer value is -32 768
to +32 767. The small integer data type uses the smallest amount
of storage space possible to store numerical values (2 bytes of
space is required for each value stored). The term SMALLINT is
used to declare a small integer column in a table definition.

Integer
This data type is used to store binary integer values that have a
precision of 31 bytes. Although the integer data type requires twice
as much storage space as the small integer data type (4 bytes of
space is required for each value stored), its range of values is much
greater. The range for an integer value is -2 147 483 648 to +2 147
483 647. The terms INTEGER and INT can be used to declare an
integer column in a table definition.

Big integer
This data type is used to store binary integer values that have a
precision of 63 bits on platforms that provide support for 64 bit
integers. Processing large numbers that are stored as big integers is
more efficient than processing similar numbers that have been
stored as decimal values. In addition, calculations performed with
big integer values are more precise than calculations performed
with real or double values.

This data type requires four times as much storage space as the
small integer data type (8 bytes of space is required for each value
stored.) The range for a big integer is -9 223 372 036 854 775 808
to +9 223 372 036 854 775 807. The term BIGINT is used to
declare a big integer column in a table definition.

Decimal
This data type is used to store numbers that contain both whole
and fractional parts; the parts are combined and stored in packed
decimal format. A precision (the total number of digits) and a scale
(the number of digits to use for the fractional part of the number)
must be specified whenever a decimal data type is declared. The
range for the precision of a decimal is 1 to 31. The amount of
storage space needed to store a decimal value can be calculated by
using the following equation: precision divided by 2 (truncated) + 1
= bytes of space required.

346 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

For example, a DECIMAL(8,2) value would require 5 bytes of
storage space (8 divided by 2 = 4; 4 + 1 = 5), whereas a
DECIMAL(7,2) value would require 4 bytes of storage space (7
divided by 2 = 3.5 (truncated to 3); 3 + 1 = 4).

The terms DECIMAL, DEC, NUMERIC, and NUM can all be used
to declare a decimal column in a table definition.

Note: If the precision and scale values are not provided for a
decimal column definition, by default, a precision value of 5 and a
scale value of 0 are used (therefore, 3 bytes of storage space is
needed).

Single-precision floating point
This data type is used to store a 32-bit approximation of a real
number. Although the single-precision floating-point data type and
the integer data type require the same amount of storage space (4
bytes of space is required for each value stored), the range for a
single-precision floating-point number is much greater: 10E-38 to
10E+38.

The terms REAL and FLOAT can be used to declare a
single-precision floating-point column in a table definition.
However, if the term FLOAT is used, the length specified for the
column must be between 1 and 24–the FLOAT can be used to
represent both single- and double-precision floating-point data
types; the length specified determines which actual data type is to
be used.

Double-precision floating point
The double-precision floating-point data type is used to store a
64-bit approximation of a real number. Although the
double-precision floating-point data type requires the same amount
of storage space as the big integer data type (8 bytes of space is
required for each value stored), the range for a double-precision
floating-point number is the largest possible: -1.79760+308 to
-2.225E-307, 0, and 2.225E-307 to -1.79769E+308.

Decimal-precision floating point
A decimal floating-point data type that is useful in business
applications (for example, financial applications) that deal with
exact decimal values. Binary floating-point data types (REAL and
DOUBLE), which provide binary approximations for decimal data,
are not appropriate in such applications. DECFLOAT combines the
accuracy of DECIMAL with some of the performance advantage of
FLOAT, which is beneficial in applications where monetary values
are being manipulated.

Fixed-length character string
This data type is used to store character and character string data
that has a specific length that does not exceed 254 characters. The
terms CHARACTER and CHAR can be used to declare a
fixed-length character string column in a table definition; the
length of the character string data to be stored must be specified
whenever a fixed-length character string data type is declared. The
amount of storage space needed to store a fixed-length character
string value can be determined by using the following equation:
fixed length x 1 = bytes of space required. For example, a CHAR(8)
value would require 8 bytes of storage.

Chapter 27. Setting up the database environment 347

Note: When fixed-length character string data types are used,
storage space can be wasted if the actual length of the data is
significantly smaller than the length specified when the column
was defined. For example, if the values YES and NO were to be
stored in a column that was defined as CHAR(20). Therefore, the
fixed length specified for a fixed-length character string column
should be as close as possible to the actual length of the data that
will be stored in the column.

Variable length character data
This data type is used to store character string data that varies in length.
Varying-length character string data can be up to 32 672 characters long;
however, the actual length allowed is governed by one restriction: the data
must fit on a single table space page. This means that for a table that
resides in a table space that used 4K pages, varying-length character string
data cannot be more than 4 092 characters long; for a table that resides in a
table space that used 8K pages, varying-length character string data cannot
be more than 8 188 characters long and so on, up to 32K. Because table
spaces are created with 4K pages by default, you must explicitly create a
table space with a larger page size if you want to use a varying length
character string data type to store strings that contain more than 4 092
characters.

Note:

v You must also have sufficient space in the table row to accommodate the
character string data. In other words, the storage requirements for other
columns in the table must be added to the storage requirements of the
character string data and the total amount of storage space needed must
not exceed the size of the table space’s page.

v When a varying-length string data value is updated and the new value
is larger than the original value, the record containing the value will be
moved to another page in the table. Such records are known as pointer
records. Too many pointer records can cause a significant decrease in
performance because multiple pages must be retrieved in order to
process a single data record.

The terms CHARACTER VARYING, CHAR VARYING, and VARCHAR can
be used to declare a varying-length character string column in a table
definition. When a varying length character string column is defined, the
maximum number of characters that are expected to be stored in that
column must be specified as part of the declaration. Subsequent character
string data values that are stored in the column can be shorter than or
equal to the maximum length specified; if they are longer, they will not be
stored and error is returned.

The amount of storage space needed to store a varying-length character
string value can be determined by using the following equation: (string
length x 1) + 4 = bytes of space required. Thus, if a character string containing
30 characters were stored using a VARCHAR(30) data type, that particular
value would require 34 bytes of storage space. (All character strings using
this data type would have to be less than or equal to 30 characters in
length.)

Variable length long character data
The varying-length long character string data type is also used to store
string data that varies in length. This data type is used to store character
string data that is less than or equal to 32 700 characters long in a table

348 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

that resides in a table space that uses 4K pages. In other words, when the
varying-length long character string is used, the page size/character string
data length restrictions that apply to varying-length character string data
are not applicable.

The term LONG VARCHAR is used to declare a varying-length long
character string column in a table definition. The amount of storage space
needed to store a varying-length character string value can be determined
by using this equation: (string length x 1) + 24 = bytes of space required. The
LONG VARCHAR and LONG VARGRAPHIC data types are deprecated
and might be removed in a future release. When choosing a data type for a
column, use data types such as VARCHAR, VARGRAPHIC, CLOB, or
DBCLOB since these will continue to be supported in future releases and
are recommended for portable applications.

Note: The FOR BIT DATA clause can be used with any character string
data type when declaring a column in a table definition. If this clause is
used, code page conversions will not be performed during data exchange
operations and the data itself will be treated and compared as binary (bit)
data.

Character large objects (CLOBS)
A CLOB (character large object) value can be up to 2 gigabytes (2 147 483
647 bytes) long. A CLOB is used to store large SBCS or mixed (SBCS and
MBCS) character-based data (such as documents written with a single
character set) and, therefore, has an SBCS or mixed code page associated
with it.

Variable length character stored as binary data (Large objects–LOBS and Binary
large objects–BLOBs)

The term large object and the generic acronym LOB refer to the BLOB,
CLOB, or DBCLOB data type. LOB values are subject to restrictions that
apply to LONG VARCHAR values, as described in the section “Variable
length character data”. These restrictions apply even if the length attribute
of the LOB string is 254 bytes or less. This data type is used to store binary
string data that varies in length. It is frequently used to store
nontraditional data such as documents, graphic images, pictures, audio,
and video.

Note: Binary large objects data cannot be manipulated by SQL the same
way that other data can. For example, binary large object values cannot be
sorted.

Unicode data
All data types supported are also supported in a Unicode database. In
particular, graphic string data is supported for a Unicode database, and is
stored in UCS-2 encoding. Every client, including SBCS clients, can work
with graphic string data types in UCS-2 encoding when connected to a
Unicode database.

DATE The DATE data type is used to store a three-part value (year, month, and
day) that designates a valid calendar data. The range for the year part is
0001 to 9999; the range for the month part is 1 to 12; and the range for the
day part is 1 to n (28, 29, 30, or 31) where n is dependent upon the month
part and whether the year part corresponds to a leap year. Externally, the
date data type appears to be a fixed-length character string data type that
has a length of 10. However, internally, the date data type requires much
less storage space–4 bytes of space is required for each value stored,

Chapter 27. Setting up the database environment 349

because date values are stored as packed strings. The term DATE is used
to declare a date column in a table definition.

Like dates, the representation of time varies in different parts of the world.
The format of a time value is determined by the territory code associated
with the database being used. Table 84 shows the time formats that are
available, along with an example of their string representation:

Table 84. Date formats (YYYY = Year, MM = Month, DD = Day)

Format name Abbreviation Date string format

International Standards
Organization

ISO YYYY-MM-DD

IBM USA Standard USA MM/DD/YYYY

IBM European Standard EUR MM/DD/YYYY

Japanese Industrial Standard JIS YYYY-MM-DD

Site specific LOC Based on database’s territory
code

TIME

The TIME data type is used to store a three-part value (hours, minutes,
and seconds) that designates a valid time of day under a 24-hour clock.
The range for the hours part is 0 to 24; the range for the minutes part is 0
to 59; and the range for the seconds part is also 0 to 59. (If the hours part
is set to 24, the minutes and seconds parts must be set to 0.) Externally, the
time data type appears to be a fixed-length character string data type that
has a length of 8. However, like date values, time values are stored as
packed strings–in this case, 3 bytes of space is required for each time value
stored. The term TIME is used to declare a time column in a table
definition.

TIMESTAMP
A TIMESTAMP is a six or seven-part value (year, month, day, hour,
minute, second, and optional fractional seconds) designating a date and
time as defined above, except that the time could also include an
additional part designating a fraction of a second. The number of digits in
the fractional seconds is specified using an attribute in the range from 0 to
12 with a default of 6.

Numeric data
All numbers have a sign and a precision. The precision is the number of
bits or digits excluding the sign. See the data type section in the
description of the CREATE TABLE statement.

XML data
The XML data type is used to define columns of a table that store XML
values, where all stored XML values must be well-formed XML documents.
The introduction of this native XML data type provides the ability to store
well-formed XML documents in their native hierarchical format in the
database alongside other relational data.

Generated columns
A generated column is defined in a table where the stored value is computed using
an expression, rather than being specified through an insert or update operation.

350 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

When creating a table where it is known that certain expressions or predicates will
be used all the time, you can add one or more generated columns to that table. By
using a generated column there is opportunity for performance improvements
when querying the table data.

For example, there are two ways in which the evaluation of expressions can be
costly when performance is important:
1. The evaluation of the expression must be done many times during a query.
2. The computation is complex.

To improve the performance of the query, you can define an additional column
that would contain the results of the expression. Then, when issuing a query that
includes the same expression, the generated column can be used directly; or, the
query rewrite component of the optimizer can replace the expression with the
generated column.

Where queries involve the joining of data from two or more tables, the addition of
a generated column can allow the optimizer a choice of possibly better join
strategies.

Generated columns will be used to improve performance of queries. As a result,
generated columns will likely be added after the table has been created and
populated.

Examples

The following is an example of defining a generated column on the CREATE
TABLE statement:

CREATE TABLE t1 (c1 INT,
c2 DOUBLE,
c3 DOUBLE GENERATED ALWAYS AS (c1 + c2)
c4 GENERATED ALWAYS AS

(CASE WHEN c1 > c2 THEN 1 ELSE NULL END))

After creating this table, indexes can be created using the generated columns. For
example,
CREATE INDEX i1 ON t1(c4)

Queries can take advantage of the generated columns. For example,
SELECT COUNT(*) FROM t1 WHERE c1 > c2

can be written as:
SELECT COUNT(*) FROM t1 WHERE c4 IS NOT NULL

Another example:
SELECT c1 + c2 FROM t1 WHERE (c1 + c2) * c1 > 100

can be written as:
SELECT c3 FROM t1 WHERE c3 * c1 > 100

Tables in partitioned database environments
There are performance advantages to creating a table across several database
partitions in a partitioned database environment. The work associated with the
retrieval of data can be divided among the database partitions.

Chapter 27. Setting up the database environment 351

Before you begin

Before creating a table that will be physically divided or distributed, you need to
consider the following:
v Table spaces can span more than one database partition. The number of database

partitions they span depends on the number of database partitions in a database
partition group.

v Tables can be collocated by being placed in the same table space or by being
placed in another table space that, together with the first table space, is
associated with the same database partition group.

About this task

Creating a table that will be a part of several database partitions is specified when
you are creating the table. There is an additional option when creating a table in a
partitioned database environment: the distribution key. A distribution key is a key
that is part of the definition of a table. It determines the database partition on
which each row of data is stored.

If you do not specify the distribution key explicitly, the following defaults are
used. Ensure that the default distribution key is appropriate.

v If a primary key is specified in the CREATE TABLE statement, the first column
of the primary key is used as the distribution key.

v For a multiple partition database partition group, if there is no primary key, the
first column that is not a long field is used.

v If no columns satisfy the requirements for a default distribution key, the table is
created without one (this is allowed only in single-partition database partition
groups).

You must be careful to select an appropriate distribution key because it cannot be
changed later. Furthermore, any unique indexes (and therefore unique or primary
keys) must be defined as a superset of the distribution key. That is, if a distribution
key is defined, unique keys and primary keys must include all of the same
columns as the distribution key (they might have more columns).

The size of a database partition of a table is the smaller amount of a specific limit
associated with the type of table space and page size used, and the amount of disk
space available. For example, assuming a large DMS table space with a 4 KB page
size, the size of a table is the smaller amount of 8 TB multiplied by the number of
database partitions and the amount of available disk space. See the related links for
the complete list of database manager page size limits.

To create a table in a partitioned database environment using the command line,
enter:

CREATE TABLE name>
(<column_name> <data_type> <null_attribute>)
IN <tagle_space_name>
INDEX IN <index_space_name>
LONG IN <long_space_name>
DISTRIBUTE BY HASH (<column_name>)

Following is an example:
CREATE TABLE MIXREC (MIX_CNTL INTEGER NOT NULL,

MIX_DESC CHAR(20) NOT NULL,
MIX_CHR CHAR(9) NOT NULL,
MIX_INT INTEGER NOT NULL,

352 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

MIX_INTS SMALLINT NOT NULL,
MIX_DEC DECIMAL NOT NULL,
MIX_FLT FLOAT NOT NULL,
MIX_DATE DATE NOT NULL,
MIX_TIME TIME NOT NULL,
MIX_TMSTMP TIMESTAMP NOT NULL)
IN MIXTS12
DISTRIBUTE BY HASH (MIX_INT)

In the preceding example, the table space is MIXTS12 and the distribution key is
MIX_INT. If the distribution key is not specified explicitly, it is MIX_CNTL. (If no
primary key is specified and no distribution key is defined, the distribution key is
the first non-long column in the list.)

A row of a table, and all information about that row, always resides on the same
database partition.

Designing views
A view provides a different way of looking at the data in one or more tables; it is a
named specification of a result table.

The specification is a SELECT statement that is run whenever the view is
referenced in an SQL statement. A view has columns and rows just like a base
table. All views can be used just like tables for data retrieval. Whether a view can
be used in an insert, update, or delete operation depends on its definition.

Views are classified by the operations they allow. They can be:
v Deletable
v Updatable
v Insertable
v Read-only

The view type is established according to its update capabilities. The classification
indicates the kind of SQL operation that is allowed against the view.

Referential and check constraints are treated independently. They do not affect the
view classification.

For example, you might not be able to insert a row into a table due to a referential
constraint. If you create a view using that table, you also cannot insert that row
using the view. However, if the view satisfies all the rules for an insertable view, it
will still be considered an insertable view. This is because the insert restriction is
on the table, not on the view definition.

For more information, see the CREATE VIEW statement.

Indexes
An index is a set of pointers that are logically ordered by the values of one or more
keys. The pointers can refer to rows in a table, blocks in an MDC table, XML data
in an XML storage object, and so on.

Indexes are used to:

Chapter 27. Setting up the database environment 353

v Improve performance. In most cases, access to data is faster with an index.
Although an index cannot be created for a view, an index created for the table
on which a view is based can sometimes improve the performance of operations
on that view.

v Ensure uniqueness. A table with a unique index cannot have rows with identical
keys.

As data is added to a table, it is appended to the bottom (unless other actions have
been carried out on the table or the data being added). There is no inherent order
to the data. When searching for a particular row of data, each row of the table
from first to last must be checked. Indexes are used as a means to access the data
within the table in an order that might otherwise not be available.

Typically, when you search for data in a table, you are looking for rows with
columns that have specific values. A column value in a row of data can be used to
identify the entire row. For example, an employee number would probably
uniquely define a specific individual employee. Or, more than one column might
be needed to identify the row. For example, a combination of customer name and
telephone number. Columns in an index used to identify data rows are known as
keys. A column can be used in more than one key.

An index is ordered by the values within a key. Keys can be unique or non-unique.
Each table should have at least one unique key; but can also have other,
non-unique keys. Each index has exactly one key. For example, you might use the
employee ID number (unique) as the key for one index and the department
number (non-unique) as the key for a different index.

Not all indexes point to rows in a table. MDC block indexes point to extents (or
blocks) of the data. XML indexes for XML data use particular XML pattern
expressions to index paths and values in XML documents stored within a single
column. The data type of that column must be XML. Both MDC block indexes and
XML indexes are system generated indexes.

Example

Table A in Figure 25 on page 355 has an index based on the employee numbers in
the table. This key value provides a pointer to the rows in the table. For example,
employee number 19 points to employee KMP. An index allows efficient access to
rows in a table by creating a path to the data through pointers.

Unique indexes can be created to ensure uniqueness of the index key. An index key
is a column or an ordered collection of columns on which an index is defined.
Using a unique index will ensure that the value of each index key in the indexed
column or columns is unique.

Figure 25 on page 355 shows the relationship between an index and a table.

354 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Figure 26 illustrates the relationships among some database objects. It also shows
that tables, indexes, and long data are stored in table spaces.

Designing indexes
Indexes are typically used to speed up access to a table. However, they can also
serve a logical data design purpose.

For example, a unique index does not allow entry of duplicate values in the
columns, thereby guaranteeing that no two rows of a table are the same. Indexes
can also be created to order the values in a column in ascending or descending
sequence.

Note: When creating indexes, keep in mind that although they can improve read
performance, they will negatively impact write performance. This is because for
every row that the database manager writes to a table, it must also update any
affected indexes. Therefore, you should create indexes only when there is a clear
overall performance advantage.

17

19

19

47

81 81

85

87 87

93

93

47

17

85

ABC

QRS

FCP

MLI

CJP

DJS

KMP

Column

Row

Table AIndex A

Database

Figure 25. Relationship between an index and a table

Instance

System

Database

Database partition group

Table spaces
• Tables
• Indexes
• Long data

Figure 26. Relationships among selected database objects

Chapter 27. Setting up the database environment 355

When creating indexes, you must also take into account the structure of the tables
and the type of queries that are most frequently performed on them. For example,
columns appearing in the WHERE clause of a frequently issued query are good
candidates for indexes. In less frequently run queries, however, the cost that an
index incurs for performance in INSERT and UPDATE statements might outweigh
the benefits.

Similarly, columns that figure in a GROUP BY clause of a frequent query might
benefit from the creation of an index, particularly if the number of values used to
group the rows is small relative to the number of rows being grouped.

When creating indexes, keep in mind that they can be also be compressed. You can
modify the indexes later, by enabling or disabling compression, using the ALTER
INDEX statement.

To remove or delete indexes, you can use the DROP INDEX command. Dropping
indexes has the reverse requirements of inserting indexes; that is, to remove (or
mark as deleted) the index entries.

Guidelines and considerations when designing indexes
v Although the order of the columns making up an index key does not make a

difference to index key creation, it might make a difference to the optimizer
when it is deciding whether or not to use an index. For example, if a query has
an ORDER BY col1,col2 clause, an index created on (col1,col2) could be used,
but an index created on (col2,col1) will be of no help. Similarly, if the query
specified a condition such as where col1 >= 50 and col1 <= 100 or where
col1=74, then an index on (col1) or on (col1,col2) could be helpful, but an
index on (col2,col1) is far less helpful.

Note: Whenever possible, order the columns in an index key from the most
distinct to the least distinct. This provides the best performance.

v Any number of indexes can be defined on a particular table, to a maximum of
32 767, and they can have a beneficial effect on the performance of queries. The
index manager must maintain the indexes during update, delete and insert
operations. Creating a large number of indexes for a table that receives many
updates can slow down processing of requests. Similarly, large index keys can
also slow down processing of requests. Therefore, use indexes only where a clear
advantage for frequent access exists.

v Column data which is not part of the unique index key but which is to be stored
or maintained in the index is called an include column. Include columns can be
specified for unique indexes only. When creating an index with include columns,
only the unique key columns are sorted and considered for uniqueness. The use
of include columns can enable index only access for data retrieval, thus
improving performance.

v If the table being indexed is empty, an index is still created, but no index entries
are made until the table is loaded or rows are inserted. If the table is not empty,
the database manager creates the index entries while processing the CREATE
INDEX statement.

v For a clustering index, the database manager attempts to place new rows for the
table physically close to existing rows with similar key values (as defined by the
index).

v If you want a primary key index to be a clustering index, a primary key should
not be specified on the CREATE TABLE statement. Once a primary key is
created, the associated index cannot be modified. Instead, issue a CREATE

356 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

TABLE without a primary key clause. Then issue a CREATE INDEX statement,
specifying clustering attributes. Finally, use the ALTER TABLE statement to add
a primary key that corresponds to the index just created. This index will be used
as the primary key index.

v If you have a partitioned table, by default, any index you create will be a
partitioned index unless:
– you are creating indexes over XML data
– you are creating a unique index that does not include the partitioning key.

You can also choose to have the index created as a nonpartitioned index.

Partitioned indexes offer benefits when performing roll-in operations with
partitioned tables (in other words, attaching a data partition to another table
using the ATTACH PARTITION clause on the ALTER table statement.) With a
partitioned index, you can avoid the index maintenance that you would
otherwise have to perform with nonpartitioned indexes. When a partitioned
table uses a nonpartitioned index. you must use SET INTEGRITY statement to
perform index maintenance on the newly combined data partitions. Not only is
this time consuming, it also can require a large amount of log space, depending
on the number of rows being rolled in.

v Indexes consume disk space. The amount of disk space varies depending on the
length of the key columns and the number of rows being indexed. The size of
the index increases as more data is inserted into the table. Therefore, consider
the amount of data being indexed when planning the size of the database. Some
of the indexing sizing considerations include:
– Primary and unique key constraints will always create a system-generated

unique index.
– The creation of an MDC table will also create system-generated block indexes.
– XML columns will always cause system-generated indexes to be created.
– It is usually beneficial to create indexes on foreign key constraint columns.
– Whether the index will be compressed or not (using the COMPRESS option).

Note: The maximum number of columns in an index is 64. However, if you are
indexing a typed table, the maximum number of columns in an index is 63. The
maximum length of an index key, including all overhead, is IndexPageSize ÷ 4.
The maximum indexes allowed on a table is 32 767. The maximum length of an
index key must not be greater than the index key length limit for the page size.
For column stored lengths, see the “CREATE TABLE statement”. For the key
length limits, see the “SQL and XQuery limits” topic.

Note:

v During database upgrade, existing indexes will not be compressed. If a table is
enabled for data row compression, new indexes created after the upgrade might
be compressed, unless the COMPRESS NO option is specified on the CREATE
INDEX statement.

Creating indexes
Indexes can be created - among other reasons - to allow queries to run more
efficiently, to order the rows of a table in ascending or descending sequence
according to the values in a column, or to enforce constraints such as uniqueness
on index keys. You can use the CREATE INDEX statement, the DB2 Design
Advisor, or the db2advis Design Advisor command to create the indexes.

Chapter 27. Setting up the database environment 357

About this task

This task assumes that you are creating an index on a nonpartitioned table.

To create an index using the CREATE INDEX statement from the command line,
enter:

CREATE UNIQUE INDEX EMP_IX
ON EMPLOYEE(EMPNO)
INCLUDE(FIRSTNAME, JOB)

The INCLUDE clause, applicable only on unique indexes, specifies additional
columns to be appended to the set of index key columns. Any columns included
with this clause are not used to enforce uniqueness. These included columns can
improve the performance of some queries through index only access. This option
might:
v Eliminate the need to access data pages for more queries
v Eliminate redundant indexes

If SELECT EMPNO, FIRSTNAME, JOB FROM EMPLOYEE is issued to the table on
which this index resides, all of the required data can be retrieved from the index
without reading data pages. This improves performance.

Note: When a row is deleted or updated, the index keys are marked as deleted
and are not physically removed from a page until clean up is done some time after
the deletion or update is committed. These keys are referred to as pseudo-deleted
keys. Such a clean up might be done by a subsequent transaction which is
changing the page where the key is marked deleted. Clean up of pseudo-deleted
keys can be explicitly triggered using the CLEANUP ONLY ALL option of the
REORG INDEXES utility.

Note: On Solaris platforms, patch 122300-11 on Solaris 9 or 125100-07 on Solaris
10 is required to create indexes with RAW devices. Without this patch, the
CREATE INDEX statement will hang if a RAW device is used.

Configuring an instance to be Common Criteria compliant

A Common Criteria compliant DB2 instance must be configured so that:
v Any request made by a DB2 client to a DB2 server is authenticated by the server

before being processed, and
v Communications occur using TCP/IP

The following topic provides the steps required to configure your environment so
that it is Common Criteria compliant.

Configuring the DB2 database manager to be Common
Criteria compliant

Immediately after installing the DB2 server, modify the values of the authentication
and svcename database manager configuration parameters. Changing the values of
these configuration parameters will ensure that your environment conforms to the
Common Criteria requirements.

358 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Before you begin

To update configuration parameter values, you require the SYSADM authority
level.

About this task
1. Update the database manager configuration so that clients must authenticate

themselves at the DB2 server via a user ID and password. Issue the following
command:
db2 update dbm cfg using authentication server

For additional information about authentication types, see the topic
“authentication - Authentication type” on page 1081

Note: CLIENT is not a supported authentication type.
2. Update the database manager configuration to specify the TCP/IP port that

DB2 database manager will use to await communications with remote client
nodes. Issue the following command:
db2 update dbm cfg using svcename port-number

The port number that you specify must be the first of two consecutive ports
that are reserved for use by database manager. For additional information
about the svcename database manager configuration parameter, see the topic
“svcename - TCP/IP service name” on page 1083

3. Stop the database manager. Issue the following command:
db2stop

4. Start the database manager. Issue the following command:
db2start

The updated database manager configuration parameters take effect when database
manager is restarted.

Chapter 27. Setting up the database environment 359

360 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 28. Altering a partitioned database environment

Altering a database partition group
Use the ALTER DATABASE PARTITION GROUP statement to add, or drop,
database partitions in a database partition group. After adding or dropping
database partitions, use the REDISTRIBUTE DATABASE PARTITION GROUP
command to redistribute the current data across the new set of database partitions
in the database partition group.

About this task

Scaling your configuration
This chapter describes how you can manage database capacity, primarily by
adding and dropping database partitions. Other methods of increasing capacity
include adding CPUs and adding memory.

Management of data server capacity
If data server capacity does not meet your present or future needs, you can expand
its capacity by adding disk space and creating additional containers, or by adding
memory. If these simple strategies do not add the capacity you need, also consider
adding processors or physical partitions. When you scale your system by changing
the environment, you should be aware of the impact that such a change can have
on your database procedures such as loading data, or backing up and restoring
databases.

Adding processors

If a single-partition database configuration with a single processor is used
to its maximum capacity, you might either add processors or add logical
partitions. The advantage of adding processors is greater processing power.
In an SMP system, processors share memory and storage system resources.
All of the processors are in one system, so there are no additional overhead
considerations such as communication between systems and coordination
of tasks between systems. Utilities such as load, backup, and restore can
take advantage of the additional processors.

Note: Some operating systems, such as the Solaris operating system, can
dynamically turn processors on- and off-line.

If you add processors, review and modify some database configuration
parameters that determine the number of processors used. The following
database configuration parameters determine the number of processors
used and might need to be updated:
v Default degree (dft_degree)
v Maximum degree of parallelism (max_querydegree)
v Enable intra-partition parallelism (intra_parallel)

You should also evaluate parameters that determine how applications
perform parallel processing.

In an environment where TCP/IP is used for communication, review the
value for the DB2TCPCONNMGRS registry variable.

© Copyright IBM Corp. 1993, 2009 361

Adding additional computers

If you have an existing partitioned database environment, you can increase
processing power and data-storage capacity by adding additional
computers (either single-processor or multiple-processor) and storage
resource to the environment. The memory and storage resources are not
shared among computers. This choice provides the advantage of balancing
data and user access across storage and computers.

After adding the new computers and storage, you would use the START
DATABASE MANAGER command to add new database partition servers
to the new computers. A new database partition will be created and
configured for each database in the instance on each new database
partition server that you add. In most situations, you do not need to restart
the instance after adding the new database partition servers.

Adding database partitions in partitioned database
environments

You can add database partitions to the partitioned database system either when it
is running, or when it is stopped. Because adding a new server can be time
consuming, you may want to do it when the database manager is already running.

Use the ADD DBPARTITIONNUM command to add a database partition to a
system. This command can be invoked in the following ways:
v As an option on START DBM
v With the command-line processor ADD DBPARTITIONNUM command
v With the API function sqleaddn

v With the API function sqlepstart

If your system is stopped, you use START DBM. If it is running, you can use any
of the other choices.

When you use the ADD DBPARTITIONNUM command to add a new database
partition to the system, all existing databases in the instance are expanded to the
new database partition. You can also specify which containers to use for temporary
table spaces for the databases. The containers can be:
v The same as those defined for the catalog partition for each database. (This is

the default.)
v The same as those defined for another database partition.
v Not created at all. You must use the ALTER TABLESPACE statement to add

temporary table space containers to each database before the database can be
used.

Note: Any uncataloged database is not recognized when adding a new database
partition. The uncataloged database will not be present on the new database
partition. An attempt to connect to the database on the new database partition
returns the error message SQL1013N.

You cannot use a database on the new database partition to contain data until one
or more database partition groups are altered to include the new database
partition.

You cannot change from a single-partition database to a multi-partition database
by simply adding a database partition to your system. This is because the

362 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

redistribution of data across database partitions requires a distribution key on each
affected table. The distribution keys are automatically generated when a table is
created in a multi-partition database. In a single-partition database, distribution
keys can be explicitly created with the CREATE TABLE or ALTER TABLE SQL
statements.

Note: If no databases are defined in the system and you are running Enterprise
Server Edition on a UNIX operating system, edit the db2nodes.cfg file to add a
new database partition definition; do not use any of the procedures described, as
they apply only when a database exists.

Windows Considerations: If you are using Enterprise Server Edition on Windows
and have no databases in the instance, use the db2ncrt command to scale the
database system. If, however, you already have databases, use the START DBM
ADD DBPARTITIONNUM command to ensure that a database partition is created
for each existing database when you scale the system. On Windows, you should
never manually edit the node configuration file (db2nodes.cfg), as this can
introduce inconsistencies into the file.

Adding a database partition to a running database system
You can add new database partitions to a partitioned database environment while
it is running and while applications are connected to databases. However, a newly
added database partition does not become available to all databases until the
database manager is shut down and restarted.

About this task

To add a database partition to a running database manager using the command
line:
1. On any existing database partition, run the START DBM command.

On all platforms, specify the new database partition values for
DBPARTITIONNUM, ADD DBPARTITIONNUM, HOSTNAME, PORT, and
NETNAME parameters. On the Windows platform, you also specify the
COMPUTER, USER, and PASSWORD parameters.
You can also specify the source for any temporary table space container
definitions that need to be created with the databases. If you do not provide
table space information, temporary table space container definitions are
retrieved from the catalog partition for each database.
When the START DBM command is complete, the new server is stopped.

2. Stop the database manager on all database partitions by running the STOP
DBM command.
When you stop all the database partitions in the system, the node configuration
file is updated to include the new database partition. The node configuration
file is not updated with the new server information until STOP DBM is
executed. This ensures that the ADD DBPARTITIONNUM command, which is
called when you specify the ADD DBPARTITIONNUM parameter to the START
DBM command, runs on the correct database partition. When the utility ends,
the new server partition is stopped.

3. Start the database manager by running the START DBM command.
The newly added database partition is now started along with the rest of the
system.
When all the database partitions in the system are running, you can run
system-wide activities, such as creating or dropping a database.

Chapter 28. Altering a partitioned database environment 363

Note: You might have to issue the START DBM command twice for all
database partition servers to access the new db2nodes.cfg file.

4. Optional: Alter the database partition group to incorporate the new database
partition. This action could also be an option when redistributing the data to
the new database partition.

5. Optional: Redistribute data to the new database partition. This action is not
really optional if you want to take advantage of the new database partition.
You can also include the alter database partition group option as part of the
redistribution operation. Otherwise, altering the database partition group to
incorporate the new database partition must be done as a separate action before
redistributing the data to the new database partition.

6. Optional: Back up all databases on the new database partition. Although
optional, this would be helpful to have for the new database partition and for
the other database partitions particularly if you have redistributed the data
across both the old and the new database partitions.

Adding a database partition to a stopped database system
(Windows)

You can add new database partitions to a partitioned database system while it is
stopped. The newly added database partition becomes available to all databases
when the database manager is started up again.

Before you begin

You must install the new server before you can create a database partition on it.

About this task

To add a database partition to a stopped partitioned database server using the
command line:
1. Issue STOP DBM to stop all the database partitions.
2. Run the ADD DBPARTITIONNUM command on the new server.

A database partition is created locally for every database that already exists in
the system. The database parameters for the new database partitions are set to
the default value, and each database partition remains empty until you move
data to it. Update the database configuration parameter values to match those
on the other database partitions.

3. Run the START DBM command to start the database system. Note that the
node configuration file (cfg) has already been updated by the database
manager to include the new server during the installation of the new server.

4. Update the configuration file on the new database partition as follows:
a. On any existing database partitions, run the START DBM command.

Specify the new database partition values for DBPARTITIONNUM,
ADDDBPARTITIONNUM, HOSTNAME, PORT, and NETNAME parameters
as well as the COMPUTER, USER, and PASSWORD parameters.
You can also specify the source for any temporary table space container
definitions that need to be created with the databases. If you do not provide
table space information, temporary table space container definitions are
retrieved from the catalog partition for each database.
When the START DBM command is complete, the new server is stopped.

b. Stop the entire database manager by running the STOP DBM command.

364 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

When you stop all the database partitions in the system, the node
configuration file is updated to include the new database partition. The
node configuration file is not updated with the new server information until
STOP DBM is executed. This ensures that the ADD DBPARTITIONNUM
command, which is called when you specify the ADDDBPARTITIONNUM
parameter to the START DBM command, runs on the correct database
partition. When the utility ends, the new server partition is stopped.

5. Start the database manager by running the START DBM command.
The newly added database partition is now started with the rest of the system.
When all the database partitions in the system are running, you can run
system-wide activities, such as creating or dropping a database.

Note: You might have to issue the START DBM command twice for all
database partition servers to access the new db2nodes.cfg file.

6. Optional: Alter the database partition group to incorporate the new database
partition. This action could also be an option when redistributing the data to
the new database partition.

7. Optional: Redistribute data to the new database partition. This action is not
really optional if you want to take advantage of the new database partition.
You can also include the alter database partition group option as part of the
redistribution operation. Otherwise, altering the database partition group to
incorporate the new database partition must be done as a separate action before
redistributing the data to the new database partition.

8. Optional: Back up all databases on the new database partition. Although
optional, this would be helpful to have for the new database partition and for
the other database partitions particularly if you have redistributed the data
across both the old and the new database partitions.

Adding a database partition to a stopped database system
(UNIX)

You can add new database partitions to a partitioned database system while it is
stopped. The newly added database partition becomes available to all databases
when the database manager is started up again.

Before you begin

You must install the new server if it does not exist before you can create a database
partition on it. In addition, your preparation should include the following tasks:
v Making executables accessible (using shared file-system mounts or local copies)
v Synchronizing operating system files with those on existing processors
v Ensuring that the sqllib directory is accessible as a shared file system
v Ensuring that the relevant operating system parameters (such as the maximum

number of processes) are set to the appropriate values

You must also register the host name with the name server or in the .hosts file in
the /etc directory on all database partitions. The host name for the computer must
be registered in .rhosts to run remote commands using rsh or rah.

About this task

To add a database partition to a stopped partitioned database server using the
command line:

Chapter 28. Altering a partitioned database environment 365

1. Issue STOP DBM to stop all the database partitions.
2. Run the ADD DBPARTITIONNUM command on the new server.

A database partition is created locally for every database that already exists in
the system. The database parameters for the new database partitions are set to
the default value, and each database partition remains empty until you move
data to it. Update the database configuration parameter values to match those
on the other database partitions.

3. Run the START DBM command to start the database system. Note that the
node configuration file (cfg) has already been updated by the database
manager to include the new server during the installation of the new server.

4. Update the configuration file on the new database partition as follows:
a. On any existing database partition, run the START DBM command.

Specify the new database partition values for DBPARTITIONNUM, ADD
DBPARTITIONNUM, HOSTNAME, PORT, and NETNAME parameters as
well as the COMPUTER, USER, and PASSWORD parameters.
You can also specify the source for any temporary table space container
definitions that need to be created with the databases. If you do not provide
table space information, temporary table space container definitions are
retrieved from the catalog partition for each database.
When the START DBM command is complete, the new server is stopped.

b. Stop the entire database manager by running the STOP DBM command.
When you stop all the database partitions in the system, the node
configuration file is updated to include the new database partition. The
node configuration file is not updated with the new server information until
STOP DBM is executed. This ensures that the ADD DBPARTITIONNUM
command, which is called when you specify the ADD DBPARTITIONNUM
parameter to the START DBM command, runs on the correct database
partition. When the utility ends, the new server partition is stopped.

5. Start the database manager by running the START DBM command.
The newly added database partition is now started with the rest of the system.
When all the database partitions in the system are running, you can run
system-wide activities, such as creating or dropping a database.

Note: You might have to issue the START DBM command twice for all
database partition servers to access the new db2nodes.cfg file.

6. Optional: Alter the database partition group to incorporate the new database
partition. This action could also be an option when redistributing the data to
the new database partition.

7. Optional: Redistribute data to the new database partition. This action is not
really optional if you want to take advantage of the new database partition.
You can also include the alter database partition group option as part of the
redistribution operation. Otherwise, altering the database partition group to
incorporate the new database partition must be done as a separate action before
redistributing the data to the new database partition.

8. Optional: Back up all databases on the new database partition. Although
optional, this would be helpful to have for the new database partition and for
the other database partitions particularly if you have redistributed the data
across both the old and the new database partitions.

You can also update the configuration file manually, as follows:
1. Edit the db2nodes.cfg file and add the new database partition to it.

366 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

2. Issue the following command to start the new database partition: START DBM
DBPARTITIONNUM partitionnum

Specify the number you are assigning to the new database partition as the
value of partitionnum.

3. If the new server is to be a logical partition (that is, it is not database partition
0), use db2set command to update the DBPARTITIONNUM registry variable.
Specify the number of the database partition you are adding.

4. Run the ADD DBPARTITIONNUM command on the new database partition.
This command creates a database partition locally for every database that
already exists in the system. The database parameters for the new database
partitions are set to the default value, and each database partition remains
empty until you move data to it. Update the database configuration parameter
values to match those on the other database partitions.

5. When the ADD DBPARTITIONNUM command completes, issue the START
DBM command to start the other database partitions in the system.
Do not perform any system-wide activities, such as creating or dropping a
database, until all database partitions are successfully started.

Error recovery when adding database partitions
Adding database partitions does not fail as a result of nonexistent buffer pools
because the database manager creates system buffer pools to provide default
automatic support for all buffer pool page sizes. However, if one of these system
buffer pools is used, performance might be seriously affected because the database
manager created system buffer pools are very small. If a system buffer pool is
used, a message is written to the administration notification log.

System buffer pools are used in database partition addition scenarios in the
following circumstances:
v You add database partitions to a partitioned database environment that has one

or more system temporary table spaces with a page size that is different from
the default of 4 KB. When a database partition is created, only the
IBMDEFAULTDP buffer pool exists, and this buffer pool has a page size of 4 KB.
Consider the following examples:
1. You use the START DBM command to add a database partition to the current

multi-partition database:
START DBM DBPARTITIONNUM 2 ADD DBPARTITIONNUM HOSTNAME newhost PORT 2

2. You use the ADD DBPARTITIONNUM command after you manually update
the db2nodes.cfg file with the new database partition description.

One way to prevent these problems is to specify the WITHOUT TABLESPACES
clause on the ADD DBPARTITIONNUM or the START DBM commands. After
doing this, you need to use the CREATE BUFFERPOOL statement to create the
buffer pools using the appropriate SIZE and PAGESIZE values, and associate the
system temporary table spaces to the buffer pool using the ALTER TABLESPACE
statement.

v You add database partitions to an existing database partition group that has one
or more table spaces with a page size that is different from the default page size,
which is 4 KB. This occurs because the non-default page-size buffer pools
created on the new database partition have not been activated for the table
spaces.

Note: In previous versions, this command used the NODEGROUP keyword
instead of the DATABASE PARTITION GROUP keywords.

Chapter 28. Altering a partitioned database environment 367

Consider the following example:
– You use the ALTER DATABASE PARTITION GROUP statement to add a

database partition to a database partition group, as follows:
START DBM
CONNECT TO mpp1
ALTER DATABASE PARTITION GROUP ng1 ADD DBPARTITIONNUM (2)

One way to prevent this problem is to create buffer pools for each page size
and then to reconnect to the database before issuing the following ALTER
DATABASE PARTITION GROUP statement:

START DBM
CONNECT TO mpp1
CREATE BUFFERPOOL bp1 SIZE 1000 PAGESIZE 8192
CONNECT RESET
CONNECT TO mpp1
ALTER DATABASE PARTITION GROUP ng1 ADD DBPARTITIONNUM (2)

Note: If the database partition group has table spaces with the default page size,
message SQL1759W is returned.

Dropping database partitions
You can drop a database partition that is not being used by any database and free
the computer for other uses.

Before you begin

Verify that the database partition is not in use by issuing the DROP
DBPARTITIONNUM VERIFY command or the sqledrpn API.
v If you receive message SQL6034W (Database partition not used in any database),

you can drop the database partition.
v If you receive message SQL6035W (Database partition in use by database), use

the REDISTRIBUTE DATABASE PARTITION GROUP command to redistribute
the data from the database partition that you are dropping to other database
partitions from the database alias.

Also ensure that all transactions for which this database partition was the
coordinator have all committed or rolled back successfully. This might require
doing crash recovery on other servers. For example, if you drop the coordinator
partition, and another database partition participating in a transaction crashed
before the coordinator partition was dropped, the crashed database partition will
not be able to query the coordinator partition for the outcome of any in-doubt
transactions.

About this task

To drop a database partition using the command line, issue the STOP DBM
command with the DROP DBPARTITIONNUM parameter to drop the database
partition. After the command completes successfully, the system is stopped. Then
start the database manager with the START DBM command.

Redistributing data across database partitions
This chapter provides information about determining when to redistribute data
across database partitions, how to perform the redistribution, and how to recover
from redistribution errors.

368 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Data redistribution
Data redistribution is a database administration operation that can be performed to
primarily move data within a partitioned database environment when partitions
are added or removed so as to balance the usage of storage space, improve
database system performance, or other system requirements.

Data redistribution can be performed using one of the following interfaces:
v REDISTRIBUTE DATABASE PARTITION GROUP command
v ADMIN_CMD system-defined procedure
v STEPWISE REDISTRIBUTE_DBPG system-defined procedure
v sqludrdt API

Data redistribution within a partitioned database is done for one of the following
reasons:
v To rebalance data whenever a new database partition is added to the database

environment or an existing database partition is removed.
v To introduce user specific data distribution across partitions.
v To secure sensitive data by isolating it within a particular partition.

Data redistribution is performed by connecting to a database at the catalog
database partition and beginning a data redistribution operation for a specific
partition group using one of the supported interfaces. Data redistribution relies on
the existence of distribution key definitions for the tables within the partition
group. The distribution key value for a row of data within the table is used to
determine on which partition the row of data will be stored. A distribution key is
generated automatically when a table is created in a multi-partition database
partition group or can be explicitly defined using the CREATE TABLE or ALTER
TABLE statements. By default during data redistribution, for each table within a
specified nodegroup, table data is divided and redistributed evenly among the
database partitions, however other distributions, such as a skewed distribution, can
be achieved by specifying an input distribution map which defines how the data is
to be distributed. Distribution maps can be generated during a data redistribution
operation for future use or can be created manually.

Determining if data redistribution is needed
Determining the current data distribution for a database partition group or table
can be helpful in determining if data redistribution is required and can be used to
create a custom distribution map that can be used to specify how data should be
distributed.

About this task

If a new database partition is added to a database partition group, or an existing
database partition is dropped from a database partition group, then data
redistribution should be performed in order to balance data among all the database
partitions.

If no database partitions have been added or dropped from a database partition
group, then data redistribution is usually only indicated when there is an unequal
distribution of data among the database partitions of the database partition group.
Please note that, in some cases, an unequal distribution of data can be desirable.

Chapter 28. Altering a partitioned database environment 369

For example, if some database partitions reside on a particularly powerful
machine, then it may be beneficial for those database partitions to contain larger
volumes of data than other partitions.

To get information about the current distribution of data among database partitions
in a database partition group, run the following query on the largest table
(alternatively, a representative table) in the database partition group:
SELECT DBPARTITIONNUM(column_name), COUNT(*) FROM table_name

GROUP BY DBPARTITIONNUM(column_name)
ORDER BY DBPARTITIONNUM(column_name) DESC

Here, column_name is the name of the distribution key for table table_name.

If the results of the query show that the distribution of data among database
partitions is not as desired, then run the following query to get the distribution of
data across hash partitions:
SELECT PARTITION(column_name), COUNT(*) FROM table_name

GROUP BY PARTITION(column_name)
ORDER BY PARTITION(column_name) DESC

The output of this query can easily be used to construct the distribution file
needed when the USING DISTFILE option of the REDISTRIBUTE DATABASE
PARTITION GROUP command is specified (please refer to the Command
Reference section for the REDISTRIBUTE DATABASE PARTITION GROUP
command for a description of the format of the distribution file).

When the USING DISTFILE option is specified, the REDISTRIBUTE DATABASE
PARTITION GROUP command will use the information in the file to generate a
new partition map for the database partition group that results in a uniform
distribution of data among database partitions.

If a uniform distribution is not desired, then the user can construct his or her own
target partition map for the redistribution operation, which can be specified using
the USING TARGETMAP option of the REDISTRIBUTE DATABASE PARTITION
GROUP command.

Results

After doing this investigation you will know if your data is uniformly distributed
or not or if data redistribution is required. If the data requires redistribution, you
can plan to do this during a system maintenance opportunity using one of the
supported interfaces.

Redistributing data across database partitions using the
REDISTRIBUTE DATABASE PARTITION GROUP command

Redistributing data can be successfully performed using the REDISTRIBUTE
DATABASE PARTITION GROUP command. This is the recommended interface for
performing data redistribution.

About this task

Restrictions

v See: Chapter 13, “Restrictions on data redistribution,” on page 53

370 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

To redistribute data across database partitions in a database partition group using
the REDISTRIBUTE DATABASE PARTITION GROUP command:
1. Perform a backup of the database. See the BACKUP command.
2. Connect to the database partition that contains the system catalog tables. See

the CONNECT command.
3. Issue the REDISTRIBUTE DATABASE PARTITION GROUP command.

Note: In previous versions of the DB2 product, this command used the
NODEGROUP keyword instead of the DATABASE PARTITION GROUP
keywords.
Specify the following arguments:

database partition group name
You must specify the database partition group within which data is to
be redistributed.

UNIFORM
OPTIONAL: Specifies that data is evenly distributed and is to remain
evenly distributed. UNIFORM is the default when no distribution-type
is specified so it is also valid to omit this option if no other distribution
type has been specified.

USING DISTFILE distfile-name
OPTIONAL: Specifies that a customized distribution is desired and the
file path name of a distribution file that contains data that defines the
desired data skew. The contents of this file is used to generate a target
distribution map.

USING TARGETMAP targetmap-name
OPTIONAL: Specifies that a target data redistribution map should be
used and the name of file that contains the target redistribution map.

For details, refer to the REDISTRIBUTE DATABASE PARTITION GROUP
command-line utility information.

4. Allow the command to run uninterrupted. When the command completes, if
the data redistribution proceeded successfully:
v Take a backup of all table spaces in the database partition group that are in

the BACKUP PENDING state. Alternatively, a full database backup can be
performed. NOTE: table spaces are only put into the BACKUP PENDING
state if the database is recoverable and the NOT ROLLFORWARD
RECOVERABLE option of the REDISTRIBUTE DATABASE PARTITION
GROUP command is used.

v Recreate any replicated materialized query tables dropped before
redistribution.

v If the STATISTICS NONE option of the REDISTRIBUTE DATABASE
PARTITION GROUP command was specified or the NOT ROLLFORWARD
RECOVERABLE option was omitted (both of which mean that the statistics
were not collected during data redistribution) and there are tables in the
database partition group possessing a statistics profile, execute the
RUNSTATS command now to collect data distribution statistics for the SQL
compiler and optimizer to use when it chooses data access plans for queries.

v If the NOT ROLLFORWARD RECOVERABLE option was specified, delete
the control files located in the following paths :
– On Linux and UNIX operating systems: DIAGPATH/redist/db_name/

db_partitiongroup_name/timestamp/

Chapter 28. Altering a partitioned database environment 371

– On Windows operating systems: DIAGPATH\redist\db_name\
db_partitiongroup_name\timestamp\

Results

Data redistribution should have completed successfully and information about the
data redistribution process is available in the redistribution log file. Information
about the distribution map that was used can be found in the DB2 explain tables.

Log space requirements for data redistribution
To successfully perform a data redistribution operation adequate log file space
must be allocated before beginning the data redistribution operation to ensure that
data redistribution is not interrupted.

The quantity of log file space required depends on multiple factors including
which options of the REDISTRIBUTE DATABASE PARTITION GROUP command
are used.

When the REDISTRIBUTE DATABASE PARTITION GROUP command is used and
the NOT ROLLFORWARD RECOVERABLE option is not used, or redistribution is
perfomed from any other supported interface where the data redistribution is not
rollforward recoverable:
v The log must be large enough to accommodate the INSERT and DELETE

operations at each database partition where data is being redistributed. The
heaviest logging requirements will be either on the database partition that will
lose the most data, or on the database partition that will gain the most data.

v If you are moving to a larger number of database partitions, use the ratio of
current database partitions to the new number of database partitions to estimate
the number of INSERT and DELETE operations. For example, consider
redistributing data that is uniformly distributed before redistribution. If you are
moving from four to five database partitions, approximately twenty percent of
the four original database partitions will move to the new database partition.
This means that twenty percent of the DELETE operations will occur on each of
the four original database partitions, and all of the INSERT operations will occur
on the new database partition.

v Consider a non-uniform distribution of the data, such as the case in which the
distribution key contains many NULL values. In this case, all rows that contain a
NULL value in the distribution key move from one database partition under the
old distribution scheme and to a different database partition under the new
distribution scheme. As a result, the amount of log space required on those two
database partitions increases, perhaps well beyond the amount calculated by
assuming uniform distribution.

v The redistribution of each table is a single transaction. For this reason, when you
estimate log space, you multiply the percentage of change, such as twenty
percent, by the size of the largest table. Consider, however, that the largest table
might be uniformly distributed but the second largest table, for example, might
have one or more inflated database partitions. In such a case, consider using the
non-uniformly distributed table instead of the largest one.

Note: After you estimate the maximum amount of data to be inserted and deleted
at a database partition, double that estimate to determine the peak size of the
active log. If this estimate is greater than the active log limit of 1024 GB, then the
data redistribution must be done in steps. Use the ″makepmap″ utility to generate

372 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

a series of target distribution maps, one for each step. You might also set the
logsecond database configuration parameter to -1 to avoid most log space
problems.

When the REDISTRIBUTE DATABASE PARTITION GROUP command is used and
the NOT ROLLFORWARD RECOVERABLE option is used, or redistribution is
performed from any other supported interface where the data redistribution is not
rollforward recoverable:
v Log records are not created when rows are moved as part of data redistribution.

This significantly reduces log file space requirements, however when this option
is used when a rollforward recovery of the database is performed the
redistribute operation log record cannot be rolled forward and any tables
processed as part of the rollforward operation will remain in an UNAVAILABLE
state. Please refer to the Command Reference for a discussion of the
consequences of using the NOT ROLLFORWARD RECOVERABLE option.

v If the database partition group undergoing data redistribution does contain
tables with long-field (LF) or large-object (LOB) data in the tables, the number of
log records generated during data redistribution will be higher, because a log
record is created for each row of data. In this case, expect the log space
requirement per database partition to be roughly one third of the amount of data
moving on that partition (i.e., data being sent, received or both). Regardless of
the presence of LF/LOB data, on receiving partitions there is one type of log
record that is written for which the number of such log records does depend on
the amount of data moving: extent allocation log records. However, the total
space required for these log records is small, and is never more than a tiny
fraction of the total user data that is moving.

Redistribution event log file
During data redistribution event logging is performed. Event information is logged
to an event log file which can later be used to perform error recovery.

When data redistribution is performed, information about each table which is
processed is logged in a single redistribute event log file.

The event log file name is formatted like: database-name.database-partition-
group-name.timestamp.log. The log files are located as follows:
v The homeinst/sqllib/redist directory on Linux® and UNIX® based systems.
v The DB2INSTPROF\instance\redist directory on Windows® operating systems,

where DB2INSTPROF is the value of the DB2INSTPROF registry variable.

The following is an example of an event log file name:
DB819.NG1.2007062419415651.log

This event log file is for a redistribute operation on a database named DB819 with
a database partition group named NG1 that was created on June 24, 2007 at 7:41
PM local time.

The three main uses of the event log file are as follows:
v To provide general information about the redistribute operation, such as the old

and new distribution maps.
v Provide users with information that will help them keep track of which tables

have been redistributed so far by the utility.

Chapter 28. Altering a partitioned database environment 373

v To provide information about each table that has been redistributed, including
the indexing mode being used for the table, an indication of whether the table
was successfully redistributed or not, and the starting and ending times for the
redistribution operation on the table.

For more information about redistribute log file entries and how to recover from
errors during data redistribution, see:

Redistributing database partition groups using the
STEPWISE_REDISTRIBUTE_DBPG procedure

Redistributing data can be performed using the STEPWISE_REDISTRIBUTE_DBPG
system-defined procedure.

Redistributing database partition groups can be done using the
STEPWISE_REDISTRIBUTE_DBPG system-defined procedure and other
system-defined procedures.

The following steps outline what must be done and an example that demonstrates
these steps follows:
1. Analyze the database partition group regarding log space availability and data

skew using ANALYZE_LOG_SPACE procedure - Retrieve log space analysis
information.
The analyze_log_space function returns a result set (an open cursor) of the log
space analysis results, containing fields for each of the database partitions of
the given database partition group.

2. Create a data distribution file for a given table using the GENERATE_DISTFILE
procedure - Generate a data distribution file.
The generate_distfile function generates a data distribution file for the given
table and saves it using the provided file name.

3. Create and report the content of a stepwise redistribution plan for the database
partition group using STEPWISE_REDISTRIBUTE_DBPG procedure - Redistribute
part of a database partition group.

4. Create a data distribution file for a given table using the
GET_SWRD_SETTINGS procedure - Retrieve redistribute information and
SET_SWRD_SETTINGS procedure - Create or change redistribute registry.
The get_swrd_settings function reads the existing redistribute registry records
for the given database partition group.
The set_swrd_settings function creates or makes changes to the redistribute
registry. If the registry does not exist, it creates it and add records into it. If the
registry already exists, it uses overwriteSpec to identify which of the field
values need to be overwritten. The overwriteSpec field enables this function to
take NULL inputs for the fields that do not need to be updated.

5. Redistribute the database partition group according to the plan using
STEPWISE_REDISTRIBUTE_DBPG procedure - Redistribute part of database
partition group.
The stepwise_redistribute_dbpg function redistributes part of the database
partition group according to the input and the setting file.

Usage example

The following is an example of a CLP script on AIX:

374 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Set the database you wish to connect to

dbName="SAMPLE"

Set the target database partition group name

dbpgName="IBMDEFAULTGROUP"

Specify the table name and schema

tbSchema="$USER"
tbName="STAFF"

Specify the name of the data distribution file

distFile="$HOME/sqllib/function/$dbName.IBMDEFAULTGROUP_swrdData.dst"

export DB2INSTANCE=$USER
export DB2COMM=TCPIP

Invoke call statements in clp

db2start
db2 -v "connect to $dbName"

Analysing the effect of adding a database partition without applying the changes - a 'what if'
hypothetical analysis
#
- In the following case, the hypothesis is adding database partition 40, 50 and 60 to the
database partition group, and for database partitions 10,20,30,40,50,60, using a respective
target ratio of 1:2:1:2:1:2.
#
NOTE: in this example only partitions 10, 20 and 30 actually exist in the database
partition group

db2 -v "call sysproc.analyze_log_space('$dbpgName', '$tbSchema', '$tbName', 2, ' ',
'A', '40,50,60', '10,20,30,40,50,60', '1,2,1,2,1,2')"

Analysing the effect of dropping a database partition without applying the changes
#
- In the following case, the hypothesis is dropping database partition 30 from the database
partition group, and redistributing the data in database partitions 10 and 20 using a
respective target ratio of 1 : 1
#
NOTE: In this example all database partitions 10, 20 and 30 should exist in the database
partition group

db2 -v "call sysproc.analyze_log_space('$dbpgName', '$tbSchema', '$tbName', 2, ' ',
'D', '30', '10,20','1,1')"

Generate a data distribution file to be used by the redistribute process

db2 -v "call sysproc.generate_distfile('$tbSchema', '$tbName', '$distFile')"

Write a step wise redistribution plan into a registry
#
Setting the 10th parameter to 1, may cause a currently running step wise redistribute
stored procedure to complete the current step and stop, until this parameter is reset

Chapter 28. Altering a partitioned database environment 375

to 0, and the redistribute stored procedure is called again.

db2 -v "call sysproc.set_swrd_settings('$dbpgName', 255, 0, ' ', '$distFile', 1000,
12, 2, 1, 0, '10,20,30', '50,50,50')"

Report the content of the step wise redistribution plan for the given database
partition group.

db2 -v "call sysproc.get_swrd_settings('$dbpgName', 255, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)"

Redistribute the database partition group "dbpgName" according to the redistribution
plan stored in the registry by set_swrd_settings. It starting with step 3 and
redistributes the data until 2 steps in the redistribution plan are completed.

db2 -v "call sysproc.stepwise_redistribute_dbpg('$dbpgName', 3, 2)"

Using Windows database partition servers
When working to change the characteristics of your configuration in a Windows
environment, the tasks involved are carried out using specific utilities.

Listing database partition servers in an instance
On Windows, use the db2nlist command to obtain a list of database partition
servers that participate in an instance.

About this task

The command is used as follows:
db2nlist

When using this command as shown, the default instance is the current instance
(set by the DB2INSTANCE environment variable). To specify a particular instance,
you can specify the instance using:

db2nlist /i:instName

where instName is the particular instance name you want.

You can also optionally request the status of each database partition server by
using:

db2nlist /s

The status of each database partition server might be one of: starting, running,
stopping, or stopped.

Adding database partition servers to an instance (Windows)
On Windows, use the db2ncrt command to add a database partition server to an
instance.

About this task

Note: Do not use the db2ncrt command if the instance already contains databases.
Instead, use the START DBM ADD DBPARTITIONNUM command. This ensures
that the database is correctly added to the new database partition server. DO NOT
EDIT the db2nodes.cfg file, since changing the file might cause inconsistencies in
the partitioned database environment.

376 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The command has the following required parameters:
db2ncrt /n:partition_number

/u:username,password
/p:logical_port

/n:partition_number
The unique database partition number to identify the database partition
server. The number can be from 1 to 999 in ascending sequence.

/u:username,password
The logon account name and password of the DB2 service.

/p:logical_port
The logical port number used for the database partition server if the logical
port is not zero (0). If not specified, the logical port number assigned is 0.

The logical port parameter is only optional when you create the first database
partition on a computer. If you create a logical database partition, you must specify
this parameter and select a logical port number that is not in use. There are several
restrictions:
v On every computer there must be a database partition server with a logical port

0.
v The port number cannot exceed the port range reserved for FCM

communications in the services file in %SystemRoot%\system32\drivers\etc
directory. For example, if you reserve a range of four ports for the current
instance, then the maximum port number would be 3 (ports 1, 2, and 3; port 0 is
for the default logical database partition). The port range is defined when
db2icrt is used with the /r:base_port, end_port parameter.

There are also several optional parameters:

/g:network_name
Specifies the network name for the database partition server. If you do not
specify this parameter, DB2 uses the first IP address it detects on your
system.

Use this parameter if you have multiple IP addresses on a computer and
you want to specify a specific IP address for the database partition server.
You can enter the network_name parameter using the network name or IP
address.

/h:host_name
The TCP/IP host name that is used by FCM for internal communications if
the host name is not the local host name. This parameter is required if you
add the database partition server on a remote computer.

/i:instance_name
The instance name; the default is the current instance.

/m:computer_name
The computer name of the Windows workstation on which the database
partition resides; the default name is the computer name of the local
computer.

/o:instance_owning_computer
The computer name of the computer that is the instance-owning computer;
the default is the local computer. This parameter is required when the
db2ncrt command is invoked on any computer that is not the
instance-owning computer.

Chapter 28. Altering a partitioned database environment 377

For example, if you want to add a new database partition server to the instance
TESTMPP (so that you are running multiple logical database partitions) on the
instance-owning computer MYMACHIN, and you want this new database
partition to be known as database partition 2 using logical port 1, enter:

db2ncrt /n:2 /p:1 /u:my_id,my_pword /i:TESTMPP
/M:TEST /o:MYMACHIN

Changing database partitions (Windows)
On Windows, use the db2nchg command to change database partitions.

About this task
v Move the database partition from one computer to another.
v Change the TCP/IP host name of the computer.

If you are planning to use multiple network adapters, you must use this
command to specify the TCP/IP address for the ″netname″ field in the
db2nodes.cfg file.

v Use a different logical port number.
v Use a different name for the database partition server.

The command has the following required parameter:
db2nchg /n:node_number

The parameter /n: is the number of the database partition server’s configuration
you want to change. This parameter is required.

Optional parameters include:

/i:instance_name
Specifies the instance that this database partition server participates in. If
you do not specify this parameter, the default is the current instance.

/u:username,password
Changes the logon account name and password for the DB2 database
service. If you do not specify this parameter, the logon account and
password remain the same.

/p:logical_port
Changes the logical port for the database partition server. This parameter
must be specified if you move the database partition server to a different
computer. If you do not specify this parameter, the logical port number
remains unchanged.

/h:host_name
Changes the TCP/IP hostname used by FCM for internal communications.
If you do not specify this parameter, the hostname is unchanged.

/m:computer_name
Moves the database partition server to another computer. The database
partition server can only be moved if there are no existing databases in the
instance.

/g:network_name
Changes the network name for the database partition server.

Use this parameter if you have multiple IP addresses on a computer and
you want to use a specific IP address for the database partition server. You
can enter the network_name using the network name or the IP address.

378 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

For example, to change the logical port assigned to database partition 2, which
participates in the instance TESTMPP, to use the logical port 3, enter the following
command:

db2nchg /n:2 /i:TESTMPP /p:3

The DB2 database manager provides the capability of accessing DB2 database
system registry variables at the instance level on a remote computer. Currently,
DB2 database system registry variables are stored in three different levels:
computer or global level, instance level, and database partition level. The registry
variables stored at the instance level (including the database partition level) can be
redirected to another computer by using DB2REMOTEPREG. When
DB2REMOTEPREG is set, the DB2 database manager will access the DB2 database
system registry variables from the computer pointed to by DB2REMOTEPREG. The
db2set command would appear as:

db2set DB2REMOTEPREG=<remote workstation>

where <remote workstation> is the remote workstation name.

Note:

v Care should be taken in setting this option since all DB2 database instance
profiles and instance listings will be located on the specified remote computer
name.

v If your environment includes users from domains, ensure that the logon account
associated with the DB2 instance service is a domain account. This ensures that
the DB2 instance has the appropriate privileges to enumerate groups at the
domain level.

This feature might be used in combination with setting DBINSTPROF to point to a
remote LAN drive on the same computer that contains the registry.

Dropping a database partition from an instance (Windows)
On Windows, use the db2ndrop command to drop a database partition server from
an instance that has no databases. If you drop a database partition server, its
database partition number can be reused for a new database partition server.

About this task

Exercise caution when you drop database partition servers from an instance. If you
drop the instance-owning database partition server zero (0) from the instance, the
instance will become unusable. If you want to drop the instance, use the db2idrop
command.

Note: Do not use the db2ndrop command if the instance contains databases.
Instead, use the STOP DBM DROP DBPARTITIONNUM command. This ensures
that the database is correctly removed from the database partition. DO NOT EDIT
the db2nodes.cfg file, since changing the file might cause inconsistencies in the
partitioned database environment.

If you want to drop a database partition that is assigned the logical port 0 from a
computer that is running multiple logical database partitions, you must drop all
the other database partitions assigned to the other logical ports before you can
drop the database partition assigned to logical port 0. Each database partition
server must have a database partition assigned to logical port 0.

The command has the following parameters:

Chapter 28. Altering a partitioned database environment 379

db2ndrop /n:dbpartitionnum /i:instance_name

/n:dbpartitionnum
The unique database partition number (dbpartitionnum) to identify the
database partition server. This is a required parameter. The number can be
from zero (0) to 999 in ascending sequence. Recall that database partition
zero (0) represents the instance-owning computer.

/i:instance_name
The instance name (instance_name). This is an optional parameter. If not
given, the default is the current instance (set by the DB2INSTANCE
registry variable).

Multiple logical partitions
When several database partition servers are running on the same computer, the
computer is said to be running multiple logical partitions. This section describes
when to use and how to configure multiple logical partitions.

Setting up multiple logical partitions
Typically, you configure DB2 Enterprise Server Edition to have one database
partition server assigned to each computer. There are several situations, however,
in which it would be advantageous to have several database partition servers
running on the same computer.

This means that the configuration can contain more database partitions than
computers. In these cases, the computer is said to be running multiple logical
partitions or multiple logical nodes if they participate in the same instance. If they
participate in different instances, this computer is not hosting multiple logical
partitions.

With multiple logical partition support, you can choose from three types of
configurations:
v A standard configuration, where each computer has only one database partition

server.
v A multiple logical partition configuration, where a computer has more than one

database partition server.
v A configuration where several logical partitions run on each of several

computers.

Configurations that use multiple logical partitions are useful when the system runs
queries on a computer that has symmetric multiprocessor (SMP) architecture. The
ability to configure multiple logical partitions on a computer is also useful if a
computer fails. If a computer fails (causing the database partition server or servers
on it to fail), you can restart the database partition server (or servers) on another
computer using the START DBM DBPARTITIONNUM command. This ensures that
user data remains available.

Another benefit is that multiple logical partitions can exploit SMP hardware
configurations. In addition, because database partitions are smaller, you can obtain
better performance when performing such tasks as backing up and restoring
database partitions and table spaces, and creating indexes.

Configuring multiple logical partitions
There are two methods of configuring multiple logical partitions.

380 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

About this task
v Configure the logical partitions (database partitions) in the db2nodes.cfg file.

You can then start all the logical and remote partitions with the db2start
command or its associated API.

Note: For Windows, you must use db2ncrt to add a database partition if there
is no database in the system; or, db2start addnode command if there is one or
more databases. Within Windows, the db2nodes.cfg file should never be
manually edited.

v Restart a logical partition on another processor on which other logical partitions
(nodes) are already running. This allows you to override the hostname and port
number specified for the logical partition in db2nodes.cfg.

To configure a logical partition (node) in db2nodes.cfg, you must make an entry in
the file to allocate a logical port number for the database partition. Following is the
syntax you should use:

nodenumber hostname logical-port netname

Note: For Windows, you must use db2ncrt to add a database partition if there is
no database in the system; or, db2start addnode command if there is one or more
databases. Within Windows, the db2nodes.cfg file should never be manually
edited.

The format for the db2nodes.cfg file on Windows is different when compared to
the same file on UNIX. On Windows, the column format is:

nodenumber hostname computername logical_port netname

Use the fully-qualified name for the hostname. The /etc/hosts file also should use
the fully-qualified name. If the fully-qualified name is not used in the
db2nodes.cfg file and in the/etc/hosts file, you might receive error message
SQL30082N RC=3.

You must ensure that you define enough ports in the services file of the etc
directory for FCM communications.

Chapter 28. Altering a partitioned database environment 381

382 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 29. Concurrency, isolation levels, and locking

Concurrency, Isolation Levels, and Locking

Deadlocks
A deadlock is created when two applications lock data that is needed by the other,
resulting in a situation in which neither application can continue executing.

For example, in Figure 27, there are two applications running concurrently:
Application A and Application B. The first transaction for Application A is to
update the first row in Table 1, and the second transaction is to update the second
row in Table 2. Application B updates the second row in Table 2 first, and then the
first row in Table 1. At time T1, Application A locks the first row in Table 1. At the
same time, Application B locks the second row in Table 2. At time T2, Application
A requests a lock on the second row in Table 2. However, at the same time,
Application B tries to lock the first row in Table 1. Because Application A will not
release its lock on the first row in Table 1 until it can complete an update to the
second row in Table 2, and Application B will not release its lock on the second
row in Table 2 until it can complete an update to the first row in Table 1, a
deadlock occurs. The applications wait until one of them releases its lock on the
data.

Because applications do not voluntarily release locks on data that they need, a
deadlock detector process is required to break deadlocks. The deadlock detector
monitors information about agents that are waiting on locks, and awakens at
intervals that are specified by the dlchktime database configuration parameter.

If it finds a deadlock, the deadlock detector arbitrarily selects one deadlocked
process as the victim process to roll back. The victim process is awakened, and
returns SQLCODE -911 (SQLSTATE 40001), with reason code 2, to the calling
application. The database manager rolls back uncommitted transactions from the

x

x

Deadlock concept
Table 1

Table 2

Row 1

Row 1

Row 2

Row 2

T : update row 1 of table 11
T : update row 2 of table 2
T : deadlock

2

3

Application A
T : update row 2 of table 21
T : update row 1 of table 1
T : deadlock

2

3

Application B

...

...

...

...

...

...

Figure 27. Deadlock between applications

© Copyright IBM Corp. 1993, 2009 383

selected process automatically. When the rollback operation is complete, locks that
belonged to the victim process are released, and the other processes involved in
the deadlock can continue.

To ensure good performance, select an appropriate value for dlchktime. An
interval that is too short causes unnecessary overhead, and an interval that is too
long allows deadlocks to linger.

In a partitioned database environment, the value of dlchktime is applied only at
the catalog database partition. If a large number of deadlocks are occurring,
increase the value of dlchktime to account for lock waits and communication
waits.

To avoid deadlocks when applications read data that they intend to subsequently
update:
v Use the FOR UPDATE clause when performing a select operation. This clause

ensures that a U lock is set when a process attempts to read data, and it does
not allow row blocking.

v Use the WITH RR or WITH RS and USE AND KEEP UPDATE LOCKS clauses
in queries. These clauses ensure that a U lock is set when a process attempts to
read data, and they allow row blocking.

In a federated system, the data that is requested by an application might not be
available because of a deadlock at the data source. When this happens, the DB2
server relies on the deadlock handling facilities at the data source. If deadlocks
occur across more than one data source, the DB2 server relies on data source
timeout mechanisms to break the deadlocks.

To log more information about deadlocks, set the value of the diaglevel database
manager configuration parameter to 4. The logged information includes the name
of the locked object, the lock mode, and the application that is holding the lock.
The current dynamic SQL and XQuery statement or static package name might
also be logged.

Concurrency Control and Isolation Levels

Concurrency issues
Because many users access and change data in a relational database, the database
manager must allow users to make these changes while ensuring that data
integrity is preserved.

Concurrency refers to the sharing of resources by multiple interactive users or
application programs at the same time. The database manager controls this access
to prevent undesirable effects, such as:
v Lost updates. Two applications, A and B, might both read the same row and

calculate new values for one of the columns based on the data that these
applications read. If A updates the row and then B also updates the row, A’s
update lost.

v Access to uncommitted data. Application A might update a value, and B might
read that value before it is committed. Then, if A backs out of that update, the
calculations performed by B might be based on invalid data.

v Non-repeatable reads. Application A might read a row before processing other
requests. In the meantime, B modifies or deletes the row and commits the

384 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

change. Later, if A attempts to read the original row again, it sees the modified
row or discovers that the original row has been deleted.

v Phantom reads. Application A might execute a query that reads a set of rows
based on some search criterion. Application B inserts new data or updates
existing data that would satisfy application A’s query. Application A executes its
query again, within the same unit of work, and some additional (“phantom”)
values are returned.

Concurrency is not an issue for global temporary tables, because they are available
only to the application that declares or creates them.

Concurrency control in federated database systems

A federated database system supports applications and users submitting SQL
statements that reference two or more database management systems (DBMSs) in a
single statement. To reference such data sources (each consisting of a DBMS and
data), the DB2 server uses nicknames. Nicknames are aliases for objects in other
DBMSs. In a federated system, the DB2 server relies on the concurrency control
protocols of the database manager that hosts the requested data.

A DB2 federated system provides location transparency for database objects. For
example, if information about tables and views is moved, references to that
information (through nicknames) can be updated without changing the
applications that request this information. When an application accesses data
through nicknames, the DB2 server relies on concurrency control protocols at the
data source to ensure that isolation levels are enforced. Although the DB2 server
tries to match the isolation level that is requested at the data source with a logical
equivalent, results can vary, depending on data source capabilities.

Isolation levels
The isolation level that is associated with an application process determines the
degree to which the data that is being accessed by that process is locked or
isolated from other concurrently executing processes. The isolation level is in effect
for the duration of a unit of work.

The isolation level of an application process therefore specifies:
v The degree to which rows that are read or updated by the application are

available to other concurrently executing application processes
v The degree to which the update activity of other concurrently executing

application processes can affect the application

The isolation level for static SQL statements is specified as an attribute of a
package and applies to the application processes that use that package. The
isolation level is specified during the program preparation process by setting the
ISOLATION bind or precompile option. For dynamic SQL statements, the default
isolation level is the isolation level that was specified for the package preparing the
statement. Use the SET CURRENT ISOLATION statement to specify a different
isolation level for dynamic SQL statements that are issued within a session. For
more information, see “CURRENT ISOLATION special register”. For both static
SQL statements and dynamic SQL statements, the isolation-clause in a
select-statement overrides both the special register (if set) and the bind option value.
For more information, see “Select-statement”.

Chapter 29. Concurrency, isolation levels, and locking 385

Isolation levels are enforced by locks, and the type of lock that is used limits or
prevents access to the data by concurrent application processes. Declared
temporary tables and their rows cannot be locked because they are only accessible
to the application that declared them.

The database manager supports three general categories of locks:

Share (S)
Under an S lock, concurrent application processes are limited to read-only
operations on the data.

Update (U)
Under a U lock, concurrent application processes are limited to read-only
operations on the data, if these processes have not declared that they might
update a row. The database manager assumes that the process currently
looking at a row might update it.

Exclusive (X)
Under an X lock, concurrent application processes are prevented from
accessing the data in any way. This does not apply to application processes
with an isolation level of uncommitted read (UR), which can read but not
modify the data.

Regardless of the isolation level, the database manager places exclusive locks on
every row that is inserted, updated, or deleted. Thus, all isolation levels ensure
that any row that is changed by an application process during a unit of work is
not changed by any other application process until the unit of work is complete.

The database manager supports four isolation levels.
v “Repeatable read (RR)”
v “Read stability (RS)” on page 387
v “Cursor stability (CS)” on page 387
v “Uncommitted read (UR)” on page 388

Note: Some host database servers support the no commit (NC) isolation level. On
other database servers, this isolation level behaves like the uncommitted read
isolation level.

A detailed description of each isolation level follows, in decreasing order of
performance impact, but in increasing order of the care that is required when
accessing or updating data.

Repeatable read (RR)

The repeatable read isolation level locks all the rows that an application references
during a unit of work (UOW). If an application issues a SELECT statement twice
within the same unit of work, the same result is returned each time. Under RR,
lost updates, access to uncommitted data, non-repeatable reads, and phantom
reads are not possible.

Under RR, an application can retrieve and operate on the rows as many times as
necessary until the UOW completes. However, no other application can update,
delete, or insert a row that would affect the result set until the UOW completes.
Applications running under the RR isolation level cannot see the uncommitted

386 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

changes of other applications. This isolation level ensures that all returned data
remains unchanged until the time the application sees the data, even when
temporary tables or row blocking is used.

Every referenced row is locked, not just the rows that are retrieved. For example, if
you scan 10 000 rows and apply predicates to them, locks are held on all 10 000
rows, even if, say, only 10 rows qualify. Another application cannot insert or
update a row that would be added to the list of rows referenced by a query if that
query were to be executed again. This prevents phantom reads.

Because RR can acquire a considerable number of locks, this number might exceed
limits specified by the locklist and maxlocks database configuration parameters.
To avoid lock escalation, the optimizer might elect to acquire a single table-level
lock for an index scan, if it appears that lock escalation is likely. If you do not want
table-level locking, use the read stability isolation level.

While evaluating referential constraints, the DB2 server might occasionally upgrade
the isolation level used on scans of the foreign table to RR, regardless of the
isolation level that was previously set by the user. This results in additional locks
being held until commit time, which increases the likelihood of a deadlock or a
lock timeout. To avoid these problems, create an index that contains only the
foreign key columns, and which the referential integrity scan can use instead.

Read stability (RS)

The read stability isolation level locks only those rows that an application retrieves
during a unit of work. RS ensures that any qualifying row read during a UOW
cannot be changed by other application processes until the UOW completes, and
that any row changed by another application process cannot be read until the
change is committed by that process. Under RS, access to uncommitted data and
non-repeatable reads are not possible. However, phantom reads are possible.

This isolation level ensures that all returned data remains unchanged until the time
the application sees the data, even when temporary tables or row blocking is used.

The RS isolation level provides both a high degree of concurrency and a stable
view of the data. To that end, the optimizer ensures that table-level locks are not
obtained until lock escalation occurs.

The RS isolation level is suitable for an application that:
v Operates in a concurrent environment
v Requires qualifying rows to remain stable for the duration of a unit of work
v Does not issue the same query more than once during a unit of work, or does

not require the same result set when a query is issued more than once during a
unit of work

Cursor stability (CS)

The cursor stability isolation level locks any row being accessed during a
transaction while the cursor is positioned on that row. This lock remains in effect
until the next row is fetched or the transaction terminates. However, if any data in
the row was changed, the lock is held until the change is committed.

Chapter 29. Concurrency, isolation levels, and locking 387

|
|
|
|
|
|

Under this isolation level, no other application can update or delete a row while an
updatable cursor is positioned on that row. Under CS, access to the uncommitted
data of other applications is not possible. However, non-repeatable reads and
phantom reads are possible.

CS is the default isolation level. It is suitable when you want maximum
concurrency and need to see only committed data.

Note: Under the currently committed semantics introduced in Version 9.7, only
committed data is returned, as was the case previously, but now readers do not
wait for updaters to release row locks. Instead, readers return data that is based on
the currently committed version; that is, data prior to the start of the write
operation.

Uncommitted read (UR)

The uncommitted read isolation level allows an application to access the
uncommitted changes of other transactions. Moreover, UR does not prevent
another application from accessing a row that is being read, unless that application
is attempting to alter or drop the table.

Under UR, access to uncommitted data, non-repeatable reads, and phantom reads
are possible. This isolation level is suitable if you run queries against read-only
tables, or if you issue SELECT statements only, and seeing data that has not been
committed by other applications is not a problem.

UR works differently for read-only and updatable cursors.
v Read-only cursors can access most of the uncommitted changes of other

transactions.
v Tables, views, and indexes that are being created or dropped by other

transactions are not available while the transaction is processing. Any other
changes by other transactions can be read before they are committed or rolled
back. Updatable cursors operating under UR behave as though the isolation
level were CS.

If an uncommitted read application uses ambiguous cursors, it might use the CS
isolation level when it runs. The ambiguous cursors can be escalated to CS if the
value of the BLOCKING option on the PREP or BIND command is UNAMBIG (the
default). To prevent this escalation:
v Modify the cursors in the application program to be unambiguous. Change the

SELECT statements to include the FOR READ ONLY clause.
v Let the cursors in the application program remain ambiguous, but precompile

the program or bind it with the BLOCKING ALL and STATICREADONLY YES
options to enable the ambiguous cursors to be treated as read-only when the
program runs.

Comparison of isolation levels

Table 85 summarizes the supported isolation levels.

Table 85. Comparison of isolation levels

UR CS RS RR

Can an application see uncommitted changes
made by other application processes?

Yes No No No

388 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 85. Comparison of isolation levels (continued)

UR CS RS RR

Can an application update uncommitted
changes made by other application processes?

No No No No

Can the re-execution of a statement be affected
by other application processes? 1

Yes Yes Yes No 2

Can updated rows be updated by other
application processes? 3

No No No No

Can updated rows be read by other application
processes that are running at an isolation level
other than UR?

No No No No

Can updated rows be read by other application
processes that are running at the UR isolation
level?

Yes Yes Yes Yes

Can accessed rows be updated by other
application processes? 4

Yes Yes No No

Can accessed rows be read by other application
processes?

Yes Yes Yes Yes

Can the current row be updated or deleted by
other application processes? 5

Yes/No 6 Yes/No 6 No No

Note:

1. An example of the phantom read phenomenon is as follows: Unit of work UW1 reads the
set of n rows that satisfies some search condition. Unit of work UW2 inserts one or more
rows that satisfy the same search condition and then commits. If UW1 subsequently
repeats its read with the same search condition, it sees a different result set: the rows
that were read originally plus the rows that were inserted by UW2.

2. If your label-based access control (LBAC) credentials change between reads, results for
the second read might be different because you have access to different rows.

3. The isolation level offers no protection to the application if the application is both
reading from and writing to a table. For example, an application opens a cursor on a
table and then performs an insert, update, or delete operation on the same table. The
application might see inconsistent data when more rows are fetched from the open
cursor.

4. An example of the non-repeatable read phenomenon is as follows: Unit of work UW1 reads
a row. Unit of work UW2 modifies that row and commits. If UW1 subsequently reads
that row again, it might see a different value.

5. An example of the dirty read phenomenon is as follows: Unit of work UW1 modifies a row.
Unit of work UW2 reads that row before UW1 commits. If UW1 subsequently rolls the
changes back, UW2 has read nonexisting data.

6. Under UR or CS, if the cursor is not updatable, the current row can be updated or
deleted by other application processes in some cases. For example, buffering might cause
the current row at the client to be different from the current row at the server. Moreover,
when using currently committed semantics under CS, a row that is being read might
have uncommitted updates pending. In this case, the currently committed version of the
row is always returned to the application.

Summary of isolation levels

Table 86 on page 390 lists the concurrency issues that are associated with different
isolation levels.

Chapter 29. Concurrency, isolation levels, and locking 389

Table 86. Summary of isolation levels

Isolation level
Access to
uncommitted data

Non-repeatable
reads Phantom reads

Repeatable read (RR) Not possible Not possible Not possible

Read stability (RS) Not possible Not possible Possible

Cursor stability (CS) Not possible Possible Possible

Uncommitted read (UR) Possible Possible Possible

The isolation level affects not only the degree of isolation among applications but
also the performance characteristics of an individual application, because the
processing and memory resources that are required to obtain and free locks vary
with the isolation level. The potential for deadlocks also varies with the isolation
level. Table 87 provides a simple heuristic to help you choose an initial isolation
level for your application.

Table 87. Guidelines for choosing an isolation level

Application type High data stability required
High data stability not
required

Read-write transactions RS CS

Read-only transactions RR or RS UR

Specifying the isolation level
Because the isolation level determines how data is isolated from other processes
while the data is being accessed, you should select an isolation level that balances
the requirements of concurrency and data integrity.

About this task

The isolation level that you specify is in effect for the duration of the unit of work
(UOW). The following heuristics are used to determine which isolation level will
be used when compiling an SQL or XQuery statement:
v For static SQL:

– If an isolation-clause is specified in the statement, the value of that clause is
used.

– If an isolation-clause is not specified in the statement, the isolation level that
was specified for the package when the package was bound to the database is
used.

v For dynamic SQL:
– If an isolation-clause is specified in the statement, the value of that clause is

used.
– If an isolation-clause is not specified in the statement, and a SET CURRENT

ISOLATION statement has been issued within the current session, the value
of the CURRENT ISOLATION special register is used.

– If an isolation-clause is not specified in the statement, and a SET CURRENT
ISOLATION statement has not been issued within the current session, the
isolation level that was specified for the package when the package was
bound to the database is used.

v For static or dynamic XQuery statements, the isolation level of the environment
determines the isolation level that is used when the XQuery expression is
evaluated.

390 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Note: Many commercially-written applications provide a method for choosing the
isolation level. Refer to the application documentation for information.

The isolation level can be specified in several different ways.
v At the statement level:

Note: Isolation levels for XQuery statements cannot be specified at the statement
level.
Use the WITH clause. The WITH clause cannot be used on subqueries. The
WITH UR option applies to read-only operations only. In other cases, the
statement is automatically changed from UR to CS.
This isolation level overrides the isolation level that is specified for the package
in which the statement appears. You can specify an isolation level for the
following SQL statements:
– DECLARE CURSOR
– Searched DELETE
– INSERT
– SELECT
– SELECT INTO
– Searched UPDATE

v For dynamic SQL within the current session:

Use the SET CURRENT ISOLATION statement to set the isolation level for
dynamic SQL issued within a session. Issuing this statement sets the CURRENT
ISOLATION special register to a value that specifies the isolation level for any
dynamic SQL statements that are issued within the current session. Once set, the
CURRENT ISOLATION special register provides the isolation level for any
subsequent dynamic SQL statement that is compiled within the session,
regardless of which package issued the statement. This isolation level is in effect
until the session ends or until the SET CURRENT ISOLATION...RESET
statement is issued.

v At precompile or bind time:

For an application written in a supported compiled language, use the
ISOLATION option of the PREP or BIND commands. You can also use the
sqlaprep or sqlabndx API to specify the isolation level.
– If you create a bind file at precompile time, the isolation level is stored in the

bind file. If you do not specify an isolation level at bind time, the default is
the isolation level that was used during precompilation.

– If you do not specify an isolation level, the default level of cursor stability
(CS) is used.

To determine the isolation level of a package, execute the following query:
select isolation from syscat.packages

where pkgname = 'pkgname'
and pkgschema = 'pkgschema'

where pkgname is the unqualified name of the package and pkgschema is the
schema name of the package. Both of these names must be specified in
uppercase characters.

v When working with JDBC or SQLJ at run time:

Note: JDBC and SQLJ are implemented with CLI on DB2 servers, which means
that the db2cli.ini settings might affect what is written and run using JDBC
and SQLJ.

Chapter 29. Concurrency, isolation levels, and locking 391

To create a package (and specify its isolation level) in SQLJ, use the SQLJ profile
customizer (db2sqljcustomize command).

v From CLI or ODBC at run time:

Use the CHANGE ISOLATION LEVEL command. With DB2 Call-level Interface
(CLI), you can change the isolation level as part of the CLI configuration. At run
time, use the SQLSetConnectAttr function with the
SQL_ATTR_TXN_ISOLATION attribute to set the transaction isolation level for
the current connection referenced by the ConnectionHandle argument. You can
also use the TXNISOLATION keyword in the db2cli.ini file.

v On database servers that support REXX™:

When a database is created, multiple bind files that support the different
isolation levels for SQL in REXX are bound to the database. Other command line
processor (CLP) packages are also bound to the database when a database is
created.
REXX and the CLP connect to a database using the default CS isolation level.
Changing this isolation level does not change the connection state.
To determine the isolation level that is being used by a REXX application, check
the value of the SQLISL predefined REXX variable. The value is updated each
time that the CHANGE ISOLATION LEVEL command executes.

Results

Concurrency Control and Locking

Locks and concurrency control
To provide concurrency control and prevent uncontrolled data access, the database
manager places locks on buffer pools, tables, data partitions, table blocks, or table
rows.

A lock associates a database manager resource with an application, called the lock
owner, to control how other applications access the same resource.

The database manager uses row-level locking or table-level locking, as appropriate,
based on:
v The isolation level specified at precompile time or when an application is bound

to the database. The isolation level can be one of the following:
– Uncommitted read (UR)
– Cursor stability (CS)
– Read stability (RS)
– Repeatable read (RR)

The different isolation levels are used to control access to uncommitted data,
prevent lost updates, allow non-repeatable reads of data, and prevent phantom
reads. To minimize performance impact, use the minimum isolation level that
satisfies your application needs.

v The access plan selected by the optimizer. Table scans, index scans, and other
methods of data access each require different types of access to the data.

v The LOCKSIZE attribute for the table. The LOCKSIZE clause on the ALTER
TABLE statement indicates the granularity of the locks that are used when the
table is accessed. The choices are: ROW for row locks, TABLE for table locks, or
BLOCKINSERT for block locks on multidimensional clustering (MDC) tables
only. When the BLOCKINSERT clause is used on an MDC table, row-level
locking is performed, except during an insert operation, when block-level

392 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

locking is done instead. Use the ALTER TABLE...LOCKSIZE BLOCKINSERT
statement for MDC tables when transactions will be performing large inserts
into disjointed cells. Use the ALTER TABLE...LOCKSIZE TABLE statement for
read-only tables. This reduces the number of locks that are required for database
activity. For partitioned tables, table locks are first acquired and then data
partition locks are acquired, as dictated by the data that will be accessed.

v The amount of memory devoted to locking, which is controlled by the locklist
database configuration parameter. If the lock list fills up, performance can
degrade because of lock escalations and reduced concurrency among shared
objects in the database. If lock escalations occur frequently, increase the value of
locklist, maxlocks, or both. To reduce the number of locks that are held at one
time, ensure that transactions commit frequently.

A buffer pool lock (exclusive) is set whenever a buffer pool is created, altered, or
dropped. You might encounter this type of lock when collecting system monitoring
data. The name of the lock is the identifier (ID) for the buffer pool itself.

In general, row-level locking is used unless one of the following is true:
v The isolation level is uncommitted read
v The isolation level is repeatable read and the access plan requires a scan with no

index range predicates
v The table LOCKSIZE attribute is TABLE
v The lock list fills up, causing lock escalation
v An explicit table lock has been acquired through the LOCK TABLE statement,

which prevents concurrent application processes from changing or using a table

In the case of an MDC table, block-level locking is used instead of row-level
locking when:
v The table LOCKSIZE attribute is BLOCKINSERT
v The isolation level is repeatable read and the access plan involves predicates
v A searched update or delete operation involves predicates on dimension

columns only

The duration of row locking varies with the isolation level being used:
v UR scans: No row locks are held unless row data is changing.
v CS scans: Row locks are generally held only while the cursor is positioned on

the row. Note that in some cases, locks might not be held at all during a CS
scan.

v RS scans: Qualifying row locks are held only for the duration of the transaction.
v RR scans: All row locks are held for the duration of the transaction.

Lock attributes
Database manager locks have several basic attributes.

These attributes include the following:

Mode The type of access allowed for the lock owner, as well as the type of access
allowed for concurrent users of the locked object. It is sometimes referred
to as the state of the lock.

Object
The resource being locked. The only type of object that you can lock
explicitly is a table. The database manager also sets locks on other types of
resources, such as rows and table spaces. Block locks can also be set for

Chapter 29. Concurrency, isolation levels, and locking 393

multidimensional clustering (MDC) tables, and data partition locks can be
set for partitioned tables. The object being locked determines the
granularity of the lock.

Lock count
The length of time during which a lock is held. The isolation level under
which a query runs affects the lock count.

Table 88 lists the lock modes and describes their effects, in order of increasing
control over resources.

Table 88. Lock Mode Summary

Lock Mode
Applicable Object
Type Description

IN (Intent None) Table spaces, blocks,
tables, data partitions

The lock owner can read any data in the object, including
uncommitted data, but cannot update any of it. Other concurrent
applications can read or update the table.

IS (Intent Share) Table spaces, blocks,
tables, data partitions

The lock owner can read data in the locked table, but cannot update
this data. Other applications can read or update the table.

IX (Intent Exclusive) Table spaces, blocks,
tables, data partitions

The lock owner and concurrent applications can read and update
data. Other concurrent applications can both read and update the
table.

NS (Scan Share) Rows The lock owner and all concurrent applications can read, but not
update, the locked row. This lock is acquired on rows of a table,
instead of an S lock, where the isolation level of the application is
either RS or CS.

NW (Next Key Weak
Exclusive)

Rows When a row is inserted into an index, an NW lock is acquired on
the next row. This occurs only if the next row is currently locked by
an RR scan. The lock owner can read but not update the locked row.
This lock mode is similar to an X lock, except that it is also
compatible with NS locks.

S (Share) Rows, blocks, tables,
data partitions

The lock owner and all concurrent applications can read, but not
update, the locked data.

SIX (Share with
Intent Exclusive)

Tables, blocks, data
partitions

The lock owner can read and update data. Other concurrent
applications can read the table.

U (Update) Rows, blocks, tables,
data partitions

The lock owner can update data. Other units of work can read the
data in the locked object, but cannot update it.

X (Exclusive) Rows, blocks, tables,
buffer pools, data
partitions

The lock owner can both read and update data in the locked object.
Only uncommitted read (UR) applications can access the locked
object.

Z (Super Exclusive) Table spaces, tables,
data partitions

This lock is acquired on a table under certain conditions, such as
when the table is altered or dropped, an index on the table is
created or dropped, or for some types of table reorganization. No
other concurrent application can read or update the table.

Lock granularity
If one application holds a lock on a database object, another application might not
be able to access that object. For this reason, row-level locks, which minimize the
amount of data that is locked and therefore inaccessible, are better for maximum
concurrency than block-level, data partition-level, or table-level locks.

However, locks require storage and processing time, so a single table lock
minimizes lock overhead.

394 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The LOCKSIZE clause of the ALTER TABLE statement specifies the granularity of
locks at the row, data partition, block, or table level. Row locks are used by default.
Use of this option in the table definition does not prevent normal lock escalation
from occurring.

The ALTER TABLE statement specifies locks globally, affecting all applications and
users that access that table. Individual applications might use the LOCK TABLE
statement to specify table locks at an application level instead.

A permanent table lock defined by the ALTER TABLE statement might be
preferable to a single-transaction table lock using the LOCK TABLE statement if:
v The table is read-only, and will always need only S locks. Other users can also

obtain S locks on the table.
v The table is usually accessed by read-only applications, but is sometimes

accessed by a single user for brief maintenance, and that user requires an X lock.
While the maintenance program is running, read-only applications are locked
out, but in other circumstances, read-only applications can access the table
concurrently with a minimum of locking overhead.

For a multidimensional clustering (MDC) table, you can specify BLOCKINSERT
with the LOCKSIZE clause in order to use block-level locking during insert
operations only. When BLOCKINSERT is specified, row-level locking is performed
for all other operations, but only minimally for insert operations. That is,
block-level locking is used during the insertion of rows, but row-level locking is
used to lock the next key if repeatable read (RR) scans are encountered in the
record ID (RID) indexes as they are being updated. BLOCKINSERT locking might
be beneficial when:
v There are multiple transactions doing mass insertions into separate cells
v Concurrent insertions into the same cell by multiple transactions is not

occurring, or it is occurring with enough data inserted per cell by each of the
transactions that the user is not concerned that each transaction will insert into
separate blocks

Preventing lock-related performance issues
There are guidelines to help you tune locking behavior for enhanced concurrency
and data integrity.
v Create small units of work with frequent COMMIT statements to promote

concurrent access of data by many users.
Include COMMIT statements when your application is logically consistent; that
is, when the data you have changed is consistent. When a COMMIT statement is
issued, locks are released, except for table locks that are associated with cursors
declared as WITH HOLD.

v Close a WITH HOLD cursor before issuing a COMMIT statement.
In some situations, locks remain after the result set is closed and the transaction
is committed. Closing a WITH HOLD cursor before issuing a COMMIT
statement ensures that locks are released.

v Execute INSERT statements as separate units of work.
In some situations, locks remain after the result set is closed and the transaction
is committed. Executing INSERT statements as separate units of work ensures
that locks are released.

v Specify an appropriate isolation level.
Locks are acquired even if your application simply reads rows. Shared locks are
acquired under the repeatable read, read stability, and cursor stability isolation

Chapter 29. Concurrency, isolation levels, and locking 395

levels in read-only applications. Catalog locks are acquired even in uncommitted
read applications that use dynamic SQL or XQuery statements. It is therefore
important to commit read-only units of work. Under repeatable read and read
stability, all locks are held until a COMMIT statement is issued. This prevents
other processes from updating locked data, unless you close a cursor using the
WITH RELEASE clause.
The database manager ensures that your application does not retrieve
uncommitted data (rows that have been updated by other applications but that
are not yet committed) unless you are using the uncommitted read isolation
level.

v Use the LOCK TABLE statement appropriately.
This statement locks an entire table. Parent and dependent tables of the specified
table are not locked. You must determine whether locking other tables that can
be accessed is necessary to achieve expected results in terms of concurrency and
performance. The lock is not released until the unit of work is committed or
rolled back.
The IN SHARE MODE option prevents concurrent application processes from
executing any but read-only operations on the table. The IN EXCLUSIVE MODE
option prevents concurrent application processes from executing any operations
on the table. EXCLUSIVE MODE does not prevent concurrent application
processes that are running under the uncommitted read (UR) isolation level from
executing read-only operations on the table.

v Use the ALTER TABLE statement.
The ALTER TABLE statement with the LOCKSIZE option is an alternative to the
LOCK TABLE statement. The LOCKSIZE option allows you to specify a lock
granularity of row or table at next access. For MDC tables, it also allows you to
specify a lock granularity of block for insert operations. None of the LOCKSIZE
options prevent normal lock escalation.
Table locks might improve query performance by limiting the number of locks
that need to be acquired. However, concurrency might be reduced, because the
entire table is locked. For MDC tables, block locks might improve the
performance of insert operations by avoiding row locks. Row-level locking is
still performed for all other operations, and is performed on key insertions to
protect repeatable read (RR) scanners.

v Close cursors to release the locks that they hold.
When you close a cursor with the CLOSE statement that includes the WITH
RELEASE clause, the database manager attempts to release all read locks that
have been held for that cursor.
– Table-level read locks are: IS, S, and U
– Row-level read locks are: S, NS, and U
– Block-level read locks are: IS, S, and U
The WITH RELEASE clause has no effect on cursors that are operating under
the CS or UR isolation level. When specified for cursors that are operating under
the RS or RR isolation level, the WITH RELEASE clause negates some of the
guarantees of those isolation levels. Specifically, an RS cursor might experience
the non-repeatable read phenomenon, and an RR cursor might experience either
the non-repeatable read phenomenon or the phantom read phenomenon.
If a cursor that originally operated under RR or RS is reopened after being
closed WITH RELEASE, new read locks are acquired.
In CLI applications, the DB2 CLI connection attribute
SQL_ATTR_CLOSE_BEHAVIOR can be used to achieve the same results as
CLOSE...WITH RELEASE.

396 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v When you change the settings of configuration parameters that affect locking in
a partitioned database environment, ensure that the changes are made at each
database partition.

Correcting lock escalation problems
The database manager can automatically escalate locks from row or block level to
table level.

About this task

For partitioned tables, the database manager can automatically escalate locks from
row or block level to data partition level. The maxlocks database configuration
parameter specifies when lock escalation is to be triggered. The table that acquires
the lock that triggers lock escalation might not be affected. Locks are first escalated
for the table with the most locks, beginning with tables for which large object
(LOB) and long VARCHAR descriptors are locked. Then, locks are escalated for the
table with the next highest number of locks, and so on, until the number of locks
held is decreased to about half of the value specified by maxlocks.

In a well designed database, lock escalation is rare. If lock escalation reduces
concurrency to an unacceptable level (as indicated by the lock_escalation monitor
element or the db.lock_escal_rate health indicator) you should analyze the
problem and decide on the best course of action.

First, ensure that lock escalation information is being recorded. Set the value of the
notifylevel database manager configuration parameter to 3, which is the default, or
to 4. At notifylevel 2, only error SQLCODEs are recorded. When lock escalation
fails at notifylevel 3 or 4, information about the table for which lock escalation
failed is recorded as well. At notifylevel 4, the query is also logged if it is a
currently executing dynamic SQL statement.

Use the following steps to diagnose the cause of unacceptable lock escalations and
to apply a remedy.
1. Obtain information from the administration notification log about all tables

whose locks have been escalated. This log file includes the following
information:
v The number of locks currently held
v The number of locks needed before lock escalation is completed
v The table identifier and table name of each table being escalated
v The number of non-table locks currently held
v The new table-level lock to be acquired as part of the escalation. Usually, an

S or X lock is acquired.
v The internal return code that is associated with the acquisition of the new

table-level lock
2. Use the information in the administration notification log to decide how to

resolve the escalation problem. Consider the following options:
v Increase the number of locks that are allowed globally by increasing the

value of the maxlocks or locklist database configuration parameters, or both.
In a partitioned database system, make this change on all database partitions.
You might choose this method if concurrent access to the table by other
processes is most important. However, the overhead of obtaining row-level
locks can cause more delays to other processes than the time that is saved by
increased concurrency.

Chapter 29. Concurrency, isolation levels, and locking 397

v Adjust the processes that caused the escalation. For these processes, consider
issuing LOCK TABLE statements explicitly.

v Change the degree of isolation. Note that this might lead to decreased
concurrency.

v Increase the frequency of commits to reduce the number of locks that are
held at any given time.

v Consider frequent commits for transactions that require LONG VARCHAR or
large object (LOB) data. Although this kind of data is not retrieved from disk
until the result set is materialized, the descriptor is locked when the data is
first referenced. As a result, many more locks might be held than would be
the case with regular data.

Lock type compatibility
Lock compatibility becomes an issue when one application holds a lock on an
object and another application requests a lock on the same object. When the two
lock modes are compatible, the request for a second lock on the object can be
granted.

If the lock mode of the requested lock is not compatible with the lock that is
already held, the lock request cannot be granted. Instead, the request must wait
until the first application releases its lock, and all other existing incompatible locks
are released.

Table 89 shows which lock types are compatible (indicated by a yes) and which
types are not (indicated by a no). Note that a timeout can occur when a requestor
is waiting for a lock.

Table 89. Lock Type Compatibility

State of Held Resource

State Being
Requested None IN IS NS S IX SIX U X Z NW

None yes yes yes yes yes yes yes yes yes yes yes

IN (Intent None) yes yes yes yes yes yes yes yes yes no yes

IS (Intent Share) yes yes yes yes yes yes yes yes no no no

NS (Scan Share) yes yes yes yes yes no no yes no no yes

S (Share) yes yes yes yes yes no no yes no no no

IX (Intent Exclusive) yes yes yes no no yes no no no no no

SIX (Share with
Intent Exclusive)

yes yes yes no no no no no no no no

U (Update) yes yes yes yes yes no no no no no no

X (Exclusive) yes yes no no no no no no no no no

Z (Super Exclusive) yes no no no no no no no no no no

NW (Next Key Weak
Exclusive)

yes yes no yes no no no no no no no

Lock modes and access plans for standard tables
The type of lock that a standard table obtains depends on the isolation level that is
in effect and on the data access plan that is being used.

398 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The following tables show the types of locks that are obtained for standard tables
under each isolation level for different access plans. Each entry has two parts: the
table lock and the row lock. A hyphen indicates that a particular lock granularity is
not available.

Tables 7-12 show the types of locks that are obtained when the reading of data
pages is deferred to allow the list of rows to be further qualified using multiple
indexes, or sorted for efficient prefetching.
v Table 1. Lock Modes for Table Scans with No Predicates
v Table 2. Lock Modes for Table Scans with Predicates
v Table 3. Lock Modes for RID Index Scans with No Predicates
v Table 4. Lock Modes for RID Index Scans with a Single Qualifying Row
v Table 5. Lock Modes for RID Index Scans with Start and Stop Predicates Only
v Table 6. Lock Modes for RID Index Scans with Index and Other Predicates

(sargs, resids) Only
v Table 7. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with No Predicates
v Table 8. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with No Predicates
v Table 9. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Predicates (sargs, resids)
v Table 10. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Predicates (sargs, resids)
v Table 11. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Start and Stop Predicates Only
v Table 12. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Start and Stop Predicates Only

Note:

1. Block-level locks are also available for multidimensional clustering (MDC)
tables.

2. Lock modes can be changed explicitly with the lock-request-clause of a SELECT
statement.

Table 90. Lock Modes for Table Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/- U/- SIX/X X/- X/-

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

Chapter 29. Concurrency, isolation levels, and locking 399

Table 91. Lock Modes for Table Scans with Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/- U/- SIX/X U/- SIX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IN/- IX/U IX/X IX/U IX/X

Note: Under the UR isolation level, if there are predicates on include columns in the index,
the isolation level is upgraded to CS and the locks are upgraded to an IS table lock or NS
row locks.

Table 92. Lock Modes for RID Index Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/- IX/S IX/X X/- X/-

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

Table 93. Lock Modes for RID Index Scans with a Single Qualifying Row

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/U IX/X IX/X IX/X

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

Table 94. Lock Modes for RID Index Scans with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/S IX/X IX/X IX/X

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

400 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 95. Lock Modes for RID Index Scans with Index and Other Predicates (sargs, resids)
Only

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/S IX/X IX/S IX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IN/- IX/U IX/X IX/U IX/X

Table 96. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan
with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/S X/-

RS IN/- IN/- IN/-

CS IN/- IN/- IN/-

UR IN/- IN/- IN/-

Table 97. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/- IX/S IX/X X/- X/-

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

Table 98. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan
with Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/S IX/S

RS IN/- IN/- IN/-

CS IN/- IN/- IN/-

UR IN/- IN/- IN/-

Chapter 29. Concurrency, isolation levels, and locking 401

Table 99. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/- IX/S IX/X IX/S IX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IN/- IX/U IX/X IX/U IX/X

Table 100. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index
Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/S IX/X

RS IN/- IN/- IN/-

CS IN/- IN/- IN/-

UR IN/- IN/- IN/-

Table 101. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/- IX/S IX/X IX/X IX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IS/- IX/U IX/X IX/U IX/X

Lock modes for MDC table and RID index scans
The type of lock that a multidimensional clustering (MDC) table obtains during a
table or RID index scan depends on the isolation level that is in effect and on the
data access plan that is being used.

The following tables show the types of locks that are obtained for MDC tables
under each isolation level for different access plans. Each entry has three parts: the
table lock, the block lock, and the row lock. A hyphen indicates that a particular
lock granularity is not available.

Tables 9-14 show the types of locks that are obtained for RID index scans when the
reading of data pages is deferred. Under the UR isolation level, if there are
predicates on include columns in the index, the isolation level is upgraded to CS
and the locks are upgraded to an IS table lock, an IS block lock, or NS row locks.
v Table 1. Lock Modes for Table Scans with No Predicates

402 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v Table 2. Lock Modes for Table Scans with Predicates on Dimension Columns
Only

v Table 3. Lock Modes for Table Scans with Other Predicates (sargs, resids)
v Table 4. Lock Modes for RID Index Scans with No Predicates
v Table 5. Lock Modes for RID Index Scans with a Single Qualifying Row
v Table 6. Lock Modes for RID Index Scans with Start and Stop Predicates Only
v Table 7. Lock Modes for RID Index Scans with Index Predicates Only
v Table 8. Lock Modes for RID Index Scans with Other Predicates (sargs, resids)
v Table 9. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with No Predicates
v Table 10. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with No Predicates
v Table 11. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Predicates (sargs, resids)
v Table 12. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Predicates (sargs, resids)
v Table 13. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Start and Stop Predicates Only
v Table 14. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Start and Stop Predicates Only

Note: Lock modes can be changed explicitly with the lock-request-clause of a
SELECT statement.

Table 102. Lock Modes for Table Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or delete

Scan Where current
of

Scan Update or
delete

RR S/-/- U/-/- SIX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/U IX/X/- IX/I/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/X/- IX/X/-

Table 103. Lock Modes for Table Scans with Predicates on Dimension Columns Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or delete

Scan Where current
of

Scan Update or
delete

RR S/-/- U/-/- SIX/IX/X U/-/- SIX/X/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/U/- X/X/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/U/- X/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/U/- X/X/-

Table 104. Lock Modes for Table Scans with Other Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or delete

Scan Where current
of

Scan Update or
delete

RR S/-/- U/-/- SIX/IX/X U/-/- SIX/IX/X

Chapter 29. Concurrency, isolation levels, and locking 403

Table 104. Lock Modes for Table Scans with Other Predicates (sargs, resids) (continued)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or delete

Scan Where current
of

Scan Update or
delete

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 105. Lock Modes for RID Index Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/-/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

CS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

UR IN/IN/- IX/IX/U IX/IX/X X/X/X X/X/X

Table 106. Lock Modes for RID Index Scans with a Single Qualifying Row

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/IS/S IX/IX/U IX/IX/X X/X/X X/X/X

RS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

CS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

UR IN/IN/- IX/IX/U IX/IX/X X/X/X X/X/X

Table 107. Lock Modes for RID Index Scans with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/IS/S IX/IX/S IX/IX/X IX/IX/X IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/X IX/IX/X

Table 108. Lock Modes for RID Index Scans with Index Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/S IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

404 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 108. Lock Modes for RID Index Scans with Index Predicates Only (continued)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 109. Lock Modes for RID Index Scans with Other Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/S IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 110. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index
Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/S IX/IX/S X/-/-

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

Table 111. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/X IX/IX/X

Chapter 29. Concurrency, isolation levels, and locking 405

Table 112. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index
Scan with Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/- IX/IX/S IX/IX/S

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

Table 113. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 114. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index
Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/IS/S IX/IX/S IX/IX/X

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

Table 115. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/- IX/IX/S IX/IX/X IX/IX/X IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IS/-/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

406 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Lock modes for MDC block index scans
The type of lock that a multidimensional clustering (MDC) table obtains during a
block index scan depends on the isolation level that is in effect and on the data
access plan that is being used.

The following tables show the types of locks that are obtained for MDC tables
under each isolation level for different access plans. Each entry has three parts: the
table lock, the block lock, and the row lock. A hyphen indicates that a particular
lock granularity is not available.

Tables 5-12 show the types of locks that are obtained for block index scans when
the reading of data pages is deferred.
v Table 1. Lock Modes for Index Scans with No Predicates
v Table 2. Lock Modes for Index Scans with Predicates on Dimension Columns

Only
v Table 3. Lock Modes for Index Scans with Start and Stop Predicates Only
v Table 4. Lock Modes for Index Scans with Predicates
v Table 5. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with No Predicates
v Table 6. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with No Predicates
v Table 7. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with Predicates on Dimension Columns Only
v Table 8. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with Predicates on Dimension Columns Only
v Table 9. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with Start and Stop Predicates Only
v Table 10. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with Start and Stop Predicates Only
v Table 11. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with Other Predicates (sargs, resids)
v Table 12. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with Other Predicates (sargs, resids)

Note: Lock modes can be changed explicitly with the lock-request-clause of a
SELECT statement.

Table 116. Lock Modes for Index Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/--/-- IX/IX/S IX/IX/X X/--/-- X/--/--

RS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

CS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

UR IN/IN/- IX/IX/U IX/IX/X X/X/-- X/X/--

Chapter 29. Concurrency, isolation levels, and locking 407

Table 117. Lock Modes for Index Scans with Predicates on Dimension Columns Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/-/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/X/- IX/X/-

Table 118. Lock Modes for Index Scans with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/- IX/IX/S IX/IX/S IX/IX/S IX/IX/S

RS IX/IX/S IX/IX/U IX/IX/X IX/IX/- IX/IX/-

CS IX/IX/S IX/IX/U IX/IX/X IX/IX/- IX/IX/-

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/- IX/IX/-

Table 119. Lock Modes for Index Scans with Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 120. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index
Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/-- IX/IX/S X/--/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

408 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 121. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block
Index Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/-- IX/IX/S IX/IX/X X/--/-- X/--/--

RS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

CS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

UR IN/IN/-- IX/IX/U IX/IX/X X/X/-- X/X/--

Table 122. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index
Scan with Predicates on Dimension Columns Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/-- IX/IX/-- IX/S/--

RS IS/IS/NS IX/--/-- IX/--/--

CS IS/IS/NS IX/--/-- IX/--/--

UR IN/IN/-- IX/--/-- IX/--/--

Table 123. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block
Index Scan with Predicates on Dimension Columns Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/-- IX/IX/S IX/IX/X IX/S/-- IX/X/--

RS IS/IS/NS IX/IX/U IX/IX/X IX/U/-- IX/X/--

CS IS/IS/NS IX/IX/U IX/IX/X IX/U/-- IX/X/--

UR IN/IN/-- IX/IX/U IX/IX/X IX/U/-- IX/X/--

Table 124. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index
Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/-- IX/IX/-- IX/X/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

Chapter 29. Concurrency, isolation levels, and locking 409

Table 125. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block
Index Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/-- IX/IX/X IX/X/--

RS IS/IS/NS IN/IN/-- IN/IN/--

CS IS/IS/NS IN/IN/-- IN/IN/--

UR IS/--/-- IN/IN/-- IN/IN/--

Table 126. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index
Scan with Other Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/-- IX/IX/-- IX/IX/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

Table 127. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block
Index Scan with Other Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/-- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/-- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Factors that affect locking
Several factors affect the mode and granularity of database manager locks.

These factors include:
v The type of processing that the application performs
v The data access method
v The values of various configuration parameters

Factors That Affect Locking

Locks and types of application processing
For the purpose of determining lock attributes, application processing can be
classified as one of the following types: read-only, intent to change, change, and
cursor controlled.

410 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v Read-only
This processing type includes all SELECT statements that are intrinsically
read-only, have an explicit FOR READ ONLY clause, or are ambiguous, but the
query compiler assumes that they are read-only because of the BLOCKING
option value that the PREP or BIND command specifies. This type requires only
share locks (IS, NS, or S).

v Intent to change
This processing type includes all SELECT statements that have a FOR UPDATE
clause, a USE AND KEEP UPDATE LOCKS clause, a USE AND KEEP
EXCLUSIVE LOCKS clause, or are ambiguous, but the query compiler assumes
that change is intended. This type uses share and update locks (S, U, or X for
rows; IX, S, U, or X for blocks; and IX, U, or X for tables).

v Change
This processing type includes UPDATE, INSERT, and DELETE statements, but
not UPDATE WHERE CURRENT OF or DELETE WHERE CURRENT OF. This
type requires exclusive locks (IX or X).

v Cursor controlled
This processing type includes UPDATE WHERE CURRENT OF and DELETE
WHERE CURRENT OF. This type requires exclusive locks (IX or X).

A statement that inserts, updates, or deletes data in a target table, based on the
result from a subselect statement, does two types of processing. The rules for
read-only processing determine the locks for the tables that return data in the
subselect statement. The rules for change processing determine the locks for the
target table.

Locks and data-access methods
An access plan is the method that the optimizer selects to retrieve data from a
specific table. The access plan can have a significant effect on lock modes.

If an index scan is used to locate a specific row, the optimizer will usually choose
row-level locking (IS) for the table. For example, if the EMPLOYEE table has an
index on employee number (EMPNO), access through that index might be used to
select information for a single employee:

select * from employee
where empno = '000310'

If an index is not used, the entire table must be scanned in sequence to find the
required rows, and the optimizer will likely choose a single table-level lock (S). For
example, if there is no index on the column SEX, a table scan might be used to
select all male employees, as follows:

select * from employee
where sex = 'M'

Note: Cursor-controlled processing uses the lock mode of the underlying cursor
until the application finds a row to update or delete. For this type of processing,
no matter what the lock mode of the cursor might be, an exclusive lock is always
obtained to perform the update or delete operation.

Locking in range-clustered tables works slightly differently from standard key
locking. When accessing a range of rows in a range-clustered table, all rows in the
range are locked, even when some of those rows are empty. In standard key
locking, only rows with existing data are locked.

Chapter 29. Concurrency, isolation levels, and locking 411

Deferred access to data pages implies that access to a row occurs in two steps,
which results in more complex locking scenarios. The timing of lock acquisition
and the persistence of locks depend on the isolation level. Because the repeatable
read (RR) isolation level retains all locks until the end of a transaction, the locks
acquired in the first step are held, and there is no need to acquire further locks
during the second step. For the read stability (RS) and cursor stability (CS)
isolation levels, locks must be acquired during the second step. To maximize
concurrency, locks are not acquired during the first step, and the reapplication of
all predicates ensures that only qualifying rows are returned.

Next-key locking
During insertion of a key into an index, the row that corresponds to the key that
will follow the new key in the index is locked only if that row is currently locked
by a repeatable read (RR) index scan.

The lock mode that is used for the next-key lock is NW (next key weak exclusive).
This next-key lock is released before key insertion occurs; that is, before a row is
inserted into the table.

Key insertion also occurs when updates to a row result in a change to the value of
the index key for that row, because the original key value is marked deleted and
the new key value is inserted into the index. For updates that affect only the
include columns of an index, the key can be updated in place, and no next-key
locking occurs.

During RR scans, the row that corresponds to the key that follows the end of the
scan range is locked in S mode. If no keys follow the end of the scan range, an
end-of-table lock is acquired to lock the end of the index. In the case of partitioned
indexes for partitioned tables, locks are acquired to lock the end of each index
partition, instead of just one lock for the end of the index. If the key that follows
the end of the scan range is marked deleted, one of the following actions occurs:
v The scan continues to lock the corresponding rows until it finds a key that is not

marked deleted
v The scan locks the corresponding row for that key
v The scan locks the end of the index

Evaluate uncommitted data through lock deferral
To improve concurrency, the database manager in some situations permits the
deferral of row locks for CS or RS isolation scans until a row is known to satisfy
the predicates of a query.

By default, when row-level locking is performed during a table or index scan, the
database manager locks each scanned row whose commitment status is unknown
before determining whether the row satisfies the predicates of the query.

To improve the concurrency of such scans, enable the
DB2_EVALUNCOMMITTED registry variable so that predicate evaluation can
occur on uncommitted data. A row that contains an uncommitted update might
not satisfy the query, but if predicate evaluation is deferred until after the
transaction completes, the row might indeed satisfy the query.

Uncommitted deleted rows are skipped during table scans, and the database
manager skips deleted keys during index scans if the DB2_SKIPDELETED registry
variable is enabled.

412 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The DB2_EVALUNCOMMITTED registry variable setting applies at compile time
for dynamic SQL or XQuery statements, and at bind time for static SQL or XQuery
statements. This means that even if the registry variable is enabled at run time, the
lock avoidance strategy is not deployed unless DB2_EVALUNCOMMITTED was
enabled at bind time. If the registry variable is enabled at bind time but not
enabled at run time, the lock avoidance strategy is still in effect. For static SQL or
XQuery statements, if a package is rebound, the registry variable setting that is in
effect at bind time is the setting that applies. An implicit rebind of static SQL or
XQuery statements will use the current setting of the DB2_EVALUNCOMMITTED
registry variable.

Applicability of evaluate uncommitted for different access plans

Table 128. RID Index Only Access

Predicates Evaluate Uncommitted

None No

SARGable Yes

Table 129. Data Only Access (relational or deferred RID list)

Predicates Evaluate Uncommitted

None No

SARGable Yes

Table 130. RID Index + Data Access

Predicates Evaluate Uncommitted

Index Data Index access Data access

None None No No

None SARGable No No

SARGable None Yes No

SARGable SARGable Yes No

Table 131. Block Index + Data Access

Predicates Evaluate Uncommitted

Index Data Index access Data access

None None No No

None SARGable No Yes

SARGable None Yes No

SARGable SARGable Yes Yes

Example

The following example provides a comparison between the default locking
behavior and the evaluate uncommitted behavior. The table is the ORG table from
the SAMPLE database.
DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION
-------- -------------- ------- ---------- -------------

10 Head Office 160 Corporate New York
15 New England 50 Eastern Boston
20 Mid Atlantic 10 Eastern Washington

Chapter 29. Concurrency, isolation levels, and locking 413

38 South Atlantic 30 Eastern Atlanta
42 Great Lakes 100 Midwest Chicago
51 Plains 140 Midwest Dallas
66 Pacific 270 Western San Francisco
84 Mountain 290 Western Denver

The following transactions occur under the default cursor stability (CS) isolation
level.

Table 132. Transactions against the ORG table under the CS isolation level

SESSION 1 SESSION 2

connect to sample connect to sample

+c update org set deptnumb=5 where
manager=160

select * from org where deptnumb >= 10

The uncommitted UPDATE statement in Session 1 holds an exclusive lock on the
first row in the table, preventing the query in Session 2 from returning a result set,
even though the row being updated in Session 1 does not currently satisfy the
query in Session 2. The CS isolation level specifies that any row that is accessed by
a query must be locked while the cursor is positioned on that row. Session 2
cannot obtain a lock on the first row until Session 1 releases its lock.

Waiting for a lock in Session 2 can be avoided by using the evaluate uncommitted
feature, which first evaluates the predicate and then locks the row. As such, the
query in Session 2 would not attempt to lock the first row in the table, thereby
increasing application concurrency. Note that this also means that predicate
evaluation in Session 2 would occur with respect to the uncommitted value of
deptnumb=5 in Session 1. The query in Session 2 would omit the first row in its
result set, despite the fact that a rollback of the update in Session 1 would satisfy
the query in Session 2.

If the order of operations were reversed, concurrency could still be improved with
the evaluate uncommitted feature. Under default locking behavior, Session 2 would
first acquire a row lock prohibiting the searched UPDATE in Session 1 from
executing, even though the Session 1 UPDATE statement would not change the
row that is locked by the Session 2 query. If the searched UPDATE in Session 1
first attempted to examine rows and then locked them only if they qualified, the
Session 1 query would be non-blocking.

Restrictions
v The DB2_EVALUNCOMMITTED registry variable must be enabled.
v The isolation level must be CS or RS.
v Row-level locking is in effect.
v SARGable evaluation predicates exist.
v Evaluate uncommitted is not applicable to scans on the system catalog tables.
v For multidimensional clustering (MDC) tables, block-level locking can be

deferred for an index scan; however, block-level locking cannot be deferred for
table scans.

v Lock deferral will not occur on a table that is executing an inplace table
reorganization.

v For Iscan-Fetch plans, row-level locking is not deferred to the data access; rather,
the row is locked during index access before moving to the row in the table.

414 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v Deleted rows are unconditionally skipped during table scans, but deleted index
keys are skipped only if the DB2_SKIPDELETED registry variable is enabled.

Option to disregard uncommitted insertions
The DB2_SKIPINSERTED registry variable controls whether or not uncommitted
data insertions can be ignored for statements that use the cursor stability (CS) or
the read stability (RS) isolation level.

Uncommitted insertions are handled in one of two ways, depending on the value
of the DB2_SKIPINSERTED registry variable.
v When the value is ON, the DB2 server ignores uncommitted insertions, which in

many cases can improve concurrency and is the preferred behavior for most
applications. Uncommitted insertions are treated as though they had not yet
occurred.

v When the value is OFF (the default), the DB2 server waits until the insert
operation completes (commits or rolls back) and then processes the data
accordingly. This is appropriate in certain cases. For example:
– Suppose that two applications use a table to pass data between themselves,

with the first application inserting data into the table and the second one
reading it. The data must be processed by the second application in the order
presented, such that if the next row to be read is being inserted by the first
application, the second application must wait until the insert operation
commits.

– An application avoids UPDATE statements by deleting data and then
inserting a new image of the data.

Table locking modes supported by the import utility
The import utility supports two table locking modes: offline, or ALLOW NO
ACCESS, mode; and online, or ALLOW WRITE ACCESS mode.

ALLOW NO ACCESS mode prevents concurrent applications from accessing table
data. ALLOW WRITE ACCESS mode allows concurrent applications both read and
write access to the import target table. If no mode is explicitly specified, import
runs in the default mode, ALLOW NO ACCESS. As well, the import utility is, by
default, bound to the database with isolation level RS (read stability).

Offline import (ALLOW NO ACCESS)

In ALLOW NO ACCESS mode, import acquires an exclusive (X) lock on the target
table is before inserting any rows. Holding a lock on a table has two implications:
v First, if there are other applications holding a table lock or row locks on the

import target table, the import utility waits for those applications to commit or
roll back their changes.

v Second, while import is running, any other application requesting locks waits for
the import operation to complete.

Note: You can specify a locktimeout value, which prevents applications (including
the import utility) from waiting indefinitely for a lock.
By requesting an exclusive lock at the beginning of the operation, import prevents
deadlocks from occurring as a result of other applications working and holding
row locks on the same target table.

Chapter 29. Concurrency, isolation levels, and locking 415

Online import (ALLOW WRITE ACCESS)

In ALLOW WRITE ACCESS mode, the import utility acquires a nonexclusive (IX)
lock on the target table. Holding this lock on the table has the following
implications:
v If there are other applications holding an incompatible table lock, the import

utility does not start inserting data until all of these applications commit or roll
back their changes.

v While import is running, any other application requesting an incompatible table
lock waits until the import commits or rolls back the current transaction. Note
that import’s table lock does not persist across a transaction boundary. As a
result, online import has to request and potentially wait for a table lock after
every commit.

v If there are other applications holding an incompatible row lock, the import
utility stops inserting data until all of these applications commit or roll back
their changes.

v While import is running, any other application requesting an incompatible row
lock waits until the import operation commits or rolls back the current
transaction.

To preserve the online properties, and to reduce the chance of a deadlock, an
ALLOW WRITE ACCESS import periodically commits the current transaction and
releases all row locks before escalating to an exclusive table lock. If you have not
explicitly set a commit frequency, import performs commits as if COMMITCOUNT
AUTOMATIC has been specified. No commits are performed if COMMITCOUNT
is set to 0.

ALLOW WRITE ACCESS mode is not compatible with the following:
v Imports in REPLACE, CREATE, or REPLACE_CREATE mode
v Imports with buffered inserts
v Imports into a target view
v Imports into a hierarchy table
v Imports into a table with its lock granularity is set at the table level (set by using

the LOCKSIZE parameter of the ALTER TABLE statement)

416 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 30. DB2 commands

Command Line Processor (CLP)

db2 - Command line processor invocation

The db2 command starts the command line processor (CLP). The CLP is used to
execute database utilities, SQL statements and online help. It offers a variety of
command options, and can be started in:
v Interactive input mode, characterized by the db2 => input prompt
v Command mode, where each command must be prefixed by db2

v Batch mode, which uses the -f file input option.

On Windows operating systems, db2cmd opens the CLP-enabled DB2 window, and
initializes the DB2 command line environment. Issuing this command is equivalent
to clicking on the DB2 Command Window icon.

QUIT stops the command line processor. TERMINATE also stops the command
line processor, but removes the associated back-end process and frees any memory
that is being used. It is recommended that a TERMINATE be issued prior to every
STOP DATABASE MANAGER (db2stop) command. It might also be necessary for
a TERMINATE to be issued after database configuration parameters have been
changed, in order for these changes to take effect. Existing connections should be
reset before terminating the CLP.

The shell command (!), allows operating system commands to be executed from
the interactive or the batch mode on UNIX based systems, and on Windows
operating systems (!ls on UNIX, and !dir on Windows operating systems, for
example).

Command Syntax

�� db2

�

option-flag db2-command
sql-statement
?

phrase
message
sqlstate
class-code

-- comment

��

option-flag
Specifies a CLP option flag.

db2-command
Specifies a DB2 command.

sql-statement
Specifies an SQL statement.

© Copyright IBM Corp. 1993, 2009 417

? Requests CLP general help.

? phrase
Requests the help text associated with a specified command or topic. If the
database manager cannot find the requested information, it displays the
general help screen.

? options requests a description and the current settings of the CLP
options. ? help requests information about reading the online help syntax
diagrams.

? message
Requests help for a message specified by a valid SQLCODE (? sql10007n,
for example).

? sqlstate
Requests help for a message specified by a valid SQLSTATE.

? class-code
Requests help for a message specified by a valid class-code.

-- comment
Input that begins with the comment characters -- is treated as a comment
by the command line processor.

In each case, a blank space must separate the question mark (?) from the variable
name.

Command line processor options

The CLP command options can be specified by setting the command line processor
DB2OPTIONS environment variable (which must be in uppercase), or with
command line flags.

Users can set options for an entire session using DB2OPTIONS.

View the current settings for the option flags and the value of DB2OPTIONS using
LIST COMMAND OPTIONS. Change an option setting from the interactive input
mode or a command file using UPDATE COMMAND OPTIONS.

The command line processor sets options in the following order:
1. Sets up default options.
2. Reads DB2OPTIONS to override the defaults.
3. Reads the command line to override DB2OPTIONS.
4. Accepts input from UPDATE COMMAND OPTIONS as a final interactive

override.

Table 133 on page 419 summarizes the CLP option flags. These options can be
specified in any sequence and combination. To turn an option on, prefix the
corresponding option letter with a minus sign (-). To turn an option off, either
prefix the option letter with a minus sign and follow the option letter with another
minus sign, or prefix the option letter with a plus sign (+). For example, -c turns
the auto-commit option on, and either -c- or +c turns it off. These option letters
are not case sensitive, that is, -a and -A are equivalent.

418 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 133. CLP Command Options

Option Flag Description
Default
Setting

-a This option tells the command line processor to display
SQLCA data.

OFF

-c This option tells the command line processor to
automatically commit SQL statements.

ON

-d This option tells the command line processor to retrieve
and display XML declarations of XML data.

OFF

-e{c|s} This option tells the command line processor to display
SQLCODE or SQLSTATE. These options are mutually
exclusive.

OFF

-f filename This option tells the command line processor to read
command input from a file instead of from standard input.

OFF

-i This option tells the command line processor to ‘pretty
print’ the XML data with proper indentation. This option
will only affect the result set of XQuery statements.

OFF

-l filename This option tells the command line processor to log
commands in a history file.

OFF

-m This option tells the command line processor to print the
number of rows affected for INSERT/DELETE/UPDATE/MERGE.

OFF

-n Removes the new line character within a single delimited
token. If this option is not specified, the new line character
is replaced with a space. This option must be used with
the -t option.

OFF

-o This option tells the command line processor to display
output data and messages to standard output.

ON

-p This option tells the command line processor to display a
command line processor prompt when in interactive input
mode.

ON

-q This option tells the command line processor to preserve
whitespaces and linefeeds in strings delimited with single
or double quotation marks. When option q is ON, option n
is ignored.

OFF

-r filename This option tells the command line processor to write the
report generated by a command to a file.

OFF

-s This option tells the command line processor to stop
execution if errors occur while executing commands in a
batch file or in interactive mode.

OFF

-t This option tells the command line processor to use a
semicolon (;) as the statement termination character.

OFF

-tdx or -tdxx This option tells the command line processor to define and
to use x or xx as the statement termination character or
characters (1 or 2 characters in length).

OFF

-v This option tells the command line processor to echo
command text to standard output.

OFF

-w This option tells the command line processor to display
FETCH/SELECT warning messages.

ON

Chapter 30. DB2 commands 419

Table 133. CLP Command Options (continued)

Option Flag Description
Default
Setting

-x This option tells the command line processor to return
data without any headers, including column names. This
flag will not affect all commands. It applies to SQL
statements and some commands that are based on SQL
statements such as LIST TABLES.

OFF

-z filename This option tells the command line processor to redirect all
output to a file. It is similar to the -r option, but includes
any messages or error codes with the output.

OFF

Example

The AIX command:
export DB2OPTIONS='+a -c +ec -o -p'

sets the following default settings for the session:
Display SQLCA - off
Auto Commit - on
Display SQLCODE - off
Display Output - on
Display Prompt - on

The following is a detailed description of these options:

Show SQLCA Data Option (-a):
Displays SQLCA data to standard output after executing a DB2 command
or an SQL statement. The SQLCA data is displayed instead of an error or
success message.

The default setting for this command option is OFF (+a or -a-).

The -o and the -r options affect the -a option; see the option descriptions
for details.

Auto-commit Option (-c):
This option specifies whether each command or statement is to be treated
independently. If set ON (-c), each command or statement is automatically
committed or rolled back. If the command or statement is successful, it and
all successful commands and statements that were issued before it with
autocommit OFF (+c or -c-) are committed. If, however, the command or
statement fails, it and all successful commands and statements that were
issued before it with autocommit OFF are rolled back. If set OFF (+c or -c-),
COMMIT or ROLLBACK must be issued explicitly, or one of these actions will
occur when the next command with autocommit ON (-c) is issued.

The default setting for this command option is ON.

The auto-commit option does not affect any other command line processor
option.

Example: Consider the following scenario:
1. db2 create database test

2. db2 connect to test

3. db2 +c "create table a (c1 int)"

4. db2 select c2 from a

420 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The SQL statement in step 4 fails because there is no column named C2 in
table A. Since that statement was issued with auto-commit ON (default), it
rolls back not only the statement in step 4, but also the one in step 3,
because the latter was issued with auto-commit OFF. The command:

db2 list tables

then returns an empty list.

XML Declaration Option (-d):

The -d option tells the command line processor whether to retrieve and
display XML declarations of XML data.

If set ON (-d), the XML declarations will be retrieved and displayed. If set
OFF (+d or -d-), the XML declarations will not be retrieved and displayed.
The default setting for this command option is OFF.

The XML declaration option does not affect any other command line
processor options.

Display SQLCODE/SQLSTATE Option (-e):
The -e{c|s} option tells the command line processor to display the
SQLCODE (-ec) or the SQLSTATE (-es) to standard output. Options -ec
and -es are not valid in CLP interactive mode.

The default setting for this command option is OFF (+e or -e-).

The -o and the -r options affect the -e option; see the option descriptions
for details.

The display SQLCODE/SQLSTATE option does not affect any other
command line processor option.

Example: To retrieve SQLCODE from the command line processor running
on AIX, enter:

sqlcode=`db2 -ec +o db2–command`

Read from Input File Option (-f):
The -f filename option tells the command line processor to read input from
a specified file, instead of from standard input. Filename is an absolute or
relative file name which can include the directory path to the file. If the
directory path is not specified, the current directory is used.

When the CLP is called with a file input option, it will automatically set
the CLIENT APPLNAME special register to CLP filename.

When other options are combined with option -f, option -f must be
specified last. For example:

db2 -tvf filename

This option cannot be changed from within the interactive mode.

The default setting for this command option is OFF (+f or -f-).

Commands are processed until the QUIT command or TERMINATE
command is issued, or an end-of-file is encountered.

If both this option and a database command are specified, the command
line processor does not process any commands, and an error message is
returned.

Chapter 30. DB2 commands 421

Input file lines which begin with the comment characters -- are treated as
comments by the command line processor. Comment characters must be
the first non-blank characters on a line.

Input file lines which begin with (= are treated as the beginning of a
comment block. Lines which end with =) mark the end of a comment
block. The block of input lines that begins at (= and ends at =) is treated as
a continuous comment by the command line processor. Spaces before (=
and after =) are allowed. Comments may be nested, and may be used
nested in statements. The command termination character (;) cannot be
used after =).

If the -f filename option is specified, the -p option is ignored.

The read from input file option does not affect any other command line
processor option.

Pretty Print Option (-i):

The -i option tells the command line processor to ‘pretty print’ the XML
data with proper indentation. This option will only affect the result set of
XQuery statements.

The default setting for this command option is OFF (+i or -i-).

The pretty print option does not affect any other command line processor
options.

Log Commands in History File Option (-l):
The -l filename option tells the command line processor to log commands
to a specified file. This history file contains records of the commands
executed and their completion status. Filename is an absolute or relative file
name which can include the directory path to the file. If the directory path
is not specified, the current directory is used. If the specified file or default
file already exists, the new log entry is appended to that file.

When other options are combined with option -l, option -l must be
specified last. For example:

db2 -tvl filename

The default setting for this command option is OFF (+l or -l-).

The log commands in history file option does not affect any other
command line processor option.

Display Number of Rows Affected Option (-m):

The -m option tells the command line processor whether or not to print the
number of rows affected for INSERT, DELETE, UPDATE, or MERGE.

If set ON (-m), the number of rows affected will be displayed for the
statement of INSERT/DELETE/UPDATE/MERGE. If set OFF (+m or -m-),
the number of rows affected will not be displayed. For other statements,
this option will be ignored. The default setting for this command option is
OFF.

The -o and the -r options affect the -m option; see the option descriptions
for details.

Remove New Line Character Option (-n):
Removes the new line character within a single delimited token. If this
option is not specified, the new line character is replaced with a space.
This option cannot be changed from within the interactive mode.

422 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The default setting for this command option is OFF (+n or -n-).

This option must be used with the -t option; see the option description for
details.

Display Output Option (-o):
The -o option tells the command line processor to send output data and
messages to standard output.

The default setting for this command option is ON.

The interactive mode start-up information is not affected by this option.
Output data consists of report output from the execution of the
user-specified command, and SQLCA data (if requested).

The following options might be affected by the +o option:
v -r filename: Interactive mode start-up information is not saved.
v -e: SQLCODE or SQLSTATE is displayed on standard output even if +o

is specified.
v -a: No effect if +o is specified. If -a, +o and -rfilename are specified,

SQLCA information is written to a file.

If both -o and -e options are specified, the data and either the SQLCODE
or the SQLSTATE are displayed on the screen.

If both -o and -v options are specified, the data is displayed, and the text
of each command issued is echoed to the screen.

The display output option does not affect any other command line
processor option.

Display DB2 Interactive Prompt Option (-p):
The -p option tells the command line processor to display the command
line processor prompt when the user is in interactive mode.

The default setting for this command option is ON.

Turning the prompt off is useful when commands are being piped to
thecommand line processor . For example, a file containing CLP commands
could be executed by issuing:

db2 +p < myfile.clp

The -p option is ignored if the -f filename option is specified.

The display DB2 interactive prompt option does not affect any other
command line processor option.

Preserve Whitespaces and Linefeeds Option (-q):

The -q option tells the command line processor to preserve whitespaces
and linefeeds in strings delimited with single or double quotation marks.

The default setting for this command option is OFF (+q or -q-).

If option -q is ON, option -n is ignored.

Save to Report File Option (-r):
The -r filename option causes any output data generated by a command to
be written to a specified file, and is useful for capturing a report that
would otherwise scroll off the screen. Messages or error codes are not
written to the file. Filename is an absolute or relative file name which can
include the directory path to the file. If the directory path is not specified,
the current directory is used. New report entries are appended to the file.

The default setting for this command option is OFF (+r or -r-).

Chapter 30. DB2 commands 423

If the -a option is specified, SQLCA data is written to the file.

The -r option does not affect the -e option. If the -e option is specified,
SQLCODE or SQLSTATE is written to standard output, not to a file.

If -r filename is set in DB2OPTIONS, the user can set the +r (or -r-) option
from the command line to prevent output data for a particular command
invocation from being written to the file.

The save to report file option does not affect any other command line
processor option.

Stop Execution on Command Error Option (-s):
When commands are issued in interactive mode, or from an input file, and
syntax or command errors occur, the -s option causes the command line
processor to stop execution and to write error messages to standard
output.

The default setting for this command option is OFF (+s or -s-). This setting
causes the command line processor to display error messages, continue
execution of the remaining commands, and to stop execution only if a
system error occurs (return code 8).

The following table summarizes this behavior:

Table 134. CLP Return Codes and Command Execution

Return Code -s Option Set +s Option Set

0 (success) execution continues execution continues

1 (0 rows selected) execution continues execution continues

2 (warning) execution continues execution continues

4 (DB2 or SQL error) execution stops execution continues

8 (System error) execution stops execution stops

Statement Termination Character Options (-t and -tdx or -tdxx):
The -t option tells the command line processor to use a semicolon (;) as
the statement termination character, and disables the backslash (\) line
continuation character. This option cannot be changed from within the
interactive mode.

The default setting for this command option is OFF (+t or -t-).

Note: If you use the CLP to issue XQuery statements, it is best to choose a
termination character other than the semicolon. This ensures that
statements or queries that use namespace declarations are not
misinterpreted, since namespace declarations are also terminated by a
semicolon.

To define termination characters 1 or 2 characters in length, use -td
followed by the chosen character or characters. For example, -td%% sets %%
as the statement termination characters. Alternatively, use the --#SET
TERMINATOR directive in an input file to set the statement termination
characters. For example:
db2 -td%% -f file1.txt

or
db2 -f file2.txt

where file2.txt contains the following as the first statement in the file:

424 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

--#SET TERMINATOR %%

The default setting for this command option is OFF.

The termination character or characters cannot be used to concatenate
multiple statements from the command line, since checks for a termination
symbol are performed on only the last one or two non-blank characters of
each input line.

The statement termination character options do not affect any
othercommand line processor option.

Verbose Output Option (-v):
The -v option causes the command line processor to echo (to standard
output) the command text entered by the user prior to displaying the
output, and any messages from that command. ECHO is exempt from this
option.

The default setting for this command option is OFF (+v or -v-).

The -v option has no effect if +o (or -o-) is specified.

The verbose output option does not affect any other command line
processor option.

Show Warning Messages Option (-w):
The -w option instructs the command line processor on whether or not to
display warning messages that may occur during a query
(FETCH/SELECT). Warnings can occur during various stages of the query
execution which may result in the messages being displayed before, during
or after the data is returned. To ensure the data returned does not contain
warning message text this flag can be used.

The default setting for this command option is ON.

Suppress Printing of Column Headings Option (-x):
The -x option tells the command line processor to return data without any
headers, including column names. This flag will not affect all commands. It
applies to SQL statements and some commands that are based on SQL
statements such as LIST TABLES.

The default setting for this command option is OFF.

Save all Output to File Option (-z):
The -z filename option causes all output generated by a command to be
written to a specified file, and is useful for capturing a report that would
otherwise scroll off the screen. It is similar to the -r option; in this case,
however, messages, error codes, and other informational output are also
written to the file. Filename is an absolute or relative file name which can
include the directory path to the file. If the directory path is not specified,
the current directory is used. New report entries are appended to the file.

The default setting for this command option is OFF (+z or -z-).

If the -a option is specified, SQLCA data is written to the file.

The -z option does not affect the -e option. If the -e option is specified,
SQLCODE or SQLSTATE is written to standard output, not to a file.

If -z filename is set in DB2OPTIONS, the user can set the +z (or -z-) option
from the command line to prevent output data for a particular command
invocation from being written to the file.

The save all output to file option does not affect any other command line
processor option.

Chapter 30. DB2 commands 425

Command line processor return codes

When the command line processor finishes processing a command or an SQL
statement, it returns a return (or exit) code. These codes are transparent to users
executing CLP functions from the command line, but they can be retrieved when
those functions are executed from a shell script.

For example, the following Bourne shell script executes the GET DATABASE
MANAGER CONFIGURATION command, then inspects the CLP return code:

db2 get database manager configuration
if ["$?" = "0"]
then echo "OK!"
fi

The return code can be one of the following:

Code Description

0 DB2 command or SQL statement executed successfully

1 SELECT or FETCH statement returned no rows

2 DB2 command or SQL statement warning

4 DB2 command or SQL statement error

8 Command line processor system error

The command line processor does not provide a return code while a user is
executing statements from interactive mode, or while input is being read from a
file (using the -f option).

A return code is available only after the user quits interactive mode, or when
processing of an input file ends. In these cases, the return code is the logical OR of
the distinct codes returned from the individual commands or statements executed
to that point.

For example, if a user in interactive mode issues commands resulting in return
codes of 0, 1, and 2, a return code of 3 will be returned after the user quits
interactive mode. The individual codes 0, 1, and 2 are not returned. Return code 3
tells the user that during interactive mode processing, one or more commands
returned a 1, and one or more commands returned a 2.

A return code of 4 results from a negative SQLCODE returned by aDB2 command
or an SQL statement. A return code of 8 results only if the command line processor
encounters a system error.

If commands are issued from an input file or in interactive mode, and the
command line processor experiences a system error (return code 8), command
execution is halted immediately. If one or more DB2 commands or SQL statements
end in error (return code 4), command execution stops if the -s (Stop Execution on
Command Error) option is set; otherwise, execution continues.

Command line processor features

The command line processor operates as follows:
v The CLP command (in either case) is typed at the command prompt.
v The command is sent to the command shell by pressing the ENTER key.

426 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v Output is automatically directed to the standard output device.
v Piping and redirection are supported.
v The user is notified of successful and unsuccessful completion.
v Following execution of the command, control returns to the operating system

command prompt, and the user can enter more commands.
v When the CLP is called with a file input option, it will automatically set the

CLIENT APPLNAME special register to CLP filename.

You can start the command line processor by either:
v typing the db2 command, or,
v on Linux operating systems, click Main Menu and, select IBM DB2 → Command

Line Processor.

Certain CLP commands and SQL statements require that the server instance is
running and a database connection exists. Connect to a database by doing one of
the following:
v Issue the SQL statement:

db2 connect to database

v Establish an implicit connection to the default database defined by the DB2
registry variable DB2DBDFT.

If a command exceeds the character limit allowed at the command prompt, a
backslash (\) can be used as the line continuation character. When the command
line processor encounters the line continuation character, it reads the next line and
concatenates the characters contained on both lines. Alternatively, the -t option can
be used to set a different line termination character.

The command line processor recognizes a string called NULL as a null string. Fields
that have been set previously to some value can later be set to NULL. For example,

db2 update database manager configuration using tm_database NULL

sets the tm_database field to NULL. This operation is case sensitive. A lowercase
null is not interpreted as a null string, but rather as a string containing the letters
null.

Customizing the Command Line Processor

It is possible to customize the interactive input prompt by using the
DB2_CLPPROMPT registry variable. This registry variable can be set to any text
string of maximum length 100 and can contain the tokens %i, %ia, %d, %da and
%n. Specific values will be substituted for these tokens at run-time.

Table 135. DB2_CLPPROMPT tokens and run-time values

DB2_CLPPROMPT token Value at run-time

%ia Authorization ID of the current instance attachment

%i Local alias of the currently attached instance. If no instance
attachment exists, the value of the DB2INSTANCE registry
variable. On Windows platforms only, if the
DB2INSTANCE registry variable is not set, the value of the
DB2INSTDEF registry variable.

%da Authorization ID of the current database connection

Chapter 30. DB2 commands 427

Table 135. DB2_CLPPROMPT tokens and run-time values (continued)

DB2_CLPPROMPT token Value at run-time

%d Local alias of the currently connected database. If no
database connection exists, the value of the DB2DBDFT
registry variable.

%n New line

v If any token has no associated value at runtime, the empty string is substituted
for that token.

v The interactive input prompt will always present the authorization IDs, database
names, and instance names in uppercase, so as to be consistent with the
connection and attachment information displayed at the prompt.

v If the DB2_CLPPROMPT registry variable is changed within CLP interactive
mode, the new value of DB2_CLPPROMPT will not take effect until CLP
interactive mode has been closed and reopened.

You can specify the number of commands to be stored in the command history by
using the DB2_CLPHISTSIZE registry variable. The HISTORY command lets you
access the contents of the command history that you run within a CLP interactive
mode session.

You can also specify the editor that is opened when you issue the EDIT command
by using the DB2_CLP_EDITOR registry variable. From a CLP interactive session,
the EDIT command opens an editor preloaded with a user-specified command
which can then be edited and run.

Examples

If DB2_CLPPROMPT is defined as (%ia@%i, %da@%d), the input prompt will
have the following values:
v No instance attachment and no database connection. DB2INSTANCE set to DB2.

DB2DBDFT is not set.
(@DB2, @)

v (Windows) No instance attachment and no database connection. DB2INSTANCE
and DB2DBDFT not set. DB2INSTDEF set to DB2.
(@DB2, @)

v No instance attachment and no database connection. DB2INSTANCE set to
DB2. DB2DBDFT set to ″SAMPLE″.
(@DB2, @SAMPLE)

v Instance attachment to instance ″DB2″ with authorization ID ″keon14″.
DB2INSTANCE set to DB2. DB2DBDFT set to ″SAMPLE″.
(KEON14@DB2, @SAMPLE)

v Database connection to database ″sample″ with authorization ID ″horton7″.
DB2INSTANCE set to DB2. DB2DBDFT set to SAMPLE.
(@DB2, HORTON7@SAMPLE)

v Instance attachment to instance ″DB2″ with authorization ID ″keon14″. Database
connection to database ″sample″ with authorization ID ″horton7″.
DB2INSTANCE set to DB2. DB2DBDFT not set.
(KEON14@DB2, HORTON7@SAMPLE)

428 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Using the Command Line Processor in command files

CLP requests to the database manager can be imbedded in a shell script command
file. The following example shows how to enter the CREATE TABLE statement in a
shell script command file:

db2 “create table mytable (name VARCHAR(20), color CHAR(10))”

For more information about commands and command files, see the appropriate
operating system manual.

Command Line Processor design

The command line processor consists of two processes: the front-end process (the
DB2 command), which acts as the user interface, and the back-end process (db2bp),
which maintains a database connection.

Maintaining database connections

Each time that db2 is invoked, a new front-end process is started. The back-end
process is started by the first db2 invocation, and can be explicitly terminated with
TERMINATE. All front-end processes with the same parent are serviced by a single
back-end process, and therefore share a single database connection.

For example, the following db2 calls from the same operating system command
prompt result in separate front-end processes sharing a single back-end process,
which holds a database connection throughout:
v db2 'connect to sample',
v db2 'select * from org',
v . foo (where foo is a shell script containing DB2 commands), and
v db2 -tf myfile.clp

The following invocations from the same operating system prompt result in
separate database connections because each has a distinct parent process, and
therefore a distinct back-end process:
v foo

v . foo &

v foo &

v sh foo

Communication between front-end and back-end processes

The front-end process and back-end processes communicate through three message
queues: a request queue, an input queue, and an output queue.

Environment variables

The following environment variables offer a means of configuring communication
between the two processes:

Table 136. Environment Variables

Variable Minimum Maximum Default

DB2BQTIME 1 second 5294967295 1 second

DB2BQTRY 0 tries 5294967295 60 tries

Chapter 30. DB2 commands 429

Table 136. Environment Variables (continued)

Variable Minimum Maximum Default

DB2RQTIME 1 second 5294967295 5 seconds

DB2IQTIME 1 second 5294967295 5 seconds

DB2BQTIME
When the command line processor is invoked, the front-end process checks
if the back-end process is already active. If it is active, the front-end
process reestablishes a connection to it. If it is not active, the front-end
process activates it. The front-end process then idles for the duration
specified by the DB2BQTIME variable, and checks again. The front-end
process continues to check for the number of times specified by the
DB2BQTRY variable, after which, if the back-end process is still not active,
it times out and returns an error message.

DB2BQTRY
Works in conjunction with the DB2BQTIME variable, and specifies the
number of times the front-end process tries to determine whether the
back-end process is active.

The values of DB2BQTIME and DB2BQTRY can be increased during peak
periods to optimize query time.

DB2RQTIME
Once the back-end process has been started, it waits on its request queue
for a request from the front-end. It also waits on the request queue
between requests initiated from the command prompt.

The DB2RQTIME variable specifies the length of time the back-end
process waits for a request from the front-end process. At the end of this
time, if no request is present on the request queue, the back-end process
checks whether the parent of the front-end process still exists, and
terminates itself if it does not exist. Otherwise, it continues to wait on the
request queue.

DB2IQTIME
When the back-end process receives a request from the front-end process, it
sends an acknowledgment to the front-end process indicating that it is
ready to receive input via the input queue. The back-end process then
waits on its input queue. It also waits on the input queue while a batch file
(specified with the -f option) is executing, and while the user is in
interactive mode.

The DB2IQTIME variable specifies the length of time the back-end process
waits on the input queue for the front-end process to pass the commands.
After this time has elapsed, the back-end process checks whether the
front-end process is active, and returns to wait on the request queue if the
front-end process no longer exists. Otherwise, the back-end process
continues to wait for input from the front-end process.

To view the values of these environment variables, use LIST COMMAND
OPTIONS.

The back-end environment variables inherit the values set by the front-end process
at the time the back-end process is initiated. However, if the front-end environment

430 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

variables are changed, the back-end process will not inherit these changes. The
back-end process must first be terminated, and then restarted (by issuing the db2
command) to inherit the changed values.

An example of when the back-end process must be terminated is provided by the
following scenario:
1. User A logs on, issues some CLP commands, and then logs off without issuing

TERMINATE.
2. User B logs on using the same window.
3. When user B issues certain CLP commands, they fail with message DB21016

(system error).

The back-end process started by user A is still active when user B starts using the
CLP, because the parent of user B’s front-end process (the operating system
window from which the commands are issued) is still active. The back-end process
attempts to service the new commands issued by user B; however, user B’s
front-end process does not have enough authority to use the message queues of
the back-end process, because it needs the authority of user A, who created that
back-end process. A CLP session must end with a TERMINATE command before a
user starts a new CLP session using the same operating system window. This
creates a fresh back-end process for each new user, preventing authority problems,
and setting the correct values of environment variables (such as DB2INSTANCE)
in the new user’s back-end process.

CLP usage notes

Commands can be entered either in uppercase or in lowercase from the command
prompt. However, parameters that are case sensitive to DB2 must be entered in the
exact case desired. For example, the comment-string in the WITH clause of the
CHANGE DATABASE COMMENT command is a case sensitive parameter.

Delimited identifiers are allowed in SQL statements.

Special characters, or metacharacters (such as $ & * () ; < > ? \ ’ ″) are allowed
within CLP commands. If they are used outside the CLP interactive mode, or the
CLP batch input mode, these characters are interpreted by the operating system
shell. Quotation marks or an escape character are required if the shell is not to take
any special action.

For example, when executed inside an AIX Korn shell environment,
db2 select * from org where division > 'Eastern'

is interpreted as ″select <the names of all files> from org where division″. The
result, an SQL syntax error, is redirected to the file Eastern. The following syntax
produces the correct output:

db2 "select * from org where division > 'Eastern'"

Special characters vary from platform to platform. In the AIX Korn shell, the above
example could be rewritten using an escape character (\), such as *, \>, or \’.

Most operating system environments allow input and output to be redirected. For
example, if a connection to the SAMPLE database has been made, the following
request queries the STAFF table, and sends the output to a file named
staflist.txt in the mydata directory:

db2 "select * from staff" > mydata/staflist.txt

Chapter 30. DB2 commands 431

For environments where output redirection is not supported, CLP options can be
used. For example, the request can be rewritten as

db2 -r mydata\staflist.txt "select * from staff"

db2 -z mydata\staflist.txt "select * from staff"

The command line processor is not a programming language. For example, it does
not support host variables, and the statement,

db2 connect to :HostVar in share mode

is syntactically incorrect, because :HostVar is not a valid database name.

The command line processor represents SQL NULL values as hyphens (-). If the
column is numeric, the hyphen is placed at the right of the column. If the column
is not numeric, the hyphen is at the left.

To correctly display the national characters for single byte (SBCS) languages from
the DB2 command line processor window, a True Type font must be selected. For
example, in a Windows environment, open the command window properties
notebook and select a font such as Lucinda Console.

The command line processor does not support national language support (NLS)
characters in file path names. This particularly affects commands such as IMPORT,
EXPORT, and REGISTER XMLSCHEMA, where problematic file path names would
most frequently be encountered.

Security considerations for utilities

Privileges and authorities required to use the export utility
Privileges enable you to create, update, delete, or access database resources.
Authority levels provide a method of mapping privileges to higher-level database
manager maintenance and utility operations.

Together, privileges and authorities control access to the database manager and its
database objects. You can access only those objects for which you have the
appropriate authorization: that is, the required privilege or authority.

You must have DATAACCESS authority or the CONTROL or SELECT privilege for
each table or view participating in the export operation.

When you are exporting LBAC-protected data, the session authorization ID must
be allowed to read the rows or columns that you are trying to export. Protected
rows that the session authorization ID is not authorized to read are not exported. If
the SELECT statement includes any protected columns that the session
authorization ID is not allowed to read, the export utility fails, and an error
(SQLSTATE 42512) is returned.

Privileges, authorities, and authorization required to use
backup

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the

432 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

database manager and its database objects. Users can access only those objects for
which they have the appropriate authorization; that is, the required privilege or
authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the backup
utility.

Privileges, authorities, and authorization required to use
recover

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects for
which they have the appropriate authorization; that is, the required privilege or
authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the recover
utility.

Privileges, authorities, and authorization required to use
restore

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects for
which they have the appropriate authorization; that is, the required privilege or
authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to restore to an
existing database from a full database backup. To restore to a new database, you
must have SYSADM or SYSCTRL authority.

Authorization required for rollforward
Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects for
which they have the appropriate authorization; that is, the required privilege or
authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the
rollforward utility.

Privileges and authorities required to use load
Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects for
which they have the appropriate authorization; that is, the required privilege or
authority.

To load data into a table, you must have one of the following:
v DATAACCESS authority

Chapter 30. DB2 commands 433

v LOAD or DBADM authority on the database and
– INSERT privilege on the table when the load utility is invoked in INSERT

mode, TERMINATE mode (to terminate a previous load insert operation), or
RESTART mode (to restart a previous load insert operation)

– INSERT and DELETE privilege on the table when the load utility is invoked
in REPLACE mode, TERMINATE mode (to terminate a previous load replace
operation), or RESTART mode (to restart a previous load replace operation)

– INSERT privilege on the exception table, if such a table is used as part of the
load operation.

– SELECT privilege on SYSCAT.TABLES is required in some cases where LOAD
queries the catalog tables.

Since all load processes (and all DB2 server processes, in general), are owned by
the instance owner, and all of these processes use the identification of the instance
owner to access needed files, the instance owner must have read access to input
data files. These input data files must be readable by the instance owner, regardless
of who invokes the command.

If the REPLACE option is specified, the session authorization ID must have the
authority to drop the table.

On Windows, and Windows.NET operating systems where DB2 is running as a
Windows service, if you are loading data from files that reside on a network drive,
you must configure the DB2 service to run under a user account that has read
access to these files.

Note:

v To load data into a table that has protected columns, the session authorization
ID must have LBAC credentials that allow write access to all protected columns
in the table.

v To load data into a table that has protected rows, the session authorization ID
must have been granted a security label for write access that is part of the
security policy protecting the table.

Issuing commands to multiple database partitions
This section describes how to issue commands to multiple database partitions,
including problem resolution.

Issuing commands in partitioned database environments
In a partitioned database environment, you might want to issue commands to be
run on computers in the instance, or on database partition servers (nodes). You can
do so using the rah command or the db2_all command. The rah command allows
you to issue commands that you want to run at computers in the instance.

If you want the commands to run at database partition servers in the instance, you
run the db2_all command. This section provides an overview of these commands.
The information that follows applies to partitioned database environments only.

On Windows, to run the rah command or the db2_all command, you must be
logged on with a user account that is a member of the Administrators group.

434 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

On Linux and UNIX platforms, your login shell can be a Korn shell or any other
shell; however, there are differences in the way the different shells handle
commands containing special characters.

Also, on Linux and UNIX platforms, rah uses the remote shell program specified
by the DB2RSHCMD registry variable. You can select between the two remote
shell programs: ssh (for additional security), or rsh (or remsh for HP-UX). If
DB2RSHCMD is not set, rsh (or remsh for HP-UX) is used. The ssh remote shell
program is used to prevent the transmission of passwords in clear text in UNIX
operating system environments. For a detailed description of how to configure one
version of ssh for use with a DB2 DPF instance, see the following article:
″Configure DB2 Universal Database for UNIX to use OpenSSH.″

To determine the scope of a command, refer to the Command Reference, which
indicates whether a command runs on a single database partition server, or on all
of them. If the command runs on one database partition server and you want it to
run on all of them, use db2_all. The exception is the db2trc command, which runs
on all the logical nodes (database partition servers) on a computer. If you want to
run db2trc on all logical nodes on all computers, use rah.

rah and db2_all commands overview
You can run the commands sequentially at one database partition server after
another, or you can run the commands in parallel. On Linux and UNIX platforms,
if you run the commands in parallel, you can either choose to have the output sent
to a buffer and collected for display (the default behavior) or the output can be
displayed at the computer where the command is issued.

On Windows, if you run the commands in parallel, the output is displayed at the
computer where the command is issued.

To use the rah command, type:
rah command

To use the db2_all command, type:
db2_all command

To obtain help about rah syntax, type
rah "?"

The command can be almost anything which you could type at an interactive
prompt, including, for example, multiple commands to be run in sequence. On
Linux and UNIX platforms, you separate multiple commands using a semicolon (;).
On Windows, you separate multiple commands using an ampersand (&). Do not
use the separator character following the last command.

The following example shows how to use the db2_all command to change the
database configuration on all database partitions that are specified in the node
configuration file. Because the ; character is placed inside double quotation marks,
the request will run concurrently:

db2_all ";DB2 GET DB CFG FOR sample USING LOGFILSIZ 100"

rah and db2_all commands
This topic includes descriptions of the rah and db2_all commands.

Chapter 30. DB2 commands 435

http://www.ibm.com/developerworks/data/library/techarticle/dm-0506finnie/

Command
Description

rah Runs the command on all computers.

db2_all
Runs the command on all database partition servers that you specify.

db2_kill
Abruptly stops all processes being run on multiple database partition
servers and cleans up all resources on all database partition servers. This
command renders your databases inconsistent. Do not issue this command
except under direction from IBM Software Support or as directed to
recover from a sustained trap.

db2_call_stack
On Linux and UNIX platforms, causes all processes running on all
database partition servers to write call traceback to the syslog.

On Linux and UNIX platforms, these commands execute rah with certain
implicit settings such as:
v Run in parallel at all computers
v Buffer command output in /tmp/$USER/db2_kill, /tmp/$USER/

db2_call_stack respectively.

The command db2_call_stack is not available on Windows. Use the db2pd
-stack command instead.

Specifying the rah and db2_all commands
You can specify rah command from the command line as the parameter, or in
response to the prompt if you don’t specify any parameter.

You should use the prompt method if the command contains the following special
characters:

| & ; < > () { } [] unsubstituted $

If you specify the command as the parameter on the command line, you must
enclose it in double quotation marks if it contains any of the special characters just
listed.

Note: On Linux and UNIX platforms, the command will be added to your
command history just as if you typed it at the prompt.

All special characters in the command can be entered normally (without being
enclosed in quotation marks, except for \). If you need to include a \ in your
command, you must type two backslashes (\\).

Note: On Linux and UNIX platforms, if you are not using a Korn shell, all special
characters in the command can be entered normally (without being enclosed in
quotation marks, except for ″, \, unsubstituted $, and the single quotation mark
(’)). If you need to include one of these characters in your command, you must
precede them by three backslashes (\\\). For example, if you need to include a \
in your command, you must type four backslashes (\\\\).

If you need to include a double quotation mark (″) in your command, you must
precede it by three backslashes, for example, \\\″.

Note:

436 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

1. On Linux and UNIX platforms, you cannot include a single quotation mark (’)
in your command unless your command shell provides some way of entering a
single quotation mark inside a singly quoted string.

2. On Windows, you cannot include a single quotation mark (’) in your command
unless your command window provides some way of entering a single
quotation mark inside a singly quoted string.

When you run any korn-shell shell-script which contains logic to read from stdin
in the background, you should explicitly redirect stdin to a source where the
process can read without getting stopped on the terminal (SIGTTIN message). To
redirect stdin, you can run a script with the following form:

shell_script </dev/null &

if there is no input to be supplied.

In a similar way, you should always specify </dev/null when running db2_all in
the background. For example:

db2_all ";run_this_command" </dev/null &

By doing this you can redirect stdin and avoid getting stopped on the terminal.

An alternative to this method, when you are not concerned about output from the
remote command, is to use the “daemonize” option in the db2_all prefix:

db2_all ";daemonize_this_command" &

Running commands in parallel (Linux, UNIX)
By default, the command is run sequentially at each computer, but you can specify
to run the commands in parallel using background rshells by prefixing the
command with certain prefix sequences. If the rshell is run in the background, then
each command puts the output in a buffer file at its remote computer.

Note: The information in this section applies to Linux and UNIX platforms only.

This process retrieves the output in two pieces:
1. After the remote command completes.
2. After the rshell terminates, which might be later if some processes are still

running.

The name of the buffer file is /tmp/$USER/rahout by default, but it can be specified
by the environment variables $RAHBUFDIR/$RAHBUFNAME.

When you specify that you want the commands to be run concurrently, by default,
this script prefixes an additional command to the command sent to all hosts to
check that $RAHBUFDIR and $RAHBUFNAME are usable for the buffer file. It
creates $RAHBUFDIR. To suppress this, export an environment variable
RAHCHECKBUF=no. You can do this to save time if you know the directory exists and
is usable.

Before using rah to run a command concurrently at multiple computers:
v Ensure that a directory /tmp/$USER exists for your user ID at each computer. To

create a directory if one does not already exist, run:
rah ")mkdir /tmp/$USER"

v Add the following line to your .kshrc (for Korn shell syntax) or .profile, and
also type it into your current session:

Chapter 30. DB2 commands 437

export RAHCHECKBUF=no

v Ensure that each computer ID at which you run the remote command has an
entry in its .rhosts file for the ID which runs rah; and the ID which runs rah
has an entry in its .rhosts file for each computer ID at which you run the
remote command.

Monitoring rah processes (Linux, UNIX)
While any remote commands are still running or buffered output is still being
accumulated, processes started by rah monitor activity to write messages to the
terminal indicating which commands have not been run, and retrieve the buffered
output.

About this task

Note: The information in this section applies to Linux and UNIX platforms only.

The informative messages are written at an interval controlled by the environment
variable RAHWAITTIME. Refer to the help information for details on how specify this.
All informative messages can be completely suppressed by exporting
RAHWAITTIME=0.

The primary monitoring process is a command whose command name (as shown
by the ps command) is rahwaitfor. The first informative message tells you the pid
(process id) of this process. All other monitoring processes will appear as ksh
commands running the rah script (or the name of the symbolic link). If you want,
you can stop all monitoring processes by the command:

kill <pid>

where <pid> is the process ID of the primary monitoring process. Do not specify a
signal number. Leave the default of 15. This will not affect the remote commands
at all, but will prevent the automatic display of buffered output. Note that there
might be two or more different sets of monitoring processes executing at different
times during the life of a single execution of rah. However, if at any time you stop
the current set, then no more will be started.

If your regular login shell is not a Korn shell (for example /bin/ksh), you can use
rah, but there are some slightly different rules on how to enter commands
containing the following special characters:

" unsubstituted $ '

For more information, type rah "?". Also, in a Linux and UNIX environment, if
the login shell at the ID which executes the remote commands is not a Korn shell,
then the login shell at the ID which executes rah must also not be a Korn shell.
(rah makes the decision as to whether the remote ID’s shell is a Korn shell based
on the local ID). The shell must not perform any substitution or special processing
on a string enclosed in single quotation marks. It must leave it exactly as is.

Extension of the rah command to use tree logic (AIX and
Solaris)

To enhance performance, rah has been extended to use tree_logic on large systems.
That is, rah will check how many nodes the list contains, and if that number
exceeds a threshold value, it constructs a subset of the list and sends a recursive
invocation of itself to those nodes.

438 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

At those nodes, the recursively invoked rah follows the same logic until the list is
small enough to follow the standard logic (now the ″leaf-of-tree″ logic) of sending
the command to all nodes on the list. The threshold can be specified by
environment variable RAHTREETHRESH, or defaults to 15.

In the case of a multiple-logical-node-per-physical-node system, db2_all will favor
sending the recursive invocation to distinct physical nodes, which will then rsh to
other logical nodes on the same physical node, thus also reducing
inter-physical-node traffic. (This point applies only to db2_all, not rah, since rah
always sends only to distinct physical nodes.)

rah command prefix sequences
A prefix sequence is one or more special characters.

Type one or more prefix sequences immediately preceding the characters of the
command without any intervening blanks. If you want to specify more than one
sequence, you can type them in any order, but characters within any
multicharacter sequence must be typed in order. If you type any prefix sequences,
you must enclose the entire command, including the prefix sequences in double
quotation marks, as in the following examples:
v On Linux and UNIX platforms:

rah "};ps -F pid,ppid,etime,args -u $USER"

v On Windows:
rah "||db2 get db cfg for sample"

The prefix sequences are:

Sequence
Purpose

| Runs the commands in sequence in the background.

|& Runs the commands in sequence in the background and terminates the
command after all remote commands have completed, even if some
processes are still running. This might be later if, for example, child
processes (on Linux and UNIX platforms) or background processes (on
Windows) are still running. In this case, the command starts a separate
background process to retrieve any remote output generated after
command termination and writes it back to the originating computer.

Note: On Linux and UNIX platforms, specifying & degrades performance,
because more rsh commands are required.

|| Runs the commands in parallel in the background.

||& Runs the commands in parallel in the background and terminates the
command after all remote commands have completed as described for the
|& case above.

Note: On Linux and UNIX platforms, specifying & degrades performance,
because more rsh commands are required.

; Same as ||& above. This is an alternative shorter form.

Note: On Linux and UNIX platforms, specifying ; degrades performance
relative to ||, because more rsh commands are required.

] Prepends dot-execution of user’s profile before executing command.

Chapter 30. DB2 commands 439

Note: Available on Linux and UNIX platforms only.

} Prepends dot-execution of file named in $RAHENV (probably .kshrc)
before executing command.

Note: Available on Linux and UNIX platforms only.

]} Prepends dot-execution of user’s profile followed by execution of file
named in $RAHENV (probably .kshrc) before executing command.

Note: Available on Linux and UNIX platforms only.

) Suppresses execution of user’s profile and of file named in $RAHENV.

Note: Available on Linux and UNIX platforms only.

’ Echoes the command invocation to the computer.

< Sends to all the computers except this one.

<<-nnn<
Sends to all-but-database partition server nnn (all database partition servers
in db2nodes.cfg except for node number nnn, see the first paragraph
following the last prefix sequence in this table).

<<+nnn<
Sends to only database partition server nnn (the database partition server
in db2nodes.cfg whose database partition number is nnn, see the first
paragraph following the last prefix sequence in this table).

(blank character)
Runs the remote command in the background with stdin, stdout, and
stderr all closed. This option is valid only when running the command in
the background, that is, only in a prefix sequence which also includes \ or
;. It allows the command to complete much sooner (as soon as the remote
command has been initiated). If you specify this prefix sequence on the rah
command line, then either enclose the command in single quotation marks,
or enclose the command in double quotation marks, and precede the prefix
character by \ . For example,

rah '; mydaemon'

or
rah ";\ mydaemon"

When run as a background process, the rah command will never wait for
any output to be returned.

> Substitutes occurrences of > with the computer name.

″ Substitutes occurrences of () by the computer index, and substitutes
occurrences of ## by the database partition number.

Note:

1. The computer index is a number that associated with a computer in the
database system. If you are not running multiple logical partitions, the
computer index for a computer corresponds to the database partition
number for that computer in the node configuration file. To obtain the
computer index for a computer in a multiple logical partition database
environment, do not count duplicate entries for those computers that
run multiple logical partitions. For example, if MACH1 is running two

440 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

logical partitions and MACH2 is also running two logical partitions, the
database partition number for MACH3 is 5 in the node configuration
file. The computer index for MACH3, however, would be 3.
On Windows, do not edit the node configuration file. To obtain the
computer index, use the db2nlist command.

2. When " is specified, duplicates are not eliminated from the list of
computers.

When using the <<-nnn< and <<+nnn< prefix sequences, nnn is any 1-, 2- or 3-digit
database partition number which must match the nodenum value in the
db2nodes.cfg file.

Note: Prefix sequences are considered to be part of the command. If you specify a
prefix sequence as part of a command, you must enclose the entire command,
including the prefix sequences, in double quotation marks.

Specifying the list of machines in a partitioned database
environment

By default, the list of computers is taken from the node configuration file,
db2nodes.cfg.

About this task

You can override this by:
v Specifying a pathname to the file that contains the list of computers by exporting

(on Linux and UNIX platforms) or setting (on Windows) the environment
variable RAHOSTFILE.

v Specifying the list explicitly, as a string of names separated by spaces, by
exporting (on Linux and UNIX platforms) or setting (on Windows) the
environment variable RAHOSTLIST.

Note: If both of these environment variables are specified, RAHOSTLIST takes
precedence.

Note: On Windows, to avoid introducing inconsistencies into the node
configuration file, do not edit it manually. To obtain the list of computers in the
instance, use the db2nlist command.

Eliminating duplicate entries from a list of machines in a
partitioned database environment

If you are running DB2 Enterprise Server Edition with multiple logical database
partition servers on one computer, your db2nodes.cfg file will contain multiple
entries for that computer.

About this task

In this situation, the rah command needs to know whether you want the command
to be executed once only on each computer or once for each logical database
partition listed in the db2nodes.cfg file. Use the rah command to specify
computers. Use the db2_all command to specify logical database partitions.

Chapter 30. DB2 commands 441

Note: On Linux and UNIX platforms, if you specify computers, rah will normally
eliminate duplicates from the computer list, with the following exception: if you
specify logical database partitions, db2_all prepends the following assignment to
your command:
export DB2NODE=nnn (for Korn shell syntax)

where nnn is the database partition number taken from the corresponding line in
the db2nodes.cfg file, so that the command will be routed to the desired database
partition server.

When specifying logical database partitions, you can restrict the list to include all
logical database partitions except one, or only specify one using the <<-nnn< and
<<+nnn< prefix sequences. You might want to do this if you want to run a
command to catalog the database partition first, and when that has completed, run
the same command at all other database partition servers, possibly in parallel. This
is usually required when running the db2 restart database command. You will
need to know the database partition number of the catalog partition to do this.

If you execute db2 restart database using the rah command, duplicate entries are
eliminated from the list of computers. However if you specify the ” prefix, then
duplicates are not eliminated, because it is assumed that use of the ” prefix implies
sending to each database partition server, rather than to each computer.

Controlling the rah command
This topic lists the environment variables to control the rah command.

Table 137. Environment variables that control the rah command

Name Meaning Default

$RAHBUFDIR
Note: Available on
Linux and UNIX
platforms only.

Directory for buffer /tmp/$USER

$RAHBUFNAME
Note: Available on
Linux and UNIX
platforms only.

Filename for buffer rahout

$RAHOSTFILE (on
Linux and UNIX
platforms);
RAHOSTFILE (on
Windows)

File containing list of hosts db2nodes.cfg

$RAHOSTLIST (on
Linux and UNIX
platforms);
RAHOSTLIST (on
Windows)

List of hosts as a string extracted from $RAHOSTFILE

$RAHCHECKBUF
Note: Available on
Linux and UNIX
platforms only.

If set to ″no″, bypass checks not set

$RAHSLEEPTIME (on
Linux and UNIX
platforms);
RAHSLEEPTIME (on
Windows)

Time in seconds this script will wait for
initial output from commands run in parallel

86400 seconds for db2_kill, 200 seconds for all
others

442 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 137. Environment variables that control the rah command (continued)

Name Meaning Default

$RAHWAITTIME (on
Linux and UNIX
platforms);
RAHWAITTIME (on
Windows)

On Windows, interval in seconds between
successive checks that remote jobs are still
running.

On Linux and UNIX platforms, interval in
seconds between successive checks that
remote jobs are still running and rah:
waiting for pid> ... messages.

On all platforms, specify any positive integer.
Prefix value with a leading zero to suppress
messages, for example, export
RAHWAITTIME=045.

It is not necessary to specify a low value as
rah does not rely on these checks to detect
job completion.

45 seconds

$RAHENV
Note: Available on
Linux and UNIX
platforms only.

Specifies filename to be executed if
$RAHDOTFILES=E or K or PE or B

$ENV

$RAHUSER (on Linux
and UNIX platforms);
RAHUSER (on
Windows)

On Linux and UNIX platforms, user ID
under which the remote command is to be
run.

On Windows, the logon account associated
with the DB2 Remote Command Service

$USER

Note: On Linux and UNIX platforms, the value of $RAHENV where rah is run is
used, not the value (if any) set by the remote shell.

Specifying which . files run with rah (Linux and UNIX)
This topics lists the . files that are run if no prefix sequence is specified.

Note: The information in this section applies to Linux and UNIX platforms only.

P .profile

E File named in $RAHENV (probably .kshrc)

K Same as E

PE .profile followed by file named in $RAHENV (probably .kshrc)

B Same as PE

N None (or Neither)

Note: If your login shell is not a Korn shell, any dot files you specify to be
executed will be executed in a Korn shell process, and so must conform to Korn
shell syntax. So, for example, if your login shell is a C shell, to have your .cshrc
environment set up for commands executed by rah, you should either create a
Korn shell INSTHOME/.profile equivalent to your .cshrc and specify in your
INSTHOME/.cshrc:

setenv RAHDOTFILES P

Chapter 30. DB2 commands 443

or you should create a Korn shell INSTHOME/.kshrc equivalent to your .cshrc and
specify in your INSTHOME/.cshrc:

setenv RAHDOTFILES E
setenv RAHENV INSTHOME/.kshrc

Also, it is essential that your .cshrc does not write to stdout if there is no tty (as
when invoked by rsh). You can ensure this by enclosing any lines which write to
stdout by, for example,
if { tty -s } then echo "executed .cshrc";
endif

Setting the default environment profile for rah on Windows
To set the default environment profile for the rah command, use a file called
db2rah.env, which should be created in the instance directory.

About this task

Note: The information in this section applies to Windows only.

The file should have the following format:
; This is a comment line
DB2INSTANCE=instancename
DB2DBDFT=database
; End of file

You can specify all the environment variables that you need to initialize the
environment for rah.

Determining problems with rah (Linux, UNIX)
This topic gives suggestions on how to handle some problems that you might
encounter when you are running rah.

Note: The information in this section applies to Linux and UNIX platforms only.
1. rah hangs (or takes a very long time)

This problem might be caused because:
v rah has determined that it needs to buffer output, and you did not export

RAHCHECKBUF=no. Therefore, before running your command, rah sends a
command to all computers to check the existence of the buffer directory, and
to create it if it does not exist.

v One or more of the computers where you are sending your command is not
responding. The rsh command will eventually time out but the time-out
interval is quite long, usually about 60 seconds.

2. You have received messages such as:
v Login incorrect
v Permission denied
Either one of the computers does not have the ID running rah correctly defined
in its .hosts file, or the ID running rah does not have one of the computers
correctly defined in its .rhosts file. If the DB2RSHCMD registry variable has
been configured to use ssh, then the ssh clients and servers on each computer
might not be configured correctly.

Note: You might have a need to have greater security regarding the
transmission of passwords in clear text between database partitions. This will

444 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

depend on the remote shell program you are using. rah uses the remote shell
program specified by the DB2RSHCMD registry variable. You can select
between the two remote shell programs: ssh (for additional security), or rsh (or
remsh for HP-UX). If this registry variable is not set, rsh (or remsh for HP-UX)
is used.

3. When running commands in parallel using background remote shells, although
the commands run and complete within the expected elapsed time at the
computers, rah takes a long time to detect this and put up the shell prompt.
The ID running rah does not have one of the computers correctly defined in its
.rhosts file, or if the DB2RSHCMD registry variable has been configured to use
ssh, then the ssh clients and servers on each computer might not be configured
correctly.

4. Although rah runs fine when run from the shell command line, if you run rah
remotely using rsh, for example,

rsh somewher -l $USER db2_kill

rah never completes.
This is normal. rah starts background monitoring processes, which continue to
run after it has exited. Those processes will normally persist until all processes
associated with the command you ran have themselves terminated. In the case
of db2_kill, this means termination of all database managers. You can terminate
the monitoring processes by finding the process whose command is rahwaitfor
and kill process_id>. Do not specify a signal number. Instead, use the default
(15).

5. The output from rah is not displayed correctly, or rah incorrectly reports that
$RAHBUFNAME does not exist, when multiple commands of rah were issued
under the same $RAHUSER.
This is because multiple concurrent executions of rah are trying to use the same
buffer file (for example, $RAHBUFDIR/$RAHBUFNAME) for buffering the
outputs. To prevent this problem, use a different $RAHBUFNAME for each
concurrent rah command, for example in the following ksh:

export RAHBUFNAME=rahout
rah ";$command_1" &
export RAHBUFNAME=rah2out
rah ";$command_2" &

or use a method that makes the shell choose a unique name automatically such
as:

RAHBUFNAME=rahout.$$ db2_all "....."

