
IBM DB2 Version 9.7

for Linux, UNIX, and Windows

Common Criteria Certification: Administration and User Documentation -

Volume 2 - Revision 5

SC14-7214-00

���

IBM DB2 Version 9.7

for Linux, UNIX, and Windows

Common Criteria Certification: Administration and User Documentation -

Volume 2 - Revision 5

SC14-7214-00

���

Note

Before using this information and the product it supports, read the general information under Appendix C, “Notices,” on

page 875.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2009.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Common Criteria certification of DB2

products ix

Supported interfaces for a Common

Criteria evaluated configuration xi

About this book xiii

Part 1. SQL Statements 1

Chapter 1. SQL Statements for

Administrators 3

ALTER AUDIT POLICY 3

ALTER DATABASE PARTITION GROUP 6

ALTER FUNCTION 9

ALTER METHOD 11

ALTER PROCEDURE (External) 12

ALTER SECURITY LABEL COMPONENT 14

ALTER SECURITY POLICY 17

ALTER TABLE 20

ALTER TABLESPACE 66

ALTER VIEW 78

AUDIT 80

COMMENT 83

CREATE AUDIT POLICY 95

CREATE DATABASE PARTITION GROUP 98

CREATE FUNCTION 100

CREATE INDEX 101

CREATE METHOD 119

CREATE PROCEDURE (SQL) 124

CREATE ROLE 134

CREATE SCHEMA 135

CREATE SECURITY LABEL 137

CREATE SECURITY LABEL COMPONENT . . . 139

CREATE SECURITY POLICY 141

CREATE TABLE 143

CREATE TABLESPACE 212

CREATE VIEW 225

DELETE 239

DROP 245

GRANT (Database Authorities) 278

GRANT (Exemption) 283

GRANT (Index Privileges) 285

GRANT (Package Privileges) 286

GRANT (Role) 289

GRANT (routine privileges) 291

GRANT (Schema Privileges) 295

GRANT (Security Label) 297

GRANT (Sequence Privileges) 300

GRANT (Server Privileges) 302

GRANT (SETSESSIONUSER Privilege) 303

GRANT (Table Space Privileges) 305

GRANT (Table, View, or Nickname Privileges) . . 307

INSERT 313

RENAME 321

RENAME TABLESPACE 323

REVOKE (Database Authorities) 324

REVOKE (Exemption) 328

REVOKE (Index Privileges) 330

REVOKE (Package Privileges) 331

REVOKE (Role) 334

REVOKE (routine privileges) 336

REVOKE (Schema Privileges) 339

REVOKE (Security Label) 341

REVOKE (Sequence Privileges) 342

REVOKE (Server Privileges) 344

REVOKE (SETSESSIONUSER Privilege) 346

REVOKE (Table Space Privileges) 347

REVOKE (Table, View, or Nickname Privileges) 349

SET ROLE 353

UPDATE 354

Chapter 2. SQL Statements for Users 365

COMMIT 365

CONNECT (Type 1) 366

CONNECT (Type 2) 373

DISCONNECT 379

fullselect 382

LOCK TABLE 386

ROLLBACK 388

SELECT 390

select-statement 390

SET INTEGRITY 400

SET SCHEMA 417

SQL queries 418

subselect 419

TRANSFER OWNERSHIP 458

Part 2. Functions 473

Chapter 3. Functions 475

Functions overview 475

DBPARTITIONNUM 476

DECRYPT_BIN and DECRYPT_CHAR 477

ENCRYPT 479

GETHINT 481

HASHEDVALUE 482

SECLABEL 483

SECLABEL_BY_NAME 483

SECLABEL_TO_CHAR 484

TABLE_NAME 486

TABLE_SCHEMA 487

Part 3. Applications 489

Chapter 4. Application considerations 491

About SQL statements 491

How SQL statements are invoked 491

© Copyright IBM Corp. 1993, 2009 iii

 | |

About SQL control statements 495

Function, method, and procedure designators 497

Database connection management via embedded

SQL applications 501

Connecting to DB2 databases in embedded SQL

applications 501

Disconnecting from embedded SQL applications 502

Considerations for routines 503

Security of routines 503

Securing routines 504

Guidelines for stored procedures 505

Security Considerations when Using SQL in

Applications 506

Precompilation of embedded SQL applications

with the PRECOMPILE command 506

Compiling and linking source files containing

embedded SQL 508

Package recreation using the BIND command

and an existing bind file 509

Generating sequential values 509

Managing sequence behavior 510

Sequences compared to identity columns . . . 511

Authorization Considerations for Embedded

SQL 512

Effect of DYNAMICRULES bind option on

dynamic SQL 513

Units of work and transactions 515

Units of work 515

Remote unit of work 516

Concurrent transactions and multi-threaded

database access in embedded SQL applications . 517

Security and Java Applications 519

SQLJ SET-TRANSACTION-clause 519

Setting the isolation level for an SQLJ

transaction 519

SQLJ context-clause 520

Connecting to a data source using SQLJ . . . 520

SQLJ connection-declaration-clause 520

Closing the connection to a data source in an

SQLJ application 521

JDBC Considerations 522

How JDBC applications connect to a data source 522

Connecting to a data source using the

DataSource interface 523

JDBC connection objects 525

Committing or rolling back JDBC transactions 525

Disconnecting from data sources in JDBC

applications 526

Type 2 JDBC Driver Considerations 526

Security under the DB2 JDBC Type 2 Driver . . 526

How DB2 applications connect to a data source

using the DriverManager interface with the DB2

JDBC Type 2 Driver 527

Universal JDBC Driver Considerations 528

User ID and password security under the IBM

Data Server Driver for JDBC and SQLJ 528

User ID-only security under the IBM Data

Server Driver for JDBC and SQLJ 530

Kerberos security under the IBM Data Server

Driver for JDBC and SQLJ 531

Encrypted password, user ID, or user ID and

password security under the IBM Data Server

Driver for JDBC and SQLJ 534

Security under the IBM Data Server Driver for

JDBC and SQLJ 536

Connecting to a data source using the

DriverManager interface with the IBM Data

Server Driver for JDBC and SQLJ 538

Chapter 5. Security and Routines . . . 541

Benefits of using routines 541

External scalar functions 542

Methods 543

Security considerations for routines 544

Connection contexts in SQLJ routines 546

External routine library and class management . . 547

Rebuilding DB2 routine shared libraries 547

Updating the database manager configuration file 547

Chapter 6. SQLCA (SQL

communications area) 549

Chapter 7. SQLDA (SQL descriptor

area) 555

Chapter 8. Identifiers 565

Part 4. Security plug-ins 591

Chapter 9. An overview of security

plug-ins 593

Security plug-ins 593

Security plug-in library locations 597

Security plug-in naming conventions 597

Security plug-in support for two-part user IDs . . 598

32-bit and 64-bit considerations for security

plug-ins 600

Security plug-in problem determination 600

Deploying a group retrieval plug-in 602

Deploying a user ID/password plug-in 602

Deploying a GSS-API plug-in 603

Deploying a Kerberos plug-in 604

Restrictions on security plug-ins 606

Chapter 10. Developing security

plug-ins 609

How DB2 loads security plug-ins 609

Calling sequences for the security plug-in APIs . . 610

Restrictions for developing security plug-in

libraries 613

Return codes for security plug-ins 615

Error message handling for security plug-ins . . . 618

Chapter 11. Security plug-in APIs . . . 619

Security plug-in APIs 619

Group plug-in APIs 620

APIs for group retrieval plug-ins 620

iv Common Criteria Certification: Administration and User Documentation - Volume 2

db2secGroupPluginInit API - Initialize group

plug-in 621

db2secPluginTerm - Clean up group plug-in

resources 622

db2secGetGroupsForUser API - Get list of

groups for user 623

db2secDoesGroupExist API - Check if group

exists 626

db2secFreeGroupListMemory API - Free group

list memory 627

db2secFreeErrormsg API - Free error message

memory 627

User authentication plug-in APIs 627

APIs for user ID/password authentication

plug-ins 627

db2secClientAuthPluginInit API - Initialize

client authentication plug-in 633

db2secClientAuthPluginTerm API - Clean up

client authentication plug-in resources 634

db2secRemapUserid API - Remap user ID and

password 635

db2secGetDefaultLoginContext API - Get

default login context 636

db2secGenerateInitialCred API - Generate initial

credentials 638

db2secValidatePassword API - Validate

password 639

db2secProcessServerPrincipalName API -

Process service principal name returned from

server 642

db2secFreeToken API - Free memory held by

token 643

db2secFreeInitInfo API - Clean up resources

held by the db2secGenerateInitialCred 643

db2secServerAuthPluginInit - Initialize server

authentication plug-in 643

db2secServerAuthPluginTerm API - Clean up

server authentication plug-in resources 646

db2secGetAuthIDs API - Get authentication IDs 647

db2secDoesAuthIDExist - Check if

authentication ID exists 648

GSS-API plug-in APIs 649

Required APIs and definitions for GSS-API

authentication plug-ins 649

Restrictions for GSS-API authentication plug-ins 650

Security plug-in API versioning 651

Security plug-in samples 651

Chapter 12. Security Plug-In

Configuration Parameters 653

clnt_krb_plugin - Client Kerberos plug-in 653

clnt_pw_plugin - Client userid-password plug-in 653

group_plugin - Group plug-in 654

local_gssplugin - GSS API plug-in used for local

instance level authorization 654

srvcon_auth - Authentication type for incoming

connections at the server 654

srvcon_gssplugin_list - List of GSS API plug-ins for

incoming connections at the server 655

srvcon_pw_plugin - Userid-password plug-in for

incoming connections at the server 656

srv_plugin_mode - Server plug-in mode 656

Part 5. Configuration Parameters 657

Chapter 13. Configuration Parameters 659

Configuration parameters 659

Configuring the DB2 database manager with

configuration parameters 660

Configuration parameters summary 663

Changing the database configuration across

multiple database partitions 677

Security-Related Configuration Parameters . . . 677

audit_buf_sz - Audit buffer size 677

authentication - Authentication type 678

authentication - Authentication type DAS . . . 679

catalog_noauth - Cataloging allowed without

authority 680

dasadm_group - DAS administration authority

group name 680

dftdbpath - Default database path 681

svcename - TCP/IP service name 681

sysadm_group - System administration

authority group name 682

sysctrl_group - System control authority group

name 683

sysmaint_group - System maintenance authority

group name 683

sysmon_group - System monitor authority

group name 684

trust_allclnts - Trust all clients 685

Locking Configuration Parameters 686

dlchktime - Time interval for checking deadlock 686

locklist - Maximum storage for lock list . . . 686

locktimeout - Lock timeout 689

maxlocks - Maximum percent of lock list before

escalation 690

SSL Configuration Parameters 692

ssl_svr_keydb - SSL key file path for incoming

SSL connections at the server configuration

parameter 692

ssl_svr_stash - SSL stash file path for incoming

SSL connections at the server configuration

parameter 692

ssl_svr_label - Label in the key file for incoming

SSL connections at the server configuration

parameter 693

ssl_svcename - SSL service name configuration

parameter 693

ssl_versions - Supported SSL versions at the

server configuration parameter 694

ssl_cipherspecs - Supported cipher specifications

at the server configuration parameter 694

ssl_clnt_keydb - SSL key file path for outbound

SSL connections at the client configuration

parameter 695

ssl_clnt_stash - SSL stash file path for outbound

SSL connections at the client configuration

parameter 695

Contents v

Chapter 14. Communications in a

partitioned database environment . . 697

conn_elapse - Connection elapse time 697

fcm_num_buffers - Number of FCM buffers . . . 697

fcm_num_channels - Number of FCM channels . . 698

max_connretries - Node connection retries 699

max_time_diff - Maximum time difference among

nodes 699

start_stop_time - Start and stop timeout 700

Chapter 15. autorestart - Auto restart

enable 703

Chapter 16. database_consistent -

Database is consistent 705

Chapter 17. nodetype - Machine node

type 707

Chapter 18. restrict_access - Database

has restricted access configuration

parameter 709

Part 6. Recovery considerations 711

Chapter 19. Crash Recovery and

Database Logs 713

Crash recovery 713

Chapter 20. Application processes,

concurrency, and recovery 715

Chapter 21. Recovering from

transaction failures in a partitioned

database environment 717

Part 7. Appendixes 721

Appendix A. Related topics (linked to

from topics in this book) 723

SQL Reference topics 723

Assignments and comparisons 723

CURRENT CLIENT_ACCTNG 739

CURRENT DATE 739

CURRENT DECFLOAT ROUNDING MODE 739

CURRENT DEFAULT TRANSFORM GROUP 740

CURRENT DEGREE 741

CURRENT EXPLAIN MODE 741

CURRENT EXPLAIN SNAPSHOT 742

CURRENT FEDERATED ASYNCHRONY . . . 743

CURRENT IMPLICIT XMLPARSE OPTION . . 743

CURRENT ISOLATION 744

CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION 745

CURRENT MDC ROLLOUT MODE 745

CURRENT OPTIMIZATION PROFILE 745

CURRENT PACKAGE PATH 745

CURRENT PATH 746

CURRENT QUERY OPTIMIZATION 747

CURRENT REFRESH AGE 747

CURRENT TIME 747

CURRENT TIMESTAMP 748

CURRENT TIMEZONE 748

CURRENT USER 749

Configuration parameter topics 749

agent_stack_sz - Agent stack size 749

agentpri - Priority of agents 751

alt_collate - Alternate collating sequence . . . 752

alternate_auth_enc - Alternate encryption

algorithm for incoming connections at server

configuration parameter 752

appl_memory - Application Memory

configuration parameter 753

applheapsz - Application heap size 754

archretrydelay - Archive retry delay on error 755

aslheapsz - Application support layer heap size 755

auto_del_rec_obj - Automated deletion of

recovery objects configuration parameter . . . 757

auto_maint - Automatic maintenance 757

avg_appls - Average number of active

applications 759

backup_pending - Backup pending indicator 760

blk_log_dsk_ful - Block on log disk full . . . 760

catalogcache_sz - Catalog cache size 761

chngpgs_thresh - Changed pages threshold . . 762

cluster_mgr - Cluster manager name 763

codepage - Code page for the database 763

codeset - Codeset for the database 763

collate_info - Collating information 764

comm_bandwidth - Communications bandwidth 764

contact_host - Location of contact list 765

country/region - Database territory code . . . 766

cpuspeed - CPU speed 766

cur_commit - Currently committed

configuration parameter 766

das_codepage - DAS code page 767

das_territory - DAS territory 768

database_level - Database release level 768

database_memory - Database shared memory

size 768

db2system - Name of the DB2 server system 770

db_mem_thresh - Database memory threshold 771

dbheap - Database heap 771

decflt_rounding - Decimal floating point

rounding configuration parameter 773

dft_account_str - Default charge-back account 774

dft_degree - Default degree 775

dft_extent_sz - Default extent size of table

spaces 776

dft_loadrec_ses - Default number of load

recovery sessions 776

dft_monswitches - Default database system

monitor switches 777

dft_mttb_types - Default maintained table types

for optimization 778

dft_prefetch_sz - Default prefetch size 778

dft_queryopt - Default query optimization class 779

vi Common Criteria Certification: Administration and User Documentation - Volume 2

dft_refresh_age - Default refresh age 780

dft_sqlmathwarn - Continue upon arithmetic

exceptions 780

diaglevel - Diagnostic error capture level . . . 782

diagpath - Diagnostic data directory path . . . 782

dir_cache - Directory cache support 783

discover - DAS discovery mode 785

discover - Discovery mode 785

discover_db - Discover database 786

discover_inst - Discover server instance . . . 786

dyn_query_mgmt - Dynamic SQL and XQuery

query management 787

enable_xmlchar - Enable conversion to XML

configuration parameter 787

exec_exp_task - Execute expired tasks 788

failarchpath - Failover log archive path 788

fed_noauth - Bypass federated authentication 788

federated - Federated database system support 789

federated_async - Maximum asynchronous TQs

per query configuration parameter 789

fenced_pool - Maximum number of fenced

processes 790

hadr_db_role - HADR database role 791

hadr_local_host - HADR local host name . . . 792

hadr_local_svc - HADR local service name . . 792

hadr_peer_window - HADR peer window

configuration parameter 793

hadr_remote_host - HADR remote host name 793

hadr_remote_inst - HADR instance name of the

remote server 794

hadr_remote_svc - HADR remote service name 794

hadr_syncmode - HADR synchronization mode

for log write in peer state 794

hadr_timeout - HADR timeout value 795

health_mon - Health monitoring 795

indexrec - Index re-creation time 796

instance_memory - Instance memory 798

intra_parallel - Enable intra-partition parallelism 800

java_heap_sz - Maximum Java interpreter heap

size 801

jdk_64_path - 64-Bit Software Developer’s Kit

for Java installation path DAS 802

jdk_path - Software Developer’s Kit for Java

installation path DAS 802

jdk_path - Software Developer’s Kit for Java

installation path 803

keepfenced - Keep fenced process 803

log_retain_status - Log retain status indicator 804

logarchmeth1 - Primary log archive method . . 804

logarchmeth2 - Secondary log archive method 806

logarchopt1 - Primary log archive options . . . 807

logarchopt2 - Secondary log archive options . . 807

logbufsz - Log buffer size 808

logfilsiz - Size of log files 808

loghead - First active log file 809

logindexbuild - Log index pages created . . . 809

logpath - Location of log files 810

logprimary - Number of primary log files . . . 810

logretain - Log retain enable 811

logsecond - Number of secondary log files . . 812

max_connections - Maximum number of client

connections 813

max_coordagents - Maximum number of

coordinating agents 814

max_log - Maximum log per transaction . . . 815

max_querydegree - Maximum query degree of

parallelism 815

maxappls - Maximum number of active

applications 816

maxfilop - Maximum database files open per

application 817

min_dec_div_3 - Decimal division scale to 3 . . 818

mincommit - Number of commits to group . . 819

mirrorlogpath - Mirror log path 820

mon_heap_sz - Database system monitor heap

size 821

multipage_alloc - Multipage file allocation

enabled 822

newlogpath - Change the database log path . . 822

notifylevel - Notify level 824

num_db_backups - Number of database

backups 825

num_freqvalues - Number of frequent values

retained 825

num_initagents - Initial number of agents in

pool 826

num_initfenced - Initial number of fenced

processes 827

num_iocleaners - Number of asynchronous page

cleaners 827

num_ioservers - Number of I/O servers . . . 829

num_log_span - Number log span 830

num_poolagents - Agent pool size 830

num_quantiles - Number of quantiles for

columns 831

numarchretry - Number of retries on error . . 832

numdb - Maximum number of concurrently

active databases including host and System i

databases 833

numsegs - Default number of SMS containers 833

overflowlogpath - Overflow log path 834

pagesize - Database default page size 835

pckcachesz - Package cache size 835

query_heap_sz - Query heap size 837

rec_his_retentn - Recovery history retention

period 838

release - Configuration file release level . . . 838

restore_pending - Restore pending 839

Restrictions and behavior when configuring

max_coordagents and max_connections . . . 839

resync_interval - Transaction resync interval . . 841

rollfwd_pending - Roll forward pending

indicator 841

rqrioblk - Client I/O block size 842

sched_enable - Scheduler mode 843

sched_userid - Scheduler user ID 843

self_tuning_mem- Self-tuning memory 843

seqdetect - Sequential detection flag 845

sheapthres - Sort heap threshold 845

sheapthres_shr - Sort heap threshold for shared

sorts 847

Contents vii

smtp_server - SMTP server 848

softmax - Recovery range and soft checkpoint

interval 849

sortheap - Sort heap size 850

spm_log_file_sz - Sync point manager log file

size 851

spm_log_path - Sync point manager log file

path 852

spm_max_resync - Sync point manager resync

agent limit 853

spm_name - Sync point manager name 853

stat_heap_sz - Statistics heap size 853

stmtheap - Statement heap size 854

territory - Database territory 854

tm_database - Transaction manager database

name 855

toolscat_db - Tools catalog database 855

toolscat_inst - Tools catalog database instance 856

toolscat_schema - Tools catalog database schema 856

tp_mon_name - Transaction processor monitor

name 856

trackmod - Track modified pages enable . . . 858

trust_clntauth - Trusted clients authentication 858

tsm_mgmtclass - Tivoli Storage Manager

management class 859

tsm_nodename - Tivoli Storage Manager node

name 859

tsm_owner - Tivoli Storage Manager owner

name 860

tsm_password - Tivoli Storage Manager

password 860

user_exit_status - User exit status indicator . . 861

userexit - User exit enable 861

util_heap_sz - Utility heap size 861

util_impact_lim - Instance impact policy . . . 862

vendoropt - Vendor options 863

wlm_collect_int - Workload management

collection interval configuration parameter . . 863

Appendix B. Overview of the DB2

technical information 865

DB2 technical library in hardcopy or PDF format 865

Ordering printed DB2 books 868

Displaying SQL state help from the command line

processor 869

Accessing different versions of the DB2

Information Center 869

Displaying topics in your preferred language in the

DB2 Information Center 869

Updating the DB2 Information Center installed on

your computer or intranet server 870

Manually updating the DB2 Information Center

installed on your computer or intranet server . . 871

DB2 tutorials 873

DB2 troubleshooting information 873

Terms and Conditions 874

Appendix C. Notices 875

Index 879

viii Common Criteria Certification: Administration and User Documentation - Volume 2

 |
 | |

Common Criteria certification of DB2 products

For Version 9.7, IBM® DB2® products are certified according to the Common

Criteria evaluation assurance level 4 (EAL4), augmented with Flaw remediation

ALC_FLR.1.

The following product is certified on the following operating systems:

 Table 1.

Windows®

Server 2003

Red Hat

Enterprise

Linux® 5

SuSE Linux

Enterprise

Server 10 AIX® 6 Solaris 10

IBM DB2

Version 9.7

Enterprise

Server

Edition for

Linux,

UNIX®, and

Windows

Yes Yes Yes Yes Yes

Note:

1. For a Common Criteria certified DB2 environment, DB2 requires 64-bit

Windows Server 2003 x64, Red Hat Enterprise Linux 5, or SuSE Linux

Enterprise Server 10 operating systems for Intel® EM64T- and AMD64-based

systems.

2. In a Common Criteria certified DB2 environment, DB2 clients are supported on

the following operating systems:

v Windows 2003

v Red Hat Enterprise Linux 5

v SuSE Linux Enterprise Server 10

v AIX 6

v Solaris 10

For more information about Common Criteria, see the Common Criteria web site

at: http://www.commoncriteriaportal.org.

For information about installing and configuring a DB2 system that conforms to

the Common Criteria EAL4, see the following books:

v Installing IBM DB2 Enterprise Server Edition

v IBM DB2 Administration and User Documentation

These books are available in PDF format from the DB2 Information Management

Library.

© Copyright IBM Corp. 1993, 2009 ix

x Common Criteria Certification: Administration and User Documentation - Volume 2

Supported interfaces for a Common Criteria evaluated

configuration

The set of DB2 interfaces that are used in the Common Criteria evaluation of the

DB2 database manager are as follows:

v The DB2 install program

v The command line processor

v DB2 commands

v DB2 application programming interfaces (APIs)

v SQL statements

You can use these interfaces when installing and configuring a Common Criteria

compliant DB2 system.

Other interfaces that are provided by the DB2 database manager, such as the

Control Center or Command Editor were not used during the Common Criteria

evaluation of DB2 products, and must not be used in the Common Criteria

evaluation configuration.

The Workload management feature, introduced in Version 9.7, must also not be

used in the Common Criteria evaluated configuration. This feature is designed

for complex, multi-layered environments, and its secure operation is intricately

linked to the correct functionality of components well outside the boundary of the

target of evaluation. The associated statements require SYSADM or DBADM

administrative privileges, and are therefore not available to regular users.

Administrative users should not use the following statements to create workload

management objects:

v CREATE WORKLOAD statement

v CREATE SERVICE CLASS statement

v CREATE THRESHOLD statement

v CREATE HISTOGRAM statement

v CREATE WORK CLASS SET statement

v CREATE WORK ACTION SET statement

Note:

v NOT FENCED routines are also not supported.

v Data encryption functions ENCRYPT, DECRYPT_BIN, DECRYPT_CHAR and

GETHINT must not be used.

v The user-written security plugins must not be used.

v Like table privileges (SELECT, INSERT, UPDATE, DELETE), Label-Based Access

Control (LBAC) has no control over access to physical files such as database files

and transaction logs. Given that these files contain database data including data

protected with LBAC and given that DB2 administrators have direct access to

these physical files, DB2 administrators should be treated as having the highest

level of access even though this is an indirect access and is outside the scope of

the LBAC model.

© Copyright IBM Corp. 1993, 2009 xi

When using the DB2 Database Partition Feature (DPF), the external security

information that is used by the DB2 database manager to perform authentication

and authorization must be configured consistently on each partition. This

information depends on the authentication type in use. For operating system

security, this information is the username, password and group membership of

each user that can connect to the database. Identical usernames, passwords and

groups must be created at each partition. For LDAP authentication, this

information is stored in the LDAP configuration file for the LDAP-based

authentication plugin. The LDAP configuration file must have the same contents

on each partition. For Kerberos, in order to ensure that the same Key Distribution

Center (KDC) is used for each partition, this information is stored in the Kerberos

configuration file on the server where the DB2 product is installed. Failure to

provide consistent configuration information at each partition could result in users

being unable to authenticate, and hence connect to the DB2 database, or users

having reduced privileges, if incomplete group membership information is

obtained from the local operating system, or from LDAP, or from Kerberos.

xii Common Criteria Certification: Administration and User Documentation - Volume 2

About this book

This book, consisting of volumes 1 and 2, is intended for use by assessors

validating that specific DB2 database products conform to the Common Criteria

EAL4 specification augmented with Flaw remediation ALC_FLR.1. It is also

intended for those who want to set up a DB2 environment that conforms to the

characteristics of the evaluated environment.

Volume 2 describes:

v SQL statements.

v The security-related considerations for writing applications that interact with the

DB2 database manager.

v Security plug-ins. Note that only the default IBM-supplied operating-system

based authentication and grup plug-ins are supported in Common Criteria

compliant environments.

Regarding security considerations on SQL statements and SQL routines (found in

chapters 5 and 6):

v Passwords appear in SQL statements in plain text. As such, any program or

script containing such statements needs appropriate protection with OS- and

DBMS-provided mechanisms.

v A major database vulnerability (generic) is SQL injection. As such, use caution

and validate any direct user input looking for SQL injection attacks—looking for

SQL statements, special characters such as {},; and quotes.

Note: This book does not provide information on how to install DB2 database

servers. For installation information, See the Version 9.7 Installing IBM DB2

Enterprise Server Edition.

Some topics in book link to related topics, which are either included in Appendix

A in order to resolve the links, or that are referenced outside of the Common

Criteria certification documentation. These are for informational purposes only, and

are not required for either installing or configuring a Common Criteria compliant

environment.

© Copyright IBM Corp. 1993, 2009 xiii

xiv Common Criteria Certification: Administration and User Documentation - Volume 2

Part 1. SQL Statements

© Copyright IBM Corp. 1993, 2009 1

2 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 1. SQL Statements for Administrators

ALTER AUDIT POLICY

The ALTER AUDIT POLICY statement modifies the definition of an audit policy at

the current server.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� ALTER AUDIT POLICY policy-name �

�

�

�

,

(1)

(2)

CATEGORIES

ALL

STATUS

BOTH

AUDIT

FAILURE

CHECKING

NONE

CONTEXT

SUCCESS

WITHOUT DATA

EXECUTE

WITH DATA

OBJMAINT

SECMAINT

SYSADMIN

VALIDATE

ERROR TYPE

NORMAL

AUDIT

��

Notes:

1 Each of the CATEGORIES and ERROR TYPE clauses can be specified at most

once (SQLSTATE 42614).

2 Each category can be specified at most once (SQLSTATE 42614), and no other

category can be specified if ALL is specified (SQLSTATE 42601).

Description

policy-name

Identifies the audit policy that is to be altered. This is a one-part name. It is an

SQL identifier (either ordinary or delimited). The name must uniquely identify

an existing audit policy at the current server (SQLSTATE 42704).

CATEGORIES

A list of one or more audit categories for which a new status value is specified.

If ALL is not specified, the STATUS of any category that is not explicitly

specified remains unchanged.

© Copyright IBM Corp. 1993, 2009 3

ALL

Sets all categories to the same status. The EXECUTE category is WITHOUT

DATA.

AUDIT

Generates records when audit settings are changed or when the audit log

is accessed.

CHECKING

Generates records during authorization checking of attempts to access or

manipulate database objects or functions.

CONTEXT

Generates records to show the operation context when a database

operation is performed.

EXECUTE

Generates records to show the execution of SQL statements.

WITHOUT DATA or WITH DATA

Specifies whether or not input data values provided for any host

variables and parameter markers should be logged as part of the

EXECUTE category.

WITHOUT DATA

Input data values provided for any host variables and parameter

markers are not logged as part of the EXECUTE category.

WITH DATA

Input data values provided for any host variables and parameter

markers are logged as part of the EXECUTE category. Not all input

values are logged; specifically, LOB, LONG, XML, and structured

type parameters appear as the null value. Date, time, and

timestamp fields are logged in ISO format. The input data values

are converted to the database code page before being logged. If

code page conversion fails, no errors are returned and the

unconverted data is logged.

OBJMAINT

Generates records when data objects are created or dropped.

SECMAINT

Generates records when object privileges, database privileges, or DBADM

authority is granted or revoked. Records are also generated when the

database manager security configuration parameters sysadm_group,

sysctrl_group, or sysmaint_group are modified.

SYSADMIN

Generates records when operations requiring SYSADM, SYSMAINT, or

SYSCTRL authority are performed.

VALIDATE

Generates records when users are authenticated or when system security

information related to a user is retrieved.

STATUS

Specifies a status for the specified category.

BOTH

Successful and failing events will be audited.

FAILURE

Only failing events will be audited.

4 Common Criteria Certification: Administration and User Documentation - Volume 2

SUCCESS

Only successful events will be audited.

NONE

No events in this category will be audited.

ERROR TYPE

Specifies whether audit errors are to be returned or ignored.

NORMAL

Any errors generated by the audit are ignored and only the SQLCODEs for

errors associated with the operation being performed are returned to the

application.

AUDIT

All errors, including errors occurring within the audit facility itself, are

returned to the application.

Rules

v An AUDIT-exclusive SQL statement must be followed by a COMMIT or

ROLLBACK statement (SQLSTATE 5U021). AUDIT-exclusive SQL statements are:

– AUDIT

– CREATE AUDIT POLICY, ALTER AUDIT POLICY, or DROP (AUDIT

POLICY)

– DROP (ROLE) or DROP (TRUSTED CONTEXT) if the role or trusted context

is associated with an audit policy
v An AUDIT-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

v Only one uncommitted AUDIT-exclusive SQL statement is allowed at a time

across all database partitions. If an uncommitted AUDIT-exclusive SQL

statement is executing, subsequent AUDIT-exclusive SQL statements wait until

the current AUDIT-exclusive SQL statement commits or rolls back.

v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.

v If the audit policy that is being altered is currently associated with a database

object, the changes do not take effect until the next unit of work for the

application that is affected by the change. For example, if the audit policy is in

use for the database, no current units of work will see the change to the policy

until after a COMMIT or a ROLLBACK statement for that unit of work

completes.

Example

Alter the SECMAINT, CHECKING, and VALIDATE categories of an audit policy

named DBAUDPRF to audit both successes and failures.

 ALTER AUDIT POLICY DBAUDPRF

 CATEGORIES SECMAINT STATUS BOTH,

 CHECKING STATUS BOTH,

 VALIDATE STATUS BOTH

Chapter 1. SQL Statements for Administrators 5

ALTER DATABASE PARTITION GROUP

The ALTER DATABASE PARTITION GROUP statement is used to:

v add one or more database partitions to a database partition group

v drop one or more database partitions from a database partition group.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The authorization ID of the statement must have SYSCTRL or SYSADM authority.

Syntax

�� ALTER DATABASE PARTITION GROUP db-partition-name �

�

�

 ,

ADD

DBPARTITIONNUM

db-partitions-clause

DBPARTITIONNUMS

LIKE DBPARTITIONNUM

db-partition-number

WITHOUT TABLESPACES

DROP

DBPARTITIONNUM

db-partitions-clause

DBPARTITIONNUMS

��

db-partitions-clause:

�

 ,

(

db-partition-number1

)

TO

db-partition-number2

Description

db-partition-name

Names the database partition group. This is a one-part name. It is an SQL

identifier (either ordinary or delimited). It must be a database partition group

described in the catalog. IBMCATGROUP and IBMTEMPGROUP cannot be

specified (SQLSTATE 42832).

ADD DBPARTITIONNUM

Specifies the specific database partition or partitions to add to the database

partition group. DBPARTITIONNUMS is a synonym for DBPARTITIONNUM.

Any specified database partition must not already be defined in the database

partition group (SQLSTATE 42728).

DROP DBPARTITIONNUM

Specifies the specific database partition or partitions to drop from the database

partition group. DBPARTITIONNUMS is a synonym for DBPARTITIONNUM.

Any specified database partition must already be defined in the database

partition group (SQLSTATE 42729).

db-partitions-clause

Specifies the database partition or partitions to be added or dropped.

6 Common Criteria Certification: Administration and User Documentation - Volume 2

db-partition-number1

Specify a specific database partition number.

TO db-partition-number2

Specify a range of database partition numbers. The value of

db-partition-number2 must be greater than or equal to the value of

db-partition-number1 (SQLSTATE 428A9).

LIKE DBPARTITIONNUM db-partition-number

Specifies that the containers for the existing table spaces in the database

partition group will be the same as the containers on the specified

db-partition-number. The specified database partition must be a partition that

existed in the database partition group prior to this statement, and that is not

included in a DROP DBPARTITIONNUM clause of the same statement.

 For table spaces that are defined to use automatic storage (that is, table spaces

that were created with the MANAGED BY AUTOMATIC STORAGE clause of

the CREATE TABLESPACE statement, or for which no MANAGED BY clause

was specified at all), the containers will not necessarily match those from the

specified partition. Instead, containers will automatically be assigned by the

database manager based on the storage paths that are associated with the

database, and this might or might not result in the same containers being used.

The size of each table space is based on the initial size that was specified when

the table space was created, and might not match the current size of the table

space on the specified partition.

WITHOUT TABLESPACES

Specifies that the containers for existing table spaces in the database partition

group are not created on the newly added database partition or partitions. The

ALTER TABLESPACE statement using the db-partitions-clause must be used to

define containers for use with the table spaces that are defined on this

database partition group. If this option is not specified, the default containers

are specified on newly added database partitions for each table space defined

on the database partition group.

 This option is ignored for table spaces that are defined to use automatic

storage (that is, table spaces that were created with the MANAGED BY

AUTOMATIC STORAGE clause of the CREATE TABLESPACE statement, or for

which no MANAGED BY clause was specified at all). There is no way to defer

container creation for these table spaces. Containers will automatically be

assigned by the database manager based on the storage paths that are

associated with the database. The size of each table space will be based on the

initial size that was specified when the table space was created.

Rules

v Each database partition specified by number must be defined in the

db2nodes.cfg file (SQLSTATE 42729).

v Each db-partition-number listed in the db-partitions-clause must be for a unique

database partition (SQLSTATE 42728).

v A valid database partition number is between 0 and 999 inclusive (SQLSTATE

42729).

v A database partition cannot appear in both the ADD and DROP clauses

(SQLSTATE 42728).

v There must be at least one database partition remaining in the database partition

group. The last database partition cannot be dropped from a database partition

group (SQLSTATE 428C0).

Chapter 1. SQL Statements for Administrators 7

v If neither the LIKE DBPARTITIONNUM clause nor the WITHOUT

TABLESPACES clause is specified when adding a database partition, the default

is to use the lowest database partition number of the existing database partitions

in the database partition group (say it is 2) and proceed as if LIKE

DBPARTITIONNUM 2 had been specified. For an existing database partition to

be used as the default, it must have containers defined for all the table spaces in

the database partition group (column IN_USE of

SYSCAT.DBPARTITIONGROUPDEF is not ’T’).

v The ALTER DATABASE PARTITION GROUP statement might fail (SQLSTATE

55071) if an add database partition server request is either pending or in

progress. This statement might also fail (SQLSTATE 55077) if a new database

partition server is added online to the instance and not all applications are

aware of the new database partition server.

Notes

v When a database partition is added to a database partition group, a catalog

entry is made for the database partition (see

SYSCAT.DBPARTITIONGROUPDEF). The distribution map is changed

immediately to include the new database partition, along with an indicator

(IN_USE) that the database partition is in the distribution map if either:

– no table spaces are defined in the database partition group or

– no tables are defined in the table spaces defined in the database partition

group and the WITHOUT TABLESPACES clause was not specified.
The distribution map is not changed and the indicator (IN_USE) is set to

indicate that the database partition is not included in the distribution map if

either:

– Tables exist in table spaces in the database partition group or

– Table spaces exist in the database partition group and the WITHOUT

TABLESPACES clause was specified (unless all of the table spaces are defined

to use automatic storage, in which case the WITHOUT TABLESPACES clause

is ignored)
To change the distribution map, the REDISTRIBUTE DATABASE PARTITION

GROUP command must be used. This redistributes any data, changes the

distribution map, and changes the indicator. Table space containers need to be

added before attempting to redistribute data if the WITHOUT TABLESPACES

clause was specified.

v When a database partition is dropped from a database partition group, the

catalog entry for the database partition (see SYSCAT.DBPARTITIONGROUPDEF)

is updated. If there are no tables defined in the table spaces defined in the

database partition group, the distribution map is changed immediately to

exclude the dropped database partition and the entry for the database partition

in the database partition group is dropped. If tables exist, the distribution map is

not changed and the indicator (IN_USE) is set to indicate that the database

partition is waiting to be dropped. The REDISTRIBUTE DATABASE PARTITION

GROUP command must be used to redistribute the data and drop the entry for

the database partition from the database partition group.

v Compatibilities: For compatibility with previous versions of DB2 products:

– NODE can be specified in place of DBPARTITIONNUM

– NODES can be specified in place of DBPARTITIONNUMS

– NODEGROUP can be specified in place of DATABASE PARTITION GROUP

8 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|

Example

Assume that you have a six-partition database that has the following database

partitions: 0, 1, 2, 5, 7, and 8. Two database partitions (3 and 6) are added to the

system.

v Assume that you want to add database partitions 3 and 6 to a database partition

group called MAXGROUP, and have table space containers like those on

database partition 2. The statement is as follows:

 ALTER DATABASE PARTITION GROUP MAXGROUP

 ADD DBPARTITIONNUMS (3,6)LIKE DBPARTITIONNUM 2

v Assume that you want to drop database partition 1 and add database partition 6

to database partition group MEDGROUP. You will define the table space

containers separately for database partition 6 using ALTER TABLESPACE. The

statement is as follows:

 ALTER DATABASE PARTITION GROUP MEDGROUP

 ADD DBPARTITIONNUM(6)WITHOUT TABLESPACES

 DROP DBPARTITIONNUM(1)

ALTER FUNCTION

The ALTER FUNCTION statement modifies the properties of an existing function.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v ALTERIN privilege on the schema of the function

v Owner of the function, as recorded in the OWNER column of the

SYSCAT.ROUTINES catalog view

v DBADM authority

To alter the EXTERNAL NAME of a function, the privileges held by the

authorization ID of the statement must also include at least one of the following:

v CREATE_EXTERNAL_ROUTINE authority on the database

v DBADM authority

To alter a function to be not fenced, the privileges held by the authorization ID of

the statement must also include at least one of the following:

v CREATE_NOT_FENCED_ROUTINE authority on the database

v DBADM authority

To alter a function to be fenced, no additional authorities or privileges are

required.

Chapter 1. SQL Statements for Administrators 9

|

|

|

Syntax

��

ALTER

function-designator

�

EXTERNAL NAME

’string’

identifier

FENCED

NOT FENCED

THREADSAFE

NOT THREADSAFE

��

Description

function-designator

Uniquely identifies the function to be altered. For more information, see

“Function, method, and procedure designators” on page 497.

EXTERNAL NAME ’string’ or identifier

Identifies the name of the user-written code that implements the function. This

option can only be specified when altering external functions (SQLSTATE

42849).

FENCED or NOT FENCED

Specifies whether the function is considered safe to run in the database

manager operating environment’s process or address space (NOT FENCED), or

not (FENCED). Most functions have the option of running as FENCED or NOT

FENCED.

 If a function is altered to be FENCED, the database manager insulates its

internal resources (for example, data buffers) from access by the function. In

general, a function running as FENCED will not perform as well as a similar

one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for functions that were not adequately coded,

reviewed, and tested can compromise the integrity of a DB2 database. DB2

databases take some precautions against many of the common types of

inadvertent failures that might occur, but cannot guarantee complete

integrity when NOT FENCED user-defined functions are used.

A function declared as NOT THREADSAFE cannot be altered to be NOT

FENCED (SQLSTATE 42613).

If a function has any parameters defined AS LOCATOR, and was defined with

the NO SQL option, the function cannot be altered to be FENCED (SQLSTATE

42613).

This option cannot be altered for LANGUAGE OLE, OLEDB, or CLR functions

(SQLSTATE 42849).

THREADSAFE or NOT THREADSAFE

Specifies whether the function is considered safe to run in the same process as

other routines (THREADSAFE), or not (NOT THREADSAFE).

 If the function is defined with LANGUAGE other than OLE and OLEDB:

v If the function is defined as THREADSAFE, the database manager can

invoke the function in the same process as other routines. In general, to be

threadsafe, a function should not use any global or static data areas. Most

programming references include a discussion of writing threadsafe routines.

Both FENCED and NOT FENCED functions can be THREADSAFE.

10 Common Criteria Certification: Administration and User Documentation - Volume 2

v If the function is defined as NOT THREADSAFE, the database manager will

never simultaneously invoke the function in the same process as another

routine. Only a fenced function can be NOT THREADSAFE (SQLSTATE

42613).

This option may not be altered for LANGUAGE OLE or OLEDB functions

(SQLSTATE 42849).

Notes

v It is not possible to alter a function that is in the SYSIBM, SYSFUN, or SYSPROC

schema (SQLSTATE 42832).

v Functions declared as LANGUAGE SQL, sourced functions, or template

functions cannot be altered (SQLSTATE 42917).

Example

The function MAIL() has been thoroughly tested. To improve its performance, alter

the function to be not fenced.

 ALTER FUNCTION MAIL() NOT FENCED

ALTER METHOD

The ALTER METHOD statement modifies an existing method by changing the

method body associated with the method.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CREATE_EXTERNAL_ROUTINE authority on the database, and at least one of:

– ALTERIN privilege on the schema of the type

– Owner of the type, as recorded in the OWNER column of the

SYSCAT.DATATYPES catalog view
v DBADM authority

Syntax

�� ALTER method-designator EXTERNAL NAME ’string’

identifier
 ��

Description

method-designator

Uniquely identifies the method to be altered. For more information, see

“Function, method, and procedure designators” on page 497.

Chapter 1. SQL Statements for Administrators 11

|

EXTERNAL NAME ’string’ or identifier

Identifies the name of the user-written code that implements the method. This

option can only be specified when altering external methods (SQLSTATE

42849).

Notes

v It is not possible to alter a method that is in the SYSIBM, SYSFUN, or SYSPROC

schema (SQLSTATE 42832).

v Methods declared as LANGUAGE SQL cannot be altered (SQLSTATE 42917).

v Methods declared as LANGUAGE CLR cannot be altered (SQLSTATE 42849).

v The specified method must have a body before it can be altered (SQLSTATE

42704).

Example

Alter the method DISTANCE() in the structured type ADDRESS_T to use the

library newaddresslib.

 ALTER METHOD DISTANCE()

 FOR TYPE ADDRESS_T

 EXTERNAL NAME ’newaddresslib!distance2’

ALTER PROCEDURE (External)

The ALTER PROCEDURE (External) statement modifies an existing external

procedure by changing the properties of the procedure.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v ALTERIN privilege on the schema of the procedure

v Owner of the procedure, as recorded in the OWNER column of the

SYSCAT.ROUTINES catalog view

v DBADM authority

To alter the EXTERNAL NAME of a procedure, the privileges held by the

authorization ID of the statement must also include at least one of the following:

v CREATE_EXTERNAL_ROUTINE authority on the database

v DBADM authority

To alter a procedure to be not fenced, the privileges held by the authorization ID of

the statement must also include at least one of the following:

v CREATE_NOT_FENCED_ROUTINE authority on the database

v DBADM authority

12 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|

|

To alter a procedure to be fenced, no additional authorities or privileges are

required.

Syntax

��

ALTER

procedure-designator

�

EXTERNAL NAME

’string’

identifier

FENCED

NOT FENCED

EXTERNAL ACTION

NO EXTERNAL ACTION

THREADSAFE

NOT THREADSAFE

NEW SAVEPOINT LEVEL

��

Description

procedure-designator

Identifies the procedure to alter. The procedure-designator must identify a

procedure that exists at the current server. The owner of the procedure and all

privileges on the procedure are preserved. For more information, see

“Function, method, and procedure designators” on page 497.

EXTERNAL NAME ’string’ or identifier

Identifies the name of the user-written code that implements the procedure.

FENCED or NOT FENCED

Specifies whether the procedure is considered safe to run in the database

manager operating environment’s process or address space (NOT FENCED), or

not (FENCED). Most procedures have the option of running as FENCED or

NOT FENCED.

 If a procedure is altered to be FENCED, the database manager insulates its

internal resources (for example, data buffers) from access by the procedure. In

general, a procedure running as FENCED will not perform as well as a similar

one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for procedures that were not adequately coded,

reviewed, and tested can compromise the integrity of a DB2 database. DB2

databases take some precautions against many of the common types of

inadvertent failures that might occur, but cannot guarantee complete

integrity when NOT FENCED stored procedures are used.

A procedure declared as NOT THREADSAFE cannot be altered to be NOT

FENCED (SQLSTATE 42613).

If a procedure has any parameters defined AS LOCATOR, and was defined

with the NO SQL option, the procedure cannot be altered to be FENCED

(SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE or CLR procedures

(SQLSTATE 42849).

EXTERNAL ACTION or NO EXTERNAL ACTION

Specifies whether the procedure takes some action that changes the state of an

object not managed by the database manager (EXTERNAL ACTION), or not

Chapter 1. SQL Statements for Administrators 13

(NO EXTERNAL ACTION). If NO EXTERNAL ACTION is specified, the

system can use certain optimizations that assume the procedure has no

external impact.

THREADSAFE or NOT THREADSAFE

Specifies whether the procedure is considered safe to run in the same process

as other routines (THREADSAFE), or not (NOT THREADSAFE).

 If the procedure is defined with LANGUAGE other than OLE:

v If the procedure is defined as THREADSAFE, the database manager can

invoke the procedure in the same process as other routines. In general, to be

threadsafe, a procedure should not use any global or static data areas. Most

programming references include a discussion of writing threadsafe routines.

Both FENCED and NOT FENCED procedures can be THREADSAFE.

v If the procedure is defined as NOT THREADSAFE, the database manager

will never invoke the procedure in the same process as another routine.

Only a fenced procedure can be NOT THREADSAFE (SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE procedures (SQLSTATE

42849).

NEW SAVEPOINT LEVEL

Specifies that a new savepoint level is to be created for the procedure. A

savepoint level refers to the scope of reference for any savepoint-related

statement, as well as to the name space used for comparison and reference of

any savepoint names.

 The savepoint level for a procedure can only be altered to NEW SAVEPOINT

LEVEL.

Rules

v It is not possible to alter a procedure that is in the SYSIBM, SYSFUN, or

SYSPROC schema (SQLSTATE 42832).

Example

Alter the procedure PARTS_ON_HAND() to be not fenced.

 ALTER PROCEDURE PARTS_ON_HAND() NOT FENCED

ALTER SECURITY LABEL COMPONENT

The ALTER SECURITY LABEL COMPONENT statement modifies a security label

component.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

14 Common Criteria Certification: Administration and User Documentation - Volume 2

Syntax

�� ALTER SECURITY LABEL COMPONENT component-name add-element-clause ��

add-element-clause:

 ADD ELEMENT string-constant

array-element-clause

tree-element-clause

array-element-clause:

 BEFORE

AFTER
 string-constant

tree-element-clause:

�

 ROOT

UNDER

string-constant

,

OVER

string-constant

Description

component-name

Specifies the name of the security label component to be altered. The named

component must exist at the current server (SQLSTATE 42704).

ADD ELEMENT

Specifies the element to be added to the security label component. If

array-element-clause and tree-element-clause are not specified, the element is

added to a set component.

string-constant

The string constant value to be added to the set of valid values for the

security label component. The value cannot be the same as any other value

in the set of valid values for the security label component (SQLSTATE

42713).

BEFORE or AFTER

For an array component, specifies where the element is to be added in the

ordered set of element values for the security label component.

BEFORE

The element to be added is to be ranked immediately before the identified

existing element.

AFTER

The element to be added is to be ranked immediately after the identified

existing element.

string-constant

Specifies a string constant value of an existing element in the array

component (SQLSTATE 42704).

Chapter 1. SQL Statements for Administrators 15

ROOT or UNDER

For a tree component, specifies where the element is to be added in the tree

structure of node element values for the security label component.

ROOT

The element to be added is to be considered the root node of the tree.

UNDER string-constant

The element to be added is an immediate child of the element identified by

the string-constant. The string-constant value must be an existing element in

the tree component (SQLSTATE 42704).

OVER string-constant,...

The element to be added is an immediate child of every element

identified by the list of string-constant values. Each string-constant value

must be an existing element in the tree component (SQLSTATE 42704).

Rules

v Element names cannot contain any of these characters (SQLSTATE 42601):

– Opening parenthesis - (

– Closing parenthesis -)

– Comma - ,

– Colon - :
v An element name can have no more than 32 bytes (SQLSTATE 42622).

v If a security label component is a set or a tree, no more than 64 elements can be

part of that component.

v If the component is an array, it might or might not be possible to arrive at an

array whose total number of elements matches the total number of elements that

could be specified when creating a security label component of type array

(65 535). DB2 assigns an encoded value to the new element from within the

interval into which the new element is added. Depending on the pattern

followed when adding elements to an array component, the number of possible

values that can be assigned from within a particular interval might be quickly

exhausted if several elements are inserted into that interval.

v BEFORE and AFTER must only be specified for a security label component that

is an array (SQLSTATE 42613).

v ROOT and UNDER must only be specified for a security label component that is

a tree (SQLSTATE 42613).

Notes

v For a set component, there is no order to the elements in the set.

Examples

Example 1: Add the element ’High classified’ to the LEVEL security label array

component between the elements ’Secret’ and ’Classified’.

 ALTER SECURITY LABEL COMPONENT LEVEL

 ADD ELEMENT ’High classified’ BEFORE ’Classified’

Example 2: Add the element ’Funding’ to the COMPARTMENTS security label set

component.

 ALTER SECURITY LABEL COMPONENT COMPARTMENTS

 ADD ELEMENT ’Funding’

16 Common Criteria Certification: Administration and User Documentation - Volume 2

Example 3: Add the elements ’ENGINE’ and ’TOOLS’ to the GROUPS security label

array component. The following diagram shows where these new elements are to

be placed.

 PROJECT

 ________|________

 | |

 ENGINE TOOLS

 ________|________

 | |

 TEST DEVELOPMENT

 ______|______

 | |

 CURRENT FIELD

 ALTER SECURITY LABEL COMPONENT GROUPS

 ADD ELEMENT ’TOOLS’ UNDER ’PROJECT’

 ALTER SECURITY LABEL COMPONENT GROUPS

 ADD ELEMENT ’ENGINE’ UNDER ’PROJECT’

 OVER ’TEST’, ’DEVELOPMENT’

ALTER SECURITY POLICY

The ALTER SECURITY POLICY statement modifies a security policy.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� ALTER SECURITY POLICY security-policy-name �

�

�

(1)

ADD SECURITY LABEL COMPONENT

component-name

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

USE GROUP AUTHORIZATIONS

IGNORE GROUP AUTHORIZATIONS

USE ROLE AUTHORIZATIONS

IGNORE ROLE AUTHORIZATIONS

��

Notes:

1 Only the ADD SECURITY LABEL COMPONENT clause can be specified

more than once.

Chapter 1. SQL Statements for Administrators 17

Description

security-policy-name

Specifies the name of the security policy to be altered. The name must identify

an existing security policy at the current server (SQLSTATE 42710).

ADD SECURITY LABEL COMPONENT component-name

Adds a security label component to the security policy. The same security

component must not be specified more than once for the security policy

(SQLSTATE 42713). The security policy cannot currently be in use by a table

(SQLSTATE 42893).

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL or RESTRICT

NOT AUTHORIZED WRITE SECURITY LABEL

Specifies the action taken when a user is not authorized to write the explicitly

specified security label that is provided in the INSERT or UPDATE statement

issued against a table that is protected with this security policy. A user’s

security label and exemption credentials determine the user’s authorization to

write an explicitly provided security label.

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

Indicates that the value of the user’s security label, rather than the

explicitly specified security label, is used for write access during an insert

or update operation.

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

Indicates that the insert or update operation will fail if the user is not

authorized to write the explicitly specified security label that is provided in

the INSERT or UPDATE statement (SQLSTATE 42519).

USE GROUP AUTHORIZATION or IGNORE GROUP AUTHORIZATION

Specifies whether or not security labels and exemptions granted to groups,

directly or indirectly, are considered for any access attempt.

USE GROUP AUTHORIZATION

Indicates that any security labels or exemptions granted to groups, directly

or indirectly, are considered.

IGNORE GROUP AUTHORIZATION

Indicates that any security labels or exemptions granted to groups are not

considered.

USE ROLE AUTHORIZATION or IGNORE ROLE AUTHORIZATION

Specifies whether or not security labels and exemptions granted to roles,

directly or indirectly, are considered for any access attempt.

USE ROLE AUTHORIZATION

Indicates that any security labels or exemptions granted to roles, directly or

indirectly, are considered.

IGNORE ROLE AUTHORIZATION

Indicates that any security labels or exemptions granted to roles are not

considered.

Rules

v If a user does not directly hold a security label for write access, an error is

returned in the following situations (SQLSTATE 42519):

– A value for the row security label column is not explicitly provided as part of

the SQL statement

18 Common Criteria Certification: Administration and User Documentation - Volume 2

– The OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option is in

effect for the security policy, and the user is not allowed to write a data object

with the provided security label

Notes

v New components are logically added at the end of the existing security label

definition contained by the modified policy. Existing security labels defined for

this security policy are modified to contain the new component as part of their

definition with no element in their value for this component.

v Cache invalidation when changing NOT AUTHORIZED WRITE SECURITY

LABEL: Changing the NOT AUTHORIZED WRITE SECURITY LABEL to a new

value will cause the invalidation of any cached dynamic or static SQL statements

that are dependent on any table that is protected by the security policy being

altered.

v Because the session authorization ID is the focus authorization ID for label-based

access control, security labels granted to groups or to roles that are accessible

through groups are eligible for consideration for all types of SQL statements,

including static SQL.

v If more than one security label or exemption is available to a user with

associated groups or roles at the time of a read or write access attempt, those

security labels and exemptions will be evaluated for eligibility based on the

following rules:

– If the security policy enables only role authorizations for consideration, all

security labels and exemptions granted to roles of which the user

authorization ID is a direct or indirect member will be considered. Security

labels and exemptions granted to roles for which membership is only

accessible through the groups associated with the user authorization ID will

not be considered.

– If the security policy enables only group authorizations for consideration, all

security labels and exemptions granted to groups associated with the user

authorization ID will be considered. Security labels and exemptions granted

to roles for which membership is only accessible through the groups

associated with the user authorization ID will not be considered.

– If the security policy enables both group and role authorizations for

consideration, any security labels and exemptions granted to roles accessible

to the user indirectly through groups associated with the user authorization

ID will be considered.

– Role authorizations that are accessible to the user only through PUBLIC will

not be considered at any time.
v If more than one security label is eligible for consideration during an access

attempt, the values provided for each security label are merged at the individual

component level to form a security label that reflects the combination of all

available values at each component piece of the security policy. This is the

security label value that will be used for the access attempt.

The mechanisms for combining security labels vary by component type. The

components of the resultant security label are as follows:

– Set components contain the union of all unique values encountered in the

eligible security labels

– Array components contain the highest order element encountered in the

eligible security labels

– Tree components contain the union of all unique values encountered in the

eligible security labels

Chapter 1. SQL Statements for Administrators 19

v If more than one exemption is eligible for consideration during an access

attempt, all found exemptions are applied to the access attempt.

Examples

Example 1: Alter a security policy named DATA_ACCESS to add a new component

named REGION.

 ALTER SECURITY POLICY DATA_ACCESS

 ADD COMPONENT REGION

Example 2: Alter a security policy named DATA_ACCESS to allow access through

security labels granted to roles.

 ALTER SECURITY POLICY DATA_ACCESS

 USE ROLE AUTHORIZATIONS

Example 3: Show the eligible security labels that would be considered depending

on the settings for group or role authorizations in a security policy. The security

policy SECUR_POL has an array component and a set component, consisting of the

following elements:

Array = {TS, S, C, U}

Set = {A, B, X, Y}

The following security labels are defined for SECUR_POL:

Security label L1 = C:A

Security label L2 = S:B

Security label L3 = TS:X

Security label L4 = U:Y

User Paul is a member of role R1 and group G1. Group G1 is a member of role R2.

Security label L1 is granted to Paul. Security label L2 is granted to role R1. Security

label L3 is granted to group G1. Security label L4 is granted to role R2. The

following table shows what security labels would be considered for any access

attempt by Paul, depending on the different possible settings of the security policy

SECUR_POL.

 Table 2. Security labels considered as a function of security policy settings

Roles Enabled Roles Disabled

Groups Enabled L1, L2, L3, L4 L1, L3

Groups Disabled L1, L2 L1

The following table shows the value of the combined security label for any access

attempt by Paul, depending on the different settings of the security policy

SECUR_POL.

 Table 3. Combined security labels as a function of security policy settings

Roles Enabled Roles Disabled

Groups Enabled TS:(A, B, X, Y) TS:(A, X)

Groups Disabled S:(A, B) C:A

ALTER TABLE

The ALTER TABLE statement alters the definition of a table.

20 Common Criteria Certification: Administration and User Documentation - Volume 2

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v ALTER privilege on the table to be altered

v CONTROL privilege on the table to be altered

v ALTERIN privilege on the schema of the table

v DBADM authority

To create or drop a foreign key, the privileges held by the authorization ID of the

statement must include one of the following on the parent table:

v REFERENCES privilege on the table

v REFERENCES privilege on each column of the specified parent key

v CONTROL privilege on the table

v DBADM authority

To drop the primary key or a unique constraint on table T, the privileges held by

the authorization ID of the statement must include at least one of the following on

every table that is a dependent of this parent key of T:

v ALTER privilege on the table

v CONTROL privilege on the table

v ALTERIN privilege on the schema of the table

v DBADM authority

To alter a table to become a materialized query table (using a fullselect), the

privileges held by the authorization ID of the statement must include at least one

of the following:

v CONTROL privilege on the table

v DBADM authority

and at least one of the following on each table or view identified in the fullselect

(excluding group privileges):

v SELECT privilege and ALTER privilege (including group privileges) on the table

or view

v CONTROL privilege on the table or view

v SELECT privilege on the table or view, and ALTERIN privilege (including group

privileges) on the schema of the table or view

v DATAACCESS authority

To alter a table so that it is no longer a materialized query table, the privileges held

by the authorization ID of the statement must include at least one of the following

on each table or view identified in the fullselect used to define the materialized

query table:

v ALTER privilege on the table or view

Chapter 1. SQL Statements for Administrators 21

|

|

|

|

|

v CONTROL privilege on the table or view

v ALTERIN privilege on the schema of the table or view

v DBADM authority

To add a column of type DB2SECURITYLABEL to a table, the privileges held by

the authorization ID of the statement must include at least a security label from the

security policy associated with the table.

To remove the security policy from a table, the privileges held by the authorization

ID of the statement must include SECADM authority.

To alter a table to attach a data partition, the privileges held by the authorization

ID of the statement must also include at least one of the following on the source

table:

v SELECT privilege on the table and DROPIN privilege on the schema of the table

v CONTROL privilege on the table

v DATAACCESS authority

and at least one of the following on the target table:

v ALTER and INSERT privileges on the table

v CONTROL privilege on the table

v DATAACCESS authority

To alter a table to detach a data partition, the privileges held by the authorization

ID of the statement must also include at least one of the following on the target

table of the detached partition:

v CREATETAB authority on the database, and USE privilege on the table spaces

used by the table, as well as one of:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the new table does not exist

– CREATEIN privilege on the schema, if the schema name of the new table

refers to an existing schema
v DBADM authority

and at least one of the following on the source table:

v SELECT, ALTER, and DELETE privileges on the table

v CONTROL privilege on the table

v DATAACCESS authority

Syntax

�� ALTER TABLE table-name �

22 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|

|

|

|

�

�

COLUMN

ADD

column-definition

unique-constraint

referential-constraint

check-constraint

distribution-clause

RESTRICT ON DROP

MATERIALIZED

QUERY

ADD

materialized-query-definition

ALTER

FOREIGN KEY

constraint-name

constraint-alteration

CHECK

COLUMN

ALTER

column-alteration

COLUMN

RENAME

source-column-name

TO

target-column-name

DROP

PRIMARY KEY

FOREIGN KEY

constraint-name

UNIQUE

CHECK

CONSTRAINT

COLUMN

CASCADE

column-name

RESTRICT

RESTRICT ON DROP

DROP DISTRIBUTION

MATERIALIZED

DROP

QUERY

DATA CAPTURE

NONE

CHANGES

INCLUDE LONGVAR COLUMNS

ACTIVATE NOT LOGGED INITIALLY

WITH EMPTY TABLE

PCTFREE

integer

LOCKSIZE

ROW

BLOCKINSERT

TABLE

APPEND

ON

OFF

CARDINALITY

VOLATILE

NOT VOLATILE

COMPRESS

YES

NO

ACTIVATE

VALUE COMPRESSION

DEACTIVATE

LOG INDEX BUILD

NULL

OFF

ON

ADD PARTITION

add-partition

ATTACH PARTITION

attach-partition

DETACH PARTITION

partition-name

INTO

table-name1

ADD SECURITY POLICY

policy-name

DROP SECURITY POLICY

��

add-partition:

 boundary-spec

partition-name

IN

tablespace-name
 �

�
INDEX IN

tablespace-name

LONG IN

tablespace-name

boundary-spec:

 starting-clause ending-clause

ending-clause

Chapter 1. SQL Statements for Administrators 23

||||

starting-clause:

FROM

STARTING

�

 ,

(

constant

)

MINVALUE

MAXVALUE

constant

MINVALUE

MAXVALUE

INCLUSIVE

EXCLUSIVE

ending-clause:

AT

ENDING

�

 ,

(

constant

)

MINVALUE

MAXVALUE

constant

MINVALUE

MAXVALUE

INCLUSIVE

EXCLUSIVE

attach-partition:

 BUILD MISSING INDEXES

boundary-spec

FROM

table-name

partition-name

REQUIRE MATCHING INDEXES

column-definition:

 column-name

(1)

data-type

column-options

column-options:

�

NOT NULL

(2)

lob-options

(3)

SCOPE

typed-table-name2

typed-view-name2

PRIMARY KEY

CONSTRAINT

constraint-name

UNIQUE

references-clause

CHECK

(

check-condition

)

constraint-attributes

generated-column-definition

COMPRESS SYSTEM DEFAULT

COLUMN

SECURED WITH

security-label-name

NOT HIDDEN

(4)

IMPLICITLY HIDDEN

24 Common Criteria Certification: Administration and User Documentation - Volume 2

||

lob-options:

 LOGGED

*

NOT LOGGED

 NOT COMPACT

*

*

COMPACT

references-clause:

 REFERENCES table-name

nickname

�

,

(

column-name

)

 �

� rule-clause constraint-attributes

rule-clause:

 ON DELETE NO ACTION ON UPDATE NO ACTION

*

*

*

ON DELETE

RESTRICT

ON UPDATE RESTRICT

CASCADE

SET NULL

constraint-attributes:

*

 ENFORCED

NOT ENFORCED

*

 ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

*

generated-column-definition:

 default-clause

ALWAYS

GENERATED

as-row-change-timestamp-clause

BY DEFAULT

ALWAYS

GENERATED

AS

(

generation-expression

)

default-clause:

 WITH

DEFAULT

constant

datetime-special-register

user-special-register

CURRENT SCHEMA

NULL

cast-function

(

constant

)

datetime-special-register

user-special-register

CURRENT SCHEMA

EMPTY_CLOB()

EMPTY_DBCLOB()

EMPTY_BLOB()

Chapter 1. SQL Statements for Administrators 25

unique-constraint:

CONSTRAINT

constraint-name

UNIQUE

PRIMARY KEY

�

 ,

(

column-name

)

referential-constraint:

CONSTRAINT

constraint-name

�

 ,

FOREIGN KEY

(

column-name

)

�

� references-clause

check-constraint:

CONSTRAINT

constraint-name
 CHECK (check-condition) �

� constraint-attributes

check-condition:

 search-condition

functional-dependency

functional-dependency:

�

�

 column-name DETERMINED BY column-name

,

,

(

column-name

)

(

column-name

)

distribution-clause:

HASH

DISTRIBUTE BY

�

 ,

(

column-name

)

materialized-query-definition:

 (fullselect) refreshable-table-options

refreshable-table-options:

 * DATA INITIALLY DEFERRED * REFRESH DEFERRED

IMMEDIATE
 * �

26 Common Criteria Certification: Administration and User Documentation - Volume 2

�
 ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

*

MAINTAINED BY

SYSTEM

USER

FEDERATED_TOOL

*

constraint-alteration:

�

(5)

ENABLE

QUERY OPTIMIZATION

DISABLE

ENFORCED

NOT

column-alteration:

 column-name SET DATA TYPE altered-data-type

generated-column-alteration

EXPRESSION AS

(

generation-expression

)

INLINE LENGTH

integer

NOT NULL

generation-alteration

identity-alteration

identity-alteration

DROP

IDENTITY

EXPRESSION

DEFAULT

NOT NULL

ADD SCOPE

typed-table-name

typed-view-name

COMPRESS

SYSTEM DEFAULT

OFF

SECURED WITH

security-label-name

DROP COLUMN SECURITY

altered-data-type:

�� built-in-type ��

built-in-type:

Chapter 1. SQL Statements for Administrators 27

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(53)

FLOAT

(integer)

REAL

PRECISION

DOUBLE

(34)

DECFLOAT

(16)

(1)

CHARACTER

CHAR

(integer)

FOR BIT DATA

VARCHAR

(integer)

CHARACTER

VARYING

CHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(integer

)

CHAR

K

M

G

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

(1M)

DBCLOB

(integer

)

K

M

G

(1M)

BLOB

BINARY LARGE OBJECT

(integer

)

K

M

G

generated-column-alteration:

 default-clause

ALWAYS

GENERATED

identity-options

BY DEFAULT

ALWAYS

GENERATED

AS

(

generation-expression

)

default-clause:

28 Common Criteria Certification: Administration and User Documentation - Volume 2

WITH

DEFAULT

constant

datetime-special-register

user-special-register

CURRENT SCHEMA

NULL

cast-function

(

constant

)

datetime-special-register

user-special-register

CURRENT SCHEMA

EMPTY_CLOB()

EMPTY_DBCLOB()

EMPTY_BLOB()

identity-options:

 AS IDENTITY

�

(5)

1

(

START WITH

numeric-constant

)

1

INCREMENT BY

numeric-constant

NO MINVALUE

MINVALUE

numeric-constant

NO MAXVALUE

MAXVALUE

numeric-constant

NO CYCLE

CYCLE

CACHE 20

NO CACHE

CACHE

integer-constant

as-row-change-timestamp-clause:

 (6)

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

generation-alteration:

 SET GENERATED ALWAYS

BY DEFAULT

identity-alteration:

Chapter 1. SQL Statements for Administrators 29

�

(5)

SET INCREMENT BY

numeric-constant

SET

NO MINVALUE

MINVALUE

numeric-constant

SET

NO MAXVALUE

MAXVALUE

numeric-constant

SET

NO CYCLE

CYCLE

SET

NO CACHE

CACHE

integer-constant

SET

NO ORDER

ORDER

RESTART

WITH

numeric-constant

Notes:

1 If the first column option chosen is generated-column-definition, data-type can be

omitted; it will be computed by the generation expression.

2 The lob-options clause only applies to large object types (CLOB, DBCLOB, and

BLOB), and to distinct types that are based on large object types.

3 The SCOPE clause only applies to the REF type.

4 IMPLICITLY HIDDEN can only be specified if ROW CHANGE TIMESTAMP

is also specified.

5 The same clause must not be specified more than once.

6 Data type is optional for a row change timestamp column if the first

column-option specified is a generated-column-definition, the data type

default is TIMESTAMP(6).

Description

table-name

The table-name must identify a table that exists at the current server. It cannot

be a nickname (SQLSTATE 42809) and must not be a view, a catalog table, a

created temporary table, or a declared temporary table (SQLSTATE 42995).

 If table-name identifies a materialized query table, alterations are limited to

adding or dropping the materialized query table, activating not logged initially,

adding or dropping RESTRICT ON DROP, and changing pctfree, locksize,

append, or volatile.

If table-name identifies a range-clustered table, alterations are limited to adding,

changing, or dropping constraints, activating not logged initially, adding or

dropping RESTRICT ON DROP, changing locksize, data capture, or volatile,

and setting column default values.

ADD PARTITION add-partition

Adds one or more data partitions to a partitioned table. If the specified table is

not a partitioned table, an error is returned (SQLSTATE 428FT). The number of

data partitions must not exceed 32 767.

partition-name

Names the data partition. The name must not be the same as any other

data partition for the table (SQLSTATE 42710). If this clause is not

specified, the name will be ’PART’ followed by the character form of an

integer value to make the name unique for the table.

30 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

boundary-spec

Specifies the range of values for the new data partition. This range must

not overlap that of an existing data partition (SQLSTATE 56016). For a

description of the starting-clause and the ending-clause, see “CREATE

TABLE”.

 If the starting-clause is omitted, the new data partition is assumed to be at

the end of the table. If the ending-clause is omitted, the new data partition

is assumed to be at the start of the table. If the first column of the

partitioning key is DESC, these assumptions are reversed.

IN tablespace-name

Specifies the table space where the data partition is to be stored. The

named table space must have the same page size, be in the same database

partition group, and manage space in the same way as the other table

spaces of the partitioned table (SQLSTATE 42838). This can be a table space

that is already being used for another data partition of the same table, or a

table space that is currently not being used by this table, but it must be a

table space on which the authorization ID of the statement holds the USE

privilege (SQLSTATE 42727). If this clause is not specified, the table space

of the first visible or attached data partition of the table is used.

INDEX IN tablespace-name

Specifies the table space where partitioned indexes on the data partition

are stored. If the INDEX IN clause is not specified, partitioned indexes on

the data partition are stored in the same table space as the data partition.

 The table space used by the new index partition, whether default or

specified by the INDEX IN clause, must match the type (SMS or DMS),

page size, and extent size of the table spaces used by all other index

partitions (SQLSTATE 42838).

LONG IN tablespace-name

Specifies the table space where the data partition containing long column

data is to be stored. The named table space must have the same page size,

be in the same database partition group, and manage space in the same

way as the other table spaces and data partitions of the partitioned table

(SQLSTATE 42838); it must be a table space on which the authorization ID

of the statement holds the USE privilege. The page size and extent size for

the named table space can be different from the page size and extent size

of the other data partitions of the partitioned table.

 For rules governing the use of the LONG IN clause with partitioned tables,

see “Large object behavior in partitioned tables”.

ATTACH PARTITION attach-partition

Attaches another table as a new data partition. The data object of the table

being attached becomes a new partition of the table being attached to. There is

no data movement involved. The table is placed in set integrity pending state,

and referential integrity checking is deferred until execution of a SET

INTEGRITY statement. The ALTER TABLE ATTACH operation does not allow

the use of the IN or LONG IN clause. The placement of LOBs for that data

partition is determined at the time the source table is created. For rules

governing the use of the LONG IN clause with partitioned tables, see “Large

object behavior in partitioned tables”.

partition-name

Names the data partition. The name must not be the same as any other

data partition for the table (SQLSTATE 42710). If this clause is not

Chapter 1. SQL Statements for Administrators 31

|
|
|
|

|
|
|
|

specified, the name will be ’PART’ followed by the character form of an

integer value to make the name unique for the table.

boundary-spec

Specifies the range of values for the new data partition. This range must

not overlap that of an existing data partition (SQLSTATE 56016). For a

description of the starting-clause and the ending-clause, see “CREATE

TABLE”.

 If the starting-clause is omitted, the new data partition is assumed to be at

the end of the table. If the ending-clause is omitted, the new data partition

is assumed to be at the start of the table.

FROM table-name1

Specifies the table that is to be used as the source of data for the new

partition. The table definition of table-name1 cannot have multiple data

partitions, and it must match the altered table in the following ways

(SQLSTATE 428G3):

v The number of columns must be the same.

v The data types of the columns in the same ordinal position in the table

must be the same.

v The nullability characteristic of the columns in the same ordinal position

in the table must be the same.

v If the data is also distributed, it must be distributed over the same

database partition group using the same distribution method.

v If the data in either table is organized, the organization must match.

v For structured, XML, or LOB data type, the value for INLINE LENGTH

must be the same.

After the data from table-name1 is successfully attached, an operation

equivalent to DROP TABLE table-name1 is performed to remove this table,

which no longer has data, from the database.

BUILD MISSING INDEXES

Specifies that if the source table does not have indexes that correspond to

the partitioned indexes on the target table, a SET INTEGRITY operation

builds partitioned indexes on the new data partition to correspond to the

partitioned indexes on the existing data partitions. Indexes on the source

table that do not match the partitioned indexes on the target table are

dropped during attach processing.

REQUIRE MATCHING INDEXES

Specifies that the source table must have indexes to match the partitioned

indexes on the target table; otherwise, an error is returned (SQLSTATE

428GE) and information is written to the administration log about the

indexes that do not match.

 If the REQUIRE MATCHING INDEXES clause is not specified and the

indexes on the source table do not match all the partitioned indexes on the

target table, the following behavior occurs:

1. For indexes on the target table that do not have a match on the source

table and are either unique indexes or XML indexes that are defined

with REJECT INVALID VALUES, the ATTACH operation fails

(SQLSTATE 428GE).

2. For all other indexes on the target table that do not have a match on

the source table, the index object on the source table is marked invalid

during the attach operation. If the source table does not have any

32 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

indexes, an empty index object is created and marked as invalid. The

ATTACH operation will succeed, but the index object on the new data

partition is marked as invalid. Typically, SET INTEGRITY is the next

operation to run against the data partition. SET INTEGRITY will force a

rebuild, if required, of the index object on data partitions that were

recently attached. The index rebuild can increase the time required to

bring the new data online.

3. Information is written to the administration log about the indexes that

do not match

DETACH PARTITION partition-name INTO table-name1

Detaches the data partition partition-name from the altered table, and uses the

data partition to create a new table named table-name1. The data partition is

logically attached to the new table without any data movement. The specified

data partition cannot be the last remaining partition of the table being altered

(SQLSTATE 428G2).

ADD SECURITY POLICY policy-name

Adds a security policy to the table. The security policy must exist at the

current server (SQLSTATE 42704). The table must not already have a security

policy (SQLSTATE 55065), and must not be a typed table (SQLSTATE 428DH),

materialized query table (MQT), or staging table (SQLSTATE 428FG).

DROP SECURITY POLICY

Removes the security policy and all LBAC protection from the table. The table

specified by table-name must be protected by a security policy (SQLSTATE

428GT). If the table has a column with data type DB2SECURITYLABEL, the

data type is changed to VARCHAR (128) FOR BIT DATA. If the table has one

or more protected columns, those columns become unprotected.

ADD column-definition

Adds a column to the table. The table must not be a typed table (SQLSTATE

428DH). For all existing rows in the table, the value of the new column is set

to its default value. The new column is the last column of the table; that is, if

initially there are n columns, the added column is column n+1.

 Adding the new column must not make the total byte count of all columns

exceed the maximum record size.

column-name

Is the name of the column to be added to the table. The name cannot be

qualified. Existing column names in the table cannot be used (SQLSTATE

42711).

data-type

Is one of the data types listed under “CREATE TABLE”.

NOT NULL

Prevents the column from containing null values. The default-clause must

also be specified (SQLSTATE 42601).

NOT HIDDEN or IMPLICITLY HIDDEN

Specifies whether or not the column is to be defined as hidden. The hidden

attribute determines whether the column is included in an implicit

reference to the table, or whether it can be explicitly referenced in SQL

statements. The default is NOT HIDDEN.

NOT HIDDEN

Specifies that the column is included in implicit references to the table,

and that the column can be explicitly referenced.

Chapter 1. SQL Statements for Administrators 33

|
|
|
|
|
|
|

|
|

IMPLICITLY HIDDEN

Specifies that the column is not visible in SQL statements unless the

column is explicitly referenced by name. For example, assuming that a

table includes a column defined with the IMPLICITLY HIDDEN clause,

the result of a SELECT * does not include the implicitly hidden

column. However, the result of a SELECT that explicitly refers to the

name of an implicitly hidden column will include that column in the

result table.

 IMPLICITLY HIDDEN must only be specified for a ROW CHANGE

TIMESTAMP column (SQLSTATE 42867). The ROW CHANGE

TIMESTAMP FOR table-designator expression will resolve to an

IMPLICITLY HIDDEN ROW CHANGE TIMESTAMP column.

Therefore, a ROW CHANGE TIMESTAMP column can be added to a

table as IMPLICITLY HIDDEN, and existing applications that do a

SELECT * from this table will not need to be modified to handle the

column. Using the expression, new applications can always access the

column without knowing the column name.

lob-options

Specifies options for LOB data types. See lob-options in “CREATE TABLE”.

SCOPE

Specify a scope for a reference type column.

typed-table-name2

The name of a typed table. The data type of column-name must be

REF(S), where S is the type of typed-table-name2 (SQLSTATE 428DM).

No checking is done of the default value for column-name to ensure

that the value actually references an existing row in typed-table-name2.

typed-view-name2

The name of a typed view. The data type of column-name must be

REF(S), where S is the type of typed-view-name2 (SQLSTATE 428DM).

No checking is done of the default value for column-name to ensure

that the values actually references an existing row in typed-view-name2.

CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint that

was already specified within the same ALTER TABLE statement, or as the

name of any other existing constraint on the table (SQLSTATE 42710).

 If the constraint name is not specified by the user, an 18 byte long

identifier unique within the identifiers of the existing constraints defined

on the table is generated by the system. (The identifier consists of ″SQL″

followed by a sequence of 15 numeric characters that are generated by a

timestamp-based function.)

When used with a PRIMARY KEY or UNIQUE constraint, the

constraint-name may be used as the name of an index that is created to

support the constraint. See Notes for details on index names associated

with unique constraints.

PRIMARY KEY

This provides a shorthand method of defining a primary key

composed of a single column. Thus, if PRIMARY KEY is specified in

the definition of column C, the effect is the same as if the PRIMARY

KEY(C) clause were specified as a separate clause. The column cannot

contain null values, so the NOT NULL attribute must also be specified

(SQLSTATE 42831).

34 Common Criteria Certification: Administration and User Documentation - Volume 2

See PRIMARY KEY within the description of the unique-constraint

below.

UNIQUE

This provides a shorthand method of defining a unique key composed

of a single column. Thus, if UNIQUE is specified in the definition of

column C, the effect is the same as if the UNIQUE(C) clause were

specified as a separate clause.

 See UNIQUE within the description of the unique-constraint below.

references-clause

This provides a shorthand method of defining a foreign key composed

of a single column. Thus, if a references-clause is specified in the

definition of column C, the effect is the same as if that

references-clause were specified as part of a FOREIGN KEY clause in

which C is the only identified column.

 See references-clause in “CREATE TABLE”.

CHECK (check-condition)

This provides a shorthand method of defining a check constraint that

applies to a single column. See check-condition in “CREATE TABLE”.

generated-column-definition

For details on column generation, see “CREATE TABLE”.

default-clause

Specifies a default value for the column.

WITH

An optional keyword.

DEFAULT

Provides a default value in the event a value is not supplied on

INSERT or is specified as DEFAULT on INSERT or UPDATE. If a

specific default value is not specified following the DEFAULT

keyword, the default value depends on the data type of the

column as shown in Table 4. If a column is defined as an XML or

structured type, then a DEFAULT clause cannot be specified.

 If a column is defined using a distinct type, then the default value

of the column is the default value of the source data type cast to

the distinct type.

 Table 4. Default Values (when no value specified)

Data Type Default Value

Numeric 0

Fixed-length character string Blanks

Varying-length character string A string of length 0

Fixed-length graphic string Double-byte blanks

Varying-length graphic string A string of length 0

Date For existing rows, a date corresponding to

January 1, 0001. For added rows, the current

date.

Time For existing rows, a time corresponding to 0

hours, 0 minutes, and 0 seconds. For added

rows, the current time.

Chapter 1. SQL Statements for Administrators 35

Table 4. Default Values (when no value specified) (continued)

Data Type Default Value

Timestamp For existing rows, a date corresponding to

January 1, 0001, and a time corresponding to

0 hours, 0 minutes, 0 seconds and 0

microseconds. For added rows, the current

timestamp.

Binary string (blob) A string of length 0

Omission of DEFAULT from a column-definition results in the use of

the null value as the default for the column.

Specific types of values that can be specified with the DEFAULT

keyword are as follows.

constant

Specifies the constant as the default value for the column. The

specified constant must:

v represent a value that could be assigned to the column in

accordance with the rules of assignment as described in

Chapter 3

v not be a floating-point constant unless the column is defined

with a floating-point data type

v be a numeric constant or a decimal floating-point special

value if the data type of the column is decimal

floating-point. Floating-point constants are first interpreted

as DOUBLE and then converted to decimal floating-point.