Whatever method you use, you must ensure you clean up the buffer files at
some point if disk space is limited. rah does not erase a buffer file at the end of
execution, although it will erase and then re-use an existing file the next time
you specify the same buffer file.

6. You entered
rah '"print from ()'

and received the message:
ksh: syntax error at line 1 : (' unexpected

Prerequisites for the substitution of () and ## are:
v Use db2_all, not rah.

Chapter 30. DB2 commands 445

v Ensure a RAHOSTFILE is used either by exporting RAHOSTFILE or by
defaulting to your /sqllib/db2nodes.cfg file. Without these prerequisites,
rah will leave the () and ## as is. You receive an error because the command
print from () is not valid.

For a performance tip when running commands in parallel, use | rather than
|&, and use || rather than ||& or ; unless you truly need the function
provided by &. Specifying & requires more remote shell commands and
therefore degrades performance.

Load overview–partitioned database environments
In a multi-partition database, large amounts of data are located across many
database partitions. Distribution keys are used to determine on which database
partition each portion of the data resides. The data must be distributed before it can
be loaded at the correct database partition.

When loading tables in a multi-partition database, the load utility can:
v Distribute input data in parallel
v Load data simultaneously on corresponding database partitions
v Transfer data from one system to another system

Loading data into a multi-partition database takes place in two phases: the setup
phase, during which database partition resources such as table locks are acquired,
and the load phase, during which the data is loaded into the database partitions.
You can use the ISOLATE_PART_ERRS option of the LOAD command to select
how errors are handled during either of these phases, and how errors on one or
more of the database partitions affect the load operation on the database partitions
that are not experiencing errors.

When loading data into a multi-partition database you can use one of the
following modes:

PARTITION_AND_LOAD
Data is distributed (perhaps in parallel) and loaded simultaneously on the
corresponding database partitions.

PARTITION_ONLY
Data is distributed (perhaps in parallel) and the output is written to files in
a specified location on each loading database partition. Each file includes a
partition header that specifies how the data was distributed across the
database partitions, and that the file can be loaded into the database using
the LOAD_ONLY mode.

LOAD_ONLY
Data is assumed to be already distributed across the database partitions;
the distribution process is skipped, and the data is loaded simultaneously
on the corresponding database partitions.

LOAD_ONLY_VERIFY_PART
Data is assumed to be already distributed across the database partitions,
but the data file does not contain a partition header. The distribution
process is skipped, and the data is loaded simultaneously on the
corresponding database partitions. During the load operation, each row is
checked to verify that it is on the correct database partition. Rows
containing database partition violations are placed in a dump file if the
dumpfile file type modifier is specified. Otherwise, the rows are discarded.

446 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

If database partition violations exist on a particular loading database
partition, a single warning is written to the load message file for that
database partition.

ANALYZE
An optimal distribution map with even distribution across all database
partitions is generated.

Concepts and terminology

The following terminology is used when discussing the behavior and operation of
the load utility in a partitioned database environment with multiple database
partitions:
v The coordinator partition is the database partition to which the user connects in

order to perform the load operation. In the PARTITION_AND_LOAD,
PARTITION_ONLY, and ANALYZE modes, it is assumed that the data file
resides on this database partition unless the CLIENT option of the LOAD
command is specified. Specifying CLIENT indicates that the data to be loaded
resides on a remotely connected client.

v In the PARTITION_AND_LOAD, PARTITION_ONLY, and ANALYZE modes, the
pre-partitioning agent reads the user data and distributes it in round-robin fashion
to the partitioning agents which then distribute the data. This process is always
performed on the coordinator partition. A maximum of one partitioning agent is
allowed per database partition for any load operation.

v In the PARTITION_AND_LOAD, LOAD_ONLY, and
LOAD_ONLY_VERIFY_PART modes, load agents run on each output database
partition and coordinate the loading of data to that database partition.

v Load to file agents run on each output database partition during a
PARTITION_ONLY load operation. They receive data from partitioning agents
and write it to a file on their database partition.

v The SOURCEUSEREXIT option provides a facility through which the load utility
can execute a customized script or executable, referred to herein as the user exit.

Chapter 30. DB2 commands 447

DB2 UDB Commands for Administrators

ADD DBPARTITIONNUM
Adds a database partition to a database partition server.

Scope

This command only affects the database partition server on which it is executed.

Authorization

One of the following:
v sysadm

v sysctrl

Required connection

None

Command syntax

�� ADD DBPARTITIONNUM
LIKE DBPARTITIONNUM db-partition-number
WITHOUT TABLESPACES

��

Partitioning
agent

Partitioning
agent

Pre-partitioning
agent

Load agent

Load agent

Load agent

Figure 28. Partitioned Database Load Overview. The source data is read by the pre-partitioning agent, and
approximately half of the data is sent to each of two partitioning agents which distribute the data and send it to one of
three database partitions. The load agent at each database partition loads the data.

448 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Command parameters

LIKE DBPARTITIONNUM db-partition-number
Specifies that the containers for the new system temporary table spaces are
the same as the containers of the database at the database partition server
specified by db-partition-number. The database partition server specified
must already be defined in the db2nodes.cfg file.

For system temporary table spaces that are defined to use automatic
storage (in other words, system temporary table spaces that were created
with the MANAGED BY AUTOMATIC STORAGE clause of the CREATE TABLESPACE
statement or where no MANAGED BY CLAUSE was specified at all), the
containers will not necessarily match those from the partition specified.
Instead, containers will automatically be assigned by the database manager
based on the storage paths that are associated with the database. This may
or may not result in the same containers being used on these two
partitions.

WITHOUT TABLESPACES
Specifies that containers for the system temporary table spaces are not
created for any of the database partitions. The ALTER TABLESPACE
statement must be used to add system temporary table space containers to
each database partition before the database can be used.

If no option is specified, containers for the system temporary table spaces
will be the same as the containers on the catalog partition for each
database. The catalog partition can be a different database partition for
each database in the partitioned database environment. This option is
ignored for system temporary table spaces that are defined to use
automatic storage (in other words, system temporary table spaces that
were created with the MANAGED BY AUTOMATIC STORAGE clause of the CREATE
TABLESPACE statement or where no MANAGED BY CLAUSE was specified at all).
For these table spaces, there is no way to defer container creation.
Containers will automatically be assigned by the database manager based
on the storage paths that are associated with the database.

Usage notes

This command should only be used if a database partition server is added to an
environment that has one database and that database is not cataloged at the time
of the add partition operation. In this situation, because the database is not
cataloged, the add partition operation does not recognize the database, and does
not create a database partition for the database on the new database partition
server. Any attempt to connect to the database partition on the new database
partition server results in an error. The database must first be cataloged before the
ADD DBPARTITIONNUM command can be used to create the database partition
for the database on the new database partition server.

This command should not be used if the environment has more than one database
and at least one of the databases is cataloged at the time of the add partition
operation. In this situation, use the AT DBPARTITIONNUM parameter of the
CREATE DATABASE command to create a database partition for each database
that was not cataloged at the time of the add partition operation. Each uncataloged
database must first be cataloged before the CREATE DATABASE command can be
used to create the database partition for the database on the new database partition
server.

Chapter 30. DB2 commands 449

Before adding a new database partition, ensure that there is sufficient storage for
the containers that must be created.

The add database partition server operation creates an empty database partition for
every database that exists in the instance. The configuration parameters for the
new database partitions are set to the default values.

Note: Any uncataloged database is not recognized when adding a new database
partition. The uncataloged database will not be present on the new database
partition. An attempt to connect to the database on the new database partition
returns the error message SQL1013N.

If an add database partition server operation fails while creating a database
partition locally, it enters a clean-up phase, in which it locally drops all databases
that have been created. This means that the database partitions are removed only
from the database partition server being added. Existing database partitions remain
unaffected on all other database partition servers. If the clean-up phase fails, no
further clean up is done, and an error is returned.

The database partitions on the new database partition cannot contain user data
until after the ALTER DATABASE PARTITION GROUP statement has been used to
add the database partition to a database partition group.

This command will fail if a create database or a drop database operation is in
progress. The command can be reissued once the competing operation has
completed.

To determine whether or not a database is enabled for automatic storage, ADD
DBPARTITIONNUM has to communicate with the catalog partition for each of the
databases in the instance. If automatic storage is enabled then the storage path
definitions are retrieved as part of that communication. Likewise, if system
temporary table spaces are to be created with the database partitions, ADD
DBPARTITIONNUM might have to communicate with another database partition
server to retrieve the table space definitions for the database partitions that reside
on that server. The start_stop_time database manager configuration parameter is
used to specify the time, in minutes, by which the other database partition server
must respond with the automatic storage and table space definitions. If this time is
exceeded, the command fails. If this situation occurs, increase the value of
start_stop_time, and reissue the command.

Compatibilities

For compatibility with versions earlier than Version 8:
v The keyword NODE can be substituted for DBPARTITIONNUM.

BACKUP DATABASE

Creates a backup copy of a database or a table space.

For information on the backup operations supported by DB2 database systems
between different operating systems and hardware platforms, see “Backup and
restore operations between different operating systems and hardware platforms”.

450 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Scope

In a partitioned database environment, if no database partitions are specified, this
command affects only the database partition on which it is executed.

If the option to perform a partitioned backup is specified, the command can be
called only on the catalog node. If the option specifies that all database partition
servers are to be backed up, it affects all database partition servers that are listed
in the db2nodes.cfg file. Otherwise, it affects the database partition servers that are
specified on the command.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required connection

Command syntax

�� BACKUP DATABASE database-alias
DB

�

�
ON DBPARTITIONNUM Partition number(s)

DBPARTITIONNUMS
ALL DBPARTITIONNUMS

EXCEPT DBPARTITIONNUM Partition number(s)
DBPARTITIONNUMS

�

�

�

,

TABLESPACE (tablespace-name)

INCREMENTAL
DELTA

�

�

�

USE TSM Open sessions Options
XBSA

SNAPSHOT
LIBRARY library-name

LOAD library-name Open sessions Options
,

TO dir
dev

WITH num-buffers BUFFERS
�

�
BUFFER buffer-size PARALLELISM n

�

�
COMPRESS

COMPRLIB name COMPROPTS string
EXCLUDE

�

�
UTIL_IMPACT_PRIORITY

priority

EXCLUDE LOGS

INCLUDE LOGS
��

Chapter 30. DB2 commands 451

Partition number(s):

�

,

(db-partition-number1)
TO db-partition-number2

Open sessions:

OPEN num-sessions SESSIONS

Options:

OPTIONS ″options-string″
@ file-name

Command parameters

DATABASE | DB database-alias
Specifies the alias of the database to back up.

ON Backup the database on a set of database partitions.

DBPARTITIONNUM db-partition-number1
Specifies a database partition number in the database partition list.

DBPARTITIONNUMS db-partition-number1 TO db-partition-number2
Specifies a range of database partition numbers, so that all
partitions from db-partition-number1 up to and including
db-partition-number2 are included in the database partition list.

ALL DBPARTITIONNUMS
Specifies that the database is to be backed up on all partitions
specified in the db2nodes.cfg file.

EXCEPT
Specifies that the database is to be backed up on all
partitions specified in the db2nodes.cfg file, except those
specified in the database partition list.

DBPARTITIONNUM db-partition-number1
Specifies a database partition number in the
database partition list.

DBPARTITIONNUMS db-partition-number1 TO
db-partition-number2

Specifies a range of database partition numbers, so
that all partitions from db-partition-number1 up to
and including db-partition-number2 are included in
the database partition list.

TABLESPACE tablespace-name
A list of names used to specify the table spaces to be backed up.

ONLINE

452 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

INCREMENTAL
Specifies a cumulative (incremental) backup image. An incremental backup
image is a copy of all database data that has changed since the most recent
successful, full backup operation.

DELTA
Specifies a non-cumulative (delta) backup image. A delta backup
image is a copy of all database data that has changed since the
most recent successful backup operation of any type.

USE

TSM Specifies that the backup is to use Tivoli® Storage Manager (TSM)
output.

XBSA Specifies that the XBSA interface is to be used. Backup Services
APIs (XBSA) are an open application programming interface for
applications or facilities needing data storage management for
backup or archiving purposes.

SNAPSHOT
Specifies that a snapshot backup is to be taken.

You cannot use the SNAPSHOT parameter with any of the
following parameters:
v TABLESPACE
v INCREMENTAL
v WITH num-buffers BUFFERS
v BUFFER
v PARALLELISM
v COMPRESS
v UTIL_IMPACT_PRIORITY
v SESSIONS

The default behavior for a snapshot backup is a FULL DATABASE
OFFLINE backup of all paths that make up the database including
all containers, local volume directory, database path (DBPATH),
and primary log and mirror log paths (INCLUDE LOGS is the
default for all snapshot backups unless EXCLUDE LOGS is
explicitly stated).

LIBRARY library-name
Integrated into IBM Data Server is a DB2 ACS API driver
for the following storage hardware:
v IBM TotalStorage SAN Volume Controller
v IBM Enterprise Storage Server Model 800
v IBM System Storage DS6000
v IBM System Storage DS8000
v IBM System Storage N Series
v NetApp V-series
v NetApp FAS

If you have other storage hardware, and a DB2 ACS API
driver for that storage hardware, you can use the LIBRARY
parameter to specify the DB2 ACS API driver.

Chapter 30. DB2 commands 453

The value of the LIBRARY parameter is a fully-qualified
library file name.

OPTIONS

″options-string″
Specifies options to be used for the backup operation. The string
will be passed to the DB2 ACS API driver exactly as it was
entered, without the double quotation marks. You cannot use the
VENDOROPT database configuration parameter to specify
vendor-specific options for snapshot backup operations. You must
use the OPTIONS parameter of the backup utilities instead.

@ file-name
Specifies that the options to be used for the backup operation are
contained in a file located on the DB2 server. The string will be
passed to the vendor support library. The file must be a fully
qualified file name.

OPEN num-sessions SESSIONS
The number of I/O sessions to be created between DB2 and TSM or
another backup vendor product. This parameter has no effect when
backing up to tape, disk, or other local device.

TO dir | dev
A list of directory or tape device names. The full path on which the
directory resides must be specified. This target directory or device must
exist on the database server.

In a partitioned database, the target directory or device must exist on all
database partitions, and can optionally be a shared path. The directory or
device name may be specified using a database partition expression. For
more information about database partition expressions, see Automatic
storage databases.

This parameter can be repeated to specify the target directories and devices
that the backup image will span. If more than one target is specified
(target1, target2, and target3, for example), target1 will be opened first. The
media header and special files (including the configuration file, table space
table, and history file) are placed in target1. All remaining targets are
opened, and are then used in parallel during the backup operation.
Because there is no general tape support on Windows operating systems,
each type of tape device requires a unique device driver.

If the tape system does not support the ability to uniquely reference a
backup image, it is recommended that multiple backup copies of the same
database not be kept on the same tape.

LOAD library-name
The name of the shared library (DLL on Windows operating systems)
containing the vendor backup and restore I/O functions to be used. It can
contain the full path. If the full path is not given, it will default to the path
on which the user exit program resides.

WITH num-buffers BUFFERS
The number of buffers to be used. DB2 will automatically choose an
optimal value for this parameter unless you explicitly enter a value.
However, when creating a backup to multiple locations, a larger number of
buffers can be used to improve performance.

454 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

BUFFER buffer-size
The size, in 4 KB pages, of the buffer used when building the backup
image. DB2 will automatically choose an optimal value for this parameter
unless you explicitly enter a value. The minimum value for this parameter
is 8 pages.

If using tape with variable block size, reduce the buffer size to within the
range that the tape device supports. Otherwise, the backup operation
might succeed, but the resulting image might not be recoverable.

With most versions of Linux, using DB2’s default buffer size for backup
operations to a SCSI tape device results in error SQL2025N, reason code 75.
To prevent the overflow of Linux internal SCSI buffers, use this formula:

bufferpages <= ST_MAX_BUFFERS * ST_BUFFER_BLOCKS / 4

where bufferpages is the value you want to use with the BUFFER parameter,
and ST_MAX_BUFFERS and ST_BUFFER_BLOCKS are defined in the Linux kernel
under the drivers/scsi directory.

PARALLELISM n
Determines the number of table spaces which can be read in parallel by the
backup utility. DB2 will automatically choose an optimal value for this
parameter unless you explicitly enter a value.

UTIL_IMPACT_PRIORITY priority
Specifies that the backup will run in throttled mode, with the priority
specified. Throttling allows you to regulate the performance impact of the
backup operation. Priority can be any number between 1 and 100, with 1
representing the lowest priority, and 100 representing the highest priority.
If the UTIL_IMPACT_PRIORITY keyword is specified with no priority, the
backup will run with the default priority of 50. If
UTIL_IMPACT_PRIORITY is not specified, the backup will run in
unthrottled mode. An impact policy must be defined by setting the
util_impact_lim configuration parameter for a backup to run in throttled
mode.

COMPRESS
Indicates that the backup is to be compressed.

COMPRLIB name
Indicates the name of the library to be used to perform the
compression (e.g., db2compr.dll for Windows; libdb2compr.so for
Linux/UNIX systems). The name must be a fully qualified path
referring to a file on the server. If this parameter is not specified,
the default DB2 compression library will be used. If the specified
library cannot be loaded, the backup will fail.

EXCLUDE
Indicates that the compression library will not be stored in the
backup image.

COMPROPTS string
Describes a block of binary data that will be passed to the
initialization routine in the compression library. DB2 will pass this
string directly from the client to the server, so any issues of byte
reversal or code page conversion will have to be handled by the
compression library. If the first character of the data block is ’@’,
the remainder of the data will be interpreted by DB2 as the name
of a file residing on the server. DB2 will then replace the contents

Chapter 30. DB2 commands 455

of string with the contents of this file and will pass this new value
to the initialization routine instead. The maximum length for string
is 1024 bytes.

EXCLUDE LOGS
Specifies that the backup image should not include any log files. When
performing an offline backup operation, logs are excluded whether or not
this option is specified, with the exception of snapshot backups.

INCLUDE LOGS
Specifies that the backup image should include the range of log files
required to restore and roll forward this image to some consistent point in
time. This option is not valid for an offline backup, with the exception of
snapshot backups where this option is the default unless explicitly told to
exclude.

WITHOUT PROMPTING

Examples

Usage notes

The data in a backup cannot be protected by the database server. Make sure that
backups are properly safeguarded, particularly if the backup contains
LBAC-protected data.

When backing up to tape, use of a variable block size is currently not supported. If
you must use this option, ensure that you have well tested procedures in place that
enable you to recover successfully, using backup images that were created with a
variable block size.

When using a variable block size, you must specify a backup buffer size that is less
than or equal to the maximum limit for the tape devices that you are using. For
optimal performance, the buffer size must be equal to the maximum block size
limit of the device being used.

Snapshot backups should be complemented with regular disk backups in case of
failure in the filer/storage system.

As you regularly backup your database, you might accumulate very large database
backup images, many database logs and load copy images, all of which might be
taking up a large amount of disk space. Refer to “Managing recovery objects” for
information on how to manage these recovery objects.

BACKUP DATABASE

Creates a backup copy of a database or a table space.

For information on the backup operations supported by DB2 database systems
between different operating systems and hardware platforms, see “Backup and
restore operations between different operating systems and hardware platforms”.

Scope

In a partitioned database environment, if no database partitions are specified, this
command affects only the database partition on which it is executed.

456 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

If the option to perform a partitioned backup is specified, the command can be
called only on the catalog node. If the option specifies that all database partition
servers are to be backed up, it affects all database partition servers that are listed
in the db2nodes.cfg file. Otherwise, it affects the database partition servers that are
specified on the command.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required connection

Command syntax

�� BACKUP DATABASE database-alias
DB

�

�
ON DBPARTITIONNUM Partition number(s)

DBPARTITIONNUMS
ALL DBPARTITIONNUMS

EXCEPT DBPARTITIONNUM Partition number(s)
DBPARTITIONNUMS

�

�

�

,

TABLESPACE (tablespace-name)

INCREMENTAL
DELTA

�

�

�

USE TSM Open sessions Options
XBSA

SNAPSHOT
LIBRARY library-name

LOAD library-name Open sessions Options
,

TO dir
dev

WITH num-buffers BUFFERS
�

�
BUFFER buffer-size PARALLELISM n

�

�
COMPRESS

COMPRLIB name COMPROPTS string
EXCLUDE

�

�
UTIL_IMPACT_PRIORITY

priority

EXCLUDE LOGS

INCLUDE LOGS
��

Chapter 30. DB2 commands 457

Partition number(s):

�

,

(db-partition-number1)
TO db-partition-number2

Open sessions:

OPEN num-sessions SESSIONS

Options:

OPTIONS ″options-string″
@ file-name

Command parameters

DATABASE | DB database-alias
Specifies the alias of the database to back up.

ON Backup the database on a set of database partitions.

DBPARTITIONNUM db-partition-number1
Specifies a database partition number in the database partition list.

DBPARTITIONNUMS db-partition-number1 TO db-partition-number2
Specifies a range of database partition numbers, so that all
partitions from db-partition-number1 up to and including
db-partition-number2 are included in the database partition list.

ALL DBPARTITIONNUMS
Specifies that the database is to be backed up on all partitions
specified in the db2nodes.cfg file.

EXCEPT
Specifies that the database is to be backed up on all
partitions specified in the db2nodes.cfg file, except those
specified in the database partition list.

DBPARTITIONNUM db-partition-number1
Specifies a database partition number in the
database partition list.

DBPARTITIONNUMS db-partition-number1 TO
db-partition-number2

Specifies a range of database partition numbers, so
that all partitions from db-partition-number1 up to
and including db-partition-number2 are included in
the database partition list.

TABLESPACE tablespace-name
A list of names used to specify the table spaces to be backed up.

ONLINE

458 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

INCREMENTAL
Specifies a cumulative (incremental) backup image. An incremental backup
image is a copy of all database data that has changed since the most recent
successful, full backup operation.

DELTA
Specifies a non-cumulative (delta) backup image. A delta backup
image is a copy of all database data that has changed since the
most recent successful backup operation of any type.

USE

TSM Specifies that the backup is to use Tivoli Storage Manager (TSM)
output.

XBSA Specifies that the XBSA interface is to be used. Backup Services
APIs (XBSA) are an open application programming interface for
applications or facilities needing data storage management for
backup or archiving purposes.

SNAPSHOT
Specifies that a snapshot backup is to be taken.

You cannot use the SNAPSHOT parameter with any of the
following parameters:
v TABLESPACE
v INCREMENTAL
v WITH num-buffers BUFFERS
v BUFFER
v PARALLELISM
v COMPRESS
v UTIL_IMPACT_PRIORITY
v SESSIONS

The default behavior for a snapshot backup is a FULL DATABASE
OFFLINE backup of all paths that make up the database including
all containers, local volume directory, database path (DBPATH),
and primary log and mirror log paths (INCLUDE LOGS is the
default for all snapshot backups unless EXCLUDE LOGS is
explicitly stated).

LIBRARY library-name
Integrated into IBM Data Server is a DB2 ACS API driver
for the following storage hardware:
v IBM TotalStorage SAN Volume Controller
v IBM Enterprise Storage Server Model 800
v IBM System Storage DS6000
v IBM System Storage DS8000
v IBM System Storage N Series
v NetApp V-series
v NetApp FAS

If you have other storage hardware, and a DB2 ACS API
driver for that storage hardware, you can use the LIBRARY
parameter to specify the DB2 ACS API driver.

Chapter 30. DB2 commands 459

The value of the LIBRARY parameter is a fully-qualified
library file name.

OPTIONS

″options-string″
Specifies options to be used for the backup operation. The string
will be passed to the DB2 ACS API driver exactly as it was
entered, without the double quotation marks. You cannot use the
VENDOROPT database configuration parameter to specify
vendor-specific options for snapshot backup operations. You must
use the OPTIONS parameter of the backup utilities instead.

@ file-name
Specifies that the options to be used for the backup operation are
contained in a file located on the DB2 server. The string will be
passed to the vendor support library. The file must be a fully
qualified file name.

OPEN num-sessions SESSIONS
The number of I/O sessions to be created between DB2 and TSM or
another backup vendor product. This parameter has no effect when
backing up to tape, disk, or other local device.

TO dir | dev
A list of directory or tape device names. The full path on which the
directory resides must be specified. This target directory or device must
exist on the database server.

In a partitioned database, the target directory or device must exist on all
database partitions, and can optionally be a shared path. The directory or
device name may be specified using a database partition expression. For
more information about database partition expressions, see Automatic
storage databases.

This parameter can be repeated to specify the target directories and devices
that the backup image will span. If more than one target is specified
(target1, target2, and target3, for example), target1 will be opened first. The
media header and special files (including the configuration file, table space
table, and history file) are placed in target1. All remaining targets are
opened, and are then used in parallel during the backup operation.
Because there is no general tape support on Windows operating systems,
each type of tape device requires a unique device driver.

If the tape system does not support the ability to uniquely reference a
backup image, it is recommended that multiple backup copies of the same
database not be kept on the same tape.

LOAD library-name
The name of the shared library (DLL on Windows operating systems)
containing the vendor backup and restore I/O functions to be used. It can
contain the full path. If the full path is not given, it will default to the path
on which the user exit program resides.

WITH num-buffers BUFFERS
The number of buffers to be used. DB2 will automatically choose an
optimal value for this parameter unless you explicitly enter a value.
However, when creating a backup to multiple locations, a larger number of
buffers can be used to improve performance.

460 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

BUFFER buffer-size
The size, in 4 KB pages, of the buffer used when building the backup
image. DB2 will automatically choose an optimal value for this parameter
unless you explicitly enter a value. The minimum value for this parameter
is 8 pages.

If using tape with variable block size, reduce the buffer size to within the
range that the tape device supports. Otherwise, the backup operation
might succeed, but the resulting image might not be recoverable.

With most versions of Linux, using DB2’s default buffer size for backup
operations to a SCSI tape device results in error SQL2025N, reason code 75.
To prevent the overflow of Linux internal SCSI buffers, use this formula:

bufferpages <= ST_MAX_BUFFERS * ST_BUFFER_BLOCKS / 4

where bufferpages is the value you want to use with the BUFFER parameter,
and ST_MAX_BUFFERS and ST_BUFFER_BLOCKS are defined in the Linux kernel
under the drivers/scsi directory.

PARALLELISM n
Determines the number of table spaces which can be read in parallel by the
backup utility. DB2 will automatically choose an optimal value for this
parameter unless you explicitly enter a value.

UTIL_IMPACT_PRIORITY priority
Specifies that the backup will run in throttled mode, with the priority
specified. Throttling allows you to regulate the performance impact of the
backup operation. Priority can be any number between 1 and 100, with 1
representing the lowest priority, and 100 representing the highest priority.
If the UTIL_IMPACT_PRIORITY keyword is specified with no priority, the
backup will run with the default priority of 50. If
UTIL_IMPACT_PRIORITY is not specified, the backup will run in
unthrottled mode. An impact policy must be defined by setting the
util_impact_lim configuration parameter for a backup to run in throttled
mode.

COMPRESS
Indicates that the backup is to be compressed.

COMPRLIB name
Indicates the name of the library to be used to perform the
compression (e.g., db2compr.dll for Windows; libdb2compr.so for
Linux/UNIX systems). The name must be a fully qualified path
referring to a file on the server. If this parameter is not specified,
the default DB2 compression library will be used. If the specified
library cannot be loaded, the backup will fail.

EXCLUDE
Indicates that the compression library will not be stored in the
backup image.

COMPROPTS string
Describes a block of binary data that will be passed to the
initialization routine in the compression library. DB2 will pass this
string directly from the client to the server, so any issues of byte
reversal or code page conversion will have to be handled by the
compression library. If the first character of the data block is ’@’,
the remainder of the data will be interpreted by DB2 as the name
of a file residing on the server. DB2 will then replace the contents

Chapter 30. DB2 commands 461

of string with the contents of this file and will pass this new value
to the initialization routine instead. The maximum length for string
is 1024 bytes.

EXCLUDE LOGS
Specifies that the backup image should not include any log files. When
performing an offline backup operation, logs are excluded whether or not
this option is specified, with the exception of snapshot backups.

INCLUDE LOGS
Specifies that the backup image should include the range of log files
required to restore and roll forward this image to some consistent point in
time. This option is not valid for an offline backup, with the exception of
snapshot backups where this option is the default unless explicitly told to
exclude.

WITHOUT PROMPTING

Examples

Usage notes

The data in a backup cannot be protected by the database server. Make sure that
backups are properly safeguarded, particularly if the backup contains
LBAC-protected data.

When backing up to tape, use of a variable block size is currently not supported. If
you must use this option, ensure that you have well tested procedures in place that
enable you to recover successfully, using backup images that were created with a
variable block size.

When using a variable block size, you must specify a backup buffer size that is less
than or equal to the maximum limit for the tape devices that you are using. For
optimal performance, the buffer size must be equal to the maximum block size
limit of the device being used.

Snapshot backups should be complemented with regular disk backups in case of
failure in the filer/storage system.

As you regularly backup your database, you might accumulate very large database
backup images, many database logs and load copy images, all of which might be
taking up a large amount of disk space. Refer to “Managing recovery objects” for
information on how to manage these recovery objects.

BIND

Invokes the bind utility, which prepares SQL statements stored in the bind file
generated by the precompiler, and creates a package that is stored in the database.

Scope

This command can be issued from any database partition in db2nodes.cfg. It
updates the database catalogs on the catalog database partition. Its effects are
visible to all database partitions.

462 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Authorization

One of the following authorizations:
v dbadm authority
v If EXPLAIN ONLY is specified, EXPLAIN authority or an authority that

implicitly includes EXPLAIN is sufficient.
v If a package does not exist, BINDADD authority and:

– If the schema name of the package does not exist, IMPLICIT_SCHEMA
authority on the database.

– If the schema name of the package does exist, CREATEIN privilege on the
schema.

v If the package exists, one of the following privileges:
– ALTERIN privilege on the schema
– BIND privilege on the package

In addition, if capturing explain information using the EXPLAIN or the
EXPLSNAP clause, one of the following authorizations is required:
v INSERT privilege on the explain tables
v DATAACCESS authority

The user also needs all privileges required to compile any static SQL statements in
the application. Privileges granted to groups are not used for authorization
checking of static statements.

Required connection

Database. If implicit connect is enabled, a connection to the default database is
established.

Command syntax

For DB2 for Linux, Windows and UNIX

�� BIND filename �

�
ACTION ADD

REPLACE

RETAIN NO REPLVER version-id
YES

�

�
APREUSE NO

YES
BLOCKING UNAMBIG

ALL
NO

CLIPKG cli-packages
�

�
COLLECTION schema-name CONCURRENTACCESSRESOLUTION USE CURRENTLY COMMITTED

WAIT FOR OUTCOME

�

Chapter 30. DB2 commands 463

|
|

�
DATETIME DEF

EUR
ISO
JIS
LOC
USA

DEGREE 1
degree-of-parallelism
ANY

�

�
DYNAMICRULES RUN

BIND
INVOKERUN
INVOKEBIND
DEFINERUN
DEFINEBIND

EXPLAIN NO
ALL
REOPT
ONLY
YES

EXPLSNAP NO
ALL
REOPT
YES

�

�
FEDERATED NO

YES
FEDERATED_ASYNCHRONY ANY

number_of_atqs_in_the_plan

�

�

�

,

FUNCPATH schema-name

GENERIC string GRANT authid
PUBLIC

GRANT_GROUP group-name
GRANT_USER user-name
GRANT_ROLE role-name

�

�
DEF

INSERT BUF
ISOLATION CS

RR
RS
UR

MESSAGES message-file
�

�
OPTPROFILE optimization-profile-name OWNER authorization-id

�

�
QUALIFIER qualifier-name QUERYOPT optimization-level

REOPT NONE

REOPT ONCE
REOPT ALWAYS

�

�
SQLERROR CHECK

CONTINUE
NOPACKAGE

SQLWARN NO
YES

�

�
STATICREADONLY NO

YES VALIDATE BIND TRANSFORM GROUP groupname
RUN

��

For DB2 on servers other than Linux, Windows and UNIX

�� BIND filename �

�
ACTION ADD

REPLACE

RETAIN NO REPLVER version-id
YES

�

464 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

�
UNAMBIG

BLOCKING ALL
NO

CCSIDG double-ccsid CCSIDM mixed-ccsid
�

�
CCSIDS sbcs-ccsid CHARSUB DEFAULT

BIT
MIXED
SBCS

CLIPKG cli-packages
�

�
CNULREQD NO

YES
COLLECTION schema-name

�

�
CONCURRENTACCESSRESOLUTION USE CURRENTLY COMMITTED

WAIT FOR OUTCOME

�

�
(1)

DATETIME DEF
EUR
ISO
JIS
LOC
USA

DBPROTOCOL DRDA
PRIVATE

DEC 15
31

�

�
DECDEL COMMA

PERIOD
(2)

DEGREE 1
degree-of-parallelism
ANY

�

�
RUN

DYNAMICRULES BIND
INVOKERUN
INVOKEBIND
DEFINERUN
DEFINEBIND

ENCODING ASCII
EBCDIC
UNICODE
CCSID

�

�
(3)

EXPLAIN NO
YES

GENERIC string GRANT authid
PUBLIC

�

�
IMMEDWRITE NO

YES
PH1

INSERT BUF
DEF

CS
ISOLATION NC

RR
RS
UR

�

�
KEEPDYNAMIC YES

NO
MESSAGES message-file OPTHINT hint-id

�

Chapter 30. DB2 commands 465

�
OS400NAMING SYSTEM

SQL
OWNER authorization-id PATH schema-name

�

�
QUALIFIER qualifier-name RELEASE COMMIT

DEALLOCATE

REOPT NONE

REOPT ONCE
REOPT ALWAYS

�

�
REOPT VARS
NOREOPT VARS

SORTSEQ JOBRUN
HEX

SQLERROR CHECK
CONTINUE
NOPACKAGE

�

�
VALIDATE BIND

RUN
STRDEL APOSTROPHE

QUOTE
TEXT label

��

Notes:

1 If the server does not support the DATETIME DEF option, it is mapped to
DATETIME ISO.

2 The DEGREE option is only supported by DRDA Level 2 Application Servers.

3 DRDA defines the EXPLAIN option to have the value YES or NO. If the
server does not support the EXPLAIN YES option, the value is mapped to
EXPLAIN ALL.

Command parameters

filename
Specifies the name of the bind file that was generated when the application
program was precompiled, or a list file containing the names of several
bind files. Bind files have the extension .bnd. The full path name can be
specified.

If a list file is specified, the @ character must be the first character of the
list file name. The list file can contain several lines of bind file names. Bind
files listed on the same line must be separated by plus (+) characters, but a
+ cannot appear in front of the first file listed on each line, or after the last
bind file listed. For example,

/u/smith/sqllib/bnd/@all.lst

is a list file that contains the following bind files:
mybind1.bnd+mybind.bnd2+mybind3.bnd+

mybind4.bnd+mybind5.bnd+
mybind6.bnd+
mybind7.bnd

ACTION
Indicates whether the package can be added or replaced.

ADD Indicates that the named package does not exist, and that a new
package is to be created. If the package already exists, execution
stops, and a diagnostic error message is returned.

REPLACE
Indicates that the existing package is to be replaced by a new one
with the same package name and creator. This is the default value
for the ACTION option.

466 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

RETAIN
Indicates whether BIND and EXECUTE authorities are to
be preserved when a package is replaced. If ownership of
the package changes, the new owner grants the BIND and
EXECUTE authority to the previous package owner.

NO Does not preserve BIND and EXECUTE authorities
when a package is replaced. This value is not
supported by DB2.

YES Preserves BIND and EXECUTE authorities when a
package is replaced. This is the default value.

REPLVER version-id
Replaces a specific version of a package. The version
identifier specifies which version of the package is to be
replaced. If the specified version does not exist, an error is
returned. If the REPLVER option of REPLACE is not
specified, and a package already exists that matches the
package name, creator, and version of the package being
bound, that package will be replaced; if not, a new package
will be added.

APREUSE
Specifies whether static SQL access plans are to be reused. When this
option is enabled, the query compiler will attempt to reuse the access plans
for the statement in any existing packages during the bind and during
future implicit and explicit rebinds.

YES The query compiler will attempt to reuse the access plans for the
statements in the package. If there is an existing package, the query
compiler will attempt to reuse the access plan for every statement
that can be matched with a statement in the new bind file. For a
statement to match, the statement text must be identical and the
section number for the statement in the existing package must
match what the section number will be for the statement in the
new package.

NO The query compiler will not attempt to reuse access plans for the
statements in the package. This is the default setting.

BLOCKING
Specifies the type of row blocking for cursors. The blocking of row data
that contains references to LOB column data types is also supported in
environments where the Database Partitioning Feature (DPF) is enabled.

ALL For cursors that are specified with the FOR READ ONLY clause or
cursors not specified as FOR UPDATE, blocking occurs.

Ambiguous cursors are treated as read-only.

NO Blocking does not occur for any cursor.

For the definition of a read-only cursor and an ambiguous cursor,
refer to DECLARE CURSOR statement.

Ambiguous cursors are treated as updatable.

UNAMBIG
For cursors that are specified with the FOR READ ONLY clause,
blocking occurs.

Chapter 30. DB2 commands 467

Cursors that are not declared with the FOR READ ONLY or FOR
UPDATE clause which are not ambiguous and are read-only will
be blocked. Ambiguous cursors will not be blocked.

Ambiguous cursors are treated as updatable.

CCSIDG double-ccsid
An integer specifying the coded character set identifier (CCSID) to be used
for double byte characters in character column definitions (without a
specific CCSID clause) in CREATE and ALTER TABLE SQL statements.
This option is not supported by DB2 Database for Linux, UNIX, and
Windows. The DRDA server will use a system defined default value if this
option is not specified.

CCSIDM mixed-ccsid
An integer specifying the coded character set identifier (CCSID) to be used
for mixed byte characters in character column definitions (without a
specific CCSID clause) in CREATE and ALTER TABLE SQL statements.
This option is not supported by DB2 Database for Linux, UNIX, and
Windows. The DRDA server will use a system defined default value if this
option is not specified.

CCSIDS sbcs-ccsid
An integer specifying the coded character set identifier (CCSID) to be used
for single byte characters in character column definitions (without a
specific CCSID clause) in CREATE and ALTER TABLE SQL statements.
This option is not supported by DB2 Database for Linux, UNIX, and
Windows. The DRDA server will use a system defined default value if this
option is not specified.

CHARSUB
Designates the default character sub-type that is to be used for column
definitions in CREATE and ALTER TABLE SQL statements. This DRDA
precompile/bind option is not supported by DB2 Database for Linux,
UNIX, and Windows.

BIT Use the FOR BIT DATA SQL character sub-type in all new
character columns for which an explicit sub-type is not specified.

DEFAULT
Use the target system defined default in all new character columns
for which an explicit sub-type is not specified.

MIXED
Use the FOR MIXED DATA SQL character sub-type in all new
character columns for which an explicit sub-type is not specified.

SBCS Use the FOR SBCS DATA SQL character sub-type in all new
character columns for which an explicit sub-type is not specified.

CLIPKG cli-packages
An integer between 3 and 30 specifying the number of CLI large packages
to be created when binding CLI bind files against a database.

CNULREQD
This option is related to the LANGLEVEL precompile option, which is not
supported by DRDA. It is valid only if the bind file is created from a C or
a C++ application. This DRDA bind option is not supported by DB2
Database for Linux, UNIX, and Windows.

468 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

NO The application was coded on the basis of the LANGLEVEL SAA1
precompile option with respect to the null terminator in C string
host variables.

YES The application was coded on the basis of the LANGLEVEL MIA
precompile option with respect to the null terminator in C string
host variables.

COLLECTION schema-name
Specifies a 128-byte collection identifier for the package. If not specified,
the authorization identifier for the user processing the package is used.

CONCURRENTACCESSRESOLUTION
Specifies the concurrent access resolution to use for statements in the
package.

USE CURRENTLY COMMITTED
Specifies that the database manager can use the currently
committed version of the data for applicable scans when it is in the
process of being updated or deleted. Rows in the process of being
inserted can be skipped. This clause applies when the isolation
level in effect is Cursor Stability or Read Stability (for Read
Stability it skips uncommited inserts only) and is ignored
otherwise. Applicable scans include read-only scans that can be
part of a read-only statement as well as a non read-only statement.
The settings for the registry variables
DB2_EVALUNCOMMITTED, DB2_SKIPDELETED, and
DB2_SKIPINSERTED no longer apply.

WAIT FOR OUTCOME
Specifies Cursor Stability and higher scans to wait for the commit
or rollback when encountering data in the process of being
updated. Rows in the process of being inserted or deleted rows are
not skipped. The settings for the registry variables
DB2_EVALUNCOMMITTED, DB2_SKIPDELETED, and
DB2_SKIPINSERTED no longer apply.

DATETIME
Specifies the date and time format to be used.

DEF Use a date and time format associated with the territory code of
the database.

EUR Use the IBM standard for Europe date and time format.

ISO Use the date and time format of the International Standards
Organization.

JIS Use the date and time format of the Japanese Industrial Standard.

LOC Use the date and time format in local form associated with the
territory code of the database.

USA Use the IBM standard for U.S. date and time format.

DBPROTOCOL
Specifies what protocol to use when connecting to a remote site that is
identified by a three-part name statement. Supported by DB2 for OS/390
only. For a list of supported option values, refer to the documentation for
DB2 for OS/390.

DEC Specifies the maximum precision to be used in decimal arithmetic
operations. This DRDA precompile/bind option is not supported by DB2

Chapter 30. DB2 commands 469

Database for Linux, UNIX, and Windows. The DRDA server will use a
system defined default value if this option is not specified.

15 15-digit precision is used in decimal arithmetic operations.

31 31-digit precision is used in decimal arithmetic operations.

DECDEL
Designates whether a period (.) or a comma (,) will be used as the decimal
point indicator in decimal and floating point literals. This DRDA
precompile/bind option is not supported by DB2 Database for Linux,
UNIX, and Windows. The DRDA server will use a system defined default
value if this option is not specified.

COMMA
Use a comma (,) as the decimal point indicator.

PERIOD
Use a period (.) as the decimal point indicator.

DEGREE
Specifies the degree of parallelism for the execution of static SQL
statements in an SMP system. This option does not affect CREATE INDEX
parallelism.

1 The execution of the statement will not use parallelism.

degree-of-parallelism
Specifies the degree of parallelism with which the statement can be
executed, a value between 2 and 32 767 (inclusive).

ANY Specifies that the execution of the statement can involve
parallelism using a degree determined by the database manager.

DYNAMICRULES
Defines which rules apply to dynamic SQL at run time for the initial
setting of the values used for authorization ID and for the implicit
qualification of unqualified object references.

RUN Specifies that the authorization ID of the user executing the
package is to be used for authorization checking of dynamic SQL
statements. The authorization ID will also be used as the default
package qualifier for implicit qualification of unqualified object
references within dynamic SQL statements. This is the default
value.

BIND Specifies that all of the rules that apply to static SQL for
authorization and qualification are to be used at run time. That is,
the authorization ID of the package owner is to be used for
authorization checking of dynamic SQL statements, and the default
package qualifier is to be used for implicit qualification of
unqualified object references within dynamic SQL statements.

DEFINERUN
If the package is used within a routine context, the authorization
ID of the routine definer is to be used for authorization checking
and for implicit qualification of unqualified object references within
dynamic SQL statements within the routine.

If the package is used as a standalone application, dynamic SQL
statements are processed as if the package were bound with
DYNAMICRULES RUN.

470 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

DEFINEBIND
If the package is used within a routine context, the authorization
ID of the routine definer is to be used for authorization checking
and for implicit qualification of unqualified object references within
dynamic SQL statements within the routine.

If the package is used as a standalone application, dynamic SQL
statements are processed as if the package were bound with
DYNAMICRULES BIND.

INVOKERUN
If the package is used within a routine context, the current
statement authorization ID in effect when the routine is invoked is
to be used for authorization checking of dynamic SQL statements
and for implicit qualification of unqualified object references within
dynamic SQL statements within that routine.

If the package is used as a standalone application, dynamic SQL
statements are processed as if the package were bound with
DYNAMICRULES RUN.

INVOKEBIND
If the package is used within a routine context, the current
statement authorization ID in effect when the routine is invoked is
to be used for authorization checking of dynamic SQL statements
and for implicit qualification of unqualified object references within
dynamic SQL statements within that routine.

If the package is used as a standalone application, dynamic SQL
statements are processed as if the package were bound with
DYNAMICRULES BIND.

Because dynamic SQL statements will be using the authorization ID of the
package owner in a package exhibiting bind behavior, the binder of the
package should not have any authorities granted to them that the user of
the package should not receive. Similarly, when defining a routine that will
exhibit define behavior, the definer of the routine should not have any
authorities granted to them that the user of the package should not receive
since a dynamic statement will be using the authorization ID of the
routine’s definer.

The following dynamically prepared SQL statements cannot be used within
a package that was not bound with DYNAMICRULES RUN: GRANT,
REVOKE, ALTER, CREATE, DROP, COMMENT ON, RENAME, SET
INTEGRITY, and SET EVENT MONITOR STATE.

ENCODING
Specifies the encoding for all host variables in static statements in the plan
or package. Supported by DB2 for OS/390 only. For a list of supported
option values, refer to the documentation for DB2 for OS/390.

EXPLAIN
Stores information in the Explain tables about the access plans chosen for
each SQL statement in the package. DRDA does not support the ALL value
for this option.

NO Explain information will not be captured.

YES Explain tables will be populated with information about the chosen
access plan at prep/bind time for static statements and at run time
for incremental bind statements.

Chapter 30. DB2 commands 471

If the package is to be used for a routine and the package contains
incremental bind statements, then the routine must be defined as
MODIFIES SQL DATA. If this is not done, incremental bind
statements in the package will cause a run time error (SQLSTATE
42985).

REOPT
Explain information for each reoptimizable incremental bind SQL
statement is placed in the explain tables at run time. In addition,
explain information is gathered for reoptimizable dynamic SQL
statements at run time, even if the CURRENT EXPLAIN MODE
register is set to NO.

If the package is to be used for a routine, the routine must be
defined as MODIFIES SQL DATA, otherwise incremental bind and
dynamic statements in the package will cause a run time error
(SQLSTATE 42985).

ONLY The ONLY option allows you to explain statements without having
the privilege to execute them. The explain tables are populated but
no persistent package is created. If an existing package with the
same name and version is encountered during the bind process,
the existing package is neither dropped nor replaced even if you
specified ACTION REPLACE. If an error occurs during population
of the explain tables, explain information is not added for the
statement that returned the error and for any statements that
follow it.

ALL Explain information for each eligible static SQL statement will be
placed in the Explain tables at prep/bind time. Explain information
for each eligible incremental bind SQL statement will be placed in
the Explain tables at run time. In addition, Explain information
will be gathered for eligible dynamic SQL statements at run time,
even if the CURRENT EXPLAIN MODE register is set to NO.

If the package is to be used for a routine, the routine must be
defined as MODIFIES SQL DATA, otherwise incremental bind and
dynamic statements in the package will cause a run time error
(SQLSTATE 42985). This value for EXPLAIN is not supported by
DRDA.

EXPLSNAP
Stores Explain Snapshot information in the Explain tables. This DB2
precompile/bind option is not supported by DRDA.

NO An Explain Snapshot will not be captured.

YES An Explain Snapshot for each eligible static SQL statement will be
placed in the Explain tables at prep/bind time for static statements
and at run time for incremental bind statements.

If the package is to be used for a routine and the package contains
incremental bind statements, then the routine must be defined as
MODIFIES SQL DATA or incremental bind statements in the
package will cause a run time error (SQLSTATE 42985).

REOPT
Explain snapshot information for each reoptimizable incremental
bind SQL statement is placed in the explain tables at run time. In
addition, explain snapshot information is gathered for

472 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

reoptimizable dynamic SQL statements at run time, even if the
CURRENT EXPLAIN SNAPSHOT register is set to NO.

If the package is to be used for a routine, the routine must be
defined as MODIFIES SQL DATA, otherwise incremental bind and
dynamic statements in the package will cause a run time error
(SQLSTATE 42985).

ALL An Explain Snapshot for each eligible static SQL statement will be
placed in the Explain tables at prep/bind time. Explain snapshot
information for each eligible incremental bind SQL statement will
be placed in the Explain tables at run time. In addition, explain
snapshot information will be gathered for eligible dynamic SQL
statements at run time, even if the CURRENT EXPLAIN
SNAPSHOT register is set to NO.

If the package is to be used for a routine, then the routine must be
defined as MODIFIES SQL DATA, otherwise incremental bind and
dynamic statements in the package will cause a run time error
(SQLSTATE 42985).

FEDERATED
Specifies whether a static SQL statement in a package references a
nickname or a federated view. If this option is not specified and a static
SQL statement in the package references a nickname or a federated view, a
warning is returned and the package is created. This option is not
supported for DRDA.

NO A nickname or federated view is not referenced in the static SQL
statements of the package. If a nickname or federated view is
encountered in a static SQL statement during the prepare or bind
phase of this package, an error is returned and the package is not
created.

YES A nickname or federated view can be referenced in the static SQL
statements of the package. If no nicknames or federated views are
encountered in static SQL statements during the prepare or bind of
the package, no errors or warnings are returned and the package is
created.

FEDERATED_ASYNCHRONY
Specifies the maximum number of asynchrony table queues (ATQs) that
the federated server supports in the access plan for programs that use
embedded SQL.

ANY The optimizer determines the number of ATQs for the access plan.
The optimizer assigns an ATQ to all eligible SHIP or remote
pushdown operators in the plan. The value that is specified for
DB2_MAX_ASYNC_REQUESTS_PER_QUERY server option limits
the number of asynchronous requests.

number_of_atqs_in_the_plan
The number of ATQs in the plan. You specify a number in the
range 0 to 32767.

FUNCPATH
Specifies the function path to be used in resolving user-defined distinct
types and functions in static SQL. If this option is not specified, the default
function path is ″SYSIBM″,″SYSFUN″,USER where USER is the value of the
USER special register. This DB2 precompile/bind option is not supported
by DRDA.

Chapter 30. DB2 commands 473

schema-name
An SQL identifier, either ordinary or delimited, which identifies a
schema that exists at the application server. No validation that the
schema exists is made at precompile or at bind time. The same
schema cannot appear more than once in the function path. The
schema name SYSPUBLIC cannot be specified for the function
path. The number of schemas that can be specified is limited by
the length of the resulting function path, which cannot exceed 2048
bytes. The schema SYSIBM does not need to be explicitly specified;
it is implicitly assumed to be the first schema if it is not included
in the function path.

GENERIC string
Supports the binding of new options that are defined in the target
database, but are not supported by DRDA. Do not use this option to pass
bind options that are defined in BIND or PRECOMPILE. This option can
substantially improve dynamic SQL performance. The syntax is as follows:

generic "option1 value1 option2 value2 ..."

Each option and value must be separated by one or more blank spaces. For
example, if the target DRDA database is DB2 Universal Database, Version
8, one could use:

generic "explsnap all queryopt 3 federated yes"

to bind each of the EXPLSNAP, QUERYOPT, and FEDERATED options.

The maximum length of the string is 32768 bytes.

GRANT

Note: If more than one of the GRANT, GRANT_GROUP, GRANT_USER,
and GRANT_ROLE options are specified, only the last option specified is
executed.

authid Grants EXECUTE and BIND privileges to a specified user name,
role name or group ID. The SQL GRANT statement and its rules
are used to determine the type of authid when none of USER,
GROUP, or ROLE is provided to specify the type of the grantee on
a GRANT statement. For the rules, see GRANT (Role) statement.

PUBLIC
Grants EXECUTE and BIND privileges to PUBLIC.

GRANT_GROUP group-name
Grants EXECUTE and BIND privileges to a specified group name.

GRANT_USER user-name
Grants EXECUTE and BIND privileges to a specified user name.

GRANT_ROLE role-name
Grants EXECUTE and BIND privileges to a specified role name.

INSERT
Allows a program being precompiled or bound against a DB2 Enterprise
Server Edition server to request that data inserts be buffered to increase
performance.

BUF Specifies that inserts from an application should be buffered.

DEF Specifies that inserts from an application should not be buffered.

474 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

ISOLATION
Determines how far a program bound to this package can be isolated from
the effect of other executing programs.

CS Specifies Cursor Stability as the isolation level.

NC No Commit. Specifies that commitment control is not to be used.
This isolation level is not supported by DB2 Database for Linux,
UNIX, and Windows.

RR Specifies Repeatable Read as the isolation level.

RS Specifies Read Stability as the isolation level. Read Stability ensures
that the execution of SQL statements in the package is isolated
from other application processes for rows read and changed by the
application.

UR Specifies Uncommitted Read as the isolation level.

IMMEDWRITE
Indicates whether immediate writes will be done for updates made to
group buffer pool dependent pagesets or database partitions. Supported by
DB2 for OS/390 only. For a list of supported option values, refer to the
documentation for DB2 for OS/390.

KEEPDYNAMIC
Specifies whether dynamic SQL statements are to be kept after commit
points. Supported by DB2 for OS/390 only. For a list of supported option
values, refer to the documentation for DB2 for OS/390.

MESSAGES message-file
Specifies the destination for warning, error, and completion status
messages. A message file is created whether the bind is successful or not. If
a message file name is not specified, the messages are written to standard
output. If the complete path to the file is not specified, the current
directory is used. If the name of an existing file is specified, the contents of
the file are overwritten.

OPTHINT
Controls whether query optimization hints are used for static SQL.
Supported by DB2 for OS/390 only. For a list of supported option values,
refer to the documentation for DB2 for OS/390.

OPTPROFILE optimization-profile-name
Specifies the name of an existing optimization profile to be used for all
static statements in the package. The default value of the option is an
empty string. The value also applies as the default for dynamic preparation
of DML statements for which the CURRENT OPTIMIZATION PROFILE
special register is null. If the specified name is unqualified, it is an SQL
identifier, which is implicitly qualified by the QUALIFIER bind option.

The BIND command does not process the optimization file, but only
validates that the name is syntactically valid. Therefore if the optimization
profile does not exist or is invalid, an SQL0437W warning with reason
code 13 will not occur until a DML statement is optimized using that
optimization profile.

OS400NAMING
Specifies which naming option is to be used when accessing DB2 for
System i data. Supported by DB2 for System i only. For a list of supported
option values, refer to the documentation for DB2 for System i.

Chapter 30. DB2 commands 475

Because of the slashes used as separators, a DB2 utility can still report a
syntax error at execution time on certain SQL statements which use the
System i system naming convention, even though the utility might have
been precompiled or bound with the OS400NAMING SYSTEM option. For
example, the Command Line Processor will report a syntax error on an
SQL CALL statement if the System i system naming convention is used,
whether or not it has been precompiled or bound using the
OS400NAMING SYSTEM option.

OWNER authorization-id
Designates a 128-byte authorization identifier for the package owner. The
owner must have the privileges required to execute the SQL statements
contained in the package. Only a user with DBADM authority can specify
an authorization identifier other than the user ID. The default value is the
authorization ID of the invoker of the precompile/bind process. SYSIBM,
SYSCAT, and SYSSTAT are not valid values for this option. The
authorization-id must be a user. A role or a group cannot be specified using
the OWNER option.

PATH Specifies the function path to be used in resolving user-defined distinct
types and functions in static SQL. If this option is not specified, the default
function path is ″SYSIBM″,″SYSFUN″,USER where USER is the value of the
USER special register.

schema-name
An SQL identifier, either ordinary or delimited, which identifies a
schema that exists at the application server. No validation that the
schema exists is made at precompile or at bind time.

QUALIFIER qualifier-name
Provides a 128-byte implicit qualifier for unqualified objects contained in
the package. The default is the owner’s authorization ID, whether or not
owner is explicitly specified.

QUERYOPT optimization-level
Indicates the desired level of optimization for all static SQL statements
contained in the package. The default value is 5. The SET CURRENT
QUERY OPTIMIZATION statement describes the complete range of
optimization levels available. This DB2 precompile/bind option is not
supported by DRDA.

RELEASE
Indicates whether resources are released at each COMMIT point, or when
the application terminates. This DRDA precompile/bind option is not
supported by DB2 Database for Linux, UNIX, and Windows.

COMMIT
Release resources at each COMMIT point. Used for dynamic SQL
statements.

DEALLOCATE
Release resources only when the application terminates.

SORTSEQ
Specifies which sort sequence table to use on System i. Supported by DB2
for System i only. For a list of supported option values, refer to the
documentation for DB2 for System i.

SQLERROR
Indicates whether to create a package or a bind file if an error is
encountered.

476 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

CHECK
Specifies that the target system performs all syntax and semantic
checks on the SQL statements being bound. A package will not be
created as part of this process. If, while binding, an existing
package with the same name and version is encountered, the
existing package is neither dropped nor replaced even if ACTION
REPLACE was specified.

CONTINUE
Creates a package, even if errors occur when binding SQL
statements. Those statements that failed to bind for authorization
or existence reasons can be incrementally bound at execution time
if VALIDATE RUN is also specified. Any attempt to execute them
at run time generates an error (SQLCODE -525, SQLSTATE 51015).

NOPACKAGE
A package or a bind file is not created if an error is encountered.

REOPT
Specifies whether to have DB2 determine an access path at run time using
values for host variables, parameter markers, global variables, and special
registers. Valid values are:

NONE
The access path for a given SQL statement containing host
variables, parameter markers, global variables, or special registers
will not be optimized using real values. The default estimates for
the these variables is used, and the plan is cached and will be used
subsequently. This is the default value.

ONCE The access path for a given SQL statement will be optimized using
the real values of the host variables, parameter markers, global
variables, or special registers when the query is first executed. This
plan is cached and used subsequently.

ALWAYS
The access path for a given SQL statement will always be compiled
and reoptimized using the values of the host variables, parameter
markers, global variables, or special registers that are known each
time the query is executed.

REOPT | NOREOPT VARS
These options have been replaced by REOPT ALWAYS and REOPT NONE;
however, they are still supported for previous compatibility. Specifies
whether to have DB2 determine an access path at run time using values for
host variables, global variables, parameter markers, and special registers.
Supported by DB2 for OS/390 only. For a list of supported option values,
refer to the documentation for DB2 for OS/390.

SQLWARN
Indicates whether warnings will be returned from the compilation of
dynamic SQL statements (via PREPARE or EXECUTE IMMEDIATE), or
from describe processing (via PREPARE...INTO or DESCRIBE).

NO Warnings will not be returned from the SQL compiler.

YES Warnings will be returned from the SQL compiler.

SQLCODE +236, +237 and +238 are exceptions. They are returned
regardless of the SQLWARN option value.

Chapter 30. DB2 commands 477

STATICREADONLY
Determines whether static cursors will be treated as being READ ONLY.
This DB2 precompile/bind option is not supported by DRDA.

NO All static cursors will take on the attributes as would normally be
generated given the statement text and the setting of the
LANGLEVEL precompile option. This is the default value.

YES Any static cursor that does not contain the FOR UPDATE or FOR
READ ONLY clause will be considered READ ONLY.

STRDEL
Designates whether an apostrophe (’) or double quotation marks (″) will be
used as the string delimiter within SQL statements. This DRDA
precompile/bind option is not supported by DB2 Database for Linux,
UNIX, and Windows. The DRDA server will use a system defined default
value if this option is not specified.

APOSTROPHE
Use an apostrophe (’) as the string delimiter.

QUOTE
Use double quotation marks (″) as the string delimiter.

TEXT label
The description of a package. Maximum length is 255 characters. The
default value is blanks. This DRDA precompile/bind option is not
supported by DB2 Database for Linux, UNIX, and Windows.

TRANSFORM GROUP
Specifies the transform group name to be used by static SQL statements for
exchanging user-defined structured type values with host programs. This
transform group is not used for dynamic SQL statements or for the
exchange of parameters and results with external functions or methods.
This option is not supported by DRDA.

groupname
An SQL identifier of up to 18 bytes in length. A group name
cannot include a qualifier prefix and cannot begin with the prefix
SYS since this is reserved for database use. In a static SQL
statement that interacts with host variables, the name of the
transform group to be used for exchanging values of a structured
type is as follows:
v The group name in the TRANSFORM GROUP bind option, if

any
v The group name in the TRANSFORM GROUP prep option as

specified at the original precompilation time, if any
v The DB2_PROGRAM group, if a transform exists for the given

type whose group name is DB2_PROGRAM
v No transform group is used if none of the above conditions

exist.

The following errors are possible during the bind of a static SQL
statement:
v SQLCODE yyyyy, SQLSTATE xxxxx: A transform is needed, but

no static transform group has been selected.

478 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v SQLCODE yyyyy, SQLSTATE xxxxx: The selected transform
group does not include a necessary transform (TO SQL for input
variables, FROM SQL for output variables) for the data type that
needs to be exchanged.

v SQLCODE yyyyy, SQLSTATE xxxxx: The result type of the
FROM SQL transform is not compatible with the type of the
output variable, or the parameter type of the TO SQL transform
is not compatible with the type of the input variable.

In these error messages, yyyyy is replaced by the SQL error code,
and xxxxx by the SQL state code.

VALIDATE
Determines when the database manager checks for authorization errors
and object not found errors. The package owner authorization ID is used
for validity checking.

BIND Validation is performed at precompile/bind time. If all objects do
not exist, or all authority is not held, error messages are produced.
If SQLERROR CONTINUE is specified, a package/bind file is
produced despite the error message, but the statements in error are
not executable.

RUN Validation is attempted at bind time. If all objects exist, and all
authority is held, no further checking is performed at execution
time.

If all objects do not exist, or all authority is not held at
precompile/bind time, warning messages are produced, and the
package is successfully bound, regardless of the SQLERROR
CONTINUE option setting. However, authority checking and
existence checking for SQL statements that failed these checks
during the precompile/bind process can be redone at execution
time.

Examples

The following example binds myapp.bnd (the bind file generated when the
myapp.sqc program was precompiled) to the database to which a connection has
been established:

db2 bind myapp.bnd

Any messages resulting from the bind process are sent to standard output.

Usage notes

Binding a package using the REOPT option with the ONCE or ALWAYS value
specified might change the static and dynamic statement compilation and
performance.

Binding can be done as part of the precompile process for an application program
source file, or as a separate step at a later time. Use BIND when binding is
performed as a separate process.

The name used to create the package is stored in the bind file, and is based on the
source file name from which it was generated (existing paths or extensions are
discarded). For example, a precompiled source file called myapp.sql generates a
default bind file called myapp.bnd and a default package name of MYAPP. However,

Chapter 30. DB2 commands 479

the bind file name and the package name can be overridden at precompile time by
using the BINDFILE and the PACKAGE options.

Binding a package with a schema name that does not already exist results in the
implicit creation of that schema. The schema owner is SYSIBM. The CREATEIN
privilege on the schema is granted to PUBLIC.

BIND executes under the transaction that was started. After performing the bind,
BIND issues a COMMIT or a ROLLBACK to terminate the current transaction and
start another one.

Binding stops if a fatal error or more than 100 errors occur. If a fatal error occurs,
the utility stops binding, attempts to close all files, and discards the package.

When a package exhibits bind behavior, the following will be true:
1. The implicit or explicit value of the BIND option OWNER will be used for

authorization checking of dynamic SQL statements.
2. The implicit or explicit value of the BIND option QUALIFIER will be used as

the implicit qualifier for qualification of unqualified objects within dynamic
SQL statements.

3. The value of the special register CURRENT SCHEMA has no effect on
qualification.

In the event that multiple packages are referenced during a single connection, all
dynamic SQL statements prepared by those packages will exhibit the behavior as
specified by the DYNAMICRULES option for that specific package and the
environment they are used in.

Parameters displayed in the SQL0020W message are correctly noted as errors, and
will be ignored as indicated by the message.

If an SQL statement is found to be in error and the BIND option SQLERROR
CONTINUE was specified, the statement will be marked as invalid. In order to
change the state of the SQL statement, another BIND must be issued . Implicit and
explicit rebind will not change the state of an invalid statement. In a package
bound with VALIDATE RUN, a statement can change from static to incremental
bind or incremental bind to static across implicit and explicit rebinds depending on
whether or not object existence or authority problems exist during the rebind.

The privileges from the roles granted to the authorization identifier used to bind
the package (the value of the OWNER bind option) or to PUBLIC, are taken into
account when binding a package. Roles acquired through groups, in which the
authorization identifier used to bind the package is a member, will not be used.

For an embedded SQL program, if the bind option is not explicitly specified the
static statements in the package are bound using the FEDERATED_ASYNC
configuration parameter. If the FEDERATED_ASYNCHRONY bind option is
specified explicitly, that value is used for binding the packages and is also the
initial value of the special register. Otherwise, the value of the database manager
configuration parameter is used as the initial value of the special register. The
FEDERATED_ASYNCHRONY bind option influences dynamic SQL only when it is
explicitly set.

The value of the FEDERATED_ASYNCHRONY bind option is recorded in the
FEDERATED_ASYNCHRONY column in the SYSCAT.PACKAGES catalog table.

480 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

When the bind option is not explicitly specified, the value of FEDERATED_ASYNC
configuration parameter is used and the catalog shows a value of -2 for the
FEDERATED_ASYNCHRONY column.

If the FEDERATED_ASYNCHRONY bind option is not explicitly specified when a
package is bound, and if this package is implicitly or explicitly rebound, the
package is rebound using the current value of the FEDERATED_ASYNC
configuration parameter.

CATALOG DATABASE
Stores database location information in the system database directory. The database
can be located either on the local workstation or on a remote database partition
server.

Scope

In a partitioned database environment, when cataloging a local database into the
system database directory, this command must be issued from a database partition
on the server where the database resides.

Authorization

One of the following:
v SYSADM
v SYSCTRL

Required connection

None. Directory operations affect the local directory only.

Command syntax

�� CATALOG DATABASE
DB

database-name
AS alias ON path

drive
AT NODE nodename

�

�
AUTHENTICATION SERVER

CLIENT
SERVER_ENCRYPT
SERVER_ENCRYPT_AES
KERBEROS TARGET PRINCIPAL principalname
DATA_ENCRYPT
GSSPLUGIN

�

�
WITH ″comment-string″

��

Command parameters

DATABASE database-name
Specifies the name of the database to catalog.

Chapter 30. DB2 commands 481

AS alias
Specifies an alias as an alternate name for the database being cataloged. If
an alias is not specified, the database manager uses database-name as the
alias.

ON path | drive
Specifies the path on which the database being cataloged resides. On
Windows operating systems, may instead specify the letter of the drive on
which the database being cataloged resides (if it was created on a drive,
not on a specific path).

AT NODE nodename
Specifies the name of the database partition server where the database
being cataloged resides. This name should match the name of an entry in
the node directory. If the node name specified does not exist in the node
directory, a warning is returned, but the database is cataloged in the
system database directory. The node name should be cataloged in the node
directory if a connection to the cataloged database is desired.

AUTHENTICATION
The authentication value is stored for remote databases (it appears in the
output from the LIST DATABASE DIRECTORY command) but it is not
stored for local databases.

Specifying an authentication type can result in a performance benefit.

SERVER
Specifies that authentication takes place on the database partition
server containing the target database.

CLIENT
Specifies that authentication takes place on the database partition
server where the application is invoked.

SERVER_ENCRYPT
Specifies that authentication takes place on the database partition
server containing the target database, and that user IDs and
passwords are encrypted at the source. User IDs and passwords
are decrypted at the target, as specified by the authentication type
cataloged at the source.

KERBEROS
Specifies that authentication takes place using Kerberos Security
Mechanism.

TARGET PRINCIPAL principalname
Fully qualified Kerberos principal name for the target
server; that is, the fully qualified Kerberos principal of the
DB2 instance owner in the form of name/instance@REALM.
For Windows 2000, Windows XP, and Windows Server
2003, this is the logon account of the DB2 server service in
the form of userid@DOMAIN, userid@xxx.xxx.xxx.com or
domain\userid.

DATA_ENCRYPT
Specifies that authentication takes place on the database partition
server containing the target database, and that connections must
use data encryption.

482 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

GSSPLUGIN
Specifies that authentication takes place using an external GSS
API-based plug-in security mechanism.

SERVER_ENCRYPT_AES
Specifies that authentication takes place on the database partition
server containing the target database, and that user IDs and
passwords are encrypted with an Advanced Encryption Standard
(AES) encryption algorithm at the source and decrypted at the
target.

WITH ″comment-string″
Describes the database or the database entry in the system database
directory. The maximum length of a comment string is 30 characters. A
carriage return or a line feed character is not permitted. The comment text
must be enclosed by double quotation marks.

Examples
db2 catalog database sample on /databases/sample

with "Sample Database"

Usage notes

Use CATALOG DATABASE to catalog databases located on local or remote
database partition servers, recatalog databases that were uncataloged previously, or
maintain multiple aliases for one database (regardless of database location).

DB2 automatically catalogs databases when they are created. It catalogs an entry
for the database in the local database directory and another entry in the system
database directory. If the database is created from a remote client (or a client which
is executing from a different instance on the same machine), an entry is also made
in the system database directory at the client instance.

If neither path nor database partition server name is specified, the database is
assumed to be local, and the location of the database is assumed to be that
specified in the database manager configuration parameter dftdbpath.

Databases on the same database partition server as the database manager instance
are cataloged as indirect entries. Databases on other database partition servers are
cataloged as remote entries.

CATALOG DATABASE automatically creates a system database directory if one
does not exist. The system database directory is stored on the path that contains
the database manager instance that is being used, and is maintained outside of the
database.

List the contents of the system database directory using the LIST DATABASE
DIRECTORY command. To list the contents of the local database directory use the
LIST DATABASE DIRECTORY ON path, where path is where the database was
created.

If directory caching is enabled, database, node and DCS directory files are cached
in memory. To see if directory caching is enabled, check the value for the dir_cache
directory cache support configuration parameter in the output from the GET
DATABASE MANAGER CONFIGURATION command. An application’s directory
cache is created during its first directory lookup. Since the cache is only refreshed

Chapter 30. DB2 commands 483

when the application modifies any of the directory files, directory changes made
by other applications might not be effective until the application has restarted.

To refresh the CLP’s directory cache, use the TERMINATE command. To refresh
the database manager’s shared cache, stop (db2stop) and then restart (db2start) the
database manager. To refresh the directory cache for another application, stop and
then restart that application.

CREATE DATABASE

The CREATE DATABASE command initializes a new database with an optional
user-defined collating sequence, creates the three initial table spaces, creates the
system tables, and allocates the recovery log file. When you initialize a new
database, the AUTOCONFIGURE command is issued by default.

Note: When the instance and database directories are created by the DB2 database
manager, the permissions are accurate and should not be changed.

When the CREATE DATABASE command is issued, the Configuration Advisor
also runs automatically. This means that the database configuration parameters are
automatically tuned for you according to your system resources. In addition,
Automated Runstats is enabled. To disable the Configuration Advisor from
running at database creation, refer to the db2_enable_autoconfig_default registry
variable. To disable Automated Runstats, refer to auto_runstats database
configuration parameter.

Adaptive Self Tuning Memory is also enabled by default for single partition
databases. To disable Adaptive Self Tuning Memory by default, refer to the
self_tuning_mem database configuration parameter (see self_tuning_mem - Self-tuning
memory configuration parameter). For multi-partition databases, Adaptive Self Tuning
Memory is disabled by default.

If no code set is specified on the CREATE DATABASE command, then the
collations allowed are: SYSTEM, IDENTITY_16BIT, UCA400_NO, UCA400_LSK,
UCA400_LTH, language-aware-collation, and locale-aware-collation (SQLCODE -1083).
The default code set for a database is UTF-8. If a particular code set and territory
is needed for a database, the desired code set and territory should be specified in
the CREATE DATABASE command.

This command is not valid on a client.

Scope

In a partitioned database environment, this command affects all database partitions
that are listed in the db2nodes.cfg file.

The database partition from which this command is issued becomes the catalog
database partition for the new database.

Authorization

You must have one of the following:
v sysadm

v sysctrl

484 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Required connection

Instance. To create a database at another (remote) database partition server, you
must first attach to that server. A database connection is temporarily established by
this command during processing.

Command syntax

�� CREATE DATABASE
DB

database-name
AT DBPARTITIONNUM

Create Database options

��

Create Database options:

AUTOMATIC STORAGE--YES

AUTOMATIC STORAGE--NO

�

,

ON path
drive DBPATH ON path

drive

�

�
ALIAS database-alias USING CODESET codeset TERRITORY territory

�

�
SYSTEM

COLLATE USING COMPATIBILITY
IDENTITY
IDENTITY_16BIT
UCA400_NO
UCA400_LSK
UCA400_LTH
language-aware-collation
locale-sensitive-collation
NLSCHAR

PAGESIZE 4096

PAGESIZE integer
K

�

�
NUMSEGS numsegs DFT_EXTENT_SZ dft_extentsize RESTRICTIVE

�

�
CATALOG TABLESPACE tblspace-defn USER TABLESPACE tblspace-defn

�

�
TEMPORARY TABLESPACE tblspace-defn WITH ″comment-string″

�

�

�

DB ONLY
AUTOCONFIGURE APPLY DB AND DBM

NONE

USING input-keyword param-value

tblspace-defn:

MANAGED BY �

Chapter 30. DB2 commands 485

� �

�

,

SYSTEM USING (’ container-string ’)
,

DATABASE USING (FILE ’ container-string ’ number-of-pages)
DEVICE

AUTOMATIC STORAGE

�

�
EXTENTSIZE number-of-pages PREFETCHSIZE number-of-pages

�

�
OVERHEAD number-of-milliseconds TRANSFERRATE number-of-milliseconds

�

�
NO FILE SYSTEM CACHING

FILE SYSTEM CACHING AUTORESIZE NO
YES

INITIALSIZE integer K
M
G

�

�
INCREASESIZE integer PERCENT

K
M
G

MAXSIZE NONE
integer K

M
G

Note:

1. The combination of the code set and territory values must be valid.
2. Not all collating sequences are valid with every code set and territory

combination.
3. The table space definitions specified on CREATE DATABASE apply to all

database partitions on which the database is being created. They cannot be
specified separately for each database partition. If the table space definitions are
to be created differently on particular database partitions, the CREATE
TABLESPACE statement must be used.
When defining containers for table spaces, $N can be used. $N will be replaced
by the database partition number when the container is actually created. This is
required if the user wants to specify containers in a multiple logical partition
database.

4. The AUTOCONFIGURE option requires sysadm authority.

Command parameters

DATABASE database-name
A name to be assigned to the new database. This must be a unique name
that differentiates the database from any other database in either the local
database directory or the system database directory. The name must
conform to naming conventions for databases. Specifically, the name must
not contain any space characters.

AT DBPARTITIONNUM
Specifies that the database is to be created only on the database partition
that issues the command. You do not specify this option when you create a
new database. You can use it to recreate a database partition that you
dropped because it was damaged. After you use the CREATE DATABASE

486 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

command with the AT DBPARTITIONNUM option, the database at this
database partition is in the restore-pending state. You must immediately
restore the database on this database partition server. This parameter is not
intended for general use. For example, it should be used with RESTORE
DATABASE command if the database partition at a database partition
server was damaged and must be recreated. Improper use of this
parameter can cause inconsistencies in the system, so it should only be
used with caution.

If this parameter is used to recreate a database partition that was dropped
(because it was damaged), the database at this database partition will be in
the restore-pending state. After recreating the database partition, the
database must immediately be restored on this database partition.

AUTOMATIC STORAGE NO | YES
Specifies that automatic storage is being explicitly disabled or enabled for
the database. The default value is YES. If the AUTOMATIC STORAGE
clause is not specified, automatic storage is implicitly enabled by default.

NO Automatic storage is not being enabled for the database.

YES Automatic storage is being enabled for the database.

ON path or drive
The meaning of this option depends on the value of the AUTOMATIC
STORAGE option.
v If AUTOMATIC STORAGE NO is specified, automatic storage is

disabled for the database. In this case, only one path can be included as
part of the ON option, and it specifies the path on which to create the
database. If a path is not specified, the database is created on the default
database path that is specified in the database manager configuration file
(dftdbpath parameter). This behavior matches that of DB2 Universal
Database Version 8.2 and earlier.

v Otherwise, automatic storage is enabled for the database by default. In
this case, multiple paths may be listed here, each separated by a comma.
These are referred to as storage paths and are used to hold table space
containers for automatic storage table spaces. For multi-partition
databases the same storage paths will be used on all partitions.
The DBPATH ON option specifies on which paths to create the database.
If the DBPATH ON option is not specified, the database is created on the
first path listed in the ON option. If no paths are specified with the ON
option, the database is created on the default database path that is
specified in the database manager configuration file (dftdbpath
parameter). This will also be used as the location for the single storage
path associated with the database.
The database path is the location where a hierarchical directory structure
is created. The structure holds the following files needed for the
operation of the database:
– Buffer pool information
– Table space information
– Storage path information
– Database configuration information
– History file information regarding backups, restores, loading of tables,

reorganization of tables, altering of table spaces, and other database
changes

– Log control files with information about active logs

Chapter 30. DB2 commands 487

The DBPATH ON option can be used to place these files and
information in a directory that is separate from the storage paths where
the database data is kept. It is suggested that the DBPATH ON option be
used when automatic storage is enabled to keep the database
information separate from the database data.

The maximum length of a path is 175 characters.

For MPP systems, a database should not be created in an NFS-mounted
directory. If a path is not specified, ensure that the dftdbpath database
manager configuration parameter is not set to an NFS-mounted path (for
example, on UNIX based systems, it should not specify the $HOME directory
of the instance owner). The path specified for this command in an MPP
system cannot be a relative path. Also, all paths specified as part of the ON
option must exist on all database partitions.

A given database path or storage path must exist and be accessible on each
database partition.

DBPATH ON path or drive
If automatic storage is enabled, the DBPATH ON option specifies the path
on which to create the database. If automatic storage is enabled and the
DBPATH ON option is not specified, the database is created on the first
path listed with the ON option.

The maximum length of a database path is 215 characters and the
maximum length of a storage path is 175 characters.

ALIAS database-alias
An alias for the database in the system database directory. If no alias is
provided, the specified database name is used.

USING CODESET codeset
Specifies the code set to be used for data entered into this database. After
you create the database, you cannot change the specified code set.

TERRITORY territory
Specifies the territory identifier or locale identifier to be used for data
entered into this database. After you create the database, you cannot
change the specified territory. The combination of the code set and territory
or locale values must be valid.

COLLATE USING

Identifies the type of collating sequence to be used for the database. Once
the database has been created, the collating sequence cannot be changed.

In a Unicode database, the catalog tables and views are always created
with the IDENTITY collation, regardless of the collation specified in the
COLLATE USING clause. In non-Unicode databases, the catalog tables and
views are created with the database collation.

COMPATIBILITY
The DB2 Version 2 collating sequence. Some collation tables have
been enhanced. This option specifies that the previous version of
these tables is to be used.

IDENTITY
Identity collating sequence, in which strings are compared byte for
byte. This is the default for Unicode databases.

IDENTITY_16BIT
CESU-8 (Compatibility Encoding Scheme for UTF-16: 8-Bit)

488 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

collation sequence as specified by the Unicode Technical Report
#26, which is available at the Unicode Consortium Web site
(www.unicode.org). This option can only be specified when
creating a Unicode database.

UCA400_NO
The UCA (Unicode Collation Algorithm) collation sequence that is
based on the Unicode Standard version 4.0.0 with normalization
implicitly set to ON. Details of the UCA can be found in the
Unicode Technical Standard #10, which is available at the Unicode
Consortium Web site (www.unicode.org). This option can only be
used when creating a Unicode database.

UCA400_LSK
The UCA (Unicode Collation Algorithm) collation sequence based
on the Unicode Standard version 4.0.0 but will sort Slovak
characters in the appropriate order. Details of the UCA can be
found in the Unicode Technical Standard #10, which is available at
the Unicode Consortium Web site (www.unicode.org). This option
can only be used when creating a Unicode database.

UCA400_LTH
The UCA (Unicode Collation Algorithm) collation sequence that is
based on the Unicode Standard version 4.0.0 but will sort all Thai
characters according to the Royal Thai Dictionary order. Details of
the UCA can be found in the Unicode Technical Standard #10
available at the Unicode Consortium Web site (www.unicode.org).
This option can only be used when creating a Unicode database.
This collator might order Thai data differently from the NLSCHAR
collator option.

language-aware-collation
This option can only be used for Unicode databases. The database
collating sequence is based on the SYSTEM collation for a
non-Unicode database. This string must be of the format
SYSTEM_codepage_territory. If the string supplied is invalid, the
create database will fail (SQLCODE -204; object not found). See
Language-aware collations for Unicode data for more information and
for the naming of system based collations.

Note: When the CREATE DATABASE command is performed
against a Version 9.0 server, this option cannot be used. By default,
a Unicode database on such a server will be created with SYSTEM
collation.

locale-sensitive-collation
This option can only be used for Unicode databases. See Unicode
Collation Algorithm based collations for more information and for the
naming of locale-sensitive UCA-based collations. If the collation
name provided is invalid, the CREATE DATABASE command
execution will fail (SQLCODE -204).

NLSCHAR
System-defined collating sequence using the unique collation rules
for the specific code set/territory.

This option can only be used with the Thai code page (CP874). If
this option is specified in non-Thai environments, the command
will fail and return the error SQL1083N with Reason Code 4.

Chapter 30. DB2 commands 489

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org
http://www.unicode.org

SYSTEM
This is the default option when creating a database. For
non-Unicode databases, the collating sequence is based on the
database territory. For Unicode databases, this option maps to a
language-aware collation, based on the client code set and territory.
If an appropriate language-aware collation is unavailable, then the
IDENTITY collation is used.

PAGESIZE integer
Specifies the page size of the default buffer pool along with the initial table
spaces (SYSCATSPACE, TEMPSPACE1, USERSPACE1) when the database
is created. This also represents the default page size for all future CREATE
BUFFERPOOL and CREATE TABLESPACE statements. The valid values for
integer without the suffix K are 4 096, 8 192, 16 384, or 32 768. The valid
values for integer with the suffix K are 4, 8, 16, or 32. At least one space is
required between the integer and the suffix K. The default is a page size of
4 096 bytes (4 K).

NUMSEGS numsegs
Specifies the number of directories (table space containers) that will be
created and used to store the database table files for any default SMS table
spaces. This parameter does not affect automatic storage table spaces, DMS
table spaces, any SMS table spaces with explicit creation characteristics
(created when the database is created), or any SMS table spaces explicitly
created after the database is created.

DFT_EXTENT_SZ dft_extentsize
Specifies the default extent size of table spaces in the database.

RESTRICTIVE
If the RESTRICTIVE option is present it causes the RESTRICT_ACCESS
database configuration parameter to be set to YES and no privileges or
authorities are automatically granted to PUBLIC. If the RESTRICTIVE
option is not present then the RESTRICT_ACCESS database configuration
parameter is set to NO and all of the following privileges are automatically
granted to PUBLIC.
v BIND on all packages created in the NULLID schema
v BINDADD
v CONNECT
v CREATEIN on schema SQLJ
v CREATEIN on schema NULLID
v CREATETAB
v EXECUTE with GRANT on all procedures in schema SQLJ
v EXECUTE with GRANT on all functions and procedures in schema

SYSFUN
v EXECUTE with GRANT on all functions and procedures in schema

SYSPROC (except audit routines)
v EXECUTE on all table functions in schema SYSIBM
v EXECUTE on all other procedures in schema SYSIBM
v EXECUTE on all packages created in the NULLID schema
v IMPLICIT_SCHEMA
v SELECT access to the SYSIBM catalog tables
v SELECT access to the SYSCAT catalog views
v SELECT access to the SYSSTAT catalog views

490 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v UPDATE access to the SYSSTAT catalog views
v USAGE on the SYSDEFAULTUSERWORKLOAD workload
v USE on table space USERSPACE1

CATALOG TABLESPACE tblspace-defn
Specifies the definition of the table space that will hold the catalog tables,
SYSCATSPACE. If not specified and automatic storage is not enabled for
the database, SYSCATSPACE is created as a System Managed Space (SMS)
table space with numsegs number of directories as containers, and with an
extent size of dft_extentsize. For example, the following containers would be
created if numsegs were specified to be 5:

/u/smith/smith/NODE0000/SQL00001/SQLT0000.0
/u/smith/smith/NODE0000/SQL00001/SQLT0000.1
/u/smith/smith/NODE0000/SQL00001/SQLT0000.2
/u/smith/smith/NODE0000/SQL00001/SQLT0000.3
/u/smith/smith/NODE0000/SQL00001/SQLT0000.4

If not specified and automatic storage is enabled for the database,
SYSCATSPACE is created as an automatic storage table space with its
containers created on the defined storage paths. The extent size of this
table space is 4. Appropriate values for AUTORESIZE, INITIALSIZE,
INCREASESIZE, and MAXSIZE are set automatically.

See CREATE TABLESPACE statement for more information on the table
space definition fields.

In a partitioned database environment, the catalog table space is only
created on the catalog database partition, the database partition on which
the CREATE DATABASE command is issued.

USER TABLESPACE tblspace-defn
Specifies the definition of the initial user table space, USERSPACE1. If not
specified and automatic storage is not enabled for the database,
USERSPACE1 is created as an SMS table space with numsegs number of
directories as containers and with an extent size of dft_extentsize. For
example, the following containers would be created if numsegs were
specified to be 5:

/u/smith/smith/NODE0000/SQL00001/SQLT0001.0
/u/smith/smith/NODE0000/SQL00001/SQLT0002.1
/u/smith/smith/NODE0000/SQL00001/SQLT0002.2
/u/smith/smith/NODE0000/SQL00001/SQLT0002.3
/u/smith/smith/NODE0000/SQL00001/SQLT0002.4

If not specified and automatic storage is enabled for the database,
USERSPACE1 is created as an automatic storage table space with its
containers created on the defined storage paths. The extent size of this
table space will be dft_extentsize. Appropriate values for AUTORESIZE,
INITIALSIZE, INCREASESIZE, and MAXSIZE are set automatically.

See CREATE TABLESPACE statement for more information on the table
space definition fields.

TEMPORARY TABLESPACE tblspace-defn
Specifies the definition of the initial system temporary table space,
TEMPSPACE1. If not specified and automatic storage is not enabled for the
database, TEMPSPACE1 is created as an SMS table space with numsegs
number of directories as containers and with an extent size of dft_extentsize.
For example, the following containers would be created if numsegs were
specified to be 5:

Chapter 30. DB2 commands 491

/u/smith/smith/NODE0000/SQL00001/SQLT0002.0
/u/smith/smith/NODE0000/SQL00001/SQLT0001.1
/u/smith/smith/NODE0000/SQL00001/SQLT0001.2
/u/smith/smith/NODE0000/SQL00001/SQLT0001.3
/u/smith/smith/NODE0000/SQL00001/SQLT0001.4

If not specified and automatic storage is enabled for the database,
TEMPSPACE1 is created as an automatic storage table space with its
containers created on the defined storage paths. The extent size of this
table space is dft_extentsize.

See CREATE TABLESPACE statement for more information on the table
space definition fields.

tblspace-defn
Various table space definitions can be specified through the following
command parameters.

MANAGED BY

SYSTEM USING container-string
Specifies that the table space is to be an SMS table space.
When the type of table space is not specified, the default
behavior is to create a regular table space.

For an SMS table space, identifies one or more containers
that will belong to the table space and in which the table
space data will be stored. The container-string cannot
exceed 240 bytes in length.

Each container-string can be an absolute or relative
directory name.

The directory name, if not absolute, is relative to the
database directory, and can be a path name alias (a
symbolic link on UNIX systems) to storage that is not
physically associated with the database directory. For
example, dbdir/work/c1 could be a symbolic link to a
separate file system.

If any component of the directory name does not exist, it is
created by the database manager. When a table space is
dropped, all components created by the database manager
are deleted. If the directory identified by container-string
exists, it must not contain any files or subdirectories
(SQLSTATE 428B2).

The format of container-string is dependent on the
operating system. On Windows operating systems, an
absolute directory path name begins with a drive letter and
a colon (:); on UNIX systems, an absolute path name
begins with a forward slash (/). A relative path name on
any platform does not begin with an operating
system-dependent character.

Remote resources (such as LAN-redirected drives or
NFS-mounted file systems) are currently only supported
when using Network Appliance Filers, IBM iSCSI, IBM
Network Attached Storage, Network Appliance iSCSI, NEC
iStorage S2100, S2200, or S4100, or NEC Storage NS Series
with a Windows DB2 server. Note that NEC Storage NS
Series is only supported with the use of an uninterrupted

492 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

power supply (UPS); continuous UPS (rather than standby)
is recommended. An NFS-mounted file system on AIX
must be mounted in uninterruptible mode using the -o
nointr option.

DATABASE USING
Specifies that the table space is to be a DMS table space.
When the type of table space is not specified, the default
behavior is to create a large table space.

For a DMS table space, identifies one or more containers
that will belong to the table space and in which the table
space data will be stored. The type of the container (either
FILE or DEVICE) and its size (in PAGESIZE pages) are
specified. A mixture of FILE and DEVICE containers can be
specified. The container-string cannot exceed 254 bytes in
length.

Remote resources (such as LAN-redirected drives or
NFS-mounted file systems) are currently only supported
when using Network Appliance Filers, IBM iSCSI, IBM
Network Attached Storage, Network Appliance iSCSI, NEC
iStorage S2100, S2200, or S4100, or NEC Storage NS Series
with a Windows DB2 server. Note that NEC Storage NS
Series is only supported with the use of an uninterrupted
power supply (UPS); continuous UPS (rather than standby)
is recommended..

All containers must be unique across all databases. A
container can belong to only one table space. The size of
the containers can differ; however, optimal performance is
achieved when all containers are the same size. The exact
format of container-string is dependent on the operating
system.

FILE container-string number-of-pages

For a FILE container, container-string must be an
absolute or relative file name. The file name, if not
absolute, is relative to the database directory. If any
component of the directory name does not exist, it
is created by the database manager. If the file does
not exist, it will be created and initialized to the
specified size by the database manager. When a
table space is dropped, all components created by
the database manager are deleted.

Note: If the file exists, it is overwritten, and if it is
smaller than specified, it is extended. The file will
not be truncated if it is larger than specified.

DEVICE container-string number-of-pages
For a DEVICE container, container-string must be a
device name. The device must already exist.

AUTOMATIC STORAGE
Specifies that the table space is to be an automatic storage
table space. If automatic storage is not defined for the
database, an error is returned (SQLSTATE 55060).

Chapter 30. DB2 commands 493

An automatic storage table space is created as either a
system managed space (SMS) table space or a database
managed space (DMS) table space. When DMS is chosen
and the type of table space is not specified, the default
behavior is to create a large table space. With an automatic
storage table space, the database manager determines
which containers are to be assigned to the table space,
based upon the storage paths that are associated with the
database.

EXTENTSIZE number-of-pages
Specifies the number of PAGESIZE pages that will be
written to a container before skipping to the next container.
The extent size value can also be specified as an integer
value followed by K (for kilobytes) or M (for megabytes). If
specified in this way, the floor of the number of bytes
divided by the page size is used to determine the value for
the extent size. The database manager cycles repeatedly
through the containers as data is stored.

The default value is provided by the DFT_EXTENT_SZ
database configuration parameter, which has a valid range
of 2-256 pages.

PREFETCHSIZE number-of-pages
Specifies the number of PAGESIZE pages that will be read
from the table space when data prefetching is being
performed. The prefetch size value can also be specified as
an integer value followed by K (for kilobytes), M (for
megabytes), or G (for gigabytes). If specified in this way,
the floor of the number of bytes divided by the page size is
used to determine the number of pages value for prefetch
size.

OVERHEAD number-of-milliseconds
Specifies the I/O controller overhead and disk seek and
latency time. This value is used to determine the cost of
I/O during query optimization. The value of
number-of-milliseconds is any numeric literal (integer,
decimal, or floating point). If this value is not the same for
all containers, the number should be the average for all
containers that belong to the table space.

For a database that was created in Version 9 or later, the
default I/O controller overhead and disk seek and latency
time is 7.5 milliseconds. For a database that was upgraded
from a previous version of DB2 to Version 9 or later, the
default is 12.67 milliseconds.

TRANSFERRATE number-of-milliseconds
Specifies the time to read one page into memory. This
value is used to determine the cost of I/O during query
optimization. The value of number-of-milliseconds is any
numeric literal (integer, decimal, or floating point). If this
value is not the same for all containers, the number should
be the average for all containers that belong to the table
space.

494 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

For a database that was created in Version 9 or later, the
default time to read one page into memory is 0.06
milliseconds. For a database that was upgraded from a
previous version of DB2 to Version 9 or later, the default is
0.18 milliseconds.

NO FILE SYSTEM CACHING
Specifies that all I/O operations are to bypass the file
system-level cache. See Table spaces without file system
caching for more details. This is the default option on most
configurations. See File system caching configurations for
details.

FILE SYSTEM CACHING
Specifies that all I/O operations in the target table space
are to be cached at the file system level. See Table spaces
without file system caching for more details. This is the
default option on some configurations. See File system
caching configurations for details.

AUTORESIZE
Specifies whether or not the auto-resize capability of a
DMS table space or an automatic storage table space is to
be enabled. Auto-resizable table spaces automatically
increase in size when they become full. The default is NO
for DMS table spaces and YES for automatic storage table
spaces.

NO Specifies that the auto-resize capability of a DMS
table space or an automatic storage table space is
to be disabled.

YES Specifies that the auto-resize capability of a DMS
table space or an automatic storage table space is
to be enabled.

INITIALSIZE integer
Specifies the initial size, per database partition, of an
automatic storage table space. This option is only valid for
automatic storage table spaces. The integer value must be
followed by K (for kilobytes), M (for megabytes), or G (for
gigabytes). Note that the actual value used might be
slightly smaller than what was specified, because the
database manager strives to maintain a consistent size
across containers in the table space. Moreover, if the table
space is auto-resizable and the initial size is not large
enough to contain meta-data that must be added to the
new table space, the database manager will continue to
extend the table space by the value of INCREASESIZE
until there is enough space. If the INITIALSIZE clause is
not specified, the database manager determines an
appropriate value. The value for integer must be at least 48
K.

K K (for kilobytes).

M M (for megabytes).

G G (for gigabytes).

Chapter 30. DB2 commands 495

INCREASESIZE integer
Specifies the amount, per database partition, by which a
table space that is enabled for auto-resize will
automatically be increased when the table space is full, and
a request for space has been made. The integer value must
be followed by either:
v PERCENT to specify the amount as a percentage of the

table space size at the time that a request for space is
made. When PERCENT is specified, the integer value
must be between 0 and 100 (SQLSTATE 42615).

v K (for kilobytes), M (for megabytes), or G (for gigabytes)
to specify the amount in bytes

Note that the actual value used might be slightly smaller
or larger than what was specified, because the database
manager strives to maintain consistent growth across
containers in the table space. If the table space is
auto-resizable, but the INCREASESIZE clause is not
specified, the database manager determines an appropriate
value.

PERCENT
Percent from 0 to 100.

K K (for kilobytes).

M M (for megabytes).

G G (for gigabytes).

MAXSIZE
Specifies the maximum size to which a table space that is
enabled for auto-resize can automatically be increased. If
the table space is auto-resizable, but the MAXSIZE clause is
not specified, the default is NONE.

NONE
Specifies that the table space is to be allowed to
grow to file system capacity, or to the maximum
table space size.

integer Specifies a hard limit on the size, per database
partition, to which a DMS table space or an
automatic storage table space can automatically be
increased. The integer value must be followed by K
(for kilobytes), M (for megabytes), or G (for
gigabytes). Note that the actual value used might
be slightly smaller than what was specified,
because the database manager strives to maintain
consistent growth across containers in the table
space.

K K (for kilobytes).

M M (for megabytes).

G G (for gigabytes).

WITH comment-string
Describes the database entry in the database directory. Any comment that
helps to describe the database can be entered. Maximum length is 30

496 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

characters. A carriage return or a line feed character is not permitted. The
comment text must be enclosed by single or double quotation marks.

AUTOCONFIGURE
Based on user input, calculates the recommended settings for buffer pool
size, database configuration, and database manager configuration and
optionally applies them. The Configuration Advisor is run by default when
the CREATE DATABASE command is issued. The AUTOCONFIGURE
option is needed only if you want to tweaks the recommendations.

USING input-keyword param-value

Table 138. Valid input keywords and parameter values

Keyword Valid values Default value Explanation

mem_percent 1–100 25

workload_type simple, mixed,
complex

mixed Simple workloads
tend to be I/O
intensive and mostly
transactions, whereas
complex workloads
tend to be CPU
intensive and mostly
queries.

num_stmts 1–1 000 000 25 Number of
statements per unit
of work

tpm 1–200 000 60 Transactions per
minute

admin_priority performance,
recovery, both

both Optimize for better
performance (more
transactions per
minute) or better
recovery time

num_local_apps 0–5 000 0 Number of connected
local applications

num_remote_apps 0–5 000 100 Number of connected
remote applications

isolation RR, RS, CS, UR RR Isolation level of
applications
connecting to this
database (Repeatable
Read, Read Stability,
Cursor Stability,
Uncommitted Read)

bp_resizeable yes, no yes Are buffer pools
resizeable?

APPLY

DB ONLY
Displays the recommended values for the database
configuration and the buffer pool settings based on the
current database manager configuration. Applies the
recommended changes to the database configuration and
the buffer pool settings.

Chapter 30. DB2 commands 497

|

DB AND DBM
Displays and applies the recommended changes to the
database manager configuration, the database
configuration, and the buffer pool settings.

NONE
Disables the Configuration Advisor (it is enabled by
default).

v If the AUTOCONFIGURE keyword is specified with the CREATE
DATABASE command, the DB2_ENABLE_AUTOCONFIG_DEFAULT variable
value is not considered. Adaptive Self Tuning Memory and Auto
Runstats will be enabled and the Configuration Advisor will tune the
database configuration and database manager configuration parameters
as indicated by the APPLY DB or APPLY DBM options.

v Specifying the AUTOCONFIGURE option with the CREATE DATABASE
command on a database will recommend enablement of the Self Tuning
Memory Manager. However, if you run the AUTOCONFIGURE
command on a database in an instance where SHEAPTHRES is not zero,
sort memory tuning (SORTHEAP) will not be enabled automatically. To
enable sort memory tuning (SORTHEAP), you must set SHEAPTHRES equal to
zero using the UPDATE DATABASE MANAGER CONFIGURATION
command. Note that changing the value of SHEAPTHRES may affect the
sort memory usage in your previously existing databases.

Examples

Here are several examples of the CREATE DATABASE command:

Example 1:
CREATE DATABASE TESTDB3
AUTOMATIC STORAGE YES

Database TESTDB3 is created on the drive that is the value of database manager
configuration parameter dftdbpath. Automatic storage is enabled with a single
storage path that also has the value of dftdbpath.

Example 2:
CREATE DATABASE TESTDB7 ON C:,D:

Database TESTDB7 is created on drive C: (first drive in storage path list).
Automatic storage is implicitly enabled and the storage paths are C: and D:.

Example 3:
CREATE DATABASE TESTDB15
AUTOMATIC STORAGE YES
ON C:,D: DBPATH ON E:

Database TESTDB15 is created on drive E: (explicitly listed as DBPATH). Automatic
storage is explicitly enabled and the storage paths are C: and D:.

Usage notes

The CREATE DATABASE command:
v Creates a database in the specified subdirectory. In a partitioned database

environment, creates the database on all database partitions listed in
db2nodes.cfg, and creates a $DB2INSTANCE/NODExxxx directory under the specified

498 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

subdirectory at each database partition. In a single partition database
environment, creates a $DB2INSTANCE/NODE0000 directory under the specified
subdirectory.

v Creates the system catalog tables and recovery log.
v Catalogs the database in the following database directories:

– Server’s local database directory on the path indicated by path or, if the path
is not specified, the default database path defined in the database manager
system configuration file by the dftdbpath parameter. A local database
directory resides on each file system that contains a database.

– Server’s system database directory for the attached instance. The resulting
directory entry will contain the database name and a database alias.
If the command was issued from a remote client, the client’s system database
directory is also updated with the database name and an alias.

Creates a system or a local database directory if neither exists. If specified, the
comment and code set values are placed in both directories.

Note: If the change the database by path configuration parameter newlogpath is
not set, the default for the location of log files configuration parameter logpath
is the path shown by the DBPATH ON option. It is suggested that the DBPATH
ON option be used when automatic storage is enabled to keep the database
information separate from the database data.

v Stores the specified code set, territory, and collating sequence. A flag is set in the
database configuration file if the collating sequence consists of unique weights,
or if it is the identity sequence.

v Creates the schemas called SYSCAT, SYSFUN, SYSIBM, and SYSSTAT with
SYSIBM as the owner. The database partition server on which this command is
issued becomes the catalog database partition for the new database. Two
database partition groups are created automatically: IBMDEFAULTGROUP and
IBMCATGROUP.

v Binds the previously defined database manager bind files to the database (these
are listed in the utilities bind file list, db2ubind.lst). If one or more of these files
do not bind successfully, CREATE DATABASE returns a warning in the SQLCA,
and provides information about the binds that failed. If a bind fails, the user can
take corrective action and manually bind the failing file. The database is created
in any case. A schema called NULLID is implicitly created when performing the
binds with CREATEIN privilege granted to PUBLIC, if the RESTRICTIVE option
is not selected.
The utilities bind file list contains two bind files that cannot be bound against
previous version of the server:
– db2ugtpi.bnd cannot be bound against DB2 Version 2 servers.
– db2dropv.bnd cannot be bound against DB2 Parallel Edition Version 1 servers.

If db2ubind.lst is bound against a server which is not at the latest level,
warnings pertaining to these two files are returned, and can be disregarded.

v Creates SYSCATSPACE, TEMPSPACE1, and USERSPACE1 table spaces. The
SYSCATSPACE table space is only created on the catalog database partition.

v Grants the following:
– EXECUTE WITH GRANT privilege to PUBLIC on all functions in the

SYSFUN schema
– EXECUTE privilege to PUBLIC on all procedures in SYSIBM schema
– DBADM, CONNECT, CREATETAB, BINDADD, CREATE_NOT_FENCED,

IMPLICIT_SCHEMA and LOAD authorities to the database creator

Chapter 30. DB2 commands 499

– CONNECT, CREATETAB, BINDADD, and IMPLICIT_SCHEMA authorities to
PUBLIC

– USE privilege on the USERSPACE1 table space to PUBLIC
– SELECT privilege on each system catalog to PUBLIC
– BIND and EXECUTE privilege to PUBLIC for each successfully bound utility.
– EXECUTE WITH GRANT privilege to PUBLIC on all functions in the

SYSFUN schema.
– EXECUTE privilege to PUBLIC on all procedures in SYSIBM schema.

Note: If the RESTRICTIVE option is present it causes the RESTRICT_ACCESS
database configuration parameter to be set to YES and no privileges or
authorities are automatically granted to PUBLIC. For additional information, see
the RESTRICTIVE option of the CREATE DATABASE command.

Automatic storage is a collection of storage paths associated with a database on
which table spaces can be created without having to explicitly specify container
definitions (see the CREATE TABLESPACE statement for more information).
Automatic storage is enabled by default, but can be explicitly disabled for a
database when it is created. Automatic storage can be disabled at database creation
time by specifying the AUTOMATIC STORAGE NO option.

It is important to note that automatic storage can only be enabled at database
creation time, it cannot be enabled after the database has been created. Also,
automatic storage cannot be disabled once a database has been defined to use it.

When free space is calculated for an automatic storage path for a given database
partition, the database manager will check for the existence of the following
directories or mount points within the storage path and will use the first one that
is found. In doing this, file systems can be mounted at a point beneath the storage
path and the database manager will recognize that the actual amount of free space
available for table space containers may not be the same amount that is associated
with the storage path directory itself.
1. <storage path>/<instance name>/NODE####/<database name>

2. <storage path>/<instance name>/NODE####

3. <storage path>/<instance name>

4. <storage path>/<

Where
v <storage path> is a storage path associated with the database.
v <instance name> is the instance under which the database resides.
v NODE#### corresponds to the database partition number (for example NODE0000

or NODE0001).
v <database name> is the name of the database.

Consider the example where two logical database partitions exist on one physical
machine and the database is being created with a single storage path: /db2data.
Each database partition will use this storage path but the user may want to isolate
the data from each partition within its own file system. In this case, a separate file
system can be created for each partition and be mounted at /db2data/<instance>/
NODE####. When creating containers on the storage path and determining free
space, the database manager will know not to retrieve free space information for
/db2data, but instead retrieve it for the corresponding /db2data/<instance>/
NODE#### directory.

500 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

In general, the same storage paths must be used for each partition in a
multi-partition database and they must all exist prior to executing the CREATE
DATABASE command. One exception to this is where database partition
expressions are used within the storage path. Doing this allows the database
partition number to be reflected in the storage path such that the resulting path
name is different on each partition.

You use the argument “ $N” ([blank]$N) to indicate a database partition
expression. A database partition expression can be used anywhere in the storage
path, and multiple database partition expressions can be specified. Terminate the
database partition expression with a space character; whatever follows the space is
appended to the storage path after the database partition expression is evaluated.
If there is no space character in the storage path after the database partition
expression, it is assumed that the rest of the string is part of the expression. The
argument can only be used in one of the following forms:

Operators are evaluated from left to right. % represents the modulus operator. The database
partition number in the examples is assumed to be 10.

Syntax Example Value

[blank]$N ″ $N″ 10

[blank]$N+[number] ″ $N+100″ 110

[blank]$N%[number] ″ $N%5″ 0

[blank]$N+[number]%[number] ″ $N+1%5″ 1

[blank]$N%[number]+[number] ″ $N%4+2″ 4

a % is modulus.

With dbadm authority, one can grant these privileges to (and revoke them from)
other users or PUBLIC. If another administrator with sysadm or dbadm authority
over the database revokes these privileges, the database creator nevertheless retains
them.

In an MPP environment, the database manager creates a subdirectory,
$DB2INSTANCE/NODExxxx, under the specified or default path on all database
partitions. The xxxx is the database partition number as defined in the
db2nodes.cfg file (that is, database partition 0 becomes NODE0000). Subdirectories
SQL00001 through SQLnnnnn will reside on this path. This ensures that the database
objects associated with different database partitions are stored in different
directories (even if the subdirectory $DB2INSTANCE under the specified or default
path is shared by all database partitions).

If LDAP (Lightweight Directory Access Protocol) support is enabled on the current
machine, the database will be automatically registered in the LDAP directory. If a
database object of the same name already exists in the LDAP directory, the
database is still created on the local machine, but a warning message is returned,
indicating that there is a naming conflict. In this case, the user can manually
catalog an LDAP database entry by using the CATALOG LDAP DATABASE
command.

CREATE DATABASE will fail if the application is already connected to a database.

Chapter 30. DB2 commands 501

When a database is created, a detailed deadlocks event monitor is created. As with
any monitor, there is some overhead associated with this event monitor. You can
drop the deadlocks event monitor by issuing the DROP EVENT MONITOR
command.

Use CATALOG DATABASE to define different alias names for the new database.

The combination of the code set and territory values must be valid. For a list of the
supported combinations, see Supported territory codes and code pages.

To specify a database path (instead of a drive) on a Windows system, you need to
set the DB2 registry variable: DB2_CREATE_DB_ON_PATH=YES.

Compatibilities

For compatibility with versions earlier than Version 8:
v The keyword NODE can be substituted for DBPARTITIONNUM.

db2audit - Audit facility administrator tool
DB2 database systems provide an audit facility to assist in the detection of
unknown or unanticipated access to data. The DB2 audit facility generates and
permits the maintenance of an audit trail for a series of predefined database
events.

The records generated from this facility are kept in audit log files. The analysis of
these records can reveal usage patterns which would identify system misuse. Once
identified, actions can be taken to reduce or eliminate such system misuse. The
audit facility acts at both the instance and database levels, independently recording
all activities in separate logs based on either the instance or the database.

DB2 database systems provide the ability to independently audit at both the
instance and at the individual database level. The db2audit tool is used to
configure audit at the instance level as well as control when such audit information
is collected. The AUDIT SQL statement is used to configure and control the audit
requirements for an individual database. The db2audit tool can be used to archive
both instance and database audit logs as well as to extract from archived logs of
either type.

When working in a partitioned database environment, many of the auditable
events occur at the database partition at which the user is connected (the
coordinator partition) or at the catalog partition (if they are not the same database
partition). The implication of this is that audit records can be generated by more
than one database partition. Part of each audit record contains information on the
coordinator partition and originating database partition identifiers.

The instance audit log (db2audit.instance.log.node_number[.timestamp]) is
located in the instance’s security/auditdata subdirectory, and the audit
configuration file (db2audit.cfg) is located in the instance’s security subdirectory.
The database audit log is named
db2audit.db.dbname.log.node_number[.timestamp]. At the time you create an
instance, read/write permissions are set on these files, where possible, by the
operating system. By default, the permissions are read/write for the instance
owner only. It is recommended that you do not change these permissions.

502 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Authorized users of the audit facility can control the following actions within the
audit facility, using db2audit:
v Start recording auditable events within the DB2 instance. This does not include

database level activities.
v Stop recording auditable events within the DB2 instance.
v Configure the behavior of the audit facility at the instance level only.
v Select the categories of the auditable events to be recorded at the instance level

only.
v Request a description of the current audit configuration for the instance.
v Flush any pending audit records from the instance and write them to the audit

log.
v Archive audit records from the current audit log for either the instance or a

database under the instance.
v Extract audit records from an archived audit log by formatting and copying

them to a flat file or ASCII delimited file. Extraction is done in preparation for
analysis of log records.

Authorization

SYSADM

Required Connection

None

Command syntax

�� db2audit configure reset
Audit Configuration

describe
extract Audit Extraction
flush
archive Audit Log Archive
start
stop
?

��

Audit Configuration:

�

,

scope all status both
audit none
checking failure
context success
objmaint
secmaint
sysadmin
validate

�

Chapter 30. DB2 commands 503

�
errortype audit

normal
datapath audit-data-path

�

�
archivepath audit-archive-path

Audit Extraction:

file output-file

delasc
delimiter load-delimiter to delasc-path

�

�

�

status failure
success
,

category audit
checking status both
context failure
execute success
objmaint
secmaint
sysadmin
validate

�

� from
path archive-path

files input-log-files

Audit Log Archive:

database database-name node
current-node-number

�

�
to archive-path

Command parameters

configure
This parameter allows the modification of the db2audit.cfg configuration
file in the instance’s security subdirectory. Updates to this file can occur
even when the instance is stopped. Updates, occurring when the instance
is active, dynamically affect the auditing being done by the DB2 instance.
The configure action on the configuration file causes the creation of an
audit record if the audit facility has been started and the audit category of
auditable events is being audited. All configure options, except the data
path and archive path, only apply to instance level audit events, and not to
database level audit events. The path options apply to the instance and all
databases within the instance.

The following are the possible actions on the configuration file:

504 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

reset This action causes the configuration file to revert to the initial
configuration (where scope is all of the categories except context,
status for each category is failure, errortype is normal, and the
auditing of instance level events is off). This action will create a
new audit configuration file if the original has been lost or
damaged. The audit data path and archive path will be blank. This
option does not reset any of the audit policies or use of those
policies at the database level.

scope This action specifies which categories will be audited, and the
status of each of those categories.

status This action specifies whether only successful or failing
events, or both successful and failing events, should be
logged. status has the following options:

both Successful and failing events will be audited.

none No events for this category will be audited.

failure
Only failing events will be audited.

success
Only successful events will be audited.

Only the categories specified on the configure statement will be modified.
All other categories will have their status preserved.

Note:

v The default scope is all categories except context and may result in
records being generated rapidly. In conjunction with the mode
(synchronous or asynchronous), the selection of the categories may result
in a significant performance reduction and significantly increased disk
requirements. It is recommended that the number and type of events
being logged be limited as much as possible, otherwise the size of the
audit log will grow rapidly. This action also allows a particular focus for
auditing and reduces the growth of the log.

v context events occur before the status of an operation is known.
Therefore, such events are logged regardless of the value associated with
this parameter, unless the status is none.

v If the same category is repeated, or categories are also specified with the
all keyword, a syntax error will be returned.

errortype
This action specifies whether audit errors are returned to the user
or are ignored. The value for this parameter can be:

audit All errors including errors occurring within the audit
facility are managed by DB2 database and all negative
SQLCODEs are reported back to the caller.

normal
Any errors generated by db2audit are ignored and only the
SQLCODEs for the errors associated with the operation
being performed are returned to the application.

datapath audit-data-path
This is the directory to which the audit logs produced by the DB2
database system will be written. The default is

Chapter 30. DB2 commands 505

sqllib/security/auditdata (instance path\instance\security\
auditdata on Windows). This parameter affects all auditing within
an instance, including database level auditing. This must be a fully
qualified path and not a relative path. The instance owner must
have write permission on this directory. On Windows, the user
issuing a local instance command, for example, db2start, db2audit,
and db2 update dbm cfg, must also have write permission on this
directory if the command is required to be audited. On a
partitioned database environment, this directory does not need to
be an NFS shared directory, although that is possible. A non-shared
directory will result in increased performance as each node is
writing to a unique disk. The maximum length of the path is 971
bytes for UNIX or Linux and 208 bytes for Windows operating
systems.

If the path is provided as ″″, then the path will be updated to be
the default. db2audit describe will show no path as being set and
the default path will be used. Note, to prevent the shell from
interpreting the quotes, they will generally need to be escaped, for
example
db2audit configure datapath \"\"

The data path must exist. In a partitioned database environment,
the same data path will be used on each node. There is no way to
specify a unique set of data paths for a particular node unless
database partition expressions are used as part of the data path
name. Doing this allows the node number to be reflected in the
storage path such that the resulting path name is different on each
database partition.

archivepath audit-archive-path
This is the default directory for the archive and extract options. In
a partitioned database environment, it is recommended that this
directory be an NFS shared directory accessible by all nodes. The
default is sqllib/security/auditdata (sqllib\instance\security\
auditdata on Windows). This must be a fully qualified path and
not a relative path. The instance owner must have write permission
on this directory. The maximum length of the path is 971 bytes for
UNIX or Linux and 208 bytes for Windows operating systems.

The archive path must exist, and database partition expressions are
NOT allowed for the archive path.

describe
This parameter displays to standard output the current instance level audit
configuration information and status.

The following items are displayed:
v If audit is active.
v The status for each category.
v The error type in the form of whether or not an SQLCA is returned on

errors.
v The data and archive paths.

This is an example of what the describe output looks like:
DB2 AUDIT SETTINGS:

Audit active: "FALSE "
Log audit events: "SUCCESS"

506 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Log checking events: "FAILURE"
Log object maintenance events: "BOTH"
Log security maintenance events: "BOTH "
Log system administrator events: "NONE"
Log validate events: "FAILURE"
Log context events: "NONE"
Return SQLCA on audit error: "TRUE "
Audit Data Path: “/auditdata”
Audit Archive Path: “/auditarchive”

AUD0000I Operation succeeded.

extract This parameter allows the movement of audit records from the audit log to
an indicated destination. The audit log will be created in the database code
page. All of the fields will be converted to the current application code
page when extract is run.

The following are the options that can be used when extracting:

file output-file
The extracted audit records are placed in output-file. If the directory is
not specified, output-file is written to the current working directory. If
the file already exists the output will be appended to it. If a file name
is not specified, records are written to the db2audit.out file in the
archive path specified in the audit configuration file.

delasc
The extracted audit records are placed in a delimited ASCII format
suitable for loading into DB2 database relational tables. The output is
placed in separate files, one for each category. In addition, the file
auditlobs will also be created to hold any lobs that are included in the
audit data. The filenames are:
v audit.del

v checking.del

v objmaint.del

v secmaint.del

v sysadmin.del

v validate.del

v context.del

v execute.del

v auditlobs

If the files already exist the output will be appended to them. The
auditlobs file will be created if the context or execute categories are
extracted. LOB Location Specifiers are included in the .del files to
reference the LOBS in the auditlobs file.

delimiter load-delimiter
Allows you to override the default audit character string delimiter,
which is the double quote (″), when extracting from the audit log.
You would use delimiter followed by the new delimiter that you
want to use in preparation for loading into a table that will hold
the audit records. The new load delimiter can be either a single
character (such as !) or a four-character string representing a
hexadecimal number (such as 0xff).

to delasc-path
Allows you to specify the path to which the delimited files are

Chapter 30. DB2 commands 507

written. If it is not specified, then the files are written to the
directory indicated by the audit archive path option specified in
the audit configuration file.

category
The audit records for the specified categories of audit events are to be
extracted. If not specified, all categories are eligible for extraction.

status
The audit records for the specified status are to be extracted. If not
specified, all records are eligible for extraction.

path
The path to the location of the archived audit logs. If this is not
specified, the archive path in the audit configuration will be used. The
path is not used if the filename contains a fully qualified path.

files
The list of audit log files that will be extracted. This may be a single
file or a list of files. These files are not altered during an extract. The
filenames will be combined with path to get the fully qualified
filenames if they are not already fully qualified. The list may included
standard shell wild cards to specify multiple files.

flush This parameter forces any pending audit records to be written to the audit
log. Also, the audit state is reset from ″unable to log″ to a state of ″ready to
log″ if the audit facility is in an error state.

archive
This parameter moves the current audit log for either an individual
database or the instance to a new location for archiving and later
extraction. The current timestamp will be appended to the filename. All
records that are currently being written to the audit log will complete
before the log is archived to ensure full records are not split apart. All
records that are created while the archive is in progress will be written to
the current audit log, and not the archived log, once the archive has
finished.

The following are the options that can be used when archiving:

database database-name
The name of the database for which you would like to archive the
audit log. If the database name is not supplied, then the instance level
audit log is archived.

node
Indicates that the archive command is to only be run on the current
node, and that the node_number monitor element will indicate what
the current node is. This is only required on a partitioned database
environment.

current-node-number
Informs the db2audit executable about which node it is currently
running on. This parameter is required if the DB2NODE
environment variable does not contain the current node.

to archive-path
The directory where the archived audit log should be created. The
directory must exist and the instance owner must have create
permission on this directory. If this is not provided, the archive path in
the audit configuration will be used.

508 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The format of the filename that is created is:
v db2audit.instance.log.node_number[.YYYYMMDDHHMMSS] for the instance

log
v db2audit.db.dbname.log.node_number[.YYYYMMDDHHMMSS] for the database

log

where YYYY is the year, MM is the month, DD is the day, HH is the hour,
MM is the minute, and SS is the seconds. The time will be the local time.
The database name portion will not be present for instance audit logs. The
node number in a non-partitioned database environment will be 0. If the
file already exists, an append will be performed.

The timestamp will not reflect the last record in the log with 100%
accuracy. The timestamp represents when the archive command was run.
Entries that are currently being written to the log file must finish before it
can be moved, and these entries may have timestamps that are later than
the timestamp given to the filename.

If the node option is not specified, then the audit log on all nodes will be
archived. The database server must be started in this case. If the database
server has not been started, then archive must be run on each node, and
the node option must be specified to indicate on which node archive is to
be run (AUD0029).

The archive option will output the result and names of the files from each
node that archive was run on.

start This parameter causes the audit facility to begin auditing events based on
the contents of the db2audit.cfg file for the instance only. In a partitioned
DB2 database instance, auditing will begin for instance and client level
activities on all database partitions when this clause is specified. If the
audit category of events has been specified for auditing, then an audit
record will be logged when the audit facility is started. This has no effect
on database level auditing, which is controlled through the AUDIT DDL
statement.

stop This parameter causes the audit facility to stop auditing events for the
instance only. In a partitioned DB2 database instance, auditing will be
stopped for instance and client level activities on all database partitions
when this clause is specified. If the audit category of events has been
specified for auditing, then an audit record will be logged when the audit
facility is stopped. This has no effect on database level auditing, which is
controlled through the AUDIT DDL statement.

? This parameter displays the help information for the db2audit command.

Examples

This is a typical example of how to archive and extract a delimited ASCII file in a
partitioned database environment. The Windows remove (rm) command deletes
the old delimited ASCII files.
rm /auditdelasc/*.del
db2audit flush
db2audit archive database mydb to /auditarchive

(files will be indicated for use in next step)
db2audit extract delasc to /auditdelasc from files /auditarchive
/db2audit.db.mydb.log.*.20070514102856

Chapter 30. DB2 commands 509

Load the .del files into a DB2 table.

Usage notes
v Database level auditing is controlled with the AUDIT statement.
v The instance level audit facility must be stopped and started explicitly. When

starting, the audit facility uses existing audit configuration information. Since the
audit facility is independent of the DB2 database server, it will remain active
even if the instance is stopped. In fact, when the instance is stopped, an audit
record may be generated in the audit log.

v Ensure that the audit facility has been turned on by issuing the db2audit start
command before using the audit utilities.

v There are different categories of audit records that may be generated. In the
description of the categories of events available for auditing (below), you should
notice that following the name of each category is a one-word keyword used to
identify the category type. The categories of events available for auditing are:
– Audit (audit). Generates records when audit settings are changed or when the

audit log is accessed.
– Authorization Checking (checking). Generates records during authorization

checking of attempts to access or manipulate DB2 database objects or
functions.

– Object Maintenance (objmaint). Generates records when creating or dropping
data objects.

– Security Maintenance (secmaint). Generates records when granting or
revoking: object or database privileges, or DBADM authority. Records are also
generated when the database manager security configuration parameters
sysadm_group,sysctrl_group, or sysmaint_group are modified.

– System Administration (sysadmin). Generates records when operations
requiring SYSADM, SYSMAINT, or SYSCTRL authority are performed.

– User Validation (validate). Generates records when authenticating users or
retrieving system security information.

– Operation Context (context). Generates records to show the operation context
when an instance operation is performed. This category allows for better
interpretation of the audit log file. When used with the log’s event correlator
field, a group of events can be associated back to a single database operation.

– You can audit failures, successes, both or none.
v Any operation on the instance may generate several records. The actual number

of records generated and moved to the audit log depends on the number of
categories of events to be recorded as specified by the audit facility
configuration. It also depends on whether successes, failures, or both, are
audited. For this reason, it is important to be selective of the events to audit.

v To clean up and/or view audit logs, run archive on a regular basis, then run
extract on the archived file to save what is useful. The audit logs can then be
deleted with standard file system delete commands.

db2gpmap - Get distribution map

If a database is already set up and database partition groups defined for it,
db2gpmap gets the distribution map for the database table or the database
partition group from the catalog partitioned database server.

510 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Authorization

Both of the following:
v Read access to the system catalog tables
v BIND and EXECUTE package privileges on db2gpmap.bnd

Required connection

Before using db2gpmap the database manager must be started and db2gpmap.bnd
must be bound to the database. If not already bound db2gpmap will attempt to
bind the file.

Command syntax

�� db2gpmap
-d

database-name
-m

map-file-name

�

�
-g

database-partition-group-name
-t table-name -h

��

Command parameters

-d database-name
Specifies the name of the database for which to generate a distribution
map. If no database name is specified, the value of the DB2DBDFT
environment variable is used. If DB2DBDFT is not set, the default is the
SAMPLE database.

-m map-file-name
Specifies the fully qualified file name where the distribution map will be
saved. The default is db2split.map.

-g database-partition-group-name
Specifies the name of the database partition group for which to generate a
distribution map. The default is IBMDEFAULTGROUP.

-t table-name
Specifies the table name.

-h Displays usage information.

Examples

The following example extracts the distribution map for a table ZURBIE.SALES in
database SAMPLE into a file called C:\pmaps\zurbie_sales.map:

db2gpmap -d SAMPLE -m C:\pmaps\zurbie_sales.map -t ZURBIE.SALES

db2icrt - Create instance
Creates DB2 instances.

On Linux and UNIX operating systems, this utility is located in the
DB2DIR/instance directory, where DB2DIR represents the installation location
where the current version of the DB2 database system is installed. On Windows
operating systems, this utility is located under the DB2PATH\bin directory where
DB2PATH is the location where the DB2 copy is installed.

Chapter 30. DB2 commands 511

The db2icrt command creates DB2 instances in the instance owner’s home
directory.

Note: This command is not available for a non-root installation of DB2 database
products on Linux and UNIX operating systems.

Authorization

Root access on Linux and UNIX operating systems or Local Administrator
authority on Windows operating systems.

Command syntax

For Linux and UNIX operating systems

�� db2icrt
-h
-?

-d -a AuthType -p PortName
�

�
-s InstType -u FencedID

InstName ��

For Windows operating systems

�� db2icrt InstName
-s InstType -u UserName, Password

�

�
-p InstProfPath -h HostName -r PortRange

�

�
-j ″TEXT_SEARCH ″

,servicename ,portnumber
-?

��

Command parameters

For Linux and UNIX operating systems

-h | -? Displays the usage information.

-d Turns debug mode on. Use this option only when instructed by DB2
Support.

-a AuthType
Specifies the authentication type (SERVER, CLIENT or SERVER_ENCRYPT)
for the instance. The default is SERVER.

-p PortName
Specifies the port name or number used by the instance. This option does
not apply to client instances.

-s InstType
Specifies the type of instance to create. Use the -s option only when you
are creating an instance other than the default associated with the installed
product from which you are running db2icrt. Valid values are:

client Used to create an instance for a client. This is the default instance

512 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

type for IBM Data Server Client, IBM Data Server Runtime Client,
and DB2 Connect Personal Edition.

standalone
Used to create an instance for a database server with local clients.
It is the default instance type for DB2 Personal Edition.

ese Used to create an instance for a database server with local and
remote clients with DPF support. This is the default instance type
for DB2 Enterprise Server Edition.

wse Used to create an instance for a database server with local and
remote clients. This is the default instance type for DB2 Workgroup
Server Edition, DB2 Express or Express-C Edition, and DB2
Connect Enterprise Edition.

DB2 products support their default instance types and the instance types
lower than their default ones. For instance, DB2 Enterprise Server Edition
supports the instance types of ese, wse, standalone and client.

-u Fenced ID
Specifies the name of the user ID under which fenced user-defined
functions and fenced stored procedures will run. The -u option is required
if you are not creating a client instance.

InstName
Specifies the name of the instance which is also the name of an existing
user in the operating system. This has to be the last argument of the
db2icrt command.

For Windows operating systems

InstName
Specifies the name of the instance.

-s InstType
Specifies the type of instance to create. Currently, there are four kinds of
DB2 instance types. Valid values are:

client Used to create an instance for a client. This is the default instance
type for IBM Data Server Client, IBM Data Server Runtime Client,
and DB2 Connect Personal Edition.

standalone
Used to create an instance for a database server with local clients.
It is the default instance type for DB2 Personal Edition.

ese Used to create an instance for a database server with local and
remote clients with DPF support. The
-s ese -u Username, Password

options have to be used with db2icrt to create the ESE instance
type and a DPF instance.

wse Used to create an instance for a database server with local and
remote clients. This is the default instance type for DB2 Workgroup
Server Edition, DB2 Express or Express-C Edition, and DB2
Connect Enterprise Edition.

DB2 products support their default instance types and the instance types
lower than their default ones. For instance, DB2 Enterprise Server Edition
supports the instance types of ese, wse, standalone and client.

Chapter 30. DB2 commands 513

-u Username, Password
Specifies the account name and password for the DB2 service. This option
is required when creating a partitioned database instance.

-p InstProfPath
Specifies the instance profile path.

-h HostName
Overrides the default TCP/IP host name if there is more than one for the
current machine. The TCP/IP host name is used when creating the default
database partition (database partition 0). This option is only valid for
partitioned database instances.

-r PortRange
Specifies a range of TCP/IP ports to be used by the partitioned database
instance when running in MPP mode. For example, -r 50000,50007. The
services file of the local machine will be updated with the following entries
if this option is specified:

DB2_InstName baseport/tcp
DB2_InstName_END endport/tcp

/j ″TEXT_SEARCH″
Configures the DB2 Text Search server using generated default values for
service name and TCP/IP port number. This parameter cannot be used if
the instance type is client.

/j ″TEXT_SEARCH, servicename″

Configures the DB2 Text Search server using the provided service
name and an automatically generated port number. If the service
name has a port number assigned in the services file, it uses the
assigned port number.

/j ″TEXT_SEARCH, servicename, portnumber″

Configures the DB2 Text Search server using the provided service
name and port number.

/j ″TEXT_SEARCH, portnumber″

Configures the DB2 Text Search server using a default service
name and the provided port number. Valid port numbers must be
within the 1024 - 65535 range.

-? Displays usage information.

Examples
v On an AIX machine, to create an instance for the user ID db2inst1, issue the

following command:
On a client machine:

DB2DIR/instance/db2icrt db2inst1

On a server machine:
DB2DIR/instance/db2icrt -u db2fenc1 db2inst1

where db2fenc1 is the user ID under which fenced user-defined functions and
fenced stored procedures will run.

514 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Usage notes
v The instance home/sqllib/db2tss/config folder is created by db2icrt on Linux

and UNIX operating systems. It is advised that you use a symbolic link to an
area outside the sqllib directory.

v The -s option is intended for situations in which you want to create an instance
that does not use the full functionality of the system. For example, if you are
using Enterprise Server Edition (ESE) on a UNIX operating system, but do not
want partition capabilities, you could create a Workgroup Server Edition (WSE)
instance, using the option -s WSE.

v To create a DB2 instance that supports Microsoft Cluster Server, first create an
instance, then use the db2mscs command to migrate it to run in a MSCS
instance.

v On Linux and UNIX operating systems, only one instance can be created under
a user name. If you want to create an instance under a user name that already
has an instance, you must drop the existing instance before creating the new
one.

v When creating DB2 instances, consider the following restrictions:
– If existing IDs are used to create DB2 instances, make sure that the IDs are

not locked and do not have passwords expired.
v You can also use the db2isetup command to create and update DB2 instances

using a graphical interface on all supported Linux and UNIX operating systems.
v On Linux and UNIX systems, if you are using the su command instead of the

login command to become the root user, you must issue the su command with
the - option to indicate that the process environment is to be set as if you had
logged in to the system using the login command.

v On Linux and UNIX operating systems, you must not source the DB2 instance
environment for the root user. Running db2icrt when you sourced the DB2
instance environment is not supported.

v On AIX 6.1 (or higher), when running this command from a shared DB2 copy in
a system workload partition (WPAR) global environment, this command must be
run as the root user.

v On Windows operating systems, if the IBM Tivoli Monitoring for Databases: DB2
Agent is installed and the DB2 instance is created, the Monitoring Agent for DB2
instance is also created if the following are true:
– The DB2 instance type is standalone, wse, or ese.
– The default DB2 copy has the ITM agent component installed.
– The DB2 instance is at version 9.5 (or higher).
– There is no existing ITM for Databases product.

In addition, the following are also created after the creation of the Monitoring
Agent for DB2 instance: the Monitoring Agent for DB2 instance files, the NT
service and the registry entries.

db2iupdt - Update instances
This command updates an instance to run on a DB2 copy that has a new DB2
database product or feature installed, to run on a DB2 copy of the same version as
the DB2 copy associated with the instance, or to upgrade the instance type to a
higher level instance type.

The db2iupdt command can be issued against instances of the same version that
are associated with the same or a different DB2 copy. In all cases, it will update the

Chapter 30. DB2 commands 515

instance so that it runs against the code located in the same DB2 copy as where
you issued the db2iupdt command. You should issue this command:
v if you install a fix pack and the automatic instance update fails.
v if you install a new DB2 database product or feature to the DB2 copy associated

to the DB2 instance.
v if you want to update a DB2 instance from one DB2 copy to another DB2 copy

of the same version of DB2 database product.

After a fix pack is installed on Linux and UNIX operating systems, the db2iupdt
command is executed automatically.

To update an instance with db2iupdt, you must first stop all processes that are
running for the instance.

Authorization

Root access on UNIX and Linux operating systems or Local Administrator on
Windows operating systems.

Command syntax

For UNIX and Linux operating systems

�� db2iupdt
-h
-?

-d -k -D -s -a AuthType
�

�
-u FencedID

InstName
-e

��

For Windows operating systems

�� db2iupdt InstName /u: username,password
/p: instance-profile-path

�

�
/r: baseport,endport /h: hostname /s /q

�

�
/a: authType /j ″TEXT_SEARCH ″

,servicename ,portnumber

�

�
/?

��

Command parameters

For UNIX and Linux operating systems

-h | -? Displays the usage information.

-d Turns debug mode on.

-k Keeps the current instance type during the update.

516 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

-D Moves an instance from a higher code level on one path to a lower code
level installed on another path.

-s Ignores the existing SPM log directory.

-a AuthType
Specifies the authentication type (SERVER, SERVER_ENCRYPT or CLIENT)
for the instance. The default is SERVER.

-u Fenced ID
Specifies the name of the user ID under which fenced user defined
functions and fenced stored procedures will run. This option is only
needed when converting an instance from a client instance to a non-client
instance type. To determine the current instance type, refer to the node
type parameter in the output from a GET DBM CFG command. If an
instance is already a non-client instance, or if an instance is a client
instance and is staying as a client instance (for example, by using the -k
option), the -u option is not needed. The -u option cannot change the
fenced user for an existing instance.

InstName
Specifies the name of the instance.

-e Updates every instance.

For Windows operating systems

InstName
Specifies the name of the instance.

/u:username,password
Specifies the account name and password for the DB2 service.

/p:instance-profile-path
Specifies the new instance profile path for the updated instance.

/r:baseport,endport
Specifies the range of TCP/IP ports to be used by the partitioned database
instance when running in MPP mode. When this option is specified, the
services file on the local machine will be updated with the following
entries:

DB2_InstName baseport/tcp
DB2_InstName_END endport/tcp

/h:hostname
Overrides the default TCP/IP host name if there are more than one
TCP/IP host names for the current machine.

/s Updates the instance to a partitioned instance.

/q Issues the db2iupdt command in quiet mode.

/a:authType
Specifies authType, the authentication type (SERVER, CLIENT, or
SERVER_ENCRYPT) for the instance.

/j ″TEXT_SEARCH″
Configures the DB2 Text Search server using generated default values for
service name and TCP/IP port number. This parameter cannot be used if
the instance type is client.

/j ″TEXT_SEARCH, servicename″

Chapter 30. DB2 commands 517

Configures the DB2 Text Search server using the provided service
name and an automatically generated port number. If the service
name has a port number assigned in the services file, it uses the
assigned port number.

/j ″TEXT_SEARCH, servicename, portnumber″

Configures the DB2 Text Search server using the provided service
name and port number.

/j ″TEXT_SEARCH, portnumber″

Configures the DB2 Text Search server using a default service
name and the provided port number. Valid port numbers must be
within the 1024 - 65535 range.

/? Displays usage information for the db2iupdt command.

Examples (UNIX and Linux)
v An instance, db2inst2, is associated to a DB2 copy of DB2 database product

installed at DB2DIR1. You have another DB2 copy of DB2 database product on the
same computer at DB2DIR2 for the same version of the DB2 database product as
that installed on DB2DIR1. To update the instance to run from the DB2 copy
installed at DB2DIR1 to the DB2 copy installed at DB2DIR2, issue the following
command:

DB2DIR2/instance/db2iupdt db2inst2

If the DB2 copy installed at DB2DIR2 is at level lower than the DB2 copy installed
at DB2DIR1, issue:

DB2DIR2/instance/db2iupdt -D db2inst2

Usage notes

For all supported operating systems

v If you use the db2iupdt command to update a DB2 instance from one
DB2 copy to another DB2 copy of the same version of DB2 database
product, the DB2 Global Profile Variables defined in an old DB2 copy
installation path will not be updated over to the new installation
location. The DB2 Instance Profile Variables specific to the instance will
be carried over after the instance is updated.

For UNIX and Linux operating systems

v The db2iupdt command is located in the DB2DIR/instance directory,
where DB2DIR is the location where the current version of the DB2
database product is installed.

v If you want to update a non-root instance, refer to the db2nrupdt
non-root-installed instance update command. The db2iupdt does not
support updating of non-root instances.

v If you are using the su command instead of the login command to
become the root user, you must issue the su command with the - option
to indicate that the process environment is to be set as if you had logged
in to the system using the login command.

v You must not source the DB2 instance environment for the root user.
Running db2iupdt when you sourced the DB2 instance environment is
not supported.

518 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v On UNIX and Linux operating systems, if the IBM Tivoli Monitoring for
Databases: DB2 Agent is installed and the DB2 instance is updated, the
Monitoring Agent for DB2 instance is also created if the following are
true:
– The DB2 instance type is standalone, wse, or ese.
– The DB2 instance is at version 9.5 (or higher).

In addition, ITMA must already be installed for the DB2 copy you are
updating the instance. Located in DB2DIR/itma directory, where
DB2DIR represents the directory where the DB2 product is installed.

v On AIX 6.1 (or higher), when running this command from a shared DB2
copy in a system workload partition (WPAR) global environment, this
command must be run as the root user.

For Windows operating systems

v The db2iupdt command is located in the DB2PATH\bin directory, where
DB2PATH is the location where the current version of the DB2 database
product is installed.

v The instance is updated to the DB2 copy from which you issue the
db2iupdt command. However, to move your instance profile from its
current location to another location, use the /p option and specify the
instance profile path. Otherwise, the instance profile will stay in its
original location after the instance update. Use the db2iupgrade
command instead to upgrade to the current release from a previous
release.

v On Windows operating systems, if the IBM Tivoli Monitoring for
Databases: DB2 Agent is installed and the DB2 copy instance is updated,
the Monitoring Agent for DB2 instance is also created if the following
are true:
– The DB2 instance type is standalone, wse, or ese.
– The default DB2 copy has the ITM agent component installed.
– The DB2 instance is at version 9.5 (or higher).
– There is no existing ITM for Databases product.

In addition, the following are also created after the creation of the
Monitoring Agent for DB2 instance: the Monitoring Agent for DB2
instance files, the NT service and the registry entries.

db2nchg - Change database partition server configuration

Modifies database partition server configuration. This includes moving the
database partition server (node) from one machine to another; changing the
TCP/IP host name of the machine; and selecting a different logical port number or
a different network name for the database partition server (node). This command
can only be used if the database partition server is stopped.

This command is available on Windows operating systems only.

Authorization

Local Administrator

Chapter 30. DB2 commands 519

Command syntax

�� db2nchg /n: dbpartitionnum
/i: instance_name

�

�
/u: username,password /p: logical_port /h: host_name

�

�
/m: machine_name /g: network_name

��

Command parameters

/n:dbpartitionnum
Specifies the database partition number of the database partition server’s
configuration that is to be changed.

/i:instance_name
Specifies the instance in which this database partition server participates. If
a parameter is not specified, the default is the current instance.

/u:username,password
Specifies the user name and password. If a parameter is not specified, the
existing user name and password will apply.

/p:logical_port
Specifies the logical port for the database partition server. This parameter
must be specified to move the database partition server to a different
machine. If a parameter is not specified, the logical port number will
remain unchanged.

/h:host_name
Specifies TCP/IP host name used by FCM for internal communications. If
this parameter is not specified, the host name will remain the same.

/m:machine_name
Specifies the machine where the database partition server will reside. The
database partition server can only be moved if there are no existing
databases in the instance.

/g:network_name
Changes the network name for the database partition server. This
parameter can be used to apply a specific IP address to the database
partition server when there are multiple IP addresses on a machine. The
network name or the IP address can be entered.

Examples

To change the logical port assigned to database partition 2, which participates in
the instance TESTMPP, to logical port 3, enter the following command:

db2nchg /n:2 /i:TESTMPP /p:3

db2ncrt - Add database partition server to an instance

Adds a database partition server (node) to an instance.

This command is available on Windows operating systems only.

520 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Scope

If a database partition server is added to a computer where an instance already
exists, a database partition server is added as a logical database partition server to
the computer. If a database partition server is added to a computer where an
instance does not exist, the instance is added and the computer becomes a new
physical database partition server. This command should not be used if there are
databases in an instance. Instead, the START DATABASE MANAGER command
should be issued with the ADD DBPARTITIONNUM option. This ensures that the
database is correctly added to the new database partition server. It is also possible
to add a database partition server to an instance in which a database has been
created. The db2nodes.cfg file should not be edited since changing the file might
cause inconsistencies in the partitioned database environment.

Authorization

Local Administrator authority on the computer where the new database partition
server is added.

Command syntax

�� db2ncrt /n: dbpartitionnum /u: username,password �

�
/i: instance_name /m: machine_name /p: logical_port

�

�
/h: host_name /g: network_name /o: instance_owning_machine

��

Command parameters

/n:dbpartitionnum
A unique database partition number which identifies the database partition
server. The number entered can range from 1 to 999.

/u:username,password
Specifies the logon account name and password for DB2.

/i:instance_name
Specifies the instance name. If a parameter is not specified, the default is
the current instance.

/m:machine_name
Specifies the computer name of the Windows workstation on which the
database partition server resides. This parameter is required if a database
partition server is added on a remote computer.

/p:logical_port
Specifies the logical port number used for the database partition server. If
this parameter is not specified, the logical port number assigned will be 0.
When creating a logical database partition server, this parameter must be
specified and a logical port number that is not in use must be selected.
Note the following restrictions:
v Every computer must have a database partition server that has a logical

port 0.
v The port number cannot exceed the port range reserved for FCM

communications in the x:\winnt\system32\drivers\etc\ directory. For

Chapter 30. DB2 commands 521

example, if a range of 4 ports is reserved for the current instance, then
the maximum port number is 3. Port 0 is used for the default logical
database partition server.

/h:host_name
Specifies the TCP/IP host name that is used by FCM for internal
communications. This parameter is required when the database partition
server is being added on a remote computer.

/g:network_name
Specifies the network name for the database partition server. If a parameter
is not specified, the first IP address detected on the system will be used.
This parameter can be used to apply a specific IP address to the database
partition server when there are multiple IP addresses on a computer. The
network name or the IP address can be entered.

/o:instance_owning_machine
Specifies the computer name of the instance-owning computer. The default
is the local computer. This parameter is required when the db2ncrt
command is invoked on any computer that is not the instance-owning
computer.

Examples

To add a new database partition server to the instance TESTMPP on the
instance-owning computer SHAYER, where the new database partition server is
known as database partition 2 and uses logical port 1, enter the following
command:

db2ncrt /n:2 /u:QBPAULZ\paulz,g1reeky /i:TESTMPP /m:TEST /p:1 /o:SHAYER /h:TEST

db2ndrop - Drop database partition server from an instance

Drops a database partition server (node) from an instance that has no databases. If
a database partition server is dropped, its database partition number can be reused
for a new database partition server. This command can only be used if the
database partition server is stopped.

This command is available on Windows operating systems only.

Authorization

Local Administrator authority on the machine where the database partition server
is being dropped.

Command syntax

�� db2ndrop /n: dbpartitionnum
/i: instance_name

��

Command parameters

/n:dbpartitionnum
A unique database partition number which identifies the database partition
server.

522 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

/i:instance_name
Specifies the instance name. If a parameter is not specified, the default is
the current instance.

Examples
db2ndrop /n:2 /i=KMASCI

Usage notes

If the instance-owning database partition server (dbpartitionnum 0) is dropped
from the instance, the instance becomes unusable. To drop the instance, use the
db2idrop command.

This command should not be used if there are databases in this instance. Instead,
the db2stop drop nodenum command should be used. This ensures that the
database partition server is correctly removed from the partition database
environment. It is also possible to drop a database partition server in an instance
where a database exists. The db2nodes.cfg file should not be edited since changing
the file might cause inconsistencies in the partitioned database environment.

To drop a database partition server that is assigned to the logical port 0 from a
machine that is running multiple logical database partition servers, all other
database partition servers assigned to the other logical ports must be dropped first.
Each database partition server must have a database partition server assigned to
logical port 0.

db2rbind - Rebind all packages

Rebinds packages in a database.

Authorization

dbadm

Required connection

None

Command syntax

�� db2rbind database -l logfile
all -u userid -p password

�

�
conservative

-r any

��

Command parameters

database
Specifies an alias name for the database whose packages are to be
revalidated.

-l logfile
Specifies the (optional) path and the (mandatory) file name to be used for
recording the package revalidation process.

Chapter 30. DB2 commands 523

|
|
|

Example:
cat <logfile>
Starting time Thu Jun 18 02:47:11 2009
Succeeded to rebind = 0
Failed to rebind = 0
Ending time Thu Jun 18 02:47:11 2009

all Specifies that rebinding of all valid and invalid packages is to be done. If
this option is not specified, all packages in the database are examined, but
only those packages that are marked as invalid are rebound, so that they
are not rebound implicitly during application execution.

-u userid
User ID. This parameter must be specified if a password is specified.

-p password
Password. This parameter must be specified if a user ID is specified.

-r Resolve. Specifies whether rebinding of the package is to be performed
with or without conservative binding semantics. This affects whether new
objects that use the SQL path for resolution are considered during
resolution on static DML statements in the package. This option is not
supported by DRDA. Valid values are:

conservative
Only those objects in the SQL path that were defined before the
last explicit bind time stamp are considered for resolving references
to any objects that use the SQL path for object resolution.
Conservative binding semantics are used. This is the default. This
option is not supported for an inoperative package.

any All possible matches in the SQL path are considered for resolving
references to any objects that use the SQL path for object
resolution. Conservative binding semantics are not used.

Usage notes
v This command uses the rebind API (sqlarbnd) to attempt the re-validation of all

packages in a database.
v Use of db2rbind is not mandatory.
v For packages that are invalid, you can choose to allow package revalidation to

occur implicitly when the package is first used. You can choose to selectively
revalidate packages with either the REBIND or the BIND command.

v If the rebind of any of the packages encounters a deadlock or a lock timeout the
rebind of all the packages will be rolled back.

db2extsec - Set permissions for DB2 objects

Sets the permissions for DB2 objects (for example, files, directories, network shares,
registry keys and services) on updated DB2 database system installations.

As of DB2 version 9 Fixpak 2, domain groups can be used for extended security.

Authorization

sysadm

524 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

|

|
|
|
|
|

Required connection

None

Command syntax

�� db2extsec
/u usergroup
/users

/a admingroup
/admins

�

�
/oldusers oldusergrp /oldadmins oldadmngrp /file inputfile

�

�
/verbose /r

/reset
/h
/help
?

��

Command parameters

/u | /users usergroup
Specifies the name of the user group to be added. If this option is not
specified, the default DB2 user group (DB2USERS) is used. The usergroup
can be a local group or a domain group. To specify a local group, you can
specify the group name with or without the machine name. For example,
DB2USERS, or MYWKSTN\DB2USERS. To specify a domain group, you specify the
usergroup in the form of DOMAIN\GROUP. For example, MYDOMAIN\DB2USERS.

/a | /admins admingroup
Specifies the name of the administration group to be added. If this option
is not specified, the default DB2 administration group (DB2ADMNS) is
used. The admingroup can be a local group or a domain group. To specify a
local group, you can specify the group name with or without the machine
name. For example, DB2ADMNS, or MYWKSTN\DB2ADMNS. To specify a domain
group, you specify the admingroup in the form of DOMAIN\GROUP. For
example, MYDOMAIN\DB2ADMNS.

Note: The following 3 parameters, /oldusers, /oldadmins, and /file, are required
when you are changing the extended security group names and have file
or directory objects that have been created outside of the default locations
(i.e., install directory or database directories). The db2extsec command can
only change permissions to a known set of DB2 files. If the user had
created private DB2 files with extended security, then the user will need to
provide the locations of these file, so the db2extsec command can change
the permissions on these files with the new extended security group
names. The location of the files are to be supplied in the inputfile using the
/file option.

/oldusers oldusergrp
The old DB2 users group name to be changed.

/oldadmins oldadmngrp
The old DB2 admins group name to be changed.

/file inputfile
File listing additional files/directories for which the permissions need to be
updated.

Chapter 30. DB2 commands 525

/verbose
Output extra information.

/r | /reset
Specifies that the changes made by previously running db2extsec should be
reversed. If you specify this option, all other options are ignored. This
option will only work if no other DB2 commands have been issued since
the db2extsec command was issued.

/h | /help | ?
Displays the command help information.

Examples

To enable extended security and use the domain groups mydom\db2users and
mydom\db2admns to protect your DB2 objects:
db2extsec /u mydom\db2users /a mydom\db2admns

To reset extended security to its previous setting (see /reset option above):
db2extsec /reset

To enable extended security as above, but also change the security group for the
files/directories listed in c:\mylist.lst from local group db2admns and db2users to
domain groups mydom\db2admns and mydom\db2users:
db2extsec /users mydom\db2users /admins mydom\db2admns /oldadmins db2admns
/oldusers db2users /file c:\mylist.lst

Note: The format of the input file is as follows:
* This is a comment
D:\MYBACKUPDIR
D:\MYEXPORTDIR
D:\MYMISCFILE\myfile.dat

* This is another comment
E:\MYOTHERBACKUPDIR * These are more comments
E:\MYOTHEREXPORTDIR

db2secGenerateInitialCred API - Generate initial credentials
The db2secGenerateInitialCred API obtains the initial GSS-API credentials based on
the user ID and password that are passed in.

For Kerberos, this is the ticket-granting ticket (TGT). The credential handle that is
returned in pGSSCredHandle parameter is the handle that is used with the
gss_init_sec_context API and must be either an INITIATE or BOTH credential. The
db2secGenerateInitialCred API is only called when a user ID, and possibly a
password are supplied. Otherwise, the DB2 database manager specifies the value
GSS_C_NO_CREDENTIAL when calling the gss_init_sec_context API to signify
that the default credential obtained from the current login context is to be used.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secGenerateInitialCred)

(const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *password,
db2int32 passwordlen,

526 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

const char *newpassword,
db2int32 newpasswordlen,
const char *dbname,
db2int32 dbnamelen,
gss_cred_id_t *pGSSCredHandle,
void **InitInfo,
char **errormsg,
db2int32 *errormsglen);

db2secGenerateInitialCred API parameters

userid Input. The user ID whose password is to be verified on the database
server.

useridlen
Input. Length in bytes of the userid parameter value.

usernamespace
Input. The namespace from which the user ID was obtained.

usernamespacelen
Input. Length in bytes of the usernamespace parameter value.

usernamespacetype
Input. The type of namespace.

password
Input. The password to be verified.

passwordlen
Input. Length in bytes of the password parameter value.

newpassword
Input. A new password if the password is to be changed. If no change is
requested, the newpassword parameter is set to NULL. If it is not NULL,
the API should validate the old password before setting the password to its
new value. The API does not have to honour a request to change the
password, but if it does not, it should immediately return with the return
value DB2SEC_PLUGIN_CHANGEPASSWORD_NOTSUPPORTED without
validating the old password.

newpasswordlen
Input. Length in bytes of the newpassword parameter value.

dbname
Input. The name of the database being connected to. The API is free to
ignore this parameter, or the API can return the value
DB2SEC_PLUGIN_CONNECTION_DISALLOWED if it has a policy of
restricting access to certain databases to users who otherwise have valid
passwords.

dbnamelen
Input. Length in bytes of the dbname parameter value.

pGSSCredHandle
Output. Pointer to the GSS-API credential handle.

InitInfo
Output. A pointer to data that is not known to DB2. The plug-in can use
this memory to maintain a list of resources that are allocated in the process
of generating the credential handle. The DB2 database manager calls the
db2secFreeInitInfo API at the end of the authentication process, at which
point these resources are freed. If the db2secGenerateInitialCred API does
not need to maintain such a list, then it should return NULL.

Chapter 30. DB2 commands 527

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secGenerateInitialCred API execution is not successful.

Note: For this API, error messages should not be created if the return
value indicates a bad user ID or password. An error message should only
be returned if there is an internal error in the API that prevented it from
completing properly.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2undgp - Revoke execute privilege

Note: This command has been deprecated and may be removed in a future
release.

Revoke the execute privilege on external stored procedures. This command can be
used against external stored procedures.

During the database migration, EXECUTE for all existing functions, methods, and
External stored procedures is granted to PUBLIC. This will cause a security
exposure for External Stored procedures that contain SQL data access. To prevent
users from accessing SQL objects which the user might not have privilege for, use
the db2undgp command.

Command syntax

�� db2undgp
-d dbname -h -o outfile -r

��

Command parameters

-d dbname
Specifies a database name whose maximum length is 8 characters.

-h Displays help for the command.

-o outfile
Output the revoke statements in the specified file. Length of the file name
should be <= 80.

-r Perform the revoke

Usage notes

At least one of the -r or -o options must be specified.

DROP DATABASE

Deletes the database contents and all log files for the database, uncatalogs the
database, and deletes the database subdirectory.

528 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Scope

By default, this command affects all database partitions that are listed in the
db2nodes.cfg file.

Authorization

One of the following:
v sysadm

v sysctrl

Required connection

Instance. An explicit attachment is not required. If the database is listed as remote,
an instance attachment to the remote database partition server is established for
the duration of the command.

Command syntax

�� DROP DATABASE
DB

database-alias
AT DBPARTITIONNUM

��

Command parameters

DATABASE database-alias
Specifies the alias of the database to be dropped. The database must be
cataloged in the system database directory.

AT DBPARTITIONNUM
Specifies that the database is to be deleted only on the database partition
that issued the DROP DATABASE command. This parameter is used by
utilities supplied withDB2 Warehouse Edition and the Database
Partitioning Feature (DPF), and is not intended for general use. Improper
use of this parameter can cause inconsistencies in the system, so it should
only be used with caution.

Examples

The following example deletes the database referenced by the database alias
SAMPLE:

db2 drop database sample

Usage notes

DROP DATABASE deletes all user data and log files, as well as any backup and
restore history for the database. If the log files are needed for a roll-forward
recovery after a restore operation, or the backup history required to restore the
database, these files should be saved prior to issuing this command.

The database must not be in use; all users must be disconnected from the database
before the database can be dropped.

To be dropped, a database must be cataloged in the system database directory.
Only the specified database alias is removed from the system database directory. If
other aliases with the same database name exist, their entries remain. If the

Chapter 30. DB2 commands 529

database being dropped is the last entry in the local database directory, the local
database directory is deleted automatically.

If DROP DATABASE is issued from a remote client (or from a different instance on
the same machine), the specified alias is removed from the client’s system database
directory. The corresponding database name is removed from the server’s system
database directory.

Compatibilities

For compatibility with versions earlier than Version 8:
v The keyword NODE can be substituted for DBPARTITIONNUM.

DROP DBPARTITIONNUM VERIFY

Verifies if a database partition exists in the database partition groups of any
databases, and if an event monitor is defined on the database partition. This
command should be used prior to dropping a database partition from a partitioned
database environment.

Scope

This command only affects the database partition on which it is issued.

Authorization

sysadm

Command syntax

�� DROP DBPARTITIONNUM VERIFY ��

Command parameters

None

Usage notes

If a message is returned, indicating that the database partition is not in use, use the
STOP DATABASE MANAGER command with DROP DBPARTITIONNUM to
remove the entry for the database partition from the db2nodes.cfg file, which
removes the database partition from the database system.

If a message is returned, indicating that the database partition is in use, the
following actions should be taken:
1. If the database partition contains data, redistribute the data to remove it from

the database partition using REDISTRIBUTE DATABASE PARTITION GROUP.
Use either the DROP DBPARTITIONNUM option on the REDISTRIBUTE
DATABASE PARTITION GROUP command or on the ALTER DATABASE
PARTITION GROUP statement to remove the database partition from any
database partition groups for the database. This must be done for each
database that contains the database partition in a database partition group.

2. Drop any event monitors that are defined on the database partition.

530 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

3. Rerun DROP DBPARTITIONNUM VERIFY to ensure that the database is no
longer in use.

Compatibilities

For compatibility with versions earlier than Version 8:
v The keyword NODE can be substituted for DBPARTITIONNUM.

EXPORT

Exports data from a database to one of several external file formats. The user
specifies the data to be exported by supplying an SQL SELECT statement, or by
providing hierarchical information for typed tables.

Quick link to “File type modifiers for the export utility” on page 535.

Authorization

One of the following:
v dataaccess authority
v CONTROL or SELECT privilege on each participating table or view

Required connection

Command syntax

�� EXPORT TO filename OF filetype

�

,

LOBS TO lob-path

�

�

�

,

LOBFILE filename �

,

XML TO xml-path

�

�

�

,

XMLFILE filename �MODIFIED BY filetype-mod

�

�
XMLSAVESCHEMA

�

,

METHOD N (column-name)

�

�

�

select-statement
XQUERY xquery-statement
HIERARCHY STARTING sub-table-name

traversal-order-list

WHERE

��

Chapter 30. DB2 commands 531

traversal-order-list:

�

,

(sub-table-name)

Command parameters

HIERARCHY traversal-order-list
Export a sub-hierarchy using the specified traverse order. All sub-tables
must be listed in PRE-ORDER fashion. The first sub-table name is used as
the target table name for the SELECT statement.

HIERARCHY STARTING sub-table-name
Using the default traverse order (OUTER order for ASC, DEL, or WSF files,
or the order stored in PC/IXF data files), export a sub-hierarchy starting
from sub-table-name.

LOBFILE filename
Specifies one or more base file names for the LOB files. When name space
is exhausted for the first name, the second name is used, and so on. This
will implicitly activate the LOBSINFILE behavior.

When creating LOB files during an export operation, file names are
constructed by appending the current base name from this list to the
current path (from lob-path), and then appending a 3-digit sequence
number to start and the three character identifier lob. For example, if the
current LOB path is the directory /u/foo/lob/path/, and the current LOB
file name is bar, the LOB files created will be /u/foo/lob/path/
bar.001.lob, /u/foo/lob/path/bar.002.lob, and so on. The 3-digit
sequence number in the LOB file name will grow to 4-digits once 999 is
used, 4-digits will grow to 5-digits once 9999 is used, and so on.

LOBS TO lob-path
Specifies one or more paths to directories in which the LOB files are to be
stored. There will be at least one file per LOB path, and each file will
contain at least one LOB. The maximum number of paths that can be
specified is 999. This will implicitly activate the LOBSINFILE behavior.

METHOD N column-name
Specifies one or more column names to be used in the output file. If this
parameter is not specified, the column names in the table are used. This
parameter is valid only for WSF and IXF files, but is not valid when
exporting hierarchical data.

MODIFIED BY filetype-mod
Specifies file type modifier options. See “File type modifiers for the export
utility” on page 535.

OF filetype
Specifies the format of the data in the output file:
v DEL (delimited ASCII format), which is used by a variety of database

manager and file manager programs.
v WSF (work sheet format), which is used by programs such as:

– Lotus® 1-2-3®

– Lotus Symphony

When exporting BIGINT or DECIMAL data, only values that fall within
the range of type DOUBLE can be exported accurately. Although values

532 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

that do not fall within this range are also exported, importing or loading
these values back might result in incorrect data, depending on the
operating system.

Note: Support for the WSF file format is deprecated and might be
removed in a future release. It is recommended that you start using a
supported file format instead of WSF files before support is removed.

v IXF (Integration Exchange Format, PC version) is a proprietary binary
format.

select-statement
Specifies the SELECT or XQUERY statement that will return the data to be
exported. If the statement causes an error, a message is written to the
message file (or to standard output). If the error code is one of SQL0012W,
SQL0347W, SQL0360W, SQL0437W, or SQL1824W, the export operation
continues; otherwise, it stops.

TO filename

If the name of a file that already exists is specified, the export utility
overwrites the contents of the file; it does not append the information.

XMLFILE filename
Specifies one or more base file names for the XML files. When name space
is exhausted for the first name, the second name is used, and so on.

When creating XML files during an export operation, file names are
constructed by appending the current base name from this list to the
current path (from xml-path), appending a 3-digit sequence number, and
appending the three character identifier xml. For example, if the current
XML path is the directory /u/foo/xml/path/, and the current XML file
name is bar, the XML files created will be /u/foo/xml/path/bar.001.xml,
/u/foo/xml/path/bar.002.xml, and so on.

XML TO xml-path
Specifies one or more paths to directories in which the XML files are to be
stored. There will be at least one file per XML path, and each file will
contain at least one XQuery Data Model (XDM) instance. If more than one
path is specified, then XDM instances are distributed evenly among the
paths.

XMLSAVESCHEMA
Specifies that XML schema information should be saved for all XML
columns. For each exported XML document that was validated against an
XML schema when it was inserted, the fully qualified SQL identifier of that
schema will be stored as an (SCH) attribute inside the corresponding XML
Data Specifier (XDS). If the exported document was not validated against
an XML schema or the schema object no longer exists in the database, an
SCH attribute will not be included in the corresponding XDS.

The schema and name portions of the SQL identifier are stored as the
″OBJECTSCHEMA″ and ″OBJECTNAME″ values in the row of the
SYSCAT.XSROBJECTS catalog table corresponding to the XML schema.

The XMLSAVESCHEMA option is not compatible with XQuery sequences
that do not produce well-formed XML documents.

Chapter 30. DB2 commands 533

Usage notes
v Be sure to complete all table operations and release all locks before starting an

export operation. This can be done by issuing a COMMIT after closing all
cursors opened WITH HOLD, or by issuing a ROLLBACK.

v Table aliases can be used in the SELECT statement.
v The messages placed in the message file include the information returned from

the message retrieval service. Each message begins on a new line.
v The export utility produces a warning message whenever a character column

with a length greater than 254 is selected for export to DEL format files.
v PC/IXF import should be used to move data between databases. If character

data containing row separators is exported to a delimited ASCII (DEL) file and
processed by a text transfer program, fields containing the row separators will
shrink or expand.

v The file copying step is not necessary if the source and the target databases are
both accessible from the same client.

v DB2 Connect can be used to export tables from DRDA servers such as DB2 for
OS/390, DB2 for VM and VSE, and DB2 for OS/400®. Only PC/IXF export is
supported.

v When exporting to the IXF format, if identifiers exceed the maximum size
supported by the IXF format, the export will succeed but the resulting datafile
cannot be used by a subsequent import operation using the CREATE mode.
SQL27984W will be returned.

v When exporting to a diskette on Windows, and the table that has more data
than the capacity of a single diskette, the system will prompt for another
diskette, and multiple-part PC/IXF files (also known as multi-volume PC/IXF
files, or logically split PC/IXF files), are generated and stored in separate
diskettes. In each file, with the exception of the last, there is a DB2
CONTINUATION RECORD (or ″AC″ Record in short) written to indicate the
files are logically split and where to look for the next file. The files can then be
transferred to an AIX system, to be read by the import and load utilities. The
export utility will not create multiple-part PC/IXF files when invoked from an
AIX system. For detailed usage, see the IMPORT command or LOAD command.

v The export utility will store the NOT NULL WITH DEFAULT attribute of the
table in an IXF file if the SELECT statement provided is in the form SELECT *
FROM tablename.

v When exporting typed tables, subselect statements can only be expressed by
specifying the target table name and the WHERE clause. Fullselect and
select-statement cannot be specified when exporting a hierarchy.

v For file formats other than IXF, it is recommended that the traversal order list be
specified, because it tells DB2 how to traverse the hierarchy, and what sub-tables
to export. If this list is not specified, all tables in the hierarchy are exported, and
the default order is the OUTER order. The alternative is to use the default order,
which is the order given by the OUTER function.

v Use the same traverse order during an import operation. The load utility does
not support loading hierarchies or sub-hierarchies.

v When exporting data from a table that has protected rows, the LBAC credentials
held by the session authorization id might limit the rows that are exported.
Rows that the session authorization ID does not have read access to will not be
exported. No error or warning is given.

v If the LBAC credentials held by the session authorization id do not allow
reading from one or more protected columns included in the export then the
export fails and an error (SQLSTATE 42512) is returned.

534 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v Export packages are bound using DATETIME ISO format, thus, all
date/time/timestamp values are converted into ISO format when cast to a string
representation. Since the CLP packages are bound using DATETIME LOC format
(locale specific format), you may see inconsistent behavior between CLP and
export if the CLP DATETIME format is different from ISO. For instance, the
following SELECT statement may return expected results:

db2 select col2 from tab1 where char(col2)='05/10/2005';
COL2

05/10/2005
05/10/2005
05/10/2005
3 record(s) selected.

But an export command using the same select clause will not:
db2 export to test.del of del select col2 from test
where char(col2)='05/10/2005';

Number of rows exported: 0

Now, replacing the LOCALE date format with ISO format gives the expected
results:

db2 export to test.del of del select col2 from test
where char(col2)='2005-05-10';

Number of rows exported: 3

File type modifiers for the export utility

Table 139. Valid file type modifiers for the export utility: All file formats

Modifier Description

lobsinfile lob-path specifies the path to the files containing LOB data.

Each path contains at least one file that contains at least one LOB pointed to by a
Lob Location Specifier (LLS) in the data file. The LLS is a string representation of
the location of a LOB in a file stored in the LOB file path. The format of an LLS is
filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains the
LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the length
of the LOB in bytes. For example, if the string db2exp.001.123.456/ is stored in
the data file, the LOB is located at offset 123 in the file db2exp.001, and is 456
bytes long.

If you specify the “lobsinfile” modifier when using EXPORT, the LOB data is
placed in the locations specified by the LOBS TO clause. Otherwise the LOB data
is sent to the data file directory. The LOBS TO clause specifies one or more paths
to directories in which the LOB files are to be stored. There will be at least one
file per LOB path, and each file will contain at least one LOB. The LOBS TO or
LOBFILE options will implicitly activate the LOBSINFILE behavior.

To indicate a null LOB , enter the size as -1. If the size is specified as 0, it is
treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file
name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

xmlinsepfiles Each XQuery Data Model (XDM) instance is written to a separate file. By default,
multiple values are concatenated together in the same file.

lobsinsepfiles Each LOB value is written to a separate file. By default, multiple values are
concatenated together in the same file.

xmlnodeclaration XDM instances are written without an XML declaration tag. By default, XDM
instances are exported with an XML declaration tag at the beginning that includes
an encoding attribute.

Chapter 30. DB2 commands 535

Table 139. Valid file type modifiers for the export utility: All file formats (continued)

Modifier Description

xmlchar XDM instances are written in the character codepage. Note that the character
codepage is the value specified by the codepage file type modifier, or the
application codepage if it is not specified. By default, XDM instances are written
out in Unicode.

xmlgraphic If the xmlgraphic modifier is specified with the EXPORT command, the exported
XML document will be encoded in the UTF-16 code page regardless of the
application code page or the codepage file type modifier.

Table 140. Valid file type modifiers for the export utility: DEL (delimited ASCII) file format

Modifier Description

chardelx x is a single character string delimiter. The default value is a double quotation
mark (″). The specified character is used in place of double quotation marks to
enclose a character string.2 If you want to explicitly specify the double quotation
mark as the character string delimiter, it should be specified as follows:

modified by chardel""

The single quotation mark (’) can also be specified as a character string delimiter
as follows:

modified by chardel''

codepage=x x is an ASCII character string. The value is interpreted as the code page of the
data in the output data set. Converts character data to this code page from the
application code page during the export operation.

For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to the
range of x00 to x3F, inclusive. The codepage modifier cannot be used with the
lobsinfile modifier.

coldelx x is a single character column delimiter. The default value is a comma (,). The
specified character is used in place of a comma to signal the end of a column.2

In the following example, coldel; causes the export utility to use the semicolon
character (;) as a column delimiter for the exported data:

db2 "export to temp of del modified by coldel;
select * from staff where dept = 20"

decplusblank Plus sign character. Causes positive decimal values to be prefixed with a blank
space instead of a plus sign (+). The default action is to prefix positive decimal
values with a plus sign.

decptx x is a single character substitute for the period as a decimal point character. The
default value is a period (.). The specified character is used in place of a period as
a decimal point character.2

nochardel Column data will not be surrounded by character delimiters. This option should
not be specified if the data is intended to be imported or loaded using DB2. It is
provided to support vendor data files that do not have character delimiters.
Improper usage might result in data loss or corruption.

This option cannot be specified with chardelx or nodoubledel. These are mutually
exclusive options.

nodoubledel Suppresses recognition of double character delimiters.2

536 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 140. Valid file type modifiers for the export utility: DEL (delimited ASCII) file format (continued)

Modifier Description

striplzeros Removes the leading zeros from all exported decimal columns.

Consider the following example:

db2 create table decimalTable (c1 decimal(31, 2))
db2 insert into decimalTable values (1.1)

db2 export to data of del select * from decimalTable

db2 export to data of del modified by STRIPLZEROS
select * from decimalTable

In the first export operation, the content of the exported file data will be
+00000000000000000000000000001.10. In the second operation, which is identical
to the first except for the striplzeros modifier, the content of the exported file
data will be +1.10.

timestampformat=″x″ x is the format of the time stamp in the source file.4 Valid time stamp elements
are:

YYYY - Year (four digits ranging from 0000 - 9999)
M - Month (one or two digits ranging from 1 - 12)
MM - Month (two digits ranging from 01 - 12;

mutually exclusive with M and MMM)
MMM - Month (three-letter case-insensitive abbreviation for

the month name; mutually exclusive with M and MM)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 1 - 31; mutually exclusive with D)
DDD - Day of the year (three digits ranging from 001 - 366;

mutually exclusive with other day or month elements)
H - Hour (one or two digits ranging from 0 - 12

for a 12 hour system, and 0 - 24 for a 24 hour system)
HH - Hour (two digits ranging from 0 - 12

for a 12 hour system, and 0 - 24 for a 24 hour system;
mutually exclusive with H)

M - Minute (one or two digits ranging from 0 - 59)
MM - Minute (two digits ranging from 0 - 59;

mutually exclusive with M, minute)
S - Second (one or two digits ranging from 0 - 59)
SS - Second (two digits ranging from 0 - 59;

mutually exclusive with S)
SSSSS - Second of the day after midnight (5 digits

ranging from 00000 - 86399; mutually
exclusive with other time elements)

U (1 to 12 times)
- Fractional seconds(number of occurrences of U represent the

number of digits with each digit ranging from 0 to 9
TT - Meridian indicator (AM or PM)

Following is an example of a time stamp format:

"YYYY/MM/DD HH:MM:SS.UUUUUU"

The MMM element will produce the following values: ’Jan’, ’Feb’, ’Mar’, ’Apr’,
’May’, ’Jun’, ’Jul’, ’Aug’, ’Sep’, ’Oct’, ’Nov’, and ’Dec’. ’Jan’ is equal to month 1,
and ’Dec’ is equal to month 12.

The following example illustrates how to export data containing user-defined
time stamp formats from a table called ’schedule’:

db2 export to delfile2 of del
modified by timestampformat="yyyy.mm.dd hh:mm tt"
select * from schedule

Chapter 30. DB2 commands 537

Table 141. Valid file type modifiers for the export utility: IXF file format

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as the code page of the
data in the output data set. Converts character data from this code page to the
application code page during the export operation.

For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to the
range of x00 to x3F, inclusive.

Table 142. Valid file type modifiers for the export utility: WSF file format6

Modifier Description

1 Creates a WSF file that is compatible with Lotus 1-2-3 Release 1, or Lotus 1-2-3
Release 1a.5 This is the default.

2 Creates a WSF file that is compatible with Lotus Symphony Release 1.0.5

3 Creates a WSF file that is compatible with Lotus 1-2-3 Version 2, or Lotus
Symphony Release 1.1.5

4 Creates a WSF file containing DBCS characters.

Note:

1. The export utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted, the
export operation fails, and an error code is returned.

2. Delimiter considerations for moving data lists restrictions that apply to the
characters that can be used as delimiter overrides.

3. The export utility normally writes
v date data in YYYYMMDD format
v char(date) data in ″YYYY-MM-DD″ format
v time data in ″HH.MM.SS″ format
v time stamp data in ″YYYY-MM-DD-HH. MM.SS.uuuuuu″ format

Data contained in any datetime columns specified in the SELECT statement
for the export operation will also be in these formats.

4. For time stamp formats, care must be taken to avoid ambiguity between the
month and the minute descriptors, since they both use the letter M. A month
field must be adjacent to other date fields. A minute field must be adjacent to
other time fields. Following are some ambiguous time stamp formats:

"M" (could be a month, or a minute)
"M:M" (Which is which?)
"M:YYYY:M" (Both are interpreted as month.)
"S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation
will fail.
Following are some unambiguous time stamp formats:

"M:YYYY" (Month)
"S:M" (Minute)
"M:YYYY:S:M" (Month....Minute)
"M:H:YYYY:M:D" (Minute....Month)

5. These files can also be directed to a specific product by specifying an L for
Lotus 1-2-3, or an S for Symphony in the filetype-mod parameter string. Only
one value or product designator can be specified. Support for the WSF file

538 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

format is deprecated and might be removed in a future release. It is
recommended that you start using a supported file format instead of WSF
files before support is removed.

6. The WSF file format is not supported for XML columns. Support for this file
format is deprecated and might be removed in a future release. It is
recommended that you start using a supported file format instead of WSF
files before support is removed.

7. All XDM instances are written to XML files that are separate from the main
data file, even if neither the XMLFILE nor the XML TO clause is specified. By
default, XML files are written to the path of the exported data file. The default
base name for XML files is the name of the exported data file with the
extension ″.xml″ appended to it.

8. All XDM instances are written with an XML declaration at the beginning that
includes an encoding attribute, unless the XMLNODECLARATION file type
modifier is specified.

9. By default, all XDM instances are written in Unicode unless the XMLCHAR or
XMLGRAPHIC file type modifier is specified.

10. The default path for XML data and LOB data is the path of the main data file.
The default XML file base name is the main data file. The default LOB file
base name is the main data file. For example, if the main data file is:
/mypath/myfile.del

the default path for XML data and LOB data is:
/mypath"

the default XML file base name is:
myfile.del

and the default LOB file base name is:
myfile.del

The LOBSINFILE file type modifier must be specified in order to have LOB
files generated.

11. The export utility appends a numeric identifier to each LOB file or XML file.
The identifier starts as a 3 digit, 0 padded sequence value, starting at:
.001

After the 999th LOB file or XML file, the identifier will no longer be padded
with zeroes (for example, the 1000th LOG file or XML file will have an
extension of:
.1000

Following the numeric identifier is a three character type identifier
representing the data type, either:
.lob

or
.xml

For example, a generated LOB file would have a name in the format:
myfile.del.001.lob

and a generated XML file would be have a name in the format:
myfile.del.001.xml

Chapter 30. DB2 commands 539

12. It is possible to have the export utility export XDM instances that are not
well-formed documents by specifying an XQuery. However, you will not be
able to import or load these exported documents directly into an XML
column, since XML columns can only contain complete documents.

GET DATABASE CONFIGURATION

Returns the values of individual entries in a specific database configuration file.

Scope

This command returns information only for the database partition on which it is
executed.

Authorization

None

Required connection

Instance. An explicit attachment is not required, but a connection to the database is
required when using the SHOW DETAIL clause. If the database is listed as remote,
an instance attachment to the remote node is established for the duration of the
command.

Command syntax

�� GET DATABASE
DB

CONFIGURATION
CONFIG
CFG

FOR database-alias
�

�
SHOW DETAIL

��

Command parameters

FOR database-alias
Specifies the alias of the database whose configuration is to be displayed.
You do not need to specify the alias if a connection to the database already
exists.

SHOW DETAIL
Displays detailed information showing the current value of database
configuration parameters as well as the value of the parameters the next
time you activate the database. This option lets you see the result of
dynamic changes to configuration parameters.

This is a default clause when operating in the CLPPlus interface. SHOW
DETAIL need not be called when using CLPPlus processor.

Examples

Note:

1. Output on different platforms might show small variations reflecting
platform-specific parameters.

540 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

2. Parameters with keywords enclosed by parentheses can be changed by the
UPDATE DATABASE CONFIGURATION command.

3. Fields that do not contain keywords are maintained by the database manager
and cannot be updated.

The following is sample output from GET DATABASE CONFIGURATION (issued on
Windows):

Database Configuration for Database

Database configuration release level = 0x0c00
Database release level = 0x0c00

Database territory = US
Database code page = 1252
Database code set = IBM-1252
Database country/region code = 1
Database collating sequence = UNIQUE
Alternate collating sequence (ALT_COLLATE) =
Database page size = 8192

Dynamic SQL Query management (DYN_QUERY_MGMT) = DISABLE

Discovery support for this database (DISCOVER_DB) = ENABLE

Restrict access = NO
Default query optimization class (DFT_QUERYOPT) = 5
Degree of parallelism (DFT_DEGREE) = 1
Continue upon arithmetic exceptions (DFT_SQLMATHWARN) = NO
Default refresh age (DFT_REFRESH_AGE) = 0
Default maintained table types for opt (DFT_MTTB_TYPES) = SYSTEM
Number of frequent values retained (NUM_FREQVALUES) = 10
Number of quantiles retained (NUM_QUANTILES) = 20

Decimal floating point rounding mode (DECFLT_ROUNDING) = ROUND_HALF_EVEN

Backup pending = NO

All committed transactions have been written to disk = YES|NO
Rollforward pending = NO
Restore pending = NO

Multi-page file allocation enabled = YES

Log retain for recovery status = NO
User exit for logging status = NO

Self tuning memory (SELF_TUNING_MEM) = OFF
Size of database shared memory (4KB) (DATABASE_MEMORY) = AUTOMATIC
Database memory threshold (DB_MEM_THRESH) = 10
Max storage for lock list (4KB) (LOCKLIST) = 50
Percent. of lock lists per application (MAXLOCKS) = 22
Package cache size (4KB) (PCKCACHESZ) = (MAXAPPLS*8)
Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = 5000
Sort list heap (4KB) (SORTHEAP) = 256

Database heap (4KB) (DBHEAP) = AUTOMATIC
Catalog cache size (4KB) (CATALOGCACHE_SZ) = (MAXAPPLS*4)
Log buffer size (4KB) (LOGBUFSZ) = 8
Utilities heap size (4KB) (UTIL_HEAP_SZ) = 5000
Buffer pool size (pages) (BUFFPAGE) = 250
SQL statement heap (4KB) (STMTHEAP) = AUTOMATIC
Default application heap (4KB) (APPLHEAPSZ) = AUTOMATIC
Application Memory Size (4KB) (APPL_MEMORY) = AUTOMATIC
Statistics heap size (4KB) (STAT_HEAP_SZ) = AUTOMATIC

Chapter 30. DB2 commands 541

Interval for checking deadlock (ms) (DLCHKTIME) = 10000
Lock timeout (sec) (LOCKTIMEOUT) = -1

Changed pages threshold (CHNGPGS_THRESH) = 60
Number of asynchronous page cleaners (NUM_IOCLEANERS) = AUTOMATIC
Number of I/O servers (NUM_IOSERVERS) = AUTOMATIC
Index sort flag (INDEXSORT) = YES
Sequential detect flag (SEQDETECT) = YES
Default prefetch size (pages) (DFT_PREFETCH_SZ) = AUTOMATIC

Track modified pages (TRACKMOD) = OFF

Default number of containers = 1
Default tablespace extentsize (pages) (DFT_EXTENT_SZ) = 32

Max number of active applications (MAXAPPLS) = AUTOMATIC
Average number of active applications (AVG_APPLS) = AUTOMATIC
Max DB files open per application (MAXFILOP) = 32768

Log file size (4KB) (LOGFILSIZ) = 1000
Number of primary log files (LOGPRIMARY) = 3
Number of secondary log files (LOGSECOND) = 2
Changed path to log files (NEWLOGPATH) =
Path to log files = D:\DB2\NODE0000\SQL00001\SQLOGDIR\
Overflow log path (OVERFLOWLOGPATH) =
Mirror log path (MIRRORLOGPATH) =
First active log file =
Block log on disk full (BLK_LOG_DSK_FUL) = NO
Percent max primary log space by transaction (MAX_LOG) = 0
Num. of active log files for 1 active UOW(NUM_LOG_SPAN) = 0

Group commit count (MINCOMMIT) = 1
Percent log file reclaimed before soft chckpt (SOFTMAX) = 100
Log retain for recovery enabled (LOGRETAIN) = OFF
User exit for logging enabled (USEREXIT) = OFF

HADR database role = STANDARD
HADR local host name (HADR_LOCAL_HOST) =
HADR local service name (HADR_LOCAL_SVC) =
HADR remote host name (HADR_REMOTE_HOST) =
HADR remote service name (HADR_REMOTE_SVC) =
HADR instance name of remote server (HADR_REMOTE_INST) =
HADR timeout value (HADR_TIMEOUT) = 120
HADR log write synchronization mode (HADR_SYNCMODE) = NEARSYNC
HADR peer window duration (seconds) (HADR_PEER_WINDOW) = 0

First log archive method (LOGARCHMETH1) = OFF
Options for logarchmeth1 (LOGARCHOPT1) =
Second log archive method (LOGARCHMETH2) = OFF
Options for logarchmeth2 (LOGARCHOPT2) =
Failover log archive path (FAILARCHPATH) =
Number of log archive retries on error (NUMARCHRETRY) = 5
Log archive retry Delay (secs) (ARCHRETRYDELAY) = 20
Vendor options (VENDOROPT) =

Auto restart enabled (AUTORESTART) = ON
Index re-creation time and redo index build (INDEXREC) = SYSTEM (RESTART)
Log pages during index build (LOGINDEXBUILD) = OFF
Default number of loadrec sessions (DFT_LOADREC_SES) = 1
Number of database backups to retain (NUM_DB_BACKUPS) = 12
Recovery history retention (days) (REC_HIS_RETENTN) = 366
Auto deletion of recovery objects (AUTO_DEL_REC_OBJ) = OFF

TSM management class (TSM_MGMTCLASS) =
TSM node name (TSM_NODENAME) =
TSM owner (TSM_OWNER) =
TSM password (TSM_PASSWORD) =

542 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Automatic maintenance (AUTO_MAINT) = ON
Automatic database backup (AUTO_DB_BACKUP) = OFF
Automatic table maintenance (AUTO_TBL_MAINT) = ON

Automatic runstats (AUTO_RUNSTATS) = ON
Automatic statistics profiling (AUTO_STATS_PROF) = OFF

Automatic profile updates (AUTO_PROF_UPD) = OFF
Automatic reorganization (AUTO_REORG) = OFF

Auto-Revalidation (AUTO_REVAL) = DISABLED
Currently Committed (CUR_COMMIT) = ON
CHAR output with DECIMAL input (DEC_TO_CHAR_FMT) = NEW
Enable XML Character operations (ENABLE_XMLCHAR) = YES
WLM Collection Interval (WLM_COLLECT_INT) = 0

The following example shows a portion of the output of the command when you
specify the SHOW DETAIL option. The value in the Delayed Value column is the
value that will be applied the next time you start the instance.