For DECFLOAT(16) columns, decimal constants must have a

precision less than or equal to 16.

v not have nonzero digits beyond the scale of the column data

type if the constant is a decimal constant (for example, 1.234

cannot be the default for a DECIMAL(5,2) column)

v be expressed with no more than 254 bytes including the

quote characters, any introducer character such as the X for

a hexadecimal constant, and characters from the fully

qualified function name and parentheses when the constant

is the argument of a cast-function.

datetime-special-register

Specifies the value of the datetime special register (CURRENT

DATE, CURRENT TIME, or CURRENT TIMESTAMP) at the

time of INSERT, UPDATE, or LOAD as the default for the

column. The data type of the column must be the data type

that corresponds to the special register specified (for example,

data type must be DATE when CURRENT DATE is specified).

For existing rows, the value is the current date, current time or

current timestamp when the ALTER TABLE statement is

processed.

user-special-register

Specifies the value of the user special register (CURRENT

USER, SESSION_USER, SYSTEM_USER) at the time of INSERT,

UPDATE, or LOAD as the default for the column. The data

type of the column must be a character string with a length not

less than the length attribute of a user special register. Note

that USER can be specified in place of SESSION_USER and

36 Common Criteria Certification: Administration and User Documentation - Volume 2

CURRENT_USER can be specified in place of CURRENT

USER. For existing rows, the value is the CURRENT USER,

SESSION_USER, or SYSTEM_USER of the ALTER TABLE

statement.

CURRENT SCHEMA

Specifies the value of the CURRENT SCHEMA special register

at the time of INSERT, UPDATE, or LOAD as the default for

the column. If CURRENT SCHEMA is specified, the data type

of the column must be a character string with a length greater

than or equal to the length attribute of the CURRENT

SCHEMA special register. For existing rows, the value of the

CURRENT SCHEMA special register at the time the ALTER

TABLE statement is processed.

NULL

Specifies NULL as the default for the column. If NOT NULL

was specified, DEFAULT NULL must not be specified within

the same column definition.

cast-function

This form of a default value can only be used with columns

defined as a distinct type, BLOB or datetime (DATE, TIME or

TIMESTAMP) data type. For distinct type, with the exception

of distinct types based on BLOB or datetime types, the name of

the function must match the name of the distinct type for the

column. If qualified with a schema name, it must be the same

as the schema name for the distinct type. If not qualified, the

schema name from function resolution must be the same as the

schema name for the distinct type. For a distinct type based on

a datetime type, where the default value is a constant, a

function must be used and the name of the function must

match the name of the source type of the distinct type with an

implicit or explicit schema name of SYSIBM. For other

datetime columns, the corresponding datetime function may

also be used. For a BLOB or a distinct type based on BLOB, a

function must be used and the name of the function must be

BLOB with an implicit or explicit schema name of SYSIBM.

constant

Specifies a constant as the argument. The constant must

conform to the rules of a constant for the source type of

the distinct type or for the data type if not a distinct type.

If the cast-function is BLOB, the constant must be a string

constant.

datetime-special-register

Specifies CURRENT DATE, CURRENT TIME, or

CURRENT TIMESTAMP. The source type of the distinct

type of the column must be the data type that corresponds

to the specified special register.

user-special-register

Specifies CURRENT USER, SESSION_USER, or

SYSTEM_USER. The data type of the source type of the

distinct type of the column must be a string data type with

a length of at least 8 bytes. If the cast-function is BLOB, the

length attribute must be at least 8 bytes.

Chapter 1. SQL Statements for Administrators 37

CURRENT SCHEMA

Specifies the value of the CURRENT SCHEMA special

register. The data type of the source type of the distinct

type of the column must be a character string with a length

greater than or equal to the length attribute of the

CURRENT SCHEMA special register. If the cast-function is

BLOB, the length attribute must be at least 8 bytes.

EMPTY_CLOB(), EMPTY_DBCLOB(), or EMPTY_BLOB()

Specifies a zero-length string as the default for the column. The

column must have the data type that corresponds to the result

data type of the function.

 If the value specified is not valid, an error (SQLSTATE 42894) is

returned.

GENERATED

Specifies that DB2 generates values for the column.

ALWAYS

Specifies that DB2 will always generate a value for the column

when a row is inserted into the table, or whenever the result value

of the generation-expression might change. The result of the

expression is stored in the table. GENERATED ALWAYS is the

recommended option unless data propagation or unload and

reload operations are being performed. GENERATED ALWAYS is

the required option for generated columns.

BY DEFAULT

Specifies that DB2 will generate a value for the column when a

row is inserted into the table, or updated, specifying DEFAULT for

the column, unless an explicit value is specified. BY DEFAULT is

the recommended option when using data propagation or

performing unload and reload operations.

AS (generation-expression)

Specifies that the definition of the column is based on an

expression. Requires that the table be put in set integrity pending

state, using the SET INTEGRITY statement with the OFF option.

After the ALTER TABLE statement, the SET INTEGRITY statement

with the IMMEDIATE CHECKED and FORCE GENERATED

options must be used to update and check all the values in that

column against the new expression. For details on specifying a

column with a generation-expression, see “CREATE TABLE”.

COMPRESS SYSTEM DEFAULT

Specifies that system default values (that is, the default values used for the

data types when no specific values are specified) are to be stored using

minimal space. If the VALUE COMPRESSION clause is not specified, a

warning is returned (SQLSTATE 01648) and system default values are not

stored using minimal space.

 Allowing system default values to be stored in this manner causes a slight

performance penalty during insert and update operations on the column

because of extra checking that is done.

The base data type must not be a DATE, TIME, TIMESTAMP, XML, or

structured data type (SQLSTATE 42842). If the base data type is a

38 Common Criteria Certification: Administration and User Documentation - Volume 2

varying-length string, this clause is ignored. String values of length 0 are

automatically compressed if a table has been set with VALUE

COMPRESSION.

COLUMN SECURED WITH security-label-name

Identifies a security label that exists for the security policy that is

associated with the table. The name must not be qualified (SQLSTATE

42601). The table must have a security policy associated with it (SQLSTATE

55064).

ADD unique-constraint

Defines a unique or primary key constraint. A primary key or unique

constraint cannot be added to a table that is a subtable (SQLSTATE 429B3). If

the table is a supertable at the top of the hierarchy, the constraint applies to the

table and all its subtables.

CONSTRAINT constraint-name

Names the primary key or unique constraint. For more information, see

constraint-name in “CREATE TABLE”.

UNIQUE (column-name...,)

Defines a unique key composed of the identified columns. The identified

columns must be defined as NOT NULL. Each column-name must identify a

column of the table and the same column must not be identified more than

once. The name cannot be qualified. The number of identified columns

must not exceed 64, and the sum of their stored lengths must not exceed

the index key length limit for the page size. For column stored lengths, see

“Byte Counts” in “CREATE TABLE”. For key length limits, see “SQL

limits”. No LOB, distinct type based on any of these types, or structured

type can be used as part of a unique key, even if the length attribute of the

column is small enough to fit within the index key length limit for the

page size (SQLSTATE 54008). The set of columns in the unique key cannot

be the same as the set of columns of the primary key or another unique

key (SQLSTATE 01543). (If LANGLEVEL is SQL92E or MIA, an error is

returned, SQLSTATE 42891.) Any existing values in the set of identified

columns must be unique (SQLSTATE 23515).

 A check is performed to determine whether an existing index matches the

unique key definition (ignoring any INCLUDE columns in the index). An

index definition matches if it identifies the same set of columns without

regard to the order of the columns or the direction (ASC/DESC)

specifications. However, for partitioned tables, non-unique partitioned

indexes whose columns are not a superset of the table-partitioning key

columns are not considered matching indexes.

If a matching index definition is found, the description of the index is

changed to indicate that it is required by the system and it is changed to

unique (after ensuring uniqueness) if it was a non-unique index. If the

table has more than one matching index, an existing unique index is

selected. If there are multiple unique indexes, the selection is arbitrary with

one exception:

v For partitioned tables, matching unique partitioned indexes are favored

over matching unique nonpartitioned indexes or matching non-unique

indexes (partitioned or nonpartitioned).

If no matching index is found, a unique bidirectional index will

automatically be created for the columns, as described in CREATE TABLE.

See Notes for details on index names associated with unique constraints.

Chapter 1. SQL Statements for Administrators 39

|

|
|
|

|
|
|
|

|
|
|

PRIMARY KEY ...(column-name,)

Defines a primary key composed of the identified columns. Each

column-name must identify a column of the table, and the same column

must not be identified more than once. The name cannot be qualified. The

number of identified columns must not exceed 64, and the sum of their

stored lengths must not exceed the index key length limit for the page size.

For column stored lengths, see “Byte Counts” in “CREATE TABLE”. For

key length limits, see “SQL limits”. The table must not have a primary key

and the identified columns must be defined as NOT NULL. No LOB,

distinct type based on any of these types, or structured type may be used

as part of a primary key, even if the length attribute of the column is small

enough to fit within the index key length limit for the page size

(SQLSTATE 54008). The set of columns in the primary key cannot be the

same as the set of columns in a unique key (SQLSTATE 01543). (If

LANGLEVEL is SQL92E or MIA, an error is returned, SQLSTATE 42891.)

Any existing values in the set of identified columns must be unique

(SQLSTATE 23515).

 A check is performed to determine if an existing index matches the

primary key definition (ignoring any INCLUDE columns in the index). An

index definition matches if it identifies the same set of columns without

regard to the order of the columns or the direction (ASC/DESC)

specifications. However, for partitioned tables, non-unique partitioned

indexes whose columns are not a superset of the table-partitioning key

columns are not considered matching indexes.

If a matching index definition is found, the description of the index is

changed to indicate that it is the primary index, as required by the system,

and it is changed to unique (after ensuring uniqueness) if it was a

non-unique index. If the table has more than one matching index, an

existing unique index is selected. If there are multiple unique indexes, the

selection is arbitrary with one exception:

v For partitioned tables, matching unique partitioned indexes are favored

over matching unique nonpartitioned indexes or matching non-unique

indexes (partitioned or nonpartitioned).

If no matching index is found, a unique bidirectional index will

automatically be created for the columns, as described in CREATE TABLE.

See Notes for details on index names associated with unique constraints.

Only one primary key can be defined on a table.

ADD referential-constraint

Defines a referential constraint. See referential-constraint in “CREATE TABLE”.

ADD check-constraint

Defines a check constraint or functional dependency. See check-constraint in

“CREATE TABLE”.

ADD distribution-clause

Defines a distribution key. The table must be defined in a table space on a

single-partition database partition group (SQLSTATE 55037) and must not

already have a distribution key (SQLSTATE 42889). If a distribution key

already exists for the table, the existing key must be dropped before adding the

new distribution key. A distribution key cannot be added to a table that is a

subtable (SQLSTATE 428DH) .

DISTRIBUTE BY HASH (column-name...)

Defines a distribution key using the specified columns. Each column-name

must identify a column of the table, and the same column must not be

40 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|
|
|

|
|
|

|
|
|

identified more than once. The name cannot be qualified. A column cannot

be used as part of a distribution key if the data type of the column is a

BLOB, CLOB, DBCLOB, XML, distinct type on any of these types, or

structured type.

ADD RESTRICT ON DROP

Specifies that the table cannot be dropped, and that the table space that

contains the table cannot be dropped.

ADD MATERIALIZED QUERY

materialized-query-definition

Changes a regular table to a materialized query table for use during query

optimization. The table specified by table-name must not:

v Be previously defined as a materialized query table

v Be a typed table

v Have any constraints, unique indexes, or triggers defined

v Reference a nickname that is marked with caching disabled

v Be referenced in the definition of another materialized query table

v Be referenced in the definition of a view that is enabled for query

optimization

If table-name does not meet these criteria, an error is returned (SQLSTATE

428EW).

fullselect

Defines the query in which the table is based. The columns of the

existing table must:

v have the same number of columns

v have exactly the same data types

v have the same column names in the same ordinal positions

as the result columns of fullselect (SQLSTATE 428EW). For details about

specifying the fullselect for a materialized query table, see “CREATE

TABLE”. One additional restriction is that table-name cannot be directly

or indirectly referenced in the fullselect.

refreshable-table-options

Specifies the refreshable options for altering a materialized query table.

DATA INITIALLY DEFERRED

The data in the table must be validated using the REFRESH TABLE

or SET INTEGRITY statement.

REFRESH

Indicates how the data in the table is maintained.

DEFERRED

The data in the table can be refreshed at any time using the

REFRESH TABLE statement. The data in the table only reflects

the result of the query as a snapshot at the time the REFRESH

TABLE statement is processed. Materialized query tables

defined with this attribute do not allow INSERT, UPDATE, or

DELETE statements (SQLSTATE 42807).

IMMEDIATE

The changes made to the underlying tables as part of a

DELETE, INSERT, or UPDATE are cascaded to the materialized

query table. In this case, the content of the table, at any

Chapter 1. SQL Statements for Administrators 41

|
|
|
|

point-in-time, is the same as if the specified subselect is

processed. Materialized query tables defined with this attribute

do not allow INSERT, UPDATE, or DELETE statements

(SQLSTATE 42807).

ENABLE QUERY OPTIMIZATION

The materialized query table can be used for query optimization.

DISABLE QUERY OPTIMIZATION

The materialized query table will not be used for query

optimization. The table can still be queried directly.

MAINTAINED BY

Specifies whether the data in the materialized query table is

maintained by the system, user, or replication tool.

SYSTEM

Specifies that the data in the materialized query table is

maintained by the system.

USER

Specifies that the data in the materialized query table is

maintained by the user. The user is allowed to perform update,

delete, or insert operations against user-maintained

materialized query tables. The REFRESH TABLE statement,

used for system-maintained materialized query tables, cannot

be invoked against user-maintained materialized query tables.

Only a REFRESH DEFERRED materialized query table can be

defined as MAINTAINED BY USER.

FEDERATED_TOOL

Specifies that the data in the materialized query table is

maintained by the replication tool. The REFRESH TABLE

statement, used for system-maintained materialized query

tables, cannot be invoked against federated_tool-maintained

materialized query tables. Only a REFRESH DEFERRED

materialized query table can be defined as MAINTAINED BY

FEDERATED_TOOL.

ALTER FOREIGN KEY constraint-name

Alters the constraint attributes of the referential constraint constraint-name. The

constraint-name must identify an existing referential constraint (SQLSTATE

42704).

ALTER CHECK constraint-name

Alters the constraint attributes of the check constraint or functional

dependency constraint-name. The constraint-name must identify an existing

check constraint or functional dependency (SQLSTATE 42704).

constraint-alteration

Options for changing attributes associated with referential or check constraints.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION

Specifies whether the constraint or functional dependency can be used for

query optimization under appropriate circumstances.

ENABLE QUERY OPTIMIZATION

The constraint is assumed to be true and can be used for query

optimization.

DISABLE QUERY OPTIMIZATION

The constraint cannot be used for query optimization.

42 Common Criteria Certification: Administration and User Documentation - Volume 2

ENFORCED or NOT ENFORCED

Specifies whether the constraint is enforced by the database manager

during normal operations such as insert, update, or delete.

ENFORCED

Change the constraint to ENFORCED. ENFORCED cannot be specified

for a functional dependency (SQLSTATE 42621).

NOT ENFORCED

Change the constraint to NOT ENFORCED. This should only be

specified if the table data is independently known to conform to the

constraint. Query results might be unpredictable if the data does not

actually conform to the constraint.

ALTER column-alteration

Alters the definition of a column. Only the specified attributes will be altered;

others will remain unchanged. Columns of a typed table cannot be altered

(SQLSTATE 428DH).

column-name

Specifies the name of the column that is to be altered. The column-name

must identify an existing column of the table (SQLSTATE 42703). The name

must not be qualified. The name must not identify a column that is

otherwise being added, altered, or dropped in the same ALTER TABLE

statement (SQLSTATE 42711).

SET DATA TYPE altered-data-type

Specifies the new data type of the column. The new data type must be

castable to the existing data type of the column (SQLSTATE 42837).

Altering the length of a VARCHAR or VARGRAPHIC column which does

not truncate any existing data does not require a subsequent reorganization

of the table. If only trailing blanks are truncated, then a table

reorganization is required before the table can be fully accessed

(SQLSTATE 57016). The administrative routine

SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS can be called to do table

reorganization as required. Truncation of non-blank characters is not

allowed (SQLSTATE 42837).

 A string data type cannot be altered if the column is a column of a data

partitioning key.

If the column is a column of a distribution key, then the new data type

must not be REAL, DOUBLE, DECFLOAT(16), DECFLOAT(34), or

DECIMAL(p, m) if (p − m > 4), except if the alter is from DECFLOAT(16) to

DECFLOAT(34).

The specified length cannot be less than the existing length if the data type

is a LOB (SQLSTATE 42837).

The data type of an identity column cannot be altered (SQLSTATE 42997).

The table cannot have data capture enabled (SQLSTATE 42997).

Altering a column must not make the total byte count of all columns

exceed the maximum record size (SQLSTATE 54010). If the column is used

in a unique constraint or an index, the new length must not cause the sum

of the stored lengths for the unique constraint or index to exceed the index

key length limit for the page size (SQLSTATE 54008). For column stored

lengths, see “Byte Counts” in “CREATE TABLE”. For key length limits, see

“SQL limits”.

Chapter 1. SQL Statements for Administrators 43

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

If auto_reval is set to DISABLED, the cascaded effects of altering a column

is shown in Table 5.

 Table 5. Cascaded Effects of Altering a Column

Operation Effect

Altering a column that is referenced by a

view or check constraint

The object is regenerated during alter

processing. In the case of a view, function or

method resolution for the object might be

different after the alter operation, changing

the semantics of the object. In the case of a

check constraint, if the semantics of the

object will change as a result of the alter

operation, the operation fails.

Altering a column in a table that has a

dependent package, trigger, or SQL routine

The object is marked invalid, and is

revalidated on next use.

Altering the type of a column in a table that

is referenced by an XSROBJECT enabled for

decomposition

The XSROBJECT is marked inoperative for

decomposition. Re-enabling the XSROBJECT

might require readjustment of its mappings;

following this, issue an ALTER XSROBJECT

ENABLE DECOMPOSITION statement

against the XSROBJECT.

Altering a column that is referenced in the

default expression of a global variable

The default expression of the global variable

is validated during alter processing. If a

user-defined function used in the default

expression cannot be resolved, the operation

fails.

SET generated-column-alteration

Specifies the technique used to generate a value for the column. This can

be in the form of a specific default value, an expression, or defining the

column as an identity column. If an existing default for the column results

from a different generation technique, that default must be dropped, which

can be done in the same column-alteration using one of the DROP clauses.

default-clause

Specifies a new default value for the column that is to be altered. The

column must not already be defined as the identity column or have a

generation expression defined (SQLSTATE 42837). The specified default

value must represent a value that could be assigned to the column in

accordance with the rules for assignment as described in “Assignments

and comparisons”. Altering the default value does not change the

value that is associated with this column for existing rows.

GENERATED ALWAYS or GENERATED BY DEFAULT

Specifies when the database manager is to generate values for the

column. GENERATED BY DEFAULT specifies that a value is only to be

generated when a value is not provided, or the DEFAULT keyword is

used in an assignment to the column. GENERATED ALWAYS specifies

that the database manager is to always generate a value for the

column. GENERATED BY DEFAULT cannot be specified with a

generation-expression.

identity-options

Specifies that the column is the identity column for the table. The

column must not already be defined as the identity column, cannot

have a generation expression, or cannot have an explicit default

(SQLSTATE 42837). A table can only have a single identity column

44 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

(SQLSTATE 428C1). The column must be specified as not nullable

(SQLSTATE 42997), and the data type associated with the column

must be an exact numeric data type with a scale of zero

(SQLSTATE 42815). An exact numeric data type is one of:

SMALLINT, INTEGER, BIGINT, DECIMAL, or NUMERIC with a

scale of zero, or a distinct type based on one of these types. For

details on identity options, see “CREATE TABLE”.

AS (generation-expression)

Specifies that the definition of the column is based on an

expression. The column must not already be defined with a

generation expression, cannot be the identity column, or cannot

have an explicit default (SQLSTATE 42837). The

generation-expression must conform to the same rules that apply

when defining a generated column. The result data type of the

generation-expression must be assignable to the data type of the

column (SQLSTATE 42821). The column must not be referenced in

the distribution key column or in the ORGANIZE BY clause

(SQLSTATE 42997).

SET EXPRESSION AS (generation-expression)

Changes the expression for the column to the specified

generation-expression. SET EXPRESSION AS requires the table to be put in

set integrity pending state, using the SET INTEGRITY statement with the

OFF option. After the ALTER TABLE statement, the SET INTEGRITY

statement with the IMMEDIATE CHECKED and FORCE GENERATED

options must be used to update and check all the values in that column

against the new expression. The column must already be defined as a

generated column based on an expression (SQLSTATE 42837), and must

not have appeared in the PARTITIONING KEY, DIMENSIONS, or KEY

SEQUENCE clauses of the table (SQLSTATE 42997). The

generation-expression must conform to the same rules that apply when

defining a generated column. The result data type of the

generation-expression must be assignable to the data type of the column

(SQLSTATE 42821).

SET INLINE LENGTH integer

Changes the inline length of an existing structured type, XML, or LOB data

type column. The inline length indicates the maximum size in bytes of an

instance of a structured type, XML, or LOB data type to store in the base

table row. Instances of a structured type or XML data type that cannot be

stored inline in the base table row are stored separately, similar to the way

that LOB values are stored.

 The data type of column-name must be a structured type, XML, or LOB

data type (SQLSTATE 42842).

The default inline length for a structured type column is the inline length

of its data type (specified explicitly or by default in the CREATE TYPE

statement). If the inline length of a structured type is less than 292, the

value 292 is used for the inline length of the column.

The explicit inline length value can only be increased (SQLSTATE 429B2); it

cannot exceed 32673 (SQLSTATE 54010). For a structured type or XML data

type column, it must be at least 292. For a LOB data type column, the

INLINE LENGTH must not be less than the maximum LOB descriptor

size.

Chapter 1. SQL Statements for Administrators 45

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

Altering the column must not make the total byte count of all columns

exceed the row size limit (SQLSTATE 54010).

Data that is already stored separately from the rest of the row will not be

moved inline into the base table row by this statement. To take advantage

of the altered inline length of a structured type column, invoke the REORG

command against the specified table after altering the inline length of its

column. To take advantage of the altered inline length of an XML data type

column in an existing table, update all rows with an UPDATE statement.

The REORG command has no effect on the row storage of XML

documents. To take advantage of the altered inline length of a LOB data

type column, use the REORG command with the LONGLOBDATA option

or UPDATE the corresponding LOB column. For example:

UPDATE table-name SET lob-column = lob-column

 WHERE LENGTH(lob-column) <= chosen-inline-length – 4

where table-name is the table that had the inline length of the LOB data

type column altered, lob-column is the LOB data type column that was

altered, and chosen-inline-length is the new value that was chosen for the

INLINE LENGTH.

SET NOT NULL

Specifies that the column cannot contain null values. No value for this

column in existing rows of the table can be the null value (SQLSTATE

23502). This clause is not allowed if the column is specified in the foreign

key of a referential constraint with a DELETE rule of SET NULL, and no

other nullable columns exist in the foreign key (SQLSTATE 42831). Altering

this attribute for a column requires table reorganization before further table

access is allowed (SQLSTATE 57016). Note that because this operation

requires validation of table data, it cannot be performed when the table is

in reorg pending state (SQLSTATE 57016). The table cannot have data

capture enabled (SQLSTATE 42997).

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

Specifies that the column is a timestamp column for the table. A value is

generated for the column in each row that is inserted, and for any row in

which any column is updated. The value that is generated for a ROW

CHANGE TIMESTAMP column is a timestamp that corresponds to the

insert or update time for that row. If multiple rows are inserted or updated

with a single statement, the value of the ROW CHANGE TIMESTAMP

column might be different for each row.

 A table can only have one ROW CHANGE TIMESTAMP column

(SQLSTATE 428C1). If data-type is specified, it must be TIMESTAMP or

TIMESTAMP(6) (SQLSTATE 42842). A ROW CHANGE TIMESTAMP

column cannot have a DEFAULT clause (SQLSTATE 42623). NOT NULL

must be specified for a ROW CHANGE TIMESTAMP column (SQLSTATE

42831).

SET GENERATED ALWAYS or GENERATED BY DEFAULT

Specifies when the database manager is to generate values for the column.

GENERATED BY DEFAULT specifies that a value is only to be generated

when a value is not provided or the DEFAULT keyword is used in an

assignment to the column. GENERATED ALWAYS specifies that the

database manager is to always generate a value for the column. The

column must already be defined as a generated column based on an

identity column; that is, defined with the AS IDENTITY clause (SQLSTATE

42837).

46 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

identity-alteration

Alters the identity attributes of the column. The column must be an

identity column.

SET INCREMENT BY numeric-constant

Specifies the interval between consecutive values of the identity

column. The next value to be generated for the identity column will be

determined from the last assigned value with the increment applied.

The column must already be defined with the IDENTITY attribute

(SQLSTATE 42837).

 This value can be any positive or negative value that could be assigned

to this column (SQLSTATE 42815), and does not exceed the value of a

large integer constant (SQLSTATE 42820), without nonzero digits

existing to the right of the decimal point (SQLSTATE 428FA).

If this value is negative, this is a descending sequence after the ALTER

statement. If this value is 0 or positive, this is an ascending sequence

after the ALTER statement.

SET NO MINVALUE or MINVALUE numeric-constant

Specifies the minimum value at which a descending identity column

either cycles or stops generating values, or the value to which an

ascending identity column cycles after reaching the maximum value.

The column must exist in the specified table (SQLSTATE 42703), and

must already be defined with the IDENTITY attribute (SQLSTATE

42837).

NO MINVALUE

For an ascending sequence, the value is the original starting value.

For a descending sequence, the value is the minimum value of the

data type of the column.

MINVALUE numeric-constant

Specifies the numeric constant that is the minimum value. This

value can be any positive or negative value that could be assigned

to this column (SQLSTATE 42815), without nonzero digits existing

to the right of the decimal point (SQLSTATE 428FA), but the value

must be less than or equal to the maximum value (SQLSTATE

42815).

SET NO MAXVALUE or MAXVALUE numeric-constant

Specifies the maximum value at which an ascending identity column

either cycles or stops generating values, or the value to which a

descending identity column cycles after reaching the minimum value.

The column must exist in the specified table (SQLSTATE 42703), and

must already be defined with the IDENTITY attribute (SQLSTATE

42837).

NO MAXVALUE

For an ascending sequence, the value is the maximum value of the

data type of the column. For a descending sequence, the value is

the original starting value.

MAXVALUE numeric-constant

Specifies the numeric constant that is the maximum value. This

value can be any positive or negative value that could be assigned

to this column (SQLSTATE 42815), without nonzero digits existing

Chapter 1. SQL Statements for Administrators 47

to the right of the decimal point (SQLSTATE 428FA), but the value

must be greater than or equal to the minimum value (SQLSTATE

42815).

SET NO CYCLE or CYCLE

Specifies whether this identity column should continue to generate

values after generating either its maximum or minimum value. The

column must exist in the specified table (SQLSTATE 42703), and must

already be defined with the IDENTITY attribute (SQLSTATE 42837).

NO CYCLE

Specifies that values will not be generated for the identity column

once the maximum or minimum value has been reached.

CYCLE

Specifies that values continue to be generated for this column after

the maximum or minimum value has been reached. If this option

is used, then after an ascending identity column reaches the

maximum value, it generates its minimum value; or after a

descending sequence reaches the minimum value, it generates its

maximum value. The maximum and minimum values for the

identity column determine the range that is used for cycling.

 When CYCLE is in effect, duplicate values can be generated for an

identity column. Although not required, if unique values are

desired, a single-column unique index defined using the identity

column will ensure uniqueness. If a unique index exists on such an

identity column and a non-unique value is generated, an error

occurs (SQLSTATE 23505).

SET NO CACHE or CACHE integer-constant

Specifies whether to keep some pre-allocated values in memory for

faster access. This is a performance and tuning option. The column

must already be defined with the IDENTITY attribute (SQLSTATE

42837).

NO CACHE

Specifies that values for the identity column are not to be

pre-allocated. In a data sharing environment, if the identity values

must be generated in order of request, the NO CACHE option must

be used.

 When this option is specified, the values of the identity column are

not stored in the cache. In this case, every request for a new

identity value results in synchronous I/O to the log.

CACHE integer-constant

Specifies how many values of the identity sequence are

pre-allocated and kept in memory. When values are generated for

the identity column, pre-allocating and storing values in the cache

reduces synchronous I/O to the log.

 If a new value is needed for the identity column and there are no

unused values available in the cache, the allocation of the value

requires waiting for I/O to the log. However, when a new value is

needed for the identity column and there is an unused value in the

cache, the allocation of that identity value can happen more

quickly by avoiding the I/O to the log.

In the event of a database deactivation, either normally or due to a

system failure, all cached sequence values that have not been used

48 Common Criteria Certification: Administration and User Documentation - Volume 2

in committed statements are lost (that is, they will never be used).

The value specified for the CACHE option is the maximum

number of values for the identity column that could be lost in case

of system failure.

The minimum value is 2 (SQLSTATE 42815).

SET NO ORDER or ORDER

Specifies whether the identity column values must be generated in

order of request. The column must exist in the specified table

(SQLSTATE 42703), and must already be defined with the IDENTITY

attribute (SQLSTATE 42837).

NO ORDER

Specifies that the identity column values do not need to be

generated in order of request.

ORDER

Specifies that the identity column values must be generated in

order of request.

RESTART or RESTART WITH numeric-constant

Resets the state of the sequence associated with the identity column. If

WITH numeric-constant is not specified, the sequence for the identity

column is restarted at the value that was specified, either implicitly or

explicitly, as the starting value when the identity column was

originally created.

 The column must exist in the specified table (SQLSTATE 42703), and

must already be defined with the IDENTITY attribute (SQLSTATE

42837). RESTART does not change the original START WITH value.

The numeric-constant is an exact numeric constant that can be any

positive or negative value that could be assigned to this column

(SQLSTATE 42815), without nonzero digits existing to the right of the

decimal point (SQLSTATE 428FA). The numeric-constant will be used as

the next value for the column.

DROP IDENTITY

Drops the identity attributes of the column, making the column a simple

numeric data type column. DROP IDENTITY is not allowed if the column

is not an identity column (SQLSTATE 42837).

DROP EXPRESSION

Drops the generated expression attributes of the column, making the

column a non-generated column. DROP EXPRESSION is not allowed if the

column is not a generated expression column (SQLSTATE 42837).

DROP DEFAULT

Drops the current default for the column. The specified column must have

a default value (SQLSTATE 42837).

DROP NOT NULL

Drops the NOT NULL attribute of the column, allowing the column to

have the null value. This clause is not allowed if the column is specified in

the primary key, or in a unique constraint of the table (SQLSTATE 42831).

Altering this attribute for a column requires table reorganization before

further table access is allowed (SQLSTATE 57016). The table cannot have

data capture enabled (SQLSTATE 42997).

ADD SCOPE

Add a scope to an existing reference type column that does not already

Chapter 1. SQL Statements for Administrators 49

have a scope defined (SQLSTATE 428DK). If the table being altered is a

typed table, the column must not be inherited from a supertable

(SQLSTATE 428DJ).

typed-table-name

The name of a typed table. The data type of column-name must be

REF(S), where S is the type of typed-table-name (SQLSTATE 428DM). No

checking is done of any existing values in column-name to ensure that

the values actually reference existing rows in typed-table-name.

typed-view-name

The name of a typed view. The data type of column-name must be

REF(S), where S is the type of typed-view-name (SQLSTATE 428DM). No

checking is done of any existing values in column-name to ensure that

the values actually reference existing rows in typed-view-name.

COMPRESS

Specifies whether or not default values for this column are to be stored

more efficiently.

SYSTEM DEFAULT

Specifies that system default values (that is, the default values used for

the data types when no specific values are specified) are to be stored

using minimal space. If the table is not already set with the VALUE

COMPRESSION attribute activated, a warning is returned (SQLSTATE

01648), and system default values are not stored using minimal space.

 Allowing system default values to be stored in this manner causes a

slight performance penalty during insert and update operations on the

column because of the extra checking that is done.

Existing data in the column is not changed. Consider offline table

reorganization to enable existing data to take advantage of storing

system default values using minimal space.

OFF

Specifies that system default values are to be stored in the column as

regular values. Existing data in the column is not changed. Offline

reorganization is recommended to change existing data.

 The base data type must not be DATE, TIME or TIMESTAMP (SQLSTATE

42842). If the base data type is a varying-length string, this clause is

ignored. String values of length 0 are automatically compressed if a table

has been set with VALUE COMPRESSION.

If the table being altered is a typed table, the column must not be inherited

from a supertable (SQLSTATE 428DJ).

SECURED WITH security-label-name

Identifies a security label that exists for the security policy that is

associated with the table. The name must not be qualified (SQLSTATE

42601).The table must have a security policy associated with it (SQLSTATE

55064).

DROP COLUMN SECURITY

Alters a column to make it a non-protected column.

RENAME COLUMN source-column-name TO target-column-name

Renames the column that is specified in source-column-name to the name that is

specified in target-column-name. If the auto_reval database configuration

50 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

parameter is set to DISABLED, the RENAME COLUMN option of the ALTER

TABLE statement behaves like it is under the control of revalidation immediate

semantics.

source-column-name

Specifies the name of the column that is to be renamed. The

source-column-name must identify an existing column of the table

(SQLSTATE 42703). The name must not be qualified. The name must not

identify a column that is otherwise being added, altered, or dropped in the

same ALTER TABLE statement (SQLSTATE 42711).

target-column-name

The new name for the column. The name must not be qualified. Existing

column names in the table must not be used (SQLSTATE 42711).

DROP PRIMARY KEY

Drops the definition of the primary key and all referential constraints

dependent on this primary key. The table must have a primary key (SQLSTATE

42888).

DROP FOREIGN KEY constraint-name

Drops the referential constraint constraint-name. The constraint-name must

identify a referential constraint (SQLSTATE 42704). For information on

implications of dropping a referential constraint see Notes.

DROP UNIQUE constraint-name

Drops the definition of the unique constraint constraint-name and all referential

constraints dependent on this unique constraint. The constraint-name must

identify an existing UNIQUE constraint (SQLSTATE 42704). For information on

implications of dropping a unique constraint, see Notes.

DROP CHECK constraint-name

Drops the check constraint constraint-name. The constraint-name must identify an

existing check constraint defined on the table (SQLSTATE 42704).

DROP CONSTRAINT constraint-name

Drops the constraint constraint-name. The constraint-name must identify an

existing check constraint, referential constraint, primary key, or unique

constraint defined on the table (SQLSTATE 42704). For information on

implications of dropping a constraint, see Notes.

DROP COLUMN

Drops the identified column from the table. The table must not be a typed

table (SQLSTATE 428DH). The table cannot have data capture enabled

(SQLSTATE 42997). If a column is dropped, the table must be reorganized

before an update, insert, or delete operation or an index scan can be performed

on the table (SQLSTATE 57016). An XML column can only be dropped only if

all of the other XML columns in the table are dropped at the same time.

column-name

Identifies the column that is to be dropped. The column name must not be

qualified. The name must identify a column of the specified table

(SQLSTATE 42703). The name must not identify the only column of the

table (SQLSTATE 42814). The name must not identify a column that is part

of the table’s distribution key, table partitioning key, or organizing

dimensions (SQLSTATE 42997).

CASCADE

Specifies that any views, indexes, triggers, SQL functions, constraints, or

global variables that are dependent on the column being dropped are also

dropped, or that any decomposition-enabled XSROBJECTs that are

Chapter 1. SQL Statements for Administrators 51

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

dependent on the table containing the column are made inoperative for

decomposition. A trigger is dependent on the column if it is referenced in

the UPDATE OF column list, or anywhere in the triggered action. A

decomposition-enabled XSROBJECT is dependent on a table if it contains a

mapping of an XML element or attribute to the table. If an SQL function or

global variable is dependent on another database object, it might not be

possible to drop the function or global variable by means of the CASCADE

option. CASCADE is the default.

RESTRICT

Specifies that the column cannot be dropped if any views, indexes,

triggers, constraints, or global variables are dependent on the column, or if

any decomposition-enabled XSROBJECT is dependent on the table that

contains the column (SQLSTATE 42893). A trigger is dependent on the

column if it is referenced in the UPDATE OF column list, or anywhere in

the triggered action. A decomposition-enabled XSROBJECT is dependent

on a table if it contains a mapping of an XML element or attribute to the

table. The first dependent object that is detected is identified in the

administration log.

 Table 6. Cascaded Effects of Dropping a Column

Operation RESTRICT Effect CASCADE Effect

Dropping a column that is

referenced by a view or a

trigger

Dropping the column is not

allowed.

The object and all objects that

are dependent on that object

are dropped.

Dropping a column that is

referenced in the key of an

index

If all columns that are

referenced in the index are

dropped in the same ALTER

TABLE statement, dropping

the index is allowed.

Otherwise, dropping the

column is not allowed.

The index is dropped.

Dropping a column that is

referenced in a unique

constraint

If all columns that are

referenced in the unique

constraint are dropped in the

same ALTER TABLE

statement, and the unique

constraint is not referenced

by a referential constraint, the

columns and the constraint

are dropped. (The index that

is used to satisfy the

constraint is also dropped.)

Otherwise, dropping the

column is not allowed.

The unique constraint and

any referential constraints

that reference that unique

constraint are dropped. (Any

indexes that are used by

those constraints are also

dropped).

Dropping a column that is

referenced in a referential

constraint

If all columns that are

referenced in the referential

constraint are dropped in the

same ALTER TABLE

statement, the columns and

the constraint are dropped.

Otherwise, dropping the

column is not allowed.

The referential constraint is

dropped.

Dropping a column that is

referenced by a

system-generated column

that is not being dropped.

Dropping the column is not

allowed.

Dropping the column is not

allowed.

52 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

||

|||

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

Table 6. Cascaded Effects of Dropping a Column (continued)

Operation RESTRICT Effect CASCADE Effect

Dropping a column that is

referenced in a check

constraint

Dropping the column is not

allowed.

The check constraint is

dropped.

Dropping a column that is

referenced in a

decomposition-enabled

XSROBJECT

Dropping the column is not

allowed.

The XSROBJECT is marked

inoperative for

decomposition. Re-enabling

the XSROBJECT might

require readjustment of its

mappings; following this,

issue an ALTER XSROBJECT

ENABLE DECOMPOSITION

statement against the

XSROBJECT.

Dropping a column that is

referenced in the default

expression of a global

variable

Dropping the column is not

allowed.

The global variable is

dropped, unless the dropping

of the global variable is

disallowed because there are

other objects, which do not

allow the cascade, that

depend on the global

variable.

DROP RESTRICT ON DROP

Removes the restriction, if there is one, on dropping the table and the table

space that contains the table.

DROP DISTRIBUTION

Drops the distribution definition for the table. The table must have a

distribution definition (SQLSTATE 428FT). The table space for the table must

be defined on a single partition database partition group.

DROP MATERIALIZED QUERY

Changes a materialized query table so that it is no longer considered to be a

materialized query table. The table specified by table-name must be defined as a

materialized query table that is not replicated (SQLSTATE 428EW). The

definition of the columns of table-name is not changed, but the table can no

longer be used for query optimization, and the REFRESH TABLE statement

can no longer be used.

DATA CAPTURE

Indicates whether extra information for data replication is to be written to the

log.

 If the table is a typed table, then this option is not supported (SQLSTATE

428DH for root tables or 428DR for other subtables).

NONE

Indicates that no extra information will be logged.

CHANGES

Indicates that extra information regarding SQL changes to this table will be

written to the log. This option is required if this table will be replicated

and the Capture program is used to capture changes for this table from the

log.

 If the table is defined to allow data on a database partition other than the

catalog partition (multiple partition database partition group, or database

Chapter 1. SQL Statements for Administrators 53

|

|||

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

partition group with database partitions other than the catalog partition),

then this option is not supported (SQLSTATE 42997).

If the schema name (implicit or explicit) of the table is longer than 18

bytes, this option is not supported (SQLSTATE 42997).

INCLUDE LONGVAR COLUMNS

Allows data replication utilities to capture changes made to LONG

VARCHAR or LONG VARGRAPHIC columns. The clause may be

specified for tables that do not have any LONG VARCHAR or LONG

VARGRAPHIC columns since it is possible to ALTER the table to

include such columns.

ACTIVATE NOT LOGGED INITIALLY

Activates the NOT LOGGED INITIALLY attribute of the table for this current

unit of work.

 Any changes made to the table by an INSERT, DELETE, UPDATE, CREATE

INDEX, DROP INDEX, or ALTER TABLE in the same unit of work after the

table is altered by this statement are not logged. Any changes made to the

system catalog by the ALTER statement in which the NOT LOGGED

INITIALLY attribute is activated are logged. Any subsequent changes made in

the same unit of work to the system catalog information are logged.

At the completion of the current unit of work, the NOT LOGGED INITIALLY

attribute is deactivated and all operations that are done on the table in

subsequent units of work are logged.

If using this feature to avoid locks on the catalog tables while inserting data, it

is important that only this clause be specified on the ALTER TABLE statement.

Use of any other clause in the ALTER TABLE statement will result in catalog

locks. If no other clauses are specified for the ALTER TABLE statement, then

only a SHARE lock will be acquired on the system catalog tables. This can

greatly reduce the possibility of concurrency conflicts for the duration of time

between when this statement is executed and when the unit of work in which

it was executed is ended.

If the table is a typed table, this option is only supported on the root table of

the typed table hierarchy (SQLSTATE 428DR).

For more information about the NOT LOGGED INITIALLY attribute, see the

description of this attribute in “CREATE TABLE”.

Note: If non-logged activity occurs against a table that has the NOT LOGGED

INITIALLY attribute activated, and if a statement fails (causing a rollback), or a

ROLLBACK TO SAVEPOINT is executed, the entire unit of work is rolled back

(SQL1476N). Furthermore, the table for which the NOT LOGGED INITIALLY

attribute was activated is marked inaccessible after the rollback has occurred

and can only be dropped. Therefore, the opportunity for errors within the unit

of work in which the NOT LOGGED INITIALLY attribute is activated should

be minimized.

WITH EMPTY TABLE

Causes all data currently in table to be removed. Once the data has been

removed, it cannot be recovered except through use of the RESTORE

facility. If the unit of work in which this alter statement was issued is

rolled back, the table data will not be returned to its original state.

 When this action is requested, no DELETE triggers defined on the affected

table are fired. Any indexes that exist on the table are also deleted.

54 Common Criteria Certification: Administration and User Documentation - Volume 2

A partitioned table with attached data partitions cannot be emptied

(SQLSTATE 42928).

PCTFREE integer

Specifies the percentage of each page that is to be left as free space during a

load or a table reorganization operation. The first row on each page is added

without restriction. When additional rows are added to a page, at least integer

percent of the page is left as free space. The PCTFREE value is considered only

by the load and table reorg utilities. The value of integer can range from 0 to

99. A PCTFREE value of -1 in the system catalog (SYSCAT.TABLES) is

interpreted as the default value. The default PCTFREE value for a table page is

0. If the table is a typed table, this option is only supported on the root table of

the typed table hierarchy (SQLSTATE 428DR).

LOCKSIZE

Indicates the size (granularity) of locks used when the table is accessed. Use of

this option in the table definition will not prevent normal lock escalation from

occurring. If the table is a typed table, this option is only supported on the root

table of the typed table hierarchy (SQLSTATE 428DR).

ROW

Indicates the use of row locks. This is the default lock size when a table is

created.

BLOCKINSERT

Indicates the use of block locks during insert operations. This means that

the appropriate exclusive lock is acquired on the block before insertion,

and row locking is not done on the inserted row. This option is useful

when separate transactions are inserting into separate cells in the table.

Transactions inserting into the same cells can still do so concurrently, but

will insert into distinct blocks, and this can impact the size of the cell if

more blocks are needed. This option is only valid for MDC tables

(SQLSTATE 42613).

TABLE

Indicates the use of table locks. This means that the appropriate share or

exclusive lock is acquired on the table, and that intent locks (except intent

none) are not used. For partitioned tables, this lock strategy is applied to

both the table lock and the data partition locks for any data partitions that

are accessed. Use of this value can improve the performance of queries by

limiting the number of locks that need to be acquired. However,

concurrency is also reduced, because all locks are held over the complete

table.

APPEND

Indicates whether data is appended to the end of the table data or placed

where free space is available in data pages. If the table is a typed table, this

option is only supported on the root table of the typed table hierarchy

(SQLSTATE 428DR).

ON

Indicates that table data will be appended and information about free

space on pages will not be kept. The table must not have a clustered index

(SQLSTATE 428CA).

OFF

Indicates that table data will be placed where there is available space. This

is the default when a table is created.

Chapter 1. SQL Statements for Administrators 55

|

The table should be reorganized after setting APPEND OFF since the

information about available free space is not accurate and may result in

poor performance during insert.

VOLATILE CARDINALITY or NOT VOLATILE CARDINALITY

Indicates to the optimizer whether or not the cardinality of table table-name can

vary significantly at run time. Volatility applies to the number of rows in the

table, not to the table itself. CARDINALITY is an optional keyword. The

default is NOT VOLATILE.

VOLATILE

Specifies that the cardinality of table table-name can vary significantly at

run time, from empty to large. To access the table, the optimizer will use

an index scan (rather than a table scan, regardless of the statistics) if that

index is index-only (all referenced columns are in the index), or that index

is able to apply a predicate in the index scan. The list prefetch access

method will not be used to access the table. If the table is a typed table,

this option is only supported on the root table of the typed table hierarchy

(SQLSTATE 428DR).

NOT VOLATILE

Specifies that the cardinality of table-name is not volatile. Access plans to

this table will continue to be based on existing statistics and on the current

optimization level.

COMPRESS

Specifies whether or not data compression applies to the rows of the table.

YES

Specifies that data row compression is enabled. Insert and update

operations on the table will be subject to compression. If no compression

dictionary for the table exists, a compression dictionary is automatically

created and rows are subject to compression after the table is sufficiently

populated with data. If there is an existing compression dictionary for the

table, compression is reactivated to use this dictionary, and rows are

subject to compression. This also applies to the data in the XML storage

object. If there is sufficient data in the XML storage object, a compression

dictionary is automatically created and XML documents are subject to

compression. Index compression will be enabled for new indexes unless

explicitly disabled in the CREATE INDEX statement. Existing indexes can

be compressed by using the ALTER INDEX statement.

NO

Specifies that data row compression is disabled. Insert and update

operations on the table will no longer be subject to compression. Any rows

in the table that are in compressed format remain in compressed format

until they are converted to non-compressed format when they are updated.

A non-inplace reorganization of the table decompresses all rows that are

compressed. If a compression dictionary exists, it is discarded during table

reinitialization or truncation (such as, for example, a replace operation).

Index compression will be disabled for new indexes unless explicitly

enabled in the CREATE INDEX statement. Index compression for existing

indexes can be explicitly disabled by using the ALTER INDEX statement.

VALUE COMPRESSION

This determines the row format that is to be used. Each data type has a

different byte count depending on the row format that is used. For more

information, see “Byte Counts” in “CREATE TABLE”. An update operation

causes an existing row to be changed to the new row format. Offline table

56 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|

|
|
|

reorganization is recommended to improve the performance of update

operations on existing rows. This can also result in the table taking up less

space. If the row size, calculated using the appropriate column in the table

named “Byte Counts of Columns by Data Type” (see “CREATE TABLE”),

would no longer fit within the row size limit, as indicated in the table named

“Limits for Number of Columns and Row Size In Each Table Space Page Size”,

an error is returned (SQLSTATE 54010). If the table is a typed table, this option

is only supported on the root table of the typed table hierarchy (SQLSTATE

428DR).

ACTIVATE

The NULL value is stored using three bytes. This is the same or less space

than when VALUE COMPRESSION is not active for columns of all data

types, with the exception of CHAR(1). Whether or not a column is defined

as nullable has no affect on the row size calculation. The zero-length data

values for columns whose data type is VARCHAR, VARGRAPHIC, LONG

VARCHAR, LONG VARGRAPHIC, CLOB, DBCLOB, or BLOB are to be

stored using two bytes only, which is less than the storage required when

VALUE COMPRESSION is not active. When a column is defined using the

COMPRESS SYSTEM DEFAULT option, this also allows the system default

value for the column to be stored using three bytes of total storage. The

row format that is used to support this determines the byte counts for each

data type, and tends to cause data fragmentation when updating to or

from NULL, a zero-length value, or the system default value.

DEACTIVATE

The NULL value is stored with space set aside for possible future updates.

This space is not set aside for varying-length columns. It also does not

support efficient storage of system default values for a column. If columns

already exist with the COMPRESS SYSTEM DEFAULT attribute, a warning

is returned (SQLSTATE 01648).

LOG INDEX BUILD

Specifies the level of logging that is to be performed during create, recreate, or

reorganize index operations on this table.

NULL

Specifies that the value of the logindexbuild database configuration

parameter will be used to determine whether or not index build operations

are to be completely logged. This is the default when the table is created.

OFF

Specifies that any index build operations on this table will be logged

minimally. This value overrides the setting of the logindexbuild database

configuration parameter.

ON

Specifies that any index build operations on this table will be logged

completely. This value overrides the setting of the logindexbuild database

configuration parameter.

Rules

v Any unique or primary key constraint defined on the table must be a superset of

the distribution key, if there is one (SQLSTATE 42997).

v Primary or unique keys cannot be subsets of dimensions (SQLSTATE 429BE).

v A column can only be referenced in one ADD, ALTER, or DROP COLUMN

clause in a single ALTER TABLE statement (SQLSTATE 42711).

Chapter 1. SQL Statements for Administrators 57

v A column length or data type cannot be altered, nor can the column be dropped,

if the table has any materialized query tables that are dependent on the table

(SQLSTATE 42997).

v VARCHAR and VARGRAPHIC columns that have been altered to be greater

than 4000 and 2000, respectively, must not be used as input parameters in

functions in the SYSFUN schema (SQLSTATE 22001).

v A column length cannot be altered if the table has any views enabled for query

optimization that are dependent on the table (SQLSTATE 42997).

v The table must be put in set integrity pending state, using the SET INTEGRITY

statement with the OFF option (SQLSTATE 55019), before:

– Adding a column with a generation expression

– Altering the generated expression of a column

– Changing a column to have a generated expression
v An existing column cannot be altered to become of type DB2SECURITYLABEL

(SQLSTATE 42837).

v Defining a column of type DB2SECURITYLABEL fails if the table does not have

a security policy associated with it (SQLSTATE 55064).

v A column of type DB2SECURITYLABEL cannot be altered or dropped

(SQLSTATE 42817).

v An ALTER TABLE operation to mark a table as protected fails if there exists an

MQT that depends on that table (SQLSTATE 55067).

v Attaching a partition to a protected partitioned table fails if the source table and

the target table are not protected using the same security policy, have the same

row security label column, and have the same set of protected columns

(SQLSTATE 428GE).

v If a generated column is referenced in a table partitioning key, the generated

column expression cannot be altered (SQLSTATE 42837).

v The isolation-clause cannot be specified in the fullselect of the

materialized-query-definition (SQLSTATE 42601).

Notes

v A REORG-recommended operation has occured when changes resulting from an

ALTER TABLE statement affect the row format of the data. When this occurs,

most subsequent operations on the table are restricted until a table

reorganization operation completes successfully. Up to three ALTER TABLE

statements of this type can execute against a table before reorganization must be

done (SQLSTATE 57016). Multiple alterations that would constitute a

REORG-recommended operation can be made as part of a single ALTER TABLE

statement (one per column); this is considered to be a single

REORG-recommended operation. For example, dropping two columns in a

single ALTER TABLE statement is not considered to be two

REORG-recommended operations. Dropping two columns in two separate

ALTER TABLE statements, however, would be regarded as two statements that

contain REORG-recommended operations.

v The following table operations are allowed after a successful

REORG-recommended operation has occurred:

– ALTER TABLE, where no row data validation is required. However, the

following operations are not allowed (SQLSTATE 57007):

- ADD CHECK CONSTRAINT

- ADD REFERENTIAL CONSTRAINT

- ADD UNIQUE CONSTRAINT

58 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

- ALTER COLUMN SET NOT NULL
– DROP TABLE

– RENAME TABLE

– REORG TABLE

– TRUNCATE TABLE

– Table scan access of table data
v Altering a table to make it a materialized query table will put the table in set

integrity pending state. If the table is defined as REFRESH IMMEDIATE, the

table must be taken out of set integrity pending state before INSERT, DELETE,

or UPDATE commands can be invoked on the table referenced by the fullselect.

The table can be taken out of set integrity pending state by using REFRESH

TABLE or SET INTEGRITY, with the IMMEDIATE CHECKED option, to

completely refresh the data in the table based on the fullselect. If the data in the

table accurately reflects the result of the fullselect, the IMMEDIATE

UNCHECKED option of SET INTEGRITY can be used to take the table out of set

integrity pending state.

v Altering a table to change it to a REFRESH IMMEDIATE materialized query

table will cause any packages with INSERT, DELETE, or UPDATE usage on the

table referenced by the fullselect to be invalidated.

v Altering a table to change from a materialized query table to a regular table will

cause any packages dependent on the table to be invalidated.

v Altering a table to change from a MAINTAINED BY FEDERATED_TOOL

materialized query table to a regular table will not cause any change in the

subscription setup of the replication tool. Because a subsequent change to a

MAINTAINED BY SYSTEM materialized query table will cause the replication

tool to fail, you must change the subscription setting when changing a

MAINTAINED BY FEDERATED_TOOL materialized query table.

v If a deferred materialized query table is associated with a staging table, the

staging table will be dropped if the materialized query table is altered to a

regular table.

v ADD column clauses are processed prior to all other clauses. Other clauses are

processed in the order that they are specified.

v Any columns added through an alter table operation will not automatically be

added to any existing view of the table.

v Adding or attaching a data partition to a partitioned table, or detaching a data

partition from a partitioned table causes any packages that are dependent on

that table to be invalidated.

v To drop the partitioning for a table, the table must be dropped and then

recreated.

v To drop the organization for a table, the table must be dropped and then

recreated.

v When an index is automatically created for a unique or primary key constraint,

the database manager will try to use the specified constraint name as the index

name with a schema name that matches the schema name of the table. If this

matches an existing index name or no name for the constraint was specified, the

index is created in the SYSIBM schema with a system-generated name formed of

″SQL″ followed by a sequence of 15 numeric characters generated by a

timestamp based function.

v When a nonpartitioned index is created on a partitioned table with attached data

partitions, the index will not include the data in the attached data partitions. Use

the SET INTEGRITY statement to maintain all indexes for all attached data

partitions.

Chapter 1. SQL Statements for Administrators 59

|

v When creating a partitioned index in the presence of attached partitions

(STATUS of ’A’ in SYSDATAPARTITIONS), an index partition for each attached

partition will also be created. If the partitioned index is being created as unique,

or is an XML index being created with REJECT INVALID VALUES, then the

index creation can fail if the attached partition contains any violations

(duplicates for a unique index, or invalid values for the XML index).

v Any table that may be involved in a DELETE operation on table T is said to be

delete-connected to T. Thus, a table is delete-connected to T if it is a dependent of

T or it is a dependent of a table in which deletes from T cascade.

v A package has an insert (update/delete) usage on table T if records are inserted

into (updated in/deleted from) T either directly by a statement in the package,

or indirectly through constraints or triggers executed by the package on behalf

of one of its statements. Similarly, a package has an update usage on a column if

the column is modified directly by a statement in the package, or indirectly

through constraints or triggers executed by the package on behalf of one of its

statements.

v In a federated system, a remote base table that was created using transparent

DDL can be altered. However, transparent DDL does impose some limitations on

the modifications that can be made:

– A remote base table can only be altered by adding new columns or specifying

a primary key.

– Specific clauses supported by transparent DDL include:

- ADD COLUMN column-definition

- NOT NULL and PRIMARY KEY in the column-options clause

- ADD unique-constraint (PRIMARY KEY only)
– You cannot specify a comment on an existing column in a remote base table.

– An existing primary key in a remote base table cannot be altered or dropped.

– Altering a remote base table invalidates any packages that are dependent on

the nickname associated with that remote base table.

– The remote data source must support the changes being requested through

the ALTER TABLE statement. Depending on how the data source responds to

requests it does not support, an error might be returned or the request might

be ignored.

– An attempt to alter a remote base table that was not created using transparent

DDL returns an error.
v Any changes, whether implicit or explicit, to primary key, unique keys, or

foreign keys might have the following effects on packages, indexes, and other

foreign keys.

– If a primary key or unique key is added:

- There is no effect on packages, foreign keys, or existing unique keys. (If the

primary or unique key uses an existing unique index that was created in a

previous version and has not been converted to support deferred

uniqueness, the index is converted, and packages with update usage on the

associated table are invalidated.)
– If a primary key or unique key is dropped:

- The index is dropped if it was automatically created for the constraint. Any

packages dependent on the index are invalidated.

- The index is set back to non-unique if it was converted to unique for the

constraint and it is no longer system-required. Any packages dependent on

the index are invalidated.

60 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|

- The index is set to no longer system required if it was an existing unique

index used for the constraint. There is no effect on packages.

- All dependent foreign keys are dropped. Further action is taken for each

dependent foreign key, as specified in the next item.
– If a foreign key is added, dropped, or altered from NOT ENFORCED to

ENFORCED (or ENFORCED to NOT ENFORCED):

- All packages with an insert usage on the object table are invalidated.

- All packages with an update usage on at least one column in the foreign

key are invalidated.

- All packages with a delete usage on the parent table are invalidated.

- All packages with an update usage on at least one column in the parent

key are invalidated.
– If a foreign key or a functional dependency is altered from ENABLE QUERY

OPTIMIZATION to DISABLE QUERY OPTIMIZATION:

- All packages with dependencies on the constraint for optimization

purposes are invalidated.
v Adding a column to a table will result in invalidation of all packages with insert

usage on the altered table. If the added column is the first user-defined

structured type column in the table, packages with DELETE usage on the altered

table will also be invalidated.

v Adding a check or referential constraint to a table that already exists and that is

not in set integrity pending state, or altering the existing check or referential

constraint from NOT ENFORCED to ENFORCED on an existing table that is not

in set integrity pending state will cause the existing rows in the table to be

immediately evaluated against the constraint. If the verification fails, an error is

returned (SQLSTATE 23512). If a table is in set integrity pending state, adding a

check or referential constraint, or altering a constraint from NOT ENFORCED to

ENFORCED will not immediately lead to the enforcement of the constraint.

Issue the SET INTEGRITY statement with the IMMEDIATE CHECKED option to

begin enforcing the constraint.

v Adding, altering, or dropping a check constraint will result in invalidation of all

packages with either an insert usage on the object table, an update usage on at

least one of the columns involved in the constraint, or a select usage exploiting

the constraint to improve performance.

v Adding a distribution key invalidates all packages with an update usage on at

least one of the columns of the distribution key.

v A distribution key that was defined by default as the first column of the primary

key is not affected by dropping the primary key and adding a different primary

key.

v Dropping a column or changing its data type removes all runstats information

from the table being altered. Runstats should be performed on the table after it

is again accessible. The statistical profile of the table is preserved if the table

does not contain a column that was explicitly dropped.

v Altering a column (to increase its length or change its data type or nullability

attribute) or dropping a column invalidates all packages that reference (directly

or indirectly through a referential constraint or trigger) its table.

v Altering a column (to increase its length or change its data type or nullability

attribute) regenerates views (except typed views) that are dependent on its table.

If a problem occurs while regenerating such a view, an error is returned

(SQLSTATE 56098). Any typed views that are dependent on the table are marked

inoperative.

Chapter 1. SQL Statements for Administrators 61

v Altering a column to increase its length or change its data type marks all

dependent triggers and SQL functions as invalid; they are implicitly recompiled

on next use. If a problem occurs while regenerating such an object, an error is

returned (SQLSTATE 56098).

v Altering a column (to increase its length or change its data type or nullability

attribute) might cause errors (SQLSTATE 54010) while processing a trigger or an

SQL function when a statement involving the trigger or SQL function is

prepared or bound. This can occur if the row length based on the sum of the

lengths of the transition variables and transition table columns is too long. If

such a trigger or SQL function is dropped, a subsequent attempt to recreate it

returns an error (SQLSTATE 54040).

v Altering a structured or XML type column to increase the inline length will

invalidate all packages that reference the table, either directly or indirectly

through a referential constraint or trigger.

v Altering a structured or XML type column to increase the inline length will

regenerate views that are dependent on the table.

v A compression dictionary can be created for the XML storage object of a table

only if the XML columns are added to the table in DB2 Version 9.7 or later, or if

the table is migrated the using an online table move.

v Changing the LOCKSIZE for a table will result in invalidation of all packages

that have a dependency on the altered table.

v Changing VOLATILE or NOT VOLATILE CARDINALITY will result in

invalidation of all packages that have a dependency on the altered table.

v Replication: Exercise caution when increasing the length or changing the data

type of a column. The change data table that is associated with an application

table might already be at or near the DB2 row size limit. The change data table

should be altered before the application table, or the two tables should be

altered within the same unit of work, to ensure that the alteration can be

completed for both tables. Consideration should be given to copies, which might

also be at or near the row size limit, or reside on platforms which lack the

ability to increase the length of an existing column.

If the change data table is not altered before the Capture program processes log

records with the altered attributes, the Capture program will likely fail. If a copy

containing the altered column is not altered before the subscription maintaining

the copy runs, the subscription will likely fail.

v When detaching a partition from a protected table, the target table automatically

created by DB2 will be protected in exactly the same way the source table is

protected.

v When a table is altered such that it becomes protected with row level

granularity, any cached dynamic SQL sections that depend on such a table are

invalidated. Similarly, any packages that depend on such a table are also

invalidated.

v When a column of a table, T, is altered such that it becomes a protected column,

any cached dynamic SQL sections that depend on table T are invalidated.

Similarly, any packages that depend on table T are also invalidated.

v When a column of a table, T, is altered such that it becomes a non protected

column, any cached dynamic SQL sections that depend on table T are

invalidated. Similarly, any packages that depend on table T are also invalidated.

v For existing rows in the table, the value of the security label column defaults to

the security label for write access of the session authorization ID at the time the

ALTER statement that adds a row security label column is executed.

62 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

v Considerations for implicitly hidden columns: A column that is defined as

implicitly hidden can be explicitly referenced in an ALTER TABLE statement. For

example, an implicitly hidden column can be altered or specified as part of a

referential constraint, check constraint, or materialized query table definition.

v Compatibilities: For compatibility with previous versions of DB2 products:

– The ADD keyword is optional for:

- Unnamed PRIMARY KEY constraints

- Unnamed referential constraints

- Referential constraints whose name follows the phrase FOREIGN KEY
– The CONSTRAINT keyword can be omitted from a column-definition defining

a references-clause

– constraint-name can be specified following FOREIGN KEY (without the

CONSTRAINT keyword)

– SET SUMMARY AS can be specified in place of SET MATERIALIZED QUERY

AS

– SET MATERIALIZED QUERY AS DEFINITION ONLY can be specified in

place of DROP MATERIALIZED QUERY

– SET MATERIALIZED QUERY AS (fullselect) can be specified in place of ADD

MATERIALIZED QUERY (fullselect)

– ADD PARTITIONING KEY can be specified in place of ADD DISTRIBUTE BY

HASH; the optional USING HASHING clause can also still be specified in

this case

– DROP PARTITIONING KEY can be specified in place of DROP

DISTRIBUTION

– The LONG VARCHAR and LONG VARGRAPHIC data types continue to be

supported but are deprecated and not recommended, especially for portable

applications

For compatibility with previous versions of DB2 products and for consistency:

– A comma can be used to separate multiple options in the identity-alteration

clause

For compatibility with DB2 for z/OS:

– PART can be specified in place of PARTITION

– VALUES can be specified in place of ENDING AT

The following syntax is also supported:

– NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER

Examples

Example 1: Add a new column named RATING, which is one character long, to

the DEPARTMENT table.

 ALTER TABLE DEPARTMENT

 ADD RATING CHAR(1)

Example 2: Add a new column named SITE_NOTES to the PROJECT table. Create

SITE_NOTES as a varying-length column with a maximum length of 1000 bytes.

The values of the column do not have an associated character set and therefore

should not be converted.

 ALTER TABLE PROJECT

 ADD SITE_NOTES VARCHAR(1000) FOR BIT DATA

Chapter 1. SQL Statements for Administrators 63

|
|
|

Example 3: Assume a table called EQUIPMENT exists defined with the following

columns:

 Column Name Data Type

 EQUIP_NO INT

 EQUIP_DESC VARCHAR(50)

 LOCATION VARCHAR(50)

 EQUIP_OWNER CHAR(3)

Add a referential constraint to the EQUIPMENT table so that the owner

(EQUIP_OWNER) must be a department number (DEPTNO) that is present in the

DEPARTMENT table. DEPTNO is the primary key of the DEPARTMENT table. If a

department is removed from the DEPARTMENT table, the owner

(EQUIP_OWNER) values for all equipment owned by that department should

become unassigned (or set to null). Give the constraint the name DEPTQUIP.

 ALTER TABLE EQUIPMENT

 ADD CONSTRAINT DEPTQUIP

 FOREIGN KEY (EQUIP_OWNER)

 REFERENCES DEPARTMENT

 ON DELETE SET NULL

Also, an additional column is needed to allow the recording of the quantity

associated with this equipment record. Unless otherwise specified, the EQUIP_QTY

column should have a value of 1 and must never be null.

 ALTER TABLE EQUIPMENT

 ADD COLUMN EQUIP_QTY

 SMALLINT NOT NULL DEFAULT 1

Example 4: Alter table EMPLOYEE. Add the check constraint named REVENUE

defined so that each employee must make a total of salary and commission greater

than $30,000.

 ALTER TABLE EMPLOYEE

 ADD CONSTRAINT REVENUE

 CHECK (SALARY + COMM > 30000)

Example 5: Alter table EMPLOYEE. Drop the constraint REVENUE which was

previously defined.

 ALTER TABLE EMPLOYEE

 DROP CONSTRAINT REVENUE

Example 6: Alter a table to log SQL changes in the default format.

 ALTER TABLE SALARY1

 DATA CAPTURE NONE

Example 7: Alter a table to log SQL changes in an expanded format.

 ALTER TABLE SALARY2

 DATA CAPTURE CHANGES

Example 8: Alter the EMPLOYEE table to add 4 new columns with default values.

 ALTER TABLE EMPLOYEE

 ADD COLUMN HEIGHT MEASURE DEFAULT MEASURE(1)

 ADD COLUMN BIRTHDAY BIRTHDATE DEFAULT DATE(’01-01-1850’)

 ADD COLUMN FLAGS BLOB(1M) DEFAULT BLOB(X’01’)

 ADD COLUMN PHOTO PICTURE DEFAULT BLOB(X’00’)

The default values use various function names when specifying the default. Since

MEASURE is a distinct type based on INTEGER, the MEASURE function is used.

The HEIGHT column default could have been specified without the function since

the source type of MEASURE is not BLOB or a datetime data type. Since

64 Common Criteria Certification: Administration and User Documentation - Volume 2

BIRTHDATE is a distinct type based on DATE, the DATE function is used

(BIRTHDATE cannot be used here). For the FLAGS and PHOTO columns the

default is specified using the BLOB function even though PHOTO is a distinct

type. To specify a default for BIRTHDAY, FLAGS and PHOTO columns, a function

must be used because the type is a BLOB or a distinct type sourced on a BLOB or

datetime data type.

Example 9: A table called CUSTOMERS is defined with the following columns:

 Column Name Data Type

 BRANCH_NO SMALLINT

 CUSTOMER_NO DECIMAL(7)

 CUSTOMER_NAME VARCHAR(50)

In this table, the primary key is made up of the BRANCH_NO and

CUSTOMER_NO columns. To distribute the table, you will need to create a

distribution key for the table. The table must be defined in a table space on a

single-node database partition group. The primary key must be a superset of the

distribution key columns: at least one of the columns of the primary key must be

used as the distribution key. Make BRANCH_NO the distribution key as follows:

 ALTER TABLE CUSTOMERS

 ADD DISTRIBUTE BY HASH (BRANCH_NO)

Example 10: A remote table EMPLOYEE was created in a federated system using

transparent DDL. Alter the remote table EMPLOYEE to add the columns

PHONE_NO and WORK_DEPT; also add a primary key on the existing column

EMP_NO and the new column WORK_DEPT.

 ALTER TABLE EMPLOYEE

 ADD COLUMN PHONE_NO CHAR(4) NOT NULL

 ADD COLUMN WORK_DEPT CHAR(3)

 ADD PRIMARY KEY (EMP_NO, WORK_DEPT)

Example 11: Alter the DEPARTMENT table to add a functional dependency FD1,

then drop the functional dependency FD1 from the DEPARTMENT table.

 ALTER TABLE DEPARTMENT

 ADD CONSTRAINT FD1

 CHECK (DEPTNAME DETERMINED BY DEPTNO) NOT ENFORCED

 ALTER TABLE DEPARTMENT

 DROP CHECK FD1

Example 12: Change the default value for the WORKDEPT column in the

EMPLOYEE table to 123.

 ALTER TABLE EMPLOYEE

 ALTER COLUMN WORKDEPT

 SET DEFAULT ’123’

Example 13: Associate the security policy DATA_ACCESS with the table

EMPLOYEE.

 ALTER TABLE EMPLOYEE

 ADD SECURITY POLICY DATA_ACCESS

Example 14: Alter the table EMPLOYEE to protect the SALARY column.

 ALTER TABLE EMPLOYEE

 ALTER COLUMN SALARY

 SECURED WITH EMPLOYEESECLABEL

Example 15: Assume that you have a table named SALARY_DATA that is defined

with the following columns:

Chapter 1. SQL Statements for Administrators 65

Column Name Data Type

----------- ---------

EMP_NAME VARCHAR(50) NOT NULL

EMP_ID SMALLINT NOT NULL

EMP_POSITION VARCHAR(100) NOT NULL

SALARY DECIMAL(5,2)

PROMOTION_DATE DATE NOT NULL

Change this table to allow salaries to be stored in a DECIMAL(6,2) column, make

PROMOTION_DATE an optional field that can be set to the null value, and

remove the EMP_POSITION column.

 ALTER TABLE SALARY_DATA

 ALTER COLUMN SALARY SET DATA TYPE DECIMAL(6,2)

 ALTER COLUMN PROMOTION_DATE DROP NOT NULL

 DROP COLUMN EMP_POSITION

ALTER TABLESPACE

The ALTER TABLESPACE statement is used to modify an existing table space in

the following ways:

v Add a container to, or drop a container from a DMS table space; that is, a table

space created with the MANAGED BY DATABASE option.

v Modify the size of a container in a DMS table space.

v Lower the high water mark for a DMS table space through extent movement.

v Add a container to an SMS table space on a database partition that currently has

no containers.

v Modify the PREFETCHSIZE setting for a table space.

v Modify the BUFFERPOOL used for tables in the table space.

v Modify the OVERHEAD setting for a table space.

v Modify the TRANSFERRATE setting for a table space.

v Modify the file system caching policy for a table space.

v Enable or disable auto-resize for a DMS or automatic storage table space.

v Rebalance a regular or large automatic storage table space.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSCTRL or SYSADM authority.

Syntax

�� ALTER TABLESPACE tablespace-name �

66 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|

|

�

�

ADD

database-container-clause

TO STRIPE SET

stripeset

on-db-partitions-clause

system-container-clause

on-db-partitions-clause

BEGIN NEW STRIPE SET

database-container-clause

on-db-partitions-clause

DROP

drop-container-clause

on-db-partitions-clause

REDUCE

database-container-clause

on-db-partitions-clause

all-containers-clause

MAX

STOP

integer

K

M

G

PERCENT

EXTEND

database-container-clause

RESIZE

all-containers-clause

on-db-partitions-clause

REBALANCE

PREFETCHSIZE

AUTOMATIC

number-of-pages

integer

K

M

G

BUFFERPOOL

bufferpool-name

OVERHEAD

number-of-milliseconds

TRANSFERRATE

number-of-milliseconds

FILE SYSTEM CACHING

NO FILE SYSTEM CACHING

DROPPED TABLE RECOVERY

ON

OFF

SWITCH ONLINE

AUTORESIZE

NO

YES

INCREASESIZE

integer

PERCENT

K

M

G

MAXSIZE

integer

K

M

G

NONE

CONVERT TO LARGE

LOWER HIGH WATER MARK

STOP

MANAGED BY AUTOMATIC STORAGE

��

database-container-clause:

�

 ,

(

FILE

’container-string’

number-of-pages

)

DEVICE

integer

K

M

G

drop-container-clause:

�

 ,

(

FILE

’container-string’

)

DEVICE

system-container-clause:

�

 ,

(

’container-string’

)

Chapter 1. SQL Statements for Administrators 67

on-db-partitions-clause:

 ON DBPARTITIONNUM

DBPARTITIONNUMS
 �

�

�

 ,

(

db-partition-number1

)

TO

db-partition-number2

all-containers-clause:

 CONTAINERS

(

ALL

number-of-pages

)

integer

K

M

G

Description

tablespace-name

Names the table space. This is a one-part name. It is a long SQL identifier

(either ordinary or delimited).

ADD

Specifies that one or more new containers are to be added to the table space.

TO STRIPE SET stripeset

Specifies that one or more new containers are to be added to the table space,

and that they will be placed into the given stripe set.

BEGIN NEW STRIPE SET

Specifies that a new stripe set is to be created in the table space, and that one

or more containers are to be added to this new stripe set. Containers that are

subsequently added using the ADD option will be added to this new stripe set

unless TO STRIPE SET is specified.

DROP

Specifies that one or more containers are to be dropped from the table space.

REDUCE

For non-automatic storage table spaces, specifies that existing containers are to

be reduced in size. The size specified is the size by which the existing

container is decreased. If the all-containers-clause is specified, all containers in

the table space will decrease by this size. If the reduction in size will result in a

table space size that is smaller then the current high water mark, an attempt

will be made to reduce the high water mark before attempting to reduce the

containers. For non-automatic storage table spaces, the REDUCE clause must

be followed by a database-container-clause or an all-containers-clause.

 For automatic storage table spaces, specifies that the current high water mark

is to be reduced, if possible, and that the size of the table space is to be

reduced to the new high water mark. For automatic storage table spaces, the

REDUCE clause must not be followed by a database-container-clause or an

all-containers-clause.

68 Common Criteria Certification: Administration and User Documentation - Volume 2

Note: The REDUCE option with the MAX, numeric value, PERCENT, or STOP

clauses, and the LOWER HIGH WATER MARK option including the STOP

clause, are only available for database managed, and automatic storage

managed, table spaces with the reclaimable storage attribute. Moreover, these

options must be specified and run without any other options, including each

other.

database-container-clause

Adds one or more containers to a DMS table space. The table space must

identify a DMS table space that already exists at the application server.

all-containers-clause

Extends, reduces, or resizes all of the containers in a DMS table space. The

table space must identify a DMS table space that already exists at the

application server.

MAX

For automatic storage table spaces with reclaimable storage, specifies that

the maximum number of extents should be moved to the beginning of the

table space to lower the high water mark. Additionally, the size of the table

space will be reduced to the new high water mark. This does not apply to

non-automatic storage table spaces.

STOP

For automatic storage table spaces with reclaimable storage, interrupts the

extent movement operation if in progress. This option is not available for

non-automatic storage table spaces.

integer [K | M | G] or integer PERCENT

For automatic storage table spaces with reclaimable storage, specifies the

numeric value by which the table space is to be reduced through extent

movement. The value can be expressed in several ways:

v An integer specified without K, M, G, or PERCENT indicates that the

numeric value is the number of pages by which the table space is to be

reduced.

v An integer specified with K, M, or G indicates the reduction size in

kilobytes, megabytes, or gigabytes, respectively. The value is first

converted from bytes to number of pages based on the page size of the

table space.

v An integer specified with PERCENT indicates the number of extents to

move, as a percentage of the current size of the table space.

Once extent movement is complete, the table space size is reduced to the

new high water mark. This option is not available for non-automatic

storage table spaces.

on-db-partitions-clause

Specifies one or more database partitions for the corresponding container

operations.

EXTEND

Specifies that existing containers are to be increased in size. The size specified

is the size by which the existing container is increased. If the

all-containers-clause is specified, all containers in the table space will increase by

this size.

RESIZE

Specifies that the size of existing containers is to be changed. The size specified

is the new size for the container. If the all-containers-clause is specified, all

containers in the table space will be changed to this size. If the operation

Chapter 1. SQL Statements for Administrators 69

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

affects more than one container, these containers must all either increase in

size, or decrease in size. It is not possible to increase some while decreasing

others (SQLSTATE 429BC).

database-container-clause

Adds one or more containers to a DMS table space. The table space must

identify a DMS table space that already exists at the application server.

drop-container-clause

Drops one or more containers from a DMS table space. The table space must

identify a DMS table space that already exists at the application server.

system-container-clause

Adds one or more containers to an SMS table space on the specified database

partitions. The table space must identify an SMS table space that already exists

at the application server. There must not be any containers on the specified

database partitions for the table space (SQLSTATE 42921).

on-db-partitions-clause

Specifies one or more database partitions for the corresponding container

operations.

all-containers-clause

Extends, reduces, or resizes all of the containers in a DMS table space. The

table space must identify a DMS table space that already exists at the

application server.

REBALANCE

For regular and large automatic storage table spaces, initiates the creation of

containers on recently added storage paths, the drop of containers from storage

paths that are in the “Drop Pending” state, or both. During the rebalance, data

is moved into containers on new paths, and moved out of containers on

dropped paths. The rebalance runs asynchronously in the background and

does not affect the availability of data.

PREFETCHSIZE

Specifies to read in data needed by a query prior to it being referenced by the

query, so that the query need not wait for I/O to be performed.

AUTOMATIC

Specifies that the prefetch size of a table space is to be updated

automatically; that is, the prefetch size will be managed by DB2, using the

following formula:

 Prefetch size =

 (number of containers) *

 (number of physical disks per container) *

 (extent size)

The number of physical disks per container defaults to 1, unless a value is

specified through the DB2_PARALLEL_IO registry variable.

 A DB2 database will update the prefetch size automatically whenever the

number of containers in a table space changes (following successful

execution of an ALTER TABLESPACE statement that adds or drops one or

more containers). The prefetch size is updated at database start-up.

Automatic updating of the prefetch size can be turned off by specifying a

numeric value in the PREFETCHSIZE clause.

number-of-pages

Specifies the number of PAGESIZE pages that will be read from the table

70 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|
|

space when data prefetching is being performed. The prefetch size value

can also be specified as an integer value followed by K (for kilobytes), M

(for megabytes), or G (for gigabytes). If specified in this way, the floor of

the number of bytes divided by the page size is used to determine the

number of pages value for prefetch size.

BUFFERPOOL bufferpool-name

The name of the buffer pool used for tables in this table space. The buffer pool

must currently exist in the database (SQLSTATE 42704). The database partition

group of the table space must be defined for the bufferpool (SQLSTATE 42735).

OVERHEAD number-of-milliseconds

Any numeric literal (integer, decimal, or floating point) that specifies the I/O

controller overhead and disk seek and latency time, in milliseconds. The

number should be an average for all containers that belong to the table space,

if not the same for all containers. This value is used to determine the cost of

I/O during query optimization.

TRANSFERRATE number-of-milliseconds

Any numeric literal (integer, decimal, or floating point) that specifies the time

to read one page (4K or 8K) into memory, in milliseconds. The number should

be an average for all containers that belong to the table space, if not the same

for all containers. This value is used to determine the cost of I/O during query

optimization.

FILE SYSTEM CACHING or NO FILE SYSTEM CACHING

Specifies whether or not I/O operations will be cached at the file system level.

Connections to the database must be terminated before a new caching policy

takes effect. Note that I/O access to long or LOB data is buffered for both SMS

and DMS containers.

FILE SYSTEM CACHING

All I/O operations in the target table space will be cached at the file

system level.

NO FILE SYSTEM CACHING

All I/O operations will bypass the file system level cache.

DROPPED TABLE RECOVERY

Specifies whether or not tables that have been dropped from tablespace-name

can be recovered using the RECOVER DROPPED TABLE ON option of the

ROLLFORWARD DATABASE command. For partitioned tables, dropped table

recovery is always on, even if dropped table recovery is turned off for

non-partitioned tables in one or more table spaces.

ON

Specifies that dropped tables can be recovered.

OFF

Specifies that dropped tables cannot be recovered.

SWITCH ONLINE

Specifies that table spaces in OFFLINE state are to be brought online if their

containers have become accessible. If the containers are not accessible, an error

is returned (SQLSTATE 57048).

AUTORESIZE

Specifies whether or not the auto-resize capability of a database managed

space (DMS) table space or an automatic storage table space is to be enabled.

Auto-resizable table spaces automatically increase in size when they become

full.

Chapter 1. SQL Statements for Administrators 71

NO

Specifies that the auto-resize capability of a DMS table space or an

automatic storage table space is to be disabled. If the auto-resize capability

is disabled, any values that have been previously specified for

INCREASESIZE or MAXSIZE will not be kept.

YES

Specifies that the auto-resize capability of a DMS table space or an

automatic storage table space is to be enabled.

INCREASESIZE integer PERCENT or INCREASESIZE integer K | M | G

Specifies the amount, per database partition, by which a table space that is

enabled for auto-resize will automatically be increased when the table space is

full, and a request for space has been made. The integer value must be

followed by:

v PERCENT to specify the amount as a percentage of the table space size at

the time that a request for space is made. When PERCENT is specified, the

integer value must be between 0 and 100 (SQLSTATE 42615).

v K (for kilobytes), M (for megabytes), or G (for gigabytes) to specify the

amount in bytes

Note that the actual value used might be slightly smaller or larger than what

was specified, because the database manager strives to maintain consistent

growth across containers in the table space.

MAXSIZE integer K | M | G or MAXSIZE NONE

Specifies the maximum size to which a table space that is enabled for

auto-resize can automatically be increased.

integer

Specifies a hard limit on the size, per database partition, to which a DMS

table space or an automatic storage table space can automatically be

increased. The integer value must be followed by K (for kilobytes), M (for

megabytes), or G (for gigabytes). Note that the actual value used might be

slightly smaller than what was specified, because the database manager

strives to maintain consistent growth across containers in the table space.

NONE

Specifies that the table space is to be allowed to grow to file system

capacity, or to the maximum table space size (described in “SQL limits”).

CONVERT TO LARGE

Modifies an existing regular DMS table space to be a large DMS table space.

The table space and its contents are locked during conversion. This option can

only be used on regular DMS table spaces. If an SMS table space, a temporary

table space, or the system catalog table space is specified, an error is returned

(SQLSTATE 560CF). You cannot convert a table space that contains a data

partition of a partitioned table that has data partitions in another table space

(SQLSTATE 560CF). Conversion cannot be reversed after being committed. If

tables in the table space are defined with DATA CAPTURE CHANGES,

consider the storage and capacity limits of the target table and table space.

LOWER HIGH WATER MARK

For both automatic storage and non-automatic storage table spaces with

reclaimable storage, triggers the extent movement operation to move the

maximum number of extents lower in the table space. Although the high water

mark is lowered, the size of the table space is not reduced. This must be

followed by an ALTER TABLESPACE REDUCE for automatic storage table

72 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|

spaces or ALTER TABLESPACE REDUCE with the database-container-clause or

all-containers-clause for non-automatic storage table spaces.

Note: The LOWER HIGH WATER MARK option including the STOP clause,

and the REDUCE option with the MAX, numeric value, PERCENT, or STOP

clauses, are only available for database managed and automatic storage

managed table spaces with the reclaimable storage attribute. Moreover, these

options must be specified and run without any other options, including each

other.

STOP

For both automatic storage and non-automatic storage table spaces with

reclaimable storage, interrupts the extent movement operation if in

progress.

MANAGED BY AUTOMATIC STORAGE

Enables automatic storage for a database managed (DMS) table space. Once

automatic storage is enabled, no further container operations can be executed

on the table space. The table space being converted cannot be using RAW

(DEVICE) containers.

Rules

v The BEGIN NEW STRIPE SET clause cannot be specified in the same statement

as ADD, DROP, EXTEND, REDUCE, and RESIZE, unless those clauses are being

directed to different database partitions (SQLSTATE 429BC).

v The stripe set value specified with the TO STRIPE SET clause must be within the

valid range for the table space being altered (SQLSTATE 42615).

v When adding or removing space from the table space, the following rules must

be followed:

– EXTEND and RESIZE can be used in the same statement, provided that the

size of each container is increasing (SQLSTATE 429BC).

– REDUCE and RESIZE can be used in the same statement, provided that the

size of each container is decreasing (SQLSTATE 429BC).

– EXTEND and REDUCE cannot be used in the same statement, unless they are

being directed to different database partitions (SQLSTATE 429BC).

– ADD cannot be used with REDUCE or DROP in the same statement, unless

they are being directed to different database partitions (SQLSTATE 429BC).

– DROP cannot be used with EXTEND or ADD in the same statement, unless

they are being directed to different database partitions (SQLSTATE 429BC).
v The AUTORESIZE, INCREASESIZE, or MAXSIZE clause cannot be specified for

system managed space (SMS) table spaces, temporary table spaces that were

created using automatic storage, or DMS table spaces that are defined to use raw

device containers (SQLSTATE 42601).

v The INCREASESIZE or MAXSIZE clause cannot be specified if the table space is

not auto-resizable (SQLSTATE 42601).

v When specifying a new maximum size for a table space, the value must be

larger than the current size on each database partition (SQLSTATE 560B0).

v Container operations (ADD, EXTEND, RESIZE, DROP, or BEGIN NEW STRIPE

SET) cannot be performed on automatic storage table spaces, because the

database manager is controlling the space management of such table spaces

(SQLSTATE 42858).

v Raw device containers cannot be added to an auto-resizable DMS table space

(SQLSTATE 42601).

Chapter 1. SQL Statements for Administrators 73

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

v The CONVERT TO LARGE clause cannot be specified in the same statement as

any other clause (SQLSTATE 429BC).

v The REBALANCE clause cannot be specified with any other clause (SQLSTATE

429BC).

v The REBALANCE clause is only valid for regular and large automatic storage

table spaces (SQLSTATE 42601). Temporary automatic storage table spaces

should be dropped and recreated to take advantage of recently added storage

paths or to have their containers removed from storage paths being dropped.

v Container operations and the REBALANCE clause cannot be specified if the

table space is in the “DMS rebalancer is active” state (SQLSTATE 55041).

Notes

v Each container definition requires 53 bytes plus the number of bytes necessary to

store the container name. The combined length of all container names for the

table space cannot exceed 20 480 bytes (SQLSTATE 54034).

v Default container operations are container operations that are specified in the

ALTER TABLESPACE statement, but that are not explicitly directed to a specific

database partition. These container operations are sent to any database partition

that is not listed in the statement. If these default container operations are not

sent to any database partition, because all database partitions are explicitly

mentioned for a container operation, a warning is returned (SQLSTATE 01589).

v Once space has been added or removed from a table space, and the transaction

is committed, the contents of the table space may be rebalanced across the

containers. Access to the table space is not restricted during rebalancing.

v If the table space is in OFFLINE state and the containers have become accessible,

the user can disconnect all applications and connect to the database again to

bring the table space out of OFFLINE state. Alternatively, SWITCH ONLINE

option can bring the table space up (out of OFFLINE) while the rest of the

database is still up and being used.

v If adding more than one container to a table space, it is recommended that they

be added in the same statement so that the cost of rebalancing is incurred only

once. An attempt to add containers to the same table space in separate ALTER

TABLESPACE statements within a single transaction will result in an error

(SQLSTATE 55041).

v Any attempts to extend, reduce, resize, or drop containers that do not exist will

raise an error (SQLSTATE 428B2).

v When extending, reducing, or resizing a container, the container type must

match the type that was used when the container was created (SQLSTATE

428B2).

v An attempt to change container sizes in the same table space, using separate

ALTER TABLESPACE statements but within a single transaction, will raise an

error (SQLSTATE 55041).

v In a partitioned database if more than one database partition resides on the

same physical node, the same device or specific path cannot be specified for

such database partitions (SQLSTATE 42730). For this environment, either specify

a unique container-string for each database partition or use a relative path name.

v Although the table space definition is transactional and the changes to the table

space definition are reflected in the catalog tables on commit, the buffer pool

with the new definition cannot be used until the next time the database is

started. The buffer pool in use, when the ALTER TABLESPACE statement was

issued, will continue to be used in the interim.

74 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|
|
|

|
|

|
|
|
|
|
|

v The REDUCE, RESIZE, or DROP option attempts to free unused extents, if

necessary, for DMS table spaces, and the REDUCE option attempts to free

unused extents for automatic storage table spaces. The removal of unused

extents allows the table space high water mark to be reduced to a value that

accurately represents the amount of space used, which, in turn, enables larger

reductions in table space size.

v Conversion to large DMS table spaces:: After conversion, it is recommended that

you issue the COMMIT statement and then increase the storage capacity of the

table space.

– If the table space is enabled for auto-resize, the MAXSIZE table space

attribute should be increased, unless it is already set to NONE.

– If the table space is not enabled for auto-resize:

- Enable auto-resize by issuing the ALTER TABLESPACE statement with the

AUTORESIZE YES option, or

- Add more storage by adding stripe sets, extending the size of existing

containers, or both

Indexes for tables in a converted table space must be reorganized or rebuilt

before they can support large record identifiers (RIDs).

– The indexes can be reorganized using the REORG INDEXES ALL command

(without the CLEANUP ONLY clause). Specify the ALLOW NO ACCESS

option for partitioned tables.

– Alternatively, the tables can be reorganized (not INPLACE), which will

rebuild all indexes and enable the tables to support more than 255 rows per

page.

To determine which tables do not yet support large RIDs, use the

ADMIN_GET_TAB_INFO table function.

v The rebalance of an automatic storage table space that has containers on a

storage path in the “Drop Pending” state will drop those containers. New

containers may need to be created to hold the data being moved off the dropped

containers. There must be sufficient free space on the other storage paths in the

database to allow those containers to be created, otherwise an error is returned

SQLSTATE 57011. The actual amount of free space required depends on many

factors, including the location of the high-water mark extent and the stripe sets

being altered. However, to ensure that the operation will be successful, there

should be at least enough free space on the remaining storage paths as there is

space being consumed by the containers being dropped.

v If the REBALANCE clause is specified but the data server determines that there

is no need to create new containers or drop existing ones, a rebalance does not

occur and the statement succeeds with a warning (SQLSTATE 01690).

v In addition to adding containers on recently added paths, the REBALANCE

operation may also be used to add containers on existing storage paths. Each

stripe set in the table space is examined and storage paths that are not in use by

a particular stripe set are identified. For each storage path identified, if there is

sufficient free space on it then a new container will be created. The container

will have the same size as the other containers in the stripe set. This would be

beneficial if a given storage path ran out of space, table spaces stopped using it

(by creating stripe sets on the other paths), and more storage was given to the

path. In this case, no new paths have been added, but the rebalance will attempt

to include that storage path in stripe sets where it wasn’t included before.

v Auto-resize can still occur while a rebalance of an automatic storage table space

is in progress.

Chapter 1. SQL Statements for Administrators 75

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

v When a DMS table space is enabled for automatic storage by the MANAGED BY

AUTOMATIC STORAGE clause, that table space will have one or more stripe

sets of user-defined (non-automatic storage) containers and one or more stripe

sets of automatic storage containers. Rebalancing the table space (using the

REBALANCE clause) removes all of the user-defined containers. The database

manager might extend existing automatic storage containers or create new

automatic storage containers to hold the data being moved from the

user-defined containers.

v Compatibilities: For compatibility with versions earlier than Version 8, the

keyword:

– NODE can be substituted for DBPARTITIONNUM

– NODES can be substituted for DBPARTITIONNUMS

Examples

Example 1: Add a device to the PAYROLL table space.

 ALTER TABLESPACE PAYROLL

 ADD (DEVICE ’/dev/rhdisk9’ 10000)

Example 2: Change the prefetch size and I/O overhead for the ACCOUNTING

table space.

 ALTER TABLESPACE ACCOUNTING

 PREFETCHSIZE 64

 OVERHEAD 19.3

Example 3: Create a table space TS1, then resize the containers so that all of the

containers have 2000 pages. (Three different ALTER TABLESPACE statements that

will accomplish this resizing are shown.)

 CREATE TABLESPACE TS1

 MANAGED BY DATABASE

 USING (FILE ’/conts/cont0’ 1000,

 DEVICE ’/dev/rcont1’ 500,

 FILE ’cont2’ 700)

 ALTER TABLESPACE TS1

 RESIZE (FILE ’/conts/cont0’ 2000,

 DEVICE ’/dev/rcont1’ 2000,

 FILE ’cont2’ 2000)

OR

 ALTER TABLESPACE TS1

 RESIZE (ALL 2000)

OR

 ALTER TABLESPACE TS1

 EXTEND (FILE ’/conts/cont0’ 1000,

 DEVICE ’/dev/rcont1’ 1500,

 FILE ’cont2’ 1300)

Example 4: Extend all of the containers in the DATA_TS table space by 1000 pages.

 ALTER TABLESPACE DATA_TS

 EXTEND (ALL 1000)

Example 5: Resize all of the containers in the INDEX_TS table space to 100

megabytes (MB).

 ALTER TABLESPACE INDEX_TS

 RESIZE (ALL 100 M)

76 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|
|
|

Example 6: Add three new containers. Extend the first container, and resize the

second.

 ALTER TABLESPACE TS0

 ADD (FILE ’cont2’ 2000, FILE ’cont3’ 2000)

 ADD (FILE ’cont4’ 2000)

 EXTEND (FILE ’cont0’ 100)

 RESIZE (FILE ’cont1’ 3000)

Example 7: Table space TSO exists on database partitions 0, 1 and 2. Add a new

container to database partition 0. Extend all of the containers on database partition

1. Resize a container on all database partitions other than the ones that were

explicitly specified (that is, database partitions 0 and 1).

 ALTER TABLESPACE TS0

 ADD (FILE ’A’ 200) ON DBPARTITIONNUM (0)

 EXTEND (ALL 200) ON DBPARTITIONNUM (1)

 RESIZE (FILE ’B’ 500)

The RESIZE clause is the default container clause in this example, and will be

executed on database partition 2, because other operations are being explicitly sent

to database partitions 0 and 1. If, however, there had only been these two database

partitions, the statement would have succeeded, but returned a warning

(SQL1758W) that default containers had been specified but not used.

Example 8: Enable the auto-resize option for table space DMS_TS1, and set its

maximum size to 256 megabytes.

 ALTER TABLESPACE DMS_TS1

 AUTORESIZE YES MAXSIZE 256 M

Example 9: Enable the auto-resize option for table space AUTOSTORE1, and change

its growth rate to 5%.

 ALTER TABLESPACE AUTOSTORE1

 AUTORESIZE YES INCREASESIZE 5 PERCENT

Example 10: Change the growth rate for an auto-resizable table space named

MY_TS to 512 kilobytes, and set its maximum size to be as large as possible.

 ALTER TABLESPACE MY_TS

 INCREASESIZE 512 K MAXSIZE NONE

Example 11: Enable automatic storage for database managed table space DMS_TS10

 ALTER TABLESPACE DMS_TS10

 MANAGED BY AUTOMATIC STORAGE

Example 12: An ALTER DATABASE statement removed the paths /db2/filesystem1

and /db2/filesystem2 from the currently connected database. The table spaces

named PRODTS1, PRODTS2, and PRODTS3 were the only table spaces using the

removed paths. Rebalance these table spaces. Three ALTER TABLESPACE

statements must be used.

 ALTER TABLESPACE PRODTS1 REBALANCE

 ALTER TABLESPACE PRODTS2 REBALANCE

 ALTER TABLESPACE PRODTS3 REBALANCE

Example 13: Enable automatic storage for database managed table space DATA1

and remove all of the existing non-automatic storage containers from the table

space. The first statement must be committed before the second statement can be

run.

 ALTER TABLESPACE DATA1 MANAGED BY AUTOMATIC STORAGE

 ALTER TABLESPACE DATA1 REBALANCE

Chapter 1. SQL Statements for Administrators 77

|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

Example 14: Trigger extent movement for an automatic storage table space with

reclaimable storage attribute, to reduce the size of the containers by 10MB.

 ALTER TABLESPACE REDUCE 10 M

Example 15: Trigger extent movement for a non-automatic storage table space with

reclaimable storage attribute and subsequently reduce the size of each container by

10MB.

 ALTER TABLESPACE LOWER HIGH WATER MARK

 ALTER TABLESPACE REDUCE (ALL CONTAINERS 10 M)

ALTER VIEW

The ALTER VIEW statement modifies an existing view by:

v Altering a reference type column to add a scope

v Enabling or disabling a view for use in query optimization

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v ALTERIN privilege on the schema of the view

v Owner of the view to be altered

v CONTROL privilege on the view to be altered

v DBADM authority

To enable or disable a view for use in query optimization, the privileges held by

the authorization ID of the statement must also include at least one of the

following for each of the tables or underlying tables of views that are referenced in

the FROM clause of the view fullselect:

v ALTER privilege on the table

v ALTERIN privilege on the schema of the table

v DBADM authority

Syntax

�� ALTER VIEW view-name �

�

�

COLUMN

ALTER

column-name

ADD SCOPE

typed-table-name

typed-view-name

ENABLE

QUERY OPTIMIZATION

DISABLE

��

78 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|

|
|
|

|
|

|

|

|

Description

view-name

Specifies the view that is to be changed. It must be a view that is described in

the catalog.

ALTER COLUMN column-name

Specifies the name of the column that is to be altered. The column-name must

identify an existing column of the view (SQLSTATE 42703). The name cannot

be qualified.

ADD SCOPE

Adds a scope to an existing reference type column that does not already have

a scope defined (SQLSTATE 428DK). The column must not be inherited from a

superview (SQLSTATE 428DJ).

typed-table-name

Specifies the name of a typed table. The data type of column-name must be

REF(S), where S is the type of typed-table-name (SQLSTATE 428DM). No

checking is done of any existing values in column-name to ensure that the

values actually reference existing rows in typed-table-name.

typed-view-name

Specifies the name of a typed view. The data type of column-name must be

REF(S), where S is the type of typed-view-name (SQLSTATE 428DM). No

checking is done of any existing values in column-name to ensure that the

values actually reference existing rows in typed-view-name.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION

Specifies whether or not the view and any associated statistics are to be used

to improve the optimization of queries. DISABLE QUERY OPTIMIZATION is

the default when a view is created.

ENABLE QUERY OPTIMIZATION

Specifies that the view includes statistics that can be used to improve the

optimization of queries that involve this view or queries that include

subqueries similar to the fullselect of this view.

DISABLE QUERY OPTIMIZATION

Specifies that the view and any associated statistics are not to be used to

improve the optimization of queries.

Rules

v A view cannot be enabled for query optimization if:

– The view directly or indirectly references a materialized query table (MQT).

Note that an MQT or statistical view can reference a statistical view.

– It is a typed view

Notes

v To be considered for optimizing a query, a view:

– Cannot contain aggregation or distinct operations

– Cannot contain union, except, or intersect operations

– Cannot contain scalar aggregate (OLAP) functions
v If a view is altered to disable query optimization, cached query plans that used

the view for query optimization are invalidated. If a view is altered to enable

query optimization, cached query plans are invalidated if they reference the

same tables as the newly enabled view references, either directly or indirectly

Chapter 1. SQL Statements for Administrators 79

through other views. The invalidation of these cached query plans results in

implicit revalidation that takes the view’s changed query optimization property

into account.

The query optimization property for a view has no impact on static embedded

SQL statements.

AUDIT

The AUDIT statement determines the audit policy that is to be used for a

particular database or database object at the current server. Whenever the object is

in use, it is audited according to that policy.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

��

AUDIT

�

 ,

(1)

DATABASE

TABLE

table-name

TRUSTED CONTEXT

context-name

USER

authorization-name

GROUP

ROLE

ACCESSCTRL

DATAACCESS

DBADM

SECADM

SQLADM

SYSADM

SYSCTRL

SYSMAINT

SYSMON

WLMADM

�

� USING POLICY policy-name

REPLACE

REMOVE POLICY

 ��

Notes:

1 Each clause (with the same object name, if applicable) can be specified at

most once (SQLSTATE 42713).

80 Common Criteria Certification: Administration and User Documentation - Volume 2

||||||||||

Description

ACCESSCTRL, DATAACCESS, DBADM, SECADM, SQLADM, SYSADM,

SYSCTRL, SYSMAINT, SYSMON, or WLMADM

Specifies that an audit policy is to be associated with or removed from the

specified authority. All auditable events that are initiated by a user who holds

the specified authority, even if that authority is not required for the event, will

be audited according to the associated audit policy.

DATABASE

Specifies that an audit policy is to be associated with or removed from the

database at the current server. All auditable events that occur within the

database are audited according to the associated audit policy.

TABLE table-name

Specifies that an audit policy is to be associated with or removed from

table-name. The table-name must identify a table, materialized query table

(MQT), or nickname that exists at the current server (SQLSTATE 42704). It

cannot be a view, a catalog table, a created temporary table, a declared

temporary table (SQLSTATE 42995), or a typed table (SQLSTATE 42997). Only

EXECUTE category audit events, with or without data, will be generated when

the table is accessed, even if the policy indicates that other categories should

be audited.

TRUSTED CONTEXT context-name

Specifies that an audit policy is to be associated with or removed from

context-name. The context-name must identify a trusted context that exists at the

current server (SQLSTATE 42704). All auditable events that happen within the

trusted connection defined by the trusted context context-name will be audited

according to the associated audit policy.

USER authorization-name

Specifies that an audit policy is to be associated with or removed from the user

with authorization ID authorization-name. All auditable events that are initiated

by authorization-name will be audited according to the associated audit policy.

GROUP authorization-name

Specifies that an audit policy is to be associated with or removed from the

group with authorization ID authorization-name. All auditable events that are

initiated by users who are members of authorization-name will be audited

according to the associated audit policy. If user membership in a group cannot

be determined, the policy will not apply to that user.

ROLE authorization-name

Specifies that an audit policy is to be associated with or removed from the role

with authorization ID authorization-name. The authorization-name must identify a

role that exists at the current server (SQLSTATE 42704). All auditable events

that are initiated by users who are members of authorization-name will be

audited according to the associated audit policy. Indirect role membership

through other roles or groups is valid.

USING, REMOVE, or REPLACE

Specifies whether the audit policy should be used, removed, or replaced for

the specified object.

USING

Specifies that the audit policy is to be used for the specified object. An

existing audit policy must not already be defined for the object (SQLSTATE

5U041). If an audit policy already exists, it must be removed or replaced.

Chapter 1. SQL Statements for Administrators 81

|
|

|

REMOVE

Specifies that the audit policy is to be removed from the specified object.

Use of the object will no longer be audited according to the audit policy.

The association is deleted from the catalog when the audit policy is

removed from the object.

REPLACE

Specifies that the audit policy is to replace an existing audit policy for the

specified object. This combines both REMOVE and USING options into one

step to ensure that there is no period of time in which an audit policy does

not apply to the specified object. If a policy was not in use for the specified

object, REPLACE is equivalent to USING.

POLICY policy-name

Specifies the audit policy that is to be used to determine audit settings. The

policy-name must identify an existing audit policy at the current server

(SQLSTATE 42704).

Rules

v An AUDIT-exclusive SQL statement must be followed by a COMMIT or

ROLLBACK statement (SQLSTATE 5U021). AUDIT-exclusive SQL statements are:

– AUDIT

– CREATE AUDIT POLICY, ALTER AUDIT POLICY, or DROP (AUDIT

POLICY)

– DROP (ROLE or TRUSTED CONTEXT if it is associated with an audit policy)
v An AUDIT-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

v An object can be associated with no more than one policy (SQLSTATE 5U042).

Notes

v Changes are written to the catalog, but do not take effect until after a COMMIT

statement executes.

v Changes do not take effect until the next unit of work that references the object

to which the audit policy applies. For example, if the audit policy is in use for

the database, no current units of work will begin auditing according to the

policy until after a COMMIT or a ROLLBACK statement completes.

v Views accessing a table that is associated with an audit policy are audited

according to the underlying table’s policy.

v The audit policy that applies to a table does not apply to a materialized query

table (MQT) based on that table. It is recommended that if you associate an

audit policy with a table, you also associate that policy with any MQT based on

that table. The compiler might automatically use an MQT, even though an SQL

statement references the base table; however, the audit policy in use for the base

table will still be in effect.

v When a switch user operation is performed within a trusted context, all audit

policies are re-evaluated according to the new user, and no policies from the old

user are used for the current session. This applies specifically to audit policies

associated directly with the user, the user’s group or role memberships, and the

user’s authorities. For example, if the current session was audited because the

previous user was a member of an audited role, and the switched-to user is not

a member of that role, that policy no longer applies to the session.

v When a SET SESSION USER statement is executed, the audit policies associated

with the original user (and that user’s group and role memberships and

authorities) are combined with the policies that are associated with the user

82 Common Criteria Certification: Administration and User Documentation - Volume 2

specified in the SET SESSION USER statement. The audit policies associated

with the original user are still in effect, as are the policies for the user specified

in the SET SESSION USER statement. If multiple SET SESSION USER statements

are issued within a session, only the audit policies associated with the original

user and the current user are considered.

v If the object with which an audit policy is associated is dropped, the association

to the audit policy is removed from the catalog and no longer exists. If that

object is recreated at some later time, the object will not be audited according to

the policy that was associated with it when the object was dropped.

Examples

Example 1: Use the audit policy DBAUDPRF to determine the audit settings for the

database at the current server.

 AUDIT DATABASE USING POLICY DBAUDPRF

Example 2: Remove the audit policy from the EMPLOYEE table.

 AUDIT TABLE EMPLOYEE REMOVE POLICY

Example 3: Use the audit policy POWERUSERS to determine the audit settings for

the authorities SYSADM, DBADM, and SECADM, as well as the group DBAS.

 AUDIT SYSADM, DBADM, SECADM, GROUP DBAS USING POLICY POWERUSERS

Example 4: Replace the audit policy for the role TELLER with the new policy

TELLERPRF.

 AUDIT ROLE TELLER REPLACE POLICY TELLERPRF

COMMENT

The COMMENT statement adds or replaces comments in the catalog descriptions

of various objects.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v Owner of the object (underlying table for column or constraint), as recorded in

the OWNER column of the catalog view for the object

v ALTERIN privilege on the schema (applicable only to objects that allow more

than one-part names)

v CONTROL privilege on the object (applicable only to index, package, table, or

view objects)

v ALTER privilege on the object (applicable only to table objects)

v The WITH ADMIN OPTION (applicable only to roles)

v WLMADM authority (applicable only to workload manager objects)

Chapter 1. SQL Statements for Administrators 83

|

v SECADM authority (applicable only to audit policy, role, security label, security

label component, security policy, or trusted context objects)

v DBADM authority (applicable to all objects except audit policy, role, security

label, security label component, security policy, or trusted context objects)

Note that for table space or database partition group, and bufferpools, the

authorization ID must have SYSCTRL or SYSADM authority.

Syntax

�� COMMENT ON

�

 objects IS string-constant

,

table-name

(

column-name

IS

string-constant

)

view-name

 ��

objects:

84 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|

�

�

 FOR TABLE

ALIAS

alias-name

PUBLIC

FOR MODULE

FOR SEQUENCE

AUDIT POLICY

policy-name

COLUMN

table-name.column-name

view-name.column-name

CONSTRAINT

table-name.constraint-name

DATABASE PARTITION GROUP

db-partition-group-name

FUNCTION

function-name

(

)

,

data-type

SPECIFIC FUNCTION

specific-name

FUNCTION MAPPING

function-mapping-name

HISTOGRAM TEMPLATE

template-name

(1)

INDEX

index-name

MODULE

module-name

NICKNAME

nickname

PACKAGE

package-id

schema-name.

VERSION

version-id

PROCEDURE

procedure-name

(

)

,

data-type

SPECIFIC PROCEDURE

specific-name

ROLE

role-name

SCHEMA

schema-name

SECURITY LABEL

sec-label-name

SECURITY LABEL COMPONENT

label-comp-name

SECURITY POLICY

label-pol-name

SERVER

server-name

SERVER OPTION

server-option-name

FOR

remote-server

SERVICE CLASS

service-class-name

UNDER

service-superclass-name

TABLE

table-name

view-name

TABLESPACE

tablespace-name

THRESHOLD

threshold-name

TRIGGER

trigger-name

TRUSTED CONTEXT

context-name

TYPE

type-name

TYPE MAPPING

type-mapping-name

VARIABLE

variable-name

WORK ACTION SET

work-action-set-name

WORK CLASS SET

work-class-set-name

WORKLOAD

workload-name

WRAPPER

wrapper-name

XSROBJECT

xsrobject-name

remote-server:

 SERVER server-name

SERVER TYPE

server-type

VERSION

server-version

WRAPPER

wrapper-name

Chapter 1. SQL Statements for Administrators 85

||

server-version:

 version

.

release

.

mod

version-string-constant

Notes:

1 Index-name can be the name of either an index or an index specification.

Description

ALIAS alias-name

Indicates a comment will be added or replaced for an alias. The alias-name

must identify an alias that exists at the current server (SQLSTATE 42704).

FOR TABLE, FOR MODULE, or FOR SEQUENCE

Specifies the object type for the alias.

FOR TABLE

The alias is for a table, view, or nickname. The comment replaces the

value of the REMARKS column of the SYSCAT.TABLES catalog view

for the row that describes the alias.

FOR MODULE

The alias is for a module. The comment replaces the value of the

REMARKS column of the SYSCAT.MODULES catalog view for the row

that describes the alias.

FOR SEQUENCE

The alias is for a sequence. The comment replaces the value of the

REMARKS column of the SYSCAT.SEQUENCES catalog view for the

row that describes the alias.

 If PUBLIC is specified, the alias-name must identify a public alias that exists

at the current server (SQLSTATE 42704).

AUDIT POLICY policy-name

Indicates a comment will be added or replaced for an audit policy. The

policy-name must identify an audit policy that exists at the current server

(SQLSTATE 42704). The comment replaces the value of the REMARKS column

of the SYSCAT.AUDITPOLICIES catalog view for the row that describes the

audit policy.

COLUMN table-name.column-name or view-name.column-name

Indicates that a comment for a column will be added or replaced. The

table-name.column-name or view-name.column-name combination must identify a

column and table combination that exists at the current server (SQLSTATE

42704), but must not identify a global temporary table (SQLSTATE 42995). The

comment replaces the value of the REMARKS column of the

SYSCAT.COLUMNS catalog view for the row that describes the column.

CONSTRAINT table-name.constraint-name

Indicates a comment will be added or replaced for a constraint. The

table-name.constraint-name combination must identify a constraint and the table

that it constrains; they must exist at the current server (SQLSTATE 42704). The

comment replaces the value of the REMARKS column of the

SYSCAT.TABCONST catalog view for the row that describes the constraint.

86 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

DATABASE PARTITION GROUP db-partition-group-name

Indicates a comment will be added or replaced for a database partition group.

The db-partition-group-name must identify a distinct database partition group

that exists at the current server (SQLSTATE 42704). The comment replaces the

value for the REMARKS column of the SYSCAT.DBPARTITIONGROUPS

catalog view for the row that describes the database partition group.

FUNCTION

Indicates a comment will be added or replaced for a function. The function

instance specified must be a user-defined function or function template that

exists at the current server. The user-defined function must not identify a

module function (SQLSTATE 42883).

 There are several different ways available to identify the function instance:

FUNCTION function-name

Identifies the particular function, and is valid only if there is exactly one

function with the function-name. The function thus identified may have any

number of parameters defined for it. In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an

unqualified object name. In static SQL statements the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified

object names. If no function by this name exists in the named or implied

schema, an error (SQLSTATE 42704) is raised. If there is more than one

specific instance of the function in the named or implied schema, an error

(SQLSTATE 42725) is raised.

FUNCTION function-name (data-type,...)

Provides the function signature, which uniquely identifies the function to

be commented upon. The function selection algorithm is not used.

function-name

Gives the function name of the function to be commented upon. In

dynamic SQL statements, the CURRENT SCHEMA special register is

used as a qualifier for an unqualified object name. In static SQL

statements the QUALIFIER precompile/bind option implicitly specifies

the qualifier for unqualified object names.

(data-type,...)

Must match the data types that were specified on the CREATE

FUNCTION statement in the corresponding position. The number of

data types, and the logical concatenation of the data types is used to

identify the specific function for which to add or replace the comment.

 If the data-type is unqualified, the type name is resolved by searching

the schemas on the SQL path. This also applies to data type names

specified for a REFERENCE type.

It is not necessary to specify the length, precision or scale for the

parameterized data types. Instead an empty set of parentheses may be

coded to indicate that these attributes are to be ignored when looking

for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) since the parameter value

indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly

match that specified in the CREATE FUNCTION statement.

Chapter 1. SQL Statements for Administrators 87

|
|

A type of FLOAT(n) does not need to match the defined value for n

since 0 <n<25 means REAL and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

(Note that the FOR BIT DATA attribute is not considered part of the

signature for matching purposes. So, for example, a CHAR FOR BIT

DATA specified in the signature would match a function defined with

CHAR only, and vice versa.)

 If no function with the specified signature exists in the named or implied

schema, an error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION specific-name

Indicates that comments will be added or replaced for a function (see

FUNCTION for other methods of identifying a function). Identifies the

particular user-defined function that is to be commented upon, using the

specific name either specified or defaulted to at function creation time. In

dynamic SQL statements, the CURRENT SCHEMA special register is used

as a qualifier for an unqualified object name. In static SQL statements the

QUALIFIER precompile/bind option implicitly specifies the qualifier for

unqualified object names. The specific-name must identify a specific function

instance in the named or implied schema; otherwise, an error (SQLSTATE

42704) is raised.

It is not possible to comment on a function that is in the SYSIBM, SYSFUN, or

SYSPROC schema (SQLSTATE 42832).

The comment replaces the value of the REMARKS column of the

SYSCAT.ROUTINES catalog view for the row that describes the function.

FUNCTION MAPPING function-mapping-name

Indicates a comment will be added or replaced for a function mapping. The

function-mapping-name must identify a function mapping that exists at the

current server (SQLSTATE 42704). The comment replaces the value for the

REMARKS column of the SYSCAT.FUNCMAPPINGS catalog view for the row

that describes the function mapping.

HISTOGRAM TEMPLATE template-name

Indicates a comment will be added or replaced for a histogram template. The

template-name must identify a histogram template that exists at the current

server (SQLSTATE 42704). The comment replaces the value for the REMARKS

column of the SYSCAT.HISTOGRAMTEMPLATES catalog view for the row

that describes the histogram template.

INDEX index-name

Indicates a comment will be added or replaced for an index or index

specification. The index-name must identify either a distinct index or an index

specification that exists at the current server (SQLSTATE 42704). The comment

replaces the value for the REMARKS column of the SYSCAT.INDEXES catalog

view for the row that describes the index or index specification.

MODULE module-name

Indicates a comment will be added or replaced for a module. The module-name

must identify a module that exists at the current server (SQLSTATE 42704).

NICKNAME nickname

Indicates a comment will be added or replaced for a nickname. The nickname

must be a nickname that exists at the current server (SQLSTATE 42704). The

comment replaces the value for the REMARKS column of the SYSCAT.TABLES

catalog view for the row that describes the nickname.

88 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

PACKAGE schema-name.package-id

Indicates that a comment will be added or replaced for a package. If a schema

name is not specified, the package ID is implicitly qualified by the default

schema. The schema name and package ID, together with the implicitly or

explicitly specified version ID, must identify a package that exists at the

current server (SQLSTATE 42704). The comment replaces the value for the

REMARKS column of the SYSCAT.PACKAGES catalog view for the row that

describes the package.

VERSION version-id

Identifies which package version is to be commented on. If a value is not

specified, the version defaults to the empty string. If multiple packages

with the same package name but different versions exist, only one package

version can be commented on in one invocation of the COMMENT

statement. Delimit the version identifier with double quotation marks

when it:

v Is generated by the VERSION(AUTO) precompiler option

v Begins with a digit

v Contains lowercase or mixed-case letters

If the statement is invoked from an operating system command prompt,

precede each double quotation mark delimiter with a back slash character

to ensure that the operating system does not strip the delimiters.

PROCEDURE

Indicates a comment will be added or replaced for a procedure. The procedure

instance specified must be a procedure that exists at the current server. The

procedure must not identify a module procedure (SQLSTATE 42883).

 There are several different ways available to identify the procedure instance:

PROCEDURE procedure-name

Identifies the particular procedure, and is valid only if there is exactly one

procedure with the procedure-name in the schema. The procedure thus

identified may have any number of parameters defined for it. In dynamic

SQL statements, the CURRENT SCHEMA special register is used as a

qualifier for an unqualified object name. In static SQL statements the

QUALIFIER precompile/bind option implicitly specifies the qualifier for

unqualified object names. If no procedure by this name exists in the named

or implied schema, an error (SQLSTATE 42704) is raised. If there is more

than one specific instance of the procedure in the named or implied

schema, an error (SQLSTATE 42725) is raised.

PROCEDURE procedure-name (data-type,...)

This is used to provide the procedure signature, which uniquely identifies

the procedure to be commented upon.

procedure-name

Gives the procedure name of the procedure to be commented upon. In

dynamic SQL statements, the CURRENT SCHEMA special register is

used as a qualifier for an unqualified object name. In static SQL

statements the QUALIFIER precompile/bind option implicitly specifies

the qualifier for unqualified object names.

(data-type,...)

Must match the data types that were specified on the CREATE

PROCEDURE statement in the corresponding position. For federated

procedures, the data type must match the local catalog information.

Chapter 1. SQL Statements for Administrators 89

|
|

The number of data types, and the logical concatenation of the data

types is used to identify the specific procedure for which to add or

replace the comment.

 If the data-type is unqualified, the type name is resolved by searching

the schemas on the SQL path. This also applies to data type names

specified for a REFERENCE type.

It is not necessary to specify the length, precision or scale for the

parameterized data types. Instead an empty set of parentheses may be

coded to indicate that these attributes are to be ignored when looking

for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) since the parameter value

indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly

match that specified in the CREATE PROCEDURE statement or the

local catalog information, in the case of a federated procedure.

A type of FLOAT(n) does not need to match the defined value for n

since 0<n<25 means REAL and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

 If no procedure with the specified signature exists in the named or implied

schema, an error (SQLSTATE 42883) is raised.

SPECIFIC PROCEDURE specific-name

Indicates that comments will be added or replaced for a procedure (see

PROCEDURE for other methods of identifying a procedure). Identifies the

particular procedure that is to be commented upon, using the specific

name either specified or defaulted to at procedure creation time. In

dynamic SQL statements, the CURRENT SCHEMA special register is used

as a qualifier for an unqualified object name. In static SQL statements the

QUALIFIER precompile/bind option implicitly specifies the qualifier for

unqualified object names. The specific-name must identify a specific

procedure instance in the named or implied schema; otherwise, an error

(SQLSTATE 42704) is raised.

It is not possible to comment on a procedure that is in the SYSIBM, SYSFUN,

or SYSPROC schema (SQLSTATE 42832).

The comment replaces the value of the REMARKS column of the

SYSCAT.ROUTINES catalog view for the row that describes the procedure.

ROLE role-name

Indicates a comment will be added or replaced for a role. The role-name must

identify a role that exists at the current server (SQLSTATE 42704). The

comment replaces the value of the REMARKS column of the SYSCAT.ROLES

catalog view for the row that describes the role.

SCHEMA schema-name

Indicates a comment will be added or replaced for a schema. The schema-name

must identify a schema that exists at the current server (SQLSTATE 42704). The

comment replaces the value of the REMARKS column of the

SYSCAT.SCHEMATA catalog view for the row that describes the schema.

SECURITY LABEL sec-label-name

Indicates that a comment will be added or replaced for the security label

named sec-label-name. The name must be qualified with a security policy and

must identify a security label that exists at the current server (SQLSTATE

90 Common Criteria Certification: Administration and User Documentation - Volume 2

42704). The comment replaces the value for the REMARKS column of the

SYSCAT.SECURITYLABELS catalog view for the row that describes the

security label.

SECURITY LABEL COMPONENT label-comp-name

Indicates that a comment will be added or replaced for the security label

component named label-comp-name. The label-comp-name must identify a security

label component that exists at the current server (SQLSTATE 42704). The

comment replaces the value for the REMARKS column of the

SYSCAT.SECURITYLABELCOMPONENTS catalog view for the row that

describes the security label component.

SECURITY POLICY label-pol-name

Indicates that a comment will be added or replaced for the security policy

named label-pol-name. The label-pol-name must identify a security policy that

exists at the current server (SQLSTATE 42704). The comment replaces the value

for the REMARKS column of the SYSCAT.SECURITYPOLICIES catalog view

for the row that describes the security policy.

SERVER server-name

Indicates a comment will be added or replaced for a data source. The

server-name must identify a data source that exists at the current server

(SQLSTATE 42704). The comment replaces the value for the REMARKS column

of the SYSCAT.SERVERS catalog view for the row that describes the data

source.

SERVER OPTION server-option-name FOR remote-server

Indicates a comment will be added or replaced for a server option.

server-option-name

Identifies a server option. This option must be one that exists at the current

server (SQLSTATE 42704). The comment replaces the value for the

REMARKS column of the SYSCAT.SERVEROPTIONS catalog view for the

row that describes the server option.

remote-server

Describes the data source to which the server-option applies.

SERVER server-name

Names the data source to which the server-option applies. The

server-name must identify a data source that exists at the current server.

TYPE server-type

Specifies the type of data source—for example, DB2 for z/OS or

Oracle—to which the server-option applies. The server-type can be

specified in either lower- or uppercase; it will be stored in uppercase in

the catalog.

VERSION

Specifies the version of the data source identified by server-name.

version

Specifies the version number. version must be an integer.

release

Specifies the number of the release of the version denoted by

version. release must be an integer.

mod

Specifies the number of the modification of the release denoted by

release. mod must be an integer.

Chapter 1. SQL Statements for Administrators 91

version-string-constant

Specifies the complete designation of the version. The

version-string-constant can be a single value (for example, ‘8i’); or it

can be the concatenated values of version, release, and, if applicable,

mod (for example, ‘8.0.3’).

WRAPPER wrapper-name

Identifies the wrapper that is used to access the data source referenced

by server-name.

SERVICE CLASS service-class-name

Indicates a comment will be added or replaced for a service class. The

service-class-name must identify a service class that exists at the current server

(SQLSTATE 42704). To add or replace a comment for a service subclass, the

service-superclass-name must be specified using the UNDER clause. The

comment replaces the value for the REMARKS column of the

SYSCAT.SERVICECLASSES catalog view for the row that describes the service

class.

UNDER service-superclass-name

Specifies the service superclass of the service subclass when adding or

replacing a comment for a service subclass. The service-superclass-name must

identify a service superclass that exists at the current server (SQLSTATE

42704).

TABLE table-name or view-name

Indicates a comment will be added or replaced for a table or view. The

table-name or view-name must identify a table or view (not an alias or nickname)

that exists at the current server (SQLSTATE 42704) and must not identify a

declared temporary table (SQLSTATE 42995). The comment replaces the value

for the REMARKS column of the SYSCAT.TABLES catalog view for the row

that describes the table or view.

TABLESPACE tablespace-name

Indicates a comment will be added or replaced for a table space. The

tablespace-name must identify a distinct table space that exists at the current

server (SQLSTATE 42704). The comment replaces the value for the REMARKS

column of the SYSCAT.TABLESPACES catalog view for the row that describes

the table space.

THRESHOLD threshold-name

Indicates a comment will be added or replaced for a threshold. The

threshold-name must identify a threshold that exists at the current server

(SQLSTATE 42704). The comment replaces the value for the REMARKS column

of the SYSCAT.THRESHOLDS catalog view for the row that describes the

threshold.

TRIGGER trigger-name

Indicates a comment will be added or replaced for a trigger. The trigger-name

must identify a distinct trigger that exists at the current server (SQLSTATE

42704). The comment replaces the value for the REMARKS column of the

SYSCAT.TRIGGERS catalog view for the row that describes the trigger.

TRUSTED CONTEXT context-name

Indicates a comment will be added or replaced for a trusted context. The

context-name must identify a trusted context that exists at the current server

(SQLSTATE 42704). The comment replaces the value for the REMARKS column

of the SYSCAT.CONTEXTS catalog view for the row that describes the trusted

context.

92 Common Criteria Certification: Administration and User Documentation - Volume 2

TYPE type-name

Indicates a comment will be added or replaced for a user-defined type. The

type-name must identify a user-defined type that exists at the current server

(SQLSTATE 42704). The comment replaces the value of the REMARKS column

of the SYSCAT.DATATYPES catalog view for the row that describes the

user-defined type.

 In dynamic SQL statements, the CURRENT SCHEMA special register is used

as a qualifier for an unqualified object name. In static SQL statements the

QUALIFIER precompile/bind option implicitly specifies the qualifier for

unqualified object names.

TYPE MAPPING type-mapping-name

Indicates a comment will be added or replaced for a user-defined data type

mapping. The type-mapping-name must identify a data type mapping that exists

at the current server (SQLSTATE 42704). The comment replaces the value for

the REMARKS column of the SYSCAT.TYPEMAPPINGS catalog view for the

row that describes the mapping.

VARIABLE variable-name

Indicates a comment will be added or replaced for a global variable. The

variable-name must identify a global variable that exists at the current server

(SQLSTATE 42704). The comment replaces the value for the REMARKS column

of the SYSCAT.VARIABLES catalog view for the row that describes the

variable.

WORK ACTION SET work-action-set-name

Indicates a comment will be added or replaced for a work action set. The

work-action-set-name must identify a work action set that exists at the current

server (SQLSTATE 42704). The comment replaces the value for the REMARKS

column of the SYSCAT.WORKACTIONSETS catalog view for the row that

describes the work action set.

WORK CLASS SET work-class-set-name

Indicates a comment will be added or replaced for a work class set. The

work-class-set-name must identify a work class set that exists at the current

server (SQLSTATE 42704). The comment replaces the value for the REMARKS

column of the SYSCAT.WORKCLASSSETS catalog view for the row that

describes the work class set.

WORKLOAD workload-name

Indicates that a comment will be added or replaced for a workload. The

workload-name must identify a workload that exists at the current server

(SQLSTATE 42704). The comment replaces the value for the REMARKS column

of the SYSCAT.WORKLOADS catalog view for the row that describes the

workload.

WRAPPER wrapper-name

Indicates a comment will be added or replaced for a wrapper. The

wrapper-name must identify a wrapper that exists at the current server

(SQLSTATE 42704). The comment replaces the value for the REMARKS column

of the SYSCAT.WRAPPERS catalog view for the row that describes the

wrapper.

XSROBJECT xsrobject-name

Indicates a comment will be added or replaced for an XSR object. The

xsrobject-name must identify an XSR object that exists at the current server

(SQLSTATE 42704). The comment replaces the value for the REMARKS column

of the SYSCAT.XSROBJECTS catalog view for the row that describes the XSR

object.

Chapter 1. SQL Statements for Administrators 93

IS string-constant

Specifies the comment to be added or replaced. The string-constant can be any

character string constant of up to 254 bytes. (Carriage return and line feed each

count as 1 byte.)

table-name|view-name ({ column-name IS string-constant } ...)

This form of the COMMENT statement provides the ability to specify

comments for multiple columns of a table or view. The column names must

not be qualified, each name must identify a column of the specified table or

view, and the table or view must exist at the current server. The table-name

cannot be a declared temporary table (SQLSTATE 42995).

 A comment cannot be made on a column of an inoperative view (SQLSTATE

51024).

Notes

v Compatibilities: For compatibility with previous versions of DB2 products:

– NODEGROUP can be specified in place of DATABASE PARTITION GROUP

– DISTINCT TYPE type-name can be specified in place of TYPE type-name

– DATA TYPE type-name can be specified in place of TYPE type-name

– SYNONYM can be specified in place of ALIAS

Examples

Example 1: Add a comment for the EMPLOYEE table.

 COMMENT ON TABLE EMPLOYEE

 IS ’Reflects first quarter reorganization’

Example 2: Add a comment for the EMP_VIEW1 view.

 COMMENT ON TABLE EMP_VIEW1

 IS ’View of the EMPLOYEE table without salary information’

Example 3: Add a comment for the EDLEVEL column of the EMPLOYEE table.

 COMMENT ON COLUMN EMPLOYEE.EDLEVEL

 IS ’highest grade level passed in school’

Example 4: Add comments for two different columns of the EMPLOYEE table.

 COMMENT ON EMPLOYEE

 (WORKDEPT IS ’see DEPARTMENT table for names’,

 EDLEVEL IS ’highest grade level passed in school’)

Example 5: Pellow wants to comment on the CENTRE function, which he created

in his PELLOW schema, using the signature to identify the specific function to be

commented on.

 COMMENT ON FUNCTION CENTRE (INT,FLOAT)

 IS ’Frank’’s CENTRE fctn, uses Chebychev method’

Example 6: McBride wants to comment on another CENTRE function, which she

created in the PELLOW schema, using the specific name to identify the function

instance to be commented on:

 COMMENT ON SPECIFIC FUNCTION PELLOW.FOCUS92 IS

 ’Louise’’s most triumphant CENTRE function, uses the

 Brownian fuzzy-focus technique’

Example 7: Comment on the function ATOMIC_WEIGHT in the CHEM schema,

where it is known that there is only one function with that name:

94 Common Criteria Certification: Administration and User Documentation - Volume 2

|

COMMENT ON FUNCTION CHEM.ATOMIC_WEIGHT

 IS ’takes atomic nbr, gives atomic weight’

Example 8: Eigler wants to comment on the SEARCH procedure, which he created

in his EIGLER schema, using the signature to identify the specific procedure to be

commented on.

 COMMENT ON PROCEDURE SEARCH (CHAR,INT)

 IS ’Frank’’s mass search and replace algorithm’

Example 9: Macdonald wants to comment on another SEARCH function, which he

created in the EIGLER schema, using the specific name to identify the procedure

instance to be commented on:

 COMMENT ON SPECIFIC PROCEDURE EIGLER.DESTROY IS

 ’Patrick’’s mass search and destroy algorithm’

Example 10: Comment on the procedure OSMOSIS in the BIOLOGY schema,

where it is known that there is only one procedure with that name:

 COMMENT ON PROCEDURE BIOLOGY.OSMOSIS

 IS ’Calculations modelling osmosis’

Example 11: Comment on an index specification named INDEXSPEC.

 COMMENT ON INDEX INDEXSPEC

 IS ’An index specification that indicates to the optimizer

 that the table referenced by nickname NICK1 has an index.’

Example 12: Comment on the wrapper whose default name is NET8.

 COMMENT ON WRAPPER NET8

 IS ’The wrapper for data sources associated with

 Oracle’s Net8 client software.’

Example 13: Create a comment on the XML schema HR.EMPLOYEE.

 COMMENT ON XSROBJECT HR.EMPLOYEE

 IS ’This is the base XML Schema for employee data.’

Example 14: Create a comment for trusted context APPSERVER.

 COMMENT ON TRUSTED CONTEXT APPSERVER

 IS ’WebSphere Server’

CREATE AUDIT POLICY

The CREATE AUDIT POLICY statement defines an auditing policy at the current

server. The policy determines what categories are to be audited; it can then be

applied to other database objects to determine how the use of those objects is to be

audited.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Chapter 1. SQL Statements for Administrators 95

Syntax

�� CREATE AUDIT POLICY policy-name * CATEGORIES �

�

�

 ,

(1)

ALL

STATUS

BOTH

AUDIT

FAILURE

CHECKING

NONE

CONTEXT

SUCCESS

WITHOUT DATA

EXECUTE

WITH DATA

OBJMAINT

SECMAINT

SYSADMIN

VALIDATE

�

� * ERROR TYPE NORMAL *

AUDIT
 ��

Notes:

1 Each category can be specified at most once (SQLSTATE 42614), and no other

category can be specified if ALL is specified (SQLSTATE 42601).

Description

policy-name

Names the audit policy. This is a one-part name. It is an SQL identifier (either

ordinary or delimited). The policy-name must not identify an audit policy

already described in the catalog (SQLSTATE 42710). The name must not begin

with the characters ’SYS’ (SQLSTATE 42939).

CATEGORIES

A list of one or more audit categories for which a status is specified. If ALL is

not specified, the STATUS of any category that is not explicitly specified is set

to NONE.

ALL

Sets all categories to the same status. The EXECUTE category is WITHOUT

DATA.

AUDIT

Generates records when audit settings are changed or when the audit log

is accessed.

CHECKING

Generates records during authorization checking of attempts to access or

manipulate database objects or functions.

CONTEXT

Generates records to show the operation context when a database

operation is performed.

EXECUTE

Generates records to show the execution of SQL statements.

96 Common Criteria Certification: Administration and User Documentation - Volume 2

WITHOUT DATA or WITH DATA

Specifies whether or not input data values provided for any host

variables and parameter markers should be logged as part of the

EXECUTE category.

WITHOUT DATA

Input data values provided for any host variables and parameter

markers are not logged as part of the EXECUTE category.

WITHOUT DATA is the default.

WITH DATA

Input data values provided for any host variables and parameter

markers are logged as part of the EXECUTE category. Not all input

values are logged; specifically, LOB, LONG, XML, and structured

type parameters appear as the null value. Date, time, and

timestamp fields are logged in ISO format. The input data values

are converted to the database code page before being logged. If

code page conversion fails, no errors are returned and the

unconverted data is logged.

OBJMAINT

Generates records when data objects are created or dropped.

SECMAINT

Generates records when object privileges, database privileges, or DBADM

authority is granted or revoked. Records are also generated when the

database manager security configuration parameters sysadm_group,

sysctrl_group, or sysmaint_group are modified.

SYSADMIN

Generates records when operations requiring SYSADM, SYSMAINT, or

SYSCTRL authority are performed.

VALIDATE

Generates records when users are authenticated or when system security

information related to a user is retrieved.

STATUS

Specifies a status for the specified category.

BOTH

Successful and failing events will be audited.

FAILURE

Only failing events will be audited.

SUCCESS

Only successful events will be audited.

NONE

No events in this category will be audited.

ERROR TYPE

Specifies whether audit errors are to be returned or ignored.

NORMAL

Any errors generated by the audit are ignored and only the SQLCODEs for

errors associated with the operation being performed are returned to the

application.

AUDIT

All errors, including errors occurring within the audit facility itself, are

returned to the application.

Chapter 1. SQL Statements for Administrators 97

Rules

v An AUDIT-exclusive SQL statement must be followed by a COMMIT or

ROLLBACK statement (SQLSTATE 5U021). AUDIT-exclusive SQL statements are:

– AUDIT

– CREATE AUDIT POLICY, ALTER AUDIT POLICY, or DROP (AUDIT

POLICY)

– DROP (ROLE or TRUSTED CONTEXT if it is associated with an audit policy)
v An AUDIT-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

v Only one uncommitted AUDIT-exclusive SQL statement is allowed at a time

across all database partitions. If an uncommitted AUDIT-exclusive SQL

statement is executing, subsequent AUDIT-exclusive SQL statements wait until

the current AUDIT-exclusive SQL statement commits or rolls back.

v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.

Example

Create an audit policy to audit successes and failures for the AUDIT and

OBJMAINT categories; only failures for the SECMAINT, CHECKING, and

VALIDATE categories, and no events for the other categories.

 CREATE AUDIT POLICY DBAUDPRF

 CATEGORIES AUDIT STATUS BOTH,

 SECMAINT STATUS FAILURE,

 OBJMAINT STATUS BOTH,

 CHECKING STATUS FAILURE,

 VALIDATE STATUS FAILURE

 ERROR TYPE NORMAL

CREATE DATABASE PARTITION GROUP

The CREATE DATABASE PARTITION GROUP statement defines a new database

partition group within the database, assigns database partitions to the database

partition group, and records the database partition group definition in the system

catalog.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSCTRL or SYSADM authority.

Syntax

�� CREATE DATABASE PARTITION GROUP db-partition-group-name �

98 Common Criteria Certification: Administration and User Documentation - Volume 2

�

�

 ON ALL DBPARTITIONNUMS

,

ON

DBPARTITIONNUMS

(

db-partition-number1

)

DBPARTITIONNUM

TO

db-partition-number2

��

Description

db-partition-group-name

Names the database partition group. This is a one-part name. It is an SQL

identifier (either ordinary or delimited). The db-partition-group-name must not

identify a database partition group that already exists in the catalog

(SQLSTATE 42710). The db-partition-group-name must not begin with the

characters ’SYS’ or ’IBM’ (SQLSTATE 42939).

ON ALL DBPARTITIONNUMS

Specifies that the database partition group is defined over all database

partitions defined to the database (db2nodes.cfg file) at the time the database

partition group is created.

 If a database partition is added to the database system, the ALTER DATABASE

PARTITION GROUP statement should be issued to include this new database

partition in a database partition group (including IBMDEFAULTGROUP).

Furthermore, the REDISTRIBUTE DATABASE PARTITION GROUP command

must be issued to move data to the database partition.

ON DBPARTITIONNUMS

Specifies the database partitions that are in the database partition group.

DBPARTITIONNUM is a synonym for DBPARTITIONNUMS.

db-partition-number1

Specify a database partition number. (A node-name of the form NODEnnnnn

can be specified for compatibility with the previous version.)

TO db-partition-number2

Specify a range of database partition numbers. The value of

db-partition-number2 must be greater than or equal to the value of

db-partition-number1 (SQLSTATE 428A9). All database partitions between

and including the specified database partition numbers are included in the

database partition group.

Rules

v Each database partition specified by number must be defined in the

db2nodes.cfg file (SQLSTATE 42729).

v Each db-partition-number listed in the ON DBPARTITIONNUMS clause must be

appear at most once (SQLSTATE 42728).

v A valid db-partition-number is between 0 and 999 inclusive (SQLSTATE 42729).

v The CREATE DATABASE PARTITION GROUP statement might fail (SQLSTATE

55071) if an add database partition server request is either pending or in

progress. This statement might also fail (SQLSTATE 55077) if a new database

partition server is added online to the instance and not all applications are

aware of the new database partition server.

Notes

v This statement creates a distribution map for the database partition group. A

distribution map identifier (PMAP_ID) is generated for each distribution map.

This information is recorded in the catalog and can be retrieved from

SYSCAT.DBPARTITIONGROUPS and SYSCAT.PARTITIONMAPS. Each entry in

Chapter 1. SQL Statements for Administrators 99

|
|
|
|
|

the distribution map specifies the target database partition on which all rows

that are hashed reside. For a single-partition database partition group, the

corresponding distribution map has only one entry. For a multiple partition

database partition group, the corresponding distribution map has 32768 entries,

where the database partition numbers are assigned to the map entries in a

round-robin fashion, by default.

v Compatibilities: For compatibility with previous versions of DB2 products:

– NODE can be specified in place of DBPARTITIONNUM

– NODES can be specified in place of DBPARTITIONNUMS

– NODEGROUP can be specified in place of DATABASE PARTITION GROUP

Examples

Assume that you have a partitioned database with six database partitions defined

as 0, 1, 2, 5, 7, and 8.

v Assume that you want to create a database partition group called MAXGROUP

on all six database partitions. The statement is as follows:

 CREATE DATABASE PARTITION GROUP MAXGROUP ON ALL DBPARTITIONNUMS

v Assume that you want to create a database partition group called MEDGROUP

on database partitions 0, 1, 2, 5, and 8. The statement is as follows:

 CREATE DATABASE PARTITION GROUP MEDGROUP

 ON DBPARTITIONNUMS(0 TO 2, 5, 8)

v Assume that you want to create a single-partition database partition group

MINGROUP on database partition 7. The statement is as follows:

 CREATE DATABASE PARTITION GROUP MINGROUP

 ON DBPARTITIONNUM (7)

CREATE FUNCTION

The CREATE FUNCTION statement is used to register or define a user-defined

function or function template at the current server.

There are five different types of functions that can be created using this statement.

Each of these is described separately.

v External Scalar. The function is written in a programming language and returns

a scalar value. The external executable is registered in the database, along with

various attributes of the function.

v External Table. The function is written in a programming language and returns a

complete table. The external executable is registered in the database along with

various attributes of the function.

v OLE DB External Table. A user-defined OLE DB external table function is

registered in the database to access data from an OLE DB provider.

v Sourced or Template. A source function is implemented by invoking another

function (either built-in, external, SQL, or source) that is already registered in the

database.

It is possible to create a partial function, called a function template, which defines

what types of values are to be returned, but which contains no executable code.

The user maps it to a data source function within a federated system, so that the

data source function can be invoked from a federated database. A function

template can be registered only with an application server that is designated as a

federated server.

100 Common Criteria Certification: Administration and User Documentation - Volume 2

|

v SQL Scalar, Table or Row. The function body is written in SQL and defined

together with the registration in the database. It returns a scalar value, a table, or

a single row.

CREATE INDEX

The CREATE INDEX statement is used to:

v Define an index on a DB2 table. An index can be defined on XML data, or on

relational data.

v Create an index specification (metadata that indicates to the optimizer that a

data source table has an index)

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v One of:

– CONTROL privilege on the table or nickname on which the index is defined

– INDEX privilege on the table or nickname on which the index is defined

and one of:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the index does not exist

– CREATEIN privilege on the schema, if the schema name of the index refers to

an existing schema
v DBADM authority

No explicit privilege is required to create an index on a declared temporary table.

Syntax

�� CREATE INDEX index-name

UNIQUE
 �

�

�

 ,

(1)

ASC

ON

table-name

(

column-name

)

(2)

DESC

nickname

PARTITIONED

NOT PARTITIONED

*

�

�
IN

tablespace-name
 * *

SPECIFICATION ONLY
 �

Chapter 1. SQL Statements for Administrators 101

|

�

�

 *

,

(3)

INCLUDE

(

column-name

)

 �

�

�

 *

(4)

xml-index-specification

CLUSTER

EXTEND USING

index-extension-name

,

(

constant-expression

)

 �

�
 PCTFREE 10

*

*

PCTFREE

integer

LEVEL2 PCTFREE

integer

�

�
 ALLOW REVERSE SCANS

*

*

MINPCTUSED

integer

DISALLOW REVERSE SCANS

�

�
 PAGE SPLIT SYMMETRIC

*

PAGE SPLIT

HIGH

LOW

COLLECT

STATISTICS

DETAILED

SAMPLED

*

�

�
COMPRESS

NO

YES

 ��

Notes:

1 In a federated system, table-name must identify a table in the federated

database. It cannot identify a data source table.

2 If nickname is specified, the CREATE INDEX statement creates an index

specification. In this case, INCLUDE, xml-index-specification, CLUSTER,

EXTEND USING, PCTFREE, MINPCTUSED, DISALLOW REVERSE SCANS,

ALLOW REVERSE SCANS, PAGE SPLIT, or COLLECT STATISTICS cannot be

specified.

3 The INCLUDE clause can only be specified if UNIQUE is specified.

4 If xml-index-specification is specified, column-name DESC, INCLUDE, or

CLUSTER cannot be specified.

xml-index-specification:

 (1)

GENERATE KEY USING XMLPATTERN

xmlpattern-clause

�

� xmltype-clause

102 Common Criteria Certification: Administration and User Documentation - Volume 2

Notes:

1 The alternative syntax GENERATE KEYS USING XMLPATTERN can be used.

xmlpattern-clause:

 ’ pattern-expression ’

namespace-declaration

namespace-declaration:

�

DECLARE NAMESPACE

namespace-prefix=namespace-uri

;

DECLARE DEFAULT ELEMENT NAMESPACE

namespace-uri

pattern-expression:

�

/

forward-axis

xmlname-test

//

xmlkind-test

forward-axis:

 child::

@

attribute::

descendant::

self::

descendant-or-self::

xmlname-test:

 xml-qname

xml-wildcard

xml-wildcard:

 *

xml-nsprefix:*

*:xml-ncname

xmlkind-test:

 node()

text()

comment()

processing instruction()

Chapter 1. SQL Statements for Administrators 103

xmltype-clause:

AS

data-type
 IGNORE INVALID VALUES

REJECT INVALID VALUES

data-type:

 sql-data-type

sql-data-type:

 SQL VARCHAR (integer)

HASHED

DOUBLE

DATE

TIMESTAMP

Description

UNIQUE

If ON table-name is specified, UNIQUE prevents the table from containing two

or more rows with the same value of the index key. The uniqueness is enforced

at the end of the SQL statement that updates rows or inserts new rows.

 The uniqueness is also checked during the execution of the CREATE INDEX

statement. If the table already contains rows with duplicate key values, the

index is not created.

If the index is on an XML column (the index is an index over XML data), the

uniqueness applies to values with the specified pattern-expression for all rows of

the table. Uniqueness is enforced on each value after the value has been

converted to the specified sql-data-type. Because converting to the specified

sql-data-type might result in a loss of precision or range, or different values

might be hashed to the same key value, multiple values that appear to be

unique in the XML document might result in duplicate key errors. The

uniqueness of character strings depends on XQuery semantics where trailing

blanks are significant. Therefore, values that would be duplicates in SQL but

differ in trailing blanks are considered unique values in an index over XML

data.

When UNIQUE is used, null values are treated as any other values. For

example, if the key is a single column that may contain null values, that

column may contain no more than one null value.

If the UNIQUE option is specified, and the table has a distribution key, the

columns in the index key must be a superset of the distribution key. That is,

the columns specified for a unique index key must include all the columns of

the distribution key (SQLSTATE 42997).

If the UNIQUE option is specified and the table has a table partitioning key,

the columns of the index key must be a superset of the table partitioning key.

That is, the columns specified for the unique index key must include all the

columns of the table partitioning key (SQLSTATE 42990).

Primary or unique keys cannot be subsets of dimensions (SQLSTATE 429BE).

104 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|

If ON nickname is specified, UNIQUE should be specified only if the data for

the index key contains unique values for every row of the data source table.

The uniqueness will not be checked.

For an index over XML data, UNIQUE can be specified only if the specified

pattern-expression specifies a single complete path and does not contain a

descendant or descendant-or-self axis, ″//″, an xml-wildcard, node(), or

processing-instruction() (SQLSTATE 429BS).

In a partitioned database environment, the following rules apply to a table

with one or more XML columns:

v A distributed table cannot have a unique index over XML data.

v A unique index over XML data is supported only on a table that does not

have a distribution key and that is on a single node multi-partition database.

v If a unique index over XML data exists on a table, the table cannot be

altered to add a distribution key.

INDEX index-name

Names the index or index specification. The name, including the implicit or

explicit qualifier, must not identify an index or index specification that is

described in the catalog, or an existing index on a declared temporary table

(SQLSTATE 42704). The qualifier must not be SYSIBM, SYSCAT, SYSFUN, or

SYSSTAT (SQLSTATE 42939).

 The implicit or explicit qualifier for indexes on declared global temporary

tables must be SESSION (SQLSTATE 428EK).

ON table-name or nickname

The table-name identifies a table on which an index is to be created. The table

must be a base table (not a view), a created temporary table, a declared

temporary table, a materialized query table that exists at the current server, or

a declared temporary table. The name of a declared temporary table must be

qualified with SESSION. The table-name must not identify a catalog table

(SQLSTATE 42832). If UNIQUE is specified and table-name is a typed table, it

must not be a subtable (SQLSTATE 429B3).

 nickname is the nickname on which an index specification is to be created. The

nickname references either a data source table whose index is described by the

index specification, or a data source view that is based on such a table. The

nickname must be listed in the catalog.

column-name

For an index, column-name identifies a column that is to be part of the index

key. For an index specification, column-name is the name by which the

federated server references a column of a data source table.

 Each column-name must be an unqualified name that identifies a column of the

table. Up to 64 columns can be specified. If table-name is a typed table, up to 63

columns can be specified. If table-name is a subtable, at least one column-name

must be introduced in the subtable; that is, not inherited from a supertable

(SQLSTATE 428DS). No column-name can be repeated (SQLSTATE 42711).

The sum of the stored lengths of the specified columns must not be greater

than the index key length limit for the page size. For key length limits, see

“SQL limits”. If table-name is a typed table, the index key length limit is further

reduced by 4 bytes. Note that this length limit can be reduced even more by

system overhead, which varies according to the data type of the column and

whether or not the column is nullable. For more information on overhead

affecting this limit, see “Byte Counts” in “CREATE TABLE”.

Chapter 1. SQL Statements for Administrators 105

|
|

|

|
|

|
|

|
|

Note that this length can be reduced by system overhead, which varies

according to the data type of the column and whether it is nullable. For more

information on overhead affecting this limit, see “Byte Counts” in “CREATE

TABLE”.

No LOB column or distinct type column based on a LOB can be used as part

of an index, even if the length attribute of the column is small enough to fit

within the index key length limit for the page size (SQLSTATE 54008). A

structured type column can only be specified if the EXTEND USING clause is

also specified (SQLSTATE 42962). If the EXTEND USING clause is specified,

only one column can be specified, and the type of the column must be a

structured type or a distinct type that is not based on a LOB (SQLSTATE

42997).

If an index has only one column, and that column has the XML data type, and

the GENERATE KEY USING XMLPATTERN clause is also specified, the index

is an index over XML data. A column with the XML data type can be specified

only if the GENERATE KEY USING XMLPATTERN clause is also specified

(SQLSTATE 42962). If the GENERATE KEY USING XMLPATTERN clause is

specified, only one column can be specified, and the type of the column must

be XML.

ASC

Specifies that index entries are to be kept in ascending order of the column

values; this is the default setting. ASC cannot be specified for indexes that

are defined with EXTEND USING (SQLSTATE 42601).

DESC

Specifies that index entries are to be kept in descending order of the

column values. DESC cannot be specified for indexes that are defined with

EXTEND USING, or if the index is an index over XML data (SQLSTATE

42601).

PARTITIONED

Indicates that a partitioned index should be created. The table-name must

identify a table defined with data partitions (SQLSTATE 42601).

 If the table is partitioned and neither PARTITIONED nor NOT PARTITIONED

is specified, the index is created as partitioned (with a few exceptions). A

nonpartitioned index is created instead of partitioned index if any of the

following situations apply:

v UNIQUE is specified and the index key does not include all the table

partitioning key columns.

v A spatial index is created.

v The index is defined over XML data.

A partitioned index with a definition that duplicates the definition of a

nonpartitioned index is not considered to be a duplicate index. For more

details, see the “Rules” on page 115 section in this topic.

The PARTITIONED keyword cannot be specified for the following indexes:

v An index on a nonpartitioned table (SQLSTATE 42601)

v An index defined over XML data (SQLSTATE 42613)

v A unique index where the index key does not include all the table

partitioning key columns (SQLSTATE 42990)

v A spatial index (SQLSTATE 42997)

A partitioned index cannot be created on a partitioned table that has detached

dependent tables, for example, MQTs (SQLSTATE 55019).

106 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|

|

|
|
|

|

|

|

|
|

|

|
|

The table space placement for an index partition of the partitioned index is

determined by the following rules:

v If the table being indexed was created using the partition-tablespace-options

INDEX IN clause of the CREATE TABLE statement, the index partition is

created in the table space specified in that INDEX IN clause.

v If the CREATE TABLE statement for the table being indexed did not specify

the partition-tablespace-options INDEX IN clause, the index partition

partitioned index is created in the same table space as the corresponding

data partition that it indexes.

The IN clause of the CREATE INDEX statement is not supported for

partitioned indexes (SQLSTATE 42601). The tablespace-clauses INDEX IN

clause of the CREATE TABLE statement is ignored for partitioned indexes.

NOT PARTITIONED

Indicates that a nonpartitioned index should be created that spans all of the

data partitions defined for the table. The table-name must identify a table

defined with data partitions (SQLSTATE 42601).

 A nonpartitioned index with a definition that duplicates the definition of a

partitioned index is not considered to be a duplicate index. For more details,

see the “Rules” on page 115 section in this topic.

The table space placement for a the nonpartitioned index is determined by the

following rules:

v If you specify the IN clause of the CREATE INDEX statement, the

nonpartitioned index is placed in the table space specified in that IN clause.

v If you do not specify the IN clause of the CREATE INDEX statement, the

following rules determine the table space placement of the nonpartitioned

index:

– If the table being indexed was created using the tablespace-clauses

INDEX IN clause of the CREATE TABLE statement, the nonpartitioned

index is placed in the table space specified in that INDEX IN clause.

– If the table being indexed was created without using the

tablespace-clauses INDEX IN clause of the CREATE TABLE statement, the

nonpartitioned index is created in the table space of the first visible or

attached data partition of the table. The first visible or attached data

partition of the table is the first partition in the list of data partitions that

are sorted on the basis of range specifications. Also, the authorization ID

of the statement is not required to have the USE privilege on the default

table space.

IN tablespace-name

The IN clause is supported only for nonpartitioned indexes. Specifying the IN

clause for partitioned indexes results in SQLSTATE 42601.

 Specifies the table space in which the index is to be created. This clause is not

supported for indexes on a created temporary table or a declared temporary

table (SQLSTATE 42601). You can specify this clause even if the INDEX IN

clause was specified when the table was created. This will override that clause.

The table space specified by tablespace-name must be in the same database

partition group as the data table spaces for the table and manage space in the

same way as the other table spaces of the partitioned table (SQLSTATE 42838);

it must be a table space on which the authorization ID of the statement holds

the USE privilege.

Chapter 1. SQL Statements for Administrators 107

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

If the IN clause is not specified, the index is created in the table space that was

specified by the INDEX IN clause on the CREATE TABLE statement. If no

INDEX IN clause was specified, the table space of the first visible or attached

data partition of the table is used. This is the first partition in the list of data

partitions that are sorted on the basis of range specifications. If the IN clause is

not specified, the authorization ID of the statement is not required to have the

USE privilege on the default table space.

SPECIFICATION ONLY

Indicates that this statement will be used to create an index specification that

applies to the data source table referenced by nickname. SPECIFICATION

ONLY must be specified if nickname is specified (SQLSTATE 42601). It cannot

be specified if table-name is specified (SQLSTATE 42601).

 If the index specification applies to an index that is unique, DB2 does not

verify that the column values in the remote table are unique. If the remote

column values are not unique, queries against the nickname that include the

index column might return incorrect data or errors.

This clause cannot be used when creating an index on a created temporary

table or declared temporary table (SQLSTATE 42995).

INCLUDE

This keyword introduces a clause that specifies additional columns to be

appended to the set of index key columns. Any columns included with this

clause are not used to enforce uniqueness. These included columns might

improve the performance of some queries through index only access. The

columns must be distinct from the columns used to enforce uniqueness

(SQLSTATE 42711). UNIQUE must be specified when INCLUDE is specified

(SQLSTATE 42613). The limits for the number of columns and sum of the

length attributes apply to all of the columns in the unique key and in the

index.

 This clause cannot be used with created temporary tables or declared

temporary tables (SQLSTATE 42995).

column-name

Identifies a column that is included in the index but not part of the unique

index key. The same rules apply as defined for columns of the unique

index key. The keywords ASC or DESC may be specified following the

column-name but have no effect on the order.

 INCLUDE cannot be specified for indexes that are defined with EXTEND

USING, if nickname is specified, or if the index is an XML values index

(SQLSTATE 42601).

xml-index-specification

Specifies how index keys are generated from XML documents that are stored

in an XML column. xml-index-specification cannot be specified if there is more

than one index column, or if the column does not have the XML data type.

 This clause only applies to XML columns (SQLSTATE 429BS).

GENERATE KEY USING XMLPATTERN xmlpattern-clause

Specifies the parts of an XML document that are to be indexed. XML

pattern values are the indexed values generated by the xmlpattern-clause.

List data type nodes are not supported in the index. If a node is qualified

by the xmlpattern-clause and an XML schema exists that specifies that the

108 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|

node is a list data type, then the list data type node cannot be indexed

(SQLSTATE 23526 for CREATE INDEX statements, or SQLSTATE 23525 for

INSERT and UPDATE statements).

xmlpattern-clause

Contains a pattern expression that identifies the nodes that are to be

indexed. It consists of an optional namespace-declaration and a required

pattern-expression.

namespace-declaration

If the pattern expression contains qualified names, a

namespace-declaration must be specified to define namespace

prefixes. A default namespace can be defined for unqualified

names.

DECLARE NAMESPACE namespace-prefix=namespace-uri

Maps namespace-prefix, which is an NCName, to namespace-uri,

which is a string literal. The namespace-declaration can contain

multiple namespace-prefix-to-namespace-uri mappings. The

namespace-prefix must be unique within the list of

namespace-declaration (SQLSTATE 10503).

DECLARE DEFAULT ELEMENT NAMESPACE namespace-uri

Declares the default namespace URI for unqualified element

names or types. If no default namespace is declared,

unqualified names of elements and types are in no namespace.

Only one default namespace can be declared (SQLSTATE

10502).

pattern-expression

Specifies the nodes in an XML document that are indexed. The

pattern-expression can contain pattern-matching characters (*). It is

similar to a path expression in XQuery, but supports a subset of

the XQuery language that is supported by DB2.

/ (forward slash)

Separates path expression steps.

// (double forward slash)

This is the abbreviated syntax for /descendant-or-self::node()/.

You cannot use // (double forward slash) if you also specify

UNIQUE.

forward-axis

child::

Specifies children of the context node. This is the default, if

no other forward axis is specified.

@ Specifies attributes of the context node. This is the

abbreviated syntax for attribute::.

attribute::

Specifies attributes of the context node.

descendant::

Specifies the descendants of the context node. You cannot

use descendant:: if you also specify UNIQUE.

self::

Specifies just the context node itself.

Chapter 1. SQL Statements for Administrators 109

descendant-or-self::

Specifies the context node and the descendants of the

context node. You cannot use descendant-or-self:: if you

also specify UNIQUE.

xmlname-test

Specifies the node name for the step in the path using a

qualified XML name (xml-qname) or a wildcard

(xml-wildcard).

xml-ncname

An XML name as defined by XML 1.0. It cannot include a

colon character.

xml-qname

Specifies a qualified XML name (also known as a QName)

that can have two possible forms:

v xml-nsprefix:xml-ncname, where the xml-nsprefix is an

xml-ncname that identifies an in-scope namespace

v xml-ncname, which indicates that the default namespace

should be applied as the implicit xml-nsprefix

xml-wildcard

Specifies an xml-qname as a wildcard that can have three

possible forms:

v * (a single asterisk character) indicates any xml-qname

v xml-nsprefix:* indicates any xml-ncname within the

specified namespace

v *:xml-ncname indicates a specific XML name in any

in-scope namespace

You cannot use xml-wildcard if you also specify UNIQUE.

xmlkind-test

Use these options to specify what types of nodes you pattern

match. The following options are available to you:

node()

Matches any node. You cannot use node() if you also

specify UNIQUE.

text()

Matches any text node.

comment()

Matches any comment node.

processing-instruction()

Matches any processing instruction node. You cannot use

processing-instruction() if you also specify UNIQUE.

xmltype-clause

AS data-type

Specifies the data type to which indexed values are converted

before they are stored. Values are converted to the index XML data

type that corresponds to the specified index SQL data type.

110 Common Criteria Certification: Administration and User Documentation - Volume 2

Table 7. Corresponding index data types

Index XML data type Index SQL data type

xs:string VARCHAR(integer), VARCHAR HASHED

xs:double DOUBLE

xs:date DATE

xs:dateTime TIMESTAMP

For VARCHAR(integer) and VARCHAR HASHED, the value is

converted to an xs:string value using the XQuery function fn:string.

The length attribute of VARCHAR(integer) is applied as a

constraint to the resulting xs:string value. An index SQL data type

of VARCHAR HASHED applies a hash algorithm to the resulting

xs:string value to generate a hash code that is inserted into the

index.

For indexes using the data types DOUBLE, DATE, and

TIMESTAMP, the value is converted to the index XML data type

using the XQuery cast expression.

If the index is unique, the uniqueness of the value is enforced after

the value is converted to the indexed type.

data-type

The following data type is supported:

sql-data-type

Supported SQL data types are:

VARCHAR(integer)

If this form of VARCHAR is specified, DB2 uses integer

as a constraint. If document nodes that are to be

indexed have values that are longer than integer, the

documents are not inserted into the table if the index

already exists. If the index does not exist, the index is

not created. integer is a value between 1 and a page

size-dependent maximum. Table 8 shows the maximum

value for each page size.

 Table 8. Maximum length of document nodes by page size

Page size Maximum length of document node (bytes)

4KB 817

8KB 1841

16KB 3889

32KB 7985

XQuery semantics are used for string comparisons,

where trailing blanks are significant. This differs from

SQL semantics, where trailing blanks are insignificant

during comparisons.

VARCHAR HASHED

Specify VARCHAR HASHED to handle indexing of

arbitrary length character strings. The length of an

indexed string has no limit. DB2 generates an

eight-byte hash code over the entire string. Indexes that

Chapter 1. SQL Statements for Administrators 111

use these hashed character strings can be used only for

equality lookups. XQuery semantics are used for string

equality comparisons, where trailing blanks are

significant. This differs from SQL semantics, where

trailing blanks are insignificant during comparisons.

The hash on the string preserves XQuery semantics for

equality and not SQL semantics.

DOUBLE

Specifies that the data type DOUBLE is used for

indexing numeric values. Unbounded decimal types

and 64 bit integers may lose precision when they are

stored as a DOUBLE value. The values for DOUBLE

may include the special numeric values NaN, INF,

-INF, +0, and -0, even though the SQL data type

DOUBLE itself does not support these values.

DATE

Specifies that the data type DATE is used for indexing

XML values. Note that the XML schema data type for

xs:date allows greater range of values than the DB2

pureXML xs:date data type that corresponds to the

SQL data type. If an out-of-range value is encountered,

an error is returned.

TIMESTAMP

Specifies that the data type TIMESTAMP is used for

indexing XML values. Note that the XML schema data

type for xs:dateTime allows greater range of values and

fractional seconds precision than the DB2 pureXML

xs:dateTime data type that corresponds to the SQL data

type. If an out-of range value is encountered, an error

is returned.

IGNORE INVALID VALUES

Specifies that XML pattern values that are invalid for the target

index XML data type are ignored and that the corresponding

values in the stored XML documents are not indexed by the

CREATE INDEX statement. By default, invalid values are ignored.

During insert and update operations, the invalid XML pattern

values are not indexed, but XML documents are still inserted into

the table. No error or warning is raised, because specifying these

data types is not a constraint on the XML pattern values (XQuery

expressions that search for the specific XML index data type will

not consider these values).

 The index can ignore only invalid XML pattern values for the

index XML data type. Valid values must conform to the DB2

representation of the value for the index XML data type, or an

error is returned. An XML pattern value associated with the index

XML data type xs:string is always valid. However, the additional

length constraint of the associated index SQL data type

VARCHAR(integer) data type can still raise an error, if the

maximum length is exceeded. If an error is returned, XML data is

not inserted or updated in the table if the index already exists

(SQLSTATE 23525). If the index does not exist, the index is not

created (SQLSTATE 23526).

112 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|

|
|
|
|
|
|
|

REJECT INVALID VALUES

Specifies that all XML pattern values must be valid for the index

XML data type. If any XML pattern value cannot be cast to the

index XML data type, an error is returned. XML data is not

inserted or updated in the table if the index already exists

(SQLSTATE 23525). If the index does not exist, the index is not

created (SQLSTATE 23526).

CLUSTER

Specifies that the index is the clustering index of the table. The cluster factor of

a clustering index is maintained or improved dynamically as data is inserted

into the associated table, by attempting to insert new rows physically close to

the rows for which the key values of this index are in the same range. Only

one clustering index may exist for a table so CLUSTER may not be specified if

it was used in the definition of any existing index on the table (SQLSTATE

55012). A clustering index may not be created on a table that is defined to use

append mode (SQLSTATE 428D8).

 CLUSTER is disallowed if nickname is specified, or if the index is an index over

XML data (SQLSTATE 42601). This clause cannot be used with created

temporary tables or declared temporary tables (SQLSTATE 42995) or

range-clustered tables (SQLSTATE 429BG).

EXTEND USING index-extension-name

Names the index-extension used to manage this index. If this clause is specified,

then there must be only one column-name specified and that column must be a

structured type or a distinct type (SQLSTATE 42997). The index-extension-name

must name an index extension described in the catalog (SQLSTATE 42704). For

a distinct type, the column must exactly match the type of the corresponding

source key parameter in the index extension. For a structured type column, the

type of the corresponding source key parameter must be the same type or a

supertype of the column type (SQLSTATE 428E0).