Database Configuration for Database

Description Parameter Current Value Delayed Value

Database configuration release level = 0x0c00
Database release level = 0x0c00

Database territory = US
Database code page = 1252
Database code set = IBM-1252
Database country/region code = 1
Database collating sequence = UNIQUE UNIQUE
Alternate collating sequence (ALT_COLLATE) =
Database page size = 8192 8192

Dynamic SQL Query management (DYN_QUERY_MGMT) = DISABLE DISABLE

Discovery support for this database (DISCOVER_DB) = ENABLE ENABLE

Restrict access = NO
Default query optimization class (DFT_QUERYOPT) = 5 5
Degree of parallelism (DFT_DEGREE) = 1 1
Continue upon arithmetic exceptions (DFT_SQLMATHWARN) = NO NO
Default refresh age (DFT_REFRESH_AGE) = 0 0
Default maintained table types for opt (DFT_MTTB_TYPES) = SYSTEM SYSTEM
Number of frequent values retained (NUM_FREQVALUES) = 10 10
Number of quantiles retained (NUM_QUANTILES) = 20 20

Decimal floating point rounding mode (DECFLT_ROUNDING) = ROUND_HALF_EVEN ROUND_HALF_EVEN

Backup pending = NO

Database is consistent = NO
Rollforward pending = NO
Restore pending = NO

Multi-page file allocation enabled = YES

Log retain for recovery status = NO
User exit for logging status = NO

Self tuning memory (SELF_TUNING_MEM) = OFF OFF
Size of database shared memory (4KB) (DATABASE_MEMORY) = AUTOMATIC(18096) AUTOMATIC(18096)
Database memory threshold (DB_MEM_THRESH) = 10 10
Max storage for lock list (4KB) (LOCKLIST) = 50 50
Percent. of lock lists per application (MAXLOCKS) = 22 22
Package cache size (4KB) (PCKCACHESZ) = (MAXAPPLS*8) (MAXAPPLS*8)
Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = 5000 5000

Chapter 30. DB2 commands 543

Sort list heap (4KB) (SORTHEAP) = 256 256

Database heap (4KB) (DBHEAP) = AUTOMATIC(600) AUTOMATIC(600)
Catalog cache size (4KB) (CATALOGCACHE_SZ) = (MAXAPPLS*4) (MAXAPPLS*4)
Log buffer size (4KB) (LOGBUFSZ) = 8 8
Utilities heap size (4KB) (UTIL_HEAP_SZ) = 5000 5000
Buffer pool size (pages) (BUFFPAGE) = 250 250
SQL statement heap (4KB) (STMTHEAP) = AUTOMATIC(2048) AUTOMATIC(2048)
Default application heap (4KB) (APPLHEAPSZ) = AUTOMATIC(256) AUTOMATIC(256)
Application Memory Size (4KB) (APPL_MEMORY) = AUTOMATIC(496) AUTOMATIC(10000)
Statistics heap size (4KB) (STAT_HEAP_SZ) = AUTOMATIC(4384) AUTOMATIC(4384)

Interval for checking deadlock (ms) (DLCHKTIME) = 10000 10000
Lock timeout (sec) (LOCKTIMEOUT) = -1 -1

Changed pages threshold (CHNGPGS_THRESH) = 60 60
Number of asynchronous page cleaners (NUM_IOCLEANERS) = AUTOMATIC(1) AUTOMATIC(1)
Number of I/O servers (NUM_IOSERVERS) = AUTOMATIC(3) AUTOMATIC(3)
Index sort flag (INDEXSORT) = YES YES
Sequential detect flag (SEQDETECT) = YES YES
Default prefetch size (pages) (DFT_PREFETCH_SZ) = AUTOMATIC AUTOMATIC

Track modified pages (TRACKMOD) = NO NO

Default number of containers = 1 1
Default tablespace extentsize (pages) (DFT_EXTENT_SZ) = 32 32

Max number of active applications (MAXAPPLS) = AUTOMATIC(40) AUTOMATIC(40)
Average number of active applications (AVG_APPLS) = AUTOMATIC(1) AUTOMATIC(1)
Max DB files open per application (MAXFILOP) = 32768 32768

Log file size (4KB) (LOGFILSIZ) = 1000 1000
Number of primary log files (LOGPRIMARY) = 3 3
Number of secondary log files (LOGSECOND) = 2 2
Changed path to log files (NEWLOGPATH) =
Path to log files = D:\DB2\NODE0000 D:\DB2\NODE0000

\SQL00001\SQLOGDIR\ \SQL00001\SQLOGDIR\
Overflow log path (OVERFLOWLOGPATH) =
Mirror log path (MIRRORLOGPATH) =
First active log file =
Block log on disk full (BLK_LOG_DSK_FUL) = NO NO
Percent max primary log space by transaction (MAX_LOG) = 0 0
Num. of active log files for 1 active UOW(NUM_LOG_SPAN) = 0 0
Group commit count (MINCOMMIT) = 1 1
Percent log file reclaimed before soft chckpt (SOFTMAX) = 100 100
Log retain for recovery enabled (LOGRETAIN) = OFF OFF
User exit for logging enabled (USEREXIT) = OFF OFF

HADR database role = STANDARD STANDARD
HADR local host name (HADR_LOCAL_HOST) =
HADR local service name (HADR_LOCAL_SVC) =
HADR remote host name (HADR_REMOTE_HOST) =
HADR remote service name (HADR_REMOTE_SVC) =
HADR instance name of remote server (HADR_REMOTE_INST) =
HADR timeout value (HADR_TIMEOUT) = 120 120
HADR log write synchronization mode (HADR_SYNCMODE) = NEARSYNC NEARSYNC
HADR peer window duration (seconds) (HADR_PEER_WINDOW) = 0 0

First log archive method (LOGARCHMETH1) = OFF OFF
Options for logarchmeth1 (LOGARCHOPT1) =
Second log archive method (LOGARCHMETH2) = OFF OFF
Options for logarchmeth2 (LOGARCHOPT2) =
Failover log archive path (FAILARCHPATH) =
Number of log archive retries on error (NUMARCHRETRY) = 5 5
Log archive retry Delay (secs) (ARCHRETRYDELAY) = 20 20
Vendor options (VENDOROPT) =

544 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Auto restart enabled (AUTORESTART) = ON ON
Index re-creation time and redo index build (INDEXREC) = SYSTEM SYSTEM (RESTART)
Log pages during index build (LOGINDEXBUILD) = OFF OFF
Default number of loadrec sessions (DFT_LOADREC_SES) = 1 1
Number of database backups to retain (NUM_DB_BACKUPS) = 12 12
Recovery history retention (days) (REC_HIS_RETENTN) = 366 366
Auto deletion of recovery objects (AUTO_DEL_REC_OBJ) = OFF OFF

TSM management class (TSM_MGMTCLASS) =
TSM node name (TSM_NODENAME) =
TSM owner (TSM_OWNER) =
TSM password (TSM_PASSWORD) =

Automatic maintenance (AUTO_MAINT) = ON ON
Automatic database backup (AUTO_DB_BACKUP) = OFF OFF
Automatic table maintenance (AUTO_TBL_MAINT) = ON ON

Automatic runstats (AUTO_RUNSTATS) = ON ON
Automatic statistics profiling (AUTO_STATS_PROF) = OFF OFF

Automatic profile updates (AUTO_PROF_UPD) = OFF OFF
Automatic reorganization (AUTO_REORG) = OFF OFF

Auto-Revalidation (AUTO_REVAL) = DISABLED DISABLED
Currently Committed (CUR_COMMIT) = ON ON
CHAR output with DECIMAL input (DEC_TO_CHAR_FMT) = NEW NEW
Enable XML Character operations (ENABLE_XMLCHAR) = ON ON
WLM Collection Interval (WLM_COLLECT_INT) = 0 0

Usage notes

If an error occurs, the information returned is not valid. If the configuration file is
invalid, an error message is returned. The database must be restored from a
backup version.

To set the database configuration parameters to the database manager defaults, use
the RESET DATABASE CONFIGURATION command.

To retrieve information from all database partitions, use the SYSIBMADM.DBCFG
administrative view.

GET DATABASE MANAGER CONFIGURATION

Returns the values of individual entries in the database manager configuration file.

Authorization

None

Required connection

None or instance. An instance attachment is not required to perform local DBM
configuration operations, but is required to perform remote DBM configuration
operations. To display the database manager configuration for a remote instance, it
is necessary to first attach to that instance. The SHOW DETAIL clause requires an
instance attachment.

Command syntax

�� GET DATABASE MANAGER CONFIGURATION
DB MANAGER CONFIG SHOW DETAIL
DBM CFG

��

Chapter 30. DB2 commands 545

Command parameters

SHOW DETAIL
Displays detailed information showing the current value of database
manager configuration parameters as well as the value of the parameters
the next time you start the database manager. This option lets you see the
result of dynamic changes to configuration parameters.

This is a default clause when operating in the CLPPlus interface. SHOW
DETAIL need not be called when using CLPPlus processor.

Examples

Both node type and platform determine which configuration parameters are listed.

The following is sample output from GET DATABASE MANAGER
CONFIGURATION (issued on Windows):

Database Manager Configuration

Node type = Enterprise Server Edition with local and remote clients

Database manager configuration release level = 0x0c00

Maximum total of files open (MAXTOTFILOP) = 16000
CPU speed (millisec/instruction) (CPUSPEED) = 4.251098e-007
Communications bandwidth (MB/sec) (COMM_BANDWIDTH) = 1.000000e+002

Max number of concurrently active databases (NUMDB) = 8
Federated Database System Support (FEDERATED) = NO
Transaction processor monitor name (TP_MON_NAME) =

Default charge-back account (DFT_ACCOUNT_STR) =

Java Development Kit installation path (JDK_PATH) =

Diagnostic error capture level (DIAGLEVEL) = 3
Notify Level (NOTIFYLEVEL) = 3
Diagnostic data directory path (DIAGPATH) =

Default database monitor switches
Buffer pool (DFT_MON_BUFPOOL) = OFF
Lock (DFT_MON_LOCK) = OFF
Sort (DFT_MON_SORT) = OFF
Statement (DFT_MON_STMT) = OFF
Table (DFT_MON_TABLE) = OFF
Timestamp (DFT_MON_TIMESTAMP) = ON
Unit of work (DFT_MON_UOW) = OFF

Monitor health of instance and databases (HEALTH_MON) = ON

SYSADM group name (SYSADM_GROUP) =
SYSCTRL group name (SYSCTRL_GROUP) =
SYSMAINT group name (SYSMAINT_GROUP) =
SYSMON group name (SYSMON_GROUP) =

Client Userid-Password Plugin (CLNT_PW_PLUGIN) =
Client Kerberos Plugin (CLNT_KRB_PLUGIN) = IBMkrb5
Group Plugin (GROUP_PLUGIN) =
GSS Plugin for Local Authorization (LOCAL_GSSPLUGIN) =
Server Plugin Mode (SRV_PLUGIN_MODE) = UNFENCED
Server List of GSS Plugins (SRVCON_GSSPLUGIN_LIST) =
Server Userid-Password Plugin (SRVCON_PW_PLUGIN) =
Server Connection Authentication (SRVCON_AUTH) = NOT_SPECIFIED
Cluster manager (CLUSTER_MGR) =

Database manager authentication (AUTHENTICATION) = SERVER

546 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Cataloging allowed without authority (CATALOG_NOAUTH) = NO
Trust all clients (TRUST_ALLCLNTS) = YES
Trusted client authentication (TRUST_CLNTAUTH) = CLIENT
Bypass federated authentication (FED_NOAUTH) = NO

Default database path (DFTDBPATH) = C:

Database monitor heap size (4KB) (MON_HEAP_SZ) = AUTOMATIC
Java Virtual Machine heap size (4KB) (JAVA_HEAP_SZ) = 2048
Audit buffer size (4KB) (AUDIT_BUF_SZ) = 0
Size of instance shared memory (4KB) (INSTANCE_MEMORY) = AUTOMATIC
Backup buffer default size (4KB) (BACKBUFSZ) = 1024
Restore buffer default size (4KB) (RESTBUFSZ) = 1024

Agent stack size (AGENT_STACK_SZ) = 16
Minimum committed private memory (4KB) (MIN_PRIV_MEM) = 32
Private memory threshold (4KB) (PRIV_MEM_THRESH) = 20000

Sort heap threshold (4KB) (SHEAPTHRES) = 0

Directory cache support (DIR_CACHE) = YES

Application support layer heap size (4KB) (ASLHEAPSZ) = 15
Max requester I/O block size (bytes) (RQRIOBLK) = 32767
Query heap size (4KB) (QUERY_HEAP_SZ) = 1000

Workload impact by throttled utilities(UTIL_IMPACT_LIM) = 10

Priority of agents (AGENTPRI) = SYSTEM
Agent pool size (NUM_POOLAGENTS) = AUTOMATIC
Initial number of agents in pool (NUM_INITAGENTS) = 0
Max number of coordinating agents (MAX_COORDAGENTS) = AUTOMATIC
Max number of client connections (MAX_CONNECTIONS) = AUTOMATIC

Keep fenced process (KEEPFENCED) = YES
Number of pooled fenced processes (FENCED_POOL) = AUTOMATIC
Initial number of fenced processes (NUM_INITFENCED) = 0

Index re-creation time and redo index build (INDEXREC) = RESTART

Transaction manager database name (TM_DATABASE) = 1ST_CONN
Transaction resync interval (sec) (RESYNC_INTERVAL) = 180

SPM name (SPM_NAME) = KEON14
SPM log size (SPM_LOG_FILE_SZ) = 256
SPM resync agent limit (SPM_MAX_RESYNC) = 20
SPM log path (SPM_LOG_PATH) =

NetBIOS Workstation name (NNAME) =

TCP/IP Service name (SVCENAME) = db2c_DB2
Discovery mode (DISCOVER) = SEARCH
Discover server instance (DISCOVER_INST) = ENABLE

Maximum query degree of parallelism (MAX_QUERYDEGREE) = ANY
Enable intra-partition parallelism (INTRA_PARALLEL) = NO

Maximum Asynchronous TQs per query (FEDERATED_ASYNC) = 0

No. of int. communication buffers(4KB)(FCM_NUM_BUFFERS) = AUTOMATIC
No. of int. communication channels (FCM_NUM_CHANNELS) = AUTOMATIC
Node connection elapse time (sec) (CONN_ELAPSE) = 10
Max number of node connection retries (MAX_CONNRETRIES) = 5
Max time difference between nodes (min) (MAX_TIME_DIFF) = 60

db2start/db2stop timeout (min) (START_STOP_TIME) = 10

Chapter 30. DB2 commands 547

The following output sample shows the information displayed when you specify
the SHOW DETAIL option. The value that appears in the Delayed Value column is
the value that will be in effect the next time you start the database manager
instance.

db2 => get dbm cfg show detail

Database Manager Configuration

Node type = Enterprise Server Edition with local and remote clients

Description Parameter Current Value Delayed Value

Database manager configuration release level = 0x0c00

Maximum total of files open (MAXTOTFILOP) = 16000 16000
CPU speed (millisec/instruction) (CPUSPEED) = 4.251098e-007 4.251098e-007
Communications bandwidth (MB/sec) (COMM_BANDWIDTH) = 1.000000e+002 1.000000e+002

Max number of concurrently active databases (NUMDB) = 8 8
Federated Database System Support (FEDERATED) = NO NO
Transaction processor monitor name (TP_MON_NAME) =

Default charge-back account (DFT_ACCOUNT_STR) =

Java Development Kit installation path (JDK_PATH) =

Diagnostic error capture level (DIAGLEVEL) = 3 3
Notify Level (NOTIFYLEVEL) = 3 3
Diagnostic data directory path (DIAGPATH) =

Default database monitor switches
Buffer pool (DFT_MON_BUFPOOL) = OFF OFF
Lock (DFT_MON_LOCK) = OFF OFF
Sort (DFT_MON_SORT) = OFF OFF
Statement (DFT_MON_STMT) = OFF OFF
Table (DFT_MON_TABLE) = OFF OFF
Timestamp (DFT_MON_TIMESTAMP) = ON ON
Unit of work (DFT_MON_UOW) = OFF OFF

Monitor health of instance and databases (HEALTH_MON) = ON ON

SYSADM group name (SYSADM_GROUP) =
SYSCTRL group name (SYSCTRL_GROUP) =
SYSMAINT group name (SYSMAINT_GROUP) =
SYSMON group name (SYSMON_GROUP) =

Client Userid-Password Plugin (CLNT_PW_PLUGIN) =

Client Kerberos Plugin (CLNT_KRB_PLUGIN) = IBMkrb5 IBMkrb5

Group Plugin (GROUP_PLUGIN) =

GSS Plugin for Local Authorization (LOCAL_GSSPLUGIN) =

Server Plugin Mode (SRV_PLUGIN_MODE) = UNFENCED UNFENCED

Server List of GSS Plugins (SRVCON_GSSPLUGIN_LIST) =

Server Userid-Password Plugin (SRVCON_PW_PLUGIN) =

Server Connection Authentication (SRVCON_AUTH) = NOT_SPECIFIED NOT_SPECIFIED
Cluster manager (CLUSTER_MGR) =

Database manager authentication (AUTHENTICATION) = SERVER SERVER
Cataloging allowed without authority (CATALOG_NOAUTH) = NO NO
Trust all clients (TRUST_ALLCLNTS) = YES YES
Trusted client authentication (TRUST_CLNTAUTH) = CLIENT CLIENT

548 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Bypass federated authentication (FED_NOAUTH) = NO NO

Default database path (DFTDBPATH) = C: C:

Database monitor heap size (4KB) (MON_HEAP_SZ) = AUTOMATIC(66) AUTOMATIC(66)
Java Virtual Machine heap size (4KB) (JAVA_HEAP_SZ) = 2048 2048
Audit buffer size (4KB) (AUDIT_BUF_SZ) = 0 0
Size of instance shared memory (4KB) (INSTANCE_MEMORY) = AUTOMATIC(73728) AUTOMATIC(73728)
Backup buffer default size (4KB) (BACKBUFSZ) = 1024 1024
Restore buffer default size (4KB) (RESTBUFSZ) = 1024 1024

Agent stack size (AGENT_STACK_SZ) = 16 16
Sort heap threshold (4KB) (SHEAPTHRES) = 0 0

Directory cache support (DIR_CACHE) = YES YES

Application support layer heap size (4KB) (ASLHEAPSZ) = 15 15
Max requester I/O block size (bytes) (RQRIOBLK) = 32767 32767
Query heap size (4KB) (QUERY_HEAP_SZ) = 1000 1000

Workload impact by throttled utilities(UTIL_IMPACT_LIM) = 10 10

Priority of agents (AGENTPRI) = SYSTEM SYSTEM
Agent pool size (NUM_POOLAGENTS) = AUTOMATIC(100) AUTOMATIC(100)
Initial number of agents in pool (NUM_INITAGENTS) = 0 0
Max number of coordinating agents (MAX_COORDAGENTS) = AUTOMATIC(200) AUTOMATIC(200)
Max number of client connections (MAX_CONNECTIONS) = AUTOMATIC(MAX_ AUTOMATIC(MAX_

COORDAGENTS) COORDAGENTS)

Keep fenced process (KEEPFENCED) = YES YES
Number of pooled fenced processes (FENCED_POOL) = AUTOMATIC(MAX_ AUTOMATIC(MAX_

COORDAGENTS) COORDAGENTS)
Initial number of fenced processes (NUM_INITFENCED) = 0 0

Index re-creation time and redo index build (INDEXREC) = RESTART RESTART

Transaction manager database name (TM_DATABASE) = 1ST_CONN 1ST_CONN
Transaction resync interval (sec) (RESYNC_INTERVAL) = 180 180

SPM name (SPM_NAME) = KEON14 KEON14
SPM log size (SPM_LOG_FILE_SZ) = 256 256
SPM resync agent limit (SPM_MAX_RESYNC) = 20 20
SPM log path (SPM_LOG_PATH) =

NetBIOS Workstation name (NNAME) =

TCP/IP Service name (SVCENAME) = db2c_DB2 db2c_DB2
Discovery mode (DISCOVER) = SEARCH SEARCH
Discover server instance (DISCOVER_INST) = ENABLE ENABLE

Maximum query degree of parallelism (MAX_QUERYDEGREE) = ANY ANY
Enable intra-partition parallelism (INTRA_PARALLEL) = NO NO

Maximum Asynchronous TQs per query (FEDERATED_ASYNC) = 0 0

No. of int. communication buffers(4KB)(FCM_NUM_BUFFERS) = AUTOMATIC(4096) AUTOMATIC(4096)
No. of int. communication channels (FCM_NUM_CHANNELS) = AUTOMATIC(2048) AUTOMATIC(2048)
Node connection elapse time (sec) (CONN_ELAPSE) = 10 10
Max number of node connection retries (MAX_CONNRETRIES) = 5 5
Max time difference between nodes (min) (MAX_TIME_DIFF) = 60 60

db2start/db2stop timeout (min) (START_STOP_TIME) = 10 10

Chapter 30. DB2 commands 549

Usage notes
v If an attachment to a remote instance or a different local instance exists, the

database manager configuration parameters for the attached server are returned;
otherwise, the local database manager configuration parameters are returned.

v If an error occurs, the information returned is invalid. If the configuration file is
invalid, an error message is returned. The user must drop and recreate the
instance to recover.

v To set the configuration parameters to the default values shipped with
thedatabase manager , use the RESET DATABASE MANAGER
CONFIGURATION command.

v The AUTOMATIC values indicated on GET DATABASE MANAGER
CONFIGURATION SHOW DETAIL for FCM_NUM_BUFFERS and FCM_NUM_CHANNELS
are the initial values at instance startup time and do not reflect any automatic
increasing/decreasing that might have occurred during runtime.

v Configuration parameters max_connections, max_coordagents and
num_poolagents are set to AUTOMATIC.

v Configuration parameters maxagents and maxcagents are deprecated. The
following deprecated functions are the result:
– CLP and the db2CfgSet API will tolerate updates to these parameters,

however these updates will be ignored by DB2.
– CLP will no longer display these database configuration parameters when the

client and server are on the DB2 v9.5 code base. If the server is DB2 v9.5,
earlier version clients will see a value of 0 output for these parameters. If the
client is DB2 v9.5, but the server is prior to DB2 v9.5, these parameters will be
displayed with the assigned values.

– db2CfgGet API will tolerate requests for SQLF_KTN_MAXAGENTS and
SQLF_KTN_MAXCAGENTS, but they will return 0 if the server is DB2 v9.5.

– The behavior of the db2AutoConfig API will depend on the
db2VersionNumber passed in to the API. If the version is DB2 v9.5 or beyond,
maxagents will not be returned, but for versions prior to this it will.

– The AUTOCONFIGURE CLP command will display a value for maxagents
with requests from an earlier version client (current and recommended value
of 0). For current version client requests, maxagents will be displayed with an
appropriate value.

– The AUTOCONFIGURE ADMIN_CMD will not return information about
maxagents when the server is DB2 v9.5 and beyond.

– Updates to maxagents or maxcagents through the ADMIN_CMD will return
successfully but have no effect on the server if the server is DB2 v9.5 or later.

– Queries of database manager configuration parameters using the DBMCFG
administrative view will not return rows for maxagents or maxcagents if the
server is DB2 v9.5 or beyond.

In a future release, these configuration parameters may be removed completely.

IMPORT

Inserts data from an external file with a supported file format into a table,
hierarchy, view or nickname. LOAD is a faster alternative, but the load utility does
not support loading data at the hierarchy level.

Quick link to “File type modifiers for the import utility” on page 563.

550 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Authorization
v IMPORT using the INSERT option requires one of the following:

– dataaccess authority
– CONTROL privilege on each participating table, view, or nickname
– INSERT and SELECT privilege on each participating table or view

v IMPORT to an existing table using the INSERT_UPDATE option, requires one of
the following:
– dataaccess authority
– CONTROL privilege on each participating table, view, or nickname
– INSERT, SELECT, UPDATE and DELETE privilege on each participating table

or view
v IMPORT to an existing table using the REPLACE or REPLACE_CREATE option,

requires one of the following:
– dataaccess authority
– CONTROL privilege on the table or view
– INSERT, SELECT, and DELETE privilege on the table or view

v IMPORT to a new table using the CREATE or REPLACE_CREATE option,
requires one of the following:
– dbadm authority
– CREATETAB authority on the database and USE privilege on the table space,

as well as one of:
- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema
v IMPORT to a hierarchy that does not exist using the CREATE, or the

REPLACE_CREATE option, requires one of the following:
– dbadm authority
– CREATETAB authority on the database and USE privilege on the table space

and one of:
- IMPLICIT_SCHEMA authority on the database, if the schema name of the

table does not exist
- CREATEIN privilege on the schema, if the schema of the table exists
- CONTROL privilege on every sub-table in the hierarchy, if the

REPLACE_CREATE option on the entire hierarchy is used
v IMPORT to an existing hierarchy using the REPLACE option requires one of the

following:
– dataaccess authority
– CONTROL privilege on every sub-table in the hierarchy

v To import data into a table that has protected columns, the session authorization
ID must have LBAC credentials that allow write access to all protected columns
in the table. Otherwise the import fails and an error (SQLSTATE 42512) is
returned.

v To import data into a table that has protected rows, the session authorization ID
must hold LBAC credentials that meet these criteria:
– It is part of the security policy protecting the table
– It was granted to the session authorization ID for write access

Chapter 30. DB2 commands 551

The label on the row to insert, the user’s LBAC credentials, the security policy
definition, and the LBAC rules determine the label on the row.

v If the REPLACE or REPLACE_CREATE option is specified, the session
authorization ID must have the authority to drop the table.

v To import data into a nickname, the session authorization ID must have the
privilege to access and use a specified data source in pass-through mode.

Required connection

Command syntax

�� IMPORT FROM filename OF filetype

�

,

LOBS FROM lob-path �

,

XML FROM xml-path

�

�

�MODIFIED BY filetype-mod

�

�

�

�

�

�

,

METHOD L (column-start column-end)
,

NULL INDICATORS (null-indicator-list)
,

N (column-name)
,

P (column-position)

�

�
XMLPARSE STRIP WHITESPACE

PRESERVE

�

�
XMLVALIDATE USING XDS Ignore and Map parameters

DEFAULT schema-sqlid
SCHEMA schema-sqlid
SCHEMALOCATION HINTS

ALLOW NO ACCESS

ALLOW WRITE ACCESS
�

�
COMMITCOUNT n

AUTOMATIC
RESTARTCOUNT n
SKIPCOUNT

ROWCOUNT n WARNINGCOUNT n NOTIMEOUT
�

�

�

�

INSERT INTO table-name
INSERT_UPDATE ,
REPLACE
REPLACE_CREATE (insert-column)

hierarchy description
CREATE INTO table-name tblspace-specs

,

(insert-column)
hierarchy description AS ROOT TABLE

UNDER sub-table-name

��

Ignore and Map parameters:

�

,

IGNORE (schema-sqlid)

�

552 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

�

�

,

MAP ((schema-sqlid , schema-sqlid))

hierarchy description:

ALL TABLES
sub-table-list

IN
HIERARCHY STARTING sub-table-name

traversal-order-list

sub-table-list:

�

�

,

(sub-table-name)
,

(insert-column)

traversal-order-list:

�

,

(sub-table-name)

tblspace-specs:

IN tablespace-name
INDEX IN tablespace-name LONG IN tablespace-name

Command parameters

ALL TABLES
An implicit keyword for hierarchy only. When importing a hierarchy, the
default is to import all tables specified in the traversal order.

ALLOW NO ACCESS
Runs import in the offline mode. An exclusive (X) lock on the target table
is acquired before any rows are inserted. This prevents concurrent
applications from accessing table data. This is the default import behavior.

ALLOW WRITE ACCESS
Runs import in the online mode. An intent exclusive (IX) lock on the target
table is acquired when the first row is inserted. This allows concurrent
readers and writers to access table data. Online mode is not compatible
with the REPLACE, CREATE, or REPLACE_CREATE import options.
Online mode is not supported in conjunction with buffered inserts. The
import operation will periodically commit inserted data to prevent lock
escalation to a table lock and to avoid running out of active log space.
These commits will be performed even if the COMMITCOUNT option
was not used. During each commit, import will lose its IX table lock, and
will attempt to reacquire it after the commit. This parameter is required

Chapter 30. DB2 commands 553

when you import to a nickname and COMMITCOUNT must be specified
with a valid number (AUTOMATIC is not considered a valid option).

AS ROOT TABLE
Creates one or more sub-tables as a stand-alone table hierarchy.

COMMITCOUNT n | AUTOMATIC
Performs a COMMIT after every n records are imported. When a number n
is specified, import performs a COMMIT after every n records are
imported. When compound inserts are used, a user-specified commit
frequency of n is rounded up to the first integer multiple of the compound
count value. When AUTOMATIC is specified, import internally determines
when a commit needs to be performed. The utility will commit for either
one of two reasons:
v to avoid running out of active log space
v to avoid lock escalation from row level to table level

If the ALLOW WRITE ACCESS option is specified, and the
COMMITCOUNT option is not specified, the import utility will perform
commits as if COMMITCOUNT AUTOMATIC had been specified.

The ability of the import operation to avoid running out of active log space
is affected by the DB2 registry variable
DB2_FORCE_APP_ON_MAX_LOG:
v If DB2_FORCE_APP_ON_MAX_LOG is set to FALSE and the

COMMITCOUNT AUTOMATIC command option is specified, the
import utility will be able to automatically avoid running out of active
log space.

v If DB2_FORCE_APP_ON_MAX_LOG is set to FALSE and the
COMMITCOUNT n command option is specified, the import utility will
attempt to resolve the log full condition if it encounters an SQL0964C
(Transaction Log Full) while inserting or updating a record. It will
perform an unconditional commit and then will reattempt to insert or
update the record. If this does not help resolve the issue (which would
be the case when the log full is attributed to other activity on the
database), then the IMPORT command will fail as expected, however the
number of rows committed may not be a multiple of the
COMMITCOUNT n value. To avoid processing the rows that were
already committed when you retry the import operation, use the
RESTARTCOUNT or SKIPCOUNT command parameters.

v If DB2_FORCE_APP_ON_MAX_LOG is set to TRUE (which is the
default), the import operation will fail if it encounters an SQL0964C
while inserting or updating a record. This can occur irrespective of
whether you specify COMMITCOUNT AUTOMATIC or
COMMITCOUNT n.
The application is forced off the database and the current unit of work is
rolled back. To avoid processing the rows that were already committed
when you retry the import operation, use the RESTARTCOUNT or
SKIPCOUNT command parameters.

CREATE

Note: The CREATE parameter is deprecated and may be removed in a
future release. For additional details, see “IMPORT command options
CREATE and REPLACE_CREATE are deprecated”.

554 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Creates the table definition and row contents in the code page of the
database. If the data was exported from a DB2 table, sub-table, or
hierarchy, indexes are created. If this option operates on a hierarchy, and
data was exported from DB2, a type hierarchy will also be created. This
option can only be used with IXF files.

This parameter is not valid when you import to a nickname.

Note: If the data was exported from an MVS™ host database, and it
contains LONGVAR fields whose lengths, calculated on the page size, are
more than 254, CREATE might fail because the rows are too long. See
“Imported table re-creation” for a list of restrictions. In this case, the table
should be created manually, and IMPORT with INSERT should be
invoked, or, alternatively, the LOAD command should be used.

DEFAULT schema-sqlid
This option can only be used when the USING XDS parameter is
specified. The schema specified through the DEFAULT clause identifies a
schema to use for validation when the XML Data Specifier (XDS) of an
imported XML document does not contain an SCH attribute identifying an
XML Schema.

The DEFAULT clause takes precedence over the IGNORE and MAP
clauses. If an XDS satisfies the DEFAULT clause, the IGNORE and MAP
specifications will be ignored.

FROM filename

HIERARCHY
Specifies that hierarchical data is to be imported.

IGNORE schema-sqlid
This option can only be used when the USING XDS parameter is
specified. The IGNORE clause specifies a list of one or more schemas to
ignore if they are identified by an SCH attribute. If an SCH attribute exists
in the XML Data Specifier for an imported XML document, and the schema
identified by the SCH attribute is included in the list of schemas to ignore,
then no schema validation will occur for the imported XML document.

If a schema is specified in the IGNORE clause, it cannot also be present in
the left side of a schema pair in the MAP clause.

The IGNORE clause applies only to the XDS. A schema that is mapped by
the MAP clause will not be subsequently ignored if specified by the
IGNORE clause.

IN tablespace-name
Identifies the table space in which the table will be created. The table space
must exist, and must be a REGULAR table space. If no other table space is
specified, all table parts are stored in this table space. If this clause is not
specified, the table is created in a table space created by the authorization
ID. If none is found, the table is placed into the default table space
USERSPACE1. If USERSPACE1 has been dropped, table creation fails.

INDEX IN tablespace-name
Identifies the table space in which any indexes on the table will be created.
This option is allowed only when the primary table space specified in the
IN clause is a DMS table space. The specified table space must exist, and
must be a REGULAR or LARGE DMS table space.

Chapter 30. DB2 commands 555

Note: Specifying which table space will contain an index can only be done
when the table is created.

insert-column
Specifies the name of a column in the table or the view into which data is
to be inserted.

INSERT
Adds the imported data to the table without changing the existing table
data.

INSERT_UPDATE
Adds rows of imported data to the target table, or updates existing rows
(of the target table) with matching primary keys.

INTO table-name
Specifies the database table into which the data is to be imported. This
table cannot be a system table, a created temporary table, a declared
temporary table, or a summary table.

One can use an alias for INSERT, INSERT_UPDATE, or REPLACE, except
in the case of an earlier server, when the fully qualified or the unqualified
table name should be used. A qualified table name is in the form:
schema.tablename. The schema is the user name under which the table was
created.

LOBS FROM lob-path
The names of the LOB data files are stored in the main data file (ASC,
DEL, or IXF), in the column that will be loaded into the LOB column. The
maximum number of paths that can be specified is 999. This will implicitly
activate the LOBSINFILE behavior.

This parameter is not valid when you import to a nickname.

LONG IN tablespace-name
Identifies the table space in which the values of any long columns (LONG
VARCHAR, LONG VARGRAPHIC, LOB data types, or distinct types with
any of these as source types) will be stored. This option is allowed only if
the primary table space specified in the IN clause is a DMS table space.
The table space must exist, and must be a LARGE DMS table space.

MAP schema-sqlid
This option can only be used when the USING XDS parameter is
specified. Use the MAP clause to specify alternate schemas to use in place
of those specified by the SCH attribute of an XML Data Specifier (XDS) for
each imported XML document. The MAP clause specifies a list of one or
more schema pairs, where each pair represents a mapping of one schema
to another. The first schema in the pair represents a schema that is referred
to by an SCH attribute in an XDS. The second schema in the pair
represents the schema that should be used to perform schema validation.

If a schema is present in the left side of a schema pair in the MAP clause,
it cannot also be specified in the IGNORE clause.

Once a schema pair mapping is applied, the result is final. The mapping
operation is non-transitive, and therefore the schema chosen will not be
subsequently applied to another schema pair mapping.

A schema cannot be mapped more than once, meaning that it cannot
appear on the left side of more than one pair.

METHOD

556 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

L Specifies the start and end column numbers from which to import
data. A column number is a byte offset from the beginning of a
row of data. It is numbered starting from 1.

Note: This method can only be used with ASC files, and is the
only valid option for that file type.

N Specifies the names of the columns in the data file to be imported.
The case of these column names must match the case of the
corresponding names in the system catalogs. Each table column
that is not nullable should have a corresponding entry in the
METHOD N list. For example, given data fields F1, F2, F3, F4, F5,
and F6, and table columns C1 INT, C2 INT NOT NULL, C3 INT
NOT NULL, and C4 INT, method N (F2, F1, F4, F3) is a valid
request, while method N (F2, F1) is not valid.

Note: This method can only be used with IXF files.

P Specifies the field numbers of the input data fields to be imported.

Note: This method can only be used with IXF or DEL files, and is
the only valid option for the DEL file type.

MODIFIED BY filetype-mod
Specifies file type modifier options. See “File type modifiers for the import
utility” on page 563.

NOTIMEOUT
Specifies that the import utility will not time out while waiting for locks.
This option supersedes the locktimeout database configuration parameter.
Other applications are not affected.

NULL INDICATORS null-indicator-list
This option can only be used when the METHOD L parameter is specified.
That is, the input file is an ASC file. The null indicator list is a
comma-separated list of positive integers specifying the column number of
each null indicator field. The column number is the byte offset of the null
indicator field from the beginning of a row of data. There must be one
entry in the null indicator list for each data field defined in the METHOD
L parameter. A column number of zero indicates that the corresponding
data field always contains data.

A value of Y in the NULL indicator column specifies that the column data
is NULL. Any character other than Y in the NULL indicator column
specifies that the column data is not NULL, and that column data specified
by the METHOD L option will be imported.

The NULL indicator character can be changed using the MODIFIED BY
option, with the nullindchar file type modifier.

OF filetype
Specifies the format of the data in the input file:
v ASC (non-delimited ASCII format)
v DEL (delimited ASCII format), which is used by a variety of database

manager and file manager programs
v WSF (work sheet format), which is used by programs such as:

– Lotus 1-2-3
– Lotus Symphony

Chapter 30. DB2 commands 557

v IXF (Integration Exchange Format, PC version) is a binary format that is
used exclusively by DB2.

Important: Support for the WSF file format is deprecated and might be
removed in a future release. It is recommended that you start using a
supported file format instead of WSF files before support is removed.

The WSF file type is not supported when you import to a nickname.

REPLACE
Deletes all existing data from the table by truncating the data object, and
inserts the imported data. The table definition and the index definitions are
not changed. This option can only be used if the table exists. If this option
is used when moving data between hierarchies, only the data for an entire
hierarchy, not individual subtables, can be replaced.

This parameter is not valid when you import to a nickname.

This option does not honor the CREATE TABLE statement’s NOT
LOGGED INITIALLY (NLI) clause or the ALTER TABLE statement’s
ACTIVE NOT LOGGED INITIALLY clause.

If an import with the REPLACE option is performed within the same
transaction as a CREATE TABLE or ALTER TABLE statement where the
NLI clause is invoked, the import will not honor the NLI clause. All inserts
will be logged.

Workaround 1
Delete the contents of the table using the DELETE statement, then
invoke the import with INSERT statement

Workaround 2
Drop the table and recreate it, then invoke the import with INSERT
statement.

This limitation applies to DB2 Universal Database Version 7 and DB2 UDB
Version 8

REPLACE_CREATE

Note: The REPLACE_CREATE parameter is deprecated and may be
removed in a future release. For additional details, see “IMPORT command
options CREATE and REPLACE_CREATE are deprecated”.

If the table exists, deletes all existing data from the table by truncating the
data object, and inserts the imported data without changing the table
definition or the index definitions.

If the table does not exist, creates the table and index definitions, as well as
the row contents, in the code page of the database. See Imported table
re-creation for a list of restrictions.

This option can only be used with IXF files. If this option is used when
moving data between hierarchies, only the data for an entire hierarchy, not
individual subtables, can be replaced.

This parameter is not valid when you import to a nickname.

RESTARTCOUNT n
Specifies that an import operation is to be started at record n+1. The first n
records are skipped. This option is functionally equivalent to
SKIPCOUNT. RESTARTCOUNT and SKIPCOUNT are mutually
exclusive.

558 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

ROWCOUNT n
Specifies the number n of physical records in the file to be imported
(inserted or updated). Allows a user to import only n rows from a file,
starting from the record determined by the SKIPCOUNT or
RESTARTCOUNT options. If the SKIPCOUNT or RESTARTCOUNT
options are not specified, the first n rows are imported. If SKIPCOUNT m
or RESTARTCOUNT m is specified, rows m+1 to m+n are imported. When
compound inserts are used, user specified ROWCOUNT n is rounded up
to the first integer multiple of the compound count value.

SKIPCOUNT n
Specifies that an import operation is to be started at record n+1. The first n
records are skipped. This option is functionally equivalent to
RESTARTCOUNT. SKIPCOUNT and RESTARTCOUNT are mutually
exclusive.

STARTING sub-table-name
A keyword for hierarchy only, requesting the default order, starting from
sub-table-name. For PC/IXF files, the default order is the order stored in the
input file. The default order is the only valid order for the PC/IXF file
format.

sub-table-list
For typed tables with the INSERT or the INSERT_UPDATE option, a list
of sub-table names is used to indicate the sub-tables into which data is to
be imported.

traversal-order-list
For typed tables with the INSERT, INSERT_UPDATE, or the REPLACE
option, a list of sub-table names is used to indicate the traversal order of
the importing sub-tables in the hierarchy.

UNDER sub-table-name
Specifies a parent table for creating one or more sub-tables.

WARNINGCOUNT n
Stops the import operation after n warnings. Set this parameter if no
warnings are expected, but verification that the correct file and table are
being used is desired. If the import file or the target table is specified
incorrectly, the import utility will generate a warning for each row that it
attempts to import, which will cause the import to fail. If n is zero, or this
option is not specified, the import operation will continue regardless of the
number of warnings issued.

XML FROM xml-path
Specifies one or more paths that contain the XML files.

XMLPARSE
Specifies how XML documents are parsed. If this option is not specified,
the parsing behavior for XML documents will be determined by the value
of the CURRENT XMLPARSE OPTION special register.

STRIP WHITESPACE
Specifies to remove whitespace when the XML document is parsed.

PRESERVE WHITESPACE
Specifies not to remove whitespace when the XML document is
parsed.

Chapter 30. DB2 commands 559

XMLVALIDATE
Specifies that XML documents are validated against a schema, when
applicable.

USING XDS
XML documents are validated against the XML schema identified
by the XML Data Specifier (XDS) in the main data file. By default,
if the XMLVALIDATE option is invoked with the USING XDS
clause, the schema used to perform validation will be determined
by the SCH attribute of the XDS. If an SCH attribute is not present
in the XDS, no schema validation will occur unless a default
schema is specified by the DEFAULT clause.

The DEFAULT, IGNORE, and MAP clauses can be used to modify
the schema determination behavior. These three optional clauses
apply directly to the specifications of the XDS, and not to each
other. For example, if a schema is selected because it is specified by
the DEFAULT clause, it will not be ignored if also specified by the
IGNORE clause. Similarly, if a schema is selected because it is
specified as the first part of a pair in the MAP clause, it will not be
re-mapped if also specified in the second part of another MAP
clause pair.

USING SCHEMA schema-sqlid
XML documents are validated against the XML schema with the
specified SQL identifier. In this case, the SCH attribute of the XML
Data Specifier (XDS) will be ignored for all XML columns.

USING SCHEMALOCATION HINTS
XML documents are validated against the schemas identified by
XML schema location hints in the source XML documents. If a
schemaLocation attribute is not found in the XML document, no
validation will occur. When the USING SCHEMALOCATION
HINTS clause is specified, the SCH attribute of the XML Data
Specifier (XDS) will be ignored for all XML columns.

See examples of the XMLVALIDATE option below.

Usage notes

Be sure to complete all table operations and release all locks before starting an
import operation. This can be done by issuing a COMMIT after closing all cursors
opened WITH HOLD, or by issuing a ROLLBACK.

The import utility adds rows to the target table using the SQL INSERT statement.
The utility issues one INSERT statement for each row of data in the input file. If an
INSERT statement fails, one of two actions result:
v If it is likely that subsequent INSERT statements can be successful, a warning

message is written to the message file, and processing continues.
v If it is likely that subsequent INSERT statements will fail, and there is potential

for database damage, an error message is written to the message file, and
processing halts.

The utility performs an automatic COMMIT after the old rows are deleted during a
REPLACE or a REPLACE_CREATE operation. Therefore, if the system fails, or the

560 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

application interrupts the database manager after the table object is truncated, all
of the old data is lost. Ensure that the old data is no longer needed before using
these options.

If the log becomes full during a CREATE, REPLACE, or REPLACE_CREATE
operation, the utility performs an automatic COMMIT on inserted records. If the
system fails, or the application interrupts the database manager after an automatic
COMMIT, a table with partial data remains in the database. Use the REPLACE or
the REPLACE_CREATE option to rerun the whole import operation, or use
INSERT with the RESTARTCOUNT parameter set to the number of rows
successfully imported.

By default, automatic COMMITs are not performed for the INSERT or the
INSERT_UPDATE option. They are, however, performed if the COMMITCOUNT
parameter is not zero. If automatic COMMITs are not performed, a full log results
in a ROLLBACK.

Offline import does not perform automatic COMMITs if any of the following
conditions is true:
v the target is a view, not a table
v compound inserts are used
v buffered inserts are used

By default, online import performs automatic COMMITs to free both the active log
space and the lock list. Automatic COMMITs are not performed only if a
COMMITCOUNT value of zero is specified.

Whenever the import utility performs a COMMIT, two messages are written to the
message file: one indicates the number of records to be committed, and the other is
written after a successful COMMIT. When restarting the import operation after a
failure, specify the number of records to skip, as determined from the last
successful COMMIT.

The import utility accepts input data with minor incompatibility problems (for
example, character data can be imported using padding or truncation, and numeric
data can be imported with a different numeric data type), but data with major
incompatibility problems is not accepted.

You cannot REPLACE or REPLACE_CREATE an object table if it has any
dependents other than itself, or an object view if its base table has any dependents
(including itself). To replace such a table or a view, do the following:
1. Drop all foreign keys in which the table is a parent.
2. Run the import utility.
3. Alter the table to recreate the foreign keys.

If an error occurs while recreating the foreign keys, modify the data to maintain
referential integrity.

Referential constraints and foreign key definitions are not preserved when
recreating tables from PC/IXF files. (Primary key definitions are preserved if the
data was previously exported using SELECT *.)

Chapter 30. DB2 commands 561

Importing to a remote database requires enough disk space on the server for a
copy of the input data file, the output message file, and potential growth in the
size of the database.

If an import operation is run against a remote database, and the output message
file is very long (more than 60 KB), the message file returned to the user on the
client might be missing messages from the middle of the import operation. The
first 30 KB of message information and the last 30 KB of message information are
always retained.

Importing PC/IXF files to a remote database is much faster if the PC/IXF file is on
a hard drive rather than on diskettes.

The database table or hierarchy must exist before data in the ASC, DEL, or WSF
file formats can be imported; however, if the table does not already exist, IMPORT
CREATE or IMPORT REPLACE_CREATE creates the table when it imports data
from a PC/IXF file. For typed tables, IMPORT CREATE can create the type
hierarchy and the table hierarchy as well.

PC/IXF import should be used to move data (including hierarchical data) between
databases. If character data containing row separators is exported to a delimited
ASCII (DEL) file and processed by a text transfer program, fields containing the
row separators will shrink or expand. The file copying step is not necessary if the
source and the target databases are both accessible from the same client.

The data in ASC and DEL files is assumed to be in the code page of the client
application performing the import. PC/IXF files, which allow for different code
pages, are recommended when importing data in different code pages. If the
PC/IXF file and the import utility are in the same code page, processing occurs as
for a regular application. If the two differ, and the FORCEIN option is specified,
the import utility assumes that data in the PC/IXF file has the same code page as
the application performing the import. This occurs even if there is a conversion
table for the two code pages. If the two differ, the FORCEIN option is not
specified, and there is a conversion table, all data in the PC/IXF file will be
converted from the file code page to the application code page. If the two differ,
the FORCEIN option is not specified, and there is no conversion table, the import
operation will fail. This applies only to PC/IXF files on DB2 clients on the AIX
operating system.

For table objects on an 8 KB page that are close to the limit of 1012 columns,
import of PC/IXF data files might cause DB2 to return an error, because the
maximum size of an SQL statement was exceeded. This situation can occur only if
the columns are of type CHAR, VARCHAR, or CLOB. The restriction does not
apply to import of DEL or ASC files. If PC/IXF files are being used to create a
new table, an alternative is use db2look to dump the DDL statement that created
the table, and then to issue that statement through the CLP.

DB2 Connect can be used to import data to DRDA servers such as DB2 for
OS/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF import
(INSERT option) is supported. The RESTARTCOUNT parameter, but not the
COMMITCOUNT parameter, is also supported.

When using the CREATE option with typed tables, create every sub-table defined
in the PC/IXF file; sub-table definitions cannot be altered. When using options
other than CREATE with typed tables, the traversal order list enables one to
specify the traverse order; therefore, the traversal order list must match the one

562 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

used during the export operation. For the PC/IXF file format, one need only
specify the target sub-table name, and use the traverse order stored in the file.

The import utility can be used to recover a table previously exported to a PC/IXF
file. The table returns to the state it was in when exported.

Data cannot be imported to a system table, a created temporary table, a declared
temporary table, or a summary table.

Views cannot be created through the import utility.

Importing a multiple-part PC/IXF file whose individual parts are copied from a
Windows system to an AIX system is supported. Only the name of the first file
must be specified in the IMPORT command. For example, IMPORT FROM data.ixf
OF IXF INSERT INTO TABLE1. The file data.002, etc should be available in the same
directory as data.ixf.

On the Windows operating system:
v Importing logically split PC/IXF files is not supported.
v Importing bad format PC/IXF or WSF files is not supported.

Security labels in their internal format might contain newline characters. If you
import the file using the DEL file format, those newline characters can be mistaken
for delimiters. If you have this problem use the older default priority for delimiters
by specifying the delprioritychar file type modifier in the IMPORT command.

Federated considerations

When using the IMPORT command and the INSERT, UPDATE, or
INSERT_UPDATE command parameters, you must ensure that you have
CONTROL privilege on the participating nickname. You must ensure that the
nickname you want to use when doing an import operation already exists. There
are also several restrictions you should be aware of as shown in the IMPORT
command parameters section.

Some data sources, such as ODBC, do not support importing into nicknames.

File type modifiers for the import utility

Table 143. Valid file type modifiers for the import utility: All file formats

Modifier Description

compound=x x is a number between 1 and 100 inclusive. Uses nonatomic compound SQL to
insert the data, and x statements will be attempted each time.

If this modifier is specified, and the transaction log is not sufficiently large, the
import operation will fail. The transaction log must be large enough to
accommodate either the number of rows specified by COMMITCOUNT, or the
number of rows in the data file if COMMITCOUNT is not specified. It is
therefore recommended that the COMMITCOUNT option be specified to avoid
transaction log overflow.

This modifier is incompatible with INSERT_UPDATE mode, hierarchical tables,
and the following modifiers: usedefaults, identitymissing, identityignore,
generatedmissing, and generatedignore.

Chapter 30. DB2 commands 563

Table 143. Valid file type modifiers for the import utility: All file formats (continued)

Modifier Description

generatedignore This modifier informs the import utility that data for all generated columns is
present in the data file but should be ignored. This results in all values for the
generated columns being generated by the utility. This modifier cannot be used
with the generatedmissing modifier.

generatedmissing If this modifier is specified, the utility assumes that the input data file contains no
data for the generated columns (not even NULLs), and will therefore generate a
value for each row. This modifier cannot be used with the generatedignore
modifier.

identityignore This modifier informs the import utility that data for the identity column is
present in the data file but should be ignored. This results in all identity values
being generated by the utility. The behavior will be the same for both
GENERATED ALWAYS and GENERATED BY DEFAULT identity columns. This
means that for GENERATED ALWAYS columns, no rows will be rejected. This
modifier cannot be used with the identitymissing modifier.

identitymissing If this modifier is specified, the utility assumes that the input data file contains no
data for the identity column (not even NULLs), and will therefore generate a
value for each row. The behavior will be the same for both GENERATED
ALWAYS and GENERATED BY DEFAULT identity columns. This modifier cannot
be used with the identityignore modifier.

lobsinfile lob-path specifies the path to the files containing LOB data.

Each path contains at least one file that contains at least one LOB pointed to by a
Lob Location Specifier (LLS) in the data file. The LLS is a string representation of
the location of a LOB in a file stored in the LOB file path. The format of an LLS is
filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains
the LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the
length of the LOB in bytes. For example, if the string db2exp.001.123.456/ is
stored in the data file, the LOB is located at offset 123 in the file db2exp.001, and
is 456 bytes long.

The LOBS FROM clause specifies where the LOB files are located when the
“lobsinfile” modifier is used. The LOBS FROM clause will implicitly activate the
LOBSINFILE behavior. The LOBS FROM clause conveys to the IMPORT utility
the list of paths to search for the LOB files while importing the data.

To indicate a null LOB, enter the size as -1. If the size is specified as 0, it is
treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file
name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

no_type_id Valid only when importing into a single sub-table. Typical usage is to export data
from a regular table, and then to invoke an import operation (using this modifier)
to convert the data into a single sub-table.

nodefaults If a source column for a target table column is not explicitly specified, and the
table column is not nullable, default values are not loaded. Without this option, if
a source column for one of the target table columns is not explicitly specified, one
of the following occurs:

v If a default value can be specified for a column, the default value is loaded

v If the column is nullable, and a default value cannot be specified for that
column, a NULL is loaded

v If the column is not nullable, and a default value cannot be specified, an error
is returned, and the utility stops processing.

norowwarnings Suppresses all warnings about rejected rows.

564 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 143. Valid file type modifiers for the import utility: All file formats (continued)

Modifier Description

rowchangetimestampignore This modifier informs the import utility that data for the row change timestamp
column is present in the data file but should be ignored. This results in all ROW
CHANGE TIMESTAMP being generated by the utility. The behavior will be the
same for both GENERATED ALWAYS and GENERATED BY DEFAULT columns.
This means that for GENERATED ALWAYS columns, no rows will be rejected.
This modifier cannot be used with the rowchangetimestampmissing modifier.

rowchangetimestampmissing If this modifier is specified, the utility assumes that the input data file contains no
data for the row change timestamp column (not even NULLs), and will therefore
generate a value for each row. The behavior will be the same for both
GENERATED ALWAYS and GENERATED BY DEFAULT columns. This modifier
cannot be used with the rowchangetimestampignore modifier.

seclabelchar Indicates that security labels in the input source file are in the string format for
security label values rather than in the default encoded numeric format. IMPORT
converts each security label into the internal format as it is loaded. If a string is
not in the proper format the row is not loaded and a warning (SQLSTATE 01H53)
is returned. If the string does not represent a valid security label that is part of
the security policy protecting the table then the row is not loaded and a warning
(SQLSTATE 01H53, SQLCODE SQL3243W)) is returned.

This modifier cannot be specified if the seclabelname modifier is specified,
otherwise the import fails and an error (SQLCODE SQL3525N) is returned.

seclabelname Indicates that security labels in the input source file are indicated by their name
rather than the default encoded numeric format. IMPORT will convert the name
to the appropriate security label if it exists. If no security label exists with the
indicated name for the security policy protecting the table the row is not loaded
and a warning (SQLSTATE 01H53, SQLCODE SQL3244W) is returned.

This modifier cannot be specified if the seclabelchar modifier is specified,
otherwise the import fails and an error (SQLCODE SQL3525N) is returned.
Note: If the file type is ASC, any spaces following the name of the security label
will be interpreted as being part of the name. To avoid this use the striptblanks
file type modifier to make sure the spaces are removed.

usedefaults If a source column for a target table column has been specified, but it contains no
data for one or more row instances, default values are loaded. Examples of
missing data are:

v For DEL files: two adjacent column delimiters (″,,″) or two adjacent column
delimiters separated by an arbitrary number of spaces (″, ,″) are specified for a
column value.

v For DEL/ASC/WSF files: A row that does not have enough columns, or is not
long enough for the original specification.
Note: For ASC files, NULL column values are not considered explicitly
missing, and a default will not be substituted for NULL column values. NULL
column values are represented by all space characters for numeric, date, time,
and /timestamp columns, or by using the NULL INDICATOR for a column of
any type to indicate the column is NULL.

Without this option, if a source column contains no data for a row instance, one
of the following occurs:

v For DEL/ASC/WSF files: If the column is nullable, a NULL is loaded. If the
column is not nullable, the utility rejects the row.

Chapter 30. DB2 commands 565

Table 144. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL)

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as the code page of the
data in the input data set. Converts character data from this code page to the
application code page during the import operation.

The following rules apply:

v For pure DBCS (graphic) mixed DBCS, and EUC, delimiters are restricted to the
range of x00 to x3F, inclusive.

v nullindchar must specify symbols included in the standard ASCII set between
code points x20 and x7F, inclusive. This refers to ASCII symbols and code
points.

Note:

1. The codepage modifier cannot be used with the lobsinfile modifier.

2. If data expansion occurs when the code page is converted from the
application code page to the database code page, the data might be truncated
and loss of data can occur.

dateformat=″x″ x is the format of the date in the source file.2 Valid date elements are:

YYYY - Year (four digits ranging from 0000 - 9999)
M - Month (one or two digits ranging from 1 - 12)
MM - Month (two digits ranging from 1 - 12;

mutually exclusive with M)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 1 - 31;

mutually exclusive with D)
DDD - Day of the year (three digits ranging

from 001 - 366; mutually exclusive
with other day or month elements)

A default value of 1 is assigned for each element that is not specified. Some
examples of date formats are:

"D-M-YYYY"
"MM.DD.YYYY"
"YYYYDDD"

implieddecimal The location of an implied decimal point is determined by the column definition;
it is no longer assumed to be at the end of the value. For example, the value
12345 is loaded into a DECIMAL(8,2) column as 123.45, not 12345.00.

566 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 144. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

timeformat=″x″ x is the format of the time in the source file.2 Valid time elements are:

H - Hour (one or two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24
for a 24 hour system)

HH - Hour (two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24
for a 24 hour system; mutually exclusive
with H)

M - Minute (one or two digits ranging
from 0 - 59)

MM - Minute (two digits ranging from 0 - 59;
mutually exclusive with M)

S - Second (one or two digits ranging
from 0 - 59)

SS - Second (two digits ranging from 0 - 59;
mutually exclusive with S)

SSSSS - Second of the day after midnight (5 digits
ranging from 00000 - 86399; mutually
exclusive with other time elements)

TT - Meridian indicator (AM or PM)

A default value of 0 is assigned for each element that is not specified. Some
examples of time formats are:

"HH:MM:SS"
"HH.MM TT"
"SSSSS"

Chapter 30. DB2 commands 567

Table 144. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

timestampformat=″x″ x is the format of the time stamp in the source file.2 Valid time stamp elements
are:

YYYY - Year (four digits ranging from 0000 - 9999)
M - Month (one or two digits ranging from 1 - 12)
MM - Month (two digits ranging from 01 - 12;

mutually exclusive with M and MMM)
MMM - Month (three-letter case-insensitive abbreviation for

the month name; mutually exclusive with M and MM)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 1 - 31; mutually exclusive with D)
DDD - Day of the year (three digits ranging from 001 - 366;

mutually exclusive with other day or month elements)
H - Hour (one or two digits ranging from 0 - 12

for a 12 hour system, and 0 - 24 for a 24 hour system)
HH - Hour (two digits ranging from 0 - 12

for a 12 hour system, and 0 - 24 for a 24 hour system;
mutually exclusive with H)

M - Minute (one or two digits ranging from 0 - 59)
MM - Minute (two digits ranging from 0 - 59;

mutually exclusive with M, minute)
S - Second (one or two digits ranging from 0 - 59)
SS - Second (two digits ranging from 0 - 59;

mutually exclusive with S)
SSSSS - Second of the day after midnight (5 digits

ranging from 00000 - 86399; mutually
exclusive with other time elements)

U (1 to 12 times)
- Fractional seconds(number of occurrences of U represent the

number of digits with each digit ranging from 0 to 9
TT - Meridian indicator (AM or PM)

A default value of 1 is assigned for unspecified YYYY, M, MM, D, DD, or DDD
elements. A default value of ’Jan’ is assigned to an unspecified MMM element. A
default value of 0 is assigned for all other unspecified elements. Following is an
example of a time stamp format:

"YYYY/MM/DD HH:MM:SS.UUUUUU"

The valid values for the MMM element include: ’jan’, ’feb’, ’mar’, ’apr’, ’may’,
’jun’, ’jul’, ’aug’, ’sep’, ’oct’, ’nov’ and ’dec’. These values are case insensitive.

The following example illustrates how to import data containing user defined
date and time formats into a table called schedule:

db2 import from delfile2 of del
modified by timestampformat="yyyy.mm.dd hh:mm tt"
insert into schedule

568 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 144. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

usegraphiccodepage If usegraphiccodepage is given, the assumption is made that data being imported
into graphic or double-byte character large object (DBCLOB) data fields is in the
graphic code page. The rest of the data is assumed to be in the character code
page. The graphic code page is associated with the character code page. IMPORT
determines the character code page through either the codepage modifier, if it is
specified, or through the code page of the application if the codepage modifier is
not specified.

This modifier should be used in conjunction with the delimited data file
generated by drop table recovery only if the table being recovered has graphic
data.

Restrictions

The usegraphiccodepage modifier MUST NOT be specified with DEL files created
by the EXPORT utility, as these files contain data encoded in only one code page.
The usegraphiccodepage modifier is also ignored by the double-byte character
large objects (DBCLOBs) in files.

xmlchar Specifies that XML documents are encoded in the character code page.

This option is useful for processing XML documents that are encoded in the
specified character code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,
the encoding must match the character code page, otherwise the row containing
the document will be rejected. Note that the character codepage is the value
specified by the codepage file type modifier, or the application codepage if it is
not specified. By default, either the documents are encoded in Unicode, or they
contain a declaration tag with an encoding attribute.

xmlgraphic Specifies that XML documents are encoded in the specified graphic code page.

This option is useful for processing XML documents that are encoded in a specific
graphic code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,
the encoding must match the graphic code page, otherwise the row containing
the document will be rejected. Note that the graphic code page is the graphic
component of the value specified by the codepage file type modifier, or the
graphic component of the application code page if it is not specified. By default,
documents are either encoded in Unicode, or they contain a declaration tag with
an encoding attribute.
Note: If the xmlgraphic modifier is specified with the IMPORT command, the
XML document to be imported must be encoded in the UTF-16 code page.
Otherwise, the XML document may be rejected with a parsing error, or it may be
imported into the table with data corruption.

Table 145. Valid file type modifiers for the import utility: ASC (non-delimited ASCII) file format

Modifier Description

nochecklengths If nochecklengths is specified, an attempt is made to import each row, even if the
source data has a column definition that exceeds the size of the target table
column. Such rows can be successfully imported if code page conversion causes
the source data to shrink; for example, 4-byte EUC data in the source could
shrink to 2-byte DBCS data in the target, and require half the space. This option
is particularly useful if it is known that the source data will fit in all cases despite
mismatched column definitions.

Chapter 30. DB2 commands 569

Table 145. Valid file type modifiers for the import utility: ASC (non-delimited ASCII) file format (continued)

Modifier Description

nullindchar=x x is a single character. Changes the character denoting a null value to x. The
default value of x is Y.3

This modifier is case sensitive for EBCDIC data files, except when the character is
an English letter. For example, if the null indicator character is specified to be the
letter N, then n is also recognized as a null indicator.

reclen=x x is an integer with a maximum value of 32 767. x characters are read for each
row, and a new-line character is not used to indicate the end of the row.

striptblanks Truncates any trailing blank spaces when loading data into a variable-length field.
If this option is not specified, blank spaces are kept.

In the following example, striptblanks causes the import utility to truncate
trailing blank spaces:

db2 import from myfile.asc of asc
modified by striptblanks
method l (1 10, 12 15) messages msgs.txt
insert into staff

This option cannot be specified together with striptnulls. These are mutually
exclusive options. This option replaces the obsolete t option, which is supported
for earlier compatibility only.

striptnulls Truncates any trailing NULLs (0x00 characters) when loading data into a
variable-length field. If this option is not specified, NULLs are kept.

This option cannot be specified together with striptblanks. These are mutually
exclusive options. This option replaces the obsolete padwithzero option, which is
supported for earlier compatibility only.

Table 146. Valid file type modifiers for the import utility: DEL (delimited ASCII) file format

Modifier Description

chardelx x is a single character string delimiter. The default value is a double quotation
mark (″). The specified character is used in place of double quotation marks to
enclose a character string.34 If you want to explicitly specify the double quotation
mark as the character string delimiter, it should be specified as follows:

modified by chardel""

The single quotation mark (’) can also be specified as a character string delimiter.
In the following example, chardel'' causes the import utility to interpret any
single quotation mark (’) it encounters as a character string delimiter:

db2 "import from myfile.del of del
modified by chardel''
method p (1, 4) insert into staff (id, years)"

coldelx x is a single character column delimiter. The default value is a comma (,). The
specified character is used in place of a comma to signal the end of a column.34

In the following example, coldel; causes the import utility to interpret any
semicolon (;) it encounters as a column delimiter:

db2 import from myfile.del of del
modified by coldel;
messages msgs.txt insert into staff

decplusblank Plus sign character. Causes positive decimal values to be prefixed with a blank
space instead of a plus sign (+). The default action is to prefix positive decimal
values with a plus sign.

570 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 146. Valid file type modifiers for the import utility: DEL (delimited ASCII) file format (continued)

Modifier Description

decptx x is a single character substitute for the period as a decimal point character. The
default value is a period (.). The specified character is used in place of a period as
a decimal point character.34

In the following example, decpt; causes the import utility to interpret any
semicolon (;) it encounters as a decimal point:

db2 "import from myfile.del of del
modified by chardel''
decpt; messages msgs.txt insert into staff"

delprioritychar The current default priority for delimiters is: record delimiter, character delimiter,
column delimiter. This modifier protects existing applications that depend on the
older priority by reverting the delimiter priorities to: character delimiter, record
delimiter, column delimiter. Syntax:

db2 import ... modified by delprioritychar ...

For example, given the following DEL data file:

"Smith, Joshua",4000,34.98<row delimiter>
"Vincent,<row delimiter>, is a manager", ...
... 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be only two rows in this
data file. The second <row delimiter> will be interpreted as part of the first data
column of the second row, while the first and the third <row delimiter> are
interpreted as actual record delimiters. If this modifier is not specified, there will
be three rows in this data file, each delimited by a <row delimiter>.

keepblanks Preserves the leading and trailing blanks in each field of type CHAR, VARCHAR,
LONG VARCHAR, or CLOB. Without this option, all leading and trailing blanks
that are not inside character delimiters are removed, and a NULL is inserted into
the table for all blank fields.

nochardel The import utility will assume all bytes found between the column delimiters to
be part of the column’s data. Character delimiters will be parsed as part of
column data. This option should not be specified if the data was exported using
DB2 (unless nochardel was specified at export time). It is provided to support
vendor data files that do not have character delimiters. Improper usage might
result in data loss or corruption.

This option cannot be specified with chardelx, delprioritychar or nodoubledel.
These are mutually exclusive options.

nodoubledel Suppresses recognition of double character delimiters.

Table 147. Valid file type modifiers for the import utility: IXF file format

Modifier Description

forcein Directs the utility to accept data despite code page mismatches, and to suppress
translation between code pages.

Fixed length target fields are checked to verify that they are large enough for the
data. If nochecklengths is specified, no checking is done, and an attempt is made
to import each row.

indexixf Directs the utility to drop all indexes currently defined on the existing table, and
to create new ones from the index definitions in the PC/IXF file. This option can
only be used when the contents of a table are being replaced. It cannot be used
with a view, or when a insert-column is specified.

Chapter 30. DB2 commands 571

Table 147. Valid file type modifiers for the import utility: IXF file format (continued)

Modifier Description

indexschema=schema Uses the specified schema for the index name during index creation. If schema is
not specified (but the keyword indexschema is specified), uses the connection user
ID. If the keyword is not specified, uses the schema in the IXF file.

nochecklengths If nochecklengths is specified, an attempt is made to import each row, even if the
source data has a column definition that exceeds the size of the target table
column. Such rows can be successfully imported if code page conversion causes
the source data to shrink; for example, 4-byte EUC data in the source could
shrink to 2-byte DBCS data in the target, and require half the space. This option
is particularly useful if it is known that the source data will fit in all cases despite
mismatched column definitions.

forcecreate Specifies that the table should be created with possible missing or limited
information after returning SQL3311N during an import operation.

Table 148. IMPORT behavior when using codepage and usegraphiccodepage

codepage=N usegraphiccodepage IMPORT behavior

Absent Absent All data in the file is assumed to be in the application
code page.

Present Absent All data in the file is assumed to be in code page N.

Warning: Graphic data will be corrupted when
imported into the database if N is a single-byte code
page.

Absent Present Character data in the file is assumed to be in the
application code page. Graphic data is assumed to be in
the code page of the application graphic data.

If the application code page is single-byte, then all data
is assumed to be in the application code page.

Warning: If the application code page is single-byte,
graphic data will be corrupted when imported into the
database, even if the database contains graphic columns.

Present Present Character data is assumed to be in code page N. Graphic
data is assumed to be in the graphic code page of N.

If N is a single-byte or double-byte code page, then all
data is assumed to be in code page N.

Warning: Graphic data will be corrupted when
imported into the database if N is a single-byte code
page.

Note:

1. The import utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted,
the import operation fails, and an error code is returned.

2. Double quotation marks around the date format string are mandatory. Field
separators cannot contain any of the following: a-z, A-Z, and 0-9. The field
separator should not be the same as the character delimiter or field delimiter
in the DEL file format. A field separator is optional if the start and end

572 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

positions of an element are unambiguous. Ambiguity can exist if (depending
on the modifier) elements such as D, H, M, or S are used, because of the
variable length of the entries.
For time stamp formats, care must be taken to avoid ambiguity between the
month and the minute descriptors, since they both use the letter M. A month
field must be adjacent to other date fields. A minute field must be adjacent to
other time fields. Following are some ambiguous time stamp formats:

"M" (could be a month, or a minute)
"M:M" (Which is which?)
"M:YYYY:M" (Both are interpreted as month.)
"S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation
will fail.
Following are some unambiguous time stamp formats:

"M:YYYY" (Month)
"S:M" (Minute)
"M:YYYY:S:M" (Month....Minute)
"M:H:YYYY:M:D" (Minute....Month)

Some characters, such as double quotation marks and back slashes, must be
preceded by an escape character (for example, \).

3. Character values provided for the chardel, coldel, or decpt file type modifiers
must be specified in the code page of the source data.
The character code point (instead of the character symbol), can be specified
using the syntax xJJ or 0xJJ, where JJ is the hexadecimal representation of the
code point. For example, to specify the # character as a column delimiter, use
one of the following:

... modified by coldel# ...

... modified by coldel0x23 ...

... modified by coldelX23 ...

4. Delimiter considerations for moving data lists restrictions that apply to the
characters that can be used as delimiter overrides.

5. The following file type modifiers are not allowed when importing into a
nickname:
v indexixf

v indexschema

v dldelfiletype

v nodefaults

v usedefaults

v no_type_idfiletype

v generatedignore

v generatedmissing

v identityignore

v identitymissing

v lobsinfile

6. The WSF file format is not supported for XML columns. Support for this file
format is also deprecated and might be removed in a future release. It is
recommended that you start using a supported file format instead of WSF
files before support is removed

7. The CREATE mode is not supported for XML columns.

Chapter 30. DB2 commands 573

8. All XML data must reside in XML files that are separate from the main data
file. An XML Data Specifier (XDS) (or a NULL value) must exist for each XML
column in the main data file.

9. XML documents are assumed to be in Unicode format or to contain a
declaration tag that includes an encoding attribute, unless the XMLCHAR or
XMLGRAPHIC file type modifier is specified.

10. Rows containing documents that are not well-formed will be rejected.
11. If the XMLVALIDATE option is specified, documents that successfully

validate against their matching schema will be annotated with the schema
information as they are inserted. Rows containing documents that fail to
validate against their matching schema will be rejected. To successfully
perform the validation, the privileges held by the user invoking the import
must include at least one of the following:
v DBADM authority
v USAGE privilege on the XML schema to be used in the validation

12. When importing into a table containing an implicitly hidden row change
timestamp column, the implicitly hidden property of the column is not
honoured. Therefore, the rowchangetimestampmissing file type modifier must
be specified in the import command if data for the column is not present in
the data to be imported and there is no explicit column list present.

INSPECT

Inspect database for architectural integrity, checking the pages of the database for
page consistency. The INSPECT command checks that the structures of table
objects and structures of table spaces are valid. Cross object validation conducts an
online index to data consistency check.

Scope

In a single partition database environment, the scope is that single partition only.
In a partitioned database environment, it is the collection of all logical partitions
defined in db2nodes.cfg. For partitioned tables, the CHECK DATABASE and
CHECK TABLESPACE options include individual data partitions and
non-partitioned indexes. The CHECK TABLE option is also available for a
partitioned table, however it will check all data partitions and indexes in a table,
rather than checking a single data partition or index.

Authorization

For INSPECT CHECK, one of the following:
v sysadm

v dbadm

v sysctrl

v sysmaint

v CONTROL privilege if single table.

Required Connection

Database

574 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Command Syntax

�� INSPECT Check Clause
Row Compression Estimate Clause FOR ERROR STATE ALL

�

�
LIMIT ERROR TO DEFAULT

LIMIT ERROR TO n
ALL

Level Clause
RESULTS

KEEP
�

� filename
On Database Partition Clause

��

Check Clause:

CHECK DATABASE
BEGIN TBSPACEID n

OBJECTID n
TABLESPACE NAME tablespace-name

TBSPACEID n BEGIN OBJECTID n
TABLE NAME table-name

SCHEMA schema-name
TBSPACEID n OBJECTID n

Row Compression Estimate Clause:

ROWCOMPESTIMATE-TABLE NAME table-name
SCHEMA schema-name

TBSPACEID n OBJECTID n

Level Clause:

EXTENTMAP NORMAL

EXTENTMAP NONE
LOW

DATA NORMAL

DATA NONE
LOW

BLOCKMAP NORMAL

BLOCKMAP NONE
LOW

�

�
INDEX NORMAL

INDEX NONE
LOW

LONG NORMAL

LONG NONE
LOW

LOB NORMAL

LOB NONE
LOW

�

�
XML NORMAL

XML NONE
LOW

Cross Object Checking Clause

Cross Object Checking Clause:

INDEXDATA

Chapter 30. DB2 commands 575

On Database Partition Clause:

ON Database Partition List Clause
ALL DBPARTITIONNUMS

EXCEPT Database Partition List Clause

Database Partition List Clause:

DBPARTITIONNUM
DBPARTITIONNUMS

�

� �

,

(db-partition-number1)
TO db-partition-number2

Command Parameters

CHECK
Specifies check processing.

DATABASE
Specifies whole database.

BEGIN TBSPACEID n
Specifies processing to begin from table space with given table space ID
number.

OBJECTID n
Specifies processing to begin from table with given table space ID
number and object ID number.

TABLESPACE

NAME tablespace-name
Specifies single table space with given table space name.

TBSPACEID n
Specifies single table space with given table space ID number.

BEGIN OBJECTID n
Specifies processing to begin from table with given object ID
number.

TABLE

NAME table-name
Specifies table with given table name.

SCHEMA schema-name
Specifies schema name for specified table name for single table
operation.

TBSPACEID n OBJECTID n
Specifies table with given table space ID number and object ID
number.

ROWCOMPESTIMATE
Estimates the effectiveness of row compression for a table. You can also
specify which database partition(s) this operation is to be done on.

576 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

This tool is capable of taking a sample of the table data, and building a
dictionary from it. This dictionary can then be used to test compression
against the records contained in the sample. From this test compression,
data is be gathered from which the following estimates are made:
v Percentage of bytes saved from compression
v Percentage of pages saved from compression
v Compression dictionary size
v Expansion dictionary size

INSPECT will insert the dictionary built for gathering these compression
estimates if the COMPRESS YES attribute is set for this table, and a dictionary
does not already exist for this table. INSPECT will attempt to insert the
dictionary concurrent to other applications accessing the table. Dictionary
insert requires an Exclusive Table Alter lock and an Intent on Exclusive
Table lock. INSPECT will only insert a dictionary into tables that support
data row compression. For partitioned tables, a separate dictionary is built
and inserted on each partition.

When sampling table row data and building a compression dictionary for a
table, the INSPECT command supports only the table row data in the table
object. If the table contains XML columns, data is not sampled and a
compression dictionary is not built for the XML data in the XML storage
object of the table. Use the table function instead.

The ROWCOMPESTIMATE option does not provide an index compression
estimate. Use the table function instead.

RESULTS
Specifies the result output file. The file will be written out to the diagnostic
data directory path. If there is no error found by the check processing, this
result output file will be erased at the end of the INSPECT operation. If
there are errors found by the check processing, this result output file will
not be erased at the end of the INSPECT operation.

KEEP Specifies to always keep the result output file.

file-name
Specifies the name for the result output file. The file has to be
created in the diagnostic data directory path.

ALL DBPARTITIONNUMS
Specifies that operation is to be done on all database partitions specified in
the db2nodes.cfg file. This is the default if a node clause is not specified.

EXCEPT
Specifies that operation is to be done on all database partitions specified in
the db2nodes.cfg file, except those specified in the node list.

ON DBPARTITIONNUM | ON DBPARTITIONNUMS
Perform operation on a set of database partitions.

db-partition-number1
Specifies a database partition number in the database partition list.

db-partition-number2
Specifies the second database partition number, so that all database
partitions from db-partition-number1 up to and including
db-partition-number2 are included in the database partition list.

FOR ERROR STATE ALL
For table object with internal state already indicating error state, the check

Chapter 30. DB2 commands 577

will just report this status and not scan through the object. Specifying this
option will have the processing scan through the object even if internal
state already lists error state.

When used with the INDEXDATA option, as long as the index or data
object is in an error state, the online index to data consistency checking
will not be performed.

LIMIT ERROR TO n
Number of pages in error for an object to which reporting is limited. When
this limit of the number of pages in error for an object is reached, the
processing will discontinue the check on the rest of the object.

When used with the INDEXDATA option, n represents the number of
errors to which reporting is limited during the online index to data
consistency checking.

LIMIT ERROR TO DEFAULT
Default number of pages to limit error reporting for an object. This value is
the extent size of the object. This parameter is the default.

When used with the INDEXDATA option, DEFAULT represents the default
number of errors to which reporting is limited during the online index to
data consistency checking.

LIMIT ERROR TO ALL
No limit on number of pages in error reported.

When used with the INDEXDATA option, ALL represents no limit on the
number of errors reported during the online index to data consistency
checking.

EXTENTMAP

NORMAL
Specifies processing level is normal for extent map. Default.

NONE
Specifies processing level is none for extent map.

LOW Specifies processing level is low for extent map.

DATA

NORMAL
Specifies processing level is normal for data object. Default.

NONE
Specifies processing level is none for data object.

LOW Specifies processing level is low for data object.

BLOCKMAP

NORMAL
Specifies processing level is normal for block map object. Default.

NONE
Specifies processing level is none for block map object.

LOW Specifies processing level is low for block map object.

INDEX

NORMAL
Specifies processing level is normal for index object. Default.

578 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

NONE
Specifies processing level is none for index object.

LOW Specifies processing level is low for index object.

LONG

NORMAL
Specifies processing level is normal for long object. Default.

NONE
Specifies processing level is none for long object.

LOW Specifies processing level is low for long object.

LOB

NORMAL
Specifies processing level is normal for LOB object. Default.

NONE
Specifies processing level is none for LOB object.

LOW Specifies processing level is low for LOB object.

XML

NORMAL
Specifies processing level is normal for XML column object.
Default. Pages of XML object will be checked for most
inconsistencies. Actual XML data will not be inspected.

NONE
Specifies processing level is none for XML column object. XML
object will not be inspected at all.

LOW Specifies processing level is low for XML column object. Pages of
XML object will be checked for some inconsistencies. Actual XML
data will not be inspected.

INDEXDATA
Specified in order to perform an index to data consistency check.
INDEXDATA checking is not performed by default.

Examples
v To perform an index to data consistency check that allows read/write access to

all objects, even the object inspected at the moment, issue the following
command:
inspect check table name fea3 indexdata results keep fea3high.out

v To perform an index to data consistency check that allows read or write access
to all objects, including the object that is being currently inspected, issue:
INSPECT CHECK TABLE NAME car SCHEMA vps INDEXDATA RESULTS KEEP table1.out

v To estimate how much storage space will be saved if the data in a table named
EMPLOYEE is compressed, issue:
INSPECT ROWCOMPESTIMATE TABLE NAME car SCHEMA vps RESULTS table2.out

Usage Notes
1. For CHECK operations on table objects, the level of processing can be

specified for the objects. The default is NORMAL level, specifying NONE for
an object excludes it. Specifying LOW will do subset of checks that are done
for NORMAL.

Chapter 30. DB2 commands 579

2. The CHECK DATABASE option can be specified to start from a specific table
space or from a specific table by specifying the ID value to identify the table
space or the table.

3. The CHECK TABLESPACE option can be specified to start from a specific
table by specifying the ID value to identify the table.

4. The processing of table spaces will affect only the objects that reside in the
table space. The exception is when the INDEXDATA option is used.
INDEXDATA will check index to data consistency as long as the index object
resides in the table space. This means:
v If the data object resides in a different table space than the specified table

space to be inspected where the index object resides, it can still benefit from
the INDEXDATA checking.

v For a partitioned table, each index can reside in a different table space. Only
those indexes that reside in the specified table space will benefit from the
index to data checking. If you want to inspect all the indexes against one
table, please use the CHECK TABLE option or the CHECK DATABASE
option.

5. The online inspect processing will access database objects using isolation level
uncommitted read. COMMIT processing will be done during INSPECT
processing. It is advisable to end the unit of work by issuing a COMMIT or
ROLLBACK before invoking INSPECT.

6. The online inspect check processing will write out unformatted inspection
data results to the results file specified. The file will be written out to the
diagnostic data directory path. If there is no error found by the check
processing, this result output file will be erased at the end of INSPECT
operation. If there are errors found by the check processing, this result output
file will not be erased at the end of INSPECT operation. After check
processing completes, to see inspection details, the inspection result data will
require to be formatted out with the utility db2inspf. The results file will have
file extension of the database partition number.

7. In a partitioned database environment, each database partition will generate
its own results output file with extension corresponding to its database
partition number. The output location for the results output file will be the
database manager diagnostic data directory path. If the name of a file that
already exists is specified, the operation will not be processed, the file will
have to be removed before that file name can be specified.

8. Normal online inspect processing will access database objects using isolation
level uncommitted read. Inserting a compression dictionary into the table will
attempt to acquire write locks. Please refer to the ROWCOMPESTIMATE
option for details on dictionary insert locking. Commit processing will be
done during the inspect processing. It is advisable to end the unit of work by
issuing a COMMIT or ROLLBACK before starting the inspect operation.

9. The INDEXDATA option only examines the logical inconsistency between
index and data. Therefore, it is recommended that you first run INDEX and
DATA checking separately, to rule out any physical corruption, before running
INDEXDATA checking.

10. The INSPECT command, specified with the INDEXDATA parameter, performs
an index to data consistency check while allowing read/write access to all
objects/tables, even the one being inspected at the moment. The INSPECT
INDEXDATA option includes the following inspections:
v the existence of the data row for a given index entry.
v a key to data value verification.
When the INDEXDATA option is specified:

580 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v by default, only the values of explicitly specified level clause options will be
used. For any level clause options which are not explicitly specified, the
default levels will be overwritten from NORMAL to NONE. For instance,
when INDEXDATA is the only level clause option specified, by default,
only index to data checking will be performed.

11. The BLOCKMAP option returns information that includes whether a block has
been reclaimed for use by the table space following a reorganization to reclaim
multidimensional clustering (MDC) table blocks that were empty.

LIST APPLICATIONS
Displays to standard output the application program name, authorization ID (user
name), application handle, application ID, and database name of all active database
applications. This command can also optionally display an application’s sequence
number, status, status change time, and database path.

Scope

This command only returns information for the database partition on which it is
issued.

Authorization

One of the following:
v SYSADM
v SYSCTRL
v SYSMAINT
v SYSMON

Required connection

Instance. To list applications for a remote instance, it is necessary to first attach to
that instance.

Command syntax

�� LIST APPLICATIONS
FOR DATABASE database-alias

DB

�

�
AT DBPARTITIONNUM db-partition-number
GLOBAL

SHOW DETAIL
��

Command parameters

FOR DATABASE database-alias
Information for each application that is connected to the specified database
is to be displayed. Database name information is not displayed. If this
option is not specified, the command displays the information for each
application that is currently connected to any database at the database
partition to which the user is currently attached.

The default application information is comprised of the following:
v Authorization ID

Chapter 30. DB2 commands 581

v Application name
v Application handle
v Application ID
v Database name
v Number of agents

AT DBPARTITIONNUM db-partition-number
Specifies the database partition for which the status of the monitor
switches is to be displayed.

GLOBAL
Returns an aggregate result for all database partitions in a partitioned
database environment.

SHOW DETAIL
Some of the additional output information will include:
v CONNECT Auth ID
v Sequence number
v Coordinating DB partition number
v Coordinator pid or thread
v Status
v Status change time
v Node
v Database path

If this option is specified, it is recommended that the output be redirected to a file,
and that the report be viewed with the help of an editor. The output lines might
wrap around when displayed on the screen.

Examples

To list detailed information about the applications connected to the SAMPLE
database, issue:
list applications for database sample show detail

Usage notes

The database administrator can use the output from this command as an aid to
problem determination. In addition, this information is required if the database
administrator wants to use the GET SNAPSHOT command or the FORCE
APPLICATION command in an application.

To list applications at a remote instance (or a different local instance), it is
necessary to first attach to that instance. If FOR DATABASE is specified when an
attachment exists, and the database resides at an instance which differs from the
current attachment, the command will fail.

LIST APPLICATIONS only shows user applications while LIST APPLICATIONS
SHOW DETAIL shows all applications including the system applications. Event
monitors are an example of system applications. System applications usually
appear in snapshot output with application names beginning ″db2″ (for example,
db2stmm, db2taskd).

582 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Compatibilities

For compatibility with versions earlier than Version 8:
v The keyword NODE can be substituted for DBPARTITIONNUM.

LIST DATABASE PARTITION GROUPS

Lists all database partition groups associated with the current database.

Scope

This command can be issued from any database partition that is listed in
$HOME/sqllib/db2nodes.cfg. It returns the same information from any of these
database partitions.

Authorization

For the system catalogs SYSCAT.DBPARTITIONGROUPS and
SYSCAT.DBPARTITIONGROUPDEF, one of the following is required:
v sysadm

v sysctrl

v sysmaint

v sysmon

v dbadm

v CONTROL privilege
v SELECT privilege.

Required connection

Database

Command syntax

�� LIST DATABASE PARTITION GROUPS
SHOW DETAIL

��

Command parameters

SHOW DETAIL
Specifies that the output should include the following information:
v Distribution map ID
v Database partition number
v In-use flag

Examples

Following is sample output from the LIST DATABASE PARTITION GROUPS
command:

Chapter 30. DB2 commands 583

DATABASE PARTITION GROUP NAME

IBMCATGROUP
IBMDEFAULTGROUP

2 record(s) selected.

Following is sample output from the LIST DATABASE PARTITION GROUPS
SHOW DETAIL command:
DATABASE PARTITION GROUP NAME PMAP_ID DATABASE PARTITION NUMBER IN_USE
------------------------------ ------- ------------------------- ------
IBMCATGROUP 0 0 Y
IBMDEFAULTGROUP 1 0 Y

2 record(s) selected.

The fields are identified as follows:

DATABASE PARTITION GROUP NAME
The name of the database partition group. The name is repeated for each
database partition in the database partition group.

PMAP_ID
The ID of the distribution map. The ID is repeated for each database
partition in the database partition group.

DATABASE PARTITION NUMBER
The number of the database partition.

IN_USE
One of four values:

Y The database partition is being used by the database partition
group.

D The database partition is going to be dropped from the database
partition group as a result of a REDISTRIBUTE DATABASE
PARTITION GROUP operation. When the operation completes, the
database partition will not be included in reports from LIST
DATABASE PARTITION GROUPS.

A The database partition has been added to the database partition
group but is not yet added to the distribution map. The containers
for the table spaces in the database partition group have been
added on this database partition. The value is changed to Y when
the REDISTRIBUTE DATABASE PARTITION GROUP operation
completes successfully.

T The database partition has been added to the database partition
group, but is not yet added to the distribution map. The containers
for the table spaces in the database partition group have not been
added on this database partition. Table space containers must be
added on the new database partition for each table space in the
database partition group. The value is changed to A when
containers have successfully been added.

Compatibilities

For compatibility with versions earlier than Version 8:
v The keyword NODEGROUPS can be substituted for DATABASE PARTITION

GROUPS.

584 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

LIST PACKAGES/TABLES

Lists packages or tables associated with the current database.

Authorization

For the system catalog SYSCAT.PACKAGES (LIST PACKAGES) and SYSCAT.TABLES
(LIST TABLES), one of the following is required:
v sysadm

v sysctrl

v sysmaint

v sysmon

v dbadm

v CONTROL privilege
v SELECT privilege.

Required connection

Database. If implicit connect is enabled, a connection to the default database is
established.

Command syntax

�� LIST PACKAGES
TABLES USER

FOR ALL
SCHEMA schema-name
SYSTEM

SHOW DETAIL
��

Command parameters

FOR If the FOR clause is not specified, the packages or tables for USER are
listed.

ALL Lists all packages or tables in the database.

SCHEMA schema-name
Lists all packages or tables in the database for the specified schema
only.

SYSTEM
Lists all system packages or tables in the database.

USER Lists all user packages or tables in the database for the current
user.

SHOW DETAIL
If this option is chosen with the LIST TABLES command, the full table
name and schema name are displayed. If this option is not specified, the
table name is truncated to 30 characters, and the ″>″ symbol in the 31st
column represents the truncated portion of the table name; the schema
name is truncated to 14 characters and the ″>″ symbol in the 15th column
represents the truncated portion of the schema name. If this option is
chosen with the LIST PACKAGES command, the full package schema
(creator), version and bound by authid are displayed, and the package
unique_id (consistency token shown in hexadecimal form). If this option is

Chapter 30. DB2 commands 585

not specified, the schema name and bound by ID are truncated to 8
characters and the ″>″ symbol in the 9th column represents the truncated
portion of the schema or bound by ID; the version is truncated to 10
characters and the ″>″ symbol in the 11th column represents the truncated
portion of the version.

Examples

The following is sample output from LIST PACKAGES:
Bound Total Isolation

Package Schema Version by sections Valid Format level Blocking
---------- --------- ---------- --------- ------------ ------ ------- --------- --------
F4INS USERA VER1 SNOWBELL 221 Y 0 CS U
F4INS USERA VER2.0 SNOWBELL 201 Y 0 RS U
F4INS USERA VER2.3 SNOWBELL 201 N 3 CS U
F4INS USERA VER2.5 SNOWBELL 201 Y 0 CS U
PKG12 USERA USERA 12 Y 3 RR B
PKG15 USERA USERA 42 Y 3 RR B
SALARY USERT YEAR2000 USERT 15 Y 3 CS N

The following is sample output from LIST TABLES:
Table/View Schema Type Creation time
------------------ ---------------- ---------- ----------------------------
DEPARTMENT SMITH T 1997-02-19-13.32.25.971890
EMP_ACT SMITH T 1997-02-19-13.32.27.851115
EMP_PHOTO SMITH T 1997-02-19-13.32.29.953624
EMP_RESUME SMITH T 1997-02-19-13.32.37.837433
EMPLOYEE SMITH T 1997-02-19-13.32.26.348245
ORG SMITH T 1997-02-19-13.32.24.478021
PROJECT SMITH T 1997-02-19-13.32.29.300304
SALES SMITH T 1997-02-19-13.32.42.973739
STAFF SMITH T 1997-02-19-13.32.25.156337

9 record(s) selected.

Usage notes

LIST PACKAGES and LIST TABLES commands are available to provide a quick
interface to the system tables.

The following SELECT statements return information found in the system tables.
They can be expanded to select the additional information that the system tables
provide.

select tabname, tabschema, type, create_time
from syscat.tables
order by tabschema, tabname;

select pkgname, pkgschema, pkgversion, unique_id, boundby, total_sect,
valid, format, isolation, blocking

from syscat.packages
order by pkgschema, pkgname, pkgversion;

select tabname, tabschema, type, create_time
from syscat.tables
where tabschema = 'SYSCAT'
order by tabschema, tabname;

select pkgname, pkgschema, pkgversion, unique_id, boundby, total_sect,
valid, format, isolation, blocking

from syscat.packages
where pkgschema = 'NULLID'

586 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

order by pkgschema, pkgname, pkgversion;

select tabname, tabschema, type, create_time
from syscat.tables
where tabschema = USER
order by tabschema, tabname;

select pkgname, pkgschema, pkgversion, unique_id, boundby, total_sect,
valid, format, isolation, blocking

from syscat.packages
where pkgschema = USER
order by pkgschema, pkgname, pkgversion;

LIST TABLESPACE CONTAINERS

Lists containers for the specified table space.

Important: This command or API has been deprecated and might be removed in a
future release. You can use the MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions instead which return more information.
For more information, see the “LIST TABLESPACES and LIST TABLESPACE
CONTAINERS commands have been deprecated” topic in the What’s New for DB2
Version 9.7 book.

The table space snapshot contains all of the information displayed by the LIST
TABLESPACE CONTAINERS command.

Scope

This command returns information only for the node on which it is executed.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

v sysmon

v dbadm

Required connection

Database

Command syntax

�� LIST TABLESPACE CONTAINERS FOR tablespace-id
SHOW DETAIL

��

Command parameters

FOR tablespace-id
An integer that uniquely represents a table space used by the current
database. To get a list of all the table spaces used by the current database,
use the LIST TABLESPACES command.

Chapter 30. DB2 commands 587

|
|
|
|
|
|

SHOW DETAIL
If this option is not specified, only the following basic information about
each container is provided:
v Container ID
v Name
v Type (file, disk, or path).

If this option is specified, the following additional information about each
container is provided:
v Total number of pages
v Number of usable pages
v Accessible (yes or no).

Examples

The following is sample output from LIST TABLESPACE CONTAINERS FOR 0:
Tablespace Containers for Tablespace 0

Container ID = 0
Name = /home/smith/smith/NODE0000/SQL00001/SQLT0000.0
Type = Path

The following is sample output from LIST TABLESPACE CONTAINERS FOR 0 SHOW
DETAIL specified:

Tablespace Containers for Tablespace 0

Container ID = 0
Name = /home/smith/smith/NODE0000/SQL00001/SQLT0000.0
Type = Path
Total pages = 895
Useable pages = 895
Accessible = Yes

LIST TABLESPACES
Lists table spaces and information about table spaces for the current database.

Important: This command or API has been deprecated and might be removed in a
future release. You can use the MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions instead which return more information.
For more information, see the “LIST TABLESPACES and LIST TABLESPACE
CONTAINERS commands have been deprecated” topic in the What’s New for DB2
Version 9.7 book.

Information displayed by this command is also available in the table space
snapshot.

Scope

This command returns information only for the database partition on which it is
executed.

Authorization

One of the following:
v SYSADM

588 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

|
|
|
|
|
|

v SYSCTRL
v SYSMAINT
v SYSMON
v DBADM
v LOAD authority

Required connection

Database

Command syntax

�� LIST TABLESPACES
SHOW DETAIL

��

Command parameters

SHOW DETAIL
If this option is not specified, only the following basic information about
each table space is provided:
v Table space ID
v Name
v Type (system managed space or database managed space)
v Contents (any data, long or index data, or temporary data)
v State, a hexadecimal value indicating the current table space state. The

externally visible state of a table space is composed of the hexadecimal
sum of certain state values. For example, if the state is ″quiesced:
EXCLUSIVE″ and ″Load pending″, the value is 0x0004 + 0x0008, which
is 0x000c. The db2tbst (Get Tablespace State) command can be used to
obtain the table space state associated with a given hexadecimal value.
Following are the bit definitions listed in sqlutil.h:

0x0 Normal
0x1 Quiesced: SHARE
0x2 Quiesced: UPDATE
0x4 Quiesced: EXCLUSIVE
0x8 Load pending
0x10 Delete pending
0x20 Backup pending
0x40 Roll forward in progress
0x80 Roll forward pending
0x100 Restore pending
0x100 Recovery pending (not used)
0x200 Disable pending
0x400 Reorg in progress
0x800 Backup in progress
0x1000 Storage must be defined
0x2000 Restore in progress
0x4000 Offline and not accessible
0x8000 Drop pending
0x20000 Load in progress
0x2000000 Storage may be defined
0x4000000 StorDef is in 'final' state
0x8000000 StorDef was change prior to roll forward
0x10000000 DMS rebalance in progress
0x20000000 Table space deletion in progress
0x40000000 Table space creation in progress

Chapter 30. DB2 commands 589

If this option is specified, the following additional information about each
table space is provided:
v Total number of pages
v Number of usable pages
v Number of used pages
v Number of free pages
v High water mark (in pages)
v Page size (in bytes)
v Extent size (in pages)
v Prefetch size (in pages)
v Number of containers
v Minimum recovery time (displayed only if not zero)
v State change table space ID (displayed only if the table space state is

″load pending″ or ″delete pending″)
v State change object ID (displayed only if the table space state is ″load

pending″ or ″delete pending″)
v Number of quiescers (displayed only if the table space state is ″quiesced:

SHARE″, ″quiesced: UPDATE″, or ″quiesced: EXCLUSIVE″)
v Table space ID and object ID for each quiescer (displayed only if the

number of quiescers is greater than zero).

Examples

The following are two sample outputs from LIST TABLESPACES SHOW DETAIL.

Tablespaces for Current Database
Tablespace ID = 0
Name = SYSCATSPACE
Type = Database managed space
Contents = Any data
State = 0x0000

Detailed explanation:
Normal

Total pages = 895
Useable pages = 895
Used pages = 895
Free pages = Not applicable
High water mark (pages) = Not applicable
Page size (bytes) = 4096
Extent size (pages) = 32
Prefetch size (pages) = 32
Number of containers = 1

Tablespace ID = 1
Name = TEMPSPACE1
Type = System managed space
Contents = Temporary data
State = 0x0000

Detailed explanation:
Normal

Total pages = 1
Useable pages = 1
Used pages = 1
Free pages = Not applicable
High water mark (pages) = Not applicable
Page size (bytes) = 4096
Extent size (pages) = 32
Prefetch size (pages) = 32

590 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Number of containers = 1

Tablespace ID = 2
Name = USERSPACE1
Type = Database managed space
Contents = Any data
State = 0x000c

Detailed explanation:
Quiesced: EXCLUSIVE
Load pending

Total pages = 337
Useable pages = 337
Used pages = 337
Free pages = Not applicable
High water mark (pages) = Not applicable
Page size (bytes) = 4096
Extent size (pages) = 32
Prefetch size (pages) = 32
Number of containers = 1
State change tablespace ID = 2
State change object ID = 3
Number of quiescers = 1

Quiescer 1:
Tablespace ID = 2
Object ID = 3

DB21011I In a partitioned database server environment, only the table spaces
on the current node are listed.

Tablespaces for Current Database
Tablespace ID = 0
Name = SYSCATSPACE
Type = System managed space
Contents = Any data
State = 0x0000

Detailed explanation:
Normal

Total pages = 1200
Useable pages = 1200
Used pages = 1200
Free pages = Not applicable
High water mark (pages) = Not applicable
Page size (bytes) = 4096
Extent size (pages) = 32
Prefetch size (pages) = 32
Number of containers = 1

Tablespace ID = 1
Name = TEMPSPACE1
Type = System managed space
Contents = Temporary data
State = 0x0000

Detailed explanation:
Normal

Total pages = 1
Useable pages = 1
Used pages = 1
Free pages = Not applicable
High water mark (pages) = Not applicable
Page size (bytes) = 4096
Extent size (pages) = 32
Prefetch size (pages) = 32
Number of containers = 1

Tablespace ID = 2
Name = USERSPACE1
Type = System managed space
Contents = Any data

Chapter 30. DB2 commands 591

State = 0x0000
Detailed explanation:

Normal
Total pages = 1
Useable pages = 1
Used pages = 1
Free pages = Not applicable
High water mark (pages) = Not applicable
Page size (bytes) = 4096
Extent size (pages) = 32
Prefetch size (pages) = 32
Number of containers = 1

Tablespace ID = 3
Name = DMS8K
Type = Database managed space
Contents = Any data
State = 0x0000

Detailed explanation:
Normal

Total pages = 2000
Useable pages = 1952
Used pages = 96
Free pages = 1856
High water mark (pages) = 96
Page size (bytes) = 8192
Extent size (pages) = 32
Prefetch size (pages) = 32
Number of containers = 2

Tablespace ID = 4
Name = TEMP8K
Type = System managed space
Contents = Temporary data
State = 0x0000

Detailed explanation:
Normal

Total pages = 1
Useable pages = 1
Used pages = 1
Free pages = Not applicable
High water mark (pages) = Not applicable
Page size (bytes) = 8192
Extent size (pages) = 32
Prefetch size (pages) = 32
Number of containers = 1
DB21011I In a partitioned database server environment, only the table spaces
on the current node are listed.

Usage notes

In a partitioned database environment, this command does not return all the table
spaces in the database. To obtain a list of all the table spaces, query
SYSCAT.TABLESPACES.

During a table space rebalance, the number of usable pages includes pages for the
newly added container, but these new pages are not reflected in the number of free
pages until the rebalance is complete. When a table space rebalance is not in
progress, the number of used pages plus the number of free pages equals the
number of usable pages.

There are currently at least 25 table or table space states supported by the IBM DB2
database product. These states are used to control access to data under certain
circumstances, or to elicit specific user actions, when required, to protect the

592 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

integrity of the database. Most of them result from events related to the operation
of one of the DB2 database utilities, such as the load utility, or the backup and
restore utilities.

The following table describes each of the supported table space states. The table
also provides you with working examples that show you exactly how to interpret
and respond to states that you might encounter while administering your database.
The examples are taken from command scripts that were run on AIX; you can
copy, paste and run them yourself. If you are running the DB2 database product on
a system that is not UNIX, ensure that any path names are in the correct format for
your system. Most of the examples are based on tables in the SAMPLE database
that comes with the DB2 database product. A few examples require scenarios that
are not part of the SAMPLE database, but you can use a connection to the
SAMPLE database as a starting point.

Table 149. Supported table space states

State
Hexadecimal

state value Description Examples

Backup
Pending

0x20 A table space is in this
state after a point-in-time
table space rollforward
operation, or after a load
operation (against a
recoverable database) that
specifies the COPY NO
option. The table space (or,
alternatively, the entire
database) must be backed
up before the table space
can be used. If the table
space is not backed up,
tables within that table
space can be queried, but
not updated.
Note: A database must
also be backed up
immediately after it is
enabled for rollforward
recovery. A database is
recoverable if the logretain
database configuration
parameter is set to
RECOVERY, or the
userexit database
configuration parameter is
set to YES. You cannot
activate or connect to such
a database until it has been
backed up, at which time
the value of the
backup_pending
informational database
configuration parameter is
set to NO.

1. Given load input file staff_data.del with content:

11,″Melnyk″,20,″Sales″,10,70000,15000:

update db cfg for sample using logretain recovery;
backup db sample;
connect to sample;
load from staff_data.del of del messages load.msg
insert into staff copy no;

update staff set salary = 69000 where id = 11;

2.

update db cfg for sample using logretain recovery;
connect to sample;

Chapter 30. DB2 commands 593

Table 149. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

Backup in
Progress

0x800 This is a transient state
that is only in effect during
a backup operation.

Issue an online BACKUP DATABASE command:

backup db sample online;

While the backup operation is running, execute the
following script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;
connect reset;

Information returned for USERSPACE1 shows that this
table space is in Backup in Progress state.

DMS
Rebalance
in Progress

0x10000000 This is a transient state
that is only in effect during
a data rebalancing
operation. When new
containers are added to a
table space that is defined
as database managed space
(DMS), or existing
containers are extended, a
rebalancing of the table
space data might occur.
Rebalancing is the process
of moving table space
extents from one location
to another in an attempt to
keep the data striped. An
extent is a unit of container
space (measured in pages),
and a stripe is a layer of
extents across the set of
containers for a table space.

Given load input file staffdata.del with a substantial
amount of data (for example, 20000 or more records):

connect to sample;
create tablespace ts1 managed by database using
(file '/home/melnyk/melnyk/NODE0000/SQL00001

/ts1c1' 1024);
create table newstaff like staff in ts1;
load from staffdata.del of del insert into newstaff
nonrecoverable;

alter tablespace ts1 add (file '/home/melnyk/melnyk
/NODE0000/SQL00001/ts1c2' 1024);
list tablespaces;
connect reset;

Information returned for TS1 shows that this table space is
in DMS Rebalance in Progress state.

594 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 149. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

Disable
Pending

0x200 A table space may be in
this state during a
database rollforward
operation and should no
longer be in this state by
the end of the rollforward
operation. The state is
triggered by conditions
that result from a table
space going offline and
compensation log records
for a transaction not being
written. The appearance
and subsequent
disappearance of this table
space state is transparent
to users.

An example illustrating this table space state is beyond the
scope of this document.

Drop
Pending

0x8000 A table space is in this
state if one or more of its
containers is found to have
a problem during a
database restart operation.
(A database must be
restarted if the previous
session with this database
terminated abnormally,
such as during a power
failure, for example.) If a
table space is in Drop
Pending state, it will not
be available, and can only
be dropped.

An example illustrating this table space state is beyond the
scope of this document.

Load in
Progress

0x20000 This is a transient state
that is only in effect during
a load operation (against a
recoverable database) that
specifies the COPY NO
option. See also Load in
Progress table state.

Given load input file staffdata.del with a substantial
amount of data (for example, 20000 or more records):

update db cfg for sample using logretain recovery;
backup db sample;
connect to sample;
create table newstaff like staff;
load from staffdata.del of del insert into newstaff
copy no;

connect reset;

While the load operation is running, execute the following
script from another session:

connect to sample;
list tablespaces;
connect reset;

Information returned for USERSPACE1 shows that this
table space is in Load in Progress (and Backup Pending)
state.

Chapter 30. DB2 commands 595

Table 149. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

Normal 0x0 A table space is in Normal
state if it is not in any of
the other (abnormal) table
space states. Normal state
is the initial state of a table
space after it is created.

connect to sample;
create tablespace ts1 managed by database using
(file '/home/melnyk/melnyk/NODE0000/SQL00001

/tsc1' 1024);
list tablespaces show detail;

Offline and
Not
Accessible

0x4000 A table space is in this
state if there is a problem
with one or more of its
containers. A container
might be inadvertently
renamed, moved, or
damaged. After the
problem has been rectified,
and the containers that are
associated with the table
space are accessible again,
this abnormal state can be
removed by disconnecting
all applications from the
database and then
reconnecting to the
database. Alternatively,
you can issue an ALTER
TABLESPACE statement,
specifying the SWITCH
ONLINE clause, to remove
the Offline and Not
Accessible state from the
table space without
disconnecting other
applications from the
database.

connect to sample;
create tablespace ts1 managed by database using
(file '/home/melnyk/melnyk/NODE0000/SQL00001

/tsc1' 1024);
alter tablespace ts1 add (file '/home/melnyk/melnyk
/NODE0000/SQL00001/tsc2' 1024);
export to st_data.del of del select * from staff;
create table stafftemp like staff in ts1;
import from st_data.del of del insert into stafftemp;
connect reset;

Rename table space container tsc1 to tsc3 and then try to
query the STAFFTEMP table:

connect to sample;
select * from stafftemp;

The query returns SQL0290N (table space access is not
allowed), and the LIST TABLESPACES command returns a
state value of 0x4000 (Offline and Not Accessible) for TS1.
Rename table space container tsc3 back to tsc1. This time
the query runs successfully.

Quiesced
Exclusive

0x4 A table space is in this
state when the application
that invokes the table
space quiesce function has
exclusive (read or write)
access to the table space.
You can put a table space
in Quiesced Exclusive state
explicitly by issuing the
QUIESCE TABLESPACES
FOR TABLE command.

Ensure that the table space state is Normal before setting it
to Quiesced Exclusive.

connect to sample;
quiesce tablespaces for table staff reset;
quiesce tablespaces for table staff exclusive;
connect reset;

Execute the following script from another session:

connect to sample;
select * from staff where id=60;
update staff set salary=50000 where id=60;
list tablespaces;
connect reset;

Information returned for USERSPACE1 shows that this
table space is in Quiesced Exclusive state.

596 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 149. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

Quiesced
Share

0x1 A table space is in this
state when both the
application that invokes
the table space quiesce
function and concurrent
applications have read (but
not write) access to the
table space. You can put a
table space in Quiesced
Share state explicitly by
issuing the QUIESCE
TABLESPACES FOR
TABLE command.

Ensure that the table space state is Normal before setting it
to Quiesced Share.

connect to sample;
quiesce tablespaces for table staff reset;
quiesce tablespaces for table staff share;
connect reset;

Execute the following script from another session:

connect to sample;
select * from staff where id=40;
update staff set salary=50000 where id=40;
list tablespaces;
connect reset;

Information returned for USERSPACE1 shows that this
table space is in Quiesced Share state.

Quiesced
Update

0x2 A table space is in this
state when the application
that invokes the table
space quiesce function has
exclusive write access to
the table space. You can
put a table space in
Quiesced Update state
explicitly by issuing the
QUIESCE TABLESPACES
FOR TABLE command.

Ensure that the table space state is Normal before setting it
to Quiesced Update.

connect to sample;
quiesce tablespaces for table staff reset;
quiesce tablespaces for table staff intent to update;
connect reset;

Execute the following script from another session:

connect to sample;
select * from staff where id=50;
update staff set salary=50000 where id=50;
list tablespaces;
connect reset;

Information returned for USERSPACE1 shows that this
table space is in Quiesced Update state.

Chapter 30. DB2 commands 597

Table 149. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

Reorg in
Progress

0x400 This is a transient state
that is only in effect during
a reorg operation.

Issue a REORG TABLE command:

connect to sample;
reorg table staff;
connect reset;

While the reorg operation is running, execute the following
script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;
connect reset;

Information returned for USERSPACE1 shows that this
table space is in Reorg in Progress state.
Note: Table reorganization operations involving the
SAMPLE database are likely to complete in a short period
of time and, as a result, it may be difficult to observe the
Reorg in Progress state using this approach.

Restore
Pending

0x100 Table spaces for a database
are in this state after the
first part of a redirected
restore operation (that is,
before the SET
TABLESPACE
CONTAINERS command
is issued). The table space
(or the entire database)
must be restored before the
table space can be used.
You cannot connect to the
database until the restore
operation has been
successfully completed, at
which time the value of
the restore_pending
informational database
configuration parameter is
set to NO.

When the first part of the redirected restore operation in
Storage May be Defined completes, all of the table spaces
are in Restore Pending state.

598 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 149. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

Restore in
Progress

0x2000 This is a transient state
that is only in effect during
a restore operation.

update db cfg for sample using logretain recovery;
backup db sample;
backup db sample tablespace (userspace1);

The timestamp for this backup image is:

20040611174124

restore db sample tablespace (userspace1) online
taken at 20040611174124;

While the restore operation is running, execute the
following script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;
connect reset;

Information returned for USERSPACE1 shows that this
table space is in Restore in Progress state.

Roll
Forward
Pending

0x80 A table space is in this
state after a restore
operation against a
recoverable database. The
table space (or the entire
database) must be rolled
forward before the table
space can be used. A
database is recoverable if
the logretain database
configuration parameter is
set to RECOVERY, or the
userexit database
configuration parameter is
set to YES. You cannot
activate or connect to the
database until a
rollforward operation has
been successfully
completed, at which time
the value of the
rollfwd_pending
informational database
configuration parameter is
set to NO.

When the online table space restore operation in Restore in
Progress completes, the table space USERSPACE1 is in Roll
Forward Pending state.

Chapter 30. DB2 commands 599

Table 149. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

Roll
Forward in
Progress

0x40 This is a transient state
that is only in effect during
a rollforward operation.

Given load input file staffdata.del with a substantial
amount of data (for example, 20000 or more records):

update db cfg for sample using logretain recovery;
backup db sample;
connect to sample;
create tablespace ts1 managed by database using
(file '/home/melnyk/melnyk/NODE0000/SQL00001

/ts1c1' 1024);
create table newstaff like staff in ts1;
connect reset;
backup db sample tablespace (ts1) online;

The timestamp for this backup image is:

20040630000715

connect to sample;
load from staffdata.del of del insert into newstaff
copy yes to /home/melnyk/backups;

connect reset;
restore db sample tablespace (ts1) online taken at
20040630000715;

rollforward db sample to end of logs and stop
tablespace (ts1) online;

While the rollforward operation is running, execute the
following script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;
connect reset;

Information returned for TS1 shows that this table space is
in Roll Forward in Progress state.

Storage
May be
Defined

0x2000000 Table spaces for a database
are in this state after the
first part of a redirected
restore operation (that is,
before the SET
TABLESPACE
CONTAINERS command
is issued). This allows you
to redefine the containers,
if you wish.

backup db sample;

Assuming that the timestamp for this backup image is
20040613204955:

restore db sample taken at 20040613204955 redirect;
list tablespaces;

Information returned by the LIST TABLESPACES
command shows that all of the table spaces are in Storage
May be Defined and Restore Pending state.

600 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 149. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

Storage
Must be
Defined

0x1000 Table spaces for a database
are in this state during a
redirected restore operation
to a new database if the set
table space containers
phase is omitted or if,
during the set table space
containers phase, the
specified containers cannot
be acquired. The latter can
occur if, for example, an
invalid path name has
been specified, or there is
insufficient disk space.

backup db sample;

Assuming that the timestamp for this backup image is
20040613204955:

restore db sample taken at 20040613204955 into
mydb redirect;

set tablespace containers for 2 using
(path 'ts2c1');

list tablespaces;

Information returned by the LIST TABLESPACES
command shows that table space SYSCATSPACE and table
space TEMPSPACE1 are in Storage Must be Defined,
Storage May be Defined, and Restore Pending state.
Storage Must be Defined state takes precedence over
Storage May be Defined state.

Table Space
Creation in
Progress

0x40000000 This is a transient state
that is only in effect during
a create table space
operation.

connect to sample;
create tablespace ts1 managed by database using
(file '/home/melnyk/melnyk/NODE0000/SQL00001

/tsc1' 1024);
create tablespace ts2 managed by database using
(file '/home/melnyk/melnyk/NODE0000/SQL00001

/tsc2' 1024);
create tablespace ts3 managed by database using
(file '/home/melnyk/melnyk/NODE0000/SQL00001

/tsc3' 1024);

While the create table space operations are running,
execute the following script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;
connect reset;

Information returned for TS1, TS2, and TS3 shows that
these table spaces are in Table Space Creation in Progress
state.

Chapter 30. DB2 commands 601

Table 149. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

Table Space
Deletion in
Progress

0x20000000 This is a transient state
that is only in effect during
a delete table space
operation.

connect to sample;
create tablespace ts1 managed by database using
(file '/home/melnyk/melnyk/NODE0000/SQL00001

/tsc1' 1024);
create tablespace ts2 managed by database using
(file '/home/melnyk/melnyk/NODE0000/SQL00001

/tsc2' 1024);
create tablespace ts3 managed by database using
(file '/home/melnyk/melnyk/NODE0000/SQL00001

/tsc3' 1024);
drop tablespace ts1;
drop tablespace ts2;
drop tablespace ts3;

While the drop table space operations are running, execute
the following script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;
connect reset;

Information returned for TS1, TS2, and TS3 shows that
these table spaces are in Table Space Deletion in Progress
state.

LOAD

Loads data into a DB2 table. Data residing on the server can be in the form of a
file, tape, or named pipe. If the COMPRESS attribute for the table is set to YES, the
data loaded will be subject to compression on every data and database partition
for which a dictionary already exists in the table, including data in the XML
storage object of the table.

Quick link to “File type modifiers for the load utility” on page 622.

Restrictions

The load utility does not support loading data at the hierarchy level. The load
utility is not compatible with range-clustered tables.

Scope

This command can be issued against multiple database partitions in a single
request.

602 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Authorization

One of the following:
v DATAACCESS
v LOAD authority on the database and

– INSERT privilege on the table when the load utility is invoked in INSERT
mode, TERMINATE mode (to terminate a previous load insert operation), or
RESTART mode (to restart a previous load insert operation)

– INSERT and DELETE privilege on the table when the load utility is invoked
in REPLACE mode, TERMINATE mode (to terminate a previous load replace
operation), or RESTART mode (to restart a previous load replace operation)

– INSERT privilege on the exception table, if such a table is used as part of the
load operation.

v To load data into a table that has protected columns, the session authorization
ID must have LBAC credentials that allow write access to all protected columns
in the table. Otherwise the load fails and an error (SQLSTATE 5U014) is
returned.

v To load data into a table that has protected rows, the session authorization id
must hold a security label that meets these criteria:
– It is part of the security policy protecting the table
– It was granted to the session authorization ID for write access or for all access

If the session authorization id does not hold such a security label then the load
fails and an error (SQLSTATE 5U014) is returned. This security label is used to
protect a loaded row if the session authorization ID’s LBAC credentials do not
allow it to write to the security label that protects that row in the data. This does
not happen, however, when the security policy protecting the table was created
with the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option of
the CREATE SECURITY POLICY statement. In this case the load fails and an
error (SQLSTATE 42519) is returned.

v If the REPLACE option is specified, the session authorization ID must have the
authority to drop the table.

v If the LOCK WITH FORCE option is specified, SYSADM authority is required.

Since all load processes (and all DB2 server processes, in general) are owned by the
instance owner, and all of these processes use the identification of the instance
owner to access needed files, the instance owner must have read access to input
data files. These input data files must be readable by the instance owner, regardless
of who invokes the command.

Required connection

Instance. An explicit attachment is not required. If a connection to the database has
been established, an implicit attachment to the local instance is attempted.

Command syntax

�� LOAD FROM �

,

filename
pipename
device

OF filetype

�

,

LOBS FROM lob-path �

,

XML FROM xml-path

�

Chapter 30. DB2 commands 603

�

�MODIFIED BY file-type-mod

�

�

�

�

�

�

,

METHOD L (column-start column-end)
,

NULL INDICATORS (null-indicator-list)
,

N (column-name)
,

P (column-position)

�

�
XMLPARSE STRIP WHITESPACE

PRESERVE

�

�
XMLVALIDATE USING XDS Ignore and Map parameters

DEFAULT schema-sqlid
SCHEMA schema-sqlid
SCHEMALOCATION HINTS

SAVECOUNT n
�

�
ROWCOUNT n WARNINGCOUNT n TEMPFILES PATH temp-pathname

INSERT
KEEPDICTIONARY

REPLACE
RESETDICTIONARY

RESTART
TERMINATE

�

�

�

INTO table-name
,

(insert-column) �

,
(1) (2)

FOR EXCEPTION table-name
NORANGEEXC
NOUNIQUEEXC

�

�
STATISTICS USE PROFILE

NO

�

NO
COPY YES USE TSM

OPEN num-sess SESSIONS
,

TO device/directory
LOAD lib-name

OPEN num-sess SESSIONS
NONRECOVERABLE

�

�
DATA BUFFER buffer-size SORT BUFFER buffer-size CPU_PARALLELISM n DISK_PARALLELISM n

�

�
YES

FETCH_PARALLELISM NO
INDEXING MODE AUTOSELECT

REBUILD
INCREMENTAL
DEFERRED

�

�
ALLOW NO ACCESS

ALLOW READ ACCESS
USE tablespace-name

SET INTEGRITY PENDING CASCADE IMMEDIATE
DEFERRED

�

604 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

�
LOCK WITH FORCE SOURCEUSEREXIT executable Redirect Input/Output parameters

PARALLELIZE

�

�

�
PARTITIONED DB CONFIG

partitioned-db-option

��

Ignore and Map parameters:

�

,

IGNORE (schema-sqlid)

�

�

�

,

MAP ((schema-sqlid , schema-sqlid))

Redirect Input/Output parameters:

REDIRECT INPUT FROM BUFFER input-buffer
FILE input-file OUTPUT TO FILE output-file

OUTPUT TO FILE output-file

Notes:

1 These keywords can appear in any order.

2 Each of these keywords can only appear once.

Command parameters

FROM filename | pipename | device

Note:

1. If data is exported into a file using the EXPORT command using the
ADMIN_CMD procedure, the data file is owned by the fenced user ID.
This file is not usually accessible by the instance owner. To run the
LOAD from CLP or the ADMIN_CMD procedure, the data file must be
accessible by the instance owner ID, so read access to the data file must
be granted to the instance owner.

2. Loading data from multiple IXF files is supported if the files are
physically separate, but logically one file. It is not supported if the files
are both logically and physically separate. (Multiple physical files
would be considered logically one if they were all created with one
invocation of the EXPORT command.)

3. When loading XML data from files into tables in a partitioned database
environment, the XML data files must be read-accessible to all the
database partitions where loading is taking place.

OF filetype
Specifies the format of the data:
v ASC (non-delimited ASCII format)
v DEL (delimited ASCII format)

Chapter 30. DB2 commands 605

v IXF (Integration Exchange Format, PC version) is a binary format that is
used exclusively by DB2 databases.

v CURSOR (a cursor declared against a SELECT or VALUES statement).

Note: When using a CURSOR file type to load XML data into a table in a
distributed database environment, the PARTITION_ONLY and
LOAD_ONLY modes are not supported.

LOBS FROM lob-path
The path to the data files containing LOB values to be loaded. The path
must end with a slash. The names of the LOB data files are stored in the
main data file (ASC, DEL, or IXF), in the column that will be loaded into
the LOB column. The maximum number of paths that can be specified is
999. This will implicitly activate the LOBSINFILE behavior.

This option is ignored when specified in conjunction with the CURSOR file
type.

MODIFIED BY file-type-mod
Specifies file type modifier options. See “File type modifiers for the load
utility” on page 622.

METHOD

L Specifies the start and end column numbers from which to load
data. A column number is a byte offset from the beginning of a
row of data. It is numbered starting from 1. This method can only
be used with ASC files, and is the only valid method for that file
type.

NULL INDICATORS null-indicator-list
This option can only be used when the METHOD L
parameter is specified; that is, the input file is an ASC file).
The null indicator list is a comma-separated list of positive
integers specifying the column number of each null
indicator field. The column number is the byte offset of the
null indicator field from the beginning of a row of data.
There must be one entry in the null indicator list for each
data field defined in the METHOD L parameter. A column
number of zero indicates that the corresponding data field
always contains data.

A value of Y in the NULL indicator column specifies that
the column data is NULL. Any character other than Y in
the NULL indicator column specifies that the column data
is not NULL, and that column data specified by the
METHOD L option will be loaded.

The NULL indicator character can be changed using the
MODIFIED BY option.

N Specifies the names of the columns in the data file to be loaded.
The case of these column names must match the case of the
corresponding names in the system catalogs. Each table column
that is not nullable should have a corresponding entry in the
METHOD N list. For example, given data fields F1, F2, F3, F4, F5,
and F6, and table columns C1 INT, C2 INT NOT NULL, C3 INT
NOT NULL, and C4 INT, method N (F2, F1, F4, F3) is a valid
request, while method N (F2, F1) is not valid. This method can
only be used with file types IXF or CURSOR.

606 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

P Specifies the field numbers (numbered from 1) of the input data
fields to be loaded. Each table column that is not nullable should
have a corresponding entry in the METHOD P list. For example,
given data fields F1, F2, F3, F4, F5, and F6, and table columns C1
INT, C2 INT NOT NULL, C3 INT NOT NULL, and C4 INT, method
P (2, 1, 4, 3) is a valid request, while method P (2, 1) is not
valid. This method can only be used with file types IXF, DEL, or
CURSOR, and is the only valid method for the DEL file type.

XML FROM xml-path
Specifies one or more paths that contain the XML files. XDSs are contained
in the main data file (ASC, DEL, or IXF), in the column that will be loaded
into the XML column.

XMLPARSE
Specifies how XML documents are parsed. If this option is not specified,
the parsing behavior for XML documents will be determined by the value
of the CURRENT XMLPARSE OPTION special register.

STRIP WHITESPACE
Specifies to remove whitespace when the XML document is parsed.

PRESERVE WHITESPACE
Specifies not to remove whitespace when the XML document is
parsed.

XMLVALIDATE
Specifies that XML documents are validated against a schema, when
applicable.

USING XDS
XML documents are validated against the XML schema identified
by the XML Data Specifier (XDS) in the main data file. By default,
if the XMLVALIDATE option is invoked with the USING XDS
clause, the schema used to perform validation will be determined
by the SCH attribute of the XDS. If an SCH attribute is not present
in the XDS, no schema validation will occur unless a default
schema is specified by the DEFAULT clause.

The DEFAULT, IGNORE, and MAP clauses can be used to modify
the schema determination behavior. These three optional clauses
apply directly to the specifications of the XDS, and not to each
other. For example, if a schema is selected because it is specified by
the DEFAULT clause, it will not be ignored if also specified by the
IGNORE clause. Similarly, if a schema is selected because it is
specified as the first part of a pair in the MAP clause, it will not be
re-mapped if also specified in the second part of another MAP
clause pair.

USING SCHEMA schema-sqlid
XML documents are validated against the XML schema with the
specified SQL identifier. In this case, the SCH attribute of the XML
Data Specifier (XDS) will be ignored for all XML columns.

USING SCHEMALOCATION HINTS
XML documents are validated against the schemas identified by
XML schema location hints in the source XML documents. If a
schemaLocation attribute is not found in the XML document, no
validation will occur. When the USING SCHEMALOCATION

Chapter 30. DB2 commands 607

HINTS clause is specified, the SCH attribute of the XML Data
Specifier (XDS) will be ignored for all XML columns.

See examples of the XMLVALIDATE option below.

IGNORE schema-sqlid
This option can only be used when the USING XDS parameter is
specified. The IGNORE clause specifies a list of one or more schemas to
ignore if they are identified by an SCH attribute. If an SCH attribute exists
in the XML Data Specifier for a loaded XML document, and the schema
identified by the SCH attribute is included in the list of schemas to ignore,
then no schema validation will occur for the loaded XML document.

Note:

If a schema is specified in the IGNORE clause, it cannot also be present in
the left side of a schema pair in the MAP clause.

The IGNORE clause applies only to the XDS. A schema that is mapped by
the MAP clause will not be subsequently ignored if specified by the
IGNORE clause.

DEFAULT schema-sqlid
This option can only be used when the USING XDS parameter is
specified. The schema specified through the DEFAULT clause identifies a
schema to use for validation when the XML Data Specifier (XDS) of a
loaded XML document does not contain an SCH attribute identifying an
XML Schema.

The DEFAULT clause takes precedence over the IGNORE and MAP
clauses. If an XDS satisfies the DEFAULT clause, the IGNORE and MAP
specifications will be ignored.

MAP schema-sqlid
This option can only be used when the USING XDS parameter is
specified. Use the MAP clause to specify alternate schemas to use in place
of those specified by the SCH attribute of an XML Data Specifier (XDS) for
each loaded XML document. The MAP clause specifies a list of one or
more schema pairs, where each pair represents a mapping of one schema
to another. The first schema in the pair represents a schema that is referred
to by an SCH attribute in an XDS. The second schema in the pair
represents the schema that should be used to perform schema validation.

If a schema is present in the left side of a schema pair in the MAP clause,
it cannot also be specified in the IGNORE clause.

Once a schema pair mapping is applied, the result is final. The mapping
operation is non-transitive, and therefore the schema chosen will not be
subsequently applied to another schema pair mapping.

A schema cannot be mapped more than once, meaning that it cannot
appear on the left side of more than one pair.

SAVECOUNT n
Specifies that the load utility is to establish consistency points after every n
rows. This value is converted to a page count, and rounded up to intervals
of the extent size. Since a message is issued at each consistency point, this
option should be selected if the load operation will be monitored using

608 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

LOAD QUERY. If the value of n is not sufficiently high, the
synchronization of activities performed at each consistency point will
impact performance.

The default value is zero, meaning that no consistency points will be
established, unless necessary.

This option is ignored when specified in conjunction with the CURSOR file
type or when loading a table containing an XML column.

ROWCOUNT n
Specifies the number of n physical records in the file to be loaded. Allows
a user to load only the first n rows in a file.

WARNINGCOUNT n
Stops the load operation after n warnings. Set this parameter if no
warnings are expected, but verification that the correct file and table are
being used is desired. If the load file or the target table is specified
incorrectly, the load utility will generate a warning for each row that it
attempts to load, which will cause the load to fail. If n is zero, or this
option is not specified, the load operation will continue regardless of the
number of warnings issued. If the load operation is stopped because the
threshold of warnings was encountered, another load operation can be
started in RESTART mode. The load operation will automatically continue
from the last consistency point. Alternatively, another load operation can
be initiated in REPLACE mode, starting at the beginning of the input file.

TEMPFILES PATH temp-pathname
Specifies the name of the path to be used when creating temporary files
during a load operation, and should be fully qualified according to the
server database partition.

Temporary files take up file system space. Sometimes, this space
requirement is quite substantial. Following is an estimate of how much file
system space should be allocated for all temporary files:
v 136 bytes for each message that the load utility generates
v 15 KB overhead if the data file contains long field data or LOBs. This

quantity can grow significantly if the INSERT option is specified, and
there is a large amount of long field or LOB data already in the table.

INSERT
One of four modes under which the load utility can execute. Adds the
loaded data to the table without changing the existing table data.

REPLACE
One of four modes under which the load utility can execute. Deletes all
existing data from the table, and inserts the loaded data. The table
definition and index definitions are not changed. If this option is used
when moving data between hierarchies, only the data for an entire
hierarchy, not individual subtables, can be replaced.

KEEPDICTIONARY
An existing compression dictionary is preserved across the LOAD
REPLACE operation. Provided the table COMPRESS attribute is
YES, the newly replaced data is subject to being compressed using
the dictionary that existed prior to the invocation of the load. If no
dictionary previously existed in the table, a new dictionary is built
using the data that is being replaced into the table as long as the
table COMPRESS attribute is YES. The amount of data that is
required to build the compression dictionary in this case is subject

Chapter 30. DB2 commands 609

to the policies of ADC. This data is populated into the table as
uncompressed. Once the dictionary is inserted into the table, the
remaining data to be loaded is subject to being compressed with
this dictionary. This is the default parameter. For summary, see
Table 1 below.

Table 150. LOAD REPLACE KEEPDICTIONARY

Compress
Table row data
dictionary exists

XML storage
object dictionary
exists1 Compression dictionary Data compression

YES YES YES Preserve table row data
and XML dictionaries.

Data to be loaded is subject to
compression.

YES YES NO Preserve table row data
dictionary and build a
new XML dictionary.

Table row data to be loaded is
subject to compression. After
XML dictionary is built,
remaining XML data to be
loaded is subject to
compression.

YES NO YES Build table row data
dictionary and preserve
XML dictionary.

After table row data
dictionary is built, remaining
table row data to be loaded is
subject to compression. XML
data to be loaded is subject to
compression.

YES NO NO Build new table row data
and XML dictionaries.

After dictionaries are built,
remaining data to be loaded
is subject to compression.

NO YES YES Preserve table row data
and XML dictionaries.

Data to be loaded is not
compressed.

NO YES NO Preserve table row data
dictionary.

Data to be loaded is not
compressed.

NO NO YES No effect on table row
dictionary. Preserve XML
dictionary.

Data to be loaded is not
compressed.

NO NO NO No effect. Data to be loaded is not
compressed.

Note:

1. A compression dictionary can be created for the XML storage
object of a table only if the XML columns are added to the table
in DB2 Version 9.7 or later, or if the table is migrated using an
online table move.

RESETDICTIONARY
This directive instructs LOAD REPLACE processing to build a new
dictionary for the table data object provided that the table
COMPRESS attribute is YES. If the COMPRESS attribute is NO and
a dictionary was already present in the table it will be removed
and no new dictionary will be inserted into the table. A
compression dictionary can be built with just one user record. If
the loaded data set size is zero and if there is a preexisting
dictionary, the dictionary will not be preserved. The amount of
data required to build a dictionary with this directive is not subject
to the policies of ADC. For summary, see Table 2 below.

610 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 151. LOAD REPLACE RESETDICTIONARY

Compress
Table row data
dictionary exists

XML storage object
dictionary exists1 Compression dictionary Data compression

YES YES YES Build new dictionaries2.
If the DATA CAPTURE
CHANGES option is
enabled on the CREATE
TABLE or ALTER TABLE
statements, the current
table row data dictionary
is kept (and referred to
as the historical
compression dictionary).

After dictionaries are built,
remaining data to be loaded is
subject to compression.

YES YES NO Build new dictionaries2.
If the DATA CAPTURE
CHANGES option is
enabled on the CREATE
TABLE or ALTER TABLE
statements, the current
table row data dictionary
is kept (and referred to
as the historical
compression dictionary).

After dictionaries are built,
remaining data to be loaded is
subject to compression.

YES NO YES Build new dictionaries. After dictionaries are built,
remaining data to be loaded is
subject to compression.

YES NO NO Build new dictionaries. After dictionaries are built,
remaining data to be loaded is
subject to compression.

NO YES YES Remove dictionaries. Data to be loaded is not
compressed.

NO YES NO Remove table row data
dictionary.

Data to be loaded is not
compressed.

NO NO YES Remove XML storage
object dictionary.

Data to be loaded is not
compressed.

NO NO NO No effect. All table data is not
compressed.

Notes:

1. A compression dictionary can be created for the XML storage
object of a table only if the XML columns are added to the table
in DB2 Version 9.7 or later, or if the table is migrated using an
online table move.

2. If a dictionary exists and the compression attribute is enabled,
but there are no records to load into the table partition, a new
dictionary cannot be built and the RESETDICTIONARY
operation will not keep the existing dictionary.

TERMINATE
One of four modes under which the load utility can execute. Terminates a
previously interrupted load operation, and rolls back the operation to the
point in time at which it started, even if consistency points were passed.
The states of any table spaces involved in the operation return to normal,
and all table objects are made consistent (index objects might be marked as

Chapter 30. DB2 commands 611

invalid, in which case index rebuild will automatically take place at next
access). If the load operation being terminated is a LOAD REPLACE, the
table will be truncated to an empty table after the LOAD TERMINATE
operation. If the load operation being terminated is a LOAD INSERT, the
table will retain all of its original records after the LOAD TERMINATE
operation. For summary of dictionary management, see Table 3 below.

The LOAD TERMINATE option will not remove a backup pending state
from table spaces.

RESTART
One of four modes under which the load utility can execute. Restarts a
previously interrupted load operation. The load operation will
automatically continue from the last consistency point in the load, build, or
delete phase. For summary of dictionary management, see Table 4 below.

INTO table-name
Specifies the database table into which the data is to be loaded. This table
cannot be a system table, a declared temporary table, or a created
temporary table. An alias, or the fully qualified or unqualified table name
can be specified. A qualified table name is in the form schema.tablename. If
an unqualified table name is specified, the table will be qualified with the
CURRENT SCHEMA.

insert-column
Specifies the table column into which the data is to be inserted.

The load utility cannot parse columns whose names contain one or more
spaces. For example,

will fail because of the Int 4 column. The solution is to enclose such
column names with double quotation marks:

FOR EXCEPTION table-name
Specifies the exception table into which rows in error will be copied. Any
row that is in violation of a unique index or a primary key index is copied.
If an unqualified table name is specified, the table will be qualified with
the CURRENT SCHEMA.

Information that is written to the exception table is not written to the
dump file. In a partitioned database environment, an exception table must
be defined for those database partitions on which the loading table is
defined. The dump file, otherwise, contains rows that cannot be loaded
because they are invalid or have syntax errors.

When loading XML data, using the FOR EXCEPTION clause to specify a
load exception table is not supported in the following cases:
v When using label-based access control (LBAC).
v When loading data into a partitioned table.

NORANGEEXC
Indicates that if a row is rejected because of a range violation it will not be
inserted into the exception table.

NOUNIQUEEXC
Indicates that if a row is rejected because it violates a unique constraint it
will not be inserted into the exception table.

STATISTICS USE PROFILE
Instructs load to collect statistics during the load according to the profile
defined for this table. This profile must be created before load is executed.

612 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

|
|

|

|

The profile is created by the RUNSTATS command. If the profile does not
exist and load is instructed to collect statistics according to the profile, a
warning is returned and no statistics are collected.

STATISTICS NO
Specifies that no statistics are to be collected, and that the statistics in the
catalogs are not to be altered. This is the default.

COPY NO
Specifies that the table space in which the table resides will be placed in
backup pending state if forward recovery is enabled (that is, logretain or
userexit is on). The COPY NO option will also put the table space state
into the Load in Progress table space state. This is a transient state that will
disappear when the load completes or aborts. The data in any table in the
table space cannot be updated or deleted until a table space backup or a
full database backup is made. However, it is possible to access the data in
any table by using the SELECT statement.

LOAD with COPY NO on a recoverable database leaves the table spaces in
a backup pending state. For example, performing a LOAD with COPY NO
and INDEXING MODE DEFERRED will leave indexes needing a refresh.
Certain queries on the table might require an index scan and will not
succeed until the indexes are refreshed. The index cannot be refreshed if it
resides in a table space which is in the backup pending state. In that case,
access to the table will not be allowed until a backup is taken. Index
refresh is done automatically by the database when the index is accessed
by a query. If one of COPY NO, COPY YES, or NONRECOVERABLE is
not specified, and the database is recoverable (logretain or logarchmeth1 is
enabled), then COPY NO is the default.

COPY YES
Specifies that a copy of the loaded data will be saved. This option is
invalid if forward recovery is disabled.

USE TSM
Specifies that the copy will be stored using Tivoli Storage Manager
(TSM).

OPEN num-sess SESSIONS
The number of I/O sessions to be used with TSM or the vendor
product. The default value is 1.

TO device/directory
Specifies the device or directory on which the copy image will be
created.

LOAD lib-name
The name of the shared library (DLL on Windows operating
systems) containing the vendor backup and restore I/O functions
to be used. It can contain the full path. If the full path is not given,
it will default to the path where the user exit programs reside.

NONRECOVERABLE
Specifies that the load transaction is to be marked as nonrecoverable and
that it will not be possible to recover it by a subsequent roll forward
action. The roll forward utility will skip the transaction and will mark the
table into which data was being loaded as ″invalid″. The utility will also
ignore any subsequent transactions against that table. After the roll
forward operation is completed, such a table can only be dropped or

Chapter 30. DB2 commands 613

restored from a backup (full or table space) taken after a commit point
following the completion of the non-recoverable load operation.

With this option, table spaces are not put in backup pending state
following the load operation, and a copy of the loaded data does not have
to be made during the load operation. If one of COPY NO, COPY YES, or
NONRECOVERABLE is not specified, and the database is not recoverable
(logretain or logarchmeth1 is not enabled), then NONRECOVERABLE is
the default.

WITHOUT PROMPTING
Specifies that the list of data files contains all the files that are to be
loaded, and that the devices or directories listed are sufficient for the entire
load operation. If a continuation input file is not found, or the copy targets
are filled before the load operation finishes, the load operation will fail,
and the table will remain in load pending state.

DATA BUFFER buffer-size
Specifies the number of 4 KB pages (regardless of the degree of
parallelism) to use as buffered space for transferring data within the utility.
If the value specified is less than the algorithmic minimum, the minimum
required resource is used, and no warning is returned.

This memory is allocated directly from the utility heap, whose size can be
modified through the util_heap_sz database configuration parameter.
Beginning in version 9.5, the value of the DATA BUFFER option of the
LOAD command can temporarily exceed util_heap_sz if more memory is
available in the system. In this situation, the utility heap is dynamically
increased as needed until the database_memory limit is reached. This
memory will be released once the load operation completes.

If a value is not specified, an intelligent default is calculated by the utility
at run time. The default is based on a percentage of the free space available
in the utility heap at the instantiation time of the loader, as well as some
characteristics of the table.

SORT BUFFER buffer-size
This option specifies a value that overrides the sortheap database
configuration parameter during a load operation. It is relevant only when
loading tables with indexes and only when the INDEXING MODE
parameter is not specified as DEFERRED. The value that is specified
cannot exceed the value of sortheap. This parameter is useful for throttling
the sort memory that is used when loading tables with many indexes
without changing the value of sortheap, which would also affect general
query processing.

CPU_PARALLELISM n
Specifies the number of processes or threads that the load utility will create
for parsing, converting, and formatting records when building table
objects. This parameter is designed to exploit the number of processes
running per database partition. It is particularly useful when loading
presorted data, because record order in the source data is preserved. If the
value of this parameter is zero, or has not been specified, the load utility
uses an intelligent default value (usually based on the number of CPUs
available) at run time.

Note:

614 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

1. If this parameter is used with tables containing either LOB or LONG
VARCHAR fields, its value becomes one, regardless of the number of
system CPUs or the value specified by the user.

2. Specifying a small value for the SAVECOUNT parameter causes the
loader to perform many more I/O operations to flush both data and
table metadata. When CPU_PARALLELISM is greater than one, the
flushing operations are asynchronous, permitting the loader to exploit
the CPU. When CPU_PARALLELISM is set to one, the loader waits on
I/O during consistency points. A load operation with
CPU_PARALLELISM set to two, and SAVECOUNT set to 10 000,
completes faster than the same operation with CPU_PARALLELISM
set to one, even though there is only one CPU.

DISK_PARALLELISM n
Specifies the number of processes or threads that the load utility will create
for writing data to the table space containers. If a value is not specified, the
utility selects an intelligent default based on the number of table space
containers and the characteristics of the table.

FETCH_PARALLELISM YES | NO
When performing a load from a cursor where the cursor is declared using
the DATABASE keyword, or when using the API sqlu_remotefetch_entry
media entry, and this option is set to YES, the load utility attempts to
parallelize fetching from the remote data source if possible. If set to NO,
no parallel fetching is performed. The default value is YES. For more
information, see “Moving data using the CURSOR file type”.

INDEXING MODE
Specifies whether the load utility is to rebuild indexes or to extend them
incrementally. Valid values are:

AUTOSELECT
The load utility will automatically decide between REBUILD or
INCREMENTAL mode. The decision is based on the amount of
data being loaded and the depth of the index tree. Information
relating to the depth of the index tree is stored in the index object.
RUNSTATS is not required to populate this information.
AUTOSELECT is the default indexing mode.

REBUILD
All indexes will be rebuilt. The utility must have sufficient
resources to sort all index key parts for both old and appended
table data.

INCREMENTAL
Indexes will be extended with new data. This approach consumes
index free space. It only requires enough sort space to append
index keys for the inserted records. This method is only supported
in cases where the index object is valid and accessible at the start
of a load operation (it is, for example, not valid immediately
following a load operation in which the DEFERRED mode was
specified). If this mode is specified, but not supported due to the
state of the index, a warning is returned, and the load operation
continues in REBUILD mode. Similarly, if a load restart operation
is begun in the load build phase, INCREMENTAL mode is not
supported.

DEFERRED
The load utility will not attempt index creation if this mode is

Chapter 30. DB2 commands 615

specified. Indexes will be marked as needing a refresh. The first
access to such indexes that is unrelated to a load operation might
force a rebuild, or indexes might be rebuilt when the database is
restarted. This approach requires enough sort space for all key
parts for the largest index. The total time subsequently taken for
index construction is longer than that required in REBUILD mode.
Therefore, when performing multiple load operations with deferred
indexing, it is advisable (from a performance viewpoint) to let the
last load operation in the sequence perform an index rebuild,
rather than allow indexes to be rebuilt at first non-load access.

Deferred indexing is only supported for tables with non-unique
indexes, so that duplicate keys inserted during the load phase are
not persistent after the load operation.

ALLOW NO ACCESS
Load will lock the target table for exclusive access during the load. The
table state will be set to Load In Progress during the load. ALLOW NO
ACCESS is the default behavior. It is the only valid option for LOAD
REPLACE.

When there are constraints on the table, the table state will be set to Set
Integrity Pending as well as Load In Progress. The SET INTEGRITY
statement must be used to take the table out of Set Integrity Pending state.

ALLOW READ ACCESS
Load will lock the target table in a share mode. The table state will be set
to both Load In Progress and Read Access. Readers can access the
non-delta portion of the data while the table is being load. In other words,
data that existed before the start of the load will be accessible by readers to
the table, data that is being loaded is not available until the load is
complete. LOAD TERMINATE or LOAD RESTART of an ALLOW READ
ACCESS load can use this option; LOAD TERMINATE or LOAD
RESTART of an ALLOW NO ACCESS load cannot use this option.
Furthermore, this option is not valid if the indexes on the target table are
marked as requiring a rebuild.

When there are constraints on the table, the table state will be set to Set
Integrity Pending as well as Load In Progress, and Read Access. At the end
of the load, the table state Load In Progress will be removed but the table
states Set Integrity Pending and Read Access will remain. The SET
INTEGRITY statement must be used to take the table out of Set Integrity
Pending. While the table is in Set Integrity Pending and Read Access
states, the non-delta portion of the data is still accessible to readers, the
new (delta) portion of the data will remain inaccessible until the SET
INTEGRITY statement has completed. A user can perform multiple loads
on the same table without issuing a SET INTEGRITY statement. Only the
original (checked) data will remain visible, however, until the SET
INTEGRITY statement is issued.

ALLOW READ ACCESS also supports the following modifiers:

USE tablespace-name
If the indexes are being rebuilt, a shadow copy of the index is built
in table space tablespace-name and copied over to the original table
space at the end of the load during an INDEX COPY PHASE. Only
system temporary table spaces can be used with this option. If not
specified then the shadow index will be created in the same table
space as the index object. If the shadow copy is created in the same

616 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

table space as the index object, the copy of the shadow index object
over the old index object is instantaneous. If the shadow copy is in
a different table space from the index object a physical copy is
performed. This could involve considerable I/O and time. The
copy happens while the table is offline at the end of a load during
the INDEX COPY PHASE.

Without this option the shadow index is built in the same table
space as the original. Since both the original index and shadow
index by default reside in the same table space simultaneously,
there might be insufficient space to hold both indexes within one
table space. Using this option ensures that you retain enough table
space for the indexes.

This option is ignored if the user does not specify INDEXING
MODE REBUILD or INDEXING MODE AUTOSELECT. This
option will also be ignored if INDEXING MODE AUTOSELECT
is chosen and load chooses to incrementally update the index.

SET INTEGRITY PENDING CASCADE
If LOAD puts the table into Set Integrity Pending state, the SET
INTEGRITY PENDING CASCADE option allows the user to specify
whether or not Set Integrity Pending state of the loaded table is
immediately cascaded to all descendents (including descendent foreign key
tables, descendent immediate materialized query tables and descendent
immediate staging tables).

IMMEDIATE
Indicates that Set Integrity Pending state is immediately extended
to all descendent foreign key tables, descendent immediate
materialized query tables and descendent staging tables. For a
LOAD INSERT operation, Set Integrity Pending state is not
extended to descendent foreign key tables even if the IMMEDIATE
option is specified.

When the loaded table is later checked for constraint violations
(using the IMMEDIATE CHECKED option of the SET INTEGRITY
statement), descendent foreign key tables that were placed in Set
Integrity Pending Read Access state will be put into Set Integrity
Pending No Access state.

DEFERRED
Indicates that only the loaded table will be placed in the Set
Integrity Pending state. The states of the descendent foreign key
tables, descendent immediate materialized query tables and
descendent immediate staging tables will remain unchanged.

Descendent foreign key tables might later be implicitly placed in
Set Integrity Pending state when their parent tables are checked for
constraint violations (using the IMMEDIATE CHECKED option of
the SET INTEGRITY statement). Descendent immediate
materialized query tables and descendent immediate staging tables
will be implicitly placed in Set Integrity Pending state when one of
its underlying tables is checked for integrity violations. A warning
(SQLSTATE 01586) will be issued to indicate that dependent tables
have been placed in Set Integrity Pending state. See the Notes
section of the SET INTEGRITY statement in the SQL Reference for
when these descendent tables will be put into Set Integrity Pending
state.

Chapter 30. DB2 commands 617

If the SET INTEGRITY PENDING CASCADE option is not specified:
v Only the loaded table will be placed in Set Integrity Pending state. The

state of descendent foreign key tables, descendent immediate
materialized query tables and descendent immediate staging tables will
remain unchanged, and can later be implicitly put into Set Integrity
Pending state when the loaded table is checked for constraint violations.

If LOAD does not put the target table into Set Integrity Pending state, the
SET INTEGRITY PENDING CASCADE option is ignored.

LOCK WITH FORCE
The utility acquires various locks including table locks in the process of
loading. Rather than wait, and possibly timeout, when acquiring a lock,
this option allows load to force off other applications that hold conflicting
locks on the target table. Applications holding conflicting locks on the
system catalog tables will not be forced off by the load utility. Forced
applications will roll back and release the locks the load utility needs. The
load utility can then proceed. This option requires the same authority as
the FORCE APPLICATIONS command (SYSADM or SYSCTRL).

ALLOW NO ACCESS loads might force applications holding conflicting
locks at the start of the load operation. At the start of the load the utility
can force applications that are attempting to either query or modify the
table.

ALLOW READ ACCESS loads can force applications holding conflicting
locks at the start or end of the load operation. At the start of the load the
load utility can force applications that are attempting to modify the table.
At the end of the load operation, the load utility can force applications that
are attempting to either query or modify the table.

SOURCEUSEREXIT executable
Specifies an executable filename which will be called to feed data into the
utility.

REDIRECT

INPUT FROM

BUFFER input-buffer
The stream of bytes specified in input-buffer is
passed into the STDIN file descriptor of the process
executing the given executable.

FILE input-file
The contents of this client-side file are passed into
the STDIN file descriptor of the process executing
the given executable.

OUTPUT TO

FILE output-file
The STDOUT and STDERR file descriptors are
captured to the fully qualified server-side file
specified.

PARALLELIZE
Increases the throughput of data coming into the load utility by
invoking multiple user exit processes simultaneously. This option is
only applicable in multi-partition database environments and is
ignored in single-partition database environments.

618 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

For more information, see “Moving data using a customized application
(user exit)”.

PARTITIONED DB CONFIG partitioned-db-option
Allows you to execute a load into a table distributed across multiple
database partitions. The PARTITIONED DB CONFIG parameter allows
you to specify partitioned database-specific configuration options. The
partitioned-db-option values can be any of the following:
PART_FILE_LOCATION x
OUTPUT_DBPARTNUMS x
PARTITIONING_DBPARTNUMS x
MODE x
MAX_NUM_PART_AGENTS x
ISOLATE_PART_ERRS x
STATUS_INTERVAL x
PORT_RANGE x
CHECK_TRUNCATION
MAP_FILE_INPUT x
MAP_FILE_OUTPUT x
TRACE x
NEWLINE
DISTFILE x
OMIT_HEADER
RUN_STAT_DBPARTNUM x

Detailed descriptions of these options are provided in “Load configuration
options for partitioned database environments”.

RESTARTCOUNT
Reserved.

USING directory
Reserved.

Examples of loading data from XML documents

Loading XML data

Example 1

The user has constructed a data file with XDS fields to describe the documents that
are to be inserted into the table. It might appear like this :
1, "<XDS FIL=""file1.xml"" />"
2, "<XDS FIL='file2.xml' OFF='23' LEN='45' />"

For the first row, the XML document is identified by the file named file1.xml.
Note that since the character delimiter is the double quote character, and double
quotation marks exist inside the XDS, the double quotation marks contained within
the XDS are doubled. For the second row, the XML document is identified by the
file named file2.xml, and starts at byte offset 23, and is 45 bytes in length.

Example 2

The user issues a load command without any parsing or validation options for the
XML column, and the data is loaded successfully:
LOAD
FROM data.del of DEL INSERT INTO mytable

Loading XML data from CURSOR

Chapter 30. DB2 commands 619

Loading data from cursor is the same as with a regular relational column type. The
user has two tables, T1 and T2, each of which consist of a single XML column
named C1. To LOAD from T1 into T2, the user will first declare a cursor:
DECLARE
X1 CURSOR FOR SELECT C1 FROM T1;

Next, the user may issue a LOAD using the cursor type:
LOAD FROM X1 of
CURSOR INSERT INTO T2

Applying the XML specific LOAD options to the cursor type is the same as loading
from a file.

Usage notes
v Data is loaded in the sequence that appears in the input file. If a particular

sequence is desired, the data should be sorted before a load is attempted. If
preservation of the source data order is not required, consider using the
ANYORDER file type modifier, described below in the “File type modifiers for
the load utility” section.

v The load utility builds indexes based on existing definitions. The exception
tables are used to handle duplicates on unique keys. The utility does not enforce
referential integrity, perform constraints checking, or update materialized query
tables that are dependent on the tables being loaded. Tables that include
referential or check constraints are placed in Set Integrity Pending state.
Summary tables that are defined with REFRESH IMMEDIATE, and that are
dependent on tables being loaded, are also placed in Set Integrity Pending state.
Issue the SET INTEGRITY statement to take the tables out of Set Integrity
Pending state. Load operations cannot be carried out on replicated materialized
query tables.

v If a clustering index exists on the table, the data should be sorted on the
clustering index prior to loading. Data does not need to be sorted prior to
loading into a multidimensional clustering (MDC) table, however.

v If you specify an exception table when loading into a protected table, any rows
that are protected by invalid security labels will be sent to that table. This might
allow users that have access to the exception table to access to data that they
would not normally be authorized to access. For better security be careful who
you grant exception table access to, delete each row as soon as it is repaired and
copied to the table being loaded, and drop the exception table as soon as you
are done with it.

v Security labels in their internal format might contain newline characters. If you
load the file using the DEL file format, those newline characters can be mistaken
for delimiters. If you have this problem use the older default priority for
delimiters by specifying the delprioritychar file type modifier in the LOAD
command.

v For performing a load using the CURSOR file type where the DATABASE
keyword was specified during the DECLARE CURSOR statement, the user ID
and password used to authenticate against the database currently connected to
(for the load) will be used to authenticate against the source database (specified
by the DATABASE option of the DECLARE CURSOR statement). If no user ID
or password was specified for the connection to the loading database, a user ID
and password for the source database must be specified during the DECLARE
CURSOR statement.

v Loading a multiple-part PC/IXF file whose individual parts are copied from a
Windows system to an AIX system is supported. The names of all the files must

620 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

be specified in the LOAD command. For example, LOAD FROM DATA.IXF,
DATA.002 OF IXF INSERT INTO TABLE1. Loading to the Windows operating
system from logically split PC/IXF files is not supported.

v When restarting a failed LOAD, the behavior will follow the existing behavior in
that the BUILD phase will be forced to use the REBUILD mode for indexes.

v Loading XML documents between databases is not supported and returns error
message SQL1407N.

Summary of LOAD TERMINATE and LOAD RESTART dictionary
management

The following chart summarizes the compression dictionary management behavior
for LOAD processing under the TERMINATE directive.

Table 152. LOAD TERMINATE dictionary management

Table
COMPRESS
attribute

Does table row
data dictionary
exist prior to
LOAD?

XML storage object
dictionary exists
prior to LOAD1

TERMINATE: LOAD
REPLACE
KEEPDICTIONARY or
LOAD INSERT

TERMINATE: LOAD
REPLACE
RESETDICTIONARY

YES YES YES Keep existing dictionaries. Neither dictionary is
kept. 2

YES YES NO Keep existing dictionary. Nothing is kept. 2

YES NO YES Keep existing dictionary. Nothing is kept.

YES NO NO Nothing is kept. Nothing is kept.

NO YES YES Keep existing dictionaries. Nothing is kept.

NO YES NO Keep existing dictionary. Nothing is kept.

NO NO YES Keep existing dictionary. Nothing is kept.

NO NO NO Do nothing. Do nothing.

Note:

1. A compression dictionary can be created for the XML storage object of a table
only if the XML columns are added to the table in DB2 Version 9.7 or later, or if
the table is migrated using an online table move.

2. In the special case that the table has data capture enabled, the table row data
dictionary is kept.

LOAD RESTART truncates a table up to the last consistency point reached. As part
of LOAD RESTART processing, a compression dictionary will exist in the table if it
was present in the table at the time the last LOAD consistency point was taken. In
that case, LOAD RESTART will not create a new dictionary. For a summary of the
possible conditions, see Table 4 below.

Table 153. LOAD RESTART dictionary management

Table
COMPRESS
Attribute

Table row data
dictionary exist
prior to LOAD
consistency
point?1

XML Storage object
dictionary existed
prior to last LOAD?2

RESTART: LOAD
REPLACE
KEEPDICTIONARY or
LOAD INSERT

RESTART: LOAD
REPLACE
RESETDICTIONARY

YES YES YES Keep existing dictionaries. Keep existing
dictionaries.

Chapter 30. DB2 commands 621

Table 153. LOAD RESTART dictionary management (continued)

Table
COMPRESS
Attribute

Table row data
dictionary exist
prior to LOAD
consistency
point?1

XML Storage object
dictionary existed
prior to last LOAD?2

RESTART: LOAD
REPLACE
KEEPDICTIONARY or
LOAD INSERT

RESTART: LOAD
REPLACE
RESETDICTIONARY

YES YES NO Keep existing table row
data dictionary and build
XML dictionary subject to
ADC.

Keep existing table row
data dictionary and
build XML dictionary.

YES NO YES Build table row data
dictionary subject to ADC.
Keep existing XML
dictionary.

Build table row data
dictionary. Keep existing
XML dictionary.

YES NO NO Build table row data and
XML dictionaries subject to
ADC.

Build table row data and
XML dictionaries.

NO YES YES Keep existing dictionaries. Remove existing
dictionaries.

NO YES NO Keep existing table row
data dictionary.

Remove existing table
row data dictionary.

NO NO YES Keep existing XML
dictionary.

Remove existing XML
dictionary.

NO NO NO Do nothing. Do nothing.

Notes:

1. The SAVECOUNT option is ignored when loading XML data, load operations
that fail during the load phase restart from the beginning of the operation.

2. A compression dictionary can be created for the XML storage object of a table
only if the XML columns are added to the table in DB2 Version 9.7 or later, or if
the table is migrated using an online table move.

File type modifiers for the load utility

Table 154. Valid file type modifiers for the load utility: All file formats

Modifier Description

anyorder This modifier is used in conjunction with the cpu_parallelism parameter.
Specifies that the preservation of source data order is not required, yielding
significant additional performance benefit on SMP systems. If the value of
cpu_parallelism is 1, this option is ignored. This option is not supported if
SAVECOUNT > 0, since crash recovery after a consistency point requires that
data be loaded in sequence.

generatedignore This modifier informs the load utility that data for all generated columns is
present in the data file but should be ignored. This results in all generated
column values being generated by the utility. This modifier cannot be used with
either the generatedmissing or the generatedoverride modifier.

generatedmissing If this modifier is specified, the utility assumes that the input data file contains no
data for the generated column (not even NULLs). This results in all generated
column values being generated by the utility. This modifier cannot be used with
either the generatedignore or the generatedoverride modifier.

622 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 154. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

generatedoverride This modifier instructs the load utility to accept user-supplied data for all
generated columns in the table (contrary to the normal rules for these types of
columns). This is useful when migrating data from another database system, or
when loading a table from data that was recovered using the RECOVER
DROPPED TABLE option on the ROLLFORWARD DATABASE command. When
this modifier is used, any rows with no data or NULL data for a non-nullable
generated column will be rejected (SQL3116W). When this modifier is used, the
table will be placed in Set Integrity Pending state. To take the table out of Set
Integrity Pending state without verifying the user-supplied values, issue the
following command after the load operation:

SET INTEGRITY FOR table-name GENERATED COLUMN
IMMEDIATE UNCHECKED

To take the table out of Set Integrity Pending state and force verification of the
user-supplied values, issue the following command after the load operation:

SET INTEGRITY FOR table-name IMMEDIATE CHECKED.

When this modifier is specified and there is a generated column in any of the
partitioning keys, dimension keys or distribution keys, then the LOAD command
will automatically convert the modifier to generatedignore and proceed with the
load. This will have the effect of regenerating all of the generated column values.

This modifier cannot be used with either the generatedmissing or the
generatedignore modifier.

identityignore This modifier informs the load utility that data for the identity column is present
in the data file but should be ignored. This results in all identity values being
generated by the utility. The behavior will be the same for both GENERATED
ALWAYS and GENERATED BY DEFAULT identity columns. This means that for
GENERATED ALWAYS columns, no rows will be rejected. This modifier cannot
be used with either the identitymissing or the identityoverride modifier.

identitymissing If this modifier is specified, the utility assumes that the input data file contains no
data for the identity column (not even NULLs), and will therefore generate a
value for each row. The behavior will be the same for both GENERATED
ALWAYS and GENERATED BY DEFAULT identity columns. This modifier cannot
be used with either the identityignore or the identityoverride modifier.

identityoverride This modifier should be used only when an identity column defined as
GENERATED ALWAYS is present in the table to be loaded. It instructs the utility
to accept explicit, non-NULL data for such a column (contrary to the normal rules
for these types of identity columns). This is useful when migrating data from
another database system when the table must be defined as GENERATED
ALWAYS, or when loading a table from data that was recovered using the
DROPPED TABLE RECOVERY option on the ROLLFORWARD DATABASE
command. When this modifier is used, any rows with no data or NULL data for
the identity column will be rejected (SQL3116W). This modifier cannot be used
with either the identitymissing or the identityignore modifier. The load utility
will not attempt to maintain or verify the uniqueness of values in the table’s
identity column when this option is used.

indexfreespace=x x is an integer between 0 and 99 inclusive. The value is interpreted as the
percentage of each index page that is to be left as free space when load rebuilds
the index. Load with INDEXING MODE INCREMENTAL ignores this option.
The first entry in a page is added without restriction; subsequent entries are
added to maintain the percent free space threshold. The default value is the one
used at CREATE INDEX time.

This value takes precedence over the PCTFREE value specified in the CREATE
INDEX statement. The indexfreespace option affects index leaf pages only.

Chapter 30. DB2 commands 623

Table 154. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

lobsinfile lob-path specifies the path to the files containing LOB data. The ASC, DEL, or IXF
load input files contain the names of the files having LOB data in the LOB
column.

This option is not supported in conjunction with the CURSOR filetype.

The LOBS FROM clause specifies where the LOB files are located when the
lobsinfile modifier is used. The LOBS FROM clause will implicitly activate the
lobsinfile behavior. The LOBS FROM clause conveys to the LOAD utility the list
of paths to search for the LOB files while loading the data.

Each path contains at least one file that contains at least one LOB pointed to by a
Lob Location Specifier (LLS) in the data file. The LLS is a string representation of
the location of a LOB in a file stored in the LOB file path. The format of an LLS is
filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains
the LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the
length of the LOB in bytes. For example, if the string db2exp.001.123.456/ is
stored in the data file, the LOB is located at offset 123 in the file db2exp.001, and
is 456 bytes long.

To indicate a null LOB , enter the size as -1. If the size is specified as 0, it is
treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file
name are ignored. For example, the LLS of a null LOB might be
db2exp.001.7.-1/.

noheader Skips the header verification code (applicable only to load operations into tables
that reside in a single-partition database partition group).

If the default MPP load (mode PARTITION_AND_LOAD) is used against a table
residing in a single-partition database partition group, the file is not expected to
have a header. Thus the noheader modifier is not needed. If the LOAD_ONLY
mode is used, the file is expected to have a header. The only circumstance in
which you should need to use the noheader modifier is if you wanted to perform
LOAD_ONLY operation using a file that does not have a header.

norowwarnings Suppresses all warnings about rejected rows.

pagefreespace=x x is an integer between 0 and 100 inclusive. The value is interpreted as the
percentage of each data page that is to be left as free space. If the specified value
is invalid because of the minimum row size, (for example, a row that is at least
3 000 bytes long, and an x value of 50), the row will be placed on a new page. If
a value of 100 is specified, each row will reside on a new page. The PCTFREE
value of a table determines the amount of free space designated per page. If a
pagefreespace value on the load operation or a PCTFREE value on a table have
not been set, the utility will fill up as much space as possible on each page. The
value set by pagefreespace overrides the PCTFREE value specified for the table.

rowchangetimestampignore This modifier informs the load utility that data for the row change timestamp
column is present in the data file but should be ignored. This results in all ROW
CHANGE TIMESTAMPs being generated by the utility. The behavior will be the
same for both GENERATED ALWAYS and GENERATED BY DEFAULT columns.
This means that for GENERATED ALWAYS columns, no rows will be rejected.
This modifier cannot be used with either the rowchangetimestampmissing or the
rowchangetimestampoverride modifier.

rowchangetimestampmissing If this modifier is specified, the utility assumes that the input data file contains no
data for the row change timestamp column (not even NULLs), and will therefore
generate a value for each row. The behavior will be the same for both
GENERATED ALWAYS and GENERATED BY DEFAULT columns. This modifier
cannot be used with either the rowchangetimestampignore or the
rowchangetimestampoverride modifier.

624 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 154. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

rowchangetimestampoverride This modifier should be used only when a row change timestamp column
defined as GENERATED ALWAYS is present in the table to be loaded. It instructs
the utility to accept explicit, non-NULL data for such a column (contrary to the
normal rules for these types of row change timestamp columns). This is useful
when migrating data from another database system when the table must be
defined as GENERATED ALWAYS, or when loading a table from data that was
recovered using the DROPPED TABLE RECOVERY option on the
ROLLFORWARD DATABASE command. When this modifier is used, any rows
with no data or NULL data for the ROW CHANGE TIMESTAMP column will be
rejected (SQL3116W). This modifier cannot be used with either the
rowchangetimestampmissing or the rowchangetimestampignore modifier. The
load utility will not attempt to maintain or verify the uniqueness of values in the
table’s row change timestamp column when this option is used.

seclabelchar Indicates that security labels in the input source file are in the string format for
security label values rather than in the default encoded numeric format. LOAD
converts each security label into the internal format as it is loaded. If a string is
not in the proper format the row is not loaded and a warning (SQLSTATE 01H53,
SQLCODE SQL3242W) is returned. If the string does not represent a valid
security label that is part of the security policy protecting the table then the row
is not loaded and a warning (SQLSTATE 01H53, SQLCODE SQL3243W) is
returned.

This modifier cannot be specified if the seclabelname modifier is specified,
otherwise the load fails and an error (SQLCODE SQL3525N) is returned.

If you have a table consisting of a single DB2SECURITYLABEL column, the data file
might look like this:

"CONFIDENTIAL:ALPHA:G2"
"CONFIDENTIAL;SIGMA:G2"
"TOP SECRET:ALPHA:G2"

To load or import this data, the seclabelchar file type modifier must be used:

LOAD FROM input.del OF DEL MODIFIED BY SECLABELCHAR INSERT INTO t1

seclabelname Indicates that security labels in the input source file are indicated by their name
rather than the default encoded numeric format. LOAD will convert the name to
the appropriate security label if it exists. If no security label exists with the
indicated name for the security policy protecting the table the row is not loaded
and a warning (SQLSTATE 01H53, SQLCODE SQL3244W) is returned.

This modifier cannot be specified if the seclabelchar modifier is specified,
otherwise the load fails and an error (SQLCODE SQL3525N) is returned.

If you have a table consisting of a single DB2SECURITYLABEL column, the data file
might consist of security label names similar to:

"LABEL1"
"LABEL1"
"LABEL2"

To load or import this data, the seclabelname file type modifier must be used:

LOAD FROM input.del OF DEL MODIFIED BY SECLABELNAME INSERT INTO t1

Note: If the file type is ASC, any spaces following the name of the security label
will be interpreted as being part of the name. To avoid this use the striptblanks
file type modifier to make sure the spaces are removed.

Chapter 30. DB2 commands 625

Table 154. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

totalfreespace=x x is an integer greater than or equal to 0. The value is interpreted as the
percentage of the total pages in the table that is to be appended to the end of the
table as free space. For example, if x is 20, and the table has 100 data pages after
the data has been loaded, 20 additional empty pages will be appended. The total
number of data pages for the table will be 120. The data pages total does not
factor in the number of index pages in the table. This option does not affect the
index object. If two loads are done with this option specified, the second load will
not reuse the extra space appended to the end by the first load.

usedefaults If a source column for a target table column has been specified, but it contains no
data for one or more row instances, default values are loaded. Examples of
missing data are:

v For DEL files: two adjacent column delimiters (″,,″) or two adjacent column
delimiters separated by an arbitrary number of spaces (″, ,″) are specified for a
column value.

v For DEL/ASC/WSF files: A row that does not have enough columns, or is not
long enough for the original specification. For ASC files, NULL column values
are not considered explicitly missing, and a default will not be substituted for
NULL column values. NULL column values are represented by all space
characters for numeric, date, time, and /timestamp columns, or by using the
NULL INDICATOR for a column of any type to indicate the column is NULL.

Without this option, if a source column contains no data for a row instance, one
of the following occurs:

v For DEL/ASC/WSF files: If the column is nullable, a NULL is loaded. If the
column is not nullable, the utility rejects the row.

Table 155. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL)

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as the code page of the
data in the input data set. Converts character data (and numeric data specified in
characters) from this code page to the database code page during the load
operation.

The following rules apply:

v For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to
the range of x00 to x3F, inclusive.

v For DEL data specified in an EBCDIC code page, the delimiters might not
coincide with the shift-in and shift-out DBCS characters.

v nullindchar must specify symbols included in the standard ASCII set between
code points x20 and x7F, inclusive. This refers to ASCII symbols and code
points. EBCDIC data can use the corresponding symbols, even though the code
points will be different.

This option is not supported in conjunction with the CURSOR filetype.

626 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 155. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

dateformat=″x″ x is the format of the date in the source file.1 Valid date elements are:

YYYY - Year (four digits ranging from 0000 - 9999)
M - Month (one or two digits ranging from 1 - 12)
MM - Month (two digits ranging from 1 - 12;

mutually exclusive with M)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 1 - 31;

mutually exclusive with D)
DDD - Day of the year (three digits ranging

from 001 - 366; mutually exclusive
with other day or month elements)

A default value of 1 is assigned for each element that is not specified. Some
examples of date formats are:

"D-M-YYYY"
"MM.DD.YYYY"
"YYYYDDD"

dumpfile = x x is the fully qualified (according to the server database partition) name of an
exception file to which rejected rows are written. A maximum of 32 KB of data is
written per record. Following is an example that shows how to specify a dump
file:

db2 load from data of del
modified by dumpfile = /u/user/filename
insert into table_name

The file will be created and owned by the instance owner. To override the default
file permissions, use the dumpfileaccessall file type modifier.
Note:

1. In a partitioned database environment, the path should be local to the loading
database partition, so that concurrently running load operations do not
attempt to write to the same file.

2. The contents of the file are written to disk in an asynchronous buffered mode.
In the event of a failed or an interrupted load operation, the number of
records committed to disk cannot be known with certainty, and consistency
cannot be guaranteed after a LOAD RESTART. The file can only be assumed
to be complete for a load operation that starts and completes in a single pass.

3. If the specified file already exists, it will not be recreated, but it will be
appended.

dumpfileaccessall Grants read access to ’OTHERS’ when a dump file is created.

This file type modifier is only valid when:

1. it is used in conjunction with dumpfile file type modifier

2. the user has SELECT privilege on the load target table

3. it is issued on a DB2 server database partition that resides on a UNIX
operating system

If the specified file already exists, its permissions will not be changed.

fastparse Use with caution. Reduces syntax checking on user-supplied column values, and
enhances performance. Tables are guaranteed to be architecturally correct (the
utility performs sufficient data checking to prevent a segmentation violation or
trap), however, the coherence of the data is not validated. Only use this option if
you are certain that your data is coherent and correct. For example, if the
user-supplied data contains an invalid timestamp column value of
:1>0-00-20-07.11.12.000000, this value is inserted into the table if fastparse is
specified, and rejected if fastparse is not specified.

Chapter 30. DB2 commands 627

Table 155. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

implieddecimal The location of an implied decimal point is determined by the column definition;
it is no longer assumed to be at the end of the value. For example, the value
12345 is loaded into a DECIMAL(8,2) column as 123.45, not 12345.00.

This modifier cannot be used with the packeddecimal modifier.

timeformat=″x″ x is the format of the time in the source file.1 Valid time elements are:

H - Hour (one or two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24
for a 24 hour system)

HH - Hour (two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24
for a 24 hour system; mutually exclusive

with H)
M - Minute (one or two digits ranging

from 0 - 59)
MM - Minute (two digits ranging from 0 - 59;

mutually exclusive with M)
S - Second (one or two digits ranging

from 0 - 59)
SS - Second (two digits ranging from 0 - 59;

mutually exclusive with S)
SSSSS - Second of the day after midnight (5 digits

ranging from 00000 - 86399; mutually
exclusive with other time elements)

TT - Meridian indicator (AM or PM)

A default value of 0 is assigned for each element that is not specified. Some
examples of time formats are:

"HH:MM:SS"
"HH.MM TT"
"SSSSS"

628 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 155. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

timestampformat=″x″ x is the format of the time stamp in the source file.1 Valid time stamp elements
are:

YYYY - Year (four digits ranging from 0000 - 9999)
M - Month (one or two digits ranging from 1 - 12)
MM - Month (two digits ranging from 01 - 12;

mutually exclusive with M and MMM)
MMM - Month (three-letter case-insensitive abbreviation for

the month name; mutually exclusive with M and MM)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 1 - 31; mutually exclusive with D)
DDD - Day of the year (three digits ranging from 001 - 366;

mutually exclusive with other day or month elements)
H - Hour (one or two digits ranging from 0 - 12

for a 12 hour system, and 0 - 24 for a 24 hour system)
HH - Hour (two digits ranging from 0 - 12

for a 12 hour system, and 0 - 24 for a 24 hour system;
mutually exclusive with H)

M - Minute (one or two digits ranging from 0 - 59)
MM - Minute (two digits ranging from 0 - 59;

mutually exclusive with M, minute)
S - Second (one or two digits ranging from 0 - 59)
SS - Second (two digits ranging from 0 - 59;

mutually exclusive with S)
SSSSS - Second of the day after midnight (5 digits

ranging from 00000 - 86399; mutually
exclusive with other time elements)

U (1 to 12 times)
- Fractional seconds(number of occurrences of U represent the

number of digits with each digit ranging from 0 to 9
TT - Meridian indicator (AM or PM)

timestampformat=″x″
(Continued)

A default value of 1 is assigned for unspecified YYYY, M, MM, D, DD, or DDD
elements. A default value of ’Jan’ is assigned to an unspecified MMM element. A
default value of 0 is assigned for all other unspecified elements. Following is an
example of a time stamp format:

"YYYY/MM/DD HH:MM:SS.UUUUUU"

The valid values for the MMM element include: ’jan’, ’feb’, ’mar’, ’apr’, ’may’,
’jun’, ’jul’, ’aug’, ’sep’, ’oct’, ’nov’ and ’dec’. These values are case insensitive.

If the timestampformat modifier is not specified, the load utility formats the
timestamp field using one of two possible formats:

YYYY-MM-DD-HH.MM.SS
YYYY-MM-DD HH:MM:SS

The load utility chooses the format by looking at the separator between the DD
and HH. If it is a dash ’-’, the load utility uses the regular dashes and dots format
(YYYY-MM-DD-HH.MM.SS). If it is a blank space, then the load utility expects a
colon ’:’ to separate the HH, MM and SS.

In either format, if you include the microseconds field (UUUUUU), the load
utility expects the dot ’.’ as the separator. Either YYYY-MM-DD-
HH.MM.SS.UUUUUU or YYYY-MM-DD HH:MM:SS.UUUUUU are acceptable.

The following example illustrates how to load data containing user defined date
and time formats into a table called schedule:

db2 load from delfile2 of del
modified by timestampformat="yyyy.mm.dd hh:mm tt"
insert into schedule

Chapter 30. DB2 commands 629

Table 155. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

usegraphiccodepage If usegraphiccodepage is given, the assumption is made that data being loaded
into graphic or double-byte character large object (DBCLOB) data field(s) is in the
graphic code page. The rest of the data is assumed to be in the character code
page. The graphic codepage is associated with the character code page. LOAD
determines the character code page through either the codepage modifier, if it is
specified, or through the code page of the database if the codepage modifier is
not specified.

This modifier should be used in conjunction with the delimited data file
generated by drop table recovery only if the table being recovered has graphic
data.

Restrictions

The usegraphiccodepage modifier MUST NOT be specified with DEL files created
by the EXPORT utility, as these files contain data encoded in only one code page.
The usegraphiccodepage modifier is also ignored by the double-byte character
large objects (DBCLOBs) in files.

xmlchar Specifies that XML documents are encoded in the character code page.

This option is useful for processing XML documents that are encoded in the
specified character code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,
the encoding must match the character code page, otherwise the row containing
the document will be rejected. Note that the character codepage is the value
specified by the codepage file type modifier, or the application codepage if it is
not specified. By default, either the documents are encoded in Unicode, or they
contain a declaration tag with an encoding attribute.

xmlgraphic Specifies that XML documents are encoded in the specified graphic code page.

This option is useful for processing XML documents that are encoded in a specific
graphic code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,
the encoding must match the graphic code page, otherwise the row containing
the document will be rejected. Note that the graphic code page is the graphic
component of the value specified by the codepage file type modifier, or the
graphic component of the application code page if it is not specified. By default,
documents are either encoded in Unicode, or they contain a declaration tag with
an encoding attribute.

630 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 156. Valid file type modifiers for the load utility: ASC file formats (Non-delimited ASCII)

Modifier Description

binarynumerics Numeric (but not DECIMAL) data must be in binary form, not the character
representation. This avoids costly conversions.

This option is supported only with positional ASC, using fixed length records
specified by the reclen option.

The following rules apply:

v No conversion between data types is performed, with the exception of BIGINT,
INTEGER, and SMALLINT.

v Data lengths must match their target column definitions.

v FLOATs must be in IEEE Floating Point format.

v Binary data in the load source file is assumed to be big-endian, regardless of
the platform on which the load operation is running.

NULLs cannot be present in the data for columns affected by this modifier.
Blanks (normally interpreted as NULL) are interpreted as a binary value when
this modifier is used.

nochecklengths If nochecklengths is specified, an attempt is made to load each row, even if the
source data has a column definition that exceeds the size of the target table
column. Such rows can be successfully loaded if code page conversion causes the
source data to shrink; for example, 4-byte EUC data in the source could shrink to
2-byte DBCS data in the target, and require half the space. This option is
particularly useful if it is known that the source data will fit in all cases despite
mismatched column definitions.

nullindchar=x x is a single character. Changes the character denoting a NULL value to x. The
default value of x is Y.2

This modifier is case sensitive for EBCDIC data files, except when the character is
an English letter. For example, if the NULL indicator character is specified to be
the letter N, then n is also recognized as a NULL indicator.

packeddecimal Loads packed-decimal data directly, since the binarynumerics modifier does not
include the DECIMAL field type.

This option is supported only with positional ASC, using fixed length records
specified by the reclen option.

Supported values for the sign nibble are:

+ = 0xC 0xA 0xE 0xF
- = 0xD 0xB

NULLs cannot be present in the data for columns affected by this modifier.
Blanks (normally interpreted as NULL) are interpreted as a binary value when
this modifier is used.

Regardless of the server platform, the byte order of binary data in the load source
file is assumed to be big-endian; that is, when using this modifier on Windows
operating systems, the byte order must not be reversed.

This modifier cannot be used with the implieddecimal modifier.

reclen=x x is an integer with a maximum value of 32 767. x characters are read for each
row, and a newline character is not used to indicate the end of the row.

Chapter 30. DB2 commands 631

Table 156. Valid file type modifiers for the load utility: ASC file formats (Non-delimited ASCII) (continued)

Modifier Description

striptblanks Truncates any trailing blank spaces when loading data into a variable-length field.
If this option is not specified, blank spaces are kept.

This option cannot be specified together with striptnulls. These are mutually
exclusive options. This option replaces the obsolete t option, which is supported
for earlier compatibility only.

striptnulls Truncates any trailing NULLs (0x00 characters) when loading data into a
variable-length field. If this option is not specified, NULLs are kept.

This option cannot be specified together with striptblanks. These are mutually
exclusive options. This option replaces the obsolete padwithzero option, which is
supported for earlier compatibility only.

zoneddecimal Loads zoned decimal data, since the binarynumerics modifier does not include
the DECIMAL field type. This option is supported only with positional ASC,
using fixed length records specified by the reclen option.

Half-byte sign values can be one of the following:

+ = 0xC 0xA 0xE 0xF
- = 0xD 0xB

Supported values for digits are 0x0 to 0x9.

Supported values for zones are 0x3 and 0xF.

Table 157. Valid file type modifiers for the load utility: DEL file formats (Delimited ASCII)

Modifier Description

chardelx x is a single character string delimiter. The default value is a double quotation
mark (″). The specified character is used in place of double quotation marks to
enclose a character string.23 If you want to explicitly specify the double quotation
mark (″) as the character string delimiter, you should specify it as follows:

modified by chardel""

The single quotation mark (’) can also be specified as a character string delimiter
as follows:

modified by chardel''

coldelx x is a single character column delimiter. The default value is a comma (,). The
specified character is used in place of a comma to signal the end of a column.23

decplusblank Plus sign character. Causes positive decimal values to be prefixed with a blank
space instead of a plus sign (+). The default action is to prefix positive decimal
values with a plus sign.

decptx x is a single character substitute for the period as a decimal point character. The
default value is a period (.). The specified character is used in place of a period as
a decimal point character.23

632 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 157. Valid file type modifiers for the load utility: DEL file formats (Delimited ASCII) (continued)

Modifier Description

delprioritychar The current default priority for delimiters is: record delimiter, character delimiter,
column delimiter. This modifier protects existing applications that depend on the
older priority by reverting the delimiter priorities to: character delimiter, record
delimiter, column delimiter. Syntax:

db2 load ... modified by delprioritychar ...

For example, given the following DEL data file:

"Smith, Joshua",4000,34.98<row delimiter>
"Vincent,<row delimiter>, is a manager", ...
... 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be only two rows in this
data file. The second <row delimiter> will be interpreted as part of the first data
column of the second row, while the first and the third <row delimiter> are
interpreted as actual record delimiters. If this modifier is not specified, there will
be three rows in this data file, each delimited by a <row delimiter>.

keepblanks Preserves the leading and trailing blanks in each field of type CHAR, VARCHAR,
LONG VARCHAR, or CLOB. Without this option, all leading and trailing blanks
that are not inside character delimiters are removed, and a NULL is inserted into
the table for all blank fields.

The following example illustrates how to load data into a table called TABLE1,
while preserving all leading and trailing spaces in the data file:

db2 load from delfile3 of del
modified by keepblanks
insert into table1

nochardel The load utility will assume all bytes found between the column delimiters to be
part of the column’s data. Character delimiters will be parsed as part of column
data. This option should not be specified if the data was exported using a DB2
database system (unless nochardel was specified at export time). It is provided to
support vendor data files that do not have character delimiters. Improper usage
might result in data loss or corruption.

This option cannot be specified with chardelx, delprioritychar or nodoubledel.
These are mutually exclusive options.

nodoubledel Suppresses recognition of double character delimiters.

Table 158. Valid file type modifiers for the load utility: IXF file format

Modifier Description

forcein Directs the utility to accept data despite code page mismatches, and to suppress
translation between code pages.

Fixed length target fields are checked to verify that they are large enough for the
data. If nochecklengths is specified, no checking is done, and an attempt is made
to load each row.

nochecklengths If nochecklengths is specified, an attempt is made to load each row, even if the
source data has a column definition that exceeds the size of the target table
column. Such rows can be successfully loaded if code page conversion causes the
source data to shrink; for example, 4-byte EUC data in the source could shrink to
2-byte DBCS data in the target, and require half the space. This option is
particularly useful if it is known that the source data will fit in all cases despite
mismatched column definitions.

Note:

Chapter 30. DB2 commands 633

1. Double quotation marks around the date format string are mandatory. Field
separators cannot contain any of the following: a-z, A-Z, and 0-9. The field
separator should not be the same as the character delimiter or field delimiter in
the DEL file format. A field separator is optional if the start and end positions
of an element are unambiguous. Ambiguity can exist if (depending on the
modifier) elements such as D, H, M, or S are used, because of the variable
length of the entries.
For time stamp formats, care must be taken to avoid ambiguity between the
month and the minute descriptors, since they both use the letter M. A month
field must be adjacent to other date fields. A minute field must be adjacent to
other time fields. Following are some ambiguous time stamp formats:
"M" (could be a month, or a minute)
"M:M" (Which is which?)
"M:YYYY:M" (Both are interpreted as month.)
"S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation
will fail.
Following are some unambiguous time stamp formats:
"M:YYYY" (Month)
"S:M" (Minute)
"M:YYYY:S:M" (Month....Minute)
"M:H:YYYY:M:D" (Minute....Month)

Some characters, such as double quotation marks and back slashes, must be
preceded by an escape character (for example, \).

2. Character values provided for the chardel, coldel, or decpt file type modifiers
must be specified in the code page of the source data.
The character code point (instead of the character symbol), can be specified
using the syntax xJJ or 0xJJ, where JJ is the hexadecimal representation of the
code point. For example, to specify the # character as a column delimiter, use
one of the following:
... modified by coldel# ...
... modified by coldel0x23 ...
... modified by coldelX23 ...

3. Delimiter considerations for moving data lists restrictions that apply to the
characters that can be used as delimiter overrides.

4. The load utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted, the
load operation fails, and an error code is returned.

5. When importing into a table containing an implicitly hidden row change
timestamp column, the implicitly hidden property of the column is not
honoured. Therefore, the rowchangetimestampmissing file type modifier must
be specified in the IMPORT command if data for the column is not present in
the data to be imported and there is no explicit column list present.

Table 159. LOAD behavior when using codepage and usegraphiccodepage

codepage=N usegraphiccodepage LOAD behavior

Absent Absent All data in the file is assumed to be in the database code
page, not the application code page, even if the CLIENT
option is specified.

Present Absent All data in the file is assumed to be in code page N.

Warning: Graphic data will be corrupted when loaded
into the database if N is a single-byte code page.

634 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 159. LOAD behavior when using codepage and usegraphiccodepage (continued)

codepage=N usegraphiccodepage LOAD behavior

Absent Present Character data in the file is assumed to be in the
database code page, even if the CLIENT option is
specified. Graphic data is assumed to be in the code
page of the database graphic data, even if the CLIENT
option is specified.

If the database code page is single-byte, then all data is
assumed to be in the database code page.

Warning: Graphic data will be corrupted when loaded
into a single-byte database.

Present Present Character data is assumed to be in code page N. Graphic
data is assumed to be in the graphic code page of N.

If N is a single-byte or double-byte code page, then all
data is assumed to be in code page N.

Warning:Graphic data will be corrupted when loaded
into the database if N is a single-byte code page.

UPGRADE DATABASE

Converts a DB2 database of the previous version to the formats corresponding to
the release run by the instance.

The db2ckupgrade command must be issued prior to upgrading the instance to
verify that your databases are ready for upgrade. The db2iupgrade command
implicitly calls the db2ckupgrade. Backup all databases prior to upgrade, and prior
to the installation of the current version of DB2 database product on Windows
operating systems.

Authorization

sysadm

Required connection

This command establishes a database connection.

Command syntax

�� UPGRADE DATABASE
DB

database-alias �

�
USER username

USING password

��

Command parameters

DATABASE database-alias
Specifies the alias of the database to be upgraded to the currently installed
version of the database manager.

Chapter 30. DB2 commands 635

USER username
Identifies the user name under which the database is to be upgraded.

USING password
The password used to authenticate the user name. If the password is
omitted, but a user name was specified, the user is prompted to enter it.

Examples

The following example upgrades the database cataloged under the database alias
sales:

db2 UPGRADE DATABASE sales

Usage notes

This command will only upgrade a database to a newer version, and cannot be
used to convert an upgraded database to its previous version.

The database must be cataloged before upgrade.

If an error occurs during upgrade, it might be necessary to issue the TERMINATE
command before attempting the suggested user response. For example, if a log full
error occurs during upgrade (SQL1704: Database upgrade failed. Reason code ″3″.),
it will be necessary to issue the TERMINATE command before increasing the
values of the database configuration parameters LOGPRIMARY and LOGFILSIZ.
The CLP must refresh its database directory cache if the upgrade failure occurs
after the database has already been relocated (which is likely to be the case when a
″log full″ error returns).

QUIESCE

Scope

QUIESCE DATABASE results in all objects in the database being in the quiesced
mode. Only the allowed user/group and sysadm, sysmaint, dbadm, or sysctrl will be
able to access the database or its objects.

Authorization

One of the following:

For database level quiesce:
v sysadm

v dbadm

Required connection

Database

Command syntax

�� QUIESCE DATABASE
DB

IMMEDIATE
DEFER

WITH TIMEOUT minutes

�

636 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

�
FORCE CONNECTIONS

��

Command parameters

DEFER
Wait for applications until they commit the current unit of work.

WITH TIMEOUT minutes
Specifies a time, in minutes, to wait for applications to commit the
current unit of work. If no value is specified, in a single-partition
database environment, the default value is 10 minutes. In a
partitioned database environment the value specified by the
start_stop_time database manager configuration parameter will be
used.

IMMEDIATE
Do not wait for the transactions to be committed, immediately rollback the
transactions.

FORCE CONNECTIONS
Force the connections off.

DATABASE
Quiesce the database. All objects in the database will be placed in quiesced
mode. Only specified users in specified groups and users with sysadm,
sysmaint, and sysctrl authority will be able to access to the database or its
objects.

Usage notes
v After QUIESCE DATABASE, users with sysadm, sysmaint, sysctrl, or dbadm

authority, and GRANT/REVOKE privileges can designate who will be able to
connect. This information will be stored permanently in the database catalog
tables.
For example,

grant quiesce_connect on database to <username/groupname>
revoke quiesce_connect on database from <username/groupname>

QUIESCE TABLESPACES FOR TABLE

Quiesces table spaces for a table. There are three valid quiesce modes: share, intent
to update, and exclusive. There are three possible states resulting from the quiesce
function:
v Quiesced: SHARE
v Quiesced: UPDATE
v Quiesced: EXCLUSIVE

Scope

In a single-partition environment, this command quiesces all table spaces involved
in a load operation in exclusive mode for the duration of the load operation. In a
partitioned database environment, this command acts locally on a database
partition. It quiesces only that portion of table spaces belonging to the database
partition on which the load operation is performed. For partitioned tables, all of
the table spaces listed in SYSDATAPARTITIONS.TBSPACEID and
SYSDATAPARTITIONS.LONG_TBSPACEID associated with a table and with a

Chapter 30. DB2 commands 637

status of normal, attached or detached, (for example,
SYSDATAPARTITIONS.STATUS of ’″’, ’A’ or ’D’, respectively) are quiesced.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

v load

Required connection

Database

Command syntax

�� QUIESCE TABLESPACES FOR TABLE tablename
schema.tablename

SHARE
INTENT TO UPDATE
EXCLUSIVE
RESET

��

Command parameters

TABLE

tablename
Specifies the unqualified table name. The table cannot be a system
catalog table.

schema.tablename
Specifies the qualified table name. If schema is not provided, the
CURRENT SCHEMA will be used. The table cannot be a system
catalog table.

SHARE
Specifies that the quiesce is to be in share mode.

When a ″quiesce share″ request is made, the transaction requests intent
share locks for the table spaces and a share lock for the table. When the
transaction obtains the locks, the state of the table spaces is changed to
QUIESCED SHARE. The state is granted to the quiescer only if there is no
conflicting state held by other users. The state of the table spaces, along
with the authorization ID and the database agent ID of the quiescer, are
recorded in the table space table, so that the state is persistent. The table
cannot be changed while the table spaces for the table are in QUIESCED
SHARE state. Other share mode requests to the table and table spaces are
allowed. When the transaction commits or rolls back, the locks are
released, but the table spaces for the table remain in QUIESCED SHARE
state until the state is explicitly reset.

INTENT TO UPDATE
Specifies that the quiesce is to be in intent to update mode.

638 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

When a ″quiesce intent to update″ request is made, the table spaces are
locked in intent exclusive (IX) mode, and the table is locked in update (U)
mode. The state of the table spaces is recorded in the table space table.

EXCLUSIVE
Specifies that the quiesce is to be in exclusive mode.

When a ″quiesce exclusive″ request is made, the transaction requests super
exclusive locks on the table spaces, and a super exclusive lock on the table.
When the transaction obtains the locks, the state of the table spaces
changes to QUIESCED EXCLUSIVE. The state of the table spaces, along
with the authorization ID and the database agent ID of the quiescer, are
recorded in the table space table. Since the table spaces are held in super
exclusive mode, no other access to the table spaces is allowed. The user
who invokes the quiesce function (the quiescer) has exclusive access to the
table and the table spaces.

RESET
Specifies that the state of the table spaces is to be reset to normal. A
quiesce state cannot be reset if the connection that issued the quiesce
request is still active.

Example

Usage notes

This command is not supported for declared temporary tables.

A quiesce is a persistent lock. Its benefit is that it persists across transaction
failures, connection failures, and even across system failures (such as power failure,
or reboot).

A quiesce is owned by a connection. If the connection is lost, the quiesce remains,
but it has no owner, and is called a phantom quiesce. For example, if a power outage
caused a load operation to be interrupted during the delete phase, the table spaces
for the loaded table would be left in delete pending, quiesce exclusive state. Upon
database restart, this quiesce would be an unowned (or phantom) quiesce. The
removal of a phantom quiesce requires a connection with the same user ID used
when the quiesce mode was set.

To remove a phantom quiesce:
1. Connect to the database with the same user ID used when the quiesce mode

was set.
2. Use the LIST TABLESPACES command to determine which table space is

quiesced.
3. Re-quiesce the table space using the current quiesce state. For example:

Once completed, the new connection owns the quiesce, and the load operation can
be restarted.

There is a limit of five quiescers on a table space at any given time.

A quiescer can upgrade the state of a table space from a less restrictive state to a
more restrictive one (for example, S to U, or U to X). If a user requests a state
lower than one that is already held, the original state is returned. States are not
downgraded.

Chapter 30. DB2 commands 639

RECOVER DATABASE

Restores and rolls forward a database to a particular point in time or to the end of
the logs.

Scope

In a partitioned database environment, this command can only be invoked from
the catalog partition. A database recover operation to a specified point in time
affects all database partitions that are listed in the db2nodes.cfg file. A database
recover operation to the end of logs affects the database partitions that are
specified. If no partitions are specified, it affects all database partitions that are
listed in the db2nodes.cfg file.

Authorization

To recover an existing database, one of the following:
v sysadm

v sysctrl

v sysmaint

To recover to a new database, one of the following:
v sysadm

v sysctrl

Required connection

To recover an existing database, a database connection is required. This command
automatically establishes a connection to the specified database and will release the
connection when the recover operation finishes. To recover to a new database, an
instance attachment and a database connection are required. The instance
attachment is required to create the database.

Command syntax

�� RECOVER DATABASE source-database-alias
DB

�

�
USING LOCAL TIME

TO isotime
USING UTC TIME ON ALL DBPARTITIONNUMS

END OF LOGS
On Database Partition clause

�

�
USER username

USING password

�

�
USING HISTORY FILE (history-file)

, History File clause

�

�
OVERFLOW LOG PATH (log-directory)

, Log Overflow clause

�

640 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

�
COMPRLIB lib-name COMPROPTS options-string RESTART

��

On Database Partition clause:

ON Database Partition List clause
ALL DBPARTITIONNUMS

EXCEPT Database Partition List clause

Database Partition List clause:

�

,

DBPARTITIONNUM (db-partition-number1)
DBPARTITIONNUMS TO db-partition-number2

Log Overflow clause:

�

,

log-directory ON DBPARTITIONNUM db-partition-number1

History File clause:

�

,

history-file ON DBPARTITIONNUM db-partition-number1

Command parameters

DATABASE database-alias
The alias of the database that is to be recovered.

USER username
The user name under which the database is to be recovered.

USING password
The password used to authenticate the user name. If the password is
omitted, the user is prompted to enter it.

TO

isotime The point in time to which all committed transactions are to be
recovered (including the transaction committed precisely at that
time, as well as all transactions committed previously).

This value is specified as a time stamp, a 7-part character string
that identifies a combined date and time. The format is
yyyy-mm-dd-hh.mm.ss.nnnnnn (year, month, day, hour, minutes,
seconds, microseconds). The time stamp in a backup image is
based on the local time at which the backup operation started. The
CURRENT TIMEZONE special register specifies the difference
between UTC and local time at the application server. The
difference is represented by a time duration (a decimal number in
which the first two digits represent the number of hours, the next
two digits represent the number of minutes, and the last two digits

Chapter 30. DB2 commands 641

represent the number of seconds). Subtracting CURRENT
TIMEZONE from a local time converts that local time to UTC.

USING LOCAL TIME
Specifies the point in time to which to recover. This option allows
the user to recover to a point in time that is the server’s local time
rather than UTC time. This is the default option.

Note:

1. If the user specifies a local time for recovery, all messages
returned to the user will also be in local time. All times are
converted on the server, and in partitioned database
environments, on the catalog database partition.

2. The timestamp string is converted to UTC on the server, so the
time is local to the server’s time zone, not the client’s. If the
client is in one time zone and the server in another, the server’s
local time should be used. This is different from the local time
option from the Control Center, which is local to the client.

3. If the timestamp string is close to the time change of the clock
due to daylight saving time, it is important to know if the stop
time is before or after the clock change, and specify it correctly.

USING UTC TIME
Specifies the point in time to which to recover.

END OF LOGS
Specifies that all committed transactions from all online archive log
files listed in the database configuration parameter logpath are to
be applied.

ON ALL DBPARTITIONNUMS
Specifies that transactions are to be rolled forward on all database
partitions specified in the db2nodes.cfg file. This is the default if a
database partition clause is not specified.

EXCEPT
Specifies that transactions are to be rolled forward on all database
partitions specified in the db2nodes.cfg file, except those specified in the
database partition list.

ON DBPARTITIONNUM | ON DBPARTITIONNUMS
Roll the database forward on a set of database partitions.

db-partition-number1
Specifies a database partition number in the database partition list.

TO db-partition-number2
Specifies the second database partition number, so that all database
partitions from db-partition-number1 up to and including
db-partition-number2 are included in the database partition list.

USING HISTORY FILE history-file

history-file ON DBPARTITIONNUM
In a partitioned database environment, allows a different history file

OVERFLOW LOG PATH log-directory
Specifies an alternate log path to be searched for archived logs during
recovery. Use this parameter if log files were moved to a location other
than that specified by the logpath database configuration parameter. In a
partitioned database environment, this is the (fully qualified) default

642 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

overflow log path for all database partitions. A relative overflow log path can
be specified for single-partition databases.

The OVERFLOW LOG PATH command parameter will overwrite the value
(if any) of the database configuration parameter overflowlogpath.

COMPRLIB lib-name
Indicates the name of the library to be used to perform the decompression.
The name must be a fully qualified path referring to a file on the server. If
this parameter is not specified, DB2 will attempt to use the library stored
in the image. If the backup was not compressed, the value of this
parameter will be ignored. If the specified library cannot be loaded, the
restore operation will fail.

COMPROPTS options-string
Describes a block of binary data that is passed to the initialization routine
in the decompression library. The DB2 database system passes this string
directly from the client to the server, so any issues of byte reversal or code
page conversion are handled by the decompression library. If the first
character of the data block is “@”, the remainder of the data is interpreted
by the DB2 database system as the name of a file residing on the server.
The DB2 database system will then replace the contents of string with the
contents of this file and pass the new value to the initialization routine
instead. The maximum length for the string is 1 024 bytes.

RESTART
The RESTART keyword can be used if a prior RECOVER operation was
interrupted or otherwise did not complete. Starting in V9.1, a subsequent
RECOVER command will attempt to continue the previous RECOVER, if
possible. Using the RESTART keyword forces RECOVER to start with a
fresh restore and then rollforward to the PIT specified.

log-directory ON DBPARTITIONNUM
In a partitioned database environment, allows a different log path to
override the default overflow log path for a specific database partition.

Examples

In a single-partition database environment, where the database being recovered
currently exists, and the most recent version of the history file is available in the
dftdbpath:
1. To use the latest backup image and rollforward to the end of logs using all

default values:
RECOVER DB SAMPLE

2. To recover the database to a PIT, issue the following. The most recent image
that can be used will be restored, and logs applied until the PIT is reached.

RECOVER DB SAMPLE TO 2001-12-31-04.00.00

3. To recover the database using a saved version of the history file, issue the
following. For example, if the user needs to recover to an extremely old PIT
which is no longer contained in the current history file, the user will have to
provide a version of the history file from this time period. If the user has saved
a history file from this time period, this version can be used to drive the
recover.

RECOVER DB SAMPLE TO 1999-12-31-04.00.00
USING HISTORY FILE (/home/user/old1999files/db2rhist.asc)

Chapter 30. DB2 commands 643

In a single-partition database environment, where the database being recovered
does not exist, you must use the USING HISTORY FILE clause to point to a history
file.
1. If you have not made any backups of the history file, so that the only version

available is the copy in the backup image, the recommendation is to issue a
RESTORE followed by a ROLLFORWARD. However, to use RECOVER, you
would first have to extract the history file from the image to some location, for
example /home/user/oldfiles/db2rhist.asc, and then issue this command.
(This version of the history file does not contain any information about log files
that are required for rollforward, so this history file is not useful for
RECOVER.)

RECOVER DB SAMPLE TO END OF LOGS
USING HISTORY FILE (/home/user/fromimage/db2rhist.asc)

2. If you have been making periodic or frequent backup copies of the history, the
USING HISTORY FILE clause should be used to point to this version of the
history file. If the file is /home/user/myfiles/db2rhist.asc, issue the command:

RECOVER DB SAMPLE TO PIT
USING HISTORY FILE (/home/user/myfiles/db2rhist.asc)

(In this case, you can use any copy of the history file, not necessarily the latest,
as long as it contains a backup taken before the point-in-time (PIT) requested.)

In a partitioned database environment, where the database exists on all database
partitions, and the latest history file is available on dftdbpath on all database
partitions:
1. To recover the database to a PIT on all nodes. DB2 will verify that the PIT is

reachable on all nodes before starting any restore operations.
RECOVER DB SAMPLE TO 2001-12-31-04.00.00

2. To recover the database to this PIT on all nodes. DB2 will verify that the PIT is
reachable on all nodes before starting any restore operations. The RECOVER
operation on each node is identical to a single-partition RECOVER.

RECOVER DB SAMPLE TO END OF LOGS

3. Even though the most recent version of the history file is in the dftdbpath, you
might want to use several specific history files. Unless otherwise specified, each
database partition will use the history file found locally at
/home/user/oldfiles/db2rhist.asc. The exceptions are nodes 2 and 4. Node 2
will use: /home/user/node2files/db2rhist.asc, and node 4 will use:
/home/user/node4files/db2rhist.asc.

RECOVER DB SAMPLE TO 1999-12-31-04.00.00
USING HISTORY FILE (/home/user/oldfiles/db2rhist.asc,

/home/user/node2files/db2rhist.asc ON DBPARTITIONNUM 2,
/home/user/node4files/db2rhist.asc ON DBPARTITIONNUM 4)

4. It is possible to recover a subset of nodes instead of all nodes, however a PIT
RECOVER can not be done in this case, the recover must be done to EOL.

RECOVER DB SAMPLE TO END OF LOGS ON DBPARTITIONNUMS(2 TO 4, 7, 9)

In a partitioned database environment, where the database does not exist:
1. If you have not made any backups of the history file, so that the only version

available is the copy in the backup image, the recommendation is to issue a
RESTORE followed by a ROLLFORWARD. However, to use RECOVER, you
would first have to extract the history file from the image to some location, for
example, /home/user/oldfiles/db2rhist.asc, and then issue this command.

644 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

(This version of the history file does not contain any information about log files
that are required for rollforward, so this history file is not useful for the
recover.)

RECOVER DB SAMPLE TO PIT
USING HISTORY FILE (/home/user/fromimage/db2rhist.asc)

2. If you have been making periodic or frequent backup copies of the history, the
USING HISTORY FILE clause should be used to point to this version of the
history file. If the file is /home/user/myfiles/db2rhist.asc, you can issue the
following command:

RECOVER DB SAMPLE TO END OF LOGS
USING HISTORY FILE (/home/user/myfiles/db2rhist.asc)

Usage notes
v Recovering a database might require a load recovery using tape devices. If

prompted for another tape, the user can respond with one of the following:

c Continue. Continue using the device that generated the warning
message (for example, when a new tape has been mounted).

d Device terminate. Stop using the device that generated the warning
message (for example, when there are no more tapes).

t Terminate. Terminate all devices.
v If there is a failure during the restore portion of the recover operation, you can

reissue the RECOVER DATABASE command. If the restore operation was
successful, but there was an error during the rollforward operation, you can
issue a ROLLFORWARD DATABASE command, since it is not necessary (and it
is time-consuming) to redo the entire recover operation.

v In a partitioned database environment, if there is an error during the restore
portion of the recover operation, it is possible that it is only an error on a single
database partition. Instead of reissuing the RECOVER DATABASE command,
which restores the database on all database partitions, it is more efficient to issue
a RESTORE DATABASE command for the database partition that failed,
followed by a ROLLFORWARD DATABASE command.

REDISTRIBUTE DATABASE PARTITION GROUP
Redistributes data across the database partitions in a database partition group. The
target distribution of data can be uniform (default) or user specified to meet
specific system requirements.

The REDISTRIBUTE DATABASE PARTITION GROUP command redistributes data
across all partitions in a database partition group. This affects all objects present in
the database partition group and cannot be restricted to one object alone.

Scope

This command affects all database partitions in the database partition group.

Authorization

One of the following authorities is required:
v SYSADM
v SYSCTRL
v DBADM

Chapter 30. DB2 commands 645

In addition, one of the following groups of authorizations is also required:
v DELETE, INSERT, and SELECT privileges on all tables in the database partition

group being redistributed
v DATAACCESS authority

Command syntax

�� REDISTRIBUTE DATABASE PARTITION GROUP db-partition-group �

�
NOT ROLLFORWARD RECOVERABLE

�

� UNIFORM Add/Drop DB partition
USING DISTFILE distfilename

USING TARGETMAP targetmapfilename
CONTINUE
ABORT

�

�

�

,
ONLY

TABLE (table-name)
FIRST

Redistribute options ��

Add/Drop DB partition:

�

,

ADD DBPARTITIONNUM (n)
DBPARTITIONNUMS TO m

�

�

�

,

DROP DBPARTITIONNUM (n)
DBPARTITIONNUMS TO m

Redistribute options:

INDEXING MODE REBUILD

INDEXING MODE DEFERRED
DATA BUFFER n

STATISTICS USE PROFILE

STATISTICS NONE
STOP AT local-isotime

Command parameters

DATABASE PARTITION GROUP db-partition-group
The name of the database partition group. This one-part name identifies a

646 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

database partition group described in the SYSCAT.DBPARTITIONGROUPS
catalog table. The database partition group cannot currently be undergoing
redistribution.

Note: Tables in the IBMCATGROUP and the IBMTEMPGROUP database
partition groups cannot be redistributed.

NOT ROLLFORWARD RECOVERABLE
When this option is used, the REDISTRIBUTE DATABASE PARTITION
GROUP command is not roll forward recoverable.
v Data is moved in bulk instead of by internal insert and delete

operations. This reduces the number of times that a table must be
scanned and accessed, which results in better performance.

v Log records are no longer required for each of the insert and delete
operations. This means that you no longer need to manage large
amounts of active log space and log archiving space in your system
when performing data redistribution. This is particularly beneficial if, in
the past, large active log space and storage requirements forced you to
break a single data redistribution operation into multiple smaller
redistribution tasks, which might have resulted in even more time
required to complete the end-to-end data redistribution operation.

v When using the REDISTRIBUTE DATABASE PARTITION GROUP
command with the NOT ROLLFORWARD RECOVERABLE option, the
redistribute operation uses the INDEXING MODE DEFERRED option
for tables that contain XML columns. If a table does not contain an XML
column, the redistribute operation uses the indexing mode specified
when issuing the command.

When this option is not used, extensive logging of all row movement is
performed such that the database can be recovered later in the event of
any interruptions, errors, or other business need.

UNIFORM
Specifies that the data is uniformly distributed across hash partitions (that
is, every hash partition is assumed to have the same number of rows), but
the same number of hash partitions do not map to each database partition.
After redistribution, all database partitions in the database partition group
have approximately the same number of hash partitions.

USING DISTFILE distfilename
If the distribution of distribution key values is skewed, use this option to
achieve a uniform redistribution of data across the database partitions of a
database partition group.

Use the distfilename to indicate the current distribution of data across the
32 768 hash partitions.

Use row counts, byte volumes, or any other measure to indicate the
amount of data represented by each hash partition. The utility reads the
integer value associated with a partition as the weight of that partition.
When a distfilename is specified, the utility generates a target distribution
map that it uses to redistribute the data across the database partitions in
the database partition group as uniformly as possible. After the
redistribution, the weight of each database partition in the database
partition group is approximately the same (the weight of a database
partition is the sum of the weights of all hash partitions that map to that
database partition).

For example, the input distribution file might contain entries as follows:

Chapter 30. DB2 commands 647

10223
1345
112000
0
100
...

In the example, hash partition 2 has a weight of 112000, and partition 3
(with a weight of 0) has no data mapping to it at all.

The distfilename should contain 32 768 positive integer values in character
format. The sum of the values should be less than or equal to
4 294 967 295.

USING TARGETMAP targetmapfilename
The file specified in targetmapfilename is used as the target distribution
map. Data redistribution is done according to this file.

If a database partition, included in the target map, is not in the database
partition group, an error is returned. Issue ALTER DATABASE PARTITION
GROUP ADD DBPARTITIONNUM statement before running
REDISTRIBUTE DATABASE PARTITION GROUP command.

If a database partition, excluded from the target map, is in the database
partition group, that database partition will not be included in the
partitioning. Such a database partition can be dropped using ALTER
DATABASE PARTITION GROUP DROP DBPARTITIONNUM statement
either before or after the REDISTRIBUTE DATABASE PARTITION GROUP
command.

CONTINUE
Continues a previously failed or stopped REDISTRIBUTE DATABASE
PARTITION GROUP operation. If none occurred, an error is returned.

ABORT
Aborts a previously failed or stopped REDISTRIBUTE DATABASE
PARTITION GROUP operation. If none occurred, an error is returned.

ADD

DBPARTITIONNUM n

TO m

n or n TO m specifies a list or lists of database partition numbers
which are to be added into the database partition group. Any
specified partition must not already be defined in the database
partition group (SQLSTATE 42728). This is equivalent to executing
the ALTER DATABASE PARTITION GROUP statement with ADD
DBPARTITIONNUM clause specified.

DBPARTITIONNUMS n

TO m

n or n TO m specifies a list or lists of database partition numbers
which are to be added into the database partition group. Any
specified partition must not already be defined in the database
partition group (SQLSTATE 42728). This is equivalent to executing
the ALTER DATABASE PARTITION GROUP statement with ADD
DBPARTITIONNUM clause specified.

648 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Note: When a database partition is added using this option,
containers for table spaces are based on the containers of the
corresponding table space on the lowest numbered existing
partition in the database partition group. If this would result in a
naming conflict among containers, which could happen if the new
partitions are on the same physical machine as existing containers,
this option should not be used. Instead, the ALTER DATABASE
PARTITION GROUP statement should be used with the WITHOUT
TABLESPACES option prior to issuing the REDISTRIBUTE
DATABASE PARTITION GROUP command. Table space containers
can then be created manually specifying appropriate names.

DROP

DBPARTITIONNUM n

TO m

n or n TO m specifies a list or lists of database partition numbers
which are to be dropped from the database partition group. Any
specified partition must already be defined in the database
partition group (SQLSTATE 42729). This is equivalent to executing
the ALTER DATABASE PARTITION GROUP statement with the
DROP DBPARTITIONNUM clause specified.

DBPARTITIONNUMS n

TO m

n or n TO m specifies a list or lists of database partition numbers
which are to be dropped from the database partition group. Any
specified partition must already be defined in the database
partition group (SQLSTATE 42729). This is equivalent to executing
the ALTER DATABASE PARTITION GROUP statement with the
DROP DBPARTITIONNUM clause specified.

TABLE tablename
Specifies a table order for redistribution processing.

ONLY If the table order is followed by the ONLY keyword (which is the
default), then, only the specified tables will be redistributed. The
remaining tables can be later processed by subsequent
REDISTRIBUTE CONTINUE commands. This is the default.

FIRST If the table order is followed by the FIRST keyword, then, the
specified tables will be redistributed with the given order and the
remaining tables in the database partition group will be
redistributed with random order.

INDEXING MODE
This parameter specifies how indexes are maintained during redistribution
when the NOT ROLLFORWARD RECOVERABLE option is specified.
Valid values are:

REBUILD
Indexes will be rebuilt from scratch. Indexes do not have to be
valid to use this option. As a result of using this option, index
pages will be clustered together on disk.

DEFERRED
Redistribute will not attempt to maintain any indexes. Indexes will

Chapter 30. DB2 commands 649

be marked as needing a refresh. The first access to such indexes
may force a rebuild, or indexes may be rebuilt when the database
is restarted.

Note: For non-MDC tables, if there are invalid indexes on the
tables, the REDISTRIBUTE DATABASE PARTITION GROUP
command automatically rebuilds them if you do not specify
INDEXING MODE DEFERRED. For an MDC table, even if you
specify INDEXING MODE DEFERRED, a composite index that is
invalid is rebuilt before table redistribution begins because the
utility needs the composite index to process an MDC table.

DATA BUFFER n
Specifies the number of 4 KB pages to use as buffered space for
transferring data within the utility. If the value specified is lower than the
minimum supported value, the minimum value is used and no warning is
returned. If a DATA BUFFER value is not specified, an intelligent default is
calculated by the utility at runtime at the beginning of processing each
table. Specifically, the default is to use 50% of the memory available in the
utility heap at the time redistribution of the table begins and to take into
account various table properties as well.

This memory is allocated directly from the utility heap, whose size can be
modified through the util_heap_sz database configuration parameter.
Beginning in version 9.5, the value of the DATA BUFFER option of the
REDISTRIBUTE DATABASE PARTITION GROUP command can
temporarily exceed util_heap_sz if more memory is available in the
system.

STOP AT local-isotime
When this option is specified, before beginning data redistribution for each
table, the local-isotime is compared with the current local timestamp. If the
specified local-isotime is equal to or earlier than the current local timestamp,
the utility stops with a warning message. Data redistribution processing of
tables in progress at the stop time will complete without interruption. No
new data redistribution processing of tables begins. The unprocessed tables
can be redistributed using the CONTINUE option. This local-isotime value
is specified as a time stamp, a 7-part character string that identifies a
combined date and time. The format is yyyy-mm-dd-hh.mm.ss.nnnnnn (year,
month, day, hour, minutes, seconds, microseconds) expressed in local time.

STATISTICS
This option specifies that the utility should collect statistics for the tables
that have a statistics profile. Specifying this option is more efficient than
separately issuing the RUNSTATS command after the data redistribution is
completed.

USE PROFILE
Statistics will be collected for the tables with a statistics profile. For
tables without a statistics profile, nothing will be done. This is the
default.

NONE
Statistics will not be collected for tables.

Examples: Redistribute steps

You may want to add or drop node from node group. Following is the step for
adding new node to a node group and redistribute the data. Added database

650 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

partition is not in the distribution map, but the containers for the table spaces in
the database partition group have been created; the database partition is added to
the distribution map when a redistribute database partition group operation has
completed successfully.
1. Identify the nodegroups that will require redistribution. In this document, the

node group that needs to be redistributed is “sampleNodegrp”.
2. Identify objects that should be disabled or removed before redistribute .

a. Replicate MQTs: This type of MQT is not supported as part of the
REDISTRIBUTE utility. They need to be dropped before running
redistribute and recreated afterward.
SELECT tabschema, tabname

FROM syscat.tables
WHERE partition_mode = 'R'

b. Write-to-table event monitors: You should disable any automatically
activated write-to-table event monitors that have a table that resides in the
database partition group to be redistributed.
SELECT distinct evmonname

FROM syscat.eventtables E
JOIN syscat.tables T on T.tabname = E.tabname

AND T.tabschema = E.tabschema
JOIN syscat.tablespaces S on S.tbspace = T.tbspace

AND S.ngname = 'sampleNodegrp'

c. Explain tables: It is recommended to create the explain tables in a single
partition nodegroup. However, if they are defined in a nodegroup that
requires redistribution, you may consider dropping them before the
redistribute and redefining them once redistribute is complete, if the data
generated to date does not need to be maintained.

d. Table access mode and load state: Ensure that all tables in the node groups
to be redistributed are in full access mode and have no load pending or
load in progress state.
SELECT DISTINCT TRIM(T.OWNER) || \'.\' || TRIM(T.TABNAME) AS NAME, T.ACCESS_MODE, A.LOAD_STATUS
FROM SYSCAT.TABLES T, SYSCAT.DBPARTITIONGROUPS N, SYSIBMADM.ADMINTABINFO A
WHERE T.PMAP_ID = N.PMAP_ID
AND A.TABSCHEMA = T.OWNER
AND A.TABNAME = T.TABNAME
AND N.DBPGNAME = 'sampleNodegrp'
AND (T.ACCESS_MODE <> 'F' OR A.LOAD_STATUS IS NOT NULL)

e. Statistics profiles: Table statistics can be updated as part of the
redistribution process if a statistics profile is defined for the table. Having
the REDISTRIBUTE utility update a table’s statistics reduces I/O as all the
data is scanned for the redistribute and no additional scan of the data is
needed for RUNSTATS.
RUNSTATS on table schema.table

USE PROFILE runstats_profile
SET PROFILE ONLY

3. Review the database configuration. util_heap_sz is critical to the data
movement processing between database partitions – allocate as much memory
as possible to util_heap_sz for the duration of the redistribution. Sufficient
sortheap is required, if index rebuild is done as part of the redistribution.
Increase util_heap_sz and sortheap as necessary to improve redistribute
performance.

4. Retrieve the database configuration settings to be used for the new database
partitions. When adding database partitions, a default database configuration
is used. As a result, it’s important to update the database configuration on the
new nodes before the REDISTRIBUTE command is issued to ensure that the
configuration is balanced across the entire warehouse.

Chapter 30. DB2 commands 651

|
|
|
|
|
|
|

SELECT name,
CASE WHEN deferred_value_flags = 'AUTOMATIC'

THEN deferred_value_flags
ELSE substr(deferred_value,1,20)
END

AS deferred_value
FROM sysibmadm.dbcfg
WHERE dbpartitionnum = existing-node

AND deferred_value != ''
AND name NOT IN ('hadr_local_host','hadr_local_svc','hadr_peer_window',

'hadr_remote_host','hadr_remote_inst','hadr_remote_svc',
'hadr_syncmode','hadr_timeout','backup_pending','codepage',
'codeset','collate_info','country','database_consistent',
'database_level','hadr_db_role','log_retain_status',
'loghead','logpath','multipage_alloc','numsegs','pagesize',
'release','restore_pending','restrict_access',
'rollfwd_pending','territory','user_exit_status',
'number_compat','varchar2_compat','database_memory')

5. Backup the database (or the table spaces in nodegroups that will be
redistributed), before starting the redistribution process to ensure a recent
recovery point.

6. Define the new data BCUs in DB2 by updating the db2nodes.cfg file and
adding the new data BCU database partition specifications and define the new
database partitions to DB2 using the ADD NODE WITHOUT TABLESPACES
command.
db2start nodenum x export DB2NODE=x
db2 add node without tablespaces
db2stop nodenum x

Note: If it is not the first logical port on the data BCU, then execute a start
and stop of the first logical port number before and after the above sequence
of commands for subsequent logical ports.

7. Define system temporary table space containers on the newly defined
database partitions.
ALTER TABLESPACE tablespace_name

ADD container_information
ON dbpartitionnums (x to y)

8. Add the new logical database partitions to the database partition groups that
span the data BCUs.
ALTER DATABASE PARTITION GROUP partition_group_name

ADD dbpartitionnums (x to y)
WITHOUT TABLESPACES

9. Define permanent data table space containers on the newly defined database
partitions.
ALTER TABLESPACE tablespace_name

ADD container_information
ON dbpartitionnums (x to y)

10. Apply the database configuration settings retrieved in step 4 to the new
database partitions (or issue a single UPDATE DB CFG command against all
database partitions using the new DB2 9.5 single view of configuration
support).

11. Capture the definition of and then drop any replicated MQTs existing in the
database partition groups to be redistributed.
db2look -d dbname -e -z

schema -t replicated_MQT_table_names
-o repMQTs.clp

12. Disable any write-to-table event monitors that exist in the database partition
groups to be redistributed.

652 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

SET EVENT MONITOR monitor_name STATE 0

13. Run the REDISTRIBUTE utility to redistribute uniformly across all database
partitions. Following shows the simple redistribute command:
REDISTRIBUTE DATABASE PARTITION GROUP sampleNodegrp

NOT ROLLFORWARD RECOVERABLE uniform;

User also should consider specifying a table list as input to the REDISTRIBUTE
command to enforce the order that the tables will be processed. The
REDISTRIBUTE utility will move the data (compressed and compacted).
Optionally, indexes will be rebuilt and statistics updated if statistics profiles are
defined. Therefore instead of previous command, the following script can be run:
REDISTRIBUTE DATABASE PARTITION GROUP sampleNodegrp

NOT ROLLFORWARD RECOVERABLE uniform
TABLE (tab1, tab2,...) FIRST;

Consequences of using the NOT ROLLFORWARD
RECOVERABLE option

When the REDISTRIBUTE DATABASE PARTITION GROUP command is issued
and the NOT ROLLFORWARD RECOVERABLE option is specified, a minimal
logging strategy is used that minimizes the writing of log records for each moved
row. This type of logging is important for the usability of the redistribute operation
since an approach that fully logs all data movement could, for large systems,
require an impractical amount of active and permanent log space and would
generally have poorer performance characteristics. It is important, however, for
users to be aware that as a result of this minimal logging model, the
REDISTRIBUTE DATABASE PARTITION GROUP command is not rollforward
recoverable. This means that any operation that results in the database rolling
forward through a redistribute operation results in all tables touched by the
redistribution operation being left in the UNAVAILABLE state. Such tables can
only be dropped, which means there is no way to recover the data in these tables.
This is why, for recoverable databases, the REDISTRIBUTE DATABASE
PARTITION GROUP utility when issued with the NOT ROLLFORWARD
RECOVERABLE option puts all table spaces it touches into the BACKUP
PENDING state, forcing the user to backup all redistributed table spaces at the end
of a successful redistribute operation. With a backup taken after the redistribution
operation, the user should not have a need to rollforward through the redistribute
operation itself.

There is one very important consequence of the redistribute utility’s lack of
rollforward recoverability of which the user should be aware: If the user chooses to
allow updates to be made against tables in the database (even tables outside the
database partition group being redistributed) while the redistribute operation is
running, including the period at the end of redistribute where the table spaces
touched by redistribute are being backed up by the user, such updates can be lost
in the event of a serious failure, for example, a database container is destroyed.
The reason that such updates can be lost is that the redistribute operation is not
rollforward recoverable. If it is necessary to restore the database from a backup
taken prior to the redistribution operation, then it will not be possible to
rollforward through the logs in order to replay the updates that were made during
the redistribution operation without also rolling forward through the redistribute
which, as was described above, leaves the redistributed tables in the
UNAVAILABLE state. Thus, the only thing that can be done in this situation is to
restore the database from the backup taken prior to redistribute without rolling
forward. Then the redistribute operation can be performed again. Unfortunately, all
the updates that occurred during the original redistribute operation are lost.

Chapter 30. DB2 commands 653

The importance of this point cannot be overemphasized. In order to be certain that
there will be no lost updates during a redistribution operation, one of the
following must be true:
v The user avoids making updates during the operation of the REDISTRIBUTE

DATABASE PARTITION GROUP command, including the period after the
command finishes where the affected table spaces are being backed up.

v Updates that are applied during the redistribute operation come from a
repeatable source, meaning that they can be applied again at any time. For
example, if the source of updates is data that is stored in a file and the updates
are applied during batch processing, then clearly even in the event of a failure
requiring a database restore, the updates would not be lost since they could
simply be applied again at any time.

With respect to allowing updates to the database during the redistribution
operation, the user must decide whether such updates are appropriate or not for
their scenario based on whether or not the updates can be repeated after a
database restore, if necessary.

Note: Not every failure during operation of the REDISTRIBUTE DATABASE
PARTITION GROUP command results in this problem. In fact, most do not. The
REDISTRIBUTE DATABASE PARTITION GROUP command is fully restartable,
meaning that if the utility fails in the middle of its work, it can be easily continued
or aborted with the CONTINUE or ABORT options. The failures mentioned above
are failures that require the user to restore from the backup taken prior to the
redistribute operation.

Usage notes
v When the NOT ROLLFORWARD RECOVERABLE option is specified and the

database is a recoverable database, the first time the utility accesses a table
space, it is put into the BACKUP PENDING state. All the tables in that table
space will become read-only until the table space is backed-up, which can only
be done when all tables in the table space have finished being redistributed.

v When a redistribution operation is running, it produces an event log file
containing general information about the redistribution operation and
information such as the starting and ending time of each table processed. This
event log file is written to:
– The homeinst/sqllib/redist directory on Linux and UNIX operating systems,

using the following format for subdirectories and file name:
database-name.database-partition-group-name.timestamp.log.

– The DB2INSTPROF\instance\redist directory on Windows operating systems
(where DB2INSTPROF is the value of the DB2INSTPROF registry variable),
using the following format for subdirectories and file name:
database-name.database-partition-group-name.timestamp.log.

– The time stamp value is the time when the command was issued.
v This utility performs intermittent COMMITs during processing.
v All packages having a dependency on a table that has undergone redistribution

are invalidated. It is recommended to explicitly rebind such packages after the
redistribute database partition group operation has completed. Explicit rebinding
eliminates the initial delay in the execution of the first SQL request for the
invalid package. The redistribute message file contains a list of all the tables that
have undergone redistribution.

v By default, the redistribute utility will update the statistics for those tables that
have a statistics profile. For the tables without a statistics profile, it is

654 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

recommended that you separately update the table and index statistics for these
tables by calling the db2Runstats API or by issuing the RUNSTATS command
after the redistribute operation has completed.

v Database partition groups containing replicated materialized query tables or
tables defined with DATA CAPTURE CHANGES cannot be redistributed.

v Redistribution is not allowed if there are user temporary table spaces with
existing declared temporary tables or created temporary tables in the database
partition group.

v Options such as INDEXING MODE are ignored on tables, on which they do not
apply, without warning. For example, INDEXING MODE will be ignored on
tables without indexes.

v Before starting a redistribute operation, ensure there are no tables in the Load
Pending state. Table states can be checked by using the LOAD QUERY
command.

v The REDISTRIBUTE DATABASE PARTITION GROUP command might fail
(SQLSTATE 55071) if an add database partition server request is either pending
or in progress. This command might also fail (SQLSTATE 55077) if a new
database partition server is added online to the instance and not all applications
are aware of the new database partition server.

Compatibilities

Tables containing XML columns that use the DB2 Version 9.5 or earlier XML record
format cannot be redistributed. Use the ADMIN_MOVE_TABLE stored procedure
to migrate the table to the new format.

For compatibility with versions earlier than Version 8:
v The keyword NODEGROUP can be substituted for DATABASE PARTITION

GROUP.

REDISTRIBUTE DATABASE PARTITION GROUP

The REDISTRIBUTE DATABASE PARTITION GROUP command redistributes data
across all partitions in a database partition group. This affects all objects present in
the database partition group and cannot be restricted to one object alone.

Scope

This command affects all database partitions in the database partition group.

Authorization

One of the following authorities is required:
v SYSADM
v SYSCTRL
v DBADM

In addition, one of the following groups of authorizations is also required:
v DELETE, INSERT, and SELECT privileges on all tables in the database partition

group being redistributed
v DATAACCESS authority

Chapter 30. DB2 commands 655

Command syntax

�� REDISTRIBUTE DATABASE PARTITION GROUP db-partition-group �

�
NOT ROLLFORWARD RECOVERABLE

�

� UNIFORM Add/Drop DB partition
USING DISTFILE distfilename

USING TARGETMAP targetmapfilename
CONTINUE
ABORT

�

�

�

,
ONLY

TABLE (table-name)
FIRST

Redistribute options ��

Add/Drop DB partition:

�

,

ADD DBPARTITIONNUM (n)
DBPARTITIONNUMS TO m

�

�

�

,

DROP DBPARTITIONNUM (n)
DBPARTITIONNUMS TO m

Redistribute options:

INDEXING MODE REBUILD

INDEXING MODE DEFERRED
DATA BUFFER n

STATISTICS USE PROFILE

STATISTICS NONE
STOP AT local-isotime

Command parameters

DATABASE PARTITION GROUP db-partition-group
The name of the database partition group. This one-part name identifies a
database partition group described in the SYSCAT.DBPARTITIONGROUPS
catalog table. The database partition group cannot currently be undergoing
redistribution.

Note: Tables in the IBMCATGROUP and the IBMTEMPGROUP database
partition groups cannot be redistributed.

656 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

NOT ROLLFORWARD RECOVERABLE
When this option is used, the REDISTRIBUTE DATABASE PARTITION
GROUP command is not roll forward recoverable.
v Data is moved in bulk instead of by internal insert and delete

operations. This reduces the number of times that a table must be
scanned and accessed, which results in better performance.

v Log records are no longer required for each of the insert and delete
operations. This means that you no longer need to manage large
amounts of active log space and log archiving space in your system
when performing data redistribution. This is particularly beneficial if, in
the past, large active log space and storage requirements forced you to
break a single data redistribution operation into multiple smaller
redistribution tasks, which might have resulted in even more time
required to complete the end-to-end data redistribution operation.

v When using the REDISTRIBUTE DATABASE PARTITION GROUP
command with the NOT ROLLFORWARD RECOVERABLE option, the
redistribute operation uses the INDEXING MODE DEFERRED option
for tables that contain XML columns. If a table does not contain an XML
column, the redistribute operation uses the indexing mode specified
when issuing the command.

When this option is not used, extensive logging of all row movement is
performed such that the database can be recovered later in the event of
any interruptions, errors, or other business need.

UNIFORM
Specifies that the data is uniformly distributed across hash partitions (that
is, every hash partition is assumed to have the same number of rows), but
the same number of hash partitions do not map to each database partition.
After redistribution, all database partitions in the database partition group
have approximately the same number of hash partitions.

USING DISTFILE distfilename
If the distribution of distribution key values is skewed, use this option to
achieve a uniform redistribution of data across the database partitions of a
database partition group.

Use the distfilename to indicate the current distribution of data across the
32 768 hash partitions.

Use row counts, byte volumes, or any other measure to indicate the
amount of data represented by each hash partition. The utility reads the
integer value associated with a partition as the weight of that partition.
When a distfilename is specified, the utility generates a target distribution
map that it uses to redistribute the data across the database partitions in
the database partition group as uniformly as possible. After the
redistribution, the weight of each database partition in the database
partition group is approximately the same (the weight of a database
partition is the sum of the weights of all hash partitions that map to that
database partition).

For example, the input distribution file might contain entries as follows:
10223
1345
112000
0
100
...

Chapter 30. DB2 commands 657

In the example, hash partition 2 has a weight of 112000, and partition 3
(with a weight of 0) has no data mapping to it at all.

The distfilename should contain 32 768 positive integer values in character
format. The sum of the values should be less than or equal to
4 294 967 295.

USING TARGETMAP targetmapfilename
The file specified in targetmapfilename is used as the target distribution
map. Data redistribution is done according to this file.

If a database partition, included in the target map, is not in the database
partition group, an error is returned. Issue ALTER DATABASE PARTITION
GROUP ADD DBPARTITIONNUM statement before running
REDISTRIBUTE DATABASE PARTITION GROUP command.

If a database partition, excluded from the target map, is in the database
partition group, that database partition will not be included in the
partitioning. Such a database partition can be dropped using ALTER
DATABASE PARTITION GROUP DROP DBPARTITIONNUM statement
either before or after the REDISTRIBUTE DATABASE PARTITION GROUP
command.

CONTINUE
Continues a previously failed or stopped REDISTRIBUTE DATABASE
PARTITION GROUP operation. If none occurred, an error is returned.

ABORT
Aborts a previously failed or stopped REDISTRIBUTE DATABASE
PARTITION GROUP operation. If none occurred, an error is returned.

ADD

DBPARTITIONNUM n

TO m

n or n TO m specifies a list or lists of database partition numbers
which are to be added into the database partition group. Any
specified partition must not already be defined in the database
partition group (SQLSTATE 42728). This is equivalent to executing
the ALTER DATABASE PARTITION GROUP statement with ADD
DBPARTITIONNUM clause specified.

DBPARTITIONNUMS n

TO m

n or n TO m specifies a list or lists of database partition numbers
which are to be added into the database partition group. Any
specified partition must not already be defined in the database
partition group (SQLSTATE 42728). This is equivalent to executing
the ALTER DATABASE PARTITION GROUP statement with ADD
DBPARTITIONNUM clause specified.

Note: When a database partition is added using this option,
containers for table spaces are based on the containers of the
corresponding table space on the lowest numbered existing
partition in the database partition group. If this would result in a
naming conflict among containers, which could happen if the new
partitions are on the same physical machine as existing containers,

658 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

this option should not be used. Instead, the ALTER DATABASE
PARTITION GROUP statement should be used with the WITHOUT
TABLESPACES option prior to issuing the REDISTRIBUTE
DATABASE PARTITION GROUP command. Table space containers
can then be created manually specifying appropriate names.

DROP

DBPARTITIONNUM n

TO m

n or n TO m specifies a list or lists of database partition numbers
which are to be dropped from the database partition group. Any
specified partition must already be defined in the database
partition group (SQLSTATE 42729). This is equivalent to executing
the ALTER DATABASE PARTITION GROUP statement with the
DROP DBPARTITIONNUM clause specified.

DBPARTITIONNUMS n

TO m

n or n TO m specifies a list or lists of database partition numbers
which are to be dropped from the database partition group. Any
specified partition must already be defined in the database
partition group (SQLSTATE 42729). This is equivalent to executing
the ALTER DATABASE PARTITION GROUP statement with the
DROP DBPARTITIONNUM clause specified.

TABLE tablename
Specifies a table order for redistribution processing.

ONLY If the table order is followed by the ONLY keyword (which is the
default), then, only the specified tables will be redistributed. The
remaining tables can be later processed by subsequent
REDISTRIBUTE CONTINUE commands. This is the default.

FIRST If the table order is followed by the FIRST keyword, then, the
specified tables will be redistributed with the given order and the
remaining tables in the database partition group will be
redistributed with random order.

INDEXING MODE
This parameter specifies how indexes are maintained during redistribution
when the NOT ROLLFORWARD RECOVERABLE option is specified.
Valid values are:

REBUILD
Indexes will be rebuilt from scratch. Indexes do not have to be
valid to use this option. As a result of using this option, index
pages will be clustered together on disk.

DEFERRED
Redistribute will not attempt to maintain any indexes. Indexes will
be marked as needing a refresh. The first access to such indexes
may force a rebuild, or indexes may be rebuilt when the database
is restarted.

Note: For non-MDC tables, if there are invalid indexes on the
tables, the REDISTRIBUTE DATABASE PARTITION GROUP

Chapter 30. DB2 commands 659

command automatically rebuilds them if you do not specify
INDEXING MODE DEFERRED. For an MDC table, even if you
specify INDEXING MODE DEFERRED, a composite index that is
invalid is rebuilt before table redistribution begins because the
utility needs the composite index to process an MDC table.

DATA BUFFER n
Specifies the number of 4 KB pages to use as buffered space for
transferring data within the utility. If the value specified is lower than the
minimum supported value, the minimum value is used and no warning is
returned. If a DATA BUFFER value is not specified, an intelligent default is
calculated by the utility at runtime at the beginning of processing each
table. Specifically, the default is to use 50% of the memory available in the
utility heap at the time redistribution of the table begins and to take into
account various table properties as well.

This memory is allocated directly from the utility heap, whose size can be
modified through the util_heap_sz database configuration parameter.
Beginning in version 9.5, the value of the DATA BUFFER option of the
REDISTRIBUTE DATABASE PARTITION GROUP command can
temporarily exceed util_heap_sz if more memory is available in the
system.

STOP AT local-isotime
When this option is specified, before beginning data redistribution for each
table, the local-isotime is compared with the current local timestamp. If the
specified local-isotime is equal to or earlier than the current local timestamp,
the utility stops with a warning message. Data redistribution processing of
tables in progress at the stop time will complete without interruption. No
new data redistribution processing of tables begins. The unprocessed tables
can be redistributed using the CONTINUE option. This local-isotime value
is specified as a time stamp, a 7-part character string that identifies a
combined date and time. The format is yyyy-mm-dd-hh.mm.ss.nnnnnn (year,
month, day, hour, minutes, seconds, microseconds) expressed in local time.

STATISTICS
This option specifies that the utility should collect statistics for the tables
that have a statistics profile. Specifying this option is more efficient than
separately issuing the RUNSTATS command after the data redistribution is
completed.

USE PROFILE
Statistics will be collected for the tables with a statistics profile. For
tables without a statistics profile, nothing will be done. This is the
default.

NONE
Statistics will not be collected for tables.

Examples: Redistribute steps

You may want to add or drop node from node group. Following is the step for
adding new node to a node group and redistribute the data. Added database
partition is not in the distribution map, but the containers for the table spaces in
the database partition group have been created; the database partition is added to
the distribution map when a redistribute database partition group operation has
completed successfully.
1. Identify the nodegroups that will require redistribution. In this document, the

node group that needs to be redistributed is “sampleNodegrp”.

660 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

2. Identify objects that should be disabled or removed before redistribute .
a. Replicate MQTs: This type of MQT is not supported as part of the

REDISTRIBUTE utility. They need to be dropped before running
redistribute and recreated afterward.
SELECT tabschema, tabname

FROM syscat.tables
WHERE partition_mode = 'R'

b. Write-to-table event monitors: You should disable any automatically
activated write-to-table event monitors that have a table that resides in the
database partition group to be redistributed.
SELECT distinct evmonname

FROM syscat.eventtables E
JOIN syscat.tables T on T.tabname = E.tabname

AND T.tabschema = E.tabschema
JOIN syscat.tablespaces S on S.tbspace = T.tbspace

AND S.ngname = 'sampleNodegrp'

c. Explain tables: It is recommended to create the explain tables in a single
partition nodegroup. However, if they are defined in a nodegroup that
requires redistribution, you may consider dropping them before the
redistribute and redefining them once redistribute is complete, if the data
generated to date does not need to be maintained.

d. Table access mode and load state: Ensure that all tables in the node groups
to be redistributed are in full access mode and have no load pending or
load in progress state.
SELECT DISTINCT TRIM(T.OWNER) || \'.\' || TRIM(T.TABNAME) AS NAME, T.ACCESS_MODE, A.LOAD_STATUS
FROM SYSCAT.TABLES T, SYSCAT.DBPARTITIONGROUPS N, SYSIBMADM.ADMINTABINFO A
WHERE T.PMAP_ID = N.PMAP_ID
AND A.TABSCHEMA = T.OWNER
AND A.TABNAME = T.TABNAME
AND N.DBPGNAME = 'sampleNodegrp'
AND (T.ACCESS_MODE <> 'F' OR A.LOAD_STATUS IS NOT NULL)

e. Statistics profiles: Table statistics can be updated as part of the
redistribution process if a statistics profile is defined for the table. Having
the REDISTRIBUTE utility update a table’s statistics reduces I/O as all the
data is scanned for the redistribute and no additional scan of the data is
needed for RUNSTATS.
RUNSTATS on table schema.table

USE PROFILE runstats_profile
SET PROFILE ONLY

3. Review the database configuration. util_heap_sz is critical to the data
movement processing between database partitions – allocate as much memory
as possible to util_heap_sz for the duration of the redistribution. Sufficient
sortheap is required, if index rebuild is done as part of the redistribution.
Increase util_heap_sz and sortheap as necessary to improve redistribute
performance.

4. Retrieve the database configuration settings to be used for the new database
partitions. When adding database partitions, a default database configuration
is used. As a result, it’s important to update the database configuration on the
new nodes before the REDISTRIBUTE command is issued to ensure that the
configuration is balanced across the entire warehouse.
SELECT name,

CASE WHEN deferred_value_flags = 'AUTOMATIC'
THEN deferred_value_flags
ELSE substr(deferred_value,1,20)
END

AS deferred_value
FROM sysibmadm.dbcfg

Chapter 30. DB2 commands 661

|
|
|
|
|
|
|

WHERE dbpartitionnum = existing-node
AND deferred_value != ''
AND name NOT IN ('hadr_local_host','hadr_local_svc','hadr_peer_window',

'hadr_remote_host','hadr_remote_inst','hadr_remote_svc',
'hadr_syncmode','hadr_timeout','backup_pending','codepage',
'codeset','collate_info','country','database_consistent',
'database_level','hadr_db_role','log_retain_status',
'loghead','logpath','multipage_alloc','numsegs','pagesize',
'release','restore_pending','restrict_access',
'rollfwd_pending','territory','user_exit_status',
'number_compat','varchar2_compat','database_memory')

5. Backup the database (or the table spaces in nodegroups that will be
redistributed), before starting the redistribution process to ensure a recent
recovery point.

6. Define the new data BCUs in DB2 by updating the db2nodes.cfg file and
adding the new data BCU database partition specifications and define the new
database partitions to DB2 using the ADD NODE WITHOUT TABLESPACES
command.
db2start nodenum x export DB2NODE=x
db2 add node without tablespaces
db2stop nodenum x

Note: If it is not the first logical port on the data BCU, then execute a start
and stop of the first logical port number before and after the above sequence
of commands for subsequent logical ports.

7. Define system temporary table space containers on the newly defined
database partitions.
ALTER TABLESPACE tablespace_name

ADD container_information
ON dbpartitionnums (x to y)

8. Add the new logical database partitions to the database partition groups that
span the data BCUs.
ALTER DATABASE PARTITION GROUP partition_group_name

ADD dbpartitionnums (x to y)
WITHOUT TABLESPACES

9. Define permanent data table space containers on the newly defined database
partitions.
ALTER TABLESPACE tablespace_name

ADD container_information
ON dbpartitionnums (x to y)

10. Apply the database configuration settings retrieved in step 4 to the new
database partitions (or issue a single UPDATE DB CFG command against all
database partitions using the new DB2 9.5 single view of configuration
support).

11. Capture the definition of and then drop any replicated MQTs existing in the
database partition groups to be redistributed.
db2look -d dbname -e -z

schema -t replicated_MQT_table_names
-o repMQTs.clp

12. Disable any write-to-table event monitors that exist in the database partition
groups to be redistributed.
SET EVENT MONITOR monitor_name STATE 0

13. Run the REDISTRIBUTE utility to redistribute uniformly across all database
partitions. Following shows the simple redistribute command:
REDISTRIBUTE DATABASE PARTITION GROUP sampleNodegrp

NOT ROLLFORWARD RECOVERABLE uniform;

662 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

User also should consider specifying a table list as input to the REDISTRIBUTE
command to enforce the order that the tables will be processed. The
REDISTRIBUTE utility will move the data (compressed and compacted).
Optionally, indexes will be rebuilt and statistics updated if statistics profiles are
defined. Therefore instead of previous command, the following script can be run:
REDISTRIBUTE DATABASE PARTITION GROUP sampleNodegrp

NOT ROLLFORWARD RECOVERABLE uniform
TABLE (tab1, tab2,...) FIRST;

Consequences of using the NOT ROLLFORWARD RECOVERABLE
option

When the REDISTRIBUTE DATABASE PARTITION GROUP command is issued
and the NOT ROLLFORWARD RECOVERABLE option is specified, a minimal
logging strategy is used that minimizes the writing of log records for each moved
row. This type of logging is important for the usability of the redistribute operation
since an approach that fully logs all data movement could, for large systems,
require an impractical amount of active and permanent log space and would
generally have poorer performance characteristics. It is important, however, for
users to be aware that as a result of this minimal logging model, the
REDISTRIBUTE DATABASE PARTITION GROUP command is not rollforward
recoverable. This means that any operation that results in the database rolling
forward through a redistribute operation results in all tables touched by the
redistribution operation being left in the UNAVAILABLE state. Such tables can
only be dropped, which means there is no way to recover the data in these tables.
This is why, for recoverable databases, the REDISTRIBUTE DATABASE
PARTITION GROUP utility when issued with the NOT ROLLFORWARD
RECOVERABLE option puts all table spaces it touches into the BACKUP
PENDING state, forcing the user to backup all redistributed table spaces at the end
of a successful redistribute operation. With a backup taken after the redistribution
operation, the user should not have a need to rollforward through the redistribute
operation itself.

There is one very important consequence of the redistribute utility’s lack of
rollforward recoverability of which the user should be aware: If the user chooses to
allow updates to be made against tables in the database (even tables outside the
database partition group being redistributed) while the redistribute operation is
running, including the period at the end of redistribute where the table spaces
touched by redistribute are being backed up by the user, such updates can be lost
in the event of a serious failure, for example, a database container is destroyed.
The reason that such updates can be lost is that the redistribute operation is not
rollforward recoverable. If it is necessary to restore the database from a backup
taken prior to the redistribution operation, then it will not be possible to
rollforward through the logs in order to replay the updates that were made during
the redistribution operation without also rolling forward through the redistribute
which, as was described above, leaves the redistributed tables in the
UNAVAILABLE state. Thus, the only thing that can be done in this situation is to
restore the database from the backup taken prior to redistribute without rolling
forward. Then the redistribute operation can be performed again. Unfortunately, all
the updates that occurred during the original redistribute operation are lost.

The importance of this point cannot be overemphasized. In order to be certain that
there will be no lost updates during a redistribution operation, one of the
following must be true:

Chapter 30. DB2 commands 663

v The user avoids making updates during the operation of the REDISTRIBUTE
DATABASE PARTITION GROUP command, including the period after the
command finishes where the affected table spaces are being backed up.

v Updates that are applied during the redistribute operation come from a
repeatable source, meaning that they can be applied again at any time. For
example, if the source of updates is data that is stored in a file and the updates
are applied during batch processing, then clearly even in the event of a failure
requiring a database restore, the updates would not be lost since they could
simply be applied again at any time.

With respect to allowing updates to the database during the redistribution
operation, the user must decide whether such updates are appropriate or not for
their scenario based on whether or not the updates can be repeated after a
database restore, if necessary.

Note: Not every failure during operation of the REDISTRIBUTE DATABASE
PARTITION GROUP command results in this problem. In fact, most do not. The
REDISTRIBUTE DATABASE PARTITION GROUP command is fully restartable,
meaning that if the utility fails in the middle of its work, it can be easily continued
or aborted with the CONTINUE or ABORT options. The failures mentioned above
are failures that require the user to restore from the backup taken prior to the
redistribute operation.

Usage notes
v When the NOT ROLLFORWARD RECOVERABLE option is specified and the

database is a recoverable database, the first time the utility accesses a table
space, it is put into the BACKUP PENDING state. All the tables in that table
space will become read-only until the table space is backed-up, which can only
be done when all tables in the table space have finished being redistributed.

v When a redistribution operation is running, it produces an event log file
containing general information about the redistribution operation and
information such as the starting and ending time of each table processed. This
event log file is written to:
– The homeinst/sqllib/redist directory on Linux and UNIX operating systems,

using the following format for subdirectories and file name:
database-name.database-partition-group-name.timestamp.log.

– The DB2INSTPROF\instance\redist directory on Windows operating systems
(where DB2INSTPROF is the value of the DB2INSTPROF registry variable),
using the following format for subdirectories and file name:
database-name.database-partition-group-name.timestamp.log.

– The time stamp value is the time when the command was issued.
v This utility performs intermittent COMMITs during processing.
v All packages having a dependency on a table that has undergone redistribution

are invalidated. It is recommended to explicitly rebind such packages after the
redistribute database partition group operation has completed. Explicit rebinding
eliminates the initial delay in the execution of the first SQL request for the
invalid package. The redistribute message file contains a list of all the tables that
have undergone redistribution.

v By default, the redistribute utility will update the statistics for those tables that
have a statistics profile. For the tables without a statistics profile, it is
recommended that you separately update the table and index statistics for these
tables by calling the db2Runstats API or by issuing the RUNSTATS command
after the redistribute operation has completed.

664 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v Database partition groups containing replicated materialized query tables or
tables defined with DATA CAPTURE CHANGES cannot be redistributed.

v Redistribution is not allowed if there are user temporary table spaces with
existing declared temporary tables or created temporary tables in the database
partition group.

v Options such as INDEXING MODE are ignored on tables, on which they do not
apply, without warning. For example, INDEXING MODE will be ignored on
tables without indexes.

v Before starting a redistribute operation, ensure there are no tables in the Load
Pending state. Table states can be checked by using the LOAD QUERY
command.

v The REDISTRIBUTE DATABASE PARTITION GROUP command might fail
(SQLSTATE 55071) if an add database partition server request is either pending
or in progress. This command might also fail (SQLSTATE 55077) if a new
database partition server is added online to the instance and not all applications
are aware of the new database partition server.

Compatibilities

Tables containing XML columns that use the DB2 Version 9.5 or earlier XML record
format cannot be redistributed. Use the ADMIN_MOVE_TABLE stored procedure
to migrate the table to the new format.

For compatibility with versions earlier than Version 8:
v The keyword NODEGROUP can be substituted for DATABASE PARTITION

GROUP.

REORG INDEXES/TABLE

Reorganizes an index or a table

You can reorganize all indexes defined on a table by rebuilding the index data into
unfragmented, physically contiguous pages. Alternatively, you have the option of
reorganizing specific indexes on a range partitioned table.

If you specify the CLEANUP ONLY option of the index clause, cleanup is
performed without rebuilding the indexes. This command cannot be used against
indexes on declared temporary tables or created temporary tables (SQLSTATE
42995).

The table option reorganizes a table by reconstructing the rows to eliminate
fragmented data, and by compacting information.

Scope

This command affects all database partitions in the database partition group.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Chapter 30. DB2 commands 665

v dbadm

v sqladm

v CONTROL privilege on the table.

Required connection

Database

Command syntax

�� REORG �

� TABLE table-name Table clause
INDEXES ALL FOR TABLE table-name Index clause
INDEX index-name

FOR TABLE table-name
ALLOW WRITE ACCESS

TABLE mdc-table-name RECLAIM EXTENTS ONLY
ALLOW READ ACCESS
ALLOW NO ACCESS

�

�
Table partitioning clause Database partition clause

��

Table clause:

INDEX index-name
�

�
KEEPDICTIONARY

ALLOW NO ACCESS USE tbspace-name INDEXSCAN LONGLOBDATA RESETDICTIONARY
ALLOW READ ACCESS USE longtbspace-name

ALLOW WRITE ACCESS START
INPLACE

ALLOW READ ACCESS NOTRUNCATE TABLE RESUME
STOP
PAUSE

Index clause:

ALLOW NO ACCESS
ALLOW WRITE ACCESS
ALLOW READ ACCESS

ALL
CLEANUP ONLY

PAGES
CONVERT

Table partitioning clause:

ON DATA PARTITION partition-name

Database partition clause:

ON �

�

,

DBPARTITIONNUM (db-partition-number1)
DBPARTITIONNUMS TO db-partition-number2

ALL DBPARTITIONNUMS
,

EXCEPT DBPARTITIONNUM (db-partition-number1)
DBPARTITIONNUMS TO db-partition-number2

666 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Command parameters

INDEXES ALL FOR TABLE table-name
Specifies the table whose indexes are to be reorganized. The table can be in
a local or a remote database.

INDEX index-name
Specifies an individual index to be reorganized on a partitioned table.
Reorganization of individual indexes are only supported for nonpartitioned
indexes on a partitioned table. This parameter is not supported for block
indexes.

FOR TABLE table-name
Specifies the table name location of the individual index being reorganized
on a partitioned table. This parameter is optional, given that index names
are unique across the database.

For REORG INDEXES when the ON DATA PARTITION option is specified,
the access clause only applies to the named partition. Users can read from
and write to the rest of the table while the indexes on the specified
partition are being reorganized. This situation also applies to the default
access levels.

ALLOW NO ACCESS
For REORG INDEX and REORG INDEXES, specifies that no other
users can access the table or data partition while the indexes are
being reorganized.

ALLOW READ ACCESS
For REORG INDEX and REORG INDEXES, specifies that other
users can have read-only access to the table or data partition while
the indexes are being reorganized. This access level is not
supported for REORG INDEXES of a partitioned table unless the
CLEANUP ONLY option or the ON DATA PARTITION option is
specified.

ALLOW WRITE ACCESS
For REORG INDEX and REORG INDEXES, specifies that other
users can read from and write to the table or data partition while
the indexes are being reorganized.

This access level is not supported for multidimensional clustering
(MDC) tables or extended indexes unless the CLEANUP ONLY
option is specified. In addition, this access level is not supported
for partitioned tables when the REORG INDEXES command is
used unless the CLEANUP ONLY option or the ON DATA
PARTITION option is specified.

When ACCESS mode is not specified, it is selected for the table or data
partition in the following way:

Table 160. Default table access chosen based on the command, table type and additional parameters specified for
the index clause:

Command Table type
Table partitioning

clause

Additional
parameters

specified for index
clause

Default access
mode

REORG INDEXES Nonpartitioned table Not applicable Any ALLOW READ
ACCESS

Chapter 30. DB2 commands 667

Table 160. Default table access chosen based on the command, table type and additional parameters specified for
the index clause: (continued)

Command Table type
Table partitioning

clause

Additional
parameters

specified for index
clause

Default access
mode

REORG INDEX Partitioned table Not applicable Any ALLOW READ
ACCESS

REORG INDEXES Partitioned table None None specified ALLOW NO
ACCESS

REORG INDEXES Partitioned table ON DATA
PARTITION

None specified ALLOW READ
ACCESS

REORG INDEXES Partitioned table With or without the
ON DATA
PARTITION clause

CLEANUP ONLY
specified

ALLOW READ
ACCESS

CLEANUP ONLY
When CLEANUP ONLY is requested, a cleanup rather than a full
reorganization will be done. The indexes will not be rebuilt and
any pages freed up will be available for reuse by indexes defined
on this table only.

The CLEANUP ONLY PAGES option will search for and free
committed pseudo empty pages. A committed pseudo empty page
is one where all the keys on the page are marked as deleted and
all these deletions are known to be committed. The number of
pseudo empty pages in an indexes can be determined by running
RUNSTATS and looking at the NUM EMPTY LEAFS column in
SYSCAT.INDEXES. The PAGES option will clean the NUM EMPTY
LEAFS if they are determined to be committed.

The CLEANUP ONLY ALL option will free committed pseudo
empty pages, as well as remove committed pseudo deleted keys
from pages that are not pseudo empty. This option will also try to
merge adjacent leaf pages if doing so will result in a merged leaf
page that has at least PCTFREE free space on the merged leaf page,
where PCTFREE is the percent free space defined for the index at
index creation time. The default PCTFREE is ten percent. If two
pages can be merged, one of the pages will be freed. The number
of pseudo deleted keys in an index , excluding those on pseudo
empty pages, can be determined by running RUNSTATS and then
selecting the NUMRIDS DELETED from SYSCAT.INDEXES. The
ALL option will clean the NUMRIDS DELETED and the NUM
EMPTY LEAFS if they are determined to be committed.

ALL Specifies that indexes should be cleaned up by removing
committed pseudo deleted keys and committed pseudo empty
pages.

PAGES
Specifies that committed pseudo empty pages should be removed
from the index tree. This will not clean up pseudo deleted keys on
pages that are not pseudo empty. Since it is only checking the
pseudo empty leaf pages, it is considerably faster than using the
ALL option in most cases.

668 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

CONVERT
Converts type-1 indexes to type-2 index. If the index is already
type 2, this option has no effect.

In Version 9.7, type-1 indexes are discontinued and all indexes that
are created are type-2 indexes. As a result, the CONVERT option is
deprecated.

All indexes created prior to Version 8 are type-1 indexes. Prior to
Version 9.7, all indexes created by Version 8 and later are type-2
indexes, except when you create an index on a table that already
has a type-1 index. In this case, the new index was also of type 1.
This is no longer the case in Version 9.7 because all indexes created
are type 2.

Use the ALLOW READ ACCESS or ALLOW WRITE ACCESS option to
allow other transactions either read-only or read-write access to the table
while the indexes are being reorganized. While ALLOW READ ACCESS
and ALLOW WRITE ACCESS allow access to the table, during the period
in which the reorganized copies of the indexes are made available, no
access to the table is allowed.

TABLE mdc-table-name RECLAIM EXTENTS ONLY
Specifies the multidimensional clustering (MDC) table to reorganize to
reclaim extents that are not being used. The name or alias in the form:
schema.table-name can be used. The schema is the user name under which
the table was created. If you omit the schema name, the default schema is
assumed.

For REORG TABLE RECLAIM EXTENTS ONLY when the ON DATA
PARTITION option is specified, the access clause only applies to the
named partition. Users can read from and write to the rest of the table
while the extents on the specified partition are being reclaimed. This
situation also applies to the default access levels.

ALLOW NO ACCESS
For REORG TABLE RECLAIM EXTENTS ONLY, specifies that no
other users can access the table while the extents are being
reclaimed.

ALLOW READ ACCESS
For REORG TABLE RECLAIM EXTENTS ONLY, specifies that
other users can have read-only access to the table while the extents
are being reclaimed.

ALLOW WRITE ACCESS
For REORG TABLE RECLAIM EXTENTS ONLY, specifies that
other users can read from and write to the table while the extents
are being reclaimed.

TABLE table-name
Specifies the table to reorganize. The table can be in a local or a remote
database. The name or alias in the form: schema.table-name can be used. The
schema is the user name under which the table was created. If you omit the
schema name, the default schema is assumed.

For typed tables, the specified table name must be the name of the
hierarchy’s root table.

Chapter 30. DB2 commands 669

You cannot specify an index for the reorganization of a multidimensional
clustering (MDC) table. In place reorganization of tables cannot be used for
MDC tables.

INDEX index-name
Specifies the index to use when reorganizing the table. If you do
not specify the fully qualified name in the form: schema.index-name,
the default schema is assumed. The schema is the user name under
which the index was created. The database manager uses the index
to physically reorder the records in the table it is reorganizing.

For an in place table reorganization, if a clustering index is defined
on the table and an index is specified, it must be clustering index.
If the in place option is not specified, any index specified will be
used. If you do not specify the name of an index, the records are
reorganized without regard to order. If the table has a clustering
index defined, however, and no index is specified, then the
clustering index is used to cluster the table. You cannot specify an
index if you are reorganizing an MDC table.

ALLOW NO ACCESS
Specifies that no other users can access the table while the table is
being reorganized. When reorganizing a partitioned table with no
Table partitioning clause, this value is the default.

ALLOW READ ACCESS
Allow only read access to the table during reorganization. This
value is the default for a nonpartitioned table or for a partitioned
table using the Table partitioning clause.

When the ON DATA PARTITION option is specified for a REORG
TABLE of a range partitioned table, the access clause applies to the
named partition only. If all indexes on the table are partitioned,
users can read from and write to the rest of the table while the
partition is being reorganized and its indexes rebuild. However, if
any nonpartitioned indexes are defined for the table, access for the
entire table is escalated to ALLOW NO ACCESS. In this situation,
the nonpartitioned indexes are rebuilt along with the specified
partition.

INPLACE
Reorganizes the table while permitting user access.

In place table reorganization is allowed only on nonpartitioned and
non-MDC tables with type-2 indexes, but without extended
indexes and with no indexes defined over XML columns in the
table. In place table reorganization can only be performed on tables
that are at least three pages in size.

In place table reorganization takes place asynchronously, and might
not be effective immediately.

ALLOW READ ACCESS
Allow only read access to the table during reorganization.

ALLOW WRITE ACCESS
Allow write access to the table during reorganization. This
is the default behavior.

670 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

NOTRUNCATE TABLE
Do not truncate the table after in place reorganization.
During truncation, the table is S-locked.

START
Start the in place REORG processing. Because this is the
default, this keyword is optional.

STOP Stop the in place REORG processing at its current point.

PAUSE
Suspend or pause in place REORG for the time being.

RESUME
Continue or resume a previously paused in place table
reorganization. When an online reorganization is resumed
and you want the same options as when the reorganization
was paused, you must specify those options again while
resuming.

USE tbspace-name
Specifies the name of a system temporary table space in which to
store a temporary copy of the table being reorganized. If you do
not provide a table space name, the database manager stores a
working copy of the table in the table spaces that contain the table
being reorganized.

For an 8KB, 16KB, or 32KB table object, if the page size of the
system temporary table space that you specify does not match the
page size of the table spaces in which the table data resides, the
DB2 database product will try to find a temporary table space of
the correct size of the LONG/LOB objects. Such a table space must
exist for the reorganization to succeed.

When you have two temporary table spaces of the same page size,
and you specify one of them in the USE clause, they will be used
in a round robin fashion if there is an index in the table being
reorganized. Say you have two table spaces, tempspace1 and
tempspace2, both of the same page size and you specify tempspace1
in the REORG command with the USE option. When you perform
REORG the first time, tempspace1 is used. The second time,
tempspace2 is used. The third time, tempspace1 is used and so on.
To avoid this, you should drop one of the temporary table spaces.

For partitioned tables, the table space is used as temporary storage
for the reorganization of data partitions in the table.
Reorganization of the entire partitioned table reorganizes a single
data partition at a time. The amount of space required is equal to
the largest data partition in the table, and not the entire table.

If you do not supply a table space name for a partitioned table, the
table space where each data partition is located is used for
temporary storage of that data partition. There must be enough
free space in each data partition’s table space to hold a copy of the
data partition.

INDEXSCAN
For a clustering REORG an index scan will be used to re-order
table records. Reorganize table rows by accessing the table through
an index. The default method is to scan the table and sort the
result to reorganize the table, using temporary table spaces as

Chapter 30. DB2 commands 671

necessary. Even though the index keys are in sort order, scanning
and sorting is typically faster than fetching rows by first reading
the row identifier from an index.

LONGLOBDATA
Long field and LOB data are to be reorganized.

This is not required even if the table contains long or LOB
columns. The default is to avoid reorganizing these objects because
it is time consuming and does not improve clustering. However,
running a reorganization with the LONGLOBDATA option on
tables with XML columns will reclaim unused space and thereby
reduce the size of the XML storage object.

This parameter is required when converting existing LOB data into
inlined LOB data.

USE longtbspace-name
This is an optional parameter, which can be used to specify the
name of a temporary table space to be used for rebuilding long
data. If no temporary table space is specified for either the table
object or for the long objects, the objects will be constructed in the
table space they currently reside. If a temporary table space is
specified for the table but this parameter is not specified, then the
table space used for base reorg data will be used, unless the page
sizes differ. In this situation, the DB2 database system will attempt
to choose a temporary container of the appropriate page size to
create the long objects in.

If USE longtbspace-name is specified, USE tbspace-name must also be
specified. If it is not, the longtbspace-name argument is ignored.

KEEPDICTIONARY
If the COMPRESS attribute for the table is YES and the table has a
compression dictionary then no new dictionary is built. All the
rows processed during reorganization are subject to compression
using the existing dictionary. If the COMPRESS attribute is YES and a
compression dictionary doesn’t exist for the table, a dictionary will
only be created (and the table compressed) in this scenario if the
table is of a certain size (approximately 1 to 2 MB) and sufficient
data exists within this table. If, instead, you explicitly state REORG
RESETDICTIONARY, then a dictionary is built as long as there is
at least 1 row in the table. If the COMPRESS attribute for the table is
NO and the table has a compression dictionary, then reorg
processing will preserve the dictionary and all the rows in the
newly reorganized table will be in noncompressed format. It is not
possible to compress some data such as LOB data not stored in the
base table row.

When the LONGLOBDATA option is not specified, only the table
row data is reorganized. The following table describes the behavior
of KEEPDICTIONARY syntax in REORG command when the
LONGLOBDATA option is not specified.

Table 161. REORG KEEPDICTIONARY

Compress Dictionary Exists Result; outcome

Y Y Preserve dictionary; rows compressed.

Y N Build dictionary; rows compressed

672 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 161. REORG KEEPDICTIONARY (continued)

Compress Dictionary Exists Result; outcome

N Y Preserve dictionary; all rows uncompressed

N N No effect; all rows uncompressed

The following table describes the behavior of KEEPDICTIONARY
syntax in REORG command when the LONGLOBDATA option is
specified.

Table 162. REORG KEEPDICTIONARY when LONGLOBDATA option is specified.

Compress

Table row
data
dictionary
exists

XML storage
object
dictionary
exists1

Compression
dictionary Data compression

Y Y Y Preserve dictionaries. Existing data is
compressed. New data
will be compressed.

Y Y N Preserve table row
dictionary and create
an XML storage object
dictionary.

Existing data is
compressed. New data
will be compressed.

Y N Y Create table row
dictionary and
preserve the XML
dictionary.

Existing data is
compressed. New data
will be compressed.

Y N N Create table row and
XML dictionaries.

Existing data is
compressed. New data
will be compressed.

N Y Y Preserve table row and
XML dictionaries.

Table data is
uncompressed. New
data will be not be
compressed.

N Y N Preserve table row
dictionary.

Table data is
uncompressed. New
data will be not be
compressed.

N N Y Preserve XML
dictionary.

Table data is
uncompressed. New
data will be not be
compressed.

N N N No effect. Table data is
uncompressed. New
data will be not be
compressed.

Note:

1. A compression dictionary can be created for the XML storage
object of a table only if the XML columns are added to the table
in DB2 V9.7 or later, or if the table is migrated using the
ONLINE_TABLE_MOVE stored procedure.

For any reinitialization or truncation of a table (such as for a
replace operation), if the compress attribute for the table is NO, the
dictionary is discarded if one exists. Conversely, if a dictionary

Chapter 30. DB2 commands 673

exists and the compress attribute for the table is YES then a
truncation will save the dictionary and not discard it. The
dictionary is logged in its entirety for recovery purposes and for
future support with data capture changes (that is, replication).

RESETDICTIONARY
If the COMPRESS attribute for the table is YES then a new row
compression dictionary is built. All the rows processed during
reorganization are subject to compression using this new
dictionary. This dictionary replaces any previous dictionary. If the
COMPRESS attribute for the table is NO and the table does have an
existing compression dictionary then reorg processing will remove
the dictionary and all rows in the newly reorganized table will be
in noncompressed format. It is not possible to compress some data
such as LOB data not stored in the base table row.

If the LONGLOBDATA option is not specified, only the table row
data is reorganized. The following table describes the behavior of
RESETDICTIONARY syntax in REORG command when the
LONGLOBDATA option is not specified.

Table 163. REORG RESETDICTIONARY

Compress Dictionary Exists Result; outcome

Y Y Build new dictionary*; rows compressed. If
DATA CAPTURE CHANGES option is specified
on the CREATE TABLE or ALTER TABLE
statements, the current dictionary is kept
(referred to as the historical compression
dictionary).

Y N Build new dictionary; rows compressed

N Y Remove dictionary; all rows uncompressed. If
the DATA CAPTURE NONE option is specified
on the CREATE TABLE or ALTER TABLE
statements, the historical compression dictionary is
also removed for the specified table.

N N No effect; all rows uncompressed

* - If a dictionary exists and the compression attribute is enabled
but there currently isn’t any data in the table, the RESETDICTIONARY
operation will keep the existing dictionary. Rows which are smaller
in size than the internal minimum record length and rows which
do not demonstrate a savings in record length when an attempt is
made to compress them are considered ″insufficient″ in this case.

The following table describes the behavior of RESETDICTIONARY
syntax in REORG command when the LONGLOBDATA option is
specified.

Table 164. REORG RESETDICTIONARY when LONGLOBDATA option is specified.

Compress

Table row
data
dictionary
exists

XML storage
object
dictionary
exists1 Data dictionary Data compression

Y Y Y Build dictionaries2 3. Existing data is
compressed. New data
will be compressed.

674 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 164. REORG RESETDICTIONARY when LONGLOBDATA option is
specified. (continued)

Compress

Table row
data
dictionary
exists

XML storage
object
dictionary
exists1 Data dictionary Data compression

Y Y N Build new table row
dictionary and create a
new XML dictionary3.

Existing data is
compressed. New data
will be compressed.

Y N Y Create table row data
dictionary and build a
new XML dictionary.

Existing data is
compressed. New data
will be compressed.

Y N N Create dictionaries. Existing data is
compressed. New data
will be compressed.

N Y Y Remove dictionaries.
Existing and new data
is not compressed.

Existing table data is
uncompressed. New
data will be not be
compressed.

N Y N Remove table row
dictionary. All data is
uncompressed.

Existing table data is
uncompressed. New
data will be not be
compressed.

N N Y Remove XML storage
object dictionary.

Existing table data is
uncompressed. New
data will be not be
compressed.

N N N No effect. Existing table data is
uncompressed. New
data will be not be
compressed.

Notes:

1. A compression dictionary can be created for the XML storage
object of a table only if the XML columns are added to the table
in DB2 V9.7 or later, or if the table is migrated using an online
table move.

2. If a dictionary exists and the compression attribute is enabled
but there currently isn’t any data in the table, the
RESETDICTIONARY operation will keep the existing dictionary.
Rows which are smaller in size than the internal minimum
record length and rows which do not demonstrate a savings in
record length when an attempt is made to compress them are
considered insufficient in this case.

3. If DATA CAPTURE CHANGES option is specified on the
CREATE TABLE or ALTER TABLE statements, the current data
dictionary is kept (referred to as the historical compression
dictionary).

ALL DBPARTITIONNUMS
Specifies that operation is to be done on all database partitions
specified in the db2nodes.cfg file. This is the default if a node
clause is not specified.

Chapter 30. DB2 commands 675

EXCEPT
Specifies that operation is to be done on all database partitions
specified in the db2nodes.cfg file, except those specified in the
node list.

ON DATA PARTITION partition-name
Specifies the data partition for the reorganization.

This option is only for use with RECLAIM EXTENTS ONLY.

If the data partition name does not exist for the specified table,
REORG fails and SQL0204N is returned.

ON DBPARTITIONNUM | ON DBPARTITIONNUMS
Perform operation on a set of database partitions.

db-partition-number1
Specifies a database partition number in the database
partition list.

db-partition-number2
Specifies the second database partition number, so that all
database partitions from db-partition-number1 up to and
including db-partition-number2 are included in the database
partition list.

Usage notes

Restrictions:
v The REORG utility does not support the use of nicknames.
v The REORG TABLE command is not supported for declared temporary tables or

created temporary tables.
v The REORG TABLE command cannot be used on views.
v Reorganization of a table is not compatible with range-clustered tables, because

the range area of the table always remains clustered.
v REORG TABLE cannot be used on a partitioned table in a DMS table space

while an online backup of ANY table space in which the table resides, including
LOBs and indexes, is being performed.

v REORG TABLE cannot use an index that is based on an index extension.
v If a table is in reorg pending state, an inplace reorg is not allowed on the table.
v For partitioned tables:

– The table must have an ACCESS_MODE in SYSCAT.TABLES of Full Access.
– Reorganization skips data partitions that are in a restricted state due to an

attach or detach operation. If the Table partitioning clause is specified, that
partition must be fully accessible.

– If an error occurs during table reorganization, some indexes or index
partitions might be left invalid. The nonpartitioned indexes of the table will
be marked invalid if the reorganization has reached or passed the replace
phase for the first data partition. The index partitions for any data partition
that has already reached or passed the replace phase will be marked invalid.
Indexes will be rebuilt on the next access to the table or data partition.

– If an error occurs during index reorganization when the ALLOW NONE
access mode is used, some indexes on the table might be left invalid. For
nonpartitioned RID indexes on the table, only the index that is being
reorganized at the time of the failure will be left invalid. For MDC tables with
nonpartitioned block indexes, one or more of the block indexes might be left

676 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

invalid if an error occurs. For partitioned indexes, only the index object on
the data partition being reorganized will be left invalid. Any indexes marked
invalid will be rebuilt on the next access to the table or data partition.

Information about the current progress of table reorganization is written to the
history file for database activity. The history file contains a record for each
reorganization event. To view this file, execute the LIST HISTORY command for
the database that contains the table you are reorganizing.

You can also use table snapshots to monitor the progress of table reorganization.
Table reorganization monitoring data is recorded regardless of the Database
Monitor Table Switch setting.

If an error occurs, an SQLCA dump is written to the history file. For an in-place
table reorganization, the status is recorded as PAUSED.

When an indexed table has been modified many times, the data in the indexes
might become fragmented. If the table is clustered with respect to an index, the
table and index can get out of cluster order. Both of these factors can adversely
affect the performance of scans using the index, and can impact the effectiveness of
index page prefetching. REORG INDEX or REORG INDEXES can be used to
reorganize one or all of the indexes on a table. Index reorganization will remove
any fragmentation and restore physical clustering to the leaf pages. Use the
REORGCHK command to help determine if an index needs reorganizing. Be sure
to complete all database operations and release all locks before invoking index
reorganization. This can be done by issuing a COMMIT after closing all cursors
opened WITH HOLD, or by issuing a ROLLBACK.

A classic table reorganization (offline reorganization) rebuilds the indexes during
the last phase of the reorganization. However, the inplace table reorganization
(online reorganization) does not rebuild the indexes. It is recommended that you
issue a REORG INDEXES command after the completion of an inplace table
reorganization. An inplace table reorganization is asynchronous, therefore care
must be taken to ensure that the inplace table reorganization is complete before
issuing the REORG INDEXES command. Issuing the REORG INDEXES command
before the inplace table reorganization is complete, might cause the reorganization
to fail (SQLCODE -2219).

Tables that have been modified so many times that data is fragmented and access
performance is noticeably slow are candidates for the REORG TABLE command.
You should also invoke this utility after altering the inline length of a structured
type column in order to benefit from the altered inline length. Use the
REORGCHK command to determine whether a table needs reorganizing. Be sure
to complete all database operations and release all locks before invoking REORG
TABLE. This can be done by issuing a COMMIT after closing all cursors opened
WITH HOLD, or by issuing a ROLLBACK. After reorganizing a table, use
RUNSTATS to update the table statistics, and REBIND to rebind the packages that
use this table. The reorganize utility will implicitly close all the cursors.

If the table contains mixed row format because the table value compression has
been activated or deactivated, an offline table reorganization can convert all the
existing rows into the target row format.

If the table is distributed across several database partitions, and the table or index
reorganization fails on any of the affected database partitions, only the failing
database partitions will have the table or index reorganization rolled back.

Chapter 30. DB2 commands 677

If the reorganization is not successful, temporary files should not be deleted. The
database manager uses these files to recover the database.

If the name of an index is specified, the database manager reorganizes the data
according to the order in the index. To maximize performance, specify an index
that is often used in SQL queries. If the name of an index is not specified, and if a
clustering index exists, the data will be ordered according to the clustering index.

The PCTFREE value of a table determines the amount of free space designated per
page. If the value has not been set, the utility will fill up as much space as possible
on each page.

To complete a table space roll-forward recovery following a table reorganization,
both regular and large table spaces must be enabled for roll-forward recovery.

If the table contains LOB columns that do not use the COMPACT option, the LOB
DATA storage object can be significantly larger following table reorganization. This
can be a result of the order in which the rows were reorganized, and the types of
table spaces used (SMS or DMS).

Indexes over XML data may be recreated by the REORG INDEXES/TABLE
command. For details, see “Recreation of indexes over XML data”.

REORG INDEXES/TABLE

Reorganizes an index or a table

You can reorganize all indexes defined on a table by rebuilding the index data into
unfragmented, physically contiguous pages. Alternatively, you have the option of
reorganizing specific indexes on a range partitioned table.

If you specify the CLEANUP ONLY option of the index clause, cleanup is
performed without rebuilding the indexes. This command cannot be used against
indexes on declared temporary tables or created temporary tables (SQLSTATE
42995).

The table option reorganizes a table by reconstructing the rows to eliminate
fragmented data, and by compacting information.

Scope

This command affects all database partitions in the database partition group.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

v sqladm

v CONTROL privilege on the table.

678 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Required connection

Database

Command syntax

�� REORG �

� TABLE table-name Table clause
INDEXES ALL FOR TABLE table-name Index clause
INDEX index-name

FOR TABLE table-name
ALLOW WRITE ACCESS

TABLE mdc-table-name RECLAIM EXTENTS ONLY
ALLOW READ ACCESS
ALLOW NO ACCESS

�

�
Table partitioning clause Database partition clause

��

Table clause:

INDEX index-name
�

�
KEEPDICTIONARY

ALLOW NO ACCESS USE tbspace-name INDEXSCAN LONGLOBDATA RESETDICTIONARY
ALLOW READ ACCESS USE longtbspace-name

ALLOW WRITE ACCESS START
INPLACE

ALLOW READ ACCESS NOTRUNCATE TABLE RESUME
STOP
PAUSE

Index clause:

ALLOW NO ACCESS
ALLOW WRITE ACCESS
ALLOW READ ACCESS

ALL
CLEANUP ONLY

PAGES
CONVERT

Table partitioning clause:

ON DATA PARTITION partition-name

Database partition clause:

ON �

�

,

DBPARTITIONNUM (db-partition-number1)
DBPARTITIONNUMS TO db-partition-number2

ALL DBPARTITIONNUMS
,

EXCEPT DBPARTITIONNUM (db-partition-number1)
DBPARTITIONNUMS TO db-partition-number2

Command parameters

INDEXES ALL FOR TABLE table-name
Specifies the table whose indexes are to be reorganized. The table can be in
a local or a remote database.

Chapter 30. DB2 commands 679

INDEX index-name
Specifies an individual index to be reorganized on a partitioned table.
Reorganization of individual indexes are only supported for nonpartitioned
indexes on a partitioned table. This parameter is not supported for block
indexes.

FOR TABLE table-name
Specifies the table name location of the individual index being reorganized
on a partitioned table. This parameter is optional, given that index names
are unique across the database.

For REORG INDEXES when the ON DATA PARTITION option is specified,
the access clause only applies to the named partition. Users can read from
and write to the rest of the table while the indexes on the specified
partition are being reorganized. This situation also applies to the default
access levels.

ALLOW NO ACCESS
For REORG INDEX and REORG INDEXES, specifies that no other
users can access the table or data partition while the indexes are
being reorganized.

ALLOW READ ACCESS
For REORG INDEX and REORG INDEXES, specifies that other
users can have read-only access to the table or data partition while
the indexes are being reorganized. This access level is not
supported for REORG INDEXES of a partitioned table unless the
CLEANUP ONLY option or the ON DATA PARTITION option is
specified.

ALLOW WRITE ACCESS
For REORG INDEX and REORG INDEXES, specifies that other
users can read from and write to the table or data partition while
the indexes are being reorganized.

This access level is not supported for multidimensional clustering
(MDC) tables or extended indexes unless the CLEANUP ONLY
option is specified. In addition, this access level is not supported
for partitioned tables when the REORG INDEXES command is
used unless the CLEANUP ONLY option or the ON DATA
PARTITION option is specified.

When ACCESS mode is not specified, it is selected for the table or data
partition in the following way:

Table 165. Default table access chosen based on the command, table type and additional parameters specified for
the index clause:

Command Table type
Table partitioning

clause

Additional
parameters

specified for index
clause

Default access
mode

REORG INDEXES Nonpartitioned table Not applicable Any ALLOW READ
ACCESS

REORG INDEX Partitioned table Not applicable Any ALLOW READ
ACCESS

REORG INDEXES Partitioned table None None specified ALLOW NO
ACCESS

680 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 165. Default table access chosen based on the command, table type and additional parameters specified for
the index clause: (continued)

Command Table type
Table partitioning

clause

Additional
parameters

specified for index
clause

Default access
mode

REORG INDEXES Partitioned table ON DATA
PARTITION

None specified ALLOW READ
ACCESS

REORG INDEXES Partitioned table With or without the
ON DATA
PARTITION clause

CLEANUP ONLY
specified

ALLOW READ
ACCESS

CLEANUP ONLY
When CLEANUP ONLY is requested, a cleanup rather than a full
reorganization will be done. The indexes will not be rebuilt and
any pages freed up will be available for reuse by indexes defined
on this table only.

The CLEANUP ONLY PAGES option will search for and free
committed pseudo empty pages. A committed pseudo empty page
is one where all the keys on the page are marked as deleted and
all these deletions are known to be committed. The number of
pseudo empty pages in an indexes can be determined by running
RUNSTATS and looking at the NUM EMPTY LEAFS column in
SYSCAT.INDEXES. The PAGES option will clean the NUM EMPTY
LEAFS if they are determined to be committed.

The CLEANUP ONLY ALL option will free committed pseudo
empty pages, as well as remove committed pseudo deleted keys
from pages that are not pseudo empty. This option will also try to
merge adjacent leaf pages if doing so will result in a merged leaf
page that has at least PCTFREE free space on the merged leaf page,
where PCTFREE is the percent free space defined for the index at
index creation time. The default PCTFREE is ten percent. If two
pages can be merged, one of the pages will be freed. The number
of pseudo deleted keys in an index , excluding those on pseudo
empty pages, can be determined by running RUNSTATS and then
selecting the NUMRIDS DELETED from SYSCAT.INDEXES. The
ALL option will clean the NUMRIDS DELETED and the NUM
EMPTY LEAFS if they are determined to be committed.

ALL Specifies that indexes should be cleaned up by removing
committed pseudo deleted keys and committed pseudo empty
pages.

PAGES
Specifies that committed pseudo empty pages should be removed
from the index tree. This will not clean up pseudo deleted keys on
pages that are not pseudo empty. Since it is only checking the
pseudo empty leaf pages, it is considerably faster than using the
ALL option in most cases.

CONVERT
Converts type-1 indexes to type-2 index. If the index is already
type 2, this option has no effect.

Chapter 30. DB2 commands 681

In Version 9.7, type-1 indexes are discontinued and all indexes that
are created are type-2 indexes. As a result, the CONVERT option is
deprecated.

All indexes created prior to Version 8 are type-1 indexes. Prior to
Version 9.7, all indexes created by Version 8 and later are type-2
indexes, except when you create an index on a table that already
has a type-1 index. In this case, the new index was also of type 1.
This is no longer the case in Version 9.7 because all indexes created
are type 2.

Use the ALLOW READ ACCESS or ALLOW WRITE ACCESS option to
allow other transactions either read-only or read-write access to the table
while the indexes are being reorganized. While ALLOW READ ACCESS
and ALLOW WRITE ACCESS allow access to the table, during the period
in which the reorganized copies of the indexes are made available, no
access to the table is allowed.

TABLE mdc-table-name RECLAIM EXTENTS ONLY
Specifies the multidimensional clustering (MDC) table to reorganize to
reclaim extents that are not being used. The name or alias in the form:
schema.table-name can be used. The schema is the user name under which
the table was created. If you omit the schema name, the default schema is
assumed.

For REORG TABLE RECLAIM EXTENTS ONLY when the ON DATA
PARTITION option is specified, the access clause only applies to the
named partition. Users can read from and write to the rest of the table
while the extents on the specified partition are being reclaimed. This
situation also applies to the default access levels.

ALLOW NO ACCESS
For REORG TABLE RECLAIM EXTENTS ONLY, specifies that no
other users can access the table while the extents are being
reclaimed.

ALLOW READ ACCESS
For REORG TABLE RECLAIM EXTENTS ONLY, specifies that
other users can have read-only access to the table while the extents
are being reclaimed.

ALLOW WRITE ACCESS
For REORG TABLE RECLAIM EXTENTS ONLY, specifies that
other users can read from and write to the table while the extents
are being reclaimed.

TABLE table-name
Specifies the table to reorganize. The table can be in a local or a remote
database. The name or alias in the form: schema.table-name can be used. The
schema is the user name under which the table was created. If you omit the
schema name, the default schema is assumed.

For typed tables, the specified table name must be the name of the
hierarchy’s root table.

You cannot specify an index for the reorganization of a multidimensional
clustering (MDC) table. In place reorganization of tables cannot be used for
MDC tables.

INDEX index-name
Specifies the index to use when reorganizing the table. If you do

682 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

not specify the fully qualified name in the form: schema.index-name,
the default schema is assumed. The schema is the user name under
which the index was created. The database manager uses the index
to physically reorder the records in the table it is reorganizing.

For an in place table reorganization, if a clustering index is defined
on the table and an index is specified, it must be clustering index.
If the in place option is not specified, any index specified will be
used. If you do not specify the name of an index, the records are
reorganized without regard to order. If the table has a clustering
index defined, however, and no index is specified, then the
clustering index is used to cluster the table. You cannot specify an
index if you are reorganizing an MDC table.

ALLOW NO ACCESS
Specifies that no other users can access the table while the table is
being reorganized. When reorganizing a partitioned table with no
Table partitioning clause, this value is the default.

ALLOW READ ACCESS
Allow only read access to the table during reorganization. This
value is the default for a nonpartitioned table or for a partitioned
table using the Table partitioning clause.

When the ON DATA PARTITION option is specified for a REORG
TABLE of a range partitioned table, the access clause applies to the
named partition only. If all indexes on the table are partitioned,
users can read from and write to the rest of the table while the
partition is being reorganized and its indexes rebuild. However, if
any nonpartitioned indexes are defined for the table, access for the
entire table is escalated to ALLOW NO ACCESS. In this situation,
the nonpartitioned indexes are rebuilt along with the specified
partition.

INPLACE
Reorganizes the table while permitting user access.

In place table reorganization is allowed only on nonpartitioned and
non-MDC tables with type-2 indexes, but without extended
indexes and with no indexes defined over XML columns in the
table. In place table reorganization can only be performed on tables
that are at least three pages in size.

In place table reorganization takes place asynchronously, and might
not be effective immediately.

ALLOW READ ACCESS
Allow only read access to the table during reorganization.

ALLOW WRITE ACCESS
Allow write access to the table during reorganization. This
is the default behavior.

NOTRUNCATE TABLE
Do not truncate the table after in place reorganization.
During truncation, the table is S-locked.

START
Start the in place REORG processing. Because this is the
default, this keyword is optional.

STOP Stop the in place REORG processing at its current point.

Chapter 30. DB2 commands 683

PAUSE
Suspend or pause in place REORG for the time being.

RESUME
Continue or resume a previously paused in place table
reorganization. When an online reorganization is resumed
and you want the same options as when the reorganization
was paused, you must specify those options again while
resuming.

USE tbspace-name
Specifies the name of a system temporary table space in which to
store a temporary copy of the table being reorganized. If you do
not provide a table space name, the database manager stores a
working copy of the table in the table spaces that contain the table
being reorganized.

For an 8KB, 16KB, or 32KB table object, if the page size of the
system temporary table space that you specify does not match the
page size of the table spaces in which the table data resides, the
DB2 database product will try to find a temporary table space of
the correct size of the LONG/LOB objects. Such a table space must
exist for the reorganization to succeed.

When you have two temporary table spaces of the same page size,
and you specify one of them in the USE clause, they will be used
in a round robin fashion if there is an index in the table being
reorganized. Say you have two table spaces, tempspace1 and
tempspace2, both of the same page size and you specify tempspace1
in the REORG command with the USE option. When you perform
REORG the first time, tempspace1 is used. The second time,
tempspace2 is used. The third time, tempspace1 is used and so on.
To avoid this, you should drop one of the temporary table spaces.

For partitioned tables, the table space is used as temporary storage
for the reorganization of data partitions in the table.
Reorganization of the entire partitioned table reorganizes a single
data partition at a time. The amount of space required is equal to
the largest data partition in the table, and not the entire table.

If you do not supply a table space name for a partitioned table, the
table space where each data partition is located is used for
temporary storage of that data partition. There must be enough
free space in each data partition’s table space to hold a copy of the
data partition.

INDEXSCAN
For a clustering REORG an index scan will be used to re-order
table records. Reorganize table rows by accessing the table through
an index. The default method is to scan the table and sort the
result to reorganize the table, using temporary table spaces as
necessary. Even though the index keys are in sort order, scanning
and sorting is typically faster than fetching rows by first reading
the row identifier from an index.

LONGLOBDATA
Long field and LOB data are to be reorganized.

This is not required even if the table contains long or LOB
columns. The default is to avoid reorganizing these objects because

684 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

it is time consuming and does not improve clustering. However,
running a reorganization with the LONGLOBDATA option on
tables with XML columns will reclaim unused space and thereby
reduce the size of the XML storage object.

This parameter is required when converting existing LOB data into
inlined LOB data.

USE longtbspace-name
This is an optional parameter, which can be used to specify the
name of a temporary table space to be used for rebuilding long
data. If no temporary table space is specified for either the table
object or for the long objects, the objects will be constructed in the
table space they currently reside. If a temporary table space is
specified for the table but this parameter is not specified, then the
table space used for base reorg data will be used, unless the page
sizes differ. In this situation, the DB2 database system will attempt
to choose a temporary container of the appropriate page size to
create the long objects in.

If USE longtbspace-name is specified, USE tbspace-name must also be
specified. If it is not, the longtbspace-name argument is ignored.

KEEPDICTIONARY
If the COMPRESS attribute for the table is YES and the table has a
compression dictionary then no new dictionary is built. All the
rows processed during reorganization are subject to compression
using the existing dictionary. If the COMPRESS attribute is YES and a
compression dictionary doesn’t exist for the table, a dictionary will
only be created (and the table compressed) in this scenario if the
table is of a certain size (approximately 1 to 2 MB) and sufficient
data exists within this table. If, instead, you explicitly state REORG
RESETDICTIONARY, then a dictionary is built as long as there is
at least 1 row in the table. If the COMPRESS attribute for the table is
NO and the table has a compression dictionary, then reorg
processing will preserve the dictionary and all the rows in the
newly reorganized table will be in noncompressed format. It is not
possible to compress some data such as LOB data not stored in the
base table row.

When the LONGLOBDATA option is not specified, only the table
row data is reorganized. The following table describes the behavior
of KEEPDICTIONARY syntax in REORG command when the
LONGLOBDATA option is not specified.

Table 166. REORG KEEPDICTIONARY

Compress Dictionary Exists Result; outcome

Y Y Preserve dictionary; rows compressed.

Y N Build dictionary; rows compressed

N Y Preserve dictionary; all rows uncompressed

N N No effect; all rows uncompressed

The following table describes the behavior of KEEPDICTIONARY
syntax in REORG command when the LONGLOBDATA option is
specified.

Chapter 30. DB2 commands 685

Table 167. REORG KEEPDICTIONARY when LONGLOBDATA option is specified.

Compress

Table row
data
dictionary
exists

XML storage
object
dictionary
exists1

Compression
dictionary Data compression

Y Y Y Preserve dictionaries. Existing data is
compressed. New data
will be compressed.

Y Y N Preserve table row
dictionary and create
an XML storage object
dictionary.

Existing data is
compressed. New data
will be compressed.

Y N Y Create table row
dictionary and
preserve the XML
dictionary.

Existing data is
compressed. New data
will be compressed.

Y N N Create table row and
XML dictionaries.

Existing data is
compressed. New data
will be compressed.

N Y Y Preserve table row and
XML dictionaries.

Table data is
uncompressed. New
data will be not be
compressed.

N Y N Preserve table row
dictionary.

Table data is
uncompressed. New
data will be not be
compressed.

N N Y Preserve XML
dictionary.

Table data is
uncompressed. New
data will be not be
compressed.

N N N No effect. Table data is
uncompressed. New
data will be not be
compressed.

Note:

1. A compression dictionary can be created for the XML storage
object of a table only if the XML columns are added to the table
in DB2 V9.7 or later, or if the table is migrated using the
ONLINE_TABLE_MOVE stored procedure.

For any reinitialization or truncation of a table (such as for a
replace operation), if the compress attribute for the table is NO, the
dictionary is discarded if one exists. Conversely, if a dictionary
exists and the compress attribute for the table is YES then a
truncation will save the dictionary and not discard it. The
dictionary is logged in its entirety for recovery purposes and for
future support with data capture changes (that is, replication).

RESETDICTIONARY
If the COMPRESS attribute for the table is YES then a new row
compression dictionary is built. All the rows processed during
reorganization are subject to compression using this new
dictionary. This dictionary replaces any previous dictionary. If the

686 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

COMPRESS attribute for the table is NO and the table does have an
existing compression dictionary then reorg processing will remove
the dictionary and all rows in the newly reorganized table will be
in noncompressed format. It is not possible to compress some data
such as LOB data not stored in the base table row.

If the LONGLOBDATA option is not specified, only the table row
data is reorganized. The following table describes the behavior of
RESETDICTIONARY syntax in REORG command when the
LONGLOBDATA option is not specified.

Table 168. REORG RESETDICTIONARY

Compress Dictionary Exists Result; outcome

Y Y Build new dictionary*; rows compressed. If
DATA CAPTURE CHANGES option is specified
on the CREATE TABLE or ALTER TABLE
statements, the current dictionary is kept
(referred to as the historical compression
dictionary).

Y N Build new dictionary; rows compressed

N Y Remove dictionary; all rows uncompressed. If
the DATA CAPTURE NONE option is specified
on the CREATE TABLE or ALTER TABLE
statements, the historical compression dictionary is
also removed for the specified table.

N N No effect; all rows uncompressed

* - If a dictionary exists and the compression attribute is enabled
but there currently isn’t any data in the table, the RESETDICTIONARY
operation will keep the existing dictionary. Rows which are smaller
in size than the internal minimum record length and rows which
do not demonstrate a savings in record length when an attempt is
made to compress them are considered ″insufficient″ in this case.

The following table describes the behavior of RESETDICTIONARY
syntax in REORG command when the LONGLOBDATA option is
specified.

Table 169. REORG RESETDICTIONARY when LONGLOBDATA option is specified.

Compress

Table row
data
dictionary
exists

XML storage
object
dictionary
exists1 Data dictionary Data compression

Y Y Y Build dictionaries2 3. Existing data is
compressed. New data
will be compressed.

Y Y N Build new table row
dictionary and create a
new XML dictionary3.

Existing data is
compressed. New data
will be compressed.

Y N Y Create table row data
dictionary and build a
new XML dictionary.

Existing data is
compressed. New data
will be compressed.

Y N N Create dictionaries. Existing data is
compressed. New data
will be compressed.

Chapter 30. DB2 commands 687

Table 169. REORG RESETDICTIONARY when LONGLOBDATA option is
specified. (continued)

Compress

Table row
data
dictionary
exists

XML storage
object
dictionary
exists1 Data dictionary Data compression

N Y Y Remove dictionaries.
Existing and new data
is not compressed.

Existing table data is
uncompressed. New
data will be not be
compressed.

N Y N Remove table row
dictionary. All data is
uncompressed.

Existing table data is
uncompressed. New
data will be not be
compressed.

N N Y Remove XML storage
object dictionary.

Existing table data is
uncompressed. New
data will be not be
compressed.

N N N No effect. Existing table data is
uncompressed. New
data will be not be
compressed.

Notes:

1. A compression dictionary can be created for the XML storage
object of a table only if the XML columns are added to the table
in DB2 V9.7 or later, or if the table is migrated using an online
table move.

2. If a dictionary exists and the compression attribute is enabled
but there currently isn’t any data in the table, the
RESETDICTIONARY operation will keep the existing dictionary.
Rows which are smaller in size than the internal minimum
record length and rows which do not demonstrate a savings in
record length when an attempt is made to compress them are
considered insufficient in this case.

3. If DATA CAPTURE CHANGES option is specified on the
CREATE TABLE or ALTER TABLE statements, the current data
dictionary is kept (referred to as the historical compression
dictionary).

ALL DBPARTITIONNUMS
Specifies that operation is to be done on all database partitions
specified in the db2nodes.cfg file. This is the default if a node
clause is not specified.

EXCEPT
Specifies that operation is to be done on all database partitions
specified in the db2nodes.cfg file, except those specified in the
node list.

ON DATA PARTITION partition-name
Specifies the data partition for the reorganization.

This option is only for use with RECLAIM EXTENTS ONLY.

If the data partition name does not exist for the specified table,
REORG fails and SQL0204N is returned.

688 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

ON DBPARTITIONNUM | ON DBPARTITIONNUMS
Perform operation on a set of database partitions.

db-partition-number1
Specifies a database partition number in the database
partition list.

db-partition-number2
Specifies the second database partition number, so that all
database partitions from db-partition-number1 up to and
including db-partition-number2 are included in the database
partition list.

Usage notes

Restrictions:
v The REORG utility does not support the use of nicknames.
v The REORG TABLE command is not supported for declared temporary tables or

created temporary tables.
v The REORG TABLE command cannot be used on views.
v Reorganization of a table is not compatible with range-clustered tables, because

the range area of the table always remains clustered.
v REORG TABLE cannot be used on a partitioned table in a DMS table space

while an online backup of ANY table space in which the table resides, including
LOBs and indexes, is being performed.

v REORG TABLE cannot use an index that is based on an index extension.
v If a table is in reorg pending state, an inplace reorg is not allowed on the table.
v For partitioned tables:

– The table must have an ACCESS_MODE in SYSCAT.TABLES of Full Access.
– Reorganization skips data partitions that are in a restricted state due to an

attach or detach operation. If the Table partitioning clause is specified, that
partition must be fully accessible.

– If an error occurs during table reorganization, some indexes or index
partitions might be left invalid. The nonpartitioned indexes of the table will
be marked invalid if the reorganization has reached or passed the replace
phase for the first data partition. The index partitions for any data partition
that has already reached or passed the replace phase will be marked invalid.
Indexes will be rebuilt on the next access to the table or data partition.

– If an error occurs during index reorganization when the ALLOW NONE
access mode is used, some indexes on the table might be left invalid. For
nonpartitioned RID indexes on the table, only the index that is being
reorganized at the time of the failure will be left invalid. For MDC tables with
nonpartitioned block indexes, one or more of the block indexes might be left
invalid if an error occurs. For partitioned indexes, only the index object on
the data partition being reorganized will be left invalid. Any indexes marked
invalid will be rebuilt on the next access to the table or data partition.

Information about the current progress of table reorganization is written to the
history file for database activity. The history file contains a record for each
reorganization event. To view this file, execute the LIST HISTORY command for
the database that contains the table you are reorganizing.

Chapter 30. DB2 commands 689

You can also use table snapshots to monitor the progress of table reorganization.
Table reorganization monitoring data is recorded regardless of the Database
Monitor Table Switch setting.

If an error occurs, an SQLCA dump is written to the history file. For an in-place
table reorganization, the status is recorded as PAUSED.

When an indexed table has been modified many times, the data in the indexes
might become fragmented. If the table is clustered with respect to an index, the
table and index can get out of cluster order. Both of these factors can adversely
affect the performance of scans using the index, and can impact the effectiveness of
index page prefetching. REORG INDEX or REORG INDEXES can be used to
reorganize one or all of the indexes on a table. Index reorganization will remove
any fragmentation and restore physical clustering to the leaf pages. Use the
REORGCHK command to help determine if an index needs reorganizing. Be sure
to complete all database operations and release all locks before invoking index
reorganization. This can be done by issuing a COMMIT after closing all cursors
opened WITH HOLD, or by issuing a ROLLBACK.

A classic table reorganization (offline reorganization) rebuilds the indexes during
the last phase of the reorganization. However, the inplace table reorganization
(online reorganization) does not rebuild the indexes. It is recommended that you
issue a REORG INDEXES command after the completion of an inplace table
reorganization. An inplace table reorganization is asynchronous, therefore care
must be taken to ensure that the inplace table reorganization is complete before
issuing the REORG INDEXES command. Issuing the REORG INDEXES command
before the inplace table reorganization is complete, might cause the reorganization
to fail (SQLCODE -2219).

Tables that have been modified so many times that data is fragmented and access
performance is noticeably slow are candidates for the REORG TABLE command.
You should also invoke this utility after altering the inline length of a structured
type column in order to benefit from the altered inline length. Use the
REORGCHK command to determine whether a table needs reorganizing. Be sure
to complete all database operations and release all locks before invoking REORG
TABLE. This can be done by issuing a COMMIT after closing all cursors opened
WITH HOLD, or by issuing a ROLLBACK. After reorganizing a table, use
RUNSTATS to update the table statistics, and REBIND to rebind the packages that
use this table. The reorganize utility will implicitly close all the cursors.

If the table contains mixed row format because the table value compression has
been activated or deactivated, an offline table reorganization can convert all the
existing rows into the target row format.

If the table is distributed across several database partitions, and the table or index
reorganization fails on any of the affected database partitions, only the failing
database partitions will have the table or index reorganization rolled back.

If the reorganization is not successful, temporary files should not be deleted. The
database manager uses these files to recover the database.

If the name of an index is specified, the database manager reorganizes the data
according to the order in the index. To maximize performance, specify an index
that is often used in SQL queries. If the name of an index is not specified, and if a
clustering index exists, the data will be ordered according to the clustering index.

690 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The PCTFREE value of a table determines the amount of free space designated per
page. If the value has not been set, the utility will fill up as much space as possible
on each page.

To complete a table space roll-forward recovery following a table reorganization,
both regular and large table spaces must be enabled for roll-forward recovery.

If the table contains LOB columns that do not use the COMPACT option, the LOB
DATA storage object can be significantly larger following table reorganization. This
can be a result of the order in which the rows were reorganized, and the types of
table spaces used (SMS or DMS).

Indexes over XML data may be recreated by the REORG INDEXES/TABLE
command. For details, see “Recreation of indexes over XML data”.

RESTART DATABASE

Restarts a database that has been abnormally terminated and left in an inconsistent
state. At the successful completion of RESTART DATABASE, the application
remains connected to the database if the user has CONNECT privilege.

Scope

This command affects only the node on which it is executed.

Authorization

None

Required connection

This command establishes a database connection.

Command syntax

�� RESTART DATABASE
DB

database-alias �

�
USER username

USING password

�

�

�

,

DROP PENDING TABLESPACES (tablespace-name)

WRITE RESUME
��

Command parameters

DATABASE database-alias
Identifies the database to restart.

USER username
Identifies the user name under which the database is to be restarted.

Chapter 30. DB2 commands 691

USING password
The password used to authenticate username. If the password is omitted,
the user is prompted to enter it.

DROP PENDING TABLESPACES tablespace-name
Specifies that the database restart operation is to be successfully completed
even if table space container problems are encountered.

If a problem occurs with a container for a specified table space during the
restart process, the corresponding table space will not be available (it will
be in drop-pending state) after the restart operation. If a table space is in
the drop-pending state, the only possible action is to drop the table space.

In the case of circular logging, a troubled table space will cause a restart
failure. A list of troubled table space names can found in the
administration notification log if a restart database operation fails because
of container problems. If there is only one system temporary table space in
the database, and it is in drop pending state, a new system temporary
table space must be created immediately following a successful database
restart operation.

WRITE RESUME
Allows you to force a database restart on databases that failed while I/O
writes were suspended. Before performing crash recovery, this option will
resume I/O writes by removing the SUSPEND_WRITE state from every
table space in the database.

The WRITE RESUME option can also be used in the case where the
connection used to suspend I/O writes is currently hung and all
subsequent connection attempts are also hanging. When used in this
circumstance, RESTART DATABASE will resume I/O writes to the
database without performing crash recovery. RESTART DATABASE with
the WRITE RESUME option will only perform crash recovery when you
use it after a database crash. The WRITE RESUME parameter can only be
applied to the primary database, not to mirrored databases.

Usage notes

Execute this command if an attempt to connect to a database returns an error
message, indicating that the database must be restarted. This action occurs only if
the previous session with this database terminated abnormally (due to power
failure, for example).

On a partitioned database system, in order to resolve the indoubt transactions, the
RESTART DATABASE command should be issued on all nodes, as in the example
below:

db2_all "db2 restart database database-alias"

If the database is only restarted on a single node within an MPP system, a message
might be returned on a subsequent database query indicating that the database
needs to be restarted. This occurs because the database partition on a node on
which the query depends must also be restarted. Restarting the database on all
nodes solves the problem.

692 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

RESTORE DATABASE

The RESTORE DATABASE command recreates a damaged or corrupted database
that has been backed up using the DB2 backup utility. The restored database is in
the same state that it was in when the backup copy was made. This utility can also
overwrite a database with a different image or restore the backup copy to a new
database.

For information on the restore operations supported by DB2 database systems
between different operating systems and hardware platforms, see “Backup and
restore operations between different operating systems and hardware platforms” in
the Data Recovery and High Availability Guide and Reference.

The restore utility can also be used to restore backup images in DB2 Version 9.7
that were backed up on DB2 Universal Database Version 8, DB2 Version 9.1, or
DB2 Version 9.5. If a database upgrade is required, it will be invoked automatically
at the end of the restore operation.

If, at the time of the backup operation, the database was enabled for rollforward
recovery, the database can be brought to its previous state by invoking the
rollforward utility after successful completion of a restore operation.

This utility can also restore a table space level backup.

Incremental images and images only capturing differences from the time of the
previous capture (called a “delta image”) cannot be restored when there is a
difference in operating systems or word size (32-bit or 64-bit).

Following a successful restore operation from one environment to a different
environment, no incremental or delta backups are allowed until a non-incremental
backup is taken. (This is not a limitation following a restore operation within the
same environment.)

Even with a successful restore operation from one environment to a different
environment, there are some considerations: packages must be rebound before use
(using the BIND command, the REBIND command, or the db2rbind utility); SQL
procedures must be dropped and recreated; and all external libraries must be
rebuilt on the new platform. (These are not considerations when restoring to the
same environment.)

A restore operation run over an existing database and existing containers reuses
the same containers and tablespace map.

A restore operation run against a new database reacquires all containers and
rebuilds an optimized tablespace map. A restore operation run over an existing
database with one or more missing containers also reacquires all containers and
rebuilds an optimized tablespace map.

Scope

This command only affects the node on which it is executed.

Chapter 30. DB2 commands 693

Authorization

To restore to an existing database, one of the following:
v sysadm

v sysctrl

v sysmaint

To restore to a new database, one of the following:
v sysadm

v sysctrl

Required connection

The required connection will vary based on the type of restore action:
v You require a database connection, to restore to an existing database. This

command automatically establishes an exclusive connection to the specified
database.

v You require an instance and a database connection, to restore to a new database.
The instance attachment is required to create the database.
To restore to a new database at an instance different from the current instance, it
is necessary to first attach to the instance where the new database will reside.
The new instance can be local or remote. The current instance is defined by the
value of the DB2INSTANCE environment variable.

v For snapshot restore, instance and database connections are required.

Command syntax

�� RESTORE DATABASE
DB

source-database-alias restore-options
CONTINUE
ABORT

��

restore-options:

USER username
USING password

�

�

�

REBUILD WITH ALL TABLESPACES IN DATABASE
ALL TABLESPACES IN IMAGE EXCEPT rebuild-tablespace-clause
rebuild-tablespace-clause

TABLESPACE
, ONLINE

(tablespace-name)
HISTORY FILE
COMPRESSION LIBRARY
LOGS

�

�
INCREMENTAL

AUTO
AUTOMATIC
ABORT

�

USE TSM open-sessions options
XBSA

SNAPSHOT
LIBRARY library-name

LOAD shared-library open-sessions options
,

FROM directory
device

�

694 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

�
TAKEN AT date-time TO target-directory

DBPATH ON target-directory
ON path-list

DBPATH ON target-directory

�

�
INTO target-database-alias LOGTARGET directory

EXCLUDE
INCLUDE FORCE

NEWLOGPATH directory
�

�
WITH num-buffers BUFFERS BUFFER buffer-size REPLACE HISTORY FILE REPLACE EXISTING

�

�
REDIRECT

GENERATE SCRIPT script
PARALLELISM n COMPRLIB name COMPROPTS string

�

�
WITHOUT ROLLING FORWARD WITHOUT PROMPTING

rebuild-tablespace-clause:

�

,

TABLESPACE (tablespace-name)

open-sessions:

OPEN num-sessions SESSIONS

options:

OPTIONS ″options-string″
@ file-name

Command parameters

DATABASE source-database-alias
Alias of the source database from which the backup was taken.

CONTINUE
Specifies that the containers have been redefined, and that the final step in
a redirected restore operation should be performed.

ABORT
This parameter:
v Stops a redirected restore operation. This is useful when an error has

occurred that requires one or more steps to be repeated. After RESTORE
DATABASE with the ABORT option has been issued, each step of a
redirected restore operation must be repeated, including RESTORE
DATABASE with the REDIRECT option.

v Terminates an incremental restore operation before completion.

USER username
Identifies the user name under which the database is to be restored.

USING password
The password used to authenticate the user name. If the password is
omitted, the user is prompted to enter it.

Chapter 30. DB2 commands 695

REBUILD WITH ALL TABLESPACES IN DATABASE
Restores the database with all the table spaces known to the database at
the time of the image being restored. This restore overwrites a database if
it already exists.

REBUILD WITH ALL TABLESPACES IN DATABASE EXCEPT
rebuild-tablespace-clause

Restores the database with all the table spaces known to the database at
the time of the image being restored except for those specified in the list.
This restore overwrites a database if it already exists.

REBUILD WITH ALL TABLESPACES IN IMAGE
Restores the database with only the table spaces in the image being
restored. This restore overwrites a database if it already exists.

REBUILD WITH ALL TABLESPACES IN IMAGE EXCEPT rebuild-tablespace-
clause Restores the database with only the table spaces in the image being

restored except for those specified in the list. This restore overwrites a
database if it already exists.

REBUILD WITH rebuild-tablespace-clause
Restores the database with only the list of table spaces specified. This
restore overwrites a database if it already exists.

TABLESPACE tablespace-name
A list of names used to specify the table spaces that are to be restored.

ONLINE
This keyword, applicable only when performing a table space-level restore
operation, is specified to allow a backup image to be restored online. This
means that other agents can connect to the database while the backup
image is being restored, and that the data in other table spaces will be
available while the specified table spaces are being restored.

HISTORY FILE
This keyword is specified to restore only the history file from the backup
image.

COMPRESSION LIBRARY
This keyword is specified to restore only the compression library from the
backup image. If the object exists in the backup image, it will be restored
into the database directory. If the object does not exist in the backup image,
the restore operation will fail.

LOGS This keyword is specified to restore only the set of log files contained in
the backup image. If the backup image does not contain any log files, the
restore operation will fail. If this option is specified, the LOGTARGET
option must also be specified.

INCREMENTAL
Without additional parameters, INCREMENTAL specifies a manual
cumulative restore operation. During manual restore the user must issue
each restore command manually for each image involved in the restore. Do
so according to the following order: last, first, second, third and so on up
to and including the last image.

INCREMENTAL AUTOMATIC/AUTO
Specifies an automatic cumulative restore operation.

INCREMENTAL ABORT
Specifies abortion of an in-progress manual cumulative restore operation.

696 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

USE

TSM Specifies that the database is to be restored from output managed
by Tivoli Storage Manager.

XBSA Specifies that the XBSA interface is to be used. Backup Services
APIs (XBSA) are an open application programming interface for
applications or facilities needing data storage management for
backup or archiving purposes.

SNAPSHOT
Specifies that the data is to be restored from a snapshot backup.

You cannot use the SNAPSHOT parameter with any of the
following parameters:
v INCREMENTAL
v TO
v ON
v DBPATH ON
v INTO
v NEWLOGPATH
v WITH num-buffers BUFFERS
v BUFFER
v REDIRECT
v REPLACE HISTORY FILE
v COMPRESSION LIBRARY
v PARALLELISM
v COMPRLIB
v OPEN num-sessions SESSIONS
v HISTORY FILE
v LOGS

Also, you cannot use the SNAPSHOT parameter with any restore
operation that involves a table space list, which includes the
REBUILD WITH option.

The default behavior when restoring data from a snapshot backup
image will be a FULL DATABASE OFFLINE restore of all paths
that make up the database including all containers, local volume
directory, database path (DBPATH), primary log and mirror log
paths of the most recent snapshot backup if no timestamp is
provided (INCLUDE LOGS is the default for all snapshot backups
unless EXCLUDE LOGS is explicitly stated). If a timestamp is
provided, then that snapshot backup image will be restored.

LIBRARY library-name
Integrated into IBM Data Server is a DB2 ACS API driver
for the following storage hardware:
v IBM TotalStorage® SAN Volume Controller
v IBM Enterprise Storage Server® Model 800
v IBM System Storage™ DS6000™

v IBM System Storage DS8000®

v IBM System Storage N Series
v NetApp V-series

Chapter 30. DB2 commands 697

v NetApp FAS

If you have other storage hardware, and a DB2 ACS API
driver for that storage hardware, you can use the LIBRARY
parameter to specify the DB2 ACS API driver.

The value of the LIBRARY parameter is a fully-qualified
library file name.

OPTIONS

″options-string″
Specifies options to be used for the restore operation. The string
will be passed to DB2 ACS API driver exactly as it was entered,
without the double quotation marks. You cannot use the
VENDOROPT database configuration parameter to specify
vendor-specific options for snapshot restore operations. You must
use the OPTIONS parameter of the restore utilities instead.

@file-name
Specifies that the options to be used for the restore operation are
contained in a file located on the DB2 server. The string will be
passed to the vendor support library. The file must be a fully
qualified file name.

OPEN num-sessions SESSIONS
Specifies the number of I/O sessions that are to be used with TSM or the
vendor product.

FROM directory/device
The fully qualified path name of the directory or device on which the
backup image resides. If USE TSM, FROM, and LOAD are omitted, the
default value is the current working directory of the client machine. This
target directory or device must exist on the target server/instance.

If several items are specified, and the last item is a tape device, the user is
prompted for another tape. Valid response options are:

c Continue. Continue using the device that generated the warning
message (for example, continue when a new tape has been
mounted).

d Device terminate. Stop using only the device that generated the
warning message (for example, terminate when there are no more
tapes).

t Terminate. Abort the restore operation after the user has failed to
perform some action requested by the utility.

LOAD shared-library
The name of the shared library (DLL on Windows operating systems)
containing the vendor backup and restore I/O functions to be used. The
name can contain a full path. If the full path is not given, the value
defaults to the path on which the user exit program resides.

TAKEN AT® date-time
The time stamp of the database backup image. The time stamp is
displayed after successful completion of a backup operation, and is part of
the path name for the backup image. It is specified in the form
yyyymmddhhmmss. A partial time stamp can also be specified. For example,
if two different backup images with time stamps 20021001010101 and
20021002010101 exist, specifying 20021002 causes the image with time

698 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

stamp 20021002010101 to be used. If a value for this parameter is not
specified, there must be only one backup image on the source media.

TO target-directory
This parameter states the target database directory. This parameter is
ignored if the utility is restoring to an existing database. The drive and
directory that you specify must be local. If the backup image contains a
database that is enabled for automatic storage then only the database
directory changes, the storage paths associated with the database do not
change.

DBPATH ON target-directory
This parameter states the target database directory. This parameter is
ignored if the utility is restoring to an existing database. The drive and
directory that you specify must be local. If the backup image contains a
database that is enabled for automatic storage and the ON parameter is not
specified then this parameter is synonymous with the TO parameter and
only the database directory changes, the storage paths associated with the
database do not change.

ON path-list
This parameter redefines the storage paths associated with an automatic
storage database. Using this parameter with a database that is not enabled
for automatic storage results in an error (SQL20321N). The existing storage
paths as defined within the backup image are no longer used and
automatic storage table spaces are automatically redirected to the new
paths. If this parameter is not specified for an automatic storage database
then the storage paths remain as they are defined within the backup
image.

One or more paths can be specified, each separated by a comma. Each path
must have an absolute path name and it must exist locally. If the database
does not already exist on disk and the DBPATH ON parameter is not
specified then the first path is used as the target database directory.

For a multi-partition database the ON path-list option can only be specified
on the catalog partition. The catalog partition must be restored before any
other partitions are restored when the ON option is used. The restore of
the catalog-partition with new storage paths will place all non-catalog
nodes in a RESTORE_PENDING state. The non-catalog nodes can then be
restored in parallel without specifying the ON clause in the restore
command.

In general, the same storage paths must be used for each partition in a
multi-partition database and they must all exist prior to executing the
RESTORE DATABASE command. One exception to this is where database
partition expressions are used within the storage path. Doing this allows
the database partition number to be reflected in the storage path such that
the resulting path name is different on each partition.

You use the argument “ $N” ([blank]$N) to indicate a database partition
expression. A database partition expression can be used anywhere in the
storage path, and multiple database partition expressions can be specified.
Terminate the database partition expression with a space character;
whatever follows the space is appended to the storage path after the
database partition expression is evaluated. If there is no space character in
the storage path after the database partition expression, it is assumed that
the rest of the string is part of the expression. The argument can only be
used in one of the following forms:

Chapter 30. DB2 commands 699

Table 170. . Operators are evaluated from left to right. % represents the modulus operator.
The database partition number in the examples is assumed to be 10.

Syntax Example Value

[blank]$N ″ $N″ 10

[blank]$N+[number] ″ $N+100″ 110

[blank]$N%[number] ″ $N%5″ 0

[blank]$N+[number]%[number] ″ $N+1%5″ 1

[blank]$N%[number]+[number] ″ $N%4+2″ 4

a % is modulus.

INTO target-database-alias
The target database alias. If the target database does not exist, it is created.

When you restore a database backup to an existing database, the restored
database inherits the alias and database name of the existing database.
When you restore a database backup to a nonexistent database, the new
database is created with the alias and database name that you specify. This
new database name must be unique on the system where you restore it.

LOGTARGET directory
Non-snapshot restores:

The absolute path name of an existing directory on the database server, to
be used as the target directory for extracting log files from a backup image.
If this option is specified, any log files contained within the backup image
will be extracted into the target directory. If this option is not specified, log
files contained within a backup image will not be extracted. To extract only
the log files from the backup image, specify the LOGS option.

Snapshot restores:

INCLUDE
Restore log directory volumes from the snapshot image. If this
option is specified and the backup image contains log directories,
then they will be restored. Existing log directories and log files on
disk will be left intact if they do not conflict with the log
directories in the backup image. If existing log directories on disk
conflict with the log directories in the backup image, then an error
will be returned.

EXCLUDE
Do not restore log directory volumes. If this option is specified,
then no log directories will be restored from the backup image.
Existing log directories and log files on disk will be left intact if
they do not conflict with the log directories in the backup image. If
a path belonging to the database is restored and a log directory
will implicitly be restored because of this, thus causing a log
directory to be overwritten, an error will be returned.

FORCE
Allow existing log directories in the current database to be
overwritten and replaced when restoring the snapshot image.
Without this option, existing log directories and log files on disk
which conflict with log directories in the snapshot image will cause
the restore to fail. Use this option to indicate that the restore can
overwrite and replace those existing log directories.

700 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Note: Use this option with caution, and always ensure that you
have backed up and archived all logs that might be required for
recovery.

Note: If LOGTARGET is not specified non-snapshot restores, then the
default LOGTARGET directory is LOGTARGET EXCLUDE.

NEWLOGPATH directory
The absolute pathname of a directory that will be used for active log files
after the restore operation. This parameter has the same function as the
newlogpath database configuration parameter, except that its effect is
limited to the restore operation in which it is specified. The parameter can
be used when the log path in the backup image is not suitable for use after
the restore operation; for example, when the path is no longer valid, or is
being used by a different database.

WITH num-buffers BUFFERS
The number of buffers to be used. The DB2 database system will
automatically choose an optimal value for this parameter unless you
explicitly enter a value. A larger number of buffers can be used to improve
performance when multiple sources are being read from, or if the value of
PARALLELISM has been increased.

BUFFER buffer-size
The size, in pages, of the buffer used for the restore operation. The DB2
database system will automatically choose an optimal value for this
parameter unless you explicitly enter a value. The minimum value for this
parameter is 8 pages.

The restore buffer size must be a positive integer multiple of the backup
buffer size specified during the backup operation. If an incorrect buffer size
is specified, the buffers are allocated to be of the smallest acceptable size.

REPLACE HISTORY FILE
Specifies that the restore operation should replace the history file on disk
with the history file from the backup image.

REPLACE EXISTING
If a database with the same alias as the target database alias already exists,
this parameter specifies that the restore utility is to replace the existing
database with the restored database. This is useful for scripts that invoke
the restore utility, because the command line processor will not prompt the
user to verify deletion of an existing database. If the WITHOUT
PROMPTING parameter is specified, it is not necessary to specify
REPLACE EXISTING, but in this case, the operation will fail if events
occur that normally require user intervention.

REDIRECT
Specifies a redirected restore operation. To complete a redirected restore
operation, this command should be followed by one or more SET
TABLESPACE CONTAINERS commands, and then by a RESTORE
DATABASE command with the CONTINUE option. All commands
associated with a single redirected restore operation must be invoked from
the same window or CLP session.

GENERATE SCRIPT script
Creates a redirect restore script with the specified file name. The script
name can be relative or absolute and the script will be generated on the
client side. If the file cannot be created on the client side, an error message

Chapter 30. DB2 commands 701

(SQL9304N) will be returned. If the file already exists, it will be
overwritten. Please see the examples below for further usage information.

WITHOUT ROLLING FORWARD
Specifies that the database is not to be put in rollforward pending state
after it has been successfully restored.

If, following a successful restore operation, the database is in rollforward
pending state, the ROLLFORWARD command must be invoked before the
database can be used again.

If this option is specified when restoring from an online backup image,
error SQL2537N will be returned.

If backup image is of a recoverable database then WITHOUT ROLLING
FORWARD cannot be specified with REBUILD option.

PARALLELISM n
Specifies the number of buffer manipulators that are to be created during
the restore operation. The DB2 database system will automatically choose
an optimal value for this parameter unless you explicitly enter a value.

COMPRLIB name
Indicates the name of the library to be used to perform the decompression
(e.g., db2compr.dll for Windows; libdb2compr.so for Linux/UNIX
systems). The name must be a fully qualified path referring to a file on the
server. If this parameter is not specified, DB2 will attempt to use the
library stored in the image. If the backup was not compressed, the value of
this parameter will be ignored. If the specified library cannot be loaded,
the restore operation will fail.

COMPROPTS string
Describes a block of binary data that is passed to the initialization routine
in the decompression library. The DB2 database system passes this string
directly from the client to the server, so any issues of byte reversal or code
page conversion are handled by the decompression library. If the first
character of the data block is “@”, the remainder of the data is interpreted
by the DB2 database system as the name of a file residing on the server.
The DB2 database system will then replace the contents of string with the
contents of this file and pass the new value to the initialization routine
instead. The maximum length for the string is 1 024 bytes.

WITHOUT PROMPTING
Specifies that the restore operation is to run unattended. Actions that
normally require user intervention will return an error message. When
using a removable media device, such as tape or diskette, the user is
prompted when the device ends, even if this option is specified.

Examples
1. In the following example, the database WSDB is defined on all 4 database

partitions, numbered 0 through 3. The path /dev3/backup is accessible from
all database partitions. The following offline backup images are available from
/dev3/backup:

wsdb.0.db2inst1.NODE0000.CATN0000.20020331234149.001
wsdb.0.db2inst1.NODE0001.CATN0000.20020331234427.001
wsdb.0.db2inst1.NODE0002.CATN0000.20020331234828.001
wsdb.0.db2inst1.NODE0003.CATN0000.20020331235235.001

702 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

To restore the catalog partition first, then all other database partitions of the
WSDB database from the /dev3/backup directory, issue the following
commands from one of the database partitions:

db2_all '<<+0< db2 RESTORE DATABASE wsdb FROM /dev3/backup
TAKEN AT 20020331234149

INTO wsdb REPLACE EXISTING'
db2_all '<<+1< db2 RESTORE DATABASE wsdb FROM /dev3/backup
TAKEN AT 20020331234427

INTO wsdb REPLACE EXISTING'
db2_all '<<+2< db2 RESTORE DATABASE wsdb FROM /dev3/backup
TAKEN AT 20020331234828

INTO wsdb REPLACE EXISTING'
db2_all '<<+3< db2 RESTORE DATABASE wsdb FROM /dev3/backup
TAKEN AT 20020331235235

INTO wsdb REPLACE EXISTING'

The db2_all utility issues the restore command to each specified database
partition. When performing a restore using db2_all, you should always
specify REPLACE EXISTING and/or WITHOUT PROMPTING. Otherwise, if
there is prompting, the operation will look like it is hanging. This is because
db2_all does not support user prompting.

2. Following is a typical redirected restore scenario for a database whose alias is
MYDB:
a. Issue a RESTORE DATABASE command with the REDIRECT option.

restore db mydb replace existing redirect

After successful completion of step 1, and before completing step 3, the
restore operation can be aborted by issuing:

restore db mydb abort

b. Issue a SET TABLESPACE CONTAINERS command for each table space
whose containers must be redefined. For example:

set tablespace containers for 5 using
(file 'f:\ts3con1' 20000, file 'f:\ts3con2' 20000)

To verify that the containers of the restored database are the ones specified
in this step, issue the LIST TABLESPACE CONTAINERS command.

c. After successful completion of steps 1 and 2, issue:
restore db mydb continue

This is the final step of the redirected restore operation.
d. If step 3 fails, or if the restore operation has been aborted, the redirected

restore can be restarted, beginning at step 1.
3. Following is a sample weekly incremental backup strategy for a recoverable

database. It includes a weekly full database backup operation, a daily
non-cumulative (delta) backup operation, and a mid-week cumulative
(incremental) backup operation:

(Sun) backup db mydb use tsm
(Mon) backup db mydb online incremental delta use tsm
(Tue) backup db mydb online incremental delta use tsm
(Wed) backup db mydb online incremental use tsm
(Thu) backup db mydb online incremental delta use tsm
(Fri) backup db mydb online incremental delta use tsm
(Sat) backup db mydb online incremental use tsm

For an automatic database restore of the images created on Friday morning,
issue:

Chapter 30. DB2 commands 703

restore db mydb incremental automatic taken at (Fri)

For a manual database restore of the images created on Friday morning, issue:
restore db mydb incremental taken at (Fri)
restore db mydb incremental taken at (Sun)
restore db mydb incremental taken at (Wed)
restore db mydb incremental taken at (Thu)
restore db mydb incremental taken at (Fri)

4. To produce a backup image, which includes logs, for transportation to a
remote site:

backup db sample online to /dev3/backup include logs

To restore that backup image, supply a LOGTARGET path and specify this
path during ROLLFORWARD:

restore db sample from /dev3/backup logtarget /dev3/logs
rollforward db sample to end of logs and stop overflow log path /dev3/logs

5. To retrieve only the log files from a backup image that includes logs:
restore db sample logs from /dev3/backup logtarget /dev3/logs

6. The USE TSM OPTIONS keywords can be used to specify the TSM
information to use for the restore operation. On Windows platforms, omit the
-fromowner option.
v Specifying a delimited string:

restore db sample use TSM options '"-fromnode=bar -fromowner=dmcinnis"'

v Specifying a fully qualified file:
restore db sample use TSM options @/u/dmcinnis/myoptions.txt

The file myoptions.txt contains the following information: -fromnode=bar
-fromowner=dmcinnis

7. The following is a simple restore of a multi-partition automatic storage
enabled database with new storage paths. The database was originally created
with one storage path, /myPath0:
v On the catalog partition issue: restore db mydb on /myPath1,/myPath2

v On all non-catalog partitions issue: restore db mydb

8. A script output of the following command on a non-auto storage database:
restore db sample from /home/jseifert/backups taken at 20050301100417 redirect
generate script SAMPLE_NODE0000.clp

would look like this:
-- **
-- ** automatically created redirect restore script
-- **
UPDATE COMMAND OPTIONS USING S ON Z ON SAMPLE_NODE0000.out V ON;
SET CLIENT ATTACH_DBPARTITIONNUM 0;
SET CLIENT CONNECT_DBPARTITIONNUM 0;
-- **
-- ** initialize redirected restore
-- **
RESTORE DATABASE SAMPLE
-- USER '<username>'
-- USING '<password>'
FROM '/home/jseifert/backups'
TAKEN AT 20050301100417
-- DBPATH ON '<target-directory>'
INTO SAMPLE
-- NEWLOGPATH '/home/jseifert/jseifert/NODE0000/SQL00001/SQLOGDIR/'
-- WITH <num-buff> BUFFERS

704 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

-- BUFFER <buffer-size>
-- REPLACE HISTORY FILE
-- REPLACE EXISTING
REDIRECT
-- PARALLELISM <n>
-- WITHOUT ROLLING FORWARD
-- WITHOUT PROMPTING
;
-- **
-- ** tablespace definition
-- **
-- **
-- ** Tablespace name = SYSCATSPACE
-- ** Tablespace ID = 0
-- ** Tablespace Type = System managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Total number of pages = 5572
-- **
SET TABLESPACE CONTAINERS FOR 0
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (

PATH 'SQLT0000.0'
);
-- **
-- ** Tablespace name = TEMPSPACE1
-- ** Tablespace ID = 1
-- ** Tablespace Type = System managed space
-- ** Tablespace Content Type = System Temporary data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Total number of pages = 0
-- **
SET TABLESPACE CONTAINERS FOR 1
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (

PATH 'SQLT0001.0'
);
-- **
-- ** Tablespace name = USERSPACE1
-- ** Tablespace ID = 2
-- ** Tablespace Type = System managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Total number of pages = 1
-- **
SET TABLESPACE CONTAINERS FOR 2
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (

PATH 'SQLT0002.0'
);
-- **
-- ** Tablespace name = DMS
-- ** Tablespace ID = 3
-- ** Tablespace Type = Database managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Auto-resize enabled = No
-- ** Total number of pages = 2000
-- ** Number of usable pages = 1960

Chapter 30. DB2 commands 705

-- ** High water mark (pages) = 96
-- **
SET TABLESPACE CONTAINERS FOR 3
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (

FILE /tmp/dms1 1000
, FILE /tmp/dms2 1000
);
-- **
-- ** Tablespace name = RAW
-- ** Tablespace ID = 4
-- ** Tablespace Type = Database managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Auto-resize enabled = No
-- ** Total number of pages = 2000
-- ** Number of usable pages = 1960
-- ** High water mark (pages) = 96
-- **
SET TABLESPACE CONTAINERS FOR 4
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (

DEVICE '/dev/hdb1' 1000
, DEVICE '/dev/hdb2' 1000
);
-- **
-- ** start redirect restore
-- **
RESTORE DATABASE SAMPLE CONTINUE;
-- **
-- ** end of file
-- **

9. A script output of the following command on an automatic storage database:
restore db test from /home/jseifert/backups taken at 20050304090733 redirect
generate script TEST_NODE0000.clp

would look like this:
-- **
-- ** automatically created redirect restore script
-- **
UPDATE COMMAND OPTIONS USING S ON Z ON TEST_NODE0000.out V ON;
SET CLIENT ATTACH_DBPARTITIONNUM 0;
SET CLIENT CONNECT_DBPARTITIONNUM 0;
-- **
-- ** initialize redirected restore
-- **
RESTORE DATABASE TEST
-- USER '<username>'
-- USING '<password>'
FROM '/home/jseifert/backups'
TAKEN AT 20050304090733
ON '/home/jseifert'
-- DBPATH ON <target-directory>
INTO TEST
-- NEWLOGPATH '/home/jseifert/jseifert/NODE0000/SQL00002/SQLOGDIR/'
-- WITH <num-buff> BUFFERS
-- BUFFER <buffer-size>
-- REPLACE HISTORY FILE
-- REPLACE EXISTING
REDIRECT
-- PARALLELISM <n>
-- WITHOUT ROLLING FORWARD
-- WITHOUT PROMPTING

706 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

;
-- **
-- ** tablespace definition
-- **
-- **
-- ** Tablespace name = SYSCATSPACE
-- ** Tablespace ID = 0
-- ** Tablespace Type = Database managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 4
-- ** Using automatic storage = Yes
-- ** Auto-resize enabled = Yes
-- ** Total number of pages = 6144
-- ** Number of usable pages = 6140
-- ** High water mark (pages) = 5968
-- **
-- **
-- ** Tablespace name = TEMPSPACE1
-- ** Tablespace ID = 1
-- ** Tablespace Type = System managed space
-- ** Tablespace Content Type = System Temporary data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = Yes
-- ** Total number of pages = 0
-- **
-- **
-- ** Tablespace name = USERSPACE1
-- ** Tablespace ID = 2
-- ** Tablespace Type = Database managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = Yes
-- ** Auto-resize enabled = Yes
-- ** Total number of pages = 256
-- ** Number of usable pages = 224
-- ** High water mark (pages) = 96
-- **
-- **
-- ** Tablespace name = DMS
-- ** Tablespace ID = 3
-- ** Tablespace Type = Database managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Auto-resize enabled = No
-- ** Total number of pages = 2000
-- ** Number of usable pages = 1960
-- ** High water mark (pages) = 96
-- **
SET TABLESPACE CONTAINERS FOR 3
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (

FILE '/tmp/dms1' 1000
, FILE '/tmp/dms2' 1000
);
-- **
-- ** Tablespace name = RAW
-- ** Tablespace ID = 4
-- ** Tablespace Type = Database managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No

Chapter 30. DB2 commands 707

-- ** Auto-resize enabled = No
-- ** Total number of pages = 2000
-- ** Number of usable pages = 1960
-- ** High water mark (pages) = 96
-- **
SET TABLESPACE CONTAINERS FOR 4
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (

DEVICE '/dev/hdb1' 1000
, DEVICE '/dev/hdb2' 1000
);
-- **
-- ** start redirect restore
-- **
RESTORE DATABASE TEST CONTINUE;
-- **
-- ** end of file
-- **

10. The following are examples of the RESTORE DB command using the
SNAPSHOT option:
Restore log directory volumes from the snapshot image and do not prompt.
db2 restore db sample use snapshot LOGTARGET INCLUDE without prompting

Do not restore log directory volumes and do not prompt.
db2 restore db sample use snapshot LOGTARGET EXCLUDE without prompting

Do not restore log directory volumes and do not prompt. When LOGTARGET
is not specified, then the default is LOGTARGET EXCLUDE.
db2 restore db sample use snapshot without prompting

Allow existing log directories in the current database to be overwritten and
replaced when restoring the snapshot image containing conflicting log
directories, without prompting.
db2 restore db sample use snapshot LOGTARGET EXCLUDE FORCE without prompting

Allow existing log directories in the current database to be overwritten and
replaced when restoring the snapshot image containing conflicting log
directories, without prompting.
db2 restore db sample use snapshot LOGTARGET INCLUDE FORCE without prompting

Usage notes
v A RESTORE DATABASE command of the form db2 restore db <name> will

perform a full database restore with a database image and will perform a table
space restore operation of the table spaces found in a table space image. A
RESTORE DATABASE command of the form db2 restore db <name> tablespace
performs a table space restore of the table spaces found in the image. In
addition, if a list of table spaces is provided with such a command, the explicitly
listed table spaces are restored.

v Following the restore operation of an online backup, you must perform a
roll-forward recovery.

v If a backup image is compressed, the DB2 database system detects this and
automatically decompresses the data before restoring it. If a library is specified
on the db2Restore API, it is used for decompressing the data. Otherwise, a check
is made to see if a library is stored in the backup image and if the library exists,
it is used. Finally, if there is not library stored in the backup image, the data
cannot be decompressed and the restore operation fails.

v If the compression library is to be restored from a backup image (either
explicitly by specifying the COMPRESSION LIBRARY option or implicitly by
performing a normal restore of a compressed backup), the restore operation
must be done on the same platform and operating system that the backup was

708 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

taken on. If the platform the backup was taken on is not the same as the
platform that the restore is being done on, the restore operation will fail, even if
DB2 normally supports cross-platform restores involving the two systems.

v A backed up SMS tablespace can only be restored into a SMS tablespace. You
cannot restore it into a DMS tablespace, or vice versa.

v To restore log files from the backup image that contains them, the LOGTARGET
option must be specified, providing the fully qualified and valid path that exists
on the DB2 server. If those conditions are satisfied, the restore utility will write
the log files from the image to the target path. If a LOGTARGET is specified
during a restore of a backup image that does not include logs, the restore
operation will return an error before attempting to restore any table space data.
A restore operation will also fail with an error if an invalid, or read-only,
LOGTARGET path is specified.

v If any log files exist in the LOGTARGET path at the time the RESTORE
DATABASE command is issued, a warning prompt will be returned to the user.
This warning will not be returned if WITHOUT PROMPTING is specified.

v During a restore operation where a LOGTARGET is specified, if any log file
cannot be extracted, the restore operation will fail and return an error. If any of
the log files being extracted from the backup image have the same name as an
existing file in the LOGTARGET path, the restore operation will fail and an error
will be returned. The restore database utility will not overwrite existing log files
in the LOGTARGET directory.

v You can also restore only the saved log set from a backup image. To indicate
that only the log files are to be restored, specify the LOGS option in addition to
the LOGTARGET path. Specifying the LOGS option without a LOGTARGET
path will result in an error. If any problem occurs while restoring log files in this
mode of operation, the restore operation will terminate immediately and an
error will be returned.

v During an automatic incremental restore operation, only the log files included in
the target image of the restore operation will be retrieved from the backup
image. Any log files included in intermediate images referenced during the
incremental restore process will not be extracted from those intermediate backup
images. During a manual incremental restore operation, the LOGTARGET path
should only be specified with the final restore command to be issued.

v Offline full database backups as well as offline incremental database backups
can be restored to a later database version, whereas online backups cannot. For
multi-partition databases, the catalog partition must first be restored
individually, followed by the remaining database partitions (in parallel or serial).
However, the implicit database upgrade done by the restore operation can fail.
In a multi-partition database it can fail on one or more database partitions. In
this case, you can follow the RESTORE DATABASE command with a single
UPGRADE DATABASE command issued from the catalog partition to upgrade
the database successfully.

Snapshot restore

Like a traditional (non-snapshot) restore, the default behavior when restoring a
snapshot backup image will be to NOT restore the log directories —LOGTARGET
EXCLUDE.

If the DB2 manager detects that any log directory’s group ID is shared among any
of the other paths to be restored, then an error is returned. In this case,
LOGTARGET INCLUDE or LOGTARGET INCLUDE FORCE must be specified, as
the log directories must be part of the restore.

Chapter 30. DB2 commands 709

The DB2 manager will make all efforts to save existing log directories (primary,
mirror and overflow) before the restore of the paths from the backup image takes
place.

If you wish the log directories to be restored and the DB2 manager detects that the
pre-existing log directories on disk conflict with the log directories in the backup
image, then the DB2 manager will report an error. In such a case, if you have
specified LOGTARGET INCLUDE FORCE, then this error will be suppressed and
the log directories from the image will be restored, deleting whatever existed
beforehand.

There is a special case in which the LOGTARGET EXCLUDE option is specified
and a log directory path resides under the database directory (i.e.,
/NODExxxx/SQLxxxxx/SQLOGDIR/). In this case, a restore would still overwrite
the log directory as the database path, and all of the contents beneath it, would be
restored. If the DB2 manager detects this scenario and log files exist in this log
directory, then an error will be reported. If you specify LOGTARGET EXCLUDE
FORCE, then this error will be suppressed and those log directories from the
backup image will overwrite the conflicting log directories on disk.

ROLLFORWARD DATABASE

Recovers a database by applying transactions recorded in the database log files.
Invoked after a database or a table space backup image has been restored, or if any
table spaces have been taken offline by the database due to a media error. The
database must be recoverable (that is, the logarchmeth1 or logarchmeth2 database
configuration parameters must be set to a value other than OFF) before the
database can be recovered with rollforward recovery.

Scope

In a partitioned database environment, this command can only be invoked from
the catalog partition. A database or table space rollforward operation to a specified
point in time affects all database partitions that are listed in the db2nodes.cfg file.
A database or table space rollforward operation to the end of logs affects the
database partitions that are specified. If no database partitions are specified, it
affects all database partitions that are listed in the db2nodes.cfg file; if rollforward
recovery is not needed on a particular partition, that partition is ignored.

For partitioned tables, you are also required to roll forward related table spaces to
the same point in time. This applies to table spaces containing data partitions of a
table. If a single table space contains a portion of a partitioned table, rolling
forward to the end of the logs is still allowed.

It is not possible to roll forward through log files created on a previous DB2
release version. This is an important consideration when upgrading to a new DB2
release version.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

710 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Required connection

None. This command establishes a database connection.

Command syntax

�� ROLLFORWARD DATABASE database-alias
DB USER username

USING password

�

�
ON ALL DBPARTITIONNUMS USING UTC TIME

TO isotime
USING LOCAL TIME AND COMPLETE

ON ALL DBPARTITIONNUMS AND STOP
END OF BACKUP
END OF LOGS

On Database Partition clause
COMPLETE
STOP On Database Partition clause
CANCEL

USING UTC TIME
QUERY STATUS

USING LOCAL TIME

�

�

�

TABLESPACE ONLINE
,

(tablespace-name)
ONLINE

�

�
OVERFLOW LOG PATH (log-directory)

, Log Overflow clause
NORETRIEVE

�

�
RECOVER DROPPED TABLE drop-table-id TO export-directory

��

On Database Partition clause:

ALL DBPARTITIONNUMS
EXCEPT Database Partition List clause

ON Database Partition List clause

Database Partition List clause:

DBPARTITIONNUM
DBPARTITIONNUMS

�

� �

,

(db-partition-number1)
TO db-partition-number2

Log Overflow clause:

�

,

log-directory ON DBPARTITIONNUM db-partition-number1

Chapter 30. DB2 commands 711

Command parameters

DATABASE database-alias
The alias of the database that is to be rollforward recovered.

USER username
The user name under which the database is to be rollforward recovered.

USING password
The password used to authenticate the user name. If the password is
omitted, you will be prompted to enter it.

TO

isotime The point in time to which all committed transactions are to be
rolled forward (including the transaction committed precisely at
that time, as well as all transactions committed previously).

This value is specified as a time stamp, a 7-part character string
that identifies a combined date and time. The format is
yyyy-mm-dd-hh.mm.ss (year, month, day, hour, minutes, seconds),
expressed in Coordinated Universal Time (UTC, formerly known as
GMT). UTC helps to avoid having the same time stamp associated
with different logs (because of a change in time associated with
daylight savings time, for example). The time stamp in a backup
image is based on the local time at which the backup operation
started. The CURRENT TIMEZONE special register specifies the
difference between UTC and local time at the application server.
The difference is represented by a time duration (a decimal number
in which the first two digits represent the number of hours, the
next two digits represent the number of minutes, and the last two
digits represent the number of seconds). Subtracting CURRENT
TIMEZONE from a local time converts that local time to UTC.

USING UTC TIME
Allows you to rollforward to a point in time that is specified as
UTC time. This is the default option.

USING LOCAL TIME
Allows you to rollforward to a point in time that is the server’s
local time rather than UTC time.

Note:

1. If you specify a local time for rollforward, all messages
returned to you will also be in local time. All times are
converted on the server, and in partitioned database
environments, on the catalog database partition.

2. The timestamp string is converted to UTC on the server, so the
time is local to the server’s time zone, not the client’s. If the
client is in one time zone and the server in another, the server’s
local time should be used. This is different from the local time
option from the Control Center, which is local to the client.

3. If the timestamp string is close to the time change of the clock
due to daylight savings, it is important to know if the stop time
is before or after the clock change, and specify it correctly.

4. Subsequent ROLLFORWARD commands that cannot specify the
USING LOCAL TIME clause will have all messages returned to
you in local time if this option is specified.

712 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

5. It is important to choose the USING LOCAL TIME or the
USING UTC TIME (formerly known as GMT time) correctly. If
not specified, the default is USING UTC TIME. Any mistake in
the selection may cause rollforward to reach a different point in
time than expected and truncate the logs after that point in
time. Mistaking a local timestamp as a UTC timestamp may
cause the required logs to be truncated undesirably and prevent
further rollforwards to a point later than the mistaken time.

END OF LOGS
Specifies that all committed transactions from all online archive log
files listed in the database configuration parameter logpath are to
be applied.

END OF BACKUP
Specifies that all partitions in the partitioned database should be
rolled forward to the minimum recovery time. See Examples section
below for an example.

ALL DBPARTITIONNUMS | ON ALL DBPARTITIONNUMS
Specifies that transactions are to be rolled forward on all database
partitions specified in the db2nodes.cfg file. This is the default if a
database partition clause is not specified.

EXCEPT
Specifies that transactions are to be rolled forward on all database
partitions specified in the db2nodes.cfg file, except those specified in the
database partition list.

ON DBPARTITIONNUM | ON DBPARTITIONNUMS
Roll the database forward on a set of database partitions.

db-partition-number1
Specifies a database partition number in the database partition list.

db-partition-number2
Specifies the second database partition number, so that all database
partitions from db-partition-number1 up to and including
db-partition-number2 are included in the database partition list.

COMPLETE | STOP
Stops the rolling forward of log records, and completes the rollforward
recovery process by rolling back any incomplete transactions and turning
off the rollforward pending state of the database. This allows access to the
database or table spaces that are being rolled forward. These keywords are
equivalent; specify one or the other, but not both. The keyword AND
permits specification of multiple operations at once; for example, db2
rollforward db sample to end of logs and complete. When rolling table
spaces forward to a point in time, the table spaces are placed in backup
pending state.

CANCEL
Cancels the rollforward recovery operation. This puts the database or one
or more table spaces on all database partitions on which forward recovery
has been started in restore pending state:
v If a database rollforward operation is not in progress (that is, the database

is in rollforward pending state), this option puts the database in restore
pending state.

Chapter 30. DB2 commands 713

v If a table space rollforward operation is not in progress (that is, the table
spaces are in rollforward pending state), a table space list must be
specified. All table spaces in the list are put in restore pending state.

v If a table space rollforward operation is in progress (that is, at least one
table space is in rollforward in progress state), all table spaces that are in
rollforward in progress state are put in restore pending state. If a table
space list is specified, it must include all table spaces that are in
rollforward in progress state. All table spaces on the list are put in
restore pending state.

v If rolling forward to a point in time, any table space name that is passed
in is ignored, and all table spaces that are in rollforward in progress
state are put in restore pending state.

v If rolling forward to the end of the logs with a table space list, only the
table spaces listed are put in restore pending state.

This option cannot be used to cancel a rollforward operation that is actually
running. It can only be used to cancel a rollforward operation that is in
progress but not actually running at the time. A rollforward operation can
be in progress but not running if:
v It terminated abnormally.
v The STOP option was not specified.
v An error caused it to fail. Some errors, such as rolling forward through a

non-recoverable load operation, can put a table space into restore
pending state.

Use this option with caution, and only if the rollforward operation that is
in progress cannot be completed because some of the table spaces have
been put in rollforward pending state or in restore pending state. When in
doubt, use the LIST TABLESPACES command to identify the table spaces
that are in rollforward in progress state, or in rollforward pending state.

QUERY STATUS
Lists the log files that the database manager has rolled forward, the next
archive file required, and the time stamp (in UTC) of the last committed
transaction since rollforward processing began. In a partitioned database
environment, this status information is returned for each database
partition. The information returned contains the following fields:

Database partition number

Rollforward status
Status can be: database or table space rollforward pending,
database or table space rollforward in progress, database or table
space rollforward processing STOP, or not pending.

Next log file to be read
A string containing the name of the next required log file. In a
partitioned database environment, use this information if the
rollforward utility fails with a return code indicating that a log file
is missing or that a log information mismatch has occurred.

Log files processed
A string containing the names of processed log files that are no
longer needed for recovery, and that can be removed from the
directory. If, for example, the oldest uncommitted transaction starts
in log file x, the range of obsolete log files will not include x; the
range ends at x - 1. This field is not updated in case of a table
space rollforward recovery operation.

714 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Last committed transaction
A string containing a time stamp in ISO format
(yyyy-mm-dd-hh.mm.ss) suffixed by either “UTC” or “Local” (see
USING LOCAL TIME). This time stamp marks the last transaction
committed after the completion of rollforward recovery. The time
stamp applies to the database. For table space rollforward recovery,
it is the time stamp of the last transaction committed to the
database.

QUERY STATUS is the default value if the TO, STOP, COMPLETE, or
CANCEL clauses are omitted. If TO, STOP, or COMPLETE was specified,
status information is displayed if the command has completed successfully.
If individual table spaces are specified, they are ignored; the status request
does not apply only to specified table spaces.

TABLESPACE
This keyword is specified for table space-level rollforward recovery.

tablespace-name
Mandatory for table space-level rollforward recovery to a point in time.
Allows a subset of table spaces to be specified for rollforward recovery to
the end of the logs. In a partitioned database environment, each table space
in the list does not have to exist at each database partition that is rolling
forward. If it does exist, it must be in the correct state.

For partitioned tables, point in time roll-forward of a table space
containing any piece of a partitioned table must also roll-forward all of the
other table spaces in which that table resides to the same point in time.
The table spaces containing the index partitions are included in the list of
pieces of a partitioned table. Roll-forward to the end of the logs for a
single table space containing a piece of a partitioned table is still allowed.

If a partitioned table has any attached or detached data partitions, then PIT
rollforward must include all table spaces for these data partitions as well.
To determine if a partitioned table has any attached, detached, or dropped
data partitions, query the Status field of the SYSDATAPARTITIONS catalog
table.

Because a partitioned table can reside in multiple table spaces, it will
generally be necessary to roll forward multiple table spaces. Data that is
recovered via dropped table recovery is written to the export directory
specified in the ROLLFORWARD DATABASE command. It is possible to
roll forward all table spaces in one command, or do repeated roll forward
operations for subsets of the table spaces involved. If the ROLLFORWARD
DATABASE command is done for one or a few table spaces, then all data
from the table that resided in those table spaces will be recovered. A
warning will be written to the notify log if the ROLLFORWARD
DATABASE command did not specify the full set of the table spaces
necessary to recover all the data for the table. Allowing rollforward of a
subset of the table spaces makes it easier to deal with cases where there is
more data to be recovered than can fit into a single export directory.

ONLINE
This keyword is specified to allow table space-level rollforward recovery to
be done online. This means that other agents are allowed to connect while
rollforward recovery is in progress.

OVERFLOW LOG PATH log-directory
Specifies an alternate log path to be searched for archived logs during
recovery. Use this parameter if log files were moved to a location other

Chapter 30. DB2 commands 715

than that specified by the logpath database configuration parameter. In a
partitioned database environment, this is the (fully qualified) default
overflow log path for all database partitions. A relative overflow log path can
be specified for single-partition databases. The OVERFLOW LOG PATH
command parameter will overwrite the value (if any) of the database
configuration parameter OVERFLOWLOGPATH.

log-directory ON DBPARTITIONNUM
In a partitioned database environment, allows a different log path to
override the default overflow log path for a specific database partition.

NORETRIEVE
Allows you to control which log files are to be rolled forward on the
standby machine by allowing you to disable the retrieval of archived logs.
The benefits of this are:
v By controlling the logfiles to be rolled forward, you can ensure that the

standby machine is X hours behind the production machine, to avoid
affecting both the systems.

v If the standby system does not have access to archive (eg. if TSM is the
archive, it only allows the original machine to retrieve the files)

v It might also be possible that while the production system is archiving a
file, the standby system is retrieving the same file, and it might then get
an incomplete log file. Noretrieve would solve this problem.

RECOVER DROPPED TABLE drop-table-id
Recovers a dropped table during the rollforward operation. The table ID
can be obtained using the LIST HISTORY command, in the Backup ID
column of the output listing. For partitioned tables, the drop-table-id
identifies the table as a whole, so that all data partitions of the table can be
recovered in a single roll-forward command.

TO export-directory
Specifies a directory to which files containing the table data are to be
written. The directory must be accessible to all database partitions.

Examples

Example 1

The ROLLFORWARD DATABASE command permits specification of multiple
operations at once, each being separated with the keyword AND. For example, to
roll forward to the end of logs, and complete, the separate commands:

db2 rollforward db sample to end of logs
db2 rollforward db sample complete

can be combined as follows:
db2 rollforward db sample to end of logs and complete

Although the two are equivalent, it is recommended that such operations be done
in two steps. It is important to verify that the rollforward operation has progressed
as expected, before stopping it and possibly missing logs. This is especially
important if a bad log is found during rollforward recovery, and the bad log is
interpreted to mean the “end of logs”. In such cases, an undamaged backup copy
of that log could be used to continue the rollforward operation through more logs.
However if the rollforward AND STOP option is used, and the rollforward
encounters an error, the error will be returned to you. In this case, the only way to

716 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

force the rollforward to stop and come online despite the error (that is, to come
online at that point in the logs before the error) is to issue the ROLLFORWARD
STOP command.

Example 2

Roll forward to the end of the logs (two table spaces have been restored):
db2 rollforward db sample to end of logs
db2 rollforward db sample to end of logs and stop

These two statements are equivalent. Neither AND STOP or AND COMPLETE is
needed for table space rollforward recovery to the end of the logs. Table space
names are not required. If not specified, all table spaces requiring rollforward
recovery will be included. If only a subset of these table spaces is to be rolled
forward, their names must be specified.

Example 3

After three table spaces have been restored, roll one forward to the end of the logs,
and the other two to a point in time, both to be done online:

db2 rollforward db sample to end of logs tablespace(TBS1) online

db2 rollforward db sample to 1998-04-03-14.21.56 and stop
tablespace(TBS2, TBS3) online

Two rollforward operations cannot be run concurrently. The second command can
only be invoked after the first rollforward operation completes successfully.

Example 4

After restoring the database, roll forward to a point in time, using OVERFLOW
LOG PATH to specify the directory where the user exit saves archived logs:

db2 rollforward db sample to 1998-04-03-14.21.56 and stop
overflow log path (/logs)

Example 5 (partitioned database environments)

There are three database partitions: 0, 1, and 2. Table space TBS1 is defined on all
database partitions, and table space TBS2 is defined on database partitions 0 and 2.
After restoring the database on database partition 1, and TBS1 on database
partitions 0 and 2, roll the database forward on database partition 1:

db2 rollforward db sample to end of logs and stop

This returns warning SQL1271 (“Database is recovered but one or more table
spaces are off-line on database partition(s) 0 and 2.”).

db2 rollforward db sample to end of logs

This rolls TBS1 forward on database partitions 0 and 2. The clause
TABLESPACE(TBS1) is optional in this case.

Example 6 (partitioned database environments)

After restoring table space TBS1 on database partitions 0 and 2 only, roll TBS1
forward on database partitions 0 and 2:

db2 rollforward db sample to end of logs

Chapter 30. DB2 commands 717

Database partition 1 is ignored.
db2 rollforward db sample to end of logs tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on database partition
1. Reports SQL4906N.

db2 rollforward db sample to end of logs on dbpartitionnums (0, 2)
tablespace(TBS1)

This completes successfully.
db2 rollforward db sample to 1998-04-03-14.21.56 and stop

tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on database partition
1; all pieces must be rolled forward together. With table space rollforward to a
point in time, the database partition clause is not accepted. The rollforward
operation must take place on all the database partitions on which the table space
resides.

After restoring TBS1 on database partition 1:
db2 rollforward db sample to 1998-04-03-14.21.56 and stop

tablespace(TBS1)

This completes successfully.

Example 7 (partitioned database environment)

After restoring a table space on all database partitions, roll forward to point in
time 2, but do not specify AND STOP. The rollforward operation is still in progress.
Cancel and roll forward to point in time 1:

db2 rollforward db sample to pit2 tablespace(TBS1)
db2 rollforward db sample cancel tablespace(TBS1)

** restore TBS1 on all database partitions **

db2 rollforward db sample to pit1 tablespace(TBS1)
db2 rollforward db sample stop tablespace(TBS1)

Example 8 (partitioned database environments)

Rollforward recover a table space that resides on eight database partitions (3 to 10)
listed in the db2nodes.cfg file:

db2 rollforward database dwtest to end of logs tablespace (tssprodt)

This operation to the end of logs (not point in time) completes successfully. The
database partitions on which the table space resides do not have to be specified.
The utility defaults to the db2nodes.cfg file.

Example 9 (partitioned database environment)

Rollforward recover six small table spaces that reside on a single-partition database
partition group (on database partition 6):

db2 rollforward database dwtest to end of logs on dbpartitionnum (6)
tablespace(tsstore, tssbuyer, tsstime, tsswhse, tsslscat, tssvendor)

This operation to the end of logs (not point in time) completes successfully.

718 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Example 10 (partitioned database environment)

You can use the TO END OF BACKUP clause with the ROLLFORWARD command
to roll forward all partitions in a partitioned database to the minimum recovery
time. The minimum recovery time is the earliest point in time during a rollforward
when a database is consistent (when the objects listed in the database catalogs
match the objects that physically exist on disk). Manually determining the correct
point in time to which to roll forward a database is difficult, particularly for a
partitioned database. The END OF BACKUP option makes it easy.
db2 rollforward db sample to end of backup and complete

Usage notes

If restoring from an image that was created during an online backup operation, the
specified point in time for the rollforward operation must be later than the time at
which the online backup operation completed. If the rollforward operation is
stopped before it passes this point, the database is left in rollforward pending state.
If a table space is in the process of being rolled forward, it is left in rollforward in
progress state.

If one or more table spaces is being rolled forward to a point in time, the
rollforward operation must continue at least to the minimum recovery time, which
is the last update to the system catalogs for this table space or its tables. The
minimum recovery time (in Coordinated Universal Time, or UTC) for a table space
can be retrieved using the LIST TABLESPACES SHOW DETAIL command.

Rolling databases forward might require a load recovery using tape devices. If
prompted for another tape, you can respond with one of the following:

c Continue. Continue using the device that generated the warning message
(for example, when a new tape has been mounted)

d Device terminate. Stop using the device that generated the warning
message (for example, when there are no more tapes)

t Terminate. Take all affected table spaces offline, but continue rollforward
processing.

If the rollforward utility cannot find the next log that it needs, the log name is
returned in the SQLCA, and rollforward recovery stops. If no more logs are
available, use the STOP option to terminate rollforward recovery. Incomplete
transactions are rolled back to ensure that the database or table space is left in a
consistent state.

Note: Rolling forward through a redistribute operation cannot restore the database
content since log records are not recorded for data redistribution. See the
“REDISTRIBUTE DATABASE PARTITION GROUP command”.

Compatibilities

For compatibility with versions earlier than Version 8:
v The keyword NODE can be substituted for DBPARTITIONNUM.
v The keyword NODES can be substituted for DBPARTITIONNUMS.
v Point in time rollforward is not supported with pre-V9.1 clients due to V9.1

support for partitioned tables.

Chapter 30. DB2 commands 719

SET RUNTIME DEGREE

Sets the maximum run time degree of intra-partition parallelism for SQL
statements for specified active applications.

Scope

This command affects all database partitions that are listed in the
$HOME/sqllib/db2nodes.cfg file.

Authorization

One of the following:
v sysadm

v sysctrl

Required connection

Instance. To change the maximum run time degree of intra-partition parallelism on
a remote server, it is first necessary to attach to that server. If no attachment exists,
the SET RUNTIME DEGREE command fails.

Command syntax

�� SET RUNTIME DEGREE FOR

�

ALL
,

(application-handle)

TO degree ��

Command parameters

FOR

ALL The specified degree will apply to all applications.

application-handle
Specifies the agent to which the new degree applies. List the values
using the LIST APPLICATIONS command.

TO degree
The maximum run time degree of intra-partition parallelism.

Examples

The following example sets the maximum run time degree of parallelism for two
users, with application-handle values of 41408 and 55458, to 4:

db2 SET RUNTIME DEGREE FOR (41408, 55458) TO 4

Usage notes

This command provides a mechanism to modify the maximum degree of
parallelism for active applications. It can be used to override the value that was
determined at SQL statement compilation time.

The run time degree of intra-partition parallelism specifies the maximum number
of parallel operations that will be used when the statement is executed. The degree

720 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

of intra-partition parallelism for an SQL statement can be specified at statement
compilation time using the CURRENT DEGREE special register or the DEGREE
bind option. The maximum run time degree of intra-partition parallelism for an
active application can be specified using the SET RUNTIME DEGREE command.
The max_querydegree database manager configuration parameter specifies the
maximum run time degree for any SQL statement executing on this instance of the
database manager.

The actual run time degree will be the lowest of:
v the max_querydegree configuration parameter
v the application run time degree
v the SQL statement compilation degree.

SET WRITE

The SET WRITE command allows a user to suspend I/O writes or to resume I/O
writes for a database. Typical use of this command is for splitting a mirrored
database. This type of mirroring is achieved through a disk storage system.

This new state, SUSPEND_WRITE, is visible from the Snapshot Monitor. All table
spaces must be in a NORMAL state for the command to execute successfully. If
any one table space is in a state other than NORMAL, the command will fail.

Scope

This command only affects the database partition on which it is executed.

Authorization

This command only affect the node on which it is executed. The authorization of
this command requires the issuer to have one of the following privileges:
v sysadm

v sysctrl

v sysmaint

Required Connection

Database

Command Syntax

�� SET WRITE SUSPEND
RESUME

FOR DATABASE
DB

��

Command Parameters

SUSPEND
Suspending I/O writes will put all table spaces into a new state
SUSPEND_WRITE state. Writes to the logs are also suspended by this
command. All database operations, apart from online backup and restore,
should function normally while database writes are suspended. However,
some operations can wait while attempting to flush dirty pages from the
buffer pool or log buffers to the logs. These operations will resume
normally once the database writes are resumed.