 This clause cannot be used with created temporary tables or declared

temporary tables (SQLSTATE 42995).

constant-expression

Identifies values for any required arguments for the index extension. Each

expression must be a constant value with a data type that exactly matches

the defined data type of the corresponding index extension parameters,

including length or precision, and scale (SQLSTATE 428E0). This clause

must not exceed 32 768 bytes in length in the database code page

(SQLSTATE 22001).

PCTFREE integer

Specifies what percentage of each index page to leave as free space when

building the index. The first entry in a page is added without restriction. When

additional entries are placed in an index page at least integer percent of free

space is left on each page. The value of integer can range from 0 to 99. If a

value greater than 10 is specified, only 10 percent free space will be left in

non-leaf pages. The default is 10.

 PCTFREE is disallowed if nickname is specified (SQLSTATE 42601). This clause

cannot be used with created temporary tables or declared temporary tables

(SQLSTATE 42995).

LEVEL2 PCTFREE integer

Specifies what percentage of each index level 2 page to leave as free space

when building the index. The value of integer can range from 0 to 99. If

LEVEL2 PCTFREE is not set, a minimum of 10 or PCTFREE percent of free

Chapter 1. SQL Statements for Administrators 113

|
|

|
|

|

space is left on all non-leaf pages. If LEVEL2 PCTFREE is set, integer percent of

free space is left on level 2 intermediate pages, and a minimum of 10 or integer

percent of free space is left on level 3 and higher intermediate pages.

 LEVEL2 PCTFREE is disallowed if nickname is specified (SQLSTATE 42601).

This clause cannot be used with created temporary tables or declared

temporary tables (SQLSTATE 42995).

MINPCTUSED integer

Indicates whether index leaf pages are merged online, and the threshold for

the minimum percentage of space used on an index leaf page. If, after a key is

removed from an index leaf page, the percentage of space used on the page is

at or below integer percent, an attempt is made to merge the remaining keys on

this page with those of a neighboring page. If there is sufficient space on one

of these pages, the merge is performed and one of the pages is deleted. The

value of integer can be from 0 to 99. A value of 50 or below is recommended

for performance reasons. Specifying this option will have an impact on update

and delete performance. Merging is only done during update and delete

operations when an exclusive table lock is held. If an exclusive table lock does

not exist, keys are marked as pseudo deleted during update and delete

operations, and no merging is done. Consider using the CLEANUP ONLY ALL

option of REORG INDEXES to merge leaf pages instead of using the

MINPCTUSED option of CREATE INDEX.

 MINPCTUSED is disallowed if nickname is specified (SQLSTATE 42601). This

clause cannot be used with created temporary tables or declared temporary

tables (SQLSTATE 42995).

DISALLOW REVERSE SCANS

Specifies that an index only supports forward scans or scanning of the index in

the order that was defined at index creation time.

 DISALLOW REVERSE SCANS cannot be specified together with nickname

(SQLSTATE 42601).

ALLOW REVERSE SCANS

Specifies that an index can support both forward and reverse scans; that is,

scanning of the index in the order that was defined at index creation time, and

scanning in the opposite order.

 ALLOW REVERSE SCANS cannot be specified together with nickname

(SQLSTATE 42601).

PAGE SPLIT

Specifies an index split behavior. The default is SYMMETRIC.

SYMMETRIC

Specifies that pages are to be split roughly in the middle.

HIGH

Specifies an index page split behavior that uses the space on index pages

efficiently when the values of the index keys being inserted follow a

particular pattern. For a subset of index key values, the leftmost column or

columns of the index must contain the same value, and the rightmost

column or columns of the index must contain values that increase with

each insertion. For details, see “Options on the CREATE INDEX

statement”.

LOW

Specifies an index page split behavior that uses the space on index pages

efficiently when the values of the index keys being inserted follow a

114 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|
|

|

particular pattern. For a subset of index key values, the leftmost column or

columns of the index must contain the same value, and the rightmost

column or columns of the index must contain values that decrease with

each insertion. For details, see “Options on the CREATE INDEX

statement”.

COLLECT STATISTICS

Specifies that basic index statistics are to be collected during index creation.

DETAILED

Specifies that extended index statistics (CLUSTERFACTOR and

PAGE_FETCH_PAIRS) are also to be collected during index creation.

SAMPLED

Specifies that sampling can be used when compiling extended index

statistics.

COMPRESS

Specifies whether index compression is enabled. By default, index compression

will be enabled if data row compression is enabled; index compression will be

disabled if data row compression is disabled. This option can be used to

override the default behavior. COMPRESS is disallowed if nickname is specified

(SQLSTATE 42601).

YES

Specifies that index compression is enabled. Insert and update operations

on the index will be subject to compression.

NO

Specifies that index compression is disabled.

Rules

v The CREATE INDEX statement fails (SQLSTATE 01550) when attempting to

create an index that matches an existing index.

A number of factors are used to determine if two indexes match. These factors

are combined in various different ways into the rules that determine if two

indexes match. The following factors are used to determine if two indexes

match:

1. The sets of index columns, including any INCLUDE columns, are the same

in both indexes.

2. The ordering of index key columns, including any INCLUDE columns, is the

same in both indexes.

3. The key columns of the new index are the same or a superset of the key

columns in the existing index.

4. The ordering attributes of the columns are the same in both indexes.

5. The existing index is unique.

6. Both indexes are non-unique.

The following combinations of these factors form the rules that determine when

two indexes are considered duplicates:

– 1 + 2 + 4 + 5

– 1 + 2 + 4 + 6

– 1 + 2 + 3 + 5

Exceptions:

Chapter 1. SQL Statements for Administrators 115

|
|
|
|
|
|

|
|
|

|
|

– If one of the compared indexes is partitioned and the other of the compared

indexes is nonpartitioned, the indexes are not considered duplicates if the

indexes have different names, even if other matching index conditions are

met.

– For indexes over XML data, the index descriptions are not considered

duplicates if the index names are different, even if the indexed XML column,

the XML patterns, and the data type, including its options, are identical.
v Unique indexes on system-maintained MQTs are not supported (SQLSTATE

42809).

v The COLLECT STATISTICS options are not supported if a nickname is specified

(SQLSTATE 42601).

Notes

v Concurrent read/write access to the table is permitted while an index is being

created. However, the default index creation behavior differs for indexes on

nonpartitioned tables, nonpartitioned indexes, and partitioned indexes:

– For indexes on nonpartitioned tables, once the index has been built, changes

that were made to the table during index creation time are forward-fitted to

the new index. Write access to the table is then briefly blocked while index

creation completes, after which the new index becomes available.

– For nonpartitioned indexes, once the index has been built, changes that were

made to the table during index creation time are forward-fitted to the new

index. Write access to the table is then briefly blocked while index creation

completes, after which the new index becomes available.

– For partitioned indexes, once the index partition has been built, changes that

were made to the partition during creation time of that index partition are

forward-fitted to the new index partition. Write access to the data partition is

then blocked while index creation completes on the remaining data partitions.

After the index partition for the last data partition is built and the transaction

is committed, all data partitions are available for read and write.

To circumvent this default behavior, use the LOCK TABLE statement to

explicitly lock the table before issuing a CREATE INDEX statement. (The table

can be locked in either SHARE or EXCLUSIVE mode, depending on whether

read access is to be allowed.)

v If the named table already contains data, CREATE INDEX creates the index

entries for it. If the table does not yet contain data, CREATE INDEX creates a

description of the index; the index entries are created when data is inserted into

the table.

v Once the index is created and data is loaded into the table, it is advisable to

issue the RUNSTATS command. The RUNSTATS command updates statistics

collected on the database tables, columns, and indexes. These statistics are used

to determine the optimal access path to the tables. By issuing the RUNSTATS

command, the database manager can determine the characteristics of the new

index. If data has been loaded before the CREATE INDEX statement is issued, it

is recommended that the COLLECT STATISTICS option on the CREATE INDEX

statement be used as an alternative to the RUNSTATS command.

v Creating an index with a schema name that does not already exist will result in

the implicit creation of that schema provided the authorization ID of the

statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The

CREATEIN privilege on the schema is granted to PUBLIC.

v The optimizer can recommend indexes prior to creating the actual index.

116 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

v If an index specification is being defined for a data source table that has an

index, the name of the index specification does not have to match the name of

the index.

v The optimizer uses index specifications to improve access to the data source

tables that the specifications apply to.

v Compatibilities: For compatibility with DB2 for z/OS:

– The following syntax is tolerated and ignored:

- CLOSE

- DEFINE

- FREEPAGE

- GBPCACHE

- PIECESIZE

- TYPE 2

- using-block
– The following syntax is accepted as the default behavior:

- COPY NO

- DEFER NO

Examples

Example 1: Create an index named UNIQUE_NAM on the PROJECT table. The

purpose of the index is to ensure that there are not two entries in the table with

the same value for project name (PROJNAME). The index entries are to be in

ascending order.

 CREATE UNIQUE INDEX UNIQUE_NAM

 ON PROJECT(PROJNAME)

Example 2: Create an index named JOB_BY_DPT on the EMPLOYEE table.

Arrange the index entries in ascending order by job title (JOB) within each

department (WORKDEPT).

 CREATE INDEX JOB_BY_DPT

 ON EMPLOYEE (WORKDEPT, JOB)

Example 3: The nickname EMPLOYEE references a data source table called

CURRENT_EMP. After this nickname was created, an index was defined on

CURRENT_EMP. The columns chosen for the index key were WORKDEBT and

JOB. Create an index specification that describes this index. Through this

specification, the optimizer will know that the index exists and what its key is.

With this information, the optimizer can improve its strategy to access the table.

 CREATE UNIQUE INDEX JOB_BY_DEPT

 ON EMPLOYEE (WORKDEPT, JOB)

 SPECIFICATION ONLY

Example 4: Create an extended index type named SPATIAL_INDEX on a

structured type column location. The description in index extension

GRID_EXTENSION is used to maintain SPATIAL_INDEX. The literal is given to

GRID_EXTENSION to create the index grid size.

 CREATE INDEX SPATIAL_INDEX ON CUSTOMER (LOCATION)

 EXTEND USING (GRID_EXTENSION (x’000100100010001000400010’))

Example 5: Create an index named IDX1 on a table named TAB1, and collect basic

index statistics on index IDX1.

 CREATE INDEX IDX1 ON TAB1 (col1) COLLECT STATISTICS

Chapter 1. SQL Statements for Administrators 117

Example 6: Create an index named IDX2 on a table named TAB1, and collect

detailed index statistics on index IDX2.

 CREATE INDEX IDX2 ON TAB1 (col2) COLLECT DETAILED STATISTICS

Example 7: Create an index named IDX3 on a table named TAB1, and collect

detailed index statistics on index IDX3 using sampling.

 CREATE INDEX IDX3 ON TAB1 (col3) COLLECT SAMPLED DETAILED STATISTICS

Example 8: Create a unique index named A_IDX on a partitioned table named

MYNUMBERDATA in table space IDX_TBSP.

 CREATE UNIQUE INDEX A_IDX ON MYNUMBERDATA (A) IN IDX_TBSP

Example 9: Create a non-unique index named B_IDX on a partitioned table named

MYNUMBERDATA in table space IDX_TBSP.

 CREATE INDEX B_IDX ON MYNUMBERDATA (B)

 NOT PARTITIONED IN IDX_TBSP

Example 10: Create an index over XML data on a table named COMPANYINFO,

which contains an XML column named COMPANYDOCS. The XML column

COMPANYDOCS contains a large number of XML documents similar to the one

below:

<company name="Company1">

 <emp id="31201" salary="60000" gender="Female">

 <name>

 <first>Laura</first>

 <last>Brown</last>

 </name>

 <dept id="M25">

 Finance

 </dept>

 </emp>

</company>

Users of the COMPANYINFO table often need to retrieve employee information

using the employee ID. An index like the following one can make that retrieval

more efficient.

 CREATE INDEX EMPINDEX ON COMPANYINFO(COMPANYDOCS)

 GENERATE KEY USING XMLPATTERN ’/company/emp/@id’

 AS SQL DOUBLE

Example 11: The following index is logically equivalent to the index created in the

previous example, except that it uses unabbreviated syntax.

 CREATE INDEX EMPINDEX ON COMPANYINFO(COMPANYDOCS)

 GENERATE KEY USING XMLPATTERN ’/child::company/child::emp/attribute::id’

 AS SQL DOUBLE

Example 12: Create an index on a column named DOC, indexing only the book title

as a VARCHAR(100). Because the book title should be unique across all books, the

index must be unique.

 CREATE UNIQUE INDEX MYDOCSIDX ON MYDOCS(DOC)

 GENERATE KEY USING XMLPATTERN ’/book/title’

 AS SQL VARCHAR(100)

Example 13: Create an index on a column named DOC, indexing the chapter

number as a DOUBLE. This example includes namespace declarations.

118 Common Criteria Certification: Administration and User Documentation - Volume 2

CREATE INDEX MYDOCSIDX ON MYDOCS(DOC)

 GENERATE KEY USING XMLPATTERN

 ’declare namespace b="http://www.foobar.com/book/";

 declare namespace c="http://acme.org/chapters";

 /b:book/c:chapter/@number’

 AS SQL DOUBLE

CREATE METHOD

The CREATE METHOD statement is used to associate a method body with a

method specification that is already part of the definition of a user-defined

structured type.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CREATEIN privilege on the schema of the structured type referred to in the

CREATE METHOD statement

v The owner of the structured type referred to in the CREATE METHOD

statement

v DBADM authority

To associate an external method body with its method specification, the privileges

held by the authorization ID of the statement must also include at least one of the

following:

v CREATE_EXTERNAL_ROUTINE authority on the database

v DBADM authority

When creating an SQL method, the privileges held by the authorization ID of the

statement must also include at least one of the following for each table, view, or

nickname identified in any fullselect:

v CONTROL privilege on that table, view, or nickname

v SELECT privilege on that table, view, or nickname

v DATAACCESS authority

Group privileges other than PUBLIC are not considered for any table or view

specified in the CREATE METHOD statement.

Authorization requirements of the data source for the table or view referenced by

the nickname are applied when the method is invoked. The authorization ID of the

connection can be mapped to a different remote authorization ID.

Syntax

�� CREATE METHOD method-name FOR type-name

method-signature

SPECIFIC METHOD

specific-name

 �

Chapter 1. SQL Statements for Administrators 119

|

|

|
|
|

|

|

|

� * EXTERNAL * *

NAME

’string’

TRANSFORM GROUP

group-name

identifier

INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST

SQL-method-body

INHERIT ISOLATION LEVEL WITH LOCK REQUEST

 ��

method-signature:

�

 method-name ()

,

data-type1

parameter-name

AS LOCATOR

 �

�
RETURNS

data-type2

AS LOCATOR

data-type3

CAST FROM

data-type4

AS LOCATOR

SQL-method-body:

 RETURN

(1)

Compound SQL (inlined)

Notes:

1 The compound SQL (inlined) statement is only supported for an

SQL-method-body in an SQL method definition in a non-partitioned database.

Description

METHOD

Identifies an existing method specification that is associated with a

user-defined structured type. The method-specification can be identified

through one of the following means:

method-name

Names the method specification for which a method body is being defined.

The implicit schema is the schema of the subject type (type-name). There

must be only one method specification for type-name that has this

method-name (SQLSTATE 42725).

method-signature

Provides the method signature which uniquely identifies the method to be

defined. The method signature must match the method specification that

was provided on the CREATE TYPE or ALTER TYPE statement

(SQLSTATE 42883).

method-name

Names the method specification for which a method body is being

defined. The implicit schema is the schema of the subject type

(type-name).

parameter-name

Identifies the parameter name. If parameter names are provided in

the method signature, they must be exactly the same as the

120 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

corresponding parts of the matching method specification.

Parameter names are supported in this statement solely for

documentation purposes.

data-type1

Specifies the data type of each parameter. Array types are not

supported (SQLSTATE 42815).

AS LOCATOR

For the LOB types or distinct types which are based on a LOB

type, the AS LOCATOR clause can be added.

RETURNS

This clause identifies the output of the method. If a RETURNS clause

is provided in the method signature, it must be exactly the same as the

corresponding part of the matching method specification on CREATE

TYPE. The RETURNS clause is supported in this statement solely for

documentation purposes.

data-type2

Specifies the data type of the output. Array types are not

supported (SQLSTATE 42815).

AS LOCATOR

For LOB types or distinct types which are based on LOB types,

the AS LOCATOR clause can be added. This indicates that a

LOB locator is to be returned by the method instead of the

actual value.

data-type3 CAST FROM data-type4

This form of the RETURNS clause is used to return a different data

type to the invoking statement from the data type that was

returned by the function code.

AS LOCATOR

For LOB types or distinct types which are based on LOB types,

the AS LOCATOR clause can be used to indicate that a LOB

locator is to be returned from the method instead of the actual

value.

FOR type-name

Names the type for which the specified method is to be associated. The

name must identify a type already described in the catalog. (SQLSTATE

42704) In dynamic SQL statements, the CURRENT SCHEMA special

register is used as a qualifier for an unqualified object name. In static SQL

statements the QUALIFIER precompile/bind option implicitly specifies the

qualifier for unqualified object names.

SPECIFIC METHOD specific-name

Identifies the particular method, using the specific name either specified or

defaulted to at CREATE TYPE time. The specific-name must identify a method

specification in the named or implicit schema; otherwise, an error is raised

(SQLSTATE 42704).

EXTERNAL

This clause indicates that the CREATE METHOD statement is being used to

register a method, based on code written in an external programming

language, and adhering to the documented linkage conventions and interface.

The matching method-specification in CREATE TYPE must specify a

LANGUAGE other than SQL. When the method is invoked, the subject of the

method is passed to the implementation as an implicit first parameter.

Chapter 1. SQL Statements for Administrators 121

If the NAME clause is not specified, ″NAME method-name″ is assumed.

NAME

This clause identifies the name of the user-written code which implements

the method being defined.

’string’

The ’string’ option is a string constant with a maximum of 254 bytes.

The format used for the string is dependent on the LANGUAGE

specified. For more information on the specific language conventions,

see “CREATE FUNCTION (External Scalar) statement”.

identifier

This identifier specified is an SQL identifier. The SQL identifier is used

as the library-id in the string. Unless it is a delimited identifier, the

identifier is folded to upper case. If the identifier is qualified with a

schema name, the schema name portion is ignored. This form of

NAME can only be used with LANGUAGE C (as defined in the

method-specification on CREATE TYPE).

TRANSFORM GROUP group-name

Indicates the transform group that is used for user-defined structured type

transformations when invoking the method. A transform is required since the

method definition includes a user-defined structured type.

 It is strongly recommended that a transform group name be specified; if this

clause is not specified, the default group-name used is DB2_FUNCTION. If the

specified (or default) group-name is not defined for a referenced structured

type, an error results (SQLSTATE 42741). Likewise, if a required FROM SQL or

TO SQL transform function is not defined for the given group-name and

structured type, an error results (SQLSTATE 42744).

INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST or INHERIT

ISOLATION LEVEL WITH LOCK REQUEST

Specifies whether or not a lock request can be associated with the

isolation-clause of the statement when the method inherits the isolation level of

the statement that invokes the method. The default is INHERIT ISOLATION

LEVEL WITHOUT LOCK REQUEST.

INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST

Specifies that, as the method inherits the isolation level of the invoking

statement, it cannot be invoked in the context of an SQL statement which

includes a lock-request-clause as part of a specified isolation-clause

(SQLSTATE 42601).

INHERIT ISOLATION LEVEL WITH LOCK REQUEST

Specifies that, as the method inherits the isolation level of the invoking

statement, it also inherits the specified lock-request-clause.

SQL-method-body

The SQL-method-body defines how the method is implemented if the method

specification in CREATE TYPE is LANGUAGE SQL.

 The SQL-method-body must comply with the following parts of method

specification:

v DETERMINISTIC or NOT DETERMINISTIC (SQLSTATE 428C2)

v EXTERNAL ACTION or NO EXTERNAL ACTION (SQLSTATE 428C2)

v CONTAINS SQL or READS SQL DATA (SQLSTATE 42985)

122 Common Criteria Certification: Administration and User Documentation - Volume 2

Parameter names can be referenced in the SQL-method-body. The subject of the

method is passed to the method implementation as an implicit first parameter

named SELF.

For additional details, see “Compound SQL (inlined) statement” and

“RETURN statement”.

Rules

v The method specification must be previously defined using the CREATE TYPE

or ALTER TYPE statement before CREATE METHOD can be used (SQLSTATE

42723).

v If the method being created is an overriding method, those packages that are

dependent on the following methods are invalidated:

– The original method

– Other overriding methods that have as their subject a supertype of the

method being created
v The XML data type cannot be used in a method.

Notes

v If the method allows SQL, the external program must not attempt to access any

federated objects (SQLSTATE 55047).

v Privileges: The definer of a method always receives the EXECUTE privilege on

the method, as well as the right to drop the method.

If an EXTERNAL method is created, the definer of the method always receives

the EXECUTE privilege WITH GRANT OPTION.

If an SQL method is created, the definer of the method will only be given the

EXECUTE privilege WITH GRANT OPTION on the method when the definer

has WITH GRANT OPTION on all privileges required to define the method, or

if the definer has SYSADM or DBADM authority. The definer of an SQL method

only acquires privileges if the privileges from which they are derived exist at the

time the method is created. The definer must have these privileges either

directly, or because PUBLIC has the privileges. Privileges held by groups of

which the method definer is a member are not considered. When using the

method, the connected user’s authorization ID must have the valid privileges on

the table or view that the nickname references at the data source.

v Table access restrictions: If a method is defined as READS SQL DATA, no

statement in the method can access a table that is being modified by the

statement which invoked the method (SQLSTATE 57053).

Examples

Example 1:

 CREATE METHOD BONUS (RATE DOUBLE)

 FOR EMP

 RETURN SELF..SALARY * RATE

Example 2:

 CREATE METHOD SAMEZIP (addr address_t)

 RETURNS INTEGER

 FOR address_t

 RETURN

 (CASE

Chapter 1. SQL Statements for Administrators 123

WHEN (self..zip = addr..zip)

 THEN 1

 ELSE 0

 END)

Example 3:

 CREATE METHOD DISTANCE (address_t)

 FOR address_t

 EXTERNAL NAME ’addresslib!distance’

 TRANSFORM GROUP func_group

CREATE PROCEDURE (SQL)

The CREATE PROCEDURE (SQL) statement defines an SQL procedure at the

current server.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v If the implicit or explicit schema name of the procedure does not exist,

IMPLICIT_SCHEMA authority on the database.

v If the schema name of the procedure refers to an existing schema, CREATEIN

privilege on the schema.

v DBADM authority

The privileges held by the authorization ID of the statement must also include all

of the privileges necessary to invoke the SQL statements that are specified in the

procedure body.

To replace an existing procedure, the authorization ID of the statement must be the

owner of the existing procedure (SQLSTATE 42501).

Syntax

�� CREATE PROCEDURE

OR REPLACE
 procedure-name �

�

�

(

)

,

IN

parameter-name

data-type

OUT

default-clause

INOUT

 �

� option-list SQL-procedure-body ��

124 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|

|

|
|
|

|
|

data-type:

 built-in-type

anchored-variable-data-type

array-type-name

cursor-type-name

distinct-type-name

row-type-name

built-in-type:

Chapter 1. SQL Statements for Administrators 125

||||

SMALLINT

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(53)

FLOAT

(integer)

REAL

PRECISION

DOUBLE

(34)

DECFLOAT

(16)

(1)

CHARACTER

CHAR

(integer)

FOR BIT DATA

VARCHAR

(integer)

CHARACTER

VARYING

CHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(integer

)

CHAR

K

M

G

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

(1M)

DBCLOB

(integer

)

K

M

G

(1M)

BLOB

BINARY LARGE OBJECT

(integer

)

K

M

G

DATE

TIME

(

6

)

TIMESTAMP

(

integer

)

XML

BOOLEAN

CURSOR

anchored-data-type:

126 Common Criteria Certification: Administration and User Documentation - Volume 2

||

DATA TYPE TO

ANCHOR

variable-name

table-name.column-name

OF

ROW

table-name

view-name

cursor-variable-name

default-clause:

 DEFAULT NULL

constant

special-register

global-variable

(

expression

)

option-list:

*

 LANGUAGE SQL

*

SPECIFIC

specific-name

*

�

�
 DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS

integer

*

 MODIFIES SQL DATA

CONTAINS SQL

READS SQL DATA

*

�

�
 NOT DETERMINISTIC

DETERMINISTIC

*

 CALLED ON NULL INPUT

*

�

�
 COMMIT ON RETURN NO

COMMIT ON RETURN YES

AUTONOMOUS

*

 INHERIT SPECIAL REGISTERS

*

�

�
 OLD SAVEPOINT LEVEL

NEW SAVEPOINT LEVEL

*

 EXTERNAL ACTION

NO EXTERNAL ACTION

*

�

�
PARAMETER CCSID

ASCII

UNICODE

 *

SQL-procedure-body:

 SQL-procedure-statement

Description

OR REPLACE

Specifies to replace the definition for the procedure if one exists at the current

server. The existing definition is effectively dropped before the new definition

is replaced in the catalog, with the exception that privileges that were granted

on the procedure are not affected. This option is ignored if a definition for the

procedure does not exist at the current server. To replace an existing procedure,

Chapter 1. SQL Statements for Administrators 127

||||||||||

|
|
|
|
|
|

the specific name and procedure name of the new definition must be the same

as the specific name and procedure name of the old definition, or the signature

of the new definition must match the signature of the old definition.

Otherwise, a new procedure is created.

procedure-name

Names the procedure being defined. It is a qualified or unqualified name that

designates a procedure. The unqualified form of procedure-name is an SQL

identifier (with a maximum length of 128). In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an unqualified

object name. In static SQL statements, the QUALIFIER precompile/bind option

implicitly specifies the qualifier for unqualified object names. The qualified

form is a schema-name followed by a period and an SQL identifier.

 The name, including the implicit or explicit qualifiers, together with the

number of parameters, must not identify a procedure described in the catalog

(SQLSTATE 42723). The unqualified name, together with the number of

parameters, is unique within its schema, but does not need to be unique across

schemas.

If a two-part name is specified, the schema-name cannot begin with ’SYS’;

otherwise, an error is returned (SQLSTATE 42939).

(IN | OUT | INOUT parameter-name data-type default-clause,...)

Identifies the parameters of the procedure, and specifies the mode, name, data

type, and optional default value of each parameter. One entry in the list must

be specified for each parameter that the procedure will expect.

 It is possible to register a procedure that has no parameters. In this case, the

parentheses must still be coded, with no intervening data types. For example:

 CREATE PROCEDURE SUBWOOFER() ...

No two identically-named procedures within a schema are permitted to have

exactly the same number of parameters. A duplicate signature raises an SQL

error (SQLSTATE 42723).

For example, given the statements:

 CREATE PROCEDURE PART (IN NUMBER INT, OUT PART_NAME CHAR(35)) ...

 CREATE PROCEDURE PART (IN COST DECIMAL(5,3), OUT COUNT INT) ...

the second statement will fail because the number of parameters in the

procedure is the same, even if the data types are not.

IN | OUT | INOUT

Specifies the mode of the parameter.

 If an error is returned by the procedure, OUT parameters are undefined

and INOUT parameters are unchanged.

IN Identifies the parameter as an input parameter to the procedure.

Any changes made to the parameter within the procedure are not

available to the calling SQL application when control is returned.

The default is IN.

OUT Identifies the parameter as an output parameter for the procedure.

INOUT

Identifies the parameter as both an input and output parameter for

the procedure.

128 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|

|

|

parameter-name

Specifies the name of the parameter. The parameter name must be unique

for the procedure (SQLSTATE 42734).

data-type

Specifies the data type of the parameter. A structured type or reference

type cannot be specified (SQLSTATE 429BB).

built-in-type

Specifies a built-in data type. For a more complete description of each

built-in data type except BOOLEAN and CURSOR, which cannot be

specified for a table, see “CREATE TABLE”.

BOOLEAN

For a Boolean.

CURSOR

For a reference to an underlying cursor.

anchored-data-type

Identifies another object used to define the data type. The data type of

the anchor object has the same limitations that apply to specifying the

data type directly, or in the case of a row, to creating a row type.

ANCHOR DATA TYPE TO

Indicates an anchored data type is used to specify the data type.

variable-name

Identifies a global variable. The data type of the global variable

is used as the data type for parameter-name.

table-name.column-name

Identifies a column name of an existing table or view. The data

type of the column is used as the data type for parameter-name.

ROW OF table-name or view-name

Specifies a row of fields with names and data types that are

based on the column names and column data types of the table

identified by table-name or the view identified by view-name.

The data type of parameter-name is an unnamed row type.

ROW OF cursor-variable-name

Specifies a row of fields with names and data types that are

based on the field names and field data types of the cursor

variable identified by cursor-variable-name. The specified cursor

variable must be one of the following (SQLSTATE 428HS):

v A global variable with a strongly typed cursor data type

v A global variable with a weakly typed cursor data type that

was created or declared with a CONSTANT clause

specifying a select-statement where all the result columns are

named.

If the cursor type of the cursor variable is not strongly-typed

using a named row type, the data type of parameter-name is an

unnamed row type.

array-type-name

Specifies the name of a user-defined array type. If array-type-name is

specified without a schema name, the array type is resolved by

searching the schemas in the SQL path.

Chapter 1. SQL Statements for Administrators 129

|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|
|

cursor-type-name

Specifies the name of a cursor type. If cursor-type-name is specified

without a schema name, the cursor type is resolved by searching the

schemas in the SQL path.

distinct-type-name

Specifies the name of a distinct type. The length, precision, and scale of

the parameter are, respectively, the length, precision, and scale of the

source type of the distinct type. A distinct type parameter is passed as

the source type of the distinct type. If distinct-type-name is specified

without a schema name, the distinct type is resolved by searching the

schemas in the SQL path.

row-type-name

Specifies the name of a user-defined row type. The fields of the

parameter are the fields of the row type. If row-type-name is specified

without a schema name, the row type is resolved by searching the

schemas in the SQL path.

DEFAULT

Specifies a default value for the parameter. The default can be a constant, a

special register, a global variable, an expression or the keyword NULL. The

special registers that can be specified as the default are that same as those

that can be specified for a column default (see default-clause in the CREATE

TABLE statement). Other special registers can be specified as the default by

using an expression.

 The expression can be any expression of the type described in

“Expressions”. If a default value is not specified, the parameter has no

default and the corresponding argument cannot be omitted on invocation

of the procedure. The maximum size of the expression is 64K bytes.

The default expression must not modify SQL data (SQLSTATE 428FL or

SQLSTATE 429BL) or perform external action (SQLSTATE 42845). The

expression must be assignment compatible to the parameter data type

(SQLSTATE 42821).

A default cannot be specified in the following situations:

v For INOUT or OUT parameters (SQLSTATE 42601)

v For a parameter of type ARRAY, ROW, or CURSOR (SQLSTATE 429BB)

Parameters without defaults cannot be defined after a parameter with a

default (SQLSTATE 428HG).

SPECIFIC specific-name

Provides a unique name for the instance of the procedure that is being defined.

This specific name can be used when dropping the procedure or commenting

on the procedure. It can never be used to invoke the procedure. The

unqualified form of specific-name is an SQL identifier (with a maximum length

of 18). The qualified form is a schema-name followed by a period and an SQL

identifier. The name, including the implicit or explicit qualifier, must not

identify another procedure instance that exists at the application server;

otherwise an error (SQLSTATE 42710) is raised.

 The specific-name can be the same as an existing procedure-name.

If no qualifier is specified, the qualifier that was used for procedure-name is

used. If a qualifier is specified, it must be the same as the explicit or implicit

qualifier for procedure-name, or an error (SQLSTATE 42882) is raised.

130 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

|

|

|
|

If specific-name is not specified, a unique name is generated by the database

manager. The unique name is ’SQL’ followed by a character timestamp:

’SQLyymmddhhmmssxxx’.

DYNAMIC RESULT SETS integer

Indicates the estimated upper bound of returned result sets for the procedure.

CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA

Indicates the level of data access for SQL statements included in the procedure.

CONTAINS SQL

Indicates that SQL statements that neither read nor modify SQL data can

be executed by the procedure (SQLSTATE 38004 or 42985). Statements that

are not supported in procedures might return a different error (SQLSTATE

38003 or 42985).

READS SQL DATA

Indicates that some SQL statements that do not modify SQL data can be

included in the procedure (SQLSTATE 38002 or 42985). Statements that are

not supported in procedures might return a different error (SQLSTATE

38003 or 42985).

MODIFIES SQL DATA

Indicates that the procedure can execute any SQL statement except

statements that are not supported in procedures (SQLSTATE 38003 or

42985).

If the BEGIN ATOMIC clause is used in a compound SQL procedure, the

procedure can only be created if it is defined as MODIFIES SQL DATA.

DETERMINISTIC or NOT DETERMINISTIC

This clause specifies whether the procedure always returns the same results for

given argument values (DETERMINISTIC) or whether the procedure depends

on some state values that affect the results (NOT DETERMINISTIC). That is, a

DETERMINISTIC procedure must always return the same result from

successive invocations with identical inputs.

 This clause currently does not impact processing of the procedure.

CALLED ON NULL INPUT

CALLED ON NULL INPUT always applies to procedures. This means that the

procedure is called regardless of whether any arguments are null. Any OUT or

INOUT parameter can return a null value or a normal (non-null) value.

Responsibility for testing for null argument values lies with the procedure.

COMMIT ON RETURN

Indicates whether a commit is to be issued on return from the procedure. The

default is NO.

NO

A commit is not issued when the procedure returns.

YES

A commit is issued when the procedure returns if a positive SQLCODE is

returned by the CALL statement

 The commit operation includes the work that is performed by the calling

application process and the procedure.

If the procedure returns result sets, the cursors that are associated with the

result sets must have been defined as WITH HOLD to be usable after the

commit.

Chapter 1. SQL Statements for Administrators 131

|
|
|

|
|

|
|
|

|
|

|
|
|

AUTONOMOUS

Indicates the procedure should execute in its own autonomous transaction

scope.

INHERIT SPECIAL REGISTERS

This optional clause specifies that updatable special registers in the procedure

will inherit their initial values from the environment of the invoking statement.

For a routine invoked in a nested object (for example a trigger or view), the

initial values are inherited from the runtime environment (not inherited from

the object definition).

 No changes to the special registers are passed back to the caller of the

procedure.

Non-updatable special registers, such as the datetime special registers, reflect a

property of the statement currently executing, and are therefore set to their

default values.

OLD SAVEPOINT LEVEL or NEW SAVEPOINT LEVEL

Specifies whether or not this procedure establishes a new savepoint level for

savepoint names and effects. OLD SAVEPOINT LEVEL is the default behavior.

For more information about savepoint levels, see “Rules” in “SAVEPOINT”.

LANGUAGE SQL

This clause is used to specify that the procedure body is written in the SQL

language.

EXTERNAL ACTION or NO EXTERNAL ACTION

Specifies whether the procedure takes some action that changes the state of an

object not managed by the database manager (EXTERNAL ACTION), or not

(NO EXTERNAL ACTION). The default is EXTERNAL ACTION. If NO

EXTERNAL ACTION is specified, the system can use certain optimizations that

assume the procedure has no external impact.

PARAMETER CCSID

Specifies the encoding scheme to use for all string data passed into and out of

the procedure. If the PARAMETER CCSID clause is not specified, the default is

PARAMETER CCSID UNICODE for Unicode databases, and PARAMETER

CCSID ASCII for all other databases.

ASCII

Specifies that string data is encoded in the database code page. If the

database is a Unicode database, PARAMETER CCSID ASCII cannot be

specified (SQLSTATE 56031).

UNICODE

Specifies that character data is in UTF-8, and that graphic data is in UCS-2.

If the database is not a Unicode database, PARAMETER CCSID UNICODE

cannot be specified (SQLSTATE 56031).

SQL-procedure-body

Specifies the SQL statement that is the body of the SQL procedure.

 See SQL-procedure-statement in “Compound SQL (Compiled)” statement.

Rules

v Autonomous routine restrictions: Autonomous routines cannot return result sets

and do not support the following (SQLSTATE 428H2):

– User-defined cursor types

– User-defined structured types

132 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|

|

|
|

|

|

– XML as IN, OUT, and INOUT parameters

Session variables cannot be referenced within the autonomous scope.

v

v Use of cursor and row types: A procedure that uses a cursor type or row type

for a parameter can only be invoked from within a compound SQL (compiled)

statement (SQLSTATE 428H2), except for JDBC which can invoke a procedure

with OUT parameters that have a cursor type.

Notes

v Creating a procedure with a schema name that does not already exist will result

in the implicit creation of that schema, provided that the authorization ID of the

statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The

CREATEIN privilege on the schema is granted to PUBLIC.

v A procedure that is called from within a compound SQL (inlined) statement will

execute as if it were created specifying NEW SAVEPOINT LEVEL, even if OLD

SAVEPOINT LEVEL was specified or defaulted to when the procedure was

created.

v Creating procedures that are initially invalid: If an object referenced in the

procedure body does not exist or is marked invalid, or the definer temporarily

doesn’t have privileges to access the object, and if the database configuration

parameter auto_reval is not set to DISABLED, then the procedure will still be

created successfully. The procedure will be marked invalid and will be

revalidated the next time it is invoked.

v Setting of the default value: Parameters of a procedure that are defined with a

default value are set to their default value when the procedure is invoked, but

only if a value is not supplied for the corresponding argument, or is specified as

DEFAULT, when the procedure is invoked.

v Privileges: The definer of a procedure always receives the EXECUTE privilege

WITH GRANT OPTION on the procedure, as well as the right to drop the

procedure.

v Compatibilities: For compatibility with DB2 for z/OS:

– The following syntax is accepted as the default behavior:

- ASUTIME NO LIMIT

- NO COLLID

- STAY RESIDENT NO

For compatibility with previous versions of DB2:

– RESULT SETS can be specified in place of DYNAMIC RESULT SETS.

– NULL CALL can be specified in place of CALLED ON NULL INPUT.

Examples

Example 1: Create an SQL procedure that returns the median staff salary. Return a

result set containing the name, position, and salary of all employees who earn

more than the median salary.

 CREATE PROCEDURE MEDIAN_RESULT_SET (OUT medianSalary DOUBLE)

 RESULT SETS 1

 LANGUAGE SQL

 BEGIN

 DECLARE v_numRecords INT DEFAULT 1;

 DECLARE v_counter INT DEFAULT 0;

 DECLARE c1 CURSOR FOR

 SELECT CAST(salary AS DOUBLE)

Chapter 1. SQL Statements for Administrators 133

|

|

|

|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

FROM staff

 ORDER BY salary;

 DECLARE c2 CURSOR WITH RETURN FOR

 SELECT name, job, CAST(salary AS INTEGER)

 FROM staff

 WHERE salary > medianSalary

 ORDER BY salary;

 DECLARE EXIT HANDLER FOR NOT FOUND

 SET medianSalary = 6666;

 SET medianSalary = 0;

 SELECT COUNT(*) INTO v_numRecords

 FROM STAFF;

 OPEN c1;

 WHILE v_counter < (v_numRecords / 2 + 1)

 DO

 FETCH c1 INTO medianSalary;

 SET v_counter = v_counter + 1;

 END WHILE;

 CLOSE c1;

 OPEN c2;

 END

CREATE ROLE

The CREATE ROLE statement defines a role at the current server.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� CREATE ROLE role-name ��

Description

role-name

Names the role. This is a one-part name. It is an SQL identifier (either ordinary

or delimited). The name must not identify an existing role at the current server

(SQLSTATE 42710). The name must not begin with the characters ’SYS’ and

must not be ’ACCESSCTRL’, ’DATAACCESS’, ’DBADM’, ‘NONE’, ’NULL’,

’PUBLIC’, ’SECADM’, ’SQLADM’, or ’WLMADM’ (SQLSTATE 42939).

Example

Create a role named DOCTOR.

 CREATE ROLE DOCTOR

134 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|

CREATE SCHEMA

The CREATE SCHEMA statement defines a schema. It is also possible to create

some objects and grant privileges on objects within the statement.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

An authorization ID that holds DBADM authority can create a schema with any

valid schema-name or authorization-name.

An authorization ID that does not hold DBADM authority can only create a

schema with a schema-name or authorization-name that matches the authorization ID

of the statement.

If the statement includes a schema-SQL-statement, the privileges held by the

authorization-name (which, if not specified, defaults to the authorization ID of the

statement) must include at least one of the following:

v The privileges required to perform each schema-SQL-statement

v DBADM authority

Syntax

�� CREATE SCHEMA schema-name

AUTHORIZATION

authorization-name

schema-name

AUTHORIZATION

authorization-name

 �

�

�

schema-SQL-statement

 ��

Description

schema-name

Names the schema. The name must not identify a schema already described in

the catalog (SQLSTATE 42710). The name cannot begin with ’SYS’ (SQLSTATE

42939). The owner of the schema is the authorization ID that issued the

statement.

AUTHORIZATION authorization-name

Identifies the user who is the owner of the schema. The value of

authorization-name is also used to name the schema. The authorization-name must

not identify a schema already described in the catalog (SQLSTATE 42710).

schema-name AUTHORIZATION authorization-name

Identifies a schema called schema-name, whose owner is authorization-name. The

schema-name must not identify a schema already described in the catalog

(SQLSTATE 42710). The schema-name cannot begin with ’SYS’ (SQLSTATE

42939).

Chapter 1. SQL Statements for Administrators 135

|
|

|
|
|

|

schema-SQL-statement

SQL statements that can be included as part of the CREATE SCHEMA

statement are:

v CREATE TABLE statement, excluding typed tables and materialized query

tables

v CREATE VIEW statement, excluding typed views

v CREATE INDEX statement

v COMMENT statement

v GRANT statement

Notes

v The owner of the schema is determined as follows:

– If an AUTHORIZATION clause is specified, the specified authorization-name is

the schema owner

– If an AUTHORIZATION clause is not specified, the authorization ID that

issued the CREATE SCHEMA statement is the schema owner.
v The schema owner is assumed to be a user (not a group).

v When the schema is explicitly created with the CREATE SCHEMA statement, the

schema owner is granted CREATEIN, DROPIN, and ALTERIN privileges on the

schema with the ability to grant these privileges to other users.

v The definer of any object created as part of the CREATE SCHEMA statement is

the schema owner. The schema owner is also the grantor for any privileges

granted as part of the CREATE SCHEMA statement.

v Unqualified object names in any SQL statement within the CREATE SCHEMA

statement are implicitly qualified by the name of the created schema.

v If the CREATE statement contains a qualified name for the object being created,

the schema name specified in the qualified name must be the same as the name

of the schema being created (SQLSTATE 42875). Any other objects referenced

within the statements may be qualified with any valid schema name.

v It is recommended not to use ″SESSION″ as a schema name. Since declared

temporary tables must be qualified by ″SESSION″, it is possible to have an

application declare a temporary table with a name identical to that of a

persistent table. An SQL statement that references a table with the schema name

″SESSION″ will resolve (at statement compile time) to the declared temporary

table rather than a persistent table with the same name. Since an SQL statement

is compiled at different times for static embedded and dynamic embedded SQL

statements, the results depend on when the declared temporary table is defined.

If persistent tables, views or aliases are not defined with a schema name of

″SESSION″, these issues do not require consideration.

Examples

Example 1: As a user with DBADM authority, create a schema called RICK with

the user RICK as the owner.

 CREATE SCHEMA RICK AUTHORIZATION RICK

Example 2: Create a schema that has an inventory part table and an index over the

part number. Give authority on the table to user JONES.

 CREATE SCHEMA INVENTRY

 CREATE TABLE PART (PARTNO SMALLINT NOT NULL,

 DESCR VARCHAR(24),

 QUANTITY INTEGER)

136 Common Criteria Certification: Administration and User Documentation - Volume 2

CREATE INDEX PARTIND ON PART (PARTNO)

 GRANT ALL ON PART TO JONES

Example 3: Create a schema called PERS with two tables that each have a foreign

key that references the other table. This is an example of a feature of the CREATE

SCHEMA statement that allows such a pair of tables to be created without the use

of the ALTER TABLE statement.

 CREATE SCHEMA PERS

 CREATE TABLE ORG (DEPTNUMB SMALLINT NOT NULL,

 DEPTNAME VARCHAR(14),

 MANAGER SMALLINT,

 DIVISION VARCHAR(10),

 LOCATION VARCHAR(13),

 CONSTRAINT PKEYDNO

 PRIMARY KEY (DEPTNUMB),

 CONSTRAINT FKEYMGR

 FOREIGN KEY (MANAGER)

 REFERENCES STAFF (ID))

 CREATE TABLE STAFF (ID SMALLINT NOT NULL,

 NAME VARCHAR(9),

 DEPT SMALLINT,

 JOB VARCHAR(5),

 YEARS SMALLINT,

 SALARY DECIMAL(7,2),

 COMM DECIMAL(7,2),

 CONSTRAINT PKEYID

 PRIMARY KEY (ID),

 CONSTRAINT FKEYDNO

 FOREIGN KEY (DEPT)

 REFERENCES ORG (DEPTNUMB))

CREATE SECURITY LABEL

The CREATE SECURITY LABEL statement defines a security label.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� CREATE SECURITY LABEL security-label-name �

Chapter 1. SQL Statements for Administrators 137

�

�

�

 ,

,

COMPONENT

component-name

string-constant

��

Description

security-label-name

Names the security label. The name must be qualified with a security policy

(SQLSTATE 42704), and must not identify an existing security label for this

security policy (SQLSTATE 42710).

COMPONENT component-name

Specifies the name of a security label component. If the component is not part

of the security policy security-policy-name, an error is returned (SQLSTATE

4274G). If a component is specified twice in the same statement, an error is

returned (SQLSTATE 42713).

string-constant,...

Specifies a valid element for the security component. A valid element is one

that was specified when the security component was created. If the element is

invalid, an error is returned (SQLSTATE 4274F).

Examples

Example 1: Create a security label named EMPLOYEESECLABEL that is part of the

DATA_ACCESS security policy, and that has the element Top Secret for the LEVEL

component and the elements Research and Analysis for the COMPARTMENTS

component.

 CREATE SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABEL

 COMPONENT LEVEL ’Top Secret’,

 COMPONENT COMPARTMENTS ’Research’, ’Analysis’

Example 2: Create a security label named EMPLOYEESECLABELREAD that has the

element Top Secret for the LEVEL component and the element Research for the

COMPARTMENTS component.

 CREATE SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABELREAD

 COMPONENT LEVEL ’Top Secret’,

 COMPONENT COMPARTMENTS ’Research’

Example 3: Create a security label named EMPLOYEESECLABELWRITE that has

the element Analysis for the COMPARTMENTS component and a null value for

the LEVEL component. Assume that the security policy named DATA_ACCESS is

the same security policy that is used in examples 1 and 2.

 CREATE SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABELWRITE

 COMPONENT COMPARTMENTS ’Analysis’

Example 4: Create a security label named BEGINNER that is part of an existing

CLASSPOLICY security policy, and that has the element Trainee for the TRUST

component and the element Morning for the SECTIONS component.

 CREATE SECURITY LABEL CLASSPOLICY.BEGINNER

 COMPONENT TRUST ’Trainee’,

 COMPONENT SECTIONS ’Morning’

138 Common Criteria Certification: Administration and User Documentation - Volume 2

CREATE SECURITY LABEL COMPONENT

The CREATE SECURITY LABEL COMPONENT statement defines a component

that is to be used as part of a security policy.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� CREATE SECURITY LABEL COMPONENT component-name array-clause

set-clause

tree-clause

 ��

array-clause:

�

 ,

ARRAY

[

string-constant

]

set-clause:

�

 ,

SET

{

string-constant

}

tree-clause:

�

 TREE (string-constant ROOT)

,

string-constant

UNDER

string-constant

Description

component-name

Names the security label component. This is a one-part name. The name must

not identify an existing security label component at the current server

(SQLSTATE 42710).

ARRAY

Specifies an ordered set of elements.

string-constant,...

One or more string constant values that make up the set of valid values for

this security label component. The order in which the array elements

Chapter 1. SQL Statements for Administrators 139

appear is important. The first element ranks higher than the second

element. The second element ranks higher than the third element and so

on.

SET

Specifies an unordered set of elements.

string-constant,...

One or more string constant values that make up the set of valid values for

this security label component. The order of the elements is not important.

TREE

Specifies a tree structure of node elements.

string-constant

One or more string constant values that make up the set of valid values for

this security label component.

ROOT

Specifies that the string-constant that follows the keyword is the root node

element of the tree.

UNDER

Specifies that the string-constant before the UNDER keyword is a child of

the string-constant that follows the UNDER keyword. An element must be

defined as either being the root element or as being the child of another

element before it can be used as a parent, otherwise an error (SQLSTATE

42704) is returned.

Rules

These rules apply to all three types of component (ARRAY, SET, and TREE):

v Element names cannot contain any of these characters:

– Opening parenthesis - (

– Closing parenthesis -)

– Comma - ,

– Colon - :
v An element name can have no more than 32 bytes (SQLSTATE 42622).

v If a security label component is a set or a tree, no more than 64 elements can be

part of that component.

v A CREATE SECURITY LABEL COMPONENT statement can specify at most

65 535 elements for a security label component of type array.

v No element name can be used more than once in the same component

(SQLSTATE 42713).

Examples

Example 1: Create an ARRAY type security label component named LEVEL. The

component has the following four elements, listed in order of decreasing rank: Top

Secret, Secret, Classified, and Unclassified.

 CREATE SECURITY LABEL COMPONENT LEVEL

 ARRAY [’Top Secret’, ’Secret’, ’Classified’, ’Unclassified’]

Example 2: Create a SET type security label component named COMPARTMENTS.

The component has the following three elements: Research, Analysis, and

Collection.

140 Common Criteria Certification: Administration and User Documentation - Volume 2

CREATE SECURITY LABEL COMPONENT COMPARTMENTS

 SET {’Collection’, ’Research’, ’Analysis’}

Example 3: Create a TREE type security label component named GROUPS.

GROUPS has five elements: PROJECT, TEST, DEVELOPMENT, CURRENT, AND

FIELD. The following diagram shows the relationship of these elements to one

another:

 PROJECT

 ________|________

 | |

 TEST DEVELOPMENT

 ______|______

 | |

 CURRENT FIELD

 CREATE SECURITY LABEL COMPONENT GROUPS

 TREE (

 ’PROJECT’ ROOT,

 ’TEST’ UNDER ’PROJECT’,

 ’DEVELOPMENT’ UNDER ’PROJECT’,

 ’CURRENT’ UNDER ’DEVELOPMENT’,

 ’FIELD’ UNDER ’DEVELOPMENT’

)

CREATE SECURITY POLICY

The CREATE SECURITY POLICY statement defines a security policy.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� CREATE SECURITY POLICY security-policy-name �

�

�

 ,

COMPONENTS

component-name

WITH DB2LBACRULES

�

�
 OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

��

Chapter 1. SQL Statements for Administrators 141

Description

security-policy-name

Names the security policy. This is a one-part name. The name must not

identify an existing security policy at the current server (SQLSTATE 42710).

COMPONENTS component-name,...

Identifies a security label component. The name must identify a security label

component that already exists at the current server (SQLSTATE 42704). The

same security component must not be specified more than once for the security

policy (SQLSTATE 42713). No more than 16 security label components can be

specified for a security policy (SQLSTATE 54062).

WITH DB2LBACRULES

Indicates what rule set that will be used when comparing security labels that

are part of this security policy. There is currently only one rule set:

DB2LBACRULES.

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL or RESTRICT

NOT AUTHORIZED WRITE SECURITY LABEL

Specifies the action that is to be taken when a user is not authorized to write

the explicitly specified security label that is provided in the INSERT or

UPDATE statement issued against a table that is protected with this security

policy. A user’s security label and exemption credentials determine the user’s

authorization to write an explicitly provided security label. The default is

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL.

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

Indicates that the value of the user’s security label, rather than the

explicitly specified security label, is to be used for write access during an

insert or update operation.

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

Indicates that the insert or update operation will fail if the user is not

authorized to write the explicitly specified security label that is provided in

the INSERT or UPDATE statement (SQLSTATE 42519).

Notes

v DB2LBACRULES rule set: DB2LBACRULES is a predefined set of rules that

includes the following rules: DB2LBACREADARRAY, DB2LBACREADSET,

DB2LBACREADTREE, DB2LBACWRITEARRAY, DB2LBACWRITESET,

DB2LBACWRITETREE.

v Group and role authorizations are not considered by default when a security

policy is created. Use the ALTER SECURITY POLICY statement to change this

behavior and have them considered.

Examples

Example 1: Create a security policy named DATA_ACCESS that uses the

DB2LBACRULES rule set and has two components: LEVEL and

COMPARTMENTS, in that order. Assume that both components already exist.

 CREATE SECURITY POLICY DATA_ACCESS

 COMPONENTS LEVEL, COMPARTMENTS

 WITH DB2LBACRULES

Example 2: Create a security policy named CONTRIBUTIONS that has the

components MEMBER and BADGE, which are assumed to already exist.

142 Common Criteria Certification: Administration and User Documentation - Volume 2

CREATE SECURITY POLICY CONTRIBUTIONS

 COMPONENTS MEMBER, BADGE

 WITH DB2LBACRULES

CREATE TABLE

The CREATE TABLE statement defines a table. The definition must include its

name and the names and attributes of its columns. The definition can include other

attributes of the table, such as its primary key or check constraints.

To create a created temporary table, use the CREATE GLOBAL TEMPORARY

TABLE statement. To declare a declared temporary table, use the DECLARE

GLOBAL TEMPORARY TABLE statement.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include either

DBADM authority, or CREATETAB authority in combination with further

authorization, as described here:

v One of the following privileges and authorities:

– USE privilege on the table space

– SYSADM

– SYSCTRL
v Plus one of these privileges and authorities:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

– CREATEIN privilege on the schema, if the schema name of the table refers to

an existing schema

If a subtable is being defined, the authorization ID must be the same as the owner

of the root table of the table hierarchy.

To define a foreign key, the privileges held by the authorization ID of the statement

must include one of the following on the parent table:

v REFERENCES privilege on the table

v REFERENCES privilege on each column of the specified parent key

v CONTROL privilege on the table

v DBADM authority

To define a materialized query table (using a fullselect), the privileges held by the

authorization ID of the statement must include at least one of the following on

each table or view identified in the fullselect (excluding group privileges):

v SELECT privilege on the table or view

v CONTROL privilege on the table or view

v DATAACCESS authority

Chapter 1. SQL Statements for Administrators 143

|
|
|

|
|
|

|

|

|

|

|

|
|

|
|

|

|

|

|

When you are defining a materialized query table and you specify certain clauses

of the CREATE TABLE statement, additional authorization might be required or

can be used instead:

v If WITH NO DATA is specified, at least one of the following authorities is also

sufficient:

– DBADM

– SQLADM

– EXPLAIN
v If REFRESH DEFERRED or REFRESH IMMEDIATE is specified, at least one of

the following privileges or authority is required on each table or view identified

in the fullselect:

– ALTER privilege on the table or view

– CONTROL privilege on the table or view

– DBADM authority

To define a staging table associated with a materialized query table, the privileges

held by the authorization ID of the statement must include at least one of the

following on the materialized query table:

v ALTER privilege on the materialized query table

v CONTROL privilege on the materialized query table

v DBADM authority

and at least one of the following on each table or view identified in the fullselect of

the materialized query table:

v SELECT privilege or DATAACCESS authority on the table or view, and at least

one of the following:

– ALTER privilege on the table or view

– DBADM authority
v CONTROL privilege on the table or view

Syntax

�� CREATE TABLE table-name element-list

OF

type-name1

typed-table-options

LIKE

table-name1

view-name

copy-options

nickname

as-result-table

copy-options

materialized-query-definition

staging-table-definition

 * �

�

�

�

,

DIMENSIONS

ORGANIZE BY

(

column-name

)

,

(

column-name

)

KEY SEQUENCE

sequence-key-spec

 �

144 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|

|
|

|

|

|

�
 DATA CAPTURE NONE

*

DATA CAPTURE CHANGES

*

tablespace-clauses

*

�

�
distribution-clause

 *

partitioning-clause
 �

�
 COMPRESS NO

*

COMPRESS YES

*

VALUE COMPRESSION

*

WITH RESTRICT ON DROP

�

� *

NOT LOGGED INITIALLY
 *

CCSID

ASCII

UNICODE

 �

� * *

SECURITY POLICY

policy name
 �

�

�

,

ADD

OPTIONS

(

table-option-name

string-constant

)

 ��

element-list:

�

 ,

(

column-definition

)

unique-constraint

referential-constraint

check-constraint

column-definition:

 column-name

(1)

data-type

column-options

data-type:

 built-in-type

distinct-type-name

structured-type-name

REF

(type-name2)

built-in-type:

Chapter 1. SQL Statements for Administrators 145

SMALLINT

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(53)

FLOAT

(integer)

REAL

PRECISION

DOUBLE

(34)

DECFLOAT

(16)

(1)

CHARACTER

CHAR

(integer)

(2)

VARCHAR

(integer)

FOR BIT DATA

CHARACTER

VARYING

CHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(integer

)

CHAR

K

M

G

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

(1M)

DBCLOB

(integer

)

K

M

G

(1M)

BLOB

BINARY LARGE OBJECT

(integer

)

K

M

G

DATE

TIME

(

6

)

TIMESTAMP

(

integer

)

XML

SYSPROC.

(3)

(4)

DB2SECURITYLABEL

column-options:

146 Common Criteria Certification: Administration and User Documentation - Volume 2

�

NOT NULL

(5)

lob-options

(6)

SCOPE

typed-table-name

typed-view-name

PRIMARY KEY

CONSTRAINT

constraint-name

UNIQUE

references-clause

CHECK

(

check-condition

)

constraint-attributes

generated-column-definition

(7)

INLINE LENGTH

integer

COMPRESS SYSTEM DEFAULT

COLUMN

SECURED WITH

security-label-name

NOT HIDDEN

(8)

IMPLICITLY HIDDEN

lob-options:

 LOGGED NOT COMPACT

*

*

*

NOT LOGGED

COMPACT

references-clause:

 REFERENCES table-name

nickname

�

,

(

column-name

)

 �

� rule-clause constraint-attributes

rule-clause:

 ON DELETE NO ACTION ON UPDATE NO ACTION

*

*

*

ON DELETE

RESTRICT

ON UPDATE RESTRICT

CASCADE

SET NULL

constraint-attributes:

*

 ENFORCED

NOT ENFORCED

*

 ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

*

generated-column-definition:

 default-clause

ALWAYS

GENERATED

identity-options

BY DEFAULT

as-row-change-timestamp-clause

ALWAYS

GENERATED

AS

(

generation-expression

)

Chapter 1. SQL Statements for Administrators 147

default-clause:

 WITH

DEFAULT

default-values

default-values:

 constant

datetime-special-register

user-special-register

CURRENT SCHEMA

NULL

cast-function

(

constant

)

datetime-special-register

user-special-register

CURRENT SCHEMA

EMPTY_CLOB()

EMPTY_DBCLOB()

EMPTY_BLOB()

identity-options:

�

 AS IDENTITY

(9)

1

(

START WITH

numeric-constant

)

1

INCREMENT BY

numeric-constant

NO MINVALUE

MINVALUE

numeric-constant

NO MAXVALUE

MAXVALUE

numeric-constant

NO CYCLE

CYCLE

CACHE 20

NO CACHE

CACHE

integer-constant

NO ORDER

ORDER

as-row-change-timestamp-clause:

 (10)

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

unique-constraint:

CONSTRAINT

constraint-name

UNIQUE

PRIMARY KEY

�

 ,

(

column-name

)

referential-constraint:

148 Common Criteria Certification: Administration and User Documentation - Volume 2

CONSTRAINT

constraint-name

FOREIGN KEY

�

 ,

(

column-name

)

�

� references-clause

check-constraint:

CONSTRAINT

constraint-name
 CHECK (check-condition) �

� constraint-attributes

check-condition:

 search-condition

functional-dependency

functional-dependency:

�

�

 column-name DETERMINED BY column-name

,

,

(

column-name

)

(

column-name

)

typed-table-options:

HIERARCHY

hierarchy-name

typed-element-list

under-clause

under-clause:

 UNDER supertable-name INHERIT SELECT PRIVILEGES

typed-element-list:

�

 ,

(

OID-column-definition

)

with-options

unique-constraint

check-constraint

OID-column-definition:

 REF IS OID-column-name USER GENERATED

Chapter 1. SQL Statements for Administrators 149

with-options:

 column-name WITH OPTIONS column-options

as-result-table:

�

,

(

column-name

)

 AS (fullselect) WITH NO DATA

materialized-query-definition:

�

,

(

column-name

)

 AS (fullselect) �

� refreshable-table-options

copy-options:

 *

COLUMN

INCLUDING

DEFAULTS

EXCLUDING

 * �

�

 COLUMN ATTRIBUTES

EXCLUDING IDENTITY

COLUMN ATTRIBUTES

INCLUDING IDENTITY

*

refreshable-table-options:

 * DATA INITIALLY DEFERRED * REFRESH DEFERRED

IMMEDIATE
 * �

�
 ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

*

MAINTAINED BY

SYSTEM

USER

FEDERATED_TOOL

*

staging-table-definition:

�

,

(

staging-column-name

)

 FOR table-name2 PROPAGATE IMMEDIATE

150 Common Criteria Certification: Administration and User Documentation - Volume 2

sequence-key-spec:

�

 ,

AT

(

column-name

ENDING

constant

)

FROM

STARTING

constant

�

� ALLOW OVERFLOW

DISALLOW OVERFLOW

PCTFREE

integer

tablespace-clauses:

�

,

CYCLE

IN

tablespace-name

NO CYCLE

 * �

�
(11)

INDEX IN

tablespace-name

�

,

LONG IN

tablespace-name

distribution-clause:

DISTRIBUTE BY

�

 ,

HASH

(

column-name

)

REPLICATION

partitioning-clause:

PARTITION BY
 RANGE

range-partition-spec

range-partition-spec:

�

 ,

(

partition-expression

)

�

 ,

(

partition-element

)

partition-expression:

column-name
 NULLS LAST

NULLS FIRST

partition-element:

Chapter 1. SQL Statements for Administrators 151

boundary-spec partition-tablespace-options

PARTITION

partition-name

(12)

boundary-spec

EVERY

(

constant

duration-label

)

(12)

constant

duration-label

boundary-spec:

 (13)

starting-clause

ending-clause

ending-clause

starting-clause:

FROM

STARTING

�

 ,

(

constant

)

MINVALUE

MAXVALUE

constant

MINVALUE

MAXVALUE

INCLUSIVE

EXCLUSIVE

ending-clause:

AT

ENDING

�

 ,

(

constant

)

MINVALUE

MAXVALUE

constant

MINVALUE

MAXVALUE

INCLUSIVE

EXCLUSIVE

partition-tablespace-options:

IN

tablespace-name

INDEX IN

tablespace-name
 �

�
LONG IN

tablespace-name

duration-label:

152 Common Criteria Certification: Administration and User Documentation - Volume 2

||

||

YEAR

YEARS

MONTH

MONTHS

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MICROSECOND

MICROSECONDS

Notes:

1 If the first column-option chosen is a generated-column-definition with a

generation-expression, then the data-type can be omitted. It will be

determined from the resulting data type of the generation-expression.

2 The FOR BIT DATA clause can be specified in any order with the other

column constraints that follow.

3 DB2SECURITYLABEL is the built-in distinct type that must be used to define

the row security label column of a protected table.

4 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is

implicit and cannot be explicitly specified (SQLSTATE 42842). The default

value for a column of type DB2SECURITYLABEL is the session authorization

ID’s security label for write access.

5 The lob-options clause only applies to large object types (BLOB, CLOB and

DBCLOB) and distinct types based on large object types.

6 The SCOPE clause only applies to the REF type.

7 INLINE LENGTH applies only to columns defined as structured, XML, or

LOB types.

8 IMPLICITLY HIDDEN can only be specified if ROW CHANGE TIMESTAMP

is also specified.

9 The same clause must not be specified more than once.

10 Data type is optional for a row change timestamp column if the first

column-option specified is a generated-column-definition. The data type

default is TIMESTAMP(6).

11 Specifying which table space will contain a table’s indexes can be done when

the table is created. If the table is a partitioned table, the index table space for

a nonpartitioned index can be specified with the IN clause of the CREATE

INDEX statement.

12 This syntax for a partition-element is valid if there is only one

partition-expression with a numeric or datetime data type.

13 The first partition-element must include a starting-clause and the last

partition-element must include an ending-clause.

Chapter 1. SQL Statements for Administrators 153

|
|

|
|
|

|
|
|
|

Description

System-maintained materialized query tables and user-maintained materialized

query tables are referred to by the common term materialized query table, unless

there is a need to identify each one separately.

table-name

Names the table. The name, including the implicit or explicit qualifier, must

not identify a table, view, nickname, or alias described in the catalog. The

schema name must not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT (SQLSTATE

42939).

element-list

Defines the elements of a table. This includes the definition of columns and

constraints on the table.

column-definition

Defines the attributes of a column.

column-name

Names a column of the table. The name cannot be qualified, and the same

name cannot be used for more than one column of the table (SQLSTATE

42711).

 A table may have the following:

v A 4K page size with a maximum of 500 columns, where the byte counts

of the columns must not be greater than 4 005.

v An 8K page size with a maximum of 1 012 columns, where the byte

counts of the columns must not be greater than 8 101.

v A 16K page size with a maximum of 1 012 columns, where the byte

counts of the columns must not be greater than 16 293.

v A 32K page size with a maximum of 1 012 columns, where the byte

counts of the columns must not be greater than 32 677.

For more details, see Row Size Limit.

data-type

Specifies the data type of the column.

built-in-type

For built-in types, use one of the following types.

SMALLINT

For a small integer.

INTEGER or INT

For a large integer.

BIGINT

For a big integer.

DECIMAL(precision-integer, scale-integer) or DEC(precision-integer,

scale-integer)

For a decimal number. The first integer is the precision of the

number; that is, the total number of digits; it may range from 1 to

31. The second integer is the scale of the number; that is, the

number of digits to the right of the decimal point; it may range

from 0 to the precision of the number.

154 Common Criteria Certification: Administration and User Documentation - Volume 2

If precision and scale are not specified, the default values of 5,0 are

used. The words NUMERIC and NUM can be used as synonyms

for DECIMAL and DEC.

FLOAT(integer)

For a single or double-precision floating-point number, depending

on the value of the integer. The value of the integer must be in the

range 1 through 53. The values 1 through 24 indicate single

precision and the values 25 through 53 indicate double-precision.

 You can also specify:

REAL For single precision floating-point.

DOUBLE

For double-precision floating-point.

DOUBLE PRECISION

For double-precision floating-point.

FLOAT

For double-precision floating-point.

DECFLOAT(precision-integer)

For a decimal floating-point number. The value of precision-integer

is the precision of the number; that is, the total number of digits,

which can be 16 or 34.

 If the precision is not specified, a default value of 34 is used.

CHARACTER(integer) or CHAR(integer) or CHARACTER or CHAR

For a fixed-length character string of length integer bytes, which

may range from 1 to 254. If the length specification is omitted, a

length of 1 is assumed.

VARCHAR(integer), or CHARACTER VARYING(integer), or CHAR

VARYING(integer)

For a varying-length character string of maximum length integer

bytes, which may range from 1 to 32 672.

FOR BIT DATA

Specifies that the contents of the column are to be treated as bit

(binary) data. During data exchange with other systems, code page

conversions are not performed. Comparisons are done in binary,

irrespective of the database collating sequence.

CLOB or CHARACTER (CHAR) LARGE OBJECT(integer [K | M |

G])

For a character large object string of the specified maximum length

in bytes.

 The meaning of the integer K | M | G is the same as for BLOB.

If the length specification is omitted, a length of 1 048 576 (1

megabyte) is assumed.

To create CLOB strings greater than 1 gigabyte, you must specify

the NOT LOGGED option.

It is not possible to specify the FOR BIT DATA clause for CLOB

columns. However, a CHAR FOR BIT DATA string can be assigned

to a CLOB column, and a CHAR FOR BIT DATA string can be

concatenated with a CLOB string.

Chapter 1. SQL Statements for Administrators 155

|

|

GRAPHIC(integer)

For a fixed-length graphic string of length integer which may range

from 1 to 127. If the length specification is omitted, a length of 1 is

assumed.

VARGRAPHIC(integer)

For a varying-length graphic string of maximum length integer,

which may range from 1 to 16 336.

DBCLOB(integer [K | M | G])

For a double-byte character large object string of the specified

maximum length in double-byte characters.

 The meaning of the integer K | M | G is similar to that for BLOB.

The differences are that the number specified is the number of

double-byte characters, and that the maximum size is

1 073 741 823 double-byte characters.

If the length specification is omitted, a length of 1 048 576

double-byte characters is assumed.

To create DBCLOB strings greater than 1 gigabyte, you must

specify the NOT LOGGED option.

BLOB or BINARY LARGE OBJECT(integer [K | M | G])

For a binary large object string of the specified maximum length in

bytes.

 The length may be in the range of 1 byte to 2 147 483 647 bytes.

If integer by itself is specified, that is the maximum length.

If integer K (in either upper- or lowercase) is specified, the

maximum length is 1 024 times integer. The maximum value for

integer is 2 097 152.

If integer M is specified, the maximum length is 1 048 576 times

integer. The maximum value for integer is 2 048.

If integer G is specified, the maximum length is 1 073 741 824

times integer. The maximum value for integer is 2.

If a multiple of K, M or G that calculates out to 2 147 483 648 is

specified, the actual value used is 2 147 483 647 (or 2 gigabytes

minus 1 byte), which is the maximum length for a LOB column.

If the length specification is omitted, a length of 1 048 576 (1

megabyte) is assumed.

To create BLOB strings greater than 1 gigabyte, you must specify

the NOT LOGGED option.

Any number of spaces is allowed between the integer and K, M, or

G, and a space is not required. For example, all of the following

are valid:

 BLOB(50K) BLOB(50 K) BLOB (50 K)

DATE

For a date.

TIME

For a time.

TIMESTAMP(integer) or TIMESTAMP

For a timestamp. The integer must be between 0 and 12 and

156 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

specifies the precision of fractional seconds from 0 (seconds) to 12

(picoseconds). The default is 6 (microseconds).

XML

For an XML document. Only well-formed XML documents can be

inserted into an XML column.

 An XML column has the following restrictions:

v The column cannot be part of any index except an index over

XML data. Therefore, it cannot be included as a column of a

primary key or unique constraint (SQLSTATE 42962).

v The column cannot be a foreign key of a referential constraint

(SQLSTATE 42962).

v A default value (WITH DEFAULT) cannot be specified for the

column (SQLSTATE 42613). If the column is nullable, the default

for the column is the null value.

v The column cannot be used as the distribution key (SQLSTATE

42997).

v The column cannot be used as a data partitioning key

(SQLSTATE 42962).

v The column cannot be used to organize a multidimensional

clustering (MDC) table (SQLSTATE 42962).

v The column cannot be used in a range-clustered table

(SQLSTATE 429BG).

v The column cannot be referenced in a check constraint except in

a VALIDATED predicate (SQLSTATE 42621).

When a column of type XML is created, an XML path index is

created on that column. A table-level XML region index is also

created when the first column of type XML is created. The name of

these indexes is ’SQL’ followed by a character timestamp

(yymmddhhmmssxxx). The schema name is SYSIBM.

SYSPROC.DB2SECURITYLABEL

This is a built-in distinct type that must be used to define the row

security label column of a protected table. The underlying data

type of a column of the built-in distinct type DB2SECURITYLABEL

is VARCHAR(128) FOR BIT DATA. A table can have at most one

column of type DB2SECURITYLABEL (SQLSTATE 428C1).

distinct-type-name

For a user-defined type that is a distinct type. If a distinct type name is

specified without a schema name, the distinct type name is resolved by

searching the schemas on the SQL path (defined by the FUNCPATH

preprocessing option for static SQL and by the CURRENT PATH

register for dynamic SQL).

 If a column is defined using a distinct type, then the data type of the

column is the distinct type. The length and the scale of the column are

respectively the length and the scale of the source type of the distinct

type.

If a column defined using a distinct type is a foreign key of a

referential constraint, then the data type of the corresponding column

of the primary key must have the same distinct type.

structured-type-name

For a user-defined type that is a structured type. If a structured type

Chapter 1. SQL Statements for Administrators 157

|
|

|
|

|
|

|
|

name is specified without a schema name, the structured type name is

resolved by searching the schemas on the SQL path (defined by the

FUNCPATH preprocessing option for static SQL, and by the

CURRENT PATH register for dynamic SQL).

 If a column is defined using a structured type, then the static data type

of the column is the structured type. The column may include values

with a dynamic type that is a subtype of structured-type-name.

A column defined using a structured type cannot be used in a primary

key, unique constraint, foreign key, index key or distribution key

(SQLSTATE 42962).

If a column is defined using a structured type, and contains a

reference-type attribute at any level of nesting, that reference-type

attribute is unscoped. To use such an attribute in a dereference

operation, it is necessary to specify a SCOPE explicitly, using a CAST

specification.

REF (type-name2)

For a reference to a typed table. If type-name2 is specified without a

schema name, the type name is resolved by searching the schemas on

the SQL path (defined by the FUNCPATH preprocessing option for

static SQL and by the CURRENT PATH register for dynamic SQL). The

underlying data type of the column is based on the representation data

type specified in the REF USING clause of the CREATE TYPE

statement for type-name2 or the root type of the data type hierarchy

that includes type-name2.

column-options

Defines additional options related to columns of the table.

NOT NULL

Prevents the column from containing null values.

 If NOT NULL is not specified, the column can contain null values, and

its default value is either the null value or the value provided by the

WITH DEFAULT clause.

NOT HIDDEN or IMPLICITLY HIDDEN

Specifies whether or not the column is to be defined as hidden. The

hidden attribute determines whether the column is included in an

implicit reference to the table, or whether it can be explicitly referenced

in SQL statements. The default is NOT HIDDEN.

NOT HIDDEN

Specifies that the column is included in implicit references to the

table, and that the column can be explicitly referenced.

IMPLICITLY HIDDEN

Specifies that the column is not visible in SQL statements unless

the column is explicitly referenced by name. For example,

assuming that a table includes a column defined with the

IMPLICITLY HIDDEN clause, the result of a SELECT * does not

include the implicitly hidden column. However, the result of a

SELECT that explicitly refers to the name of an implicitly hidden

column will include that column in the result table.

 IMPLICITLY HIDDEN must only be specified for a ROW

CHANGE TIMESTAMP column (SQLSTATE 42867). The ROW

158 Common Criteria Certification: Administration and User Documentation - Volume 2

CHANGE TIMESTAMP FOR table-designator expression will resolve

to an IMPLICITLY HIDDEN ROW CHANGE TIMESTAMP column.

IMPLICITLY HIDDEN must not be specified for all columns of the

table (SQLSTATE 428GU).

lob-options

Specifies options for LOB data types.

LOGGED

Specifies that changes made to the column are to be written to the

log. The data in such columns is then recoverable with database

utilities (such as RESTORE DATABASE). LOGGED is the default.

 LOBs greater than 1 gigabyte cannot be logged (SQLSTATE 42993).

NOT LOGGED

Specifies that changes made to the column are not to be logged.

This only applies to LOB data that is not inlined.

 NOT LOGGED has no effect on a commit or rollback operation;

that is, the database’s consistency is maintained even if a

transaction is rolled back, regardless of whether or not the LOB

value is logged. The implication of not logging is that during a roll

forward operation, after a backup or load operation, the LOB data

will be replaced by zeros for those LOB values that would have

had log records replayed during the roll forward. During crash

recovery, all committed changes and changes rolled back will

reflect the expected results.

COMPACT

Specifies that the values in the LOB column should take up

minimal disk space (free any extra disk pages in the last group

used by the LOB value), rather than leave any leftover space at the

end of the LOB storage area that might facilitate subsequent

append operations. Note that storing data in this way may cause a

performance penalty in any append (length-increasing) operations

on the column.

NOT COMPACT

Specifies some space for insertions to assist in future changes to the

LOB values in the column. This is the default.

SCOPE

Identifies the scope of the reference type column.

 A scope must be specified for any column that is intended to be used

as the left operand of a dereference operator or as the argument of the

DEREF function. Specifying the scope for a reference type column may

be deferred to a subsequent ALTER TABLE statement to allow the

target table to be defined, usually in the case of mutually referencing

tables.

typed-table-name

The name of a typed table. The table must already exist or be the

same as the name of the table being created (SQLSTATE 42704).

The data type of column-name must be REF(S), where S is the type

of typed-table-name (SQLSTATE 428DM). No checking is done of

values assigned to column-name to ensure that the values actually

reference existing rows in typed-table-name.

Chapter 1. SQL Statements for Administrators 159

|

typed-view-name

The name of a typed view. The view must already exist or be the

same as the name of the view being created (SQLSTATE 42704).

The data type of column-name must be REF(S), where S is the type

of typed-view-name (SQLSTATE 428DM). No checking is done of

values assigned to column-name to ensure that the values actually

reference existing rows in typed-view-name.

CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint

that was already specified within the same CREATE TABLE statement.

(SQLSTATE 42710).

 If this clause is omitted, an 18 byte long identifier that is unique

among the identifiers of existing constraints defined on the table is

generated by the system. (The identifier consists of ″SQL″ followed by

a sequence of 15 numeric characters generated by a timestamp-based

function.)

When used with a PRIMARY KEY or UNIQUE constraint, the

constraint-name may be used as the name of an index that is created to

support the constraint.

PRIMARY KEY

This provides a shorthand method of defining a primary key

composed of a single column. Thus, if PRIMARY KEY is specified in

the definition of column C, the effect is the same as if the PRIMARY

KEY(C) clause is specified as a separate clause.

 A primary key cannot be specified if the table is a subtable (SQLSTATE

429B3) because the primary key is inherited from the supertable.

A ROW CHANGE TIMESTAMP column cannot be used as part of a

primary key (SQLSTATE 429BV).

See PRIMARY KEY within the description of the unique-constraint

below.

UNIQUE

This provides a shorthand method of defining a unique key composed

of a single column. Thus, if UNIQUE is specified in the definition of

column C, the effect is the same as if the UNIQUE(C) clause is

specified as a separate clause.

 A unique constraint cannot be specified if the table is a subtable

(SQLSTATE 429B3) since unique constraints are inherited from the

supertable.

See UNIQUE within the description of the unique-constraint below.

references-clause

This provides a shorthand method of defining a foreign key composed

of a single column. Thus, if a references-clause is specified in the

definition of column C, the effect is the same as if that

references-clause were specified as part of a FOREIGN KEY clause in

which C is the only identified column.

 See references-clause under referential-constraint below.

CHECK (check-condition)

This provides a shorthand method of defining a check constraint that

applies to a single column. See CHECK (check-condition) below.

160 Common Criteria Certification: Administration and User Documentation - Volume 2

generated-column-definition

Specifies a generated value for the column.

default-clause

Specifies a default value for the column.

WITH

An optional keyword.

DEFAULT

Provides a default value in the event a value is not supplied on

INSERT or is specified as DEFAULT on INSERT or UPDATE. If

a default value is not specified following the DEFAULT

keyword, the default value depends on the data type of the

column as shown in “ALTER TABLE”.

 If a column is defined as XML, a default value cannot be

specified (SQLSTATE 42613). The only possible default is

NULL.

If the column is based on a column of a typed table, a specific

default value must be specified when defining a default. A

default value cannot be specified for the object identifier

column of a typed table (SQLSTATE 42997).

If a column is defined using a distinct type, then the default

value of the column is the default value of the source data type

cast to the distinct type.

If a column is defined using a structured type, the default-clause

cannot be specified (SQLSTATE 42842).

Omission of DEFAULT from a column-definition results in the

use of the null value as the default for the column. If such a

column is defined NOT NULL, then the column does not have

a valid default.

default-values

Specific types of default values that can be specified are as

follows.

constant

Specifies the constant as the default value for the column.

The specified constant must:

v represent a value that could be assigned to the column

in accordance with the rules of assignment

v not be a floating-point constant unless the column is

defined with a floating-point data type

v be a numeric constant or a decimal floating-point special

value if the data type of the column is a decimal

floating-point. Floating-point constants are first

interpreted as DOUBLE and then converted to decimal

floating-point if the target column is DECFLOAT. For

DECFLOAT(16) columns, decimal constants having

precision greater than 16 digits will be rounded using

the rounding modes specified by the CURRENT

DECFLOAT ROUNDING MODE special register.

Chapter 1. SQL Statements for Administrators 161

v not have nonzero digits beyond the scale of the column

data type if the constant is a decimal constant (for

example, 1.234 cannot be the default for a DECIMAL(5,2)

column)

v be expressed with no more than 254 bytes including the

quote characters, any introducer character such as the X

for a hexadecimal constant, and characters from the fully

qualified function name and parentheses when the

constant is the argument of a cast-function

datetime-special-register

Specifies the value of the datetime special register

(CURRENT DATE, CURRENT TIME, or CURRENT

TIMESTAMP) at the time of INSERT, UPDATE, or LOAD

as the default for the column. The data type of the column

must be the data type that corresponds to the special

register specified (for example, data type must be DATE

when CURRENT DATE is specified).

user-special-register

Specifies the value of the user special register (CURRENT

USER, SESSION_USER, SYSTEM_USER) at the time of

INSERT, UPDATE, or LOAD as the default for the column.

The data type of the column must be a character string

with a length not less than the length attribute of a user

special register. Note that USER can be specified in place of

SESSION_USER and CURRENT_USER can be specified in

place of CURRENT USER.

CURRENT SCHEMA

Specifies the value of the CURRENT SCHEMA special

register at the time of INSERT, UPDATE, or LOAD as the

default for the column. If CURRENT SCHEMA is specified,

the data type of the column must be a character string with

a length greater than or equal to the length attribute of the

CURRENT SCHEMA special register.