Chapter 30. DB2 commands 721

RESUME
Resuming I/O writes will remove the SUSPEND_WRITE state from all of
the table spaces and make the table spaces available for update.

Usage notes

It is suggested that I/O writes be resumed from the same connection from which
they were suspended. Ensuring that this connection is available to resume I/O
writes involves not performing any operations from this connection until database
writes are resumed. Otherwise, some operations can wait for I/O writes to be
resumed if dirty pages must be flushed from the buffer pool or from log buffers to
the logs. Furthermore, subsequent connection attempts might hang if they require
flushing dirty pages from the buffer pool to disk. Subsequent connections will
complete successfully once database I/O resumes. If your connection attempts are
hanging, and it has become impossible to resume I/O from the connection that
you used to suspend I/O, then you will have to run the RESTART DATABASE
command with the WRITE RESUME option. When used in this circumstance, the
RESTART DATABASE command will resume I/O writes without performing crash
recovery. The RESTART DATABASE command with the WRITE RESUME option
will only perform crash recovery when you use it after a database crash.

START DATABASE MANAGER

Starts the current database manager instance background processes on a single
database partition or on all the database partitions defined in a multi-partitioned
database environment.

Scope

In a multi-partitioned database environment, this command affects all database
partitions that are listed in the $HOME/sqllib/db2nodes.cfg file, unless the
DBPARTITIONNUM parameter is used.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

The ADD DBPARTITIONNUM start option requires either sysadm or sysctrl
authority.

You must meet Windows operating system requirements for starting a service. If
Extended Security is disabled, you must be a member of the Administrators, Server
Operators or Power Users group. If Extended Security is enabled, you must be a
member of either the Administrators group or the DB2ADMNS group to start the
database.

Required connection

None

722 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Command syntax

�� START DATABASE MANAGER
DB MANAGER
DBM

db2start
/D

�

�
REMOTE instancename remote options

INSTANCE

�

�
ADMIN MODE

USER username
GROUP groupname

PROFILE profile
�

�
DBPARTITIONNUM db-partition-number start options

��

remote options:

ADMINNODE nodename USER username USING password
HOSTNAME hostname

start options:

ADD DBPARTITIONNUM add dbpartitionnum options
STANDALONE
RESTART restart options

add dbpartitionnum options:

DBPARTITIONNUM db-partition-number HOSTNAME hostname PORT logical-port �

�
COMPUTER computer-name USER username PASSWORD password

�

�
NETNAME netname LIKE DBPARTITIONNUM db-partition-number

WITHOUT TABLESPACES

restart options:

HOSTNAME hostname PORT logical-port COMPUTER computername
�

�
USER username PASSWORD password NETNAME netname

�

�
IN PARALLEL

Chapter 30. DB2 commands 723

Command parameters

/D Allows the DB2 product installation on Windows to be run as a process.

REMOTE [INSTANCE] instancename
Specifies the name of the remote instance you want to start.

ADMINNODE nodename
With REMOTE, or REMOTE INSTANCE, specifies the name of the
administration node.

HOSTNAME hostname
With REMOTE, or REMOTE INSTANCE, specifies the name of the
host node.

USER username
With REMOTE, or REMOTE INSTANCE, specifies the name of the
user.

USING password
With REMOTE, or REMOTE INSTANCE, and USER, specifies the
password of the user.

ADMIN MODE
Starts the instance in quiesced mode for administration purposes. This is
equivalent to the QUIESCE INSTANCE command except in this case the
instance is not already “up”, and therefore there is no need to force the
connections OFF.

USER username
With ADMIN MODE, specifies the name of the user.

GROUP groupname
With ADMIN MODE, specifies the name of the group.

All of the following parameters are valid in an Enterprise Server Edition (ESE)
environment only.

PROFILE profile
Specifies the name of the profile file to be executed at each database
partition to define the DB2 environment. This file is executed before the
database partitions are started. The profile file must reside in the sqllib
directory of the instance owner. The environment variables in the profile
file are not necessarily all defined in the user session.

DBPARTITIONNUM db-partition-number
Specifies the database partition to be started. If no other options are
specified, a normal startup is done at this database partition.

Valid values are from 0 to 999 inclusive. If ADD DBPARTITIONNUM is
not specified, the value must already exist in the db2nodes.cfg file of the
instance owner. If no database partition number is specified, all database
partitions defined in the configuration file are started.

ADD DBPARTITIONNUM
Specifies that the new database partition server is added to the
db2nodes.cfg file of the instance owner with the hostname and logical-port
values.

Ensure that the combination of hostname and logical-port is unique.

724 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The add database partition server utility is executed internally to create all
existing databases on the database server partition being added. The new
database partition server is automatically added to the db2nodes.cfg file.

Note: Any uncataloged database is not recognized when adding a new
database partition. The uncataloged database will not be present on the
new database partition. An attempt to connect to the database on the new
database partition returns the error message SQL1013N.

If the ADD request is made in an environment that has two or more active
database partition servers, the new database partition server is visible to
the environment when the ADD processing completes.

If the ADD request is made in an environment that has one database
partition server and it is active, after ADD processing completes, the new
database partition server is inactive. The instance must be restarted by
using db2stop and db2start before the new database partition server can
participate in the partitioned database environment. If the ADD request is
made in an environment that has one database partition server and it is
inactive, after ADD processing completes, the new database partition
server (or servers, if more than one is added) is active. Only the original
database partition server needs to be started.

A newly added database partition is configured during ADD processing as
follows:
1. In a multipartition environment, the new database partition is

configured using the database configuration parameter values from a
noncatalog database partition.

2. In a single-partition environment, the new database partition is
configured using the database configuration parameter values from the
catalog partition.

3. If a problem occurs in copying the database configuration parameter
values to the new database partition, the new database partition is
configured using the default database configuration parameter values.

DBPARTITIONNUM db-partition-number
Specifies the value of the database partition number for the new
database partition to be created.

HOSTNAME hostname
With ADD DBPARTITIONNUM, specifies the host name to be
added to the db2nodes.cfg file.

PORT logical-port
With ADD DBPARTITIONNUM, specifies the logical port to be
added to the db2nodes.cfg file. Valid values are from 0 to 999.

COMPUTER computername
The computer name for the machine on which the new database
partition is created. This parameter is mandatory on Windows, but
is ignored on other operating systems.

USER username
The user name for the account on the new database partition. This
parameter is mandatory on Windows, but is ignored on other
operating systems.

Chapter 30. DB2 commands 725

PASSWORD password
The password for the account on the new database partition. This
parameter is mandatory on Windows, but is ignored on other
operating systems.

NETNAME netname
Specifies the netname to be added to the db2nodes.cfg file. If not
specified, this parameter defaults to the value specified for
hostname.

IN PARALLEL
Issue the RESTART DATABASE command for parallel execution.

LIKE DBPARTITIONNUM db-partition-number
Specifies that the containers for the system temporary table spaces
will be the same as the containers on the specified
db-partition-number for each database in the instance. The database
partition specified must be a database partition that is already in
the db2nodes.cfg file. For system temporary table spaces that are
defined to use automatic storage (in other words, system
temporary table spaces that were created with the MANAGED BY
AUTOMATIC STORAGE clause of the CREATE TABLESPACE
statement or where no MANAGED BY CLAUSE was specified at
all), the containers will not necessarily match those from the
partition specified. Instead, containers will automatically be
assigned by the database manager based on the storage paths that
are associated with the database. This may or may not result in the
same containers being used on these two partitions.

WITHOUT TABLESPACES
Specifies that containers for the system temporary table spaces are
not created for any of the databases. The ALTER TABLESPACE
statement must be used to add system temporary table space
containers to each database before the database can be used. This
option is ignored for system temporary table spaces that are
defined to use automatic storage (in other words, system
temporary table spaces that were created with the MANAGED BY
AUTOMATIC STORAGE clause of the CREATE TABLESPACE
statement or where no MANAGED BY CLAUSE was specified at
all). For these table spaces, there is no way to defer container
creation. Containers will automatically be assigned by the database
manager based on the storage paths that are associated with the
database.

STANDALONE
Specifies that the database partition is to be started in stand-alone mode.
FCM does not attempt to establish a connection to any other database
partition. This option is used when adding a database partition.

RESTART
Starts the database manager after a failure. Other database partitions are
still operating, and this database partition attempts to connect to the
others. If neither the hostname nor the logical-port parameter is specified, the
database manager is restarted using the hostname and logical-port values
specified in db2nodes.cfg. If either parameter is specified, the new values
are sent to the other database partitions when a connection is established.
The db2nodes.cfg file is updated with this information.

726 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

HOSTNAME hostname
You can use the HOSTNAME option with the RESTART parameter
to restart a database partition on a different machine than is
specified in the database partition configuration file, db2nodes.cfg.

Restriction:
When you are using the DB2 High Availability Feature,
you should not use the HOSTNAME option with the
RESTART parameter to restart a database partition on a
different machine. To restart or move a database partition
from one machine in a cluster to another machine, use DB2
High Availability Instance Configuration Utility (db2haicu).

PORT logical-port
With RESTART, specifies the logical port number to be used to
override that in the database partition configuration file. If not
specified, this parameter defaults to the logical-port value that
corresponds to the num value in the db2nodes.cfg file. Valid values
are from 0 to 999.

COMPUTER computername
The computer name for the machine on which the new database
partition is created. This parameter is mandatory on Windows, but
is ignored on other operating systems.

USER username
The user name for the account on the new database partition. This
parameter is mandatory on Windows, but is ignored on other
operating systems.

PASSWORD password
The password for the account on the new database partition. This
parameter is mandatory on Windows, but is ignored on other
operating systems.

NETNAME netname
Specifies the netname to override that specified in the db2nodes.cfg
file. If not specified, this parameter defaults to the netname value
that corresponds to the db-partition-number value in the
db2nodes.cfg file.

Examples

The following is sample output from db2start issued on a three-database partition
system with database partitions 10, 20, and 30:
04-07-1997 10:33:05 10 0 SQL1063N DB2START processing was successful.
04-07-1997 10:33:07 20 0 SQL1063N DB2START processing was successful.
04-07-1997 10:33:07 30 0 SQL1063N DB2START processing was successful.
SQL1063N DB2START processing was successful.

Usage notes

On Microsoft Windows Vista or later versions, you must execute this command
from a DB2 command window running with full administrator privileges.

It is not necessary to issue this command on a client node. It is provided for
compatibility with older clients, but it has no effect on the database manager.

Chapter 30. DB2 commands 727

Once started, the database manager instance runs until the user stops it, even if all
application programs that were using it have ended.

If the database manager starts successfully, a successful completion message is sent
to the standard output device. If an error occurs, processing stops, and an error
message is sent to the standard output device. In a partitioned database
environment, messages are returned on the database partition that issued the
START DATABASE MANAGER command.

If no parameters are specified in a partitioned database environment, the database
manager is started on all parallel nodes using the parameters specified in the
database partition configuration file.

If a START DATABASE MANAGER command is in progress, ensure that the
applicable database partitions have started before issuing a request to the database.

The db2cshrc file is not supported and cannot be used to define the environment.

You can start an instance in a quiesced state. You can do this by using one of the
following choices:

db2start admin mode

or
db2start admin mode user username

or
db2start admin mode group groupname

When adding a new database partition server, START DATABASE MANAGER
must determine whether or not each database in the instance is enabled for
automatic storage. This is done by communicating with the catalog partition for
each database. If automatic storage is enabled then the storage path definitions are
retrieved as part of that communication. Likewise, if system temporary table
spaces are to be created with the database partitions, START DATABASE
MANAGER might have to communicate with another database partition server to
retrieve the table space definitions for the database partitions that reside on that
server. The start_stop_time database manager configuration parameter is used to
specify the time, in minutes, by which the other database partition server must
respond with the automatic storage and table space definitions. If this time is
exceeded, the command fails. If this situation occurs, increase the value of
start_stop_time, and reissue the command.

A new database partition server cannot be added when any of the following
commands, statements, or operations are in progress. Otherwise SQL6074N is
returned.
v QUIESCE INSTANCE
v UNQUIESCE INSTANCE
v STOP DB2 (db2stop)
v STOP DATABASER MANAGER DBPARTITIONNUM
v START DB2 (db2start)
v START DATABASE MANAGER DBPARTITIONNUM
v START DATABASE MANAGER with restart options
v CREATE DATABASE

728 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v DROP DATABASE
v QUIESCE DATABASE
v UNQUIESCE DATABASE
v ACTIVATE DATABASE
v DEACTIVATE DATABASE
v A Z lock on a database object
v Backing up the database on all database partition servers
v Restoring the database
v ALTER, ALTER, or DROP of a table space
v Updating of automatic storage paths

On UNIX platforms, the START DATABASE MANAGER command supports the
SIGINT signal. It is issued if CTRL+C is pressed. If this signal occurs, all
in-progress startups are interrupted and a message (SQL1044N) is returned from
each interrupted database partition to the $HOME/sqllib/log/db2start.
timestamp.log error log file. Database partitions that are already started are not
affected. If CTRL+C is pressed on a database partition that is starting, db2stop
must be issued on that database partition before an attempt is made to start it
again.

On Windows operating systems, neither the db2start command nor the NET
START command returns warnings if any communication subsystem failed to start.
The database manager in a Windows environment is implemented as a service,
and does not return an error if the service is started successfully. Be sure to
examine the Event Log or the db2diag log file for any errors that might have
occurred during the running of db2start.

Compatibilities

For compatibility with versions earlier than Version 8:
v The keywords LIKE NODE can be substituted for LIKE DBPARTITIONNUM.
v The keyword ADDNODE can be substituted for ADD DBPARTITIONNUM.
v The keyword NODENUM can be substituted for DBPARTITIONNUM.

STOP DATABASE MANAGER

Stops the current database manager instance. Unless explicitly stopped, the
database manager continues to be active. This command does not stop the
database manager instance if any applications are connected to databases. If there
are no database connections, but there are instance attachments, it forces the
instance attachments and stops the database manager. This command also
deactivates any outstanding database activations before stopping the database
manager.

In a partitioned database environment, this command stops the current database
manager instance on a database partition or on all database partitions. When it
stops the database manager on all database partitions, it uses the db2nodes.cfg
configuration file to obtain information about each database partition.

This command can also be used to drop a database partition from the
db2nodes.cfg file (partitioned database environments only).

This command is not valid on a client.

Chapter 30. DB2 commands 729

Scope

By default, and in a partitioned database environment, this command affects all
database partitions that are listed in the db2nodes.cfg file.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required connection

None

Command syntax

�� STOP DATABASE MANAGER
DB MANAGER
DBM

db2stop

PROFILE profile
�

�
DBPARTITIONNUM db-partition-number
DROP DBPARTITIONNUM db-partition-number
FORCE

DBPARTITIONNUM db-partition-number

��

Command parameters

PROFILE profile
Partitioned database environments only. Specifies the name of the profile
file that was executed at startup to define the DB2 environment for those
database partitions that were started. If a profile for the START
DATABASE MANAGER command was specified, the same profile must be
specified here. The profile file must reside in the sqllib directory of the
instance owner.

DBPARTITIONNUM db-partition-number
Partitioned database environments only. Specifies the database partition to
be stopped.

Valid values are from 0 to 999 inclusive, and must be in the db2nodes.cfg
file. If no database partition number is specified, all database partitions
defined in the configuration file are stopped.

DROP DBPARTITIONNUM db-partition-number
Partitioned database environments only. Specifies the database partition to
be dropped from the db2nodes.cfg file.

Before using this parameter, run the DROP DBPARTITIONNUM VERIFY
command to ensure that there is no user data on this database partition.

When this option is specified, all database partitions in the db2nodes.cfg
file are stopped.

730 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

FORCE
Specifies to use FORCE APPLICATION ALL when stopping the database
manager at each database partition.

DBPARTITIONNUM db-partition-number
Partitioned database environments only. Specifies the database partition to
be stopped after all applications on that database partition have been
forced to stop. If the FORCE option is used without this parameter, all
applications on all database partitions are forced before all the database
partitions are stopped.

Examples

The following is sample output from db2stop issued on a three-partition system
with database partitions 10, 20, and 30:
04-07-1997 10:32:53 10 0 SQL1064N DB2STOP processing was successful.
04-07-1997 10:32:54 20 0 SQL1064N DB2STOP processing was successful.
04-07-1997 10:32:55 30 0 SQL1064N DB2STOP processing was successful.
SQL1064N DB2STOP processing was successful.

Usage notes

On Microsoft Windows Vista or later versions, you must execute this command
from a DB2 command window running with full administrator privileges.

It is not necessary to issue this command on a client node. It is provided for
compatibility with older clients, but it has no effect on the database manager.

Once started, the database manager instance runs until the user stops it, even if all
application programs that were using it have ended.

If the database manager is stopped, a successful completion message is sent to the
standard output device. If an error occurs, processing stops, and an error message
is sent to the standard output device.

If the database manager cannot be stopped because application programs are still
connected to databases, use the FORCE APPLICATION command to disconnect all
users first, or reissue the STOP DATABASE MANAGER command with the FORCE
option.

The following information applies to partitioned database environments only:
v If no parameters are specified, the database manager is stopped on each

database partition listed in the configuration file. The administration notification
log might contain messages to indicate that other database partitions are
shutting down.

v Any database partitions added to the partitioned database environment since the
previous STOP DATABASE MANAGER command was issued will be updated
in the db2nodes.cfg file.

v On UNIX platforms, if the value specified for the start_stop_timedatabase
manager configuration parameter is reached, all in-progress stops are
interrupted, and message SQL6037N is returned from each interrupted database
partition to the $HOME/sqllib/log/db2stop. timestamp.log error log file.
Database partitions that are already stopped are not affected.

v The db2cshrc file is not supported and cannot be specified as the value for the
PROFILE parameter.

Chapter 30. DB2 commands 731

Attention: The UNIX kill command should not be used to terminate the database
manager because it will abruptly end database manager processes without
controlled termination and cleanup processing.

UNQUIESCE

Unless specifically designated, no user except those with sysadm, sysmaint, or sysctrl
has access to a database while it is quiesced. Therefore an UNQUIESCE is required
to restore general access to a quiesced database.

Scope

UNQUIESCE DB restores user access to all objects in the quiesced database.

To stop the instance and unquiesce it and all its databases, issue the db2stop
command. Stopping and restarting DB2 will unquiesce all instances and databases.

Authorization

One of the following:

For database level unquiesce:
v sysadm

v dbadm

Command syntax

�� UNQUIESCE DB ��

Required connection

Database

Command parameters

DB Unquiesce the database. User access will be restored to all objects in the
database.

Examples

Unquiescing a Database

This command will unquiesce the database that had previously been quiesced.

UNQUIESCE

Unless specifically designated, no user except those with sysadm, sysmaint, or sysctrl
has access to a database while it is quiesced. Therefore an UNQUIESCE is required
to restore general access to a quiesced database.

Scope

UNQUIESCE DB restores user access to all objects in the quiesced database.

732 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

To stop the instance and unquiesce it and all its databases, issue the db2stop
command. Stopping and restarting DB2 will unquiesce all instances and databases.

Authorization

One of the following:

For database level unquiesce:
v sysadm

v dbadm

Command syntax

�� UNQUIESCE DB ��

Required connection

Database

Command parameters

DB Unquiesce the database. User access will be restored to all objects in the
database.

Examples

Unquiescing a Database

This command will unquiesce the database that had previously been quiesced.

UPDATE DATABASE CONFIGURATION

Modifies individual entries in a specific database configuration file.

A database configuration file resides on every database partition on which the
database has been created.

Scope

This command updates all database partitions by default, except when
DBPARTITIONNUM is specified to update only one database partition.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required connection

Chapter 30. DB2 commands 733

Command syntax

�� UPDATE DATABASE
DB

CONFIGURATION
CONFIG
CFG

FOR database-alias
�

�
DBPARTITIONNUM db-partition-num

�

� �USING config-keyword value
value AUTOMATIC
AUTOMATIC
MANUAL

IMMEDIATE

DEFERRED
��

Command parameters

AUTOMATIC
Some configuration parameters can be set to AUTOMATIC, allowing DB2
to automatically adjust these parameters to reflect the current resource
requirements. For a list of configuration parameters that support the
AUTOMATIC keyword, refer to the configuration parameters summary. If
a value is specified along with the AUTOMATIC keyword, it might
influence the automatic calculations. For specific details about this
behavior, refer to the documentation for the configuration parameter.

DEFERRED
Make the changes only in the configuration file, so that the changes take
effect the next time you reactivate the database.

FOR database-alias
Specifies the alias of the database whose configuration is to be updated.
Specifying the database alias is not required when a database connection
has already been established. You can update the configuration file for
another database residing under the same database instance. For example,
if you are connected only to database db11, and issue update db config
for alias db22 using immediate:
v If there is no active connection on db22, the update will be successful

because only the configuration file needs to be updated. A new
connection (which will activate the database) will see the new change in
memory.

v If there are active connections on db22 from other applications, the
update will work on disk but not in memory. You will receive a warning
saying that the database needs to be restarted.

DBPARTITIONNUM db-partition-num
If a database configuration update is to be applied to a specific database
partition, this parameter may be used. If this parameter is not provided,
the update will take effect on all database partitions.

IMMEDIATE
Make the changes immediately, while the database is running.

734 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

This is a default clause when operating in the CLPPlus interface as well.
IMMEDIATE need not be called when using CLPPlus processor.

MANUAL
Disables automatic tuning for the configuration parameter. The parameter
is set to its current internal value and is no longer updated automatically.

USING config-keyword value
config-keyword specifies the database configuration parameter to be
updated. value specifies the value to be assigned to the parameter.

Usage notes

For more information about DB2 configuration parameters and the values available
for each type of database node, see the individual configuration parameter
descriptions. The values of these parameters differ for each type of database node
configured (server, client, or server with remote clients).

Not all parameters can be updated.

Some changes to the database configuration file become effective only after they
are loaded into memory. All applications must disconnect from the database before
this can occur. For more information on which parameters are configurable on-line
and which ones are not, see summary list of configuration parameters.

If an error occurs, the database configuration file does not change. The database
configuration file cannot be updated if the checksum is invalid. This might occur if
the database configuration file is changed without using the appropriate command.
If this happens, the database must be restored to reset the database configuration
file.

UPDATE DATABASE CONFIGURATION

Modifies individual entries in a specific database configuration file.

A database configuration file resides on every database partition on which the
database has been created.

Scope

This command updates all database partitions by default, except when
DBPARTITIONNUM is specified to update only one database partition.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required connection

Command syntax

Chapter 30. DB2 commands 735

�� UPDATE DATABASE
DB

CONFIGURATION
CONFIG
CFG

FOR database-alias
�

�
DBPARTITIONNUM db-partition-num

�

� �USING config-keyword value
value AUTOMATIC
AUTOMATIC
MANUAL

IMMEDIATE

DEFERRED
��

Command parameters

AUTOMATIC
Some configuration parameters can be set to AUTOMATIC, allowing DB2
to automatically adjust these parameters to reflect the current resource
requirements. For a list of configuration parameters that support the
AUTOMATIC keyword, refer to the configuration parameters summary. If
a value is specified along with the AUTOMATIC keyword, it might
influence the automatic calculations. For specific details about this
behavior, refer to the documentation for the configuration parameter.

DEFERRED
Make the changes only in the configuration file, so that the changes take
effect the next time you reactivate the database.

FOR database-alias
Specifies the alias of the database whose configuration is to be updated.
Specifying the database alias is not required when a database connection
has already been established. You can update the configuration file for
another database residing under the same database instance. For example,
if you are connected only to database db11, and issue update db config
for alias db22 using immediate:
v If there is no active connection on db22, the update will be successful

because only the configuration file needs to be updated. A new
connection (which will activate the database) will see the new change in
memory.

v If there are active connections on db22 from other applications, the
update will work on disk but not in memory. You will receive a warning
saying that the database needs to be restarted.

DBPARTITIONNUM db-partition-num
If a database configuration update is to be applied to a specific database
partition, this parameter may be used. If this parameter is not provided,
the update will take effect on all database partitions.

IMMEDIATE
Make the changes immediately, while the database is running.

This is a default clause when operating in the CLPPlus interface as well.
IMMEDIATE need not be called when using CLPPlus processor.

736 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

MANUAL
Disables automatic tuning for the configuration parameter. The parameter
is set to its current internal value and is no longer updated automatically.

USING config-keyword value
config-keyword specifies the database configuration parameter to be
updated. value specifies the value to be assigned to the parameter.

Usage notes

For more information about DB2 configuration parameters and the values available
for each type of database node, see the individual configuration parameter
descriptions. The values of these parameters differ for each type of database node
configured (server, client, or server with remote clients).

Not all parameters can be updated.

Some changes to the database configuration file become effective only after they
are loaded into memory. All applications must disconnect from the database before
this can occur. For more information on which parameters are configurable on-line
and which ones are not, see summary list of configuration parameters.

If an error occurs, the database configuration file does not change. The database
configuration file cannot be updated if the checksum is invalid. This might occur if
the database configuration file is changed without using the appropriate command.
If this happens, the database must be restored to reset the database configuration
file.

UPDATE DATABASE MANAGER CONFIGURATION

Modifies individual entries in the database manager configuration file.

Authorization

sysadm

Required connection

Command syntax

�� UPDATE DATABASE MANAGER
DB MANAGER
DBM

CONFIGURATION
CONFIG
CFG

�

� �USING config-keyword value
value AUTOMATIC
AUTOMATIC
MANUAL

��

Chapter 30. DB2 commands 737

Command parameters

AUTOMATIC
Some configuration parameters can be set to AUTOMATIC, allowing DB2
to automatically adjust these parameters to reflect the current resource
requirements. For a list of configuration parameters that support the
AUTOMATIC keyword, refer to the configuration parameters summary. If
a value is specified along with the AUTOMATIC keyword, it might
influence the automatic calculations. For specific details about this
behavior, refer to the documentation for the configuration parameter.

Note:

DEFERRED
Make the changes only in the configuration file, so that the changes take
effect when the instance is restarted.

This is a default clause when operating in the CLPPlus interface.
DEFERRED need not be called when using CLPPlus processor.

MANUAL
Disables automatic tuning for the configuration parameter. The parameter
is set to its current internal value and is no longer updated automatically.

USING config-keyword value
Specifies the database manager configuration parameter to be updated. For
a list of configuration parameters, refer to the configuration parameters
summary. value specifies the value to be assigned to the parameter.

Usage notes

Not all parameters can be updated.

Some changes to the database manager configuration file become effective only
after they are loaded into memory. For more information on which parameters are
configurable online and which ones are not, see the configuration parameter
summary. Server configuration parameters that are not reset immediately are reset
during execution of db2start. For a client configuration parameter, parameters are
reset the next time you restart the application. If the client is the command line
processor, it is necessary to invoke TERMINATE.

If an error occurs, the database manager configuration file does not change.

The database manager configuration file cannot be updated if the checksum is
invalid. This can occur if you edit database manager configuration file and do not
use the appropriate command. If the checksum is invalid, you must reinstall the
database manager to reset the database manager configuration file.

When you update the SVCENAME, or TPNAME database manager configuration
parameters for the current instance, if LDAP support is enabled and there is an
LDAP server registered for this instance, the LDAP server is updated with the new
value or values.

UPDATE DATABASE MANAGER CONFIGURATION

Modifies individual entries in the database manager configuration file.

738 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Authorization

sysadm

Required connection

Command syntax

�� UPDATE DATABASE MANAGER
DB MANAGER
DBM

CONFIGURATION
CONFIG
CFG

�

� �USING config-keyword value
value AUTOMATIC
AUTOMATIC
MANUAL

��

Command parameters

AUTOMATIC
Some configuration parameters can be set to AUTOMATIC, allowing DB2
to automatically adjust these parameters to reflect the current resource
requirements. For a list of configuration parameters that support the
AUTOMATIC keyword, refer to the configuration parameters summary. If
a value is specified along with the AUTOMATIC keyword, it might
influence the automatic calculations. For specific details about this
behavior, refer to the documentation for the configuration parameter.

Note:

DEFERRED
Make the changes only in the configuration file, so that the changes take
effect when the instance is restarted.

This is a default clause when operating in the CLPPlus interface.
DEFERRED need not be called when using CLPPlus processor.

MANUAL
Disables automatic tuning for the configuration parameter. The parameter
is set to its current internal value and is no longer updated automatically.

USING config-keyword value
Specifies the database manager configuration parameter to be updated. For
a list of configuration parameters, refer to the configuration parameters
summary. value specifies the value to be assigned to the parameter.

Usage notes

Not all parameters can be updated.

Some changes to the database manager configuration file become effective only
after they are loaded into memory. For more information on which parameters are
configurable online and which ones are not, see the configuration parameter
summary. Server configuration parameters that are not reset immediately are reset

Chapter 30. DB2 commands 739

during execution of db2start. For a client configuration parameter, parameters are
reset the next time you restart the application. If the client is the command line
processor, it is necessary to invoke TERMINATE.

If an error occurs, the database manager configuration file does not change.

The database manager configuration file cannot be updated if the checksum is
invalid. This can occur if you edit database manager configuration file and do not
use the appropriate command. If the checksum is invalid, you must reinstall the
database manager to reset the database manager configuration file.

When you update the SVCENAME, or TPNAME database manager configuration
parameters for the current instance, if LDAP support is enabled and there is an
LDAP server registered for this instance, the LDAP server is updated with the new
value or values.

Commands for Users

ATTACH

Enables an application to specify the instance at which instance-level commands
(CREATE DATABASE and FORCE APPLICATION, for example) are to be
executed. This instance can be the current instance, another instance on the same
workstation, or an instance on a remote workstation.

Authorization

None

Required connection

None. This command establishes an instance attachment.

Command syntax

�� ATTACH
TO nodename

�

�
USER username

USING password
NEW password CONFIRM password

CHANGE PASSWORD

��

Command parameters

TO nodename
Alias of the instance to which the user wants to attach. This instance must
have a matching entry in the local node directory. The only exception to
this is the local instance (as specified by the DB2INSTANCE environment
variable) which can be specified as the object of an attach, but which
cannot be used as a node name in the node directory.

USER username
Specifies the authentication identifier. When attaching to a DB2 database
instance on a Windows operating system, the user name can be specified
in a format compatible with Microsoft Security Account Manager (SAM).

740 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The qualifier must be a flat-style (NetBIOS-like) name, which has a
maximum length of 15 characters. For example, domainname\username.

USING password
Specifies the password for the user name. If a user name is specified, but a
password is not specified, the user is prompted for the current password.
The password is not displayed at entry.

NEW password
Specifies the new password that is to be assigned to the user name. The
system on which the password will be changed depends on how user
authentication has been set up. The DB2 database system provides support
for changing passwords on AIX, Linux and Windows operating systems,
and supports up to 255 characters for your own written plugins. See
Password rules for additional information about passwords.

CONFIRM password
A string that must be identical to the new password. This parameter is
used to catch entry errors.

CHANGE PASSWORD
If this option is specified, the user is prompted for the current password, a
new password, and for confirmation of the new password. Passwords are
not displayed at entry.

Examples

Catalog two remote nodes:
db2 catalog tcpip node node1 remote freedom server server1
db2 catalog tcpip node node2 remote flash server server1

Attach to the first node, force all users, and then detach:
db2 attach to node1
db2 force application all
db2 detach

Attach to the second node, and see who is on:
db2 attach to node2
db2 list applications

After the command returns agent IDs 1, 2 and 3, force 1 and 3, and then detach:
db2 force application (1, 3)
db2 detach

Attach to the current instance (not necessary, will be implicit), force all users, then
detach (AIX only):

db2 attach to $DB2INSTANCE
db2 force application all
db2 detach

Usage notes

If nodename is omitted from the command, information about the current state of
attachment is returned.

If ATTACH has not been executed, instance-level commands are executed against
the current instance, specified by the DB2INSTANCE environment variable.

Chapter 30. DB2 commands 741

DETACH

Removes the logical DBMS instance attachment, and terminates the physical
communication connection if there are no other logical connections using this layer.

Authorization

None

Required connection

None. Removes an existing instance attachment.

Command syntax

�� DETACH ��

Command parameters

None

GET CONNECTION STATE

Displays the connection state. Possible states are:
v Connectable and connected
v Connectable and unconnected
v Unconnectable and connected
v Implicitly connectable (if implicit connect is available).

This command also returns information about:
v the database connection mode (SHARE or EXCLUSIVE)
v the alias and name of the database to which a connection exists (if one exists)
v the host name and service name of the connection if the connection is using

TCP/IP

Authorization

None

Required connection

None

Command syntax

�� GET CONNECTION STATE ��

Command parameters

None

742 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Examples

The following is sample output from GET CONNECTION STATE:
Database Connection State

Connection state = Connectable and Connected
Connection mode = SHARE
Local database alias = SAMPLE
Database name = SAMPLE
Hostname = montero
Service name = 29384

Usage notes

This command does not apply to type 2 connections.

LIST DBPARTITIONNUMS

Lists all database partitions associated with the current database.

Scope

This command can be issued from any database partition that is listed in
$HOME/sqllib/db2nodes.cfg. It returns the same information from any of these
database partitions.

Authorization

None

Required connection

Database

Command syntax

�� LIST DBPARTITIONNUMS ��

Command parameters

None

Examples

Following is sample output from the LIST DBPARTITIONNUMS command:
DATABASE PARTITION NUMBER

0
2
5
7
9

5 record(s) selected.

Chapter 30. DB2 commands 743

Compatibilities

For compatibility with versions earlier than Version 8:
v The keyword NODES can be substituted for DBPARTITIONNUMS.

PRECOMPILE

Processes an application program source file containing embedded SQL statements.
A modified source file is produced, containing host language calls for the SQL
statements and, by default, a package is created in the database.

Scope

This command can be issued from any database partition in db2nodes.cfg. In a
partitioned database environment, it can be issued from any database partition
server defined in the db2nodes.cfg file. It updates the database catalogs on the
catalog database partition. Its effects are visible to all database partitions.

Authorization

One of the following authorizations:
v dbadm authority
v If EXPLAIN ONLY is specified, EXPLAIN authority or an authority that

implicitly includes EXPLAIN is sufficient.
v If a package does not exist, BINDADD authority and:

– If the schema name of the package does not exist, IMPLICIT_SCHEMA
authority on the database.

– If the schema name of the package does exist, CREATEIN privilege on the
schema.

v If the package exists, one of the following privileges:
– ALTERIN privilege on the schema
– BIND privilege on the package

In addition, if capturing explain information using the EXPLAIN or the
EXPLSNAP clause, one of the following authorizations is required:
v INSERT privilege on the explain tables
v DATAACCESS authority

The user also needs all privileges required to compile any static SQL statements in
the application. Privileges granted to groups are not used for authorization
checking of static statements.

Required connection

Database. If implicit connect is enabled, a connection to the default database is
established.

Command syntax

For DB2 Database for Linux, UNIX, and Windows

744 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

|
|

�� PRECOMPILE
PREP

filename �

�
ACTION ADD

REPLACE

RETAIN NO REPLVER version-id
YES

�

�
APREUSE NO

YES
BINDFILE

USING bind-file

�

�
BLOCKING UNAMBIG

ALL
NO

COLLECTION schema-name
�

�
CALL_RESOLUTION IMMEDIATE

DEFERRED

�

�
CONCURRENTACCESSRESOLUTION USE CURRENTLY COMMITTED

WAIT FOR OUTCOME
CONNECT 1

2

�

�
DATETIME DEF

EUR
ISO
JIS
LOC
USA

DEFERRED_PREPARE NO
ALL
YES

�

�
DEGREE 1

degree-of-parallelism
ANY

DISCONNECT EXPLICIT
AUTOMATIC
CONDITIONAL

�

�
DYNAMICRULES RUN

BIND
INVOKERUN
INVOKEBIND
DEFINERUN
DEFINEBIND

EXPLAIN NO
ALL
ONLY
REOPT
YES

�

�
EXPLSNAP NO

ALL
REOPT
YES

FEDERATED NO
YES

�

Chapter 30. DB2 commands 745

�
FEDERATED_ASYNCHRONY ANY

number_of_atqs_in_the_plan

�

�

�

,

FUNCPATH schema-name

GENERIC string INSERT DEF
BUF

�

�
ISOLATION CS

RR
RS
UR

LANGLEVEL SAA1
MIA
SQL92E

LEVEL consistency token
�

�
(1)

LONGERROR NO
YES

MESSAGES message-file NOLINEMACRO
�

�
OPTLEVEL 0

1
OPTPROFILE optimization-profile-name

�

�
OUTPUT filename OWNER authorization-id

�

�
PACKAGE

USING package-name

�

�
PREPROCESSOR ″preprocessor-command″

’preprocessor-command’
QUALIFIER qualifier-name

�

�
QUERYOPT optimization-level

REOPT NONE

REOPT ONCE
REOPT ALWAYS

SQLCA NONE
SAA

�

�
(2)

SQLERROR NOPACKAGE
CHECK
CONTINUE

SQLFLAG SQL92E SYNTAX
MVSDB2V23
MVSDB2V31
MVSDB2V41

�

�
SQLRULES DB2

STD
SQLWARN NO

YES
NO

STATICREADONLY YES

�

746 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

�
SYNCPOINT ONEPHASE

NONE
TWOPHASE

SYNTAX TARGET IBMCOB
MFCOB
ANSI_COBOL
C
CPLUSPLUS
FORTRAN

�

�
TRANSFORM GROUP groupname VALIDATE BIND

RUN

�

�
WCHARTYPE NOCONVERT

CONVERT
VERSION version-id

AUTO

��

Notes:

1 NO is the default for 32 bit systems and for 64 bit NT systems where long
host variables can be used as declarations for INTEGER columns. YES is the
default for 64 bit UNIX systems.

2 SYNTAX is a synonym for SQLERROR(CHECK).

For DB2 Database on servers other than Linux, Windows and UNIX

�� PRECOMPILE
PREP

filename �

�
ACTION ADD

REPLACE

YES REPLVER version-id
RETAIN NO

�

�
BINDFILE

USING bind-file
UNAMBIG

BLOCKING ALL
NO

�

�
CALL_RESOLUTION IMMEDIATE

DEFERRED
CCSIDG double-ccsid

�

�
CCSIDM mixed-ccsid CCSIDS sbcs-ccsid DEFAULT

CHARSUB BIT
MIXED
SBCS

�

�
YES

CNULREQD NO
COLLECTION schema-name

COMPILE
PRECOMPILE

�

Chapter 30. DB2 commands 747

�
CONCURRENTACCESSRESOLUTION USE CURRENTLY COMMITTED

WAIT FOR OUTCOME
1

CONNECT 2

�

�
(1)

DATETIME DEF
EUR
ISO
JIS
LOC
USA

DBPROTOCOL DRDA
PRIVATE

DEC 15
31

�

�
PERIOD

DECDEL COMMA
NO

DEFERRED_PREPARE ALL
YES

�

�
(2) 1

DEGREE degree-of-parallelism
ANY

EXPLICIT
DISCONNECT AUTOMATIC

CONDITIONAL

�

�
RUN

DYNAMICRULES BIND
INVOKERUN
INVOKEBIND
DEFINERUN
DEFINEBIND

ENCODING ASCII
EBCDIC
UNICODE
CCSID

�

�
NO

EXPLAIN YES
GENERIC string IMMEDWRITE NO

YES
PH1

�

�
CS

ISOLATION NC
RR
RS
UR

KEEPDYNAMIC YES
NO

LEVEL consistency-token
�

�
(3) NO

LONGERROR YES
MESSAGES message-file NOLINEMACRO

�

�
OPTHINT hint-id 0

OPTLEVEL 1
OS400NAMING SYSTEM

SQL

�

�
OWNER authorization-id PREPROCESSOR ″preprocessor-command″

’preprocessor-command’

�

748 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

�
QUALIFIER qualifier-name COMMIT

RELEASE DEALLOCATE

REOPT NONE

REOPT ONCE
REOPT ALWAYS

�

�
REOPT VARS
NOREOPT VARS

SQLFLAG SQL92E SYNTAX
MVSDB2V23
MVSDB2V31
MVSDB2V41

SORTSEQ JOBRUN
HEX

�

�
DB2

SQLRULES STD
NOPACKAGE

SQLERROR CHECK
CONTINUE

APOSTROPHE
STRDEL QUOTE

�

�
ONEPHASE

SYNCPOINT NONE
TWOPHASE

SYNTAX IBMCOB
TARGET MFCOB

ANSI_COBOL
C
CPLUSPLUS
FORTRAN
BORLAND_C
BORLAND_CPLUSPLUS

�

�
TEXT label VERSION version-id

AUTO
VALIDATE BIND

RUN

�

�
NOCONVERT

WCHARTYPE CONVERT

��

Notes:

1 If the server does not support the DATETIME DEF option, it is mapped to
DATETIME ISO.

2 The DEGREE option is only supported by DRDA Level 2 Application Servers.

3 NO is the default for 32 bit systems and for 64 bit NT systems where long
host variables can be used as declarations for INTEGER columns. YES is the
default for 64 bit UNIX systems.

Command parameters

filename
Specifies the source file to be precompiled. An extension of:
v .sqc must be specified for C applications (generates a .c file)
v .sqx (Windows operating systems), or .sqC (UNIX and Linux operating

systems) must be specified for C++ applications (generates a .cxx file on
Windows operating systems, or a .C file on UNIX and Linux operating
systems)

v .sqb must be specified for COBOL applications (generates a .cbl file)
v .sqf must be specified for FORTRAN applications (generates a .for file

on Windows operating systems, or a .f file on UNIX and Linux
operating systems).

Chapter 30. DB2 commands 749

The preferred extension for C++ applications containing embedded SQL on
UNIX and Linux operating systems is sqC; however, the sqx convention,
which was invented for systems that are not case sensitive, is tolerated by
UNIX and Linux operating systems.

ACTION
Indicates whether the package can be added or replaced.

ADD Indicates that the named package does not exist, and that a new
package is to be created. If the package already exists, execution
stops, and a diagnostic error message is returned.

REPLACE
Indicates that the existing package is to be replaced by a new one
with the same package name and creator. This is the default value
for the ACTION option.

RETAIN
Indicates whether EXECUTE authorities are to be
preserved when a package is replaced. If ownership of the
package changes, the new owner grants the BIND and
EXECUTE authority to the previous package owner.

NO Does not preserve EXECUTE authorities when a
package is replaced. This value is not supported by
DB2.

YES Preserves EXECUTE authorities when a package is
replaced. This is the default value.

REPLVER version-id
Replaces a specific version of a package. The version
identifier specifies which version of the package is to be
replaced. If the specified version does not exist, an error is
returned. If the REPLVER option of REPLACE is not
specified, and a package already exists that matches the
package name and version of the package being
precompiled, that package will be replaced; if not, a new
package will be added.

APREUSE
Specifies whether static SQL access plans are to be reused. When this
option is enabled, the query compiler will attempt to reuse the access plans
for the statement in any existing packages during the bind and during
future implicit and explicit rebinds.

YES The query compiler will attempt to reuse the access plans for the
statements in the package. If there is an existing package, the query
compiler will attempt to reuse the access plan for every statement
that can be matched with a statement in the new bind file. For a
statement to match, the statement text must be identical and the
section number for the statement in the existing package must
match what the section number will be for the statement in the
new package.

NO The query compiler will not attempt to reuse access plans for the
statements in the package. This is the default setting.

BINDFILE
Results in the creation of a bind file. A package is not created unless the

750 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

package option is also specified. If a bind file is requested, but no package
is to be created, as in the following example:

db2 prep sample.sqc bindfile

object existence and authorization SQLCODEs will be treated as warnings
instead of errors. This will allow a bind file to be successfully created, even
if the database being used for precompilation does not have all of the
objects referred to in static SQL statements within the application. The bind
file can be successfully bound, creating a package, once the required
objects have been created.

USING bind-file
The name of the bind file that is to be generated by the
precompiler. The file name must have an extension of .bnd. If a file
name is not entered, the precompiler uses the name of the program
(entered as the filename parameter), and adds the .bnd extension. If
a path is not provided, the bind file is created in the current
directory.

BLOCKING
Specifies the type of row blocking for cursors. The blocking of row data
that contains references to LOB column data types is also supported in
environments where the Database Partitioning Feature (DPF) is enabled.

ALL For cursors that are specified with the FOR READ ONLY clause or
cursors not specified as FOR UPDATE, blocking occurs.

Ambiguous cursors are treated as read-only.

NO Blocking does not occur for any cursor.

For the definition of a read-only cursor and an ambiguous cursor,
refer to DECLARE CURSOR statement.

Ambiguous cursors are treated as updatable.

UNAMBIG
For cursors that are specified with the FOR READ ONLY clause,
blocking occurs.

Cursors that are not declared with the FOR READ ONLY or FOR
UPDATE clause which are not ambiguous and are read-only will
be blocked. Ambiguous cursors will not be blocked.

Ambiguous cursors are treated as updatable.

CALL_RESOLUTION
If set, the CALL_RESOLUTION DEFERRED option indicates that the
CALL statement will be executed as an invocation of the deprecated
sqleproc() API. If not set or if IMMEDIATE is set, the CALL statement will
be executed as a normal SQL statement. SQL0204 will be issued if the
precompiler fails to resolve the procedure on a CALL statement with
CALL_RESOLUTION IMMEDIATE.

CCSIDG double-ccsid
An integer specifying the coded character set identifier (CCSID) to be used
for double byte characters in character column definitions (without a
specific CCSID clause) in CREATE and ALTER TABLE SQL statements.
This option is not supported by DB2 Database for Linux, UNIX, and
Windows. The DRDA server will use a system defined default value if this
option is not specified.

Chapter 30. DB2 commands 751

|
|
|
|
|
|

CCSIDM mixed-ccsid
An integer specifying the coded character set identifier (CCSID) to be used
for mixed byte characters in character column definitions (without a
specific CCSID clause) in CREATE and ALTER TABLE SQL statements.
This option is not supported by DB2 Database for Linux, UNIX, and
Windows. The DRDA server will use a system defined default value if this
option is not specified.

CCSIDS sbcs-ccsid
An integer specifying the coded character set identifier (CCSID) to be used
for single byte characters in character column definitions (without a
specific CCSID clause) in CREATE and ALTER TABLE SQL statements.
This option is not supported by DB2 Database for Linux, UNIX, and
Windows. The DRDA server will use a system defined default value if this
option is not specified.

CHARSUB
Designates the default character sub-type that is to be used for column
definitions in CREATE and ALTER TABLE SQL statements. This DRDA
precompile/bind option is not supported by DB2.

BIT Use the FOR BIT DATA SQL character sub-type in all new
character columns for which an explicit sub-type is not specified.

DEFAULT
Use the target system defined default in all new character columns
for which an explicit sub-type is not specified.

MIXED
Use the FOR MIXED DATA SQL character sub-type in all new
character columns for which an explicit sub-type is not specified.

SBCS Use the FOR SBCS DATA SQL character sub-type in all new
character columns for which an explicit sub-type is not specified.

CNULREQD
This option is related to the LANGLEVEL precompile option, which is not
supported by DRDA. It is valid only if the bind file is created from a C or
a C++ application. This DRDA bind option is not supported by DB2.

NO The application was coded on the basis of the LANGLEVEL SAA1
precompile option with respect to the null terminator in C string
host variables.

YES The application was coded on the basis of the LANGLEVEL MIA
precompile option with respect to the null terminator in C string
host variables.

COLLECTION schema-name
Specifies a 128-byte collection identifier for the package. If not specified,
the authorization identifier for the user processing the package is used.

CONCURRENTACCESSRESOLUTION
Specifies the concurrent access resolution to use for statements in the
package.

USE CURRENTLY COMMITTED
Specifies that the database manager can use the currently
committed version of the data for applicable scans when it is in the
process of being updated or deleted. Rows in the process of being
inserted can be skipped. This clause applies when the isolation
level in effect is Cursor Stability or Read Stability (for Read

752 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Stability it skips uncommited inserts only) and is ignored
otherwise. Applicable scans include read-only scans that can be
part of a read-only statement as well as a non read-only statement.
The settings for the registry variables
DB2_EVALUNCOMMITTED, DB2_SKIPDELETED, and
DB2_SKIPINSERTED no longer apply.

WAIT FOR OUTCOME
Specifies Cursor Stability and higher scans to wait for the commit
or rollback when encountering data in the process of being
updated. Rows in the process of being inserted or deleted rows are
not skipped. The settings for the registry variables
DB2_EVALUNCOMMITTED, DB2_SKIPDELETED, and
DB2_SKIPINSERTED no longer apply.

CONNECT

1 Specifies that a CONNECT statement is to be processed as a type 1
CONNECT.

2 Specifies that a CONNECT statement is to be processed as a type 2
CONNECT.

DATETIME
Specifies the date and time format to be used.

DEF Use a date and time format associated with the territory code of
the database.

EUR Use the IBM standard for Europe date and time format.

ISO Use the date and time format of the International Standards
Organization.

JIS Use the date and time format of the Japanese Industrial Standard.

LOC Use the date and time format in local form associated with the
territory code of the database.

USA Use the IBM standard for U.S. date and time format.

DBPROTOCOL
Specifies what protocol to use when connecting to a remote site that is
identified by a three-part name statement. Supported by DB2 for OS/390
only. For a list of supported option values, refer to the documentation for
DB2 for OS/390.

DEC Specifies the maximum precision to be used in decimal arithmetic
operations. This DRDA precompile/bind option is not supported by DB2.
The DRDA server will use a system defined default value if this option is
not specified.

15 15-digit precision is used in decimal arithmetic operations.

31 31-digit precision is used in decimal arithmetic operations.

DECDEL
Designates whether a period (.) or a comma (,) will be used as the decimal
point indicator in decimal and floating point literals. This DRDA
precompile/bind option is not supported by DB2. The DRDA server will
use a system defined default value if this option is not specified.

COMMA
Use a comma (,) as the decimal point indicator.

Chapter 30. DB2 commands 753

PERIOD
Use a period (.) as the decimal point indicator.

DEFERRED_PREPARE
Provides a performance enhancement when accessing DB2 common server
databases or DRDA databases. This option combines the SQL PREPARE
statement flow with the associated OPEN, DESCRIBE, or EXECUTE
statement flow to minimize inter-process or network flow.

NO The PREPARE statement will be executed at the time it is issued.

YES Execution of the PREPARE statement will be deferred until the
corresponding OPEN, DESCRIBE, or EXECUTE statement is
issued.

The PREPARE statement will not be deferred if it uses the INTO
clause, which requires an SQLDA to be returned immediately.
However, if the PREPARE INTO statement is issued for a cursor
that does not use any parameter markers, the processing will be
optimized by pre-OPENing the cursor when the PREPARE is
executed.

ALL Same as YES, except that a PREPARE INTO statement is also
deferred. If the PREPARE statement uses the INTO clause to return
an SQLDA, the application must not reference the content of this
SQLDA until the OPEN, DESCRIBE, or EXECUTE statement is
issued and returned.

DEGREE
Specifies the degree of parallelism for the execution of static SQL
statements in an SMP system. This option does not affect CREATE INDEX
parallelism.

1 The execution of the statement will not use parallelism.

degree-of-parallelism
Specifies the degree of parallelism with which the statement can be
executed, a value between 2 and 32 767 (inclusive).

ANY Specifies that the execution of the statement can involve
parallelism using a degree determined by the database manager.

DISCONNECT

AUTOMATIC
Specifies that all database connections are to be disconnected at
commit.

CONDITIONAL
Specifies that the database connections that have been marked
RELEASE or have no open WITH HOLD cursors are to be
disconnected at commit.

EXPLICIT
Specifies that only database connections that have been explicitly
marked for release by the RELEASE statement are to be
disconnected at commit.

DYNAMICRULES
Defines which rules apply to dynamic SQL at run time for the initial
setting of the values used for authorization ID and for the implicit
qualification of unqualified object references.

754 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

RUN Specifies that the authorization ID of the user executing the
package is to be used for authorization checking of dynamic SQL
statements. The authorization ID will also be used as the default
package qualifier for implicit qualification of unqualified object
references within dynamic SQL statements. This is the default
value.

BIND Specifies that all of the rules that apply to static SQL for
authorization and qualification are to be used at run time. That is,
the authorization ID of the package owner is to be used for
authorization checking of dynamic SQL statements, and the default
package qualifier is to be used for implicit qualification of
unqualified object references within dynamic SQL statements.

DEFINERUN
If the package is used within a routine context, the authorization
ID of the routine definer is to be used for authorization checking
and for implicit qualification of unqualified object references within
dynamic SQL statements within the routine.

If the package is used as a standalone application, dynamic SQL
statements are processed as if the package were bound with
DYNAMICRULES RUN.

DEFINEBIND
If the package is used within a routine context, the authorization
ID of the routine definer is to be used for authorization checking
and for implicit qualification of unqualified object references within
dynamic SQL statements within the routine.

If the package is used as a standalone application, dynamic SQL
statements are processed as if the package were bound with
DYNAMICRULES BIND.

INVOKERUN
If the package is used within a routine context, the current
statement authorization ID in effect when the routine is invoked is
to be used for authorization checking of dynamic SQL statements
and for implicit qualification of unqualified object references within
dynamic SQL statements within that routine.

If the package is used as a standalone application, dynamic SQL
statements are processed as if the package were bound with
DYNAMICRULES RUN.

INVOKEBIND
If the package is used within a routine context, the current
statement authorization ID in effect when the routine is invoked is
to be used for authorization checking of dynamic SQL statements
and for implicit qualification of unqualified object references within
dynamic SQL statements within that routine.

If the package is used as a standalone application, dynamic SQL
statements are processed as if the package were bound with
DYNAMICRULES BIND.

Because dynamic SQL statements will be using the authorization ID of the
package owner in a package exhibiting bind behavior, the binder of the
package should not have any authorities granted to them that the user of
the package should not receive. Similarly, when defining a routine that will
exhibit define behavior, the definer of the routine should not have any

Chapter 30. DB2 commands 755

authorities granted to them that the user of the package should not receive
since a dynamic statement will be using the authorization ID of the
routine’s definer.

The following dynamically prepared SQL statements cannot be used within
a package that was not bound with DYNAMICRULES RUN: GRANT,
REVOKE, ALTER, CREATE, DROP, COMMENT ON, RENAME, SET
INTEGRITY, and SET EVENT MONITOR STATE.

ENCODING
Specifies the encoding for all host variables in static statements in the plan
or package. Supported by DB2 for OS/390 only. For a list of supported
option values, refer to the documentation for DB2 for OS/390.

EXPLAIN
Stores information in the Explain tables about the access plans chosen for
each SQL statement in the package. DRDA does not support the ALL value
for this option.

NO Explain information will not be captured.

YES Explain tables will be populated with information about the chosen
access plan at prep/bind time for static statements and at run time
for incremental bind statements.

If the package is to be used for a routine and the package contains
incremental bind statements, then the routine must be defined as
MODIFIES SQL DATA. If this is not done, incremental bind
statements in the package will cause a run time error (SQLSTATE
42985).

REOPT
Explain information for each reoptimizable incremental bind SQL
statement will be placed in the Explain tables at run time. In
addition, Explain information will be gathered for reoptimizable
dynamic SQL statements at run time, even if the CURRENT
EXPLAIN MODE special register is set to NO.

If the package is to be used for a routine, then the routine must be
defined as MODIFIES SQL DATA, otherwise incremental bind and
dynamic statements in the package will cause a run time error
(SQLSTATE 42985).

ONLY The ONLY option allows you to explain statements without having
the privilege to execute them. The explain tables are populated but
no persistent package is created. If an existing package with the
same name and version is encountered during the bind process,
the existing package is neither dropped nor replaced even if you
specified ACTION REPLACE. If an error occurs during population
of the explain tables, explain information is not added for the
statement that returned the error and for any statements that
follow it.

ALL Explain information for each eligible static SQL statement will be
placed in the Explain tables at prep/bind time. Explain information
for each eligible incremental bind SQL statement will be placed in
the Explain tables at run time. In addition, Explain information
will be gathered for eligible dynamic SQL statements at run time,
even if the CURRENT EXPLAIN MODE special register is set to
NO.

756 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

If the package is to be used for a routine, then the routine must be
defined as MODIFIES SQL DATA, otherwise incremental bind and
dynamic statements in the package will cause a run time error
(SQLSTATE 42985).

EXPLSNAP
Stores Explain Snapshot information in the Explain tables. This DB2
precompile/bind option is not supported by DRDA.

NO An Explain Snapshot will not be captured.

YES An Explain Snapshot for each eligible static SQL statement will be
placed in the Explain tables at prep/bind time for static statements
and at run time for incremental bind statements.

If the package is to be used for a routine and the package contains
incremental bind statements, then the routine must be defined as
MODIFIES SQL DATA or incremental bind statements in the
package will cause a run time error (SQLSTATE 42985).

REOPT
Explain Snapshot information for each reoptimizable incremental
bind SQL statement will be placed in the Explain tables at run
time. In addition, Explain Snapshot information will be gathered
for reoptimizable dynamic SQL statements at run time, even if the
CURRENT EXPLAIN SNAPSHOT special register is set to NO.

If the package is to be used for a routine, then the routine must be
defined as MODIFIES SQL DATA, otherwise incremental bind and
dynamic statements in the package will cause a run time error
(SQLSTATE 42985).

ALL An Explain Snapshot for each eligible static SQL statement will be
placed in the Explain tables at prep/bind time. Explain Snapshot
information for each eligible incremental bind SQL statement will
be placed in the Explain tables at run time. In addition, Explain
Snapshot information will be gathered for eligible dynamic SQL
statements at run time, even if the CURRENT EXPLAIN
SNAPSHOT special register is set to NO.

If the package is to be used for a routine, then the routine must be
defined as MODIFIES SQL DATA, or incremental bind and
dynamic statements in the package will cause a run time error
(SQLSTATE 42985).

FEDERATED
Specifies whether a static SQL statement in a package references a
nickname or a federated view. If this option is not specified and a static
SQL statement in the package references a nickname or a federated view, a
warning is returned and the package is created.

This option is not supported by DRDA servers.

NO A nickname or federated view is not referenced in the static SQL
statements of the package. If a nickname or federated view is
encountered in a static SQL statement during the prepare or bind
phase of this package, an error is returned and the package is not
created.

YES A nickname or federated view can be referenced in the static SQL
statements of the package. If no nicknames or federated views are

Chapter 30. DB2 commands 757

encountered in static SQL statements during the prepare or bind of
the package, no errors or warnings are returned and the package is
created.

FEDERATED_ASYNCHRONY
Specifies the maximum number of asynchrony table queues (ATQs) that
the federated server supports in the access plan for programs that use
embedded SQL.

ANY The optimizer determines the number of ATQs for the access plan.
The optimizer assigns an ATQ to all eligible SHIP or remote
pushdown operators in the plan. The value that is specified for
DB2_MAX_ASYNC_REQUESTS_PER_QUERY server option limits
the number of asynchronous requests.

number_of_atqs_in_the_plan
The number of ATQs in the plan. You specify a number in the
range 0 to 32767.

FUNCPATH
Specifies the function path to be used in resolving user-defined distinct
types and functions in static SQL. If this option is not specified, the default
function path is ″SYSIBM″,″SYSFUN″,USER where USER is the value of the
USER special register. This DB2 precompile/bind option is not supported
by DRDA.

schema-name
An SQL identifier, either ordinary or delimited, which identifies a
schema that exists at the application server. No validation that the
schema exists is made at precompile or at bind time. The same
schema cannot appear more than once in the function path. The
schema name SYSPUBLIC cannot be specified for the function
path. The number of schemas that can be specified is limited by
the length of the resulting function path, which cannot exceed 2048
bytes. The schema SYSIBM does not need to be explicitly specified;
it is implicitly assumed to be the first schema if it is not included
in the function path.

INSERT
Allows a program being precompiled or bound against a DB2 Enterprise
Server Edition server to request that data inserts be buffered to increase
performance.

BUF Specifies that inserts from an application should be buffered.

DEF Specifies that inserts from an application should not be buffered.

GENERIC string
Supports the binding of new options that are defined in the target
database, but are not supported by DRDA. Do not use this option to pass
bind options that are defined in BIND or PRECOMPILE. This option can
substantially improve dynamic SQL performance. The syntax is as follows:

generic "option1 value1 option2 value2 ..."

Each option and value must be separated by one or more blank spaces. For
example, if the target DRDA database is DB2 Universal Database, Version
8, one could use:

generic "explsnap all queryopt 3 federated yes"

to bind each of the EXPLSNAP, QUERYOPT, and FEDERATED options.

758 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

The maximum length of the string is 32768 bytes.

IMMEDWRITE
Indicates whether immediate writes will be done for updates made to
group buffer pool dependent pagesets or database partitions. Supported by
DB2 for OS/390 only. For a list of supported option values, refer to the
documentation for DB2 for OS/390.

ISOLATION
Determines how far a program bound to this package can be isolated from
the effect of other executing programs.

CS Specifies Cursor Stability as the isolation level.

NC No Commit. Specifies that commitment control is not to be used.
This isolation level is not supported by DB2.

RR Specifies Repeatable Read as the isolation level.

RS Specifies Read Stability as the isolation level. Read Stability ensures
that the execution of SQL statements in the package is isolated
from other application processes for rows read and changed by the
application.

UR Specifies Uncommitted Read as the isolation level.

LANGLEVEL
Specifies the SQL rules that apply for both the syntax and the semantics
for both static and dynamic SQL in the application. This option is not
supported by DRDA servers.

MIA Select the ISO/ANS SQL92 rules as follows:
v To support error SQLCODE or SQLSTATE checking, an SQLCA

must be declared in the application code.
v C null-terminated strings are padded with blanks and always

include a null-terminating character, even if truncation occurs.
v The FOR UPDATE clause is optional for all columns to be

updated in a positioned UPDATE.
v A searched UPDATE or DELETE requires SELECT privilege on

the object table of the UPDATE or DELETE statement if a
column of the object table is referenced in the search condition
or on the right hand side of the assignment clause.

v A column function that can be resolved using an index (for
example MIN or MAX) will also check for nulls and return
warning SQLSTATE 01003 if there were any nulls.

v An error is returned when a duplicate unique constraint is
included in a CREATE or ALTER TABLE statement.

v An error is returned when no privilege is granted and the
grantor has no privileges on the object (otherwise a warning is
returned).

SAA1 Select the common IBM DB2 rules as follows:
v To support error SQLCODE or SQLSTATE checking, an SQLCA

must be declared in the application code.
v C null-terminated strings are not terminated with a null

character if truncation occurs.
v The FOR UPDATE clause is required for all columns to be

updated in a positioned UPDATE.

Chapter 30. DB2 commands 759

v A searched UPDATE or DELETE will not require SELECT
privilege on the object table of the UPDATE or DELETE
statement unless a fullselect in the statement references the
object table.

v A column function that can be resolved using an index (for
example MIN or MAX) will not check for nulls and warning
SQLSTATE 01003 is not returned.

v A warning is returned and the duplicate unique constraint is
ignored.

v An error is returned when no privilege is granted.

SQL92E
Defines the ISO/ANS SQL92 rules as follows:
v To support checking of SQLCODE or SQLSTATE values,

variables by this name can be declared in the host variable
declare section (if neither is declared, SQLCODE is assumed
during precompilation).

v C null-terminated strings are padded with blanks and always
include a null-terminating character, even if truncation occurs.

v The FOR UPDATE clause is optional for all columns to be
updated in a positioned UPDATE.

v A searched UPDATE or DELETE requires SELECT privilege on
the object table of the UPDATE or DELETE statement if a
column of the object table is referenced in the search condition
or on the right hand side of the assignment clause.

v A column function that can be resolved using an index (for
example MIN or MAX) will also check for nulls and return
warning SQLSTATE 01003 if there were any nulls.

v An error is returned when a duplicate unique constraint is
included in a CREATE or ALTER TABLE statement.

v An error is returned when no privilege is granted and the
grantor has no privileges on the object (otherwise a warning is
returned).

KEEPDYNAMIC
Specifies whether dynamic SQL statements are to be kept after commit
points. Supported by DB2 for OS/390 only. For a list of supported option
values, refer to the documentation for DB2 for OS/390.

LEVEL consistency-token
Defines the level of a module using the consistency token. The consistency
token is any alphanumeric value up to 8 characters in length. The RDB
package consistency token verifies that the requester’s application and the
relational database package are synchronized. This option is not
recommended for general use.

LONGERROR
Indicates whether long host variable declarations will be treated as an
error. For portability, sqlint32 can be used as a declaration for an INTEGER
column in precompiled C and C++ code.

NO Does not generate errors for the use of long host variable
declarations. This is the default for 32 bit systems and for 64 bit
NT systems where long host variables can be used as declarations

760 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

for INTEGER columns. The use of this option on 64 bit UNIX
platforms will allow long host variables to be used as declarations
for BIGINT columns.

YES Generates errors for the use of long host variable declarations. This
is the default for 64 bit UNIX systems.

MESSAGES message-file
Specifies the destination for warning, error, and completion status
messages. A message file is created whether the bind is successful or not. If
a message file name is not specified, the messages are written to standard
output. If the complete path to the file is not specified, the current
directory is used. If the name of an existing file is specified, the contents of
the file are overwritten.

NOLINEMACRO
Suppresses the generation of the #line macros in the output .c file. Useful
when the file is used with development tools which require source line
information such as profiles, cross-reference utilities, and debuggers. This
precompile option is used for the C/C++ programming languages only.

OPTHINT
Controls whether query optimization hints are used for static SQL.
Supported by DB2 for OS/390 only. For a list of supported option values,
refer to the documentation for DB2 for OS/390.

OPTLEVEL
Indicates whether the C/C++ precompiler is to optimize initialization of
internal SQLDAs when host variables are used in SQL statements. Such
optimization can increase performance when a single SQL statement (such
as FETCH) is used inside a tight loop.

0 Instructs the precompiler not to optimize SQLDA initialization.

1 Instructs the precompiler to optimize SQLDA initialization. This
value should not be specified if the application uses:
v pointer host variables, as in the following example:

exec sql begin declare section;
char (*name)[20];
short *id;
exec sql end declare section;

v C++ data members directly in SQL statements.

OPTPROFILE optimization-profile-name
Specifies the name of an existing optimization profile to be used for all
static statements in the package. The default value of the option is an
empty string. The value also applies as the default for dynamic preparation
of DML statements for which the CURRENT OPTIMIZATION PROFILE
special register is null. If the specified name is unqualified, it is an SQL
identifier, which is implicitly qualified by the QUALIFIER bind option.

The BIND command does not process the optimization file, but only
validates that the name is syntactically valid. Therefore if the optimization
profile does not exist or is invalid, an SQL0437W warning with reason
code 13 will not occur until a DML statement is optimized using that
optimization profile.

OUTPUT filename
Overrides the default name of the modified source file produced by the
compiler. It can include a path.

Chapter 30. DB2 commands 761

OS400NAMING
Specifies which naming option is to be used when accessing DB2 for
System i data. Supported by DB2 for System i only. For a list of supported
option values, refer to the documentation for DB2 for System i.

Because of the slashes used as separators, a DB2 utility can still report a
syntax error at execution time on certain SQL statements which use the
System i system naming convention, even though the utility might have
been precompiled or bound with the OS400NAMING SYSTEM option. For
example, the Command Line Processor will report a syntax error on an
SQL CALL statement if the System i system naming convention is used,
whether or not it has been precompiled or bound using the
OS400NAMING SYSTEM option.

OWNER authorization-id
Designates a 128-byte authorization identifier for the package owner. The
owner must have the privileges required to execute the SQL statements
contained in the package. Only a user with DBADM authority can specify
an authorization identifier other than the user ID. The default value is the
primary authorization ID of the precompile/bind process. SYSIBM,
SYSCAT, and SYSSTAT are not valid values for this option. The
authorization-id can only be a user (cannot be a role or a group).

PACKAGE
Creates a package. If neither PACKAGE, BINDFILE, nor SYNTAX is
specified, a package is created in the database by default.

USING package-name
The name of the package that is to be generated by the
precompiler. If a name is not entered, the name of the application
program source file (minus extension and folded to uppercase) is
used. Maximum length is 128 bytes.

PREPROCESSOR ″preprocessor-command″

Specifies the preprocessor command that can be executed by the
precompiler before it processes embedded SQL statements. The
preprocessor command string (maximum length 1024 bytes) must be
enclosed either by double or by single quotation marks.

This option enables the use of macros within the declare section. A valid
preprocessor command is one that can be issued from the command line to
invoke the preprocessor without specifying a source file. For example,

xlc -P -DMYMACRO=0

QUALIFIER qualifier-name
Provides an 128-byte implicit qualifier for unqualified objects contained in
the package. The default is the owner’s authorization ID, whether or not
owner is explicitly specified.

QUERYOPT optimization-level
Indicates the desired level of optimization for all static SQL statements
contained in the package. The default value is 5. The SET CURRENT
QUERY OPTIMIZATION statement describes the complete range of
optimization levels available. This DB2 precompile/bind option is not
supported by DRDA.

RELEASE
Indicates whether resources are released at each COMMIT point, or when
the application terminates. This DRDA precompile/bind option is not
supported by DB2.

762 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

COMMIT
Release resources at each COMMIT point. Used for dynamic SQL
statements.

DEALLOCATE
Release resources only when the application terminates.

REOPT
Specifies whether to have DB2 optimize an access path using values for
host variables, parameter markers, global variables, and special registers.
Valid values are:

NONE
The access path for a given SQL statement containing host
variables, parameter markers, global variables, or special registers
will not be optimized using real values for these variables. The
default estimates for the these variables will be used instead, and
this plan is cached and used subsequently. This is the default
behavior.

ONCE The access path for a given SQL statement will be optimized using
the real values of the host variables, parameter markers, global
variables, or special registers when the query is first executed. This
plan is cached and used subsequently.

ALWAYS
The access path for a given SQL statement will always be compiled
and reoptimized using the values of the host variables, parameter
markers, global variables, or special registers known at each
execution time.

REOPT | NOREOPT VARS
These options have been replaced by REOPT ALWAYS and REOPT NONE;
however, they are still supported for compatibility with previous releases.
Specifies whether to have DB2 determine an access path at run time using
values for host variables, global variables, parameter markers, and special
registers. Supported by DB2 for OS/390 only. For a list of supported option
values, refer to the documentation for DB2 for OS/390.

SQLCA
For FORTRAN applications only. This option is ignored if it is used with
other languages.

NONE
Specifies that the modified source code is not consistent with the
SAA definition.

SAA Specifies that the modified source code is consistent with the SAA
definition.

SQLERROR
Indicates whether to create a package or a bind file if an error is
encountered.

CHECK
Specifies that the target system performs all syntax and semantic
checks on the SQL statements being bound. A package will not be
created as part of this process. If, while binding, an existing
package with the same name and version is encountered, the
existing package is neither dropped nor replaced even if ACTION
REPLACE was specified.

Chapter 30. DB2 commands 763

CONTINUE
Creates a package, even if errors occur when binding SQL
statements. Those statements that failed to bind for authorization
or existence reasons can be incrementally bound at execution time
if VALIDATE RUN is also specified. Any attempt to execute them
at run time generates an error (SQLCODE -525, SQLSTATE 51015).

NOPACKAGE
A package or a bind file is not created if an error is encountered.

SQLFLAG
Identifies and reports on deviations from the SQL language syntax
specified in this option.

A bind file or a package is created only if the BINDFILE or the PACKAGE
option is specified, in addition to the SQLFLAG option.

Local syntax checking is performed only if one of the following options is
specified:
v BINDFILE
v PACKAGE
v SQLERROR CHECK
v SYNTAX

If SQLFLAG is not specified, the flagger function is not invoked, and the
bind file or the package is not affected.

SQL92E SYNTAX
The SQL statements will be checked against ANSI or ISO SQL92
Entry level SQL language format and syntax with the exception of
syntax rules that would require access to the database catalog. Any
deviation is reported in the precompiler listing.

MVSDB2V23 SYNTAX
The SQL statements will be checked against MVS DB2 Version 2.3
SQL language syntax. Any deviation from the syntax is reported in
the precompiler listing.

MVSDB2V31 SYNTAX
The SQL statements will be checked against MVS DB2 Version 3.1
SQL language syntax. Any deviation from the syntax is reported in
the precompiler listing.

MVSDB2V41 SYNTAX
The SQL statements will be checked against MVS DB2 Version 4.1
SQL language syntax. Any deviation from the syntax is reported in
the precompiler listing.

SORTSEQ
Specifies which sort sequence table to use on the System i system.
Supported by DB2 for System i only. For a list of supported option values,
refer to the documentation for DB2 for System i.

SQLRULES
Specifies:
v Whether type 2 CONNECTs are to be processed according to the DB2

rules or the Standard (STD) rules based on ISO/ANS SQL92.
v How an application specifies the format of LOB columns in the result

set.

764 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

DB2

v Permits the SQL CONNECT statement to switch the current
connection to another established (dormant) connection.

v This default setting allows an application to specify whether
LOB values or LOB locators are retrieved only during the first
fetch request. Subsequent fetch requests must use the same
format for the LOB columns.

STD

v Permits the SQL CONNECT statement to establish a new
connection only. The SQL SET CONNECTION statement must
be used to switch to a dormant connection.

v The application can change between retrieving LOB values and
LOB locators with each fetch request. This means that cursors
with one or more LOB columns cannot be blocked, regardless of
the BLOCKING bind option setting.

SQLWARN
Indicates whether warnings will be returned from the compilation of
dynamic SQL statements (via PREPARE or EXECUTE IMMEDIATE), or
from describe processing (via PREPARE...INTO or DESCRIBE).

NO Warnings will not be returned from the SQL compiler.

YES Warnings will be returned from the SQL compiler.

SQLCODE +238 is an exception. It is returned regardless of the sqlwarn
option value.

STATICREADONLY
Determines whether static cursors will be treated as being READ ONLY.
This DB2 precompile/bind option is not supported by DRDA.

NO All static cursors will take on the attributes as would normally be
generated given the statement text and the setting of the
LANGLEVEL precompile option. This is the default value.

YES Any static cursor that does not contain the FOR UPDATE or FOR
READ ONLY clause will be considered READ ONLY.

STRDEL
Designates whether an apostrophe (’) or double quotation marks (″) will be
used as the string delimiter within SQL statements. This DRDA
precompile/bind option is not supported by DB2. The DRDA server will
use a system defined default value if this option is not specified.

APOSTROPHE
Use an apostrophe (’) as the string delimiter.

QUOTE
Use double quotation marks (″) as the string delimiter.

SYNCPOINT
Specifies how commits or rollbacks are to be coordinated among multiple
database connections. This command parameter is ignored and is only
included here for backward compatibility.

NONE
Specifies that no Transaction Manager (TM) is to be used to
perform a two-phase commit, and does not enforce single updater,

Chapter 30. DB2 commands 765

multiple reader. A COMMIT is sent to each participating database.
The application is responsible for recovery if any of the commits
fail.

ONEPHASE
Specifies that no TM is to be used to perform a two-phase commit.
A one-phase commit is to be used to commit the work done by
each database in multiple database transactions.

TWOPHASE
Specifies that the TM is required to coordinate two-phase commits
among those databases that support this protocol.

SYNTAX
Suppresses the creation of a package or a bind file during precompilation.
This option can be used to check the validity of the source file without
modifying or altering existing packages or bind files. SYNTAX is a
synonym for SQLERROR CHECK.

If SYNTAX is used together with the PACKAGE option, PACKAGE is
ignored.

TARGET
Instructs the precompiler to produce modified code tailored to one of the
supported compilers on the current platform.

IBMCOB
On AIX, code is generated for the IBM COBOL Set for AIX
compiler.

MFCOB
Code is generated for the Micro Focus COBOL compiler. This is the
default if a TARGET value is not specified with the COBOL
precompiler on all Linux, UNIX and Windows operating systems.

ANSI_COBOL
Code compatible with the ANS X3.23-1985 standard is generated.

C Code compatible with the C compilers supported by DB2 on the
current platform is generated.

CPLUSPLUS
Code compatible with the C++ compilers supported by DB2 on the
current platform is generated.

FORTRAN
Code compatible with the FORTRAN compilers supported by DB2
on the current platform is generated.

TEXT label
The description of a package. Maximum length is 255 characters. The
default value is blanks. This DRDA precompile/bind option is not
supported by DB2.

TRANSFORM GROUP
Specifies the transform group name to be used by static SQL statements for
exchanging user-defined structured type values with host programs. This
transform group is not used for dynamic SQL statements or for the
exchange of parameters and results with external functions or methods.
This option is not supported by DRDA servers.

groupname
An SQL identifier of up to 128 bytes in length. A group name

766 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

cannot include a qualifier prefix and cannot begin with the prefix
SYS since this is reserved for database use. In a static SQL
statement that interacts with host variables, the name of the
transform group to be used for exchanging values of a structured
type is as follows:
v The group name in the TRANSFORM GROUP bind option, if

any
v The group name in the TRANSFORM GROUP prep option as

specified at the original precompilation time, if any
v The DB2_PROGRAM group, if a transform exists for the given

type whose group name is DB2_PROGRAM
v No transform group is used if none of the above conditions

exist.

The following errors are possible during the bind of a static SQL
statement:
v SQLCODE yyy, SQLSTATE xxxxx: A transform is needed, but no

static transform group has been selected.
v SQLCODE yyy, SQLSTATE xxxxx: The selected transform group

does not include a necessary transform (TO SQL for input
variables, FROM SQL for output variables) for the data type that
needs to be exchanged.

v SQLCODE yyy, SQLSTATE xxxxx: The result type of the FROM
SQL transform is not compatible with the type of the output
variable, or the parameter type of the TO SQL transform is not
compatible with the type of the input variable.

In these error messages, yyyyy is replaced by the SQL error code,
and xxxxx by the SQL state code.

VALIDATE
Determines when the database manager checks for authorization errors
and object not found errors. The package owner authorization ID is used
for validity checking.

BIND Validation is performed at precompile/bind time. If all objects do
not exist, or all authority is not held, error messages are produced.
If SQLERROR CONTINUE is specified, a package/bind file is
produced despite the error message, but the statements in error are
not executable.

RUN Validation is attempted at bind time. If all objects exist, and all
authority is held, no further checking is performed at execution
time.

If all objects do not exist, or all authority is not held at
precompile/bind time, warning messages are produced, and the
package is successfully bound, regardless of the SQLERROR
CONTINUE option setting. However, authority checking and
existence checking for SQL statements that failed these checks
during the precompile/bind process can be redone at execution
time.

VERSION
Defines the version identifier for a package. If this option is not specified,
the package version will be ″″ (the empty string).

Chapter 30. DB2 commands 767

version-id
Specifies a version identifier that is any alphanumeric value, $, #,
@, _, -, or ., up to 64 characters in length.

AUTO
The version identifier will be generated from the consistency token.
If the consistency token is a timestamp (it will be if the LEVEL
option is not specified), the timestamp is converted into ISO
character format and is used as the version identifier.

WCHARTYPE
Specifies the format for graphic data.

CONVERT
Host variables declared using the wchar_t base type will be treated
as containing data in wchar_t format. Since this format is not
directly compatible with the format of graphic data stored in the
database (DBCS format), input data in wchar_t host variables is
implicitly converted to DBCS format on behalf of the application,
using the ANSI C function wcstombs(). Similarly, output DBCS
data is implicitly converted to wchar_t format, using mbstowcs(),
before being stored in host variables.

NOCONVERT
Host variables declared using the wchar_t base type will be treated
as containing data in DBCS format. This is the format used within
the database for graphic data; it is, however, different from the
native wchar_t format implemented in the C language. Using
NOCONVERT means that graphic data will not undergo
conversion between the application and the database, which can
improve efficiency. The application is, however, responsible for
ensuring that data in wchar_t format is not passed to the database
manager. When this option is used, wchar_t host variables should
not be manipulated with the C wide character string functions, and
should not be initialized with wide character literals (L-literals).

Usage notes

A modified source file is produced, which contains host language equivalents to
the SQL statements. By default, a package is created in the database to which a
connection has been established. The name of the package is the same as the file
name (minus the extension and folded to uppercase), up to a maximum of 8
characters. Although the maximum length of a package name is 128 bytes, unless
the PACKAGE USING option is specified, only the first 8 characters of the file
name are used to maintain compatibility with previous versions of DB2.

Following connection to a database, PREP executes under the transaction that was
started. PREP then issues a COMMIT or a ROLLBACK to terminate the current
transaction and start another one.

Creating a package with a schema name that does not already exist results in the
implicit creation of that schema. The schema owner is SYSIBM. The CREATEIN
privilege on the schema is granted to PUBLIC.

During precompilation, an Explain Snapshot is not taken unless a package is
created and EXPLSNAP has been specified. The snapshot is put into the Explain
tables of the user creating the package. Similarly, Explain table information is only
captured when EXPLAIN is specified, and a package is created.

768 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Precompiling stops if a fatal error or more than 100 errors occur. If a fatal error
occurs, the utility stops precompiling, attempts to close all files, and discards the
package.

When a package exhibits bind behavior, the following will be true:
1. The implicit or explicit value of the BIND option OWNER will be used for

authorization checking of dynamic SQL statements.
2. The implicit or explicit value of the BIND option QUALIFIER will be used as

the implicit qualifier for qualification of unqualified objects within dynamic
SQL statements.

3. The value of the special register CURRENT SCHEMA has no effect on
qualification.

In the event that multiple packages are referenced during a single connection, all
dynamic SQL statements prepared by those packages will exhibit the behavior as
specified by the DYNAMICRULES option for that specific package and the
environment they are used in.

If an SQL statement was found to be in error and the PRECOMPILE option
SQLERROR CONTINUE was specified, the statement will be marked as invalid
and another PRECOMPILE must be issued in order to change the state of the SQL
statement. Implicit and explicit rebind will not change the state of an invalid
statement in a package bound with VALIDATE RUN. A statement can change from
static to incremental bind or incremental bind to static across implicit and explicit
rebinds depending on whether or not object existence or authority problems exist
during the rebind.

Binding a package with REOPT ONCE or REOPT ALWAYS might change static
and dynamic statement compilation and performance.

For an embedded SQL program, if the FEDERATED_ASYNCHRONY precompile
option is not explicitly specified the static statements in the package are bound
using the FEDERATED_ASYNC configuration parameter. If the
FEDERATED_ASYNCHRONY option is specified explicitly, that value is used for
binding the packages and is also the initial value of the special register. Otherwise,
the value of the database manager configuration parameter is used as the initial
value of the special register. The FEDERATED_ASYNCHRONY precompile option
influences dynamic SQL only when it is explicitly set.

REBIND

Allows the user to recreate a package stored in the database without the need for a
bind file.

Authorization

One of the following:
v dbadm authority
v ALTERIN privilege on the schema
v BIND privilege on the package.

The authorization ID logged in the BOUNDBY column of the SYSCAT.PACKAGES
system catalog table, which is the ID of the most recent binder of the package, is
used as the binder authorization ID for the rebind, and for the default schema for

Chapter 30. DB2 commands 769

table references in the package. This default qualifier can be different from the
authorization ID of the user executing the rebind request. REBIND will use the
same bind options that were specified when the package was created.

Required connection

Database. If no database connection exists, and if implicit connect is enabled, a
connection to the default database is made.

Command syntax

�� REBIND package-name
PACKAGE VERSION version-name

�

� RESOLVE ANY
CONSERVATIVE APREUSE YES

NO
REOPT NONE
REOPT ONCE
REOPT ALWAYS

��

Command parameters

PACKAGE package-name
The qualified or unqualified name that designates the package to be
rebound.

VERSION version-name
The specific version of the package to be rebound. When the version is not
specified, it is taken to be ″″ (the empty string).

RESOLVE
Specifies whether rebinding of the package is to be performed with or
without conservative binding semantics. This affects whether new objects
that use the SQL path for resolution are considered during resolution on
static DML statements in the package. This option is not supported by
DRDA. Valid values are:

ANY All possible matches in the SQL path are considered for resolving
references to any objects that use the SQL path for object
resolution. Conservative binding semantics are not used. This is the
default.

CONSERVATIVE
Only those objects in the SQL path that were defined before the
last explicit bind time stamp are considered for resolving references
to any objects that use the SQL path for object resolution.
Conservative binding semantics are used. This option is not
supported for an inoperative package.

APREUSE
Specifies whether static SQL access plans are to be reused. When this
option is enabled, the query compiler will attempt to reuse the access plans
for static SQL statements in the existing package during the rebind and
during future implicit and explicit rebinds. The default is the value used
during the previous invocation of the BIND or REBIND command or the
ALTER PACKAGE statement. To determine the value, query the APREUSE
column for the package in SYSCAT.PACKAGES.

YES The query compiler will attempt to reuse the access plans for the
statements in the package.

770 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

NO The query compiler will not attempt to reuse access plans for the
statements in the package.

REOPT
Specifies whether to have DB2 optimize an access path using values for
host variables, parameter markers, global variables, and special registers.

NONE
The access path for a given SQL statement containing host
variables, parameter markers, global variables, or special registers
will not be optimized using real values for these variables. The
default estimates for these variables will be used instead, and this
plan is cached and used subsequently. This is the default behavior.

ONCE The access path for a given SQL statement will be optimized using
the real values of the host variables, parameter markers, global
variables, or special registers when the query is first executed. This
plan is cached and used subsequently.

ALWAYS
The access path for a given SQL statement will always be compiled
and re-optimized using the values of the host variables, parameter
markers, global variables, or special registers known at each
execution time.

Usage notes

REBIND does not automatically commit the transaction following a successful
rebind. The user must explicitly commit the transaction. This enables ″what if″
analysis, in which the user updates certain statistics, and then tries to rebind the
package to see what changes. It also permits multiple rebinds within a unit of
work.

The REBIND command will commit the transaction if auto-commit is enabled.

This command:
v Provides a quick way to recreate a package. This enables the user to take

advantage of a change in the system without a need for the original bind file.
For example, if it is likely that a particular SQL statement can take advantage of
a newly created index, the REBIND command can be used to recreate the
package. REBIND can also be used to recreate packages after RUNSTATS has
been executed, thereby taking advantage of the new statistics.

v Provides a method to recreate inoperative packages. Inoperative packages must
be explicitly rebound by invoking either the bind utility or the rebind utility. A
package will be marked inoperative (the VALID column of the SYSCAT.PACKAGES
system catalog will be set to X) if a function instance on which the package
depends is dropped.

v Gives users control over the rebinding of invalid packages. Invalid packages will
be automatically (or implicitly) rebound by the database manager when they are
executed. This might result in a noticeable delay in the execution of the first SQL
request for the invalid package. It may be desirable to explicitly rebind invalid
packages, rather than allow the system to automatically rebind them, in order to
eliminate the initial delay and to prevent unexpected SQL error messages which
might be returned in case the implicit rebind fails. For example, following
database upgrade, all packages stored in the database will be invalidated by the
UPGRADE DATABASE command. Given that this might involve a large number

Chapter 30. DB2 commands 771

of packages, it may be desirable to explicitly rebind all of the invalid packages at
one time. This explicit rebinding can be accomplished using BIND, REBIND, or
the db2rbind tool).

If multiple versions of a package (many versions with the same package name and
creator) exist, only one version can be rebound at once. If not specified in the
VERSION option, the package version defaults to be ″″. Even if there exists only
one package with a name that matches, it will not be rebound unless its version
matches the one specified or the default.

The choice of whether to use BIND or REBIND to explicitly rebind a package
depends on the circumstances. It is recommended that REBIND be used whenever
the situation does not specifically require the use of BIND, since the performance
of REBIND is significantly better than that of BIND. BIND must be used, however:
v When there have been modifications to the program (for example, when SQL

statements have been added or deleted, or when the package does not match the
executable for the program).

v When the user wishes to modify any of the bind options as part of the rebind.
REBIND does not support any bind options. For example, if the user wishes to
have privileges on the package granted as part of the bind process, BIND must
be used, since it has a GRANT option.

v When the package does not currently exist in the database.
v When detection of all bind errors is desired. REBIND only returns the first error

it detects, whereas the BIND command returns the first 100 errors that occur
during binding.

REBIND is supported by DB2 Connect.

If REBIND is executed on a package that is in use by another user, the rebind will
not occur until the other user’s logical unit of work ends, because an exclusive lock
is held on the package’s record in the SYSCAT.PACKAGES system catalog table during
the rebind.

When REBIND is executed, the database manager recreates the package from the
SQL statements stored in the SYSCAT.STATEMENTS system catalog table.

If REBIND encounters an error, processing stops, and an error message is returned.

REBIND will re-explain packages that were created with the EXPLSNAP bind
option set to YES or ALL (indicated in the EXPLAIN_SNAPSHOT column in the
SYSCAT.PACKAGES catalog table entry for the package) or with the EXPLAIN bind
option set to YES or ALL (indicated in the EXPLAIN_MODE column in the
SYSCAT.PACKAGES catalog table entry for the package). The Explain tables used are
those of the REBIND requester, not the original binder.

If an SQL statement was found to be in error and the BIND option SQLERROR
CONTINUE was specified, the statement will be marked as invalid even if the
problem has been corrected. REBIND will not change the state of an invalid
statement. In a package bound with VALIDATE RUN, a statement can change from
static to incremental bind or incremental bind to static across a REBIND depending
on whether or not object existence or authority problems exist during the REBIND.

Rebinding a package with REOPT ONCE | ALWAYS might change static and
dynamic statement compilation and performance.

772 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

If REOPT is not specified, REBIND will preserve the existing REOPT value used at
precompile or bind time.

Chapter 30. DB2 commands 773

774 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Chapter 31. Application programming interfaces (APIs)

Following are the application programming interfaces (APIs) that correspond to the
DB2 commands that are used for the Common Criteria evaluation.

DB2 UDB APIs for Administrators

db2Backup - Back up a database or table space
Creates a backup copy of a database or a table space.

Scope

In a partitioned database environment, by default this API affects only the
database partition on which it is executed.

If the option to perform a partitioned backup is specified, the command can be
called only on the catalog node. If the option specifies that all database partition
servers are to be backed up, it affects all database partition servers that are listed
in the db2nodes.cfg file. Otherwise, it affects the database partition servers that are
specified on the API.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required connection

Database. This API automatically establishes a connection to the specified database.

The connection will be terminated upon the completion of the backup.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Backup (
db2Uint32 versionNumber,
void * pDB2BackupStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2BackupStruct
{

char *piDBAlias;
char oApplicationId[SQLU_APPLID_LEN+1];
char oTimestamp[SQLU_TIME_STAMP_LEN+1];
struct db2TablespaceStruct *piTablespaceList;
struct db2MediaListStruct *piMediaList;
char *piUsername;
char *piPassword;

© Copyright IBM Corp. 1993, 2009 775

void *piVendorOptions;
db2Uint32 iVendorOptionsSize;
db2Uint32 oBackupSize;
db2Uint32 iCallerAction;
db2Uint32 iBufferSize;
db2Uint32 iNumBuffers;
db2Uint32 iParallelism;
db2Uint32 iOptions;
db2Uint32 iUtilImpactPriority;
char *piComprLibrary;
void *piComprOptions;
db2Uint32 iComprOptionsSize;
db2int32 iAllNodeFlag;
db2int32 iNumNodes;
db2NodeType *piNodeList;
db2int32 iNumMPPOutputStructs;
struct db2BackupMPPOutputStruct *poMPPOutputStruct;

} db2BackupStruct;

typedef SQL_STRUCTURE db2TablespaceStruct
{

char **tablespaces;
db2Uint32 numTablespaces;

} db2TablespaceStruct;

typedef SQL_STRUCTURE db2MediaListStruct
{

char **locations;
db2Uint32 numLocations;
char locationType;

} db2MediaListStruct;

typedef SQL_STRUCTURE db2BackupMPPOutputStruct
{

db2NodeType nodeNumber;
db2Uint64 backupSize;
struct sqlca sqlca;

} db2BackupMPPOutputStruct;

SQL_API_RC SQL_API_FN
db2gBackup (

db2Uint32 versionNumber,
void * pDB2gBackupStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gBackupStruct
{

char *piDBAlias;
db2Uint32 iDBAliasLen;
char *poApplicationId;
db2Uint32 iApplicationIdLen;
char *poTimestamp;
db2Uint32 iTimestampLen;
struct db2gTablespaceStruct *piTablespaceList;
struct db2gMediaListStruct *piMediaList;
char *piUsername;
db2Uint32 iUsernameLen;
char *piPassword;
db2Uint32 iPasswordLen;
void *piVendorOptions;
db2Uint32 iVendorOptionsSize;
db2Uint32 oBackupSize;
db2Uint32 iCallerAction;
db2Uint32 iBufferSize;
db2Uint32 iNumBuffers;
db2Uint32 iParallelism;
db2Uint32 iOptions;

776 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

db2Uint32 iUtilImpactPriority;
char *piComprLibrary;
db2Uint32 iComprLibraryLen;
void *piComprOptions;
db2Uint32 iComprOptionsSize;
db2int32 iAllNodeFlag;
db2int32 iNumNodes;
db2NodeType *piNodeList;
db2int32 iNumMPPOutputStructs;
struct db2gBackupMPPOutputStruct *poMPPOutputStruct;

} db2gBackupStruct;

typedef SQL_STRUCTURE db2gTablespaceStruct
{

struct db2Char *tablespaces;
db2Uint32 numTablespaces;

} db2gTablespaceStruct;

typedef SQL_STRUCTURE db2gMediaListStruct
{

struct db2Char *locations;
db2Uint32 numLocations;
char locationType;

} db2gMediaListStruct;

typedef SQL_STRUCTURE db2gBackupMPPOutputStruct
{

db2NodeType nodeNumber;
db2Uint64 backupSize;
struct sqlca sqlca;

} db2gBackupMPPOutputStruct;

typedef SQL_STRUCTURE db2Char
{

char *pioData;
db2Uint32 iLength;
db2Uint32 oLength;

} db2Char;

db2Backup API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pDB2BackupStruct.

pDB2BackupStruct
Input. A pointer to the db2BackupStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2BackupStruct data structure parameters

piDBAlias
Input. A string containing the database alias (as cataloged in the system
database directory) of the database to back up.

oApplicationId
Output. The API will return a string identifying the agent servicing the
application. Can be used to obtain information about the progress of the
backup operation using the database monitor.

oTimestamp
Output. The API will return the time stamp of the backup image

Chapter 31. Application programming interfaces (APIs) 777

piTablespaceList
Input. List of table spaces to be backed up. Required for table space level
backup only. Must be NULL for a database level backup. See structure
db2TablespaceStruct.

piMediaList
Input. This structure allows the caller to specify the destination for the
backup operation. For more information, see the db2MediaListStruct
structure below.

piUsername
Input. A string containing the user name to be used when attempting a
connection. Can be NULL.

piPassword
Input. A string containing the password to be used with the user name.
Can be NULL.

piVendorOptions
Input. Used to pass information from the application to the vendor
functions. This data structure must be flat; that is, no level of indirection is
supported. Note that byte-reversal is not done, and code page is not
checked for this data.

iVendorOptionsSize
Input. The length of the piVendorOptions field, which cannot exceed
65535 bytes.

oBackupSize
Output. Size of the backup image (in MB).

iCallerAction
Input. Specifies action to be taken. Valid values (defined in db2ApiDf
header file, located in the include directory) are:

DB2BACKUP_BACKUP
Start the backup.

DB2BACKUP_NOINTERRUPT
Start the backup. Specifies that the backup will run unattended,
and that scenarios which normally require user intervention will
either be attempted without first returning to the caller, or will
generate an error. Use this caller action, for example, if it is known
that all of the media required for the backup have been mounted,
and utility prompts are not desired.

DB2BACKUP_CONTINUE
Continue the backup after the user has performed some action
requested by the utility (mount a new tape, for example).

DB2BACKUP_TERMINATE
Terminate the backup after the user has failed to perform some
action requested by the utility.

DB2BACKUP_DEVICE_TERMINATE
Remove a particular device from the list of devices used by
backup. When a particular medium is full, backup will return a
warning to the caller (while continuing to process using the
remaining devices). Call backup again with this caller action to
remove the device which generated the warning from the list of
devices being used.

778 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

DB2BACKUP_PARM_CHK
Used to validate parameters without performing a backup. This
option does not terminate the database connection after the call
returns. After successful return of this call, it is expected that the
user will issue a call with SQLUB_CONTINUE to proceed with the
action.

DB2BACKUP_PARM_CHK_ONLY
Used to validate parameters without performing a backup. Before
this call returns, the database connection established by this call is
terminated, and no subsequent call is required.

iBufferSize
Input. Backup buffer size in 4 KB allocation units (pages). Minimum is 8
units.

iNumBuffers
Input. Specifies number of backup buffers to be used. Minimum is 2.
Maximum is limited by memory.

iParallelism
Input. Degree of parallelism (number of buffer manipulators). Minimum is
1. Maximum is 1024.

iOptions
Input. A bitmap of backup properties. The options are to be combined
using the bitwise OR operator to produce a value for iOptions. Valid
values (defined in db2ApiDf header file, located in the include directory)
are:

DB2BACKUP_OFFLINE
Offline gives an exclusive connection to the database.

DB2BACKUP_ONLINE
Online allows database access by other applications while the
backup operation occurs.

Note: An online backup operation may appear to hang if users are
holding locks on SMS LOB data.

DB2BACKUP_DB
Full database backup.

DB2BACKUP_TABLESPACE
Table space level backup. For a table space level backup, provide a
list of table spaces in the piTablespaceList parameter.

DB2BACKUP_INCREMENTAL
Specifies a cumulative (incremental) backup image. An incremental
backup image is a copy of all database data that has changed since
the most recent successful, full backup operation.

DB2BACKUP_DELTA
Specifies a noncumulative (delta) backup image. A delta backup
image is a copy of all database data that has changed since the
most recent successful backup operation of any type.

DB2BACKUP_COMPRESS
Specifies that the backup should be compressed.

Chapter 31. Application programming interfaces (APIs) 779

DB2BACKUP_INCLUDE_COMPR_LIB
Specifies that the library used for compressing the backup should
be included in the backup image.

DB2BACKUP_EXCLUDE_COMPR_LIB
Specifies that the library used for compressing the backup should
be not included in the backup image.

DB2BACKUP_INCLUDE_LOGS
Specifies that the backup image should also include the range of
log files required to restore and roll forward this image to some
consistent point in time. This option is not valid for an offline
backup or a multi-partition backup.

DB2BACKUP_EXCLUDE_LOGS
Specifies that the backup image should not include any log files.

Note: When performing an offline backup operation, logs are
excluded whether or not this option is specified, with the exception
of snapshot backups where INCLUDE is the default.

DB2BACKUP_MPP
Perform backup in a manner suitable for a partitioned database.

iUtilImpactPriority
Input. Specifies the priority value to be used during a backup.
v If this value is non-zero, the utility will run throttled. Otherwise, the

utility will run unthrottled.
v If there are multiple concurrent utilities running, this parameter is used

to determine a relative priority between the throttled tasks. For example,
consider two concurrent backups, one with priority 2 and another with
priority 4. Both will be throttled, but the one with priority 4 will be
allotted more resources. Setting priorities to 2 and 4 is no different than
setting them to 5 and 10 or 30 and 60. Priorities values are purely
relative.

piComprLibrary
Input. Indicates the name of the external library to be used to perform
compression of the backup image. The name must be a fully-qualified path
referring to a file on the server. If the value is a null pointer or a pointer to
an empty string, DB2 will use the default library for compression. If the
specified library is not found, the backup will fail.

piComprOptions
Input. Describes a block of binary data that will be passed to the
initialization routine in the compression library. DB2 will pass this string
directly from the client to the server, so any issues of byte-reversal or
code-page conversion will have to be handled by the compression library.
If the first character of the data block is ’@’, the remainder of the data will
be interpreted by DB2 as the name of a file residing on the server. DB2 will
then replace the contents of piComprOptions and iComprOptionsSize
with the contents and size of this file respectively and will pass these new
values to the initialization routine instead.

iComprOptionsSize
Input. A four-byte unsigned integer representing the size of the block of
data passed as piComprOptions. iComprOptionsSize shall be zero if and
only if piComprOptions is a null pointer.

780 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

iAllNodeFlag
Input. Partitioned database environments only. Indicates whether the
backup operation is to be applied to all or some database partition servers
defined in db2nodes.cfg. Valid values are:

DB2_NODE_LIST
Apply to database partition servers in a list that is passed in
piNodeList.

DB2_ALL_NODES
Apply to all database partition servers. piNodeList should be
NULL. This is the default value.

DB2_ALL_EXCEPT
Apply to all database partition servers except those in a list that is
passed in piNodeList.

iNumNodes
Input. Specifies the number of database partition servers in the piNodeList
array.

piNodeList
Input. A pointer to an array of database partition server numbers on which
to perform the backup.

iNumMPPOutputStructs
Input. Specifies the number of elements in the piMPPOutputStruct array.
This must be equal to or greater than the number of database partition
servers that participate in this backup operation.

piMPPOutputStruct
Output. A pointer to an array of db2BackupMPPOutputStruct structures
that specify output parameters for particular database partition servers.

db2TablespaceStruct data structure specific parameters

tablespaces
Input. A pointer to the list of table spaces to be backed up. For C, the list is
null-terminated strings. In the generic case, it is a list of db2Char
structures.

numTablespaces
Input. Number of entries in the tablespaces parameter.

db2MediaListStruct data structure parameters

locations
Input. A pointer to the list of media locations. For C, the list is
null-terminated strings. In the generic case, it is a list of db2Char
structures.

numLocations
Input. The number of entries in the locations parameter.

locationType
Input. A character indicating the media type. Valid values (defined in
sqlutil header file, located in the include directory.) are:

SQLU_LOCAL_MEDIA: ’L’
Local devices (tapes, disks, diskettes, or named pipes).

SQLU_XBSA_MEDIA: ’X’
XBSA interface.

Chapter 31. Application programming interfaces (APIs) 781

SQLU_TSM_MEDIA: ’A’
Tivoli Storage Manager.

SQLU_OTHER_MEDIA: ’O’
Vendor library.

SQLU_SNAPSHOT_MEDIA: ’F’
Specifies that a snapshot backup is to be taken.

You cannot use SQLU_SNAPSHOT_MEDIA with any of the
following:
v DB2BACKUP_COMPRESS
v DB2BACKUP_TABLESPACE
v DB2BACKUP_INCREMENTAL
v iNumBuffers

v iBufferSize

v iParallelism

v piComprOptions

v iUtilImpactPriority

v numLocations field of this structure must be 1 for snapshot
restore

The default behavior for a snapshot backup is a FULL DATABASE
OFFLINE backup of all paths that make up the database including
all containers, local volume directory, database path (DBPATH),
and primary log and mirror log paths (INCLUDE LOGS is the
default for all snapshot backups unless EXCLUDE LOGS is
explicitly stated).

Integrated into IBM Data Server is a DB2 ACS API driver for the
following storage hardware:
v IBM TotalStorage SAN Volume Controller
v IBM Enterprise Storage Server Model 800
v IBM System Storage DS6000
v IBM System Storage DS8000
v IBM System Storage N Series
v NetApp V-series
v NetApp FAS

db2BackupMPPOutputStruct and db2gBackupMPPOutputStruct
data structure parameters

nodeNumber
The database partition server to which the option applies.

backupSize
The size of the backup on the specified database partition, in kilobytes.

sqlca The sqlca from the specified database partition.

db2gBackupStruct data structure specific parameters

iDBAliasLen
Input. A 4-byte unsigned integer representing the length in bytes of the
database alias.

782 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

iApplicationIdLen
Input. A 4-byte unsigned integer representing the length in bytes of the
poApplicationId buffer. Should be equal to SQLU_APPLID_LEN+1
(defined in sqlutil.h).

iTimestampLen
Input. A 4-byte unsigned integer representing the length in bytes of the
poTimestamp buffer. Should be equal to SQLU_TIME_STAMP_LEN+1
(defined in sqlutil.h).

iUsernameLen
Input. A 4-byte unsigned integer representing the length in bytes of the
user name. Set to zero if no user name is provided.

iPasswordLen
Input. A 4-byte unsigned integer representing the length in bytes of the
password. Set to zero if no password is provided.

iComprLibraryLen
Input. A four-byte unsigned integer representing the length in bytes of the
name of the library specified in piComprLibrary. Set to zero if no library
name is given.

db2Char data structure parameters

pioData
A pointer to a character data buffer. If NULL, no data will be returned.

iLength
Input. The size of the pioData buffer.

oLength
Output. The number of valid characters of data in the pioData buffer.

Usage notes

You can only perform a snapshot backup with versionNumber db2Version950 or
higher. If you specify media type SQLU_SNAPSHOT_MEDIA with a
versionNumber lower than db2Version950, DB2 database will return an error.

This function is exempt from all label-based access control (LBAC) rules. It backs
up all data, even protected data. Also, the data in the backup itself is not protected
by LBAC. Any user with the backup and a place in which to restore it can gain
access to the data.

As you regularly backup your database, you might accumulate very large database
backup images, many database logs and load copy images, all of which might be
taking up a large amount of disk space. Refer to “Managing recovery objects” for
information on how to manage these recovery objects.

Usage notes for a single system view (SSV) backup in a partitioned database
environment

v To perform an SSV backup, specify iOptions DB2BACKUP_MPP and
one of DB2BACKUP_DB or DB2BACKUP_TABLESPACE.

v You can only perform a SSV backup with versionNumber
db2Version950 or higher. If you specify iOptions DB2BACKUP_MPP
with a versionNumber lower than db2Version950, DB2 database will

Chapter 31. Application programming interfaces (APIs) 783

return an error. If you specify other options related to SSV backup with
a versionNumber lower than db2Version950, DB2 database will ignore
those options.

v The values for piMediaList specified directly in db2BackupStruct will be
used as the default values on all nodes.

v The value of oBackupSize returned in the db2BackupStruct is the sum
of the backup sizes on all nodes. The value of backupSize returned in
the db2BackupMPPOutputStruct is the size of the backup on the
specified database partition.

v iAllNodeFlag, iNumNodes, and piNodeList operate the same as the
similarly-named elements in db2RollforwardStruct, with the exception
that there is no CAT_NODE_ONLY value for iAllNodeFlag.

v SSV backups performed with the DB2BACKUP_BACKUP caller action
are performed as if the DB2BACKUP_NOINTERRUPT caller action was
specified.

v *poMPPOutputStruct points to memory allocated by the caller that
contains at least as many elements as there are database partitions
participating in the backup.

db2CfgGet - Get the database manager or database
configuration parameters

Returns the values of individual entries in a specific database configuration file or
a database manager configuration file.

Scope

Information about a specific database configuration file is returned only for the
database partition on which it is executed.

Authorization

None

Required connection

To obtain the current online value of a configuration parameter for a specific
database configuration file, a connection to the database is required. To obtain the
current online value of a configuration parameter for the database manager, an
instance attachment is required. Otherwise, a connection to a database or an
attachment to an instance is not required.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2CfgGet (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2Cfg
{

db2Uint32 numItems;

784 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

struct db2CfgParam *paramArray;
db2Uint32 flags;
char *dbname;

} db2Cfg;

typedef SQL_STRUCTURE db2CfgParam
{

db2Uint32 token;
char *ptrvalue;
db2Uint32 flags;

} db2CfgParam;

SQL_API_RC SQL_API_FN
db2gCfgGet (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gCfg
{

db2Uint32 numItems;
struct db2gCfgParam *paramArray;
db2Uint32 flags;
db2Uint32 dbname_len;
char *dbname;

} db2gCfg;

typedef SQL_STRUCTURE db2gCfgParam
{

db2Uint32 token;
db2Uint32 ptrvalue_len;
char *ptrvalue;
db2Uint32 flags;

} db2gCfgParam;

db2CfgGet API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2Cfg structure.

pSqlca
Output. A pointer to the sqlca structure.

db2Cfg data structure parameters

numItems
Input. The number of configuration parameters in the paramArray array.
Set this value to db2CfgMaxParam to specify the largest number of
elements in the paramArray.

paramArray
Input. A pointer to the db2CfgParam structure.

flags Input. Specifies the type of action to be taken. Valid values (defined in
db2ApiDf header file, located in the include directory) are:

db2CfgDatabase
Specifies to return the values in the database configuration file.

db2CfgDatabaseManager
Specifies to return the values in the database manager
configuration file.

Chapter 31. Application programming interfaces (APIs) 785

db2CfgImmediate
Returns the current values of the configuration parameters stored
in memory.

db2CfgDelayed
Gets the values of the configuration parameters on disk. These do
not become the current values in memory until the next database
connection or instance attachment.

db2CfgGetDefaults
Returns the default values for the configuration parameter.

db2CfgReset
Reset to default values.

dbname
Input. The database name.

db2CfgParam data structure parameters

token Input. The configuration parameter identifier.

Valid entries and data types for the db2CfgParam token element are listed
in ″Configuration parameters summary″.

ptrvalue
Output. The configuration parameter value.

flags Output. Provides specific information for each parameter in a request.
Valid values (defined in db2ApiDf header file, located in the include
directory) are:

db2CfgParamAutomatic
Indicates whether the retrieved parameter has a value of
automatic. To determine whether a given configuration parameter
has been set to automatic, perform a boolean AND operation
against the value returned by the flag and the
db2CfgParamAutomatic keyword defined in db2ApiDf.h.

db2CfgParamComputed
Indicates whether the retrieved parameter has a value of
computed. To determine whether a given configuration parameter
has been set to computed, perform a boolean AND operation
against the value returned by the flag and the
db2CfgParamComputed keyword defined in db2ApiDf.h.

If the boolean AND operation is false for both of the keywords above, it
means that the retrieved parameter value is set manually.

db2gCfg data structure specific parameters

dbname_len
Input. The length in bytes of dbname parameter.

db2gCfgParam data structure specific parameters

ptrvalue_len
Input. The length in bytes of ptrvalue parameter.

786 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Usage notes

The configuration parameters maxagents and maxcagents are deprecated. In a
future release, these configuration parameters may be removed completely.

The db2CfgGet API will tolerate requests for SQLF_KTN_MAXAGENTS and
SQLF_KTN_MAXCAGENTS, but 0 will be returned if the server is DB2 v9.5.

db2CfgSet - Set the database manager or database
configuration parameters

Modifies individual entries in a specific database configuration file or a database
manager configuration file. A database configuration file resides on every node on
which the database has been created.

Scope

Modifications to the database configuration file affect all database partitions by
default.

Authorization

For modifications to the database configuration file, one of the following:
v sysadm
v sysctrl
v sysmaint

For modifications to the database manager configuration file:
v sysadm

Required connection

To make an online modification of a configuration parameter for a specific
database, a connection to the database is required. To make an online modification
of a configuration parameter for the database manager, an attachment to an
instance is not required.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2CfgSet (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2Cfg
{

db2Uint32 numItems;
struct db2CfgParam *paramArray;
db2Uint32 flags;
char *dbname;
SQL_PDB_NODE_TYPE dbpartitionnum;

} db2Cfg;

Chapter 31. Application programming interfaces (APIs) 787

typedef SQL_STRUCTURE db2CfgParam
{

db2Uint32 token;
char *ptrvalue;
db2Uint32 flags;

} db2CfgParam;

SQL_API_RC SQL_API_FN
db2gCfgSet (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gCfg
{

db2Uint32 numItems;
struct db2gCfgParam *paramArray;
db2Uint32 flags;
db2Uint32 dbname_len;
char *dbname;

} db2gCfg;

typedef SQL_STRUCTURE db2gCfgParam
{

db2Uint32 token;
db2Uint32 ptrvalue_len;
char *ptrvalue;
db2Uint32 flags;

} db2gCfgParam;

db2CfgSet API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2Cfg structure.

pSqlca
Output. A pointer to the sqlca structure.

db2Cfg data structure parameters

numItems
Input. The number of configuration parameters in the paramArray array.
Set this value to db2CfgMaxParam to specify the largest number of
elements in the paramArray.

paramArray
Input. A pointer to the db2CfgParam structure.

flags Input. Specifies the type of action to be taken. Valid values (defined in
db2ApiDf header file, located in the include directory) are:

db2CfgDatabase
Specifies to return the values in the database configuration file.

db2CfgDatabaseManager
Specifies to return the values in the database manager
configuration file.

db2CfgImmediate
Returns the current values of the configuration parameters stored
in memory.

788 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

db2CfgDelayed
Gets the values of the configuration parameters on disk. These do
not become the current values in memory until the next database
connection or instance attachment.

db2CfgGetDefaults
Returns the default values for the configuration parameter.

db2CfgReset
Reset to default values.

db2CfgSingleDbpartition
To update or reset the database configuration on a specific
database partition, set this flag and provide a value for
dbpartitionnum.

dbname
Input. The database name.

dbpartitionnum
Input. Specifies on which database partition this API will set the
configuration value.

db2CfgParam data structure parameters

token Input. The configuration parameter identifier. Valid entries and data types
for the db2CfgParam token element are listed in ″Configuration parameters
summary″.

ptrvalue
Output. The configuration parameter value.

flags Input. Provides specific information for each parameter in a request. Valid
values (defined in db2ApiDf header file, located in the include directory)
are:

db2CfgParamAutomatic
Indicates whether the retrieved parameter has a value of
automatic. To determine whether a given configuration parameter
has been set to automatic, perform a boolean AND operation
against the value returned by the flag and the
db2CfgParamAutomatic keyword defined in db2ApiDf.h.

db2CfgParamComputed
Indicates whether the retrieved parameter has a value of
computed. To determine whether a given configuration parameter
has been set to computed, perform a boolean AND operation
against the value returned by the flag and the
db2CfgParamComputed keyword defined in db2ApiDf.h.

db2CfgParamManual
Used to unset the automatic or computed setting of a parameter
and set the parameter to the current value. The ptrvalue field is
ignored and can be set to NULL.

db2gCfg data structure specific parameters

dbname_len
Input. The length in bytes of dbname parameter.

Chapter 31. Application programming interfaces (APIs) 789

db2gCfgParam data structure specific parameters

ptrvalue_len
Input. The length in bytes of ptrvalue parameter.

Usage notes

The configuration parameters maxagents and maxcagents are deprecated. In a
future release, these configuration parameters may be removed completely.

The db2CfgSet API will tolerate updates to the maxagents and maxcagents
configuration parameters, however these updates will be ignored by DB2.

Usage samples

CASE 1: The MAXAPPLS parameter will be set to 50 at dbpartitionnum 30.

CASE 2: The MAXAPPLS parameter will be set to 50 on all dbpartitionnum.
int updateDbConfig()
{

struct sqlca sqlca = {0};
db2Cfg cfgStruct = {0};
db2CfgParam cfgParameters[2];
char *dbAlias = “SAMPLE”;

/* initialize cfgParameters */
cfgParameters[0].flags = 0;
cfgParameters[0].token = SQLF_DBTN_TSM_OWNER;
cfgParameters[0].ptrvalue = (char *)malloc(sizeof(char) * 65);
cfgParameters[1].flags = 0;
cfgParameters[1].token = SQLF_DBTN_MAXAPPLS;
cfgParameters[1].ptrvalue = (char *)malloc(sizeof(sqluint16));

/* set two DB Config. fields */
strcpy(cfgParameters[0].ptrvalue, "tsm_owner");
*(sqluint16 *)(cfgParameters[1].ptrvalue) = 50;

/* initialize cfgStruct to update db cfg on single partition*/
cfgStruct.numItems = 2;
cfgStruct.paramArray = cfgParameters;
cfgStruct.flags = db2CfgDatabase | db2CfgImmediate;
cfgStruct.flags |= db2CfgSingleDbpartition;
cfgStruct.dbname = dbAlias;
cfgStruct.dbpartitionnum = 30;

/* CASE 1: update database configuration */
db2CfgSet(db2Version950, (void *)&cfgStruct, &sqlca);

/* set cfgStruct to update db cfg on all db partitions */
cfgStruct.flags &= ~db2CfgSingleDbpartition;

/* CASE 2: update database configuration */
db2CfgSet(db2Version950, (void *)&cfgStruct, &sqlca);
..............

}

db2DatabaseRestart - Restart database

Restarts a database that has been abnormally terminated and left in an inconsistent
state. At the successful completion of this API, the application remains connected
to the database if the user has CONNECT privilege.

790 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Scope

This API affects only the database partition server on which it is executed.

Authorization

None

Required connection

This API establishes a database connection.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2DatabaseRestart (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef struct db2RestartDbStruct
{

char *piDatabaseName;
char *piUserId;
char *piPassword;
char *piTablespaceNames;
db2int32 iOption;

} db2RestartDbStruct;

SQL_API_RC SQL_API_FN
db2gDatabaseRestart (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef struct db2gRestartDbStruct
{

db2Uint32 iDatabaseNameLen;
db2Uint32 iUserIdLen;
db2Uint32 iPasswordLen;
db2Uint32 iTablespaceNamesLen;
char *piDatabaseName;
char *piUserId;
char *piPassword;
char *piTablespaceNames;

} db2gRestartDbStruct;

db2DatabaseRestart API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParamStruct.

pParamStruct
Input. A pointer to the db2RestartDbStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

Chapter 31. Application programming interfaces (APIs) 791

db2RestartDbStruct data structure parameters

piDatabaseName
Input. A pointer to a string containing the alias of the database that is to be
restarted.

piUserId
Input. A pointer to a string containing the user name of the application.
May be NULL.

piPassword
Input. A pointer to a string containing a password for the specified user
name (if any). May be NULL.

piTablespaceNames
Input. A pointer to a string containing a list of table space names to be
dropped during the restart operation. May be NULL.

iOption
Input. Valid values are:

DB2_DB_SUSPEND_NONE
Performs normal crash recovery.

DB2_DB_RESUME_WRITE
Required to perform crash recovery on a database that has I/O
writes suspended.

db2gRestartDbStruct data structure specific parameters

iDatabaseNameLen
Input. Length in bytes of piDatabaseName parameter.

iUserIdLen
Input. Length in bytes of piUserId parameter.

iPasswordLen
Input. Length in bytes of piPassword parameter.

iTablespaceNamesLen
Input. Length in bytes of piTablespaceNames parameter.

Usage notes

Call this API if an attempt to connect to a database returns an error message,
indicating that the database must be restarted. This action occurs only if the
previous session with this database terminated abnormally (due to power failure,
for example).

At the completion of this API, a shared connection to the database is maintained if
the user has CONNECT privilege, and an SQL warning is issued if any indoubt
transactions exist. In this case, the database is still usable, but if the indoubt
transactions are not resolved before the last connection to the database is dropped,
another call to the API must be completed before the database can be used again.

In the case of circular logging, a database restart operation will fail if there is any
problem with the table spaces, such as an I/O error, an unmounted file system,
and so on. If losing such table spaces is not an issue, their names can be explicitly
specified; this will put them into drop pending state, and the restart operation can
complete successfully.

792 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

REXX API syntax
RESTART DATABASE database_alias [USER username USING password]

REXX API parameters

database_alias
Alias of the database to be restarted.

username
User name under which the database is to be restarted.

password
Password used to authenticate the user name.

db2DatabaseQuiesce - Quiesce the database

Forces all users off the database, immediately rolls back all active transactions or
waits for them to complete their current units of work within the number of
minutes specified (if they cannot be completed within the specified number of
minutes, the operation will fail), and puts the database into quiesce mode. This
API provides exclusive access to the database. During this quiesced period, system
administration can be performed on the database by users with appropriate
authority. After administration is complete, you can unquiesce the database, using
the db2DatabaseUnquiesce API. The db2DatabaseUnquiesce API allows other users
to connect to the database, without having to shut down and perform another
database start. In this mode only groups or users with QUIESCE CONNECT
authority and sysadm, sysmaint, or sysctrl will have access to the database and its
objects.

Authorization

One of the following:
v sysadm
v dbadm

Required connection

Database

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2DatabaseQuiesce (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2DbQuiesceStruct
{

char *piDatabaseName;
db2Uint32 iImmediate;
db2Uint32 iForce;
db2Uint32 iTimeout;

} db2DbQuiesceStruct;

SQL_API_RC SQL_API_FN
db2gDatabaseQuiesce (

Chapter 31. Application programming interfaces (APIs) 793

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gDbQuiesceStruct
{

db2Uint32 iDatabaseNameLen;
char *piDatabaseName;
db2Uint32 iImmediate;
db2Uint32 iForce;
db2Uint32 iTimeout;

} db2gDbQuiesceStruct;

db2DatabaseQuiesce API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2DbQuiesceStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2DbQuiesceStruct data structure parameters

piDatabaseName
Input. The database name.

iImmediate
Input. Valid values are:

TRUE=1
Force the applications immediately.

FALSE=0
Deferred force. Applications will wait the number of minutes
specified by iTimeout parameter to let their current units of work
be completed, and then will terminate. If this deferred force cannot
be completed within the number of minutes specified by iTimeout
parameter, the quiesce operation will fail.

iForce Input. Reserved for future use.

iTimeout
Input. Specifies the time, in minutes, to wait for applications to commit the
current unit of work. If iTimeout is not specified, in a single-partition
database environment, the default value is 10 minutes. In a partitioned
database environment the value specified by the start_stop_time database
manager configuration parameter will be used.

db2gDbQuiesceStruct data structure specific parameters

iDatabaseNameLen
Input. Specifies the length in bytes of piDatabaseName.

db2DatabaseUnquiesce - Unquiesce database

Restores user access to databases which have been quiesced for maintenance or
other reasons. User access is restored without necessitating a shutdown and
database restart.

794 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Authorization

One of the following:
v sysadm
v dbadm

Required connection

Database

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2DatabaseUnquiesce (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2DbUnquiesceStruct
{

char *piDatabaseName;
} db2DbUnquiesceStruct;

SQL_API_RC SQL_API_FN
db2gDatabaseUnquiesce (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gDbUnquiesceStruct
{

db2Uint32 iDatabaseNameLen;
char *piDatabaseName;

} db2gDbUnquiesceStruct;

db2DatabaseUnquiesce API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2DbUnquiesceStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2DbUnquiesceStruct data structure parameters

piDatabaseName
Input. The database name.

db2gDbUnquiesceStruct data structure specific parameters

iDatabaseNameLen
Input. Specifies the length in bytes of piDatabaseName.

Chapter 31. Application programming interfaces (APIs) 795

db2Export - Export data from a database

Exports data from a database to one of several external file formats. The user
specifies the data to be exported by supplying an SQL SELECT statement, or by
providing hierarchical information for typed tables.

Authorization

One of the following:
v dataaccess authority
v CONTROL or SELECT privilege on each participating table or view

Label-based access control (LBAC) is enforced for this function. The data that is
exported may be limited by the LBAC credentials of the caller if the data is
protected by LBAC.

Required connection

Database. If implicit connect is enabled, a connection to the default database is
established.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Export (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ExportStruct
{

char *piDataFileName;
struct sqlu_media_list *piLobPathList;
struct sqlu_media_list *piLobFileList;
struct sqldcol *piDataDescriptor;
struct sqllob *piActionString;
char *piFileType;
struct sqlchar *piFileTypeMod;
char *piMsgFileName;
db2int16 iCallerAction;
struct db2ExportOut *poExportInfoOut;
struct db2ExportIn *piExportInfoIn;
struct sqlu_media_list *piXmlPathList;
struct sqlu_media_list *piXmlFileList;

} db2ExportStruct;

typedef SQL_STRUCTURE db2ExportIn
{

db2Uint16 *piXmlSaveSchema;
} db2ExportIn;

typedef SQL_STRUCTURE db2ExportOut
{

db2Uint64 oRowsExported;
} db2ExportOut;

SQL_API_RC SQL_API_FN
db2gExport (
db2Uint32 versionNumber,

796 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gExportStruct
{

char *piDataFileName;
struct sqlu_media_list *piLobPathList;
struct sqlu_media_list *piLobFileList;
struct sqldcol *piDataDescriptor;
struct sqllob *piActionString;
char *piFileType;
struct sqlchar *piFileTypeMod;
char *piMsgFileName;
db2int16 iCallerAction;
struct db2ExportOut *poExportInfoOut;
db2Uint16 iDataFileNameLen;
db2Uint16 iFileTypeLen;
db2Uint16 iMsgFileNameLen;
struct db2ExportIn *piExportInfoIn;
struct sqlu_media_list *piXmlPathList;
struct sqlu_media_list *piXmlFileList;

} db2gExportStruct;

db2Export API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2ExportStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2ExportStruct data structure parameters

piDataFileName
Input. A string containing the path and the name of the external file into
which the data is to be exported.

piLobPathList
Input. Pointer to an sqlu_media_list structure with its media_type field set
to SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths
on the client where the LOB files are to be stored. Exported LOB data will
be distributed evenly among all the paths listed in the sqlu_media_entry
structure.

piLobFileList
Input. Pointer to an sqlu_media_list structure with its media_type field set
to SQLU_CLIENT_LOCATION, and its sqlu_location_entry structure
containing base file names.

When the name space is exhausted using the first name in this list, the API
will use the second name, and so on. When creating LOB files during an
export operation, file names are constructed by appending the current base
name from this list to the current path (from piLobPathList), and then
appending a 3-digit sequence number and the .lob extension. For example,
if the current LOB path is the directory /u/foo/lob/path, the current LOB
file name is bar, and the LOBSINSEPFILES file type modifier is set, then
the created LOB files will be /u/foo/LOB/path/bar.001.lob,
/u/foo/LOB/path/bar.002.lob, and so on. If the LOBSINSEPFILES file

Chapter 31. Application programming interfaces (APIs) 797

type modifier is not set, then all the LOB documents will be concatenated
and put into one file /u/foo/lob/path/bar.001.lob

piDataDescriptor
Input. Pointer to an sqldcol structure specifying the column names for the
output file. The value of the dcolmeth field determines how the remainder
of the information provided in this parameter is interpreted by the export
utility. Valid values for this parameter (defined in sqlutil header file,
located in the include directory) are:

SQL_METH_N
Names. Specify column names to be used in the output file.

SQL_METH_D
Default. Existing column names from the table are to be used in
the output file. In this case, the number of columns and the
column specification array are both ignored. The column names are
derived from the output of the SELECT statement specified in
piActionString.

piActionString
Input. Pointer to an sqllob structure containing a valid dynamic SQL
SELECT statement. The structure contains a 4-byte long field, followed by
the characters that make up the SELECT statement. The SELECT statement
specifies the data to be extracted from the database and written to the
external file.

The columns for the external file (from piDataDescriptor), and the database
columns from the SELECT statement, are matched according to their
respective list/structure positions. The first column of data selected from
the database is placed in the first column of the external file, and its
column name is taken from the first element of the external column array.

piFileType
Input. A string that indicates the format of the data within the external file.
Supported external file formats (defined in sqlutil header file) are:

SQL_DEL
Delimited ASCII, for exchange with dBase, BASIC, and the IBM
Personal Decision Series programs, and many other database
managers and file managers.

SQL_WSF
Worksheet formats (WSF) for exchange with Lotus Symphony and
1-2-3 programs. Support for this file format is deprecated and
might be removed in a future release. It is recommended that you
start using a supported file format instead of WSF files before
support is removed.

SQL_IXF
PC version of the Integration Exchange Format, the preferred
method for exporting data from a table. Data exported to this file
format can later be imported or loaded into the same table or into
another database manager table.

piFileTypeMod
Input. A pointer to an sqldcol structure containing a 2-byte long field,
followed by an array of characters that specify one or more processing
options. If this pointer is NULL, or the structure pointed to has zero
characters, this action is interpreted as selection of a default specification.

798 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Not all options can be used with all of the supported file types. See related
link below: ″File type modifiers for the export utility.″

piMsgFileName
Input. A string containing the destination for error, warning, and
informational messages returned by the utility. It can be the path and the
name of an operating system file or a standard device. If the file already
exists, the information is appended . If it does not exist, a file is created.

iCallerAction
Input. An action requested by the caller. Valid values (defined in sqlutil
header file, located in the include directory) are:

SQLU_INITIAL
Initial call. This value must be used on the first call to the API. If
the initial call or any subsequent call returns and requires the
calling application to perform some action prior to completing the
requested export operation, the caller action must be set to one of
the following:

SQLU_CONTINUE
Continue processing. This value can only be used on subsequent
calls to the API, after the initial call has returned with the utility
requesting user input (for example, to respond to an end of tape
condition). It specifies that the user action requested by the utility
has completed, and the utility can continue processing the initial
request.

SQLU_TERMINATE
Terminate processing. This value can only be used on subsequent
calls to the API, after the initial call has returned with the utility
requesting user input (for example, to respond to an end of tape
condition). It specifies that the user action requested by the utility
was not performed, and the utility is to terminate processing the
initial request.

poExportInfoOut
A pointer to the db2ExportOut structure.

piExportInfoIn
Input. Pointer to the db2ExportIn structure.

piXmlPathList
Input. Pointer to an sqlu_media_list structure with its media_type field set
to SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths
on the client where the XML files are to be stored. Exported XML data will
be distributed evenly among all the paths listed in the sqlu_media_entry
structure.

piXmlFileList
Input. Pointer to an sqlu_media_list structure with its media_type field set
to SQLU_CLIENT_LOCATION, and its sqlu_location_entry structure
containing base file names.

When the name space is exhausted using the first name in this list, the API
will use the second name, and so on. When creating XML files during an
export operation, file names are constructed by appending the current base
name from this list to the current path (from piXmlFileList), and then
appending a 3-digit sequence number and the .xml extension. For example,
if the current XML path is the directory /u/foo/xml/path, the current
XML file name is bar, and the XMLINSEPFILES file type modifier is set,

Chapter 31. Application programming interfaces (APIs) 799

then the created XML files will be /u/foo/xml/path/bar.001.xml,
/u/foo/xml/path/bar.002.xml, and so on. If the XMLINSEPFILES file type
modifier is not set, then all the XML documents will be concatenated and
put into one file /u/foo/xml/path/bar.001.xml

db2ExportIn data structure parameters

piXmlSaveSchema
Input. Indicates that the SQL identifier of the XML schema used to validate
each exported XML document should be saved in the exported data file.
Possible values are TRUE and FALSE.

db2ExportOut data structure parameters

oRowsExported
Output. Returns the number of records exported to the target file.

db2gExportStruct data structure specific parameters

iDataFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
data file name.

iFileTypeLen
Input. A 2-byte unsigned integer representing the length in bytes of the file
type.

iMsgFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
message file name.

Usage notes

Before starting an export operation, you must complete all table operations and
release all locks in one of two ways:
v Close all open cursors that were defined with the WITH HOLD clause, and

commit the data changes by executing the COMMIT statement.
v Roll back the data changes by executing the ROLLBACK statement.

Table aliases can be used in the SELECT statement.

The messages placed in the message file include the information returned from the
message retrieval service. Each message begins on a new line.

If the export utility produces warnings, the message will be written out to a
message file, or standard output if one is not specified.

A warning message is issued if the number of columns (dcolnum field of sqldcol
structure) in the external column name array, piDataDescriptor, is not equal to the
number of columns generated by the SELECT statement. In this case, the number
of columns written to the external file is the lesser of the two numbers. Excess
database columns or external column names are not used to generate the output
file.

If the db2uexpm.bnd module or any other shipped .bnd files are bound manually,
the format option on the binder must not be used.

800 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

DB2 Connect can be used to export tables from DRDA servers such as DB2 for
z/OS and OS/390, DB2 for VM and VSE, and DB2 for System i. Only PC/IXF
export is supported.

PC/IXF import should be used to move data between databases. If character data
containing row separators is exported to a delimited ASCII (DEL) file and
processed by a text transfer program, fields containing the row separators will
shrink or expand.

The export utility will not create multiple-part PC/IXF files when invoked from an
AIX system.

Index definitions for a table are included in the PC/IXF file when the contents of a
single database table are exported to a PC/IXF file with a piActionString
parameter beginning with SELECT * FROM tablename, and the piDataDescriptor
parameter specifying default names. Indexes are not saved for views, or if the
SELECT clause of the piActionString includes a join. A WHERE clause, a GROUP
BY clause, or a HAVING clause in the piActionString parameter will not prevent
the saving of indexes. In all of these cases, when exporting from typed tables, the
entire hierarchy must be exported.

The export utility will store the NOT NULL WITH DEFAULT attribute of the table
in an IXF file if the SELECT statement provided is in the form: SELECT * FROM
tablename.

When exporting typed tables, subselect statements can only be expressed by
specifying the target table name and the WHERE clause. Fullselect and
select-statement cannot be specified when exporting a hierarchy.

For file formats other than IXF, it is recommended that the traversal order list be
specified, because it tells DB2 how to traverse the hierarchy, and what sub-tables to
export. If this list is not specified, all tables in the hierarchy are exported, and the
default order is the OUTER order. The alternative is to use the default order, which
is the order given by the OUTER function.

Note: Use the same traverse order during an import operation. The load utility
does not support loading hierarchies or sub-hierarchies.

REXX API syntax
EXPORT :stmt TO datafile OF filetype
[MODIFIED BY :filetmod] [USING :dcoldata]
MESSAGES msgfile [ROWS EXPORTED :number]

CONTINUE EXPORT

STOP EXPORT

REXX API parameters

stmt A REXX host variable containing a valid dynamic SQL SELECT statement.
The statement specifies the data to be extracted from the database.

datafile
Name of the file into which the data is to be exported.

filetype
The format of the data in the export file. The supported file formats are:

Chapter 31. Application programming interfaces (APIs) 801

DEL Delimited ASCII.

WSF Worksheet format. Support for this file format is deprecated and
might be removed in a future release. It is recommended that you
start using a supported file format instead of WSF files before
support is removed.

IXF PC version of Integration Exchange Format.

filetmod
A host variable containing additional processing options.

dcoldata
A compound REXX host variable containing the column names to be used
in the export file. In the following, XXX represents the name of the host
variable:

XXX.0 Number of columns (number of elements in the remainder of the
variable).

XXX.1 First column name.

XXX.2 Second column name.

XXX.3 and so on.

If this parameter is NULL, or a value for dcoldata has not been specified,
the utility uses the column names from the database table.

msgfile
File, path, or device name where error and warning messages are to be
sent.

number
A host variable that will contain the number of exported rows.

db2Import - Import data into a table, hierarchy, nickname or
view

Inserts data from an external file with a supported file format into a table,
hierarchy, nickname or view. The load utility is faster than this function. The load
utility, however, does not support loading data at the hierarchy level or loading
into a nickname.

Authorization
v IMPORT using the INSERT option requires one of the following:

– dataaccess
– CONTROL privilege on each participating table, view or nickname
– INSERT and SELECT privilege on each participating table or view

v IMPORT to an existing table using the INSERT_UPDATE option, requires one of
the following:
– dataaccess
– CONTROL privilege on the table, view or nickname
– INSERT, SELECT, UPDATE and DELETE privilege on each participating table

or view
v IMPORT to an existing table using the REPLACE or REPLACE_CREATE option,

requires one of the following:
– dataaccess

802 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

– CONTROL privilege on the table or view
– INSERT, SELECT, and DELETE privilege on the table or view

v IMPORT to a new table using the CREATE or REPLACE_CREATE option,
requires one of the following:
– dbadm
– CREATETAB authority on the database and USE privilege on the table space,

as well as one of:
- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema
v IMPORT to a table or a hierarchy that does not exist using the CREATE, or the

REPLACE_CREATE option, requires one of the following:
– dbadm
– CREATETAB authority on the database, and one of:

- IMPLICIT_SCHEMA authority on the database, if the schema name of the
table does not exist

- CREATEIN privilege on the schema, if the schema of the table exists
- CONTROL privilege on every sub-table in the hierarchy, if the

REPLACE_CREATE option on the entire hierarchy is used
v IMPORT to an existing hierarchy using the REPLACE option requires one of the

following:
– dataaccess
– CONTROL privilege on every sub-table in the hierarchy

Required connection

Database. If implicit connect is enabled, a connection to the default database is
established.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Import (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ImportStruct
{

char *piDataFileName;
struct sqlu_media_list *piLobPathList;
struct sqldcol *piDataDescriptor;
struct sqlchar *piActionString;
char *piFileType;
struct sqlchar *piFileTypeMod;
char *piMsgFileName;
db2int16 iCallerAction;
struct db2ImportIn *piImportInfoIn;
struct db2ImportOut *poImportInfoOut;
db2int32 *piNullIndicators;
struct sqllob *piLongActionString;

} db2ImportStruct;

Chapter 31. Application programming interfaces (APIs) 803

typedef SQL_STRUCTURE db2ImportIn
{

db2Uint64 iRowcount;
db2Uint64 iRestartcount;
db2Uint64 iSkipcount;
db2int32 *piCommitcount;
db2Uint32 iWarningcount;
db2Uint16 iNoTimeout;
db2Uint16 iAccessLevel;
db2Uint16 *piXmlParse;
struct db2DMUXmlValidate *piXmlValidate;

} db2ImportIn;

typedef SQL_STRUCTURE db2ImportOut
{

db2Uint64 oRowsRead;
db2Uint64 oRowsSkipped;
db2Uint64 oRowsInserted;
db2Uint64 oRowsUpdated;
db2Uint64 oRowsRejected;
db2Uint64 oRowsCommitted;

} db2ImportOut;

typedef SQL_STRUCTURE db2DMUXmlMapSchema
{

struct db2Char iMapFromSchema;
struct db2Char iMapToSchema;

} db2DMUXmlMapSchema;

typedef SQL_STRUCTURE db2DMUXmlValidateXds
{

struct db2Char *piDefaultSchema;
db2Uint32 iNumIgnoreSchemas;
struct db2Char *piIgnoreSchemas;
db2Uint32 iNumMapSchemas;
struct db2DMUXmlMapSchema *piMapSchemas;

} db2DMUXmlValidateXds;

typedef SQL_STRUCTURE db2DMUXmlValidateSchema
{

struct db2Char *piSchema;
} db2DMUXmlValidateSchema;

typedef SQL_STRUCTURE db2DMUXmlValidate
{

db2Uint16 iUsing;
struct db2DMUXmlValidateXds *piXdsArgs;
struct db2DMUXmlValidateSchema *piSchemaArgs;

} db2DMUXmlValidate;

SQL_API_RC SQL_API_FN
db2gImport (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gImportStruct
{

char *piDataFileName;
struct sqlu_media_list *piLobPathList;
struct sqldcol *piDataDescriptor;
struct sqlchar *piActionString;
char *piFileType;
struct sqlchar *piFileTypeMod;
char *piMsgFileName;
db2int16 iCallerAction;

804 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

struct db2gImportIn *piImportInfoIn;
struct dbg2ImportOut *poImportInfoOut;
db2int32 *piNullIndicators;
db2Uint16 iDataFileNameLen;
db2Uint16 iFileTypeLen;
db2Uint16 iMsgFileNameLen;
struct sqllob *piLongActionString;

} db2gImportStruct;

typedef SQL_STRUCTURE db2gImportIn
{

db2Uint64 iRowcount;
db2Uint64 iRestartcount;
db2Uint64 iSkipcount;
db2int32 *piCommitcount;
db2Uint32 iWarningcount;
db2Uint16 iNoTimeout;
db2Uint16 iAccessLevel;
db2Uint16 *piXmlParse;
struct db2DMUXmlValidate *piXmlValidate;

} db2gImportIn;

typedef SQL_STRUCTURE db2gImportOut
{

db2Uint64 oRowsRead;
db2Uint64 oRowsSkipped;
db2Uint64 oRowsInserted;
db2Uint64 oRowsUpdated;
db2Uint64 oRowsRejected;
db2Uint64 oRowsCommitted;

} db2gImportOut;

db2Import API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter pParmStruct.

pParmStruct
Input/Output. A pointer to the db2ImportStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2ImportStruct data structure parameters

piDataFileName
Input. A string containing the path and the name of the external input file
from which the data is to be imported.

piLobPathList
Input. Pointer to an sqlu_media_list with its media_type field set to
SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths
on the client where the LOB files can be found. This parameter is not valid
when you import to a nickname.

piDataDescriptor
Input. Pointer to an sqldcol structure containing information about the
columns being selected for import from the external file. The value of the
dcolmeth field determines how the remainder of the information provided
in this parameter is interpreted by the import utility. Valid values for this
parameter are:

Chapter 31. Application programming interfaces (APIs) 805

SQL_METH_N
Names. Selection of columns from the external input file is by
column name.

SQL_METH_P
Positions. Selection of columns from the external input file is by
column position.

SQL_METH_L
Locations. Selection of columns from the external input file is by
column location. The database manager rejects an import call with
a location pair that is invalid because of any one of the following
conditions:
v Either the beginning or the ending location is not in the range

from 1 to the largest signed 2-byte integer.
v The ending location is smaller than the beginning location.
v The input column width defined by the location pair is not

compatible with the type and the length of the target column.

A location pair with both locations equal to zero indicates that a
nullable column is to be filled with NULLs.

SQL_METH_D
Default. If piDataDescriptor is NULL, or is set to SQL_METH_D,
default selection of columns from the external input file is done. In
this case, the number of columns and the column specification
array are both ignored. For DEL, IXF, or WSF files, the first n
columns of data in the external input file are taken in their natural
order, where n is the number of database columns into which the
data is to be imported.

piActionString
Deprecated. Replaced by piLongActionString.

piLongActionString
Input. Pointer to an sqllob structure containing a 4-byte long field, followed
by an array of characters specifying an action that affects the table.

The character array is of the form:
{INSERT | INSERT_UPDATE | REPLACE | CREATE | REPLACE_CREATE}
INTO {tname[(tcolumn-list)] |
[{ALL TABLES | (tname[(tcolumn-list)][, tname[(tcolumn-list)]])}]
[IN] HIERARCHY {STARTING tname | (tname[, tname])}
[UNDER sub-table-name | AS ROOT TABLE]}

INSERT
Adds the imported data to the table without changing the existing
table data.

INSERT_UPDATE
Adds the imported rows if their primary key values are not in the
table, and uses them for update if their primary key values are
found. This option is only valid if the target table has a primary
key, and the specified (or implied) list of target columns being
imported includes all columns for the primary key. This option
cannot be applied to views.

REPLACE
Deletes all existing data from the table by truncating the table
object, and inserts the imported data. The table definition and the
index definitions are not changed. (Indexes are deleted and

806 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

replaced if indexixf is in FileTypeMod, and FileType is SQL_IXF.) If
the table is not already defined, an error is returned.

Note: If an error occurs after the existing data is deleted, that data
is lost.
This parameter is not valid when you import to a nickname.

CREATE

Note: The CREATE parameter is deprecated and may be removed
in a future release. For additional details, see “IMPORT command
options CREATE and REPLACE_CREATE are deprecated”.

Creates the table definition and the row contents using the
information in the specified PC/IXF file, if the specified table is not
defined. If the file was previously exported by DB2, indexes are
also created. If the specified table is already defined, an error is
returned. This option is valid for the PC/IXF file format only. This
parameter is not valid when you import to a nickname.

REPLACE_CREATE

Note: The REPLACE_CREATE parameter is deprecated and may
be removed in a future release. For additional details, see
“IMPORT command options CREATE and REPLACE_CREATE are
deprecated”.

Replaces the table contents using the PC/IXF row information in
the PC/IXF file, if the specified table is defined. If the table is not
already defined, the table definition and row contents are created
using the information in the specified PC/IXF file. If the PC/IXF
file was previously exported by DB2, indexes are also created. This
option is valid for the PC/IXF file format only.

Note: If an error occurs after the existing data is deleted, that data
is lost.
This parameter is not valid when you import to a nickname.

tname The name of the table, typed table, view, or object view into which
the data is to be inserted. An alias for REPLACE,
INSERT_UPDATE, or INSERT can be specified, except in the case
of a server with a previous version of the DB2 product installed,
when a qualified or unqualified name should be specified. If it is a
view, it cannot be a read-only view.

tcolumn-list
A list of table or view column names into which the data is to be
inserted. The column names must be separated by commas. If
column names are not specified, column names as defined in the
CREATE TABLE or the ALTER TABLE statement are used. If no
column list is specified for typed tables, data is inserted into all
columns within each sub-table.

sub-table-name
Specifies a parent table when creating one or more sub-tables
under the CREATE option.

Chapter 31. Application programming interfaces (APIs) 807

ALL TABLES
An implicit keyword for hierarchy only. When importing a
hierarchy, the default is to import all tables specified in the
traversal-order-list.

HIERARCHY
Specifies that hierarchical data is to be imported.

STARTING
Keyword for hierarchy only. Specifies that the default order,
starting from a given sub-table name, is to be used.

UNDER
Keyword for hierarchy and CREATE only. Specifies that the new
hierarchy, sub-hierarchy, or sub-table is to be created under a given
sub-table.

AS ROOT TABLE
Keyword for hierarchy and CREATE only. Specifies that the new
hierarchy, sub-hierarchy, or sub-table is to be created as a
stand-alone hierarchy.

The tname and the tcolumn-list parameters correspond to the tablename
and the colname lists of SQL INSERT statements, and have the same
restrictions.

The columns in tcolumn-list and the external columns (either specified or
implied) are matched according to their position in the list or the structure
(data from the first column specified in the sqldcol structure is inserted
into the table or view field corresponding to the first element of the
tcolumn-list).

If unequal numbers of columns are specified, the number of columns
actually processed is the lesser of the two numbers. This could result in an
error (because there are no values to place in some non-nullable table
fields) or an informational message (because some external file columns are
ignored).

This parameter is not valid when you import to a nickname.

piFileType
Input. A string that indicates the format of the data within the external file.
Supported external file formats are:

SQL_ASC
Non-delimited ASCII.

SQL_DEL
Delimited ASCII, for exchange with dBase, BASIC, and the IBM
Personal Decision Series programs, and many other database
managers and file managers.

SQL_IXF
PC version of the Integration Exchange Format, the preferred
method for exporting data from a table so that it can be imported
later into the same table or into another database manager table.

SQL_WSF
Worksheet formats for exchange with Lotus Symphony and 1-2-3
programs. The WSF file type is not supported when you import to
a nickname.

808 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

piFileTypeMod
Input. A pointer to a structure containing a 2-byte long field, followed by
an array of characters that specify one or more processing options. If this
pointer is NULL, or the structure pointed to has zero characters, this action
is interpreted as selection of a default specification.

Not all options can be used with all of the supported file types. See related
link ″File type modifiers for the import utility″.

piMsgFileName
Input. A string containing the destination for error, warning, and
informational messages returned by the utility. It can be the path and the
name of an operating system file or a standard device. If the file already
exists, it is appended to. If it does not exist, a file is created.

iCallerAction
Input. An action requested by the caller. Valid values are:

SQLU_INITIAL
Initial call. This value must be used on the first call to the API. If
the initial call or any subsequent call returns and requires the
calling application to perform some action prior to completing the
requested import operation, the caller action must be set to one of
the following:

SQLU_CONTINUE
Continue processing. This value can only be used on subsequent
calls to the API, after the initial call has returned with the utility
requesting user input (for example, to respond to an end of tape
condition). It specifies that the user action requested by the utility
has completed, and the utility can continue processing the initial
request.

SQLU_TERMINATE
Terminate processing. This value can only be used on subsequent
calls to the API, after the initial call has returned with the utility
requesting user input (for example, to respond to an end of tape
condition). It specifies that the user action requested by the utility
was not performed, and the utility is to terminate processing the
initial request.

piImportInfoIn
Input. Pointer to the db2ImportIn structure.

poImportInfoOut
Output. Pointer to the db2ImportOut structure.

piNullIndicators
Input. For ASC files only. An array of integers that indicate whether or not
the column data is nullable. The number of elements in this array must
match the number of columns in the input file; there is a one-to-one
ordered correspondence between the elements of this array and the
columns being imported from the data file. Therefore, the number of
elements must equal the dcolnum field of the piDataDescriptor parameter.
Each element of the array contains a number identifying a column in the
data file that is to be used as a null indicator field, or a zero indicating that
the table column is not nullable. If the element is not zero, the identified
column in the data file must contain a Y or an N. A Y indicates that the
table column data is NULL, and N indicates that the table column data is
not NULL.

Chapter 31. Application programming interfaces (APIs) 809

piXmlPathList
Input. Pointer to an sqlu_media_list with its media_type field set to
SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths
on the client where the XML files can be found.

db2ImportIn data structure parameters

iRowcount
Input. The number of physical records to be loaded. Allows a user to load
only the first iRowcount rows in a file. If iRowcount is 0, import will
attempt to process all the rows from the file.

iRestartcount
Input. The number of records to skip before starting to insert or update
records. Functionally equivalent to iSkipcount parameter. iRestartcount and
iSkipcount parameters are mutually exclusive.

iSkipcount
Input. The number of records to skip before starting to insert or update
records. Functionally equivalent to iRestartcount.

piCommitcount
Input. The number of records to import before committing them to the
database. A commit is performed whenever piCommitcount records are
imported. A NULL value specifies the default commit count value, which
is zero for offline import and AUTOMATIC for online import.
Commitcount AUTOMATIC is specified by passing in the value
DB2IMPORT_COMMIT_AUTO.

iWarningcount
Input. Stops the import operation after iWarningcount warnings. Set this
parameter if no warnings are expected, but verification that the correct file
and table are being used is desired. If the import file or the target table is
specified incorrectly, the import utility will generate a warning for each
row that it attempts to import, which will cause the import to fail.

If iWarningcount is 0, or this option is not specified, the import operation
will continue regardless of the number of warnings issued.

iNoTimeout
Input. Specifies that the import utility will not time out while waiting for
locks. This option supersedes the locktimeout database configuration
parameter. Other applications are not affected. Valid values are:

DB2IMPORT_LOCKTIMEOUT
Indicates that the value of the locktimeout configuration parameter
is respected.

DB2IMPORT_NO_LOCKTIMEOUT
Indicates there is no timeout.

iAccessLevel
Input. Specifies the access level. Valid values are:

- SQLU_ALLOW_NO_ACCESS
Specifies that the import utility locks the table exclusively.

- SQLU_ALLOW_WRITE_ACCESS
Specifies that the data in the table should still be accessible to
readers and writers while the import is in progress.

810 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

An intent exclusive (IX) lock on the target table is acquired when the first
row is inserted. This allows concurrent readers and writers to access table
data. Online mode is not compatible with the REPLACE, CREATE, or
REPLACE_CREATE import options. Online mode is not supported in
conjunction with buffered inserts. The import operation will periodically
commit inserted data to prevent lock escalation to a table lock and to avoid
running out of active log space. These commits will be performed even if
the piCommitCount parameter was not used. During each commit, import
will lose its IX table lock, and will attempt to reacquire it after the commit.
This parameter is required when you import to a nickname and
piCommitCount parameter must be specified with a valid number
(AUTOMATIC is not considered a valid option).

piXmlParse
Input. Type of parsing that should occur for XML documents. Valid values
found in the db2ApiDf header file in the include directory, are:

DB2DMU_XMLPARSE_PRESERVE_WS
Whitespace should be preserved.

DB2DMU_XMLPARSE_STRIP_WS
Whitespace should be stripped.

piXmlValidate
Input. Pointer to the db2DMUXmlValidate structure. Indicates that XML
schema validation should occur for XML documents.

db2ImportOut data structure parameters

oRowsRead
Output. Number of records read from the file during import.

oRowsSkipped
Output. Number of records skipped before inserting or updating begins.

oRowsInserted
Output. Number of rows inserted into the target table.

oRowsUpdated
Output. Number of rows in the target table updated with information from
the imported records (records whose primary key value already exists in
the table).

oRowsRejected
Output. Number of records that could not be imported.

oRowsCommitted
Output. Number of records imported successfully and committed to the
database.

db2DMUXmlMapSchema data structure parameters

iMapFromSchema
Input. The SQL identifier of the XML schema to map from.

iMapToSchema
Input. The SQL identifier of the XML schema to map to.

Chapter 31. Application programming interfaces (APIs) 811

db2DMUXmlValidateXds data structure parameters

piDefaultSchema
Input. The SQL identifier of the XML schema that should be used for
validation when an XDS does not contain an SCH attribute.

iNumIgnoreSchemas
Input. The number of XML schemas that will be ignored during XML
schema validation if they are referred to by an SCH attribute in XDS.

piIgnoreSchemas
Input. The list of XML schemas that will be ignored during XML schema
validation if they are referred to by an SCH attribute in XDS.

iNumMapSchemas
Input. The number of XML schemas that will be mapped during XML
schema validation. The first schema in the schema map pair represents a
schema that is referred to by an SCH attribute in an XDS. The second
schema in the pair represents the schema that should be used to perform
schema validation.

piMapSchemas
Input. The list of XML schema pairs, where each pair represents a mapping
of one schema to a different one. The first schema in the pair represents a
schema that is referred to by an SCH attribute in an XDS. The second
schema in the pair represents the schema that should be used to perform
schema validation.

db2DMUXmlValidateSchema data structure parameters

piSchema
Input. The SQL identifier of the XML schema to use.

db2DMUXmlValidate data structure parameters

iUsing
Input. A specification of what to use to perform XML schema validation.
Valid values found in the db2ApiDf header file in the include directory,
are:

- DB2DMU_XMLVAL_XDS
Validation should occur according to the XDS. This corresponds to
the CLP ″XMLVALIDATE USING XDS″ clause.

- DB2DMU_XMLVAL_SCHEMA
Validation should occur according to a specified schema. This
corresponds to the CLP ″XMLVALIDATE USING SCHEMA″ clause.

- DB2DMU_XMLVAL_SCHEMALOC_HINTS
Validation should occur according to schemaLocation hints found
within the XML document. This corresponds to the
″XMLVALIDATE USING SCHEMALOCATION HINTS″ clause.

piXdsArgs
Input. Pointer to a db2DMUXmlValidateXds structure, representing
arguments that correspond to the CLP ″XMLVALIDATE USING XDS″
clause.

This parameter applies only when the iUsing parameter in the same
structure is set to DB2DMU_XMLVAL_XDS.

812 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

piSchemaArgs
Input. Pointer to a db2DMUXmlValidateSchema structure, representing
arguments that correspond to the CLP ″XMLVALIDATE USING SCHEMA″
clause.

This parameter applies only when the iUsing parameter in the same
structure is set to DB2DMU_XMLVAL_SCHEMA.

db2gImportStruct data structure specific parameters

iDataFileNameLen
Input. Specifies the length in bytes of piDataFileName parameter.

iFileTypeLen
Input. Specifies the length in bytes of piFileType parameter.

iMsgFileNameLen
Input. Specifies the length in bytes of piMsgFileName parameter.

Usage notes

Before starting an import operation, you must complete all table operations and
release all locks in one of two ways:
v Close all open cursors that were defined with the WITH HOLD clause, and

commit the data changes by executing the COMMIT statement.
v Roll back the data changes by executing the ROLLBACK statement.

The import utility adds rows to the target table using the SQL INSERT statement.

The utility issues one INSERT statement for each row of data in the input file. If an
INSERT statement fails, one of two actions result:
v If it is likely that subsequent INSERT statements can be successful, a warning

message is written to the message file, and processing continues.
v If it is likely that subsequent INSERT statements will fail, and there is potential

for database damage, an error message is written to the message file, and
processing halts.

The utility performs an automatic COMMIT after the old rows are deleted during a
REPLACE or a REPLACE_CREATE operation. Therefore, if the system fails, or the
application interrupts the database manager after the table object is truncated, all
of the old data is lost. Ensure that the old data is no longer needed before using
these options.

If the log becomes full during a CREATE, REPLACE, or REPLACE_CREATE
operation, the utility performs an automatic COMMIT on inserted records. If the
system fails, or the application interrupts the database manager after an automatic
COMMIT, a table with partial data remains in the database. Use the REPLACE or
the REPLACE_CREATE option to rerun the whole import operation, or use
INSERT with the iRestartcount parameter set to the number of rows successfully
imported.

By default, automatic COMMITs are not performed for the INSERT or the
INSERT_UPDATE option. They are, however, performed if the *piCommitcount
parameter is not zero. A full log results in a ROLLBACK.

Whenever the import utility performs a COMMIT, two messages are written to the
message file: one indicates the number of records to be committed, and the other is

Chapter 31. Application programming interfaces (APIs) 813

written after a successful COMMIT. When restarting the import operation after a
failure, specify the number of records to skip, as determined from the last
successful COMMIT.

The import utility accepts input data with minor incompatibility problems (for
example, character data can be imported using padding or truncation, and numeric
data can be imported with a different numeric data type), but data with major
incompatibility problems is not accepted.

One cannot REPLACE or REPLACE_CREATE an object table if it has any
dependents other than itself, or an object view if its base table has any dependents
(including itself). To replace such a table or a view, do the following:
1. Drop all foreign keys in which the table is a parent.
2. Run the import utility.
3. Alter the table to recreate the foreign keys.

If an error occurs while recreating the foreign keys, modify the data to maintain
referential integrity.

Referential constraints and foreign key definitions are not preserved when creating
tables from PC/IXF files. (Primary key definitions are preserved if the data was
previously exported using SELECT *.)

Importing to a remote database requires enough disk space on the server for a
copy of the input data file, the output message file, and potential growth in the
size of the database.

If an import operation is run against a remote database, and the output message
file is very long (more than 60 KB), the message file returned to the user on the
client may be missing messages from the middle of the import operation. The first
30 KB of message information and the last 30 KB of message information are
always retained.

Non-default values for piDataDescriptor, or specifying an explicit list of table
columns in piLongActionString, makes importing to a remote database slower.

The database table or hierarchy must exist before data in the ASC, DEL, or WSF
file formats can be imported; however, if the table does not already exist, IMPORT
CREATE or IMPORT REPLACE_CREATE creates the table when it imports data
from a PC/IXF file. For typed tables, IMPORT CREATE can create the type
hierarchy and the table hierarchy as well.

PC/IXF import should be used to move data (including hierarchical data) between
databases. If character data containing row separators is exported to a delimited
ASCII (DEL) file and processed by a text transfer program, fields containing the
row separators will shrink or expand.

The data in ASC and DEL files is assumed to be in the code page of the client
application performing the import. PC/IXF files, which allow for different code
pages, are recommended when importing data in different code pages. If the
PC/IXF file and the import utility are in the same code page, processing occurs as
for a regular application. If the two differ, and the FORCEIN option is specified,
the import utility assumes that data in the PC/IXF file has the same code page as
the application performing the import. This occurs even if there is a conversion
table for the two code pages. If the two differ, the FORCEIN option is not

814 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

specified, and there is a conversion table, all data in the PC/IXF file will be
converted from the file code page to the application code page. If the two differ,
the FORCEIN option is not specified, and there is no conversion table, the import
operation will fail. This applies only to PC/IXF files on DB2 for AIX clients.

For table objects on an 8KB page that are close to the limit of 1012 columns, import
of PC/IXF data files may cause DB2 to return an error, because the maximum size
of an SQL statement was exceeded. This situation can occur only if the columns
are of type CHAR, VARCHAR, or CLOB. The restriction does not apply to import
of DEL or ASC files.

DB2 Connect can be used to import data to DRDA servers such as DB2 for
OS/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF import (INSERT
option) is supported. The restartcnt parameter, but not the commitcnt parameter, is
also supported.

When using the CREATE option with typed tables, create every sub-table defined
in the PC/IXF file; sub-table definitions cannot be altered. When using options
other than CREATE with typed tables, the traversal order list enables one to
specify the traverse order; therefore, the traversal order list must match the one
used during the export operation. For the PC/IXF file format, one need only
specify the target sub-table name, and use the traverse order stored in the file. The
import utility can be used to recover a table previously exported to a PC/IXF file.
The table returns to the state it was in when exported.

Data cannot be imported to a system table, a declared temporary table, a created
temporary table, or a summary table.

Views cannot be created through the import utility.

On the Windows operating system:
v Importing logically split PC/IXF files is not supported.
v Importing bad format PC/IXF or WSF files is not supported.

Federated considerations

When using the db2Import API and the INSERT, UPDATE, or INSERT_UPDATE
parameters, you must ensure that you have CONTROL privilege on the
participating nickname. You must ensure that the nickname you wish to use when
doing an import operation already exists.

db2Inspect - Inspect database for architectural integrity

Inspects the database for architectural integrity and checks the pages of the
database for page consistency.

Scope

In a single partition database environment, the scope is the single database
partition only. In a partitioned database environment it is the collection of all
logical database partitions defined in db2nodes.cfg. For partitioned tables, the
scope for database and table space level inspection includes individual data
partitions and non-partitioned indexes. Table level inspection for a partitioned
table checks all the data partitions and indexes in a table, rather than checking a
single data partition or index.

Chapter 31. Application programming interfaces (APIs) 815

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

v CONTROL privilege on the table

Required connection

Database

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Inspect (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2InspectStruct
{

char *piTablespaceName;
char *piTableName;
char *piSchemaName;
char *piResultsName;
char *piDataFileName;
SQL_PDB_NODE_TYPE *piNodeList;
db2Uint32 iAction;
db2int32 iTablespaceID;
db2int32 iObjectID;
db2Uint32 iFirstPage;
db2Uint32 iNumberOfPages;
db2Uint32 iFormatType;
db2Uint32 iOptions;
db2Uint32 iBeginCheckOption;
db2int32 iLimitErrorReported;
db2Uint16 iObjectErrorState;
db2Uint16 iCatalogToTablespace;
db2Uint16 iKeepResultfile;
db2Uint16 iAllNodeFlag;
db2Uint16 iNumNodes;
db2Uint16 iLevelObjectData;
db2Uint16 iLevelObjectIndex;
db2Uint16 iLevelObjectLong;
db2Uint16 iLevelObjectLOB;
db2Uint16 iLevelObjectBlkMap;
db2Uint16 iLevelExtentMap;
db2Uint16 iLevelObjectXML;
db2Uint32 iLevelCrossObject;

} db2InspectStruct;

SQL_API_RC SQL_API_FN
db2gInspect (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gInspectStruct

816 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

{
char *piTablespaceName;
char *piTableName;
char *piSchemaName;
char *piResultsName;
char *piDataFileName;
SQL_PDB_NODE_TYPE *piNodeList;
db2Uint32 iResultsNameLength;
db2Uint32 iDataFileNameLength;
db2Uint32 iTablespaceNameLength;
db2Uint32 iTableNameLength;
db2Uint32 iSchemaNameLength;
db2Uint32 iAction;
db2int32 iTablespaceID;
db2int32 iObjectID;
db2Uint32 iFirstPage;
db2Uint32 iNumberOfPages;
db2Uint32 iFormatType;
db2Uint32 iOptions;
db2Uint32 iBeginCheckOption;
db2int32 iLimitErrorReported;
db2Uint16 iObjectErrorState;
db2Uint16 iCatalogToTablespace;
db2Uint16 iKeepResultfile;
db2Uint16 iAllNodeFlag;
db2Uint16 iNumNodes;
db2Uint16 iLevelObjectData;
db2Uint16 iLevelObjectIndex;
db2Uint16 iLevelObjectLong;
db2Uint16 iLevelObjectLOB;
db2Uint16 iLevelObjectBlkMap;
db2Uint16 iLevelExtentMap;
db2Uint16 iLevelObjectXML;
db2Uint32 iLevelCrossObject;

} db2gInspectStruct;

db2Inspect API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2InspectStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2InspectStruct data structure parameters

piTablespaceName
Input. A string containing the table space name. The table space must be
identified for operations on a table space. If the pointer is NULL, the table
space ID value is used as input.

piTableName
Input. A string containing the table name. The table must be identified for
operations on a table or a table object. If the pointer is NULL, the table
space ID and table object ID values are used as input.

piSchemaName
Input. A string containing the schema name.

Chapter 31. Application programming interfaces (APIs) 817

piResultsName
Input. A string containing the name for results output file. This input must
be provided. The file will be written out to the diagnostic data directory
path.

piDataFileName
Input. Reserved for future use. Must be set to NULL.

piNodeList
Input. A pointer to an array of database partition numbers on which to
perform the operation.

iAction
Input. Specifies the inspect action. Valid values (defined in the db2ApiDf
header file, which is located in the include directory) are:

DB2INSPECT_ACT_CHECK_DB
Inspect the entire database.

DB2INSPECT_ACT_CHECK_TABSPACE
Inspect a table space.

DB2INSPECT_ACT_CHECK_TABLE
Inspect a table.

DB2INSPECT_ACT_FORMAT_XML
Format an XML object page.

DB2INSPECT_ACT_ROWCMPEST_TBL
Estimate row compression effectiveness on a table.

iTablespaceID
Input. Specifies the table space ID. If the table space must be identified, the
table space ID value is used as input if the pointer to table space name is
NULL.

iObjectID
Input. Specifies the object ID. If the table must be identified, the object ID
value is used as input if the pointer to table name is NULL.

iBeginCheckOption
Input. Option for check database or check table space operation to indicate
where operation should begin. It must be set to zero to begin from the
normal start. Values are:

DB2INSPECT_BEGIN_TSPID
Use this value for check database to begin with the table space
specified by the table space ID field, the table space ID must be set.

DB2INSPECT_BEGIN_TSPID_OBJID
Use this value for check database to begin with the table specified
by the table space ID and object ID field. To use this option, the
table space ID and object ID must be set.

DB2INSPECT_BEGIN_OBJID
Use this value for check table space to begin with the table
specified by the object ID field, the object ID must be set.

iLimitErrorReported
Input. Specifies the reporting limit of the number of pages in error for an
object. Specify the number you want to use as the limit value or specify
one the following values:

818 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

DB2INSPECT_LIMIT_ERROR_DEFAULT
Use this value to specify that the maximum number of pages in
error to be reported is the extent size of the object.

DB2INSPECT_LIMIT_ERROR_ALL
Use this value to report all pages in error.

When DB2INSPECT_LVL_XOBJ_INXDAT_RID is used in the
iLevelCrossObject field, the limit value specified, or the above DEFAULT or
ALL values, represent a limit in the number of errors, instead of number of
pages in error, to be reported during the online index to data consistency
checking.

iObjectErrorState
Input. Specifies whether to scan objects in error state. Valid values are:

DB2INSPECT_ERROR_STATE_NORMAL
Process object only in normal state.

DB2INSPECT_ERROR_STATE_ALL
Process all objects, including objects in error state.

When DB2INSPECT_LVL_XOBJ_INXDAT_RID is used in the
iLevelCrossObject field, as long as the index or data object is in an error
state, DB2INSPECT_ERROR_STATE_ALL will be ignored if specified in this
field, and the online index to data consistency checking will not be
performed.

iKeepResultfile
Input. Specifies result file retention. Valid values are:

DB2INSPECT_RESFILE_CLEANUP
If errors are reported, the result output file will be retained.
Otherwise, the result file will be removed at the end of the
operation.

DB2INSPECT_RESFILE_KEEP_ALWAYS
The result output file will be retained.

iAllNodeFlag
Input. Indicates whether the operation is to be applied to all nodes defined
in db2nodes.cfg. Valid values are:

DB2_NODE_LIST
Apply to all nodes in a node list that is passed in pNodeList.

DB2_ALL_NODES
Apply to all nodes. pNodeList should be NULL. This is the default
value.

DB2_ALL_EXCEPT
Apply to all nodes except those in a node list that is passed in
pNodeList.

iNumNodes
Input. Specifies the number of nodes in the pNodeList array.

iLevelObjectData
Input. Specifies processing level for data object. Valid values are:

DB2INSPECT_LEVEL_NORMAL
Level is normal.

Chapter 31. Application programming interfaces (APIs) 819

DB2INSPECT_LEVEL_LOW
Level is low.

DB2INSPECT_LEVEL_NONE
Level is none.

iLevelObjectIndex
Input. Specifies processing level for index object. Valid values are:

DB2INSPECT_LEVEL_NORMAL
Level is normal.

DB2INSPECT_LEVEL_LOW
Level is low.

DB2INSPECT_LEVEL_NONE
Level is none.

iLevelObjectLong
Input. Specifies processing level for long object. Valid values are:

DB2INSPECT_LEVEL_NORMAL
Level is normal.

DB2INSPECT_LEVEL_LOW
Level is low.

DB2INSPECT_LEVEL_NONE
Level is none.

iLevelObjectLOB
Input. Specifies processing level for LOB object. Valid values are:

DB2INSPECT_LEVEL_NORMAL
Level is normal.

DB2INSPECT_LEVEL_LOW
Level is low.

DB2INSPECT_LEVEL_NONE
Level is none.

iLevelObjectBlkMap
Input. Specifies processing level for block map object. Valid values are:

DB2INSPECT_LEVEL_NORMAL
Level is normal.

DB2INSPECT_LEVEL_LOW
Level is low.

DB2INSPECT_LEVEL_NONE
Level is none.

iLevelExtentMap
Input. Specifies processing level for extent map. Valid values (defined in
the db2ApiDf header file, which is located in the include directory) are:

DB2INSPECT_LEVEL_NORMAL
Level is normal.

DB2INSPECT_LEVEL_LOW
Level is low.

DB2INSPECT_LEVEL_NONE
Level is none.

820 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

iLevelObjectXML
Input. Specifies processing level for XML object. Valid values (defined in
the db2ApiDf header file, which is located in the include directory) are:

DB2INSPECT_LEVEL_NORMAL
Level is normal.

DB2INSPECT_LEVEL_LOW
Level is low.

DB2INSPECT_LEVEL_NONE
Level is none.

iLevelCrossObject
A bit-based field used for any cross object consistency checking. Valid
values are:

DB2INSPECT_LVL_XOBJ_NONE
Online index data consistency checking will not be performed
(0x00000000).

DB2INSPECT_LVL_XOBJ_INXDAT_RID
INDEXDATA checking is enabled on RID index (0x00000001) and
will be performed with IS table lock to allow for both readers and
writers.

db2gInspectStruct data structure specific parameters

iResultsNameLength
Input. The string length of the results file name.

iDataFileNameLength
Input. The string length of the data output file name.

iTablespaceNameLength
Input. The string length of the table space name.

iTableNameLength
Input. The string length of the table name.

iSchemaNameLength
Input. The string length of the schema name.

Usage notes

The online inspect processing will access database objects using isolation level
uncommitted read. Commit processing will be done during the inspect processing.
It is advisable to end the unit of work by committing or rolling back changes, by
executing a COMMIT or ROLLBACK statement respectively, before starting the
inspect operation.

The inspect check processing will write out unformatted inspection data results to
the result file. The file will be written out to the diagnostic data directory path. If
there are no errors found by the check processing, the result output file will be
erased at the end of the inspect operation. If there are errors found by the check
processing, the result output file will not be erased at the end of the inspect
operation. To see the inspection details, format the inspection result output file
with the db2inspf utility.

Chapter 31. Application programming interfaces (APIs) 821

In a partitioned database environment, the extension of the result output file will
correspond to the database partition number. The file is located in the database
manager diagnostic data directory path.

A unique results output file name must be specified. If the result output file
already exists, the operation will not be processed.

When you call the db2Inspect API, you need to specify iLevelCrossObject in the
db2InspectStruct with a proper value. When DB2INSPECT_LVL_XOBJ_NONE is
used, online index data consistency checking will not be performed. To enable
online index data consistency checking, DB2INSPECT_LVL_XOBJ_INXDAT_RID
needs to be specified in the iLevelCrossObject field.

The processing of table spaces will process only the objects that reside in that table
space. The exception is during an index data consistency check, when data objects
can reside in other table spaces and still benefit from the checking, as long as the
index objects are in the table space to be inspected. For a partitioned table, each
index can reside in a different table space. Only those indexes that reside in the
specified table space will benefit from the index to data checking.

db2InstanceQuiesce - Quiesce instance

Forces all users off the instance, immediately rolls back all active transaction, and
puts the database into quiesce mode. This API provides exclusive access to the
instance. During this quiesced period, system administration can be performed on
the instance. After administration is complete, you can unquiesce the database
using the db2DatabaseUnquiesce API. This API allows other users to connect to the
database without having to shut down and perform another database start.

In this mode only groups or users with QUIESCE CONNECT authority and
sysadm, sysmaint, or sysctrl authority will have access to the database and its
objects.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2InstanceQuiesce (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2InsQuiesceStruct
{

char *piInstanceName;

822 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

char *piUserId;
char *piGroupId;
db2Uint32 iImmediate;
db2Uint32 iForce;
db2Uint32 iTimeout;

} db2InsQuiesceStruct;

SQL_API_RC SQL_API_FN
db2gInstanceQuiesce (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gInsQuiesceStruct
{

db2Uint32 iInstanceNameLen;
char *piInstanceName;
db2Uint32 iUserIdLen;
char *piUserId;
db2Uint32 iGroupIdLen;
char *piGroupId;
db2Uint32 iImmediate;
db2Uint32 iForce;
db2Uint32 iTimeout;

} db2gInsQuiesceStruct;

db2InstanceQuiesce API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2InsQuiesceStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2InsQuiesceStruct data structure parameters

piInstanceName
Input. The instance name.

piUserId
Input. The name of the a user who will be allowed access to the instance
while it is quiesced.

piGroupId
Input. The name of a group that will be allowed access to the instance
while the instance is quiesced.

iImmediate
Input. Valid values are:

TRUE=1
Force the applications immediately.

FALSE=0
Deferred force. Applications will wait the number of minutes
specified by iTimeout parameter to let their current units of work
be completed, and then will terminate. If this deferred force cannot
be completed within the number of minutes specified by iTimeout
parameter, the quiesce operation will fail.

iForce Input. Reserved for future use.

Chapter 31. Application programming interfaces (APIs) 823

iTimeout
Input. Specifies the time, in minutes, to wait for applications to commit the
current unit of work. If iTimeout is not specified, in a single-partition
database environment, the default value is 10 minutes. In a partitioned
database environment the value specified by the start_stop_time database
manager configuration parameter will be used.

db2gInsQuiesceStruct data structure specific parameters

iInstanceNameLen
Input. Specifies the length in bytes of piInstanceName.

iUserIdLen
Input. Specifies the length in bytes of piUserID.

iGroupIdLen
Input. Specifies the length in bytes of piGroupId.

db2InstanceStart - Start instance

Starts a local or remote instance.

Scope

In a single-partition database environment, the scope is that single database
partition only. In a partitioned database environment, it is the collection of all
logical database partition servers defined in the node configuration file,
db2nodes.cfg.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2InstanceStart (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2InstanceStartStruct
{

db2int8 iIsRemote;
char *piRemoteInstName;
db2DasCommData * piCommData;
db2StartOptionsStruct * piStartOpts;

} db2InstanceStartStruct;

824 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

typedef SQL_STRUCTURE db2DasCommData
{

db2int8 iCommParam;
char *piNodeOrHostName;
char *piUserId;
char *piUserPw;

} db2DasCommData;

typedef SQL_STRUCTURE db2StartOptionsStruct
{

db2Uint32 iIsProfile;
char *piProfile;
db2Uint32 iIsNodeNum;
db2NodeType iNodeNum;
db2Uint32 iOption;
db2Uint32 iIsHostName;
char *piHostName;
db2Uint32 iIsPort;
db2PortType iPort;
db2Uint32 iIsNetName;
char *piNetName;
db2Uint32 iTblspaceType;
db2NodeType iTblspaceNode;
db2Uint32 iIsComputer;
char *piComputer;
char *piUserName;
char *piPassword;
db2QuiesceStartStruct iQuiesceOpts;

} db2StartOptionsStruct;

typedef SQL_STRUCTURE db2QuiesceStartStruct
{

db2int8 iIsQRequested;
char *piQUsrName;
char *piQGrpName;
db2int8 iIsQUsrGrpDef;

} db2QuiesceStartStruct;

SQL_API_RC SQL_API_FN
db2gInstanceStart (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gInstanceStStruct
{

db2int8 iIsRemote;
db2Uint32 iRemoteInstLen;
char *piRemoteInstName;
db2gDasCommData * piCommData;
db2gStartOptionsStruct * piStartOpts;

} db2gInstanceStStruct;

typedef SQL_STRUCTURE db2gDasCommData
{

db2int8 iCommParam;
db2Uint32 iNodeOrHostNameLen;
char *piNodeOrHostName;
db2Uint32 iUserIdLen;
char *piUserId;
db2Uint32 iUserPwLen;
char *piUserPw;

} db2gDasCommData;

typedef SQL_STRUCTURE db2gStartOptionsStruct
{

db2Uint32 iIsProfile;

Chapter 31. Application programming interfaces (APIs) 825

char *piProfile;
db2Uint32 iIsNodeNum;
db2NodeType iNodeNum;
db2Uint32 iOption;
db2Uint32 iIsHostName;
char *piHostName;
db2Uint32 iIsPort;
db2PortType iPort;
db2Uint32 iIsNetName;
char *piNetName;
db2Uint32 iTblspaceType;
db2NodeType iTblspaceNode;
db2Uint32 iIsComputer;
char *piComputer;
char *piUserName;
char *piPassword;
db2gQuiesceStartStruct iQuiesceOpts;

} db2gStartOptionsStruct;

typedef SQL_STRUCTURE db2gQuiesceStartStruct
{

db2int8 iIsQRequested;
db2Uint32 iQUsrNameLen;
char *piQUsrName;
db2Uint32 iQGrpNameLen;
char *piQGrpName;
db2int8 iIsQUsrGrpDef;

} db2gQuiesceStartStruct;

db2InstanceStart API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2InstanceStartStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2InstanceStartStruct data structure parameters

iIsRemote
Input. An indicator set to constant integer value TRUE or FALSE. This
parameter should be set to TRUE if this is a remote start.

piRemoteInstName
Input. The name of the remote instance.

piCommData
Input. A pointer to the db2DasCommData structure.

piStartOpts
Input. A pointer to the db2StartOptionsStruct structure.

db2DasCommData data structure parameters

iCommParam
Input. An indicator set to TRUE or FALSE. This parameter should be set to
TRUE if this is a remote start.

piNodeOrHostName
Input. The database partition or hostname.

826 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

piUserId
Input. The user name.

piUserPw
Input. The user password.

db2StartOptionsStruct data structure parameters

iIsProfile
Input. Indicates whether a profile is specified. If this field indicates that a
profile is not specified, the file db2profile is used.

piProfile
Input. The name of the profile file to be executed at each node to define
the DB2 environment (MPP only). This file is executed before the nodes are
started. The default value is db2profile.

iIsNodeNum
Input. Indicates whether a node number is specified. If specified, the start
command only affects the specified node.

iNodeNum
Input. The database partition number.

iOption
Input. Specifies an action. Valid values for OPTION (defined in sqlenv
header file, located in the include directory) are:

SQLE_NONE
Issue the normal db2start operation.

SQLE_ADDNODE
Issue the ADD NODE command.

SQLE_RESTART
Issue the RESTART DATABASE command.

SQLE_RESTART_PARALLEL
Issue the RESTART DATABASE command for parallel execution.

SQLE_STANDALONE
Start the node in STANDALONE mode.

iIsHostName
Input. Indicates whether a host name is specified.

piHostName
Input. The system name.

iIsPort
Input. Indicates whether a port number is specified.

iPort Input. The port number.

iIsNetName
Input. Indicates whether a net name is specified.

piNetName
Input. The network name.

iTblspaceType
Input. Specifies the type of system temporary table space definitions to be
used for the node being added. Valid values are:

Chapter 31. Application programming interfaces (APIs) 827

SQLE_TABLESPACES_NONE
Do not create any system temporary table spaces.

SQLE_TABLESPACES_LIKE_NODE
The containers for the system temporary table spaces should be the
same as those for the specified node.

SQLE_TABLESPACES_LIKE_CATALOG
The containers for the system temporary table spaces should be the
same as those for the catalog node of each database.

iTblspaceNode
Input. Specifies the node number from which the system temporary table
space definitions should be obtained. The node number must exist in the
db2nodes.cfg file, and is only used if the tblspace_type field is set to
SQLE_TABLESPACES_LIKE_NODE.

iIsComputer
Input. Indicates whether a computer name is specified. Valid on the
Windows operating system only.

piComputer
Input. Computer name. Valid on the Windows operating system only.

piUserName
Input. Logon account user name. Valid on the Windows operating system
only.

piPassword
Input. The password corresponding to the logon account user name.

iQuiesceOpts
Input. A pointer to the db2QuiesceStartStruct structure.

db2QuiesceStartStruct data structure parameters

iIsQRequested
Input. An indicator set to TRUE or FALSE. This parameter should be set to
TRUE if quiesce is requested.

piQUsrName
Input. The quiesced username.

piQGrpName
Input. The quiesced group name.

iIsQUsrGrpDef
Input. An indicator set to TRUE or FALSE. This parameter should be set to
TRUE if a quiesced user or quiesced group is defined.

db2gInstanceStStruct data structure specific parameters

iRemoteInstLen
Input. Specifies the length in bytes of piRemoteInstName.

db2gDasCommData data structure specific parameters

iNodeOrHostNameLen
Input. Specifies the length in bytes of piNodeOrHostName.

iUserIdLen
Input. Specifies the length in bytes of piUserId.

828 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

iUserPwLen
Input. Specifies the length in bytes of piUserPw.

db2gQuiesceStartStruct data structure specific parameters

iQUsrNameLen
Input. Specifies the length in bytes of piQusrName.

iQGrpNameLen
Input. Specifies the length in bytes of piQGrpName.

db2InstanceStop - Stop instance

Stops the local or remote DB2 instance.

Scope

In a single-partition database environment, the scope is that single database
partition only. In a partitioned database environment, it is the collection of all
logical database partition servers defined in the node configuration file,
db2nodes.cfg.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2InstanceStop (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2InstanceStopStruct
{

db2int8 iIsRemote;
char *piRemoteInstName;
db2DasCommData * piCommData;
db2StopOptionsStruct * piStopOpts;

} db2InstanceStopStruct;

typedef SQL_STRUCTURE db2DasCommData
{

db2int8 iCommParam;
char *piNodeOrHostName;
char *piUserId;
char *piUserPw;

} db2DasCommData;

Chapter 31. Application programming interfaces (APIs) 829

typedef SQL_STRUCTURE db2StopOptionsStruct
{

db2Uint32 iIsProfile;
char *piProfile;
db2Uint32 iIsNodeNum;
db2NodeType iNodeNum;
db2Uint32 iStopOption;
db2Uint32 iCallerac;

} db2StopOptionsStruct;

SQL_API_RC SQL_API_FN
db2gInstanceStop (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gInstanceStopStruct
{

db2int8 iIsRemote;
db2Uint32 iRemoteInstLen;
char *piRemoteInstName;
db2gDasCommData * piCommData;
db2StopOptionsStruct * piStopOpts;

} db2gInstanceStopStruct;

typedef SQL_STRUCTURE db2gDasCommData
{

db2int8 iCommParam;
db2Uint32 iNodeOrHostNameLen;
char *piNodeOrHostName;
db2Uint32 iUserIdLen;
char *piUserId;
db2Uint32 iUserPwLen;
char *piUserPw;

} db2gDasCommData;

db2InstanceStop API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2InstanceStopStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2InstanceStopStruct data structure parameters

iIsRemote
Input. An indicator set to TRUE or FALSE. This parameter should be set to
TRUE if this is a remote start.

piRemoteInstName
Input. The name of the remote instance.

piCommData
Input. A pointer to the db2DasCommData structure.

piStopOpts
Input. A pointer to the db2StopOptionsStruct structure.

830 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

db2DasCommData data structure parameters

iCommParam
Input. An indicator set to TRUE or FALSE. This parameter should be set to
TRUE if this is a remote start.

piNodeOrHostName
Input. The database partition or hostname.

piUserId
Input. The user name.

piUserPw
Input. The user password.

db2StopOptionsStruct data structure parameters

iIsProfile
Input. Indicates whether a profile is specified. Possible values are TRUE
and FALSE. If this field indicates that a profile is not specified, the file
db2profile is used.

piProfile
Input. The name of the profile file that was executed at startup to define
the DB2 environment for those nodes that were started (MPP only). If a
profile for the db2InstanceStart API was specified, the same profile must be
specified here.

iIsNodeNum
Input. Indicates whether a node number is specified. Possible values are
TRUE and FALSE. If specified, the stop command only affects the specified
node.

iNodeNum
Input. The database partition number.

iStopOption
Input. Option. Valid values are:

SQLE_NONE
Issue the normal db2stop operation.

SQLE_FORCE
Issue the FORCE APPLICATION (ALL) command.

SQLE_DROP
Drop the node from the db2nodes.cfg file.

iCallerac
Input. This field is valid only for the SQLE_DROP value of the OPTION
field. Valid values are:

SQLE_DROP
Initial call. This is the default value.

SQLE_CONTINUE
Subsequent call. Continue processing after a prompt.

SQLE_TERMINATE
Subsequent call. Terminate processing after a prompt.

Chapter 31. Application programming interfaces (APIs) 831

db2gInstanceStopStruct data structure specific parameters

iRemoteInstLen
Input. Specifies the length in bytes of piRemoteInstName.

db2gDasCommData data structure specific parameters

iNodeOrHostNameLen
Input. Specifies the length in bytes of piNodeOrHostName.

iUserIdLen
Input. Specifies the length in bytes of piUserId.

iUserPwLen
Input. Specifies the length in bytes of piUserPw.

db2InstanceUnquiesce - Unquiesce instance

Unquiesce all databases in the instance.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2InstanceUnquiesce (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2InsUnquiesceStruct
{

char *piInstanceName;
} db2InsUnquiesceStruct;

SQL_API_RC SQL_API_FN
db2gInstanceUnquiesce (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gInsUnquiesceStruct
{

db2Uint32 iInstanceNameLen;
char *piInstanceName;

} db2gInsUnquiesceStruct;

832 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

db2InstanceUnquiesce API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2InsUnquiesceStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2InsUnquiesceStruct data structure parameters

piInstanceName
Input. The instance name.

db2gInsUnquiesceStruct data structure specific parameters

iInstanceNameLen
Input. Specifies the length in bytes of piInstanceName.

db2Load - Load data into a table

Loads data into a DB2 table. Data residing on the server may be in the form of a
file, cursor, tape, or named pipe. Data residing on a remotely connected client may
be in the form of a fully qualified file, a cursor, or named pipe. Although faster
than the import utility, the load utility does not support loading data at the
hierarchy level or loading into a nickname.

Authorization

One of the following:
v dataaccess

v load authority on the database and:
– INSERT privilege on the table when the load utility is invoked in INSERT

mode, TERMINATE mode (to terminate a previous load insert operation), or
RESTART mode (to restart a previous load insert operation)

– INSERT and DELETE privilege on the table when the load utility is invoked
in REPLACE mode, TERMINATE mode (to terminate a previous load replace
operation), or RESTART mode (to restart a previous load replace operation)

– INSERT privilege on the exception table, if such a table is used as part of the
load operation.

If the FORCE option is specified, SYSADM authority is required.

Note: In general, all load processes and all DB2 server processes are owned by the
instance owner. All of these processes use the identification of the instance owner
to access needed files. Therefore, the instance owner must have read access to the
input files, regardless of who invokes the command.

Required connection

Database. If implicit connect is enabled, a connection to the default database is
established. Utility access to Linux, UNIX, or Windows database servers from
Linux, UNIX, or Windows clients must be a direct connection through the engine
and not through a DB2 Connect gateway or loop back environment.

Chapter 31. Application programming interfaces (APIs) 833

Instance. An explicit attachment is not required. If a connection to the database has
been established, an implicit attachment to the local instance is attempted.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Load (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2LoadStruct
{

struct sqlu_media_list *piSourceList;
struct sqlu_media_list *piLobPathList;
struct sqldcol *piDataDescriptor;
struct sqlchar *piActionString;
char *piFileType;
struct sqlchar *piFileTypeMod;
char *piLocalMsgFileName;
char *piTempFilesPath;
struct sqlu_media_list *piVendorSortWorkPaths;
struct sqlu_media_list *piCopyTargetList;
db2int32 *piNullIndicators;
struct db2LoadIn *piLoadInfoIn;
struct db2LoadOut *poLoadInfoOut;
struct db2PartLoadIn *piPartLoadInfoIn;
struct db2PartLoadOut *poPartLoadInfoOut;
db2int16 iCallerAction;
struct sqlu_media_list *piXmlPathList;
struct sqllob *piLongActionString;

} db2LoadStruct;

typedef SQL_STRUCTURE db2LoadUserExit
{

db2Char iSourceUserExitCmd;
struct db2Char *piInputStream;
struct db2Char *piInputFileName;
struct db2Char *piOutputFileName;
db2Uint16 *piEnableParallelism;

} db2LoadUserExit;

typedef SQL_STRUCTURE db2LoadIn
{

db2Uint64 iRowcount;
db2Uint64 iRestartcount;
char *piUseTablespace;
db2Uint32 iSavecount;
db2Uint32 iDataBufferSize;
db2Uint32 iSortBufferSize;
db2Uint32 iWarningcount;
db2Uint16 iHoldQuiesce;
db2Uint16 iCpuParallelism;
db2Uint16 iDiskParallelism;
db2Uint16 iNonrecoverable;
db2Uint16 iIndexingMode;
db2Uint16 iAccessLevel;
db2Uint16 iLockWithForce;
db2Uint16 iCheckPending;
char iRestartphase;
char iStatsOpt;
db2Uint16 *piXmlParse;
db2DMUXmlValidate *piXmlValidate;

834 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

db2Uint16 iSetIntegrityPending;
struct db2LoadUserExit *piSourceUserExit;

} db2LoadIn;

typedef SQL_STRUCTURE db2LoadOut
{

db2Uint64 oRowsRead;
db2Uint64 oRowsSkipped;
db2Uint64 oRowsLoaded;
db2Uint64 oRowsRejected;
db2Uint64 oRowsDeleted;
db2Uint64 oRowsCommitted;

} db2LoadOut;

typedef SQL_STRUCTURE db2PartLoadIn
{

char *piHostname;
char *piFileTransferCmd;
char *piPartFileLocation;
struct db2LoadNodeList *piOutputNodes;
struct db2LoadNodeList *piPartitioningNodes;
db2Uint16 *piMode;
db2Uint16 *piMaxNumPartAgents;
db2Uint16 *piIsolatePartErrs;
db2Uint16 *piStatusInterval;
struct db2LoadPortRange *piPortRange;
db2Uint16 *piCheckTruncation;
char *piMapFileInput;
char *piMapFileOutput;
db2Uint16 *piTrace;
db2Uint16 *piNewline;
char *piDistfile;
db2Uint16 *piOmitHeader;
SQL_PDB_NODE_TYPE *piRunStatDBPartNum;

} db2PartLoadIn;

typedef SQL_STRUCTURE db2LoadNodeList
{

SQL_PDB_NODE_TYPE *piNodeList;
db2Uint16 iNumNodes;

} db2LoadNodeList;

typedef SQL_STRUCTURE db2LoadPortRange
{

db2Uint16 iPortMin;
db2Uint16 iPortMax;

} db2LoadPortRange;

typedef SQL_STRUCTURE db2PartLoadOut
{

db2Uint64 oRowsRdPartAgents;
db2Uint64 oRowsRejPartAgents;
db2Uint64 oRowsPartitioned;
struct db2LoadAgentInfo *poAgentInfoList;
db2Uint32 iMaxAgentInfoEntries;
db2Uint32 oNumAgentInfoEntries;

} db2PartLoadOut;

typedef SQL_STRUCTURE db2LoadAgentInfo
{

db2int32 oSqlcode;
db2Uint32 oTableState;
SQL_PDB_NODE_TYPE oNodeNum;
db2Uint16 oAgentType;

} db2LoadAgentInfo;

SQL_API_RC SQL_API_FN

Chapter 31. Application programming interfaces (APIs) 835

db2gLoad (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gLoadStruct
{

struct sqlu_media_list *piSourceList;
struct sqlu_media_list *piLobPathList;
struct sqldcol *piDataDescriptor;
struct sqlchar *piActionString;
char *piFileType;
struct sqlchar *piFileTypeMod;
char *piLocalMsgFileName;
char *piTempFilesPath;
struct sqlu_media_list *piVendorSortWorkPaths;
struct sqlu_media_list *piCopyTargetList;
db2int32 *piNullIndicators;
struct db2gLoadIn *piLoadInfoIn;
struct db2LoadOut *poLoadInfoOut;
struct db2gPartLoadIn *piPartLoadInfoIn;
struct db2PartLoadOut *poPartLoadInfoOut;
db2int16 iCallerAction;
db2Uint16 iFileTypeLen;
db2Uint16 iLocalMsgFileLen;
db2Uint16 iTempFilesPathLen;
struct sqlu_media_list *piXmlPathList;
struct sqllob *piLongActionString;

} db2gLoadStruct;

typedef SQL_STRUCTURE db2gLoadIn
{

db2Uint64 iRowcount;
db2Uint64 iRestartcount;
char *piUseTablespace;
db2Uint32 iSavecount;
db2Uint32 iDataBufferSize;
db2Uint32 iSortBufferSize;
db2Uint32 iWarningcount;
db2Uint16 iHoldQuiesce;
db2Uint16 iCpuParallelism;
db2Uint16 iDiskParallelism;
db2Uint16 iNonrecoverable;
db2Uint16 iIndexingMode;
db2Uint16 iAccessLevel;
db2Uint16 iLockWithForce;
db2Uint16 iCheckPending;
char iRestartphase;
char iStatsOpt;
db2Uint16 iUseTablespaceLen;
db2Uint16 iSetIntegrityPending;
db2Uint16 *piXmlParse;
db2DMUXmlValidate *piXmlValidate;
struct db2LoadUserExit *piSourceUserExit;

} db2gLoadIn;

typedef SQL_STRUCTURE db2gPartLoadIn
{

char *piHostname;
char *piFileTransferCmd;
char *piPartFileLocation;
struct db2LoadNodeList *piOutputNodes;
struct db2LoadNodeList *piPartitioningNodes;
db2Uint16 *piMode;
db2Uint16 *piMaxNumPartAgents;
db2Uint16 *piIsolatePartErrs;
db2Uint16 *piStatusInterval;

836 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

struct db2LoadPortRange *piPortRange;
db2Uint16 *piCheckTruncation;
char *piMapFileInput;
char *piMapFileOutput;
db2Uint16 *piTrace;
db2Uint16 *piNewline;
char *piDistfile;
db2Uint16 *piOmitHeader;
void *piReserved1;
db2Uint16 iHostnameLen;
db2Uint16 iFileTransferLen;
db2Uint16 iPartFileLocLen;
db2Uint16 iMapFileInputLen;
db2Uint16 iMapFileOutputLen;
db2Uint16 iDistfileLen;

} db2gPartLoadIn;

/* Definitions for iUsing value of db2DMUXmlValidate structure */
#define DB2DMU_XMLVAL_XDS 1 /* Use XDS */
#define DB2DMU_XMLVAL_SCHEMA 2 /* Use a specified schema */
#define DB2DMU_XMLVAL_SCHEMALOC_HINTS 3 /* Use schemaLocation hints */
#define DB2DMU_XMLVAL_ORIGSCHEMA 4 /* Use schema that document was

originally validated against
(load from cursor only) */

db2Load API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2LoadStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2LoadStruct data structure parameters

piSourceList
Input. A pointer to an sqlu_media_list structure used to provide a list of
source files, devices, vendors, pipes, or SQL statements.

The information provided in this structure depends on the value of the
media_type field. Valid values (defined in sqlutil header file, located in the
include directory) are:

SQLU_SQL_STMT
If the media_type field is set to this value, the caller provides an
SQL query through the pStatement field of the target field. The
pStatement field is of type sqlu_statement_entry. The sessions field
must be set to the value of 1, since the load utility only accepts a
single SQL query per load.

SQLU_SERVER_LOCATION
If the media_type field is set to this value, the caller provides
information through sqlu_location_entry structures. The sessions
field indicates the number of sqlu_location_entry structures
provided. This is used for files, devices, and named pipes.

SQLU_CLIENT_LOCATION
If the media_type field is set to this value, the caller provides
information through sqlu_location_entry structures. The sessions

Chapter 31. Application programming interfaces (APIs) 837

field indicates the number of sqlu_location_entry structures
provided. This is used for fully qualified files and named pipes.
Note that this media_type is only valid if the API is being called
via a remotely connected client.

SQLU_TSM_MEDIA
If the media_type field is set to this value, the sqlu_vendor
structure is used, where filename is the unique identifier for the
data to be loaded. There should only be one sqlu_vendor entry,
regardless of the value of sessions. The sessions field indicates the
number of TSM sessions to initiate. The load utility will start the
sessions with different sequence numbers, but with the same data
in the one sqlu_vendor entry.

SQLU_OTHER_MEDIA
If the media_type field is set to this value, the sqlu_vendor
structure is used, where shr_lib is the shared library name, and
filename is the unique identifier for the data to be loaded. There
should only be one sqlu_vendor entry, regardless of the value of
sessions. The sessions field indicates the number of other vendor
sessions to initiate. The load utility will start the sessions with
different sequence numbers, but with the same data in the one
sqlu_vendor entry.

SQLU_REMOTEFETCH
If the media_type field is set to this value, the caller provides
information through an sqlu_remotefetch_entry structure. The
sessions field must be set to the value of 1.

piLobPathList
Input. A pointer to an sqlu_media_list structure. For IXF, ASC, and DEL
file types, a list of fully qualified paths or devices to identify the location
of the individual LOB files to be loaded. The file names are found in the
IXF, ASC, or DEL files, and are appended to the paths provided.

The information provided in this structure depends on the value of the
media_type field. Valid values (defined in sqlutil header file, located in the
include directory) are:

SQLU_LOCAL_MEDIA
If set to this value, the caller provides information through
sqlu_media_entry structures. The sessions field indicates the
number of sqlu_media_entry structures provided.

SQLU_TSM_MEDIA
If set to this value, the sqlu_vendor structure is used, where
filename is the unique identifier for the data to be loaded. There
should only be one sqlu_vendor entry, regardless of the value of
sessions. The sessions field indicates the number of TSM sessions
to initiate. The load utility will start the sessions with different
sequence numbers, but with the same data in the one sqlu_vendor
entry.

SQLU_OTHER_MEDIA
If set to this value, the sqlu_vendor structure is used, where shr_lib
is the shared library name, and filename is the unique identifier for
the data to be loaded. There should only be one sqlu_vendor entry,
regardless of the value of sessions. The sessions field indicates the
number of other vendor sessions to initiate. The load utility will

838 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

start the sessions with different sequence numbers, but with the
same data in the one sqlu_vendor entry.

piDataDescriptor
Input. Pointer to an sqldcol structure containing information about the
columns being selected for loading from the external file.

If the piFileType parameter is set to SQL_ASC, the dcolmeth field of this
structure must be set to SQL_METH_L. The user specifies the start and end
locations for each column to be loaded.

If the file type is SQL_DEL, dcolmeth can be either SQL_METH_P or
SQL_METH_D. If it is SQL_METH_P, the user must provide the source
column position. If it is SQL_METH_D, the first column in the file is
loaded into the first column of the table, and so on.

If the file type is SQL_IXF, dcolmeth can be one of SQL_METH_P,
SQL_METH_D, or SQL_METH_N. The rules for DEL files apply here,
except that SQL_METH_N indicates that file column names are to be
provided in the sqldcol structure.

piActionString
Deprecated, replaced by piLongActionString.

piLongActionString
Input. Pointer to an sqllob structure containing a 4-byte long field, followed
by an array of characters specifying an action that affects the table.

The character array is of the form:
"INSERT|REPLACE KEEPDICTIONARY|REPLACE RESETDICTIONARY|RESTART|TERMINATE
INTO tbname [(column_list)]
[FOR EXCEPTION e_tbname]"

INSERT
Adds the loaded data to the table without changing the existing
table data.

REPLACE
Deletes all existing data from the table, and inserts the loaded data.
The table definition and the index definitions are not changed.

RESTART
Restarts a previously interrupted load operation. The load
operation will automatically continue from the last consistency
point in the load, build, or delete phase.

TERMINATE
Terminates a previously interrupted load operation, and rolls back
the operation to the point in time at which it started, even if
consistency points were passed. The states of any table spaces
involved in the operation return to normal, and all table objects are
made consistent (index objects may be marked as invalid, in which
case index rebuild will automatically take place at next access). If
the table spaces in which the table resides are not in load pending
state, this option does not affect the state of the table spaces.

The load terminate option will not remove a backup pending state
from table spaces.

tbname
The name of the table into which the data is to be loaded. The
table cannot be a system table, a declared temporary table, or a
created temporary table. An alias, or the fully qualified or

Chapter 31. Application programming interfaces (APIs) 839

unqualified table name can be specified. A qualified table name is
in the form schema.tablename. If an unqualified table name is
specified, the table will be qualified with the CURRENT SCHEMA.

(column_list)
A list of table column names into which the data is to be inserted.
The column names must be separated by commas. If a name
contains spaces or lowercase characters, it must be enclosed by
quotation marks.

FOR EXCEPTION e_tbname
Specifies the exception table into which rows in error will be
copied. The exception table is used to store copies of rows that
violate unique index rules, range constraints and security policies.

NORANGEEXC
Indicates that if a row is rejected because of a range violation it
will not be inserted into the exception table.

NOUNIQUEEXC
Indicates that if a row is rejected because it violates a unique
constraint it will not be inserted into the exception table.

piFileType
Input. A string that indicates the format of the input data source.
Supported external formats (defined in sqlutil) are:

SQL_ASC
Non-delimited ASCII.

SQL_DEL
Delimited ASCII, for exchange with dBase, BASIC, and the IBM
Personal Decision Series programs, and many other database
managers and file managers.

SQL_IXF
PC version of the Integration Exchange Format, the preferred
method for exporting data from a table so that it can be loaded
later into the same table or into another database manager table.

SQL_CURSOR
An SQL query. The sqlu_media_list structure passed in through the
piSourceList parameter is either of type SQLU_SQL_STMT or
SQLU_REMOTEFETCH, and refers to an SQL query or a table
name.

piFileTypeMod
Input. A pointer to the sqlchar structure, followed by an array of characters
that specify one or more processing options. If this pointer is NULL, or the
structure pointed to has zero characters, this action is interpreted as
selection of a default specification.

Not all options can be used with all of the supported file types. See related
link ″File type modifiers for the load utility.″

piLocalMsgFileName
Input. A string containing the name of a local file to which output
messages are to be written.

840 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

piTempFilesPath
Input. A string containing the path name to be used on the server for
temporary files. Temporary files are created to store messages, consistency
points, and delete phase information.

piVendorSortWorkPaths
Input. A pointer to the sqlu_media_list structure which specifies the
Vendor Sort work directories.

piCopyTargetList
Input. A pointer to an sqlu_media_list structure used (if a copy image is to
be created) to provide a list of target paths, devices, or a shared library to
which the copy image is to be written.

The values provided in this structure depend on the value of the
media_type field. Valid values for this parameter (defined in sqlutil header
file, located in the include directory) are:

SQLU_LOCAL_MEDIA
If the copy is to be written to local media, set the media_type to
this value and provide information about the targets in
sqlu_media_entry structures. The sessions field specifies the
number of sqlu_media_entry structures provided.

SQLU_TSM_MEDIA
If the copy is to be written to TSM, use this value. No further
information is required.

SQLU_OTHER_MEDIA
If a vendor product is to be used, use this value and provide
further information via an sqlu_vendor structure. Set the shr_lib
field of this structure to the shared library name of the vendor
product. Provide only one sqlu_vendor entry, regardless of the
value of sessions. The sessions field specifies the number of
sqlu_media_entry structures provided. The load utility will start
the sessions with different sequence numbers, but with the same
data provided in the one sqlu_vendor entry.

piNullIndicators
Input. For ASC files only. An array of integers that indicate whether or not
the column data is nullable. There is a one-to-one ordered correspondence
between the elements of this array and the columns being loaded from the
data file. That is, the number of elements must equal the dcolnum field of
the piDataDescriptor parameter. Each element of the array contains a
number identifying a location in the data file that is to be used as a NULL
indicator field, or a zero indicating that the table column is not nullable. If
the element is not zero, the identified location in the data file must contain
a Y or an N. A Y indicates that the table column data is NULL, and N
indicates that the table column data is not NULL.

piLoadInfoIn
Input. A pointer to the db2LoadIn structure.

poLoadInfoOut
Output. A pointer to the db2LoadOut structure.

piPartLoadInfoIn
Input. A pointer to the db2PartLoadIn structure.

poPartLoadInfoOut
Output. A pointer to the db2PartLoadOut structure.

Chapter 31. Application programming interfaces (APIs) 841

iCallerAction
Input. An action requested by the caller. Valid values (defined in sqlutil
header file, located in the include directory) are:

SQLU_INITIAL
Initial call. This value (or SQLU_NOINTERRUPT) must be used on
the first call to the API.

SQLU_NOINTERRUPT
Initial call. Do not suspend processing. This value (or
SQLU_INITIAL) must be used on the first call to the API.

If the initial call or any subsequent call returns and requires the
calling application to perform some action prior to completing the
requested load operation, the caller action must be set to one of the
following:

SQLU_CONTINUE
Continue processing. This value can only be used on subsequent
calls to the API, after the initial call has returned with the utility
requesting user input (for example, to respond to an end of tape
condition). It specifies that the user action requested by the utility
has completed, and the utility can continue processing the initial
request.

SQLU_TERMINATE
Terminate processing. Causes the load utility to exit prematurely,
leaving the table spaces being loaded in LOAD_PENDING state.
This option should be specified if further processing of the data is
not to be done.

SQLU_ABORT
Terminate processing. Causes the load utility to exit prematurely,
leaving the table spaces being loaded in LOAD_PENDING state.
This option should be specified if further processing of the data is
not to be done.

SQLU_RESTART
Restart processing.

SQLU_DEVICE_TERMINATE
Terminate a single device. This option should be specified if the
utility is to stop reading data from the device, but further
processing of the data is to be done.

piXmlPathList
Input. Pointer to an sqlu_media_list with its media_type field set to
SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths
on the client where the xml files can be found.

db2LoadUserExit data structure parameters

iSourceUserExitCmd
Input. The fully qualified name of an executable that will be used to feed
data to the utility. For security reasons, the executable must be placed
within the sqllib/bin directory on the server. This parameter is mandatory
if the piSourceUserExit structure is not NULL.

The piInputStream, piInputFileName, piOutputFileName and
piEnableParallelism fields are optional.

842 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

piInputStream
Input. A generic byte-stream that will be passed directly to the user-exit
application via STDIN. You have complete control over what data is
contained in this byte-stream and in what format. The load utility will
simply carry this byte-stream over to the server and pass it into the
user-exit application by feeding the process’ STDIN (it will not codepage
convert or modify the byte-stream). Your user-exit application would read
the arguments from STDIN and use the data however intended.

One important attribute of this feature is the ability to hide sensitive
information (such as userid/passwords).

piInputFileName
Input. Contains the name of a fully qualified client-side file, whose
contents will be passed into the user-exit application by feeding the
process’ STDIN.

piOutputFileName
Input. The fully qualified name of a server-side file. The STDOUT and
STDERR streams of the process which is executing the user-exit application
will be streamed into this file. When piEnableParallelism is TRUE, multiple
files will be created (one per user-exit instance), and each file name will be
appended with a 3 digit numeric node-number value, such as
<filename>.000).

piEnableParallelism
Input. A flag indicating that the utility should attempt to parallelize the
invocation of the user-exit application.

db2LoadIn data structure parameters

iRowcount
Input. The number of physical records to be loaded. Allows a user to load
only the first rowcnt rows in a file.

iRestartcount
Input. Reserved for future use.

piUseTablespace
Input. If the indexes are being rebuilt, a shadow copy of the index is built
in table space iUseTablespaceName and copied over to the original table
space at the end of the load. Only system temporary table spaces can be
used with this option. If not specified then the shadow index will be
created in the same table space as the index object.

If the shadow copy is created in the same table space as the index object,
the copy of the shadow index object over the old index object is
instantaneous. If the shadow copy is in a different table space from the
index object a physical copy is performed. This could involve considerable
I/O and time. The copy happens while the table is offline at the end of a
load.

This field is ignored if iAccessLevel is SQLU_ALLOW_NO_ACCESS.

This option is ignored if the user does not specify INDEXING MODE
REBUILD or INDEXING MODE AUTOSELECT. This option will also be
ignored if INDEXING MODE AUTOSELECT is chosen and load chooses to
incrementally update the index.

iSavecount
The number of records to load before establishing a consistency point. This

Chapter 31. Application programming interfaces (APIs) 843

value is converted to a page count, and rounded up to intervals of the
extent size. Since a message is issued at each consistency point, this option
should be selected if the load operation will be monitored using
db2LoadQuery - Load Query. If the value of savecount is not sufficiently
high, the synchronization of activities performed at each consistency point
will impact performance.

The default value is 0, meaning that no consistency points will be
established, unless necessary.

iDataBufferSize
The number of 4KB pages (regardless of the degree of parallelism) to use
as buffered space for transferring data within the utility. If the value
specified is less than the algorithmic minimum, the required minimum is
used, and no warning is returned.

This memory is allocated directly from the utility heap, whose size can be
modified through the util_heap_sz database configuration parameter.

If a value is not specified, an intelligent default is calculated by the utility
at run time. The default is based on a percentage of the free space available
in the utility heap at the instantiation time of the loader, as well as some
characteristics of the table.

iSortBufferSize
Input. This option specifies a value that overrides the SORTHEAP database
configuration parameter during a load operation. It is relevant only when
loading tables with indexes and only when the iIndexingMode parameter
is not specified as SQLU_INX_DEFERRED. The value that is specified
cannot exceed the value of SORTHEAP. This parameter is useful for
throttling the sort memory used by LOAD without changing the value of
SORTHEAP, which would also affect general query processing.

iWarningcount
Input. Stops the load operation after warningcnt warnings. Set this
parameter if no warnings are expected, but verification that the correct file
and table are being used is desired. If the load file or the target table is
specified incorrectly, the load utility will generate a warning for each row
that it attempts to load, which will cause the load to fail. If warningcnt is
0, or this option is not specified, the load operation will continue
regardless of the number of warnings issued.

If the load operation is stopped because the threshold of warnings was
exceeded, another load operation can be started in RESTART mode. The
load operation will automatically continue from the last consistency point.
Alternatively, another load operation can be initiated in REPLACE mode,
starting at the beginning of the input file.

iHoldQuiesce
Input. A flag whose value is set to TRUE if the utility is to leave the table
in quiesced exclusive state after the load, and to FALSE if it is not.

iCpuParallelism
Input. The number of processes or threads that the load utility will create
for parsing, converting and formatting records when building table objects.
This parameter is designed to exploit intra-partition parallelism. It is
particularly useful when loading presorted data, because record order in
the source data is preserved. If the value of this parameter is zero, the load
utility uses an intelligent default value at run time. Note: If this parameter

844 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

is used with tables containing either LOB or LONG VARCHAR fields, its
value becomes one, regardless of the number of system CPUs, or the value
specified by the user.

iDiskParallelism
Input. The number of processes or threads that the load utility will create
for writing data to the table space containers. If a value is not specified, the
utility selects an intelligent default based on the number of table space
containers and the characteristics of the table.

iNonrecoverable
Input. Set to SQLU_NON_RECOVERABLE_LOAD if the load transaction is
to be marked as non-recoverable, and it will not be possible to recover it
by a subsequent roll forward action. The rollforward utility will skip the
transaction, and will mark the table into which data was being loaded as
″invalid″. The utility will also ignore any subsequent transactions against
that table. After the roll forward is completed, such a table can only be
dropped. With this option, table spaces are not put in backup pending
state following the load operation, and a copy of the loaded data does not
have to be made during the load operation. Set to
SQLU_RECOVERABLE_LOAD if the load transaction is to be marked as
recoverable.

iIndexingMode
Input. Specifies the indexing mode. Valid values (defined in sqlutil header
file, located in the include directory) are:

SQLU_INX_AUTOSELECT
LOAD chooses between REBUILD and INCREMENTAL indexing
modes.

SQLU_INX_REBUILD
Rebuild table indexes.

SQLU_INX_INCREMENTAL
Extend existing indexes.

SQLU_INX_DEFERRED
Do not update table indexes.

iAccessLevel
Input. Specifies the access level. Valid values are:

SQLU_ALLOW_NO_ACCESS
Specifies that the load locks the table exclusively.

SQLU_ALLOW_READ_ACCESS
Specifies that the original data in the table (the non-delta portion)
should still be visible to readers while the load is in progress. This
option is only valid for load appends, such as a load insert, and
will be ignored for load replace.

iLockWithForce
Input. A boolean flag. If set to TRUE load will force other applications as
necessary to ensure that it obtains table locks immediately. This option
requires the same authority as the FORCE APPLICATIONS command
(SYSADM or SYSCTRL).

SQLU_ALLOW_NO_ACCESS loads may force conflicting applications at
the start of the load operation. At the start of the load, the utility may force
applications that are attempting to either query or modify the table.

Chapter 31. Application programming interfaces (APIs) 845

SQLU_ALLOW_READ_ACCESS loads may force conflicting applications at
the start or end of the load operation. At the start of the load, the load
utility may force applications that are attempting to modify the table. At
the end of the load, the load utility may force applications that are
attempting to either query or modify the table.

iCheckPending
This parameter is being deprecated as of Version 9.1. Use the
iSetIntegrityPending parameter instead.

iRestartphase
Input. Reserved. Valid value is a single space character ’ ’.

iStatsOpt
Input. Granularity of statistics to collect. Valid values are:

SQLU_STATS_NONE
No statistics to be gathered.

SQLU_STATS_USE_PROFILE
Statistics are collected based on the profile defined for the current
table. This profile must be created using the RUNSTATS command.
If no profile exists for the current table, a warning is returned and
no statistics are collected.

iSetIntegrityPending
Input. Specifies to put the table into set integrity pending state. If the value
SQLU_SI_PENDING_CASCADE_IMMEDIATE is specified, set integrity
pending state will be immediately cascaded to all dependent and
descendent tables. If the value
SQLU_SI_PENDING_CASCADE_DEFERRED is specified, the cascade of
set integrity pending state to dependent tables will be deferred until the
target table is checked for integrity violations.
SQLU_SI_PENDING_CASCADE_DEFERRED is the default value if the
option is not specified.

piSourceUserExit
Input. A pointer to the db2LoadUserExit structure.

piXmlParse
Input. Type of parsing that should occur for XML documents. Valid values
found in the db2ApiDf header file in the include directory are:

DB2DMU_XMLPARSE_PRESERVE_WS
Whitespace should be preserved.

DB2DMU_XMLPARSE_STRIP_WS
Whitespace should be stripped.

piXmlValidate
Input. Pointer to the db2DMUXmlValidate structure. Indicates that XML
schema validation should occur for XML documents.
/* XML Validate structure */
typedef SQL_STRUCTURE db2DMUXmlValidate
{

db2Uint16 iUsing; /* What to use to perform */
/* validation */

struct db2DMUXmlValidateXds *piXdsArgs; /* Arguments for */
/* XMLVALIDATE USING XDS */

struct db2DMUXmlValidateSchema *piSchemaArgs; /* Arguments for */
/* XMLVALIDATE USING SCHEMA */

} db2DMUXmlValidate;

846 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

db2LoadOut data structure parameters

oRowsRead
Output. Number of records read during the load operation.

oRowsSkipped
Output. Number of records skipped before the load operation begins.

oRowsLoaded
Output. Number of rows loaded into the target table.

oRowsRejected
Output. Number of records that could not be loaded.

oRowsDeleted
Output. Number of duplicate rows deleted.

oRowsCommitted
Output. The total number of processed records: the number of records
loaded successfully and committed to the database, plus the number of
skipped and rejected records.

db2PartLoadIn data structure parameters

piHostname
Input. The hostname for the iFileTransferCmd parameter. If NULL, the
hostname will default to ″nohost″. This parameter is deprecated.

piFileTransferCmd
Input. File transfer command parameter. If not required, it must be set to
NULL. This parameter is deprecated. Use the piSourceUserExit parameter
instead.

piPartFileLocation
Input. In PARTITION_ONLY, LOAD_ONLY, and
LOAD_ONLY_VERIFY_PART modes, this parameter can be used to specify
the location of the partitioned files. This location must exist on each
database partition specified by the piOutputNodes option.

For the SQL_CURSOR file type, this parameter cannot be NULL and the
location does not refer to a path, but to a fully qualified file name. This
will be the fully qualified base file name of the partitioned files that are
created on each output database partition for PARTITION_ONLY mode, or
the location of the files to be read from each database partition for
LOAD_ONLY mode. For PARTITION_ONLY mode, multiple files may be
created with the specified base name if there are LOB columns in the target
table. For file types other than SQL_CURSOR, if the value of this
parameter is NULL, it will default to the current directory.

piOutputNodes
Input. The list of Load output database partitions. A NULL indicates that
all nodes on which the target table is defined.

piPartitioningNodes
Input. The list of partitioning nodes. A NULL indicates the default.

piMode
Input. Specifies the load mode for partitioned databases. Valid values
(defined in db2ApiDf header file, located in the include directory) are:

- DB2LOAD_PARTITION_AND_LOAD
Data is distributed (perhaps in parallel) and loaded simultaneously
on the corresponding database partitions.

Chapter 31. Application programming interfaces (APIs) 847

- DB2LOAD_PARTITION_ONLY
Data is distributed (perhaps in parallel) and the output is written
to files in a specified location on each loading database partition.
For file types other than SQL_CURSOR, the name of the output file
on each database partition will have the form filename.xxx, where
filename is the name of the first input file specified by piSourceList
and xxx is the database partition number.For the SQL_CURSOR file
type, the name of the output file on each database partition will be
determined by the piPartFileLocation parameter. Refer to the
piPartFileLocation parameter for information about how to specify
the location of the database partition file on each database
partition.

Note: This mode cannot be used for a CLI LOAD.

DB2LOAD_LOAD_ONLY
Data is assumed to be already distributed; the distribution process
is skipped, and the data is loaded simultaneously on the
corresponding database partitions. For file types other than
SQL_CURSOR, the input file name on each database partition is
expected to be of the form filename.xxx, where filename is the
name of the first file specified by piSourceList and xxx is the
13-digit database partition number. For the SQL_CURSOR file type,
the name of the input file on each database partition will be
determined by the piPartFileLocation parameter. Refer to the
piPartFileLocation parameter for information about how to specify
the location of the database partition file on each database
partition.

Note: This mode cannot be used when loading a data file located
on a remote client, nor can it be used for a CLI LOAD.

DB2LOAD_LOAD_ONLY_VERIFY_PART
Data is assumed to be already distributed, but the data file does
not contain a database partition header. The distribution process is
skipped, and the data is loaded simultaneously on the
corresponding database partitions. During the load operation, each
row is checked to verify that it is on the correct database partition.
Rows containing database partition violations are placed in a
dumpfile if the dumpfile file type modifier is specified. Otherwise,
the rows are discarded. If database partition violations exist on a
particular loading database partition, a single warning will be
written to the load message file for that database partition. The
input file name on each database partition is expected to be of the
form filename.xxx, where filename is the name of the first file
specified by piSourceList and xxx is the 13-digit database partition
number.

Note: This mode cannot be used when loading a data file located
on a remote client, nor can it be used for a CLI LOAD.

DB2LOAD_ANALYZE
An optimal distribution map with even distribution across all
database partitions is generated.

piMaxNumPartAgents
Input. The maximum number of partitioning agents. A NULL value
indicates the default, which is 25.

848 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

piIsolatePartErrs
Input. Indicates how the load operation will react to errors that occur on
individual database partitions. Valid values (defined in db2ApiDf header
file, located in the include directory) are:

DB2LOAD_SETUP_ERRS_ONLY
In this mode, errors that occur on a database partition during
setup, such as problems accessing a database partition or problems
accessing a table space or table on a database partition, will cause
the load operation to stop on the failing database partitions but to
continue on the remaining database partitions. Errors that occur on
a database partition while data is being loaded will cause the
entire operation to fail and rollback to the last point of consistency
on each database partition.

DB2LOAD_LOAD_ERRS_ONLY
In this mode, errors that occur on a database partition during setup
will cause the entire load operation to fail. When an error occurs
while data is being loaded, the database partitions with errors will
be rolled back to their last point of consistency. The load operation
will continue on the remaining database partitions until a failure
occurs or until all the data is loaded. On the database partitions
where all of the data was loaded, the data will not be visible
following the load operation. Because of the errors in the other
database partitions the transaction will be aborted. Data on all of
the database partitions will remain invisible until a load restart
operation is performed. This will make the newly loaded data
visible on the database partitions where the load operation
completed and resume the load operation on database partitions
that experienced an error.

Note: This mode cannot be used when iAccessLevel is set to
SQLU_ALLOW_READ_ACCESS and a copy target is also specified.

DB2LOAD_SETUP_AND_LOAD_ERRS
In this mode, database partition-level errors during setup or
loading data cause processing to stop only on the affected database
partitions. As with the DB2LOAD_LOAD_ERRS_ONLY mode,
when database partition errors do occur while data is being
loaded, the data on all database partitions will remain invisible
until a load restart operation is performed.

Note: This mode cannot 1be used when iAccessLevel is set to
SQLU_ALLOW_READ_ACCESS and a copy target is also specified.

DB2LOAD_NO_ISOLATION
Any error during the Load operation causes the transaction to be
aborted. If this parameter is NULL, it will default to
DB2LOAD_LOAD_ERRS_ONLY, unless iAccessLevel is set to
SQLU_ALLOW_READ_ACCESS and a copy target is also specified,
in which case the default is DB2LOAD_NO_ISOLATION.

piStatusInterval
Input. Specifies the number of megabytes (MB) of data to load before
generating a progress message. Valid values are whole numbers in the
range of 1 to 4000. If NULL is specified, a default value of 100 will be
used.

Chapter 31. Application programming interfaces (APIs) 849

piPortRange
Input. The TCP port range for internal communication. If NULL, the port
range used will be 6000-6063.

piCheckTruncation
Input. Causes Load to check for record truncation at Input/Output. Valid
values are TRUE and FALSE. If NULL, the default is FALSE.

piMapFileInput
Input. Distribution map input filename. If the mode is not ANALYZE, this
parameter should be set to NULL. If the mode is ANALYZE, this
parameter must be specified.

piMapFileOutput
Input. Distribution map output filename. The rules for piMapFileInput
apply here as well.

piTrace
Input. Specifies the number of records to trace when you need to review a
dump of all the data conversion process and the output of hashing values.
If NULL, the number of records defaults to 0.

piNewline
Input. Forces Load to check for newline characters at end of ASC data
records if RECLEN file type modifier is also specified. Possible values are
TRUE and FALSE. If NULL, the value defaults to FALSE.

piDistfile
Input. Name of the database partition distribution file. If a NULL is
specified, the value defaults to ″DISTFILE″.

piOmitHeader
Input. Indicates that a distribution map header should not be included in
the database partition file when using DB2LOAD_PARTITION_ONLY
mode. Possible values are TRUE and FALSE. If NULL, the default is
FALSE.

piRunStatDBPartNum
Specifies the database partition on which to collect statistics. The default
value is the first database partition in the output database partition list.

db2LoadNodeList data structure parameters

piNodeList
Input. An array of node numbers.

iNumNodes
Input. The number of nodes in the piNodeList array. A 0 indicates the
default, which is all nodes on which the target table is defined.

db2LoadPortRange data structure parameters

iPortMin
Input. Lower port number.

iPortMax
Input. Higher port number.

db2PartLoadOut data structure parameters

oRowsRdPartAgents
Output. Total number of rows read by all partitioning agents.

850 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

oRowsRejPartAgents
Output. Total number of rows rejected by all partitioning agents.

oRowsPartitioned
Output. Total number of rows partitioned by all partitioning agents.

poAgentInfoList
Output. During a load operation into a partitioned database, the following
load processing entities may be involved: load agents, partitioning agents,
pre-partitioning agents, file transfer command agents and load-to-file
agents (these are described in the Data Movement Guide). The purpose of
the poAgentInfoList output parameter is to return to the caller information
about each load agent that participated in a load operation. Each entry in
the list contains the following information:

oAgentType
A tag indicating what kind of load agent the entry describes.

oNodeNum
The number of the database partition on which the agent executed.

oSqlcode
The final sqlcode resulting from the agent’s processing.

oTableState
The final status of the table on the database partition on which the
agent executed (relevant only for load agents).

It is up to the caller of the API to allocate memory for this list prior to
calling the API. The caller should also indicate the number of entries for
which they allocated memory in the iMaxAgentInfoEntries parameter. If
the caller sets poAgentInfoList to NULL or sets iMaxAgentInfoEntries to 0,
then no information will be returned about the load agents.

iMaxAgentInfoEntries
Input. The maximum number of agent information entries allocated by the
user for poAgentInfoList. In general, setting this parameter to 3 times the
number of database partitions involved in the load operation should be
sufficient.

oNumAgentInfoEntries
Output. The actual number of agent information entries produced by the
load operation. This number of entries will be returned to the user in the
poAgentInfoList parameter as long as iMaxAgentInfoEntries is greater than
or equal to oNumAgentInfoEntries. If iMaxAgentInfoEntries is less than
oNumAgentInfoEntries, then the number of entries returned in
poAgentInfoList is equal to iMaxAgentInfoEntries.

db2LoadAgentInfo data structure parameters

oSqlcode
Output. The final sqlcode resulting from the agent’s processing.

oTableState
Output. The purpose of this output parameter is not to report every
possible state of the table after the load operation. Rather, its purpose is to
report only a small subset of possible tablestates in order to give the caller
a general idea of what happened to the table during load processing. This
value is relevant for load agents only. The possible values are:

DB2LOADQUERY_NORMAL
Indicates that the load completed successfully on the database

Chapter 31. Application programming interfaces (APIs) 851

partition and the table was taken out of the LOAD IN PROGRESS
(or LOAD PENDING) state. In this case, the table still could be in
SET INTEGRITY PENDING state due to the need for further
constraints processing, but this will not reported as this is normal.

DB2LOADQUERY_UNCHANGED
Indicates that the load job aborted processing due to an error but
did not yet change the state of the table on the database partition
from whatever state it was in prior to calling db2Load. It is not
necessary to perform a load restart or terminate operation on such
database partitions.

DB2LOADQUERY_LOADPENDING
Indicates that the load job aborted during processing but left the
table on the database partition in the LOAD PENDING state,
indicating that the load job on that database partition must be
either terminated or restarted.

oNodeNum
Output. The number of the database partition on which the agent
executed.

oAgentType
Output. The agent type. Valid values (defined in db2ApiDf header file,
located in the include directory) are :
v DB2LOAD_LOAD_AGENT
v DB2LOAD_PARTITIONING_AGENT
v DB2LOAD_PRE_PARTITIONING_AGENT
v DB2LOAD_FILE_TRANSFER_AGENT
v DB2LOAD_LOAD_TO_FILE_AGENT

db2gLoadStruct data structure specific parameters

iFileTypeLen
Input. Specifies the length in bytes of iFileType parameter.

iLocalMsgFileLen
Input. Specifies the length in bytes of iLocalMsgFileName parameter.

iTempFilesPathLen
Input. Specifies the length in bytes of iTempFilesPath parameter.

piXmlPathList
Input. Pointer to an sqlu_media_list with its media_type field set to
SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths
on the client where the xml files can be found.

db2gLoadIn data structure specific parameters

iUseTablespaceLen
Input. The length in bytes of piUseTablespace parameter.

piXmlParse
Input. Type of parsing that should occur for XML documents. Valid values
found in the db2ApiDf header file in the include directory are:

DB2DMU_XMLPARSE_PRESERVE_WS
Whitespace should be preserved.

DB2DMU_XMLPARSE_STRIP_WS
Whitespace should be stripped.

852 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

piXmlValidate
Input. Pointer to the db2DMUXmlValidate structure. Indicates that XML
schema validation should occur for XML documents.
/* XML Validate structure */
typedef SQL_STRUCTURE db2DMUXmlValidate
{

db2Uint16 iUsing; /* What to use to perform */
/* validation */

struct db2DMUXmlValidateXds *piXdsArgs; /* Arguments for */
/* XMLVALIDATE USING XDS */

struct db2DMUXmlValidateSchema *piSchemaArgs; /* Arguments for */
/* XMLVALIDATE USING SCHEMA */

} db2DMUXmlValidate;

db2gPartLoadIn data structure specific parameters

piReserved1
Reserved for future use.

iHostnameLen
Input. The length in bytes of piHostname parameter.

iFileTransferLen
Input. The length in bytes of piFileTransferCmd parameter.

iPartFileLocLen
Input. The length in bytes of piPartFileLocation parameter.

iMapFileInputLen
Input. The length in bytes of piMapFileInput parameter.

iMapFileOutputLen
Input. The length in bytes of piMapFileOutput parameter.

iDistfileLen
Input. The length in bytes of piDistfile parameter.

Usage notes

Data is loaded in the sequence that appears in the input file. If a particular
sequence is desired, the data should be sorted before a load is attempted.

The load utility builds indexes based on existing definitions. The exception tables
are used to handle duplicates on unique keys. The utility does not enforce
referential integrity, perform constraints checking, or update summary tables that
are dependent on the tables being loaded. Tables that include referential or check
constraints are placed in set integrity pending state. Summary tables that are
defined with REFRESH IMMEDIATE, and that are dependent on tables being
loaded, are also placed in set integrity pending state. Issue the SET INTEGRITY
statement to take the tables out of set integrity pending state. Load operations
cannot be carried out on replicated summary tables.

For clustering indexes, the data should be sorted on the clustering index prior to
loading. The data need not be sorted when loading into an multi-dimensionally
clustered (MDC) table.

db2Recover - Restore and roll forward a database

Restores and rolls forward a database to a particular point in time or to the end of
the logs.

Chapter 31. Application programming interfaces (APIs) 853

Scope

In a partitioned database environment, this API can only be called from the catalog
partition. If no database partition servers are specified, it affects all database
partition servers that are listed in the db2nodes.cfg file. If a point in time is
specified, the API affects all database partitions.

Authorization

To recover an existing database, one of the following:
v sysadm
v sysctrl
v sysmaint

To recover to a new database, one of the following:
v sysadm
v sysctrl

Required connection

To recover an existing database, a database connection is required. This API
automatically establishes a connection to the specified database and will release the
connection when the recover operation finishes. Instance and database, to recover
to a new database. The instance attachment is required to create the database.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Recover (
db2Uint32 versionNumber,
void * pDB2RecovStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2RecoverStruct
{

char *piSourceDBAlias;
char *piUsername;
char *piPassword;
db2Uint32 iRecoverCallerAction;
db2Uint32 iOptions;
sqlint32 *poNumReplies;
struct sqlurf_info *poNodeInfo;
char *piStopTime;
char *piOverflowLogPath;
db2Uint32 iNumChngLgOvrflw;
struct sqlurf_newlogpath *piChngLogOvrflw;
db2int32 iAllNodeFlag;
db2int32 iNumNodes;
SQL_PDB_NODE_TYPE *piNodeList;
db2int32 iNumNodeInfo;
char *piHistoryFile;
db2Uint32 iNumChngHistoryFile;
struct sqlu_histFile *piChngHistoryFile;
char *piComprLibrary;
void *piComprOptions;
db2Uint32 iComprOptionsSize;

} db2RecoverStruct;

854 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

SQL_STRUCTURE sqlu_histFile
{

SQL_PDB_NODE_TYPE nodeNum;
unsigned short filenameLen;
char filename[SQL_FILENAME_SZ+1];

};

SQL_API_RC SQL_API_FN
db2gRecover (

db2Uint32 versionNumber,
void * pDB2gRecoverStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gRecoverStruct
{

char *piSourceDBAlias;
db2Uint32 iSourceDBAliasLen;
char *piUserName;
db2Uint32 iUserNameLen;
char *piPassword;
db2Uint32 iPasswordLen;
db2Uint32 iRecoverCallerAction;
db2Uint32 iOptions;
sqlint32 *poNumReplies;
struct sqlurf_info *poNodeInfo;
char *piStopTime;
db2Uint32 iStopTimeLen;
char *piOverflowLogPath;
db2Uint32 iOverflowLogPathLen;
db2Uint32 iNumChngLgOvrflw;
struct sqlurf_newlogpath *piChngLogOvrflw;
db2int32 iAllNodeFlag;
db2int32 iNumNodes;
SQL_PDB_NODE_TYPE *piNodeList;
db2int32 iNumNodeInfo;
char *piHistoryFile;
db2Uint32 iHistoryFileLen;
db2Uint32 iNumChngHistoryFile;
struct sqlu_histFile *piChngHistoryFile;
char *piComprLibrary;
db2Uint32 iComprLibraryLen;
void *piComprOptions;
db2Uint32 iComprOptionsSize;

} db2gRecoverStruct;

db2Recover API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pDB2RecoverStruct.

pDB2RecoverStruct
Input. A pointer to the db2RecoverStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2RecoverStruct data structure parameters

piSourceDBAlias
Input. A string containing the database alias of the database to be
recovered.

Chapter 31. Application programming interfaces (APIs) 855

piUserName
Input. A string containing the user name to be used when attempting a
connection. Can be NULL.

piPassword
Input. A string containing the password to be used with the user name.
Can be NULL.

iRecoverCallerAction
Input. Valid values are:

DB2RECOVER
Starts the recover operation. Specifies that the recover will run
unattended, and that scenarios that normally require user
intervention will either be attempted without first returning to the
caller, or will generate an error. Use this caller action, for example,
if it is known that all of the media required for the recover have
been mounted, and utility prompts are not desired.

DB2RECOVER_RESTART
Allows the user to ignore a prior recover and start over from the
beginning.

DB2RECOVER_CONTINUE
Continue using the device that generated the warning message (for
example, when a new tape has been mounted).

DB2RECOVER_LOADREC_TERM
Terminate all devices being used by load recovery.

DB2RECOVER_DEVICE_TERM
Stop using the device that generated the warning message (for
example, when there are no more tapes).

DB2RECOVER_PARM_CHK_ONLY
Used to validate parameters without performing a recover
operation. Before this call returns, the database connection
established by this call is terminated, and no subsequent call is
required.

DB2RECOVER_DEVICE_TERMINATE
Removes a particular device from the list of devices used by the
recover operation. When a particular device has exhausted its
input, recover will return a warning to the caller. Call the recover
utility again with this caller action to remove the device that
generated the warning from the list of devices being used.

iOptions
Input. Valid values are:

- DB2RECOVER_EMPTY_FLAG
No flags specified.

- DB2RECOVER_LOCAL_TIME
Indicates that the value specified for the stop time by piStopTime
is in local time, not GMT. This is the default setting.

- DB2RECOVER_GMT_TIME
This flag indicates that the value specified for the stop time by
piStopTime is in GMT (Greenwich Mean Time).

poNumReplies
Output. The number of replies received.

856 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

poNodeInfo
Output. Database partition reply information.

piStopTime
Input. A character string containing a time stamp in ISO format. Database
recovery will stop when this time stamp is exceeded. Specify
SQLUM_INFINITY_TIMESTAMP to roll forward as far as possible. May be
NULL for DB2ROLLFORWARD_QUERY,
DB2ROLLFORWARD_PARM_CHECK, and any of the load recovery
(DB2ROLLFORWARD_LOADREC_) caller actions.

piOverflowLogPath
Input. This parameter is used to specify an alternate log path to be used.
In addition to the active log files, archived log files need to be moved (by
the user) into the location specified by the logpath configuration parameter
before they can be used by this utility. This can be a problem if the user
does not have sufficient space in the log path. The overflow log path is
provided for this reason. During roll-forward recovery, the required log
files are searched, first in the log path, and then in the overflow log path.
The log files needed for table space rollforward recovery can be brought
into either the log path or the overflow log path. If the caller does not
specify an overflow log path, the default value is the log path.

In a partitioned database environment, the overflow log path must be a
valid, fully qualified path; the default path is the default overflow log path
for each database partition. In a single-partition database environment, the
overflow log path can be relative if the server is local.

iNumChngLgOvrflw
Input. Partitioned database environments only. The number of changed
overflow log paths. These new log paths override the default overflow log
path for the specified database partition server only.

piChngLogOvrflw
Input. Partitioned database environments only. A pointer to a structure
containing the fully qualified names of changed overflow log paths. These
new log paths override the default overflow log path for the specified
database partition server only.

iAllNodeFlag
Input. Partitioned database environments only. Indicates whether the
rollforward operation is to be applied to all database partition servers
defined in db2nodes.cfg. Valid values are:

DB2_NODE_LIST
Apply to database partition servers in a list that is passed in
piNodeList.

DB2_ALL_NODES
Apply to all database partition servers. piNodeList should be
NULL. This is the default value.

DB2_ALL_EXCEPT
Apply to all database partition servers except those in a list that is
passed in piNodeList.

DB2_CAT_NODE_ONLY
Apply to the catalog partition only. piNodeList should be NULL.

Chapter 31. Application programming interfaces (APIs) 857

iNumNodes
Input. Specifies the number of database partition servers in the piNodeList
array.

piNodeList
Input. A pointer to an array of database partition server numbers on which
to perform the rollforward recovery.

iNumNodeInfo
Input. Defines the size of the output parameter poNodeInfo, which must
be large enough to hold status information from each database partition
that is being rolled forward. In a single-partition database environment,
this parameter should be set to 1. The value of this parameter should be
the same as the number of database partition servers for which this API is
being called.

piHistoryFile
History file.

iNumChngHistoryFile
Number of history files in list.

piChngHistoryFile
List of history files.

piComprLibrary
Input. Indicates the name of the external library to be used to perform
decompression of the backup image if the image is compressed. The name
must be a fully-qualified path referring to a file on the server. If the value
is a null pointer or a pointer to an empty string, DB2 will attempt to use
the library stored in the image. If the backup was not compressed, the
value of this parameter will be ignored. If the specified library is not
found, the restore will fail.

piComprOptions
Input. Describes a block of binary data that will be passed to the
initialization routine in the decompression library. DB2 will pass this string
directly from the client to the server, so any issues of byte-reversal or
code-page conversion will have to be handled by the compression library.
If the first character of the data block is ’@’, the remainder of the data will
be interpreted by DB2 as the name of a file residing on the server. DB2 will
then replace the contents of piComprOptions and iComprOptionsSize with
the contents and size of this file respectively and will pass these new
values to the initialization routine instead.

iComprOptionsSize
Input. Represents the size of the block of data passed as piComprOptions.
iComprOptionsSize shall be zero if and only if piComprOptions is a null
pointer.

sqlu_histFile data structure parameters

nodeNum
Input. Specifies which database partition this entry should be used for.

filenameLen
Input. Length in bytes of filename.

filename
Input. Path to the history file for this database partition. The path must
end with a slash.

858 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

db2gRecoverStruct data structure specific parameters

iSourceDBAliasLen
Specifies the length in bytes of the piSourceDBAlias parameter.

iUserNameLen
Specified the length in bytes of the piUsername parameter.

iPasswordLen
Specifies the length in bytes of the piPassword parameter.

iStopTimeLen
Specifies the length in bytes of the piStopTime parameter.

iOverflowLogPathLen
Specifies the length in bytes of the piOverflowLogPath parameter.

iHistoryFileLen
Specifies the length in bytes of the piHistoryFile parameter.

iComprLibraryLen
Input. Specifies the length in bytes of the name of the library specified in
the piComprLibrary parameter. Set to zero if no library name is given.

db2Reorg - Reorganize an index or a table

Reorganizes a table or all indexes defined on a table by compacting the
information and reconstructing the rows or index data to eliminate fragmented
data.

Authorization

One of the following:
v SYSADM
v SYSCTRL
v SYSMAINT
v DBADM
v SQLADM
v CONTROL privilege on the table

Required connection

Database

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Reorg (
db2Uint32 versionNumber,
void * pReorgStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ReorgStruct
{

db2Uint32 reorgType;
db2Uint32 reorgFlags;
db2int32 nodeListFlag;

Chapter 31. Application programming interfaces (APIs) 859

db2Uint32 numNodes;
SQL_PDB_NODE_TYPE *pNodeList;
union db2ReorgObject reorgObject;

} db2ReorgStruct;

union db2ReorgObject
{

struct db2ReorgTable tableStruct;
struct db2ReorgIndexesAll indexesAllStruct;

};

typedef SQL_STRUCTURE db2ReorgTable
{

char *pTableName;
char *pOrderByIndex;
char *pSysTempSpace;
char *pLongTempSpace;
char *pPartitionName;

} db2ReorgTable;

typedef SQL_STRUCTURE db2ReorgIndexesAll
{

char *pTableName;
char *pIndexName;
char *pPartitionName;

} db2ReorgIndexesAll;

SQL_API_RC SQL_API_FN
db2gReorg (

db2Uint32 versionNumber,
void * pReorgStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gReorgStruct
{

db2Uint32 reorgType;
db2Uint32 reorgFlags;
db2int32 nodeListFlag;
db2Uint32 numNodes;
SQL_PDB_NODE_TYPE *pNodeList;
union db2gReorgObject reorgObject;

} db2gReorgStruct;

typedef SQL_STRUCTURE db2gReorgNodes
{

SQL_PDB_NODE_TYPE nodeNum[SQL_PDB_MAX_NUM_NODE];
} db2gReorgNodes;

union db2gReorgObject
{

struct db2gReorgTable tableStruct;
struct db2gReorgIndexesAll indexesAllStruct;

};

typedef SQL_STRUCTURE db2gReorgTable
{

db2Uint32 tableNameLen;
char *pTableName;
db2Uint32 orderByIndexLen;
char *pOrderByIndex;
db2Uint32 sysTempSpaceLen;
char *pSysTempSpace;
db2Uint32 longTempSpaceLen;
char *pLongTempSpace;
db2Uint32 partitionNameLen;
char *pPartitionName;

} db2gReorgTable;

860 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

typedef SQL_STRUCTURE db2gReorgIndexesAll
{

db2Uint32 tableNameLen;
char *pTableName;
db2Uint32 indexNameLen;
char *pIndexName;
db2Uint32 indexNameLen;
char *pPartitionName;

} db2gReorgIndexesAll;

db2Reorg API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter, pReorgStruct.

pReorgStruct
Input. A pointer to the db2ReorgStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2ReorgStruct data structure parameters

reorgType
Input. Specifies the type of reorganization. Valid values (defined in
db2ApiDf header file, located in the include directory) are:

DB2REORG_OBJ_TABLE_OFFLINE
Reorganize the table offline.

DB2REORG_OBJ_TABLE_INPLACE
Reorganize the table inplace.

DB2REORG_OBJ_INDEXESALL
Reorganize all indexes.

DB2REORG_OBJ_INDEX
Reorganize one index.

DB2REORG_RECLAIM_EXTENTS
Reorganize a multidimensional clustering (MDC) table to reclaim
empty extents for the table space.

reorgFlags
Input. Reorganization options. Valid values (defined in db2ApiDf header
file, located in the include directory) are:

DB2REORG_OPTION_NONE
Default action.

DB2REORG_LONGLOB
Reorganize long fields and lobs, used when
DB2REORG_OBJ_TABLE_OFFLINE is specified as the reorgType. If
DB2REORG_RESETDICTIONARY or
DB2REORG_KEEPDICTIONARY option is also specified, the
options apply to the XML storage object of the table in addition to
the table object.

DB2REORG_INDEXSCAN
Recluster utilizing index scan, used when
DB2REORG_OBJ_TABLE_OFFLINE is specified as the reorgType.

Chapter 31. Application programming interfaces (APIs) 861

DB2REORG_START_ONLINE
Start online reorganization, used when
DB2REORG_OBJ_TABLE_INPLACE is specified as the reorgType.

DB2REORG_PAUSE_ONLINE
Pause an existing online reorganization, used when
DB2REORG_OBJ_TABLE_INPLACE is specified as the reorgType.

DB2REORG_STOP_ONLINE
Stop an existing online reorganization, used when
DB2REORG_OBJ_TABLE_INPLACE is specified as the reorgType.

DB2REORG_RESUME_ONLINE
Resume a paused online reorganization, used when
DB2REORG_OBJ_TABLE_INPLACE is specified as the reorgType.

DB2REORG_NOTRUNCATE_ONLINE
Do not perform table truncation, used when
DB2REORG_OBJ_TABLE_INPLACE is specified as the reorgType.

DB2REORG_ALLOW_NONE
No read or write access to the table. This parameter is not
supported when DB2REORG_OBJ_TABLE_INPLACE is specified as
the reorgType.

DB2REORG_ALLOW_WRITE
Allow read and write access to the table. This parameter is not
supported when DB2REORG_OBJ_TABLE_OFFLINE is specified as
the reorgType.

DB2REORG_ALLOW_READ
Allow only read access to the table.

DB2REORG_CLEANUP_NONE
No clean up is required, used when
DB2REORG_OBJ_INDEXESALL or DB2REORG_OBJ_INDEX are
specified as the reorgType.

DB2REORG_CLEANUP_ALL
Clean up the committed pseudo deleted keys and committed
pseudo empty pages, used when DB2REORG_OBJ_INDEXESALL
or DB2REORG_OBJ_INDEX are specified as the reorgType.

DB2REORG_CLEANUP_PAGES
Clean up committed pseudo empty pages only, but do not clean up
pseudo deleted keys on pages that are not pseudo empty, used
when DB2REORG_OBJ_INDEXESALL or DB2REORG_OBJ_INDEX
are specified as the reorgType.

DB2REORG_CONVERT_NONE
No conversion is required, used when
DB2REORG_OBJ_INDEXESALL or DB2REORG_OBJ_INDEX are
specified as the reorgType.

DB2REORG_CONVERT
Convert to type 2 index, used when
DB2REORG_OBJ_INDEXESALL is specified as the reorgType.
Type-1 indexes are no longer supported and are converted to
type-2 indexes when the table is next accessed. As a result, this
value is deprecated and might be removed in a future release.

862 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

DB2REORG_RESET_DICTIONARY
If the DB2REORG_LONGLOB option is also specified,
DB2REORG_RESETDICTIONARY applies to the XML storage
object of the table also. If the COMPRESS attribute for the table is
YES then a new compression dictionary is built. All the rows
processed during reorganization are subject to compression using
this new dictionary. This dictionary replaces any previous
dictionary in the object. If the COMPRESS attribute for the table is
NO and the table object or the XML storage object does have an
existing compression dictionary then reorg processing will remove
the dictionary and all rows in the newly reorganized table will be
in non-compressed format. This parameter is only supported for
the DB2REORG_OBJ_TABLE_OFFLINE reorgType.

DB2REORG_KEEP_DICTIONARY
If DB2REORG_LONGLOB keyword is also specified,
DB2REORG_KEEPDICTIONARY applies to the table object and the
XML storage object of the table. If DB2REORG_LONGLOB is not
specified, the following applies only to the table object.

If the COMPRESS attribute for the table is YES and a dictionary
exists, it is kept. If the COMPRESS attribute for the table is YES
and a dictionary does not exist, one is built, as the option defaults
to DB2REORG_RESET_DICTIONARY in that case. All rows
processed by reorganization are subject to compression. If the
COMPRESS attribute for the table is NO, the dictionary will be
retained (if one existed), and all rows in the newly reorganized
table will be in non-compressed format. This parameter is only
supported for the DB2REORG_OBJ_TABLE_OFFLINE reorgType.

nodeListFlag
Input. Specifies which nodes to reorganize. Valid values (defined in
db2ApiDf header file, located in the include directory) are:

DB2REORG_NODE_LIST
Submit to all nodes in the nodelist array.

DB2REORG_ALL_NODES
Submit to all nodes in the database partition group.

DB2REORG_ALL_EXCEPT
Submit to all nodes except the ones specified by the nodelist
parameter.

numNodes
Input. Number of nodes in the nodelist array.

pNodeList
A pointer to the array of node numbers.

reorgObject
Input. Specifies the type of object to be reorganized.

db2ReorgObject union parameters

tableStruct
Specifies the options for a table reorganization.

indexesAllStruct
Specifies the options for an index reorganization.

Chapter 31. Application programming interfaces (APIs) 863

db2ReorgTable data structure parameters

pTableName
Input. Specifies the name of the table to reorganize.

pOrderByIndex
Input. Specifies the index to order the table by.

pSysTempSpace
Input. Specifies the system temporary table space where temporary objects
are created. The REORG command may expand rows in cases where a
column is added to a table (i.e. from ALTER TABLE ADD COLUMN) and
the rows were inserted before the column was added. For a nonpartitioned
table, this parameter must specify a table space with enough room to
create the new table object. A partitioned table is reorganized a single data
partition at a time. In this case, there must be enough free space in the
table space to hold the largest data partition of the table.

If this parameter is not specified for a nonpartitioned table the table space
the table resides in is used. If this parameter is not specified for a
partitioned table, the table space where each data partition is located is
used for temporary storage of that data partition. There must be enough
free space in each data partition’s table space to hold a copy of the data
partition.

pLongTempSpace
Input. Specifies the temporary table space to create long objects (LONG
VARCHAR and LOB columns) in during table reorganization. If the
pSysTempSpace parameter is not specified, this parameter is ignored. If
this parameter is not specified, but the pSysTempSpace parameter is
specified, then DB2 will create the long data objects in the table space
specified by the pSysTempSpace parameter, unless the page sizes differ.

When page sizes differ, if pSysTempSpace is specified, but this parameter
is not, DB2 will attempt to find an existing table space with a matching
page size to create the long objects in.

pPartitionName
Input. Specifies the name of the data partition to reorganize. Only
supported for the MDC RECLAIM option (SQL2222N).

db2ReorgIndexesAll data structure parameters

pTableName
Input. Specifies the name of the table for index reorganization. If
DB2REORG_OBJ_INDEX is specified as the reorgType, the pTableName
parameter is not required and can be NULL. However, if the pTableName
parameter is specified, it must be the table on which the index is defined.

pIndexName
Input. Specifies the name of the index to reorganize. This parameter is
used only when the reorgType parameter is set to a value of
DB2REORG_OBJ_INDEX otherwise set pIndexName parameter to NULL.

pPartitionName
Input. Specifies the name of the data partition whose indexes are to be
reorganized. Only supported for the MDC RECLAIM option (SQL2222N).

864 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

db2gReorgTable data structure specific parameters

tableNameLen
Input. Specifies the length in bytes of pTableName.

orderByIndexLen
Input. Specifies the length in byte of pOrderByIndex.

sysTempSpaceLen
Input. Specifies the length in bytes of pSysTempSpace.

longTempSpaceLen
Input. Specifies the length of the name stored in the pLongTempSpace

partitionNameLen
Input. Specifies the length, in bytes, of pPartitionName. Only supported
for the MDC RECLAIM option (SQL2222N).

pPartitionName
Input. Specifies the name of the data partition to reorganize. Only
supported for the MDC RECLAIM option (SQL2222N).

db2gReorgIndexesAll data structure specific parameters

tableNameLen
Input. Specifies the length in bytes of pTableName.

indexNameLen
Input. Specifies the length in bytes of the pIndexName parameter.

partitionNameLen
Input. Specifies the length, in bytes, of pPartitionName. Only supported
for the MDC RECLAIM option (SQL2222N).

pPartitionName
Input. Specifies the name of the data partition for the index. Only
supported for the MDC RECLAIM option (SQL2222N).

Usage notes
v Performance of table access, index scans, and the effectiveness of index page

prefetching can be adversely affected when the table data has been modified
many times, becoming fragmented and unclustered. Use REORGCHK to
determine whether a table or its indexes are candidates for reorganizing. All
work will be committed and all open cursors will be closed during reorg
processing. After reorganizing a table or its indexes, use db2Runstats to update
the statistics and sqlarbnd to rebind the packages that use this table.

v If the table data is distributed onto several nodes and the reorganization fails on
any of the affected nodes, then only the failing nodes will have the
reorganization rolled back. If table reorganization is not successful, temporary
files should not be deleted. The database manager uses these files to recover the
database.

v For table reorganization, if the name of an index is specified, the database
manager reorganizes the data according to the order in the index. To maximize
performance, specify an index that is often used in SQL queries. If the name of
an index is not specified, and if a clustering index exists, the data will be
ordered according to the clustering index.

v The PCTFREE value of a table determines the amount of free space designated
per page. If the value has not been set, the utility will fill up as much space as
possible on each page.

Chapter 31. Application programming interfaces (APIs) 865

v To complete a table space rollforward recovery following a table reorganization,
both data and LONG table spaces must be rollforward enabled.

v If the table contains LOB columns not defined with the COMPACT option, the
LOB DATA storage object can be significantly larger following table
reorganization. This can be a result of the order in which the rows were
reorganized, and the types of table spaces used (SMS/DMS).

v The following table illustrates the default table access chosen based on the type
of reorg and table:

Table 171. Default table access chosen based on the type of reorg and table

Type of reorg and applicable flags which can affect the
default table access Access mode chosen for each table type

reorgType reorgFlags (if applicable) Non-partitioned table Partitioned table

DB2REORG_OBJ_TABLE_
OFFLINE

DB2REORG_ALLOW_
READ

DB2REORG_ALLOW_
NONE

DB2REORG_OBJ_TABLE_
OFFLINE

DB2REORG_ALLOW_
READ

DB2REORG_ALLOW_
READ (*)

DB2REORG_OBJ_TABLE_
INPLACE

DB2REORG_ALLOW_
WRITE

N/A

DB2REORG_OBJ_
INDEXESALL

DB2REORG_ALLOW_
READ

DB2REORG_ALLOW_
NONE

DB2REORG_OBJ_
INDEXESALL

N/A DB2REORG_ALLOW_
READ

DB2REORG_OBJ_
INDEXESALL

DB2REORG_CLEANUP_
ALL,
DB2REORG_CLEANUP_
PAGES

DB2REORG_ALLOW_
READ

DB2REORG_ALLOW_
READ

DB2REORG_OBJ_INDEX N/A DB2REORG_ALLOW_
READ

DB2REORG_OBJ_INDEX DB2REORG_CLEANUP_
ALL,
DB2REORG_CLEANUP_
PAGES

N/A DB2REORG_ALLOW_
READ

(*) DB2REORG_ALLOW_READ if there are no nonpartitioned indexes; otherwise,
DB2REORG_ALLOW_NONEN/A: Not applicable at this time since it is not supported.

Note: Some access modes may not be supported on certain types of tables or
indexes. In these cases and where possible, the least restrictive access mode is
used. (The most restrictive access mode being DB2REORG_ALLOW_NONE,
followed by DB2REORG_ALLOW_READ, and then
DB2REORG_ALLOW_WRITE, which is the least restrictive). As support for
existing table or index types change, or new table or index types are provided,
the default can change from a more restrictive access mode to a less restrictive
mode. The least restrictive mode chosen for the default will not go beyond
DB2REORG_ALLOW_READ when the reorgType is not
DB2REORG_OBJ_TABLE_INPLACE. The default access mode is chosen when
none of the DB2REORG_ALLOW_NONE, DB2REORG_ALLOW_READ, or
DB2REORG_ALLOW_WRITE flags are specified.

v When reorganizing indexes, use the access option to allow other transactions
either read-only or read-write access to the table.

v If an index reorganization with allow read or allow write access fails because the
indexes need to be rebuilt, the reorganization will switch to allow no access and

866 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

then continue. A message will be written to both the administration notification
log and the diagnostics log about the change in the access mode. When
DB2REORG_OBJ_INDEX is specified for a partitioned table, indexes that need to
be rebuilt are rebuilt offline, then the specified index is reorganized (assuming
that it was not rebuilt). This reorganization uses the specified access mode (that
is, the access mode will not change during processing). A message will be
written to the administration notification log and the diagnostics log about the
indexes being rebuilt offline.

v For non-inplace table reorganization, if neither
DB2REORG_RESET_DICTIONARY or DB2REORG_KEEP_DICTIONARY is
specified, the default is DB2REORG_KEEP_DICTIONARY.

v If an index reorganization with no access fails, some or all indexes will not be
available and will be rebuilt on the next table access.

v This API cannot be used with:
– Views or an index that is based on an index extension.
– Declared temporary tables.
– Created temporary tables.

db2Restore - Restore a database or table space
Recreates a damaged or corrupted database that has been backed up using the
db2Backup API. The restored database is in the same state it was in when the
backup copy was made.

This utility can also:
v Restore to a database with a name different from the database name in the

backup image (in addition to being able to restore to a new database), the
exception being a snapshot restore where the backup image database name must
be the same.

v Restore DB2 databases that were created in the two previous releases.
v Restore from a table space level backup, or restore table spaces from within a

database backup image.

Scope

This API only affects the database partition from which it is called.

Authorization

To restore to an existing database, one of the following:
v sysadm

v sysctrl

v sysmaint

To restore to a new database, one of the following:
v sysadm

v sysctrl

Required connection

Database, to restore to an existing database. This API automatically establishes a
connection to the specified database and will release the connection when the
restore operation finishes.

Chapter 31. Application programming interfaces (APIs) 867

Instance and database, to restore to a new database. The instance attachment is
required to create the database.

For snapshot restore, instance and database connections are required.

To restore to a new database at an instance different from the current instance (as
defined by the value of the DB2INSTANCE environment variable), it is necessary
to first attach to the instance where the new database will reside.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Restore (
db2Uint32 versionNumber,
void * pDB2RestoreStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2RestoreStruct
{

char *piSourceDBAlias;
char *piTargetDBAlias;
char oApplicationId[SQLU_APPLID_LEN+1];
char *piTimestamp;
char *piTargetDBPath;
char *piReportFile;
struct db2TablespaceStruct *piTablespaceList;
struct db2MediaListStruct *piMediaList;
char *piUsername;
char *piPassword;
char *piNewLogPath;
void *piVendorOptions;
db2Uint32 iVendorOptionsSize;
db2Uint32 iParallelism;
db2Uint32 iBufferSize;
db2Uint32 iNumBuffers;
db2Uint32 iCallerAction;
db2Uint32 iOptions;
char *piComprLibrary;
void *piComprOptions;
db2Uint32 iComprOptionsSize;
char *piLogTarget;
struct db2StoragePathsStruct *piStoragePaths;
char *piRedirectScript;

} db2RestoreStruct;

typedef SQL_STRUCTURE db2TablespaceStruct
{

char **tablespaces;
db2Uint32 numTablespaces;

} db2TablespaceStruct;

typedef SQL_STRUCTURE db2MediaListStruct
{

char **locations;
db2Uint32 numLocations;
char locationType;

} db2MediaListStruct;

typedef SQL_STRUCTURE db2StoragePathsStruct
{

char **storagePaths;
db2Uint32 numStoragePaths;

868 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

} db2StoragePathsStruct;

SQL_API_RC SQL_API_FN
db2gRestore (

db2Uint32 versionNumber,
void * pDB2gRestoreStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gRestoreStruct
{

char *piSourceDBAlias;
db2Uint32 iSourceDBAliasLen;
char *piTargetDBAlias;
db2Uint32 iTargetDBAliasLen;
char *poApplicationId;
db2Uint32 iApplicationIdLen;
char *piTimestamp;
db2Uint32 iTimestampLen;
char *piTargetDBPath;
db2Uint32 iTargetDBPathLen;
char *piReportFile;
db2Uint32 iReportFileLen;
struct db2gTablespaceStruct *piTablespaceList;
struct db2gMediaListStruct *piMediaList;
char *piUsername;
db2Uint32 iUsernameLen;
char *piPassword;
db2Uint32 iPasswordLen;
char *piNewLogPath;
db2Uint32 iNewLogPathLen;
void *piVendorOptions;
db2Uint32 iVendorOptionsSize;
db2Uint32 iParallelism;
db2Uint32 iBufferSize;
db2Uint32 iNumBuffers;
db2Uint32 iCallerAction;
db2Uint32 iOptions;
char *piComprLibrary;
db2Uint32 iComprLibraryLen;
void *piComprOptions;
db2Uint32 iComprOptionsSize;
char *piLogTarget;
db2Uint32 iLogTargetLen;
struct db2gStoragePathsStruct *piStoragePaths;
char *piRedirectScript;
db2Uint32 iRedirectScriptLen;

} db2gRestoreStruct;

typedef SQL_STRUCTURE db2gTablespaceStruct
{

struct db2Char *tablespaces;
db2Uint32 numTablespaces;

} db2gTablespaceStruct;

typedef SQL_STRUCTURE db2gMediaListStruct
{

struct db2Char *locations;
db2Uint32 numLocations;
char locationType;

} db2gMediaListStruct;

typedef SQL_STRUCTURE db2gStoragePathsStruct
{

struct db2Char *storagePaths;
db2Uint32 numStoragePaths;

} db2gStoragePathsStruct;

Chapter 31. Application programming interfaces (APIs) 869

typedef SQL_STRUCTURE db2Char
{

char *pioData;
db2Uint32 iLength;
db2Uint32 oLength;

} db2Char;

db2Restore API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pDB2RestoreStruct.

pDB2RestoreStruct
Input. A pointer to the db2RestoreStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2RestoreStruct data structure parameters

piSourceDBAlias
Input. A string containing the database alias of the source database backup
image.

piTargetDBAlias
Input. A string containing the target database alias. If this parameter is
null, the value of the piSourceDBAlias parameter will be used.

oApplicationId
Output. The API will return a string identifying the agent servicing the
application. Can be used to obtain information about the progress of the
backup operation using the database monitor.

piTimestamp
Input. A string representing the time stamp of the backup image. This field
is optional if there is only one backup image in the source specified.

piTargetDBPath
Input. A string containing the relative or fully qualified name of the target
database directory on the server. Used if a new database is to be created
for the restored backup; otherwise not used.

piReportFile
Input. The file name, if specified, must be fully qualified.

Note: This parameter is obsolete, but still defined.

piTablespaceList
Input. List of table spaces to be restored. Used when restoring a subset of
table spaces from a database or table space backup image. For rebuild
cases, this can be an include list or exclude list of table spaces used to
rebuild your database. See the DB2TablespaceStruct structure. The
following restrictions apply:
v The database must be recoverable (for non-rebuild cases only); that is,

log retain or user exits must be enabled.
v The database being restored to must be the same database that was used

to create the backup image. That is, table spaces can not be added to a
database through the table space restore function.

v The rollforward utility will ensure that table spaces restored in a
partitioned database environment are synchronized with any other

870 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

database partition containing the same table spaces. If a table space
restore operation is requested and the piTablespaceList is NULL, the
restore utility will attempt to restore all of the table spaces in the backup
image.

v When restoring a table space that has been renamed since it was backed
up, the new table space name must be used in the restore command. If
the old table space name is used, it will not be found.

v In the case of rebuild, the list must be given for 3 of the 5 rebuild types:
DB2RESTORE_ALL_TBSP_IN_DB_EXC,
DB2RESTORE_ALL_TBSP_IN_IMG_EXC and
DB2RESTORE_ALL_TBSP_IN_LIST.

piMediaList
Input. Source media for the backup image.

For more information, see the db2MediaListStruct structure below.

piUsername
Input. A string containing the user name to be used when attempting a
connection. Can be NULL.

piPassword
Input. A string containing the password to be used with the user name.
Can be NULL.

piNewLogPath
Input. A string representing the path to be used for logging after the
restore has completed. If this field is null the default log path will be used.

piVendorOptions
Input. Used to pass information from the application to the vendor
functions. This data structure must be flat; that is, no level of indirection is
supported. Note that byte-reversal is not done, and the code page is not
checked for this data.

iVendorOptionsSize
Input. The length in bytes of the piVendorOptions parameter, which
cannot exceed 65535 bytes.

iParallelism
Input. Degree of parallelism (number of buffer manipulators). Minimum is
1. Maximum is 1024.

iBufferSize
Input. Backup buffer size in 4 KB allocation units (pages). Minimum is 8
units. The size entered for a restore must be equal to or an integer multiple
of the buffer size used to produce the backup image.

iNumBuffers
Input. Specifies number of restore buffers to be used.

iCallerAction
Input. Specifies action to be taken. Valid values (defined in db2ApiDf
header file, located in the include directory) are:
v DB2RESTORE_RESTORE - Start the restore operation.
v DB2RESTORE_NOINTERRUPT - Start the restore. Specifies that the

restore will run unattended, and that scenarios which normally require
user intervention will either be attempted without first returning to the

Chapter 31. Application programming interfaces (APIs) 871

caller, or will generate an error. Use this caller action, for example, if it is
known that all of the media required for the restore have been mounted,
and utility prompts are not desired.

v DB2RESTORE_CONTINUE - Continue the restore after the user has
performed some action requested by the utility (mount a new tape, for
example).

v DB2RESTORE_TERMINATE - Terminate the restore after the user has
failed to perform some action requested by the utility.

v DB2RESTORE_DEVICE_TERMINATE - Remove a particular device from
the list of devices used by restore. When a particular device has
exhausted its input, restore will return a warning to the caller. Call
restore again with this caller action to remove the device which
generated the warning from the list of devices being used.

v DB2RESTORE_PARM_CHK - Used to validate parameters without
performing a restore. This option does not terminate the database
connection after the call returns. After a successful return of this call, it
is expected that the user will issue another call to this API with the
iCallerAction parameter set to the value DB2RESTORE_CONTINUE to
continue with the restore.

v DB2RESTORE_PARM_CHK_ONLY - Used to validate parameters
without performing a restore. Before this call returns, the database
connection established by this call is terminated, and no subsequent call
is required.

v DB2RESTORE_TERMINATE_INCRE - Terminate an incremental restore
operation before completion.

v DB2RESTORE_RESTORE_STORDEF - Initial call. Table space container
redefinition requested.

v DB2RESTORE_STORDEF_NOINTERRUPT - Initial call. The restore will
run uninterrupted. Table space container redefinition requested.

iOptions
Input. A bitmap of restore properties. The options are to be combined
using the bitwise OR operator to produce a value for iOptions. Valid
values (defined in db2ApiDf header file, located in the include directory)
are:
v DB2RESTORE_OFFLINE - Perform an offline restore operation.
v DB2RESTORE_ONLINE - Perform an online restore operation.
v DB2RESTORE_DB - Restore all table spaces in the database. This must

be run offline.
v DB2RESTORE_TABLESPACE - Restore only the table spaces listed in the

piTablespaceList parameter from the backup image. This can be online
or offline.

v DB2RESTORE_HISTORY - Restore only the history file.
v DB2RESTORE_COMPR_LIB - Indicates that the compression library is to

be restored. This option cannot be used simultaneously with any other
type of restore process. If the object exists in the backup image, it will be
restored into the database directory. If the object does not exist in the
backup image, the restore operation will fail.

v DB2RESTORE_LOGS - Specifies that only the set of log files contained in
the backup image are to be restored. If the backup image does not
include log files, the restore operation will fail. If this option is specified,
the piLogTarget parameter must also be specified.

872 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v DB2RESTORE_INCREMENTAL - Perform a manual cumulative restore
operation.

v DB2RESTORE_AUTOMATIC - Perform an automatic cumulative
(incremental) restore operation. Must be specified with
DB2RESTORE_INCREMENTAL.

v DB2RESTORE_ROLLFWD - Place the database in rollforward pending
state after it has been successfully restored.

v DB2RESTORE_NOROLLFWD - Do not place the database in rollforward
pending state after it has been successfully restored. This cannot be
specified for backups taken online or for table space level restores. If,
following a successful restore, the database is in roll-forward pending
state, the db2Rollforward API must be called before the database can be
used.

v DB2RESTORE_GENERATE_SCRIPT - Create a script, that can be used to
perform a redirected restore. piRedirectScript must contain a valid file
name. The iCallerAction need to be either
DB2RESTORE_RESTORE_STORDEF or
DB2RESTORE_STORDEF_NOINTERRUPT.

The following values should be used for rebuild operations only:
v DB2RESTORE_ALL_TBSP_IN_DB - Restores the database with all the

table spaces known to the database at the time of the image being
restored. This rebuild overwrites a database if it already exists.

v DB2RESTORE_ALL_TBSP_IN_DB_EXC - Restores the database with all
the table spaces known to the database at the time of the image being
restored except for those specified in the list pointed to by the
piTablespaceList parameter. This rebuild overwrites a database if it
already exists.

v DB2RESTORE_ALL_TBSP_IN_IMG - Restores the database with only the
table spaces in the image being restored. This rebuild overwrites a
database if it already exists.

v DB2RESTORE_ALL_TBSP_IN_IMG_EXC - Restores the database with
only the table spaces in the image being restored except for those
specified in the list pointed to by the piTablespaceList parameter. This
rebuild overwrites a database if it already exists.

v DB2RESTORE_ALL_TBSP_IN_LIST - Restores the database with only the
table spaces specified in the list pointed to by the piTablespaceList
parameter. This rebuild overwrites a database if it already exists.

NOTE: If the backup image is of a recoverable database, then WITHOUT
ROLLING FORWARD (DB2RESTORE_NOROLLFWD) cannot be specified
with any of the above rebuild actions.

piComprLibrary
Input. Indicates the name of the external library to use to decompress the
backup image if the image is compressed. The name must be a
fully-qualified path that refers to a file on the server. If the value is a null
pointer or a pointer to an empty string, the DB2 database system attempts
to use the library stored in the image. If the backup is not compressed, the
value of this parameter will be ignored. If the specified library is not
found, the restore operation will fail.

piComprOptions
Input. This API parameter describes a block of binary data that will be
passed to the initialization routine in the decompression library. The DB2
database system passes this string directly from the client to the server, so

Chapter 31. Application programming interfaces (APIs) 873

any issues of byte-reversal or code-page conversion must be handled by
the compression library. If the first character of the data block is ’@’, the
remainder of the data is interpreted as the name of a file residing on the
server. The DB2 database system then replaces the contents of the
piComprOptions and iComprOptionsSize parameters with the contents
and size of this file and passes these new values to the initialization
routine.

iComprOptionsSize
Input. A four-byte unsigned integer that represents the size of the block of
data passed as piComprOptions. The iComprOptionsSize parameter
should be zero if and only if the piComprOptions value is a null pointer.

piLogTarget
Input. Specifies the absolute path of a directory on the database server that
must be used as the target directory for extracting log files from a backup
image. If this parameter is specified, any log files included in the backup
image are extracted into the target directory. If this parameter is not
specified, log files included in the backup image are not extracted. To
extract only the log files from the backup image, DB2RESTORE_LOGS
value should be passed to the iOptions parameter.

For snapshot restore, one of the following must be given:
v DB2RESTORE_LOGTARGET_INCLUDE ″INCLUDE″

Restore log directory volumes from the snapshot image. If this option is
specified and the backup image contains log directories, then they will
be restored. Existing log directories and log files on disk will be left
intact if they do not conflict with the log directories in the backup
image. If existing log directories on disk conflict with the log directories
in the backup image, then an error will be returned.

v DB2RESTORE_LOGTARGET_EXCLUDE ″EXCLUDE″

Do not restore log directory volumes. If this option is specified, then log
directories will not be restored from the backup image. Existing log
directories and log files on disk will be left intact if they do not conflict
with the log directories in the backup image. If a path belonging to the
database is restored and a log directory will implicitly be restored
because of this, thus causing a log directory to be overwritten, an error
will be returned.

v DB2RESTORE_LOGTARGET_INCFORCE ″INCLUDE FORCE″

Allow existing log directories to be overwritten and replaced when
restoring the snapshot image. If this option is specified and the backup
image contains log directories, then they will be restored. Existing log
directories and log files on disk will be left intact if they do not conflict
with the log directories in the backup image. If existing log directories
on disk conflict with the log directories in the backup image, then they
will be overwritten by those from the backup image.

v DB2RESTORE_LOGTARGET_EXCFORCE ″EXCLUDE FORCE″

Allow existing log directories to be overwritten and replaced when
restoring the snapshot image. If this option is specified, then log
directories will not be restored from the backup image. Existing log
directories and log files on disk will be left intact if they do not conflict
with the log directories in the backup image. If a path belonging to the
database is restored and a log directory will implicitly be restored
because of this, thus causing a log directory to be overwritten, the
restore will go ahead and overwrite the conflicting log directory.

874 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

where DB2RESTORE_LOGTARGET_EXCLUDE is the default.

piStoragePaths
Input. A structure containing fields that describe a list of storage paths
used for automatic storage. Set this to NULL if automatic storage is not
enabled for the database.

piRedirectScript
Input. The file name for the redirect restore script that will be created on
client side. The file name can be specified relative or absolute. The
iOptions field need to have the DB2RESTORE_GENERATE_SCRIPT bit set.

db2TablespaceStruct data structure specific parameters

tablespaces
Input. A pointer to the list of table spaces to be backed up. For C, the list is
null-terminated strings. In the generic case, it is a list of db2Char
structures.

numTablespaces
Input. Number of entries in the tablespaces parameter.

db2MediaListStruct data structure parameters

locations
Input. A pointer to the list of media locations. For C, the list is
null-terminated strings. In the generic case, it is a list of db2Char
structures.

numLocations
Input. The number of entries in the locations parameter.

locationType
Input. A character indicating the media type. Valid values (defined in
sqlutil header file, located in the include directory) are:

SQLU_LOCAL_MEDIA: ’L’
Local devices (tapes, disks, diskettes, or named pipes).

SQLU_XBSA_MEDIA: ’X’
XBSA interface.

SQLU_TSM_MEDIA: ’A’
Tivoli Storage Manager.

SQLU_OTHER_MEDIA: ’O’
Vendor library.

SQLU_SNAPSHOT_MEDIA: ’F’
Specifies that the data is to be restored from a snapshot backup.

You cannot use SQLU_SNAPSHOT_MEDIA with any of the
following:
v caller actions: DB2RESTORE_RESTORE_STORDEF,

DB2RESTORE_STORDEF_NOINTERRUPT,
DB2RESTORE_TERMINATE_INCRE

v DB2RESTORE_REPLACE_HISTORY
v DB2RESTORE_TABLESPACE
v DB2RESTORE_COMPR_LIB
v DB2RESTORE_INCREMENTAL
v DB2RESTORE_HISTORY

Chapter 31. Application programming interfaces (APIs) 875

v DB2RESTORE_LOGS
v piStoragePaths - it must be NULL or empty in order to use it
v piTargetDBPath

v piTargetDBAlias

v piNewLogPath

v iNumBuffers

v iBufferSize

v piRedirectScript

v iRedirectScriptLen

v iParallelism

v piComprLibrary, iComprLibraryLen, piComprOptions, or
iComprOptionsSize

v numLocations field of this structure must be 1 for snapshot
restore

Also, you cannot use the SNAPSHOT parameter with any restore
operation that involves a table space list.

The default behavior when restoring data from a snapshot backup
image will be a FULL DATABASE OFFLINE restore of all paths
that make up the database including all containers, local volume
directory, database path (DBPATH), primary log and mirror log
paths of the most recent snapshot backup if no timestamp is
provided (INCLUDE LOGS is the default for all snapshot backups
unless EXCLUDE LOGS is explicitly stated). If a timestamp is
provided then that snapshot backup image will be restored.

Integrated into IBM Data Server is a DB2 ACS API driver for the
following storage hardware:
v IBM TotalStorage SAN Volume Controller
v IBM Enterprise Storage Server Model 800
v IBM System Storage DS6000
v IBM System Storage DS8000
v IBM System Storage N Series
v NetApp V-series
v NetApp FAS

db2StoragePathsStruct data structure parameters

storagePaths
Input. An array of strings containing fully qualified names of storage paths
on the server that will be used for automatic storage table spaces. In a
multi-partition database the same storage paths are used on all database
partitions. If a multi-partition database is being restored with new storage
paths, then the catalog partition must be restored before any other
database partitions are restored.

numStoragePaths
Input. The number of storage paths in the storagePaths parameter of the
db2StoragePathsStruct structure.

876 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

db2gRestoreStruct data structure specific parameters

iSourceDBAliasLen
Input. Specifies the length in bytes of the piSourceDBAlias parameter.

iTargetDBAliasLen
Input. Specifies the length in bytes of the piTargetDBAlias parameter.

iApplicationIdLen
Input. Specifies the length in bytes of the poApplicationId parameter.
Should be equal to SQLU_APPLID_LEN + 1. The constant
SQLU_APPLID_LEN is defined in sqlutil header file that is located in the
include directory.

iTimestampLen
Input. Specifies the length in bytes of the piTimestamp parameter.

iTargetDBPathLen
Input. Specifies the length in bytes of the piTargetDBPath parameter.

iReportFileLen
Input. Specifies the length in bytes of the piReportFile parameter.

iUsernameLen
Input. Specifies the length in bytes of the piUsername parameter. Set to
zero if no user name is provided.

iPasswordLen
Input. Specifies the length in bytes of the piPassword parameter. Set to
zero if no password is provided.

iNewLogPathLen
Input. Specifies the length in bytes of the piNewLogPath parameter.

iLogTargetLen
Input. Specifies the length in bytes of the piLogTarget parameter.

iRedirectScriptLen
Input. A four-byte unsigned integer representing the length in bytes of the
name of the library specified in piRedirectScript. Set to zero if no script
name is given.

db2Char data structure parameters

pioData
A pointer to a character data buffer. If NULL, no data will be returned.

iLength
Input. The size of the pioData buffer.

oLength
Output. The number of valid characters of data in the pioData buffer.

Usage notes
v For offline restore, this utility connects to the database in exclusive mode. The

utility fails if any application, including the calling application, is already
connected to the database that is being restored. In addition, the request will fail
if the restore utility is being used to perform the restore, and any application,
including the calling application, is already connected to any database on the
same workstation. If the connect is successful, the API locks out other
applications until the restore is completed.

Chapter 31. Application programming interfaces (APIs) 877

v The current database configuration file will not be replaced by the backup copy
unless it is unusable. In this case, if the file is replaced, a warning message is
returned.

v The database or table space must have been backed up using the db2Backup
API.

v If the caller action value is DB2RESTORE_NOINTERRUPT, the restore continues
without prompting the application. If the caller action value is
DB2RESTORE_RESTORE, and the utility is restoring to an existing database, the
utility returns control to the application with a message requesting some user
interaction. After handling the user interaction, the application calls RESTORE
DATABASE again, with the caller action value set to indicate whether processing
is to continue (DB2RESTORE_CONTINUE) or terminate
(DB2RESTORE_TERMINATE) on the subsequent call. The utility finishes
processing, and returns an SQLCODE in the sqlca.

v To close a device when finished, set the caller action value to
DB2RESTORE_DEVICE_TERMINATE. If, for example, a user is restoring from 3
tape volumes using 2 tape devices, and one of the tapes has been restored, the
application obtains control from the API with an SQLCODE indicating end of
tape. The application can prompt the user to mount another tape, and if the user
indicates ″no more″, return to the API with caller action value
DB2RESTORE_DEVICE_TERMINATE to signal end of the media device. The
device driver will be terminated, but the rest of the devices involved in the
restore will continue to have their input processed until all segments of the
restore set have been restored (the number of segments in the restore set is
placed on the last media device during the backup process). This caller action
can be used with devices other than tape (vendor supported devices).

v To perform a parameter check before returning to the application, set caller
action value to DB2RESTORE_PARM_CHK.

v Set caller action value to DB2RESTORE_RESTORE_STORDEF when performing
a redirected restore; used in conjunction with the sqlbstsc API.

v If a system failure occurs during a critical stage of restoring a database, the user
will not be able to successfully connect to the database until a successful restore
is performed. This condition will be detected when the connection is attempted,
and an error message is returned. If the backed-up database is not configured
for roll-forward recovery, and there is a usable current configuration file with
either of these parameters enabled, following the restore, the user will be
required to either take a new backup of the database, or disable the log retain
and user exit parameters before connecting to the database.

v Although the restored database will not be dropped (unless restoring to a
nonexistent database), if the restore fails, it will not be usable.

v If the restore type specifies that the history file in the backup is to be restored, it
will be restored over the existing history file for the database, effectively erasing
any changes made to the history file after the backup that is being restored. If
this is undesirable, restore the history file to a new or test database so that its
contents can be viewed without destroying any updates that have taken place.

v If, at the time of the backup operation, the database was enabled for roll forward
recovery, the database can be brought to the state it was in prior to the
occurrence of the damage or corruption by issuing db2Rollforward after
successful execution of db2Restore. If the database is recoverable, it will default
to roll forward pending state after the completion of the restore.

v If the database backup image is taken offline, and the caller does not want to
roll forward the database after the restore, the DB2RESTORE_NOROLLFWD
option can be used for the restore. This results in the database being usable

878 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

immediately after the restore. If the backup image is taken online, the caller
must roll forward through the corresponding log records at the completion of
the restore.

v To restore log files from a backup image that contains them, the LOGTARGET
option must be specified, assuming a fully qualified and valid path exists on the
DB2 server. If those conditions are satisfied, the restore utility writes the log files
from the image to the target path. If LOGTARGET is specified during a
restoration of a backup image that does not include logs, the restore operation
returns an error before attempting to restore any table space data. A restore
operation also fails with an error if an invalid or read-only LOGTARGET path
is specified.

v If any log files exist in the LOGTARGET path at the time the RESTORE
DATABASE command is issued, a warning prompt is returned to user. This
warning is not returned if WITHOUT PROMPTING is specified.

v During a restore operation in which a LOGTARGET is specified, if any log file
cannot be extracted, the restore operation fails and returns an error. If any of the
log files being extracted from the backup image have the same name as an
existing file in the LOGTARGET path, the restore operation fails and an error is
returned. The restore utility does not overwrite existing log files in the
LOGTARGET directory.

v You can restore only the saved log set from a backup image. To indicate that
only the log files are to be restored, specify the LOGS option in addition to the
LOGTARGET path. Specifying the LOGS option without a LOGTARGET path
results in an error. If any problem occurs while restoring log files in this mode
the restore operation terminates immediately and an error is returned.

v During an automatic incremental restore operation, only the logs included in the
target image of the restore operation are retrieved from the backup image. Any
logs that are included in intermediate images that are referenced during the
incremental restore process are not extracted from those intermediate backup
images. During a manual incremental restore operation, the LOGTARGET path
should be specified only with the final restore command.

v If a backup is compressed, the DB2 database system detects this state and
automatically decompresses the data before restoring it. If a library is specified
on the db2Restore API, it is used for decompressing the data. If a library is not
specified on the db2Restore API, the library stored in the backup image is used.
And if there is no library stored in the backup image, the data cannot be
decompressed and the restore operation fails.

v If the compression library is being restored from a backup image (either
explicitly by specifying the DB2RESTORE_COMPR_LIB restore type or implicitly
by performing a normal restoration of a compressed backup), the restore
operation must be done on the same platform and operating system that the
backup was taken on. If the platforms are different, the restore operation will
fail, even when the DB2 database system normally supports cross-platform
restore operations involving the two systems.

v If restoring a database that is enabled for automatic storage, the storage paths
associated with the database can be redefined or they can remain as they were
previously. To keep the storage path definitions as is, do not provide any storage
paths as part of the restore operation. Otherwise, specify a new set of storage
paths to associate with the database. Automatic storage table spaces will be
automatically redirected to the new storage paths during the restore operation.

Snapshot restore

Chapter 31. Application programming interfaces (APIs) 879

Like a traditional (non-snapshot) restore, the default behavior when restoring a
snapshot backup image will be to NOT restore the log directories —
DB2RESTORE_LOGTARGET_EXCLUDE.

If the DB2 manager detects that any log directory’s group ID is shared among any
of the other paths to be restored, then an error is returned. In this case,
DB2RESTORE_LOGTARGET_INCLUDE or
DB2RESTORE_LOGTARGET_INCFORCE must be specified, as the log directories
must be part of the restore.

The DB2 manager will make all efforts to save existing log directories (primary,
mirror and overflow) before the restore of the paths from the backup image takes
place.

If you wish the log directories to be restored and the DB2 manager detects that the
preexisting log directories on disk conflict with the log directories in the backup
image, then the DB2 manager will report an error. In such a case, if you have
specified DB2RESTORE_LOGTARGET_INCFORCE, then this error will be
suppressed and the log directories from the image will be restored, deleting
whatever existed beforehand.

There is a special case in which the DB2RESTORE_LOGTARGET_EXCLUDE option
is specified and a log directory path resides under the database directory (for
example, /NODExxxx/SQLxxxxx/SQLOGDIR/). In this case, a restore would still
overwrite the log directory as the database path, and all of the contents beneath it,
would be restored. If the DB2 manager detects this scenario and log files exist in
this log directory, then an error will be reported. If you specify
DB2RESTORE_LOGTARGET_EXCLUDE, then this error will be suppressed and
those log directories from the backup image will overwrite the conflicting log
directories on disk.

db2Rollforward - Roll forward a database

Recovers a database by applying transactions recorded in the database log files.
Called after a database or a table space backup has been restored, or if any table
spaces have been taken offline by the database due to a media error. The database
must be recoverable (that is, either the logarchmeth1 database configuration
parameter or the logarchmeth2 database configuration parameter must be set to a
value other than OFF) before the database can be recovered with rollforward
recovery.

Scope

In a partitioned database environment, you must call this API from the catalog
partition. The partitions that are rolled forward depend on what you specify in the
TO clause:
v A point-in-time rollforward call affects all database partition servers that are

listed in the db2nodes.cfg file.
v An END OF LOGS rollforward call affects the database partition servers that are

specified in the ON DATABASE PARTITION clause. If no database partition
servers are specified, the rollforward call affects all database partition servers
that are listed in the db2nodes.cfg file.

v A database or table space rollforward call specifying end of backup affects all
database partitions servers that are listed in the db2nodes.cfg file.

880 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

If all of the transactions on a particular database partition server have already been
applied to the current database, and therefore none of those transactions need to be
rolled forward, that database partition server is ignored.

When you roll forward a partitioned table to a certain point in time, you must also
roll forward the table spaces that contain that table to the same point in time.
However, when you roll forward a table space, you do not have to roll forward all
the tables in that table space.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required connection

None. This API establishes a database connection.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Rollforward (
db2Uint32 versionNumber,
void * pDB2RollforwardStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2RollforwardStruct
{

struct db2RfwdInputStruct *piRfwdInput;
struct db2RfwdOutputStruct *poRfwdOutput;

} db2RollforwardStruct;

typedef SQL_STRUCTURE db2RfwdInputStruct
{

sqluint32 iVersion;
char *piDbAlias;
db2Uint32 iCallerAction;
char *piStopTime;
char *piUserName;
char *piPassword;
char *piOverflowLogPath;
db2Uint32 iNumChngLgOvrflw;
struct sqlurf_newlogpath *piChngLogOvrflw;
db2Uint32 iConnectMode;
struct sqlu_tablespace_bkrst_list *piTablespaceList;
db2int32 iAllNodeFlag;
db2int32 iNumNodes;
SQL_PDB_NODE_TYPE *piNodeList;
db2int32 iNumNodeInfo;
char *piDroppedTblID;
char *piExportDir;
db2Uint32 iRollforwardFlags;

} db2RfwdInputStruct;

typedef SQL_STRUCTURE db2RfwdOutputStruct
{

char *poApplicationId;

Chapter 31. Application programming interfaces (APIs) 881

sqlint32 *poNumReplies;
struct sqlurf_info *poNodeInfo;
db2Uint32 oRollforwardFlags;

} db2RfwdOutputStruct;

SQL_STRUCTURE sqlurf_newlogpath
{

SQL_PDB_NODE_TYPE nodenum;
unsigned short pathlen;
char logpath[SQL_LOGPATH_SZ+SQL_LOGFILE_NAME_SZ+1];

};

typedef SQL_STRUCTURE sqlu_tablespace_bkrst_list
{

sqlint32 num_entry;
struct sqlu_tablespace_entry *tablespace;

} sqlu_tablespace_bkrst_list;

typedef SQL_STRUCTURE sqlu_tablespace_entry
{

sqluint32 reserve_len;
char tablespace_entry[SQLU_MAX_TBS_NAME_LEN+1];
char filler[1];

} sqlu_tablespace_entry;

SQL_STRUCTURE sqlurf_info
{

SQL_PDB_NODE_TYPE nodenum;
sqlint32 state;
unsigned char nextarclog[SQLUM_ARCHIVE_FILE_LEN+1];
unsigned char firstarcdel[SQLUM_ARCHIVE_FILE_LEN+1];
unsigned char lastarcdel[SQLUM_ARCHIVE_FILE_LEN+1];
unsigned char lastcommit[SQLUM_TIMESTAMP_LEN+1];

};

SQL_API_RC SQL_API_FN
db2gRollforward (

db2Uint32 versionNumber,
void * pDB2gRollforwardStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gRollforwardStruct
{

struct db2gRfwdInputStruct *piRfwdInput;
struct db2RfwdOutputStruct *poRfwdOutput;

} db2gRollforwardStruct;

typedef SQL_STRUCTURE db2gRfwdInputStruct
{

db2Uint32 iDbAliasLen;
db2Uint32 iStopTimeLen;
db2Uint32 iUserNameLen;
db2Uint32 iPasswordLen;
db2Uint32 iOvrflwLogPathLen;
db2Uint32 iDroppedTblIDLen;
db2Uint32 iExportDirLen;
sqluint32 iVersion;
char *piDbAlias;
db2Uint32 iCallerAction;
char *piStopTime;
char *piUserName;
char *piPassword;
char *piOverflowLogPath;
db2Uint32 iNumChngLgOvrflw;
struct sqlurf_newlogpath *piChngLogOvrflw;
db2Uint32 iConnectMode;
struct sqlu_tablespace_bkrst_list *piTablespaceList;

882 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

db2int32 iAllNodeFlag;
db2int32 iNumNodes;
SQL_PDB_NODE_TYPE *piNodeList;
db2int32 iNumNodeInfo;
char *piDroppedTblID;
char *piExportDir;
db2Uint32 iRollforwardFlags;

} db2gRfwdInputStruct;

db2Rollforward API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter.

pDB2RollforwardStruct
Input. A pointer to the db2RollforwardStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2RollforwardStruct data structure parameters

piRfwdInput
Input. A pointer to the db2RfwdInputStruct structure.

poRfwdOutput
Output. A pointer to the db2RfwdOutputStruct structure.

db2RfwdInputStruct data structure parameters

iVersion
Input. The version ID of the rollforward parameters. It is defined as
SQLUM_RFWD_VERSION.

piDbAlias
Input. A string containing the database alias. This is the alias that is
cataloged in the system database directory.

iCallerAction
Input. Specifies action to be taken. Valid values (defined in db2ApiDf
header file, located in the include directory) are:

DB2ROLLFORWARD_ROLLFWD
Rollforward to the point in time specified by the piStopTime
parameter. For database rollforward, the database is left in
rollforward-pending state. For table space rollforward to a point in
time, the table spaces are left in rollforward-in-progress state.

DB2ROLLFORWARD_STOP
End roll-forward recovery by rolling forward the database using
available log files and then rolling it back. Uncommitted
transactions are backed out and the rollforward-pending state of
the database or table spaces is turned off. A synonym for this value
is DB2ROLLFORWARD_RFWD_COMPLETE.

DB2ROLLFORWARD_RFWD_STOP
Rollforward to the point in time specified by piStopTime, and end
roll-forward recovery. The rollforward-pending state of the
database or table spaces is turned off. A synonym for this value is
DB2ROLLFORWARD_RFWD_COMPLETE.

Chapter 31. Application programming interfaces (APIs) 883

DB2ROLLFORWARD_QUERY
Query values for nextarclog, firstarcdel, lastarcdel, and lastcommit.
Return database status and a node number.

DB2ROLLFORWARD_PARM_CHECK
Validate parameters without performing the roll forward.

DB2ROLLFORWARD_CANCEL
Cancel the rollforward operation that is currently running. The
database or table space are put in recovery pending state.

Note: This option cannot be used while the rollforward is actually
running. It can be used if the rollforward is paused (that is,
waiting for a STOP), or if a system failure occurred during the
rollforward. It should be used with caution.
Rolling databases forward may require a load recovery using tape
devices. The rollforward API will return with a warning message if
user intervention on a device is required. The API can be called
again with one of the following three caller actions:

DB2ROLLFORWARD_LOADREC_CONT
Continue using the device that generated the warning message (for
example, when a new tape has been mounted).

DB2ROLLFORWARD_DEVICE_TERM
Stop using the device that generated the warning message (for
example, when there are no more tapes).

DB2ROLLFORWARD_LOAD_REC_TERM
Terminate all devices being used by load recovery.

piStopTime
Input. A character string containing a time stamp in ISO format. Database
recovery will stop when this time stamp is exceeded. Specify
SQLUM_INFINITY_TIMESTAMP to roll forward as far as possible. May be
NULL for DB2ROLLFORWARD_QUERY,
DB2ROLLFORWARD_PARM_CHECK, and any of the load recovery
(DB2ROLLFORWARD_LOADREC_xxx) caller actions.

piUserName
Input. A string containing the user name of the application. Can be NULL.

piPassword
Input. A string containing the password of the supplied user name (if any).
Can be NULL.

piOverflowLogPath
Input. This parameter is used to specify an alternate log path to be used.
In addition to the active log files, archived log files need to be moved (by
the user) into the logpath before they can be used by this utility. This can
be a problem if the database does not have sufficient space in the logpath.
The overflow log path is provided for this reason. During roll-forward
recovery, the required log files are searched, first in the logpath, and then
in the overflow log path. The log files needed for table space roll-forward
recovery can be brought into either the logpath or the overflow log path. If
the caller does not specify an overflow log path, the default value is the
logpath. In a partitioned database environment, the overflow log path must
be a valid, fully qualified path; the default path is the default overflow log
path for each node. In a single-partition database environment, the
overflow log path can be relative if the server is local.

884 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

iNumChngLgOvrflw
Input. Partitioned database environments only. The number of changed
overflow log paths. These new log paths override the default overflow log
path for the specified database partition server only.

piChngLogOvrflw
Input. Partitioned database environments only. A pointer to a structure
containing the fully qualified names of changed overflow log paths. These
new log paths override the default overflow log path for the specified
database partition server only.

iConnectMode
Input. Valid values (defined in db2ApiDf header file, located in the include
directory) are:

DB2ROLLFORWARD_OFFLINE
Offline roll forward. This value must be specified for database
roll-forward recovery.

DB2ROLLFORWARD_ONLINE
Online roll forward.

piTablespaceList
Input. A pointer to a structure containing the names of the table spaces to
be rolled forward to the end-of-logs or to a specific point in time. If not
specified, the table spaces needing rollforward will be selected.

For partitioned tables, point in time (PIT) roll-forward of a table space
containing any piece of a partitioned table must also roll forward all of the
other table spaces in which that table resides to the same point in time.
Roll forward to the end of the logs for a single table space containing a
piece of a partitioned table is still allowed.

If a partitioned table has any attached, detached or dropped data
partitions, then PIT roll-forward must include all table spaces for these
data partitions as well. To determine if a partitioned table has any
attached, detached, or dropped data partitions, query the Status field of the
SYSDATAPARTITIONS catalog table.

Because a partitioned table can reside in multiple table spaces, it is
generally necessary to roll forward multiple table spaces. Data that is
recovered via dropped table recovery is written to the export directory
specified in the piExportDir parameter. It is possible to roll forward all
table spaces in one command, or do repeated roll-forward operations for
subsets of the table spaces involved. A warning will be written to the
notify log if the db2Rollforward API did not specify the full set of the table
spaces necessary to recover all the data for the table. A warning will be
returned to the user with full details of all partitions not recovered on the
command found in the administration notification log.

Allowing the roll forward of a subset of the table spaces makes it easier to
deal with cases where there is more data to be recovered than can fit into a
single export directory.

iAllNodeFlag
Input. Partitioned database environments only. Indicates whether the
rollforward operation is to be applied to all database partition servers
defined in db2nodes.cfg. Valid values are:

Chapter 31. Application programming interfaces (APIs) 885

DB2_NODE_LIST
Apply to database partition servers in a list that is passed in
piNodeList.

DB2_ALL_NODES
Apply to all database partition servers. This is the default value.
The piNodeList parameter must be set to NULL, if this value is
used.

DB2_ALL_EXCEPT
Apply to all database partition servers except those in a list that is
passed in piNodeList.

DB2_CAT_NODE_ONLY
Apply to the catalog partition only. The piNodeList parameter
must be set to NULL, if this value is used.

iNumNodes
Input. Specifies the number of database partition servers in the piNodeList
array.

piNodeList
Input. A pointer to an array of database partition server numbers on which
to perform the roll-forward recovery.

iNumNodeInfo
Input. Defines the size of the output parameter poNodeInfo, which must
be large enough to hold status information from each database partition
that is being rolled forward. In a single-partition database environment,
this parameter should be set to 1. The value of this parameter should be
the same as the number of database partition servers for which this API is
being called.

piDroppedTblID
Input. A string containing the ID of the dropped table whose recovery is
being attempted. For partitioned tables, the drop-table-id identifies the
table as a whole, so that all data partitions of the table can be recovered in
a single roll-forward command.

piExportDir
Input. The name of the directory into which the dropped table data will be
exported.

iRollforwardFlags
Input. Specifies the rollforward flags. Valid values (defined in db2ApiDf
header file, located in the include directory) are:

DB2ROLLFORWARD_EMPTY_FLAG
No flags specified.

DB2ROLLFORWARD_LOCAL_TIME
Allows the user to rollforward to a point in time that is the user’s
local time rather than GMT time. This makes it easier for users to
rollforward to a specific point in time on their local machines, and
eliminates potential user errors due to the translation of local to
GMT time.

DB2ROLLFORWARD_NO_RETRIEVE
Controls which log files to be rolled forward on the standby
machine by allowing the user to disable the retrieval of archived
logs. By controlling the log files to be rolled forward, one can
ensure that the standby machine is X hours behind the production

886 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

machine, to prevent the user affecting both systems. This option is
useful if the standby system does not have access to archive, for
example, if TSM is the archive, it only allows the original machine
to retrieve the files. It will also remove the possibility that the
standby system would retrieve an incomplete log file while the
production system is archiving a file and the standby system is
retrieving the same file.

DB2ROLLFORWARD_END_OF_BACKUP
Specifies that the database should be rolled forward to the
minimum recovery time.

db2RfwdOutputStruct data structure parameters

poApplicationId
Output. The application ID.

poNumReplies
Output. The number of replies received.

poNodeInfo
Output. Database partition reply information.

oRollforwardFlags
Output. Rollforward output flags. Valid values are:

DB2ROLLFORWARD_OUT_LOCAL_TIME
Indicates to user that the last committed transaction timestamp is
displayed in local time rather than UTC. Local time is based on the
server’s local time, not on the client’s. In a partitioned database
environment, local time is based on the catalog partition’s local
time.

sqlurf_newlogpath data structure parameters

nodenum
Input. The number of the database partition that this structure details.

pathlen
Input. The total length of the logpath field.

logpath
Input. A fully qualified path to be used for a specific node for the
rollforward operation.

sqlu_tablespace_bkrst_list data structure parameters

num_entry
Input. The number of structures contained in the list pointed to by the
table space parameter.

tablespace
Input. A pointer to a list of sqlu_tablespace_entry structures.

sqlu_tablespace_entry data structure parameters

reserve_len
Input. Specifies the length in bytes of the tablespace_entry parameter.

tablespace_entry
Input. The name of the table space to rollforward.

filler Filler used for proper alignment of data structure in memory.

Chapter 31. Application programming interfaces (APIs) 887

sqlurf_info data structure parameters

nodenum
Output. The number of the database partition that this structure contains
information for.

state Output. The current state of the database or table spaces that were
included in the rollforward on a database partition.

nextarclog
Output. If the rollforward has completed, this field will be empty. If the
rollforward has not yet completed, this will be the name of the next log file
which will be processed for the rollforward.

firstarcdel
Output. The first log file replayed by the rollforward.

lastarcdel
Output. The last log file replayed by the rollforward.

lastcommit
Output. The time of the last committed transaction.

db2gRfwdInputStruct data structure specific parameters

iDbAliasLen
Input. Specifies the length in bytes of the database alias.

iStopTimeLen
Input. Specifies the length in bytes of the stop time parameter. Set to zero
if no stop time is provided.

iUserNameLen
Input. Specifies the length in bytes of the user name. Set to zero if no user
name is provided.

iPasswordLen
Input. Specifies the length in bytes of the password. Set to zero if no
password is provided.

iOverflowLogPathLen
Input. Specifies the length in bytes of the overflow log path. Set to zero if
no overflow log path is provided.

iDroppedTblIDLen
Input. Specifies the length in bytes of the dropped table ID
(piDroppedTblID parameter). Set to zero if no dropped table ID is
provided.

iExportDirLen
Input. Specifies the length in bytes of the dropped table export directory
(piExportDir parameter). Set to zero if no dropped table export directory is
provided.

Usage notes

The database manager uses the information stored in the archived and the active
log files to reconstruct the transactions performed on the database since its last
backup.

The action performed when this API is called depends on the rollforward_pending
flag of the database prior to the call. This can be queried using db2CfgGet - Get

888 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Configuration Parameters. The rollforward_pending flag is set to DATABASE if the
database is in roll-forward pending state. It is set to TABLESPACE if one or more
table spaces are in SQLB_ROLLFORWARD_PENDING or
SQLB_ROLLFORWARD_IN_PROGRESS state. The rollforward_pending flag is set
to NO if neither the database nor any of the table spaces needs to be rolled
forward.

If the database is in roll-forward pending state when this API is called, the
database will be rolled forward. Table spaces are returned to normal state after a
successful database roll-forward, unless an abnormal state causes one or more table
spaces to go offline. If the rollforward_pending flag is set to TABLESPACE, only
those table spaces that are in roll-forward pending state, or those table spaces
requested by name, will be rolled forward.

Note: If table space rollforward terminates abnormally, table spaces that were
being rolled forward will be put in SQLB_ROLLFORWARD_IN_PROGRESS state.
In the next invocation of ROLLFORWARD DATABASE, only those table spaces in
SQLB_ROLLFORWARD_IN_PROGRESS state will be processed. If the set of
selected table space names does not include all table spaces that are in
SQLB_ROLLFORWARD_IN_PROGRESS state, the table spaces that are not
required will be put into SQLB_RESTORE_PENDING state.

If the database is not in roll-forward pending state and no point in time is
specified, any table spaces that are in rollforward-in-progress state will be rolled
forward to the end of logs. If no table spaces are in rollforward-in-progress state,
any table spaces that are in rollforward pending state will be rolled forward to the
end of logs.

This API reads the log files, beginning with the log file that is matched with the
backup image. The name of this log file can be determined by calling this API with
a caller action of DB2ROLLFORWARD_QUERY before rolling forward any log
files.

The transactions contained in the log files are reapplied to the database. The log is
processed as far forward in time as information is available, or until the time
specified by the stop time parameter.

Recovery stops when any one of the following events occurs:
v No more log files are found
v A time stamp in the log file exceeds the completion time stamp specified by the

stop time parameter
v An error occurs while reading the log file.

Some transactions might not be recovered. The value returned in lastcommit
indicates the time stamp of the last committed transaction that was applied to the
database.

If the need for database recovery was caused by application or human error, the
user may want to provide a time stamp value in piStopTime, indicating that
recovery should be stopped before the time of the error. This applies only to full
database roll-forward recovery, and to table space rollforward to a point in time. It
also permits recovery to be stopped before a log read error occurs, determined
during an earlier failed attempt to recover.

Chapter 31. Application programming interfaces (APIs) 889

When the rollforward_recovery flag is set to DATABASE, the database is not
available for use until roll-forward recovery is terminated. Termination is
accomplished by calling the API with a caller action of DB2ROLLFORWARD_STOP
or DB2ROLLFORWARD_RFWRD_STOP to bring the database out of roll-forward
pending state. If the rollforward_recovery flag is TABLESPACE, the database is
available for use. However, the table spaces in SQLB_ROLLFORWARD_PENDING
and SQLB_ROLLFORWARD_IN_PROGRESS states will not be available until the
API is called to perform table space roll-forward recovery. If rolling forward table
spaces to a point in time, the table spaces are placed in backup pending state after
a successful rollforward.

When the RollforwardFlags option is set to DB2ROLLFORWARD_LOCAL_TIME,
all messages returned to the user will also be in local time. All times are converted
on the server, and on the catalog partition, if it is a partitioned database
environment. The timestamp string is converted to GMT on the server, so the time
is local to the server’s time zone, not the client’s. If the client is in one time zone
and the server in another, the server’s local time should be used. This is different
from the local time option from the Control Center, which is local to the client. If
the timestamp string is close to the time change of the clock due to daylight
savings, it is important to know if the stop time is before or after the clock change,
and specify it correctly.

db2SetWriteForDB - Suspend or resume I/O writes for
database

Sets the database to be I/O write suspended, or resumes I/O writes to disk. I/O
writes must be suspended for a database before a split mirror can be taken. To
avoid potential problems, keep the same connection to do the write suspension
and resumption.

Scope

This API only affects the database partition on which it is executed.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

Database

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2SetWriteForDB (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

890 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

typedef struct db2SetWriteDbStruct
{

db2int32 iOption;
char *piTablespaceNames;

} db2SetWriteDbStruct;

db2SetWriteForDB API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2SetWriteDbStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2SetWriteDbStruct data structure parameters

iOption
Input. Specifies the action. Valid values are:

- DB2_DB_SUSPEND_WRITE
Suspends I/O write to disk.

- DB2_DB_RESUME_WRITE
Resumes I/O write to disk.

piTablespaceNames
Input. Reserved for future use.

sqlabndx - Bind application program to create a package

Invokes the bind utility, which prepares SQL statements stored in the bind file
generated by the precompiler, and creates a package that is stored in the database.

Scope

This API can be called from any database partition server in db2nodes.cfg. It
updates the database catalogs on the catalog partition. Its effects are visible to all
database partition servers.

Authorization

One of the following authorizations:
v dbadm authority
v If EXPLAIN ONLY is specified, EXPLAIN authority or an authority that

implicitly includes EXPLAIN is sufficient.
v If a package does not exist, BINDADD authority and:

– If the schema name of the package does not exist, IMPLICIT_SCHEMA
authority on the database.

– If the schema name of the package does exist, CREATEIN privilege on the
schema.

v If the package exists, one of the following privileges:
– ALTERIN privilege on the schema
– BIND privilege on the package

Chapter 31. Application programming interfaces (APIs) 891

|
|

In addition, if capturing explain information using the EXPLAIN or the
EXPLSNAP clause, one of the following authorizations is required:
v INSERT privilege on the explain tables
v DATAACCESS authority

The user also needs all privileges required to compile any static SQL statements in
the application. Privileges granted to groups are not used for authorization
checking of static statements.

Required connection

Database

API include file
sql.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlabndx (
_SQLOLDCHAR * pBindFileName,
_SQLOLDCHAR * pMsgFileName,
struct sqlopt * pBindOptions,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgbndx (

unsigned short MsgFileNameLen,
unsigned short BindFileNameLen,
struct sqlca * pSqlca,
struct sqlopt * pBindOptions,
_SQLOLDCHAR * pMsgFileName,
_SQLOLDCHAR * pBindFileName);

sqlabndx API parameters

pBindFileName

Input. A string containing the name of the bind file, or the name of a file
containing a list of bind file names. The bind file names must contain the
extension .bnd. A path for these files can be specified.

Precede the name of a bind list file with the at sign (@). For example, a
fully qualified bind list file name might be:
/u/user1/bnd/@all.lst

The bind list file should contain one or more bind file names, and must
have the extension .lst.

Precede all but the first bind file name with a plus symbol (+). The bind
file names might be on one or more lines. For example, the bind list file
all.lst might contain:
mybind1.bnd+mybind2.bnd+
mybind3.bnd+
mybind4.bnd

Path specifications on bind file names in the list file can be used. If no path
is specified, the database manager takes path information from the bind
list file.

pMsgFileName
Input. A string containing the destination for error, warning, and

892 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

informational messages. Can be the path and the name of an operating
system file, or a standard device. If a file already exists, it is overwritten. If
it does not exist, a file is created.

pBindOptions
Input. A structure used to pass bind options to the API. For more
information about this structure, see SQLOPT.

pSqlca
Output. A pointer to the sqlca structure.

sqlgbndx API-specific parameters

pMsgFileName
Input. A string containing the destination for error, warning, and
informational messages. Can be the path and the name of an operating
system file, or a standard device. If a file already exists, it is overwritten. If
it does not exist, a file is created.

BindFileNameLen
Input. Length in bytes of the pBindFileName parameter.

Usage notes

Binding can be done as part of the precompile process for an application program
source file, or as a separate step at a later time. Use BIND when binding is
performed as a separate process.

The name used to create the package is stored in the bind file, and is based on the
source file name from which it was generated (existing paths or extensions are
discarded). For example, a precompiled source file called myapp.sqc generates a
default bind file called myapp.bnd and a default package name of MYAPP.
(However, the bind file name and the package name can be overridden at
precompile time by using the SQL_BIND_OPT and the SQL_PKG_OPT options of
sqlaprep.)

BIND executes under the transaction that the user has started. After performing
the bind, BIND issues a COMMIT (if bind is successful) or a ROLLBACK (if bind
is unsuccessful) operation to terminate the current transaction and start another
one.

Binding halts if a fatal error or more than 100 errors occur. If a fatal error occurs
during binding, BIND stops binding, attempts to close all files, and discards the
package.

Binding application programs have prerequisite requirements and restrictions
beyond the scope of this manual. For example, an application cannot be bound
from a Version 8 client to a Version 8 server, and then executed against a Version 7
server.

The Bind option types and values are defined in sql.h.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

Chapter 31. Application programming interfaces (APIs) 893

sqlbftpq - Fetch the query data for rows in a table space

Fetches a specified number of rows of table space query data, each row consisting
of data for a table space.

Important: This command or API has been deprecated and might be removed in a
future release. You can use the MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions instead which return more information.
For more information, see the “LIST TABLESPACES and LIST TABLESPACE
CONTAINERS commands have been deprecated” topic in the What’s New for DB2
Version 9.7 book.

Scope

In a partitioned database environment, only the table spaces on the current
database partition are listed.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon
v dbadm
v load

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlbftpq (
struct sqlca * pSqlca,
sqluint32 MaxTablespaces,
struct SQLB_TBSPQRY_DATA * pTablespaceData,
sqluint32 * pNumTablespaces);

SQL_API_RC SQL_API_FN
sqlgftpq (
struct sqlca * pSqlca,
sqluint32 MaxTablespaces,
struct SQLB_TBSPQRY_DATA * pTablespaceData,
sqluint32 * pNumTablespaces);

sqlbftpq API parameters

pSqlca
Output. A pointer to the sqlca structure.

MaxTablespaces
Input. The maximum number of rows of data that the user allocated
output area (pointed to by pTablespaceData) can hold.

894 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

|
|
|
|
|
|

pTablespaceData
Input and output. Pointer to the output area, a structure for query data.
For more information about this structure, see SQLB-TBSPQRY-DATA. The
caller of this API must:
v Allocate space for MaxTablespaces of these structures
v Initialize the structures
v Set TBSPQVER in the first structure to SQLB_TBSPQRY_DATA_ID
v Set pTablespaceData to point to this space. The API will use this space to

return the table space data.

pNumTablespaces
Output. Number of rows of output returned.

Usage notes

The user is responsible for allocating and freeing the memory pointed to by the
pTablespaceData parameter. This API can only be used after a successful sqlbotsq
call. It can be invoked repeatedly to fetch the list generated by sqlbotsq.

sqlbmtsq - Get the query data for all table spaces

Provides a one-call interface to the table space query data. The query data for all
table spaces in the database is returned in an array.

Important: This command or API has been deprecated and might be removed in a
future release. You can use the MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions instead which return more information.
For more information, see the “LIST TABLESPACES and LIST TABLESPACE
CONTAINERS commands have been deprecated” topic in the What’s New for DB2
Version 9.7 book.

Scope

In a partitioned database environment, only the table spaces on the current
database partition are listed.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon
v dbadm
v load

Required connection

Database

API include file
sqlutil.h

Chapter 31. Application programming interfaces (APIs) 895

|
|
|
|
|
|

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlbmtsq (
struct sqlca * pSqlca,
sqluint32 * pNumTablespaces,
struct SQLB_TBSPQRY_DATA *** pppTablespaceData,
sqluint32 reserved1,
sqluint32 reserved2);

SQL_API_RC SQL_API_FN
sqlgmtsq (
struct sqlca * pSqlca,
sqluint32 * pNumTablespaces,
struct SQLB_TBSPQRY_DATA *** pppTablespaceData,
sqluint32 reserved1,
sqluint32 reserved2);

sqlbmtsq API parameters

pSqlca
Output. A pointer to the sqlca structure.

pNumTablespaces
Output. The total number of table spaces in the connected database.

pppTablespaceData
Output. The caller supplies the API with the address of a pointer. The
space for the table space query data is allocated by the API, and a pointer
to that space is returned to the caller. On return from the call, the pointer
points to an array of SQLB_TBSPQRY_DATA pointers to the complete set
of table space query data.

reserved1
Input. Always SQLB_RESERVED1.

reserved2
Input. Always SQLB_RESERVED2.

Usage notes

This API uses the lower level services, namely:
v sqlbotsq
v sqlbftpq
v sqlbctsq

to get all of the table space query data at once.

If sufficient memory is available, this function returns the number of table spaces,
and a pointer to the memory location of the table space query data. It is the user’s
responsibility to free this memory with a call to sqlefmem.

If sufficient memory is not available, this function simply returns the number of
table spaces, and no memory is allocated. If this should happen, use sqlbotsq,
sqlbftpq, and sqlbctsq, to fetch less than the whole list at once.

sqlbotcq - Open a table space container query

Prepares for a table space container query operation, and returns the number of
containers currently in the table space.

896 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon
v dbadm

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlbotcq (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
sqluint32 * pNumContainers);

SQL_API_RC SQL_API_FN
sqlgotcq (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
sqluint32 * pNumContainers);

sqlbotcq API parameters

pSqlca
Output. A pointer to the sqlca structure.

TablespaceId
Input. ID of the table space for which container data is desired. If the
special identifier SQLB_ALL_TABLESPACES (in sqlutil.h) is specified, a
complete list of containers for the entire database is produced.

pNumContainers
Output. The number of containers in the specified table space.

Usage notes

This API is normally followed by one or more calls to sqlbftcq, and then by one
call to sqlbctcq.

An application can use the following APIs to fetch information about containers in
use by table spaces:
v sqlbtcq

Fetches a complete list of container information. The API allocates the space
required to hold the information for all the containers, and returns a pointer to
this information. Use this API to scan the list of containers for specific
information. Using this API is identical to calling the three APIs below (sqlbotcq,
sqlbftcq, sqlbctcq), except that this API automatically allocates the memory for
the output information. A call to this API must be followed by a call to
sqlefmem to free the memory.

Chapter 31. Application programming interfaces (APIs) 897

v sqlbotcq
v sqlbftcq
v sqlbctcq

These three APIs function like an SQL cursor, in that they use the
OPEN/FETCH/CLOSE paradigm. The caller must provide the output area for
the fetch. Unlike an SQL cursor, only one table space container query can be
active at a time. Use this set of APIs to scan the list of table space containers for
specific information. These APIs allows the user to control the memory
requirements of an application (compared with sqlbtcq).

When sqlbotcq is called, a snapshot of the current container information is formed
in the agent servicing the application. If the application issues a second table space
container query call (sqlbtcq or sqlbotcq), this snapshot is replaced with refreshed
information.

No locking is performed, so the information in the buffer may not reflect changes
made by another application after the snapshot was generated. The information is
not part of a transaction.

There is one snapshot buffer for table space queries and another for table space
container queries. These buffers are independent of one another.

sqlbstpq - Get information about a single table space

Retrieves information about a single currently defined table space.

Important: This command or API has been deprecated and might be removed in a
future release. You can use the MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions instead which return more information.
For more information, see the “LIST TABLESPACES and LIST TABLESPACE
CONTAINERS commands have been deprecated” topic in the What’s New for DB2
Version 9.7 book.

Scope

In a partitioned database environment, only the table spaces on the current
database partition are listed.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon
v dbadm
v load

Required connection

Database

898 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

|
|
|
|
|
|

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlbstpq (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
struct SQLB_TBSPQRY_DATA * pTablespaceData,
sqluint32 reserved);

SQL_API_RC SQL_API_FN
sqlgstpq (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
struct SQLB_TBSPQRY_DATA * pTablespaceData,
sqluint32 reserved);

sqlbstpq API parameters

pSqlca
Output. A pointer to the sqlca structure.

TablespaceId
Input. Identifier for the table space which is to be queried.

pTablespaceData
Input and output. Pointer to a user-supplied SQLB_TBSPQRY_DATA
structure where the table space information will be placed upon return.
The caller of this API must initialize the structure and set TBSPQVER to
SQLB_TBSPQRY_DATA_ID (in sqlutil).

reserved
Input. Always SQLB_RESERVED1.

Usage notes

This API retrieves information about a single table space if the table space
identifier to be queried is known. This API provides an alternative to the more
expensive OPEN TABLESPACE QUERY, FETCH, and CLOSE combination of APIs,
which must be used to scan for the desired table space when the table space
identifier is not known in advance. The table space IDs can be found in the system
catalogs. No agent snapshot is taken; since there is only one entry to return, it is
returned directly.

sqle_activate_db - Activate database

Activates the specified database and starts up all necessary database services, so
that the database is available for connection and use by any application.

Scope

This API activates the specified database on all database partition servers. If one or
more of these database partition servers encounters an error during activation of
the database, a warning is returned. The database remains activated on all
database partition servers on which the API has succeeded.

Chapter 31. Application programming interfaces (APIs) 899

Note: If it is the coordinator partition or the catalog partition that encounters the
error, the API returns a negative sqlcode, and the database will not be activated on
any database partition server.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

None. Applications invoking ACTIVATE DATABASE cannot have any existing
database connections.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqle_activate_db (
char * pDbAlias,
char * pUserName,
char * pPassword,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlg_activate_db (

unsigned short DbAliasLen,
unsigned short UserNameLen,
unsigned short PasswordLen,
char * pDbAlias,
char * pUserName,
char * pPassword,
void * pReserved,
struct sqlca * pSqlca);

sqle_activate_db API parameters

pDbAlias
Input. Pointer to the database alias name.

pUserName
Input. Pointer to the user ID starting the database. Can be NULL.

pPassword
Input. Pointer to the password for the user name. Can be NULL, but must
be specified if a user name is specified.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure.

900 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

sqlg_activate_db API-specific parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length of the database
alias name in bytes.

UserNameLen
Input. A 2-byte unsigned integer representing the length of the user name
in bytes. Set to zero if no user name is supplied.

PasswordLen
Input. A 2-byte unsigned integer representing the length of the password
in bytes. Set to zero if no password is supplied.

Usage notes

If a database has not been started, and a DB2 CONNECT TO (or an implicit
connect) is encountered in an application, the application must wait while the
database manager starts up the required database. In such cases, this first
application spends time on database initialization before it can do any work.
However, once the first application has started a database, other applications can
simply connect and use it.

Database administrators can use ACTIVATE DATABASE to start up selected
databases. This eliminates any application time spent on database initialization.

Databases initialized by ACTIVATE DATABASE can only be shut down by
sqle_deactivate_db, or by db2InstanceStop. To obtain a list of activated databases,
call db2GetSnapshot.

If a database was started by a DB2 CONNECT TO (or an implicit connect) and
subsequently an ACTIVATE DATABASE is issued for that same database, then
DEACTIVATE DATABASE must be used to shut down that database.

ACTIVATE DATABASE behaves in a similar manner to a DB2 CONNECT TO (or
an implicit connect) when working with a database requiring a restart (for
example, database in an inconsistent state). The database will be restarted before it
can be initialized by ACTIVATE DATABASE.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqle_deactivate_db - Deactivate database

Stops the specified database.

Scope

In a partitioned database environment, this API deactivates the specified database
on all database partition servers. If one or more of these database partition servers
encounters an error, a warning is returned. The database will be successfully
deactivated on some database partition servers, but may remain activated on the
database partition servers encountering the error.

Chapter 31. Application programming interfaces (APIs) 901

Note: If it is the coordinator partition or the catalog partition that encounters the
error, the API returns a negative sqlcode, and the database will not be reactivated
on any database partition server on which it was deactivated.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

None. Applications invoking DEACTIVATE DATABASE cannot have any existing
database connections.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqle_deactivate_db (
char * pDbAlias,
char * pUserName,
char * pPassword,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlg_deactivate_db (

unsigned short DbAliasLen,
unsigned short UserNameLen,
unsigned short PasswordLen,
char * pDbAlias,
char * pUserName,
char * pPassword,
void * pReserved,
struct sqlca * pSqlca);

sqle_deactivate_db API parameters

pDbAlias
Input. Pointer to the database alias name.

pUserName
Input. Pointer to the user ID stopping the database. Can be NULL.

pPassword
Input. Pointer to the password for the user name. Can be NULL, but must
be specified if a user name is specified.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure.

902 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

sqlg_deactivate_db API-specific parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length of the database
alias name in bytes.

UserNameLen
Input. A 2-byte unsigned integer representing the length of the user name
in bytes. Set to zero if no user name is supplied.

PasswordLen
Input. A 2-byte unsigned integer representing the length of the password
in bytes. Set to zero if no password is supplied.

Usage notes

Databases initialized by ACTIVATE DATABASE can only be shut down by
DEACTIVATE DATABASE. db2InstanceStop automatically stops all activated
databases before stopping the database manager. If a database was initialized by
ACTIVATE DATABASE, the last DB2 CONNECT RESET statement (counter equal
0) will not shut down the database; DEACTIVATE DATABASE must be used.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqleaddn - Add a database partition to the partitioned
database environment

Adds a database partition to a database partition server.

Scope

This API only affects the database partition server on which it is executed.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleaddn (
void * pAddNodeOptions,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN

Chapter 31. Application programming interfaces (APIs) 903

sqlgaddn (
unsigned short addnOptionsLen,
struct sqlca * pSqlca,
void * pAddNodeOptions);

sqleaddn API parameters

pAddNodeOptions
Input. A pointer to the optional sqle_addn_options structure. This structure
is used to specify the source database partition server, if any, of the system
temporary table space definitions for all database partitions to be created.
If not specified (that is, a NULL pointer is specified), the system temporary
table space definitions will be the same as those for the catalog partition.

pSqlca
Output. A pointer to the sqlca structure.

sqlgaddn API-specific parameters

addnOptionsLen
Input. A 2-byte unsigned integer representing the length of the optional
sqle_addn_options structure in bytes.

Usage notes

This API should only be used if a database partition server is added to an
environment that has one database and that database is not cataloged at the time
of the add partition operation. In this situation, because the database is not
cataloged, the add partition operation does not recognize the database, and does
not create a database partition for the database on the new database partition
server. Any attempt to connect to the database partition on the new database
partition server results in an error. The database must first be cataloged before the
sqleaddn API can be used to create the database partition for the database on the
new database partition server.

This API should not be used if the environment has more than one database and at
least one of the databases is cataloged at the time of the add partition operation. In
this situation, use the sqlecran API to create a database partition for each database
that was not cataloged at the time of the add partition operation. Each uncataloged
database must first be cataloged before the sqlecran API can be used to create the
database partition for the database on the new database partition server.

Before adding a new database partition, ensure that there is sufficient storage for
the containers that must be created.

The add node operation creates an empty database partition on the new database
partition server for every database that exists in the instance. The configuration
parameters for the new database partitions are set to the default value.

Note: Any uncataloged database is not recognized when adding a new database
partition. The uncataloged database will not be present on the new database
partition. An attempt to connect to the database on the new database partition
returns the error message SQL1013N.

If an add node operation fails while creating a database partition locally, it enters a
clean-up phase, in which it locally drops all databases that have been created. This
means that the database partitions are removed only from the database partition
server being added (that is, the local database partition server). Existing database

904 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

partitions remain unaffected on all other database partition servers. If this fails, no
further clean up is done, and an error is returned.

The database partitions on the new database partition server cannot be used to
contain user data until after the ALTER DATABASE PARTITION GROUP statement
has been used to add the database partition server to a database partition group.

This API will fail if a create database or a drop database operation is in progress.
The API can be called again when the operation has completed.

To determine whether or not a database is enabled for automatic storage, the
sqleaddn API has to communicate with the catalog partition for each of the
databases in the instance. If automatic storage is enabled then the storage path
definitions are retrieved as part of that communication. Likewise, if system
temporary table spaces are to be created with the database partitions, the sqleaddn
API may have to communicate with another database partition server in the
partitioned database environment in order to retrieve the table space definitions.
The start_stop_time database manager configuration parameter is used to specify
the time, in minutes, by which the other database partition server must respond
with the automatic storage and table space definitions. If this time is exceeded, the
API fails. Increase the value of start_stop_time, and call the API again.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqlecadb - Catalog a database in the system database
directory

Stores database location information in the system database directory. The database
can be located either on the local workstation or on a remote database partition
server.

Scope

This API affects the system database directory. In a partitioned database
environment, when cataloging a local database into the system database directory,
this API must be called from a database partition server where the database
resides.

Authorization

One of the following:
v SYSADM
v SYSCTRL

Required connection

None

API include file
sqlenv.h

Chapter 31. Application programming interfaces (APIs) 905

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlecadb (
_SQLOLDCHAR * pDbName,
_SQLOLDCHAR * pDbAlias,
unsigned char Type,
_SQLOLDCHAR * pNodeName,
_SQLOLDCHAR * pPath,
_SQLOLDCHAR * pComment,
unsigned short Authentication,
_SQLOLDCHAR * pPrincipal,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgcadb (

unsigned short PrinLen,
unsigned short CommentLen,
unsigned short PathLen,
unsigned short NodeNameLen,
unsigned short DbAliasLen,
unsigned short DbNameLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pPrinName,
unsigned short Authentication,
_SQLOLDCHAR * pComment,
_SQLOLDCHAR * pPath,
_SQLOLDCHAR * pNodeName,
unsigned char Type,
_SQLOLDCHAR * pDbAlias,
_SQLOLDCHAR * pDbName);

sqlecadb API parameters

pDbName
Input. A string containing the database name.

pDbAlias
Input. A string containing an alias for the database.

Type Input. A single character that designates whether the database is indirect,
remote, or is cataloged via DCE. Valid values (defined in sqlenv.h) are:

SQL_INDIRECT
Specifies that the database resides at this instance.

SQL_REMOTE
Specifies that the database resides at another instance.

SQL_DCE
Specifies that the database is cataloged via DCE.

pNodeName
Input. A string containing the name of the database partition where the
database is located. May be NULL.

Note: If neither pPath nor pNodeName is specified, the database is
assumed to be local, and the location of the database is assumed to be that
specified in the database manager configuration parameter dftdbpath.

pPath

Input. A string which, on Linux and UNIX systems, specifies the name of
the path on which the database being cataloged resides. Maximum length
is 215 characters.

906 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

On the Windows operating system, this string specifies the letter of the
drive on which the database being cataloged resides.

If a NULL pointer is provided, the default database path is assumed to be
that specified by the database manager configuration parameter dftdbpath.

pComment
Input. A string containing an optional description of the database. A null
string indicates no comment. The maximum length of a comment string is
30 characters.

Authentication

Input. Contains the authentication type specified for the database.
Authentication is a process that verifies that the user is who he/she claims
to be. Access to database objects depends on the user’s authentication.
Valid values (from sqlenv.h) are:

SQL_AUTHENTICATION_SERVER
Specifies that authentication takes place on the database partition
server containing the target database.

SQL_AUTHENTICATION_CLIENT
Specifies that authentication takes place on the database partition
server where the application is invoked.

SQL_AUTHENTICATION_KERBEROS
Specifies that authentication takes place using Kerberos Security
Mechanism.

SQL_AUTHENTICATION_NOT_SPECIFIED
Authentication not specified.

SQL_AUTHENTICATION_SVR_ENCRYPT
Specifies that authentication takes place on the database partition
server containing the target database, and that the authentication
password is to be encrypted.

SQL_AUTHENTICATION_DATAENC
Specifies that authentication takes place on the database partition
server containing the target database, and that connections must
use data encryption.

SQL_AUTHENTICATION_GSSPLUGIN
Specifies that authentication takes place using an external GSS
API-based plug-in security mechanism.

SQL_AUTHENTICATION_SVRENC_AESO
Specifies that authentication takes place on the database partition
server containing the target database, and that the authentication
userid and password are to be encrypted using an Advanced
Encryption Standard (AES) encryption algorithm.

This parameter can be set to SQL_AUTHENTICATION_NOT_SPECIFIED,
except when cataloging a database that resides on a DB2 Version 1 server.

Specifying the authentication type in the database catalog results in a
performance improvement during a connect.

pPrincipal
Input. A string containing the principal name of the DB2 server on which
the database resides. This value should only be specified when
authentication is SQL_AUTHENTICATION_KERBEROS.

Chapter 31. Application programming interfaces (APIs) 907

pSqlca
Output. A pointer to the sqlca structure.

sqlgcadb API-specific parameters

PrinLen
Input. A 2-byte unsigned integer representing the length in bytes of the
principal name. Set to zero if no principal is provided. This value should
be nonzero only when authentication is specified as
SQL_AUTHENTICATION_KERBEROS.

CommentLen
Input. A 2-byte unsigned integer representing the length in bytes of the
comment. Set to 0 if no comment is provided.

PathLen
Input. A 2-byte unsigned integer representing the length in bytes of the
path of the local database directory. Set to 0 if no path is provided.

NodeNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
node name. Set to 0 if no node name is provided.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

DbNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database name.

pPrinName
Input. A string containing the principal name of the DB2 server on which
the database resides. This value should only be specified when
authentication is SQL_AUTHENTICATION_KERBEROS.

Usage notes

Use CATALOG DATABASE to catalog databases located on local or remote nodes,
recatalog databases that were uncataloged previously, or maintain multiple aliases
for one database (regardless of database location).

DB2 automatically catalogs databases when they are created. It catalogs an entry
for the database in the local database directory, and another entry in the system
database directory. If the database is created from a remote client (or a client which
is executing from a different instance on the same machine), an entry is also made
in the system database directory at the client instance.

Databases created at the current instance (as defined by the value of the
DB2INSTANCE environment variable) are cataloged as indirect. Databases created
at other instances are cataloged as remote (even if they physically reside on the
same machine).

CATALOG DATABASE automatically creates a system database directory if one
does not exist. The system database directory is stored on the path that contains
the database manager instance that is being used. The system database directory is
maintained outside of the database. Each entry in the directory contains:
v Alias
v Authentication type

908 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v Comment
v Database
v Entry type
v Local database directory (when cataloging a local database)
v Node name (when cataloging a remote database)
v Release information

If a database is cataloged with the type parameter set to SQL_INDIRECT, the value
of the authentication parameter provided will be ignored, and the authentication
in the directory will be set to SQL_AUTHENTICATION_NOT_SPECIFIED.

If directory caching is enabled, database, node, and DCS directory files are cached
in memory. An application’s directory cache is created during its first directory
lookup. Since the cache is only refreshed when the application modifies any of the
directory files, directory changes made by other applications may not be effective
until the application has restarted. To refresh DB2’s shared cache (server only), stop
(db2stop) and then restart (db2start) the database manager. To refresh the directory
cache for another application, stop and then restart that application.

REXX API syntax
CATALOG DATABASE dbname [AS alias] [ON path|AT NODE nodename]
[AUTHENTICATION authentication] [WITH "comment"]
CATALOG GLOBAL DATABASE db_global_name AS alias
USING DIRECTORY {DCE} [WITH "comment"]

REXX API parameters

dbname
Name of the database to be cataloged.

alias Alternate name for the database. If an alias is not specified, the database
name is used as the alias.

path Path on which the database being cataloged resides.

nodename
Name of the remote workstation where the database being cataloged
resides.

Note: If neither path nor nodename is specified, the database is assumed
to be local, and the location of the database is assumed to be that specified
in the database manager configuration parameter dftdbpath.

authentication
Place where authentication is to be done. Valid values are:

SERVER
Authentication occurs at the database partition server containing
the target database. This is the default.

CLIENT
Authentication occurs at the database partition server where the
application is invoked.

KERBEROS
Specifies that authentication takes place using Kerberos Security
Mechanism.

NOT_SPECIFIED
Authentication not specified.

Chapter 31. Application programming interfaces (APIs) 909

SVR_ENCRYPT
Specifies that authentication takes place on the database partition
server containing the target database, and that the authentication
userid and password are to be encrypted.

DATAENC
Specifies that authentication takes place on the database partition
server containing the target database, and that connections must
use data encryption.

GSSPLUGIN
Specifies that authentication takes place using an external GSS
API-based plug-in security mechanism.

SQL_AUTHENTICATION_SVRENC_AESO
Specifies that authentication takes place on the database partition
server containing the target database, and that the authentication
userid and password are to be encrypted using an AES encryption
algorithm.

comment
Describes the database or the database entry in the system database
directory. The maximum length of a comment string is 30 characters. A
carriage return or a line feed character is not permitted. The comment text
must be enclosed by double quotation marks.

db_global_name
The fully qualified name that uniquely identifies the database in the DCE
name space.

DCE The global directory service being used.

REXX examples
call SQLDBS 'CATALOG GLOBAL DATABASE /.../cell1/subsys/database/DB3
AS dbtest USING DIRECTORY DCE WITH "Sample Database"'

sqlecrea - Create database

Initializes a new database with an optional user-defined collating sequence, creates
the three initial table spaces, creates the system tables, and allocates the recovery
log.

Scope

In a partitioned database environment, this API affects all database partition
servers that are listed in the db2nodes.cfg file.

The database partition server from which this API is called becomes the catalog
partition for the new database.

Authorization

One of the following:
v sysadm
v sysctrl

910 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Required connection

Instance. To create a database at another (remote) node, it is necessary to first
attach to that node. A database connection is temporarily established by this API
during processing.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlecrea (
char * pDbName,
char * pLocalDbAlias,
char * pPath,
struct sqledbdesc * pDbDescriptor,
SQLEDBTERRITORYINFO * pTerritoryInfo,
char Reserved2,
void * pDbDescriptorExt,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgcrea (

unsigned short PathLen,
unsigned short LocalDbAliasLen,
unsigned short DbNameLen,
struct sqlca * pSqlca,
void * pReserved1,
unsigned short Reserved2,
SQLEDBTERRITORYINFO * pTerritoryInfo,
struct sqledbdesc * pDbDescriptor,
char * pPath,
char * pLocalDbAlias,
char * pDbName);

sqlecrea API parameters

pDbName
Input. A string containing the database name. This is the database name
that will be cataloged in the system database directory. Once the database
has been successfully created in the server’s system database directory, it is
automatically cataloged in the system database directory with a database
alias identical to the database name. Must not be NULL.

pLocalDbAlias
Input. A string containing the alias to be placed in the client’s system
database directory. Can be NULL. If no local alias is specified, the database
name is the default.

pPath Input. On Linux and UNIX systems, specifies the path on which to create
the database. If a path is not specified, the database is created on the
default database path specified in the database manager configuration file
(dftdbpath parameter). On the Windows operating system, specifies the
letter of the drive on which to create the database. Can be NULL.

Note: For partitioned database environments, a database should not be
created in an NFS-mounted directory. If a path is not specified, ensure that
the dftdbpath database manager configuration parameter is not set to an
NFS-mounted path (for example, on UNIX based systems, it should not
specify the $HOME directory of the instance owner). The path specified for
this API in a partitioned database environment cannot be a relative path.

Chapter 31. Application programming interfaces (APIs) 911

pDbDescriptor
Input. A pointer to the database description block that is used when
creating the database. The database description block can be used by you
to supply values that are permanently stored in the configuration file of
the database.

The supplied values are a collating sequence, a database comment, or a
table space definition. The supplied value can be NULL if you do not want
to supply any values. For information about the values that can be
supplied through this parameter, see the SQLEDBDESC data structure
topic.

pTerritoryInfo
Input. A pointer to the sqledbterritoryinfo structure, containing the locale
and the code set for the database. Can be NULL. The default code set for a
database is UTF-8 (Unicode). If a particular code set and territory is
needed for a database, the desired code set and territory should be
specified via the sqledbterritoryinfo structure. If this field is NULL, then
one of the following is allowed as a collation value for the database
(sqlcode 1083): NULL, SQL_CS_SYSTEM, SQL_CS_IDENTITY_16BIT,
SQL_CS_UCA400_NO, SQL_CS_UCA400_LTH, SQL_CS_UCA400_LSK, or
SQL_CS_UNICODE.

Reserved2
Input. Reserved for future use.

pDbDescriptorExt
Input. This parameter refers to an extended database description block
(sqledbdescext) that is used when creating the database. The extended
database description block controls automatic storage for a database,
chooses a default page size for the database, and specifies values for new
table space attributes that have been introduced. If set to null or zero, a
default page size of 4 096 bytes is chosen for the database and automatic
storage is enabled.

pSqlca
Output. A pointer to the sqlca structure.

sqlgcrea API-specific parameters

PathLen
Input. A 2-byte unsigned integer representing the length of the path in
bytes. Set to zero if no path is provided.

LocalDbALiasLen
Input. A 2-byte unsigned integer representing the length of the local
database alias in bytes. Set to zero if no local alias is provided.

DbNameLen
Input. A 2-byte unsigned integer representing the length of the database
name in bytes.

Usage notes

CREATE DATABASE:
v Creates a database in the specified subdirectory. In a partitioned database

environment, creates the database on all database partition servers listed in
db2nodes.cfg, and creates a $DB2INSTANCE/NODExxxx directory under the
specified subdirectory at each database partition server, where xxxx represents

912 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

the local database partition server number. In a single-partition environment,
creates a $DB2INSTANCE/NODE0000 directory under the specified
subdirectory.

v Creates the system catalog tables and recovery log.
v Catalogs the database in the following database directories:

– server’s local database directory on the path indicated by pPath or, if the path
is not specified, the default database path defined in the database manager
system configuration file. A local database directory resides on each file
system that contains a database.

– server’s system database directory for the attached instance. The resulting
directory entry will contain the database name and a database alias.
If the API was called from a remote client, the client’s system database
directory is also updated with the database name and an alias.

v Creates a system or a local database directory if neither exists. If specified, the
comment and code set values are placed in both directories.

v Stores the specified code set, territory, and collating sequence. A flag is set in the
database configuration file if the collating sequence consists of unique weights,
or if it is the identity sequence.

v Creates the schemata called SYSCAT, SYSFUN, SYSIBM, and SYSSTAT with
SYSIBM as the owner. The database partition server on which this API is called
becomes the catalog partition for the new database. Two database partition
groups are created automatically: IBMDEFAULTGROUP and IBMCATGROUP.

v Binds the previously defined database manager bind files to the database (these
are listed in db2ubind.lst). If one or more of these files do not bind successfully,
sqlecrea returns a warning in the SQLCA, and provides information about the
binds that failed. If a bind fails, the user can take corrective action and manually
bind the failing file. The database is created in any case. A schema called
NULLID is implicitly created when performing the binds with CREATEIN
privilege granted to PUBLIC, if the RESTRICTIVE option is not selected.

v Creates SYSCATSPACE, TEMPSPACE1, and USERSPACE1 table spaces. The
SYSCATSPACE table space is only created on the catalog partition. All database
partitions have the same table space definitions.

v Grants the following:
– DBADM, CONNECT, CREATETAB, BINDADD, CREATE_NOT_FENCED,

IMPLICIT_SCHEMA, and LOAD authorities to the database creator
– CONNECT, CREATETAB, BINDADD, and IMPLICIT_SCHEMA authorities to

PUBLIC
– USE privilege on the USERSPACE1 table space to PUBLIC
– SELECT privilege on each system catalog to PUBLIC
– BIND and EXECUTE privilege to PUBLIC for each successfully bound utility
– EXECUTE WITH GRANT privilege to PUBLIC on all functions in the

SYSFUN schema.
– EXECUTE privilege to PUBLIC on all procedures in SYSIBM schema.

Note: If the RESTRICTIVE option is present, it causes the RESTRICT_ACCESS
database configuration parameter to be set to YES and no privileges or
authorities are automatically granted to PUBLIC. For more detailed information,
see the RESTRICTIVE option of the CREATE DATABASE command.

Chapter 31. Application programming interfaces (APIs) 913

With dbadm authority, one can grant these privileges to (and revoke them from)
other users or PUBLIC. If another administrator with sysadm or dbadm authority
over the database revokes these privileges, the database creator nevertheless retains
them.

In a partitioned database environment, the database manager creates a
subdirectory, $DB2INSTANCE/NODExxxx, under the specified or default path on
all database partition servers. The xxxx is the node number as defined in the
db2nodes.cfg file (that is, node 0 becomes NODE0000). Subdirectories SQL00001
through SQLnnnnn will reside on this path. This ensures that the database objects
associated with different database partition servers are stored in different
directories (even if the subdirectory $DB2INSTANCE under the specified or default
path is shared by all database partition servers).

On Windows and AIX operating systems, the length of the code set name is
limited to a maximum of 9 characters. For example, specify a code set name such
as ISO885915 instead of ISO8859-15.

The sqlecrea API accepts a data structure called the Database Descriptor Block
(SQLEDBDESC). You can define your own collating sequence within this structure.

Note: You can only define your own collating sequence for a single-byte database.

To specify a collating sequence for a database:
v Pass the desired SQLEDBDESC structure, or
v Pass a NULL pointer. The collating sequence of the operating system (based on

the current locale code and the code page) is used. This is the same as specifying
SQLDBCSS equal to SQL_CS_SYSTEM (0).

Execution of the CREATE DATABASE command will fail if the application is
already connected to a database.

If the database description block structure is not set correctly, an error message is
returned.

The most prominent value of the database description block must be set to the
symbolic value SQLE_DBDESC_2 (defined in sqlenv). The following sample
user-defined collating sequences are available in the host language include files:

sqle819a
If the code page of the database is 819 (ISO Latin/1), this sequence will
cause sorting to be performed according to the host CCSID 500 (EBCDIC
International).

sqle819b
If the code page of the database is 819 (ISO Latin/1),this sequence will
cause sorting to be performed according to the host CCSID 037 (EBCDIC
US English).

sqle850a
If the code page of the database is 850 (ASCII Latin/1), this sequence will
cause sorting to be performed according to the host CCSID 500 (EBCDIC
International).

914 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

sqle850b
If the code page of the database is 850 (ASCII Latin/1), this sequence will
cause sorting to be performed according to the host CCSID 037 (EBCDIC
US English).

sqle932a
If the code page of the database is 932 (ASCII Japanese), this sequence will
cause sorting to be performed according to the host CCSID 5035 (EBCDIC
Japanese).

sqle932b
If the code page of the database is 932 (ASCII Japanese), this sequence will
cause sorting to be performed according to the host CCSID 5026 (EBCDIC
Japanese).

The collating sequence specified during database creation cannot be changed later.
It determines how character strings are compared. This affects the structure of
indexes as well as the results of queries. In a Unicode database, the catalog tables
and views are always created with the IDENTITY collation, regardless of the
collation specified in the create database call. In a non-Unicode database, the
catalog tables and views are created with the database collation.

Use sqlecadb to define different alias names for the new database.

The Configuration Advisor is called by default during the database creation
process unless specifically told not to do so.

REXX API syntax
CREATE DATABASE dbname [ON path] [ALIAS dbalias]
[USING CODESET codeset TERRITORY territory]
[COLLATE USING {SYSTEM | IDENTITY | USER :udcs}]
[NUMSEGS numsegs] [DFT_EXTENT_SZ dft_extentsize]
[CATALOG TABLESPACE <tablespace_definition>]
[USER TABLESPACE <tablespace_definition>]
[TEMPORARY TABLESPACE <tablespace_definition>]
[WITH comment]

Where <tablespace_definition> stands for:
MANAGED BY {
SYSTEM USING :SMS_string |
DATABASE USING :DMS_string }
[EXTENTSIZE number_of_pages]
[PREFETCHSIZE number_of_pages]
[OVERHEAD number_of_milliseconds]
[TRANSFERRATE number_of_milliseconds]

REXX API parameters

dbname
Name of the database.

dbalias
Alias of the database.

path Path on which to create the database. If a path is not specified, the
database is created on the default database path specified in the database
manager configuration file (dftdbpath configuration parameter).

Note: For partitioned database environments, a database should not be
created in an NFS-mounted directory. If a path is not specified, ensure that

Chapter 31. Application programming interfaces (APIs) 915

the dftdbpath database manager configuration parameter is not set to an
NFS-mounted path (for example, on UNIX based systems, it should not
specify the $HOME directory of the instance owner). The path specified for
this API in a partitioned database environment cannot be a relative path.

codeset
Code set to be used for data entered into the database.

territory
Territory code (locale) to be used for data entered into the database.

SYSTEM
For non-Unicode databases, this is the default option, with the collating
sequence based on the database territory. For Unicode databases, this
option is equivalent to the IDENTITY option.

IDENTITY
Identity collating sequence, in which strings are compared byte for byte.
This is the default for Unicode databases.

USER udcs
The collating sequence is specified by the calling application in a host
variable containing a 256-byte string defining the collating sequence.

numsegs
Number of directories (table space containers) that will be created and
used to store the database table files for any default SMS table spaces.

dft_extentsize
Specifies the default extent size for table spaces in the database.

SMS_string
A compound REXX host variable identifying one or more containers that
will belong to the table space, and where the table space data will be
stored. In the following, XXX represents the host variable name. Note that
each of the directory names cannot exceed 254 bytes in length.

XXX.0 Number of directories specified

XXX.1 First directory name for SMS table space

XXX.2 Second directory name for SMS table space

XXX.3 and so on.

DMS_string
A compound REXX host variable identifying one or more containers that
will belong to the table space, where the table space data will be stored,
container sizes (specified in a number of 4KB pages) and types (file or
device). The specified devices (not files) must already exist. In the
following, XXX represents the host variable name. Note that each of the
container names cannot exceed 254 bytes in length.

XXX.0 Number of strings in the REXX host variable (number of first level
elements)

XXX.1.1
Type of the first container (file or device)

XXX.1.2
First file name or device name

XXX.1.3
Size (in pages) of the first container

916 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

XXX.2.1
Type of the second container (file or device)

XXX.2.2
Second file name or device name

XXX.2.3
Size (in pages) of the second container

XXX.3.1
and so on.

EXTENTSIZE number_of_pages
Number of 4KB pages that will be written to a container before skipping to
the next container.

PREFETCHSIZE number_of_pages
Number of 4KB pages that will be read from the table space when data
prefetching is being performed.

OVERHEAD number_of_milliseconds
Number that specifies the I/O controller overhead, disk seek, and latency
time in milliseconds.

TRANSFERRATE number_of_milliseconds
Number that specifies the time in milliseconds to read one 4 KB page into
memory.

comment
Description of the database or the database entry in the system directory.
Do not use a carriage return or line feed character in the comment. Be sure
to enclose the comment text in double quotation marks. Maximum size is
30 characters.

sqledpan - Drop a database on a database partition server

Drops a database at a specified database partition server. Can only be run in a
partitioned database environment.

Scope

This API only affects the database partition server on which it is called.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

None. An instance attachment is established for the duration of the call.

API include file
sqlenv.h

Chapter 31. Application programming interfaces (APIs) 917

API and data structure syntax
SQL_API_RC SQL_API_FN

sqledpan (
char * pDbAlias,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgdpan (

unsigned short Reserved1,
unsigned short DbAliasLen,
struct sqlca * pSqlca,
void * pReserved2,
char * pDbAlias);

sqledpan API parameters

pDbAlias
Input. A string containing the alias of the database to be dropped. This
name is used to reference the actual database name in the system database
directory.

pReserved
Reserved. Should be NULL.

pSqlca
Output. A pointer to the sqlca structure.

sqlgdpan API-specific parameters

Reserved1
Reserved for future use.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

pReserved2
A spare pointer that is set to null or points to zero. Reserved for future
use.

Usage notes

Improper use of this API can cause inconsistencies in the system, so it should only
be used with caution.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqledrpd - Drop database

Deletes the database contents and all log files for the database, uncatalogs the
database, and deletes the database subdirectory.

Scope

By default, this API affects all database partition servers that are listed in the
db2nodes.cfg file.

918 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

Instance. It is not necessary to call ATTACH before dropping a remote database. If
the database is cataloged as remote, an instance attachment to the remote node is
established for the duration of the call.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqledrpd (
_SQLOLDCHAR * pDbAlias,
_SQLOLDCHAR * pReserved2,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgdrpd (

unsigned short Reserved1,
unsigned short DbAliasLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pReserved2,
_SQLOLDCHAR * pDbAlias);

sqledrpd API parameters

pDbAlias
Input. A string containing the alias of the database to be dropped. This
name is used to reference the actual database name in the system database
directory.

pReserved2
A spare pointer that is set to null or points to zero. Reserved for future
use.

pSqlca
Output. A pointer to the sqlca structure.

sqlgdrpd API-specific parameters

Reserved1
Reserved for future use.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

Usage notes

The sqledrpd API deletes all user data and log files. If the log files are needed for a
roll-forward recovery after a restore operation, the files should be saved prior to
calling this API.

Chapter 31. Application programming interfaces (APIs) 919

The database must not be in use; all users must be disconnected from the database
before the database can be dropped.

To be dropped, a database must be cataloged in the system database directory.
Only the specified database alias is removed from the system database directory. If
other aliases with the same database name exist, their entries remain. If the
database being dropped is the last entry in the local database directory, the local
database directory is deleted automatically.

If this API is called from a remote client (or from a different instance on the same
machine), the specified alias is removed from the client’s system database directory.
The corresponding database name is removed from the server’s system database
directory.

REXX API syntax
DROP DATABASE dbalias

REXX API parameters

dbalias
The alias of the database to be dropped.

sqledrpn - Check whether a database partition server can be
dropped

Verifies whether a database partition server is being used by a database. A message
is returned, indicating whether the database partition server can be dropped.

Scope

This API only affects the database partition server on which it is issued.

Authorization

One of the following:
v sysadm
v sysctrl

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqledrpn (
unsigned short Action,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgdrpn (

unsigned short Reserved1,
struct sqlca * pSqlca,
void * pReserved2,
unsigned short Action);

920 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

sqledrpn API parameters

Action
The action requested. The valid value is: SQL_DROPNODE_VERIFY

pReserved
Reserved. Should be NULL.

pSqlca
Output. A pointer to the sqlca structure.

sqlgdrpn API-specific parameters

Reserved1
Reserved for the length of pReserved2.

pReserved2
A spare pointer that is set to NULL or points to 0. Reserved for future use.

Usage notes

If a message is returned, indicating that the database partition server is not in use,
use the db2stop command with DROP NODENUM to remove the entry for the
database partition server from the db2nodes.cfg file, which removes the database
partition server from the partitioned database environment.

If a message is returned, indicating that the database partition server is in use, the
following actions should be taken:
1. The database partition server to be dropped will have a database partition on it

for each database in the instance. If any of these database partitions contain
data, redistribute the database partition groups that use these database
partitions. Redistribute the database partition groups to move the data to
database partitions that exist at database partition servers that are not being
dropped.

2. After the database partition groups are redistributed, drop the database
partition from every database partition group that uses it. To remove a database
partition from a database partition group, you can use either the drop node
option of the sqludrdt API or the ALTER DATABASE PARTITION GROUP
statement.

3. Drop any event monitors that are defined on the database partition server.
4. Rerun sqledrpn to ensure that the database partition at the database partition

server is no longer in use.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqlefrce - Force users and applications off the system

Forces local or remote users or applications off the system to allow for
maintenance on a server. Attention: If an operation that cannot be interrupted (a
database restore, for example) is forced, the operation must be successfully
re-executed before the database becomes available.

Chapter 31. Application programming interfaces (APIs) 921

Scope

This API affects all database partition servers that are listed in the db2nodes.cfg
file.

In a partitioned database environment, this API does not have to be issued from
the coordinator partition of the application being forced. This API can be issued
from any database partition server in the partitioned database environment.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

Instance. To force users off a remote server, it is necessary to first attach to that
server. If no attachment exists, this API is executed locally.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlefrce (
sqlint32 NumAgentIds,
sqluint32 * pAgentIds,
unsigned short ForceMode,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgfrce (

struct sqlca * pSqlca,
unsigned short ForceMode,
sqluint32 * pAgentIds,
sqlint32 NumAgentIds);

sqlefrce API parameters

NumAgentIds
Input. An integer representing the total number of users to be terminated.
This number should be the same as the number of elements in the array of
agent IDs.

If this parameter is set to SQL_ALL_USERS (defined in sqlenv), all
applications with either database connections or instance attachments are
forced. If it is set to zero, an error is returned.

pAgentIds
Input. Pointer to an array of unsigned long integers. Each entry describes
the agent ID of the corresponding database user.

ForceMode
Input. An integer specifying the operating mode of the sqlefrce API. Only
the asynchronous mode is supported. This means that the API does not
wait until all specified users are terminated before returning. It returns as
soon as the API has been issued successfully, or an error occurs. As a

922 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

result, there may be a short interval between the time the force application
call completes and the specified users have been terminated.

This parameter must be set to SQL_ASYNCH (defined in sqlenv).

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

The database manager remains active so that subsequent database manager
operations can be handled without the need for db2start.

To preserve database integrity, only users who are idling or executing interruptible
database operations can be forced off.

After a force command has been issued, the database will still accept requests to
connect. Additional forces may be required to completely force all users off. The
database system monitor functions are used to gather the agent IDs of the users to
be forced.

When the force mode is set to SQL_ASYNCH (the only value permitted), the API
immediately returns to the calling application.

Minimal validation is performed on the array of agent IDs to be forced. The user
must ensure that the pointer points to an array containing the total number of
elements specified. If NumAgentIds is set to SQL_ALL_USERS, the array is
ignored.

When a user is forced off, a unit of work rollback is performed to ensure database
consistency.

All users that can be forced will be forced. If one or more specified agent IDs
cannot be found, sqlcode in the sqlca structure is set to 1230. An agent ID may not
be found, for instance, if the user signs off between the time an agent ID is
collected and sqlefrce is called. The user that calls this API is never forced off.

Agent IDs are recycled, and are used to force applications some time after being
gathered by the database system monitor. When a user signs off, therefore, another
user may sign on and acquire the same agent ID through this recycling process,
with the result that the wrong user may be forced.

REXX API syntax
FORCE APPLICATION {ALL | :agentidarray} [MODE ASYNC]

REXX API parameters

ALL All applications will be disconnected. This includes applications that have
database connections and applications that have instance attachments.

agentidarray
A compound REXX host variable containing the list of agent IDs to be
terminated. In the following, XXX is the name of the host variable:

- XXX.0
Number of agents to be terminated

- XXX.1
First agent ID

Chapter 31. Application programming interfaces (APIs) 923

- XXX.2
Second agent ID

- XXX.3
and so on.

ASYNC
The only mode currently supported means that sqlefrce does not wait until
all specified applications are terminated before returning.

sqlemgdb - Migrate previous version of DB2 database to
current version

Converts a previous (Version 8 or higher) version of a DB2 database to the current
release. The sqlemgdb and sqlgmgdb APIs are deprecated and will be discontinued
in a future release. You should use the new db2DatabaseUpgrade API instead.

Authorization

SYSADM

Required connection

This API establishes a database connection.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlemgdb (
_SQLOLDCHAR * pDbAlias,
_SQLOLDCHAR * pUserName,
_SQLOLDCHAR * pPassword,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgmgdb (

unsigned short PasswordLen,
unsigned short UserNameLen,
unsigned short DbAliasLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pPassword,
_SQLOLDCHAR * pUserName,
_SQLOLDCHAR * pDbAlias);

sqlemgdb API parameters

pDbAlias
Input. A string containing the alias of the database that is cataloged in the
system database directory.

pUserName
Input. A string containing the user name of the application. May be NULL.

pPassword
Input. A string containing the password of the supplied user name (if any).
May be NULL.

924 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

pSqlca
Output. A pointer to the sqlca structure.

sqlgmgdb API-specific parameters

PasswordLen
Input. A 2-byte unsigned integer representing the length in bytes of the
password. Set to zero when no password is supplied.

UserNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
user name. Set to zero when no user name is supplied.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

Usage notes

This API will only migrate a database to a newer version, and cannot be used to
convert a migrated database to its previous version.

The database must be cataloged before migration.

REXX API syntax
MIGRATE DATABASE dbalias [USER username USING password]

REXX API parameters

dbalias
Alias of the database to be migrated.

username
User name under which the database is to be restarted.

password
Password used to authenticate the user name.

sqlesdeg - Set the maximum runtime intra-partition parallelism
level or degree for SQL statements

Sets the maximum run time degree of intra-partition parallelism for SQL statement
execution for specified active applications. It has no effect on CREATE INDEX
statement execution parallelism.

Scope

This API affects all database partition servers that are listed in the db2nodes.cfg
file.

Authorization

One of the following:
v sysadm
v sysctrl

Chapter 31. Application programming interfaces (APIs) 925

Required connection

Instance. To change the maximum run time degree of parallelism on a remote
server, it is first necessary to attach to that server. If no attachment exists, the SET
RUNTIME DEGREE statement fails.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlesdeg (
sqlint32 NumAgentIds,
sqluint32 * pAgentIds,
sqlint32 Degree,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgsdeg (

struct sqlca * pSqlca,
sqlint32 Degree,
sqluint32 * pAgentIds,
sqlint32 NumAgentIds);

sqlesdeg API parameters

NumAgentIds
Input. An integer representing the total number of active applications to
which the new degree value will apply. This number should be the same
as the number of elements in the array of agent IDs.

If this parameter is set to SQL_ALL_USERS (defined in sqlenv), the new
degree will apply to all active applications. If it is set to zero, an error is
returned.

pAgentIds
Input. Pointer to an array of unsigned long integers. Each entry describes
the agent ID of the corresponding application. To list the agent IDs of the
active applications, use the db2GetSnapshot API.

Degree
Input. The new value for the maximum run time degree of parallelism. The
value must be in the range 1 to 32767.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

The database system monitor functions are used to gather the agent IDs and
degrees of active applications.

Minimal validation is performed on the array of agent IDs. The user must ensure
that the pointer points to an array containing the total number of elements
specified. If NumAgentIds is set to SQL_ALL_USERS, the array is ignored.

If one or more specified agent IDs cannot be found, the unknown agent IDs are
ignored, and the function continues. No error is returned. An agent ID may not be
found, for instance, if the user signs off between the time an agent ID is collected
and the API is called.

926 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Agent IDs are recycled, and are used to change the degree of parallelism for
applications some time after being gathered by the database system monitor. When
a user signs off, therefore, another user may sign on and acquire the same agent ID
through this recycling process, with the result that the new degree of parallelism
will be modified for the wrong user.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqlugrpn - Get the database partition server number for a row

Beginning with Version 9.7, this API is deprecated. Use the db2GetRowPartNum
(Get the database partition server number for a row) API to return the database
partition number and database partition server number for a row. If you call the
sqlugrpn API and the DB2_PMAP_COMPATIBILITY registry variable is set to OFF,
the error message SQL2768N is returned.

Returns the database partition number and the database partition server number
based on the distribution key values. An application can use this information to
determine on which database partition server a specific row of a table is stored.

The partitioning data structure, sqlupi, is the input for this API. The structure can
be returned by the sqlugtpi API. Another input is the character representations of
the corresponding distribution key values. The output is a database partition
number generated by the distribution strategy and the corresponding database
partition server number from the distribution map. If the distribution map
information is not provided, only the database partition number is returned. This
can be useful when analyzing data distribution.

The database manager does not need to be running when this API is called.

Scope

This API must be invoked from a database partition server in the db2nodes.cfg file.
This API should not be invoked from a client, since it could result in erroneous
database partitioning information being returned due to differences in codepage
and endianess between the client and the server.

Authorization

None

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlugrpn (
unsigned short num_ptrs,
unsigned char ** ptr_array,
unsigned short * ptr_lens,
unsigned short territory_ctrycode,
unsigned short codepage,
struct sqlupi * part_info,
short * part_num,
SQL_PDB_NODE_TYPE * node_num,

Chapter 31. Application programming interfaces (APIs) 927

unsigned short chklvl,
struct sqlca * sqlca,
short dataformat,
void * pReserved1,
void * pReserved2);

SQL_API_RC SQL_API_FN
sqlggrpn (
unsigned short num_ptrs,
unsigned char ** ptr_array,
unsigned short * ptr_lens,
unsigned short territory_code,
unsigned short codepage,
struct sqlupi * part_info,
short * part_num,
SQL_PDB_NODE_TYPE * node_num,
unsigned short chklvl,
struct sqlca * sqlca,
short dataformat,
void * pReserved1,
void * pReserved2);

sqlugrpn API parameters

num_ptrs
The number of pointers in ptr_array. The value must be the same as the
one specified for the part_info parameter; that is, part_info->sqld.

ptr_array
An array of pointers that points to the character representations of the
corresponding values of each part of the distribution key specified in
part_info. If a null value is required, the corresponding pointer is set to
null. For generated columns, this function does not generate values for the
row. The user is responsible for providing a value that will lead to the
correct partitioning of the row.

ptr_lens
An array of unsigned integers that contains the lengths of the character
representations of the corresponding values of each part of the partitioning
key specified in part_info.

territory_ctrycode
The country/region code of the target database. This value can also be
obtained from the database configuration file using the GET DATABASE
CONFIGURATION command.

codepage
The code page of the target database. This value can also be obtained from
the database configuration file using the GET DATABASE
CONFIGURATION command.

part_info
A pointer to the sqlupi structure.

part_num
A pointer to a 2-byte signed integer that is used to store the database
partition number.

node_num
A pointer to an SQL_PDB_NODE_TYPE field used to store the node
number. If the pointer is null, no node number is returned.

chklvl An unsigned integer that specifies the level of checking that is done on

928 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

input parameters. If the value specified is zero, no checking is done. If any
non-zero value is specified, all input parameters are checked.

sqlca Output. A pointer to the sqlca structure.

dataformat
Specifies the representation of distribution key values. Valid values are:

SQL_CHARSTRING_FORMAT
All distribution key values are represented by character strings.
This is the default value.

SQL_IMPLIEDDECIMAL_FORMAT
The location of an implied decimal point is determined by the
column definition. For example, if the column definition is
DECIMAL(8,2), the value 12345 is processed as 123.45.

SQL_PACKEDDECIMAL_FORMAT
All decimal column distribution key values are in packed decimal
format.

SQL_BINARYNUMERICS_FORMAT
All numeric distribution key values are in big-endian binary
format.

pReserved1
Reserved for future use.

pReserved2
Reserved for future use.

Usage notes

Data types supported on the operating system are the same as those that can be
defined as a distribution key.

Note: CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC data types must be
converted to the database code page before this API is called.

For numeric and datetime data types, the character representations must be at the
code page of the respective system where the API is invoked.