NULL

Specifies NULL as the default for the column. If NOT

NULL was specified, DEFAULT NULL may be specified

within the same column definition but will result in an

error on any attempt to set the column to the default value.

cast-function

This form of a default value can only be used with

columns defined as a distinct type, BLOB or datetime

(DATE, TIME or TIMESTAMP) data type. For distinct type,

with the exception of distinct types based on BLOB or

datetime types, the name of the function must match the

name of the distinct type for the column. If qualified with

a schema name, it must be the same as the schema name

for the distinct type. If not qualified, the schema name

from function resolution must be the same as the schema

name for the distinct type. For a distinct type based on a

datetime type, where the default value is a constant, a

function must be used and the name of the function must

match the name of the source type of the distinct type with

an implicit or explicit schema name of SYSIBM. For other

162 Common Criteria Certification: Administration and User Documentation - Volume 2

datetime columns, the corresponding datetime function

may also be used. For a BLOB or a distinct type based on

BLOB, a function must be used and the name of the

function must be BLOB with an implicit or explicit schema

name of SYSIBM.

constant

Specifies a constant as the argument. The constant

must conform to the rules of a constant for the source

type of the distinct type or for the data type if not a

distinct type. If the cast-function is BLOB, the constant

must be a string constant.

datetime-special-register

Specifies CURRENT DATE, CURRENT TIME, or

CURRENT TIMESTAMP. The source type of the

distinct type of the column must be the data type that

corresponds to the specified special register.

user-special-register

Specifies CURRENT USER, SESSION_USER, or

SYSTEM_USER. The data type of the source type of the

distinct type of the column must be a string data type

with a length of at least 8 bytes. If the cast-function is

BLOB, the length attribute must be at least 8 bytes.

CURRENT SCHEMA

Specifies the value of the CURRENT SCHEMA special

register. The data type of the source type of the distinct

type of the column must be a character string with a

length greater than or equal to the length attribute of

the CURRENT SCHEMA special register. If the

cast-function is BLOB, the length attribute must be at

least 8 bytes.

EMPTY_CLOB(), EMPTY_DBCLOB(), or EMPTY_BLOB()

Specifies a zero-length string as the default for the column.

The column must have the data type that corresponds to

the result data type of the function.

 If the value specified is not valid, an error is returned

(SQLSTATE 42894).

GENERATED

Indicates that DB2 generates values for the column. GENERATED

must be specified if the column is to be considered an IDENTITY

column or a ROW CHANGE TIMESTAMP column.

ALWAYS

Specifies that DB2 will always generate a value for the column

when a row is inserted into the table, or whenever the result

value of the generation-expression changes. The result of the

expression is stored in the table. GENERATED ALWAYS is the

recommended value unless data propagation or unload and

reload operations are being done. GENERATED ALWAYS is the

required value for generated columns.

BY DEFAULT

Specifies that DB2 will generate a value for the column when a

row is inserted, or updated specifying the DEFAULT clause,

Chapter 1. SQL Statements for Administrators 163

unless an explicit value is specified. BY DEFAULT is the

recommended value when using data propagation or

performing an unload and reload operation.

 Although not explicitly required, to ensure uniqueness of the

values, define a unique single-column index on generated

IDENTITY columns.

AS IDENTITY

Specifies that the column is to be the identity column for this table.

A table can only have a single IDENTITY column (SQLSTATE

428C1). The IDENTITY keyword can only be specified if the data

type associated with the column is an exact numeric type with a

scale of zero, or a user-defined distinct type for which the source

type is an exact numeric type with a scale of zero (SQLSTATE

42815). SMALLINT, INTEGER, BIGINT, or DECIMAL with a scale

of zero, or a distinct type based on one of these types, are

considered exact numeric types. By contrast, single- and

double-precision floating points are considered approximate

numeric data types. Reference types, even if represented by an

exact numeric type, cannot be defined as identity columns.

 An identity column is implicitly NOT NULL. An identity column

cannot have a DEFAULT clause (SQLSTATE 42623).

START WITH numeric-constant

Specifies the first value for the identity column. This value can

be any positive or negative value that could be assigned to this

column (SQLSTATE 42815), without nonzero digits existing to

the right of the decimal point (SQLSTATE 428FA). The default

is MINVALUE for ascending sequences, and MAXVALUE for

descending sequences.

INCREMENT BY numeric-constant

Specifies the interval between consecutive values of the

identity column. This value can be any positive or negative

value that could be assigned to this column (SQLSTATE 42815),

and does not exceed the value of a large integer constant

(SQLSTATE 42820), without nonzero digits existing to the right

of the decimal point (SQLSTATE 428FA).

 If this value is negative, this is a descending sequence. If this

value is 0, or positive, this is an ascending sequence. The

default is 1.

NO MINVALUE or MINVALUE

Specifies the minimum value at which a descending identity

column either cycles or stops generating values, or an

ascending identity column cycles to after reaching the

maximum value.

NO MINVALUE

For an ascending sequence, the value is the START WITH

value, or 1 if START WITH was not specified. For a

descending sequence, the value is the minimum value of

the data type of the column. This is the default.

MINVALUE numeric-constant

Specifies the numeric constant that is the minimum value.

This value can be any positive or negative value that could

164 Common Criteria Certification: Administration and User Documentation - Volume 2

be assigned to this column (SQLSTATE 42815), without

nonzero digits existing to the right of the decimal point

(SQLSTATE 428FA), but the value must be less than or

equal to the maximum value (SQLSTATE 42815).

NO MAXVALUE or MAXVALUE

Specifies the maximum value at which an ascending identity

column either cycles or stops generating values, or a

descending identity column cycles to after reaching the

minimum value.

NO MAXVALUE

For an ascending sequence, the value is the maximum

value of the data type of the column. For a descending

sequence, the value is the START WITH value, or -1 if

START WITH was not specified. This is the default.

MAXVALUE numeric-constant

Specifies the numeric constant that is the maximum value.

This value can be any positive or negative value that could

be assigned to this column (SQLSTATE 42815), without

nonzero digits existing to the right of the decimal point

(SQLSTATE 428FA), but the value must be greater than or

equal to the minimum value (SQLSTATE 42815).

NO CYCLE or CYCLE

Specifies whether this identity column should continue to

generate values after generating either its maximum or

minimum value.

NO CYCLE

Specifies that values will not be generated for the identity

column once the maximum or minimum value has been

reached. This is the default.

CYCLE

Specifies that values continue to be generated for this

column after the maximum or minimum value has been

reached. If this option is used, after an ascending identity

column reaches the maximum value, it generates its

minimum value; or after a descending sequence reaches

the minimum value, it generates its maximum value. The

maximum and minimum values for the identity column

determine the range that is used for cycling.

 When CYCLE is in effect, DB2 may generate duplicate

values for an identity column. Although not explicitly

required, a unique, single-column index should be defined

on the generated column to ensure uniqueness of the

values, if unique values are desired. If a unique index

exists on such an identity column and a non-unique value

is generated, an error occurs (SQLSTATE 23505).

NO CACHE or CACHE

Specifies whether to keep some pre-allocated values in memory

for faster access. If a new value is needed for the identity

column, and there are none available in the cache, then the end

of the new cache block must be logged. However, when a new

value is needed for the identity column, and there is an

unused value in the cache, then the allocation of that identity

Chapter 1. SQL Statements for Administrators 165

value is faster, because no logging is necessary. This is a

performance and tuning option.

NO CACHE

Specifies that values for the identity column are not to be

pre-allocated.

 When this option is specified, the values of the identity

column are not stored in the cache. In this case, every

request for a new identity value results in synchronous I/O

to the log.

CACHE integer-constant

Specifies how many values of the identity sequence are to

be pre-allocated and kept in memory. When values are

generated for the identity column, pre-allocating and

storing values in the cache reduces synchronous I/O to the

log.

 If a new value is needed for the identity column and there

are no unused values available in the cache, the allocation

of the value involves waiting for I/O to the log. However,

when a new value is needed for the identity column and

there is an unused value in the cache, the allocation of that

identity value can happen more quickly by avoiding the

I/O to the log.

In the event of a database deactivation, either normally or

due to a system failure, all cached sequence values that

have not been used in committed statements are lost; that

is, they will never be used. The value specified for the

CACHE option is the maximum number of values for the

identity column that could be lost in case of database

deactivation. (If a database is not explicitly activated, using

the ACTIVATE command or API, when the last application

is disconnected from the database, an implicit deactivation

occurs.)

The minimum value is 2 (SQLSTATE 42815). The default

value is CACHE 20.

NO ORDER or ORDER

Specifies whether the identity values must be generated in

order of request.

NO ORDER

Specifies that the values do not need to be generated in

order of request. This is the default.

ORDER

Specifies that the values must be generated in order of

request.

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

Specifies that the column is a timestamp column for the table. A

value is generated for the column in each row that is inserted, and

for any row in which any column is updated. The value that is

generated for a ROW CHANGE TIMESTAMP column is a

timestamp that corresponds to the insert or update time for that

166 Common Criteria Certification: Administration and User Documentation - Volume 2

row. If multiple rows are inserted or updated with a single

statement, the value of the ROW CHANGE TIMESTAMP column

might be different for each row.

 A table can only have one ROW CHANGE TIMESTAMP column

(SQLSTATE 428C1). If data-type is specified, it must be

TIMESTAMP or TIMESTAMP(6) (SQLSTATE 42842). A ROW

CHANGE TIMESTAMP column cannot have a DEFAULT clause

(SQLSTATE 42623). NOT NULL must be specified for a ROW

CHANGE TIMESTAMP column (SQLSTATE 42831).

GENERATED ALWAYS AS (generation-expression)

Specifies that the definition of the column is based on an

expression. (If the expression for a GENERATED ALWAYS column

includes a user-defined external function, changing the executable

for the function (such that the results change for given arguments)

can result in inconsistent data. This can be avoided by using the

SET INTEGRITY statement to force the generation of new values.)

The generation-expression cannot contain any of the following

(SQLSTATE 42621):

v Subqueries

v XMLQUERY or XMLEXISTS expressions

v Column functions

v Dereference operations or DEREF functions

v User-defined or built-in functions that are non-deterministic

v User-defined functions using the EXTERNAL ACTION option

v User-defined functions that are not defined with NO SQL

v Host variables or parameter markers

v Special registers and built-in functions that depend on the value

of a special register

v Global variables

v References to columns defined later in the column list

v References to other generated columns

v References to columns of type XML

The data type for the column is based on the result data type of

the generation-expression. A CAST specification can be used to force

a particular data type and to provide a scope (for a reference type

only). If data-type is specified, values are assigned to the column

according to the appropriate assignment rules. A generated column

is implicitly considered nullable, unless the NOT NULL column

option is used.The data type of a generated column and the result

data type of the generation-expression must have equality defined

(see “Assignments and comparisons”). This excludes columns and

generation expressions of type LOB data types, XML, structured

types, and distinct types based on any of these types (SQLSTATE

42962).

INLINE LENGTH integer

This option is valid only for a column defined using a structured type,

XML or LOB data type (SQLSTATE 42842).

 For a column of data type XML or LOB, integer indicates the maximum

byte size of the internal representation of an XML document or LOB

data to store in the base table row. XML documents that have a larger

Chapter 1. SQL Statements for Administrators 167

|
|

|

|
|

|
|
|

internal representation are stored separately from the base table row in

an auxiliary storage object. This takes place automatically. There is no

default inline length for XML type columns. If the XML document or

LOB data is stored inlined in the base table row, there is an additional

overhead. For LOB data, the overhead is 4 bytes.

For a column of data type LOB, the default inline length is set to be

the maximum size of the LOB descriptor if the clause is not specified.

Any explicit INLINE LENGTH must be at least the maximum LOB

descriptor size. The following table summarizes the LOB descriptor

sizes.

 Table 9. Sizes of the LOB descriptor for various LOB lengths

Maximum LOB length in bytes Minimum explicit INLINE LENGTH

1,024 68

8,192 92

65,536 116

524,000 140

4,190,000 164

134,000,000 196

536,000,000 220

1,070,000,000 252

1,470,000,000 276

2,147,483,647 312

For a structured type column, integer indicates the maximum size in

bytes of an instance of a structured type to store inline with the rest of

the values in the row. Instances of structured types that cannot be

stored inline are stored separately from the base table row, similar to

the way that LOB values are stored. This takes place automatically. The

default INLINE LENGTH for a structured-type column is the inline

length of its type (specified explicitly or by default in the CREATE

TYPE statement). If INLINE LENGTH of the structured type is less

than 292, the value 292 is used for the INLINE LENGTH of the

column.

Note: The inline lengths of subtypes are not counted in the default

inline length, meaning that instances of subtypes may not fit inline

unless an explicit INLINE LENGTH is specified at CREATE TABLE

time to account for existing and future subtypes.

The explicit INLINE LENGTH value cannot exceed 32 673. For a

structured type or XML data type, it must be at least 292 (SQLSTATE

54010).

COMPRESS SYSTEM DEFAULT

Specifies that system default values are to be stored using minimal

space. If the VALUE COMPRESSION clause is not specified, a warning

is returned (SQLSTATE 01648), and system default values are not

stored using minimal space.

 Allowing system default values to be stored in this manner causes a

slight performance penalty during insert and update operations on the

column because of extra checking that is done.

168 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|

|
|
|
|
|

||

||

||

||

||

||

||

||

||

||

||

||
|

|

|
|
|

The base data type must not be a DATE, TIME, TIMESTAMP, XML, or

structured data type (SQLSTATE 42842). If the base data type is a

varying-length string, this clause is ignored. String values of length 0

are automatically compressed if a table has been set with VALUE

COMPRESSION.

COLUMN SECURED WITH security-label-name

Identifies a security label that exists for the security policy that is

associated with the table. The name must not be qualified (SQLSTATE

42601). The table must have a security policy associated with it

(SQLSTATE 55064).

unique-constraint

Defines a unique or primary key constraint. If the table has a distribution key,

any unique or primary key must be a superset of the distribution key. A

unique or primary key constraint cannot be specified for a table that is a

subtable (SQLSTATE 429B3). Primary or unique keys cannot be subsets of

dimensions (SQLSTATE 429BE). If the table is a root table, the constraint

applies to the table and all its subtables.

CONSTRAINT constraint-name

Names the primary key or unique constraint.

UNIQUE (column-name,...)

Defines a unique key composed of the identified columns. The identified

columns must be defined as NOT NULL. Each column-name must identify a

column of the table and the same column must not be identified more than

once.

 The number of identified columns must not exceed 64, and the sum of

their stored lengths must not exceed the index key length limit for the

page size. For column stored lengths, see Byte Counts. For key length

limits, see “SQL limits”. No LOB, XML, distinct type based on one of these

types, or structured type can be used as part of a unique key, even if the

length attribute of the column is small enough to fit within the index key

length limit for the page size (SQLSTATE 54008).

The set of columns in the unique key cannot be the same as the set of

columns in the primary key or another unique key (SQLSTATE 01543). (If

LANGLEVEL is SQL92E or MIA, an error is returned, SQLSTATE 42891.)

A unique constraint cannot be specified if the table is a subtable

(SQLSTATE 429B3), because unique constraints are inherited from the

supertable.

The description of the table as recorded in the catalog includes the unique

key and its unique index. A unique bidirectional index, which allows

forward and reverse scans, will automatically be created for the columns in

the sequence specified with ascending order for each column. The name of

the index will be the same as the constraint-name if this does not conflict

with an existing index in the schema where the table is created. If the

index name conflicts, the name will be SQL, followed by a character

timestamp (yymmddhhmmssxxx), with SYSIBM as the schema name.

PRIMARY KEY (column-name,...)

Defines a primary key composed of the identified columns. The clause

must not be specified more than once, and the identified columns must be

defined as NOT NULL. Each column-name must identify a column of the

table, and the same column must not be identified more than once.

Chapter 1. SQL Statements for Administrators 169

|

The number of identified columns must not exceed 64, and the sum of

their stored lengths must not exceed the index key length limit for the

page size. For column stored lengths, see Byte Counts. For key length

limits, see “SQL limits”. No LOB, XML, distinct type based on one of these

types, or structured type can be used as part of a primary key, even if the

length attribute of the column is small enough to fit within the index key

length limit for the page size (SQLSTATE 54008).

The set of columns in the primary key cannot be the same as the set of

columns in a unique key (SQLSTATE 01543). (If LANGLEVEL is SQL92E or

MIA, an error is returned, SQLSTATE 42891.)

Only one primary key can be defined on a table.

A primary key cannot be specified if the table is a subtable (SQLSTATE

429B3) because the primary key is inherited from the supertable.

The description of the table as recorded in the catalog includes the primary

key and its primary index. A unique bidirectional index, which allows

forward and reverse scans, will automatically be created for the columns in

the sequence specified with ascending order for each column. The name of

the index will be the same as the constraint-name if this does not conflict

with an existing index in the schema where the table is created. If the

index name conflicts, the name will be SQL, followed by a character

timestamp (yymmddhhmmssxxx), with SYSIBM as the schema name.

 If the table has a distribution key, the columns of a unique-constraint must be a

superset of the distribution key columns; column order is unimportant.

referential-constraint

Defines a referential constraint.

CONSTRAINT constraint-name

Names the referential constraint.

FOREIGN KEY (column-name,...)

Defines a referential constraint with the specified constraint-name.

 Let T1 denote the object table of the statement. The foreign key of the

referential constraint is composed of the identified columns. Each name in

the list of column names must identify a column of T1 and the same

column must not be identified more than once.

The number of identified columns must not exceed 64, and the sum of

their stored lengths must not exceed the index key length limit for the

page size. For column stored lengths, see Byte Counts. For key length

limits, see “SQL limits”. NoLOB, XML, distinct type based on one of these

types, or structured type column can be used as part of a foreign key

(SQLSTATE 42962). There must be the same number of foreign key

columns as there are in the parent key and the data types of the

corresponding columns must be compatible (SQLSTATE 42830). Two

column descriptions are compatible if they have compatible data types

(both columns are numeric, character strings, graphic, date/time, or have

the same distinct type).

references-clause

Specifies the parent table or the parent nickname, and the parent key for

the referential constraint.

170 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|

REFERENCES table-name or nickname

The table or nickname specified in a REFERENCES clause must

identify a base table or a nickname that is described in the catalog, but

must not identify a catalog table.

 A referential constraint is a duplicate if its foreign key, parent key, and

parent table or parent nickname are the same as the foreign key, parent

key, and parent table or parent nickname of a previously specified

referential constraint. Duplicate referential constraints are ignored, and

a warning is returned (SQLSTATE 01543).

In the following discussion, let T2 denote the identified parent table,

and let T1 denote the table being created (or altered). (T1 and T2 may

be the same table).

The specified foreign key must have the same number of columns as

the parent key of T2 and the description of the nth column of the

foreign key must be comparable to the description of the nth column

of that parent key. Datetime columns are not considered to be

comparable to string columns for the purposes of this rule.

(column-name,...)

The parent key of a referential constraint is composed of the

identified columns. Each column-name must be an unqualified name

that identifies a column of T2. The same column must not be

identified more than once.

 The list of column names must match the set of columns (in any

order) of the primary key or a unique constraint that exists on T2

(SQLSTATE 42890). If a column name list is not specified, then T2

must have a primary key (SQLSTATE 42888). Omission of the

column name list is an implicit specification of the columns of that

primary key in the sequence originally specified.

The referential constraint specified by a FOREIGN KEY clause defines

a relationship in which T2 is the parent and T1 is the dependent.

rule-clause

Specifies what action to take on dependent tables.

ON DELETE

Specifies what action is to take place on the dependent tables when

a row of the parent table is deleted. There are four possible actions:

v NO ACTION (default)

v RESTRICT

v CASCADE

v SET NULL

The delete rule applies when a row of T2 is the object of a DELETE

or propagated delete operation and that row has dependents in T1.

Let p denote such a row of T2.

v If RESTRICT or NO ACTION is specified, an error occurs and no

rows are deleted.

v If CASCADE is specified, the delete operation is propagated to

the dependents of p in T1.

v If SET NULL is specified, each nullable column of the foreign

key of each dependent of p in T1 is set to null.

Chapter 1. SQL Statements for Administrators 171

SET NULL must not be specified unless some column of the

foreign key allows null values. Omission of the clause is an

implicit specification of ON DELETE NO ACTION.

If T1 is delete-connected to T2 through multiple paths, defining

two SET NULL rules with overlapping foreign key definitions is

not allowed. For example: T1 (i1, i2, i3). Rule1 with foreign key (i1,

i2) and Rule2 with foreign key (i2, i3) is not allowed.

The firing order of the rules is:

1. RESTRICT

2. SET NULL OR CASCADE

3. NO ACTION

If any row in T1 is affected by two different rules, an error occurs

and no rows are deleted.

A referential constraint cannot be defined if it would cause a table

to be delete-connected to itself by a cycle involving two or more

tables, and where one of the delete rules is RESTRICT or SET

NULL (SQLSTATE 42915).

A referential constraint that would cause a table to be

delete-connected to either itself or another table by multiple paths

can be defined, except in the following cases (SQLSTATE 42915):

v A table must not be both a dependent table in a CASCADE

relationship (self-referencing, or referencing another table), and

have a self-referencing relationship in which the delete rule is

RESTRICT or SET NULL.

v A key overlaps another key when at least one column in one key

is the same as a column in the other key. When a table is

delete-connected to another table through multiple relationships

with overlapping foreign keys, those relationships must have the

same delete rule, and none of the delete rules can be SET NULL.

v When a table is delete-connected to another table through

multiple relationships, and at least one of those relationships is

specified with a delete rule of SET NULL, the foreign key

definitions of these relationships must not contain any

distribution key or multidimensional clustering (MDC) key

column.

v When two tables are delete-connected to the same table through

CASCADE relationships, the two tables must not be

delete-connected to each other if the delete rule of the last

relationship in each delete-connected path is RESTRICT or SET

NULL.

If any row in T1 is affected by different delete rules, the result

would be the effect of all the actions specified by these rules.

AFTER triggers and CHECK constraints on T1 will also see the

effect of all the actions. An example of this is a row that is targeted

to be set null through one delete-connected path to an ancestor

table, and targeted to be deleted by a second delete-connected path

to the same ancestor table. The result would be the deletion of the

row. AFTER DELETE triggers on this descendant table would be

activated, but AFTER UPDATE triggers would not.

In applying the above rules to referential constraints, in which

either the parent table or the dependent table is a member of a

172 Common Criteria Certification: Administration and User Documentation - Volume 2

typed table hierarchy, all the referential constraints that apply to

any table in the respective hierarchies are taken into consideration.

ON UPDATE

Specifies what action is to take place on the dependent tables when

a row of the parent table is updated. The clause is optional. ON

UPDATE NO ACTION is the default and ON UPDATE RESTRICT

is the only alternative.

 The difference between NO ACTION and RESTRICT is described in

the “Notes” section.

check-constraint

Defines a check constraint. A check-constraint is a search-condition that must

evaluate to not false or a functional dependency that is defined between

columns.

CONSTRAINT constraint-name

Names the check constraint.

CHECK (check-condition)

Defines a check constraint. The search-condition must be true or unknown

for every row of the table.

search-condition

The search-condition has the following restrictions:

v A column reference must be to a column of the table being created.

v The search-condition cannot contain a TYPE predicate.

v The search-condition cannot contain any of the following (SQLSTATE

42621):

– Subqueries

– XMLQUERY or XMLEXISTS expressions

– Dereference operations or DEREF functions where the scoped

reference argument is other than the object identifier (OID)

column

– CAST specifications with a SCOPE clause

– Column functions

– Functions that are not deterministic

– Functions defined to have an external action

– User-defined functions defined with either CONTAINS SQL or

READS SQL DATA

– Host variables

– Parameter markers

– sequence-references

– OLAP specifications

– Special registers and built-in functions that depend on the value

of a special register

– Global variables

– References to generated columns other than the identity column

– References to columns of type XML (except in a VALIDATED

predicate)

– An error tolerant nested-table-expression

Chapter 1. SQL Statements for Administrators 173

|

|

|
|

functional-dependency

Defines a functional dependency between columns.

column-name DETERMINED BY column-name or (column-name,...)

DETERMINED BY (column-name,...)

The parent set of columns contains the identified columns that

immediately precede the DETERMINED BY clause. The child set of

columns contains the identified columns that immediately follow

the DETERMINED BY clause. All of the restrictions on the

search-condition apply to parent set and child set columns, and only

simple column references are allowed in the set of columns

(SQLSTATE 42621). The same column must not be identified more

than once in the functional dependency (SQLSTATE 42709). The

data type of the column must not be a LOB data type, a distinct

type based on a LOB data type, an XML data type, or a structured

type (SQLSTATE 42962). A ROW CHANGE TIMESTAMP column

cannot be used as part of a primary key (SQLSTATE 429BV). No

column in the child set of columns can be a nullable column

(SQLSTATE 42621).

 If a check constraint is specified as part of a column-definition, a column

reference can only be made to the same column. Check constraints

specified as part of a table definition can have column references

identifying columns previously defined in the CREATE TABLE statement.

Check constraints are not checked for inconsistencies, duplicate conditions,

or equivalent conditions. Therefore, contradictory or redundant check

constraints can be defined, resulting in possible errors at execution time.

The search-condition “IS NOT NULL” can be specified; however, it is

recommended that nullability be enforced directly, using the NOT NULL

attribute of a column. For example, CHECK (salary + bonus > 30000) is

accepted if salary is set to NULL, because CHECK constraints must be

either satisfied or unknown, and in this case, salary is unknown. However,

CHECK (salary IS NOT NULL) would be considered false and a violation of

the constraint if salary is set to NULL.

Check constraints with search-condition are enforced when rows in the table

are inserted or updated. A check constraint defined on a table

automatically applies to all subtables of that table.

A functional dependency is not enforced by the database manager during

normal operations such as insert, update, delete, or set integrity. The

functional dependency might be used during query rewrite to optimize

queries. Incorrect results might be returned if the integrity of a functional

dependency is not maintained.

constraint-attributes

Defines attributes associated with referential integrity or check constraints.

ENFORCED or NOT ENFORCED

Specifies whether the constraint is enforced by the database manager

during normal operations such as insert, update, or delete. The default is

ENFORCED.

ENFORCED

The constraint is enforced by the database manager. ENFORCED

cannot be specified for a functional dependency (SQLSTATE 42621).

ENFORCED cannot be specified when a referential constraint refers to

a nickname (SQLSTATE 428G7).

174 Common Criteria Certification: Administration and User Documentation - Volume 2

NOT ENFORCED

The constraint is not enforced by the database manager. This should

only be specified if the table data is independently known to conform

to the constraint.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION

Specifies whether the constraint or functional dependency can be used for

query optimization under appropriate circumstances. The default is

ENABLE QUERY OPTIMIZATION.

ENABLE QUERY OPTIMIZATION

The constraint is assumed to be true and can be used for query

optimization.

DISABLE QUERY OPTIMIZATION

The constraint cannot be used for query optimization.

OF type-name1

Specifies that the columns of the table are based on the attributes of the

structured type identified by type-name1. If type-name1 is specified without a

schema name, the type name is resolved by searching the schemas on the SQL

path (defined by the FUNCPATH preprocessing option for static SQL and by

the CURRENT PATH register for dynamic SQL). The type name must be the

name of an existing user-defined type (SQLSTATE 42704) and it must be an

instantiable structured type (SQLSTATE 428DP) with at least one attribute

(SQLSTATE 42997).

 If UNDER is not specified, an object identifier column must be specified (refer

to the OID-column-definition). This object identifier column is the first column of

the table. The object ID column is followed by columns based on the attributes

of type-name1.

HIERARCHY hierarchy-name

Names the hierarchy table associated with the table hierarchy. It is created at

the same time as the root table of the hierarchy. The data for all subtables in

the typed table hierarchy is stored in the hierarchy table. A hierarchy table

cannot be directly referenced in SQL statements. A hierarchy-name is a

table-name. The hierarchy-name, including the implicit or explicit schema name,

must not identify a table, nickname, view, or alias described in the catalog. If

the schema name is specified, it must be the same as the schema name of the

table being created (SQLSTATE 428DQ). If this clause is omitted when defining

the root table, a name is generated by the system. This name consists of the

name of the table being created, followed by a unique suffix, such that the

identifier is unique among the identifiers of existing tables, views, and

nicknames.

UNDER supertable-name

Indicates that the table is a subtable of supertable-name. The supertable must be

an existing table (SQLSTATE 42704) and the table must be defined using a

structured type that is the immediate supertype of type-name1 (SQLSTATE

428DB). The schema name of table-name and supertable-name must be the same

(SQLSTATE 428DQ). The table identified by supertable-name must not have any

existing subtable already defined using type-name1 (SQLSTATE 42742).

 The columns of the table include the object identifier column of the supertable

with its type modified to be REF(type-name1), followed by columns based on

the attributes of type-name1 (remember that the type includes the attributes of

its supertype). The attribute names cannot be the same as the OID column

name (SQLSTATE 42711).

Chapter 1. SQL Statements for Administrators 175

Other table options, including table space, data capture, not logged initially,

and distribution key options cannot be specified. These options are inherited

from the supertable (SQLSTATE 42613).

INHERIT SELECT PRIVILEGES

Any user or group holding a SELECT privilege on the supertable will be

granted an equivalent privilege on the newly created subtable. The subtable

definer is considered to be the grantor of this privilege.

typed-element-list

Defines the additional elements of a typed table. This includes the additional

options for the columns, the addition of an object identifier column (root table

only), and constraints on the table.

OID-column-definition

Defines the object identifier column for the typed table.

REF IS OID-column-name USER GENERATED

Specifies that an object identifier (OID) column is defined in the table

as the first column. An OID is required for the root table of a table

hierarchy (SQLSTATE 428DX). The table must be a typed table (the OF

clause must be present) that is not a subtable (SQLSTATE 42613). The

name for the column is defined as OID-column-name and cannot be the

same as the name of any attribute of the structured type type-name1

(SQLSTATE 42711). The column is defined with type REF(type-name1),

NOT NULL and a system required unique index (with a default index

name) is generated. This column is referred to as the object identifier

column or OID column. The keywords USER GENERATED indicate that

the initial value for the OID column must be provided by the user

when inserting a row. Once a row is inserted, the OID column cannot

be updated (SQLSTATE 42808).

with-options

Defines additional options that apply to columns of a typed table.

column-name

Specifies the name of the column for which additional options are

specified. The column-name must correspond to the name of a column

of the table that is not also a column of a supertable (SQLSTATE

428DJ). A column name can only appear in one WITH OPTIONS clause

in the statement (SQLSTATE 42613).

 If an option is already specified as part of the type definition (in

CREATE TYPE), the options specified here override the options in

CREATE TYPE.

WITH OPTIONS column-options

Defines options for the specified column. See column-options described

earlier. If the table is a subtable, primary key or unique constraints

cannot be specified (SQLSTATE 429B3).

LIKE table-name1 or view-name or nickname

Specifies that the columns of the table have exactly the same name and

description as the columns of the identified table (table-name1), view

(view-name) or nickname (nickname). The name specified after LIKE must

identify a table, view or nickname that exists in the catalog, or a declared

temporary table. A typed table or typed view cannot be specified (SQLSTATE

428EC).

 The use of LIKE is an implicit definition of n columns, where n is the number

of columns in the identified table (including implicitly hidden columns), view,

176 Common Criteria Certification: Administration and User Documentation - Volume 2

or nickname. A column of the new table that corresponds to an implicitly

hidden column in the existing table will also be defined as implicitly hidden.

The implicit definition depends on what is identified after LIKE:

v If a table is identified, then the implicit definition includes the column name,

data type, hidden attribute, and nullability characteristic of each of the

columns of table-name1. If EXCLUDING COLUMN DEFAULTS is not

specified, then the column default is also included.

v If a view is identified, then the implicit definition includes the column name,

data type, and nullability characteristic of each of the result columns of the

fullselect defined in view-name.

v If a nickname is identified, then the implicit definition includes the column

name, data type, and nullability characteristic of each column of nickname.

v If a protected table is identified in the LIKE clause, the new table inherits the

same security policy and protected columns as the identified table.

Column default and identity column attributes may be included or excluded,

based on the copy-attributes clauses. The implicit definition does not include

any other attributes of the identified table, view or nickname. Thus the new

table does not have any unique constraints, foreign key constraints, triggers, or

indexes. The table is created in the table space implicitly or explicitly specified

by the IN clause, and the table has any other optional clause only if the

optional clause is specified.

When a table is identified in the LIKE clause and that table contains a ROW

CHANGE TIMESTAMP column, the corresponding column of the new table

inherits only the data type of the ROW CHANGE TIMESTAMP column. The

new column is not considered to be a generated column.

copy-options

These options specify whether or not to copy additional attributes of the

source result table definition (table, view or fullselect).

INCLUDING COLUMN DEFAULTS

Column defaults for each updatable column of the source result table

definition are copied. Columns that are not updatable will not have a

default defined in the corresponding column of the created table.

 If LIKE table-name is specified and table-name identifies a base table, created

temporary table, or declared temporary table, then INCLUDING COLUMN

DEFAULTS is the default.

EXCLUDING COLUMN DEFAULTS

Columns defaults are not copied from the source result table definition.

 This clause is the default, except when LIKE table-name is specified and

table-name identifies a base table, created temporary table, or declared

temporary table.

INCLUDING IDENTITY COLUMN ATTRIBUTES

Identity column attributes are copied from the source result table

definition, if possible. It is possible to copy the identity column attributes,

if the element of the corresponding column in the table, view, or fullselect

is the name of a table column, or the name of a view column which

directly or indirectly maps to the name of a base table column with the

identity property. In all other cases, the columns of the new table will not

get the identity property. For example:

v the select-list of the fullselect includes multiple instances of an identity

column name (that is, selecting the same column more than once)

Chapter 1. SQL Statements for Administrators 177

|

|
|
|
|

|
|

|

v the select list of the fullselect includes multiple identity columns (that is,

it involves a join)

v the identity column is included in an expression in the select list

v the fullselect includes a set operation (union, except, or intersect).

EXCLUDING IDENTITY COLUMN ATTRIBUTES

Identity column attributes are not copied from the source result table

definition.

as-result-table

column-name

Names the columns in the table. If a list of column names is specified, it

must consist of as many names as there are columns in the result table of

the fullselect. Each column-name must be unique and unqualified. If a list of

column names is not specified, the columns of the table inherit the names

of the columns of the result table of the fullselect.

 A list of column names must be specified if the result table of the fullselect

has duplicate column names of an unnamed column (SQLSTATE 42908).

An unnamed column is a column derived from a constant, function,

expression, or set operation that is not named using the AS clause of the

select list.

AS

Introduces the query that is used for the definition of the table.

fullselect

Defines the query on which the table is based. The resulting column

definitions are the same as those for a view defined with the same query.

A column of the new table that corresponds to an implicitly hidden

column of a base table referenced in the fullselect is not considered hidden

in the new table.

 Every select list element must have a name (use the AS clause for

expressions). The as-result-table defines attributes of the table.

The fullselect cannot include a data-change-table-reference clause (SQLSTATE

428FL).

Any valid fullselect that does not reference a typed table or a typed view

can be specified.

WITH NO DATA

The query is used only to define the table. The table is not populated using

the results of the query.

 The columns of the table are defined based on the definitions of the

columns that result from the fullselect. If the fullselect references a single

table in the FROM clause, select list items that are columns of that table are

defined using the column name, data type, and nullability characteristic of

the referenced table.

materialized-query-definition

column-name

Names the columns in the table. If a list of column names is specified, it

must consist of as many names as there are columns in the result table of

the fullselect. Each column-name must be unique and unqualified. If a list of

column names is not specified, the columns of the table inherit the names

of the columns of the result table of the fullselect.

178 Common Criteria Certification: Administration and User Documentation - Volume 2

A list of column names must be specified if the result table of the fullselect

has duplicate column names of an unnamed column (SQLSTATE 42908).

An unnamed column is a column derived from a constant, function,

expression, or set operation that is not named using the AS clause of the

select list.

AS

Introduces the query that is used for the definition of the table and that

determines the data to be included in the table.

fullselect

Defines the query on which the table is based. The resulting column

definitions are the same as those for a view defined with the same query.

A column of the new table that corresponds to an implicitly hidden

column of a base table referenced in the fullselect is not considered hidden

in the new table.

 Every select list element must have a name (use the AS clause for

expressions). The materialized-query-definition defines attributes of the

materialized query table. The option chosen also defines the contents of the

fullselect as follows.

The fullselect cannot include a data-change-table-reference clause (SQLSTATE

428FL).

When REFRESH DEFERRED or REFRESH IMMEDIATE is specified, the

fullselect cannot include (SQLSTATE 428EC):

v References to a materialized query table, created temporary table,

declared temporary table, or typed table in any FROM clause

v References to a view where the fullselect of the view violates any of the

listed restrictions on the fullselect of the materialized query table

v Expressions that are a reference type (or distinct type based on this type)

v Functions that have any of the following attributes:

– EXTERNAL ACTION

– LANGUAGE SQL

– CONTAINS SQL

– READS SQL DATA

– MODIFIES SQL DATA
v Functions that depend on physical characteristics (for example,

DBPARTITIONNUM, HASHEDVALUE, RID_BIT, RID)

v A ROW CHANGE expression or reference to a ROW CHANGE

TIMESTAMP column of the row

v Table or view references to system objects (Explain tables also should not

be specified)

v Expressions that are a structured type, LOB type (or a distinct type

based on a LOB type), or XML type

v References to a protected table or protected nickname

When DISTRIBUTE BY REPLICATION is specified, the following

restrictions apply:

v The GROUP BY clause is not allowed.

v The materialized query table must only reference a single table; that is, it

cannot include a join.

When REFRESH IMMEDIATE is specified:

Chapter 1. SQL Statements for Administrators 179

|

v The query must be a subselect, with the exception that UNION ALL is

supported in the input table expression of a GROUP BY.

v The query cannot be recursive.

v The query cannot include:

– References to a nickname

– Functions that are not deterministic

– Scalar fullselects

– Predicates with fullselects

– Special registers and built-in functions that depend on the value of a

special register

– Global variables

– SELECT DISTINCT

– An error tolerant nested-table-expression

v If the FROM clause references more than one table or view, it can only

define an inner join without using the explicit INNER JOIN syntax.

v When a GROUP BY clause is specified, the following considerations

apply:

– The supported column functions are SUM, COUNT, COUNT_BIG and

GROUPING (without DISTINCT). The select list must contain a

COUNT(*) or COUNT_BIG(*) column. If the materialized query table

select list contains SUM(X), where X is a nullable argument, the

materialized query table must also have COUNT(X) in its select list.

These column functions cannot be part of any expressions.

– A HAVING clause is not allowed.

– If in a multiple partition database partition group, the distribution

key must be a subset of the GROUP BY items.
v The materialized query table must not contain duplicate rows, and the

following restrictions specific to this uniqueness requirement apply,

depending upon whether or not a GROUP BY clause is specified.

– When a GROUP BY clause is specified, the following

uniqueness-related restrictions apply:

- All GROUP BY items must be included in the select list.

- When the GROUP BY contains GROUPING SETS, CUBE, or

ROLLUP, the GROUP BY items and associated GROUPING column

functions in the select list must form a unique key of the result set.

Thus, the following restrictions must be satisfied:

v No grouping sets can be repeated. For example, ROLLUP(X,Y),X is

not allowed, because it is equivalent to GROUPING

SETS((X,Y),(X),(X)).

v If X is a nullable GROUP BY item that appears within

GROUPING SETS, CUBE, or ROLLUP, then GROUPING(X) must

appear in the select list.
– When a GROUP BY clause is not specified, the following

uniqueness-related restrictions apply:

- The materialized query table’s uniqueness requirement is achieved

by deriving a unique key for the materialized view from one of the

unique key constraints defined in each of the underlying tables.

Therefore, the underlying tables must have at least one unique key

constraint defined on them, and the columns of these keys must

appear in the select list of the materialized query table definition.

180 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

v When MAINTAINED BY FEDERATED_TOOL is specified, only

references to nicknames are allowed in a FROM clause.

When REFRESH DEFERRED is specified:

v If the materialized query table is created with the intention of providing

it with an associated staging table in a later statement, the fullselect of

the materialized query table must follow the same restrictions and rules

as a fullselect used to create a materialized query table with the

REFRESH IMMEDIATE option.

v If the query is recursive, the materialized query table is not used to

optimize the processing of queries.

A materialized query table whose fullselect contains a GROUP BY clause is

summarizing data from the tables referenced in the fullselect. Such a

materialized query table is also known as a summary table. A summary

table is a specialized type of materialized query table.

refreshable-table-options

Define the refreshable options of the materialized query table attributes.

DATA INITIALLY DEFERRED

Data is not inserted into the table as part of the CREATE TABLE

statement. A REFRESH TABLE statement specifying the table-name is

used to insert data into the table.

REFRESH

Indicates how the data in the table is maintained.

DEFERRED

The data in the table can be refreshed at any time using the

REFRESH TABLE statement. The data in the table only reflects the

result of the query as a snapshot at the time the REFRESH TABLE

statement is processed. System-maintained materialized query

tables defined with this attribute do not allow INSERT, UPDATE,

or DELETE statements (SQLSTATE 42807). User-maintained

materialized query tables defined with this attribute do allow

INSERT, UPDATE, or DELETE statements.

IMMEDIATE

The changes made to the underlying tables as part of a DELETE,

INSERT, or UPDATE are cascaded to the materialized query table.

In this case, the content of the table, at any point-in-time, is the

same as if the specified subselect is processed. Materialized query

tables defined with this attribute do not allow INSERT, UPDATE,

or DELETE statements (SQLSTATE 42807).

ENABLE QUERY OPTIMIZATION

The materialized query table can be used for query optimization under

appropriate circumstances.

DISABLE QUERY OPTIMIZATION

The materialized query table will not be used for query optimization.

The table can still be queried directly.

MAINTAINED BY

Specifies whether the data in the materialized query table is

maintained by the system, user, or replication tool. The default is

SYSTEM.

Chapter 1. SQL Statements for Administrators 181

SYSTEM

Specifies that the data in the materialized query table is maintained

by the system.

USER

Specifies that the data in the materialized query table is maintained

by the user. The user is allowed to perform update, delete, or

insert operations against user-maintained materialized query tables.

The REFRESH TABLE statement, used for system-maintained

materialized query tables, cannot be invoked against

user-maintained materialized query tables. Only a REFRESH

DEFERRED materialized query table can be defined as

MAINTAINED BY USER.

FEDERATED_TOOL

Specifies that the data in the materialized query table is maintained

by the replication tool. The REFRESH TABLE statement, used for

system-maintained materialized query tables, cannot be invoked

against federated_tool-maintained materialized query tables. Only

a REFRESH DEFERRED materialized query table can be defined as

MAINTAINED BY FEDERATED_TOOL.

staging-table-definition

Defines the query supported by the staging table indirectly through an

associated materialized query table. The underlying tables of the materialized

query table are also the underlying tables for its associated staging table. The

staging table collects changes that need to be applied to the materialized query

table to synchronize it with the contents of the underlying tables.

staging-column-name

Names the columns in the staging table. If a list of column names is

specified, it must consist of two more names than there are columns in the

materialized query table for which the staging table is defined. If the

materialized query table is a replicated materialized query table, or the

query defining the materialized query table does not contain a GROUP BY

clause, the list of column names must consist of three more names than

there are columns in the materialized query table for which the staging

table is defined. Each column name must be unique and unqualified. If a

list of column names is not specified, the columns of the table inherit the

names of the columns of the associated materialized query table. The

additional columns are named GLOBALTRANSID and

GLOBALTRANSTIME, and if a third column is necessary, it is named

OPERATIONTYPE.

 Table 10. Extra Columns Appended in Staging Tables

Column Name Data Type Column Description

GLOBALTRANSID CHAR(8) FOR BIT DATA The global transaction ID for

each propagated row

GLOBALTRANSTIME CHAR(13) FOR BIT DATA The timestamp of the

transaction

OPERATIONTYPE INTEGER Operation for the propagated

row, either insert, update, or

delete.

A list of column names must be specified if any of the columns of the

associated materialized query table duplicates any of the generated column

names (SQLSTATE 42711).

182 Common Criteria Certification: Administration and User Documentation - Volume 2

FOR table-name2

Specifies the materialized query table that is used for the definition of the

staging table. The name, including the implicit or explicit schema, must

identify a materialized query table that exists at the current server defined

with REFRESH DEFERRED. The fullselect of the associated materialized

query table must follow the same restrictions and rules as a fullselect used

to create a materialized query table with the REFRESH IMMEDIATE

option.

 The contents of the staging table can be used to refresh the materialized

query table, by invoking the REFRESH TABLE statement, if the contents of

the staging table are consistent with the associated materialized query table

and the underlying source tables.

PROPAGATE IMMEDIATE

The changes made to the underlying tables as part of a delete, insert, or

update operation are cascaded to the staging table in the same delete,

insert, or update operation. If the staging table is not marked inconsistent,

its content, at any point-in-time, is the delta changes to the underlying

table since the last refresh materialized query table.

ORGANIZE BY DIMENSIONS (column-name,...)

Specifies a dimension for each column or group of columns used to cluster the

table data. The use of parentheses within the dimension list specifies that a

group of columns is to be treated as one dimension. The DIMENSIONS

keyword is optional. A table whose definition specifies this clause is known as

a multidimensional clustering (MDC) table.

 A clustering block index is automatically maintained for each specified

dimension, and a block index, consisting of all columns used in the clause, is

maintained if none of the clustering block indexes includes them all. The set of

columns used in the ORGANIZE BY clause must follow the rules for the

CREATE INDEX statement that specifies CLUSTER.

Each column name specified in the ORGANIZE BY clause must be defined for

the table (SQLSTATE 42703). A dimension cannot occur more than once in the

dimension list (SQLSTATE 42709). The dimensions cannot contain a ROW

CHANGE TIMESTAMP column (SQLSTATE 429BV) or an XML column

(SQLSTATE 42962).

Pages of the table are arranged in blocks of equal size, which is the extent size

of the table space, and all rows of each block contain the same combination of

dimension values.

A table can be both a multidimensional clustering (MDC) table and a

partitioned table. Columns in such a table can be used in both the

range-partition-spec and in the MDC key. Note that table partitioning is

multi-column, not multidimensional.

ORGANIZE BY KEY SEQUENCE sequence-key-spec

Specifies that the table is organized in ascending key sequence with a fixed

size based on the specified range of key sequence values. A table organized in

this way is referred to as a range-clustered table. Each possible key value in the

defined range has a predetermined location in the physical table. The storage

required for a range-clustered table must be available when the table is

created, and must be sufficient to contain the number of rows in the specified

range multiplied by the row size (for details on determining the space

requirement, see Row Size Limit and Byte Counts).

Chapter 1. SQL Statements for Administrators 183

|
|
|

|
|

column-name

Specifies a column of the table that is included in the unique key that

determines the sequence of the range-clustered table. The data type of the

column must be SMALLINT, INTEGER, or BIGINT (SQLSTATE 42611), and

the columns must be defined as NOT NULL (SQLSTATE 42831). The same

column must not be identified more than once in the sequence key. The

number of identified columns must not exceed 64 (SQLSTATE 54008).

 A unique index entry will automatically be created in the catalog for the

columns in the key sequence specified with ascending order for each

column. The name of the index will be SQL, followed by a character

timestamp (yymmddhhmmssxxx), with SYSIBM as the schema name. An

actual index object is not created in storage, because the table organization

is ordered by this key. If a primary key or a unique constraint is defined

on the same columns as the range-clustered table sequence key, this same

index entry is used for the constraint.

For the key sequence specification, a check constraint exists to reflect the

column constraints. If the DISALLOW OVERFLOW clause is specified, the

name of the check constraint will be RCT, and the check constraint is

enforced. If the ALLOW OVERFLOW clause is specified, the name of the

check constraint will be RCT_OFLOW, and the check constraint is not

enforced.

STARTING FROM constant

Specifies the constant value at the low end of the range for column-name.

Values less than the specified constant are only allowed if the ALLOW

OVERFLOW option is specified. If column-name is a SMALLINT or

INTEGER column, the constant must be an INTEGER constant. If

column-name is a BIGINT column, the constant must be an INTEGER or

BIGINT constant (SQLSTATE 42821). If a starting constant is not specified,

the default value is 1.

ENDING AT constant

Specifies the constant value at the high end of the range for column-name.

Values greater than the specified constant are only allowed if the ALLOW

OVERFLOW option is specified. The value of the ending constant must be

greater than the starting constant. If column-name is a SMALLINT or

INTEGER column, the constant must be an INTEGER constant. If

column-name is a BIGINT column, the constant must be an INTEGER or

BIGINT constant (SQLSTATE 42821).

ALLOW OVERFLOW

Specifies that the range-clustered table allows rows with key values that

are outside of the defined range of values. When a range-clustered table is

created to allow overflows, the rows with key values outside of the range

are placed at the end of the defined range without any predetermined

order. Operations involving these overflow rows are less efficient than

operations on rows having key values within the defined range.

DISALLOW OVERFLOW

Specifies that the range-clustered table does not allow rows with key

values that are not within the defined range of values (SQLSTATE 23513).

Range-clustered tables that disallow overflows will always maintain all

rows in ascending key sequence.

PCTFREE integer

Specifies the percentage of each page that is to be left as free space. The

first row on each page is added without restriction. When additional rows

184 Common Criteria Certification: Administration and User Documentation - Volume 2

are added to a page, at least integer percent of the page is left as free space.

The value of integer can range from 0 to 99. A PCTFREE value of -1 in the

system catalog (SYSCAT.TABLES) is interpreted as the default value. The

default PCTFREE value for a table page is 0.

DATA CAPTURE

Indicates whether extra information for inter-database data replication is to be

written to the log. This clause cannot be specified when creating a subtable

(SQLSTATE 42613).

 If the table is a typed table, then this option is not supported (SQLSTATE

428DH or 42HDR).

NONE

Indicates that no extra information will be logged.

CHANGES

Indicates that extra information regarding SQL changes to this table will be

written to the log. This option is required if this table will be replicated

and the Capture program is used to capture changes for this table from the

log.

 If the schema name (implicit or explicit) of the table is longer than 18

bytes, this option is not supported (SQLSTATE 42997).

IN tablespace-name,...

Identifies the table spaces in which the table will be created. The table spaces

must exist, they must be in the same database partition group, and they must

be all regular DMS or all large DMS or all SMS table spaces (SQLSTATE 42838)

on which the authorization ID of the statement holds the USE privilege.

 A maximum of one IN clause is allowed at the table level. All data table spaces

used by a table must have the same page size and extent size. If they do not

all have the same prefetch size, a warning is returned. If all table spaces have

AUTOMATIC prefetch size, no warning is returned.

If only one table space is specified, all table parts are stored in this table space.

This clause cannot be specified when creating a subtable (SQLSTATE 42613),

because the table space is inherited from the root table of the table hierarchy. If

this clause is not specified, a table space for the table is determined as follows:

IF table space IBMDEFAULTGROUP (over which the user

 has USE privilege) exists with sufficient page size

 THEN choose it

ELSE IF a table space (over which the user has USE privilege)

 exists with sufficient page size (see below when

 multiple table spaces qualify)

 THEN choose it

ELSE return an error (SQLSTATE 42727)

If more than one table space is identified by the ELSE IF condition, choose the

table space with the smallest sufficient page size. If more than one table space

qualifies, choose the table space in the following order of preference,

depending on to whom the USE privilege was granted:

1. The authorization ID

2. A group to which the authorization ID belongs

3. PUBLIC

If more than one table space still qualifies, the final choice is made by the

database manager.

Table space determination can change if:

Chapter 1. SQL Statements for Administrators 185

v Table spaces are dropped or created

v USE privileges are granted or revoked

Partitioned tables can have their data partitions spread across multiple table

spaces. When multiple table spaces are specified, all of the table spaces must

exist, and they must all be either SMS or regular DMS or large DMS table

spaces (SQLSTATE 42838). The authorization ID of the statement must hold the

USE privilege on all of the specified table spaces.

The sufficient page size of a table is determined by either the byte count of the

row or the number of columns. For more information, see Row Size Limits.

When a table is placed in a large table space:

v The table can be larger than a table in a regular table space. For details on

table and table space limits, see “SQL limits”.

v The table can support more than 255 rows per data page, which can

improve space utilization on data pages.

v Indexes that are defined on the table will require an additional 2 bytes per

row entry, compared to indexes defined on a table that resides in a regular

table space.

CYCLE or NO CYCLE

Specifies whether or not the number of data partitions with no explicit

table space can exceed the number of specified table spaces.

CYCLE

Specifies that if the number of data partitions with no explicit table

space exceeds the number of specified table spaces, the table spaces are

assigned to data partitions in a round-robin fashion.

NO CYCLE

Specifies that the number of data partitions with no explicit table space

must not exceed the number of specified tables spaces (SQLSTATE

428G1). This option prevents the round-robin assignment of table

spaces to data partitions.

tablespace-options

Specifies the table space in which indexes or long column values are to be

stored. For details on types of table spaces, see “CREATE TABLESPACE”.

INDEX IN tablespace-name

Identifies the table space in which any indexes on a nonpartitioned

table or nonpartitioned indexes on a partitioned table are to be created.

The specified table space must exist; it must be a DMS table space if

the table has data in DMS table spaces, or an SMS table space if the

partitioned table has data in SMS table spaces; it must be a table space

on which the authorization ID of the statement holds the USE

privilege; and it must be in the same database partition group as

tablespace-name (SQLSTATE 42838).

 Specifying which table space will contain indexes can be done when a

table is created or, in the case of partitioned tables, it can be done by

specifying the IN clause of the CREATE INDEX statement for a

nonpartitioned index. Checking for the USE privilege on the table

space is done at table creation time, not when an index is created later.

For a nonpartitioned index on a partitioned table, storage of the index

is as follows:

v The table space by the IN clause of the CREATE INDEX statement

186 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|

v The table-level table space specified for the INDEX IN clause of the

CREATE TABLE statement

v If neither of the preceding are specified, the index is stored in the

table space of the first attached or visible data partition

For information about partitioned indexes on partitioned tables, see the

description of the partition-element INDEX IN clause.

LONG IN tablespace-name

Identifies the table spaces in which the values of any long columns are

to be stored. Long columns include those with LOB data types, XML

type, distinct types with any of these as source types, or any columns

defined with user-defined structured types whose values cannot be

stored inline. This option is allowed only if the IN clause identifies a

DMS table space.

 The specified table space must exist. It can be a regular table space if it

is the same table space in which the data is stored; otherwise, it must

be a large DMS table space on which the authorization ID of the

statement holds the USE privilege. It must also be in the same database

partition group as tablespace-name (SQLSTATE 42838).

Specifying which table space will contain long, LOB, or XML columns

can only be done when a table is created. Checking for the USE

privilege is done at table creation time, not when a long or LOB

column is added later.

For rules governing the use of the LONG IN clause with partitioned

tables, see “Large object behavior in partitioned tables”.

distribution-clause

Specifies the database partitioning or the way the data is distributed across

multiple database partitions.

DISTRIBUTE BY HASH (column-name,...)

Specifies the use of the default hashing function on the specified columns,

called a distribution key, as the distribution method across database

partitions. The column-name must be an unqualified name that identifies a

column of the table (SQLSTATE 42703). The same column must not be

identified more than once (SQLSTATE 42709). No column whose data type

is BLOB, CLOB, DBCLOB, XML, distinct type based on any of these types,

or structured type can be used as part of a distribution key (SQLSTATE

42962). The distribution key cannot contain a ROW CHANGE

TIMESTAMP column (SQLSTATE 429BV). A distribution key cannot be

specified for a table that is a subtable (SQLSTATE 42613), because the

distribution key is inherited from the root table in the table hierarchy or a

table with a column of data type XML (SQLSTATE 42997). If this clause is

not specified, and the table resides in a multiple partition database

partition group with multiple database partitions, the distribution key is

defined as follows:

v If the table is a typed table, the object identifier column is the

distribution key.

v If a primary key is defined, the first column of the primary key is the

distribution key.

v Otherwise, the first column whose data type is valid for a distribution

key becomes the distribution key.

The columns of the distribution key must be a subset of the columns that

make up any unique constraints.

Chapter 1. SQL Statements for Administrators 187

|
|

|
|

|
|

|

|

If none of the columns satisfies the requirements for a default distribution

key, the table is created without one. Such tables are allowed only in table

spaces that are defined on single-partition database partition groups.

For tables in table spaces that are defined on single-partition database

partition groups, any collection of columns with data types that are valid

for a distribution key can be used to define the distribution key. If you do

not specify this clause, no distribution key is created.

For restrictions related to the distribution key, see Rules.

DISTRIBUTE BY REPLICATION

Specifies that the data stored in the table is physically replicated on each

database partition of the database partition group for the table spaces in

which the table is defined. This means that a copy of all of the data in the

table exists on each database partition. This option can only be specified

for a materialized query table (SQLSTATE 42997).

partitioning-clause

Specifies how the data is partitioned within a database partition.

PARTITION BY RANGE range-partition-spec

Specifies the table partitioning scheme for the table.

partition-expression

Specifies the key data over which the range is defined to determine the

target data partition of the data.

column-name

Identifies a column of the table-partitioning key. The column-name

must be an unqualified name that identifies a column of the table

(SQLSTATE 42703). The same column must not be identified more

than once (SQLSTATE 42709). No column with a data type that is a

BLOB, CLOB, DBCLOB, XML, distinct type based on any of these

types, or structured type can be used as part of a table-partitioning

key (SQLSTATE 42962).

 The numeric literals used in the range specification are governed

by the rules for numeric literals. All of the numeric literals (except

the decimal floating-point special values) used in ranges

corresponding to numeric columns are interpreted as integer,

floating-point or decimal constants, in accordance with the rules

specified for numeric constants. As a result, for decimal

floating-point columns, the minimum and maximum numeric

constant value that can be used in the range specification of a data

partition is the smallest DOUBLE value and the largest DOUBLE

value, respectively. Decimal floating-point special values can be

used in the range specification. All decimal floating-point special

values are interpreted as greater than MINVALUE and less than

MAXVALUE.

The table partitioning columns cannot contain a ROW CHANGE

TIMESTAMP column (SQLSTATE 429BV). The number of identified

columns must not exceed 16 (SQLSTATE 54008).

NULLS LAST

Indicates that null values compare high.

NULLS FIRST

Indicates that null values compare low.

188 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

partition-element

Specifies ranges for a data partitioning key and the table space where

rows of the table in the range will be stored.

PARTITION partition-name

Names the data partition. The name must not be the same as any

other data partition for the table (SQLSTATE 42710). If this clause

is not specified, the name will be ’PART’ followed by the character

form of an integer value to make the name unique for the table.

boundary-spec

Specifies the boundaries of a range partition. The lowest range

partition must include a starting-clause, and the highest range

partition must include an ending-clause (SQLSTATE 56016). Range

partitions between the lowest and the highest can include either a

starting-clause, ending-clause, or both clauses. If only the

ending-clause is specified, the previous range partition must also

have included an ending-clause (SQLSTATE 56016).

starting-clause

Specifies the low end of the range for a data partition. There

must be at least one starting value specified and no more

values than the number of columns in the data partitioning key

(SQLSTATE 53038). If there are fewer values specified than the

number of columns, the remaining values are implicitly

MINVALUE.

STARTING FROM

Introduces the starting-clause.

constant

Specifies a constant value with a data type that is

assignable to the data type of the column-name to which

it corresponds (SQLSTATE 53045). The value must not

be in the range of any other boundary-spec for the

table (SQLSTATE 56016).

MINVALUE

Specifies a value that is lower than the lowest possible

value for the data type of the column-name to which it

corresponds.

MAXVALUE

Specifies a value that is greater than the greatest

possible value for the data type of the column-name to

which it corresponds.

INCLUSIVE

Indicates that the specified range values are to be included

in the data partition.

EXCLUSIVE

Indicates that the specified constant values are to be

excluded from the data partition. This specification is

ignored when MINVALUE or MAXVALUE is specified.

ending-clause

Specifies the high end of the range for a data partition. There

must be at least one starting value specified and no more

values than the number of columns in the data partitioning key

Chapter 1. SQL Statements for Administrators 189

(SQLSTATE 53038). If there are fewer values specified than the

number of columns, the remaining values are implicitly

MAXVALUE.

ENDING AT

Introduces the ending-clause.

constant

Specifies a constant value with a data type that is

assignable to the data type of the column-name to which

it corresponds (SQLSTATE 53045). The value must not

be in the range of any other boundary-spec for the

table (SQLSTATE 56016).

MINVALUE

Specifies a value that is lower than the lowest possible

value for the data type of the column-name to which it

corresponds.

MAXVALUE

Specifies a value that is greater than the greatest

possible value for the data type of the column-name to

which it corresponds.

INCLUSIVE

Indicates that the specified range values are to be included

in the data partition.

EXCLUSIVE

Indicates that the specified constant values are to be

excluded from the data partition. This specification is

ignored when MINVALUE or MAXVALUE is specified.

IN tablespace-name

Specifies the table space where the data partition is to be stored.

The named table space must have the same page size, be in the

same database partition group, and manage space in the same way

as the other table spaces of the partitioned table (SQLSTATE

42838); it must be a table space on which the authorization ID of

the statement holds the USE privilege. If this clause is not

specified, a table space is assigned by default in a round-robin

fashion from the list of table spaces specified for the table. If a

table space was not specified for large objects using the LONG IN

clause, large objects are placed in the same table space as are the

rest of the rows for the data partition. For partitioned tables, the

LONG IN clause can be used to provide a list of table spaces. This

list is used in round robin-fashion to place large objects for each

data partition. For rules governing the use of the LONG IN clause

with partitioned tables, see “Large object behavior in partitioned

tables”.

 If the INDEX IN clause is not specified on the CREATE TABLE or

the CREATE INDEX statement, the index is placed in the same

table space as the first visible or attached partition of the table.

INDEX IN tablespace-name

Specifies the table space where the partitioned index on the

partitioned table is to be stored.

 The partition-element level INDEX IN clause only affects the

storage of partitioned indexes. Storage of the index is as follows:

190 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|
|

v If the INDEX IN clause is specified at the partition level when

the table is created, the partitioned index is stored in the

specified table space.

v If the INDEX IN clause is not specified at the partition level

when the table is created, the partitioned index is stored in the

table space of the corresponding data partition.

The INDEX IN clause can only be specified if the data table spaces

are DMS table spaces and the table space specified by the INDEX

IN clause is a DMS table space. If the data table space is an SMS

table space, an error is returned (SQLSTATE 42839).

LONG IN tablespace-name

Identifies the table spaces in which the values of any long columns

are to be stored. Long columns include those with LOB data types,

XML type, distinct types with any of these as source types, or any

columns defined with user-defined structured types whose values

cannot be stored inline. This option is allowed only if the IN clause

identifies a DMS table space.

 The specified table space must exist. It can be a regular table space

if it is the same table space in which the data is stored; otherwise,

it must be a large DMS table space on which the authorization ID

of the statement holds the USE privilege. It must also be in the

same database partition group as tablespace-name (SQLSTATE

42838).

Specifying which table space will contain long, LOB, or XML

columns can only be done when a table is created. Checking for

the USE privilege is done at table creation time, not when a long or

LOB column is added later.

For rules governing the use of the LONG IN clause with

partitioned tables, see “Large object behavior in partitioned tables”.

EVERY (constant)

Specifies the width of each data partition range when using the

automatically generated form of the syntax. Data partitions will be

created starting at the STARTING FROM value and containing this

number of values in the range. This form of the syntax is only

supported for tables that are partitioned by a single numeric or

datetime column (SQLSTATE 53038).

 If the partitioning key column is a numeric type, the starting value

of the first partition is the value specified in the starting-clause.

The ending value for the first and all other partitions is calculated

by adding the starting value of the partition to the increment value

specified as constant in the EVERY clause. The starting value for all

other partitions is calculated by taking the starting value for the

previous partition and adding the increment value specified as

constant in the EVERY clause.

If the partitioning key column is a DATE or a TIMESTAMP, the

starting value of the first partition is the value specified in the

starting-clause. The ending value for the first and all other

partitions is calculated by adding the starting value of the partition

to the increment value specified as a labeled duration in the

EVERY clause. The starting value for all other partitions is

Chapter 1. SQL Statements for Administrators 191

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

calculated by taking the starting value for the previous partition

and adding the increment value specified as a labeled duration in

the EVERY clause.

For a numeric column, the EVERY value must be a positive

numeric constant, and for a datetime column, the EVERY value

must be a labeled duration (SQLSTATE 53045).

COMPRESS

Specifies whether data compression applies to the rows of the table

YES

Specifies that data row compression is enabled. Insert and update

operations on the table will be subject to compression. After the table is

sufficiently populated with data, a compression dictionary is automatically

created and rows are subject to compression. This also applies to the data

in the XML storage object. If there is sufficient data in the XML storage

object, a compression dictionary is automatically created and XML

documents are subject to compression.

NO

Specifies that data row compression is disabled.

VALUE COMPRESSION

This determines the row format that is to be used. Each data type has a

different byte count depending on the row format that is used. For more

information, see Byte Counts. If the table is a typed table, this option is only

supported on the root table of the typed table hierarchy (SQLSTATE 428DR).

 The NULL value is stored using three bytes. This is the same or less space than

when VALUE COMPRESSION is not active for columns of all data types, with

the exception of CHAR(1). Whether or not a column is defined as nullable has

no affect on the row size calculation. The zero-length data values for columns

whose data type is VARCHAR, VARGRAPHIC, LONG VARCHAR, LONG

VARGRAPHIC, CLOB, DBCLOB, BLOB, or XML are to be stored using two

bytes only, which is less than the storage required when VALUE

COMPRESSION is not active. When a column is defined using the COMPRESS

SYSTEM DEFAULT option, this also allows the system default value for the

column to be stored using three bytes of total storage. The row format that is

used to support this determines the byte counts for each data type, and tends

to cause data fragmentation when updating to or from NULL, a zero-length

value, or the system default value.

WITH RESTRICT ON DROP

Indicates that the table cannot be dropped, and that the table space that

contains the table cannot be dropped.

NOT LOGGED INITIALLY

Any changes made to the table by an Insert, Delete, Update, Create Index,

Drop Index, or Alter Table operation in the same unit of work in which the

table is created are not logged. For other considerations when using this

option, see the “Notes” section of this statement.

 All catalog changes and storage related information are logged, as are all

operations that are done on the table in subsequent units of work.

Note: If non-logged activity occurs against a table that has the NOT LOGGED

INITIALLY attribute activated, and if a statement fails (causing a rollback), or a

ROLLBACK TO SAVEPOINT is executed, the entire unit of work is rolled back

(SQL1476N). Furthermore, the table for which the NOT LOGGED INITIALLY

192 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|

attribute was activated is marked inaccessible after the rollback has occurred,

and can only be dropped. Therefore, the opportunity for errors within the unit

of work in which the NOT LOGGED INITIALLY attribute is activated should

be minimized.

CCSID

Specifies the encoding scheme for string data stored in the table. If the CCSID

clause is not specified, the default is CCSID UNICODE for Unicode databases,

and CCSID ASCII for all other databases.

ASCII

Specifies that string data is encoded in the database code page. If the

database is a Unicode database, CCSID ASCII cannot be specified

(SQLSTATE 56031).

UNICODE

Specifies that string data is encoded in Unicode. If the database is a

Unicode database, character data is in UTF-8, and graphic data is in UCS-2.

If the database is not a Unicode database, character data is in UTF-8.

 If the database is not a Unicode database, tables can be created with

CCSID UNICODE, but the following rules apply:

v The alternate collating sequence must be specified in the database

configuration before creating the table (SQLSTATE 56031). CCSID

UNICODE tables collate with the alternate collating sequence specified

in the database configuration.

v Tables or table functions created with CCSID ASCII, and tables or table

functions created with CCSID UNICODE, cannot both be used in a

single SQL statement (SQLSTATE 53090). This applies to tables and table

functions referenced directly in the statement, as well as to tables and

table functions referenced indirectly (such as, for example, through

referential integrity constraints, triggers, materialized query tables, and

tables in the body of views).

v Tables created with CCSID UNICODE cannot be referenced in SQL

functions or SQL methods (SQLSTATE 560C0).

v An SQL statement that references a table created with CCSID UNICODE

cannot invoke an SQL function or SQL method (SQLSTATE 53090).

v Graphic types, the XML type, and user-defined types cannot be used in

CCSID UNICODE tables (SQLSTATE 560C1).

v Anchored data types cannot anchor to columns of a table created with

CCSID UNICODE (SQLSTATE 428HS).

v Tables cannot have both the CCSID UNICODE clause and the DATA

CAPTURE CHANGES clause specified (SQLSTATE 42613).

v The Explain tables cannot be created with CCSID UNICODE (SQLSTATE

55002).

v Created temporary tables and declared temporary tables cannot be

created with CCSID UNICODE (SQLSTATE 56031).

v CCSID UNICODE tables cannot be created in a CREATE SCHEMA

statement (SQLSTATE 53090).

v The exception table for a load operation must have the same CCSID as

the target table for the operation (SQLSTATE 428A5).

v The exception table for a SET INTEGRITY statement must have the same

CCSID as the target table for the statement (SQLSTATE 53090).

v The target table for event monitor data must not be declared as CCSID

UNICODE (SQLSTATE 55049).

Chapter 1. SQL Statements for Administrators 193

|
|

|
|

v Statements that reference a CCSID UNICODE table can only be invoked

from a DB2 Version 8.1 or later client (SQLSTATE 42997).

v SQL statements are always interpreted in the database code page. In

particular, this means that every character in literals, hex literals, and

delimited identifiers must have a representation in the database code

page; otherwise, the character will be replaced with the substitution

character.

 Host variables in the application are always in the application code page,

regardless of the CCSID of any tables in the SQL statements that are invoked.

DB2 will perform code page conversions as necessary to convert data between

the application code page and the section code page. The registry variable

DB2CODEPAGE can be set at the client to change the application code page.

SECURITY POLICY

Names the security policy to be associated with the table.

policy-name

Identifies a security policy that already exists at the current server

(SQLSTATE 42704).

OPTIONS (ADD table-option-name string-constant, ...)

Table options are used to identify the remote base table. The table-option-name is

the name of the option. The string-constant specifies the setting for the table

option. The string-constant must be enclosed in single quotation marks.

 The remote server (the server name that was specified in the CREATE SERVER

statement) must be specified in the OPTIONS clause. The OPTIONS clause can

also be used to override the schema or the unqualified name of the remote

base table that is being created.

It is recommended that a schema name be specified. If a remote schema name

is not specified, the qualifier for the table name is used. If the table name has

no qualifier, the authorization ID of the statement is used.

If an unqualified name for the remote base table is not specified, table-name is

used.

Rules

v The sum of the byte counts of the columns, including the inline lengths of all

structured or XML type columns, must not be greater than the row size limit

that is based on the page size of the table space (SQLSTATE 54010). For more

information, see Byte Counts. For typed tables, the byte count is applied to the

columns of the root table of the table hierarchy, and every additional column

introduced by every subtable in the table hierarchy (additional subtable columns

must be considered nullable for byte count purposes, even if defined as not

nullable). There is also an additional 4 bytes of overhead to identify the subtable

to which each row belongs.

v The number of columns in a table cannot exceed 1 012 (SQLSTATE 54011). For

typed tables, the total number of attributes of the types of all of the subtables in

the table hierarchy cannot exceed 1010.

v An object identifier column of a typed table cannot be updated (SQLSTATE

42808).

v Any unique or primary key constraint defined on the table must be a superset of

the distribution key (SQLSTATE 42997).

v The following rules only apply to multiple database partition databases.

194 Common Criteria Certification: Administration and User Documentation - Volume 2

– Tables composed only of columns with types LOB, XML, a distinct type based

on one of these types, or a structured type can only be created in table spaces

that are defined on single-partition database partition groups.

– The distribution key definition of a table in a table space that is defined on a

multiple partition database partition group cannot be altered.

– The distribution key column of a typed table must be the OID column.

– Partitioned staging tables are not supported.
v The following restrictions apply to range-clustered tables:

– A range-clustered table cannot be specified in a database with multiple

database partitions (SQLSTATE 42997).

– A clustering index cannot be created.

– Altering the table to add a column is not supported.

– Altering the table to change the data type of a column is not supported.

– Altering the table to change PCTFREE is not supported.

– Altering the table to set APPEND ON is not supported.

– DETAILED statistics are not available.

– The load utility cannot be used to populate the table.

– Columns cannot be of type XML.
v A table is not protected unless it has a security policy associated with it and it

includes either a column of type DB2SECURITYLABEL or a column defined

with the SECURED WITH clause. The former indicates that the table is a

protected table with row level granularity and the latter indicates that the table

a protected table with column level granularity.

v Declaring a column of type DB2SECURITYLABEL fails if the table does not have

a security policy associated with it (SQLSTATE 55064).

v A security policy cannot be added to a typed table (SQLSTATE 428DH),

materialized query table, or staging table (SQLSTATE 428FG).

v An error tolerant nested-table-expression cannot be specified in the fullselect of a

materialized-query-definition (SQLSTATE 428GG).

v The isolation-clause cannot be specified in the full-select of the

materialized-query-table-definition (SQLSTATE 42601).

v Subselect statements containing a lock-request-clause are not be eligible for MQT

routing.

Notes

v Creating a table with a schema name that does not already exist will result in

the implicit creation of that schema provided the authorization ID of the

statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The

CREATEIN privilege on the schema is granted to PUBLIC.

v If a foreign key is specified:

– All packages with a delete usage on the parent table are invalidated.

– All packages with an update usage on at least one column in the parent key

are invalidated.
v Creating a subtable causes invalidation of all packages that depend on any table

in table hierarchy.

v VARCHAR and VARGRAPHIC columns that are greater than 4 000 and 2 000

respectively should not be used as input parameters in functions in SYSFUN

schema. Errors will occur when the function is invoked with an argument value

that exceeds these lengths (SQLSTATE 22001).

Chapter 1. SQL Statements for Administrators 195

|

|
|

|
|

v The use of NO ACTION or RESTRICT as delete or update rules for referential

constraints determines when the constraint is enforced. A delete or update rule

of RESTRICT is enforced before all other constraints, including those referential

constraints with modifying rules such as CASCADE or SET NULL. A delete or

update rule of NO ACTION is enforced after other referential constraints. One

example where different behavior is evident involves the deletion of rows from a

view that is defined as a UNION ALL of related tables.

 Table T1 is a parent of table T3; delete rule as noted below.

 Table T2 is a parent of table T3; delete rule CASCADE.

 CREATE VIEW V1 AS SELECT * FROM T1 UNION ALL SELECT * FROM T2

 DELETE FROM V1

If table T1 is a parent of table T3 with a delete rule of RESTRICT, a restrict

violation will be raised (SQLSTATE 23001) if there are any child rows for parent

keys of T1 in T3.

If table T1 is a parent of table T3 with a delete rule of NO ACTION, the child

rows may be deleted by the delete rule of CASCADE when deleting rows from

T2 before the NO ACTION delete rule is enforced for the deletes from T1. If

deletes from T2 did not result in deleting all child rows for parent keys of T1 in

T3, then a constraint violation will be raised (SQLSTATE 23504).

Note that the SQLSTATE returned is different depending on whether the delete

or update rule is RESTRICT or NO ACTION.

v For tables in table spaces defined on multiple partition database partition

groups, table collocation should be considered when choosing the distribution

keys. Following is a list of items to consider:

– The tables must be in the same database partition group for collocation. The

table spaces may be different, but must be defined in the same database

partition group.

– The distribution keys of the tables must have the same number of columns,

and the corresponding key columns must be database partition-compatible for

collocation.

– The choice of distribution key also has an impact on performance of joins. If a

table is frequently joined with another table, you should consider the joining

column(s) as a distribution key for both tables.
v The NOT LOGGED INITIALLY option is useful for situations where a large

result set needs to be created with data from an alternate source (another table

or a file) and recovery of the table is not necessary. Using this option will save

the overhead of logging the data. The following considerations apply when this

option is specified:

– When the unit of work is committed, all changes that were made to the table

during the unit of work are flushed to disk.

– When you run the rollforward utility and it encounters a log record that

indicates that a table in the database was either populated by the Load utility

or created with the NOT LOGGED INITIALLY option, the table will be

marked as unavailable. The table will be dropped by the rollforward utility if

it later encounters a DROP TABLE log. Otherwise, after the database is

recovered, an error will be issued if any attempt is made to access the table

(SQLSTATE 55019). The only operation permitted is to drop the table.

– Once such a table is backed up as part of a database or table space back up,

recovery of the table becomes possible.
v A REFRESH DEFERRED system-maintained materialized query table defined

with ENABLE QUERY OPTIMIZATION can be used to optimize the processing

of queries if CURRENT REFRESH AGE is set to ANY and CURRENT

196 Common Criteria Certification: Administration and User Documentation - Volume 2

MAINTAINED TABLE TYPES FOR OPTIMIZATION is set such that it includes

system-maintained materialized query tables. A REFRESH DEFERRED

user-maintained materialized query table defined with ENABLE QUERY

OPTIMIZATION can be used to optimize the processing of queries if CURRENT

REFRESH AGE is set to ANY and CURRENT MAINTAINED TABLE TYPES

FOR OPTIMIZATION is set such that it includes user-maintained materialized

query tables. A REFRESH IMMEDIATE materialized query table defined with

ENABLE QUERY OPTIMIZATION is always considered for optimization. For

this optimization to be able to use a REFRESH DEFERRED or a REFRESH

IMMEDIATE materialized query table, the fullselect must conform to certain

rules in addition to those already described. The fullselect must:

– be a subselect with a GROUP BY clause or a subselect with a single table

reference

– not include DISTINCT anywhere in the select list

– not include any special registers and built-in functions that depend on the

value of a special register

– not include any global variables

– not include functions that are not deterministic.

If the query specified when creating a materialized query table does not conform

to these rules, a warning is returned (SQLSTATE 01633).

v If a materialized query table is defined with REFRESH IMMEDIATE, or a

staging table is defined with PROPAGATE IMMEDIATE, it is possible for an

error to occur when attempting to apply the change resulting from an insert,

update, or delete operation on an underlying table. The error will cause the

failure of the insert, update, or delete operation on the underlying table.

v Materialized query tables or staging tables cannot be used as exception tables

when constraints are checked in bulk, such as during load operations or during

execution of the SET INTEGRITY statement.

v Certain operations cannot be performed on a table that is referenced by a

materialized query table defined with REFRESH IMMEDIATE, or defined with

REFRESH DEFERRED with an associated staging table:

– IMPORT REPLACE cannot be used.

– ALTER TABLE NOT LOGGED INITIALLY WITH EMPTY TABLE cannot be

done.
v In a federated system, nicknames for relational data sources or local tables can

be used as the underlying tables to create a materialized query table. Nicknames

for non-relational data sources are not supported. When a nickname is one of

the underlying tables, the REFRESH DEFERRED option must be used.

System-maintained materialized query tables that reference nicknames are not

supported in a partitioned database environment.

v Transparent DDL: In a federated system, a remote base table can be created,

altered, or dropped using DB2 SQL. This capability is known as transparent DDL.

Before a remote base table can be created on a data source, the federated server

must be configured to access that data source. This configuration includes

creating the wrapper for the data source, supplying the server definition for the

server where the remote base table will be located, and creating the user

mappings between the federated server and the data source.

Transparent DDL does impose some limitations on what can be included in the

CREATE TABLE statement:

– Only columns and a primary key can be created on the remote base table.

– Specific clauses supported by transparent DDL include:

Chapter 1. SQL Statements for Administrators 197

|
|

- column-definition and unique-constraint in the element-list clause

- NOT NULL and PRIMARY KEY in the column-options clause

- OPTIONS
– The remote data source must support:

- The remote column data types to which the DB2 column data types are

mapped

- The primary key option in the CREATE TABLE statement

Depending on how the data source responds to requests it does not support,

an error might be returned or the request might be ignored.
When a remote base table is created using transparent DDL, a nickname is

automatically created for that remote base table.

v A referential constraint may be defined in such a way that either the parent table

or the dependent table is a part of a table hierarchy. In such a case, the effect of

the referential constraint is as follows:

1. Effects of INSERT, UPDATE, and DELETE statements:

– If a referential constraint exists, in which PT is a parent table and DT is a

dependent table, the constraint ensures that for each row of DT (or any of

its subtables) that has a non-null foreign key, a row exists in PT (or one of

its subtables) with a matching parent key. This rule is enforced against any

action that affects a row of PT or DT, regardless of how that action is

initiated.
2. Effects of DROP TABLE statements:

– for referential constraints in which the dropped table is the parent table or

dependent table, the constraint is dropped

– for referential constraints in which a supertable of the dropped table is the

parent table the rows of the dropped table are considered to be deleted

from the supertable. The referential constraint is checked and its delete

rule is invoked for each of the deleted rows.

– for referential constraints in which a supertable of the dropped table is the

dependent table, the constraint is not checked. Deletion of a row from a

dependent table cannot result in violation of a referential constraint.
v Privileges: When any table is created, the definer of the table is granted

CONTROL privilege. When a subtable is created, the SELECT privilege that each

user or group has on the immediate supertable is automatically granted on the

subtable with the table definer as the grantor.

v Row size limit: The maximum number of bytes allowed in the row of a table is

dependent on the page size of the table space in which the table is created

(tablspace-name1). The following list shows the row size limit and number of

columns limit associated with each table space page size.

 Table 11. Limits for Number of Columns and Row Size in Each Table Space Page Size

Page Size Row Size Limit Column Count Limit

4K 4 005 500

8K 8 101 1 012

16K 16 293 1 012

32K 32 677 1 012

The actual number of columns for a table can be further limited by the following

formula:

198 Common Criteria Certification: Administration and User Documentation - Volume 2

Total Columns * 8 + Number of LOB Columns * 12 <=

 Row Size Limit for Page Size

v Byte counts: The following table contains the byte counts of columns by data

type. This is used to calculate the row size. The byte counts depend on whether

or not VALUE COMPRESSION is active. When VALUE COMPRESSION is not

active, the byte counts also depend on whether or not the column is nullable.

If a table is based on a structured type, an additional 4 bytes of overhead is

reserved to identify rows of subtables, regardless of whether or not subtables are

defined. Additional subtable columns must be considered nullable for byte count

purposes, even if defined as not nullable.