If node_num is not null, the distribution map must be supplied; that is, pmaplen
field in part_info parameter (part_info->pmaplen) is either 2 or 8192. Otherwise,
SQLCODE -6038 is returned. The distribution key must be defined; that is, sqld
field in part_info parameter (part_info->sqld) must be greater than zero. Otherwise,
SQLCODE -2032 is returned.

If a null value is assigned to a non-nullable partitioning column, SQLCODE -6039
is returned.

All the leading blanks and trailing blanks of the input character string are stripped,
except for the CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC data types,
where only trailing blanks are stripped.

Chapter 31. Application programming interfaces (APIs) 929

sqlugtpi - Get table distribution information

Beginning with DB2 9.7, this API is deprecated. Use the db2GetDistMap (Get
distribution map) API to return the distribution information. If you call the
sqlugtpi API and the DB2_PMAP_COMPATIBILITY registry variable is set to OFF,
the error message SQL2768N is returned.

Allows an application to obtain the distribution information for a table. The
distribution information includes the distribution map and the column definitions
of the distribution key. Information returned by this API can be passed to the
sqlugrpn API to determine the database partition number and the database
partition server number for any row in the table.

To use this API, the application must be connected to the database that contains
the table for which distribution information is being requested.

Scope

This API can be executed on any database partition server defined in the
db2nodes.cfg file.

Authorization

For the table being referenced, a user must have at least one of the following:
v DATAACCESS authority
v CONTROL privilege
v SELECT privilege

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlugtpi (
unsigned char * tablename,
struct sqlupi * part_info,
struct sqlca * sqlca);

SQL_API_RC SQL_API_FN
sqlggtpi (
unsigned short tn_length,
unsigned char * tablename,
struct sqlupi * part_info,
struct sqlca * sqlca);

sqlugtpi API parameters

tablename
The fully qualified name of the table.

part_info
A pointer to the sqlupi structure.

930 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

pSqlca
Output. A pointer to the sqlca structure.

sqlggtpi API-specific parameters

tn_length
A 2-byte unsigned integer with the length of the table name.

sqluvqdp - Quiesce table spaces for a table

Quiesces table spaces for a table. There are three valid quiesce modes: share, intent
to update, and exclusive. There are three possible table space states resulting from
the quiesce function:
v Quiesced: SHARE
v Quiesced: UPDATE
v Quiesced: EXCLUSIVE

Scope

In a single-partition database environment, this API quiesces all table spaces
involved in a load operation in exclusive mode for the duration of the load. In a
partitioned database environment, this API acts locally on a database partition. It
quiesces only that portion of table spaces belonging to the database partition on
which the load is performed.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v dbadm
v load

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqluvqdp (
char * pTableName,
sqlint32 QuiesceMode,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgvqdp (
unsigned short TableNameLen,
char * pTableName,
sqlint32 QuiesceMode,
void * pReserved,
struct sqlca * pSqlca);

Chapter 31. Application programming interfaces (APIs) 931

sqluvqdp API parameters

pTableName
Input. A string containing the table name as used in the system catalog.
This may be a two-part name with the schema and the table name
separated by a period (.). If the schema is not provided, the CURRENT
SCHEMA will be used.

The table cannot be a system catalog table. This field is mandatory.

QuiesceMode
Input. Specifies the quiesce mode. Valid values (defined in sqlutil) are:

SQLU_QUIESCEMODE_SHARE
For share mode

SQLU_QUIESCEMODE_INTENT_UPDATE
For intent to update mode

SQLU_QUIESCEMODE_EXCLUSIVE
For exclusive mode

SQLU_QUIESCEMODE_RESET
To reset the state of the table spaces to normal if either of the
following is true:
v The caller owns the quiesce
v The caller who sets the quiesce disconnects, creating a ″phantom

quiesce″

SQLU_QUIESCEMODE_RESET_OWNED
To reset the state of the table spaces to normal if the caller owns
the quiesce.

This field is mandatory.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure.

sqlgvqdp API-specific parameters

TableNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
table name.

Usage notes

This API is not supported for declared temporary tables.

When the quiesce share request is received, the transaction requests intent share
locks for the table spaces and a share lock for the table. When the transaction
obtains the locks, the state of the table spaces is changed to QUIESCED SHARE.
The state is granted to the quiescer only if there is no conflicting state held by
other users. The state of the table spaces is recorded in the table space table, along
with the authorization ID and the database agent ID of the quiescer, so that the
state is persistent.

The table cannot be changed while the table spaces for the table are in QUIESCED
SHARE state. Other share mode requests to the table and table spaces will be

932 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

allowed. When the transaction commits or rolls back, the locks are released, but
the table spaces for the table remain in QUIESCED SHARE state until the state is
explicitly reset.

When the quiesce exclusive request is made, the transaction requests super
exclusive locks on the table spaces, and a super exclusive lock on the table. When
the transaction obtains the locks, the state of the table spaces changes to
QUIESCED EXCLUSIVE. The state of the table spaces, along with the authorization
ID and the database agent ID of the quiescer, are recorded in the table space table.
Since the table spaces are held in super exclusive mode, no other access to the
table spaces is allowed. The user who invokes the quiesce function (the quiescer),
however, has exclusive access to the table and the table spaces.

When a quiesce update request is made, the table spaces are locked in intent
exclusive (IX) mode, and the table is locked in update (U) mode. The state of the
table spaces with the quiescer is recorded in the table space table.

There is a limit of five quiescers on a table space at any given time. Since
QUIESCED EXCLUSIVE is incompatible with any other state, and QUIESCED
UPDATE is incompatible with another QUIESCED UPDATE, the five quiescer
limit, if reached, must have at least four QUIESCED SHARE and at most one
QUIESCED UPDATE.

A quiescer can upgrade the state of a table space from a less restrictive state to a
more restrictive one (for example, S to U, or U to X). If a user requests a state
lower than one that is already held, the original state is returned. States are not
downgraded.

The quiesced state of a table space must be reset explicitly by using
SQLU_QUIESCEMODE_RESET.

REXX API syntax
QUIESCE TABLESPACES FOR TABLE table_name
{SHARE | INTENT TO UPDATE | EXCLUSIVE | RESET}

REXX API parameters

table_name
Name of the table as used in the system catalog. This may be a two-part
name with the schema and the table name separated by a period (.). If the
schema is not provided, the CURRENT SCHEMA will be used.

DB2 APIs for Users

Following are the application programming interfaces (APIs) that correspond to the
DB2 commands that are used for the Common Criteria evaluation.

sqlaprep - Precompile application program

Processes an application program source file containing embedded SQL statements.
A modified source file is produced containing host language calls for the SQL
statements and, by default, a package is created in the database.

Chapter 31. Application programming interfaces (APIs) 933

Scope

This API can be called from any database partition server in db2nodes.cfg. It
updates the database catalogs on the catalog partition. Its effects are visible to all
database partition servers.

Authorization

One of the following authorizations:
v dbadm authority
v If EXPLAIN ONLY is specified, EXPLAIN authority or an authority that

implicitly includes EXPLAIN is sufficient.
v If SQLERROR CHECK or EXPLAIN ONLY is specified, either EXPLAIN or

SQLADM authority is sufficient.
v If a package does not exist, BINDADD authority and:

– If the schema name of the package does not exist, IMPLICIT_SCHEMA
authority on the database.

– If the schema name of the package does exist, CREATEIN privilege on the
schema.

v If the package exists, one of the following privileges:
– ALTERIN privilege on the schema
– BIND privilege on the package

In addition, if capturing explain information using the EXPLAIN or the
EXPLSNAP clause, one of the following authorizations is required:
v INSERT privilege on the explain tables
v DATAACCESS authority

The user also needs all privileges required to compile any static SQL statements in
the application. Privileges granted to groups are not used for authorization
checking of static statements.

Required connection

Database

API include file
sql.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlaprep (
_SQLOLDCHAR * pProgramName,
_SQLOLDCHAR * pMsgFileName,
struct sqlopt * pPrepOptions,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgprep (

unsigned short MsgFileNameLen,
unsigned short ProgramNameLen,
struct sqlca * pSqlca,
struct sqlopt * pPrepOptions,
_SQLOLDCHAR * pMsgFileName,
_SQLOLDCHAR * pProgramName);

934 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

|
|

sqlaprep API parameters

pProgramName
Input. A string containing the name of the application to be precompiled.
Use the following extensions:
v .sqb: for COBOL applications
v .sqc: for C applications
v .sqC: for UNIX C++ applications
v .sqf: for FORTRAN applications
v .sqx: for C++ applications

When the TARGET option is used, the input file name extension does not
have to be from this predefined list.

The preferred extension for C++ applications containing embedded SQL on
UNIX based systems is sqC; however, the sqx convention, which was
invented for systems that are not case sensitive, is tolerated by UNIX based
systems.

pMsgFileName
Input. A string containing the destination for error, warning, and
informational messages. Can be the path and the name of an operating
system file, or a standard device. If a file already exists, it is overwritten. If
it does not exist, a file is created.

pPrepOptions
Input. A structure used to pass precompile options to the API. For more
information about this structure, see SQLOPT.

pSqlca
Output. A pointer to the sqlca structure.

sqlgprep API-specific parameters

MsgFileNameLen
Input. Length in bytes of the pMsgFileName parameter.

ProgramNameLen
Input. Length in bytes of the pProgramName parameter.

Usage notes

A modified source file is produced, which contains host language equivalents to
the SQL statements. By default, a package is created in the database to which a
connection has been established. The name of the package is the same as the
program file name (minus the extension and folded to uppercase), up to a
maximum of 8 characters.

Following connection to a database, sqlaprep executes under the transaction that
was started. PRECOMPILE PROGRAM then issues a COMMIT or a ROLLBACK
operation to terminate the current transaction and start another one.

Precompiling stops if a fatal error or more than 100 errors occur. If a fatal error
does occur, PRECOMPILE PROGRAM stops precompiling, attempts to close all
files, and discards the package.

The Precompile option types and values are defined in sql.h.

Chapter 31. Application programming interfaces (APIs) 935

When using the PRECOMPILE command or sqlaprep API, the name of the
package can be specified with the PACKAGE USING option. When using this
option, up to 128 bytes may be specified for the package name. When this option
is not used, the name of the package is generated by the precompiler. The name of
the application program source file (minus extension and folded to uppercase) is
used up to a maximum of 8 characters. The name generated will continue to have
a maximum of 8 bytes to be compatible with previous versions of DB2.

REXX API syntax
This API can be called from REXX through the SQLDB2 interface.

sqlarbnd - Rebind package

Allows the user to recreate a package stored in the database without the need for a
bind file.

Authorization

One of the following:
v dbadm authority
v ALTERIN privilege on the schema
v BIND privilege on the package.

The authorization ID logged in the BOUNDBY column of the SYSCAT.PACKAGES
system catalog table, which is the ID of the most recent binder of the package, is
used as the binder authorization ID for the rebind, and for the default schema for
table references in the package. Note that this default qualifier may be different
from the authorization ID of the user executing the rebind request. REBIND will
use the same bind options that were specified when the package was created.

Required connection

Database

API include file
sql.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlarbnd (
char * pPackageName,
struct sqlca * pSqlca,
struct sqlopt * pRebindOptions);

SQL_API_RC SQL_API_FN
sqlgrbnd (

unsigned short PackageNameLen,
char * pPackageName,
struct sqlca * pSqlca,
struct sqlopt * pRebindOptions);

sqlarbnd API parameters

pPackageName
Input. A string containing the qualified or unqualified name that
designates the package to be rebound. An unqualified package-name is
implicitly qualified by the current authorization ID. This name does not

936 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

include the package version. When specifying a package that has a version
that is not the empty string, then the version-id must be specified using
the SQL_VERSION_OPT rebind option.

pSqlca
Output. A pointer to the sqlca structure.

pRebindOptions
Input. A pointer to the SQLOPT structure, used to pass rebind options to
the API. For more information about this structure, see SQLOPT.

sqlgrbnd API-specific parameters

PackageNameLen
Input. Length in bytes of the pPackageName parameter.

Usage notes

REBIND does not automatically commit the transaction following a successful
rebind. The user must explicitly commit the transaction. This enables ″what if ″
analysis, in which the user updates certain statistics, and then tries to rebind the
package to see what changes. It also permits multiple rebinds within a unit of
work.

This API:
v Provides a quick way to recreate a package. This enables the user to take

advantage of a change in the system without a need for the original bind file.fs.
For example, if it is likely that a particular SQL statement can take advantage of
a newly created index, REBIND can be used to recreate the package. REBIND
can also be used to recreate packages after db2Runstats has been executed,
thereby taking advantage of the new statistics.

v Provides a method to recreate inoperative packages. Inoperative packages must
be explicitly rebound by invoking either the bind utility or the rebind utility. A
package will be marked inoperative (the VALID column of the
SYSCAT.PACKAGES system catalog will be set to X) if a function instance on
which the package depends is dropped. The rebind conservative option is not
supported for inoperative packages.

v Gives users control over the rebinding of invalid packages. Invalid packages will
be automatically (or implicitly) rebound by the database manager when they are
executed. This may result in a noticeable delay in the execution of the first SQL
request for the invalid package. It may be desirable to explicitly rebind invalid
packages, rather than allow the system to automatically rebind them, in order to
eliminate the initial delay and to prevent unexpected SQL error messages which
may be returned in case the implicit rebind fails. For example, following
database upgrade, all packages stored in the database will be invalidated by the
UPGRADE DATABASE command. Given that this may involve a large number
of packages, it may be desirable to explicitly rebind all of the invalid packages at
one time. This explicit rebinding can be accomplished using BIND, REBIND, or
the db2rbind tool.

The choice of whether to use BIND or REBIND to explicitly rebind a package
depends on the circumstances. It is recommended that REBIND be used whenever
the situation does not specifically require the use of BIND, since the performance
of REBIND is significantly better than that of BIND. BIND must be used, however:

Chapter 31. Application programming interfaces (APIs) 937

v When there have been modifications to the program (for example, when SQL
statements have been added or deleted, or when the package does not match the
executable for the program).

v When the user wishes to modify any of the bind options as part of the rebind.
REBIND does not support any bind options. For example, if the user wishes to
have privileges on the package granted as part of the bind process, BIND must
be used, since it has an SQL_GRANT_OPT option.

v When the package does not currently exist in the database.
v When detection of all bind errors is desired. REBIND only returns the first error

it detects, and then ends, whereas the BIND command returns the first 100
errors that occur during binding.

REBIND is supported by DB2 Connect.

If REBIND is executed on a package that is in use by another user, the rebind will
not occur until the other user’s logical unit of work ends, because an exclusive lock
is held on the package’s record in the SYSCAT.PACKAGES system catalog table
during the rebind.

When REBIND is executed, the database manager recreates the package from the
SQL statements stored in the SYSCAT.STATEMENTS system catalog table. If many
versions with the same package number and creator exist, only one version can be
bound at once. If not specified using the SQL_VERSION_OPT rebind option, the
VERSION defaults to be ″″. Even if there is only one package with a name and
creator that matches the name and creator specified in the rebind request, it will
not rebound unless its VERSION matches the VERSION specified explicitly or
implicitly.

If REBIND encounters an error, processing stops, and an error message is returned.

The Explain tables are populated during REBIND if either SQL_EXPLSNAP_OPT
or SQL_EXPLAIN_OPT have been set to YES or ALL (check
EXPLAIN_SNAPSHOT and EXPLAIN_MODE columns in the catalog). The Explain
tables used are those of the REBIND requester, not the original binder. The Rebind
option types and values are defined in sql.h.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqleatcp - Attach to instance and change password

Enables an application to specify the node at which instance-level functions
(CREATE DATABASE and FORCE APPLICATION, for example) are to be
executed. This node may be the current instance (as defined by the value of the
DB2INSTANCE environment variable), another instance on the same workstation,
or an instance on a remote workstation. Establishes a logical instance attachment to
the node specified, and starts a physical communications connection to the node if
one does not already exist.

Note: This API extends the function of the sqleatin API by permitting the optional
change of the user password for the instance being attached. The DB2 database
system provides support for changing passwords on AIX, Linux and Windows
operating systems.

938 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Authorization

None

Required connection

This API establishes an instance attachment.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleatcp (
char * pNodeName,
char * pUserName,
char * pPassword,
char * pNewPassword,
struct sqlca * pSqlca);

sqleatcp API parameters

pNodeName
Input. A string containing the alias of the instance to which the user wants
to attach. This instance must have a matching entry in the local node
directory. The only exception is the local instance (as specified by the
DB2INSTANCE environment variable), which can be specified as the object
of an attachment, but cannot be used as a node name in the node directory.
May be NULL.

pUserName
Input. A string containing the user name under which the attachment is to
be authenticated. May be NULL.

pPassword
Input. A string containing the password for the specified user name. May
be NULL.

pNewPassword
Input. A string containing the new password for the specified user name.
Set to NULL if a password change is not required.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

A node name in the node directory can be regarded as an alias for an instance.

If an attach request succeeds, the sqlerrmc field of the sqlca will contain 9 tokens
separated by hexadecimal FF (similar to the tokens returned when a CONNECT
request is successful):
1. Country/region code of the application server
2. Code page of the application server
3. Authorization ID
4. Node name (as specified on the API)
5. Identity and platform type of the server
6. Agent ID of the agent which has been started at the server

Chapter 31. Application programming interfaces (APIs) 939

7. Agent index
8. Node number of the server
9. Number of database partitions if the server is a partitioned database server.

If the node name is a zero-length string or NULL, information about the current
state of attachment is returned. If no attachment exists, sqlcode 1427 is returned.
Otherwise, information about the attachment is returned in the sqlerrmc field of
the sqlca (as outlined above).

If an attachment has not been made, instance-level APIs are executed against the
current instance, specified by the DB2INSTANCE environment variable.

Certain functions (db2start, db2stop, and all directory services, for example) are
never executed remotely. That is, they affect only the local instance environment, as
defined by the value of the DB2INSTANCE environment variable.

If an attachment exists, and the API is issued with a node name, the current
attachment is dropped, and an attachment to the new node is attempted.

Where the user name and password are authenticated, and where the password is
changed, depend on the authentication type of the target instance.

The node to which an attachment is to be made can also be specified by a call to
the sqlesetc API.

REXX API syntax

Calling this API directly from REXX is not supported. However, REXX
programmers can utilize this function by calling the DB2 command line processor
to execute the ATTACH command.

sqleatin - Attach to instance

Enables an application to specify the node at which instance-level functions
(CREATE DATABASE and FORCE APPLICATION, for example) are to be
executed. This node may be the current instance (as defined by the value of the
DB2INSTANCE environment variable), another instance on the same workstation,
or an instance on a remote workstation. Establishes a logical instance attachment to
the node specified, and starts a physical communications connection to the node if
one does not already exist.

Note: If a password change is required, use the sqleatcp API instead of the sqleatin
API.

Authorization

None

Required connection

This API establishes an instance attachment.

API include file
sqlenv.h

940 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleatin (
char * pNodeName,
char * pUserName,
char * pPassword,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgatin (

unsigned short PasswordLen,
unsigned short UserNameLen,
unsigned short NodeNameLen,
struct sqlca * pSqlca,
char * pPassword,
char * pUserName,
char * pNodeName);

sqleatin API parameters

pNodeName
Input. A string containing the alias of the instance to which the user wants
to attach. This instance must have a matching entry in the local node
directory. The only exception is the local instance (as specified by the
DB2INSTANCE environment variable), which can be specified as the object
of an attachment, but cannot be used as a node name in the node directory.
Can be NULL.

pUserName
Input. A string containing the user name under which the attachment is to
be authenticated. Can be NULL.

pPassword
Input. A string containing the password for the specified user name. Can
be NULL.

pSqlca
Output. A pointer to the sqlca structure.

sqlgatin API-specific parameters

PasswordLen
Input. A 2-byte unsigned integer representing the length of the password
in bytes. Set to zero if no password is supplied.

UserNameLen
Input. A 2-byte unsigned integer representing the length of the user name
in bytes. Set to zero if no user name is supplied.

NodeNameLen
Input. A 2-byte unsigned integer representing the length of the node name
in bytes. Set to zero if no node name is supplied.

Usage notes

Note: A node name in the node directory can be regarded as an alias for an
instance.

If an attach request succeeds, the sqlerrmc field of the sqlca will contain 9 tokens
separated by hexadecimal FF (similar to the tokens returned when a CONNECT
request is successful):
1. Country/region code of the application server

Chapter 31. Application programming interfaces (APIs) 941

2. Code page of the application server
3. Authorization ID
4. Node name (as specified on the API)
5. Identity and platform type of the server
6. Agent ID of the agent which has been started at the server
7. Agent index
8. Node number of the server
9. Number of database partitions if the server is a partitioned database server.

If the node name is a zero-length string or NULL, information about the current
state of attachment is returned. If no attachment exists, sqlcode 1427 is returned.
Otherwise, information about the attachment is returned in the sqlerrmc field of
the sqlca (as outlined above).

If an attachment has not been made, instance-level APIs are executed against the
current instance, specified by the DB2INSTANCE environment variable.

Certain functions (db2start, db2stop, and all directory services, for example) are
never executed remotely. That is, they affect only the local instance environment, as
defined by the value of the DB2INSTANCE environment variable.

If an attachment exists, and the API is issued with a node name, the current
attachment is dropped, and an attachment to the new node is attempted.

Where the user name and password are authenticated depends on the
authentication type of the target instance.

The node to which an attachment is to be made can also be specified by a call to
the sqlesetc API.

REXX API syntax
ATTACH [TO nodename [USER username USING password]]

REXX API parameters

nodename
Alias of the instance to which the user wants to attach. This instance must
have a matching entry in the local node directory. The only exception is the
local instance (as specified by the DB2INSTANCE environment variable),
which can be specified as the object of an attachment, but cannot be used
as a node name in the node directory.

username
Name under which the user attaches to the instance.

password
Password used to authenticate the user name.

sqledtin - Detach from instance

Removes the logical instance attachment, and terminates the physical
communication connection if there are no other logical connections using this layer.

942 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Authorization

None

Required connection

None. Removes an existing instance attachment.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqledtin (
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgdtin (

struct sqlca * pSqlca);

sqledtin API parameters

pSqlca
Output. A pointer to the sqlca structure.

REXX API syntax
DETACH

Chapter 31. Application programming interfaces (APIs) 943

944 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Part 4. Appendixes

© Copyright IBM Corp. 1993, 2009 945

946 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Appendix A. Related topics (linked to from topics in this
book)

SQL Reference topics

SYSCAT.ATTRIBUTES

Each row represents an attribute that is defined for a user-defined structured data
type. Includes inherited attributes of subtypes.

Table 172. SYSCAT.ATTRIBUTES Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR (128) Schema name of the structured data type
that includes the attribute.

TYPEMODULENAME VARCHAR(128) Y Unqualified name of the module to which
the structured data type belongs. The null
value if not a module structured data type.

TYPENAME VARCHAR (128) Unqualified name of the structured data type
that includes the attribute.

ATTR_NAME VARCHAR (128) Attribute name.

ATTR_TYPESCHEMA VARCHAR (128) Schema name of the data type of an
attribute.

ATTR_TYPEMODULENAME VARCHAR(128) Y Unqualified name of the module to which
the data type of an attribute belongs. The
null value if not a module attribute.

ATTR_TYPENAME VARCHAR (128) Unqualified name of the data type of an
attribute.

TARGET_TYPESCHEMA VARCHAR (128) Y Schema name of the target row type. Applies
to reference types only; null value otherwise.

TARGET_TYPEMODULENAME VARCHAR(128) Y Unqualified name of the module to which
the target row type belongs. The null value if
not a module row type. Applies to reference
types only; null value otherwise.

TARGET_TYPENAME VARCHAR (128) Y Unqualified name of the target row type.
Applies to reference types only; null value
otherwise.

SOURCE_TYPESCHEMA VARCHAR (128) For inherited attributes, the schema name of
the data type with which the attribute was
first defined. For non-inherited attributes,
this column is the same as TYPESCHEMA.

SOURCE_TYPEMODULENAME VARCHAR(128) Y For inherited attributes, the unqualified
name of the module to which the data type
with which the attribute was first defined
belongs. For non-inherited attributes, this
column is the same as TYPEMODULEID.
The null value if not a module data type.

© Copyright IBM Corp. 1993, 2009 947

Table 172. SYSCAT.ATTRIBUTES Catalog View (continued)

Column Name Data Type Nullable Description

SOURCE_TYPENAME VARCHAR (128) For inherited attributes, the unqualified
name of the data type with which the
attribute was first defined. For non-inherited
attributes, this column is the same as
TYPENAME.

ORDINAL SMALLINT Position of the attribute in the definition of
the structured data type, starting with 0.

LENGTH INTEGER Length of the attribute data type. 0 if the
attribute is a user-defined type.

SCALE SMALLINT Scale if the attribute data type is DECIMAL
or distinct type based on DECIMAL; the
number of digits of fractional seconds if the
attribute data type is TIMESTAMP or distinct
type based on TIMESTAMP; 0 otherwise.

CODEPAGE SMALLINT For string types, denotes the code page; 0
indicates FOR BIT DATA; 0 for non-string
types.

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the
collation for the attribute; the null value
otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of the
collation for the attribute; the null value
otherwise.

LOGGED CHAR (1) Applies to LOB types only; blank otherwise.

v N = Changes are not logged

v Y = Changes are logged

COMPACT CHAR (1) Applies to LOB types only; blank otherwise.

v N = Stored in non-compact format

v Y = Stored in compact format

DL_FEATURES CHAR(10) This column is no longer used and will be
removed in a future release.

JAVA_FIELDNAME VARCHAR (256) Y Reserved for future use.

SYSCAT.AUDITPOLICIES

Each row represents an audit policy.

Table 173. SYSCAT.AUDITPOLICIES Catalog View

Column Name Data Type Nullable Description

AUDITPOLICYNAME VARCHAR (128) Name of the audit policy.

AUDITPOLICYID INTEGER Identifier for the audit policy.

CREATE_TIME TIMESTAMP Time at which the audit policy was created.

ALTER_TIME TIMESTAMP Time at which the audit policy was last
altered.

948 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 173. SYSCAT.AUDITPOLICIES Catalog View (continued)

Column Name Data Type Nullable Description

AUDITSTATUS CHAR (1) Status for the AUDIT category.

v B = Both

v F = Failure

v N = None

v S = Success

CONTEXTSTATUS CHAR (1) Status for the CONTEXT category.

v B = Both

v F = Failure

v N = None

v S = Success

VALIDATESTATUS CHAR (1) Status for the VALIDATE category.

v B = Both

v F = Failure

v N = None

v S = Success

CHECKINGSTATUS CHAR (1) Status for the CHECKING category.

v B = Both

v F = Failure

v N = None

v S = Success

SECMAINTSTATUS CHAR (1) Status for the SECMAINT category.

v B = Both

v F = Failure

v N = None

v S = Success

OBJMAINTSTATUS CHAR (1) Status for the OBJMAINT category.

v B = Both

v F = Failure

v N = None

v S = Success

SYSADMINSTATUS CHAR (1) Status for the SYSADMIN category.

v B = Both

v F = Failure

v N = None

v S = Success

EXECUTESTATUS CHAR (1) Status for the EXECUTE category.

v B = Both

v F = Failure

v N = None

v S = Success

EXECUTEWITHDATA CHAR (1) Host variables and parameter markers
logged with EXECUTE category.

v N = No

v Y = Yes

Appendix A. Related topics (linked to from topics in this book) 949

Table 173. SYSCAT.AUDITPOLICIES Catalog View (continued)

Column Name Data Type Nullable Description

ERRORTYPE CHAR (1) The audit error type.

v A = Audit

v N = Normal

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.AUDITUSE

Each row represents an audit policy that is associated with a non-database object,
such as USER, GROUP, or authority (SYSADM, SYSCTRL, SYSMAINT).

Table 174. SYSCAT.AUDITUSE Catalog View

Column Name Data Type Nullable Description

AUDITPOLICYNAME VARCHAR (128) Name of the audit policy.

AUDITPOLICYID INTEGER Identifier for the audit policy.

OBJECTTYPE CHAR(1) The type of object with which this audit
policy is associated.

v S = MQT

v T = Table

v g = Authority

v i = Authorization ID

v x = Trusted context

v Blank = Database

SUBOBJECTTYPE CHAR(1) If OBJECTTYPE is ’i’, this is the type that the
authorization ID represents.

v G = Group

v R = Role

v U = User

v Blank = Not applicable

OBJECTSCHEMA VARCHAR (128) Schema name of the object for which the
audit policy is in use. OBJECTSCHEMA is
null if OBJECTTYPE identifies an object to
which a schema does not apply.

OBJECTNAME VARCHAR (128) Unqualified name of the object for which
this audit policy is in use.

SYSCAT.BUFFERPOOLDBPARTITIONS

Each row represents a combination of a buffer pool and a database partition, in
which the size of the buffer pool on that partition is different from its default size
for other partitions in the same database partition group (as represented in
SYSCAT.BUFFERPOOLS).

Table 175. SYSCAT.BUFFERPOOLDBPARTITIONS Catalog View

Column Name Data Type Nullable Description

BUFFERPOOLID INTEGER Internal buffer pool identifier.

DBPARTITIONNUM SMALLINT Database partition number.

950 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 175. SYSCAT.BUFFERPOOLDBPARTITIONS Catalog View (continued)

Column Name Data Type Nullable Description

NPAGES INTEGER Number of pages in this buffer pool on this
database partition.

SYSCAT.BUFFERPOOLS

Each row represents the configuration of a buffer pool on one database partition
group of a database, or on all database partitions of a database.

Table 176. SYSCAT.BUFFERPOOLS Catalog View

Column Name Data Type Nullable Description

BPNAME VARCHAR (128) Name of the buffer pool.

BUFFERPOOLID INTEGER Identifier for the buffer pool.

DBPGNAME VARCHAR (128) Y Name of the database partition group (the
null value if the buffer pool exists on all
database partitions in the database).

NPAGES INTEGER Default number of pages in this buffer pool
on database partitions in this database
partition group.

PAGESIZE INTEGER Page size for this buffer pool on database
partitions in this database partition group.

ESTORE INTEGER Always ’N’. Extended storage no longer
applies.

NUMBLOCKPAGES INTEGER Number of pages of the buffer pool that are
to be in a block-based area. A block-based
area of the buffer pool is only used by
prefetchers doing a sequential prefetch.

BLOCKSIZE INTEGER Number of pages in a block.

NGNAME1 VARCHAR (128) Y Name of the database partition group (the
null value if the buffer pool exists on all
database partitions in the database).

Note:

1. The NGNAME column is included for backwards compatibility. See DBPGNAME.

SYSCAT.CASTFUNCTIONS

Each row represents a cast function, not including built-in cast functions.

Table 177. SYSCAT.CASTFUNCTIONS Catalog View

Column Name Data Type Nullable Description

FROM_TYPESCHEMA VARCHAR (128) Schema name of the data type of the
parameter.

FROM_TYPEMODULENAME VARCHAR (128) Unqualified name of the module to which
the data type of the parameter belongs. The
null value if not a module data type.

FROM_TYPENAME VARCHAR (128) Name of the data type of the parameter.

Appendix A. Related topics (linked to from topics in this book) 951

Table 177. SYSCAT.CASTFUNCTIONS Catalog View (continued)

Column Name Data Type Nullable Description

FROM_TYPEMODULEID INTEGER Y Identifier for the module to which the data
type of the parameter belongs. The null
value if not a module data type.

TO_TYPESCHEMA VARCHAR (128) Schema name of the data type of the result
after casting.

TO_TYPEMODULENAME VARCHAR (128) Unqualified name of the module to which
the data type of the result after casting
belongs. The null value if not a module data
type.

TO_TYPENAME VARCHAR (128) Name of the data type of the result after
casting.

TO_TYPEMODULEID INTEGER Y Identifier for the module to which the data
type of the result after casting belongs. The
null value if not a module data type.

FUNCSCHEMA VARCHAR (128) Schema name of the function.

FUNCMODULENAME VARCHAR (128) Unqualified name of the module to which
the function belongs. The null value if not a
module function.

FUNCNAME VARCHAR (128) Unqualified name of the function.

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be
system-generated).

FUNCMODULEID INTEGER Y Identifier for the module to which the
function belongs. The null value if not a
module function.

ASSIGN_FUNCTION CHAR (1) v N = Not an assignment function

v Y = Implicit assignment function

SYSCAT.CHECKS

Each row represents a check constraint or a derived column in a materialized
query table. For table hierarchies, each check constraint is recorded only at the
level of the hierarchy where the constraint was created.

Table 178. SYSCAT.CHECKS Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Name of the check constraint.

OWNER VARCHAR (128) Authorization ID of the owner of the constraint.

OWNERTYPE CHAR (1)
v S = The owner is the system

v U = The owner is an individual user

TABSCHEMA VARCHAR (128) Schema name of the table to which this constraint
applies.

TABNAME VARCHAR (128) Name of the table to which this constraint applies.

CREATE_TIME TIMESTAMP Time at which the constraint was defined. Used in
resolving functions that are part of this constraint.
Functions that were created after the constraint
was defined are not chosen.

QUALIFIER VARCHAR (128) Value of the default schema at the time of object
definition. Used to complete any unqualified
references.

952 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 178. SYSCAT.CHECKS Catalog View (continued)

Column Name Data Type Nullable Description

TYPE CHAR (1) Type of check constraint:

v C = Check constraint

v F = Functional dependency

v O = Constraint is an object property

v S = System-generated check constraint for a
GENERATED ALWAYS column

FUNC_PATH CLOB (2K) SQL path in effect when the constraint was
defined.

TEXT CLOB (2M) Text of the check condition or definition of the
derived column.1

PERCENTVALID SMALLINT Number of rows for which the informational
constraint is valid, expressed as a percentage of
the total.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the constraint.

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for the
constraint.

COLLATIONSCHEMA_ORDERBY VARCHAR (128) Schema name of the collation for ORDER BY
clauses in the constraint.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for ORDER BY
clauses in the constraint.

DEFINER2 VARCHAR (128) Authorization ID of the owner of the constraint.

Note:

1. In the catalog view, the text of the check condition is always shown in the database code page and can contain substitution
characters. The check constraint will always be applied in the code page of the target table, and will not contain any substitution
characters when applied. (The check constraint will be applied based on the original text in the code page of the target table,
which might not include the substitution characters.)

2. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.COLCHECKS

Each row represents a column that is referenced by a check constraint or by the
definition of a materialized query table. For table hierarchies, each check constraint
is recorded only at the level of the hierarchy where the constraint was created.

Table 179. SYSCAT.COLCHECKS Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Name of the check constraint.

TABSCHEMA VARCHAR (128) Schema name of the table containing the
referenced column.

TABNAME VARCHAR (128) Unqualified name of the table containing the
referenced column.

COLNAME VARCHAR (128) Name of the column.

Appendix A. Related topics (linked to from topics in this book) 953

Table 179. SYSCAT.COLCHECKS Catalog View (continued)

Column Name Data Type Nullable Description

USAGE CHAR (1) v D = Column is the child in a functional
dependency

v P = Column is the parent in a functional
dependency

v R = Column is referenced in the check
constraint

v S = Column is a source in the
system-generated column check constraint
that supports a materialized query table

v T = Column is a target in the
system-generated column check constraint
that supports a materialized query table

SYSCAT.COLDIST

Each row represents the nth most frequent value of some column, or the nth
quantile (cumulative distribution) value of the column. Applies to columns of real
tables only (not views). No statistics are recorded for inherited columns of typed
tables.

Table 180. SYSCAT.COLDIST Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the table to which the
statistics apply.

TABNAME VARCHAR (128) Unqualified name of the table to which the
statistics apply.

COLNAME VARCHAR (128) Name of the column to which the statistics
apply.

TYPE CHAR (1) v F = Frequency value

v Q = Quantile value

SEQNO SMALLINT If TYPE = ’F’, n in this column identifies the
nth most frequent value. If TYPE = ’Q’, n in
this column identifies the nth quantile value.

COLVALUE1 VARCHAR (254) Y Data value as a character literal or a null
value.

VALCOUNT BIGINT If TYPE = ’F’, VALCOUNT is the number of
occurrences of COLVALUE in the column. If
TYPE = ’Q’, VALCOUNT is the number of
rows whose value is less than or equal to
COLVALUE.

DISTCOUNT2 BIGINT Y If TYPE = ’Q’, this column records the
number of distinct values that are less than
or equal to COLVALUE (the null value if
unavailable).

Note:

1. In the catalog view, the value of COLVALUE is always shown in the database code page and can contain
substitution characters. However, the statistics are gathered internally in the code page of the column’s table, and
will therefore use actual column values when applied during query optimization.

2. DISTCOUNT is collected only for columns that are the first key column in an index.

954 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

SYSCAT.COLGROUPCOLS

Each row represents a column that makes up a column group.

Table 181. SYSCAT.COLGROUPCOLS Catalog View

Column Name Data Type Nullable Description

COLGROUPID INTEGER Identifier for the column group.

COLNAME VARCHAR (128) Name of the column in the column group.

TABSCHEMA VARCHAR (128) Schema name of the table for the column in
the column group.

TABNAME VARCHAR (128) Unqualified name of the table for the column
in the column group.

ORDINAL SMALLINT Ordinal number of the column in the column
group.

SYSCAT.COLGROUPDIST

Each row represents the value of the column in a column group that makes up the
nth most frequent value of the column group or the nth quantile value of the
column group.

Table 182. SYSCAT.COLGROUPDIST Catalog View

Column Name Data Type Nullable Description

COLGROUPID INTEGER Identifier for the column group.

TYPE CHAR (1) v F = Frequency value

v Q = Quantile value

ORDINAL SMALLINT Ordinal number of the column in the column
group.

SEQNO SMALLINT If TYPE = ’F’, n in this column identifies the
nth most frequent value. If TYPE = ’Q’, n in
this column identifies the nth quantile value.

COLVALUE1 VARCHAR (254) Data value as a character literal or a null
value.

Note:

1. In the catalog view, the value of COLVALUE is always shown in the database code page and can contain
substitution characters. However, the statistics are gathered internally in the code page of the column’s table, and
will therefore use actual column values when applied during query optimization.

SYSCAT.COLGROUPDISTCOUNTS

Each row represents the distribution statistics that apply to the nth most frequent
value of a column group or the nth quantile of a column group.

Table 183. SYSCAT.COLGROUPDISTCOUNTS Catalog View

Column Name Data Type Nullable Description

COLGROUPID INTEGER Identifier for the column group.

Appendix A. Related topics (linked to from topics in this book) 955

Table 183. SYSCAT.COLGROUPDISTCOUNTS Catalog View (continued)

Column Name Data Type Nullable Description

TYPE CHAR (1) v F = Frequency value

v Q = Quantile value

SEQNO SMALLINT Sequence number n representing the nth
TYPE value.

VALCOUNT BIGINT If TYPE = ’F’, VALCOUNT is the number of
occurrences of COLVALUE for the column
group with this SEQNO. If TYPE = ’Q’,
VALCOUNT is the number of rows whose
value is less than or equal to COLVALUE for
the column group with this SEQNO.

DISTCOUNT BIGINT If TYPE = ’Q’, this column records the
number of distinct values that are less than
or equal to COLVALUE for the column
group with this SEQNO (the null value if
unavailable).

SYSCAT.COLGROUPS

Each row represents a column group and statistics that apply to the entire column
group.

Table 184. SYSCAT.COLGROUPS Catalog View

Column Name Data Type Nullable Description

COLGROUPSCHEMA VARCHAR (128) Schema name of the column group.

COLGROUPNAME VARCHAR (128) Unqualified name of the column group.

COLGROUPID INTEGER Identifier for the column group.

COLGROUPCARD BIGINT Cardinality of the column group.

NUMFREQ_VALUES SMALLINT Number of frequent values collected for the
column group.

NUMQUANTILES SMALLINT Number of quantiles collected for the
column group.

SYSCAT.COLIDENTATTRIBUTES

Each row represents an identity column that is defined for a table.

Table 185. SYSCAT.COLIDENTATTRIBUTES Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the table or view that
contains the column.

TABNAME VARCHAR (128) Unqualified name of the table or view that
contains the column.

COLNAME VARCHAR (128) Name of the column.

START DECIMAL (31,0) Y Start value of the sequence. The null value if
the sequence is an alias.

INCREMENT DECIMAL (31,0) Y Increment value. The null value if the
sequence is an alias.

956 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 185. SYSCAT.COLIDENTATTRIBUTES Catalog View (continued)

Column Name Data Type Nullable Description

MINVALUE DECIMAL (31,0) Y Minimum value of the sequence. The null
value if the sequence is an alias.

MAXVALUE DECIMAL (31,0) Y Maximum value of the sequence. The null
value if the sequence is an alias.

CYCLE CHAR (1) Indicates whether or not the sequence can
continue to generate values after reaching its
maximum or minimum value.

v N = Sequence cannot cycle

v Y = Sequence can cycle

v Blank = Sequence is an alias.

CACHE INTEGER Number of sequence values to pre-allocate in
memory for faster access. 0 indicates that
values of the sequence are not to be
preallocated. In a partitioned database, this
value applies to each database partition. -1 if
the sequence is an alias.

ORDER CHAR (1) Indicates whether or not the sequence
numbers must be generated in order of
request.

v N = Sequence numbers are not required to
be generated in order of request

v Y = Sequence numbers must be generated
in order of request

v Blank = Sequence is an alias.

NEXTCACHEFIRSTVALUE DECIMAL (31,0) Y The first value available to be assigned in
the next cache block. If no caching, the next
value available to be assigned.

SEQID INTEGER Identifier for the sequence or alias.

SYSCAT.COLOPTIONS

Each row contains column-specific option values.

Table 186. SYSCAT.COLOPTIONS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the nickname.

TABNAME VARCHAR (128) Nickname for the column for which options
are set.

COLNAME VARCHAR (128) Local column name.

OPTION VARCHAR (128) Name of the column option.

SETTING CLOB (32K) Value.

SYSCAT.COLUMNS

Each row represents a column defined for a table, view, or nickname.

Appendix A. Related topics (linked to from topics in this book) 957

Table 187. SYSCAT.COLUMNS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the table, view, or nickname
that contains the column.

TABNAME VARCHAR (128) Unqualified name of the table, view, or
nickname that contains the column.

COLNAME VARCHAR (128) Name of the column.

COLNO SMALLINT Number of this column in the table (starting
with 0).

TYPESCHEMA VARCHAR (128) Schema name of the data type for the
column.

TYPENAME VARCHAR (128) Unqualified name of the data type for the
column.

LENGTH INTEGER Maximum length of the data; 0 for distinct
types. The LENGTH column indicates
precision for DECIMAL fields, and indicates
the number of bytes of storage required for
decimal floating-point columns; that is, 8 and
16 for DECFLOAT(16) and DECFLOAT(34),
respectively.

SCALE SMALLINT Scale if the column type is DECIMAL or
number of digits of fractional seconds if the
column type is TIMESTAMP; 0 otherwise.

DEFAULT1 VARCHAR (254) Y Default value for the column of a table
expressed as a constant, special register, or
cast-function appropriate for the data type of
the column. Can also be the keyword NULL.
Values might be converted from what was
specified as a default value. For example,
date and time constants are shown in ISO
format, cast-function names are qualified
with schema names, and identifiers are
delimited. Null value if a DEFAULT clause
was not specified or the column is a view
column.

NULLS2 CHAR (1) Nullability attribute for the column.

v N = Column is not nullable

v Y = Column is nullable

The value can be ’N’ for a view column that
is derived from an expression or function.
Nevertheless, such a column allows null
values when the statement using the view is
processed with warnings for arithmetic
errors.

CODEPAGE SMALLINT Code page used for data in this column; 0 if
the column is defined as FOR BIT DATA or
is not a string type.

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the
collation for the column; the null value
otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of the
collation for the column; the null value
otherwise.

958 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 187. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

LOGGED CHAR (1) Applies only to columns whose type is LOB
or distinct based on LOB; blank otherwise.

v N = Column is not logged

v Y = Column is logged

COMPACT CHAR (1) Applies only to columns whose type is LOB
or distinct based on LOB; blank otherwise.

v N = Column is not compacted

v Y = Column is compacted in storage

COLCARD BIGINT Number of distinct values in the column; -1
if statistics are not collected; -2 for inherited
columns and columns of hierarchy tables.

HIGH2KEY3 VARCHAR (254) Y Second-highest data value. Representation of
numeric data changed to character literals.
Empty if statistics are not collected. Empty
for inherited columns and columns of
hierarchy tables.

LOW2KEY3 VARCHAR (254) Y Second-lowest data value. Representation of
numeric data changed to character literals.
Empty if statistics are not collected. Empty
for inherited columns and columns of
hierarchy tables.

AVGCOLLEN INTEGER Average space in bytes when the column is
stored in database memory or a temporary
table. For LOB data types that are not
inlined, LONG data types, and XML
documents, the value used to calculate the
average column length is the length of the
data descriptor. An extra byte is required if
the column is nullable; -1 if statistics have
not been collected; -2 for inherited columns
and columns of hierarchy tables. Note: The
average space required to store the column
on disk may be different than the value
represented by this statistic.

KEYSEQ SMALLINT Y The column’s numerical position within the
table’s primary key. The null value for
columns of subtables and hierarchy tables.

PARTKEYSEQ SMALLINT Y The column’s numerical position within the
table’s distribution key; 0 or the null value if
the column is not in the distribution key. The
null value for columns of subtables and
hierarchy tables.

NQUANTILES SMALLINT Number of quantile values recorded in
SYSCAT.COLDIST for this column; -1 if
statistics are not gathered; -2 for inherited
columns and columns of hierarchy tables.

NMOSTFREQ SMALLINT Number of most-frequent values recorded in
SYSCAT.COLDIST for this column; -1 if
statistics are not gathered; -2 for inherited
columns and columns of hierarchy tables.

NUMNULLS BIGINT Number of null values in the column; -1 if
statistics are not collected.

Appendix A. Related topics (linked to from topics in this book) 959

Table 187. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

TARGET_TYPESCHEMA VARCHAR (128) Y Schema name of the target row type, if the
type of this column is REFERENCE; null
value otherwise.

TARGET_TYPENAME VARCHAR (128) Y Unqualified name of the target row type, if
the type of this column is REFERENCE; null
value otherwise.

SCOPE_TABSCHEMA VARCHAR (128) Y Schema name of the scope (target table), if
the type of this column is REFERENCE; null
value otherwise.

SCOPE_TABNAME VARCHAR (128) Y Unqualified name of the scope (target table),
if the type of this column is REFERENCE;
null value otherwise.

SOURCE_TABSCHEMA VARCHAR (128) Y For columns of typed tables or views, the
schema name of the table or view in which
the column was first introduced. For
non-inherited columns, this is the same as
TABSCHEMA. The null value for columns of
non-typed tables and views.

SOURCE_TABNAME VARCHAR (128) Y For columns of typed tables or views, the
unqualified name of the table or view in
which the column was first introduced. For
non-inherited columns, this is the same as
TABNAME. The null value for columns of
non-typed tables and views.

DL_FEATURES CHAR (10) Y This column is no longer used and will be
removed in a future release.

SPECIAL_PROPS CHAR (8) Y Applies to REFERENCE type columns only;
blanks otherwise. Each byte position is
defined as follows:

v 1 = Object identifier (OID) column (’Y’ for
yes; ’N’ for no)

v 2 = User-generated or system-generated
(’U’ for user; ’S’ for system)

Bytes 3 through 8 are reserved for future
use.

HIDDEN CHAR (1) Type of hidden column.

v I = Column is defined as IMPLICITLY
HIDDEN

v S = System-managed hidden column

v Blank = Column is not hidden

INLINE_LENGTH INTEGER Maximum size in bytes of the internal
representation of an instance of an XML
document, a structured type, or a LOB data
type, that can be stored in the base table; 0
when not applicable.

PCTINLINED SMALLINT Percentage of inlined XML documents or
LOB data. -1 if statistics have not been
collected.

960 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 187. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

IDENTITY CHAR (1) v N = Not an identity column

v T = Row change timestamp column

v Y = Identity column

ROWCHANGETIMESTAMP CHAR (1) v N = Not a row change timestamp column

v Y = Row change timestamp column

GENERATED CHAR (1) Type of generated column.

v A = Column value is always generated

v D = Column value is generated by default

v Blank = Column is not generated

TEXT CLOB (2M) Y For columns defined as generated as
expression, this field contains the text of the
generated column expression, starting with
the keyword AS.

COMPRESS CHAR (1) v O = Compress off

v S = Compress system default values

AVGDISTINCTPERPAGE DOUBLE Y For future use.

PAGEVARIANCERATIO DOUBLE Y For future use.

SUB_COUNT SMALLINT Average number of sub-elements in the
column. Applicable to character string
columns only.

SUB_DELIM_LENGTH SMALLINT Average length of the delimiters that
separate each sub-element in the column.
Applicable to character string columns only.

AVGCOLLENCHAR INTEGER Average number of characters (based on the
collation in effect for the column) required
for the column; -1 if the data type of the
column is long, LOB, or XML or if statistics
have not been collected; -2 for inherited
columns and columns of hierarchy tables.

IMPLICITVALUE4 VARCHAR (254) Y For a column that was added to a table after
the table was created, stores the default
value at the time the column was added. For
a column that was defined when the table
was created, stores the null value.

SECLABELNAME VARCHAR(128) Y Name of the security label that is associated
with the column if it is a protected column;
the null value otherwise.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Appendix A. Related topics (linked to from topics in this book) 961

Table 187. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

Note:

1. For Version 2.1.0, cast-function names were not delimited and may still appear this way in the DEFAULT column.
Also, some view columns included default values which will still appear in the DEFAULT column.

2. Starting with Version 2, value D (indicating not null with a default) is no longer used. Instead, use of WITH
DEFAULT is indicated by a non-null value in the DEFAULT column.

3. In the catalog view, the values of HIGH2KEY and LOW2KEY are always shown in the database code page and
can contain substitution characters. However, the statistics are gathered internally in the code page of the
column’s table, and will therefore use actual column values when applied during query optimization.

4. Attaching a data partition is allowed unless IMPLICITVALUE for a specific column is a non-null value for both
the source column and the target column, and the values do not match. In this case, you must drop the source
table and then recreate it. A column can have a non-null value in the IMPLICITVALUE field if one of the
following conditions is met:

v The column is created as the result of an ALTER TABLE...ADD COLUMN statement

v The IMPLICITVALUE field is propagated from a source table during attach

v The IMPLICITVALUE field is inherited from a source table during detach

v The IMPLICITVALUE field is set during database upgrade from Version 8 to Version 9, where it is determined
to be an added column, or might be an added column. If the database is not certain whether the column is
added or not, it is treated as added. An added column is a column that was created as the result of an ALTER
TABLE...ADD COLUMN statement.

To avoid these inconsistencies during non-migration scenarios, it is recommended that you always create the
tables that you are going to attach with all the columns already defined. That is, never use the ALTER TABLE
statement to add columns to a table before attaching it.

SYSCAT.COLUSE

Each row represents a column that is referenced in the DIMENSIONS clause of a
CREATE TABLE statement.

Table 188. SYSCAT.COLUSE Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the table containing the
column.

TABNAME VARCHAR (128) Unqualified name of the table containing the
column.

COLNAME VARCHAR (128) Name of the column.

DIMENSION SMALLINT Dimension number, based on the order of
dimensions specified in the DIMENSIONS
clause (initial position is 0). For a composite
dimension, this value will be the same for
each component of the dimension.

COLSEQ SMALLINT Numeric position of the column in the
dimension to which it belongs (initial
position is 0). The value is 0 for the single
column in a noncomposite dimension.

TYPE CHAR (1) Type of dimension.

v C = Clustering or multidimensional
clustering

v P = Partitioning

962 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

SYSCAT.CONDITIONS

Each row represents a condition defined in a module.

Table 189. SYSCAT.CONDITIONS Catalog View

Column Name Data Type Nullable Description

CONDSCHEMA VARCHAR (128) Schema name of the condition.

CONDMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the condition belongs.

CONDNAME VARCHAR (128) Unqualified name of the condition.

CONDID INTEGER Identifier for the condition.

CONDMODULEID INTEGER Y Identifier of the module to which the
condition belongs.

SQLSTATE CHAR(5) Y SQLSTATE value associated with the
condition.

OWNER VARCHAR (128) Authorization ID of the owner of the
condition.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

CREATE_TIME TIMESTAMP Time at which the condition was created.

REMARKS VARCHAR (254) User-provided comments, or the null value.

SYSCAT.CONSTDEP

Each row represents a dependency of a constraint on some other object. The
constraint depends on the object of type BTYPE of name BNAME, so a change to
the object affects the constraint.

Table 190. SYSCAT.CONSTDEP Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Unqualified name of the constraint.

TABSCHEMA VARCHAR (128) Schema name of the table to which the
constraint applies.

TABNAME VARCHAR (128) Unqualified name of the table to which the
constraint applies.

BTYPE CHAR (1) Type of object on which the constraint
depends. Possible values are:

v F = Routine

v I = Index

v R = User-defined structured type

v u = Module alias

BSCHEMA VARCHAR (128) Schema name of the object on which the
constraint depends.

BMODULENAME VARCHAR(128) Y Unqualified name of the module to which
the object on which a dependency belongs.
The null value if not a module object.

BNAME VARCHAR (128) Unqualified name of the object on which the
constraint depends.

Appendix A. Related topics (linked to from topics in this book) 963

Table 190. SYSCAT.CONSTDEP Catalog View (continued)

Column Name Data Type Nullable Description

BMODULEID INTEGER Y Identifier for the module of the object on
which the constraint depends.

SYSCAT.CONTEXTATTRIBUTES

Each row represents a trusted context attribute.

Table 191. SYSCAT.CONTEXTATTRIBUTES Catalog View

Column Name Data Type Nullable Description

CONTEXTNAME VARCHAR (128) Name of the trusted context.

ATTR_NAME VARCHAR (128) Name of the attribute. One of:

v ADDRESS

v ENCRYPTION

ATTR_VALUE VARCHAR (128) Value of the attribute.

ATTR_OPTIONS VARCHAR (128) Y If ATTR_NAME is ’ADDRESS’, specifies the
level of encryption required for this specific
address. A null value indicates that the
global ENCRYPTION attribute applies.

SYSCAT.CONTEXTS

Each row represents a trusted context.

Table 192. SYSCAT.CONTEXTS Catalog View

Column Name Data Type Nullable Description

CONTEXTNAME VARCHAR (128) Name of the trusted context.

CONTEXTID INTEGER Identifier for the trusted context.

SYSTEMAUTHID VARCHAR (128) The system authorization ID associated with
the trusted context.

DEFAULTCONTEXTROLE VARCHAR (128) Y The default role for the context.

CREATE_TIME TIMESTAMP Time at which the trusted context was
created.

ALTER_TIME TIMESTAMP Time at which the trusted context was last
altered.

ENABLED CHAR (1) Trusted context state.

v N = Disabled

v Y = Enabled

AUDITPOLICYID INTEGER Y Identifier for the audit policy.

AUDITPOLICYNAME VARCHAR (128) Y Name of the audit policy.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.DATAPARTITIONEXPRESSION

Each row represents an expression for that part of the table partitioning key.

964 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 193. SYSCAT.DATAPARTITIONEXPRESSION Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the partitioned table.

TABNAME VARCHAR (128) Unqualified name of the partitioned table.

DATAPARTITIONKEYSEQ INTEGER Expression key part sequence ID, starting
from 1.

DATAPARTITIONEXPRESSION CLOB (32K) Expression for this entry in the sequence, in
SQL syntax.

NULLSFIRST CHAR (1) v N = Null values in this expression
compare high

v Y = Null values in this expression
compare low

SYSCAT.DATAPARTITIONS

Each row represents a data partition. Note:
v The data partition statistics represent one database partition if the table is

created on multiple database partitions.

Table 194. SYSCAT.DATAPARTITIONS Catalog View

Column Name Data Type Nullable Description

DATAPARTITIONNAME VARCHAR (128) Name of the data partition.

TABSCHEMA VARCHAR (128) Schema name of the table to which this data
partition belongs.

TABNAME VARCHAR (128) Unqualified name of the table to which this
data partition belongs.

DATAPARTITIONID INTEGER Identifier for the data partition.

TBSPACEID INTEGER Y Identifier for the table space in which this
data partition is stored. The null value when
STATUS is ’I’.

PARTITIONOBJECTID INTEGER Y Identifier for the data partition within the
table space.

LONG_TBSPACEID INTEGER Y Identifier for the table space in which long
data is stored. The null value when STATUS
is ’I’.

ACCESS_MODE CHAR (1) Access restriction state of the data partition.
These states only apply to objects that are in
set integrity pending state or to objects that
were processed by a SET INTEGRITY
statement. Possible values are:

v D = No data movement

v F = Full access

v N = No access

v R = Read-only access

Appendix A. Related topics (linked to from topics in this book) 965

Table 194. SYSCAT.DATAPARTITIONS Catalog View (continued)

Column Name Data Type Nullable Description

STATUS VARCHAR (32) v A = Data partition is newly attached

v D = Data partition is detached

v I = Detached data partition whose entry in
the catalog is maintained only during
asynchronous index cleanup; rows with a
STATUS value of ’I’ are removed when all
index records referring to the detached
partition have been deleted

v Empty string = Data partition is visible
(normal status)

Bytes 2 through 32 are reserved for future
use.

SEQNO INTEGER Data partition sequence number (starting
from 0).

LOWINCLUSIVE CHAR (1) v N = Low key value is not inclusive

v Y = Low key value is inclusive

LOWVALUE VARCHAR (512) Low key value (a string representation of an
SQL value) for this data partition.

HIGHINCLUSIVE CHAR (1) v N = High key value is not inclusive

v Y = High key value is inclusive

HIGHVALUE VARCHAR (512) High key value (a string representation of an
SQL value) for this data partition.

CARD BIGINT Total number of rows in the data partition; -1
if statistics are not collected.

OVERFLOW BIGINT Total number of overflow records in the data
partition; -1 if statistics are not collected.

NPAGES BIGINT Total number of pages on which the rows of
the data partition exist; -1 if statistics are not
collected.

FPAGES BIGINT Total number of pages in the data partition;
-1 if statistics are not collected.

ACTIVE_BLOCKS BIGINT Total number of active blocks in the data
partition, or -1. Applies to multidimensional
clustering (MDC) tables only.

INDEX_TBSPACEID INTEGER Identifier for the table space which holds all
partitioned indexes for this data partition.

AVGROWSIZE SMALLINT Average length (in bytes) of both compressed
and uncompressed rows in this data
partition; -1 if statistics are not collected.

PCTROWSCOMPRESSED REAL Compressed rows as a percentage of the
total number of rows in the data partition; -1
if statistics are not collected.

PCTPAGESAVED SMALLINT Approximate percentage of pages saved in
the data partition as a result of row
compression. This value includes overhead
bytes for each user data row in the data
partition, but does not include the space that
is consumed by dictionary overhead; -1 if
statistics are not collected.

966 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 194. SYSCAT.DATAPARTITIONS Catalog View (continued)

Column Name Data Type Nullable Description

AVGCOMPRESSEDROWSIZE SMALLINT Average length (in bytes) of compressed
rows in this data partition; -1 if statistics are
not collected.

AVGROWCOMPRESSIONRATIO REAL For compressed rows in the data partition,
this is the average compression ratio by row;
that is, the average uncompressed row
length divided by the average compressed
row length; -1 if statistics are not collected.

STATS_TIME TIMESTAMP Y Time at which any change was last made to
recorded statistics for this object. Null if
statistics are not collected.

LASTUSED DATE Reserved for future use.

SYSCAT.DATATYPEDEP

Each row represents a dependency of a user-defined data type on some other
object.

Table 195. SYSCAT.DATATYPEDEP Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR (128) Schema name of the data type.

TYPEMODULENAME VARCHAR (128) Y Module name of the data type.

TYPENAME VARCHAR (128) Unqualified name of the data type.

TYPEMODULEID INTEGER Y Identifier for the module of the data type.

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

v A = Table alias

v G = Global temporary table

v H = Hierarchy table

v N = Nickname

v R = User-defined data type

v S = Materialized query table

v T = Table (not typed)

v U = Typed table

v V = View (not typed)

v W = Typed view

v q = Sequence alias

v u = Module alias

v v = Global variable

v * = Anchored to the row of a base table

BSCHEMA VARCHAR (128) Schema name of the object on which there is
a dependency.

BMODULENAME VARCHAR (128) Y Module name of the object on which there is
a dependency.

BNAME VARCHAR (128) Unqualified name of the object on which
there is a dependency.

Appendix A. Related topics (linked to from topics in this book) 967

Table 195. SYSCAT.DATATYPEDEP Catalog View (continued)

Column Name Data Type Nullable Description

BMODULEID INTEGER Y Identifier for the module of the object on
which there is a dependency.

TABAUTH SMALLINT Y If BTYPE = ’S’, ’T’, ’U’, ’V’, ’W’, or ’v’,
encodes the privileges on the table or view
that are required by the dependent data
type; the null value otherwise.

SYSCAT.DATATYPES

Each row represents a built-in or user-defined data type.

Table 196. SYSCAT.DATATYPES Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR (128) Schema name of the data type if
TYPEMODULEID is null; otherwise schema
name of the module to which the data type
belongs.

TYPEMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the user-defined type belongs. The null value
if not a module user-defined type.

TYPENAME VARCHAR (128) Unqualified name of the data type.

OWNER VARCHAR (128) Authorization ID of the owner of the type.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

SOURCESCHEMA VARCHAR (128) Y For distinct types or array types, the schema
name of the source data type. For
user-defined structured types, the schema
name of the built-in type of the reference
representation type. Null for other data
types.

SOURCEMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the source data type belongs. The null value
if not a module source data type.

SOURCENAME VARCHAR (128) Y For distinct types or array types, the
unqualified name of the source data type.
For user-defined structured types, the
unqualified built-in type name of the
reference representation type. Null for other
data types.

METATYPE CHAR (1) v A = User-defined array type

v C = User-defined cursor type

v F = User-defined row type

v L = User-defined associative array type

v R = User-defined structured type

v S = System predefined type

v T = User-defined distinct type

TYPEID SMALLINT Identifier for the data type.

968 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 196. SYSCAT.DATATYPES Catalog View (continued)

Column Name Data Type Nullable Description

TYPEMODULEID INTEGER Y Identifier for the module to which the
user-defined type belongs. The null value if
not a module user-defined type.

SOURCETYPEID SMALLINT Y Identifier for the source type (the null value
for built-in types). For user-defined
structured types, this is the identifier of the
reference representation type.

SOURCEMODULEID INTEGER Y Identifier for the module to which the source
data type belongs. The null value if not a
module source data type.

PUBLISHED CHAR (1) Indicates whether the module user-defined
type can be referenced outside its module.

v N = The module user-defined type is not
published

v Y = The module user-defined type is
published

v Blank = Not applicable

LENGTH INTEGER Maximum length of the type. 0 for built-in
parameterized types (for example, DECIMAL
and VARCHAR). For user-defined
structured types, this is the length of the
reference representation type.

SCALE SMALLINT Scale for distinct types or reference
representation types based on the built-in
DECIMAL type; the number of digits of
fractional seconds for distinct types based on
the built-in TIMESTAMP type; 6 for the
built-in TIMESTAMP type; 0 for all other
types (including DECIMAL itself).

CODEPAGE SMALLINT Database code page for string types, distinct
types based on string types, or reference
representation types; 0 otherwise.

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the
collation for the data type; the null value
otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of the
collation for the data type; the null value
otherwise.

ARRAY_LENGTH INTEGER Y Maximum cardinality of the array. The null
value if METATYPE is not ’A’.

ARRAYINDEXTYPESCHEMA VARCHAR(128) Y Schema of the data type of the array index.
The null value if METATYPE is not ’L’.

ARRAYINDEXTYPENAME VARCHAR (128) Y Name of the data type of the array index.
The null value if METATYPE is not ’L’.

ARRAYINDEXTYPEID SMALLINT Y Identifier for the array index type. The null
value if METATYPE is not ’L’.

ARRAYINDEXTYPELENGTH INTEGER Y Maximum length of the array index data
type. The null value if METATYPE is not ’L’.

CREATE_TIME TIMESTAMP Creation time of the data type.

Appendix A. Related topics (linked to from topics in this book) 969

Table 196. SYSCAT.DATATYPES Catalog View (continued)

Column Name Data Type Nullable Description

VALID CHAR (1) v N = The data type is invalid

v Y = The data type is valid

ATTRCOUNT SMALLINT Number of attributes in the data type.

INSTANTIABLE CHAR (1) v N = Type cannot be instantiated

v Y = Type can be instantiated

WITH_FUNC_ACCESS CHAR (1) v N = Methods for this type cannot be
invoked using function notation.

v Y = All the methods for this type can be
invoked using function notation.

FINAL CHAR (1) v N = The user-defined type can have
subtypes.

v Y = The user-defined type cannot have
subtypes.

INLINE_LENGTH INTEGER Maximum length of a structured type that
can be kept with a base table row; 0
otherwise.

NATURAL_
INLINE_LENGTH

INTEGER Y System-generated natural inline length of a
structured type instance. The null value if
this type is not a structured type.

JARSCHEMA VARCHAR (128) Y Schema name of the JAR_ID that identifies
the Jar file containing the Java class that
implements the SQL type. The null value if
the EXTERNAL NAME clause is not
specified.

JAR_ID VARCHAR (128) Y Identifier for the Jar file that contains the
Java class that implements the SQL type. The
null value if the EXTERNAL NAME clause is
not specified.

CLASS VARCHAR (384) Y Java class that implements the SQL type. The
null value if the EXTERNAL NAME clause is
not specified.

SQLJ_REPRESENTATION CHAR (1) Y SQLJ ″representation_spec″ of the Java class
that implements the SQL type. The null
value if the EXTERNAL NAME ...
LANGUAGE JAVA REPRESENTATION
SPEC clause is not specified.

v D = SQL data

v S = Serializable

ALTER_TIME TIMESTAMP Time at which the data type was last altered.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the type.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

970 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

SYSCAT.DBPARTITIONGROUPDEF

Each row represents a database partition that is contained in a database partition
group.

Table 197. SYSCAT.DBPARTITIONGROUPDEF Catalog View

Column Name Data Type Nullable Description

DBPGNAME VARCHAR (128) Name of the database partition group that
contains the database partition.

DBPARTITIONNUM SMALLINT Partition number of a database partition that
is contained in the database partition group.
A valid partition number is between 0 and
999, inclusive.

IN_USE CHAR (1) Status of the database partition.

v A = The newly added database partition is
not in the distribution map, but the
containers for the table spaces in the
database partition group have been
created; the database partition is added to
the distribution map when a redistribute
database partition group operation has
completed successfully.

v D = The database partition will be
dropped when a redistribute database
partition group operation has completed
successfully.

v T = The newly added database partition is
not in the distribution map, and it was
added using the WITHOUT
TABLESPACES clause; containers must be
added to the table spaces in the database
partition group.

v Y = The database partition is in the
distribution map.

SYSCAT.DBPARTITIONGROUPS

Each row represents a database partition group.

Table 198. SYSCAT.DBPARTITIONGROUPS Catalog View

Column Name Data Type Nullable Description

DBPGNAME VARCHAR (128) Name of the database partition group.

OWNER VARCHAR (128) Authorization ID of the owner of the
database partition group.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

PMAP_ID SMALLINT Identifier for the distribution map in the
SYSCAT.PARTITIONMAPS catalog view.

REDISTRIBUTE_PMAP_ID SMALLINT Identifier for the distribution map currently
being used for redistribution; -1 if
redistribution is currently not in progress.

Appendix A. Related topics (linked to from topics in this book) 971

Table 198. SYSCAT.DBPARTITIONGROUPS Catalog View (continued)

Column Name Data Type Nullable Description

CREATE_TIME TIMESTAMP Creation time of the database partition
group.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the
database partition group.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.EVENTMONITORS

Each row represents an event monitor.

Table 199. SYSCAT.EVENTMONITORS Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR (128) Name of the event monitor.

OWNER VARCHAR (128) Authorization ID of the owner of the event
monitor.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

TARGET_TYPE CHAR (1) Type of target to which event data is written.

v F = File

v P = Pipe

v T = Table

v U = Unformatted event table

TARGET VARCHAR (762) Name of the target to which file or pipe
event monitor data is written. For files, it can
be either an absolute path name or a relative
path name (relative to the database path for
the database; this can be seen using the LIST
ACTIVE DATABASES command). For pipes,
it can be an absolute path name.

MAXFILES INTEGER Y Maximum number of event files that this
event monitor permits in an event path. The
null value if there is no maximum, or if
TARGET_TYPE is not ’F’ (file).

MAXFILESIZE INTEGER Y Maximum size (in 4K pages) that each event
file can attain before the event monitor
creates a new file. The null value if there is
no maximum, or if TARGET_TYPE is not ’F’
(file).

BUFFERSIZE INTEGER Y Size of the buffer (in 4K pages) that is used
by event monitors with file targets; null
value otherwise.

IO_MODE CHAR (1) Y Mode of file input/output (I/O).

v B = Blocked

v N = Not blocked

v Null value = TARGET_TYPE is not ’F’
(file) or ’T’ (table)

972 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 199. SYSCAT.EVENTMONITORS Catalog View (continued)

Column Name Data Type Nullable Description

WRITE_MODE CHAR (1) Y Indicates how this event monitor handles
existing event data when the monitor is
activated.

v A = Append

v R = Replace

v Null value = TARGET_TYPE is not ’F’
(file)

AUTOSTART CHAR (1) Indicates whether this event monitor is to be
activated automatically when the database
starts.

v N = No

v Y = Yes

DBPARTITIONNUM SMALLINT Number of the database partition where the
event monitor runs and logs events.

MONSCOPE CHAR (1) Monitoring scope.

v G = Global

v L = Local

v T = Each database partition on which the
table space exists

v Blank = WRITE TO TABLE event monitor

EVMON_ACTIVATES INTEGER Number of times the event monitor has been
activated.

NODENUM1 SMALLINT Number of the database partition where the
event monitor runs and logs events.

DEFINER2 VARCHAR (128) Authorization ID of the owner of the event
monitor.

REMARKS VARCHAR (254) Y Reserved for future use.

Note:

1. The NODENUM column is included for backwards compatibility. See DBPARTITIONNUM.

2. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.EVENTS

Each row represents an event that is being monitored. An event monitor, in
general, monitors multiple events.

Table 200. SYSCAT.EVENTS Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR (128) Name of the event monitor that is
monitoring this event.

Appendix A. Related topics (linked to from topics in this book) 973

Table 200. SYSCAT.EVENTS Catalog View (continued)

Column Name Data Type Nullable Description

TYPE VARCHAR (128) Type of event being monitored. Possible
values are:

v ACTIVITIES

v CONNECTIONS

v DATABASE

v DEADLOCKS

v DETAILDEADLOCKS

v LOCKING

v PACKAGECACHESTMT

v STATEMENTS

v TABLES

v TABLESPACES

v THRESHOLD_VIOLATIONS

v TRANSACTIONS

v STATISTICS

v UOW

FILTER CLOB (64K) Y Full text of the WHERE clause that applies
to this event.

SYSCAT.EVENTTABLES

Each row represents the target table of an event monitor that writes to SQL tables.

Table 201. SYSCAT.EVENTTABLES Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR (128) Name of the event monitor.

974 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 201. SYSCAT.EVENTTABLES Catalog View (continued)

Column Name Data Type Nullable Description

LOGICAL_GROUP VARCHAR (128) Name of the logical data group. Possible
values are:

v ACTIVITYHISTORY

v BUFFERPOOL

v CONN

v CONNHEADER

v CONTROL

v DATAVAL

v DB

v DEADLOCK

v DLCONN

v DLLOCK

v LOCKING

v PACKAGECACHESTMT

v SCSTATS

v STMT

v STMTHIST

v STMTVALS

v SUBSECTION

v TABLE

v TABLESPACE

v THRESHOLDVIOLATIONS

v UOW

v WCSTATS

v WLSTATS

v XACT

TABSCHEMA VARCHAR (128) Schema name of the target table.

TABNAME VARCHAR (128) Unqualified name of the target table.

PCTDEACTIVATE SMALLINT A percent value that specifies how full a
DMS table space must be before an event
monitor automatically deactivates. Set to 100
for SMS table spaces.

SYSCAT.FULLHIERARCHIES

Each row represents the relationship between a subtable and a supertable, a
subtype and a supertype, or a subview and a superview. All hierarchical
relationships, including immediate ones, are included in this view.

Table 202. SYSCAT.FULLHIERARCHIES Catalog View

Column Name Data Type Nullable Description

METATYPE CHAR (1) Relationship type.

v R = Between structured types

v U = Between typed tables

v W = Between typed views

Appendix A. Related topics (linked to from topics in this book) 975

Table 202. SYSCAT.FULLHIERARCHIES Catalog View (continued)

Column Name Data Type Nullable Description

SUB_SCHEMA VARCHAR (128) Schema name of the subtype, subtable, or
subview.

SUB_NAME VARCHAR (128) Unqualified name of the subtype, subtable,
or subview.

SUPER_SCHEMA VARCHAR (128) Y Schema name of the supertype, supertable,
or superview.

SUPER_NAME VARCHAR (128) Y Unqualified name of the supertype,
supertable, or superview.

ROOT_SCHEMA VARCHAR (128) Schema name of the table, view, or type that
is at the root of the hierarchy.

ROOT_NAME VARCHAR (128) Unqualified name of the table, view, or type
that is at the root of the hierarchy.

SYSCAT.FUNCMAPOPTIONS

Each row represents a function mapping option value.

Table 203. SYSCAT.FUNCMAPOPTIONS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR (128) Name of the function mapping.

OPTION VARCHAR (128) Name of the function mapping option.

SETTING VARCHAR (2048) Value of the function mapping option.

SYSCAT.FUNCMAPPARMOPTIONS

Each row represents a function mapping parameter option value.

Table 204. SYSCAT.FUNCMAPPARMOPTIONS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR (128) Name of the function mapping.

ORDINAL SMALLINT Position of the parameter.

LOCATION CHAR (1) Location of the parameter.

v L = Local parameter

v R = Remote parameter

OPTION VARCHAR (128) Name of the function mapping parameter
option.

SETTING VARCHAR (2048) Value of the function mapping parameter
option.

SYSCAT.FUNCMAPPINGS

Each row represents a function mapping.

976 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 205. SYSCAT.FUNCMAPPINGS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR (128) Name of the function mapping (might be
system-generated).

FUNCSCHEMA VARCHAR (128) Y Schema name of the function. If the null
value, the function is assumed to be a
built-in function.

FUNCNAME VARCHAR (1024) Y Unqualified name of the user-defined or
built-in function.

FUNCID INTEGER Y Identifier for the function.

SPECIFICNAME VARCHAR (128) Y Name of the routine instance (might be
system-generated).

OWNER VARCHAR (128) Authorization ID of the owner of the
mapping. ’SYSIBM’ indicates that this is a
built-in function.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

WRAPNAME VARCHAR (128) Y Wrapper to which this mapping applies.

SERVERNAME VARCHAR (128) Y Name of the data source.

SERVERTYPE VARCHAR (30) Y Type of data source to which this mapping
applies.

SERVERVERSION VARCHAR (18) Y Version of the server type to which this
mapping applies.

CREATE_TIME TIMESTAMP Time at which the mapping was created.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the
mapping. ’SYSIBM’ indicates that this is a
built-in function.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.HIERARCHIES

Each row represents the relationship between a subtable and its immediate
supertable, a subtype and its immediate supertype, or a subview and its immediate
superview. Only immediate hierarchical relationships are included in this view.

Table 206. SYSCAT.HIERARCHIES Catalog View

Column Name Data Type Nullable Description

METATYPE CHAR (1) Relationship type.

v R = Between structured types

v U = Between typed tables

v W = Between typed views

SUB_SCHEMA VARCHAR (128) Schema name of the subtype, subtable, or
subview.

SUB_NAME VARCHAR (128) Unqualified name of the subtype, subtable,
or subview.

Appendix A. Related topics (linked to from topics in this book) 977

Table 206. SYSCAT.HIERARCHIES Catalog View (continued)

Column Name Data Type Nullable Description

SUPER_SCHEMA VARCHAR (128) Schema name of the supertype, supertable,
or superview.

SUPER_NAME VARCHAR (128) Unqualified name of the supertype,
supertable, or superview.

ROOT_SCHEMA VARCHAR (128) Schema name of the table, view, or type that
is at the root of the hierarchy.

ROOT_NAME VARCHAR (128) Unqualified name of the table, view, or type
that is at the root of the hierarchy.

SYSCAT.HISTOGRAMTEMPLATEBINS

Each row represents a histogram template bin.

Table 207. SYSCAT.HISTOGRAMTEMPLATEBINS Catalog View

Column Name Data Type Nullable Description

TEMPLATENAME VARCHAR (128) Y Name of the histogram template.

TEMPLATEID INTEGER Identifier for the histogram template.

BINID INTEGER Identifier for the histogram template bin.

BINUPPERVALUE BIGINT The upper value for a single bin in the
histogram template.

SYSCAT.HISTOGRAMTEMPLATES

Each row represents a histogram template.

Table 208. SYSCAT.HISTOGRAMTEMPLATES Catalog View

Column Name Data Type Nullable Description

TEMPLATEID INTEGER Identifier for the histogram template.

TEMPLATENAME VARCHAR (128) Name of the histogram template.

CREATE_TIME TIMESTAMP Time at which the histogram template was
created.

ALTER_TIME TIMESTAMP Time at which the histogram template was
last altered.

NUMBINS INTEGER Number of bins in the histogram template,
including the last bin that has an unbounded
top value.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.HISTOGRAMTEMPLATEUSE

Each row represents a relationship between a workload management object that
can use histogram templates and a histogram template.

Table 209. SYSCAT.HISTOGRAMTEMPLATEUSE Catalog View

Column Name Data Type Nullable Description

TEMPLATENAME VARCHAR (128) Y Name of the histogram template.

978 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 209. SYSCAT.HISTOGRAMTEMPLATEUSE Catalog View (continued)

Column Name Data Type Nullable Description

TEMPLATEID INTEGER Identifier for the histogram template.

HISTOGRAMTYPE CHAR (1) The type of information collected by
histograms based on this template.

v C = Activity estimated cost histogram

v E = Activity execution time histogram

v I = Activity interarrival time histogram

v L = Activity life time histogram

v Q = Activity queue time histogram

v R = Request execution time histogram

OBJECTTYPE CHAR (1) The type of WLM object.

v b = Service class

v k = Work action

v w = Workload

OBJECTID INTEGER Identifier of the WLM object.

SERVICECLASSNAME VARCHAR (128) Y Name of the service class.

PARENTSERVICECLASSNAME VARCHAR (128) Y The name of the parent service class of the
service subclass that uses the histogram
template.

WORKACTIONNAME VARCHAR (128) Y The name of the work action that uses the
histogram template.

WORKACTIONSETNAME VARCHAR (128) Y The name of the work action set containing
the work action that uses the histogram
template.

WORKLOADNAME VARCHAR (128) Y The name of the workload that uses the
histogram template.

SYSCAT.INDEXCOLUSE

Each row represents a column that participates in an index.

Table 210. SYSCAT.INDEXCOLUSE Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

COLNAME VARCHAR (128) Name of the column.

COLSEQ SMALLINT Numeric position of the column in the index
(initial position is 1).

COLORDER CHAR (1) Order of the values in this index column.
Possible values are:

v A = Ascending

v D = Descending

v I = INCLUDE column (ordering ignored)

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the
collation for the column; the null value
otherwise.

Appendix A. Related topics (linked to from topics in this book) 979

Table 210. SYSCAT.INDEXCOLUSE Catalog View (continued)

Column Name Data Type Nullable Description

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of the
collation for the column; the null value
otherwise.

SYSCAT.INDEXDEP

Each row represents a dependency of an index on some other object. The index
depends on an object of type BTYPE and name BNAME, so a change to the object
affects the index.

Table 211. SYSCAT.INDEXDEP Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

v A = Table alias

v B = Trigger

v F = Routine

v G = Global temporary table

v H = Hierachy table

v K = Package

v L = Detached table

v N = Nickname

v O = Privilege dependency on all subtables
or subviews in a table or view hierarchy

v Q = Sequence

v R = User-defined data type

v S = Materialized query table

v T = Table (not typed)

v U = Typed table

v V = View (not typed)

v W = Typed view

v X = Index extension

v Z = XSR object

v q = Sequence alias

v u = Module alias

v v = Global variable

v * = Anchored to the row of a base table

BSCHEMA VARCHAR (128) Schema name of the object on which there is
a dependency.

BMODULENAME VARCHAR(128) Y Unqualified name of the module to which
the object on which a dependency belongs.
The null value if not a module object.

BNAME VARCHAR (128) Unqualified name of the object on which
there is a dependency. For routines (BTYPE =
’F’), this is the specific name.

980 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 211. SYSCAT.INDEXDEP Catalog View (continued)

Column Name Data Type Nullable Description

BMODULEID INTEGER Y Identifier for the module of the object on
which there is a dependency.

TABAUTH SMALLINT Y If BTYPE = ’O’, ’S’, ’T’, ’U’, ’V’, ’W’, or ’v’,
encodes the privileges on the table or view
that are required by the dependent index;
the null value otherwise.

SYSCAT.INDEXES

Each row represents an index. Indexes on typed tables are represented by two
rows: one for the ″logical index″ on the typed table, and one for the ″H-index″ on
the hierarchy table.

Table 212. SYSCAT.INDEXES Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

OWNER VARCHAR (128) Authorization ID of the owner of the index.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

TABSCHEMA VARCHAR (128) Schema name of the table or nickname on
which the index is defined.

TABNAME VARCHAR (128) Unqualified name of the table or nickname
on which the index is defined.

COLNAMES VARCHAR (640) This column is no longer used and will be
removed in the next release. Use
SYSCAT.INDEXCOLUSE for this
information.

UNIQUERULE CHAR (1) Unique rule.

v D = Permits duplicates

v U = Unique

v P = Implements primary key

MADE_UNIQUE CHAR (1) v N = Index remains as it was created

v Y = This index was originally non-unique
but was converted to a unique index to
support a unique or primary key
constraint. If the constraint is dropped, the
index reverts to being non-unique.

COLCOUNT SMALLINT Number of columns in the key, plus the
number of include columns, if any.

UNIQUE_COLCOUNT SMALLINT Number of columns required for a unique
key. It is always <= COLCOUNT, and <
COLCOUNT only if there are include
columns; -1 if the index has no unique key
(that is, it permits duplicates).

Appendix A. Related topics (linked to from topics in this book) 981

Table 212. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

INDEXTYPE5 CHAR (4) Type of index.

v BLOK = Block index

v CLUS = Clustering index (controls the
physical placement of newly inserted
rows)

v DIM = Dimension block index

v REG = Regular index

v XPTH = XML path index

v XRGN = XML region index

v XVIL = Index over XML column (logical)

v XVIP = Index over XML column (physical)

ENTRYTYPE CHAR (1) v H = This row represents an index on a
hierarchy table

v L = This row represents a logical index on
a typed table

v Blank = This row represents an index on
an untyped table

PCTFREE SMALLINT Percentage of each index page to be reserved
during the initial building of the index. This
space is available for data insertions after the
index has been built.

IID SMALLINT Identifier for the index.

NLEAF BIGINT Number of leaf pages; -1 if statistics are not
collected.

NLEVELS SMALLINT Number of index levels; -1 if statistics are
not collected.

FIRSTKEYCARD BIGINT Number of distinct first-key values; -1 if
statistics are not collected.

FIRST2KEYCARD BIGINT Number of distinct keys using the first two
columns of the index; -1 if statistics are not
collected, or if not applicable.

FIRST3KEYCARD BIGINT Number of distinct keys using the first three
columns of the index; -1 if statistics are not
collected, or if not applicable.

FIRST4KEYCARD BIGINT Number of distinct keys using the first four
columns of the index; -1 if statistics are not
collected, or if not applicable.

FULLKEYCARD BIGINT Number of distinct full-key values; -1 if
statistics are not collected.

CLUSTERRATIO3 SMALLINT Degree of data clustering with the index; -1
if statistics are not collected or if detailed
index statistics are collected (in which case,
CLUSTERFACTOR will be used instead).

CLUSTERFACTOR3 DOUBLE Finer measurement of the degree of
clustering; -1 if statistics are not collected or
if the index is defined on a nickname.

982 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 212. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

SEQUENTIAL_PAGES BIGINT Number of leaf pages located on disk in
index key order with few or no large gaps
between them; -1 if statistics are not
collected.

DENSITY INTEGER Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by the
index, expressed as a percent (integer
between 0 and 100); -1 if statistics are not
collected.

USER_DEFINED SMALLINT 1 if this index was defined by a user and has
not been dropped; 0 otherwise.

SYSTEM_REQUIRED SMALLINT v 1 if one or the other of the following
conditions is met:

– This index is required for a primary or
unique key constraint, or this index is a
dimension block index or composite
block index for a multidimensional
clustering (MDC) table.

- This is the index on the object
identifier (OID) column of a typed
table.

v 2 if both of the following conditions are
met:

– This index is required for a primary or
unique key constraint, or this index is a
dimension block index or composite
block index for an MDC table.

- This is the index on the OID column
of a typed table.

v 0 otherwise.

CREATE_TIME TIMESTAMP Time when the index was created.

STATS_TIME TIMESTAMP Y Last time that any change was made to the
recorded statistics for this index. The null
value if no statistics are available.

PAGE_FETCH_PAIRS3 VARCHAR (520) A list of pairs of integers, represented in
character form. Each pair represents the
number of pages in a hypothetical buffer,
and the number of page fetches required to
scan the table with this index using that
hypothetical buffer. Zero-length string if no
data is available.

MINPCTUSED SMALLINT A non-zero integer value indicates that the
index is enabled for online defragmentation,
and represents the minimum percentage of
used space on a page before a page merge
can be attempted. A zero value indicates that
no page merge is attempted.

REVERSE_SCANS CHAR (1) v N = Index does not support reverse scans

v Y = Index supports reverse scans

Appendix A. Related topics (linked to from topics in this book) 983

Table 212. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

INTERNAL_FORMAT SMALLINT Possible values are:

v 1 = Index does not have backward
pointers

v 2 or greater = Index has backward
pointers

v 6 = Index is a composite block index

COMPRESSION CHAR (1) Specifies whether index compression is
activated

v N = Not activated

v Y = Activated

IESCHEMA VARCHAR (128) Y Schema name of the index extension. The
null value for ordinary indexes.

IENAME VARCHAR (128) Y Unqualified name of the index extension.
The null value for ordinary indexes.

IEARGUMENTS CLOB (64K) Y External information of the parameter
specified when the index is created. The null
value for ordinary indexes.

INDEX_OBJECTID INTEGER Identifier for the index object.

NUMRIDS BIGINT Total number of row identifiers (RIDs) or
block identifiers (BIDs) in the index; -1 if not
known.

NUMRIDS_DELETED BIGINT Total number of row identifiers (or block
identifiers) in the index that are marked
deleted, excluding those identifiers on leaf
pages on which all the identifiers are marked
deleted.

NUM_EMPTY_LEAFS BIGINT Total number of index leaf pages that have
all of their row identifiers (or block
identifiers) marked deleted.

AVERAGE_RANDOM_FETCH_
PAGES1,2

DOUBLE Average number of random table pages
between sequential page accesses when
fetching using the index; -1 if not known.

AVERAGE_RANDOM_PAGES2 DOUBLE Average number of random table pages
between sequential page accesses; -1 if not
known.

AVERAGE_SEQUENCE_GAP2 DOUBLE Gap between index page sequences. Detected
through a scan of index leaf pages, each gap
represents the average number of index
pages that must be randomly fetched
between sequences of index pages; -1 if not
known.

AVERAGE_SEQUENCE_FETCH_
GAP1,2

DOUBLE Gap between table page sequences when
fetching using the index. Detected through a
scan of index leaf pages, each gap represents
the average number of table pages that must
be randomly fetched between sequences of
table pages; -1 if not known.

984 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 212. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

AVERAGE_SEQUENCE_PAGES2 DOUBLE Average number of index pages that are
accessible in sequence (that is, the number of
index pages that the prefetchers would
detect as being in sequence); -1 if not known.

AVERAGE_SEQUENCE_FETCH_
PAGES1,2

DOUBLE Average number of table pages that are
accessible in sequence (that is, the number of
table pages that the prefetchers would detect
as being in sequence) when fetching using
the index; -1 if not known.

TBSPACEID INTEGER Identifier for the index table space.

LEVEL2PCTFREE SMALLINT Percentage of each index level 2 page to be
reserved during initial building of the index.
This space is available for future inserts after
the index has been built.

PAGESPLIT CHAR (1) Index page split behavior.

v H = High

v L = Low

v S = Symmetric

AVGPARTITION_
CLUSTERRATIO3

SMALLINT Degree of data clustering within a single
data partition. -1 if the table is not
partitioned, if statistics are not collected, or if
detailed statistics are collected (in which case
AVGPARTITION_ CLUSTERFACTOR will be
used instead).

AVGPARTITION_
CLUSTERFACTOR3

DOUBLE Finer measurement of the degree of
clustering within a single data partition. -1 if
the table is not partitioned, if statistics are
not collected, or if the index is defined on a
nickname.

AVGPARTITION_PAGE_FETCH_
PAIRS3

VARCHAR (520) A list of paired integers in character form.
Each pair represents a potential buffer pool
size and the corresponding page fetches
required to access a single data partition
from the table. Zero-length string if no data
is available, or if the table is not partitioned.

PCTPAGESSAVED SMALLINT Approximate percentage of pages saved in
the index as a result of index compression. -1
if statistics are not collected.

DATAPARTITION_
CLUSTERFACTOR

DOUBLE A statistic measuring the ″clustering″ of the
index keys with regard to data partitions. It
is a number between 0 and 1, with 1
representing perfect clustering and 0
representing no clustering.

INDCARD BIGINT Cardinality of the index. This might be
different from the cardinality of the table for
indexes that do not have a one-to-one
relationship between the table rows and the
index entries.

AVGLEAFKEYSIZE INTEGER Average index key size for keys on leaf
pages in the index.

Appendix A. Related topics (linked to from topics in this book) 985

Table 212. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

AVGNLEAFKEYSIZE INTEGER Average index key size for keys on non-leaf
pages in the index.

OS_PTR_SIZE INTEGER Platform word size with which the index
was created.

v 32 = 32-bit

v 64 = 64-bit

COLLECTSTATISTICS CHAR (1) Specifies how statistics were collected at
index creation time.

v D = Collect detailed index statistics

v S = Collect sampled detailed index
statistics

v Y = Collect basic index statistics

v Blank = Do not collect index statistics

DEFINER4 VARCHAR (128) Authorization ID of the owner of the index.

LASTUSED DATE Reserved for future use.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. When using DMS table spaces, this statistic cannot be computed.

2. Prefetch statistics are not gathered during a LOAD...STATISTICS YES, or a CREATE INDEX...COLLECT
STATISTICS operation, or when the database configuration parameter seqdetect is turned off.

3. AVGPARTITION_CLUSTERRATIO, AVGPARTITION_CLUSTERFACTOR, and
AVGPARTITION_PAGE_FETCH_PAIRS measure the degree of clustering within a single data partition (local
clustering). CLUSTERRATIO, CLUSTERFACTOR, and PAGE_FETCH_PAIRS measure the degree of clustering in
the entire table (global clustering). Global clustering and local clustering values can diverge significantly if the
table partitioning key is not a prefix of the index key, or when the table partitioning key and the index key are
logically independent of each other.

4. The DEFINER column is included for backwards compatibility. See OWNER.

5. The XPTH, XRGN, and XVIP indexes are not recognized by any application programming interface that returns
index metadata.

SYSCAT.INDEXEXPLOITRULES

Each row represents an index exploitation rule.

Table 213. SYSCAT.INDEXEXPLOITRULES Catalog View

Column Name Data Type Nullable Description

FUNCID INTEGER Identifier for the function.

SPECID SMALLINT Number of the predicate specification.

IESCHEMA VARCHAR (128) Schema name of the index extension.

IENAME VARCHAR (128) Unqualified name of the index extension.

RULEID SMALLINT Identifier for the exploitation rule.

SEARCHMETHODID SMALLINT Identifier for the search method in the
specific index extension.

SEARCHKEY VARCHAR (640) Key used to exploit the index.

SEARCHARGUMENT VARCHAR (2700) Search arguments used to exploit the index.

986 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 213. SYSCAT.INDEXEXPLOITRULES Catalog View (continued)

Column Name Data Type Nullable Description

EXACT CHAR (1) v N = Index lookup is not exact in terms of
predicate evaluation

v Y = Index lookup is exact in terms of
predicate evaluation

SYSCAT.INDEXEXTENSIONDEP

Each row represents a dependency of an index extension on some other object. The
index extension depends on the object of type BTYPE of name BNAME, so a
change to the object affects the index extension.

Table 214. SYSCAT.INDEXEXTENSIONDEP Catalog View

Column Name Data Type Nullable Description

IESCHEMA VARCHAR (128) Schema name of the index extension.

IENAME VARCHAR (128) Unqualified name of the index extension.

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

v A = Table alias

v B = Trigger

v F = Routine

v G = Global temporary table

v H = Hierachy table

v K = Package

v L = Detached table

v N = Nickname

v O = Privilege dependency on all subtables
or subviews in a table or view hierarchy

v Q = Sequence

v R = User-defined data type

v S = Materialized query table

v T = Table (not typed)

v U = Typed table

v V = View (not typed)

v W = Typed view

v X = Index extension

v Z = XSR object

v q = Sequence alias

v u = Module alias

v v = Global variable

v * = Anchored to the row of a base table

BSCHEMA VARCHAR (128) Schema name of the object on which there is
a dependency.

BMODULENAME VARCHAR(128) Y Unqualified name of the module to which
the object on which a dependency belongs.
The null value if not a module object.

Appendix A. Related topics (linked to from topics in this book) 987

Table 214. SYSCAT.INDEXEXTENSIONDEP Catalog View (continued)

Column Name Data Type Nullable Description

BNAME VARCHAR (128) Unqualified name of the object on which
there is a dependency. For routines (BTYPE =
’F’), this is the specific name.

BMODULEID INTEGER Y Identifier for the module of the object on
which there is a dependency.

TABAUTH SMALLINT Y If BTYPE = ’O’, ’S’, ’T’, ’U’, ’V’, ’W’, or ’v’,
encodes the privileges on the table or view
that are required by the dependent index
extension; the null value otherwise.

SYSCAT.INDEXEXTENSIONMETHODS

Each row represents a search method. An index extension can contain more than
one search method.

Table 215. SYSCAT.INDEXEXTENSIONMETHODS Catalog View

Column Name Data Type Nullable Description

METHODNAME VARCHAR (128) Name of the search method.

METHODID SMALLINT Number of the method in the index
extension.

IESCHEMA VARCHAR (128) Schema name of the index extension on
which this method is defined.

IENAME VARCHAR (128) Unqualified name of the index extension on
which this method is defined.

RANGEFUNCSCHEMA VARCHAR (128) Schema name of the range-through function.

RANGEFUNCNAME VARCHAR (128) Unqualified name of the range-through
function.

RANGESPECIFICNAME VARCHAR (128) Function-specific name of the range-through
function.

FILTERFUNCSCHEMA VARCHAR (128) Y Schema name of the filter function.

FILTERFUNCNAME VARCHAR (128) Y Unqualified name of the filter function.

FILTERSPECIFICNAME VARCHAR (128) Y Function-specific name of the filter function.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.INDEXEXTENSIONPARMS

Each row represents an index extension instance parameter or source key column.

Table 216. SYSCAT.INDEXEXTENSIONPARMS Catalog View

Column Name Data Type Nullable Description

IESCHEMA VARCHAR (128) Schema name of the index extension.

IENAME VARCHAR (128) Unqualified name of the index extension.

ORDINAL SMALLINT Sequence number of the parameter or key
column.

PARMNAME VARCHAR (128) Name of the parameter or key column.

988 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 216. SYSCAT.INDEXEXTENSIONPARMS Catalog View (continued)

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR (128) Schema name of the data type of the
parameter or key column.

TYPENAME VARCHAR (128) Unqualified name of the data type of the
parameter or key column.

LENGTH INTEGER Data type length of the parameter or key
column.

SCALE SMALLINT Data type scale of the parameter or key
column; 0 if not applicable.

PARMTYPE CHAR (1) v K = Source key column

v P = Index extension instance parameter

CODEPAGE SMALLINT Code page of the index extension instance
parameter; 0 if not a string type.

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the
collation for the parameter; the null value
otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of the
collation for the parameter; the null value
otherwise.

SYSCAT.INDEXEXTENSIONS

Each row represents an index extension.

Table 217. SYSCAT.INDEXEXTENSIONS Catalog View

Column Name Data Type Nullable Description

IESCHEMA VARCHAR (128) Schema name of the index extension.

IENAME VARCHAR (128) Unqualified name of the index extension.

OWNER VARCHAR (128) Authorization ID of the owner of the index
extension.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

CREATE_TIME TIMESTAMP Time at which the index extension was
defined.

KEYGENFUNCSCHEMA VARCHAR (128) Schema name of the key generation function.

KEYGENFUNCNAME VARCHAR (128) Unqualified name of the key generation
function.

KEYGENSPECIFICNAME VARCHAR (128) Name of the key generation function
instance (might be system-generated).

TEXT CLOB (2M) Full text of the CREATE INDEX
EXTENSION statement.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the index
extension.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

Appendix A. Related topics (linked to from topics in this book) 989

SYSCAT.INDEXOPTIONS

Each row represents an index-specific option value.

Table 218. SYSCAT.INDEXOPTIONS Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

OPTION VARCHAR (128) Name of the index option.

SETTING VARCHAR (2048) Value of the index option.

SYSCAT.INDEXPARTITIONS

Each row represents a partitioned index piece located on one data partition. Note:
v The index partition statistics represent one database partition if the table is

created on multiple database partitions.

Table 219. SYSCAT.INDEXPARTITIONS Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

TABSCHEMA VARCHAR (128) Schema name of the table or nickname on
which the index is defined.

TABNAME VARCHAR (128) Unqualified name of the table or nickname
on which the index is defined.

IID SMALLINT Identifier for the index.

INDPARTITIONTBSPACEID INTEGER Identifier for the index partition table space.

INDPARTITIONOBJECTID INTEGER Identifier for the index partition object.

DATAPARTITIONID INTEGER This corresponds to the DATAPARTITIONID
found in the SYSCAT.DATAPARTITIONS
view.

INDCARD BIGINT Cardinality of the index partition. This might
be different from the cardinality of the
corresponding data partition for partitioned
indexes that do not have a one-to-one
relationship between the data partition rows
and the index entries.

NLEAF BIGINT Number of leaf pages in the index partition;
-1 if statistics are not collected.

NUM_EMPTY_LEAFS BIGINT Total number of index leaf pages in the
index partition that have all of their row
identifiers (RIDs) or block identifiers (BIDs)
marked deleted.

NUMRIDS BIGINT Total number of row identifiers (RIDs) or
block identifiers (BIDs) in the index
partition; -1 if not known.

990 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 219. SYSCAT.INDEXPARTITIONS Catalog View (continued)

Column Name Data Type Nullable Description

NUMRIDS_DELETED BIGINT Total number of row identifiers (RIDs) or
block identifiers (BIDs) in the index partition
that are marked deleted, excluding those
identifiers on leaf pages on which all the
identifiers are marked deleted.

FULLKEYCARD BIGINT Number of distinct full-key values in the
index partition; -1 if statistics are not
collected.

NLEVELS SMALLINT Number of index levels in the index
partition; -1 if statistics are not collected.

CLUSTERRATIO SMALLINT Degree of data clustering with the index
partition; -1 in either of the following
situations:

v Statistics are not collected

v Detailed index statistics are collected. In
this situation, CLUSTERFACTOR will be
used instead.

CLUSTERFACTOR DOUBLE Finer measurement of the degree of
clustering; -1 if statistics are not collected.

FIRSTKEYCARD BIGINT Number of distinct first-key values; -1 if
statistics are not collected.

FIRST2KEYCARD BIGINT Number of distinct keys using the first two
columns of the index key; -1 if statistics are
not collected, or if not applicable.

FIRST3KEYCARD BIGINT Number of distinct keys using the first three
columns of the index key; -1 if statistics are
not collected, or if not applicable.

FIRST4KEYCARD BIGINT Number of distinct keys using the first four
columns of the index key; -1 if statistics are
not collected, or if not applicable.

AVGLEAFKEYSIZE INTEGER Average index key size for keys on leaf
pages in the index partition; -1 if statistics
are not collected.

AVGNLEAFKEYSIZE INTEGER Average index key size for keys on non-leaf
pages in the index partition; -1 if statistics
are not collected.

PCTFREE SMALLINT Percentage of each index page to be reserved
during the initial building of the index
partition. This space is available for data
insertions after the index partition has been
built.

PAGE_FETCH_PAIRS VARCHAR (520) A list of pairs of integers, represented in
character form. Each pair represents the
number of pages in a hypothetical buffer,
and the number of page fetches required to
scan the data partition with this index using
that hypothetical buffer. Zero-length string if
not data is available.

Appendix A. Related topics (linked to from topics in this book) 991

Table 219. SYSCAT.INDEXPARTITIONS Catalog View (continued)

Column Name Data Type Nullable Description

SEQUENTIAL_PAGES BIGINT Number of leaf pages located on disk in
index key order with few or no large gaps
between them; -1 if statistics are not
collected.

DENSITY INTEGER Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by the
index partition, expressed as a percent
(integer between 0 and 100); -1 if statistics
are not collected.

AVERAGE_SEQUENCE_GAP DOUBLE Gap between index page sequences within
the index partition. Detected through a scan
of index leaf pages, each gap represents the
average number of index pages that must be
randomly fetched between sequences of
index pages; -1 if not known.

AVERAGE_SEQUENCE_
FETCH_GAP

DOUBLE Gap between table page sequences when
fetching using the index partition. Detected
through a scan of index leaf pages, each gap
represents the average number of data
partition pages that must be randomly
fetched between sequences of data partition
pages; -1 if not known.

AVERAGE_SEQUENCE_
PAGES

DOUBLE Average number of index pages that are
accessible in sequence (that is, the number of
index pages that the prefetchers would
detect as being in sequence); -1 if not known.

AVERAGE_SEQUENCE_
FETCH_PAGES

DOUBLE Average number of data partition pages that
are accessible in sequence (that is, the
number of data partition pages that the
prefetchers would detect as being in
sequence) when fetching using the index; -1
if not known.

AVERAGE_RANDOM_PAGES DOUBLE Average number of random data partition
pages between sequential page accesses; -1 if
not known.

AVERAGE_RANDOM_FETCH_
PAGES

DOUBLE Average number of random data partition
pages between sequential page accesses
when fetching using the index partition; -1 if
not known.

STATS_TIME TIMESTAMP Y Last time that any change was made to the
recorded statistics for this index partition.
The null value if no statistics are available.

COMPRESSION CHAR (1) Specifies whether index compression is
activated

v N = Not activated

v Y = Activated

PCTPAGESSAVED SMALLINT Approximate percentage of pages saved in
the index as a result of index compression. -1
if statistics are not collected.

992 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

SYSCAT.INDEXXMLPATTERNS

Each row represents a pattern clause in an index over an XML column.

Table 220. SYSCAT.INDEXXMLPATTERNS Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the logical index.

INDNAME VARCHAR (128) Unqualified name of the logical index.

PINDNAME VARCHAR (128) Unqualified name of the physical index.

PINDID SMALLINT Identifier for the physical index.

TYPEMODEL CHAR (1) v Q = SQL DATA TYPE (Ignore invalid
values)

v R = SQL DATA TYPE (Reject invalid
values)

DATATYPE VARCHAR (128) Name of the data type.

HASHED CHAR (1) Indicates whether or not the value is hashed.

v N = Not hashed

v Y = Hashed

LENGTH SMALLINT VARCHAR (n) length; 0 otherwise.

PATTERNID SMALLINT Identifier for the pattern.

PATTERN CLOB (2M) Y Definition of the pattern.

Note:

1. When indexes over XML columns are created, logical indexes that utilize XML pattern information are created,
resulting in the creation of physical B-tree indexes with DB2-generated key columns to support the logical
indexes. A physical index is created to support the data type that is specified in the xmltype-clause of the
CREATE INDEX statement.

SYSCAT.INVALIDOBJECTS

Each row represents an invalid object.

Table 221. SYSCAT.INVALIDOBJECTS Catalog View

Column Name Data Type Nullable Description

OBJECTSCHEMA VARCHAR (128) Schema name of the object being created or
revalidated.

OBJECTMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the object being created or revalidated
belongs. The null value if the object does not
belong to a module.

OBJECTNAME VARCHAR (128) Unqualified name of the object being created
or revalidated. For routines (OBJECTTYPE =
’F’), this is the specific name.

ROUTINENAME VARCHAR (128) Y Unqualified name of the routine.

Appendix A. Related topics (linked to from topics in this book) 993

Table 221. SYSCAT.INVALIDOBJECTS Catalog View (continued)

Column Name Data Type Nullable Description

OBJECTTYPE CHAR (1) Type of the object being created or
revalidated. Possible values are:

v B = Trigger

v F = Routine

v R = User-defined data type

v V = View

v v = Global variable

SQLCODE INTEGER Y SQLCODE returned in CREATE with errors
or revalidation. The null value if the object
has never been revalidated.

SQLSTATE CHAR (5) Y SQLSTATE returned in CREATE with errors
or revalidation. The null value if the object
has never been revalidated.

ERRORMESSAGE VARCHAR(70) Y Short text for the message associated with
SQLCODE. The null value if the object has
never been revalidated.

LINENUMBER INTEGER Y Line number where the error occurred in
compiled objects. The null value if the object
is not a compiled object.

INVALIDATE_TIME TIMESTAMP Time at which the object was last
invalidated.

LAST_REGEN_TIME TIMESTAMP Y Time at which the object was last
revalidated. The null value if the object has
never been revalidated.

SYSCAT.KEYCOLUSE

Each row represents a column that participates in a key defined by a unique,
primary key, or foreign key constraint.

Table 222. SYSCAT.KEYCOLUSE Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Name of the constraint.

TABSCHEMA VARCHAR (128) Schema name of the table containing the
column.

TABNAME VARCHAR (128) Unqualified name of the table containing the
column.

COLNAME VARCHAR (128) Name of the column.

COLSEQ SMALLINT Numeric position of the column in the key
for the constraint (initial position is 1). If a
constraint uses an existing index, this value
is the numeric position of the column in the
index.

SYSCAT.MODULEAUTH

Each row represents a user, group, or role that has been granted a privilege on a
module.

994 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 223. SYSCAT.MODULEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of a privilege

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of a privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

MODULEID INTEGER Identifier for the module to which this
privilege applies.

MODULESCHEMA VARCHAR (128) Schema name of the module to which this
privilege applies.

MODULENAME VARCHAR (128) Unqualified name of the module to which
this privilege applies.

EXECUTEAUTH CHAR (1) Privilege to execute objects in the identified
module.

v G = Held and grantable

v N = Not held

v Y = Held

SYSCAT.MODULEOBJECTS

Each row represents a function, procedure, global variable, condition, or
user-defined type that belongs to a module.

Table 224. SYSCAT.MODULEOBJECTS Catalog View

Column Name Data Type Nullable Description

OBJECTSCHEMA VARCHAR(128) N Schema name of the module.

OBJECTMODULENAME VARCHAR(128) N Unqualified name of the module to which
the object belongs.

OBJECTNAME VARCHAR(128) N Unqualified name of the object.

OBJECTTYPE VARCHAR(9) N v CONDITION = The object is a condition

v FUNCTION = The object is a function

v PROCEDURE = The object is a procedure

v TYPE = The object is a data type

v VARIABLE = The object is a variable

PUBLISHED CHAR(1) N Indicates whether the object can be
referenced outside its module.

v N = The object is not published

v Y = The object is published

SPECIFICNAME VARCHAR(128) N Routine specific name if OBJECTTYPE is
’FUNCTION’, ’METHOD’ or ’PROCEDURE’;
the null value otherwise.

Appendix A. Related topics (linked to from topics in this book) 995

Table 224. SYSCAT.MODULEOBJECTS Catalog View (continued)

Column Name Data Type Nullable Description

USERDEFINED CHAR(1) N Indicates whether the object is generated by
the system or defined by a user.

v N = The object is system generated

v Y = The object is defined by a user

SYSCAT.MODULES

Each row represents a module.

Table 225. SYSCAT.MODULES Catalog View

Column Name Data Type Nullable Description

MODULESCHEMA VARCHAR (128) Schema name of the module.

MODULENAME VARCHAR (128) Unqualified name of the module.

MODULEID INTEGER Identifier for the module.

DIALECT VARCHAR(10) The source dialect of the SQL module.
Possible values are:

v DB2 SQL PL

v PL/SQL

v Blank = Not applicable for an alias

OWNER VARCHAR (128) Authorization ID of the owner of the
module.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

MODULETYPE CHAR (1) Type of module.

v A = Alias

v M = Module

v P = PL/SQL package

BASE_MODULESCHEMA VARCHAR (128) Y If MODULETYPE is ’A’, contains the schema
name of the module or alias that is
referenced by this alias; the null value
otherwise.

BASE_MODULENAME VARCHAR (128) Y If MODULETYPE is ’A’, contains the
unqualified name of the module or alias that
is referenced by this alias; the null value
otherwise.

CREATE_TIME TIMESTAMP Time at which the module was created.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.NAMEMAPPINGS

Each row represents the mapping between a ″logical″ object (typed table or view
and its columns and indexes, including inherited columns) and the corresponding
″implementation″ object (hierarchy table or hierarchy view and its columns and
indexes) that implements the logical object.

996 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 226. SYSCAT.NAMEMAPPINGS Catalog View

Column Name Data Type Nullable Description

TYPE CHAR (1) v C = Column

v I = Index

v U = Typed table

LOGICAL_SCHEMA VARCHAR (128) Schema name of the logical object.

LOGICAL_NAME VARCHAR (128) Unqualified name of the logical object.

LOGICAL_COLNAME VARCHAR (128) Y Name of the logical column if TYPE = ’C’;
null value otherwise.

IMPL_SCHEMA VARCHAR (128) Schema name of the implementation object
that implements the logical object.

IMPL_NAME VARCHAR (128) Unqualified name of the implementation
object that implements the logical object.

IMPL_COLNAME VARCHAR (128) Y Name of the implementation column if TYPE
= ’C’; null value otherwise.

SYSCAT.NICKNAMES

Each row represents a nickname.

Table 227. SYSCAT.NICKNAMES Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the nickname.

TABNAME VARCHAR (128) Unqualified name of the nickname.

OWNER VARCHAR (128) Authorization ID of the owner of the table,
view, alias, or nickname.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

STATUS CHAR (1) Status of the object.

v C = Set integrity pending

v N = Normal

v X = Inoperative

CREATE_TIME TIMESTAMP Time at which the object was created.

STATS_TIME TIMESTAMP Y Time at which any change was last made to
recorded statistics for this object. The null
value if statistics are not collected.

COLCOUNT SMALLINT Number of columns, including inherited
columns (if any).

TABLEID SMALLINT Internal logical object identifier.

TBSPACEID SMALLINT Internal logical identifier for the primary
table space for this object.

CARD BIGINT Total number of rows in the table; -1 if
statistics are not collected.

NPAGES BIGINT Total number of pages on which the rows of
the nickname exist; -1 if statistics are not
gathered.

Appendix A. Related topics (linked to from topics in this book) 997

Table 227. SYSCAT.NICKNAMES Catalog View (continued)

Column Name Data Type Nullable Description

FPAGES BIGINT Total number of pages; -1 if statistics are not
gathered.

OVERFLOW BIGINT Total number of overflow records; -1 if
statistics are not gathered.

PARENTS SMALLINT Y Number of parent tables for this object; that
is, the number of referential constraints in
which this object is a dependent.

CHILDREN SMALLINT Y Number of dependent tables for this object;
that is, the number of referential constraints
in which this object is a parent.

SELFREFS SMALLINT Y Number of self-referencing referential
constraints for this object; that is, the number
of referential constraints in which this object
is both a parent and a dependent.

KEYCOLUMNS SMALLINT Y Number of columns in the primary key.

KEYINDEXID SMALLINT Y Index identifier for the primary key index; 0
or the null value if there is no primary key.

KEYUNIQUE SMALLINT Number of unique key constraints (other
than the primary key constraint) defined on
this object.

CHECKCOUNT SMALLINT Number of check constraints defined on this
object.

DATACAPTURE CHAR (1) v L = Nickname participates in data
replication, including replication of LONG
VARCHAR and LONG VARGRAPHIC
columns

v N = Nickname does not participate in data
replication

v Y = Nickname participates in data
replication

998 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 227. SYSCAT.NICKNAMES Catalog View (continued)

Column Name Data Type Nullable Description

CONST_CHECKED CHAR (32) v Byte 1 represents foreign key constraint.

v Byte 2 represents check constraint.

v Byte 5 represents materialized query table.

v Byte 6 represents generated column.

v Byte 7 represents staging table.

v Byte 8 represents data partitioning
constraint.

v Other bytes are reserved for future use.

Possible values are:

v F = In byte 5, the materialized query table
cannot be refreshed incrementally. In byte
7, the content of the staging table is
incomplete and cannot be used for
incremental refresh of the associated
materialized query table.

v N = Not checked

v U = Checked by user

v W = Was in ’U’ state when the table was
placed in set integrity pending state

v Y = Checked by system

PARTITION_MODE CHAR (1) Reserved for future use.

STATISTICS_PROFILE CLOB (10M) Y RUNSTATS command used to register a
statistical profile for the object.

ACCESS_MODE CHAR (1) Access restriction state of the object. These
states only apply to objects that are in set
integrity pending state or to objects that
were processed by a SET INTEGRITY
statement. Possible values are:

v D = No data movement

v F = Full access

v N = No access

v R = Read-only access

CODEPAGE SMALLINT Code page of the object. This is the default
code page used for all character columns,
triggers, check constraints, and
expression-generated columns.

REMOTE_TABLE VARCHAR (128) Y Unqualified name of the specific data source
object (such as a table or a view) for which
the nickname was created.

REMOTE_SCHEMA VARCHAR (128) Y Schema name of the specific data source
object (such as a table or a view) for which
the nickname was created.

SERVERNAME VARCHAR (128) Y Name of the data source that contains the
table or view for which the nickname was
created.

Appendix A. Related topics (linked to from topics in this book) 999

Table 227. SYSCAT.NICKNAMES Catalog View (continued)

Column Name Data Type Nullable Description

REMOTE_TYPE CHAR (1) Y Type of object at the data source.

v A = Alias

v N = Nickname

v S = Materialized query table

v T = Table (untyped)

v V = View (untyped)

CACHINGALLOWED VARCHAR (1) v N = Caching is not allowed

v Y = Caching is allowed

DEFINER1 VARCHAR (128) Authorization ID of the owner of the table,
view, alias, or nickname.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.PACKAGES

Each row represents a package that has been created by binding an application
program.

Table 228. SYSCAT.PACKAGES Catalog View
Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR (128) Schema name of the package.

PKGNAME VARCHAR (128) Unqualified name of the package.

BOUNDBY VARCHAR (128) Authorization ID of the binder and owner of the package.

BOUNDBYTYPE CHAR (1)
v U = The binder and owner is an individual user

OWNER VARCHAR (128) Authorization ID of the binder and owner of the package.

OWNERTYPE CHAR (1)
v U = The binder and owner is an individual user

DEFAULT_SCHEMA VARCHAR (128) Default schema name used for unqualified names in static
SQL statements.

VALID1 CHAR (1)
v N = Needs rebinding

v V = Validate at run time

v X = Package is inoperative because some function
instance on which it depends has been dropped;
explicit rebind is needed

v Y = Valid

UNIQUE_ID CHAR (8) FOR BIT DATA Identifier for a specific package when multiple packages
having the same name exist.

TOTAL_SECT SMALLINT Number of sections in the package.

FORMAT CHAR (1) Date and time format associated with the package.

v 0 = Format associated with the territory code of the
client

v 1 = USA

v 2 = EUR

v 3 = ISO

v 4 = JIS

v 5 = LOCAL

1000 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 228. SYSCAT.PACKAGES Catalog View (continued)
Column Name Data Type Nullable Description

ISOLATION CHAR (2) Y Isolation level.

v CS = Cursor Stability

v RR = Repeatable Read

v RS = Read Stability

v UR = Uncommitted Read

CONCURRENTACCESSRESOLUTION CHAR (1) Y The value of the CONCURRENTACCESSRESOLUTION
bind option:

v U = USE CURRENTLY COMMITTED

v W = WAIT FOR OUTCOME

v Blank = Not specified

BLOCKING CHAR (1) Y Cursor blocking option.

v B = Block all cursors

v N = No blocking

v U = Block unambiguous cursors

INSERT_BUF CHAR (1) Setting of the INSERT bind option (applies to partitioned
database systems).

v N = Inserts are not buffered

v Y = Inserts are buffered at the coordinator database
partition to minimize traffic among database partitions

LANG_LEVEL CHAR (1) Y Setting of the LANGLEVEL bind option.

v 0 = SAA1

v 1 = MIA

v 2 = SQL92E

FUNC_PATH CLOB (2K) SQL path in effect when the package was bound.

QUERYOPT INTEGER Optimization class under which this package was bound.
Used for rebind operations.

EXPLAIN_LEVEL CHAR (1) Indicates whether Explain was requested using the
EXPLAIN or EXPLSNAP bind option.

v P = Package selection level

v Blank = No Explain requested

EXPLAIN_MODE CHAR (1) Value of the EXPLAIN bind option.

v A = ALL

v N = No

v R = REOPT

v Y = Yes

EXPLAIN_SNAPSHOT CHAR (1) Value of the EXPLSNAP bind option.

v A = ALL

v N = No

v R = REOPT

v Y = Yes

SQLWARN CHAR (1) Indicates whether or not positive SQLCODEs resulting
from dynamic SQL statements are returned to the
application.

v N = No, they are suppressed

v Y = Yes

SQLMATHWARN CHAR (1) Value of the dft_sqlmathwarn database configuration
parameter at bind time. Indicates whether arithmetic and
retrieval conversion errors return warnings and null
values (indicator -2), allowing query processing to
continue whenever possible.

v N = No, errors are returned

v Y = Yes, warnings are returned

CREATE_TIME TIMESTAMP Time at which the package was first bound.

EXPLICIT_BIND_TIME TIMESTAMP Time at which this package was last changed by:

v BIND

v REBIND (explicit)

Appendix A. Related topics (linked to from topics in this book) 1001

Table 228. SYSCAT.PACKAGES Catalog View (continued)
Column Name Data Type Nullable Description

LAST_BIND_TIME TIMESTAMP Time at which the package was last changed by:

v BIND

v REBIND (explicit)

v REBIND (implicit)

ALTER_TIME TIMESTAMP Time at which this package was last changed by:

v BIND

v REBIND (explicit)

v REBIND (implicit)

v ALTER PACKAGE

CODEPAGE SMALLINT Application code page at bind time; -1 if not known.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the package.

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for the package.

COLLATIONSCHEMA_ORDERBY VARCHAR (128) Schema name of the collation for ORDER BY clauses in
the package.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for ORDER BY clauses
in the package.

DEGREE CHAR (5) Degree of intra-partition parallelism that was specified
when the package was bound.

v 1 = No parallelism

v 2-32767 = User-specified limit

v ANY = Degree determined by the system (no limit
specified)

MULTINODE_PLANS CHAR (1)
v N = Package was not bound in a partitioned database

environment

v Y = Package was bound in a partitioned database
environment

INTRA_PARALLEL CHAR (1) Use of intra-partition parallelism by static SQL statements
within the package.

v F = One or more static SQL statements in this package
can use intra-partition parallelism; this parallelism has
been disabled for use on a system that is not
configured for intra-partition parallelism

v N = No static SQL statement uses intra-partition
parallelism

v Y = One or more static SQL statements in the package
use intra-partition parallelism

VALIDATE CHAR (1) Indicates whether validity checking can be deferred until
run time.

v B = All checking must be performed at bind time

v R = Validation of tables, views, and privileges that do
not exist at bind time is performed at run time

1002 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 228. SYSCAT.PACKAGES Catalog View (continued)
Column Name Data Type Nullable Description

DYNAMICRULES CHAR (1)
v B = BIND; dynamic SQL statements are executed with

DYNAMICRULES BIND behavior

v D = DEFINERBIND; when the package is run within a
routine context, dynamic SQL statements in the
package are executed with DEFINE behavior; when the
package is not run within a routine context, dynamic
SQL statements in the package are executed with BIND
behavior

v E = DEFINERRUN; when the package is run within a
routine context, dynamic SQL statements in the
package are executed with DEFINE behavior; when the
package is not run within a routine context, dynamic
SQL statements in the package are executed with RUN
behavior

v H = INVOKEBIND; when the package is run within a
routine context, dynamic SQL statements in the
package are executed with INVOKE behavior; when
the package is not run within a routine context,
dynamic SQL statements in the package are executed
with BIND behavior

v I = INVOKERUN; when the package is run within a
routine context, dynamic SQL statements in the
package are executed with INVOKE behavior; when
the package is not run within a routine context,
dynamic SQL statements in the package are executed
with RUN behavior

v R = RUN; dynamic SQL statements are executed with
RUN behavior; this is the default

SQLERROR CHAR (1) SQLERROR option on the most recent subcommand that
bound or rebound the package.

v C = CONTINUE; creates a package, even if errors occur
while binding SQL statements

v N = NOPACKAGE; does not create a package or a bind
file if an error occurs

REFRESHAGE DECIMAL (20,6) Timestamp duration indicating the maximum length of
time between execution of a REFRESH TABLE statement
for a materialized query table (MQT) and when that MQT
is used in place of a base table.

FEDERATED CHAR (1)
v N = FEDERATED bind or prep option is turned off

v U = FEDERATED bind or prep option was not
specified

v Y = FEDERATED bind or prep option is turned on

TRANSFORMGROUP VARCHAR (1024) Y Value of the TRANSFORM GROUP bind option; the null
value if a transform group is not specified.

REOPTVAR CHAR (1) Indicates whether the access path is determined again at
execution time using input variable values.

v A = Access path is reoptimized for every OPEN or
EXECUTE request

v N = Access path is determined at bind time

v O = Access path is reoptimized only at the first OPEN
or EXECUTE request; it is subsequently cached

OS_PTR_SIZE INTEGER Word size for the platform on which the package was
created.

v 32 = Package is a 32-bit package

v 64 = Package is a 64-bit package

PKGVERSION VARCHAR (64) Version identifier for the package.

Appendix A. Related topics (linked to from topics in this book) 1003

Table 228. SYSCAT.PACKAGES Catalog View (continued)
Column Name Data Type Nullable Description

STATICREADONLY CHAR (1) Indicates whether or not static cursors will be treated as
READ ONLY. Possible values are:

v N = Static cursors take on the attributes that would
normally be generated for the given statement text and
the setting of the LANGLEVEL precompile option

v Y = Any static cursor that does not contain the FOR
UPDATE or the FOR READ ONLY clause is considered
READ ONLY

FEDERATED_ASYNCHRONY INTEGER Indicates the limit on asynchrony (the number of ATQs in
the plan) as a bind option when the package was bound.

v 0 = No asynchrony

v n = User-specified limit (32 767 maximum)

v -1 = Degree of asynchrony determined by the system

v -2 = Degree of asynchrony not specified

For a non-federated system, the value is 0.

ANONBLOCK CHAR (1)
v N = The package is not associated with an anonymous

block

v Y = The package is associated with an anonymous
block

OPTPROFILESCHEMA VARCHAR (128) Y Value of the optimization profile schema specified as part
of the OPTPROFILE bind option.

OPTPROFILENAME VARCHAR (128) Y Value of the optimization profile name specified as part of
the OPTPROFILE bind option.

PKGID BIGINT Identifier for the package.

DBPARTITIONNUM SMALLINT Number of the database partition where the package was
bound.

DEFINER2 VARCHAR (128) Authorization ID of the binder and owner of the package.

PKG_CREATE_TIME3 TIMESTAMP Time at which the package was first bound.

APREUSE CHAR (1)
v N = The query compiler will not attempt to reuse

access plans

v Y = The access plans in this package should be reused,
meaning that at rebind time the query compiler will
attempt to choose plans like the ones currently in the
package

EXTENDEDINDICATOR CHAR (1)
v N = Extended indicator variable values are not

recognized

v Y = Extended indicator variable values are recognized

LASTUSED DATE Reserved for future use.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. If a function instance with dependencies is dropped, the package is put into an ″inoperative″ state, and it must be explicitly rebound. If any other
object with dependencies is dropped, the package is put into an ″invalid″ state, and the system will attempt to rebind the package automatically
when it is first referenced.

2. The DEFINER column is included for backwards compatibility. See OWNER.

3. The PKG_CREATE_TIME column is included for backwards compatibility. See CREATE_TIME.

SYSCAT.PARTITIONMAPS

Each row represents a distribution map that is used to distribute the rows of a
table among the database partitions in a database partition group, based on
hashing the table’s distribution

Table 229. SYSCAT.PARTITIONMAPS Catalog View

Column Name Data Type Nullable Description

PMAP_ID SMALLINT Identifier for the distribution map.

1004 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 229. SYSCAT.PARTITIONMAPS Catalog View (continued)

Column Name Data Type Nullable Description

PARTITIONMAP BLOB (65536) Distribution map, a vector of 32768 two-byte
integers for a multiple partition database
partition group. For a single partition
database partition group, there is one entry
denoting the partition number of the single
partition.

SYSCAT.PREDICATESPECS

Each row represents a predicate specification.

Table 230. SYSCAT.PREDICATESPECS Catalog View

Column Name Data Type Nullable Description

FUNCSCHEMA VARCHAR (128) Schema name of the function.

FUNCNAME VARCHAR (128) Unqualified name of the function.

SPECIFICNAME VARCHAR (128) Name of the function instance.

FUNCID INTEGER Identifier for the function.

SPECID SMALLINT Number of this predicate specification.

CONTEXTOP CHAR (8) Comparison operator, one of the built-in
relational operators (=, <, >, >=, and so on).

CONTEXTEXP CLOB (2M) Constant, or an SQL expression.

FILTERTEXT CLOB (32K) Y Text of the data filter expression.

SYSCAT.REFERENCES

Each row represents a referential integrity (foreign key) constraint.

Table 231. SYSCAT.REFERENCES Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Name of the constraint.

TABSCHEMA VARCHAR (128) Schema name of the dependent table.

TABNAME VARCHAR (128) Unqualified name of the dependent table.

OWNER VARCHAR (128) Authorization ID of the owner of the
constraint.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

REFKEYNAME VARCHAR (128) Name of the parent key.

REFTABSCHEMA VARCHAR (128) Schema name of the parent table.

REFTABNAME VARCHAR (128) Unqualified name of the parent table.

COLCOUNT SMALLINT Number of columns in the foreign key.

Appendix A. Related topics (linked to from topics in this book) 1005

Table 231. SYSCAT.REFERENCES Catalog View (continued)

Column Name Data Type Nullable Description

DELETERULE CHAR (1) Delete rule.

v A = NO ACTION

v C = CASCADE

v N = SET NULL

v R = RESTRICT

UPDATERULE CHAR (1) Update rule.

v A = NO ACTION

v R = RESTRICT

CREATE_TIME TIMESTAMP Time at which the constraint was defined.

FK_COLNAMES VARCHAR (640) This column is no longer used and will be
removed in a future release. Use
SYSCAT.KEYCOLUSE for this information.

PK_COLNAMES VARCHAR (640) This column is no longer used and will be
removed in a future release. Use
SYSCAT.KEYCOLUSE for this information.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the
constraint.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.ROLEAUTH

Each row represents a role granted to a user, group, role, or PUBLIC.

Table 232. SYSCAT.ROLEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Authorization ID that granted the role.

GRANTORTYPE CHAR (1) v U = Grantor is an individual user

GRANTEE VARCHAR (128) Authorization ID to which the role was
granted.

GRANTEETYPE CHAR (1) v G = The grantee is a group

v R = The grantee is a role

v U = The grantee is an individual user

ROLENAME VARCHAR (128) Name of the role.

ROLEID INTEGER Identifier for the role.

ADMIN CHAR (1) Privilege to grant or revoke the role to or
from others, or to comment on the role.

v N = Not held

v Y = Held

SYSCAT.ROLES

Each row represents a role.

1006 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 233. SYSCAT.ROLES Catalog View

Column Name Data Type Nullable Description

ROLENAME VARCHAR (128) Name of the role.

ROLEID INTEGER Identifier for the role.

CREATE_TIME TIMESTAMP Time when the role was created.

AUDITPOLICYID INTEGER Y Identifier for the audit policy.

AUDITPOLICYNAME VARCHAR (128) Y Name of the audit policy.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.ROUTINEDEP

Each row represents a dependency of a routine on some other object. The routine
depends on the object of type BTYPE of name BNAME, so a change to the object
affects the routine.

Table 234. SYSCAT.ROUTINEDEP Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine that has
dependencies on another object.

ROUTINEMODULENAME VARCHAR (128) Y Unqualified name of the module.

SPECIFICNAME VARCHAR (128) Specific name of the routine that has
dependencies on another object.

ROUTINEMODULEID INTEGER Y Identifier for the module of the object that
has dependencies on another object.

Appendix A. Related topics (linked to from topics in this book) 1007

Table 234. SYSCAT.ROUTINEDEP Catalog View (continued)

Column Name Data Type Nullable Description

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

v A = Table alias

v B = Trigger

v F = Routine

v G = Global temporary table

v H = Hierachy table

v K = Package

v L = Detached table

v N = Nickname

v O = Privilege dependency on all subtables
or subviews in a table or view hierarchy

v Q = Sequence

v R = User-defined data type

v S = Materialized query table

v T = Table (not typed)

v U = Typed table

v V = View (not typed)

v W = Typed view

v X = Index extension

v Z = XSR object

v q = Sequence alias

v u = Module alias

v v = Global variable

v * = Anchored to the row of a base table

BSCHEMA VARCHAR (128) Schema name of the object on which there is
a dependency.

BMODULENAME VARCHAR(128) Y Unqualified name of the module to which
the object on which a dependency belongs.
The null value if not a module object.

BNAME VARCHAR (128) Unqualified name of the object on which
there is a dependency. For routines (BTYPE =
’F’), this is the specific name.

BMODULEID INTEGER Y Identifier for the module of the object on
which there is a dependency.

TABAUTH SMALLINT Y If BTYPE = ’O’, ’S’, ’T’, ’U’, ’V’, ’W’, or ’v’,
encodes the privileges on the table or view
that are required by the dependent routine;
the null value otherwise.

ROUTINENAME VARCHAR (128) This column is no longer used and will be
removed in a future release. See
SPECIFICNAME.

SYSCAT.ROUTINEOPTIONS

Each row represents a routine-specific option value.

1008 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 235. SYSCAT.ROUTINEOPTIONS Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine if
ROUTINEMODULEID is null; otherwise
schema name of the module to which the
routine belongs.

ROUTINENAME VARCHAR (128) Unqualified name of the routine.

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be
system-generated).

OPTION VARCHAR (128) Name of the federated routine option.

SETTING VARCHAR (2048) Value of the federated routine option.

SYSCAT.ROWFIELDS

Each row represents a field that is defined for a user-defined row data type.

Table 236. SYSCAT.ROWFIELDS Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR (128) Schema name of the row data type that
includes the field.

TYPEMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the row data type belongs. The null value if
not a module row data type.

TYPENAME VARCHAR (128) Unqualified name of the row data type that
includes the field.

FIELDNAME VARCHAR (128) Field name.

FIELDTYPESCHEMA VARCHAR (128) Schema name of the data type of the field.

FIELDTYPEMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the data type of the field belongs. The null
value if the field data type is not a module
user-defined data type.

FIELDTYPENAME VARCHAR (128) Unqualified name of the data type of the
field.

ORDINAL SMALLINT Position of the field in the definition of the
row data type, starting with 0.

LENGTH INTEGER Length of the field data type. For decimal
types, contains the precision.

SCALE SMALLINT For decimal types, contains the scale of the
field data type; for timestamp types, contains
the timestamp precision of the field data
type; 0 otherwise.

CODEPAGE SMALLINT For string types, denotes the code page; 0
indicates FOR BIT DATA; 0 for non-string
types.

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the
collation for the field; the null value
otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of the
collation for the field; the null value
otherwise.

Appendix A. Related topics (linked to from topics in this book) 1009

SYSCAT.ROUTINEPARMOPTIONS

Each row represents a routine parameter-specific option value.

Table 237. SYSCAT.ROUTINEPARMOPTIONS Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine if
ROUTINEMODULEID is null; otherwise
schema name of the module to which the
routine belongs.

ROUTINENAME VARCHAR (128) Unqualified name of the routine.

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be
system-generated).

ORDINAL SMALLINT Position of the parameter within the routine
signature.

OPTION VARCHAR (128) Name of the federated routine option.

SETTING VARCHAR (2048) Value of the federated routine option.

SYSCAT.ROUTINEPARMS

Each row represents a parameter or the result of a routine defined in
SYSCAT.ROUTINES.

Table 238. SYSCAT.ROUTINEPARMS Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Y Schema name of the routine if
ROUTINEMODULEID is null; otherwise
schema name of the module to which the
routine belongs.

ROUTINEMODULENAME VARCHAR(128) Y Unqualified name of the module to which
the routine belongs. The null value if not a
module routine.

ROUTINENAME VARCHAR (128) Y Unqualified name of the routine.

ROUTINEMODULEID INTEGER Y Identifier for the module to which the
routine belongs. The null value if not a
module routine.

SPECIFICNAME VARCHAR (128) Y Name of the routine instance (might be
system-generated).

PARMNAME VARCHAR (128) Y Name of the parameter or result column, or
the null value if no name exists.

ROWTYPE CHAR (1) v B = Both input and output parameter

v C = Result after casting

v O = Output parameter

v P = Input parameter

v R = Result before casting

1010 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 238. SYSCAT.ROUTINEPARMS Catalog View (continued)

Column Name Data Type Nullable Description

ORDINAL SMALLINT If ROWTYPE = ’B’, ’O’, or ’P’, numerical
position of the parameter within the routine
signature, starting with 1; if ROWTYPE = ’R’
and the routine returns a table, numerical
position of a named column in the result
table, starting with 1; 0 otherwise.

TYPESCHEMA VARCHAR (128) Y Schema name of the data type if
TYPEMODULEID is null; otherwise schema
name of the module to which the data type
belongs.

TYPEMODULENAME VARCHAR(128) Y Unqualified name of the module to which
the data type of the parameter or result
belongs. The null value if not a module data
type.

TYPENAME VARCHAR (128) Y Unqualified name of the data type.

LOCATOR CHAR (1) v N = Paramater or result is not passed in
the form of a locator

v Y = Paramater or result is passed in the
form of a locator

LENGTH1 INTEGER Length of the parameter or result; 0 if the
parameter or result is a user-defined data
type.

SCALE1 SMALLINT Scale if the parameter or result data type is
DECIMAL; the number of digits of fractional
seconds if the parameter or result data type
is TIMESTAMP; 0 otherwise.

CODEPAGE SMALLINT Code page of this parameter or result; 0
denotes either not applicable, or a parameter
or result for character data declared with the
FOR BIT DATA attribute.

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the
collation for the parameter; the null value
otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of the
collation for the parameter; the null value
otherwise.

CAST_FUNCSCHEMA VARCHAR (128) Y Schema name of the function used to cast an
argument or a result. Applies to sourced and
external functions; the null value otherwise.

CAST_FUNCSPECIFIC VARCHAR (128) Y Unqualified name of the function used to
cast an argument or a result. Applies to
sourced and external functions; the null
value otherwise.

TARGET_TYPESCHEMA VARCHAR (128) Y Schema name of the target type if the type of
the parameter or result is REFERENCE. Null
value if the type of the parameter or result is
not REFERENCE.

Appendix A. Related topics (linked to from topics in this book) 1011

Table 238. SYSCAT.ROUTINEPARMS Catalog View (continued)

Column Name Data Type Nullable Description

TARGET_TYPEMODULENAME VARCHAR(128) Y Unqualified name of the module to which
the target type belongs if the type of the
parameter or result is REFERENCE. The null
value if the type of the parameter or result is
not REFERENCE or if the target type is not a
module data type.

TARGET_TYPENAME VARCHAR (128) Y Unqualified name of the module to which
the target type belongs if the type of the
parameter or result is REFERENCE. The null
value if the type of the parameter or result is
not REFERENCE or if the target type is not a
module data type.

SCOPE_TABSCHEMA VARCHAR (128) Y Schema name of the scope (target table) if
the parameter type is REFERENCE; null
value otherwise.

SCOPE_TABNAME VARCHAR (128) Y Unqualified name of the scope (target table)
if the parameter type is REFERENCE; null
value otherwise.

TRANSFORMGRPNAME VARCHAR (128) Y Name of the transform group for a
structured type parameter or result.

DEFAULT CLOB (64K) Y Expression used to calculate the default
value of the parameter. The null value if
DEFAULT clause was not specified for the
parameter.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. LENGTH and SCALE are set to 0 for sourced functions (functions defined with a reference to another function),
because they inherit the length and scale of parameters from their source.

SYSCAT.ROUTINES

Each row represents a user-defined routine (scalar function, table function, sourced
function, method, or procedure). Does not include built-in functions.

Table 239. SYSCAT.ROUTINES Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine if
ROUTINEMODULEID is null; otherwise schema
name of the module to which the routine belongs.

ROUTINEMODULENAME VARCHAR(128) Y Unqualified name of the module to which the
routine belongs. The null value if not a module
routine.

ROUTINENAME VARCHAR (128) Unqualified name of the routine.

ROUTINETYPE CHAR (1) Type of routine.

v F = Function

v M = Method

v P = Procedure

OWNER VARCHAR (128) Authorization ID of the owner of the routine.

OWNERTYPE CHAR (1)
v S = The owner is the system

v U = The owner is an individual user

1012 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be
system-generated).

ROUTINEID INTEGER Identifier for the routine.

ROUTINEMODULEID INTEGER Y Identifier for the module to which the routine
belongs. The null value if not a module routine.

RETURN_TYPESCHEMA VARCHAR (128) Y Schema name of the return type for a scalar
function or method.

RETURN_TYPEMODULE VARCHAR (128) Y The module name of the return type; the null
value if the return type does not belong to any
module.

RETURN_TYPENAME VARCHAR (128) Y Unqualified name of the return type for a scalar
function or method.

ORIGIN CHAR (1)
v B = Built-in

v E = User-defined, external

v M = Template function

v F = Federated procedure

v Q = SQL-bodied1

v R = System-generated SQL-bodied routine

v S = System-generated

v T = System-generated transform function (not
directly invokable)

v U = User-defined, based on a source

FUNCTIONTYPE CHAR (1)
v C = Column or aggregate

v R = Row

v S = Scalar

v T = Table

v Blank = Procedure

PARM_COUNT SMALLINT Number of routine parameters.

LANGUAGE CHAR (8) Implementation language for the routine body (or
for the source function body, if this function is
sourced on another function). Possible values are
’C’, ’COBOL’, ’JAVA’, ’OLE’, ’OLEDB’, or ’SQL’.
Blanks if ORIGIN is not ’E’, ’Q’, or ’R’.

DIALECT VARCHAR(10) The source dialect of the SQL routine body:

v DB2 SQL PL

v PL/SQL

v Blank = Not an SQL routine

SOURCESCHEMA VARCHAR (128) Y If ORIGIN = ’U’ and the source function is a
user-defined function, contains the schema name
of the specific name of the source function. If
ORIGIN = ’U’ and the source function is a built-in
function, contains the value ’SYSIBM’. The null
value if ORIGIN is not ’U’.

SOURCESPECIFIC VARCHAR (128) Y If ORIGIN = ’U’ and the source function is a
user-defined function, contains the unqualified
specific name of the source function. If ORIGIN =
’U’ and the source function is a built-in function,
contains the value ’N/A for built-in’. The null
value if ORIGIN is not ’U’.

Appendix A. Related topics (linked to from topics in this book) 1013

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

PUBLISHED CHAR (1) Inidicates whether the module routine can be
invoked outside its module.

v N = The module routine is not published

v Y = The module routine is published

v Blank = Not applicable

DETERMINISTIC CHAR (1)
v N = Results are not deterministic (same

parameters might give different results in
different routine calls)

v Y = Results are deterministic

v Blank = ORIGIN is not ’E’, ’F’, ’Q’, or ’R’

EXTERNAL_ACTION CHAR (1)
v E = Function has external side-effects (therefore,

the number of invocations is important)

v N = No side-effects

v Blank = ORIGIN is not ’E’, ’F’, ’Q’, or ’R’

NULLCALL CHAR (1)
v N = RETURNS NULL ON NULL INPUT

(function result is implicitly the null value if one
or more operands are null)

v Y = CALLED ON NULL INPUT

v Blank = ORIGIN is not ’E’, ’Q’, or ’R’

CAST_FUNCTION CHAR (1)
v N = Not a cast function

v Y = Cast function

v Blank = ROUTINETYPE is not ’F’

ASSIGN_FUNCTION CHAR (1)
v N = Not an assignment function

v Y = Implicit assignment function

v Blank = ROUTINETYPE is not ’F’

SCRATCHPAD CHAR (1)
v N = Routine has no scratchpad

v Y = Routine has a scratchpad

v Blank = ORIGIN is not ’E’ or ROUTINETYPE is
’P’

SCRATCHPAD_LENGTH SMALLINT Size (in bytes) of the scratchpad for the routine.

v -1 = LANGUAGE is ’OLEDB’ and
SCRATCHPAD is ’Y’

v 0 = SCRATCHPAD is not ’Y’

FINALCALL CHAR (1)
v N = No final call is made

v Y = Final call is made to this routine at the
runtime end-of-statement

v Blank = ORIGIN is not ’E’ or ROUTINETYPE is
’P’

PARALLEL CHAR (1)
v N = Routine cannot be executed in parallel

v Y = Routine can be executed in parallel

v Blank = ORIGIN is not ’E’

1014 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

PARAMETER_STYLE CHAR (8) Parameter style that was declared when the
routine was created. Possible values are:

v DB2DARI

v DB2GENRL

v DB2SQL

v GENERAL

v GNRLNULL

v JAVA

v SQL

v Blanks if ORIGIN is not ’E’

FENCED CHAR (1)
v N = Not fenced

v Y = Fenced

v Blank = ORIGIN is not ’E’

SQL_DATA_ACCESS CHAR (1) Indicates what type of SQL statements, if any, the
database manager should assume is contained in
the routine.

v C = Contains SQL (simple expressions with no
subqueries only)

v M = Contains SQL statements that modify data

v N = Does not contain SQL statements

v R = Contains read-only SQL statements

v Blank = ORIGIN is not ’E’, ’F’, ’Q’, or ’R’

DBINFO CHAR (1) Indicates whether a DBINFO parameter is passed
to an external routine.

v N = DBINFO is not passed

v Y = DBINFO is passed

v Blank = ORIGIN is not ’E’

PROGRAMTYPE CHAR (1) Indicates how the external routine is invoked.

v M = Main

v S = Subroutine

v Blank = ORIGIN is ’F’

COMMIT_ON_RETURN CHAR (1) Indicates whether the transaction is committed on
successful return from this procedure.

v N = The unit of work is not committed

v Y = The unit of work is committed

v Blank = ROUTINETYPE is not ’P’

AUTONOMOUS CHAR (1) Indicates whether or not the routine executes
autonomously.

v N = Routine does not execute autonomously
from invoking transaction

v Y = Routine executes autonomously from
invoking transaction

v Blank = ROUTINETYPE is not ’P’

RESULT_SETS SMALLINT Estimated maximum number of result sets.

SPEC_REG CHAR (1) Indicates the special registers values that are used
when the routine is called.

v I = Inherited special registers

v Blank = PARAMETER_STYLE is ’DB2DARI’ or
ORIGIN is not ’E’, ’Q’, or ’R’

Appendix A. Related topics (linked to from topics in this book) 1015

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

FEDERATED CHAR (1) Indicates whether or not federated objects can be
accessed from the routine.

v Y = Federated objects can be accessed

v Blank = ORIGIN is not ’F’

THREADSAFE CHAR (1) Indicates whether or not the routine can run in the
same process as other routines.

v N = Routine is not threadsafe

v Y = Routine is threadsafe

v Blank = ORIGIN is not ’E’

VALID CHAR (1) Applies to LANGUAGE = ’SQL’ and routines
having parameters with default; blank otherwise.

v N = Routine needs rebinding

v X = Routine is inoperative and must be
recreated

v Y = Routine is valid

MODULEROUTINEIMPLEMENTED CHAR (1)
v N = Module routine body is not implemented

v Y = Module routine body is implemented

v Blank = ROUTINEMODULENAME is null
value

METHODIMPLEMENTED CHAR (1)
v N = Method body is not implemented

v Y = Method body is implemented

v Blank = ROUTINETYPE is not ’M’ or
ROUTINEMODULENAME is not the null value

METHODEFFECT CHAR (2)
v CN = Constructor method

v MU = Mutator method

v OB = Observer method

v Blanks = Not a system method

TYPE_PRESERVING CHAR (1)
v N = Return type is the declared return type of

the method

v Y = Return type is governed by a
″type-preserving″ parameter; all
system-generated mutator methods are
type-preserving

v Blank = ROUTINETYPE is not ’M’

WITH_FUNC_ACCESS CHAR (1)
v N = This method cannot be invoked by using

functional notation

v Y = This method can be invoked by using
functional notation; that is, the ″WITH
FUNCTION ACCESS″ attribute is specified

v Blank = ROUTINETYPE is not ’M’

OVERRIDDEN_METHODID INTEGER Y Identifier for the overridden method when the
OVERRIDING option is specified for a
user-defined method. The null value if
ROUTINETYPE is not ’M’.

SUBJECT_TYPESCHEMA VARCHAR (128) Y Schema name of the subject type for the
user-defined method. The null value if
ROUTINETYPE is not ’M’.

SUBJECT_TYPENAME VARCHAR (128) Y Unqualified name of the subject type for the
user-defined method. The null value if
ROUTINETYPE is not ’M’.

1016 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

CLASS VARCHAR (384) Y For LANGUAGE JAVA, CLR, or OLE, this is the
class that implements this routine; null value
otherwise.

JAR_ID VARCHAR (128) Y For LANGUAGE JAVA, this is the JAR_ID of the
installed jar file that implements this routine if a
jar file was specified at routine creation time; null
value otherwise. For LANGUAGE CLR, this is the
assembly file that implements this routine.

JARSCHEMA VARCHAR (128) Y For LANGUAGE JAVA when a JAR_ID is present,
this is the schema name of the jar file that
implements this routine; null value otherwise.

JAR_SIGNATURE VARCHAR (2048) Y For LANGUAGE JAVA, this is the method
signature of this routine’s specified Java method.
For LANGUAGE CLR, this is a reference field for
this CLR routine. Null value otherwise.

CREATE_TIME TIMESTAMP Time at which the routine was created.

ALTER_TIME TIMESTAMP Time at which the routine was last altered.

FUNC_PATH CLOB (2K) Y SQL path in effect when the routine was defined.
The null value if LANGUAGE is not ’SQL’.

QUALIFIER VARCHAR (128) Value of the default schema at the time of object
definition. Used to complete any unqualified
references.

IOS_PER_INVOC DOUBLE Estimated number of inputs/outputs (I/Os) per
invocation; 0 is the default; -1 if not known.

INSTS_PER_INVOC DOUBLE Estimated number of instructions per invocation;
450 is the default; -1 if not known.

IOS_PER_ARGBYTE DOUBLE Estimated number of I/Os per input argument
byte; 0 is the default; -1 if not known.

INSTS_PER_ARGBYTE DOUBLE Estimated number of instructions per input
argument byte; 0 is the default; -1 if not known.

PERCENT_ARGBYTES SMALLINT Estimated average percent of input argument
bytes that the routine will actually read; 100 is the
default; -1 if not known.

INITIAL_IOS DOUBLE Estimated number of I/Os performed the first
time that the routine is invoked; 0 is the default; -1
if not known.

INITIAL_INSTS DOUBLE Estimated number of instructions executed the
first time the routine is invoked; 0 is the default; -1
if not known.

CARDINALITY BIGINT Predicted cardinality of a table function; -1 if not
known, or if the routine is not a table function.

SELECTIVITY2 DOUBLE For user-defined predicates; -1 if there are no
user-defined predicates.

RESULT_COLS SMALLINT For a table function (ROUTINETYPE = ’F’ and
FUNCTIONTYPE = ’T’), contains the number of
columns in the result table; for a procedure
(ROUTINETYPE = ’P’), contains 0; contains 1
otherwise.

IMPLEMENTATION VARCHAR (762) Y If ORIGIN = ’E’, identifies the
path/module/function that implements this
function. If ORIGIN = ’U’ and the source function
is built-in, this column contains the name and
signature of the source function. Null value
otherwise.

LIB_ID INTEGER Y Reserved for future use.

Appendix A. Related topics (linked to from topics in this book) 1017

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

TEXT_BODY_OFFSET INTEGER If LANGUAGE = ’SQL’, the offset to the start of
the SQL procedure body in the full text of the
CREATE statement; -1 if LANGUAGE is not ’SQL’.

TEXT CLOB (2M) Y If LANGUAGE = ’SQL’, the full text of the
CREATE FUNCTION, CREATE METHOD, or
CREATE PROCEDURE statement; null value
otherwise.

NEWSAVEPOINTLEVEL CHAR (1) Indicates whether the routine initiates a new
savepoint level when it is invoked.

v N = A new savepoint level is not initiated when
the routine is invoked; the routine uses the
existing savepoint level

v Y = A new savepoint level is initiated when the
routine is invoked

v Blank = Not applicable

DEBUG_MODE3 VARCHAR (8) Indicates whether or not the routine can be
debugged using the DB2 debugger.

v DISALLOW = Routine is not debuggable

v ALLOW = Routine is debuggable, and can
participate in a client debug session with the
DB2 debugger

v DISABLE = Routine is not debuggable, and this
setting cannot be altered without dropping and
recreating the routine

v Blank = Routine type is not currently supported
by the DB2 debugger

TRACE_LEVEL VARCHAR (1) Y Reserved for future use.

DIAGNOSTIC_LEVEL VARCHAR (1) Y Reserved for future use.

CHECKOUT_USERID VARCHAR (128) Y ID of the user who performed a checkout of the
object; the null value if the object is not checked
out.

PRECOMPILE_OPTIONS VARCHAR (1024) Y Precompile options specified for the routine.

COMPILE_OPTIONS VARCHAR (1024) Y Compile options specified for the routine.

EXECUTION_CONTROL CHAR (1) Execution control mode of a common language
runtime (CLR) routine. Possible values are:

v N = Network

v R = Fileread

v S = Safe

v U = Unsafe

v W = Filewrite

v Blank = LANGUAGE is not ’CLR’

CODEPAGE SMALLINT Routine code page, which specifies the default
code page used for all character parameter types,
result types, and local variables within the routine
body.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the routine.

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for the routine.

COLLATIONSCHEMA_ORDERBY VARCHAR (128) Schema name of the collation for ORDER BY
clauses in the routine.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for ORDER BY
clauses in the routine.

1018 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

ENCODING_SCHEME CHAR (1) Encoding scheme of the routine, as specified in the
PARAMETER CCSID clause. Possible values are:

v A = ASCII

v U = UNICODE

v Blank = PARAMETER CCSID clause was not
specified

LAST_REGEN_TIME TIMESTAMP Time at which the SQL routine packed descriptor
was last regenerated.

INHERITLOCKREQUEST CHAR (1)
v N = This function or method cannot be invoked

in the context of an SQL statement that includes
a lock-request-clause as part of a specified
isolation-clause

v Y = This function or method inherits the
isolation level of the invoking statement; it also
inherits the specified lock-request-clause

v Blank = LANGUAGE is not ’SQL’ or
ROUTINETYPE is ’P’

DEFINER4 VARCHAR (128) Authorization ID of the owner of the routine.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. For SQL procedures created before Version 8.2 and upgraded to Version 9, ’E’ (instead of ’Q’).

2. During database upgrade, the SELECTIVITY column will be set to -1 in the packed descriptor and system catalogs for all
user-defined routines. For a user-defined predicate, the selectivity in the system catalog will be -1. In this case, the selectivity
value used by the optimizer is 0.01.

3. For Java routines, the DEBUG_MODE setting does not indicate whether the Java routine was actually compiled in debug mode,
or whether a debug Jar was installed at the server.

4. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.ROUTINESFEDERATED

Each row represents a federated procedure.

Table 240. SYSCAT.ROUTINESFEDERATED Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine if
ROUTINEMODULEID is null; otherwise
schema name of the module to which the
routine belongs.

ROUTINENAME VARCHAR (128) Unqualified name of the routine.

ROUTINETYPE CHAR (1) Type of routine.

v P = Procedure

OWNER VARCHAR (128) Authorization ID of the owner of the routine.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be
system-generated).

ROUTINEID INTEGER Identifier for the routine.

PARM_COUNT SMALLINT Number of routine parameters.

Appendix A. Related topics (linked to from topics in this book) 1019

Table 240. SYSCAT.ROUTINESFEDERATED Catalog View (continued)

Column Name Data Type Nullable Description

DETERMINISTIC CHAR (1) v N = Results are not deterministic (same
parameters might give different results in
different routine calls)

v Y = Results are deterministic

EXTERNAL_ACTION CHAR (1) v E = Routine has external side-effects
(therefore, the number of invocations is
important)

v N = No side-effects

SQL_DATA_ACCESS CHAR (1) Indicates what type of SQL statements, if
any, the database manager should assume is
contained in the routine.

v C = Contains SQL (simple expressions
with no subqueries only)

v M = Contains SQL statements that modify
data

v N = Does not contain SQL statements

v R = Contains read-only SQL statements

COMMIT_ON_RETURN CHAR (1) Indicates whether the transaction is
committed on successful return from this
procedure.

v N = The unit of work is not committed

v Y = The unit of work is committed

v Blank = ROUTINETYPE is not ’P’

RESULT_SETS SMALLINT Estimated maximum number of result sets.

CREATE_TIME TIMESTAMP Time at which the routine was created.

ALTER_TIME TIMESTAMP Time at which the routine was last altered.

QUALIFIER VARCHAR (128) Value of the default schema at the time of
object definition. Used to complete any
unqualified references.

RESULT_COLS SMALLINT For a procedure (ROUTINETYPE = ’P’),
contains 0; contains 1 otherwise.

CODEPAGE SMALLINT Routine code page, which specifies the
default code page used for all character
parameter types, result types, and local
variables within the routine body.

LAST_REGEN_TIME TIMESTAMP Time at which the SQL routine packed
descriptor was last regenerated.

REMOTE_PROCEDURE VARCHAR (128) Y Unqualified name of the source procedure
for which the federated routine was created.

REMOTE_SCHEMA VARCHAR (128) Y Schema name of the source procedure for
which the federated routine was created.

SERVERNAME VARCHAR (128) Y Name of the data source that contains the
source procedure for which the federated
routine was created.

REMOTE_PACKAGE VARCHAR (128) Y Name of the package to which the source
procedure belongs (applies only to wrappers
for Oracle data sources).

1020 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 240. SYSCAT.ROUTINESFEDERATED Catalog View (continued)

Column Name Data Type Nullable Description

REMOTE_PROCEDURE_
ALTER_TIME

VARCHAR (128) Y Reserved for future use.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.SERVEROPTIONS

Each row represents a server-specific option value.

Table 241. SYSCAT.SERVEROPTIONS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR (128) Y Name of the wrapper.

SERVERNAME VARCHAR (128) Y Uppercase name of the server.

SERVERTYPE VARCHAR (30) Y Type of server.

SERVERVERSION VARCHAR (18) Y Server version.

CREATE_TIME TIMESTAMP Time at which the entry was created.

OPTION VARCHAR (128) Name of the server option.

SETTING VARCHAR (2048) Value of the server option.

SERVEROPTIONKEY VARCHAR (18) Uniquely identifies a row.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.SERVERS

Each row represents a data source.

Table 242. SYSCAT.SERVERS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR (128) Name of the wrapper.

SERVERNAME VARCHAR (128) Uppercase name of the server.

SERVERTYPE VARCHAR (30) Y Type of server.

SERVERVERSION VARCHAR (18) Y Server version.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.SERVICECLASSES

Each row represents a service class.

Table 243. SYSCAT.SERVICECLASSES Catalog View

Column Name Data Type Nullable Description

SERVICECLASSNAME VARCHAR (128) Name of the service class.

PARENTSERVICECLASSNAME VARCHAR (128) Y Service class name of the parent service
superclass.

SERVICECLASSID SMALLINT Identifier for the service class.

Appendix A. Related topics (linked to from topics in this book) 1021

Table 243. SYSCAT.SERVICECLASSES Catalog View (continued)

Column Name Data Type Nullable Description

PARENTID SMALLINT Identifier for the parent service class for this
service class. 0 if this service class is a super
service class.

CREATE_TIME TIMESTAMP Time when the service class was created.

ALTER_TIME TIMESTAMP Time when the service class was last altered.

ENABLED CHAR (1) State of the service class.

v N = Disabled

v Y = Enabled

AGENTPRIORITY SMALLINT Thread priority of the agents in the service
class relative to the normal priority of DB2
threads.

v -20 to 20 (Linux and UNIX)

v -6 to 6 (Windows)

v -32768 = not set

PREFETCHPRIORITY CHAR (1) Prefetch priority of the agents in the service
class.

v H = High

v L = Low

v M = Medium

v Blank = not set

BUFFERPOOLPRIORITY CHAR (1) Bufferpool priority of the agents in the
service class

v H = High

v L = Low

v M = Medium

v Blank = Not set

INBOUNDCORRELATOR VARCHAR (128) Y For future use.

OUTBOUNDCORRELATOR VARCHAR (128) Y String used to associate the service class with
an operating system workload manager
service class.

COLLECTAGGACTDATA CHAR (1) Specifies what aggregate activity data should
be captured for the service class by the
applicable event monitor.

v B = Collect base aggregate activity data

v E = Collect extended aggregate activity
data

v N = None

COLLECTAGGREQDATA CHAR (1) Specifies what aggregate activity data should
be captured for the service class by the
applicable event monitor.

v B = Collect base aggregate request data

v N = None

1022 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 243. SYSCAT.SERVICECLASSES Catalog View (continued)

Column Name Data Type Nullable Description

COLLECTACTDATA CHAR (1) Specifies what activity data should be
collected by the applicable event monitor.

v D = Activity data with details

v N = None

v S = Activity data with details and section
environment

v V = Activity data with details and values

v W = Activity data without details

v X = Activity data with details, section
environment, and values

COLLECTACTPARTITION CHAR (1) Specifies where activity data is collected.

v C = Database partition of the coordinator
of the activity

v D = All database partitions

COLLECTREQMETRICS CHAR (1) Specifies the monitoring level for requests
submitted by a connection that is associated
with the service superclass.

v B = Collect base request metrics

v E = Collect extended request metrics

v N = None

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.STATEMENTS

Each row represents an SQL statement in a package.

Table 244. SYSCAT.STATEMENTS Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR (128) Schema name of the package.

PKGNAME VARCHAR (128) Unqualified name of the package.

STMTNO INTEGER Line number of the SQL statement in the
source module of the application program.

SECTNO SMALLINT Number of the package section containing
the SQL statement.

SEQNO INTEGER Always 1.

TEXT CLOB (2M) Text of the SQL statement.

UNIQUE_ID CHAR (8) FOR BIT
DATA

Identifier for a specific package when
multiple packages having the same name
exist.

VERSION VARCHAR (64) Y Version identifier for the package.

SYSCAT.TABDEP

Each row represents a dependency of a view or a materialized query table on some
other object. The view or materialized query table depends on the object of type

Appendix A. Related topics (linked to from topics in this book) 1023

BTYPE of name BNAME, so a change to the object affects the view or materialized
query table. Also encodes how privileges on views depend on privileges on
underlying tables and views.

Table 245. SYSCAT.TABDEP Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the view or materialized
query table.

TABNAME VARCHAR (128) Unqualified name of the view or
materialized query table.

DTYPE CHAR (1) Type of the depending object.

v S = Materialized query table

v T = Table (staging only)

v V = View (untyped)

v W = Typed view

OWNER VARCHAR (128) Authorization ID of the creator of the view
or materialized query table.

OWNERTYPE CHAR (1) v U = The owner is an individual user

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

v A = Table alias

v F = Routine

v I = Index, if recording dependency on a
base table

v G = Global temporary table

v N = Nickname

v O = Privilege dependency on all subtables
or subviews in a table or view hierarchy

v R = User-defined structured type

v S = Materialized query table

v T = Table (untyped)

v U = Typed table

v V = View (untyped)

v W = Typed view

v Z = XSR object

v u = Module alias

v v = Global variable

BSCHEMA VARCHAR (128) Schema name of the object on which the
view or materialized query table depends.

BMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the object on which there is a dependency
belongs. The null value if not a module
object.

BNAME VARCHAR (128) Unqualified name of the object on which the
view or materialized query table depends.

BMODULEID INTEGER Y Identifier for the module of the object on
which the view or materialized query table
depends.

1024 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 245. SYSCAT.TABDEP Catalog View (continued)

Column Name Data Type Nullable Description

TABAUTH SMALLINT Y If BTYPE is ’N’, ’O’, ’S’, ’T’, ’U’, ’V’, or ’W’,
encodes the privileges on the underlying
table or view on which this view or
materialized query table depends; the null
value otherwise.

VARAUTH SMALLINT Y If BTYPE is ’v’, encodes the privileges on the
underlying global variable on which this
view or materialized query table depends;
the null value otherwise.

DEFINER1 VARCHAR (128) Authorization ID of the creator of the view
or materialized query table.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.TABDETACHEDDEP

Each row represents a detached dependency between a detached dependent table
and a detached table.

Table 246. SYSCAT.TABDETACHEDDEP Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the detached table.

TABNAME VARCHAR (128) Unqualified name of the detached table.

DEPTABSCHEMA VARCHAR (128) Schema name of the detached dependent
table.

DEPTABNAME VARCHAR (128) Unqualified name of the detached dependent
table.

SYSCAT.TABOPTIONS

Each row represents an option that is associated with a remote table.

Table 247. SYSCAT.TABOPTIONS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of a table, view, alias, or
nickname.

TABNAME VARCHAR (128) Unqualified name of a table, view, alias, or
nickname.

OPTION VARCHAR (128) Name of the table option.

SETTING CLOB (32K) Value of the table option.

SYSCAT.THRESHOLDS

Each row represents a threshold.

Appendix A. Related topics (linked to from topics in this book) 1025

Table 248. SYSCAT.THRESHOLDS Catalog View

Column Name Data Type Nullable Description

THRESHOLDNAME VARCHAR (128) Name of the threshold.

THRESHOLDID INTEGER Identifier for the threshold.

ORIGIN CHAR (1) Origin of the threshold.

v U = Threshold was created by a user

v W = Threshold was created through a
work action set

THRESHOLDCLASS CHAR (1) Classification of the threshold.

v A = Aggregate threshold

v C = Activity threshold

THRESHOLDPREDICATE VARCHAR (15) Type of the threshold. Possible values are:

v AGGTEMPSPACE

v CONCDBC

v CONCWCN

v CONCWOC

v CONNIDLETIME

v CPUTIME

v CPUTIMEINSC

v DBCONN

v ESTSQLCOST

v ROWSREAD

v ROWSREADINSC

v ROWSRET

v SCCONN

v TEMPSPACE

v TOTALTIME

THRESHOLDPREDICATEID SMALLINT Identifier for the threshold predicate.

DOMAIN CHAR (2) Domain of the threshold.

v DB = Database

v SB = Service subclass

v SP = Service superclass

v WA = Work action set

v WD = Workload definition

DOMAINID INTEGER Identifier for the object with which the
threshold is associated. This can be a service
class, work action or workload unique ID. If
this is a database threshold, this value is 0.

ENFORCEMENT CHAR (1) Scope of enforcement for the threshold.

v D = Database

v P = Database partition

v W = Workload occurrence

QUEUING CHAR (1) v N = The threshold is not queueing

v Y = The threshold is queueing

MAXVALUE BIGINT Upper bound specified by the threshold.

QUEUESIZE INTEGER If QUEUEING is ’Y’, the size of the queue. -1
otherwise.

1026 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 248. SYSCAT.THRESHOLDS Catalog View (continued)

Column Name Data Type Nullable Description

COLLECTACTDATA CHAR (1) Specifies what activity data should be
collected by the applicable event monitor.

v D = Activity data with details

v N = None

v S = Activity data with details and section
environment

v V = Activity data with details and values

v W = Activity data without details

v X = Activity data with details, section
environment, and values

COLLECTACTPARTITION CHAR (1) Specifies where activity data is collected.

v C = Database partition of the coordinator
of the activity

v D = All database partitions

EXECUTION CHAR (1) Indicates whether execution continues, stops,
or remaps to a different service subclass after
the threshold has been exceeded.

v C = Execution continues

v R = Execution is remapped

v S = Execution stops

REMAPSCID SMALLINT Target service subclass ID of the REMAP
ACTIVITY action.

VIOLATIONRECORDLOGGED CHAR (1) Indicates whether a record is written to the
event monitor upon threshold violation.

v N = No

v Y = Yes

CHECKINTERVAL INTEGER The interval, in seconds, in which the
threshold condition is checked if
THRESHOLDPREDICATE is:

v ’CPUTIME’

v ’CPUTIMEINSC’

v ’ROWSREAD’

v ’ROWSREADINSC’

Otherwise, -1.

ENABLED CHAR (1) v N = This threshold is disabled.

v Y = This threshold is enabled.

CREATE_TIME TIMESTAMP Time at which the threshold was created.

ALTER_TIME TIMESTAMP Time at which the threshold was last altered.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.TRANSFORMS

Each row represents the functions that handle transformations between a
user-defined type and a base SQL type, or the reverse.

Appendix A. Related topics (linked to from topics in this book) 1027

Table 249. SYSCAT.TRANSFORMS Catalog View

Column Name Data Type Nullable Description

TYPEID SMALLINT Identifier for the data type.

TYPESCHEMA VARCHAR (128) Schema name of the data type if
TYPEMODULEID is null; otherwise schema
name of the module to which the data type
belongs.

TYPENAME VARCHAR (128) Unqualified name of the data type.

GROUPNAME VARCHAR (128) Name of the transform group.

FUNCID INTEGER Identifier for the routine.

FUNCSCHEMA VARCHAR (128) Schema name of the routine if
ROUTINEMODULEID is null; otherwise
schema name of the module to which the
routine belongs.

FUNCNAME VARCHAR (128) Unqualified name of the routine.

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be
system-generated).

TRANSFORMTYPE VARCHAR(8) v ’FROM SQL’ = Transform function
transforms a structured type from SQL

v ’TO SQL’ = Transform function transforms
a structured type to SQL

FORMAT CHAR (1) Format produced by the FROM SQL
transform.

v S = Structured data type

v U = User-defined

MAXLENGTH INTEGER Y Maximum length (in bytes) of output from
the FROM SQL transform; the null value for
TO SQL transforms.

ORIGIN CHAR (1) Source of this group of transforms.

v O = Original transform group (built-in or
system-defined)

v R = Redefined transform group (only
built-in groups can be redefined)

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.TRIGDEP

Each row represents a dependency of a trigger on some other object. The trigger
depends on the object of type BTYPE of name BNAME, so a change to the object
affects the trigger.

Table 250. SYSCAT.TRIGDEP Catalog View

Column Name Data Type Nullable Description

TRIGSCHEMA VARCHAR (128) Schema name of the trigger.

TRIGNAME VARCHAR (128) Unqualified name of the trigger.

1028 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 250. SYSCAT.TRIGDEP Catalog View (continued)

Column Name Data Type Nullable Description

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

v A = Table alias

v B = Trigger

v F = Routine

v G = Global temporary table

v H = Hierachy table

v K = Package

v L = Detached table

v N = Nickname

v O = Privilege dependency on all subtables
or subviews in a table or view hierarchy

v Q = Sequence

v R = User-defined data type

v S = Materialized query table

v T = Table (not typed)

v U = Typed table

v V = View (not typed)

v W = Typed view

v X = Index extension

v Z = XSR object

v q = Sequence alias

v u = Module alias

v v = Global variable

v * = Anchored to the row of a base table

BSCHEMA VARCHAR (128) Schema name of the object on which there is
a dependency.

BMODULENAME VARCHAR(128) Y Unqualified name of the module to which
the object on which a dependency belongs.
The null value if not a module object.

BNAME VARCHAR (128) Unqualified name of the object on which
there is a dependency. For routines (BTYPE =
’F’), this is the specific name.

BMODULEID INTEGER Y Identifier for the module of the object on
which there is a dependency.

TABAUTH SMALLINT Y If BTYPE = ’O’, ’S’, ’T’, ’U’, ’V’, ’W’, or ’v’,
encodes the privileges on the table or view
that are required by a dependent trigger;
null value otherwise.

SYSCAT.TRIGGERS

Each row represents a trigger. For table hierarchies, each trigger is recorded only at
the level of the hierarchy where the trigger was created.

Appendix A. Related topics (linked to from topics in this book) 1029

Table 251. SYSCAT.TRIGGERS Catalog View

Column Name Data Type Nullable Description

TRIGSCHEMA VARCHAR (128) Schema name of the trigger.

TRIGNAME VARCHAR (128) Unqualified name of the trigger.

OWNER VARCHAR (128) Authorization ID of the owner of the trigger.

OWNERTYPE CHAR (1)
v S = The owner is the system

v U = The owner is an individual user

TABSCHEMA VARCHAR (128) Schema name of the table or view to which this
trigger applies.

TABNAME VARCHAR (128) Unqualified name of the table or view to which
this trigger applies.

TRIGTIME CHAR (1) Time at which triggered actions are applied to the
base table, relative to the event that fired the
trigger.

v A = Trigger is applied after the event

v B = Trigger is applied before the event

v I = Trigger is applied instead of the event

TRIGEVENT CHAR (1) Event that fires the trigger.

v D = Delete operation

v I = Insert operation

v U = Update operation

GRANULARITY CHAR (1) Trigger is executed once per:

v R = Row

v S = Statement

VALID CHAR (1)
v N = Trigger is invalid

v X = Trigger is inoperative and must be recreated

v Y = Trigger is valid

CREATE_TIME TIMESTAMP Time at which the trigger was defined. Used in
resolving functions and types.

QUALIFIER VARCHAR (128) Value of the default schema at the time of object
definition. Used to complete any unqualified
references.

FUNC_PATH CLOB (2K) SQL path in effect when the trigger was defined.

TEXT CLOB (2M) Full text of the CREATE TRIGGER statement,
exactly as typed.

LAST_REGEN_TIME TIMESTAMP Time at which the packed descriptor for the
trigger was last regenerated.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the trigger.

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for the trigger.

COLLATIONSCHEMA_ORDERBY VARCHAR (128) Schema name of the collation for ORDER BY
clauses in the trigger.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for ORDER BY
clauses in the trigger.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the trigger.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

1030 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

SYSCAT.TYPEMAPPINGS

Each row represents a data type mapping between a locally-defined data type and
a data source data type. There are two mapping types (mapping directions):
v Forward type mappings map a data source data type to a locally-defined data

type.
v Reverse type mappings map a locally-defined data type to a data source data

type.

Table 252. SYSCAT.TYPEMAPPINGS Catalog View

Column Name Data Type Nullable Description

TYPE_MAPPING VARCHAR (18) Name of the type mapping (might be
system-generated).

MAPPINGDIRECTION CHAR (1) Indicates whether this type mapping is a
forward or a reverse type mapping.

v F = Forward type mapping

v R = Reverse type mapping

TYPESCHEMA VARCHAR (128) Y Schema name of the local type in a data type
mapping; the null value for built-in types.

TYPENAME VARCHAR (128) Unqualified name of the local type in a data
type mapping.

TYPEID SMALLINT Identifier for the data type.

SOURCETYPEID SMALLINT Identifier for the source type.

OWNER VARCHAR (128) Authorization ID of the owner of the type
mapping. ’SYSIBM’ indicates a built-in type
mapping.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

LENGTH INTEGER Y Maximum length or precision of the local
data type in this mapping. If the null value,
the system determines the maximum length
or precision. For character types, represents
the maximum number of bytes.

SCALE SMALLINT Y Maximum number of digits in the fractional
part of a local decimal value or the
maximum number of digits of fractional
seconds of a local TIMESTAMP value in this
mapping. If the null value, the system
determines the maximum number.

LOWER_LEN INTEGER Y Minimum length or precision of the local
data type in this mapping. If the null value,
the system determines the minimum length
or precision. For character types, represents
the minimum number of bytes.

UPPER_LEN INTEGER Y Maximum length or precision of the local
data type in this mapping. If the null value,
the system determines the maximum length
or precision. For character types, represents
the maximum number of bytes.

Appendix A. Related topics (linked to from topics in this book) 1031

Table 252. SYSCAT.TYPEMAPPINGS Catalog View (continued)

Column Name Data Type Nullable Description

LOWER_SCALE SMALLINT Y Minimum number of digits in the fractional
part of a local decimal value or the
minimum number of digits of fractional
seconds of a local TIMESTAMP value in this
mapping. If the null value, the system
determines the minimum number.

UPPER_SCALE SMALLINT Y Maximum number of digits in the fractional
part of a local decimal value or the
maximum number of digits of fractional
seconds of a local TIMESTAMP value in this
mapping. If the null value, the system
determines the maximum number.

S_OPR_P CHAR (2) Y Relationship between the scale and precision
of a local decimal value in this mapping.
Basic comparison operators (=, <, >, <=, >=,
<>) can be used. A null value indicates that
no specific relationship is required.

BIT_DATA CHAR (1) Y Indicates whether or not this character type
is for bit data. Possible values are:

v N = This type is not for bit data

v Y = This type is for bit data

v Null value = This is not a character data
type, or the system determines the bit data
attribute

WRAPNAME VARCHAR (128) Y Data access protocol (wrapper) to which this
mapping applies.

SERVERNAME VARCHAR (128) Y Uppercase name of the server.

SERVERTYPE VARCHAR (30) Y Type of server.

SERVERVERSION VARCHAR (18) Y Server version.

REMOTE_TYPESCHEMA VARCHAR (128) Y Schema name of the data source data type.

REMOTE_TYPENAME VARCHAR (128) Unqualified name of the data source data
type.

REMOTE_META_TYPE CHAR (1) Y Indicates whether this remote type is a
system built-in type or a distinct type.

v S = System built-in type

v T = Distinct type

REMOTE_LOWER_LEN INTEGER Y Minimum length or precision of the remote
data type in this mapping, or the null value.
For character types, represents the minimum
number of characters (not bytes). For binary
types, represents the minimum number of
bytes. A value of -1 indicates that the default
length or precision is used, or that the
remote type does not have a length or
precision.

1032 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 252. SYSCAT.TYPEMAPPINGS Catalog View (continued)

Column Name Data Type Nullable Description

REMOTE_UPPER_LEN INTEGER Y Maximum length or precision of the remote
data type in this mapping, or the null value.
For character types, represents the maximum
number of characters (not bytes). For binary
types, represents the maximum number of
bytes. A value of -1 indicates that the default
length or precision is used, or that the
remote type does not have a length or
precision.

REMOTE_LOWER_SCALE SMALLINT Y Minimum number of digits in the fractional
part of a remote decimal value or the
minimum number of digits of fractional
seconds of a remote TIMESTAMP value in
this mapping, or the null value.

REMOTE_UPPER_SCALE SMALLINT Y Maximum number of digits in the fractional
part of a remote decimal value or the
maximum number of digits of fractional
seconds of a remote TIMESTAMP value in
this mapping, or the null value.

REMOTE_S_OPR_P CHAR (2) Y Relationship between the scale and precision
of a remote decimal value in this mapping.
Basic comparison operators (=, <, >, <=, >=,
<>) can be used. A null value indicates that
no specific relationship is required.

REMOTE_BIT_DATA CHAR (1) Y Indicates whether or not this remote
character type is for bit data. Possible values
are:

v N = This type is not for bit data

v Y = This type is for bit data

v Null value = This is not a character data
type, or the system determines the bit data
attribute

USER_DEFINED CHAR (1) Indicates whether or not the mapping is
user-defined. The value is always ’Y’; that is,
the mapping is always user-defined.

CREATE_TIME TIMESTAMP Time at which this mapping was created.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the type
mapping. ’SYSIBM’ indicates a built-in type
mapping.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.VARIABLEAUTH

Each row represents a user, group, or role that has been granted one or more
privileges by a specific grantor on a global variable in the database that is not
defined in a module.

Appendix A. Related topics (linked to from topics in this book) 1033

Table 253. SYSCAT.VARIABLEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

VARSCHEMA VARCHAR (128) Schema name of the global variable if
VARMODULEID is null; otherwise schema
name of the module to which the global
variable belongs.

VARNAME VARCHAR (128) Unqualified name of the global variable.

VARID INTEGER Identifier for the global variable.

READAUTH CHAR (1) Privilege to read the global variable.

v G = Held and grantable

v N = Not held

v Y = Held

WRITEAUTH CHAR (1) Privilege to write the global variable.

v G = Held and grantable

v N = Not held

v Y = Held

SYSCAT.VARIABLEDEP

Each row represents a dependency of a global variable on some other object. The
global variable depends on the object of type BTYPE of name BNAME, so a change
to the object affects the global variable.

Table 254. SYSCAT.VARIABLEDEP Catalog View

Column Name Data Type Nullable Description

VARSCHEMA VARCHAR (128) Schema name of the global variable that has
dependencies on another object.

VARMODULENAME VARCHAR(128) Y Unqualified name of the module to which
the global variable belongs. The null value if
not a module variable.

VARNAME VARCHAR (128) Unqualified name of the global variable that
has dependencies on another object.

VARMODULEID INTEGER Y Identifier for the module of the object that
has dependencies on another object.

1034 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 254. SYSCAT.VARIABLEDEP Catalog View (continued)

Column Name Data Type Nullable Description

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

v A = Table alias

v F = Routine

v G = Global temporary table

v H = Hierarchy table

v N = Nickname

v O = Privilege dependency on all subtables
or subviews in a table or view hierarchy

v R = User-defined data type

v S = Materialized query table

v T = Table (not typed)

v U = Typed table

v V = View (not typed)

v W = Typed view

v q = Sequence alias

v u = Module alias

v v = Global variable

v * = Anchored to the row of a base table

BSCHEMA VARCHAR (128) Schema name of the object on which there is
a dependency.

BMODULENAME VARCHAR(128) Y Unqualified name of the module to which
the object on which a dependency belongs.
The null value if not a module object.

BNAME VARCHAR (128) Unqualified name of the object on which
there is a dependency. For routines (BTYPE =
’F’), this is the specific name.

BMODULEID INTEGER Y Identifier for the module of the object on
which there is a dependency.

TABAUTH SMALLINT Y If BTYPE = ’O’, ’S’, ’T’, ’U’, ’V’, ’W’, or ’v’,
encodes the privileges on the table or view
that are required by the dependent global
variable; the null value otherwise.

SYSCAT.VARIABLES

Each row represents a global variable.

Table 255. SYSCAT.VARIABLES Catalog View

Column Name Data Type Nullable Description

VARSCHEMA VARCHAR (128) Schema name of the global variable if
VARMODULEID is null; otherwise schema name
of the module to which the global variable
belongs.

VARMODULENAME VARCHAR(128) Y Unqualified name of the module to which the
global variable belongs. The null value if not a
module variable.

VARNAME VARCHAR (128) Unqualified name of the global variable.

Appendix A. Related topics (linked to from topics in this book) 1035

Table 255. SYSCAT.VARIABLES Catalog View (continued)

Column Name Data Type Nullable Description

VARMODULEID INTEGER Y Identifier for the module to which the global
variable belongs. The null value if not a module
variable.

VARID INTEGER Identifier for the global variable.

OWNER VARCHAR (128) Authorization ID of the owner of the global
variable.

OWNERTYPE CHAR (1)
v U = The owner is an individual user

CREATE_TIME TIMESTAMP Time at which the global variable was created.

LAST_REGEN_TIME TIMESTAMP Time at which the default expression was last
regenerated.

VALID CHAR (1)
v N = The global variable is invalid

v Y = The global variable is valid

PUBLISHED CHAR (1) Indicates whether the module variable can be
referenced outside its module.

v N = The module variable is not published

v Y = The module variable is published

v Blank = Not applicable

TYPESCHEMA VARCHAR (128) Schema name of the data type if TYPEMODULEID
is null; otherwise schema name of the module to
which the data type belongs.

TYPEMODULENAME VARCHAR (128) Unqualified name of the module to which the
variable data type belongs. The null value if the
variable data type does not belong to a module.

TYPENAME VARCHAR (128) Unqualified name of the data type.

TYPEMODULEID INTEGER Y Identifier for the module to which the variable
data type belongs. The null value if the variable
data type does not belong to a module.

LENGTH INTEGER Maximum length of the global variable.

SCALE SMALLINT Scale if the global variable data type is DECIMAL
or distinct type based on DECIMAL; the number
of digits of fractional seconds if the global variable
data type is TIMESTAMP or distinct type based on
TIMESTAMP; 0 otherwise.

CODEPAGE SMALLINT Code page of the global variable.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the variable.

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for the variable.

COLLATIONSCHEMA_ORDERBY VARCHAR (128) Schema name of the collation for ORDER BY
clauses in the variable.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for ORDER BY
clauses in the variable.

SCOPE CHAR (1) Scope of the global variable.

v S = Session

DEFAULT CLOB (64K) Y Expression used to calculate the initial value of the
global variable when first referenced.

QUALIFIER VARCHAR (128) Y Value of the default schema at the time the
variable was defined.

FUNC_PATH CLOB (2K) Y SQL path in effect when the variable was defined.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

READONLY CHAR (1)
v C = Read-only because the global variable is

defined with a CONSTANT clause

v N = Not read-only

1036 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

SYSCAT.VIEWS

Each row represents a view or materialized query table.

Table 256. SYSCAT.VIEWS Catalog View

Column Name Data Type Nullable Description

VIEWSCHEMA VARCHAR (128) Schema name of the view or materialized
query table.

VIEWNAME VARCHAR (128) Unqualified name of the view or
materialized query table.

OWNER VARCHAR (128) Authorization ID of the owner of the view or
materialized query table.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

SEQNO SMALLINT Always 1.

VIEWCHECK CHAR (1) Type of view checking.

v C = Cascaded check option

v L = Local check option

v N = No check option or is a materialized
query table

READONLY CHAR (1) v N = View can be updated by users with
appropriate authorization or is a
materialized query table

v Y = View is read-only because of its
definition

VALID CHAR (1) v N = View or materialized query table
definition is invalid

v X = View or materialized query table
definition is inoperative and must be
recreated

v Y = View or materialized query table
definition is valid

QUALIFIER VARCHAR (128) Value of the default schema at the time of
object definition. Used to complete any
unqualified references.

FUNC_PATH CLOB (2K) SQL path in effect when the view or
materialized query table was defined.

TEXT CLOB (2M) Full text of the view or materialized query
table CREATE statement, exactly as typed.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the view or
materialized query table.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.WORKACTIONS

Each row represents a work action that is defined for a work action set.

Appendix A. Related topics (linked to from topics in this book) 1037

Table 257. SYSCAT.WORKACTIONS Catalog View

Column Name Data Type Nullable Description

ACTIONNAME VARCHAR (128) Name of the work action.

ACTIONID INTEGER Identifier for the work action.

ACTIONSETNAME VARCHAR (128) Y Name of the work action set.

ACTIONSETID INTEGER Identifier of the work action set to which this
work action belongs. This column refers to the
ACTIONSETID column in the
SYSCAT.WORKACTIONSETS view.

WORKCLASSNAME VARCHAR (128) Y Name of the work class.

WORKCLASSID INTEGER Identifier of the work class. This column refers to
the WORKCLASSID column in the
SYSCAT.WORKCLASSES view.

CREATE_TIME TIMESTAMP Time at which the work action was created.

ALTER_TIME TIMESTAMP Time at which the work action was last altered.

ENABLED CHAR (1)
v N = This work action is disabled.

v Y = This work action is enabled.

1038 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 257. SYSCAT.WORKACTIONS Catalog View (continued)

Column Name Data Type Nullable Description

ACTIONTYPE CHAR (1) The type of action performed on each DB2 activity
that matches the attributes in the work class
within scope.

v B = Collect basic aggregate activity data,
specifiable only for work action sets that apply
to service classes.

v C = Allow any DB2 activity under the
associated work class to execute and increment
the work class counter.

v D = Collect activity data with details at the
database partition of the coordinator of the
activity.

v E = Collect extended aggregate activity data,
specifiable only for work action sets that apply
to service classes.

v F = Collect activity data with details, section,
and values at the database partition of the
coordinator of the activity.

v G = Collect activity details and section at the
database partition of the coordinator of the
activity and collect activity data at all database
partitions.

v H = Collect activity details, section, and values
at the database partition of the coordinator of
the activity and collect activity data at all
database partitions.

v M = Map to a service subclass, specifiable only
for work action sets that apply to service
classes.

v P = Prevent the execution of any DB2 activity
under the work class with which this work
action is associated.

v S = Collect activity data with details and section
at the database partition of the coordinator of
the activity.

v T = The action represents a threshold,
specifiable only for work action sets that are
associated with a database.

v U = Map all activities with a nesting level of
zero and all activities nested under these
activities to a service subclass, specifiable only
for work action sets that apply to service
classes.

v V = Collect activity data with details and values
at the coordinator partition.

v W = Collect activity data without details at the
coordinator partition.

v X = Collect activity data with details at the
coordinator partition and collect activity data at
all database partitions.

v Y = Collect activity data with details and values
at the coordinator partition and collect activity
data at all database partitions.

v Z = Collect activity data without details at all
database partitions.

Appendix A. Related topics (linked to from topics in this book) 1039

Table 257. SYSCAT.WORKACTIONS Catalog View (continued)

Column Name Data Type Nullable Description

REFOBJECTID INTEGER Y If ACTIONTYPE is ’M’ (map) or ’N’ (map nested),
this value is set to the ID of the service subclass to
which the DB2 activity is mapped. If
ACTIONTYPE is ’T’ (threshold), this value is set
to the ID of the threshold to be used. For all other
actions, this value is NULL.

REFOBJECTTYPE VARCHAR (30) If the ACTIONTYPE is ’M’ or ’N’, this value is set
to ’SERVICE CLASS’; if the ACTIONTYPE is ’T’,
this value is ’THRESHOLD’; the null value
otherwise.

SYSCAT.WORKACTIONSETS

Each row represents a work action set.

Table 258. SYSCAT.WORKACTIONSETS Catalog View

Column Name Data Type Nullable Description

ACTIONSETNAME VARCHAR (128) Name of the work action set.

ACTIONSETID INTEGER Identifier for the work action set.

WORKCLASSSETNAME VARCHAR (128) Y Name of the work class set.

WORKCLASSSETID INTEGER The identifier of the work class set that is to
be mapped to the object specified by the
OBJECTID. This column refers to
WORKCLASSSETID in the
SYSCAT.WORKCLASSSETS view.

CREATE_TIME TIMESTAMP Time at which the work action set was
created.

ALTER_TIME TIMESTAMP Time at which the work action set was last
altered.

ENABLED CHAR (1) v N = This work action set is disabled.

v Y = This work action set is enabled.

OBJECTTYPE CHAR (1) v b = Service superclass

v Blank = Database

OBJECTNAME VARCHAR (128) Y Name of the service class.

OBJECTID INTEGER The identifier of the object to which the
work class set (specified by the
WORKCLASSSETID) is mapped. If the
OBJECTTYPE is blank, the OBJECTID is -1.
If the OBJECTTYPE is ’b’, the OBJECTID is
the ID of the service superclass.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.WORKCLASSES

Each row represents a work class defined for a work class set.

1040 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 259. SYSCAT.WORKCLASSES Catalog View

Column Name Data Type Nullable Description

WORKCLASSNAME VARCHAR (128) Name of the work class.

WORKCLASSSETNAME VARCHAR (128) Y Name of the work class set.

WORKCLASSID INTEGER Identifier for the work class.

WORKCLASSSETID INTEGER Identifier for the work class set to which this
work class belongs. This column refers to the
WORKCLASSSETID column in the
SYSCAT.WORKCLASSSETS view.

CREATE_TIME TIMESTAMP Time at which the work class was created.

ALTER_TIME TIMESTAMP Time at which the work class was last
altered.

WORKTYPE SMALLINT The type of DB2 activity.

v 1 = ALL

v 2 = READ

v 3 = WRITE

v 4 = CALL

v 5 = DML

v 6 = DDL

v 7 = LOAD

RANGEUNITS CHAR (1) The units to use for the bottom and top
range.

v C = Cardinality

v T = Timerons

v Blank = Not applicable

FROMVALUE DOUBLE Y The low value of the range in the units
specified by the RANGEUNITS. Null value
when RANGEUNITS is blank.

TOVALUE DOUBLE Y The high value of the range in the units
specified by the RANGEUNITS. Null value
when RANGEUNITS is blank. -1 value is
used to indicate no upper bound.

ROUTINESCHEMA VARCHAR (128) Y Schema name of the procedures that are
called from the CALL statement. Null value
when WORKTYPE is not 4 (CALL) or 1
(ALL).

INITIALSQLDATAPRIORITY CHAR (1) Reserved for future use.

EVALUATIONORDER SMALLINT Uniquely identifies the evaluation order used
for choosing a work class within a work
class set.

SYSCAT.WORKCLASSSETS

Each row represents a work class set.

Table 260. SYSCAT.WORKCLASSSETS Catalog View

Column Name Data Type Nullable Description

WORKCLASSSETNAME VARCHAR (128) Name of the work class set.

WORKCLASSSETID INTEGER Identifier for the work class set.

Appendix A. Related topics (linked to from topics in this book) 1041

Table 260. SYSCAT.WORKCLASSSETS Catalog View (continued)

Column Name Data Type Nullable Description

CREATE_TIME TIMESTAMP Time at which the work class set was
created.

ALTER_TIME TIMESTAMP Time at which the work class set was last
altered.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.WORKLOADAUTH

Each row represents a user, group, or role that has been granted USAGE privilege
on a workload.

Table 261. SYSCAT.WORKLOADAUTH Catalog View

Column Name Data Type Nullable Description

WORKLOADID INTEGER Identifier for the workload.

WORKLOADNAME VARCHAR (128) Name of the workload.

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v U = Grantee is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

USAGEAUTH CHAR (1) Indicates whether grantee holds USAGE
privilege on the workload.

v N = Not held

v Y = Held

SYSCAT.WORKLOADCONNATTR

Each row represents a connection attribute in the definition of a workload.

Table 262. SYSCAT.WORKLOADCONNATTR Catalog View

Column Name Data Type Nullable Description

WORKLOADID INTEGER Identifier for the workload.

WORKLOADNAME VARCHAR (128) Name of the workload.

1042 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 262. SYSCAT.WORKLOADCONNATTR Catalog View (continued)

Column Name Data Type Nullable Description

CONNATTRTYPE VARCHAR (30) Type of the connection attribute.

v 1 = APPLNAME

v 2 = SYSTEM_USER

v 3 = SESSION_USER

v 4 = SESSION_USER GROUP

v 5 = SESSION_USER ROLE

v 6 = CURRENT CLIENT_USERID

v 7 = CURRENT CLIENT_APPLNAME

v 8 = CURRENT CLIENT_WRKSTNNAME

v 9 = CURRENT CLIENT_ACCTNG

v 10 = ADDRESS

CONNATTRVALUE VARCHAR (1000) Value of the connection attribute.

SYSCAT.WORKLOADS

Each row represents a workload.

Table 263. SYSCAT.WORKLOADS Catalog View

Column Name Data Type Nullable Description

WORKLOADID INTEGER Identifier for the workload.

WORKLOADNAME VARCHAR (128) Name of the workload.

EVALUATIONORDER SMALLINT Evaluation order used for choosing a
workload.

CREATE_TIME TIMESTAMP Time at which the workload was created.

ALTER_TIME TIMESTAMP Time at which the workload was last altered.

ENABLED CHAR (1) v N = This workload is disabled.

v Y = This workload is enabled.

ALLOWACCESS CHAR (1) v N = A UOW associated with this
workload will be rejected.

v Y = A unit of work (UOW) associated with
this workload can access the database.

SERVICECLASSNAME VARCHAR (128) Name of the service subclass to which a unit
of work (associated with this workload) is
assigned.

PARENTSERVICECLASSNAME VARCHAR (128) Y Name of the service superclass to which a
unit of work (associated with this workload)
is assigned.

COLLECTAGGACTDATA CHAR (1) Specifies what aggregate activity data should
be captured for the workload by the
applicable event monitor.

v B = Collect base aggregate activity data

v E = Collect extended aggregate activity
data

v N = None

Appendix A. Related topics (linked to from topics in this book) 1043

Table 263. SYSCAT.WORKLOADS Catalog View (continued)

Column Name Data Type Nullable Description

COLLECTACTDATA CHAR (1) Specifies what activity data should be
collected by the applicable event monitor.

v D = Activity data with details

v N = None

v S = Activity data with details and section
environment

v V = Activity data with details and values.
Applies when the COLLECT column is set
to ’C’

v W = Activity data without details

v X = Activity data with details, section
environment, and values

COLLECTACTPARTITION CHAR (1) Specifies where activity data is collected.

v C = Database partition of the coordinator
of the activity

v D = All database partitions

COLLECTDEADLOCK CHAR (1) Specifies that deadlock events should be
collect by the applicable event monitor.

v H = Collect deadlock data with past
activities only

v N = Do not not collect deadlock data

v V = Collect deadlock data with past
activities and values

v W = Collect deadlock data without past
activities and values

COLLECTLOCKTIMEOUT CHAR (1) Specifies that lock timeout events should be
collect by the applicable event monitor.

v H = Collect lock timeout data with past
activities only

v N = Do not not collect lock timeout data

v V = Collect lock timeout data with past
activities and values

v W = Collect lock timeout data without
past activities and values

COLLECTLOCKWAIT CHAR (1) Specifies that lock wait events should be
collect by the applicable event monitor.

v H = Collect lock wait data with past
activities only

v N = Do not not collect lock wait data

v V = Collect lock wait data with past
activities and values

v W = Collect lock wait data without past
activities and values

LOCKWAITVALUE INTEGER Specifies the time in milliseconds a lock
should wait before a lock event is collected
by the applicable event monitor; 0 when
COLLECTLOCKWAIT = ’N’

1044 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 263. SYSCAT.WORKLOADS Catalog View (continued)

Column Name Data Type Nullable Description

COLLECTACTMETRICS CHAR (1) Specifies the monitoring level for activities
submitted by an occurrence of the workload.

v B = Collect base activity metrics

v E = Collect extended activity metrics

v N = None

COLLECTUOWDATA CHAR (1) Specifies what unit of work data should be
collected by the applicable event monitor.

v B = Collect base unit of work data

v N = None

EXTERNALNAME VARCHAR (128) Y Reserved for future use.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.WRAPOPTIONS

Each row represents a wrapper-specific option.

Table 264. SYSCAT.WRAPOPTIONS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR (128) Name of the wrapper.

OPTION VARCHAR (128) Name of the wrapper option.

SETTING VARCHAR (2048) Value of the wrapper option.

SYSCAT.WRAPPERS

Each row represents a registered wrapper.

Table 265. SYSCAT.WRAPPERS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR (128) Name of the wrapper.

WRAPTYPE CHAR (1) Type of wrapper.

v N = Non-relational

v R = Relational

WRAPVERSION INTEGER Version of the wrapper.

LIBRARY VARCHAR (255) Name of the file that contains the code used
to communicate with the data sources that
are associated with this wrapper.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.XDBMAPGRAPHS

Each row represents a schema graph for an XDB map (XSR object).

Appendix A. Related topics (linked to from topics in this book) 1045

Table 266. SYSCAT.XDBMAPGRAPHS Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XSR
object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XSR object.

OBJECTNAME VARCHAR (128) Unqualified name of the XSR object.

SCHEMAGRAPHID INTEGER Schema graph identifier, which is unique
within an XDB map identifier.

NAMESPACE VARCHAR (1001) Y String identifier for the namespace URI of
the root element.

ROOTELEMENT VARCHAR (1001) Y String identifier for the element name of the
root element.

SYSCAT.XDBMAPSHREDTREES

Each row represents one shred tree for a given schema graph identifier.

Table 267. SYSCAT.XDBMAPSHREDTREES Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XSR
object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XSR object.

OBJECTNAME VARCHAR (128) Unqualified name of the XSR object.

SCHEMAGRAPHID INTEGER Schema graph identifier, which is unique
within an XDB map identifier.

SHREDTREEID INTEGER Shred tree identifier, which is unique within
an XDB map identifier.

MAPPINGDESCRIPTION CLOB (1M) Y Diagnostic mapping information.

SYSCAT.XMLSTRINGS

Each row represents a single string and its unique string ID, used to condense
structural XML data. The string is provided in both UTF-8 encoding and database
codepage encoding.

Table 268. SYSCAT.XMLSTRINGS Catalog View

Column Name Data Type Nullable Description

STRINGID INTEGER Unique string ID.

STRING VARCHAR(1001) The string represented in the database
codepage.

STRING_UTF8 VARCHAR(1001) The string in UTF-8 encoding (as stored in
the catalog table).

SYSCAT.XSROBJECTAUTH

Each row represents a user, group, or role that has been granted the USAGE
privilege on a particular XSR object.

1046 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 269. SYSCAT.XSROBJECTAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

OBJECTID BIGINT Identifier for the XSR object.

USAGEAUTH CHAR (1) Privilege to use the XSR object and its
components.

v N = Not held

v Y = Held

SYSCAT.XSROBJECTCOMPONENTS

Each row represents an XSR object component.

Table 270. SYSCAT.XSROBJECTCOMPONENTS Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XSR
object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XSR object.

OBJECTNAME VARCHAR (128) Unqualified name of the XSR object.

COMPONENTID BIGINT Unique generated identifier for an XSR
object component.

TARGETNAMESPACE VARCHAR (1001) Y String identifier for the target namespace.

SCHEMALOCATION VARCHAR (1001) Y String identifier for the schema location.

COMPONENT BLOB (30M) External representation of the component.

CREATE_TIME TIMESTAMP Time at which the XSR object component
was registered.

STATUS CHAR (1) Registration status.

v C = Complete

v I = Incomplete

SYSCAT.XSROBJECTDETAILS

Each row represents an XML schema repository object.

Table 271. SYSCAT.XSROBJECTDETAILS Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XML
schema object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XML schema object.

OBJECTNAME VARCHAR (128) Unqualified name of the XML schema object.

Appendix A. Related topics (linked to from topics in this book) 1047

Table 271. SYSCAT.XSROBJECTDETAILS Catalog View (continued)

Column Name Data Type Nullable Description

GRAMMAR BLOB (127M) Y Binary representation of the grammar for the
XML schema object.

PROPERTIES BLOB (4190000) Y Properties document for the XML schema
object.

SYSCAT.XSROBJECTDEP

Each row represents a dependency of an XSR object on some other object. The XSR
object depends on the object of type BTYPE of name BNAME, so a change to the
object affects the XSR object.

Table 272. SYSCAT.XSROBJECTDEP Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XSR
object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XSR object.

OBJECTNAME VARCHAR (128) Unqualified name of the XSR object.

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

v A = Table alias

v B = Trigger

v F = Routine

v G = Global temporary table

v H = Hierachy table

v K = Package

v L = Detached table

v N = Nickname

v O = Privilege dependency on all subtables
or subviews in a table or view hierarchy

v Q = Sequence

v R = User-defined data type

v S = Materialized query table

v T = Table (not typed)

v U = Typed table

v V = View (not typed)

v W = Typed view

v X = Index extension

v Z = XSR object

v q = Sequence alias

v u = Module alias

v v = Global variable

v * = Anchored to the row of a base table

BSCHEMA VARCHAR (128) Schema name of the object on which there is
a dependency.

1048 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 272. SYSCAT.XSROBJECTDEP Catalog View (continued)

Column Name Data Type Nullable Description

BMODULENAME VARCHAR(128) Y Unqualified name of the module to which
the object on which a dependency belongs.
The null value if not a module object.

BNAME VARCHAR (128) Unqualified name of the object on which
there is a dependency. For routines (BTYPE =
’F’), this is the specific name.

BMODULEID INTEGER Y Identifier for the module of the object on
which there is a dependency.

TABAUTH SMALLINT Y If BTYPE = ’O’, ’S’, ’T’, ’U’, ’V’, ’W’, or ’v’,
encodes the privileges on the table or view
that are required by a dependent trigger;
null value otherwise.

SYSCAT.XSROBJECTHIERARCHIES

Each row represents the hierarchical relationship between an XSR object and its
components.

Table 273. SYSCAT.XSROBJECTHIERARCHIES Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Identifier for an XSR object.

COMPONENTID BIGINT Identifier for an XSR component.

HTYPE CHAR (1) Hierarchy type.

v D = Document

v N = Top-level namespace

v P = Primary document

TARGETNAMESPACE VARCHAR (1001) Y String identifier for the component’s target
namespace.

SCHEMALOCATION VARCHAR (1001) Y String identifier for the component’s schema
location.

SYSCAT.XSROBJECTS

Each row represents an XML schema repository object.

Table 274. SYSCAT.XSROBJECTS Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XSR
object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XSR object.

OBJECTNAME VARCHAR (128) Unqualified name of the XSR object.

TARGETNAMESPACE VARCHAR (1001) Y String identifier for the target namespace, or
public identifier.

SCHEMALOCATION VARCHAR (1001) Y String identifier for the schema location, or
system identifier.

OBJECTINFO XML Y Metadata document.

Appendix A. Related topics (linked to from topics in this book) 1049

Table 274. SYSCAT.XSROBJECTS Catalog View (continued)

Column Name Data Type Nullable Description

OBJECTTYPE CHAR (1) XSR object type.

v D = DTD

v E = External entity

v S = XML schema

OWNER VARCHAR (128) Authorization ID of the owner of the XSR
object.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

CREATE_TIME TIMESTAMP Time at which the object was registered.

ALTER_TIME TIMESTAMP Time at which the object was last updated
(replaced).

STATUS CHAR (1) Registration status.

v C = Complete

v I = Incomplete

v R = Replace

v T = Temporary

DECOMPOSITION CHAR (1) Indicates whether or not decomposition
(shredding) is enabled on this XSR object.

v N = Not enabled

v X = Inoperative

v Y = Enabled

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSIBM.SYSDUMMY1

Contains one row. This view is available for applications that require compatibility
with DB2 for z/OS.

Table 275. SYSIBM.SYSDUMMY1 Catalog View

Column Name Data Type Nullable Description

IBMREQD CHAR(1) ’Y’

SYSSTAT.COLDIST

Each row represents the nth most frequent value of some column, or the nth
quantile (cumulative distribution) value of the column. Applies to columns of real
tables only (not views). No statistics are recorded for inherited columns of typed
tables.

Table 276. SYSSTAT.COLDIST Catalog View

Column Name Data Type Nullable
Updat-
able Description

TABSCHEMA VARCHAR (128) Schema name of the table to which the
statistics apply.

TABNAME VARCHAR (128) Unqualified name of the table to which
the statistics apply.

1050 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 276. SYSSTAT.COLDIST Catalog View (continued)

Column Name Data Type Nullable
Updat-
able Description

COLNAME VARCHAR (128) Name of the column to which the
statistics apply.

TYPE CHAR (1) v F = Frequency value

v Q = Quantile value

SEQNO SMALLINT If TYPE = ’F’, n in this column identifies
the nth most frequent value. If TYPE =
’Q’, n in this column identifies the nth
quantile value.

COLVALUE1 VARCHAR (254) Y Y Data value as a character literal or a
null value.

VALCOUNT BIGINT Y If TYPE = ’F’, VALCOUNT is the
number of occurrences of COLVALUE in
the column. If TYPE = ’Q’, VALCOUNT
is the number of rows whose value is
less than or equal to COLVALUE.

DISTCOUNT2 BIGINT Y Y If TYPE = ’Q’, this column records the
number of distinct values that are less
than or equal to COLVALUE (the null
value if unavailable).

Note:

1. In the catalog view, the value of COLVALUE is always shown in the database code page and can contain
substitution characters. However, the statistics are gathered internally in the code page of the column’s table, and
will therefore use actual column values when applied during query optimization.

2. DISTCOUNT is collected only for columns that are the first key column in an index.

SYSSTAT.COLGROUPDIST

Each row represents the value of the column in a column group that makes up the
nth most frequent value of the column group or the nth quantile value of the
column group.

Table 277. SYSSTAT.COLGROUPDIST Catalog View

Column Name Data Type Nullable
Updat-
able Description

COLGROUPID INTEGER Identifier for the column group.

TYPE CHAR (1) v F = Frequency value

v Q = Quantile value

ORDINAL SMALLINT Ordinal number of the column in the
column group.

SEQNO SMALLINT If TYPE = ’F’, n in this column identifies
the nth most frequent value. If TYPE =
’Q’, n in this column identifies the nth
quantile value.

COLVALUE VARCHAR (254) Y Data value as a character literal or a
null value.

Appendix A. Related topics (linked to from topics in this book) 1051

SYSSTAT.COLGROUPDISTCOUNTS

Each row represents the distribution statistics that apply to the nth most frequent
value of a column group or the nth quantile of a column group.

Table 278. SYSSTAT.COLGROUPDISTCOUNTS Catalog View

Column Name Data Type Nullable
Updat-
able Description

COLGROUPID INTEGER Identifier for the column group.

TYPE CHAR (1) v F = Frequency value

v Q = Quantile value

SEQNO SMALLINT Sequence number n representing the nth
TYPE value.

VALCOUNT BIGINT Y If TYPE = ’F’, VALCOUNT is the
number of occurrences of COLVALUE
for the column group with this SEQNO.
If TYPE = ’Q’, VALCOUNT is the
number of rows whose value is less
than or equal to COLVALUE for the
column group with this SEQNO.

DISTCOUNT BIGINT Y If TYPE = ’Q’, this column records the
number of distinct values that are less
than or equal to COLVALUE for the
column group with this SEQNO (the
null value if unavailable).

SYSSTAT.COLGROUPS

Each row represents a column group and statistics that apply to the entire column
group.

Table 279. SYSSTAT.COLGROUPS Catalog View

Column Name Data Type Nullable
Updat-
able Description

COLGROUPSCHEMA VARCHAR (128) Schema name of the column group.

COLGROUPNAME VARCHAR (128) Unqualified name of the column group.

COLGROUPID INTEGER Identifier for the column group.

COLGROUPCARD BIGINT Y Cardinality of the column group.

NUMFREQ_VALUES SMALLINT Number of frequent values collected for
the column group.

NUMQUANTILES SMALLINT Number of quantiles collected for the
column group.

SYSSTAT.COLUMNS

Each row represents a column defined for a table, view, or nickname.

1052 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 280. SYSSTAT.COLUMNS Catalog View

Column Name Data Type Nullable
Updat-
able Description

TABSCHEMA VARCHAR (128) Schema name of the table, view, or
nickname that contains the column.

TABNAME VARCHAR (128) Unqualified name of the table, view, or
nickname that contains the column.

COLNAME VARCHAR (128) Name of the column.

COLCARD BIGINT Y Number of distinct values in the
column; -1 if statistics are not collected;
-2 for inherited columns and columns of
hierarchy tables.

HIGH2KEY1 VARCHAR (254) Y Y Second-highest data value.
Representation of numeric data changed
to character literals. Empty if statistics
are not collected. Empty for inherited
columns and columns of hierarchy
tables.

LOW2KEY1 VARCHAR (254) Y Y Second-lowest data value.
Representation of numeric data changed
to character literals. Empty if statistics
are not collected. Empty for inherited
columns and columns of hierarchy
tables.

AVGCOLLEN INTEGER Y Average space in bytes when the
column is stored in database memory or
a temporary table. For LOB data types
that are not inlined, LONG data types,
and XML documents, the value used to
calculate the average column length is
the length of the data descriptor. An
extra byte is required if the column is
nullable; -1 if statistics have not been
collected; -2 for inherited columns and
columns of hierarchy tables. Note: The
average space required to store the
column on disk may be different than
the value represented by this statistic.

NUMNULLS BIGINT Y Number of null values in the column; -1
if statistics are not collected.

PCTINLINED SMALLINT Percentage of inlined XML documents
or LOB data. -1 if statistics have not
been collected.

SUB_COUNT SMALLINT Y Average number of sub-elements in the
column. Applicable to character string
columns only.

SUB_DELIM_LENGTH SMALLINT Y Average length of the delimiters that
separate each sub-element in the
column. Applicable to character string
columns only.

Appendix A. Related topics (linked to from topics in this book) 1053

Table 280. SYSSTAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable
Updat-
able Description

AVGCOLLENCHAR INTEGER Y Average number of characters (based on
the collation in effect for the column)
required for the column; -1 if the data
type of the column is long, LOB, or
XML or if statistics have not been
collected; -2 for inherited columns and
columns of hierarchy tables.

Note:

1. In the catalog view, the values of HIGH2KEY and LOW2KEY are always shown in the database code page and
can contain substitution characters. However, the statistics are gathered internally in the code page of the
column’s table, and will therefore use actual column values when applied during query optimization.

SYSSTAT.INDEXES

Each row represents an index. Indexes on typed tables are represented by two
rows: one for the ″logical index″ on the typed table, and one for the ″H-index″ on
the hierarchy table.

Table 281. SYSSTAT.INDEXES Catalog View

Column Name Data Type Nullable
Updat-
able Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

TABSCHEMA VARCHAR (128) Schema name of the table or nickname
on which the index is defined.

TABNAME VARCHAR (128) Unqualified name of the table or
nickname on which the index is defined.

COLNAMES VARCHAR (640) This column is no longer used and will
be removed in the next release.

NLEAF BIGINT Y Number of leaf pages; -1 if statistics are
not collected.

NLEVELS SMALLINT Y Number of index levels; -1 if statistics
are not collected.

FIRSTKEYCARD BIGINT Y Number of distinct first-key values; -1 if
statistics are not collected.

FIRST2KEYCARD BIGINT Y Number of distinct keys using the first
two columns of the index; -1 if statistics
are not collected, or if not applicable.

FIRST3KEYCARD BIGINT Y Number of distinct keys using the first
three columns of the index; -1 if
statistics are not collected, or if not
applicable.

FIRST4KEYCARD BIGINT Y Number of distinct keys using the first
four columns of the index; -1 if statistics
are not collected, or if not applicable.

FULLKEYCARD BIGINT Y Number of distinct full-key values; -1 if
statistics are not collected.

1054 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 281. SYSSTAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable
Updat-
able Description

CLUSTERRATIO4 SMALLINT Y Degree of data clustering with the
index; -1 if statistics are not collected or
if detailed index statistics are collected
(in which case, CLUSTERFACTOR will
be used instead).

CLUSTERFACTOR4 DOUBLE Y Finer measurement of the degree of
clustering; -1 if statistics are not
collected or if the index is defined on a
nickname.

SEQUENTIAL_PAGES BIGINT Y Number of leaf pages located on disk in
index key order with few or no large
gaps between them; -1 if statistics are
not collected.

DENSITY INTEGER Y Ratio of SEQUENTIAL_PAGES to
number of pages in the range of pages
occupied by the index, expressed as a
percent (integer between 0 and 100); -1
if statistics are not collected.

PAGE_FETCH_PAIRS4 VARCHAR (520) Y A list of pairs of integers, represented in
character form. Each pair represents the
number of pages in a hypothetical
buffer, and the number of page fetches
required to scan the table with this
index using that hypothetical buffer.
Zero-length string if no data is available.

NUMRIDS4 BIGINT Y Total number of row identifiers (RIDs)
or block identifiers (BIDs) in the index;
-1 if not known.

NUMRIDS_DELETED4 BIGINT Y Total number of row identifiers (or
block identifiers) in the index that are
marked deleted, excluding those
identifiers on leaf pages on which all
the identifiers are marked deleted.

NUM_EMPTY_LEAFS BIGINT Y Total number of index leaf pages that
have all of their row identifiers (or block
identifiers) marked deleted.

AVERAGE_RANDOM_
FETCH_PAGES1,2,4

DOUBLE Y Average number of random table pages
between sequential page accesses when
fetching using the index; -1 if not
known.

AVERAGE_RANDOM_
PAGES2

DOUBLE Y Average number of random table pages
between sequential page accesses; -1 if
not known.

AVERAGE_SEQUENCE_
GAP2

DOUBLE Y Gap between index page sequences.
Detected through a scan of index leaf
pages, each gap represents the average
number of index pages that must be
randomly fetched between sequences of
index pages; -1 if not known.

Appendix A. Related topics (linked to from topics in this book) 1055

Table 281. SYSSTAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable
Updat-
able Description

AVERAGE_SEQUENCE_
FETCH_GAP1,2,4

DOUBLE Y Gap between table page sequences
when fetching using the index. Detected
through a scan of index leaf pages, each
gap represents the average number of
table pages that must be randomly
fetched between sequences of table
pages; -1 if not known.

AVERAGE_SEQUENCE_
PAGES2

DOUBLE Y Average number of index pages that are
accessible in sequence (that is, the
number of index pages that the
prefetchers would detect as being in
sequence); -1 if not known.

AVERAGE_SEQUENCE_
FETCH_PAGES1,2,4

DOUBLE Y Average number of table pages that are
accessible in sequence (that is, the
number of table pages that the
prefetchers would detect as being in
sequence) when fetching using the
index; -1 if not known.

AVGPARTITION_
CLUSTERRATIO3,4

SMALLINT Y Degree of data clustering within a single
data partition. -1 if the table is not
partitioned, if statistics are not collected,
or if detailed statistics are collected (in
which case AVGPARTITION_
CLUSTERFACTOR will be used
instead).

AVGPARTITION_
CLUSTERFACTOR3,4

DOUBLE Y Finer measurement of the degree of
clustering within a single data partition.
-1 if the table is not partitioned, if
statistics are not collected, or if the
index is defined on a nickname.

AVGPARTITION_PAGE_
FETCH_PAIRS3,4

VARCHAR (520) Y A list of paired integers in character
form. Each pair represents a potential
buffer pool size and the corresponding
page fetches required to access a single
data partition from the table.
Zero-length string if no data is available,
or if the table is not partitioned.

DATAPARTITION_
CLUSTERFACTOR

DOUBLE Y A statistic measuring the ″clustering″ of
the index keys with regard to data
partitions. It is a number between 0 and
1, with 1 representing perfect clustering
and 0 representing no clustering.

INDCARD BIGINT Y Cardinality of the index. This might be
different from the cardinality of the
table for indexes that do not have a
one-to-one relationship between the
table rows and the index entries.

PCTPAGESSAVED SMALLINT Approximate percentage of pages saved
in the index as a result of index
compression. -1 if statistics are not
collected.

AVGLEAFKEYSIZE INTEGER Y Average index key size for keys on leaf
pages in the index.

1056 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 281. SYSSTAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable
Updat-
able Description

AVGNLEAFKEYSIZE INTEGER Y Average index key size for keys on
non-leaf pages in the index.

Note:

1. When using DMS table spaces, this statistic cannot be computed.

2. Prefetch statistics are not gathered during a LOAD...STATISTICS YES, or a CREATE INDEX...COLLECT
STATISTICS operation, or when the database configuration parameter seqdetect is turned off.

3. AVGPARTITION_CLUSTERRATIO, AVGPARTITION_CLUSTERFACTOR, and
AVGPARTITION_PAGE_FETCH_PAIRS measure the degree of clustering within a single data partition (local
clustering). CLUSTERRATIO, CLUSTERFACTOR, and PAGE_FETCH_PAIRS measure the degree of clustering in
the entire table (global clustering). Global clustering and local clustering values can diverge significantly if the
table partitioning key is not a prefix of the index key, or when the table partitioning key and the index key are
logically independent of each other.

4. This statistic cannot be updated if the index type is ’XPTH’ (an XML path index).

5. Because logical indexes on an XML column do not have statistics, the SYSSTAT.INDEXES catalog view excludes
rows whose index type is ’XVIL’.

SYSSTAT.ROUTINES

Each row represents a user-defined routine (scalar function, table function, sourced
function, method, or procedure). Does not include built-in functions.

Table 282. SYSSTAT.ROUTINES Catalog View

Column Name Data Type Nullable
Updat-
able Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine if
ROUTINEMODULENAME is null;
otherwise schema name of the module
to which the routine belongs.

ROUTINEMODULENAME VARCHAR (128) Unqualified name of the module to
which the routine belongs. The null
value if not a module routine.

ROUTINENAME VARCHAR (128) Unqualified name of the routine.

ROUTINETYPE CHAR (1) Type of routine.

v F = Function

v M = Method

v P = Procedure

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be
system-generated).

IOS_PER_INVOC DOUBLE Y Estimated number of inputs/outputs
(I/Os) per invocation; 0 is the default; -1
if not known.

INSTS_PER_INVOC DOUBLE Y Estimated number of instructions per
invocation; 450 is the default; -1 if not
known.

IOS_PER_ARGBYTE DOUBLE Y Estimated number of I/Os per input
argument byte; 0 is the default; -1 if not
known.

Appendix A. Related topics (linked to from topics in this book) 1057

Table 282. SYSSTAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable
Updat-
able Description

INSTS_PER_ARGBYTE DOUBLE Y Estimated number of instructions per
input argument byte; 0 is the default; -1
if not known.

PERCENT_ARGBYTES SMALLINT Y Estimated average percent of input
argument bytes that the routine will
actually read; 100 is the default; -1 if not
known.

INITIAL_IOS DOUBLE Y Estimated number of I/Os performed
the first time that the routine is invoked;
0 is the default; -1 if not known.

INITIAL_INSTS DOUBLE Y Estimated number of instructions
executed the first time the routine is
invoked; 0 is the default; -1 if not
known.

CARDINALITY BIGINT Y Predicted cardinality of a table function;
-1 if not known, or if the routine is not a
table function.

SELECTIVITY DOUBLE Y For user-defined predicates; -1 if there
are no user-defined predicates.

SYSSTAT.TABLES

Each row represents a table, view, alias, or nickname. Each table or view hierarchy
has one additional row representing the hierarchy table or hierarchy view that
implements the hierarchy. Catalog tables and views are included.

Table 283. SYSSTAT.TABLES Catalog View

Column Name Data Type Nullable Updat-able Description

TABSCHEMA VARCHAR (128) Schema name of the object.

TABNAME VARCHAR (128) Unqualified name of the object.

CARD BIGINT Y Total number of rows in the table; -1 if
statistics are not collected.

NPAGES BIGINT Y Total number of pages on which the rows of
the table exist; -1 for a view or alias, or if
statistics are not collected; -2 for a subtable or
hierarchy table.

FPAGES BIGINT Y Total number of pages; -1 for a view or alias,
or if statistics are not collected; -2 for a
subtable or hierarchy table.

OVERFLOW BIGINT Y Total number of overflow records in the
table; -1 for a view or alias, or if statistics are
not collected; -2 for a subtable or hierarchy
table.

CLUSTERED CHAR (1) Y
v Y = Table is multidimensionally clustered

(even if only by one dimension)

v Null value = Table is not
multidimensionally clustered

ACTIVE_BLOCKS BIGINT Y Total number of active blocks in the table, or
-1. Applies to multidimensional clustering
(MDC) tables only.

1058 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 283. SYSSTAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Updat-able Description

AVGCOMPRESSEDROWSIZE SMALLINT Y Average length (in bytes) of compressed rows
in this table; -1 if statistics are not collected.

AVGROWCOMPRESSIONRATIO REAL Y For compressed rows in the table, this is the
average compression ratio by row; that is, the
average uncompressed row length divided by
the average compressed row length; -1 if
statistics are not collected.

AVGROWSIZE SMALLINT Average length (in bytes) of both compressed
and uncompressed rows in this table; -1 if
statistics are not collected.

PCTROWSCOMPRESSED REAL Y Compressed rows as a percentage of the total
number of rows in the table; -1 if statistics
are not collected.

PCTPAGESSAVED SMALLINT Y Approximate percentage of pages saved in
the table as a result of row compression. This
value includes overhead bytes for each user
data row in the table, but does not include
the space that is consumed by dictionary
overhead; -1 if statistics are not collected.

Database object topics

Automatic features
Automatic features assist you in managing your database system. They allow your
system to perform self-diagnosis and to anticipate problems before they happen by
analyzing real-time data against historical problem data. You can configure some of
the automatic tools to make changes to your system without intervention to avoid
service disruptions.

When you create a database, some of the following automatic features are enabled
by default, but others you must enable manually:

Self-tuning memory (single-partition databases only)
The self-tuning memory feature simplifies the task of memory
configuration. This feature responds to significant changes in workload by
automatically and iteratively adjusting the values of several memory
configuration parameters and the sizes of the buffer pools, thus optimizing
performance. The memory tuner dynamically distributes available memory
resources among several memory consumers, including the sort function,
the package cache, the lock list, and buffer pools. You can disable
self-tuning memory after creating a database by setting the database
configuration parameter self_tuning_mem to OFF.

Automatic storage
The automatic storage feature simplifies storage management for table
spaces. When you create a database, you specify the storage paths where
the database manager will place your table space data. Then, the database
manager manages the container and space allocation for the table spaces as
you create and populate them.

Data compression
Both tables and indexes can be compressed to save storage. Compression is
fully automatic; once you specify that a table or index should be
compressed using the COMPRESS YES clause of the CREATE TABLE,
ALTER TABLE, CREATE INDEX or ALTER INDEX statements, there is

Appendix A. Related topics (linked to from topics in this book) 1059

nothing more you must do to manage compression. (Converting an
existing uncompressed table or index to be compressed does require a
REORG to compress existing data). Temporary tables are compressed
automatically; indexes for compressed tables are also compressed
automatically, by default.

Automatic database backups
A database can become unusable due to a wide variety of hardware or
software failures. Ensuring that you have a recent, full backup of your
database is an integral part of planning and implementing a disaster
recovery strategy for your system. Use automatic database backups as part
of your disaster recovery strategy to enable the database manager to back
up your database both properly and regularly.

Automatic reorganization
After many changes to table data, the table and its indexes can become
fragmented. Logically sequential data might reside on nonsequential pages,
forcing the database manager to perform additional read operations to
access data. The automatic reorganization process periodically evaluates
tables and indexes that have had their statistics updated to see if
reorganization is required, and schedules such operations whenever they
are necessary.

Automatic statistics collection
Automatic statistics collection helps improve database performance by
ensuring that you have up-to-date table statistics. The database manager
determines which statistics are required by your workload and which
statistics must be updated. Statistics can be collected either asynchronously
(in the background) or synchronously, by gathering runtime statistics when
SQL statements are compiled. The DB2 optimizer can then choose an
access plan based on accurate statistics. You can disable automatic statistics
collection after creating a database by setting the database configuration
parameter auto_runstats to OFF. Real-time statistics gathering can be
enabled only when automatic statistics collection is enabled. Real-time
statistics gathering is controlled by the auto_stmt_stats configuration
parameter.

Configuration Advisor
When you create a database, this tool is automatically run to determine
and set the database configuration parameters and the size of the default
buffer pool (IBMDEFAULTBP). The values are selected based on system
resources and the intended use of the system. This initial automatic tuning
means that your database performs better than an equivalent database that
you could create with the default values. It also means that you will spend
less time tuning your system after creating the database. You can run the
Configuration Advisor at any time (even after your databases are
populated) to have the tool recommend and optionally apply a set of
configuration parameters to optimize performance based on the current
system characteristics.

Health monitor
The health monitor is a server-side tool that proactively monitors situations
or changes in your database environment that could result in a
performance degradation or a potential outage. A range of health
information is presented without any form of active monitoring on your
part. If a health risk is encountered, the database manager informs you and
advises you on how to proceed. The health monitor gathers information

1060 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

about the system by using the snapshot monitor and does not impose a
performance penalty. Further, it does not turn on any snapshot monitor
switches to gather information.

Utility throttling
This feature regulates the performance impact of maintenance utilities so
that they can run concurrently during production periods. Although the
impact policy for throttled utilities is defined by default, you must set the
impact priority if you want to run a throttled utility. The throttling system
ensures that the throttled utilities run as frequently as possible without
violating the impact policy. Currently, you can throttle statistics collection,
backup operations, rebalancing operations, and asynchronous index
cleanup.

Schema name restrictions and recommendations
There are some restrictions and recommendations that you must be aware of when
naming schemas.
v User-defined types (UDTs) cannot have schema names longer than the schema

length listed in “SQL and XML limits” in the SQL Reference.
v The following schema names are reserved words and must not be used:

SYSCAT, SYSFUN, SYSIBM, SYSSTAT, SYSPROC.
v To avoid potential problems upgrading databases in the future, do not use

schema names that begin with SYS. The database manager will not allow you to
create triggers, user-defined types or user-defined functions using a schema
name beginning with SYS.

v It is recommended that you not use SESSION as a schema name. Declared
temporary tables must be qualified by SESSION. It is therefore possible to have
an application declare a temporary table with a name identical to that of a
persistent table, in which case the application logic can become overly
complicated. Avoid the use of the schema SESSION, except when dealing with
declared temporary tables.

Table partitioning and data organization schemes
Table partitioning is a data organization scheme in which table data is divided
across multiple data partitions according to values in one or more partitioning
columns of the table. Data from a given table is partitioned into multiple storage
objects, which can be in different table spaces.

For complete details about table partitioning and data organization schemes, see
the Partitioning and Clustering Guide.

Table spaces without file system caching
The recommended method of enabling or disabling non-buffered I/O on UNIX,
Linux, and Windows is at the table space level.

This allows you to enable or disable non-buffered I/O on specific table spaces
while avoiding any dependency on the physical layout of the database. It also
allows the database manager to determine which I/O is best suited for each file,
buffered or non-buffered.

The NO FILE SYSTEM CACHING clause is used to enable non-buffered I/O, thus
disabling file caching for a particular table space. Once enabled, based on platform,
the database manager automatically determines which of the Direct I/O (DIO) or

Appendix A. Related topics (linked to from topics in this book) 1061

Concurrent I/O (CIO) is to be used. Given the performance improvement in CIO,
the database manager uses it whenever it is supported; there is no user interface to
specify which one is to be used.

In order to obtain the maximum benefits of non-buffered I/O, it might be
necessary to increase the size of buffer pools. However, if the self-tuning memory
manager is enabled and the buffer pool size is set to AUTOMATIC, the database
manager will self-tune the buffer pool size for optimal performance. Note that this
feature is not available prior to Version 9.

To disable or enable file system caching, specify the NO FILE SYSTEM CACHING
or the FILE SYSTEM CACHING clause in the CREATE TABLESPACE or ALTER
TABLESPACE statement, respectively. The default setting is used if neither clause
is specified. In the case of ALTER TABLESPACE, existing connections to the
database must be terminated before the new caching policy takes effect.

Note: If an attribute is altered from the default to either FILE SYSTEM CACHING
or NO FILE SYSTEM CACHING, there is no mechanism to change it back to the
default.

This method of enabling and disabling file system caching provides control of the
I/O mode, buffered or non-buffered, at the table space level.

Note: I/O access to long field (LF) data and large object (LOB) data will be
buffered for both SMS and DMS containers, regardless of the setting for the table
space in question.

To determine whether file system caching is enabled, query the value of the
FS_CACHING monitor element for the table space in the
MON_GET_TABLESPACE table.

Alternate methods to enable/disable non-buffered I/O on UNIX, Linux, and
Windows

Some UNIX platforms support the disabling of file system caching at a file
system level by using the MOUNT option. Consult your operating system
documentation for more information. However, it is important to
understand the difference between disabling file system caching at the
table space level and at the file system level. At the table space level, the
database manager controls which files are to be opened with and without
file system caching. At the file system level, every file residing on that
particular file system will be opened without file system caching. Some
platforms such as AIX have certain requirements before you can use this
feature, such as serialization of read and write access. although the
database manager adheres to these requirements, if the target file system
contains non-DB2 files, before enabling this feature, consult your operating
system documentation for any requirements.

Note: The now-deprecated registry variable DB2_DIRECT_IO, introduced
in Version 8.1 FixPak 4, enables no file system caching for all SMS
containers except for long field data, large object data, and temporary table
spaces on AIX JFS2. Setting this registry variable in Version 9.1 or later is
equivalent to altering all table spaces, SMS and DMS, with the NO FILE
SYSTEM CACHING clause. However, using DB2_DIRECT_IO is not
recommended, and this variable will be removed in a later release. Instead,
you should enable NO FILE SYSTEM CACHING at the table space level.

1062 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Alternate methods to enable/disable non-buffered I/O on Windows
In previous releases, the performance registry variable DB2NTNOCACHE
could be used to disable file system caching for all DB2 files in order to
make more memory available to the database so that the buffer pool or
sortheap can be increased. In Version 9.5, DB2NTNOCACHE is deprecated
and might be removed in a future release. The difference between
DB2NTNOCACHE and using the NO FILE SYSTEM CACHING clause is
the ability to disable caching for selective table spaces. Starting in Version
9.5, since the NO FILE SYSTEM CACHING is used as the default, unless
FILE SYSTEM CACHING is specified explicitly, there is no need to set this
registry variable to disable file system caching across the entire instance if
the instance includes only newly created table spaces.

Performance considerations
Non-buffered I/O is essentially used for performance improvements. In
some cases, however, performance degradation might be due to, but is not
limited to, a combination of a small buffer pool size and a small file system
cache. Suggestions for improving performance include:
v If self-tuning memory manager is not enabled, enable it and set the

buffer pool size to automatic using ALTER BUFFERPOOL <name> SIZE
AUTOMATIC. This allows the database manager to self-tune the buffer pool
size.

v If self-tuning memory manager is not to be enabled, increase the buffer
pool size in increments of 10 or 20 percent until performance is
improved.

v If self-tuning memory manager is not to be enabled, alter the table space
to use “FILE SYSTEM CACHING”. This essentially disables the
non-buffered I/O and reverts back to buffered I/O for container access.

Performance tuning should be tested in a controlled environment before
implementing it on the production system.

When choosing to use file system files versus devices for table space containers,
you should consider file system caching, which is performed as follows:
v For DMS file containers (and all SMS containers), the operating system might

cache pages in the file system cache (unless the table space is defined with NO
FILESYSTEM CACHING).

v For DMS device container table spaces, the operating system does not cache
pages in the file system cache.

Setting the current instance environment variables

About this task

When you run commands to start or stop an instance’s database manager, DB2
applies the command to the current instance. DB2 determines the current instance
as follows:
v If the DB2INSTANCE environment variable is set for the current session, its

value is the current instance. To set the DB2INSTANCE, enter:
set db2instance=<new_instance_name>

v If DB2INSTANCE is not set for the current session, the DB2 database manager
uses the setting for the DB2INSTANCE environment variable from the system
environment variables. On Windows, system environment variables are set in
the System Environment registry.

Appendix A. Related topics (linked to from topics in this book) 1063

v If DB2INSTANCE is not set at all, the DB2 database manager uses the registry
variable, DB2INSTDEF.
To set the DB2INSTDEF registry variable at the global level of the registry,
enter:
db2set db2instdef=<new_instance_name> -g

To determine which instance applies to the current session, enter:
db2 get instance

System environment variables
DB2_ALTERNATE_GROUP_LOOKUP

v Operating system: AIX
v Default: NULL, Values: NULL or GETGRSET
v This variable allows DB2 database systems to obtain group information

from an alternative source provided by the operating system. On AIX,
the function getgrset is used. This provides the ability to obtain groups
from somewhere other than local files via Loadable Authentication
Modules.

DB2_CLP_EDITOR
See DB2_CLP_EDITOR in “Command-line variables” for details.

DB2_CLP_HISTSIZE
See DB2_CLP_HISTSIZE in “Command-line variables” for details.

DB2CONNECT_ENABLE_EURO_CODEPAGE

v Operating system: All
v Default:NO, Values: YES or NO
v Set this variable to YES on all DB2 Connect clients and servers that

connect to a DB2 for z/OS server or a DB2 for IBM i server where euro
support is required. If you set this variable to YES, the current
application code page is mapped to the equivalent coded character set
ID (CCSID) that explicitly indicates support for the euro sign. As a
result, DB2 Connect connects to the DB2 for z/OS server or DB2 for IBM
i server by using a CCSID that is a superset of the CCSID of the current
application code and that also supports the euro sign. For example, if
the client is using code page that maps to CCSID 1252, the client
connects by using CCSID 5348.

DB2CONNECT_IN_APP_PROCESS

v Operating system: All
v Default: YES, Values: YES or NO
v When you set this variable to NO, local DB2 Connect clients on a DB2

Enterprise Server Edition machine are forced to run within an agent.
Some advantages of running within an agent are that local clients can be
monitored and that they can use SYSPLEX support.

DB2_COPY_NAME

v Operating system: Windows
v Default: The name of the default copy of DB2 installed on your machine.

Values: the name of a copy of DB2 installed on your machine. The name
can be up to 128 characters long.

v The DB2_COPY_NAME variable stores the name of the copy of DB2
currently in use. If you have multiple DB2 copies installed on your

1064 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

machine, you cannot use DB2_COPY_NAME to switch to a different
copy of DB2, you must run the command INSTALLPATH\bin\
db2envar.bat to change the copy currently in use, where INSTALLPATH
is the location where the DB2 copy is installed.

DB2DBMSADDR

v Operating system: Linux on x86 and Linux on zSeries® (31-bit)
v Default: NULL, Values: virtual addresses in the range 0x09000000 to

0xB0000000 in increments of 0x10000
v The DB2DBMSADDR registry variable specifies the default database

shared memory address in hexadecimal format.

Note: An incorrect address can cause severe issues with the DB2
database system, ranging from an inability to start a DB2 instance, to an
ability to connect to the database. An incorrect address is one that
collides with an area in memory that is already in use, or is predestined
to be used for something else. To address this problem, reset the
DB2DBMSADDR registry variable to NULL by using the following
command:
db2set DB2DBMSADDR=

This variable can be used to fine tune the address space layout of DB2
processes. This variable changes the location of the instance shared
memory from its current location at virtual address 0x10000000 to the
new value.

DB2_DIAGPATH

v Operating system: All
v Default: The default value is the instance db2dump directory on UNIX

and Linux operating systems, and the instance db2 directory on
Windows operating systems.

v This parameter applies to ODBC and DB2 CLI applications only.
This parameter allows you to specify the fully qualified path for DB2
diagnostic information. This directory could possibly contain dump files,
trap files, an error log, a notification file, and an alert log file, depending
on your platform.
Setting this environment variable has the same effect for ODBC and CLI
applications in the scope of that environment as setting the DB2
database manager configuration parameter diagpath, and as setting the
CLI/ODBC configuration keyword DiagPath.

DB2DOMAINLIST

v Operating system: All
v Default: NULL, Values: A list of Windows domain names separated by

commas (“,”).
v This variable defines one or more Windows domains. The list, which is

maintained on the server, defines the domains that the requesting user
ID is authenticated against. Only users belonging to these domains have
their connection or attachment requests accepted.
This variable is effective only when CLIENT authentication is set in the
database manager configuration. It is needed if a single sign-on from a
Windows desktop is required in a Windows domain environment.
DB2 servers versions 7.1 or later support DB2DOMAINLIST, but only
in a pure Windows domain environment. Starting with Version 8 FixPak

Appendix A. Related topics (linked to from topics in this book) 1065

15 and Version 9.1 Fix Pack 3, DB2DOMAINLIST is supported if either
the client or the server is running in a Windows environment.

DB2ENVLIST

v Operating system: UNIX
v Default: NULL
v This variable lists specific variable names for either stored procedures or

user-defined functions. By default, the db2start command filters out all
user environment variables except those prefixed with “DB2” or “db2”.
If specific environment variables must be passed to either stored
procedures or user-defined functions, you can list the variable names in
the DB2ENVLIST environment variable. Separate each variable name by
one or more spaces.

DB2INSTANCE

v Operating system: All
v Default: DB2INSTDEF on Windows 32-bit operating systems.
v This environment variable specifies the instance that is active by default.

On UNIX, users must specify a value for DB2INSTANCE.

Note: You cannot use the db2set command to update this registry
variable. For more information, see “Setting the current instance
environment variables” on page 1063 and
com.ibm.db2.luw.admin.regvars.doc/doc/t0004957.dita.

DB2INSTPROF

v Operating system: Windows
v Default: Documents and Settings\All Users\Application

Data\IBM\DB2\Copy Name (Windows XP, Windows 2003),
ProgramData\IBM\DB2\Copy Name (Windows Vista)

v This environment variable specifies the location of the instance directory
on Windows operating systems. Beginning with version 9.5, the instance
directory (and other user data files) cannot be under the sqllib
directory.

DB2LDAPSecurityConfig

v Operating system: All
v Default: NULL, Values: valid name and path to the IBM LDAP security

plug-in configuration file
v This variable is used to specify the location of the IBM LDAP security

plug-in configuration file. If the variable is not set, the IBM LDAP
security plug-in configuration file is named IBMLDAPSecurity.ini and is
in one of the following locations:
– On Linux and UNIX operating systems: INSTHOME/sqllib/cfg/
– On Windows operating systems: %DB2PATH%\cfg\
On Windows operating systems, this variable should be set in the global
system environment to ensure it is picked up by the DB2 service.

DB2LIBPATH

v Operating system: UNIX
v Default: NULL
v DB2 constructs its own shared library path. If you want to add a PATH

into the engine’s library path (for example, on AIX, a user-defined
function requires a specific entry in LIBPATH), you must set

1066 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

|
|
|
|

DB2LIBPATH. The actual value of DB2LIBPATH is appended to the
end of the DB2 constructed shared library path.

DB2LOGINRESTRICTIONS

v Operating system: AIX
v Default: LOCAL, Values: LOCAL, REMOTE, SU, NONE
v This registry variable allows you to use an AIX operating system API

called loginrestrictions(). This API determines whether a user is allowed
to access the system. By calling this API, DB2 database security is able to
enforce the login restrictions that are specified by the operating system.
There are different values that can be submitted to this API when using
this registry variable. The values are:
– REMOTE

DB2 only enforces login restrictions to verify that the account can be
used for remote logins through the rlogind or telnetd programs.

– SU
DB2 Version 9.1 only enforces su restrictions to verify that the su
command is permitted, and that the current process has a group ID
that can invoke the su command to switch to the account.

– NONE
DB2 does not enforce any login restrictions.

– LOCAL (or the variable is not set)
DB2 only enforces login restrictions to verify that local logins are
permitted for this account. This is the normal behavior when logging
in.

No matter which one of these options you set, user accounts or IDs that
have the specified privileges are able to use DB2 successfully both
locally on the server and from remote clients. For a description of the
loginrestrictions() API, refer to AIX documentation.

DB2NODE

v Operating system: All
v Default: NULL, Values: 1 to 999
v Used to specify the target logical node of a database partition server that

you want to attach to or connect to. If this variable is not set, the target
logical node defaults to the logical node which is defined with port 0 on
the machine. In a partitioned database environment, the connection
settings could have an impact on acquiring trusted connections. For
example, if the DB2NODE variable is set to a node such that the
establishment of a connection on that node requires going through an
intermediate node (a hop node), it is the IP address of that intermediate
node and the communication protocol used to communicate between the
hop node and the connection node that are considered when evaluating
this connection in order to determine whether or not it can be marked as
a trusted connection. In other words, it is not the original node from
which the connection was initiated that is considered. Rather, it is the
hop node that is considered.

Note: You cannot use the db2set command to update this registry
variable. For more information, see com.ibm.db2.luw.admin.regvars.doc/
doc/t0004957.dita.

DB2OPTIONS

Appendix A. Related topics (linked to from topics in this book) 1067

v Operating system: All
v Default: NULL
v Used to set the command line processor options.

DB2_PARALLEL_IO

v Operating system: All
v Default: NULL, Values: TablespaceID:[n],... – a comma-separated list of

defined table spaces (identified by their numeric table space ID). If the
prefetch size of a table space is AUTOMATIC, you can indicate to the
DB2 database manager the number of disks per container for that table
space by specifying the table space ID, followed by a colon, followed by
the number of disks per container, n. If n is not specified, the default is
6.
You can replace TablespaceID with an asterisk (*) to specify all table
spaces. For example, if DB2_PARALLEL_IO=*, all table spaces use six as
the number of disks per container. If you specify both an asterisk (*) and
a table space ID, the table space ID setting takes precedence. For
example, if DB2_PARALLEL_IO =*,1:3, all table spaces use six as the
number of disks per container, except for table space 1, which uses three.

v This registry variable is used to change the way DB2 calculates the I/O
parallelism of a table space. When I/O parallelism is enabled (either
implicitly, by the use of multiple containers, or explicitly, by setting
DB2_PARALLEL_IO), it is achieved by issuing the correct number of
prefetch requests. Each prefetch request is a request for an extent of
pages. For example, a table space has two containers and the prefetch
size is four times the extent size. If the registry variable is set, a prefetch
request for this table space will be broken into four requests (one extent
per request) with a possibility of four prefetchers servicing the requests
in parallel.
You might want to set the registry variable if the individual containers
in the table space are striped across multiple physical disks or if the
container in a table space is created on a single RAID device that is
composed of more than one physical disk.
If this registry variable is not set, the degree of parallelism of any table
space is the number of containers of the table space. For example, if
DB2_PARALLEL_IO is set to NULL and a table space has four
containers, four extent-sized prefetch requests are issued; or if a
tablespace has two containers and the prefetch size is four times the
extent size, the prefetch request for this table space will be broken into
two requests (each request will be for two extents).
If this registry variable is set, and the prefetch size of the table is not
AUTOMATIC, the degree of parallelism of the table space is the prefetch
size divided by the extent size. For example, if DB2_PARALLEL_IO is
set for a table space that has a prefetch size of 160 and an extent size of
32 pages, five extent-sized prefetch requests are issued.
If this registry variable is set, and the prefetch size of the table space is
AUTOMATIC, DB2 automatically calculates the prefetch size of a table
space. The following table summarizes the different options available
and how parallelism is calculated for each situation:

1068 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

|
|
|
|

Table 284. How Parallelism is Calculated

Prefetch size of table space DB2_PARALLEL_IO Setting
Parallelism is equal
to:

AUTOMATIC Not set Number of containers

AUTOMATIC Table space ID Number of containers
* 6

AUTOMATIC Table space ID:n Number of containers
* n

Not AUTOMATIC Not set Number of containers

Not AUTOMATIC Table space ID Prefetch size/extent
size

Not AUTOMATIC Table space ID:n Prefetch size/extent
size

Disk contention might result using this variable in some scenarios. For
example, if a table space has two containers and each of the two
containers have each a single disk dedicated to it, setting the registry
variable might result in contention on those disks because the two
prefetchers will be accessing each of the two disks at once. However, if
each of the two containers was striped across multiple disks, setting the
registry variable would potentially allow access to four different disks at
once.
To activate changes to this registry variable, issue a db2stop command
and then enter a db2start command.

DB2PATH

v Operating system: Windows
v Default: Varies by operating system
v This environment variable is used to specify the directory where the

product is installed on Windows 32-bit operating systems.

DB2_PMAP_COMPATIBILITY

v Operating system: All
v Default: ON, Values: ON or OFF
v This variable allows users to continue using the sqlugtpi and sqlugrpn

APIs to return, respectively, the distribution information for a table and
the database partition number and database partition server number for
a row. The default setting, ON, indicates that the distribution map size
remains 4 096 entries (the pre-Version 9.7 behavior). When this variable
is set to OFF, the distribution map size for new or upgraded databases is
increased to 32 768 entries (the Version 9.7 behavior). If you use the 32K
distribution map, you need to use the new db2GetDistMap and
db2GetRowPartNum APIs.

DB2PROCESSORS

v Operating system: Windows
v Default: NULL, Values: 0–n-1 (where n= the number of processors)
v This variable sets the process affinity mask for a particular db2syscs

process. In environments running multiple logical nodes, this variable is
used to associate a logical node to a processor or set of processors.
When specified, DB2 issues the SetProcessAffinityMask() api. If
unspecified, the db2syscs process is associated with all processors on the
server.

Appendix A. Related topics (linked to from topics in this book) 1069

||

||
|
|

|||

|||
|

|||
|

|||

|||
|

|||
|
|

|

DB2RCMD_LEGACY_MODE

v Operating system: Windows,
v Default: NULL, Values: YES, ON, TRUE, or 1, or NO, OFF, FALSE, or 0
v This variable allows users to enable or disable the DB2 Remote

Command Service’s enhanced security. To run the DB2 Remote
Command Service in a secure manner, set DB2RCMD_LEGACY_MODE
to NO, OFF, FALSE, 0, or NULL. To run in legacy mode (without
enhanced security), set DB2RCMD_LEGACY_MODE to YES, ON,
TRUE, or 1. The secure mode is only available if your domain controller
is running Windows 2000 or later.

Note: If DB2RCMD_LEGACY_MODE is set to YES, ON, TRUE, or 1,
all requests sent to the DB2 Remote Command Service are processed
under the context of the requestor. To facilitate this, you must allow
either or both the machine and service logon account to impersonate the
client by enabling the machine and service logon accounts at the domain
controller.

Note: If DB2RCMD_LEGACY_MODE is set to NO, OFF, FALSE, or 0,
you must have SYSADM authority in order to have the DB2 Remote
Command Service execute commands on your behalf.

DB2RESILIENCE

v Operating system: All
v Default: ON, Values: ON (TRUE or 1), or OFF (FALSE or 0)
v This registry variable can be used to control whether physical read

errors are tolerated, and activates extended trap recovery. The default
behavior is to tolerate read errors and activate extended trap recovery.
To revert to the behavior of previous releases and force the database
manager to shutdown the instance, set the registry variable to OFF. This
registry variable does not affect the existing storage key support.

DB2SYSTEM

v Operating system: Windows and UNIX
v Default: NULL
v Specifies the name that is used by your users and database

administrators to identify the DB2 database server system. If possible,
this name should be unique within your network.
This name is displayed in the system level of the Control Center’s object
tree to aid administrators in the identification of server systems that can
be administered from the Control Center.
When using the Search the Network function of the Configuration
Assistant, DB2 discovery returns this name and it is displayed at the
system level in the resulting object tree. This name aids users in
identifying the system that contains the database they wish to access. A
value for DB2SYSTEM is set at installation time as follows:
– On Windows the setup program sets it equal to the computer name

specified for the Windows system.
– On UNIX systems, it is set equal to the UNIX system’s TCP/IP

hostname.

DB2_UPDDBCFG_SINGLE_DBPARTITION

v Operating system: All
v Default: Not set, Values: 0/FALSE/NO, 1/TRUE/YES

1070 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

v When set to 1, TRUE, or, YES, this registry variable allows you to specify
that any updates and resets to your database affect only a specific
partition. If the variable is not set, updates and requests follow the
version 9.5 behavior.

v Beginning with version 9.5, updates or changes to a database
configuration act across all database partitions, when you do not specify
a partition clause. DB2_UPDDBCFG_SINGLE_DBPARTITION enables
you to revert to the behavior of previous versions of DB2, in which
updates to a database configuration apply only to the local database
partition or the database partition that is set by the DB2NODE registry
variable. This allows for backward compatibility support for any existing
command scripts or applications that require this behavior.

Note: This variable does not apply to update or reset requests made by
calling ADMIN_CMD routines.

DB2_USE_PAGE_CONTAINER_TAG

v Operating system: All
v Default:NULL, Values: ON, NULL
v By default, DB2 stores a container tag in the first extent of each DMS

container, whether it is a file or a device. The container tag is the
metadata for the container. Before DB2 Version 8.1, the container tag was
stored in a single page, and it thus required less space in the container.
To continue to store the container tag in a single page, set
DB2_USE_PAGE_CONTAINER_TAG to ON.
However, if you set this registry variable to ON when you use RAID
devices for containers, I/O performance might degrade. Because for
RAID devices you create table spaces with an extent size equal to or a
multiple of the RAID stripe size, setting the
DB2_USE_PAGE_CONTAINER_TAG to ON causes the extents not to
line up with the RAID stripes. As a result, an I/O request might need to
access more physical disks than would be optimal. Users are strongly
advised against enabling this registry variable unless you have very
tight space constraints, or you require behavior consistent with
pre-Version 8 databases.
To activate changes to this registry variable, issue a db2stop command
and then enter a db2start command.

DB2_WORKLOAD

v Operating system: All
v Default: Not set, Values: 1C, CM, COGNOS_CS, FILENET_CM,

MAXIMO, MDM, SAP, TPM, WAS, WC, or WP
v Each value for DB2_WORKLOAD represents a specific grouping of

several registry variables with predefined settings.
v These are the valid values:

1C Use this setting when you want to configure a set of registry
variables in your database for 1C applications.

CM Use this setting when you want to configure a set of registry
variables in your database for IBM Content Manager.

COGNOS_CS
Use this setting when you want to configure a set of registry
variables in your database for Cognos® Content Server.

Appendix A. Related topics (linked to from topics in this book) 1071

FILENET_CM
Use this setting when you want to configure a set of registry
variables in your database for Filenet Content Manager.

MAXIMO
Use this setting when you want to configure a set of registry
variables in your database for Maximo®.

MDM Use this setting when you want to configure a set of registry
variables in your database for Master Data Management.

SAP Use this setting when want to configure a set of registry
variables in your database for the SAP environment.

When you have set DB2_WORKLOAD=SAP, the user table
space SYSTOOLSPACE and the user temporary table space
SYSTOOLSTMPSPACE are not automatically created. These table
spaces are used for tables created automatically by the following
wizards, utilities, or functions:
– Automatic maintenance
– Design Advisor
– Control Center database information panel
– SYSINSTALLOBJECTS stored procedure, if the table space

input parameter is not specified
– GET_DBSIZE_INFO stored procedure

Without the SYSTOOLSPACE and SYSTOOLSTMPSPACE table
spaces, you cannot use these wizards, utilities, or functions.

To be able to use these wizards, utilities, or functions, do either
of the following:
– Manually create the SYSTOOLSPACE table space to hold the

objects that the tools need (in a partitioned database
environment, create this table space on the catalog partition).
For example:
CREATE REGULAR TABLESPACE SYSTOOLSPACE
IN IBMCATGROUP
MANAGED BY SYSTEM
USING ('SYSTOOLSPACE')

– Specifying a valid table space, call the SYSINSTALLOBJECTS
stored procedure to create the objects for the tools, and
specify the identifier for the particular tool.
SYSINSTALLOBJECTS will create a table space for you. If you
do not want to use SYSTOOLSSPACE for the objects, specify a
different user-defined table space.

After completing at least one of these choices, create the
SYSTOOLSTMPSPACE temporary table space (also on the
catalog partition, if you’re working in a partitioned database
environment). For example:
CREATE USER TEMPORARY TABLESPACE SYSTOOLSTMPSPACE
IN IBMCATGROUP
MANAGED BY SYSTEM
USING ('SYSTOOLSTMPSPACE')

Once the table space SYSTOOLSPACE and the temporary table
space SYSTOOLSTMPSPACE are created, you can use the
wizards, utilities, or functions mentioned earlier.

1072 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

TPM Use this setting when want to configure a set of registry
variables in your database for the Tivoli Provisioning Manager.

WAS Use this setting when you want to configure a set of registry
variables in your database for WebSphere Application Server.

WC Use this setting when you want to configure a set of registry
variables in your database for WebSphere Commerce.

WP Use this setting when you want to configure a set of registry
variables in your database for WebSphere Portal.

General registry variables
DB2ACCOUNT

v Operating system: All
v Default: NULL
v This variable defines the accounting string that is sent to the remote

host. Refer to the DB2 Connect User’s Guide for details.

DB2BIDI

v Operating system: All
v Default: NO, Values: YES or NO
v This variable enables bidirectional support and the DB2CODEPAGE

variable is used to declare the code page to be used.

DB2_CAPTURE_LOCKTIMEOUT

v Operating system: All
v Default: NULL, Values: ON or NULL
v This variable specifies to log descriptive information about lock

timeouts at the time that they occur. The logged information identifies:
the key applications involved in the lock contention that resulted in the
lock timeout, the details about what these applications were running at
the time of the lock timeout, and the details about the lock causing the
contention. Information is captured for both the lock requestor (the
application that received the lock timeout error) and the current lock
owner. A text report is written and stored in a file for each lock timeout.
The files are created using the following naming convention:
db2locktimeout.par.AGENTID.yyyy-mm-dd-hh-mm-ss, where par is the
database partition number; AGENTID is the Agent ID;
yyyy-mm-dd-hh-mm-ss is the timestamp consisting of the year, month,
day, hour, minute and second. In non-partitioned database
environments, par is set to 0.
The location of the file is based on the value set in the diagpath
database configuration parameter. If diagpath is not set, then the file is
located in one of the following directories:
– In Windows environments:

- If you do not set the DB2INSTPROF environment variable,
information is written to x:\SQLLIB\DB2INSTANCE, where x is the
drive reference, SQLLIB is the directory that you specified for the
DB2PATH registry variable, and DB2INSTANCE is the name of the
instance owner.

- If you set the DB2INSTPROF environment variable, information is
written to x:\DB2INSTPROF\DB2INSTANCE, where x is the drive

Appendix A. Related topics (linked to from topics in this book) 1073

reference, DB2INSTPROF is the name of the instance profile
directory, and DB2INSTANCE is the name of the instance owner.

– In Linux and UNIX environments: information is written to
INSTHOME/sqllib/db2dump, where INSTHOME is the home directory of
the instance.

Delete lock timeout report files when you no longer need them. Because
the report files are in the same location as other diagnostics logs, the
DB2 system could shutdown if the directory is allowed to get full. If you
need to keep some lock timeout report files, move them to a directory or
folder different than where the DB2 logs are stored.

Important: This variable is deprecated and might be removed in a future
release because there are new methods to collect lock timeout events using
the CREATE EVENT MONITOR FOR LOCKING statement.

DB2CODEPAGE

v Operating system: All
v Default: derived from the language ID, as specified by the operating

system.
v This variable specifies the code page of the data presented to DB2 for

database client application. The user should not set DB2CODEPAGE
unless explicitly stated in DB2 documents, or asked to do so by DB2
service. Setting DB2CODEPAGE to a value not supported by the
operating system can produce unexpected results. Normally, you do not
need to set DB2CODEPAGE because DB2 automatically derives the
code page information from the operating system.

Note: Because Windows does not report a Unicode code page (in the
Windows regional settings) instead of the ANSII code page, a Windows
application will not behave as a Unicode client. To override this
behavior, set the DB2CODEPAGE registry variable to 1208 (for the
Unicode code page) to cause the application to behave as a Unicode
application.

DB2_COLLECT_TS_REC_INFO

v Operating system: All
v Default: ON, Values: ON or OFF
v This variable specifies whether DB2 will process all log files when

rolling forward a table space, regardless of whether the log files contain
log records that affect the table space. To skip the log files known not to
contain any log records affecting the table space, set this variable to ON.
DB2_COLLECT_TS_REC_INFO must be set before the log files are
created and used so that the information required for skipping log files
is collected.

DB2_CONNRETRIES_INTERVAL

v Operating system: All
v Default: Not set, Values: an integer number of seconds
v This variable specifies the sleep time between consecutive connection

retries, in seconds, for the automatic client reroute feature. You can use
this variable in conjunction with DB2_MAX_CLIENT CONNRETRIES
to configure the retry behavior for automatic client reroute.
If DB2_MAX_CLIENT_CONNRETRIES is set, but
DB2_CONNRETRIES_INTERVAL is not,

1074 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

DB2_CONNRETRIES_INTERVAL defaults to 30. If
DB2_MAX_CLIENT_CONNRETRIES is not set, but
DB2_CONNRETRIES_INTERVAL is set,
DB2_MAX_CLIENT_CONNRETRIES defaults to 10. If neither
DB2_MAX_CLIENT_CONNRETRIES nor
DB2_CONNRETRIES_INTERVAL is set, the automatic client reroute
feature reverts to its default behavior of retrying the connection to a
database repeatedly for up to 10 minutes.

DB2CONSOLECP

v Operating system: Windows
v Default: NULL, Values: all valid code page values
v Specifies the code page for displaying DB2 message text. When

specified, this value overrides the operating system code page setting.

DB2COUNTRY

v Operating system: Windows
v Default: NULL, Values: all valid numeric country, territory, or region

codes
v This variable specifies the country, territory, or region code of the client

application. When specified, this value overrides the operating system
setting.

Note: DB2COUNTRY is deprecated and might be removed in a future
release. Instead, use DB2TERRITORY, which accepts the same values as
DB2COUNTRY

DB2DBDFT

v Operating system: All
v Default: NULL
v This variable specifies the database alias name of the database to be

used for implicit connects. If an application has no database connection
but SQL or XQuery statements are issued, an implicit connect will be
made if the DB2DBDFT environment variable has been defined with a
default database.

DB2DBMSADDR

v Operating system: Windows 32-bit
v Default: 0x20000000, Values: 0x20000000 to 0xB0000000 in increments of

0x10000
v This variable specifies the default database manager shared memory

address in hexadecimal format. If db2start fails due to a shared memory
address collision, this registry variable can be modified to force the
database manager instance to allocate its shared memory at a different
address.

DB2DISCOVERYTIME

v Operating system: Windows
v Default: 40 seconds, Minimum: 20 seconds
v This variable specifies the amount of time that SEARCH discovery will

search for DB2 systems.

DB2_EXPRESSION_RULES

v Operating system: All

Appendix A. Related topics (linked to from topics in this book) 1075

v Default: Empty, Values: RAISE_ERROR_PERMIT_SKIP or
RAISE_ERROR_PERMIT_DROP

v The settings for the DB2_EXPRESSION_RULES registry variable control
how the DB2 Optimizer determines the access plan for queries which
involve a RAISE_ERROR function. The default behaviour of the
RAISE_ERROR function is that no filtering may be pushed beyond the
expression containing this function. This can result in no predicates
being applied during the table accesses which can lead to excessive
computation of expressions, excessive locking and poor query
performance.
In certain cases this behaviour is too strict, depending on the particular
business requirements of the application, it may not matter if predicates
and joins are applied before the application of RAISE_ERROR. For
example in the context of a row level security implementation, there is
typically an expression of the form:
CASE WHEN <conditions for validatin access to this row>

THEN NULL
ELSE RAISE_ERROR(...)

END

The application may only be concerned with validating access to the
rows which are selected by the query and not in validating access to
every row in the table. Thus predicates could be applied in the base
table access and the expression containing the RAISE_ERROR only needs
to executed after all the filtering is performed. In this case a value of
DB2_EXPRESSION_RULES=RAISE_ERROR_PERMIT_SKIP may be
appropriate.
Another alternative is in the context of COLUMN LEVEL security. In
this case there are typically expressions of the form:
CASE WHEN <conditions for validating access to this row and column>

THEN <table.column>
ELSE RAISE_ERROR(...)

END

In this case the application may only want errors to be raised if the user
attempts to receive the data for a particular row and column contains a
value that the user is not allowed to retrieve. In this case a setting of
DB2_EXPRESSION_RULES=RAISE_ERROR_PERMIT_DROP will only
cause the expression containing the RAISE_ERROR function to be
evaluated if the particular column is used by a predicate or a column
function, or if it is returned as output from the query.

DB2FFDC

v Operating system: All
v Default: ON, Values: ON, CORE:OFF
v This variable provides the ability to deactivate core file generation. By

default, this registry variable is set to ON. If this registry variable is not
set, or is set to a value other than CORE:OFF, core files may be
generated if the DB2 server abends.
Core files, which are used for problem determination and are created in
the diagpath directory, contain the entire process image of the
terminating DB2 process. Consideration should be given to the available
file system space because core files can be quite large. The size is
dependent on the DB2 configuration and the state of the process at the
time the problem occurs.

1076 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

On Linux operating systems, the default core file size limit is set to 0
(that is, ulimit -c). With this setting, core files are not generated. To
allow core files to be created on Linux operating systems, set the value
to unlimited.

Note: DB2FFDC is being deprecated in version 9.5, and will be removed
in a later release. The new registry variable DB2FODC incorporates
DB2FFDC’s functionality.

DB2FODC

v Operating system: All
v Default: The concatenation of all FODC parameters (see below)

– for Linux and UNIX: ″CORELIMIT=val DUMPCORE=ON
DUMPDIR=diagpath″

– for Windows: ″DUMPCORE=ON DUMPDIR=diagpath″

Note that the parameters are separated by spaces.
v This registry variable controls a set of troubleshooting-related parameters

used in First Occurrence Data Collection (FODC). Use DB2FODC to
control different aspects of data collection in outage situations.
This registry variable is read once, during the DB2 instance startup. To
perform updates to the FODC parameters online, use db2pdcfg tool. Use
the DB2FODC registry variable to sustain the configuration across
reboots. You do not need to specify all of the parameters, nor do you
need to specify them in a particular order. The default value is assigned
to any parameter that is not specified. For example, if you don’t want
the core files dumped, but you do want the other parameters’ default
behaviors, you would issue the command:
db2set DB2FODC="DUMPCORE=OFF"

Parameters:

CORELIMIT

– Operating system: Linux and UNIX
– Default: Current® ulimit setting, Values: 0 to unlimited
– This option specifies the maximum size, in gigabytes, of core

files created. This value overrides the current core file size
limit setting. Consideration should be given to the available
file system space because core files can be quite large. The
size is dependent on the DB2 configuration and the state of
the process at the time the problem occurs.
If CORELIMIT is set, DB2 will use this value override current
user core limit (ulimit) setting to generate the core file.
If CORELIMIT is not set, DB2 will set the core file size to the
value equal to the current ulimit setting. One exception is AIX
where an ulimit setting of ″unlimited″ will be overridden
with a value of 8 GB for DB2 server processes only. If you
require a core dump larger than 8 GB, set ulimit to an
appropriately large value, such as the size of RAM, or set
CORELIMIT with a sufficiently large value.

Note: Any changes to the user core limit or CORELIMIT are
not effective until the next recycling of the DB2 instance.

DUMPCORE

Appendix A. Related topics (linked to from topics in this book) 1077

– Operating system: Linux, Solaris, AIX
– Default: AUTO, Values: AUTO, ON, or OFF
– This option specifies if core file generation is to take place.

Core files, which are used for problem determination and are
created in the diagpath directory, contain the entire process
image of the terminating DB2 process. However, whether or
not an actual core file dump occurs depends on the current
ulimit setting and value of the CORELIMIT parameter. Some
operating systems also have configuration settings for core
dumps, which may dictate the behavior of application core
dumping. The AUTO setting causes a core file to be generated
if a trap cannot be sustained when the DB2RESILIENCE
registry variable is set to ON. The DUMPCORE=ON setting
always generates a core file by overriding the
DB2RESILIENCE registry variable setting.
The recommended method for disabling core file dumps is to
set DUMPCORE to OFF.

DUMPDIR

– Operating system: All
– Default: diagpath directory, or the default diagnostic directory

if diagpath is not defined, Values: path to directory

– This option specifies the absolute path name of the directory
for core file creation. This option may be used for other large
binary dumps that have to be stored outside of FODC
package, not for only core files.

DB2_FORCE_APP_ON_MAX_LOG

v Operating system: All
v Default: TRUE, Values: TRUE or FALSE
v Specifies what happens when the max_log configuration parameter

value is exceeded. If set to TRUE, the application is forced off the
database and the unit of work is rolled back.
If FALSE, the current statement fails. The application can still commit
the work completed by previous statements in the unit of work, or it can
roll back the work completed to undo the unit of work.

Note: This DB2 registry variable affects the ability of the import utility
to recover from log full situations. If DB2_FORCE_APP_ON_MAX_LOG
is set to TRUE and you issue an IMPORT command with the
COMMITCOUNT command option, the import utility will not be able
to perform a commit in order to avoid running out of active log space.
When the import utility encounters an SQL0964C (Transaction Log Full),
it will be forced off the database and the current unit of work will be
rolled back.

DB2GRAPHICUNICODESERVER

v Operating system: All
v Default: OFF, Values: ON or OFF
v This registry variable is used to accommodate existing applications

written to insert graphic data into a Unicode database. Its use is only
needed for applications that specifically send sqldbchar (graphic) data in
Unicode instead of the code page of the client. (sqldbchar is a supported
SQL data type in C and C++ that can hold a single double-byte

1078 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

character.) When set to ON, you are telling the database that graphic
data is coming in Unicode, and the application expects to receive
graphic data in Unicode.

DB2INCLUDE

v Operating system: All
v Default: Current directory
v Specifies a path to be used during the processing of the SQL INCLUDE

text-file statement during DB2 PREP processing. It provides a list of
directories where the INCLUDE file might be found. Refer to
Developing Embedded SQL Applications for descriptions of how
DB2INCLUDE is used in the different precompiled languages.

DB2INSTDEF

v Operating system: Windows
v Default: DB2
v This variable sets the value to be used if DB2INSTANCE is not defined.

DB2INSTOWNER

v Operating system: Windows
v Default: NULL

v The registry variable created in the DB2 profile registry when the
instance is first created. This variable is set to the name of the
instance-owning machine.

DB2_LIC_STAT_SIZE

v Operating system: All
v Default: NULL, Range: 0 to 32767
v This variable determines the maximum size (in MBs) of the file

containing the license statistics for the system. A value of zero turns the
license statistic gathering off. If the variable is not recognized or not
defined, the variable defaults to unlimited. The statistics are displayed
using the License Center.

DB2LOCALE

v Operating system: All
v Default: NO, Values: YES or NO
v This variable specifies whether the default ″C″ locale of a process is

restored to the default ″C″ locale after calling DB2 and whether to
restore the process locale back to the original ’C’ after calling a DB2
function. If the original locale was not ’C’, then this registry variable is
ignored.

DB2_MAX_CLIENT_CONNRETRIES

v Operating system: All
v Default: Not set, Values: an integer number of maximum times to retry

the connection
v This variable specifies the maximum number of connection retries that

the automatic client reroute feature will attempt. You can use this
variable in conjunction with DB2_CONNRETRIES_INTERVAL to
configure the retry behavior for automatic client reroute.
If DB2_MAX_CLIENT_CONNRETRIES is set, but
DB2_CONNRETRIES_INTERVAL is not,
DB2_CONNRETRIES_INTERVAL defaults to 30. If

Appendix A. Related topics (linked to from topics in this book) 1079

DB2_MAX_CLIENT_CONNRETRIESis not set, but
DB2_CONNRETRIES_INTERVAL is set,
DB2_MAX_CLIENT_CONNRETRIES defaults to 10. If neither
DB2_MAX_CLIENT_CONNRETRIES nor
DB2_CONNRETRIES_INTERVAL is set, the automatic client reroute
feature reverts to its default behavior of retrying the connection to a
database repeatedly for up to 10 minutes.

DB2_OBJECT_TABLE_ENTRIES

v Operating system: All
v Default: 0, Values: 0–65532

The actual maximum value possible on your system depends on the
page size and extent size, but it cannot exceed 65532.

v This variable specifies the expected number of objects in a table space. If
you know that a large number of objects (for example, 1000 or more)
will be created in a DMS table space, you should set this registry
variable to the approximate number before creating the table space. This
will reserve contiguous storage for object metadata during table space
creation. Reserving contiguous storage reduces the chance that an online
backup will block operations which update entries in the metadata (for
example, CREATE INDEX, IMPORT REPLACE). It will also make
resizing the table space easier because the metadata will be stored at the
start of the table space.
If the initial size of the table space is not large enough to reserve the
contiguous storage, the table space creation will continue without the
additional space reserved.

DB2_SYSTEM_MONITOR_SETTINGS

v Operating system: All
v The registry variable controls a set of parameters which allow you to

modify the behavior of various aspects of DB2 monitoring. Separate each
parameter by a semicolon, as in the following example:
db2set DB2_SYSTEM_MONITOR_SETTINGS=OLD_CPU_USAGE:TRUE;
DISABLE_CPU_USAGE:TRUE

Every time you set DB2_SYSTEM_MONITOR_SETTINGS, each
parameter must be set explicitly. Any parameter that you do not specify
when setting this variable reverts back to its default value. So in the
following example:
db2set DB2_SYSTEM_MONITOR_SETTINGS=DISABLE_CPU_USAGE:TRUE

Note: Currently, this registry variable only has settings for Linux;
additional settings for other operating systems will be added in future
releases.
OLD_CPU_USAGE will be restored to its default setting.

v Parameters:

OLD_CPU_USAGE

– Operating system: Linux
– Values: TRUE/ON, FALSE/OFF
– Default value on RHEL4 and SLES9: TRUE (Note: a setting of

FALSE for OLD_CPU_USAGE will be ignored–only the old
behavior will be used.)

– Default value on RHEL5, SLES10, and others: FALSE

1080 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

– This parameter controls how the instance obtains CPU usage
times on Linux platforms. If set to TRUE, the older method of
getting CPU usage time is used. This method returns both
system and user CPU usage times, but consumes more CPU
in doing so (that is, it has a higher overhead). If set to FALSE,
the newer method of getting CPU usage is used. This method
returns only the user CPU usage value, but is faster because it
has less overhead.

DISABLE_CPU_USAGE

– Operating system: Linux
– Values: TRUE/ON, FALSE/OFF
– Default value on RHEL4 and SLES9: TRUE
– Default value on RHEL5, SLES10, and others: FALSE
– This parameter allows you to determine whether CPU usage

is read or not. When DISABLE_CPU_USAGE is enabled (set
to TRUE), CPU usage is not read, allowing you to avoid the
overhead that can sometimes occur during the retrieval of
CPU usage.

DB2TERRITORY

v Operating system: All
v Default: derived from the language ID, as specified by the operating

system.
v This variable specifies the region, or territory code of the client

application, which influences date and time formats.

DB2_VIEW_REOPT_VALUES

v Operating system: All
v Default: NO, Values: YES, NO
v This variable enables all users to store the cached values of a

reoptimized SQL or XQuery statement in the EXPLAIN_PREDICATE
table when the statement is explained. When this variable is set to NO,
only DBADM is allowed to save these values in the
EXPLAIN_PREDICATE table.

Administration configuration topics

authentication - Authentication type
This parameter specifies and determines how and where authentication of a user
takes place.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Appendix A. Related topics (linked to from topics in this book) 1081

Default [range]
SERVER [CLIENT; SERVER; SERVER_ENCRYPT; DATA_ENCRYPT;
DATA_ENCRYPT_CMP; KERBEROS; KRB_SERVER_ENCRYPT;
GSSPLUGIN; GSS_SERVER_ENCRYPT]

If authentication is SERVER, the user ID and password are sent from the client to
the server so that authentication can take place on the server. The value
SERVER_ENCRYPT provides the same behavior as SERVER, except that any user
IDs and passwords sent over the network are encrypted.

A value of DATA_ENCRYPT means the server accepts encrypted SERVER
authentication schemes and the encryption of user data. The authentication works
exactly the same way as SERVER_ENCRYPT.

The following user data are encrypted when using this authentication type:
v SQL statements
v SQL program variable data
v Output data from the server processing an SQL statement and including a

description of the data
v Some or all of the answer set data resulting from a query
v Large object (LOB) streaming
v SQLDA descriptors

A value of DATA_ENCRYPT_CMP means the server accepts encrypted SERVER
authentication schemes and the encryption of user data. In addition, this
authentication type allows compatibility with earlier products that do not support
DATA_ENCRYPT authentication type. These products are permitted to connect
with the SERVER_ENCRYPT authentication type and without encrypting user data.
Products supporting the new authentication type must use it. This authentication
type is only valid in the server’s database manager configuration file and is not
valid when used on the CATALOG DATABASE command.

Note: For a standards compliance (defined in the “Standards compliance” topic)
configuration, SERVER is the only supported value.

A value of CLIENT indicates that all authentication takes place at the client. No
authentication needs to be performed at the server.

A value of KERBEROS means that authentication is performed at a Kerberos server
using the Kerberos security protocol for authentication. With an authentication
type of KRB_SERVER_ENCRYPT at the server and clients that support the
Kerberos security system, the effective system authentication type is KERBEROS. If
the clients do not support the Kerberos security system, the system authentication
type is effectively equivalent to SERVER_ENCRYPT.

A value of GSSPLUGIN means that authentication is performed using an external
GSSAPI-based security mechanism. With an authentication type of
GSS_SERVER_ENCRYPT at the server and clients that support the GSSPLUGIN
security mechanism, the effective system authentication type is GSSPLUGIN (that
is, if the clients support one of the server’s plug-ins). If the clients do not support
the GSSPLUGIN security mechanism, the system authentication type is effectively
equivalent to SERVER_ENCRYPT.

1082 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Recommendation: Typically, the default value (SERVER) is adequate for local
clients. If remote clients are connecting to the database server then
SERVER_ENCRYPT is the suggested value to protect the user ID and password.

svcename - TCP/IP service name
This parameter contains the name of the TCP/IP port which a database server will
use to await communications from remote client nodes. This name must be the
reserved for use by the database manager.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default
Null

In order to accept connection requests from a Data Server Runtime Client using
TCP/IP, the database server must be listening on a port designated to that server.
The system administrator for the database server must reserve a port (number n)
and define its associated TCP/IP service name in the services file at the server.

The database server port (number n) and its TCP/IP service name need to be
defined in the services file on the database client.

On Linux and UNIX systems, the services file is located in: /etc/services

The svcename parameter should be set to the service name associated with the main
connection port so that when the database server is started, it can determine on
which port to listen for incoming connection requests.

Appendix A. Related topics (linked to from topics in this book) 1083

1084 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Appendix B. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:
v DB2 Information Center

– Topics (Task, concept and reference topics)
– Help for DB2 tools
– Sample programs
– Tutorials

v DB2 books
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– printed books

v Command line help
– Command help
– Message help

Note: The DB2 Information Center topics are updated more frequently than either
the PDF or the hardcopy books. To get the most current information, install the
documentation updates as they become available, or refer to the DB2 Information
Center at ibm.com.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for
how to improve the DB2 documentation, send an e-mail to db2docs@ca.ibm.com.
The DB2 documentation team reads all of your feedback, but cannot respond to
you directly. Provide specific examples wherever possible so that we can better
understand your concerns. If you are providing feedback on a specific topic or
help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a
DB2 technical issue that the documentation does not resolve, contact your local
IBM service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications
Center at www.ibm.com/shop/publications/order. English and translated DB2
Version 9.7 manuals in PDF format can be downloaded from www.ibm.com/
support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be
available in your country or region.

© Copyright IBM Corp. 1993, 2009 1085

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF
or the hard-copy books.

Table 285. DB2 technical information

Name Form Number Available in print Last updated

Administrative API
Reference

SC27-2435-00 Yes August, 2009

Administrative Routines
and Views

SC27-2436-00 No August, 2009

Call Level Interface
Guide and Reference,
Volume 1

SC27-2437-00 Yes August, 2009

Call Level Interface
Guide and Reference,
Volume 2

SC27-2438-00 Yes August, 2009

Command Reference SC27-2439-00 Yes August, 2009

Data Movement Utilities
Guide and Reference

SC27-2440-00 Yes August, 2009

Data Recovery and High
Availability Guide and
Reference

SC27-2441-00 Yes August, 2009

Database Administration
Concepts and
Configuration Reference

SC27-2442-00 Yes August, 2009

Database Monitoring
Guide and Reference

SC27-2458-00 Yes August, 2009

Database Security Guide SC27-2443-00 Yes August, 2009

DB2 Text Search Guide SC27-2459-00 Yes August, 2009

Developing ADO.NET
and OLE DB
Applications

SC27-2444-00 Yes August, 2009

Developing Embedded
SQL Applications

SC27-2445-00 Yes August, 2009

Developing Java
Applications

SC27-2446-00 Yes August, 2009

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-2447-00 No August, 2009

Developing User-defined
Routines (SQL and
External)

SC27-2448-00 Yes August, 2009

Getting Started with
Database Application
Development

GI11-9410-00 Yes August, 2009

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI11-9411-00 Yes August, 2009

1086 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Table 285. DB2 technical information (continued)

Name Form Number Available in print Last updated

Globalization Guide SC27-2449-00 Yes August, 2009

Installing DB2 Servers GC27-2455-00 Yes August, 2009

Installing IBM Data
Server Clients

GC27-2454-00 No August, 2009

Message Reference
Volume 1

SC27-2450-00 No August, 2009

Message Reference
Volume 2

SC27-2451-00 No August, 2009

Net Search Extender
Administration and
User’s Guide

SC27-2469-00 No August, 2009

Partitioning and
Clustering Guide

SC27-2453-00 Yes August, 2009

pureXML Guide SC27-2465-00 Yes August, 2009

Query Patroller
Administration and
User’s Guide

SC27-2467-00 No August, 2009

Spatial Extender and
Geodetic Data
Management Feature
User’s Guide and
Reference

SC27-2468-00 No August, 2009

SQL Procedural
Languages: Application
Enablement and Support

SC27-2470-00 Yes August, 2009

SQL Reference, Volume 1 SC27-2456-00 Yes August, 2009

SQL Reference, Volume 2 SC27-2457-00 Yes August, 2009

Troubleshooting and
Tuning Database
Performance

SC27-2461-00 Yes August, 2009

Upgrading to DB2
Version 9.7

SC27-2452-00 Yes August, 2009

Visual Explain Tutorial SC27-2462-00 No August, 2009

What’s New for DB2
Version 9.7

SC27-2463-00 Yes August, 2009

Workload Manager
Guide and Reference

SC27-2464-00 Yes August, 2009

XQuery Reference SC27-2466-00 No August, 2009

Table 286. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Installing and
Configuring DB2
Connect Personal Edition

SC27-2432-00 Yes August, 2009

Installing and
Configuring DB2
Connect Servers

SC27-2433-00 Yes August, 2009

Appendix B. Overview of the DB2 technical information 1087

Table 286. DB2 Connect-specific technical information (continued)

Name Form Number Available in print Last updated

DB2 Connect User’s
Guide

SC27-2434-00 Yes August, 2009

Table 287. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:
Administration Guide for
Federated Systems

SC19-1020-02 Yes August, 2009

Information Integration:
ASNCLP Program
Reference for Replication
and Event Publishing

SC19-1018-04 Yes August, 2009

Information Integration:
Configuration Guide for
Federated Data Sources

SC19-1034-02 No August, 2009

Information Integration:
SQL Replication Guide
and Reference

SC19-1030-02 Yes August, 2009

Information Integration:
Introduction to
Replication and Event
Publishing

GC19-1028-02 Yes August, 2009

Ordering printed DB2 books

About this task

If you require printed DB2 books, you can buy them online in many but not all
countries or regions. You can always order printed DB2 books from your local IBM
representative. Keep in mind that some softcopy books on the DB2 PDF
Documentation DVD are unavailable in print. For example, neither volume of the
DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF
Documentation DVD can be ordered for a fee from IBM. Depending on where you
are placing your order from, you may be able to order books online, from the IBM
Publications Center. If online ordering is not available in your country or region,
you can always order printed DB2 books from your local IBM representative. Note
that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the
DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r7.

To order printed DB2 books:
v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access
publication ordering information and then follow the ordering instructions for
your location.

1088 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

v To order printed DB2 books from your local IBM representative:
1. Locate the contact information for your local representative from one of the

following Web sites:
– The IBM directory of world wide contacts at www.ibm.com/planetwide
– The IBM Publications Web site at http://www.ibm.com/shop/

publications/order. You will need to select your country, region, or
language to the access appropriate publications home page for your
location. From this page, follow the ″About this site″ link.

2. When you call, specify that you want to order a DB2 publication.
3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical
library in hardcopy or PDF format” on page 1085.

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center
About this task

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

For DB2 Version 9.1 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the DB2 Information Center URL at:
http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Displaying topics in your preferred language in the DB2 Information
Center

About this task

The DB2 Information Center attempts to display topics in the language specified in
your browser preferences. If a topic has not been translated into your preferred
language, the DB2 Information Center displays the topic in English.
v To display topics in your preferred language in the Internet Explorer browser:

Appendix B. Overview of the DB2 technical information 1089

http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...
button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of
languages.
– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the
fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the
Move Up button until the language is first in the list of languages.

3. Clear the browser cache and then refresh the page to display the DB2
Information Center in your preferred language.

v To display topics in your preferred language in a Firefox or Mozilla browser:
1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences
window.

2. Ensure your preferred language is specified as the first entry in the list of
languages.
– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.
– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

Results

On some browser and operating system combinations, you must also change the
regional settings of your operating system to the locale and language of your
choice.

Updating the DB2 Information Center installed on your computer or
intranet server

A locally installed DB2 Information Center must be updated periodically.

Before you begin

Before you begin

A DB2 Version 9.7 Information Center must already be installed. For details, see
the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in
Installing DB2 Servers. All prerequisites and restrictions that applied to installing
the Information Center also apply to updating the Information Center.

About this task

About this task

An existing DB2 Information Center can be updated automatically or manually:
v Automatic updates - updates existing Information Center features and

languages. An additional benefit of automatic updates is that the Information

1090 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Center is unavailable for a minimal period of time during the update. In
addition, automatic updates can be set to run as part of other batch jobs that run
periodically.

v Manual updates - should be used when you want to add features or languages
during the update process. For example, a local Information Center was
originally installed with both English and French languages, and now you want
to also install the German language; a manual update will install German, as
well as, update the existing Information Center features and languages.
However, a manual update requires you to manually stop, update, and restart
the Information Center. The Information Center is unavailable during the entire
update process.

Procedure

This topic details the process for automatic updates. For manual update
instructions, see the “Manually updating the DB2 Information Center installed on
your computer or intranet server” topic.

To automatically update the DB2 Information Center installed on your computer or
intranet server:
1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,
the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the ic-update script:

ic-update

2. On Windows operating systems,
a. Open a command window.
b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2
Information Center\Version 9.7 directory, where <Program Files>
represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the ic-update.bat file:

ic-update.bat

Results

Results

The DB2 Information Center restarts automatically. If updates were available, the
Information Center displays the new and updated topics. If Information Center
updates were not available, a message is added to the log. The log file is located in
doc\eclipse\configuration directory. The log file name is a randomly generated
number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your
computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install
documentation updates from IBM.

Appendix B. Overview of the DB2 technical information 1091

About this task

About this task

Updating your locally-installed DB2 Information Center manually requires that you:
1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone
mode prevents other users on your network from accessing the Information
Center, and allows you to apply updates. The Workstation version of the DB2
Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates
that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center
updates on a machine that is not connected to the internet, mirror the update
site to a local file system using a machine that is connected to the internet and
has the DB2 Information Center installed. If many users on your network will be
installing the documentation updates, you can reduce the time required for
individuals to perform the updates by also mirroring the update site locally
and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.
However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center
on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later
in this section must be run as an administrator. To open a command prompt or
graphical tool with full administrator privileges, right-click the shortcut and then
select Run as administrator.

Procedure

To update the DB2 Information Center installed on your computer or intranet server:
1. Stop the DB2 Information Center.
v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Stop.
v On Linux, enter the following command:

/etc/init.d/db2icdv97 stop

2. Start the Information Center in stand-alone mode.
v On Windows:

a. Open a command window.
b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
Program_Files\IBM\DB2 Information Center\Version 9.7 directory,
where Program_Files represents the location of the Program Files
directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the help_start.bat file:

help_start.bat

v On Linux:

1092 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

a. Navigate to the path where the Information Center is installed. By
default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information
Center.

3. Click the Update button (). (JavaScript™ must be enabled in your browser.)
On the right panel of the Information Center, click Find Updates. A list of
updates for existing documentation displays.

4. To initiate the installation process, check the selections you want to install, then
click Install Updates.

5. After the installation process has completed, click Finish.
6. Stop the stand-alone Information Center:
v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:
help_end.bat

Note: The help_end batch file contains the commands required to safely stop
the processes that were started with the help_start batch file. Do not use
Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run
the help_end script:
help_end

Note: The help_end script contains the commands required to safely stop the
processes that were started with the help_start script. Do not use any other
method to stop the help_start script.

7. Restart the DB2 Information Center.
v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Start.
v On Linux, enter the following command:

/etc/init.d/db2icdv97 start

Results

Results

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials
The DB2 tutorials help you learn about various aspects of DB2 products. Lessons
provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at
http://publib.boulder.ibm.com/infocenter/db2help/.

Appendix B. Overview of the DB2 technical information 1093

http://publib.boulder.ibm.com/infocenter/db2luw/v9

Some lessons use sample data or code. See the tutorial for a description of any
prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML®” in pureXML Guide
Set up a DB2 database to store XML data and to perform basic operations
with the native XML data store.

“Visual Explain” in Visual Explain Tutorial
Analyze, optimize, and tune SQL statements for better performance using
Visual Explain.

DB2 troubleshooting information
A wide variety of troubleshooting and problem determination information is
available to assist you in using DB2 database products.

DB2 documentation
Troubleshooting information can be found in the DB2 Troubleshooting Guide
or the Database fundamentals section of the DB2 Information Center. There
you will find information about how to isolate and identify problems using
DB2 diagnostic tools and utilities, solutions to some of the most common
problems, and other advice on how to solve problems you might encounter
with your DB2 database products.

DB2 Technical Support Web site
Refer to the DB2 Technical Support Web site if you are experiencing
problems and want help finding possible causes and solutions. The
Technical Support site has links to the latest DB2 publications, TechNotes,
Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and
other resources. You can search through this knowledge base to find
possible solutions to your problems.

Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/support/db2_9/

Terms and Conditions
Permissions for the use of these publications is granted subject to the following
terms and conditions.

Personal use: You may reproduce these Publications for your personal, non
commercial use provided that all proprietary notices are preserved. You may not
distribute, display or make derivative work of these Publications, or any portion
thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these Publications, or reproduce, distribute
or display these Publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the Publications or any
information, data, software or other intellectual property contained therein.

1094 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the Publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix B. Overview of the DB2 technical information 1095

1096 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711 Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 1993, 2009 1097

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application

1098 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided ″AS IS″, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel, Intel logo, Intel Inside®, Intel Inside logo, Intel® Centrino®, Intel Centrino

logo, Celeron®, Intel® Xeon®, Intel SpeedStep®, Itanium®, and Pentium® are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

v Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix C. Notices 1099

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

1100 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

Index

A
abnormal termination

restart API 790
restart command 691

access control
authentication 108
column-specific 143
DBADM (database administration)

authority 122
label-based access control

(LBAC) 143
row-specific 143
tables 119
views 119

access control (ACCESSCTRL) authority
description 65
overview 93

access plans
effect on lock granularity 392
effect on locks 411
lock modes for standard tables 399

access tokens 140
ACCESSCTRL (access control) authority

description 65
overview 93
supported 70

action precompile/bind option 462, 744
Activate Database API 899
Add Database Partition API 903
Add Database Partition Server to an

Instance command 520
ADD DBPARTITIONNUM

command 448
administrative views

AUTHORIZATIONIDS 210, 212
OBJECTOWNERS 212
PRIVILEGES 210, 212

AES algorithm
alternate_auth_enc configuration

parameter overview 75
agents

configuration parameters affecting
number of 50

managing 19
worker agent types 17

ALTER privilege
description 100, 102

ALTER TABLE statement
preventing lock-related performance

issues 395
alternate_auth_enc configuration

parameter 108
overview 75

anyorder file type modifier 833
APIs

db2Backup 775
db2CfgGet 784
db2CfgSet 787
db2DatabaseQuiesce 793
db2DatabaseRestart 790
db2DatabaseUnquiesce 794

APIs (continued)
db2Export 796
db2Import 802
db2Inspect 815
db2InstanceQuiesce 822
db2InstanceStart 824
db2InstanceStop 829
db2InstanceUnquiesce 832
db2Load 833
db2Recover 853
db2Reorg 859
db2Restore 867
db2Rollforward 880
db2SetWriteForDB 890
security plug-in 526
sqlabndx 891
sqlaprep 933
sqlarbnd 936
sqlbftpq 894
sqlbmtsq 895
sqlbotcq 896
sqlbstpq 898
sqle_activate_db 899
sqle_deactivate_db 901
sqleaddn 903
sqleatcp 938
sqleatin 940
sqlecadb 905
sqlecrea 910
sqledpan 917
sqledrpd 918
sqledrpn 920
sqledtin 942
sqlefrce 921
sqlemgdb 924
sqlesdeg 925
sqluexpr 796
sqlugrpn 927
sqlugtpi 930
sqluimpr 802
sqluvqdp 931

append mode tables
comparison with other table

types 344
application design

setting collating sequence 910
application process

effect on locks 411
application programming interfaces

(APIs) 775
for users 933

applications
access through database

manager 891
architecture

overview 3
archivepath parameter 294
archiving

audit log 294
Attach and Change Password API 938
Attach API 940

ATTACH command 740
audit data 252
AUDIT events 276
audit facility

actions 249
archive 288
asynchronous record writing 251
audit data in tables

creating tables for audit data 252
loading tables with audit

data 253
audit events table 255
authorities 249
behavior 251
CHECKING access approval

reasons 261
CHECKING access attempted

types 263
checking events table 258
CONTEXT events table 281
error handling 251
ERRORTYPE parameter 251
events 249
EXECUTE events 290
object record types 260
OBJMAINT events table 265
policies 285
privileges 249
record layouts 254
record object types 260
SECMAINT events table 268
SECMAINT privileges or

authorities 272
synchronous record writing 251
SYSADMIN events table 275
tips and techniques 283
VALIDATE events table 280

Audit Facility Administrator Tool
command 502

audit facility record layouts 255
audit logs

archiving 288, 294
customizing location 294
file names 297

audit_buf_sz configuration
parameter 251

AUDIT_LIST_LOGS 298
auditing database activities 249
authentication

definition of 108
description 77
enhancement 75
partitioned database

considerations 78
remote client 114
types

CLIENT 108
KERBEROS 108
KRB_SERVER_ENCRYPT 108
SERVER 108
SERVER_ENCRYPT 108

© Copyright IBM Corp. 1993, 2009 1101

authentication configuration
parameter 1081

AUTHID identifier
restrictions 21

authorities
audit policy 285
overview 59, 81

authority levels
access control (ACCESSCTRL) 65
data access (DATAACCESS) 66
database administration

(DBADM) 96, 98
explain administration

(EXPLAIN) 68
implicit schema

(IMPLICIT_SCHEMA) 98
LOAD 98
removing DBADM from

SYSCTRL 91
security administrator (SECADM) 94
SQL administration (SQLADM) 67
system administration (SYSADM) 90
system control (SYSCTRL) 91
system maintenance (SYSMAINT) 92
system monitor (SYSMON) 92
workload administration

(WLMADM) 68
authorization

implicit 117
model changes 70

authorization IDs
overview 79
SETSESSIONUSER privilege 181

authorization names
create view for privileges

information 212
retrieving for privileges

information 210
retrieving names with DBADM

authority 211
retrieving names with table access

authority 211
retrieving privileges granted to 212

authorizations
description 78
for external routines 103
trusted client 108

automatic features 1059
enabled by default 1059

automatic statistics collection
description 1059

automatic storage
description 1059

B
backup

encryption 124
security risks 124, 179

backup database API
description 775

BACKUP DATABASE command 450
backup utility

authorities and privileges required to
use 432

base tables
comparison with other table

types 344
binarynumerics file type modifier 833
Bind API

sqlabndx 891
BIND command

OWNER option 118
syntax 462

BIND privilege 101
BINDADD authority 93
bindfile precompile option 744
binding

application programs to
databases 891

database utilities 336
defaults 891
errors 484, 910
implicitly created schema 462, 744
rebinding invalid packages 116
routines 103
specifying the isolation level 390

block-structured devices 337
blocking precompile/bind option 462,

744
books

printed
ordering 1088

C
caching

file system for table spaces 1061
call level interface (CLI)

binding to a database 336
capacity

expansion 361
for each environment 38

case sensitivity
commands 426
in naming conventions 29

catalog database API 905
CATALOG DATABASE command

syntax 481
catalog nodes 327
catalog tables

stored on database catalog node 327
CATALOG TCPIP MODE command

enhancement 73
catalog views

ATTRIBUTES 947
AUDITPOLICIES 221, 948
AUDITUSE 222, 950
BUFFERPOOLDBPARTITIONS 950
BUFFERPOOLS 951
CASTFUNCTIONS 951
CHECKS 952
COLAUTH 223
COLCHECKS 953
COLDIST 954, 1050
COLGROUPCOLS 955
COLGROUPDIST 955, 1051
COLGROUPDISTCOUNTS 955, 1052
COLGROUPS 956, 1052
COLIDENTATTRIBUTES 956
COLOPTIONS 957
COLUMNS 957, 1052

catalog views (continued)
COLUSE 962
CONDITIONS 963
CONSTDEP 963
CONTEXTATTRIBUTES 964
CONTEXTS 964
DATAPARTITIONEXPRESSION 964
DATAPARTITIONS 965
DATATYPEDEP 967
DATATYPES 968
DBAUTH 224
DBPARTITIONGROUPDEF 971
DBPARTITIONGROUPS 971
description 209
EVENTMONITORS 972
EVENTS 973
EVENTTABLES 974
FULLHIERARCHIES 975
FUNCMAPOPTIONS 976
FUNCMAPPARMOPTIONS 976
FUNCMAPPINGS 976
HIERARCHIES 977
HISTOGRAMTEMPLATEBINS 978
HISTOGRAMTEMPLATES 978
HISTOGRAMTEMPLATEUSE 978
INDEXAUTH 225
INDEXCOLUSE 979
INDEXDEP 980
INDEXES 981, 1054
INDEXEXPLOITRULES 986
INDEXEXTENSIONDEP 987
INDEXEXTENSIONMETHODS 988
INDEXEXTENSIONPARMS 988
INDEXEXTENSIONS 989
INDEXOPTIONS 990
INDEXPARTITIONS 990
INDEXXMLPATTERNS 993
INVALIDOBJECTS 993
KEYCOLUSE 994
MODULEAUTH 994
MODULEOBJECTS 995
MODULES 996
NAMEMAPPINGS 996
NICKNAMES 997
overview 215, 217
PACKAGEAUTH 226
PACKAGEDEP 226
PACKAGES 1000
PARTITIONMAPS 1004
PASSTHRUAUTH 228
PREDICATESPECS 1005
read-only 215
REFERENCES 1005
ROLEAUTH 228, 1006
ROLES 229, 1006
ROUTINEAUTH 230
ROUTINEDEP 1007
ROUTINEOPTIONS 1008
ROUTINEPARMOPTIONS 1010
ROUTINEPARMS 1010
ROUTINES 1012, 1057
ROUTINESFEDERATED 1019
ROWFIELDS 1009
SCHEMAAUTH 229
SCHEMATA 231
SECURITYLABELACCESS 232

1102 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

catalog views (continued)
SECURITYLABELCOMPONENTELEMENTS 232
SECURITYLABELCOMPONENTS 233
SECURITYLABELS 233
SECURITYPOLICIES 233
SECURITYPOLICYCOMPONENTRULES 234
SECURITYPOLICYEXEMPTIONS 235
SEQUENCEAUTH 231
SEQUENCES 236
SERVEROPTIONS 1021
SERVERS 1021
SERVICECLASSES 1021
STATEMENTS 1023
SURROGATEAUTHIDS 235
SYSDUMMY1 1050
TABAUTH 247
TABCONST 238
TABDEP 1023
TABDETACHEDDEP 1025
TABLES 239, 1058
TABLESPACES 244
TABOPTIONS 1025
TBSPACEAUTH 245
THRESHOLDS 1025
TRANSFORMS 1027
TRIGDEP 1028
TRIGGERS 1029
TYPEMAPPINGS 1031
updatable 215
USEROPTIONS 246
VARIABLEAUTH 246, 1033
VARIABLEDEP 1034
VARIABLES 1035
VIEWS 1037
WORKACTIONS 1037
WORKACTIONSETS 1040
WORKCLASSES 1040
WORKCLASSSETS 1041
WORKLOADAUTH 1042
WORKLOADCONNATTR 1042
WORKLOADS 1043
WRAPOPTIONS 1045
WRAPPERS 1045
XDBMAPGRAPHS 1045
XDBMAPSHREDTREES 1046
XMLSTRINGS 1046
XSROBJECTAUTH 1046
XSROBJECTCOMPONENTS 1047
XSROBJECTDEP 1048
XSROBJECTDETAILS 1047
XSROBJECTHIERARCHIES 1049
XSROBJECTS 1049

cataloging
databases 481

CCSIDG precompile/bind option 462,
744

CCSIDM precompile/bind option 462,
744

CCSIDS precompile/bind option 462,
744

certificate authorities 128
certificates, digital 128
change database partition server

configuration command 519
character serial devices 337
chardel file type modifier

export 796

chardel file type modifier (continued)
import 802
load 833

charsub precompile/bind option 462,
744

CHECKING events 276
cipher suites 129
CLI (Call-level Interface)

specifying the isolation level 390
CLI/ODBC keywords

security 74
SSL_client_keystash 75
SSL_client_keystoredb 74

CLIENT authentication type 108
client support

TCP/IP service name configuration
parameter 1083

CLIPKG precompile/bind option 462
CLP (command line processor)

commands
syntax 417

clustering indexes
guidelines and considerations 355

cnulreqd precompile/bind option 462,
744

code page file type modifier 833
code pages

Export API 796
Import API 802

coldel file type modifier
export

db2Export API 796
import

db2Import API 802
load

db2Load API 833
collating sequences

user-defined 910
collection precompile/bind option 462,

744
collocation

table 45, 311
column data type

specifying 346
columns

effect of LBAC on reading 163
LBAC protected

dropping 172
inserting 166
load considerations 176
priveleges and authorites required

to export 432
updating 168

LBAC protection
adding 161
removing 175

specifying for import 802
command line processor (CLP)

accessing help 417
binding to a database 336
invocation command 417
line continuation character 426
options 418
quitting 417
return codes 426
shell command 417
terminating 417

command line processor (CLP)
(continued)

using 426
command syntax

CLP commands 417
commands

ADD DBPARTITIONNUM 448
ATTACH 740
BACKUP DATABASE 450
BIND 462
CATALOG DATABASE 481
CREATE DATABASE 484
database partition 434
db2 417
db2audit 502
db2extsec 524
db2gpmap 510
db2icrt 511
db2iupdt 515
db2nchg 519
db2ncrt 520
db2ndrop 522
db2rbind 523
db2undgp 528
DETACH 742
DROP DATABASE 528
DROP DBPARTITIONNUM

VERIFY 530
GET CONNECTION STATE 742
GET DATABASE

CONFIGURATION 540
GET DATABASE MANAGER

CONFIGURATION 545
INSPECT 574
LIST APPLICATIONS 581
LIST DATABASE PARTITION

GROUPS 583
LIST DBPARTITIONNUMS 743
LIST PACKAGES/TABLES 585
LIST TABLESPACE

CONTAINERS 587
LIST TABLESPACES 588
PRECOMPILE 744
REBIND 769
RECOVER DATABASE 640
redirecting output 426
REDISTRIBUTE DATABASE

PARTITION GROUP 645
REORG INDEXES/TABLE 665
RESTART DATABASE 691
RESTORE DATABASE 693
ROLLFORWARD DATABASE 710
running in parallel 437
SET RUNTIME DEGREE 720
SET WRITE 721
START DATABASE MANAGER 722
STOP DATABASE MANAGER 729
UNQUIESCE 732
UPDATE DATABASE

CONFIGURATION 733
UPDATE DATABASE MANAGER

CONFIGURATION 737
UPGRADE DATABASE 635

COMMIT statement
preventing lock-related performance

issues 395

Index 1103

Common Criteria
configuring database manager 359
execution parallelism 49
instances

configuring 358
supported interfaces xi

Common Criteria certification ix
Common Criteria compliant environment

FCM considerations 331
compatibility

partition 311
compound file type modifier 802
compression dictionary creation

automated 1059
concurrency control

federated databases 384
issues 384
locks 392

configuration
database

sample 540
updating 733

database manager
sample 545

for Common Criteria 359
multiple partition 38
scaling 361

Configuration Advisor
description 1059

configuration parameters
affecting number of agents 50
authentication 1081
enhancements 73
partitioned database 327
svcename 1083

CONNECT authority 93
connect precompile option 744
connection string parameters

SSL support 73
CONTEXT events 276
continuation character

command line processor (CLP) 426
CONTROL privilege

description 100
implicit issuance 117
package privileges 101

controlling the rah command 442
coordinator agent

description 5, 11
coordinator partition 33
create database API

description 910
CREATE DATABASE command

description 484
example of 332
RESTRICTIVE option 212

create instance command 511
CREATE ROLE statement

use 190
CREATE TRUSTED CONTEXT statement

use 202
CREATE_EXTERNAL_ROUTINE

authority 93
CREATE_NOT_FENCED_ROUTINE

authority 93
CREATETAB authority 93

creating
database

authorities 88
privileges 88

LBAC security labels 151
cryptography 129
CURRENT SCHEMA special

register 323
cursor stability (CS)

isolation level 385
cursors

closing to prevent lock-related
performance issues 395

customizing
audit log location 294

D
data

audit
creating tables 252
loading into tables 253

distribution 33
encryption 123
fragmentation

eliminating using table
reorganization 665

indirect access 179
label-based access control (LBAC)

adding protection 161
exporting 432
inserting 166
loading 433
overview 161
reading 163
unprotecting 175
updating 168

partitioning 45
redistribution

altering database partition
group 361

determining need 369
event logging and recovery 373
log space requirements 372
overview 369, 370
REDISTRIBUTE DATABASE

PARTITION GROUP
command 645

security
system catalog 212

data access (DATAACCESS) authority
description 66
overview 93

data at rest 124
data organization schemes

table partitioning 1061
data servers

capacity management 361
data types

in table columns 346
DATAACCESS (data access) authority

description 66
overview 93
supported 70

database access
controlling 106

database administration (DBADM)
authority

access control 122
description 96
overview 93

database agents
managing 19

database authorities
granting

overview 93
overview 93
revoking 93

database configuration file
retrieving values 540
sample 540
updating 733

database directories
structure 299

Database Encryption Expert 124
database manager

binding utilities 336
starting 722
stopping 729

database manager configuration file
retrieving values with GET

DATABASE MANAGER
CONFIGURATION command 545

sample file 545
database objects

controlling access 115
naming rules

NLS 25
overview 22
Unicode 25

roles 189
database partition groups

changing 361
collocation 308
creating 336
data location determination 308
designing 308
IBMDEFAULTGROUP 352
initial 333
overview 47
tables 352

database partition servers
dropping 379
issuing commands 434
multiple logical nodes 380
multiple logical partitions 380
specifying 441

Database Partitioning Feature (DPF)
overview 33

database partitions
adding

overview 362
running system 363
stopped system (UNIX) 365
stopped system (Windows) 364

catalog 327
changing on WIndows 378
overview 33
redistributing data 369
synchronizing clocks 51
Windows 376

database quiesce API 793

1104 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

database recovery log
allocating during database

creation 335
database-level

authorities 59
database-managed space (DMS)

description 317
table spaces

compared to SMS table
spaces 319

creating 337
databases

accessing
implicit privileges through

packages 118
altering database partition

groups 361
backups

automated 1059
binding application programs 891
cataloging

CATALOG DATABASE
command 481

creating
CREATE DATABASE

command 484
partitioned database

environments 327
sqlecrea API 910

data distribution
changing 361

data partitioning enabling 327
deleting

DROP DATABASE command 528
sqledrpd API 918

dropping
DROP DATABASE command 528
sqledrpd API 918

estimating size requirements 301
exporting from table into file

db2Export API 796
importing from file into table

db2Import API 802
label-based access control

(LBAC) 143
rebuilding

RESTORE DATABASE
command 693

recovery
ROLLFORWARD DATABASE

command 710
restarting 691
restoring 693
rollforward recovery

ROLLFORWARD DATABASE
command 710

upgrading
UPGRADE DATABASE

command 635
datapath parameter 294
dateformat file type modifier

db2Import API 802
db2Load API 833

db2 command 417
DB2 Information Center

languages 1089
updating 1090, 1092

DB2 Information Center (continued)
versions 1089
viewing in different languages 1089

db2_all command
overview 435, 436
partitioned database

environments 434
specifying 436

DB2_ALTERNATE_GROUP_LOOKUP
environment variable 1064

db2_call_stack command 436
DB2_CAPTURE_LOCKTIMEOUT registry

variable
description 1073

DB2_COLLECT_TS_REC_INFO registry
variable 1073

DB2_CONNRETRIES_INTERVAL registry
variable

description 1073
DB2_COPY_NAME environment

variable 1064
DB2_DIAGPATH variable

description 1064
DB2_EVALUNCOMMITTED registry

variable
deferral of row locks 412

DB2_FORCE_APP_ON_MAX_LOG
registry variable 1073

DB2_GRP_LOOKUP environment
variable 141

DB2_GRP_LOOKUP registry
variable 140

db2_kill command 436
DB2_LIC_STAT_SIZE registry

variable 1073
DB2_MAX_CLIENT_CONNRETRIES

registry variable
description 1073

DB2_PARALLEL_IO registry variable
description 1064

DB2_PMAP_COMPATIBILITY registry
variable

description 1064
DB2_SKIPINSERTED registry

variable 415
DB2_SYSTEM_MONITOR_SETTINGS

registry variable
description 1073

DB2_UPDDBCFG_SINGLE_DBPARTITION
variable

description 1064
DB2_USE_PAGE_CONTAINER_TAG

variable
description 1064

DB2_VIEW_REOPT_VALUES registry
variable 1073

DB2_WORKLOAD aggregate registry
variable

description 1064
DB2ACCOUNT registry variable

description 1073
DB2ADMNS group 141

description 185
db2audit command

description 502
db2audit.log file 249

db2Backup API
description 775

DB2BIDI registry variable
description 1073

db2CfgGet API 784
db2CfgSet API 787
DB2CODEPAGE registry variable

description 1073
DB2CONNECT_ENABLE_EURO_CODEPAGE 1064
DB2CONNECT_IN_APP_PROCESS

environment variable 1064
DB2CONSOLECP registry variable 1073
DB2COUNTRY registry variable

description 1073
db2DatabaseQuiesce API 793
db2DatabaseRestart API 790
db2DatabaseUnquiesce API 794
DB2DBDFT registry variable 1073
DB2DBMSADDR registry variable 1073
DB2DISCOVERYTIME registry

variable 1073
DB2DOMAINLIST variable

description 1064
DB2ENVLIST environment

variable 1064
db2extsec command 524
DB2FODC registry variable

description 1073
db2gpmap command 510
DB2GRAPHICUNICODESERVER registry

variable
description 1073

db2icrt command
description 511

DB2INCLUDE registry variable 1073
db2Inspect API

description 815
DB2INSTANCE environment variable

description 1064
db2InstanceQuiesce API 822
db2InstanceStart API 824
db2InstanceStop API 829
db2InstanceUnquiesce API 832
DB2INSTDEF registry variable 1073
DB2INSTOWNER registry variable 1073
DB2INSTPROF registry variable

description 1064
db2iupdt command

description 515
DB2LBACRULES LBAC rule set 155
DB2LDAPSecurityConfig environment

variable 1064
DB2LIBPATH environment

variable 1064
db2Load API

description 833
DB2LOCALE registry variable

description 1073
DB2LOGINRESTRICTIONS

variable 1064
db2mtrk command

SYSMON authority added 72
db2nchg command

changing database partition server
configurations 378

description 519

Index 1105

db2ncrt command
adding database partition

servers 376
description 520

db2ndrop command
description 522
dropping database partition

servers 379
db2nlist command 376
DB2NODE environment variable

description 1064
db2nodes.cfg file

creating 328
DB2NTNOCACHE registry variable

NO FILE SYSTEM CACHING clause
comparison 1061

DB2OPTIONS environment variable
description 1064
setting CLP options 418

DB2PATH environment variable 1064
DB2PROCESSORS environment

variable 1064
db2rbind command

description 523
DB2RCMD_LEGACY_MODE

environment variable 1064
db2Recover API

description 853
db2Reorg API 859
DB2RESILIENCE environment variable

description 1064
db2Restore API

description 867
db2Rollforward API

description 880
DB2SECURITYLABEL data type

loading 176
providing explicit values 160
viewing as string 160

db2SetWriteForDB API 890
db2start addnode command 376
db2start command

description 722
db2stop command

description 729
DB2SYSTEM environment variable 1064
DB2TERRITORY registry variable

description 1073
db2undgp command

description 528
DB2USERS user group

description 185
DBADM (database administration)

authority
access control 122
changes 66, 70
description 96
overview 93
retrieving names 211

DBCS (double-byte character set)
See double-byte character set

(DBCS) 25
deactivate database API 901
deadlocks

detector 383
overview 383

declustering
partial 33, 45

default privileges
create database 88

DELETE privilege 100
delprioritychar file type modifier

LBAC-protected data load 176
designing

tables 345
DETACH command

description 742
detach from instance API 942
dictionaries

automated creation 1059
digital certificates 128
directories

system database
adding entries 905
cataloguing database 905

dirty read 385
distribution keys

description 310
loading data 446
partitioned database

environments 352
distribution maps

description 308
DMS (database-managed space)

See database-managed space
(DMS) 317

documentation
overview 1085
PDF 1085
printed 1085
terms and conditions of use 1094

double-byte character set (DBCS)
naming rules 25

DPF (Database Partitioning Feature)
See Database Partitioning Feature

(DPF) 33
drop database API 918
DROP DATABASE command

description 528
drop database on database partition

server API 917
drop database partition server from an

instance command 522
DROP DBPARTITIONNUM VERIFY

command 530
dropping

columns (LBAC-protected) 172
LBAC security labels 151

dynamic SQL
EXECUTE privilege 118
specifying the isolation level 390

DYNAMICRULES precompile/bind
option

BIND command 462
PRECOMPILE command 744

E
encryption

data 123
enhancement 75

Encryption Expert 124

engine dispatchable unit (EDU)
agents 17

environment variables
$RAHBUFDIR 437
$RAHBUFNAME 437
$RAHENV 442
DB2OPTIONS 418
rah command 442
RAHDOTFILES 443

error messages
binding 891
checksum

database configuration file 733
database configuration files 540
database description block

structures 910
partitioned databases 367
remote database dropping

DROP DATABASE command 528
sqledrpd API 918

rollforward 880
errors

switching user 205
trusted contexts 205

EXECUTE category
overview 290

EXECUTE events 276
EXECUTE privilege

database access 118
packages 101
routines 102, 103

exit codes
CLP 426

EXPLAIN authority
description 68
overview 93
supported 70

explicit trusted connections
establishing 197
user ID switching 197, 203

export API 796
export utility

authorities required 432
privileges required 432

exporting
data

db2Export API 796
file type modifiers 796

extended security
Windows 185

F
fastparse file type modifier 833
FCM (Fast Communications Manager)

service entry syntax 330
FCM considerations 331
federated databases

concurrency control 384
federated precompile/bind option 462,

744
federated_asynchrony precompile/bind

option 462, 744
Fetch Table Space Query API 894
file names 21

audit logs 297
FILE SYSTEM CACHING clause 1061

1106 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

file systems
caching for table spaces 1061

file type modifiers
Export API 796
Import API 802
Load API 833

firewalls
application proxy 207
circuit level 208
description 207
screening router 207
stateful multi-layer inspection

(SMLI) 208
first-fit order 301
Force Application API 921
forcein file type modifier 802, 833
format

security label as string 153
funcpath precompile/bind option 462,

744
functions

AUDIT_LIST_LOGS 298
client plug-in

generate initial credentials 526
DECRYPT 123
ENCRYPT 123
GETHINT 123
privileges 102

G
generated columns

defining 351
examples 351

generatedignore file type modifier 802,
833

generatedmissing file type modifier 802,
833

generatedoverride file type modifier 833
generic precompile/bind option 462, 744
Get Configuration Parameters API 784
GET CONNECTION STATE

command 742
GET DATABASE CONFIGURATION

command 540
GET DATABASE MANAGER

CONFIGURATION command 545
Get distribution map command 510
Get Row Distribution Number API 927
grant bind option 462
GRANT statement

example 115
implicit issuance 117
overview 115

grantgroup bind option 462
granting

LBAC security labels 151
grantuser bind option 462
granularity

lock
overview 394

groups
access token 140
naming rules 24
selecting 106
versus roles 195

GSKit
return codes 130

H
handshake, SSL 127
hardware

parallelism 38
partitions 38
processors 38

hash partitioning 45
health monitor

description 1059
help

configuring language 1089
SQL statements 1089

I
I/O

parallelism 34
IBM Database Encryption Expert 124
IBM Informix Dynamic Server

migrating fromusing roles 196
IBMCATGROUP database partition

group 333
IBMDEFAULTGROUP database partition

group 333
IBMTEMPGROUP database partition

group 333
identityignore

file type modifier 802, 833
identitymissing

file type modifier 802, 833
identityoverride

file type modifier 833
implicit authorization

managing 117
implicit connections 426
implicit schema (IMPLICIT_SCHEMA)

authority
description 98
overview 93

IMPLICIT_SCHEMA (implicit schema)
authority

description 98
overview 93

IMPLICIT_SCHEMA authority 87
implieddecimal file type modifier 802,

833
Import API 802
import operations

ALLOW NO ACCESS 415
ALLOW WRITE ACCESS 415

import utility
table locking 415

importing
code page considerations 802
database access through DB2

Connect 802
file to database table 802
file type modifiers for 802
PC/IXF, multiple-part files 802
restrictions 802
to a remote database 802

importing (continued)
to a table or hierarchy that does not

exist 802
to typed tables 802

IN (Intent None)
lock mode description 393

INDEX privilege 100
description 102

indexes
creating

for nonpartitioned tables 358
description 353
design considerations 355
designing 355
privileges

overview 102
scans

standard tables, lock modes 399
space requirements 303

indexfreespace file type modifier 833
indexixf file type modifier 802
indexschema file type modifier 802
insert precompile/bind option 462, 744
INSERT privilege 100
inserting data

disregard uncommitted 415
inserting data (LBAC) 166
INSPECT command 574
Inspect database API 815
instance

configuring for Common Criteria 358
Instance Quiesce API 822
Instance Start API 824
Instance Stop API 829
Instance Unquiesce API 832
instance-level

authorities 59
instances

adding partition servers 376
creating 325
default 325
listing database partition servers 376
partition servers

changing 378
dropping 379

setting the current 1063
starting (Linux, UNIX) 322
starting (Windows) 322
stopping (Linux, UNIX) 323
stopping (Windows) 324
working with 326

inter-partition parallelism
used with intra-partition

parallelism 34
inter-partition query parallelism

enabling 49
inter-query parallelism 34
intra-partition parallelism

used with inter-partition
parallelism 34

intra-query parallelism 34
IS (Intent Share)

lock mode description 393
isolation levels

comparison 385
cursor stability (CS) 385
effect on lock granularity 392

Index 1107

isolation levels (continued)
effect on performance 385
preventing lock-related performance

issues 395
read stability (RS) 385
repeatable read (RR) 385
specifying 390
uncommitted read (UR) 385

isolation precompile/bind option 462,
744

IX (Intent Exclusive)
lock mode description 393

J
JDBC (Java Database Connectivity)

specifying the isolation level 390

K
keepblanks file type modifier

db2Import API 802
loading

db2Load API 833
Kerberos authentication protocol

server 108
keys

distribution 310
KRB_SERVER_ENCRYPT authentication

type
description 108

L
label-based access control (LBAC) 143

exporting data 432
inserting data protected by 166
loading data

authorities and permissions 433
protected data load

considerations 176
overview 81, 143
protecting data 161
reading protected data 163
removing protection 175
security label comparisons 154
updating data protected by 168

LANGLEVEL precompile option
SQL92E 744

LBAC (label-based access control)
credentials 143
exporting data 432
inserting data protected by 166
loading data 433
loading data protected by 176
overview 81, 143
protected data

adding protection 161
description 143
exporting 432
loading 433
removing protection 175

protected tables
description 143

protecting data using 161
reading data protected by 163

LBAC (label-based access control)
(continued)

removing protection 175
rule exemptions

description and use 159
effect on security label

comparisons 154
rule sets

comparing security labels 154
DB2LBACRULES 155
description 155

security administrator 143
security label comparisons 154
security label components

security label comparisons 154
security labels

ARRAY component type 148
compatible data types 151
components 146
description 143
how compared 154
SET component type 147
string format 153
TREE component type 148
use 151

security policies
adding to a table 161
description 143
description and use 145

updating data protected by 168
LBAC security label components 146,

155
level precompile option 744
License Center

managing licenses 326
licenses

overview 33
line continuation character

command line processor (CLP) 426
LIST APPLICATIONS command 581
LIST DATABASE PARTITION GROUPS

command 583
SYSMON authority added 72

LIST DBPARTITIONNUMS
command 743

LIST DRDA INDOUBT TRANSACTIONS
command

SYSMON authority added 72
LIST PACKAGES command 585

SYSMON authority added 72
LIST PACKAGES/TABLES

command 585
LIST TABLES command 585

SYSMON authority added 72
LIST TABLESPACE CONTAINERS

command 587
SYSMON authority added 72

LIST TABLESPACES command 588
SYSMON authority added 72

LIST UTILITIES command
SYSMON authority added 72

Load API 833
LOAD authority

overview 93
LOAD database authority

description 98

load utility
authorities and privileges required to

use 433
file type modifiers for 833

loading
data

LBAC protected 176
into database partitions 446

lobsinfile file type modifier
Export API 796
loading data into tables 833
loading overview 802

LocalSystem account 141
authorization 90

lock modes
compatibility 398
description 393
IN (Intent None) 393
IS (Intent Share) 393
IX (Intent Exclusive) 393
MDC (multidimensional clustering)

tables
block index scans 407
table and RID index scans 402

NS (Scan Share) 393
NW (Next Key Weak Exclusive) 393
S (Share) 393
SIX (Share with Intent Exclusive) 393
U (Update) 393
X (Exclusive) 393
Z (Super Exclusive) 393

lock objects
description 393

LOCK TABLE statement
minimizing lock escalations 397
preventing lock-related performance

issues 395
locklist configuration parameter

lock granularity 392
locks

concurrency control 392
deadlocks 383
deferral 412
effect of application type 411
effect of data-access plan 411
escalation

troubleshooting 397
granting simultaneously 398
granularity

factors affecting 410
overview 394

import utility 415
isolation levels 385
lock count 393
next-key locking 412
standard tables

modes and access plans 399
tuning 395

log file space
required for data redistribution 372

log files
space requirements 306

logical database partitions 38
logical nodes

database partition servers 380, 441
logical partitions 380

database partition servers 380

1108 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

logical partitions (continued)
multiple 11

logs
audit 249
listing during roll forward 710
recovery, allocating 910

longerror precompile option 744

M
machine list

for partitioned database
environment 441

materialized query tables (MQTs)
replicated 312

maxlocks configuration parameter
specifying when lock escalation is

triggered 397
MDC (multidimensional clustering) tables

block-level locking 392
lock modes

block index scans 407
table and RID index scans 402

messages
accessing help 417
precompile/bind option 462, 744

methods
privileges 102

Migrate Database API 924
migrating

using roles 196
monitoring

rah processes 438
moving data

between databases 802
MPP environment 38
MQTs (materialized query tables)

replicated 312
multidimensional clustering (MDC) tables

comparison with other table
types 344

multiple logical nodes
configuring 381

multiple logical partitions 380
multiple partition configurations 38
multiple partition databases

database partition group 47

N
naming conventions

database manager objects 29
naming rules 21

DB2 objects 22
general

path names 21
restrictions 21

national languages 25
schema name restrictions 1061
Unicode 25
users, user IDs and groups 24

next-key locks 412
nicknames

privileges
indirect through packages 119

NO FILE SYSTEM CACHING
clause 1061

nochecklengths file type modifier
importing data to a table 802
loading data in a table 833

node configuration files
creating 328

nodefaults file type modifier
importing data to a table 802

nodegroups (database partition groups)
creating 336

nodes 33
synchronization 51

nodoubledel file type modifier
exporting to tables 802
importing from tables 796
loading tables 833

noeofchar file type modifier
importing data into tables 802
loading data into tables 833

noheader file type modifier
loading data into tables 833

NOLINEMACRO precompile option 744
non-buffered I/O

enabling/disabling 1061
non-repeatable read 385
non-repeatable reads

concurrency control 384
nonpartitioned tables

indexes
creating 358

norowwarnings file type modifier
loading data into tables 833

notices 1097
notify level configuration parameter

lock escalation troubleshooting 397
notypeid file type modifier

importing data into tables 802
NS (Scan Share)

lock mode description 393
NULL string 426
NULL value

SQL
command line processor

representation 426
nullindchar file type modifier

importing data to tables 802
loading data to tables 833

NW (Next Key Weak Exclusive)
lock mode description 393

O
objects

creation 86
ownership 81, 86
privileges 86

OBJMAINT events 276
ODBC (Open Database Connectivity)

specifying the isolation level 390
Open Table Space Container Query

API 896
optimization

REORG INDEXES/TABLE
command 665

optlevel precompile option 744
ordering DB2 books 1088

output precompile option 744
overview

authorities 59
owner precompile/bind option 462, 744
ownership

database objects 81, 209

P
package authorization ID 79
packages

access privileges with queries 118
creating

sqlabndx API 891
ownership 118
precompile option 744
privileges

overview 101
revoking (overview) 116

re-creating 769, 936
parallelism

backups 34
hardware environments 38
I/O

overview 34
index creation 34
inter-partition 34
intra-partition

overview 34
load utility 34
overview 34
partitioned database

environments 33
partitions 38
processors 38
query 34

partial declustering
overview 33

partitioned database environments
creating 327
dropping partitions 368
duplicate machine entries 441
loading data

overview 446
machine list

duplicate entry elimination 441
specifying 441

node addition errors 367
overview 33, 45
partition compatibility 311
redistributing data 370, 373
scenario 55
setting up 327
table distribution information 930

partitioned tables
comparison with other table

types 344
partitions

processors
multiple 38
single 38

passwords
changing

ATTACH command 740
sqleatcp API 938

path names
naming rules 21

Index 1109

performance
affected by isolation levels 385
catalog information 327
tables

reorganizing 665, 859
permissions

authorization overview 78
column-specific protection 143
row-specific protection 143

phantom read 385
concurrency control 384

port number ranges
Windows

defining 376
precompile application program API 933
PRECOMPILE command

description 744
OWNER option 118

precompiling
specifying the isolation level 390

prefix sequences 439
PREP command 744
privileges

acquiring by trusted context role 202
ALTER

sequences 102
tables 100

backup utility 432
CONTROL 100
database

granted when creating 484, 910
DELETE 100
EXECUTE

routines 102
export utility 432
GRANT statement 115
granting

roles 195
hierarchy 81
implicit for packages 81
index 102
INDEX 100
indirect

packages containing
nicknames 119

individual 81
information about granted

retrieving 210, 212
INSERT 100
load utility 433
overview 81
ownership 81
packages

creating 101
planning 78
REFERENCES 100
restore utility 433
revoking

overview 116
roles 192

roles 189
rollforward utility 433
schema 98
SELECT 100
SETSESSIONUSER 181
system catalog

privilege information 209

privileges (continued)
system catalog (continued)

restricting access 212
table spaces 99
tables 100
UPDATE 100
USAGE

sequences 102
views 100

problem determination
information available 1094
tutorials 1094

procedures
privileges 102
STEPWISE_REDISTRIBUTE_DBPG 374

process model
overview 5, 11

processes
overview 3

processors
adding 361

protocols
TCP/IP service name configuration

parameter 1083
PUBLIC

database authorities automatically
granted 93

public-key cryptography 129

Q
qualifier precompile/bind option 462,

744
qualifiers

reserved 26
queries

parallelism 34
queryopt precompile/bind option

BIND command 462
PRECOMPILE command 744

Quiesce Table Spaces for Table API 931
QUIESCE_CONNECT authority 93

R
rah command

controlling 442
description 436
determining problems 444
environment variables 442
introduction 434
monitoring processes 438
overview 435
prefix sequences 439
RAHCHECKBUF environment

variable 437
RAHDOTFILES environment

variable 443
RAHOSTFILE environment

variable 441
RAHOSTLIST environment

variable 441
RAHWAITTIME environment

variable 438
recursively invoked 439
running commands in parallel 437

rah command (continued)
setting the default environment

profile 444
specifying

as a parameter or response 436
database partition server list 441

RAHCHECKBUF environment
variable 437

RAHDOTFILES environment
variable 443

RAHOSTFILE environment variable 441
RAHOSTLIST environment variable 441
RAHTREETHRESH environment

variable 439
RAHWAITTIME environment

variable 438
range-clustered tables

comparison with other table
types 344

raw devices 337
read stability (RS)

isolation level 385
Rebind all Packages command 523
Rebind API 936
REBIND command 769
reclen file type modifier

importing 802
Load API 833

records
audit 249

Recover Database API 853
RECOVER DATABASE command 640

authorities and privileges
required 433

recovery
database 693
with roll forward 710
without roll forward 693

recovery log
allocating during database

creation 335
REDISTRIBUTE DATABASE PARTITION

GROUP command 645
redistribute utility

restrictions 53
redistributing data

across database partitions 361, 369
necessity 369
step-wise redistribute procedures 374

redistribution 373
REFERENCES privilege 100
registry variables

DB2_ALTERNATE_GROUP_LOOKUP 1064
DB2_CAPTURE_LOCKTIMEOUT 1073
DB2_COLLECT_TS_REC_INFO 1073
DB2_CONNRETRIES_INTERVAL 1073
DB2_COPY_NAME 1064
DB2_DIAGPATH 1064
DB2_FORCE_APP_ON_MAX_LOG 1073
DB2_LIC_STAT_SIZE 1073
DB2_MAX_CLIENT_CONNRETRIES 1073
DB2_PARALLEL_IO 1064
DB2_PMAP_COMPATIBILITY 1064
DB2_SYSTEM_MONITOR_SETTINGS 1073
DB2_UPDDBCFG_SINGLE_DBPARTITION 1064
DB2_USE_PAGE_CONTAINER_TAG 1064
DB2_VIEW_REOPT_VALUES 1073

1110 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

registry variables (continued)
DB2_WORKLOAD 1064
DB2ACCOUNT 1073
DB2BIDI 1073
DB2CODEPAGE 1073
DB2CONNECT_ENABLE_EURO_CODEPAGE 1064
DB2CONNECT_IN_APP_PROCESS 1064
DB2CONSOLECP 1073
DB2COUNTRY 1073
DB2DBDFT 1073
DB2DBMSADDR 1073
DB2DISCOVERYTIME 1073
DB2DOMAINLIST 1064
DB2ENVLIST 1064
DB2FODC 1073
DB2GRAPHICUNICODESERVER 1073
DB2INCLUDE 1073
DB2INSTANCE 1064
DB2INSTDEF 1073
DB2INSTOWNER 1073
DB2INSTPROF 1064
DB2LDAPSecurityConfig 1064
DB2LIBPATH 1064
DB2LOCALE 1073
DB2LOGINRESTRICTIONS 1064
DB2NODE 1064
DB2OPTIONS 1064
DB2PATH 1064
DB2PROCESSORS 1064
DB2RCMD_LEGACY_MODE 1064
DB2RESILIENCE 1064
DB2SLOGON 1073
DB2SYSTEM 1064
DB2TERRITORY 1073

regular tables
comparison with other table

types 344
release precompile/bind option 462, 744
removing

LBAC protection 175
REORG INDEXES

CONVERT option deprecated 76
REORG TABLE command 665
reorganization utility

binding to a database 336
Reorganize API 859
repeatable read (RR)

isolation level 385
replicated materialized query tables 312
reserved

qualifiers 26
schemas 26
words 26

Restart Database API 790
RESTART DATABASE command 691
Restore database API 867
RESTORE DATABASE command 693
restore utility

authorities and privileges required to
use 433

restoring
earlier versions of DB2 databases 693

restrictions
general naming rules 21

RESTRICTIVE clause of CREATE
DATABASE statement 484

RESTRICTIVE option
CREATE DATABASE 212

result tables
comparison with other table

types 344
return codes

command line processor (CLP) 426
GSKit 130

Revoke Execute Privilege command 528
REVOKE statement

example 116
implicit issuance 117
overview 116

revoking
LBAC security labels 151

REXX language
specifying the isolation level 390

roles 189
creating 190
hierarchies 192
migrating from IBM Informix

Dynamic Server 196
revoking privileges from 192
versus groups 195
WITH ADMIN OPTION clause 194

roll-forward recovery
db2Rollforward API 880

ROLLFORWARD DATABASE
command 710

rollforward utility
authorities and privileges required to

use 433
routine invoker authorization ID 79
routines

EXECUTE privilege 103
external

authorizations for 103
rows

deleting LBAC protected 172
effect of LBAC on reading 163
exporting LBAC protected 432
inserting LBAC protected 166
loading data into

LBAC-protected 176
protecting a row with LBAC 161
removing LBAC protection 175
updating LBAC protected 168

rule sets (LBAC)
description 155
exemptions 159

S
S (Share)

lock mode description 393
Savepoint ID field 290
scalability

environments 38
schema privileges

description 98
schemas

creating 343
description 87, 323
designing 341
naming restrictions and

recommendations 1061
new databases 484, 910

schemas (continued)
reserved 26

SECADM
authority

changes 64
SECADM (security administrator)

authority
description 94
overview 93

SECADM authority
changes 70

SECLABEL
description 160

SECLABEL_BY_NAME
description 160

SECLABEL_TO_CHAR
description 160

seclabelchar file type modifier 176
seclabelname file type modifier 176
SECMAINT events 276
security

authentication 77
CLIENT level 108
column-specific 143
db2extsec command

using 185
definition 77
disabling extended security 185
enabling extended security 185
establishing explicit trusted

connection 197
extended security 185
label-based access control

(LBAC) 143
operating system 141
plug-ins

APIs 526
configuration parameters 1081

risks 179
row-specific 143
UNIX considerations 142
user responsibilities 183
using trusted contexts 199
Windows

overview 185
users 141

security administrator (SECADM)
authority

description 94
overview 93

security configuration parameter for
CLI/ODBC applications 74

security connection parameter 73
security labels (LBAC)

ARRAY component type 148
compatible data types 151
components 146
policies

description and use 145
SET component type 147
string format 153
TREE component type 148
use 151

Security Sockets Layer
enhancements 73

SELECT privilege 100

Index 1111

self tuning memory
description 1059

sequences
privileges 102

SERVER authentication type 108
SERVER_ENCRYPT authentication

type 108
enhancement 75

session authorization ID 79
Set Configuration Parameters API 787
SET ENCRYPTION PASSWORD

statement 123
Set permissions for DB2 objects

command 524
Set Runtime Degree API 925
SET RUNTIME DEGREE command 720
SET WRITE command 721
SETSESSIONUSER privilege

description 181
settings

default environment profile for
rah 444

SIGALRM signal
starting database manager 722

SIGINT signal
starting database manager 722

SIGTTIN message 436
single partition

multiple processor environment 38
single processor environment 38

Single Table Space Query API 898
SIX (Share with Intent Exclusive)

lock mode description 393
size requirements

estimating 301
SMP cluster environment 38
SMS (system managed space)

table spaces
compared to DMS table

spaces 319
creating 337
description 315

SMS directories
in non-automatic storage

databases 299
SQL administration (SQLADM) authority

description 67
overview 93

SQL statements
accessing help 417
displaying help 1089

sqlabndx API 891
SQLADM (SQL administration) authority

description 67
overview 93
supported 70

sqlaprep API 933
sqlarbnd API 936
sqlbftpq API 894
sqlbmtsq API 895
sqlbotcq API 896
sqlbstpq API 898
sqlca precompile option 744
sqle_activate_db API 899
sqle_deactivate_db API 901
sqleaddn API 903
sqleatcp API 938

sqleatin API 940
sqlecadb API 905
sqlecrea API 910
sqledpan API 917
sqledrpd API 918
sqledrpn API 920
sqledtin API 942
sqlefrce API 921
sqlemgdb API 924
sqlerror precompile/bind option 462,

744
sqlesdeg API 925
sqlflag precompile option 744
SQLJ (SQL-Java)

specifying the isolation level 390
sqlrules precompile option 744
sqluexpr API 796
sqlugrpn API 927
sqlugtpi API 930
sqluimpr API 802
sqluvqdp API 931
sqlwarn precompile/bind option 462,

744
SSL

certificate authorities 128
cipher suites 129
digital certificates 128
setup enhancement 69

SSL connection string 73
SSL handshake 127
SSL protocol 127
ssl_cipherspecs 129
ssl_cipherspecs configuration parameter

overview 73
SSL_client_keystash configuration

parameter for CLI/ODBC 75
ssl_client_keystash connection

parameter 73
SSL_client_keystoredb configuration

parameter for CLI/ODBC 74
ssl_client_keystoredb connection

parameter 73
ssl_svcename configuration parameter

overview 73
ssl_svr_keydb configuration parameter

overview 73
ssl_svr_label configuration parameter

overview 73
ssl_svr_stash configuration parameter

overview 73
ssl_versions configuration parameter

overview 73
SSLClientKeystash connection

parameter 73
SSLClientKeystoredb connection

parameter 73
START DATABASE MANAGER

command 722
statement authorization ID 79
Statement Value Data field 290
Statement Value Index field 290
Statement Value Type field 290
statements

specifying the isolation level 390
states

lock modes 393

static SQL
EXECUTE privilege 118
specifying the isolation level 390

stdin 436
STEPWISE_REDISTRIBUTE_DBPG

procedure
using to redistributing data 374

STOP DATABASE MANAGER
command 729

storage
database managed space (DMS) 317
physical 665
system managed space (SMS) 315

strdel precompile/bind option 462, 744
striping 315
striptblanks file type modifier 176, 802,

833
striptnulls file type modifier 802, 833
strong encryption

enhancement 75
summary tables

comparison with other table
types 344

svcename configuration parameter 1083
switching user ID 197, 203
synchronization

database partition 51
node 51
recovery considerations 51

syncpoint precompile option 744
SYSADM (system administration)

authority 90
SYSADM authority 141

changes 63, 70
sysadm_group configuration

parameter 141
SYSADMIN events 276
SYSCAT catalog views

for security issues 209
SYSCATSPACE table spaces 334
SYSCTRL (system control) authority 91
SYSMAINT (system maintenance)

authority 92
SYSMON (system monitor) authority 92
SYSMON authority

db2mtrk command added 72
LIST commands added 72

SYSPROC.AUDIT_ARCHIVE stored
procedure 288, 294

SYSPROC.AUDIT_DELIM_EXTRACT
stored procedure 288, 294

SYSPROC.AUDIT_LIST_LOGS stored
procedure 288

system administration (SYSADM)
authority 90

system authorization ID 79
system catalog tables

description 335
system catalog views

description 209
system catalogs

privileges listing 209
retrieving

authorization names with
privileges 210

names with DBADM
authority 211

1112 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

system catalogs (continued)
retrieving (continued)

names with table access
authority 211

privileges granted to names 212
security 212
views on system tables 215

system control (SYSCTRL) authority 91
system database directory

adding entries 905
cataloging database 905

system maintenance (SYSMAINT)
authority 92

system managed space (SMS)
table spaces

description 315
system monitor (SYSMON) authority 92
system processes 5

T
table partitioning

data organization schemes 1061
Table Space Query API 895
table spaces

containers
file example 337

creating 337
in database partition groups 340

database managed space (DMS) 317
description 313
device container example 337
initial 334
privileges 99
system managed space (SMS) 315
temporary

recommendations 321
system 321
temporary 321

types
SMS or DMS 319

without file system caching 1061
tables

access control 119
append mode 344
audit policy 285
base 344
catalog views on system tables 215
collocation 45, 311
column types 346
creating

in partitioned databases 352
overview 345

designing 345
effect of LBAC on reading 163
estimating size requirements 301
exporting to files 796
generated columns 351
importing files 802
inserting into LBAC protected 166
lock modes 399
multidimensional clustering 344
partitioned 344
privileges 116
protecting with LBAC 143, 161
range-clustered 344
regular 344

tables (continued)
removing LBAC protection 175
reorganization

REORG INDEXES/TABLE
command 665

result 344
retrieving names with access to 211
revoking privileges 116
summary 344
temporary 344
typed 344
user 301

tape backup 450
target precompile option 744
TCP/IP service name configuration

parameter 1083
temporary table spaces

recommendations 321
temporary tables

comparison with other table
types 344

TEMPSPACE1 table space 334
termination

abnormal 691, 790
normal 729

terms and conditions
use of publications 1094

text precompile/bind option 462, 744
threads

description 11
in DB2 5

timeformat file type modifier 802, 833
timestampformat file type modifier

db2import API 802
db2load API 833

TLS (transport layer security) 127
TLS_RSA_WITH_3DES_EDE_CBC_SHA

cipher suite 129
TLS_RSA_WITH_AES_128_CBC_SHA

cipher suite 129
TLS_RSA_WITH_AES_256_CBC_SHA

cipher suite 129
totalfreespace file type modifier 833
transform group precompile/bind

option 462, 744
Transport Layer Security

enhancements 73
Transport Layer Security (TLS) 127
troubleshooting

online information 1094
tutorials 1094

true type font
requirement for command line

processor 426
trusted clients

CLIENT level security 108
trusted connections 199

establishing explicit trusted
connection 197

trusted contexts 199
audit policy 285
problem determination 205
role membership inheritance 202

tutorials
problem determination 1094
troubleshooting 1094
Visual Explain 1093

type-1 indexes
discontinued 76

typed tables
comparison with other table

types 344

U
U (Update)

lock mode description 393
uncommitted data

concurrency control 384
uncommitted read (UR)

isolation level 385
Unicode (UCS-2)

identifiers 25
naming rules 25

uniprocessor environment 38
UNQUIESCE command 732
unquiesce database API 794
UPDATE DATABASE CONFIGURATION

command 733
UPDATE DATABASE MANAGER

CONFIGURATION command 737
update instances command 515
UPDATE privilege 100
updates

DB2 Information Center 1090, 1092
effects of LBAC on 168
lost

concurrency control 384
UPGRADE DATABASE command 635
USAGE privilege

description 102
usedefaults file type modifier 176, 802,

833
user IDs

naming rules 24
selecting 106
switching 203

user table page limits 301
user-defined functions

non-fenced 93
USERSPACE1 table space 334
utility parallelism 34
utility throttling

description 1059

V
VALIDATE events 276
validate precompile/bind option

BIND command 462
PRECOMPILE command 744

versions
precompile option 744

views
access privileges examples 119
column access 119
designing 353
privileges information 212
row access 119
table access control 119

Visual Explain
tutorial 1093

Index 1113

W
WCHARTYPE precompiler option

description 744
Windows operating systems

database partitions
adding 364

extended security 185
user accounts

access tokens 140
WITH ADMIN OPTION clause

delegating role maintenance 194
WITH DATA option

description 290
WLMADM (workload administration)

authority
description 68
overview 93
supported 70

words
SQL reserved 26

workload administration (WLMADM)
authority

description 68
overview 93

workstations
remote

cataloging databases 481
write-down

description 155
write-up

description 155

X
X (Exclusive)

lock mode description 393
X/Open Backup Services API (XBSA)

interface 450
XBSA (Backup Services APIs) option

BACKUP DATABASE command 450
XQuery

dynamic
EXECUTE privilege 118

static
EXECUTE privilege 118

XQuery statements
specifying the isolation level 390

Z
Z (Super Exclusive)

lock mode description 393
zoned decimal file type modifier 833

1114 Common Criteria Certification: Administration and User Documentation - Volume 1 - Revision 6

����

Printed in USA

SC14-7213-00

Sp
in
e
in
fo
rm
at
io
n:

IB
M

DB
2

9.
7

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

Co
m

m
on

Cr
ite

ria
Ce

rti
fic

at
io

n:
Ad

m
in

is
tra

tio
n

an
d

Us
er

Do
cu

m
en

ta
tio

n
-V

ol
um

e
1

-R
ev

is
io

n
6

�
�

�

	Contents
	Common Criteria certification of DB2 products
	Supported interfaces for a Common Criteria evaluated configuration
	About this book
	Part 1. Overview of the DB2 environment
	Chapter 1. DB2 architecture and process overview
	Chapter 2. The DB2 process model
	Chapter 3. Client-server processing model
	Chapter 4. Database agents
	Chapter 5. Database agent management
	Chapter 6. Naming rules
	General naming rules
	DB2 object naming rules
	User, user ID and group naming rules
	Naming rules in an NLS environment
	Naming rules in a Unicode environment
	Reserved schema names and reserved words

	Chapter 7. Naming conventions
	Part 2. Partitioned database environments
	Chapter 8. Parallel database systems
	Partitioned database environments
	Parallelism
	Database partition and processor environments

	Chapter 9. Database partitioning across multiple database partitions
	Chapter 10. Database partition groups
	Chapter 11. Execution parallelism
	Enabling inter-partition query parallelism
	Configuration parameters that affect the number of agents

	Chapter 12. Synchronizing clocks in a partitioned database environment
	Chapter 13. Restrictions on data redistribution
	Chapter 14. Scenario: Partitioning data in a database
	Part 3. DB2 security considerations
	Chapter 15. What′s New
	Authorities overview
	System administrator (SYSADM) authority scope has changed
	Security administrator (SECADM) abilities have been extended
	Access control administration authority (ACCESSCTRL)
	Data access administration authority (DATAACCESS)

	Database administrator (DBADM) authority scope has changed
	SQL administration authority (SQLADM)
	Explain administration authority (EXPLAIN)
	Workload administration authority (WLMADM)

	SSLconfig.ini and SSLClientconfig.ini files replaced with new database manager configuration parameters
	Security enhancements
	DB2 authorization model has been enhanced to allow separation of duties
	SYSMON authority has been extended to LIST commands and the db2mtrk command
	SSL client support expanded and configuration simplified
	security CLI/ODBC configuration keyword
	SSL_client_keystoredb CLI/ODBC configuration keyword
	SSL_client_keystash CLI/ODBC configuration keyword

	AES encryption of user ID and password enhances security

	Discontinued functionality
	Type-1 indexes have been discontinued

	Chapter 16. Authentications, authorizations, privileges, and authorities
	Security
	Authentication
	Partitioned database authentication considerations
	Authorization
	Authorization IDs in different contexts
	Authorization, privileges, and object ownership
	Object creation, ownership, and privileges
	Schemas
	Details on privileges, authorities, and authorization
	Default privileges granted on creating a database
	System administration authority (SYSADM)
	System control authority (SYSCTRL)
	System maintenance authority (SYSMAINT)
	System monitor authority (SYSMON)
	Database authorities
	Security administration authority (SECADM)
	Database administration authority (DBADM)
	LOAD authority
	Implicit schema authority (IMPLICIT_SCHEMA) considerations
	Schema privileges
	Table space privileges
	Table and view privileges
	Package privileges
	Index privileges
	Sequence privileges
	Routine privileges
	Authorizations and binding of routines that contain SQL

	Controlling database access
	Security considerations when installing and using the DB2 database manager
	Authentication methods for your server
	Authentication considerations for remote clients
	Details on controlling access to database objects
	Granting privileges
	Revoking privileges
	Managing implicit authorizations by creating and dropping objects
	Establishing ownership of a package
	Implicit privileges through a package
	Indirect privileges through a package containing nicknames
	Controlling access to data with views
	Controlling access for database administrators (DBAs)

	Data encryption
	IBM Database Encryption Expert for encryption of data at rest
	Secure Sockets Layer (SSL)
	Digital certificates and certificate authorities
	Public-key cryptography
	Supported cipher suites
	GSKit return codes

	Using an access token to acquire users′ group information (Windows)
	Details on security based on operating system
	Defining which users hold SYSADM authority (Windows)
	DB2 and UNIX security

	Chapter 17. Label-based access control (LBAC)
	Label-based access control (LBAC)
	LBAC security policies
	LBAC security label components
	LBAC security label components overview
	LBAC security label component type: SET
	LBAC security label component type: ARRAY
	LBAC security label component type: TREE

	LBAC security labels
	Format for security label values
	How LBAC security labels are compared
	LBAC security label components
	LBAC rule sets overview
	LBAC rule set: DB2LBACRULES

	LBAC rule exemptions
	Built-in functions for managing LBAC security labels
	Protection of data using LBAC
	Reading of LBAC protected data
	Inserting of LBAC protected data
	Updating of LBAC protected data
	Deleting or dropping of LBAC protected data
	Removal of LBAC protection from data
	LBAC-protected data load considerations

	Chapter 18. Gaining access to data through indirect means
	Chapter 19. Authorization ID privileges: SETSESSIONUSER
	Chapter 20. User responsibilities for security
	Chapter 21. Extended Windows security using the DB2ADMNS and DB2USERS groups
	Chapter 22. Roles
	Roles
	Creating and granting membership in roles
	Role hierarchies
	Effect of revoking privileges from roles
	Delegating role maintenance by using the WITH ADMIN OPTION clause
	Roles compared to groups
	Using roles after migrating from IBM Informix Dynamic Server

	Chapter 23. Trusted contexts
	Using trusted contexts and trusted connections
	Trusted contexts and trusted connections
	Role membership inheritance through a trusted context
	Rules for switching the user ID on an explicit trusted connection
	Trusted context problem determination

	Chapter 24. Firewall considerations
	Firewall support
	Screening router firewalls
	Application proxy firewalls
	Circuit level firewalls
	Stateful multi-layer inspection (SMLI) firewalls

	Chapter 25. System catalogs and security maintenance
	System catalogs and security maintenance
	System catalog views
	Using the system catalog for security information
	Details on using the system catalog for security issues
	Retrieving authorization names with granted privileges
	Retrieving all names with DBADM authority
	Retrieving names authorized to access a table
	Retrieving all privileges granted to users
	Securing the system catalog view

	System catalog views
	System catalog views
	Road map to the catalog views
	SYSCAT.AUDITPOLICIES
	SYSCAT.AUDITUSE
	SYSCAT.COLAUTH
	SYSCAT.DBAUTH
	SYSCAT.INDEXAUTH
	SYSCAT.PACKAGEAUTH
	SYSCAT.PACKAGEDEP
	SYSCAT.PASSTHRUAUTH
	SYSCAT.ROLEAUTH
	SYSCAT.ROLES
	SYSCAT.SCHEMAAUTH
	SYSCAT.ROUTINEAUTH
	SYSCAT.SCHEMATA
	SYSCAT.SEQUENCEAUTH
	SYSCAT.SECURITYLABELACCESS
	SYSCAT.SECURITYLABELCOMPONENTELEMENTS
	SYSCAT.SECURITYLABELCOMPONENTS
	SYSCAT.SECURITYLABELS
	SYSCAT.SECURITYPOLICIES
	SYSCAT.SECURITYPOLICYCOMPONENTRULES
	SYSCAT.SECURITYPOLICYEXEMPTIONS
	SYSCAT.SURROGATEAUTHIDS
	SYSCAT.SEQUENCES
	SYSCAT.TABCONST
	SYSCAT.TABLES
	SYSCAT.TABLESPACES
	SYSCAT.TBSPACEAUTH
	SYSCAT.USEROPTIONS
	SYSCAT.VARIABLEAUTH
	SYSCAT.TABAUTH

	Chapter 26. Auditing database activities
	Auditing DB2 database activities
	Introduction to the DB2 audit facility
	Audit facility behavior
	Working with DB2 audit data in DB2 tables
	Creating tables to hold the DB2 audit data
	Loading DB2 audit data into tables

	Audit facility record layouts
	Details on audit facility record layouts
	Audit record layout for AUDIT events
	Audit record layout for CHECKING events
	Audit record object types
	CHECKING access approval reasons
	CHECKING access attempted types
	Audit record layout for OBJMAINT events
	Audit record layout for SECMAINT events
	SECMAINT privileges or authorities
	Audit record layout for SYSADMIN events
	Audit events
	Audit record layout for VALIDATE events
	Audit record layout for CONTEXT events

	Audit facility tips and techniques

	Audit policies
	Audit archive and extract stored procedures
	The EXECUTE category for auditing SQL statements
	Storage and analysis of audit logs
	Audit log file names
	AUDIT_LIST_LOGS table function - Lists archived audit log files

	Chapter 27. Setting up the database environment
	Considerations for Creating a Database System
	Database directories and files
	Space requirements for database objects
	Space requirements for user table data
	Space requirements for indexes
	Space requirements for log files
	Database partition group design
	Distribution maps
	Distribution keys
	Table collocation
	Partition compatibility
	Replicated materialized query tables
	Table spaces
	System managed space
	Database managed space
	Comparison of SMS and DMS table spaces
	Temporary table spaces

	Before Creating the Database
	Starting instances (Linux, UNIX)
	Starting instances (Windows)
	Grouping objects by schema
	Stopping instances (Linux, UNIX)
	Stopping instances (Windows)
	Instances
	Working with instances
	Managing licenses
	Additional considerations for partitioned database environments
	Setting up partitioned database environments
	Creating node configuration files
	Enabling communication between database partitions using FCM communications
	FCM considerations for a Common Criteria compliant environment

	Creating a Database and Database Objects
	Creating databases
	Initial database partition groups
	Defining initial table spaces on database creation
	System catalog tables
	Database recovery log
	Binding utilities to the database
	Creating database partition groups
	Creating table spaces
	Table spaces in database partition groups
	Designing schemas
	Creating schemas
	Types of tables
	Designing tables
	Creating tables
	Data types for columns
	Generated columns
	Tables in partitioned database environments
	Designing views
	Indexes
	Designing indexes
	Creating indexes

	Configuring an instance to be Common Criteria compliant
	Configuring the DB2 database manager to be Common Criteria compliant

	Chapter 28. Altering a partitioned database environment
	Altering a database partition group
	Scaling your configuration
	Management of data server capacity
	Adding database partitions in partitioned database environments
	Adding a database partition to a running database system
	Adding a database partition to a stopped database system (Windows)
	Adding a database partition to a stopped database system (UNIX)
	Error recovery when adding database partitions
	Dropping database partitions

	Redistributing data across database partitions
	Data redistribution
	Determining if data redistribution is needed
	Redistributing data across database partitions using the REDISTRIBUTE DATABASE PARTITION GROUP command
	Log space requirements for data redistribution
	Redistribution event log file
	Redistributing database partition groups using the STEPWISE_REDISTRIBUTE_DBPG procedure

	Using Windows database partition servers
	Listing database partition servers in an instance
	Adding database partition servers to an instance (Windows)
	Changing database partitions (Windows)
	Dropping a database partition from an instance (Windows)

	Multiple logical partitions
	Setting up multiple logical partitions
	Configuring multiple logical partitions

	Chapter 29. Concurrency, isolation levels, and locking
	Concurrency, Isolation Levels, and Locking
	Deadlocks
	Concurrency Control and Isolation Levels
	Concurrency issues
	Isolation levels
	Specifying the isolation level

	Concurrency Control and Locking
	Locks and concurrency control
	Lock attributes
	Lock granularity
	Preventing lock-related performance issues
	Correcting lock escalation problems
	Lock type compatibility
	Lock modes and access plans for standard tables
	Lock modes for MDC table and RID index scans
	Lock modes for MDC block index scans

	Factors that affect locking
	Factors That Affect Locking
	Locks and types of application processing
	Locks and data-access methods
	Next-key locking

	Evaluate uncommitted data through lock deferral
	Option to disregard uncommitted insertions
	Table locking modes supported by the import utility

	Chapter 30. DB2 commands
	Command Line Processor (CLP)
	db2 - Command line processor invocation
	Command line processor options
	Command line processor return codes
	Command line processor features

	Security considerations for utilities
	Privileges and authorities required to use the export utility
	Privileges, authorities, and authorization required to use backup
	Privileges, authorities, and authorization required to use recover
	Privileges, authorities, and authorization required to use restore
	Authorization required for rollforward
	Privileges and authorities required to use load

	Issuing commands to multiple database partitions
	Issuing commands in partitioned database environments
	rah and db2_all commands overview
	rah and db2_all commands
	Specifying the rah and db2_all commands
	Running commands in parallel (Linux, UNIX)
	Monitoring rah processes (Linux, UNIX)
	Extension of the rah command to use tree logic (AIX and Solaris)
	rah command prefix sequences
	Specifying the list of machines in a partitioned database environment
	Eliminating duplicate entries from a list of machines in a partitioned database environment
	Controlling the rah command
	Specifying which . files run with rah (Linux and UNIX)
	Setting the default environment profile for rah on Windows
	Determining problems with rah (Linux, UNIX)

	Load overview–partitioned database environments
	DB2 UDB Commands for Administrators
	ADD DBPARTITIONNUM
	BACKUP DATABASE
	BACKUP DATABASE

	BIND
	CATALOG DATABASE
	CREATE DATABASE
	db2audit - Audit facility administrator tool
	db2gpmap - Get distribution map
	db2icrt - Create instance
	db2iupdt - Update instances
	db2nchg - Change database partition server configuration
	db2ncrt - Add database partition server to an instance
	db2ndrop - Drop database partition server from an instance
	db2rbind - Rebind all packages
	db2extsec - Set permissions for DB2 objects
	db2secGenerateInitialCred API - Generate initial credentials
	db2undgp - Revoke execute privilege
	DROP DATABASE
	DROP DBPARTITIONNUM VERIFY
	EXPORT
	GET DATABASE CONFIGURATION
	GET DATABASE MANAGER CONFIGURATION
	IMPORT
	INSPECT
	LIST APPLICATIONS
	LIST DATABASE PARTITION GROUPS
	LIST PACKAGES/TABLES
	LIST TABLESPACE CONTAINERS
	LIST TABLESPACES
	LOAD
	UPGRADE DATABASE
	QUIESCE
	QUIESCE TABLESPACES FOR TABLE
	RECOVER DATABASE
	REDISTRIBUTE DATABASE PARTITION GROUP
	REDISTRIBUTE DATABASE PARTITION GROUP

	REORG INDEXES/TABLE
	REORG INDEXES/TABLE

	RESTART DATABASE
	RESTORE DATABASE
	ROLLFORWARD DATABASE
	SET RUNTIME DEGREE
	SET WRITE
	START DATABASE MANAGER
	STOP DATABASE MANAGER
	UNQUIESCE
	UNQUIESCE

	UPDATE DATABASE CONFIGURATION
	UPDATE DATABASE CONFIGURATION

	UPDATE DATABASE MANAGER CONFIGURATION
	UPDATE DATABASE MANAGER CONFIGURATION

	Commands for Users
	ATTACH
	DETACH
	GET CONNECTION STATE
	LIST DBPARTITIONNUMS
	PRECOMPILE
	REBIND

	Chapter 31. Application programming interfaces (APIs)
	DB2 UDB APIs for Administrators
	db2Backup - Back up a database or table space
	db2CfgGet - Get the database manager or database configuration parameters
	db2CfgSet - Set the database manager or database configuration parameters
	db2DatabaseRestart - Restart database
	db2DatabaseQuiesce - Quiesce the database
	db2DatabaseUnquiesce - Unquiesce database
	db2Export - Export data from a database
	db2Import - Import data into a table, hierarchy, nickname or view
	db2Inspect - Inspect database for architectural integrity
	db2InstanceQuiesce - Quiesce instance
	db2InstanceStart - Start instance
	db2InstanceStop - Stop instance
	db2InstanceUnquiesce - Unquiesce instance
	db2Load - Load data into a table
	db2Recover - Restore and roll forward a database
	db2Reorg - Reorganize an index or a table
	db2Restore - Restore a database or table space
	db2Rollforward - Roll forward a database
	db2SetWriteForDB - Suspend or resume I/O writes for database
	sqlabndx - Bind application program to create a package
	sqlbftpq - Fetch the query data for rows in a table space
	sqlbmtsq - Get the query data for all table spaces
	sqlbotcq - Open a table space container query
	sqlbstpq - Get information about a single table space
	sqle_activate_db - Activate database
	sqle_deactivate_db - Deactivate database
	sqleaddn - Add a database partition to the partitioned database environment
	sqlecadb - Catalog a database in the system database directory
	sqlecrea - Create database
	sqledpan - Drop a database on a database partition server
	sqledrpd - Drop database
	sqledrpn - Check whether a database partition server can be dropped
	sqlefrce - Force users and applications off the system
	sqlemgdb - Migrate previous version of DB2 database to current version
	sqlesdeg - Set the maximum runtime intra-partition parallelism level or degree for SQL statements
	sqlugrpn - Get the database partition server number for a row
	sqlugtpi - Get table distribution information
	sqluvqdp - Quiesce table spaces for a table

	DB2 APIs for Users
	sqlaprep - Precompile application program
	sqlarbnd - Rebind package
	sqleatcp - Attach to instance and change password
	sqleatin - Attach to instance
	sqledtin - Detach from instance

	Part 4. Appendixes
	Appendix A. Related topics (linked to from topics in this book)
	SQL Reference topics
	SYSCAT.ATTRIBUTES
	SYSCAT.AUDITPOLICIES
	SYSCAT.AUDITUSE
	SYSCAT.BUFFERPOOLDBPARTITIONS
	SYSCAT.BUFFERPOOLS
	SYSCAT.CASTFUNCTIONS
	SYSCAT.CHECKS
	SYSCAT.COLCHECKS
	SYSCAT.COLDIST
	SYSCAT.COLGROUPCOLS
	SYSCAT.COLGROUPDIST
	SYSCAT.COLGROUPDISTCOUNTS
	SYSCAT.COLGROUPS
	SYSCAT.COLIDENTATTRIBUTES
	SYSCAT.COLOPTIONS
	SYSCAT.COLUMNS
	SYSCAT.COLUSE
	SYSCAT.CONDITIONS
	SYSCAT.CONSTDEP
	SYSCAT.CONTEXTATTRIBUTES
	SYSCAT.CONTEXTS
	SYSCAT.DATAPARTITIONEXPRESSION
	SYSCAT.DATAPARTITIONS
	SYSCAT.DATATYPEDEP
	SYSCAT.DATATYPES
	SYSCAT.DBPARTITIONGROUPDEF
	SYSCAT.DBPARTITIONGROUPS
	SYSCAT.EVENTMONITORS
	SYSCAT.EVENTS
	SYSCAT.EVENTTABLES
	SYSCAT.FULLHIERARCHIES
	SYSCAT.FUNCMAPOPTIONS
	SYSCAT.FUNCMAPPARMOPTIONS
	SYSCAT.FUNCMAPPINGS
	SYSCAT.HIERARCHIES
	SYSCAT.HISTOGRAMTEMPLATEBINS
	SYSCAT.HISTOGRAMTEMPLATES
	SYSCAT.HISTOGRAMTEMPLATEUSE
	SYSCAT.INDEXCOLUSE
	SYSCAT.INDEXDEP
	SYSCAT.INDEXES
	SYSCAT.INDEXEXPLOITRULES
	SYSCAT.INDEXEXTENSIONDEP
	SYSCAT.INDEXEXTENSIONMETHODS
	SYSCAT.INDEXEXTENSIONPARMS
	SYSCAT.INDEXEXTENSIONS
	SYSCAT.INDEXOPTIONS
	SYSCAT.INDEXPARTITIONS
	SYSCAT.INDEXXMLPATTERNS
	SYSCAT.INVALIDOBJECTS
	SYSCAT.KEYCOLUSE
	SYSCAT.MODULEAUTH
	SYSCAT.MODULEOBJECTS
	SYSCAT.MODULES
	SYSCAT.NAMEMAPPINGS
	SYSCAT.NICKNAMES
	SYSCAT.PACKAGES
	SYSCAT.PARTITIONMAPS
	SYSCAT.PREDICATESPECS
	SYSCAT.REFERENCES
	SYSCAT.ROLEAUTH
	SYSCAT.ROLES
	SYSCAT.ROUTINEDEP
	SYSCAT.ROUTINEOPTIONS
	SYSCAT.ROWFIELDS
	SYSCAT.ROUTINEPARMOPTIONS
	SYSCAT.ROUTINEPARMS
	SYSCAT.ROUTINES
	SYSCAT.ROUTINESFEDERATED
	SYSCAT.SERVEROPTIONS
	SYSCAT.SERVERS
	SYSCAT.SERVICECLASSES
	SYSCAT.STATEMENTS
	SYSCAT.TABDEP
	SYSCAT.TABDETACHEDDEP
	SYSCAT.TABOPTIONS
	SYSCAT.THRESHOLDS
	SYSCAT.TRANSFORMS
	SYSCAT.TRIGDEP
	SYSCAT.TRIGGERS
	SYSCAT.TYPEMAPPINGS
	SYSCAT.VARIABLEAUTH
	SYSCAT.VARIABLEDEP
	SYSCAT.VARIABLES
	SYSCAT.VIEWS
	SYSCAT.WORKACTIONS
	SYSCAT.WORKACTIONSETS
	SYSCAT.WORKCLASSES
	SYSCAT.WORKCLASSSETS
	SYSCAT.WORKLOADAUTH
	SYSCAT.WORKLOADCONNATTR
	SYSCAT.WORKLOADS
	SYSCAT.WRAPOPTIONS
	SYSCAT.WRAPPERS
	SYSCAT.XDBMAPGRAPHS
	SYSCAT.XDBMAPSHREDTREES
	SYSCAT.XMLSTRINGS
	SYSCAT.XSROBJECTAUTH
	SYSCAT.XSROBJECTCOMPONENTS
	SYSCAT.XSROBJECTDETAILS
	SYSCAT.XSROBJECTDEP
	SYSCAT.XSROBJECTHIERARCHIES
	SYSCAT.XSROBJECTS
	SYSIBM.SYSDUMMY1
	SYSSTAT.COLDIST
	SYSSTAT.COLGROUPDIST
	SYSSTAT.COLGROUPDISTCOUNTS
	SYSSTAT.COLGROUPS
	SYSSTAT.COLUMNS
	SYSSTAT.INDEXES
	SYSSTAT.ROUTINES
	SYSSTAT.TABLES

	Database object topics
	Automatic features
	Schema name restrictions and recommendations
	Table partitioning and data organization schemes
	Table spaces without file system caching
	Setting the current instance environment variables
	System environment variables
	General registry variables

	Administration configuration topics
	authentication - Authentication type
	svcename - TCP/IP service name

	Appendix B. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix C. Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