 Table 12. Byte Counts of Columns by Data Type

Data type

VALUE COMPRESSION is

active1

VALUE COMPRESSION is not active

Column is nullable Column is not nullable

SMALLINT 4 3 2

INTEGER 6 5 4

BIGINT 10 9 8

REAL 6 5 4

DOUBLE 10 9 8

DECIMAL The integral part of (p/2)+3,

where p is the precision

The integral part of (p/2)+2,

where p is the precision

The integral part of (p/2)+1,

where p is the precision

DECFLOAT(16) 10 9 8

DECFLOAT(34) 18 17 16

CHAR(n) n+2 n+1 n

VARCHAR(n) n+2 n+5 (within a table) n+4 (within a table)

LONG VARCHAR2 22 25 24

GRAPHIC(n) n*2+2 n*2+1 n*2

VARGRAPHIC(n) n*2+2 n*2+5 (within a table) n*2+4 (within a table)

LONG VARGRAPHIC2 22 25 24

DATE 6 5 4

TIME 5 4 3

TIMESTAMP(p) The integral part of

(p+1)/2+9, where p is the

precision of fractional

seconds

The integral part of

(p+1)/2+8, where pis the

precision of fractional

seconds

The integral part of

(p+1)/2+7, where pis the

precision of fractional

seconds

XML (without INLINE

LENGTH specified)

82 85 84

XML (with INLINE

LENGTH specified)

INLINE LENGTH +2 INLINE LENGTH +4 INLINE LENGTH +3

Maximum LOB3 length 1024

(without INLINE LENGTH

specified)

70 73 72

Maximum LOB length 8192

(without INLINE LENGTH

specified)

94 97 96

Maximum LOB length

65 536 (without INLINE

LENGTH specified)

118 121 120

Chapter 1. SQL Statements for Administrators 199

|

|

||
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|

Table 12. Byte Counts of Columns by Data Type (continued)

Data type

VALUE COMPRESSION is

active1

VALUE COMPRESSION is not active

Column is nullable Column is not nullable

Maximum LOB length

524 000 (without INLINE

LENGTH specified)

142 145 144

Maximum LOB length

4 190 000 (without INLINE

LENGTH specified)

166 169 168

Maximum LOB length

134 000 000 (without

INLINE LENGTH specified)

198 201 200

Maximum LOB length

536 000 000 (without

INLINE LENGTH specified)

222 225 224

Maximum LOB length

1 070 000 000 (without

INLINE LENGTH specified)

254 257 256

Maximum LOB length

1 470 000 000 (without

INLINE LENGTH specified)

278 281 280

Maximum LOB length

2 147 483 647 (without

INLINE LENGTH specified)

314 317 316

LOB with INLINE

LENGTH specified

INLINE LENGTH + 2 INLINE LENGTH + 5 INLINE LENGTH + 4

1 There is an additional 2 bytes of storage used by each row when VALUE COMPRESSION is active for that row.

2The LONG VARCHAR and LONG VARGRAPHIC data types are supported but are deprecated and might be

removed in a future release.

3 Each LOB value has a LOB descriptor in the base record that points to the location of the actual value. The size of

the descriptor varies according to the maximum length defined for the column.

For a distinct type, the byte count is equivalent to the length of the source type of the distinct type. For a reference type,

the byte count is equivalent to the length of the built-in data type on which the reference type is based. For a

structured type, the byte count is equivalent to the INLINE LENGTH + 4. The INLINE LENGTH is the value specified

(or implicitly calculated) for the column in the column-options clause.

The row sizes for the following sample tables assume that VALUE

COMPRESSION is not specified:

DEPARTMENT 63 (0 + 3 + 33 + 7 + 3 + 17)

ORG 57 (0 + 3 + 19 + 2 + 15 + 18)

If VALUE COMPRESSION were to be specified, the row sizes would change to:

DEPARTMENT 69 (2 + 5 + 31 + 8 + 5 + 18)

ORG 53 (2 + 4 + 16 + 4 + 12 + 15)

v Storage byte counts: The following table contains the storage byte counts of

columns by data type for data values. The byte counts depend on whether or

not VALUE COMPRESSION is active. When VALUE COMPRESSION is not

active, the byte counts also depend on whether or not the column is nullable.

The values in the table represent the amount of storage (in bytes) that is used to

store the value.

200 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|||

|
|

Table 13. Storage Byte Counts Based on Row Format, Data Type, and Data Value

Data value → NULL NULL zero-length

system

default2

all other data

values

all other data

values

all other data

values

VALUE

COMPRES-

SION → not active active1 active1 active1 not active not active active1

Column

nullability → nullable nullable n/a n/a nullable not nullable n/a

Data type

SMALLINT 3 3 - 3 3 2 4

INTEGER 5 3 - 3 5 4 6

BIGINT 9 3 - 3 9 8 10

REAL 5 3 - 3 5 4 6

DOUBLE 9 3 - 3 9 8 10

DECIMAL The integral

part of

(p/2)+2, where

p is the

precision

3 - 3 The integral

part of

(p/2)+2, where

p is the

precision

The integral

part of

(p/2)+1, where

p is the

precision

The integral

part of

(p/2)+3, where

p is the

precision

DECFLOAT(16) 9 3 - 3 9 8 10

DECFLOAT(34) 17 3 - 3 17 16 18

CHAR(n) n+1 3 - 3 n+1 n n+2

VARCHAR(n) 5 3 2 2 N+5, where N

is the number

of bytes in the

data

N+4, where N

is the number

of bytes in the

data

N+2, where N

is the number

of bytes in the

data

LONG

VARCHAR3

5 3 2 2 25 24 22

GRAPHIC(n) n*2+1 3 - 3 n*2+1 n*2 n*2+2

VARGRAPHIC(n) 5 3 2 2 N*2+5, where

N is the

number of

bytes in the

data

N*2+4, where

N is the

number of

bytes in the

data

N*2+2, where

N is the

number of

bytes in the

data

LONG

VARGRAPHIC3

5 3 2 2 25 24 22

DATE 5 3 - - 5 4 6

TIME 4 3 - - 4 3 5

TIMESTAMP(p) The integral

part of

(p+1)/2+8,

where p is the

precision of

fractional

seconds

3 - - The integral

part of

(p+1)/2+8,

where p is the

precision of

fractional

seconds

The integral

part of

(p+1)/2+7,

where p is the

precision of

fractional

seconds

The integral

part of

(p+1)/2+9,

where p is the

precision of

fractional

seconds

Maximum

LOB2 length

1024

5 3 2 2 (60 to 68)+5 (60 to 68)+4 (60 to 68)+2

Maximum

LOB length

8192

5 3 2 2 (60 to 92)+5 (60 to 92)+4 (60 to 92)+2

Maximum

LOB length

65 536

5 3 2 2 (60 to 116)+5 (60 to 116)+4 (60 to 116)+2

Maximum

LOB length

524 000

5 3 2 2 (60 to 140)+5 (60 to 140)+4 (60 to 140)+2

Chapter 1. SQL Statements for Administrators 201

|

|

||
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

Table 13. Storage Byte Counts Based on Row Format, Data Type, and Data Value (continued)

Data value → NULL NULL zero-length

system

default2

all other data

values

all other data

values

all other data

values

VALUE

COMPRES-

SION → not active active1 active1 active1 not active not active active1

Column

nullability → nullable nullable n/a n/a nullable not nullable n/a

Data type

Maximum

LOB length

4 190 000

5 3 2 2 (60 to 164)+5 (60 to 164)+4 (60 to 164)+2

Maximum

LOB length

134 000 000

5 3 2 2 (60 to 196)+5 (60 to 196)+4 (60 to 196)+2

Maximum

LOB length

536 000 000

5 3 2 2 (60 to 220)+5 (60 to 220)+4 (60 to 220)+2

Maximum

LOB length

1 070 000 000

5 3 2 2 (60 to 252)+5 (60 to 252)+4 (60 to 252)+2

Maximum

LOB length

1 470 000 000

5 3 2 2 (60 to 276)+5 (60 to 276)+4 (60 to 276)+2

Maximum

LOB length

2 147 483 647

5 3 2 2 (60 to 312)+5 (60 to 312)+4 (60 to 312)+2

XML 5 3 - - 85 84 82

1 There is an additional 2 bytes of storage used by each row when VALUE COMPRESSION is active for that row.

2 When COMPRESS SYSTEM DEFAULT is specified for the column.

3The LONG VARCHAR and LONG VARGRAPHIC data types are supported but are deprecated and might be removed in a future

release.

v Dimension columns: Because each distinct value of a dimension column is

assigned to a different block of the table, clustering on an expression may be

desirable, such as ″INTEGER(ORDER_DATE)/100″. In this case, a generated

column can be defined for the table, and this generated column may then be

used in the ORGANIZE BY DIMENSIONS clause. If the expression is monotonic

with respect to a column of the table, DB2 may use the dimension index to

satisfy range predicates on that column. For example, if the expression is simply

column-name + some-positive-constant, it is monotonic increasing. User-defined

functions, certain built-in functions, and using more than one column in an

expression, prevent monotonicity or its detection.

Dimensions involving generated columns whose expressions are non-monotonic,

or whose monotonicity cannot be determined, can still be created, but range

queries along slice or cell boundaries of these dimensions are not supported.

Equality and IN predicates can be processed by slices or cells.

A generated column is monotonic if the following is true with respect to the

generating function, fn:

– Monotonic increasing.

For every possible pair of values x1 and x2, if x2>x1, then fn(x2)>fn(x1). For

example:

 SALARY - 10000

202 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

– Monotonic decreasing.

For every possible pair of values x1 and x2, if x2>x1, then fn(x2)<fn(x1). For

example:

 -SALARY

– Monotonic non-decreasing.

For every possible pair of values x1 and x2, if x2>x1, then fn(x2)>=fn(x1). For

example:

 SALARY/1000

– Monotonic non-increasing.

For every possible pair of values x1 and x2, if x2>x1, then fn(x2)<=fn(x1). For

example:

 -SALARY/1000

The expression ″PRICE*DISCOUNT″ is not monotonic, because it involves more

than one column of the table.

v Range-clustered tables: Organizing a table by key sequence is effective for

certain types of tables. The table should have an integer key that is tightly

clustered (dense) over the range of possible values. The columns of this integer

key must not be nullable, and the key should logically be the primary key of the

table. The organization of a range-clustered table precludes the need for a

separate unique index object, providing direct access to the row for a specified

key value, or a range of rows for a specified range of key values. The allocation

of all the space for the complete set of rows in the defined key sequence range is

done during table creation, and must be considered when defining a

range-clustered table. The storage space is not available for any other use, even

though the rows are initially marked deleted. If the full key sequence range will

be populated with data only over a long period of time, this table organization

may not be an appropriate choice.

v A table can have at most one security policy.

v DB2 enforces referential integrity constraints that are defined on protected tables.

Constraints violations in this case can be difficult to debug, because DB2 will not

allow you to see what row has caused a violation if you do not have the

appropriate security label or exemptions credentials.

v When defining the order of columns in a table, frequently updated columns

should be placed at the end of the definition to minimize the amount of data

logged for updates. This includes ROW CHANGE TIMESTAMP columns. ROW

CHANGE TIMESTAMP columns are guaranteed to be updated on each row

update.

v Security and replication: Replication can cause data rows from a protected table

to be replicated outside of the database. Care must be taken when setting up

replication for a protected table, because DB2 cannot protect data that is outside

of the database.

v Compatibilities: For compatibility with DB2 for z/OS:

– The following syntax is accepted as the default behavior:

- IN database-name.tablespace-name

- IN DATABASE database-name

- FOR MIXED DATA

- FOR SBCS DATA
– PART can be specified in place of PARTITION

– PARTITION partition-number can be specified instead of PARTITION

partition-name. A partition-number must not identify a partition that was

Chapter 1. SQL Statements for Administrators 203

previously specified in the CREATE TABLE statement. If a partition-number is

not specified, a unique partition number is generated by the database

manager.

– VALUES can be specified in place of ENDING AT

For compatibility with previous versions of DB2 databases:

– The CONSTRAINT keyword can be omitted from a column-definition defining

a references-clause

– constraint-name can be specified following FOREIGN KEY (without the

CONSTRAINT keyword)

– SUMMARY can optionally be specified after CREATE

– DEFINITION ONLY can be specified in place of WITH NO DATA

– The PARTITIONING KEY clause can be specified in place of the DISTRIBUTE

BY clause

– REPLICATED can be specified in place of DISTRIBUTE BY REPLICATION

For compatibility with previous versions of DB2 databases, and for consistency:

– A comma can be used to separate multiple options in the identity-options

clause

The following syntax is also supported:

– NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER

Examples

Example 1: Create table TDEPT in the DEPARTX table space. DEPTNO,

DEPTNAME, MGRNO, and ADMRDEPT are column names. CHAR means the

column will contain character data. NOT NULL means that the column cannot

contain a null value. VARCHAR means the column will contain varying-length

character data. The primary key consists of the column DEPTNO.

 CREATE TABLE TDEPT

 (DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(36) NOT NULL,

 MGRNO CHAR(6),

 ADMRDEPT CHAR(3) NOT NULL,

 PRIMARY KEY(DEPTNO))

 IN DEPARTX

Example 2: Create table PROJ in the SCHED table space. PROJNO, PROJNAME,

DEPTNO, RESPEMP, PRSTAFF, PRSTDATE, PRENDATE, and MAJPROJ are

column names. CHAR means the column will contain character data. DECIMAL

means the column will contain packed decimal data. 5,2 means the following: 5

indicates the number of decimal digits, and 2 indicates the number of digits to the

right of the decimal point. NOT NULL means that the column cannot contain a

null value. VARCHAR means the column will contain varying-length character

data. DATE means the column will contain date information in a three-part format

(year, month, and day).

 CREATE TABLE PROJ

 (PROJNO CHAR(6) NOT NULL,

 PROJNAME VARCHAR(24) NOT NULL,

 DEPTNO CHAR(3) NOT NULL,

 RESPEMP CHAR(6) NOT NULL,

 PRSTAFF DECIMAL(5,2) ,

 PRSTDATE DATE ,

 PRENDATE DATE ,

 MAJPROJ CHAR(6) NOT NULL)

 IN SCHED

204 Common Criteria Certification: Administration and User Documentation - Volume 2

Example 3: Create a table called EMPLOYEE_SALARY where any unknown salary

is considered 0. No table space is specified, so that the table will be created in a

table space selected by the system based on the rules described for the IN

tablespace-name clause.

 CREATE TABLE EMPLOYEE_SALARY

 (DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(36) NOT NULL,

 EMPNO CHAR(6) NOT NULL,

 SALARY DECIMAL(9,2) NOT NULL WITH DEFAULT)

Example 4: Create distinct types for total salary and miles and use them for

columns of a table created in the default table space. In a dynamic SQL statement

assume the CURRENT SCHEMA special register is JOHNDOE and the CURRENT

PATH is the default (″SYSIBM″,″SYSFUN″,″JOHNDOE″).

If a value for SALARY is not specified it must be set to 0 and if a value for

LIVING_DIST is not specified it must to set to 1 mile.

 CREATE TYPE JOHNDOE.T_SALARY AS INTEGER WITH COMPARISONS

 CREATE TYPE JOHNDOE.MILES AS FLOAT WITH COMPARISONS

 CREATE TABLE EMPLOYEE

 (ID INTEGER NOT NULL,

 NAME CHAR (30),

 SALARY T_SALARY NOT NULL WITH DEFAULT,

 LIVING_DIST MILES DEFAULT MILES(1))

Example 5: Create distinct types for image and audio and use them for columns of

a table. No table space is specified, so that the table will be created in a table space

selected by the system based on the rules described for the IN tablespace-name

clause. Assume the CURRENT PATH is the default.

 CREATE TYPE IMAGE AS BLOB (10M)

 CREATE TYPE AUDIO AS BLOB (1G)

 CREATE TABLE PERSON

 (SSN INTEGER NOT NULL,

 NAME CHAR (30),

 VOICE AUDIO,

 PHOTO IMAGE)

Example 6: Create table EMPLOYEE in the HUMRES table space. The constraints

defined on the table are the following:

v The values of department number must lie in the range 10 to 100.

v The job of an employee can only be either ’Sales’, ’Mgr’ or ’Clerk’.

v Every employee that has been with the company since 1986 must make more

than $40,500.

Note: If the columns included in the check constraints are nullable they could also

be NULL.

 CREATE TABLE EMPLOYEE

 (ID SMALLINT NOT NULL,

 NAME VARCHAR(9),

 DEPT SMALLINT CHECK (DEPT BETWEEN 10 AND 100),

 JOB CHAR(5) CHECK (JOB IN (’Sales’,’Mgr’,’Clerk’)),

 HIREDATE DATE,

 SALARY DECIMAL(7,2),

 COMM DECIMAL(7,2),

 PRIMARY KEY (ID),

Chapter 1. SQL Statements for Administrators 205

CONSTRAINT YEARSAL CHECK (YEAR(HIREDATE) > 1986

 OR SALARY > 40500)

)

 IN HUMRES

Example 7: Create a table that is wholly contained in the PAYROLL table space.

 CREATE TABLE EMPLOYEE

 IN PAYROLL

Example 8: Create a table with its data part in ACCOUNTING and its index part

in ACCOUNT_IDX.

 CREATE TABLE SALARY.....

 IN ACCOUNTING INDEX IN ACCOUNT_IDX

Example 9: Create a table and log SQL changes in the default format.

 CREATE TABLE SALARY1

or

 CREATE TABLE SALARY1

 DATA CAPTURE NONE

Example 10: Create a table and log SQL changes in an expanded format.

 CREATE TABLE SALARY2

 DATA CAPTURE CHANGES

Example 11: Create a table EMP_ACT in the SCHED table space. EMPNO,

PROJNO, ACTNO, EMPTIME, EMSTDATE, and EMENDATE are column names.

Constraints defined on the table are:

v The value for the set of columns, EMPNO, PROJNO, and ACTNO, in any row

must be unique.

v The value of PROJNO must match an existing value for the PROJNO column in

the PROJECT table and if the project is deleted all rows referring to the project

in EMP_ACT should also be deleted.
 CREATE TABLE EMP_ACT

 (EMPNO CHAR(6) NOT NULL,

 PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

 EMPTIME DECIMAL(5,2),

 EMSTDATE DATE,

 EMENDATE DATE,

 CONSTRAINT EMP_ACT_UNIQ UNIQUE (EMPNO,PROJNO,ACTNO),

 CONSTRAINT FK_ACT_PROJ FOREIGN KEY (PROJNO)

 REFERENCES PROJECT (PROJNO) ON DELETE CASCADE

)

 IN SCHED

A unique index called EMP_ACT_UNIQ is automatically created in the same

schema to enforce the unique constraint.

Example 12: Create a table that is to hold information about famous goals for the

ice hockey hall of fame. The table will list information about the player who scored

the goal, the goaltender against who it was scored, the date and place, and a

description. The description column is nullable.

 CREATE TABLE HOCKEY_GOALS

 (BY_PLAYER VARCHAR(30) NOT NULL,

 BY_TEAM VARCHAR(30) NOT NULL,

206 Common Criteria Certification: Administration and User Documentation - Volume 2

AGAINST_PLAYER VARCHAR(30) NOT NULL,

 AGAINST_TEAM VARCHAR(30) NOT NULL,

 DATE_OF_GOAL DATE NOT NULL,

 DESCRIPTION CLOB(5000))

Example 13: Suppose an exception table is needed for the EMPLOYEE table. One

can be created using the following statement.

 CREATE TABLE EXCEPTION_EMPLOYEE AS

 (SELECT EMPLOYEE.*,

 CURRENT TIMESTAMP AS TIMESTAMP,

 CAST (’’ AS CLOB(32K)) AS MSG

 FROM EMPLOYEE

) WITH NO DATA

Example 14: Given the following table spaces with the indicated attributes:

 TBSPACE PAGESIZE USER USERAUTH

 ------------------ ----------- ------ --------

 DEPT4K 4096 BOBBY Y

 PUBLIC4K 4096 PUBLIC Y

 DEPT8K 8192 BOBBY Y

 DEPT8K 8192 RICK Y

 PUBLIC8K 8192 PUBLIC Y

v If RICK creates the following table, it is placed in table space PUBLIC4K since

the byte count is less than 4005; but if BOBBY creates the same table, it is placed

in table space DEPT4K, since BOBBY has USE privilege because of an explicit

grant:

 CREATE TABLE DOCUMENTS

 (SUMMARY VARCHAR(1000),

 REPORT VARCHAR(2000))

v If BOBBY creates the following table, it is placed in table space DEPT8K since

the byte count is greater than 4005, and BOBBY has USE privilege because of an

explicit grant. However, if DUNCAN creates the same table, it is placed in table

space PUBLIC8K, since DUNCAN has no specific privileges:

 CREATE TABLE CURRICULUM

 (SUMMARY VARCHAR(1000),

 REPORT VARCHAR(2000),

 EXERCISES VARCHAR(1500))

Example 15: Create a table with a LEAD column defined with the structured type

EMP. Specify an INLINE LENGTH of 300 bytes for the LEAD column, indicating

that any instances of LEAD that cannot fit within the 300 bytes are stored outside

the table (separately from the base table row, similar to the way LOB values are

handled).

 CREATE TABLE PROJECTS (PID INTEGER,

 LEAD EMP INLINE LENGTH 300,

 STARTDATE DATE,

 ...)

Example 16: Create a table DEPT with five columns named DEPTNO,

DEPTNAME, MGRNO, ADMRDEPT, and LOCATION. Column DEPT is to be

defined as an IDENTITY column such that DB2 will always generate a value for it.

The values for the DEPT column should begin with 500 and increment by 1.

 CREATE TABLE DEPT

 (DEPTNO SMALLINT NOT NULL

 GENERATED ALWAYS AS IDENTITY

 (START WITH 500, INCREMENT BY 1),

Chapter 1. SQL Statements for Administrators 207

DEPTNAME VARCHAR(36) NOT NULL,

 MGRNO CHAR(6),

 ADMRDEPT SMALLINT NOT NULL,

 LOCATION CHAR(30))

Example 17: Create a SALES table that is distributed on the YEAR column, and that

has dimensions on the REGION and YEAR columns. Data will be distributed

across database partitions according to hashed values of the YEAR column. On

each database partition, data will be organized into extents based on unique

combinations of values of the REGION and YEAR columns on those database

partitions.

 CREATE TABLE SALES

 (CUSTOMER VARCHAR(80),

 REGION CHAR(5),

 YEAR INTEGER)

 DISTRIBUTE BY HASH (YEAR)

 ORGANIZE BY DIMENSIONS (REGION, YEAR)

Example 18: Create a SALES table with a PURCHASEYEARMONTH column that is

generated from the PURCHASEDATE column. Use an expression to create a

column that is monotonic with respect to the original PURCHASEDATE column,

and is therefore suitable for use as a dimension. The table is distributed on the

REGION column, and organized within each database partition into extents

according to the PURCHASEYEARMONTH column; that is, different regions will

be on different database partitions, and different purchase months will belong to

different cells (or sets of extents) within those database partitions.

 CREATE TABLE SALES

 (CUSTOMER VARCHAR(80),

 REGION CHAR(5),

 PURCHASEDATE DATE,

 PURCHASEYEARMONTH INTEGER

 GENERATED ALWAYS AS (INTEGER(PURCHASEDATE)/100))

 DISTRIBUTE BY HASH (REGION)

 ORGANIZE BY DIMENSIONS (PURCHASEYEARMONTH)

Example 19: Create a CUSTOMER table with a CUSTOMERNUMDIM column that

is generated from the CUSTOMERNUM column. Use an expression to create a

column that is monotonic with respect to the original CUSTOMERNUM column,

and is therefore suitable for use as a dimension. The table is organized into cells

according to the CUSTOMERNUMDIM column, so that there is a different cell in

the table for every 50 customers. If a unique index were created on

CUSTOMERNUM, customer numbers would be clustered in such a way that each

set of 50 values would be found in a particular set of extents in the table.

 CREATE TABLE CUSTOMER

 (CUSTOMERNUM INTEGER,

 CUSTOMERNAME VARCHAR(80),

 ADDRESS VARCHAR(200),

 CITY VARCHAR(50),

 COUNTRY VARCHAR(50),

 CODE VARCHAR(15),

 CUSTOMERNUMDIM INTEGER

 GENERATED ALWAYS AS (CUSTOMERNUM/50))

 ORGANIZE BY DIMENSIONS (CUSTOMERNUMDIM)

Example 20: Create a remote base table called EMPLOYEE on the Oracle server,

ORASERVER. A nickname, named EMPLOYEE, which refers to this newly created

remote base table, will also automatically be created.

 CREATE TABLE EMPLOYEE

 (EMP_NO CHAR(6) NOT NULL,

 FIRST_NAME VARCHAR(12) NOT NULL,

208 Common Criteria Certification: Administration and User Documentation - Volume 2

MID_INT CHAR(1) NOT NULL,

 LAST_NAME VARCHAR(15) NOT NULL,

 HIRE_DATE DATE,

 JOB CHAR(8),

 SALARY DECIMAL(9,2),

 PRIMARY KEY (EMP_NO))

 OPTIONS

 (REMOTE_SERVER ’ORASERVER’,

 REMOTE_SCHEMA ’J15USER1’,

 REMOTE_TABNAME ’EMPLOYEE’)

The following CREATE TABLE statements show how to specify the table name, or

the table name and the explicit remote base table name, to get the desired case.

The lowercase identifier, employee, is used to illustrate the implicit folding of

identifiers.

Create a remote base table called EMPLOYEE (uppercase characters) on an

Informix server, and create a nickname named EMPLOYEE (uppercase characters)

on that table:

 CREATE TABLE employee

 (EMP_NO CHAR(6) NOT NULL,

 ...)

 OPTIONS

 (REMOTE_SERVER ’INFX_SERVER’)

If the REMOTE_TABNAME option is not specified, and table-name is not delimited,

the remote base table name will be in uppercase characters, even if the remote data

source normally stores names in lowercase characters.

Create a remote base table called employee (lowercase characters) on an Informix

server, and create a nickname named EMPLOYEE (uppercase characters) on that

table:

 CREATE TABLE employee

 (EMP_NO CHAR(6) NOT NULL,

 ...)

 OPTIONS

 (REMOTE_SERVER ’INFX_SERVER’,

 REMOTE_TABNAME ’employee’)

When creating a table at a remote data source that supports delimited identifiers,

use the REMOTE_TABNAME option and a character string constant that specifies

the table name in the desired case.

Create a remote base table called employee (lowercase characters) on an Informix

server, and create a nickname named employee (lowercase characters) on that

table:

 CREATE TABLE "employee"

 (EMP_NO CHAR(6) NOT NULL,

 ...)

 OPTIONS

 (REMOTE_SERVER ’INFX_SERVER’)

If the REMOTE_TABNAME option is not specified, and table-name is delimited, the

remote base table name will be identical to table-name.

Example 21: Create a range-clustered table that can be used to locate a student

using a student ID. For each student record, include the school ID, program ID,

student number, student ID, student first name, student last name, and student

grade point average (GPA).

Chapter 1. SQL Statements for Administrators 209

CREATE TABLE STUDENTS

 (SCHOOL_ID INTEGER NOT NULL,

 PROGRAM_ID INTEGER NOT NULL,

 STUDENT_NUM INTEGER NOT NULL,

 STUDENT_ID INTEGER NOT NULL,

 FIRST_NAME CHAR(30),

 LAST_NAME CHAR(30),

 GPA DOUBLE)

 ORGANIZE BY KEY SEQUENCE

 (STUDENT_ID

 STARTING FROM 1

 ENDING AT 1000000)

 DISALLOW OVERFLOW

The size of each record is the sum of the columns, plus alignment, plus the

range-clustered table row header. In this case, the row size is 98 bytes: 4 + 4 + 4 +

4 + 30 + 30 + 8 + 3 (for nullable columns) + 1 (for alignment) + 10 (for the header).

With a 4-KB page size (or 4096 bytes), after accounting for page overhead, there are

4038 bytes available, enough room for 41 records per page. Allowing for 1 million

student records, there is a need for (1 million divided by 41 records per page)

24 391 pages. With two additional pages for table overhead, the final number of

4-KB pages that are allocated when the table is created is 24 393.

Example 22: Create a table named DEPARTMENT with a functional dependency

that has no specified constraint name.

 CREATE TABLE DEPARTMENT

 (DEPTNO SMALLINT NOT NULL,

 DEPTNAME VARCHAR(36) NOT NULL,

 MGRNO CHAR(6),

 ADMRDEPT SMALLINT NOT NULL,

 LOCATION CHAR(30),

 CHECK (DEPTNAME DETERMINED BY DEPTNO) NOT ENFORCED)

Example 23: Create a table with protected rows.

 CREATE TABLE TOASTMASTERS

 (PERFORMANCE DB2SECURITYLABEL,

 POINTS INTEGER,

 NAME VARCHAR(50))

 SECURITY POLICY CONTRIBUTIONS

Example 24: Create a table with protected columns.

 CREATE TABLE TOASTMASTERS

 (PERFORMANCE CHAR(8),

 POINTS INTEGER COLUMN SECURED WITH CLUBPOSITION,

 NAME VARCHAR(50))

 SECURITY POLICY CONTRIBUTIONS

Example 25: Create a table with protected rows and columns.

 CREATE TABLE TOASTMASTERS

 (PERFORMANCE DB2SECURITYLABEL,

 POINTS INTEGER COLUMN SECURED WITH CLUBPOSITION,

 NAME VARCHAR(50))

 SECURITY POLICY CONTRIBUTIONS

Example 26: Large objects for a partitioned table reside, by default, in the same

table space as the data. This default behavior can be overridden by using the

LONG IN clause to specify one or more table spaces for the large objects. Create a

table named DOCUMENTS whose large object data is to be stored (in a

round-robin fashion for each data partition) in table spaces TBSP1 and TBSP2.

210 Common Criteria Certification: Administration and User Documentation - Volume 2

CREATE TABLE DOCUMENTS

 (ID INTEGER,

 CONTENTS CLOB)

 LONG IN TBSP1, TBSP2

 PARTITION BY RANGE (ID)

 (STARTING 1 ENDING 1000

 EVERY 100)

Alternatively, use the long form of the syntax to explicitly identify a large table

space for each data partition. In this example, the CLOB data for the first data

partition is placed in LARGE_TBSP3, and the CLOB data for the remaining data

partitions is spread across LARGE_TBSP1 and LARGE_TBSP2 in a round-robin

fashion.

 CREATE TABLE DOCUMENTS

 (ID INTEGER,

 CONTENTS CLOB)

 LONG IN LARGE_TBSP1, LARGE_TBSP2

 PARTITION BY RANGE (ID)

 (STARTING 1 ENDING 100

 IN TBSP1 LONG IN LARGE_TBSP3,

 STARTING 101 ENDING 1000

 EVERY 100)

Example 27: Create a partitioned table named ACCESSNUMBERS having two data

partitions. The row (10, NULL) is to be placed in the first partition, and the row

(NULL, 100) is to be placed in the second (last) data partition.

 CREATE TABLE ACCESSNUMBERS

 (AREA INTEGER,

 EXCHANGE INTEGER)

 PARTITION BY RANGE (AREA NULLS LAST, EXCHANGE NULLS FIRST)

 (STARTING (1,1) ENDING (10,100),

 STARTING (11,1) ENDING (MAXVALUE,MAXVALUE))

Because null values in the second column are sorted first, the row (11, NULL)

would sort below the low boundary of the last data partition (11, 1); attempting to

insert this row returns an error. The row (12, NULL) would fall within the last data

partition.

Example 28: Create a table named RATIO having a single data partition and

partitioning column PERCENT.

 CREATE TABLE RATIO

 (PERCENT INTEGER)

 PARTITION BY RANGE (PERCENT)

 (STARTING (MINVALUE) ENDING (MAXVALUE))

This table definition allows any integer value for column PERCENT to be inserted.

The following definition for the RATIO table allows any integer value between 1

and 100 inclusive to be inserted into column PERCENT.

 CREATE TABLE RATIO

 (PERCENT INTEGER)

 PARTITION BY RANGE (PERCENT)

 (STARTING 0 EXCLUSIVE ENDING 100 INCLUSIVE)

Example 29: Create a table named MYDOCS with two columns: one is an identifier,

and the other stores XML documents.

 CREATE TABLE MYDOCS

 (ID INTEGER,

 DOC XML)

 IN HLTBSPACE

Chapter 1. SQL Statements for Administrators 211

Example 30: Create a table named NOTES with four columns, including one for

storing XML-based notes.

 CREATE TABLE NOTES

 (ID INTEGER,

 DESCRIPTION VARCHAR(255),

 CREATED TIMESTAMP,

 NOTE XML)

Example 31: Create a table, EMP_INFO, that contains a phone number and address

for each employee. Include a ROW CHANGE TIMESTAMP column in the table to

track the modification of employee information.

 CREATE TABLE EMP_INFO

 (EMPNO CHAR(6) NOT NULL,

 EMP_INFOCHANGE NOT NULL GENERATED ALWAYS

 FOR EACH ROW ON UPDATE

 AS ROW CHANGE TIMESTAMP,

 EMP_ADDRESS VARCHAR(300),

 EMP_PHONENO CHAR(4),

 PRIMARY KEY (EMPNO))

Example 32: Create a partitioned table named DOCUMENTS having two data

partitions:

v The data object in the first partition resides in table space TBSP11. The

partitioned index partition on the partition resides in table space TBSP21. The

XML data object resides in table space TBSP31.

v The data object in the second partition resides in table space TBSP12. The

partitioned index partition on the partition resides in table space TBSP22. The

XML data object resides in table space TBSP32.

The table level INDEX IN clause has no impact on table space selection for

partitioned indexes.

 CREATE TABLE DOCUMENTS

 (ID INTEGER,

 CONTENTS XML) INDEX IN TBSPX

 PARTITION BY (ID)

 (STARTING 1 ENDING 100 IN TBSP11 INDEX IN TBSP21 LONG IN TBSP31,

 STARTING 101 ENDING 101 IN TBSP21 INDEX IN TBSP22 LONG IN TBSP32);

Example 33: Create a partitioned table named SALES having two data partitions:

v The data object in the first partition resides in table space TBSP11. The

partitioned index partition on the partition resides in table space TBSP21.

v The data object in the second partition resides in table space TBSP12. The

partitioned index object resides in table space TBSP22.

The table level INDEX IN clause has no impact on table space selection for

partitioned indexes.

 CREATE TABLE SALES

 (SID INTEGER,

 AMOUNT INTEGER) INDEX IN TBSPX

 PARTITION BY (SID)

 (STARTING 1 ENDING 100 IN TBSP11 INDEX IN TBSP21,

 STARTING 101 ENDING 101 IN TBSP12 INDEX IN TBSP22);

CREATE TABLESPACE

The CREATE TABLESPACE statement defines a new table space within the

database, assigns containers to the table space, and records the table space

definition and attributes in the catalog.

212 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|
|
|
|
|

|

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSCTRL or SYSADM authority.

Syntax

�� CREATE

LARGE

REGULAR

SYSTEM

TEMPORARY

USER

 TABLESPACE tablespace-name �

�
DATABASE PARTITION GROUP

IN

db-partition-group-name

 �

�
PAGESIZE

integer

K

 �

�
 MANAGED BY AUTOMATIC STORAGE size-attributes

MANAGED BY

SYSTEM

system-containers

DATABASE

database-containers

size-attributes

�

�
EXTENTSIZE

number-of-pages

integer

K

M

PREFETCHSIZE

AUTOMATIC

number-of-pages

integer

K

M

G

 �

�
BUFFERPOOL

bufferpool-name

OVERHEAD

number-of-milliseconds
 �

�
NO FILE SYSTEM CACHING

FILE SYSTEM CACHING

TRANSFERRATE

number-of-milliseconds
 �

�
DROPPED TABLE RECOVERY

ON

OFF

 ��

size-attributes:

AUTORESIZE

NO

YES

INITIALSIZE

integer

K

M

G

 �

Chapter 1. SQL Statements for Administrators 213

�
INCREASESIZE

integer

PERCENT

K

M

G

MAXSIZE

integer

K

M

G

NONE

system-containers:

�

�

,

USING

(

’container-string’

)

on-db-partitions-clause

database-containers:

�

USING

container-clause

on-db-partitions-clause

container-clause:

�

 ,

(

FILE

’container-string’

number-of-pages

)

DEVICE

integer

K

M

G

on-db-partitions-clause:

 ON DBPARTITIONNUM

DBPARTITIONNUMS
 �

�

�

 ,

(

db-partition-number1

)

TO

db-partition-number2

Description

LARGE, REGULAR, SYSTEM TEMPORARY, or USER TEMPORARY

Specifies the type of table space that is to be created. If no type is specified, the

default is determined by the MANAGED BY clause.

LARGE

Stores all permanent data. This type is only allowed on database managed

space (DMS) table spaces. It is also the default type for DMS table spaces

when no type is specified. When a table is placed in a large table space:

v The table can be larger than a table in a regular table space. For details

on table and table space limits, see “SQL limits”.

214 Common Criteria Certification: Administration and User Documentation - Volume 2

v The table can support more than 255 rows per data page, which can

improve space utilization on data pages.

v Indexes that are defined on the table will require an additional 2 bytes

per row entry, compared to indexes defined on a table that resides in a

regular table space.

REGULAR

Stores all permanent data. This type applies to both DMS and SMS table

spaces. This is the only type allowed for SMS table spaces, and it is also

the default type for SMS table spaces when no type is specified.

SYSTEM TEMPORARY

Stores temporary tables, work areas used by the database manager to

perform operations such as sorts or joins. A database must always have at

least one SYSTEM TEMPORARY table space, because temporary tables can

only be stored in such a table space. A temporary table space is created

automatically when a database is created.

USER TEMPORARY

Stores created temporary tables and declared temporary tables. No user

temporary table spaces exist when a database is created. To allow the

definition of created temporary tables or declared temporary tables, at least

one user temporary table space should be created with appropriate USE

privileges.

tablespace-name

Names the table space. This is a one-part name. It is an SQL identifier (either

ordinary or delimited). The tablespace-name must not identify a table space that

already exists in the catalog (SQLSTATE 42710). The tablespace-name must not

begin with the characters ’SYS’ (SQLSTATE 42939).

IN DATABASE PARTITION GROUP db-partition-group-name

Specifies the database partition group for the table space. The database

partition group must exist. The only database partition group that can be

specified when creating a SYSTEM TEMPORARY table space is

IBMTEMPGROUP. The DATABASE PARTITION GROUP keywords are

optional.

 If the database partition group is not specified, the default database partition

group (IBMDEFAULTGROUP) is used for REGULAR, LARGE, and USER

TEMPORARY table spaces. For SYSTEM TEMPORARY table spaces, the

default database partition group IBMTEMPGROUP is used.

PAGESIZE integer [K]

Defines the size of pages used for the table space. The valid values for integer

without the suffix K are 4 096, 8 192, 16 384, or 32 768. The valid values for

integer with the suffix K are 4, 8, 16, or 32. Any number of spaces is allowed

between integer and K, including no space. An error occurs if the page size is

not one of these values (SQLSTATE 428DE), or if the page size is not the same

as the page size of the buffer pool that is associated with the table space

(SQLSTATE 428CB).

 The default value is provided by the pagesize database configuration

parameter, which is set when the database is created.

MANAGED BY AUTOMATIC STORAGE

Specifies that the table space is to be an automatic storage table space. If

automatic storage is not defined for the database, an error is returned

(SQLSTATE 55060).

Chapter 1. SQL Statements for Administrators 215

|

|

An automatic storage table space is created as either a system managed space

(SMS) table space or a database managed space (DMS) table space. When DMS

is chosen and the type of table space is not specified, the default behavior is to

create a large table space. With an automatic storage table space, the database

manager determines which containers are to be assigned to the table space,

based upon the storage paths that are associated with the database.

size-attributes

Specify the size attributes for an automatic storage table space or a DMS table

space that is not an automatic storage table space. SMS table spaces are not

auto-resizable.

AUTORESIZE

Specifies whether or not the auto-resize capability of a DMS table space or

an automatic storage table space is to be enabled. Auto-resizable table

spaces automatically increase in size when they become full. The default is

NO for DMS table spaces and YES for automatic storage table spaces.

NO

Specifies that the auto-resize capability of a DMS table space or an

automatic storage table space is to be disabled.

YES

Specifies that the auto-resize capability of a DMS table space or an

automatic storage table space is to be enabled.

INITIALSIZE integer K | M | G

Specifies the initial size, per database partition, of an automatic storage

table space. This option is only valid for automatic storage table spaces.

The integer value must be followed by K (for kilobytes), M (for

megabytes), or G (for gigabytes). Note that the actual value used might be

slightly smaller than what was specified, because the database manager

strives to maintain a consistent size across containers in the table space.

Moreover, if the table space is auto-resizable and the initial size is not large

enough to contain meta-data that must be added to the new table space,

the database manager will continue to extend the table space by the value

of INCREASESIZE until there is enough space. If the INITIALSIZE clause

is not specified, the database manager determines an appropriate value.

The value for integer must be at least 48 K.

INCREASESIZE integer PERCENT or INCREASESIZE integer K | M | G

Specifies the amount, per database partition, by which a table space that is

enabled for auto-resize will automatically be increased when the table

space is full, and a request for space has been made. The integer value

must be followed by:

v PERCENT to specify the amount as a percentage of the table space size

at the time that a request for space is made. When PERCENT is

specified, the integer value must be between 0 and 100 (SQLSTATE

42615).

v K (for kilobytes), M (for megabytes), or G (for gigabytes) to specify the

amount in bytes

Note that the actual value used might be slightly smaller or larger than

what was specified, because the database manager strives to maintain

consistent growth across containers in the table space. If the table space is

auto-resizable, but the INCREASESIZE clause is not specified, the database

manager determines an appropriate value.

216 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|
|
|
|
|
|
|

MAXSIZE integer K | M | G or MAXSIZE NONE

Specifies the maximum size to which a table space that is enabled for

auto-resize can automatically be increased. If the table space is

auto-resizable, but the MAXSIZE clause is not specified, the default is

NONE.

integer

Specifies a hard limit on the size, per database partition, to which a

DMS table space or an automatic storage table space can automatically

be increased. The integer value must be followed by K (for kilobytes),

M (for megabytes), or G (for gigabytes). Note that the actual value

used might be slightly smaller than what was specified, because the

database manager strives to maintain consistent growth across

containers in the table space.

NONE

Specifies that the table space is to be allowed to grow to file system

capacity, or to the maximum table space size (described in “SQL

limits”).

MANAGED BY SYSTEM

Specifies that the table space is to be an SMS table space. When the type of

table space is not specified, the default behavior is to create a regular table

space.

system-containers

Specify the containers for an SMS table space.

USING (’container-string’,...)

For an SMS table space, identifies one or more containers that will belong

to the table space and in which the table space data will be stored. The

container-string cannot exceed 240 bytes in length.

 Each container-string can be an absolute or relative directory name.

The directory name, if not absolute, is relative to the database directory,

and can be a path name alias (a symbolic link on UNIX systems) to storage

that is not physically associated with the database directory. For example,

<dbdir>/work/c1 could be a symbolic link to a separate file system.

If any component of the directory name does not exist, it is created by the

database manager. When a table space is dropped, all components created

by the database manager are deleted. If the directory identified by

container-string exists, it must not contain any files or subdirectories

(SQLSTATE 428B2).

The format of container-string is dependent on the operating system. On

Windows operating systems, an absolute directory path name begins with

a drive letter and a colon (:); on UNIX systems, an absolute path name

begins with a forward slash (/). A relative path name on any platform

does not begin with an operating system-dependent character.

Remote resources (such as LAN-redirected drives or NFS-mounted file

systems) are currently only supported when using Network Appliance

Filers, IBM iSCSI, IBM Network Attached Storage, Network Appliance

iSCSI, NEC iStorage S2100, S2200, or S4100, or NEC Storage NS Series with

a Windows DB2 server. Note that NEC Storage NS Series is only supported

with the use of an uninterrupted power supply (UPS); continuous UPS

(rather than standby) is recommended. An NFS-mounted file system on

AIX must be mounted in uninterruptible mode using the -o nointr option.

Chapter 1. SQL Statements for Administrators 217

on-db-partitions-clause

Specifies the database partition or partitions on which the containers are

created in a partitioned database. If this clause is not specified, then the

containers are created on the database partitions in the database partition

group that are not explicitly specified in any other on-db-partitions-clauses.

For a SYSTEM TEMPORARY table space defined on database partition

group IBMTEMPGROUP, when the on-db-partitions-clause is not specified,

the containers will also be created on all new database partitions added to

the database.

MANAGED BY DATABASE

Specifies that the table space is to be a DMS table space. When the type of

table space is not specified, the default behavior is to create a large table space.

database-containers

Specify the containers for a DMS table space.

USING

Introduces a container-clause.

container-clause

Specifies the containers for a DMS table space.

(FILE|DEVICE ’container-string’ number-of-pages,...)

For a DMS table space, identifies one or more containers that will

belong to the table space and in which the table space data will be

stored. The type of the container (either FILE or DEVICE) and its size

(in PAGESIZE pages) are specified. The size can also be specified as an

integer value followed by K (for kilobytes), M (for megabytes) or G

(for gigabytes). If specified in this way, the floor of the number of bytes

divided by the pagesize is used to determine the number of pages for

the container. A mixture of FILE and DEVICE containers can be

specified. The container-string cannot exceed 254 bytes in length.

 For a FILE container, container-string must be an absolute or relative file

name. The file name, if not absolute, is relative to the database

directory. If any component of the directory name does not exist, it is

created by the database manager. If the file does not exist, it will be

created and initialized to the specified size by the database manager.

When a table space is dropped, all components created by the database

manager are deleted.

Note: If the file exists, it is overwritten, and if it is smaller than

specified, it is extended. The file will not be truncated if it is larger

than specified.

For a DEVICE container, container-string must be a device name. The

device must already exist.

All containers must be unique across all databases. A container can

belong to only one table space. The size of the containers can differ;

however, optimal performance is achieved when all containers are the

same size. The exact format of container-string is dependent on the

operating system.

Remote resources (such as LAN-redirected drives or NFS-mounted file

systems) are currently only supported when using Network Appliance

Filers, IBM iSCSI, IBM Network Attached Storage, Network Appliance

iSCSI, NEC iStorage S2100, S2200, or S4100, or NEC Storage NS Series

with a Windows DB2 server. Note that NEC Storage NS Series is only

218 Common Criteria Certification: Administration and User Documentation - Volume 2

supported with the use of an uninterrupted power supply (UPS);

continuous UPS (rather than standby) is recommended..

on-db-partitions-clause

Specifies the database partition or partitions on which the containers

are created in a partitioned database. If this clause is not specified,

then the containers are created on the database partitions in the

database partition group that are not explicitly specified in any other

on-db-partitions-clause. For a SYSTEM TEMPORARY table space defined

on database partition group IBMTEMPGROUP, when the

on-db-partitions-clause is not specified, the containers will also be

created on all new database partitions added to the database.

on-db-partitions-clause

Specifies the database partitions on which containers are created in a

partitioned database.

ON DBPARTITIONNUMS

Keywords indicating that individual database partitions are specified.

DBPARTITIONNUM is a synonym for DBPARTITIONNUMS.

db-partition-number1

Specify a database partition number.

TO db-partition-number2

Specify a range of database partition numbers. The value of

db-partition-number2 must be greater than or equal to the value of

db-partition-number1 (SQLSTATE 428A9). Containers are to be created

on each database partition between and including the specified values.

A specified database partition must be in the database partition group

for the table space.

 The database partition specified by number, and every database partition

within the specified range of database partitions must exist in the database

partition group for the table space (SQLSTATE 42729). A database partition

number can only appear explicitly or within a range in exactly one

on-db-partitions-clause for the statement (SQLSTATE 42613).

EXTENTSIZE number-of-pages

Specifies the number of PAGESIZE pages that will be written to a

container before skipping to the next container. The extent size value can

also be specified as an integer value followed by K (for kilobytes) or M (for

megabytes). If specified in this way, the floor of the number of bytes

divided by the page size is used to determine the value for the extent size.

The database manager cycles repeatedly through the containers as data is

stored.

 The default value is provided by the dft_extent_sz database configuration

parameter, which has a valid range of 2-256 pages.

PREFETCHSIZE

Specifies to read in data needed by a query prior to it being referenced by

the query, so that the query need not wait for I/O to be performed.

 The default value is provided by the dft_prefetch_sz database

configuration parameter.

AUTOMATIC

Specifies that the prefetch size of a table space is to be updated

automatically; that is, the prefetch size will be managed by DB2, using

the following formula:

Chapter 1. SQL Statements for Administrators 219

Prefetch size =

 (number of containers) *

 (number of physical disks per container) *

 (extent size)

The number of physical disks per container defaults to 1, unless a

value is specified through the DB2_PARALLEL_IO registry variable.

 DB2 will update the prefetch size automatically whenever the number

of containers in a table space changes (following successful execution

of an ALTER TABLESPACE statement that adds or drops one or more

containers). The prefetch size is updated at database start-up.

number-of-pages

Specifies the number of PAGESIZE pages that will be read from the

table space when data prefetching is being performed. The prefetch

size value can also be specified as an integer value followed by K (for

kilobytes), M (for megabytes), or G (for gigabytes). If specified in this

way, the floor of the number of bytes divided by the page size is used

to determine the number of pages value for prefetch size.

BUFFERPOOL bufferpool-name

The name of the buffer pool used for tables in this table space. The buffer

pool must exist (SQLSTATE 42704). If not specified, the default buffer pool

(IBMDEFAULTBP) is used. The page size of the buffer pool must match

the page size specified (or defaulted) for the table space (SQLSTATE

428CB). The database partition group of the table space must be defined

for the buffer pool (SQLSTATE 42735).

OVERHEAD number-of-milliseconds

Specifies the I/O controller overhead and disk seek and latency time. This

value is used to determine the cost of I/O during query optimization. The

value of number-of-milliseconds is any numeric literal (integer, decimal, or

floating point). If this value is not the same for all containers, the number

should be the average for all containers that belong to the table space.

 For a database that was created in Version 9 or later, the default I/O

controller overhead and disk seek and latency time is 7.5 milliseconds. For

a database that was upgraded from a previous version of DB2 to Version 9

or later, the default is 12.67 milliseconds.

FILE SYSTEM CACHING or NO FILE SYSTEM CACHING

Specifies whether or not I/O operations are to be cached at the file system

level. If neither option is specified, the default is:

v FILE SYSTEM CACHING for JFS on AIX, Linux System z®, all non-VxFS

file systems on Solaris, HPUX, SMS temporary table space files on all

platforms, and all LOB and large data

v NO FILE SYSTEM CACHING on all other platforms and file system

types

FILE SYSTEM CACHING

Specifies that all I/O operations in the target table space are to be

cached at the file system level.

NO FILE SYSTEM CACHING

Specifies that all I/O operations are to bypass the file system-level

cache.

TRANSFERRATE number-of-milliseconds

Specifies the time to read one page into memory. This value is used to

220 Common Criteria Certification: Administration and User Documentation - Volume 2

determine the cost of I/O during query optimization. The value of

number-of-milliseconds is any numeric literal (integer, decimal, or floating

point). If this value is not the same for all containers, the number should

be the average for all containers that belong to the table space.

 For a database that was created in Version 9 or later, the default time to

read one page into memory is 0.06 milliseconds. For a database that was

upgraded from a previous version of DB2 to Version 9 or later, the default

is 0.18 milliseconds.

DROPPED TABLE RECOVERY

Indicates whether dropped tables in the specified table space can be

recovered using the RECOVER DROPPED TABLE option of the

ROLLFORWARD DATABASE command. This clause can only be specified

for a regular or large table space (SQLSTATE 42613).

ON

Specifies that dropped tables can be recovered. This has been the

default since Version 8.

OFF

Specifies that dropped tables cannot be recovered. This is the default in

Version 7.

Rules

v If automatic storage is not defined for the database, an error is returned

(SQLSTATE 55060).

v The INITIALSIZE clause cannot be specified with the MANAGED BY SYSTEM

or MANAGED BY DATABASE clause (SQLSTATE 42601).

v The AUTORESIZE, INCREASESIZE, or MAXSIZE clause cannot be specified

with the MANAGED BY SYSTEM clause (SQLSTATE 42601).

v The AUTORESIZE, INITIALSIZE, INCREASESIZE, or MAXSIZE clause cannot

be specified for the creation of a temporary automatic storage table space

(SQLSTATE 42601).

v The INCREASESIZE or MAXSIZE clause cannot be specified if the tables space

is not auto-resizable (SQLSTATE 42601).

v AUTORESIZE cannot be enabled for DMS table spaces that are defined to use

raw device containers (SQLSTATE 42601).

v A table space must initially be large enough to hold five extents (SQLSTATE

57011).

v The maximum size of a table space must be larger than its initial size

(SQLSTATE 560B0).

v Container operations (ADD, EXTEND, RESIZE, DROP, or BEGIN NEW STRIPE

SET) cannot be performed on automatic storage table spaces, because the

database manager is controlling the space management of such table spaces

(SQLSTATE 42858).

v Each container definition requires 53 bytes plus the number of bytes necessary to

store the container name. The combined length of all container names for the

table space cannot exceed 20 480 bytes (SQLSTATE 54034).

v For a partitioned database, if more than one database partition resides on the

same physical node, the same device or path cannot be specified for more than

one database partition (SQLSTATE 42730). In this environment, either specify a

unique container-string for each database partition, or use a relative path name.

Chapter 1. SQL Statements for Administrators 221

Notes

v Choosing between a database-managed space or a system-managed space for a

table space is a fundamental choice involving trade-offs.

v When more than one TEMPORARY table space exists in the database, they are

used in round-robin fashion to balance their usage.

v The owner of the table space is granted USE privilege with the WITH GRANT

OPTION on the table space when it is created.

v You can specify a database partition expression for container string syntax when

creating either SMS or DMS containers. You would typically specify the database

partition expression when using multiple logical database partitions in the

partitioned database system. This ensures that container names are unique

across database partition servers. When the expression is specified, the database

partition number is part of the container name or, if additional arguments are

specified, the result of the argument is part of the container name.

You use the argument “ $N” ([blank]$N) to indicate a database partition

expression. A database partition expression can be used anywhere in the

container name, and multiple database partition expressions can be specified.

Terminate the database partition expression with a space character; whatever

follows the space is appended to the container name after the database partition

expression is evaluated. If there is no space character in the container name after

the database partition expression, it is assumed that the rest of the string is part

of the expression. The argument can only be used in one of the following forms.

 Table 14. Arguments for Creating Containers. Operators are evaluated from left to right.

The database partition number in the examples is assumed to be 5.

Syntax Example Value

[blank]$N ″ $N″ 5

[blank]$N+[number] ″ $N+1011″ 1016

[blank]$N%[number] ″ $N%3″

a 2

[blank]$N+[number]%[number] ″ $N+12%13″ 4

[blank]$N%[number]+[number] ″ $N%3+20″ 22

a % represents the modulus operator.

For example:

 CREATE TABLESPACE TS1 MANAGED BY DATABASE USING

 (device ’/dev/rcont $N’ 20000)

 On a two database partition system, the following containers

 would be created:

 /dev/rcont0 - on DATABASE PARTITION 0

 /dev/rcont1 - on DATABASE PARTITION 1

 CREATE TABLESPACE TS2 MANAGED BY DATABASE USING

 (file ’/DB2/containers/TS2/container $N+100’ 10000)

 On a four database partition system, the following containers

 would be created:

 /DB2/containers/TS2/container100 - on DATABASE PARTITION 0

 /DB2/containers/TS2/container101 - on DATABASE PARTITION 1

 /DB2/containers/TS2/container102 - on DATABASE PARTITION 2

 /DB2/containers/TS2/container103 - on DATABASE PARTITION 3

 CREATE TABLESPACE TS3 MANAGED BY SYSTEM USING

222 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

(’/TS3/cont $N%2’,’/TS3/cont $N%2+2’)

 On a two database partition system, the following containers

 would be created:

 /TS3/cont0 - On DATABASE PARTITION 0

 /TS3/cont2 - On DATABASE PARTITION 0

 /TS3/cont1 - On DATABASE PARTITION 1

 /TS3/cont3 - On DATABASE PARTITION 1

 If database partition = 5, the containers:

 ’/dbdir/node $N /cont1’

 ’/ $N+1000 /file1’

 ’ $N%10 /container’

 ’/dir/ $N2000 /dmscont’

 are created as:

 ’/dbdir/node5/cont1’

 ’/1005/file1’

 ’5/container’

 ’/dir/2000/dmscont’

v An automatic storage table space is created as either an SMS table space or a

DMS table space. DMS is chosen for large and regular table spaces, and SMS is

chosen for temporary table spaces. Note that this behavior cannot be depended

upon, because it might change in a future release. When DMS is chosen and the

type of table space is not specified, the default behavior is to create a large table

space.

v The creation of an automatic storage table space does not include container

definitions. The database manager automatically determines the location and

size, if applicable, of the containers on the basis of the storage paths that are

associated with the database. The database manager will attempt to grow large

and regular table spaces, as necessary, provided that the maximum size has not

been reached. This might involve extending existing containers or adding

containers to a new stripe set. Every time that the database is activated, the

database manager automatically reconfigures the number and location of the

containers for temporary table spaces that are not in an abnormal state.

v A large or regular automatic storage table space will not use new storage paths

(see the description of the ALTER DATABASE statement) until there is no more

space in one of the existing storage paths that the table space is using.

Temporary automatic storage table spaces can only use the new storage paths

once the database has been deactivated and then reactivated.

v Compatibilities: For compatibility with previous versions of DB2 databases:

– NODE can be specified in place of DBPARTITIONNUM

– NODES can be specified in place of DBPARTITIONNUMS

– NODEGROUP can be specified in place of DATABASE PARTITION GROUP

– LONG can be specified in place of LARGE

Examples

Example 1: Create a large DMS table space on a UNIX system using three devices

of 10 000 4K pages each. Specify their I/O characteristics.

 CREATE TABLESPACE PAYROLL

 MANAGED BY DATABASE

 USING (DEVICE’/dev/rhdisk6’ 10000,

 DEVICE ’/dev/rhdisk7’ 10000,

 DEVICE ’/dev/rhdisk8’ 10000)

 OVERHEAD 12.67

 TRANSFERRATE 0.18

Chapter 1. SQL Statements for Administrators 223

Example 2: Create a regular SMS table space on Windows using three directories on

three separate drives, with a 64-page extent size, and a 32-page prefetch size.

 CREATE TABLESPACE ACCOUNTING

 MANAGED BY SYSTEM

 USING (’d:\acc_tbsp’, ’e:\acc_tbsp’, ’f:\acc_tbsp’)

 EXTENTSIZE 64

 PREFETCHSIZE 32

Example 3: Create a system temporary DMS table space on a UNIX system using

two files of 50 000 pages each, and a 256-page extent size.

 CREATE TEMPORARY TABLESPACE TEMPSPACE2

 MANAGED BY DATABASE

 USING (FILE ’dbtmp/tempspace2.f1’ 50000,

 FILE ’dbtmp/tempspace2.f2’ 50000)

 EXTENTSIZE 256

Example 4: Create a large DMS table space in database partition group

ODDNODEGROUP (database partitions 1, 3, and 5) on a UNIX system. Use the

device /dev/rhdisk0 for 10 000 4K pages on each database partition. Specify a

database partition-specific device with 40 000 4K pages for each database partition.

 CREATE TABLESPACE PLANS

 MANAGED BY DATABASE

 USING (DEVICE ’/dev/rhdisk0’ 10000, DEVICE ’/dev/rn1hd01’ 40000)

 ON DBPARTITIONNUM (1)

 USING (DEVICE ’/dev/rhdisk0’ 10000, DEVICE ’/dev/rn3hd03’ 40000)

 ON DBPARTITIONNUM (3)

 USING (DEVICE ’/dev/rhdisk0’ 10000, DEVICE ’/dev/rn5hd05’ 40000)

 ON DBPARTITIONNUM (5)

Example 5: Create a large automatic storage table space named DATATS, allowing

the system to make all decisions with respect to table space size and growth.

 CREATE TABLESPACE DATATS

or

 CREATE TABLESPACE DATATS

 MANAGED BY AUTOMATIC STORAGE

Example 6: Create a system temporary automatic storage table space named

TEMPDATA.

 CREATE TEMPORARY TABLESPACE TEMPDATA

or

 CREATE TEMPORARY TABLESPACE TEMPDATA

 MANAGED BY AUTOMATIC STORAGE

Example 7: Create a large automatic storage table space named USERSPACE3 with

an initial size of 100 megabytes and a maximum size of 1 gigabyte.

 CREATE TABLESPACE USERSPACE3

 INITIALSIZE 100 M

 MAXSIZE 1 G

Example 8: Create a large automatic storage table space named LARGEDATA with

a growth rate of 10 percent (that is, its total size increases by 10 percent each time

that it is automatically resized) and a maximum size of 512 megabytes. Instead of

specifying the INITIALSIZE clause, let the database manager determine an

appropriate initial size for the table space.

224 Common Criteria Certification: Administration and User Documentation - Volume 2

CREATE LARGE TABLESPACE LARGEDATA

 INCREASESIZE 10 PERCENT

 MAXSIZE 512 M

Example 9: Create a large DMS table space named USERSPACE4 with two file

containers (each container being 1 megabyte in size), a growth rate of 2 megabytes,

and a maximum size of 100 megabytes.

 CREATE TABLESPACE USERSPACE4

 MANAGED BY DATABASE USING (FILE ’/db2/file1’ 1 M, FILE ’/db2/file2’ 1 M)

 AUTORESIZE YES

 INCREASESIZE 2 M

 MAXSIZE 100 M

Example 10: Create large DMS table spaces, using RAW devices on a Windows

operating system.

v To specify entire physical drives, use the \\.\physical-drive format:

 CREATE TABLESPACE TS1

 MANAGED BY DATABASE USING (DEVICE ’\\.\PhysicalDrive5’ 10000,

 DEVICE ’\\.\PhysicalDrive6’ 10000)

v To specify logical partitions by using drive letters:

 CREATE TABLESPACE TS2

 MANAGED BY DATABASE USING (DEVICE ’\\.\G:’ 10000,

 DEVICE ’\\.\H:’ 10000)

v To specify logical partitions by using volume global unique identifiers (GUIDs),

use the db2listvolumes utility to retrieve the volume GUID for each local

partition, then copy the GUID for the logical partition that you want into the

table space container clause:

 CREATE TABLESPACE TS3

 MANAGED BY DATABASE USING (

 DEVICE ’\\?\Volume{2ca6a0c1-8542-11d8-9734-00096b5322d2}\’ 20000M)

You might prefer to use volume GUIDs over the drive letter format if you have

more partitions than available drive letters on the machine.

v To specify logical partitions by using junction points (or volume mount points),

mount the RAW partition to another NTFS-formatted volume as a junction

point, then specify the path to the junction point on the NTFS volume as the

container path. For example:

 CREATE TABLESPACE TS4

 MANAGED BY DATABASE USING (DEVICE ’C:\JUNCTION\DISK_1’ 10000,

 DEVICE ’C:\JUNCTION\DISK_2’ 10000)

DB2 first queries the partition to see whether there is a file system on it; if yes,

the partition is not treated as a RAW device, and DB2 performs normal file

system I/O operations on the partition.

CREATE VIEW

The CREATE VIEW statement defines a view on one or more tables, views or

nicknames.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Chapter 1. SQL Statements for Administrators 225

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the view does not exist

v CREATEIN privilege on the schema, if the schema name of the view refers to an

existing schema

v DBADM authority

and at least one of the following for each table, view, or nickname identified in any

fullselect:

v CONTROL privilege on that table, view, or nickname

v SELECT privilege on that table, view, or nickname

v DATAACCESS authority

If creating a subview:

v The authorization ID of the statement must be the same as the definer of the

root table of the table hierarchy, or

v The privileges held by the authorization ID must include DBADM authority

and

v The authorization ID of the statement must have SELECT WITH GRANT

privilege on the underlying table of the subview, or the superview must not

have SELECT privilege granted to any user other than the view definer, or

v ACCESSCTRL authority and one of the following:

– SELECT privilege on the underlying table of the subview

– DATAACCESS authority

If WITH ROW MOVEMENT is specified, the privileges held by the authorization

ID of the statement must include at least one of the following:

v UPDATE privilege on that table or view

v DATAACCESS authority

Group privileges are not considered for any table or view specified in the CREATE

VIEW statement.

Privileges are not considered when defining a view on a federated database

nickname. Authorization requirements of the data source for the table or view

referenced by the nickname are applied when the query is processed. The

authorization ID of the statement can be mapped to a different remote

authorization ID.

To replace an existing view, the authorization ID of the statement must be the

owner of the existing view (SQLSTATE 42501).

Syntax

�� CREATE VIEW view-name

OR REPLACE
 �

226 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|

|
|

|

|
|

|

|

|

|

|
|

|

|

|
|
|

|

|

|

|
|

|

|

|
|

�

�

,

(

column-name

)

OF

type-name

root-view-definition

subview-definition

 AS �

�

�

 fullselect

,

WITH

common-table-expression

 * �

�

CASCADED

WITH

CHECK OPTION

LOCAL

*

 WITH NO ROW MOVEMENT

WITH ROW MOVEMENT

*

��

root-view-definition:

 MODE DB2SQL (oid-column)

,

with-options

subview-definition:

 MODE DB2SQL under-clause

(

with-options

)

EXTEND

oid-column:

 REF IS oid-column-name USER GENERATED

UNCHECKED

with-options:

�

�

 ,

,

column-name

WITH OPTIONS

SCOPE

typed-table-name

typed-view-name

READ ONLY

under-clause:

 UNDER superview-name INHERIT SELECT PRIVILEGES

Description

OR REPLACE

Specifies to replace the definition for the view if one exists at the current

server. The existing definition is effectively dropped before the new definition

Chapter 1. SQL Statements for Administrators 227

|
|
|

is replaced in the catalog, with the exception that privileges that were granted

on the view are not affected. This option is ignored if a definition for the view

does not exist at the current server.

view-name

Names the view. The name, including the implicit or explicit qualifier, must

not identify a table, view, nickname or alias described in the catalog. The

qualifier must not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT (SQLSTATE

42939).

 The name can be the same as the name of an inoperative view (see Inoperative

views). In this case the new view specified in the CREATE VIEW statement

will replace the inoperative view. The user will get a warning (SQLSTATE

01595) when an inoperative view is replaced. No warning is returned if the

application was bound with the bind option SQLWARN set to NO.

column-name

Names the columns in the view. If a list of column names is specified, it must

consist of as many names as there are columns in the result table of the

fullselect. Each column-name must be unique and unqualified. If a list of

column names is not specified, the columns of the view inherit the names of

the columns of the result table of the fullselect.

 A list of column names must be specified if the result table of the fullselect has

duplicate column names or an unnamed column (SQLSTATE 42908). An

unnamed column is a column derived from a constant, function, expression, or

set operation that is not named using the AS clause of the select list.

OF type-name

Specifies that the columns of the view are based on the attributes of the

structured type identified by type-name. If type-name is specified without a

schema name, the type name is resolved by searching the schemas on the SQL

path (defined by the FUNCPATH preprocessing option for static SQL and by

the CURRENT PATH register for dynamic SQL). The type name must be the

name of an existing user-defined type (SQLSTATE 42704) and it must be a

structured type that is instantiable (SQLSTATE 428DP).

MODE DB2SQL

This clause is used to specify the mode of the typed view. This is the only

valid mode currently supported.

UNDER superview-name

Indicates that the view is a subview of superview-name. The superview must be

an existing view (SQLSTATE 42704) and the view must be defined using a

structured type that is the immediate supertype of type-name (SQLSTATE

428DB). The schema name of view-name and superview-name must be the same

(SQLSTATE 428DQ). The view identified by superview-name must not have any

existing subview already defined using type-name (SQLSTATE 42742).

 The columns of the view include the object identifier column of the superview

with its type modified to be REF(type-name), followed by columns based on the

attributes of type-name (remember that the type includes the attributes of its

supertype).

INHERIT SELECT PRIVILEGES

Any user or group holding a SELECT privilege on the superview will be

granted an equivalent privilege on the newly created subview. The subview

definer is considered to be the grantor of this privilege.

OID-column

Defines the object identifier column for the typed view.

228 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

REF IS OID-column-name USER GENERATED

Specifies that an object identifier (OID) column is defined in the view as

the first column. An OID is required for the root view of a view hierarchy

(SQLSTATE 428DX). The view must be a typed view (the OF clause must

be present) that is not a subview (SQLSTATE 42613). The name for the

column is defined as OID-column-name and cannot be the same as the

name of any attribute of the structured type type-name (SQLSTATE 42711).

The first column specified in fullselect must be of type REF(type-name) (you

may need to cast it so that it has the appropriate type). If UNCHECKED is

not specified, it must be based on a not nullable column on which

uniqueness is enforced through an index (primary key, unique constraint,

unique index, or OID-column). This column will be referred to as the object

identifier column or OID column. The keywords USER GENERATED indicate

that the initial value for the OID column must be provided by the user

when inserting a row. Once a row is inserted, the OID column cannot be

updated (SQLSTATE 42808).

UNCHECKED

Defines the object identifier column of the typed view definition to assume

uniqueness even though the system can not prove this uniqueness. This is

intended for use with tables or views that are being defined into a typed

view hierarchy where the user knows that the data conforms to this

uniqueness rule but it does not comply with the rules that allow the

system to prove uniqueness. UNCHECKED option is mandatory for view

hierarchies that range over multiple hierarchies or legacy tables or views

By specifying UNCHECKED, the user takes responsibility for ensuring that

each row of the view has a unique OID. If the user fails to ensure this

property, and a view contains duplicate OID values, then a path-expression

or DEREF operator involving one of the non-unique OID values may result

in an error (SQLSTATE 21000).

with-options

Defines additional options that apply to columns of a typed view.

column-name WITH OPTIONS

Specifies the name of the column for which additional options are

specified. The column-name must correspond to the name of an attribute

defined in (not inherited by) the type-name of the view. The column must

be a reference type (SQLSTATE 42842). It cannot correspond to a column

that also exists in the superview (SQLSTATE 428DJ). A column name can

only appear in one WITH OPTIONS SCOPE clause in the statement

(SQLSTATE 42613).

SCOPE

Identifies the scope of the reference type column. A scope must be

specified for any column that is intended to be used as the left operand of

a dereference operator or as the argument of the DEREF function.

 Specifying the scope for a reference type column may be deferred to a

subsequent ALTER VIEW statement (if the scope is not inherited) to allow

the target table or view to be defined, usually in the case of mutually

referencing views and tables. If no scope is specified for a reference type

column of the view and the underlying table or view column was scoped,

then the underlying column’s scope is inherited by the reference type

column. The column remains unscoped if the underlying table or view

column did not have a scope. See “Notes” on page 233 for more

information about scope and reference type columns.

Chapter 1. SQL Statements for Administrators 229

typed-table-name

The name of a typed table. The table must already exist or be the same

as the name of the table being created (SQLSTATE 42704). The data

type of column-name must be REF(S), where S is the type of

typed-table-name (SQLSTATE 428DM). No checking is done of any

existing values in column-name to ensure that the values actually

reference existing rows in typed-table-name.

typed-view-name

The name of a typed view. The view must already exist or be the same

as the name of the view being created (SQLSTATE 42704). The data

type of column-name must be REF(S), where S is the type of

typed-view-name (SQLSTATE 428DM). No checking is done of any

existing values in column-name to ensure that the values actually

reference existing rows in typed-view-name.

READ ONLY

Identifies the column as a read-only column. This option is used to force a

column to be read-only so that subview definitions can specify an

expression for the same column that is implicitly read-only.

AS

Identifies the view definition.

WITH common-table-expression

Defines a common table expression for use with the fullselect that follows. A

common table expression cannot be specified when defining a typed view.

fullselect

Defines the view. At any time, the view consists of the rows that would result

if the SELECT statement were executed. The fullselect must not reference host

variables, parameter markers, or declared temporary tables. However, a

parameterized view can be created as an SQL table function.

 The fullselect cannot include an SQL data change statement in the FROM

clause (SQLSTATE 428FL).

For Typed Views and Subviews: The fullselect must conform to the following

rules otherwise an error is returned (SQLSTATE 428EA unless otherwise

specified).

v The fullselect must not include references to the DBPARTITIONNUM or

HASHEDVALUE functions, non-deterministic functions, or functions defined

to have external action.

v The body of the view must consist of a single subselect, or a UNION ALL of

two or more subselects. Let each of the subselects participating directly in

the view body be called a branch of the view. A view may have one or more

branches.

v The FROM-clause of each branch must consist of a single table or view (not

necessarily typed), called the underlying table or view of that branch.

v The underlying table or view of each branch must be in a separate hierarchy

(that is, a view cannot have multiple branches with their underlying tables

or views in the same hierarchy).

v None of the branches of a typed view definition may specify GROUP BY or

HAVING.

v If the view body contains UNION ALL, the root view in the hierarchy must

specify the UNCHECKED option for its OID column.

230 Common Criteria Certification: Administration and User Documentation - Volume 2

For a hierarchy of views and subviews: Let BR1 and BR2 be any branches that

appear in the definitions of views in the hierarchy. Let T1 be the underlying

table or view of BR1, and let T2 be the underlying table or view of BR2. Then:

v If T1 and T2 are not in the same hierarchy, then the root view in the view

hierarchy must specify the UNCHECKED option for its OID column.

v If T1 and T2 are in the same hierarchy, then BR1 and BR2 must contain

predicates or ONLY-clauses that are sufficient to guarantee that their

row-sets are disjoint.

For typed subviews defined using EXTEND AS: For every branch in the body

of the subview:

v The underlying table of each branch must be a (not necessarily proper)

subtable of some underlying table of the immediate superview.

v The expressions in the SELECT list must be assignable to the non-inherited

columns of the subview (SQLSTATE 42854).

For typed subviews defined using AS without EXTEND:

v For every branch in the body of the subview, the expressions in the

SELECT-list must be assignable to the declared types of the inherited and

non-inherited columns of the subview (SQLSTATE 42854).

v The OID-expression of each branch over a given hierarchy in the subview

must be equivalent (except for casting) to the OID-expression in the branch

over the same hierarchy in the root view.

v The expression for a column not defined (implicitly or explicitly) as READ

ONLY in a superview must be equivalent in all branches over the same

underlying hierarchy in its subviews.

WITH CHECK OPTION

Specifies the constraint that every row that is inserted or updated through the

view must conform to the definition of the view. A row that does not conform

to the definition of the view is a row that does not satisfy the search conditions

of the view.

 WITH CHECK OPTION must not be specified if any of the following

conditions is true:

v The view is read-only (SQLSTATE 42813). If WITH CHECK OPTION is

specified for an updatable view that does not allow inserts, the constraint

applies to updates only.

v The view references the DBPARTITIONNUM or HASHEDVALUE function, a

non-deterministic function, or a function with external action (SQLSTATE

42997).

v A nickname is the update target of the view.

v A view that has an INSTEAD OF trigger defined on it is the update target of

the view (SQLSTATE 428FQ).

If WITH CHECK OPTION is omitted, the definition of the view is not used in

the checking of any insert or update operations that use the view. Some

checking might still occur during insert or update operations if the view is

directly or indirectly dependent on another view that includes WITH CHECK

OPTION. Because the definition of the view is not used, rows might be

inserted or updated through the view that do not conform to the definition of

the view.

CASCADED

The WITH CASCADED CHECK OPTION constraint on a view V means

that V inherits the search conditions as constraints from any updatable

Chapter 1. SQL Statements for Administrators 231

view on which V is dependent. Furthermore, every updatable view that is

dependent on V is also subject to these constraints. Thus, the search

conditions of V and each view on which V is dependent are ANDed

together to form a constraint that is applied for an insert or update of V or

of any view dependent on V.

LOCAL

The WITH LOCAL CHECK OPTION constraint on a view V means the

search condition of V is applied as a constraint for an insert or update of V

or of any view that is dependent on V.

The difference between CASCADED and LOCAL is shown in the following

example. Consider the following updatable views (substituting for Y from

column headings of the table that follows):

 V1 defined on table T

 V2 defined on V1 WITH Y CHECK OPTION

 V3 defined on V2

 V4 defined on V3 WITH Y CHECK OPTION

 V5 defined on V4

The following table shows the search conditions against which inserted or

updated rows are checked:

 Y is LOCAL Y is CASCADED

V1 checked against: no view no view

V2 checked against: V2 V2, V1

V3 checked against: V2 V2, V1

V4 checked against: V2, V4 V4, V3, V2, V1

V5 checked against: V2, V4 V4, V3, V2, V1

Consider the following updatable view which shows the impact of the WITH

CHECK OPTION using the default CASCADED option:

 CREATE VIEW V1 AS SELECT COL1 FROM T1 WHERE COL1 > 10

 CREATE VIEW V2 AS SELECT COL1 FROM V1 WITH CHECK OPTION

 CREATE VIEW V3 AS SELECT COL1 FROM V2 WHERE COL1 < 100

The following INSERT statement using V1 will succeed because V1 does not

have a WITH CHECK OPTION and V1 is not dependent on any other view

that has a WITH CHECK OPTION.

 INSERT INTO V1 VALUES(5)

The following INSERT statement using V2 will result in an error because V2

has a WITH CHECK OPTION and the insert would produce a row that did

not conform to the definition of V2.

 INSERT INTO V2 VALUES(5)

The following INSERT statement using V3 will result in an error even though

it does not have WITH CHECK OPTION because V3 is dependent on V2

which does have a WITH CHECK OPTION (SQLSTATE 44000).

 INSERT INTO V3 VALUES(5)

The following INSERT statement using V3 will succeed even though it does

not conform to the definition of V3 (V3 does not have a WITH CHECK

OPTION); it does conform to the definition of V2 which does have a WITH

CHECK OPTION.

 INSERT INTO V3 VALUES(200)

232 Common Criteria Certification: Administration and User Documentation - Volume 2

WITH NO ROW MOVEMENT or WITH ROW MOVEMENT

Specifies the action to take for an updatable UNION ALL view when a row is

updated in a way that violates a check constraint on the underlying table. The

default is WITH NO ROW MOVEMENT.

WITH NO ROW MOVEMENT

Specifies that an error (SQLSTATE 23513) is to be returned if a row is

updated in a way that violates a check constraint on the underlying table.

WITH ROW MOVEMENT

Specifies that an updated row is to be moved to the appropriate

underlying table, even if it violates a check constraint on that table.

 Row movement involves deletion of the rows that violate the check

constraint, and insertion of those rows back into the view. The WITH ROW

MOVEMENT clause can only be specified for UNION ALL views whose

columns are all updatable (SQLSTATE 429BJ). If a row is inserted (perhaps

after trigger activation) into the same underlying table from which it was

deleted, an error is returned (SQLSTATE 23524). A view defined using the

WITH ROW MOVEMENT clause must not contain nested UNION ALL

operations, except in the outermost fullselect (SQLSTATE 429BJ).

Notes

v Creating a view with a schema name that does not already exist will result in

the implicit creation of that schema provided the authorization ID of the

statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The

CREATEIN privilege on the schema is granted to PUBLIC.

v View columns inherit the NOT NULL WITH DEFAULT attribute from the base

table or view except when columns are derived from an expression. When a row

is inserted or updated into an updatable view, it is checked against the

constraints (primary key, referential integrity, and check) if any are defined on

the base table.

v A new view cannot be created if it uses an inoperative view in its definition.

(SQLSTATE 51024).

v If an object referenced in the view body does not exist or is marked invalid, or

the definer temporarily doesn’t have privileges to access the object, and if the

database configuration parameter auto_reval is not set to DISABLED, then the

view will still be created successfully. The view will be marked invalid and will

be revalidated the next time it is referenced.

v This statement does not support declared temporary tables (SQLSTATE 42995).

v Deletable views: A view is deletable if an INSTEAD OF trigger for the delete

operation has been defined for the view, or if all of the following are true:

– each FROM clause of the outer fullselect identifies only one base table (with

no OUTER clause), deletable view (with no OUTER clause), deletable nested

table expression, or deletable common table expression (cannot identify a

nickname)

– the outer fullselect does not include a VALUES clause

– the outer fullselect does not include a GROUP BY clause or HAVING clause

– the outer fullselect does not include column functions in the select list

– the outer fullselect does not include SET operations (UNION, EXCEPT or

INTERSECT) with the exception of UNION ALL

– the base tables in the operands of a UNION ALL must not be the same table

and each operand must be deletable

– the select list of the outer fullselect does not include DISTINCT

Chapter 1. SQL Statements for Administrators 233

|
|
|
|
|

v Updatable views: A column of a view is updatable if an INSTEAD OF trigger for

the update operation has been defined for the view, or if all of the following are

true:

– the view is deletable (independent of an INSTEAD OF trigger for delete), the

column resolves to a column of a base table (not using a dereference

operation), and the READ ONLY option is not specified

– all the corresponding columns of the operands of a UNION ALL have exactly

matching data types (including length or precision and scale) and matching

default values if the fullselect of the view includes a UNION ALL
A view is updatable if any column of the view is updatable.

v Insertable views:: A view is insertable if an INSTEAD OF trigger for the insert

operation has been defined for the view, or at least one column of the view is

updatable (independent of an INSTEAD OF trigger for update), and the

fullselect of the view does not include UNION ALL.

A given row can be inserted into a view (including a UNION ALL) if, and only

if, it fulfills the check constraints of exactly one of the underlying base tables.

To insert into a view that includes non-updatable columns, those columns must

be omitted from the column list.

v Read-only views: A view is read-only if it is not deletable, updatable, or

insertable.

The READONLY column in the SYSCAT.VIEWS catalog view indicates if a view

is read-only without considering INSTEAD OF triggers.

v Common table expressions and nested table expressions follow the same set of

rules for determining whether they are deletable, updatable, insertable, or

read-only.

v Inoperative views: An inoperative view is a view that is no longer available for

SQL statements. A view becomes inoperative if:

– A privilege, upon which the view definition is dependent, is revoked.

– An object such as a table, nickname, alias or function, upon which the view

definition is dependent, is dropped.

– A view, upon which the view definition is dependent, becomes inoperative.

– A view that is the superview of the view definition (the subview) becomes

inoperative.
In practical terms, an inoperative view is one in which the view definition has

been unintentionally dropped. For example, when an alias is dropped, any view

defined using that alias is made inoperative. All dependent views also become

inoperative and packages dependent on the view are no longer valid.

Until the inoperative view is explicitly recreated or dropped, a statement using

that inoperative view cannot be compiled (SQLSTATE 51024) with the exception

of the CREATE ALIAS, CREATE VIEW, DROP VIEW, and COMMENT ON

TABLE statements. Until the inoperative view has been explicitly dropped, its

qualified name cannot be used to create another table or alias (SQLSTATE

42710).

An inoperative view may be recreated by issuing a CREATE VIEW statement

using the definition text of the inoperative view. This view definition text is

stored in the TEXT column of the SYSCAT.VIEWS catalog. When recreating an

inoperative view, it is necessary to explicitly grant any privileges required on

that view by others, due to the fact that all authorization records on a view are

deleted if the view is marked inoperative. Note that there is no need to explicitly

drop the inoperative view in order to recreate it. Issuing a CREATE VIEW

234 Common Criteria Certification: Administration and User Documentation - Volume 2

statement with the same view-name as an inoperative view will cause that

inoperative view to be replaced, and the CREATE VIEW statement will return a

warning (SQLSTATE 01595).

Inoperative views are indicated by an X in the VALID column of the

SYSCAT.VIEWS catalog view and an X in the STATUS column of the

SYSCAT.TABLES catalog view.

v Privileges: The definer of a view always receives the SELECT privilege on the

view as well as the right to drop the view. The definer of a view will get

CONTROL privilege on the view only if the definer has CONTROL privilege on

every base table, view, or nickname identified in the fullselect, or if the definer

has each of the following authorities:

– ACCESSCTRL or SECADM

– DATAACCESS

– DBADM

The definer of the view is granted INSERT, UPDATE, column level UPDATE or

DELETE privileges on the view if the view is not read-only and the definer has

the corresponding privileges on the underlying objects.

For a view defined WITH ROW MOVEMENT, the definer acquires the UPDATE

privilege on the view only if the definer has the UPDATE privilege on all

columns of the view, as well as INSERT and DELETE privileges on all

underlying tables or views.

The definer of a view only acquires privileges if the privileges from which they

are derived exist at the time the view is created. The definer must have these

privileges either directly or because PUBLIC has these privilege. Privileges are

not considered when defining a view on a federated server nickname. However,

when using a view on a nickname, the user’s authorization ID must have valid

select privileges on the table or view that the nickname references at the data

source. Otherwise, an error is returned. Privileges held by groups of which the

view definer is a member, are not considered.

When a subview is created, the SELECT privileges held on the immediate

superview are automatically granted on the subview.

v Scope and REF columns: When selecting a reference type column in the fullselect

of a view definition, consider the target type and scope that is required.

– If the required target type and scope is the same as the underlying table or

view, the column can simply be selected.

– If the scope needs to be changed, use the WITH OPTIONS SCOPE clause to

define the required scope table or view.

– If the target type of the reference needs to be changed, the column must be

cast first to the representation type of the reference and then to the new

reference type. The scope in this case can be specified in the cast to the

reference type or using the WITH OPTIONS SCOPE clause. For example,

assume you select column Y defined as REF(TYP1) SCOPE TAB1. You want

this to be defined as REF(VTYP1) SCOPE VIEW1. The select list item would

be as follows:

 CAST(CAST(Y AS VARCHAR(16) FOR BIT DATA) AS REF(VTYP1) SCOPE VIEW1)

v Identity columns: A column of a view is considered an identity column, if the

element of the corresponding column in the fullselect of the view definition is

the name of an identity column of a table, or the name of a column of a view

which directly or indirectly maps to the name of an identity column of a base

table.

In all other cases, the columns of a view will not get the identity property. For

example:

Chapter 1. SQL Statements for Administrators 235

|
|
|
|
|

|

|

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

– the select-list of the view definition includes multiple instances of the name of

an identity column (that is, selecting the same column more than once)

– the view definition involves a join

– a column in the view definition includes an expression that refers to an

identity column

– the view definition includes a UNION
When inserting into a view for which the select list of the view definition

directly or indirectly includes the name of an identity column of a base table, the

same rules apply as if the INSERT statement directly referenced the identity

column of the base table.

v Federated views: A federated view is a view that includes a reference to a

nickname somewhere in the fullselect. The presence of such a nickname changes

the authorization model used for the view when the view is subsequently

referenced in a query.

When the view is created, no privilege checking is done to determine whether

the view definer has access to the underlying data source table or view of a

nickname. Privilege checking of references to tables or views at the federated

database are handled as usual, requiring the view definer to have at least

SELECT privilege on such objects.

When a federated view is subsequently referenced in a query, the nicknames

result in queries against the data source, and the authorization ID that issued the

query (or the remote authorization ID to which it maps) must have the

necessary privileges to access the data source table or view. The authorization ID

that issues the query referencing the federated view is not required to have any

additional privileges on tables or views (non-federated) that exist at the

federated server.

v ROW MOVEMENT, triggers and constraints: When a view that is defined using

the WITH ROW MOVEMENT clause is updated, the sequence of trigger and

constraints operations is as follows:

 1. BEFORE UPDATE triggers are activated for all rows being updated,

including rows that will eventually be moved.

 2. The update operation is processed.

 3. Constraints are processed for all updated rows.

 4. AFTER UPDATE triggers (both row-level and statement-level) are activated

in creation order, for all rows that satisfy the constraints after the update

operation. Because this is an UPDATE statement, all UPDATE

statement-level triggers are activated for all underlying tables.

 5. BEFORE DELETE triggers are activated for all rows that did not satisfy the

constraints after the update operation (these are the rows that are to be

moved).

 6. The delete operation is processed.

 7. Constraints are processed for all deleted rows.

 8. AFTER DELETE triggers (both row-level and statement-level) are activated

in creation order, for all deleted rows. Statement-level triggers are activated

for only those tables that are involved in the delete operation.

 9. BEFORE INSERT triggers are activated for all rows being inserted (that is,

the rows being moved). The new transition tables for the BEFORE INSERT

triggers contain the input data provided by the user.

10. The insert operation is processed.

11. Constraints are processed for all inserted rows.

236 Common Criteria Certification: Administration and User Documentation - Volume 2

12. AFTER INSERT triggers (both row-level and statement-level) are activated

in creation order, for all inserted rows. Statement-level triggers are activated

for only those tables that are involved in the insert operation.
v Nested UNION ALL views: A view defined with UNION ALL and based, either

directly or indirectly, on a view that is also defined with UNION ALL cannot be

updated if either view is defined using the WITH ROW MOVEMENT clause

(SQLSTATE 429BK).

v Considerations for implicitly hidden columns: It is possible that the result table

of the fullselect will include a column of the base table that is defined as

implicitly hidden. This can occur when the implicitly hidden column is explicitly

referenced in the fullselect of the view definition. However, the corresponding

column of the view does not inherit the implicitly hidden attribute. Columns of

a view cannot be defined as hidden.

v Compatibilities:: For compatibility with previous versions of DB2 databases:

– The FEDERATED keyword can be specified between the keywords CREATE

and VIEW. The FEDERATED keyword is ignored, however, because a

warning is no longer returned if federated objects are used in the view

definition.
v Subselect:: The isolation-clause cannot be specified in the fullselect (SQLSTATE

42601).

Examples

Example 1: Create a view named MA_PROJ upon the PROJECT table that contains

only those rows with a project number (PROJNO) starting with the letters ‘MA’.

 CREATE VIEW MA_PROJ AS SELECT *

 FROM PROJECT

 WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Example 2: Create a view as in example 1, but select only the columns for project

number (PROJNO), project name (PROJNAME) and employee in charge of the

project (RESPEMP).

 CREATE VIEW MA_PROJ

 AS SELECTPROJNO, PROJNAME, RESPEMP

 FROM PROJECT

 WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Example 3: Create a view as in example 2, but, in the view, call the column for the

employee in charge of the project IN_CHARGE.

 CREATE VIEW MA_PROJ

 (PROJNO, PROJNAME, IN_CHARGE)

 AS SELECTPROJNO, PROJNAME, RESPEMP

 FROM PROJECT

 WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Note: Even though only one of the column names is being changed, the names of

all three columns in the view must be listed in the parentheses that follow

MA_PROJ.

Example 4: Create a view named PRJ_LEADER that contains the first four columns

(PROJNO, PROJNAME, DEPTNO, RESPEMP) from the PROJECT table together

with the last name (LASTNAME) of the person who is responsible for the project

(RESPEMP). Obtain the name from the EMPLOYEE table by matching EMPNO in

EMPLOYEE to RESPEMP in PROJECT.

Chapter 1. SQL Statements for Administrators 237

|
|

CREATE VIEW PRJ_LEADER

 AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME

 FROM PROJECT, EMPLOYEE

 WHERE RESPEMP = EMPNO

Example 5: Create a view as in example 4, but in addition to the columns

PROJNO, PROJNAME, DEPTNO, RESPEMP, and LASTNAME, show the total pay

(SALARY + BONUS + COMM) of the employee who is responsible. Also select

only those projects with mean staffing (PRSTAFF) greater than one.

 CREATE VIEW PRJ_LEADER

 (PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, TOTAL_PAY)

 AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, SALARY+BONUS+COMM

 FROM PROJECT, EMPLOYEE

 WHERE RESPEMP = EMPNO

 AND PRSTAFF > 1

Specifying the column name list could be avoided by naming the expression

SALARY+BONUS+COMM as TOTAL_PAY in the fullselect.

 CREATE VIEW PRJ_LEADER

 AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP,

 LASTNAME, SALARY+BONUS+COMM AS TOTAL_PAY

 FROM PROJECT, EMPLOYEE

 WHERE RESPEMP = EMPNO AND PRSTAFF > 1

Example 6: Given the set of tables and views shown in the following figure:

 User ZORPIE (who does not have ACCESSCTRL, DATAACCESS, or DBADM

authority) has been granted the privileges shown in brackets below each object:

1. ZORPIE will get CONTROL privilege on the view that she creates with:

 CREATE VIEW VA AS SELECT * FROM S1.V1

because she has CONTROL on S1.V1. (CONTROL on S1.V1 must have been

granted to ZORPIE by someone with ACCESSCTRL or SECADM authority.) It

does not matter which, if any, privileges she has on the underlying base table.

2. ZORPIE will not be allowed to create the view:

 CREATE VIEW VB AS SELECT * FROM S1.V2

because she has neither CONTROL nor SELECT on S1.V2. It does not matter

that she has CONTROL on the underlying base table (S1.T2).

3. ZORPIE will get CONTROL privilege on the view that she creates with:

 CREATE VIEW VC (COLA, COLB, COLC, COLD)

 AS SELECT * FROM S1.V1, S1.T2

 WHERE COLA = COLC

COLA COLB

INTEGERCHAR(5)

COLC COLD

INTEGERCHAR(5)

COLE COLF

INTEGERCHAR(5)

...SELECT * FROM S1.T1 ...SELECT * FROM S1.T2 ...SELECT * FROM S1.T3

table: S1.T1 table: S1.T2 table: S1.T3

view: S1.V1 view: S1.V2 view: S1.V3

(SELECT, INSERT) (CONTROL) (SELECT)

(CONTROL) (none) (SELECT)

Figure 1. Tables and Views for Example 6

238 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|
|
|

|
||

|

|

|

|
|
|

|

|

|
|

|

|
|
|

because the fullselect of ZORPIE.VC references view S1.V1 and table S1.T2 and

she has CONTROL on both of these. Note that the view VC is read-only, so

ZORPIE does not get INSERT, UPDATE or DELETE privileges.

4. ZORPIE will get SELECT privilege on the view that she creates with:

 CREATE VIEW VD (COLA,COLB, COLE, COLF)

 AS SELECT * FROM S1.V1, S1.V3

 WHERE COLA = COLE

because the fullselect of ZORPIE.VD references the two views S1.V1 and S1.V3,

one on which she has only SELECT privilege, and one on which she has

CONTROL privilege. She is given the lesser of the two privileges, SELECT, on

ZORPIE.VD.

5. ZORPIE will get INSERT, UPDATE and DELETE privilege WITH GRANT

OPTION and SELECT privilege on the view VE in the following view

definition.

 CREATE VIEW VE

 AS SELECT * FROM S1.V1

 WHERE COLA > ANY

 (SELECT COLE FROM S1.V3)

ZORPIE’s privileges on VE are determined primarily by her privileges on

S1.V1. Since S1.V3 is only referenced in a subquery, she only needs SELECT

privilege on S1.V3 to create the view VE. The definer of a view only gets

CONTROL on the view if they have CONTROL on all objects referenced in the

view definition. ZORPIE does not have CONTROL on S1.V3, consequently she

does not get CONTROL on VE.

DELETE

The DELETE statement deletes rows from a table, nickname, or view, or the

underlying tables, nicknames, or views of the specified fullselect. Deleting a row

from a nickname deletes the row from the data source object to which the

nickname refers. Deleting a row from a view deletes the row from the table on

which the view is based if no INSTEAD OF trigger is defined for the delete

operation on this view. If such a trigger is defined, the trigger will be executed

instead.

There are two forms of this statement:

v The Searched DELETE form is used to delete one or more rows (optionally

determined by a search condition).

v The Positioned DELETE form is used to delete exactly one row (as determined by

the current position of a cursor).

Invocation

A DELETE statement can be embedded in an application program or issued

through the use of dynamic SQL statements. It is an executable statement that can

be dynamically prepared.

Authorization

To execute either form of this statement, the privileges held by the authorization

ID of the statement must include at least one of the following:

v DELETE privilege on the table, view, or nickname from which rows are to be

deleted

Chapter 1. SQL Statements for Administrators 239

|
|
|

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

v CONTROL privilege on the table, view, or nickname from which rows are to be

deleted

v DATAACCESS authority

To execute a Searched DELETE statement, the privileges held by the authorization

ID of the statement must also include at least one of the following for each table,

view, or nickname referenced by a subquery:

v SELECT privilege

v CONTROL privilege

v DATAACCESS authority

If the package used to process the statement is precompiled with SQL92 rules

(option LANGLEVEL with a value of SQL92E or MIA), and the searched form of a

DELETE statement includes a reference to a column of the table or view in the

search-condition, the privileges held by the authorization ID of the statement must

also include at least one of the following:

v SELECT privilege

v CONTROL privilege

v DATAACCESS authority

If the specified table or view is preceded by the ONLY keyword, the privileges

held by the authorization ID of the statement must also include the SELECT

privilege for every subtable or subview of the specified table or view.

Group privileges are not checked for static DELETE statements.

If the target of the delete operation is a nickname, the privileges on the object at

the data source are not considered until the statement is executed at the data

source. At this time, the authorization ID that is used to connect to the data source

must have the privileges required for the operation on the object at the data

source. The authorization ID of the statement can be mapped to a different

authorization ID at the data source.

Syntax

searched-delete:

�� DELETE FROM table-name

view-name

nickname

ONLY

(

table-name

)

view-name

(

fullselect

)

correlation-clause
 �

�
include-columns

assignment-clause
 �

�
WHERE

search-condition

WITH

RR

RS

CS

UR

 ��

240 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|

|

include-columns:

INCLUDE

�

 ,

(

column-name

data-type

)

positioned-delete:

�� DELETE FROM table-name

view-name

nickname

ONLY

(

table-name

)

view-name

correlation-clause
 �

� WHERE CURRENT OF cursor-name ��

correlation-clause:

 AS

correlation-name

(

column-name

)

Description

FROM table-name, view-name, nickname, or (fullselect)

Identifies the object of the delete operation. The name must identify a table or

view that exists in the catalog, but it must not identify a catalog table, a

catalog view, a system-maintained materialized query table, or a read-only

view.

 If table-name is a typed table, rows of the table or any of its proper subtables

may get deleted by the statement.

If view-name is a typed view, rows of the underlying table or underlying tables

of the view’s proper subviews may get deleted by the statement. If view-name

is a regular view with an underlying table that is a typed table, rows of the

typed table or any of its proper subtables may get deleted by the statement.

If the object of the delete operation is a fullselect, the fullselect must be

deletable, as defined in the “Deletable views” Notes item in the description of

the CREATE VIEW statement.

Only the columns of the specified table can be referenced in the WHERE

clause. For a positioned DELETE, the associated cursor must also have

specified the table or view in the FROM clause without using ONLY.

FROM ONLY (table-name)

Applicable to typed tables, the ONLY keyword specifies that the statement

should apply only to data of the specified table and rows of proper subtables

cannot be deleted by the statement. For a positioned DELETE, the associated

cursor must also have specified the table in the FROM clause using ONLY. If

table-name is not a typed table, the ONLY keyword has no effect on the

statement.

FROM ONLY (view-name)

Applicable to typed views, the ONLY keyword specifies that the statement

should apply only to data of the specified view and rows of proper subviews

Chapter 1. SQL Statements for Administrators 241

cannot be deleted by the statement. For a positioned DELETE, the associated

cursor must also have specified the view in the FROM clause using ONLY. If

view-name is not a typed view, the ONLY keyword has no effect on the

statement.

correlation-clause

Can be used within the search-condition to designate a table, view, nickname, or

fullselect. For a description of correlation-clause, see “table-reference” in the

description of “Subselect”.

include-columns

Specifies a set of columns that are included, along with the columns of

table-name or view-name, in the intermediate result table of the DELETE

statement when it is nested in the FROM clause of a fullselect. The

include-columns are appended at the end of the list of columns that are

specified for table-name or view-name.

INCLUDE

Specifies a list of columns to be included in the intermediate result table of

the DELETE statement.

column-name

Specifies a column of the intermediate result table of the DELETE

statement. The name cannot be the same as the name of another include

column or a column in table-name or view-name (SQLSTATE 42711).

data-type

Specifies the data type of the include column. The data type must be one

that is supported by the CREATE TABLE statement.

assignment-clause

See the description of assignment-clause under the UPDATE statement. The

same rules apply. The include-columns are the only columns that can be set

using the assignment-clause (SQLSTATE 42703).

WHERE

Specifies a condition that selects the rows to be deleted. The clause can be

omitted, a search condition specified, or a cursor named. If the clause is

omitted, all rows of the table or view are deleted.

search-condition

Each column-name in the search condition, other than in a subquery must

identify a column of the table or view.

 The search-condition is applied to each row of the table, view, or nickname,

and the deleted rows are those for which the result of the search-condition is

true.

If the search condition contains a subquery, the subquery can be thought of

as being executed each time the search condition is applied to a row, and the

results used in applying the search condition. In actuality, a subquery with

no correlated references is executed once, whereas a subquery with a

correlated reference may have to be executed once for each row. If a

subquery refers to the object table of a DELETE statement or a dependent

table with a delete rule of CASCADE or SET NULL, the subquery is

completely evaluated before any rows are deleted.

CURRENT OF cursor-name

Identifies a cursor that is defined in a DECLARE CURSOR statement of the

program. The DECLARE CURSOR statement must precede the DELETE

statement.

242 Common Criteria Certification: Administration and User Documentation - Volume 2

The table, view, or nickname named must also be named in the FROM

clause of the SELECT statement of the cursor, and the result table of the

cursor must not be read-only. (For an explanation of read-only result

tables, see “DECLARE CURSOR”.)

When the DELETE statement is executed, the cursor must be positioned on

a row: that row is the one deleted. After the deletion, the cursor is

positioned before the next row of its result table. If there is no next row,

the cursor is positioned after the last row.

WITH

Specifies the isolation level used when locating the rows to be deleted.

RR

Repeatable Read

RS

Read Stability

CS

Cursor Stability

UR

Uncommitted Read

The default isolation level of the statement is the isolation level of the package

in which the statement is bound. The WITH clause has no effect on nicknames,

which always use the default isolation level of the statement.

Rules

v Triggers: DELETE statements may cause triggers to be executed. A trigger may

cause other statements to be executed, or may raise error conditions based on

the deleted rows. If a DELETE statement on a view causes an INSTEAD OF

trigger to fire, referential integrity will be checked against the updates

performed in the trigger, and not against the underlying tables of the view that

caused the trigger to fire.

v Referential integrity: If the identified table or the base table of the identified

view is a parent, the rows selected for delete must not have any dependents in a

relationship with a delete rule of RESTRICT, and the DELETE must not cascade

to descendent rows that have dependents in a relationship with a delete rule of

RESTRICT.

If the delete operation is not prevented by a RESTRICT delete rule, the selected

rows are deleted. Any rows that are dependents of the selected rows are also

affected:

– The nullable columns of the foreign keys of any rows that are their

dependents in a relationship with a delete rule of SET NULL are set to the

null value.

– Any rows that are their dependents in a relationship with a delete rule of

CASCADE are also deleted, and the above rules apply, in turn, to those rows.
The delete rule of NO ACTION is checked to enforce that any non-null foreign

key refers to an existing parent row after the other referential constraints have

been enforced.

v Security policy: If the identified table or the base table of the identified view is

protected with a security policy, the session authorization ID must have the

label-based access control (LBAC) credentials that allow:

– Write access to all protected columns (SQLSTATE 42512)

Chapter 1. SQL Statements for Administrators 243

– Read and write access to all of the rows that are selected for deletion

(SQLSTATE 42519)

Notes

v If an error occurs during the execution of a multiple row DELETE, no changes

are made to the database.

v Unless appropriate locks already exist, one or more exclusive locks are acquired

during the execution of a successful DELETE statement. Issuing a COMMIT or

ROLLBACK statement will release the locks. Until the locks are released by a

commit or rollback operation, the effect of the delete operation can only be

perceived by:

– The application process that performed the deletion

– Another application process using isolation level UR.

The locks can prevent other application processes from performing operations on

the table.

v If an application process deletes a row on which any of its cursors are

positioned, those cursors are positioned before the next row of their result table.

Let C be a cursor that is positioned before row R (as a result of an OPEN, a

DELETE through C, a DELETE through some other cursor, or a searched

DELETE). In the presence of INSERT, UPDATE, and DELETE operations that

affect the base table from which R is derived, the next FETCH operation

referencing C does not necessarily position C on R. For example, the operation

can position C on R’, where R’ is a new row that is now the next row of the

result table.

v SQLERRD(3) in the SQLCA shows the number of rows that qualified for the

delete operation. In the context of an SQL procedure statement, the value can be

retrieved using the ROW_COUNT variable of the GET DIAGNOSTICS

statement. SQLERRD(5) in the SQLCA shows the number of rows affected by

referential constraints and by triggered statements. It includes rows that were

deleted as a result of a CASCADE delete rule and rows in which foreign keys

were set to NULL as the result of a SET NULL delete rule. With regards to

triggered statements, it includes the number of rows that were inserted,

updated, or deleted.

v If an error occurs that prevents deleting all rows matching the search condition

and all operations required by existing referential constraints, no changes are

made to the table and the error is returned.

v For nicknames, the external server option iud_app_svpt_enforce poses an

additional limitation. Refer to the Federated documentation for more

information.

v For some data sources, the SQLCODE -20190 may be returned on a delete

against a nickname because of potential data inconsistency. Refer to the

Federated documentation for more information.

v Compatibilities: The following syntax is supported, but is non-standard and

should not be used:

– The FROM keyword can be omitted.

Examples

Example 1: Delete department (DEPTNO) ‘D11’ from the DEPARTMENT table.

 DELETE FROM DEPARTMENT

 WHERE DEPTNO = ’D11’

244 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|

Example 2: Delete all the departments from the DEPARTMENT table (that is,

empty the table).

 DELETE FROM DEPARTMENT

Example 3: Delete from the EMPLOYEE table any sales rep or field rep who didn’t

make a sale in 1995.

 DELETE FROM EMPLOYEE

 WHERE LASTNAME NOT IN

 (SELECT SALES_PERSON

 FROM SALES

 WHERE YEAR(SALES_DATE)=1995)

 AND JOB IN (’SALESREP’,’FIELDREP’)

Example 4: Delete all the duplicate employee rows from the EMPLOYEE table. An

employee row is considered to be a duplicate if the last names match. Keep the

employee row with the smallest first name in lexical order.

 DELETE FROM

 (SELECT ROWNUMBER() OVER (PARTITION BY LASTNAME ORDER BY FIRSTNME)

 FROM EMPLOYEE) AS E(RN)

 WHERE RN = 1

DROP

The DROP statement deletes an object. Any objects that are directly or indirectly

dependent on that object are either deleted or made inoperative. Whenever an

object is deleted, its description is deleted from the catalog, and any packages that

reference the object are invalidated.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

When dropping objects that allow two-part names, the privileges held by the

authorization ID of the statement must include at least one of the following:

v DROPIN privilege on the schema for the object

v Owner of the object, as recorded in the OWNER column of the catalog view for

the object

v CONTROL privilege on the object (applicable only to indexes, index

specifications, nicknames, packages, tables, and views)

v Owner of the user-defined type, as recorded in the OWNER column of the

SYSCAT.DATATYPES catalog view (applicable only when dropping a method

that is associated with a user-defined type)

v DBADM authority

When dropping a table or view hierarchy, the privileges held by the authorization

ID of the statement must include one of the above privileges for each of the tables

or views in the hierarchy.

When dropping an audit policy, the privileges held by the authorization ID of the

statement must include SECADM authority.

Chapter 1. SQL Statements for Administrators 245

|

|
|

When dropping a buffer pool, database partition group or table space, the

privileges held by the authorization ID of the statement must include SYSADM or

SYSCTRL authority.

When dropping a data type mapping, function mapping, server definition, or

wrapper, the privileges held by the authorization ID of the statement must include

DBADM authority.

When dropping an event monitor the privilege held by the authorization ID of the

statement must include SQLADM or DBADM authority.

When dropping a role the privileges held by the authorization ID of the statement

must include SECADM authority.

When dropping a schema, the privileges held by the authorization ID of the

statement must include DBADM authority, or be the schema owner, as recorded in

the OWNER column of the SYSCAT.SCHEMATA catalog view.

When dropping a security label, a security label component, or a security policy,

the privileges held by the authorization ID of the statement must include SECADM

authority.

When dropping a service class, work action set, work class set, workload,

threshold, or histogram template, the privileges held by the authorization ID of the

statement must include WLMADM or DBADM authority.

When dropping a transform, the privileges held by the authorization ID of the

statement must include DBADM authority, or must be the owner of type-name.

When dropping a trusted context, the privileges held by the authorization ID of

the statement must include SECADM authority.

When dropping a user mapping, the privileges held by the authorization ID of the

statement must include DBADM authority, if this authorization ID is different from

the federated database authorization name within the mapping. Otherwise, if the

authorization ID and the authorization name match, no authorities or privileges

are required.

Syntax

�� DROP �

246 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|

�

�

�

�

�

 FOR TABLE

ALIAS

alias-name

PUBLIC

FOR MODULE

FOR SEQUENCE

AUDIT POLICY

policy-name

BUFFERPOOL

bufferpool-name

DATABASE PARTITION GROUP

db-partition-group-name

EVENT MONITOR

event-monitor-name

RESTRICT

FUNCTION

function-name

(

)

,

data-type

RESTRICT

SPECIFIC FUNCTION

specific-name

FUNCTION MAPPING

function-mapping-name

HISTOGRAM TEMPLATE

template-name

(1)

INDEX

index-name

INDEX EXTENSION

index-extension-name

RESTRICT

RESTRICT

METHOD

method-name

FOR

type-name

(

)

,

datatype

MODULE

module-name

RESTRICT

SPECIFIC METHOD

specific-name

NICKNAME

nickname

PACKAGE

package-id

schema-name.

VERSION

version-id

RESTRICT

PROCEDURE

procedure-name

(

)

,

data-type

RESTRICT

SPECIFIC PROCEDURE

specific-name

ROLE

role-name

SCHEMA

schema-name

RESTRICT

RESTRICT

SECURITY LABEL

security-label-name

RESTRICT

SECURITY LABEL COMPONENT

sec-label-comp-name

RESTRICT

SECURITY POLICY

security-policy-name

RESTRICT

SEQUENCE

sequence-name

SERVER

server-name

service-class

TABLE

table-name

TABLE HIERARCHY

root-table-name

,

TABLESPACE

tablespace-name

TABLESPACES

TRANSFORM

ALL

FOR

type-name

TRANSFORMS

group-name

THRESHOLD

threshold-name

TRIGGER

trigger-name

TRUSTED CONTEXT

context-name

TYPE

type-name

RESTRICT

TYPE MAPPING

type-mapping-name

USER MAPPING FOR

authorization-name

SERVER

server-name

USER

RESTRICT

VARIABLE

variable-name

VIEW

view-name

VIEW HIERARCHY

root-view-name

WORK ACTION SET

work-action-set-name

RESTRICT

WORK CLASS SET

work-class-set-name

WORKLOAD

workload-name

WRAPPER

wrapper-name

XSROBJECT

xsrobject-name

��

Chapter 1. SQL Statements for Administrators 247

||

service-class:

 SERVICE CLASS service-class-name

UNDER

service-superclass-name
 �

�
 RESTRICT

Notes:

1 Index-name can be the name of either an index or an index specification.

Description

ALIAS alias-name

Identifies the alias that is to be dropped. The alias-name must identify an alias

that is described in the catalog (SQLSTATE 42704). The specified alias is

deleted.

FOR TABLE, FOR MODULE, or FOR SEQUENCE

Specifies the object type for the alias.

FOR TABLE

The alias is for a table, view, or nickname.

FOR MODULE

The alias is for a module.

FOR SEQUENCE

The alias is for a sequence.

 The specified alias is deleted. All tables, views, and triggers that reference the

alias are made inoperative. This includes both the table referenced in the ON

clause of the CREATE TRIGGER statement, and all tables referenced within the

triggered SQL statements.

If PUBLIC is specified, the alias-name must identify a public alias that exists at

the current server (SQLSTATE 42704).

AUDIT POLICY policy-name

Identifies the audit policy that is to be dropped. The policy-name must identify

an audit policy that exists at the current server (SQLSTATE 42704). The audit

policy must not be associated with any database objects (SQLSTATE 42893).

The specified audit policy is deleted from the catalog.

BUFFERPOOL bufferpool-name

Identifies the buffer pool that is to be dropped. The bufferpool-name must

identify a buffer pool that is described in the catalog (SQLSTATE 42704). There

can be no table spaces assigned to the buffer pool (SQLSTATE 42893). The

IBMDEFAULTBP buffer pool cannot be dropped (SQLSTATE 42832). Buffer

pool memory is released immediately, to be used by DB2. Disk storage may

not be released until the next connection to the database.

DATABASE PARTITION GROUP db-partition-group-name

Identifies the database partition group that is to be dropped. The

db-partition-group-name parameter must identify a database partition group that

is described in the catalog (SQLSTATE 42704). This is a one-part name.

248 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|

|
|

|
|

|
|
|
|

|
|

Dropping a database partition group drops all table spaces defined in the

database partition group. All existing database objects with dependencies on

the tables in the table spaces (such as packages, referential constraints, and so

on) are dropped or invalidated (as appropriate), and dependent views and

triggers are made inoperative.

System-defined database partition groups cannot be dropped (SQLSTATE

42832).

If a DROP DATABASE PARTITION GROUP statement is issued against a

database partition group that is currently undergoing a data redistribution, the

drop database partition group operation fails, and an error is returned

(SQLSTATE 55038). However, a partially redistributed database partition group

can be dropped. A database partition group can become partially redistributed

if a REDISTRIBUTE DATABASE PARTITION GROUP command does not

execute to completion. This can happen if it is interrupted by either an error or

a FORCE APPLICATION ALL command. (For a partially redistributed

database partition group, the REBALANCE_PMAP_ID in the

SYSCAT.DBPARTITIONGROUPS catalog is not -1.)

EVENT MONITOR event-monitor-name

Identifies the event monitor that is to be dropped. The event-monitor-name must

identify an event monitor that is described in the catalog (SQLSTATE 42704).

 If the identified event monitor is active, an error is returned (SQLSTATE

55034); otherwise, the event monitor is deleted. Note that if an event monitor

has been previously activated using the SET EVENT MONITOR STATE

statement, and the database has been deactivated and subsequently reactivated,

use the SET EVENT MONITOR STATE statement to deactivate the event

monitor before issuing the DROP statement.

If there are event files in the target path of a WRITE TO FILE event monitor

that is being dropped, the event files are not deleted. However, if a new event

monitor that specifies the same target path is created, the event files are

deleted.

When dropping WRITE TO TABLE event monitors, table information is

removed from the SYSCAT.EVENTTABLES catalog view, but the tables

themselves are not dropped.

FUNCTION

Identifies an instance of a user-defined function (either a complete function or

a function template) that is to be dropped. The function instance specified

must be a user-defined function described in the catalog. Functions implicitly

generated by the CREATE TYPE (Distinct) statement cannot be dropped.

 There are several different ways available to identify the function instance:

FUNCTION function-name

Identifies the particular function, and is valid only if there is exactly one

function instance with the function-name. The function thus identified may

have any number of parameters defined for it. In dynamic SQL statements,

the CURRENT SCHEMA special register is used as a qualifier for an

unqualified object name. In static SQL statements the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified

object names. If no function by this name exists in the named or implied

schema, an error is returned (SQLSTATE 42704). If there is more than one

specific instance of the function in the named or implied schema, an error

is returned (SQLSTATE 42725).

Chapter 1. SQL Statements for Administrators 249

FUNCTION function-name (data-type,...)

Provides the function signature, which uniquely identifies the function to

be dropped. The function selection algorithm is not used.

function-name

Gives the function name of the function to be dropped. In dynamic

SQL statements, the CURRENT SCHEMA special register is used as a

qualifier for an unqualified object name. In static SQL statements the

QUALIFIER precompile/bind option implicitly specifies the qualifier

for unqualified object names.

(data-type,...)

Must match the data types that were specified on the CREATE

FUNCTION statement in the corresponding position. The number of

data types, and the logical concatenation of the data types is used to

identify the specific function instance which is to be dropped.

 If the data-type is unqualified, the type name is resolved by searching

the schemas on the SQL path. This also applies to data type names

specified for a REFERENCE type.

It is not necessary to specify the length, precision or scale for the

parameterized data types. Instead, an empty set of parentheses may be

coded to indicate that these attributes are to be ignored when looking

for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) since the parameter value

indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that

specified in the CREATE FUNCTION statement.

A type of FLOAT(n) does not need to match the defined value for n

since 0<n<25 means REAL and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

RESTRICT

The RESTRICT keyword enforces the rule that the function is not to be

dropped if any of the following dependencies exists:

v Another routine is sourced on the function.

v A view uses the function.

v A trigger uses the function.

v A materialized query table uses the function in its definition.

RESTRICT is the default behavior.

If no function with the specified signature exists in named or implied schema,

an error is returned (SQLSTATE 42883).

SPECIFIC FUNCTION specific-name

Identifies the particular user-defined function that is to be dropped, using the

specific name either specified or defaulted to at function creation time. In

dynamic SQL statements, the CURRENT SCHEMA special register is used as a

qualifier for an unqualified object name. In static SQL statements the

QUALIFIER precompile/bind option implicitly specifies the qualifier for

unqualified object names. The specific-name must identify a specific function

instance in the named or implied schema; otherwise, an error is returned

(SQLSTATE 42704).

250 Common Criteria Certification: Administration and User Documentation - Volume 2

RESTRICT

The RESTRICT keyword enforces the rule that the function is not to be

dropped if any of the following dependencies exists:

v Another routine is sourced on the function.

v A view uses the function.

v A trigger uses the function.

RESTRICT is the default behavior.

 It is not possible to drop a function that is in the SYSIBM, SYSFUN, or the

SYSPROC schema (SQLSTATE 42832).

Other objects can be dependent upon a function. All such dependencies must

be removed before the function can be dropped, with the exception of

packages which are marked inoperative. An attempt to drop a function with

such dependencies will result in an error (SQLSTATE 42893). See “Rules” on

page 264 for a list of these dependencies.

If the function can be dropped, it is dropped.

Any package dependent on the specific function being dropped is marked as

inoperative. Such a package is not implicitly rebound. It must either be

rebound by use of the BIND or REBIND command, or it must be re-prepared

by use of the PREP command.

FUNCTION MAPPING function-mapping-name

Identifies the function mapping that is to be dropped. The

function-mapping-name must identify a user-defined function mapping that is

described in the catalog (SQLSTATE 42704). The function mapping is deleted

from the database.

 Default function mappings cannot be dropped, but can be disabled by using

the CREATE FUNCTION MAPPING statement. Dropping a user-defined

function mapping that was created to override a default function mapping

reinstates the default function mapping.

Packages having a dependency on a dropped function mapping are

invalidated.

HISTOGRAM TEMPLATE template-name

Identifies the histogram template that is to be dropped. The template-name must

identify a histogram template that exists at the current server (SQLSTATE

42704). The template-name cannot be SYSDEFAULTHISTOGRAM (SQLSTATE

42832). The histogram template cannot be dropped if a service class or a work

action is dependent on it (SQLSTATE 42893). The specified histogram template

is deleted from the catalog.

INDEX index-name

Identifies the index or index specification that is to be dropped. The index-name

must identify an index or index specification that is described in the catalog

(SQLSTATE 42704). It cannot be an index that is required by the system for a

primary key or unique constraint, for a replicated materialized query table, or

for an XML column (SQLSTATE 42917). The specified index or index

specification is deleted.

 Packages having a dependency on a dropped index or index specification are

invalidated.

INDEX EXTENSION index-extension-name RESTRICT

Identifies the index extension that is to be dropped. The index-extension-name

must identify an index extension that is described in the catalog (SQLSTATE

Chapter 1. SQL Statements for Administrators 251

42704). The RESTRICT keyword enforces the rule that no index can be defined

that depends on this index extension definition (SQLSTATE 42893).

METHOD

Identifies a method body that is to be dropped. The method body specified

must be a method described in the catalog (SQLSTATE 42704). Method bodies

that are implicitly generated by the CREATE TYPE statement cannot be

dropped.

 DROP METHOD deletes the body of a method, but the method specification

(signature) remains as a part of the definition of the subject type. After

dropping the body of a method, the method specification can be removed from

the subject type definition by ALTER TYPE DROP METHOD.

There are several ways available to identify the method body to be dropped:

METHOD method-name

Identifies the particular method to be dropped, and is valid only if there is

exactly one method instance with name method-name and subject type

type-name. Thus, the method identified may have any number of

parameters. If no method by this name exists for the type type-name, an

error is returned (SQLSTATE 42704). If there is more than one specific

instance of the method for the named data type, an error is returned

(SQLSTATE 42725).

METHOD method-name (data-type,...)

Provides the method signature, which uniquely identifies the method to be

dropped. The method selection algorithm is not used.

method-name

The method name of the method to be dropped for the specified type.

The name must be an unqualified identifier.

(data-type, ...)

Must match the data types that were specified in the corresponding

positions of the method-specification of the CREATE TYPE or ALTER

TYPE statement. The number of data types and the logical

concatenation of the data types are used to identify the specific method

instance which is to be dropped.

 If the data-type is unqualified, the type name is resolved by searching

the schemas on the SQL path.

It is not necessary to specify the length, precision or scale for the

parameterized data types. Instead, an empty set of parentheses may be

coded to indicate that these attributes are to be ignored when looking

for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) since the parameter value

indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly

match that specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for n

since 0<n<25 means REAL and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

If no method with the specified signature exists for the named data

type, an error is returned (SQLSTATE 42883).

FOR type-name

Names the type for which the specified method is to be dropped. The

252 Common Criteria Certification: Administration and User Documentation - Volume 2

name must identify a type already described in the catalog (SQLSTATE

42704). In dynamic SQL statements, the CURRENT SCHEMA special

register is used as a qualifier for an unqualified type name. In static SQL

statements, the QUALIFIER precompile/bind option implicitly specifies the

qualifier for unqualified type names.

RESTRICT

The RESTRICT keyword enforces the rule that the method is not to be

dropped if any of the following dependencies exists:

v Another routine is sourced on the method.

v A view uses the method.

v A trigger uses the method.

RESTRICT is the default behavior.

MODULE module-name

Identifies the module that is to be dropped. The module-name must identify a

module that exists at the current server (SQLSTATE 42704). The specified

module is dropped from the schema, including all module objects. All

privileges on the module are also dropped.

SPECIFIC METHOD specific-name

Identifies the particular method that is to be dropped, using a name either

specified or defaulted to at CREATE TYPE or ALTER TYPE time. If the specific

name is unqualified, the CURRENT SCHEMA special register is used as a

qualifier for an unqualified specific name in dynamic SQL. In static SQL

statements the QUALIFIER precompile/bind option implicitly specifies the

qualifier for an unqualified specific name. The specific-name must identify a

method; otherwise, an error is returned (SQLSTATE 42704).

RESTRICT

The RESTRICT keyword enforces the rule that the method is not to be

dropped if any of the following dependencies exists:

v Another routine is sourced on the method.

v A view uses the method.

v A trigger uses the function.

RESTRICT is the default method.

 Other objects can be dependent upon a method. All such dependencies must

be removed before the method can be dropped, with the exception of packages

which will be marked inoperative if the drop is successful. An attempt to drop

a method with such dependencies will result in an error (SQLSTATE 42893).

If the method can be dropped, it will be dropped.

Any package dependent on the specific method being dropped is marked as

inoperative. Such a package is not implicitly re-bound. Either it must be

re-bound by use of the BIND or REBIND command, or it must be re-prepared

by use of the PREP command.

If the specific method being dropped overrides another method, all packages

dependent on the overridden method — and on methods that override this

method in supertypes of the specific method being dropped — are invalidated.

NICKNAME nickname

Identifies the nickname that is to be dropped. The nickname must be listed in

the catalog (SQLSTATE 42704). The nickname is deleted from the database.

Chapter 1. SQL Statements for Administrators 253

|
|
|
|
|

All information about the columns and indexes associated with the nickname

is deleted from the catalog. Any materialized query tables that are dependent

on the nickname are dropped. Any index specifications that are dependent on

the nickname are dropped. Any views that are dependent on the nickname are

marked inoperative. Any packages that are dependent on the dropped index

specifications or inoperative views are invalidated. The data source table that

the nickname references is not affected.

If an SQL function or method is dependent on a nickname, that nickname

cannot be dropped (SQLSTATE 42893).

PACKAGE schema-name.package-id

Identifies the package that is to be dropped. If a schema name is not specified,

the package identifier is implicitly qualified by the default schema. The schema

name and package identifier, together with the implicitly or explicitly specified

version identifier, must identify a package that is described in the catalog

(SQLSTATE 42704). The specified package is deleted. If the package being

dropped is the only package identified by schema-name.package-id (that is, there

are no other versions), all privileges on the package are also deleted.

VERSION version-id

Identifies which package version is to be dropped. If a value is not

specified, the version defaults to the empty string. If multiple packages

with the same package name but different versions exist, only one package

version can be dropped in one invocation of the DROP statement. Delimit

the version identifier with double quotation marks when it:

v Is generated by the VERSION(AUTO) precompiler option

v Begins with a digit

v Contains lowercase or mixed-case letters

If the statement is invoked from an operating system command prompt,

precede each double quotation mark delimiter with a back slash character

to ensure that the operating system does not strip the delimiters.

PROCEDURE

Identifies an instance of a procedure that is to be dropped. The procedure

instance specified must be a procedure described in the catalog.

 There are several different ways available to identify the procedure instance:

PROCEDURE procedure-name

Identifies the particular procedure to be dropped, and is valid only if there

is exactly one procedure instance with the procedure-name in the schema.

The procedure thus identified may have any number of parameters defined

for it. If no procedure by this name exists in the named or implied schema,

an error is returned (SQLSTATE 42704). In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an

unqualified object name. In static SQL statements the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified

object names. If there is more than one specific instance of the procedure in

the named or implied schema, an error (SQLSTATE 42725) is returned.

PROCEDURE procedure-name (data-type,...)

Provides the procedure signature, which uniquely identifies the procedure

to be dropped. The procedure selection algorithm is not used. For

federated procedures, the signature information is not specified on the

CREATE PROCEDURE statement, but the information is available in the

system catalog.

254 Common Criteria Certification: Administration and User Documentation - Volume 2

procedure-name

Gives the procedure name of the procedure to be dropped. In dynamic

SQL statements, the CURRENT SCHEMA special register is used as a

qualifier for an unqualified object name. In static SQL statements the

QUALIFIER precompile/bind option implicitly specifies the qualifier

for unqualified object names.

(data-type,...)

Must match the data types that were specified on the CREATE

PROCEDURE statement in the corresponding position, except for

federated procedures, where the data type must match what is stored

in the local catalog for the corresponding parameter. The number of

data types, and the logical concatenation of the data types is used to

identify the specific procedure instance which is to be dropped.

 If the data-type is unqualified, the type name is resolved by searching

the schemas on the SQL path. This also applies to data type names

specified for a REFERENCE type.

It is not necessary to specify the length, precision or scale for the

parameterized data types. Instead, an empty set of parentheses may be

coded to indicate that these attributes are to be ignored when looking

for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) since the parameter value

indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly

match that specified in the CREATE PROCEDURE statement or, for

federated procedures, it must exactly match what is stored in the local

catalog for the corresponding parameter.

A type of FLOAT(n) does not need to match the defined value for n

since 0<n<25 means REAL and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

RESTRICT

The RESTRICT keyword prevents the procedure from being dropped if a

trigger definition, an SQL function, or an SQL method contains a CALL

statement with the name of the procedure. RESTRICT is the default

behavior.

If no procedure with the specified signature exists in named or implied

schema, an error (SQLSTATE 42883) is returned.

SPECIFIC PROCEDURE specific-name

Identifies the particular procedure that is to be dropped, using the specific

name either specified or defaulted to at procedure creation time. In dynamic

SQL statements, the CURRENT SCHEMA special register is used as a qualifier

for an unqualified object name. In static SQL statements the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified object

names. The specific-name must identify a specific procedure instance in the

named or implied schema; otherwise, an error is returned (SQLSTATE 42704).

RESTRICT

The RESTRICT keyword prevents the procedure from being dropped if a

trigger definition, an SQL function, or an SQL method contains a CALL

statement with the name of the procedure. RESTRICT is the default

behavior.

Chapter 1. SQL Statements for Administrators 255

It is not possible to drop a procedure that is in the SYSIBM, SYSFUN, or the

SYSPROC schema (SQLSTATE 42832).

ROLE role-name

Identifies the role that is to be dropped. The role-name must identify a role that

already exists at the current server (SQLSTATE 42704). The role-name must not

identify a role, or a role that contains role-name, if the role has either EXECUTE

privilege on a routine or USAGE privilege on a sequence, and an SQL object

other than a package is dependent on the routine or sequence (SQLSTATE

42893). The owner of the SQL object is either authorization-name or any user

who is a member of authorization-name, where authorization-name is a role.

 A DROP ROLE statement fails (SQLSTATE 42893) if any of the following is

true for the role to be dropped:

v A workload exists such that one of the values for the connection attribute

SESSION_USER ROLE is role-name

v A trusted context using role-name exists

The specified role is deleted from the catalog.

SCHEMA schema-name RESTRICT

Identifies the particular schema to be dropped. The schema-name must identify

a schema that is described in the catalog (SQLSTATE 42704). The RESTRICT

keyword enforces the rule that no objects can be defined in the specified

schema for the schema to be deleted from the database (SQLSTATE 42893).

SECURITY LABEL security-label-name

Identifies the security label to be dropped. The name must be qualified with a

security policy (SQLSTATE 42704) and must identify a security label that exists

at the current server (SQLSTATE 42704).

RESTRICT

This option, which is the default, prevents the security label from being

dropped if any of the following dependencies exist (SQLSTATE 42893):

v One or more authorization IDs currently hold the security label for read

access

v One or more authorization IDs currently hold the security label for write

access

v The security label is currently being used to protect one or more

columns

SECURITY LABEL COMPONENT sec-label-comp-name

Identifies the security label component to be dropped. The sec-label-comp-name

must identify a security label component that is described in the catalog

(SQLSTATE 42704).

RESTRICT

This option, which is the default, prevents the security label component

from being dropped if any of the following dependencies exist (SQLSTATE

42893):

v One or more security policies that include the security label component

are currently defined

SECURITY POLICY security-policy-name

Identifies the security policy to be dropped. The security-policy-name must

identify a security policy that exists at the current server (SQLSTATE 42704).

256 Common Criteria Certification: Administration and User Documentation - Volume 2

RESTRICT

This option, which is the default, prevents the security policy from being

dropped if any of the following dependencies exist (SQLSTATE 42893):

v One or more tables are associated with this security policy

v One or more authorization IDs hold an exemption on one of the rules in

this security policy

v One or more security labels are defined for this security policy

SEQUENCE sequence-name

Identifies the particular sequence that is to be dropped. The sequence-name,

along with the implicit or explicit schema name, must identify an existing

sequence at the current server. If no sequence by this name exists in the

explicitly or implicitly specified schema, an error is returned (SQLSTATE

42704).

RESTRICT

This option, which is the default, prevents the sequence from being

dropped if any of the following dependencies exist:

v A trigger exists such that a NEXT VALUE or PREVIOUS VALUE

expression in the trigger specifies the sequence (SQLSTATE 42893).

v An SQL function or an SQL method exists such that a NEXT VALUE

expression in the routine body specifies the sequence (SQLSTATE 42893).

SERVER server-name

Identifies the data source whose definition is to be dropped from the catalog.

The server-name must identify a data source that is described in the catalog

(SQLSTATE 42704). The definition of the data source is deleted.

 All nicknames for tables and views residing at the data source are dropped.

Any index specifications dependent on these nicknames are dropped. Any

user-defined function mappings, user-defined type mappings, and user

mappings that are dependent on the dropped server definition are also

dropped. All packages dependent on the dropped server definition, function

mappings, nicknames, and index specifications are invalidated. All federated

procedures that are dependent on the server definition are also dropped.

SERVICE CLASS service-class-name

Identifies the service class to be dropped. The service-class-name must identify a

service class that is described in the catalog (SQLSTATE 42704). To drop a

service subclass, the service-superclass-name must be specified using the UNDER

clause.

UNDER service-superclass-name

Specifies the service superclass of the service subclass when dropping a

service subclass. The service-superclass-name must identify a service

superclass that is described in the catalog (SQLSTATE 42704).

RESTRICT

This keyword enforces the rule that the service class is not to be dropped if

any of the following dependencies exists:

v The service class is a service superclass and there is a user defined

service subclass under the service class (SQLSTATE 5U031). The service

subclass must first be dropped.

v The service class is a service superclass and there is a work action set

mapping to the service class (SQLSTATE 5U031). The work action set

must first be dropped.

Chapter 1. SQL Statements for Administrators 257

v The service class is a service subclass and there is a work action

mapping to the service class (SQLSTATE 5U031). The work action must

first be dropped.

v The service class has a workload mapping (SQLSTATE 5U031). The

workload mapping must first be removed. Remove the workload

mapping by dropping the workload or altering the workload to not map

to the service class.

v The service class has an associated threshold (SQLSTATE 5U031). The

threshold must first be dropped.

v The service class is the target of a REMAP ACTIVITY action in a

threshold (SQLSTATE 5U031). Alter the threshold to set a different

service subclass as the target of the REMAP ACTIVITY action or drop

the threshold.

v The service class is not disabled (SQLSTATE 5U031). The service class

must first be disabled.

RESTRICT is the default behavior.

TABLE table-name

Identifies the base table, created temporary table, or declared temporary table

that is to be dropped. The table-name must identify a table that is described in

the catalog or, if it is a declared temporary table, the table-name must be

qualified by the schema name SESSION and exist in the application

(SQLSTATE 42704). The subtables of a typed table are dependent on their

supertables. All subtables must be dropped before a supertable can be dropped

(SQLSTATE 42893). The specified table is deleted from the database.

 All indexes, primary keys, foreign keys, check constraints, materialized query

tables, and staging tables referencing the table are dropped. All views and

triggers that reference the table are made inoperative. (This includes both the

table referenced in the ON clause of the CREATE TRIGGER statement, and all

tables referenced within the triggered SQL statements.) All packages depending

on any object dropped or marked inoperative will be invalidated. This includes

packages dependent on any supertables above the subtable in the hierarchy.

Any reference columns for which the dropped table is defined as the scope of

the reference become unscoped.

Packages are not dependent on declared temporary tables, and therefore are

not invalidated when such a table is dropped. Packages are, however,

dependent on created temporary tables, and are invalidated when such a table

is dropped.

In a federated system, a remote table that was created using transparent DDL

can be dropped. Dropping a remote table also drops the nickname associated

with that table, and invalidates any packages that are dependent on that

nickname.

When a subtable is dropped from a table hierarchy, the columns associated

with the subtable are no longer accessible although they continue to be

considered with respect to limits on the number of columns and size of the

row. Dropping a subtable has the effect of deleting all the rows of the subtable

from the supertables. This may result in activation of triggers or referential

integrity constraints defined on the supertables.

When a created temporary table or declared temporary table is dropped, and

its creation preceded the active unit of work or savepoint, then the table will

be functionally dropped and the application will not be able to access the table.

However, the table will still reserve some space in its table space and will

258 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|

|
|

|

|
|
|

|

prevent that USER TEMPORARY table space from being dropped or the

database partition group of the USER TEMPORARY table space from being

redistributed until the unit of work is committed or savepoint is ended.

Dropping a created temporary table or declared temporary table causes the

data in the table to be destroyed, regardless of whether DROP is committed or

rolled back.

A table cannot be dropped if it has the RESTRICT ON DROP attribute.

A newly detached table is initially inaccessible. This prevents the table from

being read, modified, or dropped until the SET INTEGRITY statement can be

run to incrementally refresh MQTs or to complete any processing for foreign

key constraints. After the SET INTEGRITY statement executes against all

dependent tables, the table is fully accessible, its detached attribute is reset,

and it can be dropped.

TABLE HIERARCHY root-table-name

Identifies the typed table hierarchy that is to be dropped. The root-table-name

must identify a typed table that is the root table in the typed table hierarchy

(SQLSTATE 428DR). The typed table identified by root-table-name and all of its

subtables are deleted from the database.

 All indexes, materialized query tables, staging tables, primary keys, foreign

keys, and check constraints referencing the dropped tables are dropped. All

views and triggers that reference the dropped tables are made inoperative. All

packages depending on any object dropped or marked inoperative will be

invalidated. Any reference columns for which one of the dropped tables is

defined as the scope of the reference become unscoped.

Unlike dropping a single subtable, dropping the table hierarchy does not result

in the activation of delete triggers of any tables in the hierarchy nor does it log

the deleted rows.

TABLESPACE or TABLESPACES tablespace-name

Identifies the table spaces that are to be dropped; tablespace-name must identify

a table space that is described in the catalog (SQLSTATE 42704). This is a

one-part name.

 The table spaces will not be dropped (SQLSTATE 55024) if there is any table

that stores at least one of its parts in a table space being dropped, and has one

or more of its parts in another table space that is not being dropped (these

tables would need to be dropped first), or if any table that resides in the table

space has the RESTRICT ON DROP attribute.

Objects whose names are prefixed with ’SYS’ are system-defined objects and,

with the exception of the SYSTOOLSPACE and SYSTOOLSTMPSPACE table

spaces, cannot be dropped (SQLSTATE 42832).

A SYSTEM TEMPORARY table space cannot be dropped (SQLSTATE 55026) if

it is the only temporary table space that exists in the database. A USER

TEMPORARY table space cannot be dropped if there is an instance of a created

temporary table or a declared temporary table created in it (SQLSTATE 55039).

Even if a created temporary table has been dropped, the USER TEMPORARY

table space will still be considered to be in used until all instances of the

created temporary table are dropped. Instances of a created temporary table

are dropped when the session terminates or when the created temporary table

is referenced in the session. Even if a declared temporary table has been

dropped, the USER TEMPORARY table space will still be considered to be in

use until the unit of work containing the DROP TABLE statement has been

committed.

Chapter 1. SQL Statements for Administrators 259

|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

Dropping a table space drops all objects that are defined in the table space. All

existing database objects with dependencies on the table space, such as

packages, referential constraints, and so on, are dropped or invalidated (as

appropriate), and dependent views and triggers are made inoperative.

Containers that were created by a user are not deleted. Any directories in the

path of the container name that were created by the database manager during

CREATE TABLESPACE execution are deleted. All containers that are below the

database directory are deleted. When the DROP TABLESPACE statement is

committed, the DMS file containers or SMS containers for the specified table

space are deleted, if possible. If the containers cannot be deleted (because they

are being kept open by another agent, for example), the files are truncated to

zero length. After all connections are terminated, or the DEACTIVATE

DATABASE command is issued, these zero-length files are deleted.

THRESHOLD threshold-name

Identifies the threshold that is to be dropped. The threshold-name must identify

a threshold that exists at the current server (SQLSTATE 42704). This is a

one-part name. Thresholds with a queue, for example

TOTALSCPARTITIONCONNECTIONS and

CONCURRENTDBCOORDACTIVITIES, must be disabled before they can be

dropped (SQLSTATE 5U025). The specified threshold is deleted from the

catalog.

TRIGGER trigger-name

Identifies the trigger that is to be dropped. The trigger-name must identify a

trigger that is described in the catalog (SQLSTATE 42704). The specified trigger

is deleted.

 Dropping triggers causes certain packages to be marked invalid.

If trigger-name specifies an INSTEAD OF trigger on a view, another trigger may

depend on that trigger through an update against the view.

TRANSFORM ALL FOR type-name

Indicates that all transforms groups defined for the user-defined data type

type-name are to be dropped. The transform functions referenced in these

groups are not dropped. In dynamic SQL statements, the CURRENT SCHEMA

special register is used as a qualifier for an unqualified object name. In static

SQL statements, the QUALIFIER precompile/bind option implicitly specifies

the qualifier for unqualified object names. The type-name must identify a

user-defined type described in the catalog (SQLSTATE 42704).

 If there are not transforms defined for type-name, an error is returned

(SQLSTATE 42740).

DROP TRANSFORM is the inverse of CREATE TRANSFORM. It causes the

transform functions associated with certain groups, for a given data type, to

become undefined. The functions formerly associated with these groups still

exist and can still be called explicitly, but they no longer have the transform

property, and are no longer invoked implicitly for exchanging values with the

host language environment.

The transform group is not dropped if there is a user-defined function (or

method) written in a language other than SQL that has a dependency on one

of the group’s transform functions defined for the user-defined type type-name

(SQLSTATE 42893). Such a function has a dependency on the transform

function associated with the referenced transform group defined for type

type-name. Packages that depend on a transform function associated with the

named transform group are marked inoperative.

260 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|

|
|
|
|
|
|
|
|
|

TRANSFORMS group-name FOR type-name

Indicates that the specified transform group for the user-defined data type

type-name is to be dropped. The transform functions referenced in this group

are not dropped. In dynamic SQL statements, the CURRENT SCHEMA special

register is used as a qualifier for an unqualified object name. In static SQL

statements, the QUALIFIER precompile/bind option implicitly specifies the

qualifier for unqualified object names. The type-name must identify a

user-defined type described in the catalog (SQLSTATE 42704), and the

group-name must identify an existing transform group for type-name.

TRIGGER trigger-name

Identifies the trigger that is to be dropped. The trigger-name must identify a

trigger that is described in the catalog (SQLSTATE 42704). The specified trigger

is deleted.

 Dropping triggers causes certain packages to be marked invalid.

If trigger-name specifies an INSTEAD OF trigger on a view, another trigger may

depend on that trigger through an update against the view.

TRUSTED CONTEXT context-name

Identifies the trusted context that is to be dropped. The context-name must

identify a trusted context that exists at the current server (SQLSTATE 42704). If

the trusted context is dropped while trusted connections for this context are

active, those connections remain trusted until they terminate or until the next

reuse attempt. If an attempt is made to switch the user on these trusted

connections, an error is returned (SQLSTATE 42517). The specified trusted

context is deleted from the catalog.

TYPE type-name

Identifies the user-defined type to be dropped. In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an unqualified

object name. In static SQL statements the QUALIFIER precompile/bind option

implicitly specifies the qualifier for unqualified object names. For a structured

type, the associated reference type is also dropped. The type-name must identify

a user-defined type described in the catalog.

RESTRICT

The type is not dropped (SQLSTATE 42893) if any of the following is true:

v The type is used as the type of a column of a table or view.

v The type has a subtype.

v The type is a structured type used as the data type of a typed table or a

typed view.

v The type is an attribute of another structured type.

v There exists a column of a table whose type might contain an instance of

type-name. This can occur if type-name is the type of the column or is

used elsewhere in the column’s associated type hierarchy. More formally,

for any type T, T cannot be dropped if there exists a column of a table

whose type directly or indirectly uses type-name.

v The type is the target type of a reference-type column of a table or view,

or a reference-type attribute of another structured type.

v The type, or a reference to the type, is a parameter type or a return

value type of a function or method.

v The type is a parameter type or is used in the body of an SQL

procedure.

Chapter 1. SQL Statements for Administrators 261

v The type, or a reference to the type, is used in the body of an SQL

function or method, but it is not a parameter type or a return value

type.

v The type is used in a check constraint, trigger, view definition, or index

extension.

 If RESTRICT is not specified, the behavior is the same as RESTRICT, except for

functions and methods that use the type.

Functions that use the type: If the user-defined type can be dropped, then for

every function, F (with specific name SF), that has parameters or a return value

of the type being dropped or a reference to the type being dropped, the

following DROP FUNCTION statement is effectively executed:

 DROP SPECIFIC FUNCTION SF

It is possible that this statement also would cascade to drop dependent

functions. If all of these functions are also in the list to be dropped because of

a dependency on the user-defined type, the drop of the user-defined type will

succeed (otherwise it fails with SQLSTATE 42893).

Methods that use the type: If the user-defined type can be dropped, then for

every method, M of type T1 (with specific name SM), that has parameters or a

return value of the type being dropped or a reference to the type being

dropped, the following statements are effectively executed:

 DROP SPECIFIC METHOD SM

 ALTER TYPE T1 DROP SPECIFIC METHOD SM

The existence of objects that are dependent on these methods may cause the

DROP TYPE operation to fail.

All packages that are dependent on methods defined in supertypes of the type

being dropped, and that are eligible for overriding, are invalidated.

TYPE MAPPING type-mapping-name

Identifies the user-defined data type mapping to be dropped. The

type-mapping-name must identify a data type mapping that is described in the

catalog (SQLSTATE 42704). The data type mapping is deleted from the

database.

 No additional objects are dropped.

USER MAPPING FOR authorization-name | USER SERVER server-name

Identifies the user mapping to be dropped. This mapping associates an

authorization name that is used to access the federated database with an

authorization name that is used to access a data source. The first of these two

authorization names is either identified by the authorization-name or referenced

by the special register USER. The server-name identifies the data source that the

second authorization name is used to access.

 The authorization-name must be listed in the catalog (SQLSTATE 42704). The

server-name must identify a data source that is described in the catalog

(SQLSTATE 42704). The user mapping is deleted.

No additional objects are dropped.

VARIABLE variable-name

Identifies the global variable that is to be dropped. The variable-name must

identify a global variable that exists at the current server (SQLSTATE 42704).

RESTRICT

This keyword enforces the rule that the global variable cannot be dropped

262 Common Criteria Certification: Administration and User Documentation - Volume 2

if it is referenced in a function, method, trigger, or view (SQLSTATE

42893). RESTRICT is the default behavior.

VIEW view-name

Identifies the view that is to be dropped. The view-name must identify a view

that is described in the catalog (SQLSTATE 42704). The subviews of a typed

view are dependent on their superviews. All subviews must be dropped before

a superview can be dropped (SQLSTATE 42893).

 The specified view is deleted. The definition of any view or trigger that is

directly or indirectly dependent on that view is marked inoperative. Any

materialized query table or staging table that is dependent on any view that is

marked inoperative is dropped. Any packages dependent on a view that is

dropped or marked inoperative will be invalidated. This includes packages

dependent on any superviews above the subview in the hierarchy. Any

reference columns for which the dropped view is defined as the scope of the

reference become unscoped.

VIEW HIERARCHY root-view-name

Identifies the typed view hierarchy that is to be dropped. The root-view-name

must identify a typed view that is the root view in the typed view hierarchy

(SQLSTATE 428DR). The typed view identified by root-view-name and all of its

subviews are deleted from the database.

 The definition of any view or trigger that is directly or indirectly dependent on

any of the dropped views is marked inoperative. Any packages dependent on

any view or trigger that is dropped or marked inoperative will be invalidated.

Any reference columns for which a dropped view or view marked inoperative

is defined as the scope of the reference become unscoped.

WORK ACTION SET work-action-set-name

Identifies the work action set that is to be dropped. The work-action-set-name

must identify a work action set that exists at the current server (SQLSTATE

42704). All work actions that are contained by the work-action-set-name are also

dropped.

WORK CLASS SET work-class-set-name

Identifies the work class set that is to be dropped. The work-class-set-name must

identify a work class set that exists at the current server (SQLSTATE 42704). All

work classes that are contained by the work-class-set-name are also dropped.

RESTRICT

This keyword enforces the rule that the work class set is not to be dropped

if it is associated with any work action set (SQLSTATE 42893). RESTRICT is

the default behavior.

WORKLOAD workload-name

Identifies the workload that is to be dropped. This is a one-part name. The

workload-name must identify a workload that exists at the current server

(SQLSTATE 42704). SYSDEFAULTUSERWORKLOAD or

SYSDEFAULTADMWORKLOAD cannot be dropped (SQLSTATE 42832). A

workload must be disabled and must not have active workload occurrences

associated with it before it can be dropped (SQLSTATE 5U023). The specified

workload is deleted from the catalog.

WRAPPER wrapper-name

Identifies the wrapper to be dropped. The wrapper-name must identify a

wrapper that is described in the catalog (SQLSTATE 42704). The wrapper is

deleted.

Chapter 1. SQL Statements for Administrators 263

All server definitions, user-defined function mappings, and user-defined data

type mappings that are dependent on the wrapper are dropped. All

user-defined function mappings, nicknames, user-defined data type mappings,

and user mappings that are dependent on the dropped server definitions are

also dropped. Any index specifications dependent on the dropped nicknames

are dropped, and any views dependent on these nicknames are marked

inoperative. All packages dependent on the dropped objects and inoperative

views are invalidated. All federated procedures that are dependent on the

dropped server definitions are also dropped.

XSROBJECT xsrobject-name

Identifies the XSR object to be dropped. The xsrobject-name must identify an

XSR object that is described in the catalog (SQLSTATE 42704).

 Check constraints that reference the XSR object are dropped. All triggers and

views referencing the XSR object are marked inoperative. Packages having a

dependency on a dropped XSR object are invalidated.

In a partitioned database environment, you can issue this statement against an

XSR object by connecting to any partition.

Rules

Dependencies: Table 15 on page 265 shows the dependencies that objects have on

each other. Not all dependencies are explicitly recorded in the catalog. For

example, there is no record of the constraints on which a package has

dependencies. Four different types of dependencies are shown:

R Restrict semantics. The underlying object cannot be dropped as long as the

object that depends on it exists.

C Cascade semantics. Dropping the underlying object causes the object that

depends on it (the depending object) to be dropped as well. However, if

the depending object cannot be dropped because it has a Restrict

dependency on some other object, the drop of the underlying object will

fail.

X Inoperative semantics. Dropping the underlying object causes the object

that depends on it to become inoperative. It remains inoperative until a

user takes some explicit action.

A Automatic Invalidation/Revalidation semantics. Dropping the underlying

object causes the object that depends on it to become invalid. The database

manager attempts to revalidate the invalid object.

 A package used by a function or a method, or by a procedure that is called

directly or indirectly from a function or method, will only be automatically

revalidated if the routine is defined as MODIFIES SQL DATA. If the

routine is not MODIFIES SQL DATA, an error is returned (SQLSTATE

56098).

Some of the dependencies shown in Table 15 on page 265 change to “A”

(Automatic Invalidation/Revalidation semantics) when the database

configuration parameter auto_reval is set to IMMEDIATE or DEFERRED.

Table 16 on page 272 summarizes the dependent objects that are impacted.

Objects listed in the “Impacted Dependent Objects” column will be

invalidated when the corresponding statement listed in the “Statement”

column is executed.

In general, the database manager attempts to revalidate the invalid objects

the next time the object is used. However, in situations when auto_reval is

264 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|
|
|
|
|
|

|
|

set to IMMEDIATE, the impacted dependent objects will be revalidated

immediately after they become invalid. Those situations are:

v ALTER TABLE ... ALTER COLUMN

v ALTER TABLE ... DROP COLUMN

v ALTER TABLE ... RENAME COLUMN

v ALTER TYPE ... ADD ATTRIBUTE

v ALTER TYPE ... DROP ATTRIBUTE

v Any CREATE statement that specifies “OR REPLACE”

Some DROP statement parameters and objects are not shown in Table 15 because

they would result in blank rows or columns:

v EVENT MONITOR, PACKAGE, PROCEDURE, SCHEMA, TYPE MAPPING, and

USER MAPPING DROP statements do not have object dependencies.

v Alias, buffer pool, distribution key, privilege, and procedure object types do not

have DROP statement dependencies.

v A DROP SERVER, DROP FUNCTION MAPPING, or DROP TYPE MAPPING

statement in a given unit of work (UOW) cannot be processed under either of

the following conditions:

– The statement references a single data source, and the UOW already includes

a SELECT statement that references a nickname for a table or view within this

data source (SQLSTATE 55006).

– The statement references a category of data sources (for example, all data

sources of a specific type and version), and the UOW already includes a

SELECT statement that references a nickname for a table or view within one

of these data sources (SQLSTATE 55006).

 Table 15. Dependencies

Object Type

Statement

 C

O

N

S

T

R

A

I

N

T

 F

U

N

C

T

I

O

N

 F

U

N

C

T

I

O

N

M

A

P

P

I

N

G

G

L

O

B

A

L

V

A

R

I

A

B

L

E

 I

N

D

E

X

 I

N

D

E

X

E

X

T

E

N

S

I

O

N

 M

E

T

H

O

D

 N

I

C

K

N

A

M

E

 D

B

P

A

R

T

I

T

I

O

N

G

R

O

U

P

 P

A

C

K

A

G

E31

 S

E

R

V

E

R

S

E

R

V

I

C

E

C

L

A

S

S

 T

A

B

L

E

 T

A

B

L

E

S

P

A

C

E

T

H

R

E

S

H

O

L

D

 T

R

I

G

G

E

R

 T

Y

P

E

 T

Y

P

E

M

A

P

P

I

N

G

 U

S

E

R

M

A

P

P

I

N

G

 V

I

E

W

W

O

R

K

A

C

T

I

O

N

W

O

R

K

A

C

T

I

O

N

S

E

T

W

O

R

K

L

O

A

D

 X

S

R

O

B

J

E

C

T

ALTER

FUNCTION

- - - - - - - - - A - - - - - - - - - - - - - -

ALTER METHOD - - - - - - - - - A - - - - - - - - - - - - - -

ALTER

NICKNAME,

altering the local

name or the local

type

R33 R - - - - R - - A - - R - - - - - - R - - - -

Chapter 1. SQL Statements for Administrators 265

|
|

|

|

|

|

|

|

Table 15. Dependencies (continued)

Object Type

Statement

 C

O

N

S

T

R

A

I

N

T

 F

U

N

C

T

I

O

N

 F

U

N

C

T

I

O

N

M

A

P

P

I

N

G

G

L

O

B

A

L

V

A

R

I

A

B

L

E

 I

N

D

E

X

 I

N

D

E

X

E

X

T

E

N

S

I

O

N

 M

E

T

H

O

D

 N

I

C

K

N

A

M

E

 D

B

P

A

R

T

I

T

I

O

N

G

R

O

U

P

 P

A

C

K

A

G

E31

 S

E

R

V

E

R

S

E

R

V

I

C

E

C

L

A

S

S

 T

A

B

L

E

 T

A

B

L

E

S

P

A

C

E

T

H

R

E

S

H

O

L

D

 T

R

I

G

G

E

R

 T

Y

P

E

 T

Y

P

E

M

A

P

P

I

N

G

 U

S

E

R

M

A

P

P

I

N

G

 V

I

E

W

W

O

R

K

A

C

T

I

O

N

W

O

R

K

A

C

T

I

O

N

S

E

T

W

O

R

K

L

O

A

D

 X

S

R

O

B

J

E

C

T

ALTER

NICKNAME,

altering a column

option or a

nickname option

- - - - - - - - - A - - R - - - - - - - - - - -

ALTER

NICKNAME,

adding, altering,

or dropping a

constraint

- - - - - - - - - A - - - - - - - - - - - - - -

ALTER

PROCEDURE

- - - - - - - - - A - - - - - - - - - - - - - -

ALTER SERVER - - - - - - - - - A - - - - - - - - - - - - - -

ALTER TABLE

ALTER COLUMN

- A - A - - - - - A - - - - - A - - - A - - - X34

ALTER TABLE

DROP COLUMN

C C - C C - - - - - - - - - - C - - - C - - - X34

ALTER TABLE

DROP

CONSTRAINT

C - - - - - - - - A1 - - - - - - - - - - - - - -

ALTER TABLE

DROP

PARTITIONING

KEY

- - - - - - - - R20 A1 - - - - - - - - - - - - - -

ALTER TYPE

ADD ATTRIBUTE

- - - - - R - - - A23 - - R24 - - - - - - R14 - - - -

ALTER TYPE

ALTER METHOD

- - - - - - - - - A - - - - - - - - - - - - - -

ALTER TYPE

DROP

ATTRIBUTE

- - - - - R - - - A23 - - R24 - - - - - - R14 - - - -

ALTER TYPE

ADD METHOD

-

ALTER TYPE

DROP METHOD

- - - - - - R27 - - - - - - - - - - - - - - - - -

CREATE

METHOD

- - - - - - - - - A28 - - - - - - - - - - - - - -

CREATE TYPE - - - - - - - - - A29 - - - - - - - - - - - - - -

266 Common Criteria Certification: Administration and User Documentation - Volume 2

Table 15. Dependencies (continued)

Object Type

Statement

 C

O

N

S

T

R

A

I

N

T

 F

U

N

C

T

I

O

N

 F

U

N

C

T

I

O

N

M

A

P

P

I

N

G

G

L

O

B

A

L

V

A

R

I

A

B

L

E

 I

N

D

E

X

 I

N

D

E

X

E

X

T

E

N

S

I

O

N

 M

E

T

H

O

D

 N

I

C

K

N

A

M

E

 D

B

P

A

R

T

I

T

I

O

N

G

R

O

U

P

 P

A

C

K

A

G

E31

 S

E

R

V

E

R

S

E

R

V

I

C

E

C

L

A

S

S

 T

A

B

L

E

 T

A

B

L

E

S

P

A

C

E

T

H

R

E

S

H

O

L

D

 T

R

I

G

G

E

R

 T

Y

P

E

 T

Y

P

E

M

A

P

P

I

N

G

 U

S

E

R

M

A

P

P

I

N

G

 V

I

E

W

W

O

R

K

A

C

T

I

O

N

W

O

R

K

A

C

T

I

O

N

S

E

T

W

O

R

K

L

O

A

D

 X

S

R

O

B

J

E

C

T

DROP ALIAS - R - R - - - - - A3 - - R3 - - X3 - - - X3 - - - -

DROP

BUFFERPOOL

- - - - - - - - - - - - - R - - - - - - - - - -

DROP

DATABASE

PARTITION

GROUP

- - - - - - - - - - - - - C - - - - - - - - - -

DROP

FUNCTION

R R7 R R - R R7 - - X - - R - - R - - - R - - - -

DROP

FUNCTION

MAPPING

- - - - - - - - - A - - - - - - - - - - - - - -

DROP INDEX R - - - - - - - - A - - - - - - - - - R17 - - - -

DROP INDEX

EXTENSION

- R - R R - - - - - - - - - - - - - - - - - - -

DROP METHOD R R7 R R - R R - - X/A30 - - R - - R - - - R - - - -

DROP

NICKNAME

- R - R C - R - - A - - C11 - - - - - - X16 - - - -

DROP

PROCEDURE

- R7 - R - - R7 - - A - - - - - R - - - - - - - -

DROP

SEQUENCE

- R - - - - R - - A - - - - - R - - - - - - - -

DROP SERVER - C21 C19 - - - - C - A - - - - - - - C19 C - - - - -

DROP SERVICE

CLASS

- - - - - - - - - - - R35 - - R35 - - - - - R35 - R35 -

DROP TABLE32 C R - R C - - - - A9 - - RC11 - - X16 - - - X16 - - - X34

DROP TABLE

HIERARCHY

C R - R C - - - - A9 - - RC11 - - X16 - - - X16 - - - -

DROP

TABLESPACE

- - - - C6 - - - - - - - CR6 - - - - - - - - - - -

DROP

TRANSFORM

- R - - - - - - - X - - - - - - - - - - - - - -

DROP TRIGGER - - - - - - - - - A1 - - - - - X26 - - - - - - - -

DROP TYPE R13 R5 - R - R - - - A12 - - R18 - - R13 R4 - - R14 - - - -

DROP VARIABLE - - R R - - R - - A - - - - - R - - - R - - - -

DROP VIEW - R - R - - - - - A2 - - - - - X16 - - - X15 - - - -

Chapter 1. SQL Statements for Administrators 267

Table 15. Dependencies (continued)

Object Type

Statement

 C

O

N

S

T

R

A

I

N

T

 F

U

N

C

T

I

O

N

 F

U

N

C

T

I

O

N

M

A

P

P

I

N

G

G

L

O

B

A

L

V

A

R

I

A

B

L

E

 I

N

D

E

X

 I

N

D

E

X

E

X

T

E

N

S

I

O

N

 M

E

T

H

O

D

 N

I

C

K

N

A

M

E

 D

B

P

A

R

T

I

T

I

O

N

G

R

O

U

P

 P

A

C

K

A

G

E31

 S

E

R

V

E

R

S

E

R

V

I

C

E

C

L

A

S

S

 T

A

B

L

E

 T

A

B

L

E

S

P

A

C

E

T

H

R

E

S

H

O

L

D

 T

R

I

G

G

E

R

 T

Y

P

E

 T

Y

P

E

M

A

P

P

I

N

G

 U

S

E

R

M

A

P

P

I

N

G

 V

I

E

W

W

O

R

K

A

C

T

I

O

N

W

O

R

K

A

C

T

I

O

N

S

E

T

W

O

R

K

L

O

A

D

 X

S

R

O

B

J

E

C

T

DROP VIEW

HIERARCHY

- R - R - - - - - A2 - - - - - X16 - - - X16 - - - -

DROP WORK

CLASS SET

- R36 - -

DROP WRAPPER - - C - - - - - - - C - - - - - - C - - - - - -

DROP

XSROBJECT

C - - - - - - - - A - - - - - X - - - X - - - -

REVOKE a

privilege10

- CR25 - - - - CR25 - - A1 - - CX8 - - X - - - X8 - - - -

1 This dependency is implicit in depending on a table with these constraints,

triggers, or a distribution key.

2 If a package has an INSERT, UPDATE, or DELETE statement acting upon a

view, then the package has an insert, update or delete usage on the

underlying base table of the view. In the case of UPDATE, the package has

an update usage on each column of the underlying base table that is

modified by the UPDATE.

 If a package has a statement acting on a typed view, creating or dropping

any view in the same view hierarchy will invalidate the package.

3 If a package, materialized query table, staging table, view, or trigger uses

an alias, it becomes dependent both on the alias and the object that the

alias references. If the alias is in a chain, a dependency is created on each

alias in the chain.

 Aliases themselves are not dependent on anything. It is possible for an

alias to be defined on an object that does not exist.

4 A user-defined type T can depend on another user-defined type B, if T:

v names B as the data type of an attribute

v has an attribute of REF(B)

v has B as a supertype.
5 Dropping a user-defined type cascades to dropping the functions and

methods that use the type as a parameter, a result type, or in the function

or method body. If the user-defined type is a structured type, any methods

that are associated with the type are also dropped. Dropping these

268 Common Criteria Certification: Administration and User Documentation - Volume 2

functions and methods will not be prevented by the fact that the type and

function or method depend on each other.

6 Dropping a table space or a list of table spaces causes all the tables that are

completely contained within the given table space or list to be dropped.

However, if a table spans table spaces (indexes, long columns, or data

partitions in different table spaces) and those table spaces are not in the list

being dropped, the table spaces cannot be dropped as long as the table

exists.

7 A function can depend on another specific function if the depending

function names the base function in a SOURCE clause. A function or

method can also depend on another specific function or method if the

depending routine is written in SQL and uses the base routine in its body.

An external method, or an external function with a structured type

parameter or returns type will also depend on one or more transform

functions.

8 Only loss of SELECT privilege will cause a materialized query table to be

dropped or a view to become inoperative. If the view that is made

inoperative is included in a typed view hierarchy, all of its subviews also

become inoperative.

9 If a package has an INSERT, UPDATE, or DELETE statement acting on

table T, then the package has an insert, update or delete usage on T. In the

case of UPDATE, the package has an update usage on each column of T

that is modified by the UPDATE.

 If a package has a statement acting on a typed table, creating or dropping

any table in the same table hierarchy will invalidate the package.

10 Dependencies do not exist at the column level because privileges on

columns cannot be revoked individually.

 If a package, trigger or view includes the use of OUTER(Z) in the FROM

clause, there is a dependency on the SELECT privilege on every subtable

or subview of Z. Similarly, if a package, trigger, or view includes the use of

DEREF(Y) where Y is a reference type with a target table or view Z, there

is a dependency on the SELECT privilege on every subtable or subview of

Z.

11 A materialized query table is dependent on the underlying tables or

nicknames specified in the fullselect of the table definition.

 Cascade semantics apply to dependent materialized query tables.

A subtable is dependent on its supertables up to the root table. A

supertable cannot be dropped until all of its subtables are dropped.

12 A package can depend on structured types as a result of using the TYPE

predicate or the subtype-treatment expression (TREAT expression AS

data-type). The package has a dependency on the subtypes of each

structured type specified in the right side of the TYPE predicate, or the

right side of the TREAT expression. Dropping or creating a structured type

that alters the subtypes on which the package is dependent causes

invalidation.

 All packages that are dependent on methods defined in supertypes of the

type being dropped, and that are eligible for overriding, are invalidated.

13 A check constraint or trigger is dependent on a type if the type is used

Chapter 1. SQL Statements for Administrators 269

anywhere in the constraint or trigger. There is no dependency on the

subtypes of a structured type used in a TYPE predicate within a check

constraint or trigger.

14 A view is dependent on a type if the type is used anywhere in the view

definition (this includes the type of typed view). There is no dependency

on the subtypes of a structured type used in a TYPE predicate within a

view definition.

15 A subview is dependent on its superview up to the root view. A superview

cannot be dropped until all its subviews are dropped. Refer to

16 for

additional view dependencies.

16 A trigger or view is also dependent on the target table or target view of a

dereference operation or DEREF function. A trigger or view with a FROM

clause that includes OUTER(Z) is dependent on all the subtables or

subviews of Z that existed at the time the trigger or view was created.

17 A typed view can depend on the existence of a unique index to ensure the

uniqueness of the object identifier column.

18 A table may depend on a user defined data type (distinct or structured)

because the type is:

v used as the type of a column

v used as the type of the table

v used as an attribute of the type of the table

v used as the target type of a reference type that is the type of a column of

the table or an attribute of the type of the table

v directly or indirectly used by a type that is the column of the table.
19 Dropping a server cascades to drop the function mappings and type

mappings created for that named server.

20 If the distribution key is defined on a table in a multiple partition database

partition group, the distribution key is required.

21 If a dependent OLE DB table function has ″R″ dependent objects (see

DROP FUNCTION), then the server cannot be dropped.

22 An SQL function or method can depend on the objects referenced by its

body.

23 When an attribute A of type TA of type-name T is dropped, the following

DROP statements are effectively executed:

 Mutator method: DROP METHOD A (TA) FOR T

 Observer method: DROP METHOD A () FOR T

 ALTER TYPE T

 DROP METHOD A(TA)

 DROP METHOD A()

24 A table may depend on an attribute of a user-defined structured data type

in the following cases:

1. The table is a typed table that is based on type-name or any of its

subtypes.

2. The table has an existing column of a type that directly or indirectly

refers to type-name.
25 A REVOKE of SELECT privilege on a table or view that is used in the

body of an SQL function or method body causes an attempt to drop the

function or method body, if the function or method body defined no longer

has the SELECT privilege. If such a function or method body is used in a

270 Common Criteria Certification: Administration and User Documentation - Volume 2

view, trigger, function, or method body, it cannot be dropped, and the

REVOKE is restricted as a result. Otherwise, the REVOKE cascades and

drops such functions.

26 A trigger depends on an INSTEAD OF trigger when it modifies the view

on which the INSTEAD OF trigger is defined, and the INSTEAD OF

trigger fires.

27 A method declaration of an original method that is overridden by other

methods cannot be dropped (SQLSTATE 42893).

28 If the method of the method body being created is declared to override

another method, all packages dependent on the overridden method, and

on methods that override this method in supertypes of the method being

created, are invalidated.

29 When a new subtype of an existing type is created, all packages dependent

on methods that are defined in supertypes of the type being created, and

that are eligible for overriding (for example, no mutators or observers), are

invalidated.

30 If the specific method of the method body being dropped is declared to

override another method, all packages dependent on the overridden

method, and on methods that override this method in supertypes of the

specific method being dropped, are invalidated.

31 Cached dynamic SQL has the same semantics as packages.

32 When a remote base table is dropped using the DROP TABLE statement,

both the nickname and the remote base table are dropped.

33 A primary key or unique keys that are not referenced by a foreign key do

not restrict the altering of a nickname local name or local type.

34 An XSROBJECT can become inoperative for decomposition as a result of

changes to a table that is associated with the XML schema for

decomposition. Changes that could impact decomposition are: dropping

the table or dropping a column of the table, or changing a column of the

table. The decomposition status of the XML schema can be reset by issuing

an ALTER XSROBJECT statement to enable or disable decomposition for

the XML schema.

35

v A service class cannot be dropped if any threshold is mapped to it

(SQLSTATE 5U031).

v A service class cannot be dropped if any workload is mapped to it

(SQLSTATE 5U031).

v A service superclass cannot be dropped until all of its user-defined

service subclasses have been dropped (SQLSTATE 5U031).

v A service superclass cannot be dropped if any work action set is mapped

to it (SQLSTATE 5U031).

v A service subclass cannot be dropped if any work action is mapped to it

(SQLSTATE 5U031).
36 A work class set cannot be dropped until the work action set that is

defined on it has been dropped.

Chapter 1. SQL Statements for Administrators 271

Table 16. Dependent Objects Impacted by auto_reval

Statement Impacted Dependent Objects

ALTER NICKNAME (altering the local name or the local

type)

Anchor Type, Function, Method, Procedure, User Defined

Type, Variable, View

ALTER TABLE ALTER COLUMN Anchor Type, Function, Method, Procedure, Trigger, User

Defined Type, Variable, View, XSROBJECT

ALTER TABLE DROP COLUMN2 Anchor Type, Function, Method, Index, Procedure,

Trigger, User Defined Type, Variable, View, XSROBJECT

ALTER TABLE RENAME COLUMN1, 3 Anchor Type, Function, Method, Index, Procedure,

Trigger, User Defined Type, Variable, View, XSROBJECT

ALTER TYPE ADD ATTRIBUTE View

ALTER TYPE DROP ATTRIBUTE View

DROP ALIAS Anchor Type, Function, Method, Procedure, Trigger, User

Defined Type, Variable, View

DROP FUNCTION (ALTER MODULE DROP

FUNCTION)

Function, Function Mapping, Index Extension, Method,

Procedure, Trigger, Variable, View

DROP METHOD Function, Function Mapping, Index Extension, Method,

Procedure, Trigger, View, Variable

DROP NICKNAME Anchor Type, Function, Method, Procedure, Trigger, User

Defined Type, Variable, View

DROP PROCEDURE (ALTER MODULE DROP

PROCEDURE)

Function, Method, Procedure, Trigger

DROP SEQUENCE Function, Method, Procedure, Trigger, Variable, View

DROP TABLE Anchor Type, Function, Method, Procedure, Trigger, User

Defined Type, Variable, View, XSROBJECT

DROP TABLE HIERARCHY Function, Method, Procedure, Trigger, Variable, View

DROP TRIGGER Trigger

DROP TYPE (ALTER MODULE DROP TYPE) Anchor Type, Cursor Type, Function, Method, Procedure,

Index Extension, Trigger, User Defined Type, Variable,

View

DROP VARIABLE (ALTER MODULE DROP VARIABLE) Anchor Type, Function, Function Mapping, Method,

Procedure, Trigger, User Defined Type, Variable, View

DROP VIEW Anchor Type, Function, Method, Procedure, Trigger, User

Defined Type, Variable, View

DROP VIEW HIERARCHY Function, Procedure, Trigger, Variable, View

DROP XSROBJECT Trigger, View

RENAME TABLE Anchor Type, Function, Method, Procedure, Trigger, User

Defined Type, View, Variable, XSROBJECT

REVOKE a privilege Function, Method, Procedure, Trigger, Variable, View

CREATE OR REPLACE ALIAS1 Function, Trigger, Procedure, Variable, View

CREATE OR REPLACE VIEW1 Anchor Type, Function, Method, Procedure, Trigger, User

Defined Type, Variable, View

CREATE OR REPLACE FUNCTION1 Function, Function Mapping, Index Extension, method,

Procedure, Variable, View

CREATE OR REPLACE PROCEDURE1 Function, Method, Procedure, Trigger

CREATE OR REPLACE NICKNAME1 Function, method, Procedure, Variable, View

CREATE OR REPLACE SEQUENCE1 Function, Method, Procedure, Trigger, Variable, View

272 Common Criteria Certification: Administration and User Documentation - Volume 2

||

||

|
|
|
|

||
|

||
|

||
|

||

||

||
|

|
|
|
|

||
|

||
|

|
|
|

||

||
|

||

||

||
|
|

||
|

||
|

||

||

||
|

||

||

||
|

||
|

||

||

||

Table 16. Dependent Objects Impacted by auto_reval (continued)

Statement Impacted Dependent Objects

CREATE OR REPLACE VARIABLE1 Function, Method, Procedure, Trigger, User Defined Type,

Variable, View

CREATE OR REPLACE TRIGGER1 Trigger

1 REVALIDATION IMMEDIATE semantics apply for these statements (for

the CREATE statements, only if OR REPLACE is specified) regardless of

the setting of the auto_reval database configuration parameter.

2 The dependent objects listed will be revalidated the next time the object is

used, except for the following objects, which will be revalidated

immediately as part of the statement:

v ANCHOR TYPE

v CURSOR TYPE

v VIEW (where the select list consists only of SELECT *, and does not

contain any explicitly defined view columns).

For an immediate view revalidation, the list of column names for the select

list will be re-established during revalidation.

3 The dependent objects listed will be revalidated the next time the object is

used except for the following, which will be revalidated immediately as

part of the statement:

v User Defined Type

v VIEW (where the select list consists only of SELECT *, and does not

contain any explicitly defined view columns).

For an immediate view revalidation, the list of column names for the select

list will be re-established during revalidation.

The DROP DATABASE PARTITION GROUP statement might fail (SQLSTATE

55071) if an add database partition server request is either pending or in progress.

This statement might also fail (SQLSTATE 55077) if a new database partition server

is added online to the instance and not all applications are aware of the new

database partition server.

Notes

v It is valid to drop a user-defined function while it is in use. Also, a cursor can be

open over a statement which contains a reference to a user-defined function, and

while this cursor is open the function can be dropped without causing the

cursor fetches to fail.

v If a package which depends on a user-defined function is executing, it is not

possible for another authorization ID to drop the function until the package

completes its current unit of work. At that point, the function is dropped and

the package becomes inoperative. The next request for this package results in an

error indicating that the package must be explicitly rebound.

v The removal of a function body (this is very different from dropping the

function) can occur while an application which needs the function body is

executing. This may or may not cause the statement to fail, depending on

whether the function body still needs to be loaded into storage by the database

manager on behalf of the statement.

v In addition to the dependencies recorded for any explicitly specified UDF, the

following dependencies are recorded when transforms are implicitly required:

Chapter 1. SQL Statements for Administrators 273

|

||

||
|

||
|

||
|
|

||
|
|

|

|

|
|

|
|

||
|
|

|

|
|

|
|

|
|
|
|
|

1. When the structured type parameter or result of a function or method

requires a transform, a dependency is recorded for the function or method

on the required TO SQL or FROM SQL transform function.

2. When an SQL statement included in a package requires a transform function,

a dependency is recorded for the package on the designated TO SQL or

FROM SQL transform function.
Since the above describes the only circumstances under which dependencies are

recorded due to implicit invocation of transforms, no objects other than

functions, methods, or packages can have a dependency on implicitly invoked

transform functions. On the other hand, explicit calls to transform functions (in

views and triggers, for example) do result in the usual dependencies of these

other types of objects on transform functions. As a result, a DROP TRANSFORM

statement may also fail due to these ″explicit″ type dependencies of objects on

the transform(s) being dropped (SQLSTATE 42893).

v Since the dependency catalogs do not distinguish between depending on a

function as a transform versus depending on a function by explicit function call,

it is suggested that explicit calls to transform functions are not written. In such

an instance, the transform property on the function cannot be dropped, or

packages will be marked inoperative, simply because they contain explicit

invocations in an SQL expression.

v System created sequences for IDENTITY columns cannot be dropped using the

DROP SEQUENCE statement.

v When a sequence is dropped, all privileges on the sequence are also dropped

and any packages that refer to the sequence are invalidated.

v For relational nicknames, the DROP NICKNAME statement within a given unit

of work (UOW) cannot be processed under either of the following conditions

(SQLSTATE 55007):

– A nickname referenced in this statement has a cursor open on it in the same

UOW

– Either an INSERT, DELETE, or UPDATE statement is already issued in the

same UOW against the nickname that is referenced in this statement
v For non-relational nicknames, the DROP NICKNAME statement within a given

unit of work (UOW) cannot be processed under any of the following conditions

(SQLSTATE 55007):

– A nickname referenced in this statement has a cursor open on it in the same

UOW

– A nickname referenced in this statement is already referenced by a SELECT

statement in the same UOW

– Either an INSERT, DELETE, or UPDATE statement has already been issued in

the same UOW against the nickname that is referenced in this statement
v A DROP SERVER statement (SQLSTATE 55006), or a DROP FUNCTION

MAPPING or DROP TYPE MAPPING statement (SQLSTATE 55007) within a

given unit of work (UOW) cannot be processed under either of the following

conditions:

– The statement references a single data source, and the UOW already includes

one of the following:

- A SELECT statement that references a nickname for a table or view within

this data source

- An open cursor on a nickname for a table or view within this data source

- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within this data source

274 Common Criteria Certification: Administration and User Documentation - Volume 2

– The statement references a category of data sources (for example, all data

sources of a specific type and version), and the UOW already includes one of

the following:

- A SELECT statement that references a nickname for a table or view within

one of these data sources

- An open cursor on a nickname for a table or view within one of these data

sources

- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within one of these data sources
v The DROP WORKLOAD statement does not take effect until it is committed,

even for the connection that issues the statement.

v Only one of these statements can be issued by any application at a time, and

only one of these statements is allowed within any one unit of work. Each

statement must be followed by a COMMIT or a ROLLBACK statement before

another one of these statements can be issued (SQLSTATE 5U021).

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)

– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)

– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

– CREATE WORK ACTION, ALTER WORK ACTION, or DROP (WORK

ACTION)

– CREATE WORK CLASS, ALTER WORK CLASS, or DROP (WORK CLASS)

– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)

– GRANT (Workload Privileges) or REVOKE (Workload Privileges)
v Soft invalidation: After the drop or change of a database object done by the

following statements, active access to the dropped or changed object continues

until the access is complete.

– ALTER FUNCTION

– ALTER MODULE ... DROP FUNCTION

– ALTER MODULE ... DROP VARIABLE

– ALTER TABLE ... DETACH PARTITION

– ALTER VIEW

– DROP ALIAS

– DROP FUNCTION

– DROP TRIGGER

– DROP VARIABLE

– DROP VIEW

– All of the CREATE OR REPLACE statements except CREATE OR REPLACE

SEQUENCE.

This is the case when the database registry variable DB2_DLL_SOFT_INVALID is

set to ON. When it is set to OFF, the drop or change of these objects will only

complete after all active access to the object to be dropped or changed is

complete.

v Compatibilities:

– For compatibility with previous versions of DB2 databases:

- NODEGROUP can be specified in place of DATABASE PARTITION

GROUP

Chapter 1. SQL Statements for Administrators 275

- DISTINCT TYPE type-name can be specified in place of TYPE type-name

- DATA TYPE type-name can be specified in place of TYPE type-name

– SYNONYM can be specified in place of ALIAS

– For compatibility with DB2 UDB for OS/390 and z/OS:

- PROGRAM can be specified in place of PACKAGE

Examples

Example 1: Drop table TDEPT.

 DROP TABLE TDEPT

Example 2: Drop the view VDEPT.

 DROP VIEW VDEPT

Example 3: The authorization ID HEDGES attempts to drop an alias.

 DROP ALIAS A1

The alias HEDGES.A1 is removed from the catalogs.

Example 4: Hedges attempts to drop an alias, but specifies T1 as the alias-name,

where T1 is the name of an existing table (not the name of an alias).

 DROP ALIAS T1

This statement fails (SQLSTATE 42809).

Example 5:

Drop the BUSINESS_OPS database partition group. To drop the database partition

group, the two table spaces (ACCOUNTING and PLANS) in the database partition

group must first be dropped.

 DROP TABLESPACE ACCOUNTING

 DROP TABLESPACE PLANS

 DROP DATABASE PARTITION GROUP BUSINESS_OPS

Example 6: Pellow wants to drop the CENTRE function, which he created in his

PELLOW schema, using the signature to identify the function instance to be

dropped.

 DROP FUNCTION CENTRE (INT,FLOAT)

Example 7: McBride wants to drop the FOCUS92 function, which she created in

the PELLOW schema, using the specific name to identify the function instance to

be dropped.

 DROP SPECIFIC FUNCTION PELLOW.FOCUS92

Example 8: Drop the function ATOMIC_WEIGHT from the CHEM schema, where

it is known that there is only one function with that name.

 DROP FUNCTION CHEM.ATOMIC_WEIGHT

Example 9: Drop the trigger SALARY_BONUS, which caused employees under a

specified condition to receive a bonus to their salary.

 DROP TRIGGER SALARY_BONUS

Example 10: Drop the distinct data type named shoesize, if it is not currently in

use.

276 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|

|

DROP TYPE SHOESIZE

Example 11: Drop the SMITHPAY event monitor.

 DROP EVENT MONITOR SMITHPAY

Example 12: Drop the schema from Example 2 under CREATE SCHEMA using

RESTRICT. Notice that the table called PART must be dropped first.

 DROP TABLE PART

DROP SCHEMA INVENTRY RESTRICT

Example 13: Macdonald wants to drop the DESTROY procedure, which he created

in the EIGLER schema, using the specific name to identify the procedure instance

to be dropped.

 DROP SPECIFIC PROCEDURE EIGLER.DESTROY

Example 14: Drop the procedure OSMOSIS from the BIOLOGY schema, where it is

known that there is only one procedure with that name.

 DROP PROCEDURE BIOLOGY.OSMOSIS

Example 15: User SHAWN used one authorization ID to access the federated

database and another to access the database at an Oracle data source called

ORACLE1. A mapping was created between the two authorizations, but SHAWN

no longer needs to access the data source. Drop the mapping.

 DROP USER MAPPING FOR SHAWN SERVER ORACLE1

Example 16: An index of a data source table that a nickname references has been

deleted. Drop the index specification that was created to let the optimizer know

about this index.

 DROP INDEX INDEXSPEC

Example 17: Drop the MYSTRUCT1 transform group.

 DROP TRANSFORM MYSTRUCT1 FOR POLYGON

Example 18: Drop the method BONUS for the EMP data type in the PERSONNEL

schema.

 DROP METHOD BONUS (SALARY DECIMAL(10,2)) FOR PERSONNEL.EMP

Example 19: Drop the sequence ORG_SEQ, with restrictions.

 DROP SEQUENCE ORG_SEQ

Example 20: A remote table EMPLOYEE was created in a federated system using

transparent DDL. Access to the table is no longer needed. Drop the remote table

EMPLOYEE.

 DROP TABLE EMPLOYEE

Example 21: Drop the function mapping BONUS_CALC and reinstate the default

function mapping (if one exists).

 DROP FUNCTION MAPPING BONUS_CALC

Example 22: Drop the security label component LEVEL.

 DROP SECURITY LABEL COMPONENT LEVEL

Example 23: Drop the security label EMPLOYEESECLABEL of the security policy

DATA_ACCESS.

Chapter 1. SQL Statements for Administrators 277

DROP SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABEL

Example 24: Drop the security policy DATA_ACCESS.

 DROP SECURITY POLICY DATA_ACCESS

Example 25: Drop the security label component GROUPS.

 DROP SECURITY LABEL COMPONENT GROUPS

Example 26: Drop the XML schema EMPLOYEE located in the SQL schema HR.

 DROP XSROBJECT HR.EMPLOYEE

Example 27: Drop service subclass DOGSALES under service superclass PETSALES.

 DROP SERVICE CLASS DOGSALES UNDER PETSALES

Example 28: Drop service superclass PETSALES, which has no user-defined service

subclasses. The default subclass for service class PETSALES is automatically

dropped.

 DROP SERVICE CLASS PETSALES

GRANT (Database Authorities)

This form of the GRANT statement grants authorities that apply to the entire

database (rather than privileges that apply to specific objects within the database).

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

To grant ACCESSCTRL, DATAACCESS, DBADM, or SEADM authority, SECADM

authority is required. To grant other authorities ACCESSCTRL or SECADM

authority is required.

Syntax

�� GRANT �

278 Common Criteria Certification: Administration and User Documentation - Volume 2

|||||
|

||

�

�

 ,

ACCESSCTRL

BINDADD

CONNECT

CREATETAB

CREATE_EXTERNAL_ROUTINE

CREATE_NOT_FENCED_ROUTINE

DATAACCESS

WITH DATAACCESS

WITH ACCESSCTRL

DBADM

v

v

v

WITHOUT DATAACCESS

WITHOUT ACCESSCTRL

EXPLAIN

IMPLICIT_SCHEMA

LOAD

QUIESCE_CONNECT

SECADM

SQLADM

WLMADM

�

�

ON DATABASE

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

��

Description

ACCESSCTRL

Grants the access control authority. The ACCESSCTRL authority allows the

holder to:

v Grant and revoke the following database authorities: BINDADD, CONNECT,

CREATETAB, CREATE_EXTERNAL_ROUTINE,

CREATE_NOT_FENCED_ROUTINE, EXPLAIN, IMPLICIT_SCHEMA,

LOAD, QUIESE_CONNECT, SQLADM, WLMADM

v Grant and revoke all object level privileges

The ACCESSCTRL authority cannot be granted to PUBLIC (SQLSTATE 42508).

BINDADD

Grants the authority to create packages. The creator of a package automatically

has the CONTROL privilege on that package and retains this privilege even if

the BINDADD authority is subsequently revoked.

CONNECT

Grants the authority to access the database.

CREATETAB

Grants the authority to create base tables. The creator of a base table

automatically has the CONTROL privilege on that table. The creator retains

this privilege even if the CREATETAB authority is subsequently revoked.

 There is no explicit authority required for view creation. A view can be created

at any time if the authorization ID of the statement used to create the view has

either CONTROL or SELECT privilege on each base table of the view.

CREATE_EXTERNAL_ROUTINE

Grants the authority to register external routines. Care must be taken that

Chapter 1. SQL Statements for Administrators 279

|||
|

|
||||||||||||||||||||||||||||||||||

|

|
|
|

|
|
|
|

|

|

routines so registered will not have adverse side effects. (For more information,

see the description of the THREADSAFE clause on the CREATE or ALTER

routine statements.)

 Once an external routine has been registered, it continues to exist, even if

CREATE_EXTERNAL_ROUTINE is subsequently revoked.

CREATE_NOT_FENCED_ROUTINE

Grants the authority to register routines that execute in the database manager’s

process. Care must be taken that routines so registered will not have adverse

side effects. (For more information, see the description of the FENCED clause

on the CREATE or ALTER routine statements.)

 Once a routine has been registered as not fenced, it continues to run in this

manner, even if CREATE_NOT_FENCED_ROUTINE is subsequently revoked.

CREATE_EXTERNAL_ROUTINE is automatically granted to an

authorization-name that is granted CREATE_NOT_FENCED_ROUTINE

authority.

DATAACCESS

Grants the authority to access data. The DATAACCESS authority allows the

holder to:

v Select, insert, update, delete, and load data

v Execute any package

v Execute any routine (except audit routines)

The DATAACCESS authority cannot be granted to PUBLIC (SQLSTATE 42508).

DBADM

Grants the database administrator authority. A database administrator holds

nearly all privileges on nearly all objects in the database. The only exceptions

are those privileges that are part of the access control, data access, and security

administrator authorities.

EXPLAIN

Grants the authority to explain statements. The EXPLAIN authority allows the

holder to explain, prepare, and describe dynamic and static SQL statements

without requiring access to data.

IMPLICIT_SCHEMA

Grants the authority to implicitly create a schema.

LOAD

Grants the authority to load in this database. This authority gives a user the

right to use the LOAD utility in this database. DATAACCESS and DBADM

also have this authority by default. However, if a user only has LOAD

authority (not DATAACCESS), the user is also required to have table-level

privileges. In addition to LOAD privilege, the user is required to have:

v INSERT privilege on the table for LOAD with mode INSERT, TERMINATE

(to terminate a previous LOAD INSERT), or RESTART (to restart a previous

LOAD INSERT)

v INSERT and DELETE privilege on the table for LOAD with mode

REPLACE, TERMINATE (to terminate a previous LOAD REPLACE), or

RESTART (to restart a previous LOAD REPLACE)

v INSERT privilege on the exception table, if such a table is used as part of

LOAD

QUIESCE_CONNECT

Grants the authority to access the database while it is quiesced.

280 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|

|

|

|

|
|
|
|
|

|
|
|
|

|
|

|
|

SECADM

Grants the security administrator authority. The authority allows the holder to:

v Create and drop security objects such as audit policies, roles, security labels,

security label components, security policies, and trusted contexts

v Grant and revoke authorities, exemptions, privileges, roles, and security

labels

v Grant and revoke the SETSESSIONUSER privilege

v Execute TRANSFER OWNERSHIP on objects owned by others

The SECADM authority cannot be granted to PUBLIC (SQLSTATE 42508).

SQLADM

Grants the authority to manage SQL statement execution. The SQLADM

authority allows the holder to:

v Create, drop, flush, and set event monitors

v Explain, prepare, and describe dynamic and static SQL statements without

requiring access to data

v Flush optimization profile cache

v Flush package cache

v Execute the runstats utility

WLMADM

Grants the authority to manage workloads. The WLMADM authority allows

the holder to:

v Create, drop, and alter service classes, work action sets, work class sets, or

workloads.

TO

Specifies to whom the authorities are granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Grants the authorities to a set of users (authorization IDs). For more

information, see “Authorization, privileges and object ownership”.

DBADM cannot be granted to PUBLIC.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

Chapter 1. SQL Statements for Administrators 281

|
|

|
|

|
|

|

|

|

|
|
|

|

|
|

|

|

|

|
|
|

|
|

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.

Notes

v DBADM authority cannot be granted to the special group PUBLIC. Therefore,

granting DBADM authority to a role role-name fails if role-name is granted to

PUBLIC either directly or indirectly (SQLSTATE 42508).

– Role role-name is granted directly to PUBLIC if the following statement has

been issued:

 GRANT ROLE role-name TO PUBLIC

– Role role-name is granted indirectly to PUBLIC if the following statements

have been issued:

 GRANT ROLE role-name TO ROLE role-name2

 GRANT ROLE role-name2 TO PUBLIC

v Compatibilities:

– For compatibility with previous versions of DB2:

- CREATE_NOT_FENCED can be specified in place of

CREATE_NOT_FENCED_ROUTINE
– For compatibility with DB2 for z/OS:

- SYSTEM can be specified in place of DATABASE

Examples

Example 1: Give the users WINKEN, BLINKEN, and NOD the authority to

connect to the database.

 GRANT CONNECT ON DATABASE TO USER WINKEN, USER BLINKEN, USER NOD

Example 2: Grant BINDADD authority on the database to a group named D024.

There is both a group and a user called D024 in the system.

 GRANT BINDADD ON DATABASE TO GROUP D024

Observe that, the GROUP keyword must be specified; otherwise, an error will

occur since both a user and a group named D024 exist. Any member of the D024

group will be allowed to bind packages in the database, but the D024 user will not

be allowed (unless this user is also a member of the group D024, had been granted

BINDADD authority previously, or BINDADD authority had been granted to

another group of which D024 was a member).

Example 3: Give user Walid security administrator authority.

 GRANT SECADM ON DATABASE TO USER Walid

282 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|

|
|

|

|

GRANT (Exemption)

This form of the GRANT statement grants to a user, group, or role an exemption

on an access rule for a specified label-based access control (LBAC) security policy.

When the user holding the exemption accesses data in a table protected by that

security policy the indicated rule will not be enforced when deciding if they can

access the data.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� GRANT EXEMPTION ON RULE DB2LBACREADARRAY

DB2LBACREADSET

DB2LBACREADTREE

DB2LBACWRITEARRAY

WRITEDOWN

WRITEUP

DB2LBACWRITESET

DB2LBACWRITETREE

ALL

 �

�

FOR

policy-name

�

 ,

TO

authorization-name

USER

GROUP

ROLE

��

Description

EXEMPTION ON RULE

Grants an exemption on an access rule.

DB2LBACREADARRAY

Grants an exemption on the predefined DB2LBACREADARRAY rule.

DB2LBACREADSET

Grants an exemption on the predefined DB2LBACREADSET rule.

DB2LBACREADTREE

Grants an exemption on the predefined DB2LBACREADTREE rule.

DB2LBACWRITEARRAY

Grants an exemption on the predefined DB2LBACWRITEARRAY rule.

WRITEDOWN

Specifies that the exemption only applies to write down.

Chapter 1. SQL Statements for Administrators 283

WRITEUP

Specifies that the exemption only applies to write up.

DB2LBACWRITESET

Grants an exemption on the predefined DB2LBACWRITESET rule.

DB2LBACWRITETREE

Grants an exemption on the predefined DB2LBACWRITETREE rule.

ALL

Grants an exemption on all of the predefined rules.

FOR policy-name

Identifies the security policy for which the exemption is being granted. The

exemption will only be effective for tables that are protected by this security

policy. The name must identify a security policy already described in the

catalog (SQLSTATE 42704).

TO

Specifies to whom the exemption is granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.
v If the security policy is not defined to consider access through groups or roles,

any exemption granted to a group or role is ignored when access is attempted.

Notes

v By default when a security policy is created, only exemptions granted to an

individual user are considered. To have groups or roles considered for the

284 Common Criteria Certification: Administration and User Documentation - Volume 2

security policy, you must issue the ALTER SECURITY POLICY statement and

specify USE GROUP AUTHORIZATION or USE ROLE AUTHORIZATION as

applicable.

Examples

Example 1: Grant an exemption on access rule DB2LBACREADSET for security

policy DATA_ACCESS to user WALID.

 GRANT EXEMPTION ON RULE DB2LBACREADSET FOR DATA_ACCESS TO USER WALID

Example 2: Grant an exemption on access rule DB2LBACWRITEARRAY with the

WRITEDOWN option for security policy DATA_ACCESS to user BOBBY.

 GRANT EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEDOWN

 FOR DATA_ACCESS TO USER BOBBY

Example 3: Grant an exemption on access rule DB2LBACWRITEARRAY with the

WRITEUP option for security policy DATA_ACCESS to user BOBBY.

 GRANT EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEUP

 FOR DATA_ACCESS TO USER BOBBY

GRANT (Index Privileges)

This form of the GRANT statement grants the CONTROL privilege on indexes.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

ACCESSCTRL or SECADM authority.

Syntax

�� GRANT CONTROL ON INDEX index-name �

�

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

��

Description

CONTROL

Grants the privilege to drop the index. This is the CONTROL authority for

indexes, which is automatically granted to creators of indexes.

Chapter 1. SQL Statements for Administrators 285

|
|

ON INDEX index-name

Identifies the index for which the CONTROL privilege is to be granted.

TO

Specifies to whom the privileges are granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Grants the privileges to a set of users (authorization IDs). For more

information, see “Authorization, privileges and object ownership”.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.

Example

 GRANT CONTROL ON INDEX DEPTIDX TO USER KIESLER

GRANT (Package Privileges)

This form of the GRANT statement grants privileges on a package.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

286 Common Criteria Certification: Administration and User Documentation - Volume 2

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CONTROL privilege on the referenced package

v The WITH GRANT OPTION for each identified privilege on package-name

v ACCESSCTRL or SECADM authority

ACCESSCTRL or SECADM authority is required to grant the CONTROL privilege.

Syntax

��

GRANT

�

 ,

BIND

CONTROL

(1)

EXECUTE

�

�
 (2)

ON

PACKAGE

package-id

schema-name.

�

�

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

WITH GRANT OPTION

��

Notes:

1 RUN can be used as a synonym for EXECUTE.

2 PROGRAM can be used as a synonym for PACKAGE.

Description

BIND

Grants the privilege to bind a package. The BIND privilege allows a user to

re-issue the BIND command against that package, or to issue the REBIND

command. It also allows a user to create a new version of an existing package.

 In addition to the BIND privilege, a user must hold the necessary privileges on

each table referenced by static DML statements contained in a program. This is

necessary, because authorization on static DML statements is checked at bind

time.

CONTROL

Grants the privilege to rebind, drop, or execute the package, and extend

package privileges to other users. The CONTROL privilege for packages is

automatically granted to creators of packages. A package owner is the package

binder, or the ID specified with the OWNER option at bind/precompile time.

 BIND and EXECUTE are automatically granted to an authorization-name that is

granted CONTROL privilege.

Chapter 1. SQL Statements for Administrators 287

|

|

CONTROL grants the ability to grant the above privileges (except for

CONTROL) to others.

EXECUTE

Grants the privilege to execute the package.

ON PACKAGE schema-name.package-id

Specifies the name of the package on which privileges are to be granted. If a

schema name is not specified, the package ID is implicitly qualified by the

default schema. The granting of a package privilege applies to all versions of

the package (that is, to all packages that share the same package ID and

package schema).

TO

Specifies to whom the privileges are granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Grants the privileges to a set of users (authorization IDs). For more

information, see “Authorization, privileges and object ownership”.

WITH GRANT OPTION

Allows the specified authorization-name to GRANT the privileges to others.

 If the specified privileges include CONTROL, the WITH GRANT OPTION

applies to all of the applicable privileges except for CONTROL (SQLSTATE

01516).

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.

288 Common Criteria Certification: Administration and User Documentation - Volume 2

Notes

v Package privileges apply to all versions of a package (that is, all packages that

share the same package ID and package schema). It is not possible to restrict

access to only one version. Because CONTROL privilege is implicitly granted to

the binder of a package, if two different users bind two versions of a package,

then both users will implicitly be granted access to each other’s package.

Examples

Example 1: Grant the EXECUTE privilege on PACKAGE CORPDATA.PKGA to

PUBLIC.

 GRANT EXECUTE

 ON PACKAGE CORPDATA.PKGA

 TO PUBLIC

Example 2: GRANT EXECUTE privilege on package CORPDATA.PKGA to a user

named EMPLOYEE. There is neither a group nor a user called EMPLOYEE.

 GRANT EXECUTE ON PACKAGE

 CORPDATA.PKGA TO EMPLOYEE

or

 GRANT EXECUTE ON PACKAGE

 CORPDATA.PKGA TO USER EMPLOYEE

GRANT (Role)

This form of the GRANT statement grants roles to users, groups, or to other roles.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v The WITH ADMIN OPTION on the role

v SECADM authority

SECADM authority is required to grant the WITH ADMIN OPTION to an

authorization-name.

Syntax

��

�

 ,

ROLE

GRANT

role-name

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

�

Chapter 1. SQL Statements for Administrators 289

�
WITH ADMIN OPTION

 ��

Description

ROLE role-name,...

Identifies one or more roles to be granted. Each role-name must identify an

existing role at the current server (SQLSTATE 42704).

TO

Specifies to whom the role is granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group.

ROLE

Specifies that the authorization-name identifies an existing role at the current

server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles. The list

of authorization IDs cannot include the authorization ID of the user issuing

the statement (SQLSTATE 42502).

PUBLIC

Grants the specified roles to a set of users (authorization IDs). For more

information, see “Authorization, privileges, and object ownership”.

WITH ADMIN OPTION

Allows the specified authorization-name to grant or revoke the role-name to or

from others, or to associate a comment with the role. It does not allow the

specified authorization-name to drop the role.

Rules

v For each authorization-name specified, if none of the keywords USER, GROUP, or

ROLE is specified:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database and as either

GROUP or USER in the operating system, an error is returned (SQLSTATE

56092).

– If the authorization-name is defined as both USER and GROUP according to

the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as USER only according to the security

plug-in in effect, or if it is undefined, USER is assumed.

– If the authorization-name is defined as GROUP only according to the security

plug-in in effect, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.
v Hierarchies of roles can be built by granting one role to another role. However,

cycles are not allowed (SQLSTATE 428GF). For example, if role R1 is granted to

290 Common Criteria Certification: Administration and User Documentation - Volume 2

another role R2, then role R2 (or some other role Rn that contains R2) cannot be

granted back to R1, because this would produce a cycle.

Notes

v When role R1 is granted to another role R2, then R2 contains R1.

v DBADM authority cannot be granted to PUBLIC. Therefore:

– Granting role R1 to PUBLIC fails (SQLSTATE 42508) if role R1 holds DBADM

authority either directly or indirectly.

- Role R1 holds DBADM authority directly if the following statement has

been issued:

GRANT DBADM ON DATABASE TO ROLE R1

- Role R1 holds DBADM authority indirectly if the following statements have

been issued:

GRANT DBADM ON DATABASE TO ROLE R2

GRANT ROLE R2 TO ROLE R1

– Granting role R1, which holds DBADM authority, to role R2 fails (SQLSTATE

42508) if role R2 is granted to PUBLIC either directly or indirectly.

- Role R2 is granted to PUBLIC directly if the following statement has been

issued:

GRANT ROLE R2 TO PUBLIC

- Role R2 is granted to PUBLIC indirectly if the following statements have

been issued:

GRANT ROLE R2 TO ROLE R3

GRANT ROLE R3 TO PUBLIC

Examples

Example 1: Grant role INTERN to role DOCTOR and role DOCTOR to role

SPECIALIST.

 GRANT ROLE INTERN TO ROLE DOCTOR

 GRANT ROLE DOCTOR TO ROLE SPECIALIST

Example 2: Grant role INTERN to PUBLIC.

 GRANT ROLE INTERN TO PUBLIC

Example 3: Grant role SPECIALIST to user BOB and group TORONTO.

 GRANT ROLE SPECIALIST TO USER BOB, GROUP TORONTO

GRANT (routine privileges)

This form of the GRANT statement grants privileges on a routine (function,

method, or procedure) that is not defined in a module.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Chapter 1. SQL Statements for Administrators 291

|

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v The WITH GRANT OPTION for EXECUTE on the routine

v ACCESSCTRL or SECADM authority

To grant all routine EXECUTE privileges in the schema or type, the privileges held

by the authorization ID of the statement must include at least one of the following:

v The WITH GRANT OPTION for EXECUTE on all existing and future routines

(of the specified type) in the specified schema

v ACCESSCTRL or SECADM authority

To grant EXECUTE privilege on the audit procedures and table functions SECADM

authority is required. EXECUTE privilege WITH GRANT OPTION cannot be

granted for these routines (SQLSTATE 42501)

Syntax

�� GRANT EXECUTE ON function-designator

FUNCTION

*

schema.

method-designator

METHOD * FOR

type-name

*

schema.

procedure-designator

PROCEDURE

*

schema.

 �

�

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

WITH GRANT OPTION

��

function-designator:

 FUNCTION function-name

SPECIFIC FUNCTION

function-name

procedure-designator:

 PROCEDURE procedure-name

SPECIFIC PROCEDURE

procedure-name

292 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|

|
|
|

Description

EXECUTE

Grants the privilege to run the identified user-defined function, method, or

procedure.

function-designator

Uniquely identifies the function on which the privilege is granted. For more

information, see “Function, method, and procedure designators” on page 497.

FUNCTION schema.*

Identifies all the functions in the schema, including any functions that may be

created in the future. In dynamic SQL statements, if a schema is not specified,

the schema in the CURRENT SCHEMA special register will be used. In static

SQL statements, if a schema is not specified, the schema in the QUALIFIER

precompile/bind option will be used.

method-designator

Uniquely identifies the method on which the privilege is granted. For more

information, see “Function, method, and procedure designators” on page 497.

METHOD *

Identifies all the methods for the type type-name, including any methods that

may be created in the future.

FOR type-name

Names the type in which the specified method is found. The name must

identify a type already described in the catalog (SQLSTATE 42704). In

dynamic SQL statements, the value of the CURRENT SCHEMA special

register is used as a qualifier for an unqualified type name. In static SQL

statements, the QUALIFIER precompile/bind option implicitly specifies the

qualifier for unqualified type names. An asterisk (*) can be used in place of

type-name to identify all types in the schema, including any types that may

be created in the future.

procedure-designator

Uniquely identifies the procedure on which the privilege is granted. For more

information, see “Function, method, and procedure designators” on page 497.

PROCEDURE schema.*

Identifies all the procedures in the schema, including any procedures that may

be created in the future. In dynamic SQL statements, if a schema is not

specified, the schema in the CURRENT SCHEMA special register will be used.

In static SQL statements, if a schema is not specified, the schema in the

QUALIFIER precompile/bind option will be used.

TO

Specifies to whom the EXECUTE privilege is granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

Chapter 1. SQL Statements for Administrators 293

|
|

|
|

|
|

PUBLIC

Grants the EXECUTE privilege to a set of users (authorization IDs). For

more information, see “Authorization, privileges and object ownership”.

WITH GRANT OPTION

Allows the specified authorization-names to GRANT the EXECUTE privilege to

others.

 If the WITH GRANT OPTION is omitted, the specified authorization-name can

only grant the EXECUTE privilege to others if they:

v have SYSADM or DBADM authority or

v received the ability to grant the EXECUTE privilege from some other source.

Rules

v It is not possible to grant the EXECUTE privilege on a function or method

defined with schema ’SYSIBM’ or ’SYSFUN’ (SQLSTATE 42832).

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.
v In general, the GRANT statement will process the granting of privileges that the

authorization ID of the statement is allowed to grant, returning a warning

(SQLSTATE 01007) if one or more privileges was not granted. If the package

used for processing the statement was precompiled with LANGLEVEL set to

SQL92E or MIA, and no privileges were granted, a warning is returned

(SQLSTATE 01007). If the grantor has no privileges on the object of the grant

operation, an error is returned (SQLSTATE 42501).

Notes

v Privileges for a routine defined in a module are granted at the module level

using the GRANT (module privileges) statement. The EXECUTE privilege on the

module allows access to all objects in the module.

Examples

Example 1: Grant the EXECUTE privilege on function CALC_SALARY to user

JONES. Assume that there is only one function in the schema with function name

CALC_SALARY.

 GRANT EXECUTE ON FUNCTION CALC_SALARY TO JONES

Example 2: Grant the EXECUTE privilege on procedure VACATION_ACCR to all

users at the current server.

 GRANT EXECUTE ON PROCEDURE VACATION_ACCR TO PUBLIC

294 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|
|
|

Example 3: Grant the EXECUTE privilege on function DEPT_TOTALS to the

administrative assistant and give the assistant the ability to grant the EXECUTE

privilege on this function to others. The function has the specific name

DEPT85_TOT. Assume that the schema has more than one function named

DEPT_TOTALS.

 GRANT EXECUTE ON SPECIFIC FUNCTION DEPT85_TOT

 TO ADMIN_A WITH GRANT OPTION

Example 4: Grant the EXECUTE privilege on function NEW_DEPT_HIRES to HR

(Human Resources). The function has two input parameters of type INTEGER and

CHAR(10), respectively. Assume that the schema has more than one function

named NEW_DEPT_HIRES.

 GRANT EXECUTE ON FUNCTION NEW_DEPT_HIRES (INTEGER, CHAR(10)) TO HR

Example 5: Grant the EXECUTE privilege on method SET_SALARY of type

EMPLOYEE to user JONES.

 GRANT EXECUTE ON METHOD SET_SALARY FOR EMPLOYEE TO JONES

GRANT (Schema Privileges)

This form of the GRANT statement grants privileges on a schema.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v The WITH GRANT OPTION for each identified privilege on schema-name

v ACCESSCTRL or SECADM authority

No user can grant privileges on any of the following schema names: SYSIBM,

SYSIBMADM, SYSCAT, SYSFUN, or SYSSTAT (SQLSTATE 42501).

Syntax

��

GRANT

�

 ,

ALTERIN

CREATEIN

DROPIN

ON SCHEMA

schema-name

�

Chapter 1. SQL Statements for Administrators 295

|

|
|

�

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

WITH GRANT OPTION

��

Description

ALTERIN

Grants the privilege to alter or comment on all objects in the schema. The

owner of an explicitly created schema automatically receives ALTERIN

privilege.

CREATEIN

Grants the privilege to create objects in the schema. Other authorities or

privileges required to create the object (such as CREATETAB) are still required.

The owner of an explicitly created schema automatically receives CREATEIN

privilege. An implicitly created schema has CREATEIN privilege automatically

granted to PUBLIC.

DROPIN

Grants the privilege to drop all objects in the schema. The owner of an

explicitly created schema automatically receives DROPIN privilege.

ON SCHEMA schema-name

Identifies the schema on which the privileges are to be granted.

TO

Specifies to whom the privileges are granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Grants the privileges to a set of users (authorization IDs). For more

information, see “Authorization, privileges and object ownership”.

WITH GRANT OPTION

Allows the specified authorization-names to GRANT the privileges to others.

 If the WITH GRANT OPTION is omitted, the specified authorization-names can

only grant the privileges to others if they:

v have DBADM authority or

v received the ability to grant privileges from some other source.

296 Common Criteria Certification: Administration and User Documentation - Volume 2

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.
v In general, the GRANT statement will process the granting of privileges that the

authorization ID of the statement is allowed to grant, returning a warning

(SQLSTATE 01007) if one or more privileges was not granted. If no privileges

were granted, an error is returned (SQLSTATE 42501). (If the package used for

processing the statement was precompiled with LANGLEVEL set to SQL92E for

MIA, a warning is returned (SQLSTATE 01007), unless the grantor has no

privileges on the object of the grant operation.)

Notes

v Grant on SYSPUBLIC: Privileges can be granted on the reserved schema

SYSPUBLIC. Granting CREATEIN privilege allows the user to create a public

alias and granting DROPIN privilege allows the user to drop any public alias.

Examples

Example 1: Grant user JSINGLETON to the ability to create objects in schema

CORPDATA.

 GRANT CREATEIN ON SCHEMA CORPDATA TO JSINGLETON

Example 2: Grant user IHAKES the ability to create and drop objects in schema

CORPDATA.

 GRANT CREATEIN, DROPIN ON SCHEMA CORPDATA TO IHAKES

GRANT (Security Label)

This form of the GRANT statement grants a label-based access control (LBAC)

security label to a user, group, or role for read access, write access, or for both read

and write access.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Chapter 1. SQL Statements for Administrators 297

|
|
|

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� GRANT SECURITY LABEL security-label-name �

�

�

 ,

TO

authorization-name

USER

GROUP

ROLE

FOR ALL ACCESS

FOR READ ACCESS

FOR WRITE ACCESS

��

Description

SECURITY LABEL security-label-name

Grants the security label security-label-name. The name must be qualified with a

security policy (SQLSTATE 42704) and must identify a security label that exists

at the current server (SQLSTATE 42704).

TO

Specifies to whom the specified security label is granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

FOR ALL ACCESS

Indicates that the security label is to be granted for both read access and write

access.

FOR READ ACCESS

Indicates that the security label is to be granted for read access only.

FOR WRITE ACCESS

Indicates that the security label is to be granted for write access only.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

298 Common Criteria Certification: Administration and User Documentation - Volume 2

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.
v For any given security policy, an authorization-name can be granted at most one

security label from that policy for read access and one for write access. If the

grantee already holds a security label for the type of access (read or write)

indicated and that is part of the security policy that qualifies security-label-name,

an error is returned (SQLSTATE 428GR).

v If the security policy is not defined to consider access through groups or roles,

any security label granted to a group or role is ignored when access is

attempted.

v If an authorization-name holds different security labels for read access and write

access, the security labels must meet the following criteria (SQLSTATE 428GQ):

– If any component in the security labels is of type ARRAY then the value for

that component must be the same in both security labels.

– If any component in the security labels is of type SET then every element in

the value for that component in the write security label must also be part of

the value for that component in the read security label.

– If any component in the security labels is of type TREE then every element in

the value for that component in the write security label must be the same as

or a descendent of one of the elements in the value for that same component

in the read security label.

Notes

v By default when a security policy is created, only security labels granted to an

individual user are considered. To have groups or roles considered for the

security policy, you must issue the ALTER SECURITY POLICY statement and

specify USE GROUP AUTHORIZATION or USE ROLE AUTHORIZATION as

applicable.

Examples

Example 1: The following statement grants two security labels to user GUYLAINE.

The security label EMPLOYEESECLABELREAD is granted for read access and the

security label EMPLOYEESECLABELWRITE is granted for write access. Both

security labels are part of the security policy DATA_ACCESS.

 GRANT SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABELREAD

 TO USER GUYLAINE FOR READ ACCESS

 GRANT SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABELWRITE

 TO USER GUYLAINE FOR WRITE ACCESS

The same user is now granted the security label BEGINNER for both read and

write access. This does not cause an error, because BEGINNER is part of the

security policy CLASSPOLICY, and the security labels already held are part of the

security policy DATA_ACCESS.

 GRANT SECURITY LABEL CLASSPOLICY.BEGINNER

 TO USER GUYLAINE FOR ALL ACCESS

Chapter 1. SQL Statements for Administrators 299

GRANT (Sequence Privileges)

This form of the GRANT statement grants privileges on a sequence.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v The WITH GRANT OPTION for each identified privilege on sequence-name

v ACCESSCTRL or SECADM authority

Syntax

��

GRANT

�

 ,

USAGE

ALTER

ON SEQUENCE

sequence-name

�

�

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

WITH GRANT OPTION

��

Description

USAGE

Grants the privilege to reference a sequence using nextval-expression or

prevval-expression.

ALTER

Grants the privilege to alter sequence properties using the ALTER SEQUENCE

statement.

ON SEQUENCE sequence-name

Identifies the sequence on which the specified privileges are to be granted. The

sequence name, including an implicit or explicit schema qualifier, must

uniquely identify an existing sequence at the current server. If no sequence by

this name exists, an error (SQLSTATE 42704) is returned.

TO

Specifies to whom the specified privileges are granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

300 Common Criteria Certification: Administration and User Documentation - Volume 2

|

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

PUBLIC

Grants the specified privileges to a set of users (authorization IDs). For

more information, see “Authorization, privileges and object ownership”.

WITH GRANT OPTION

Allows the specified authorization-name to grant the specified privileges to

others.

 If the WITH GRANT OPTION is omitted, the specified authorization-name can

only grant the specified privileges to others if they:

v have SYSADM or DBADM authority or

v received the ability to grant the specified privileges from some other source.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.
v In general, the GRANT statement will process the granting of privileges that the

authorization ID of the statement is allowed to grant, returning a warning

(SQLSTATE 01007) if one or more privileges is not granted. If no privileges are

granted, an error is returned (SQLSTATE 42501). (If the package used for

processing the statement was precompiled with LANGLEVEL set to SQL92E or

MIA, a warning is returned (SQLSTATE 01007), unless the grantor has no

privileges on the object of the grant operation.)

Example

Example 1: Grant any user the USAGE privilege on a sequence called ORG_SEQ.

 GRANT USAGE ON SEQUENCE ORG_SEQ TO PUBLIC

Example 2: Grant user BOBBY the ability to alter a sequence called GENERATE_ID,

and to grant this privilege to others.

 GRANT ALTER ON SEQUENCE GENERATE_ID TO BOBBY WITH GRANT OPTION

Chapter 1. SQL Statements for Administrators 301

GRANT (Server Privileges)

This form of the GRANT statement grants the privilege to access and use a

specified data source in pass-through mode.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

ACCESSCTRL or SECADM authority.

Syntax

�� GRANT PASSTHRU ON SERVER server-name TO �

�

�

 ,

authorization-name

USER

GROUP

ROLE

PUBLIC

��

Description

server-name

Names the data source for which the privilege to use in pass-through mode is

being granted. server-name must identify a data source that is described in the

catalog.

TO

Specifies to whom the privilege is granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

302 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

PUBLIC

Grants to a set of users (authorization IDs) the privilege to pass through to

server-name. For more information, see “Authorization, privileges and

object ownership”.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.

Examples

Example 1: Give R. Smith and J. Jones the privilege to pass through to data source

SERVALL. Their authorization IDs are RSMITH and JJONES.

 GRANT PASSTHRU ON SERVER SERVALL

TO USER RSMITH,

USER JJONES

Example 2: Grant the privilege to pass through to data source EASTWING to a

group whose authorization ID is D024. There is a user whose authorization ID is

also D024.

 GRANT PASSTHRU ON SERVER EASTWING TO GROUP D024

The GROUP keyword must be specified; otherwise, an error will occur because

D024 is a user’s ID as well as the specified group’s ID (SQLSTATE 56092). Any

member of group D024 will be allowed to pass through to EASTWING. Therefore,

if user D024 belongs to the group, this user will be able to pass through to

EASTWING.

GRANT (SETSESSIONUSER Privilege)

This form of the GRANT statement grants the SETSESSIONUSER privilege to one

or more authorization IDs. The privilege allows the holder to use the SET SESSION

AUTHORIZATION statement to set the session authorization to one of a set of

specified authorization IDs.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Chapter 1. SQL Statements for Administrators 303

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

��

�

 ,

GRANT SETSESSIONUSER ON

USER

session-authorization-name

TO

PUBLIC

�

�

�

 ,

USER

authorization-name

GROUP

��

Description

SETSESSIONUSER ON

Grants the privilege to assume the identity of a new authorization ID.

USER session-authorization-name

Specifies the authorization ID that the authorization-name will be able to

assume, using the SET SESSION AUTHORIZATION statement. The

session-authorization-name must identify a user, not a group.

PUBLIC

Specifies that the grantee will be able to assume any valid authorization ID,

using the SET SESSION AUTHORIZATION statement.

TO

Specifies to whom the privilege is granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group.

authorization-name,...

Lists the authorization IDs of one or more users or groups.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

Rules

v For each authorization-name specified, if neither USER nor GROUP is specified,

then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

304 Common Criteria Certification: Administration and User Documentation - Volume 2

Examples

Example 1: The following statement grants user PAUL the ability to set the session

authorization to user WALID and therefore to execute statements as WALID.

 GRANT SETSESSIONUSER ON USER WALID

 TO USER PAUL

Example 2: The following statement grants user GUYLAINE the ability to set the

session authorization to user BOBBY. It also grants her the ability to set the session

authorization to users RICK and KEVIN.

 GRANT SETSESSIONUSER ON USER BOBBY, USER RICK, USER KEVIN

 TO USER GUYLAINE

Example 3: The following statement grants user WALID and everyone in the groups

ADMINS and ACCTG the ability to set the session authorization to any user.

 GRANT SETSESSIONUSER ON PUBLIC TO USER WALID, GROUP ADMINS, ACCTG

GRANT (Table Space Privileges)

This form of the GRANT statement grants privileges on a table space.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v The WITH GRANT OPTION for use of the table space

v ACCESSCTRL, SECADM, SYSADM, or SYSCTRL authority

Syntax

�� GRANT USE OF TABLESPACE tablespace-name TO �

�

�

 ,

authorization-name

USER

GROUP

ROLE

PUBLIC

WITH GRANT OPTION

��

Description

USE

Grants the privilege to specify or default to the table space when creating a

table. The creator of a table space automatically receives USE privilege with

grant option.

Chapter 1. SQL Statements for Administrators 305

|

OF TABLESPACE tablespace-name

Identifies the table space on which the USE privilege is to be granted. The

table space cannot be SYSCATSPACE (SQLSTATE 42838) or a system

temporary table space (SQLSTATE 42809).

TO

Specifies to whom the USE privilege is granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Grants the USE privilege to a set of users (authorization IDs). For more

information, see “Authorization, privileges and object ownership”.

WITH GRANT OPTION

Allows the specified authorization-name to GRANT the USE privilege to others.

 If the WITH GRANT OPTION is omitted, the specified authorization-name can

only GRANT the USE privilege to others if they:

v have SYSADM or DBADM authority or

v received the ability to GRANT the USE privilege from some other source.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.

Examples

Example 1: Grant user BOBBY the ability to create tables in table space PLANS

and to grant this privilege to others.

 GRANT USE OF TABLESPACE PLANS TO BOBBY WITH GRANT OPTION

306 Common Criteria Certification: Administration and User Documentation - Volume 2

GRANT (Table, View, or Nickname Privileges)

This form of the GRANT statement grants privileges on a table, view, or nickname.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CONTROL privilege on the referenced table, view, or nickname

v The WITH GRANT OPTION for each identified privilege. If ALL is specified,

the authorization ID must have some grantable privilege on the identified table,

view, or nickname.

v ACCESSCTRL or SECADM authority

ACCESSCTRL or SECADM authority is required to grant the CONTROL privilege,

or to grant privileges on catalog tables and views.

Syntax

��

GRANT

�

�

�

 PRIVILEGES

ALL

,

ALTER

CONTROL

DELETE

INDEX

INSERT

REFERENCES

,

(

column-name

)

SELECT

UPDATE

,

(

column-name

)

�

�

TABLE

ON

table-name

(1)

view-name

nickname

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

�

Chapter 1. SQL Statements for Administrators 307

|

|
|

�
WITH GRANT OPTION

 ��

Notes:

1 ALTER, INDEX, and REFERENCES privileges are not applicable to views.

Description

ALL or ALL PRIVILEGES

Grants all the appropriate privileges, except CONTROL, on the base table,

view, or nickname named in the ON clause.

 If the authorization ID of the statement has CONTROL privilege on the table,

view, or nickname, or ACCESSCTRL or SECADM authority, then all the

privileges applicable to the object (except CONTROL) are granted. Otherwise,

the privileges granted are all those grantable privileges that the authorization

ID of the statement has on the identified table, view, or nickname.

If ALL is not specified, one or more of the keywords in the list of privileges

must be specified.

ALTER

Grants the privilege to:

v Add columns to a base table definition.

v Create or drop a primary key or unique constraint on a base table.

v Create or drop a foreign key on a base table.

The REFERENCES privilege on each column of the parent table is also

required.

v Create or drop a check constraint on a base table.

v Create a trigger on a base table.

v Add, reset, or drop a column option for a nickname.

v Change a nickname column name or data type.

v Add or change a comment on a base table or a nickname.

CONTROL

Grants:

v All of the appropriate privileges in the list, that is:

– ALTER, CONTROL, DELETE, INSERT, INDEX, REFERENCES, SELECT,

and UPDATE to base tables

– CONTROL, DELETE, INSERT, SELECT, and UPDATE to views

– ALTER, CONTROL, INDEX, and REFERENCES to nicknames
v The ability to grant the above privileges (except for CONTROL) to others.

v The ability to drop the base table, view, or nickname.

This ability cannot be extended to others on the basis of holding CONTROL

privilege. The only way that it can be extended is by granting the

CONTROL privilege itself and that can only be done by an authorization ID

with ACCESSCTRL or SECADM authority.

v The ability to execute the RUNSTATS utility on the table and indexes.

v The ability to execute the REORG utility on the table.

v The ability to issue the SET INTEGRITY statement against a base table,

materialized query table, or staging table.

308 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|

|
|
|
|

The definer of a base table, materialized query table, staging table, or nickname

automatically receives the CONTROL privilege.

The definer of a view automatically receives the CONTROL privilege if the

definer holds the CONTROL privilege on all tables, views, and nicknames

identified in the fullselect.

DELETE

Grants the privilege to delete rows from the table or updatable view.

INDEX

Grants the privilege to create an index on a table, or an index specification on

a nickname. This privilege cannot be granted on a view. The creator of an

index or index specification automatically has the CONTROL privilege on the

index or index specification (authorizing the creator to drop the index or index

specification). In addition, the creator retains the CONTROL privilege even if

the INDEX privilege is revoked.

INSERT

Grants the privilege to insert rows into the table or updatable view and to run

the IMPORT utility.

REFERENCES

Grants the privilege to create and drop a foreign key referencing the table as

the parent.

 If the authorization ID of the statement has one of:

v ACCESSCTRL or SECADM authority

v CONTROL privilege on the table

v REFERENCES WITH GRANT OPTION on the table

then the grantee(s) can create referential constraints using all columns of the

table as parent key, even those added later using the ALTER TABLE statement.

Otherwise, the privileges granted are all those grantable column REFERENCES

privileges that the authorization ID of the statement has on the identified table.

The privilege can be granted on a nickname, although foreign keys cannot be

defined to reference nicknames.

REFERENCES (column-name,...)

Grants the privilege to create and drop a foreign key using only those columns

specified in the column list as a parent key. Each column-name must be an

unqualified name that identifies a column of the table identified in the ON

clause. Column level REFERENCES privilege cannot be granted on typed

tables, typed views, or nicknames (SQLSTATE 42997).

SELECT

Grants the privilege to:

v Retrieve rows from the table or view.

v Create views on the table.

v Run the EXPORT utility against the table or view.

UPDATE

Grants the privilege to use the UPDATE statement on the table or updatable

view identified in the ON clause.

 If the authorization ID of the statement has one of:

v ACCESSCTRL or SECADM authority

v CONTROL privilege on the table or view

v UPDATE WITH GRANT OPTION on the table or view

Chapter 1. SQL Statements for Administrators 309

|

|

then the grantee(s) can update all updatable columns of the table or view on

which the grantor has with grant privilege as well as those columns added

later using the ALTER TABLE statement. Otherwise, the privileges granted are

all those grantable column UPDATE privileges that the authorization ID of the

statement has on the identified table or view.

UPDATE (column-name,...)

Grants the privilege to use the UPDATE statement to update only those

columns specified in the column list. Each column-name must be an unqualified

name that identifies a column of the table or view identified in the ON clause.

Column level UPDATE privilege cannot be granted on typed tables, typed

views, or nicknames (SQLSTATE 42997).

ON TABLE table-name or view-name or nickname

Specifies the table, view, or nickname on which privileges are to be granted.

 No privileges may be granted on an inoperative view or an inoperative

materialized query table (SQLSTATE 51024). No privileges may be granted on

a declared temporary table (SQLSTATE 42995).

TO

Specifies to whom the privileges are granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 A privilege that is granted to a group is not used for authorization

checking:

v On static DML statements in a package

v On a base table while processing a CREATE VIEW statement

v On a base table while processing a CREATE TABLE statement for a

materialized query table

In DB2 Database for Linux, UNIX, and Windows, table privileges granted

to groups only apply to statements that are dynamically prepared. For

example, if the INSERT privilege on the PROJECT table has been granted

to group D204 but not UBIQUITY (a member of D204) UBIQUITY could

issue the statement:

 EXEC SQL EXECUTE IMMEDIATE :INSERT_STRING;

where the content of the string is:

 INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)

 VALUES (’AD3114’, ’TOOL PROGRAMMING’, ’D21’, ’000260’);

but could not precompile or bind a program with the statement:

 EXEC SQL INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)

 VALUES (’AD3114’, ’TOOL PROGRAMMING’, ’D21’, ’000260’);

PUBLIC

Grants the privileges to a set of users (authorization IDs). For more

information, see “Authorization, privileges and object ownership”.

310 Common Criteria Certification: Administration and User Documentation - Volume 2

(Previous restrictions on the use of privileges granted to PUBLIC for static

SQL statements and the CREATE VIEW statement have been removed.)

WITH GRANT OPTION

Allows the specified authorization-names to GRANT the privileges to others.

 If the specified privileges include CONTROL, the WITH GRANT OPTION

applies to all the applicable privileges except for CONTROL (SQLSTATE

01516).

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.
v In general, the GRANT statement will process the granting of privileges that the

authorization ID of the statement is allowed to grant, returning a warning

(SQLSTATE 01007) if one or more privileges was not granted. If no privileges

were granted, an error is returned (SQLSTATE 42501). (If the package used for

processing the statement was precompiled with LANGLEVEL set to SQL92E or

MIA, a warning is returned (SQLSTATE 01007), unless the grantor has no

privileges on the object of the grant operation.) If CONTROL privilege is

specified, privileges will only be granted if the authorization ID of the statement

has ACCESSCTRL or SECADM authority (SQLSTATE 42501).

Notes

v Privileges may be granted independently at every level of a table hierarchy. A

user with a privilege on a supertable may affect the subtables. For example, an

update specifying the supertable T may show up as a change to a row in the

subtable S of T done by a user with UPDATE privilege on T but without

UPDATE privilege on S. A user can only operate directly on the subtable if the

necessary privilege is held on the subtable.

v Granting nickname privileges has no effect on data source object (table or view)

privileges. Typically, data source privileges are required for the table or view

that a nickname references when attempting to retrieve data.

v Compatibilities: For compatibility with DB2 for z/OS:

– The following syntax is tolerated and ignored:

- PUBLIC AT ALL LOCATIONS

Examples

Example 1: Grant all privileges on the table WESTERN_CR to PUBLIC.

Chapter 1. SQL Statements for Administrators 311

|
|
|
|
|
|
|
|
|

GRANT ALL ON WESTERN_CR

 TO PUBLIC

Example 2: Grant the appropriate privileges on the CALENDAR table so that users

PHIL and CLAIRE can read it and insert new entries into it. Do not allow them to

change or remove any existing entries.

 GRANT SELECT, INSERT ON CALENDAR

 TO USER PHIL, USER CLAIRE

Example 3: Grant all privileges on the COUNCIL table to user FRANK and the

ability to extend all privileges to others.

 GRANT ALL ON COUNCIL

 TO USER FRANK WITH GRANT OPTION

Example 4: GRANT SELECT privilege on table CORPDATA.EMPLOYEE to a user

named JOHN. There is a user called JOHN and no group called JOHN.

 GRANT SELECT ON CORPDATA.EMPLOYEE TO JOHN

or

 GRANT SELECT

 ON CORPDATA.EMPLOYEE TO USER JOHN

Example 5: GRANT SELECT privilege on table CORPDATA.EMPLOYEE to a

group named JOHN. There is a group called JOHN and no user called JOHN.

 GRANT SELECT ON CORPDATA.EMPLOYEE TO JOHN

or

 GRANT SELECT ON CORPDATA.EMPLOYEE TO GROUP JOHN

Example 6: GRANT INSERT and SELECT on table T1 to both a group named D024

and a user named D024.

 GRANT INSERT, SELECT ON TABLE T1

 TO GROUP D024, USER D024

In this case, both the members of the D024 group and the user D024 would be

allowed to INSERT into and SELECT from the table T1. Also, there would be two

rows added to the SYSCAT.TABAUTH catalog view.

Example 7: GRANT INSERT, SELECT, and CONTROL on the CALENDAR table to

user FRANK. FRANK must be able to pass the privileges on to others.

 GRANT CONTROL ON TABLE CALENDAR

 TO FRANK WITH GRANT OPTION

The result of this statement is a warning (SQLSTATE 01516) that CONTROL was

not given the WITH GRANT OPTION. Frank now has the ability to grant any

privilege on CALENDAR including INSERT and SELECT as required. FRANK

cannot grant CONTROL on CALENDAR to other users unless he has

ACCESSCTRL or SECADM authority.

Example 8: User JON created a nickname for an Oracle table that had no index.

The nickname is ORAREM1. Later, the Oracle DBA defined an index for this table.

User SHAWN now wants DB2 to know that this index exists, so that the optimizer

can devise strategies to access the table more efficiently. SHAWN can inform DB2

of the index by creating an index specification for ORAREM1. Give SHAWN the

index privilege on this nickname, so that he can create the index specification.

312 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|

GRANT INDEX ON NICKNAME ORAREM1

 TO USER SHAWN

INSERT

The INSERT statement inserts rows into a table, nickname, or view, or the

underlying tables, nicknames, or views of the specified fullselect. Inserting a row

into a nickname inserts the row into the data source object to which the nickname

refers. Inserting a row into a view also inserts the row into the table on which the

view is based, if no INSTEAD OF trigger is defined for the insert operation on this

view. If such a trigger is defined, the trigger will be executed instead.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v INSERT privilege on the target table, view, or nickname

v CONTROL privilege on the target table, view, or nickname

v DATAACCESS authority

In addition, for each table, view, or nickname referenced in any fullselect used in

the INSERT statement, the privileges held by the authorization ID of the statement

must include at least one of the following:

v SELECT privilege

v CONTROL privilege

v DATAACCESS authority

GROUP privileges are not checked for static INSERT statements.

If the target of the insert operation is a nickname, the privileges on the object at

the data source are not considered until the statement is executed at the data

source. At this time, the authorization ID that is used to connect to the data source

must have the privileges required for the operation on the object at the data

source. The authorization ID of the statement can be mapped to a different

authorization ID at the data source.

Syntax

�� INSERT INTO table-name

view-name

nickname

(

fullselect

)

�

,

(

column-name

)

 �

Chapter 1. SQL Statements for Administrators 313

|

|

�
include-columns

 �

�

�

�

�

 ,

VALUES

expression

NULL

DEFAULT

,

(

expression

)

NULL

DEFAULT

row-expression

fullselect

,

WITH

common-table-expression

WITH

RR

RS

CS

UR

��

include-columns:

INCLUDE

�

 ,

(

column-name

data-type

)

Description

INTO table-name, view-name, nickname, or (fullselect)

Identifies the object of the insert operation. The name must identify a table,

view or nickname that exists at the application server, but it must not identify

a catalog table, a system-maintained materialized query table, a view of a

catalog table, or a read-only view, unless an INSTEAD OF trigger is defined for

the insert operation on the subject view. Rows inserted into a nickname are

placed in the data source object to which the nickname refers.

 If the object of the insert operation is a fullselect, the fullselect must be

insertable, as defined in the “Insertable views” Notes item in the description of

the CREATE VIEW statement.

If no INSTEAD OF trigger exists for the insert operation on this view, a value

cannot be inserted into a view column that is derived from:

v A constant, expression, or scalar function

v The same base table column as some other column of the view

If the object of the insert operation is a view with such columns, a list of

column names must be specified, and the list must not identify these columns.

A row can be inserted into a view or a fullselect that is defined using a

UNION ALL if the row satisfies the check constraints of exactly one of the

underlying base tables. If a row satisfies the check constraints of more than one

table, or no table at all, an error is returned (SQLSTATE 23513).

(column-name,...)

Specifies the columns for which insert values are provided. Each name must

identify a column of the specified table, view, or nickname, or a column in the

314 Common Criteria Certification: Administration and User Documentation - Volume 2

fullselect. The same column must not be identified more than once. A column

that cannot accept inserted values (for example, a column based on an

expression) must not be identified.

 Omission of the column list is an implicit specification of a list in which every

column of the table (that is not implicitly hidden) or view, or every item in the

select-list of the fullselect is identified in left-to-right order. This list is

established when the statement is prepared and, therefore, does not include

columns that were added to a table after the statement was prepared.

include-columns

Specifies a set of columns that are included, along with the columns of

table-name or view-name, in the intermediate result table of the INSERT

statement when it is nested in the FROM clause of a fullselect. The

include-columns are appended at the end of the list of columns that are

specified for table-name or view-name.

INCLUDE

Specifies a list of columns to be included in the intermediate result table of

the INSERT statement. This clause can only be specified if the INSERT

statement is nested in the FROM clause of a fullselect.

column-name

Specifies a column of the intermediate result table of the INSERT

statement. The name cannot be the same as the name of another include

column or a column in table-name or view-name (SQLSTATE 42711).

data-type

Specifies the data type of the include column. The data type must be one

that is supported by the CREATE TABLE statement.

VALUES

Introduces one or more rows of values to be inserted.

 Each row specified in the VALUES clause must be assignable to the implicit or

explicit column list and the columns identified in the INCLUDE clause, unless

a row variable is used. When a row value list in parentheses is specified, the

first value is inserted into the first column in the list, the second value into the

second column, and so on. When a row expression is specified, the number of

fields in the row type must match the number of names in the implicit or

explicit column list.

expression

An expression can be any expression defined in “Expressions”. If expression

is a row type, it must not appear in parentheses.

NULL

Specifies the null value and should only be specified for nullable columns.

DEFAULT

Specifies that the default value is to be used. The result of specifying

DEFAULT depends on how the column was defined, as follows:

v If the column was defined as a generated column based on an

expression, the column value is generated by the system, based on that

expression.

v If the IDENTITY clause is used, the value is generated by the database

manager.

v If the ROW CHANGE TIMESTAMP clause is used, the value for each

inserted row is generated by the database manager as a timestamp that

is unique for the table partition within the database partition.

Chapter 1. SQL Statements for Administrators 315

|
|
|

|

|

|
|

v If the WITH DEFAULT clause is used, the value inserted is as defined

for the column (see default-clause in “CREATE TABLE”).

v If the NOT NULL clause is used and the GENERATED clause is not

used, or the WITH DEFAULT clause is not used or DEFAULT NULL is

used, the DEFAULT keyword cannot be specified for that column

(SQLSTATE 23502).

v When inserting into a nickname, the DEFAULT keyword will be passed

through the INSERT statement to the data source only if the data source

supports the DEFAULT keyword in its query language syntax.

row-expression

Specifies any row expression of the type described in “Row expressions”

that does not include a column name. The number of fields in the row

must match the target of the insert and each field must be assignable to the

corresponding column.

WITH common-table-expression

Defines a common table expression for use with the fullselect that follows.

fullselect

Specifies a set of new rows in the form of the result table of a fullselect. There

may be one, more than one, or none. If the result table is empty, SQLCODE is

set to +100 and SQLSTATE is set to ’02000’.

 When the base object of the INSERT and the base object of the fullselect or any

subquery of the fullselect, are the same table, the fullselect is completely

evaluated before any rows are inserted.

The number of columns in the result table must equal the number of names in

the column list. The value of the first column of the result is inserted in the

first column in the list, the second value in the second column, and so on.

WITH

Specifies the isolation level at which the fullselect is executed.

RR

Repeatable Read

RS

Read Stability

CS

Cursor Stability

UR

Uncommitted Read

The default isolation level of the statement is the isolation level of the package

in which the statement is bound. The WITH clause has no effect on nicknames,

which always use the default isolation level of the statement.

Rules

v Triggers: INSERT statements may cause triggers to be executed. A trigger may

cause other statements to be executed, or may raise error conditions based on

the inserted values. If an insert operation into a view causes an INSTEAD OF

trigger to fire, validity, referential integrity, and constraints will be checked

against the updates that are performed in the trigger, and not against the view

that caused the trigger to fire, or its underlying tables.

v Default values: The value inserted in any column that is not in the column list is

either the default value of the column or null. Columns that do not allow null

316 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|

values and are not defined with NOT NULL WITH DEFAULT must be included

in the column list. Similarly, if you insert into a view, the value inserted into any

column of the base table that is not in the view is either the default value of the

column or null. Hence, all columns of the base table that are not in the view

must have either a default value or allow null values. The only value that can be

inserted into a generated column defined with the GENERATED ALWAYS clause

is DEFAULT (SQLSTATE 428C9).

v Length: If the insert value of a column is a number, the column must be a

numeric column with the capacity to represent the integral part of the number. If

the insert value of a column is a string, the column must either be a string

column with a length attribute at least as great as the length of the string, or a

datetime column if the string represents a date, time, or timestamp.

v Assignment: Insert values are assigned to columns in accordance with specific

assignment rules.

v Validity: If the table named, or the base table of the view named, has one or

more unique indexes, each row inserted into the table must conform to the

constraints imposed by those indexes. If a view whose definition includes WITH

CHECK OPTION is named, each row inserted into the view must conform to

the definition of the view. For an explanation of the rules governing this

situation, see “CREATE VIEW”.

v Referential integrity: For each constraint defined on a table, each non-null insert

value of the foreign key must be equal to a primary key value of the parent

table.

v Check constraint: Insert values must satisfy the check conditions of the check

constraints defined on the table. An INSERT to a table with check constraints

defined has the constraint conditions evaluated once for each row that is

inserted.

v XML values: A value that is inserted into an XML column must be a

well-formed XML document (SQLSTATE 2200M).

v Security policy: If the identified table or the base table of the identified view is

protected with a security policy, the session authorization ID must have the

label-based access control (LBAC) credentials that allow:

– Write access to all protected columns for which a data value is explicitly

provided (SQLSTATE 42512)

– Write access for any explicit value provided for a DB2SECURITYLABEL

column for security policies that were created with the RESTRICT NOT

AUTHORIZED WRITE SECURITY LABEL option (SQLSTATE 23523)

The session authorization ID must also have been granted a security label for

write access for the security policy if an implicit value is used for a

DB2SECURITYLABEL column (SQLSTATE 23523), which can happen when:

– A value for the DB2SECURITYLABEL column is not explicitly provided

– A value for the DB2SECURITYLABEL column is explicitly provided but the

session authorization ID does not have write access for that value, and the

security policy is created with the OVERRIDE NOT AUTHORIZED WRITE

SECURITY LABEL option

Notes

v After execution of an INSERT statement, the value of the third variable of the

SQLERRD(3) portion of the SQLCA indicates the number of rows that were

passed to the insert operation. In the context of an SQL procedure statement, the

value can be retrieved using the ROW_COUNT variable of the GET

DIAGNOSTICS statement. SQLERRD(5) contains the count of all triggered insert,

update and delete operations.

Chapter 1. SQL Statements for Administrators 317

v Unless appropriate locks already exist, one or more exclusive locks are acquired

at the execution of a successful INSERT statement. Until the locks are released,

an inserted row can only be accessed by:

– The application process that performed the insert.

– Another application process using isolation level UR through a read-only

cursor, SELECT INTO statement, or subselect used in a subquery.
v For further information about locking, see the description of the COMMIT,

ROLLBACK, and LOCK TABLE statements.

v If an application is running against a partitioned database, and it is bound with

option INSERT BUF, then INSERT with VALUES statements which are not

processed using EXECUTE IMMEDIATE may be buffered. DB2 assumes that

such an INSERT statement is being processed inside a loop in the application’s

logic. Rather than execute the statement to completion, it attempts to buffer the

new row values in one or more buffers. As a result the actual insertions of the

rows into the table are performed later, asynchronous with the application’s

INSERT logic. Be aware that this asynchronous insertion may cause an error

related to an INSERT to be returned on some other SQL statement that follows

the INSERT in the application.

This has the potential to dramatically improve INSERT performance, but is best

used with clean data, due to the asynchronous nature of the error handling.

v When a row is inserted into a table that has an identity column, DB2 generates a

value for the identity column.

– For a GENERATED ALWAYS identity column, DB2 always generates the

value.

– For a GENERATED BY DEFAULT column, if a value is not explicitly specified

(with a VALUES clause, or subselect), DB2 generates a value.

The first value generated by DB2 is the value of the START WITH specification

for the identity column.

v When a value is inserted for a user-defined distinct type identity column, the

entire computation is done in the source type, and the result is cast to the

distinct type before the value is actually assigned to the column. (There is no

casting of the previous value to the source type prior to the computation.)

v When inserting into a GENERATED ALWAYS identity column, DB2 will always

generate a value for the column, and users must not specify a value at insertion

time. If a GENERATED ALWAYS identity column is listed in the column-list of

the INSERT statement, with a non-DEFAULT value in the VALUES clause, an

error occurs (SQLSTATE 428C9).

For example, assuming that EMPID is defined as an identity column that is

GENERATED ALWAYS, then the command:

 INSERT INTO T2 (EMPID, EMPNAME, EMPADDR)

 VALUES (:hv_valid_emp_id, :hv_name, :hv_addr)

will result in an error.

v When inserting into a GENERATED ALWAYS ROW CHANGE TIMESTAMP

column, DB2 will always generate a value for the column, and users must not

specify a value at insertion time (SQLSTATE 428C9) . The value generated by

DB2 is unique for each row inserted on the database partition.

v When inserting into a GENERATED BY DEFAULT column, DB2 will allow an

actual value for the column to be specified within the VALUES clause, or from a

subselect. However, when a value is specified in the VALUES clause, DB2 does

not perform any verification of the value. To guarantee uniqueness of IDENTITY

column values, a unique index on the identity column must be created.

318 Common Criteria Certification: Administration and User Documentation - Volume 2

When inserting into a table with a GENERATED BY DEFAULT identity column,

without specifying a column list, the VALUES clause can specify the DEFAULT

keyword to represent the value for the identity column. DB2 will generate the

value for the identity column.

 INSERT INTO T2 (EMPID, EMPNAME, EMPADDR)

 VALUES (DEFAULT, :hv_name, :hv_addr)

In this example, EMPID is defined as an identity column, and thus the value

inserted into this column is generated by DB2.

v The rules for inserting into an identity column with a subselect are similar to

those for an insert with a VALUES clause. A value for an identity column may

only be specified if the identity column is defined as GENERATED BY

DEFAULT.

For example, assume T1 and T2 are tables with the same definition, both

containing columns intcol1 and identcol2 (both are type INTEGER and the second

column has the identity attribute). Consider the following insert:

 INSERT INTO T2

 SELECT *

 FROM T1

This example is logically equivalent to:

 INSERT INTO T2 (intcol1,identcol2)

 SELECT intcol1, identcol2

 FROM T1

In both cases, the INSERT statement is providing an explicit value for the

identity column of T2. This explicit specification can be given a value for the

identity column, but the identity column in T2 must be defined as GENERATED

BY DEFAULT. Otherwise, an error will result (SQLSTATE 428C9).

If there is a table with a column defined as a GENERATED ALWAYS identity, it

is still possible to propagate all other columns from a table with the same

definition. For example, given the example tables T1 and T2 described above,

the intcol1 values from T1 to T2 can be propagated with the following SQL:

 INSERT INTO T2 (intcol1)

 SELECT intcol1

 FROM T1

Note that, because identcol2 is not specified in the column-list, it will be filled in

with its default (generated) value.

v When inserting a row into a single column table where the column is defined as

a GENERATED ALWAYS identity column or a ROW CHANGE TIMESTAMP

column, it is possible to specify a VALUES clause with the DEFAULT keyword.

In this case, the application does not provide any value for the table, and DB2

generates the value for the identity or ROW CHANGE TIMESTAMP column.

 INSERT INTO IDTABLE

 VALUES(DEFAULT)

Assuming the same single column table for which the column has the identity

attribute, to insert multiple rows with a single INSERT statement, the following

INSERT statement could be used:

 INSERT INTO IDTABLE

 VALUES (DEFAULT), (DEFAULT), (DEFAULT), (DEFAULT)

Chapter 1. SQL Statements for Administrators 319

v When DB2 generates a value for an identity column, that generated value is

consumed; the next time that a value is needed, DB2 will generate a new value.

This is true even when an INSERT statement involving an identity column fails

or is rolled back.

For example, assume that a unique index has been created on the identity

column. If a duplicate key violation is detected in generating a value for an

identity column, an error occurs (SQLSTATE 23505) and the value generated for

the identity column is considered to be consumed. This can occur when the

identity column is defined as GENERATED BY DEFAULT and the system tries

to generate a new value, but the user has explicitly specified values for the

identity column in previous INSERT statements. Reissuing the same INSERT

statement in this case can lead to success. DB2 will generate the next value for

the identity column, and it is possible that this next value will be unique, and

that this INSERT statement will be successful.

v If the maximum value for the identity column is exceeded (or minimum value

for a descending sequence) in generating a value for an identity column, an

error occurs (SQLSTATE 23522). In this situation, the user would have to DROP

and CREATE a new table with an identity column having a larger range (that is,

change the data type or increment value for the column to allow for a larger

range of values).

For example, an identity column may have been defined with a data type of

SMALLINT, and eventually the column runs out of assignable values. To

redefine the identity column as INTEGER, the data would need to be unloaded,

the table would have to be dropped and recreated with a new definition for the

column, and then the data would be reloaded. When the table is redefined, it

needs to specify a START WITH value for the identity column such that the next

value generated by DB2 will be the next value in the original sequence. To

determine the end value, issue a query using MAX of the identity column (for

an ascending sequence), or MIN of the identity column (for a descending

sequence), before unloading the data.

Examples

Example 1: Insert a new department with the following specifications into the

DEPARTMENT table:

v Department number (DEPTNO) is ‘E31’

v Department name (DEPTNAME) is ‘ARCHITECTURE’

v Managed by (MGRNO) a person with number ‘00390’

v Reports to (ADMRDEPT) department ‘E01’.
 INSERT INTO DEPARTMENT

 VALUES (’E31’, ’ARCHITECTURE’, ’00390’, ’E01’)

Example 2: Insert a new department into the DEPARTMENT table as in example 1,

but do not assign a manager to the new department.

 INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)

 VALUES (’E31’, ’ARCHITECTURE’, ’E01’)

Example 3: Insert two new departments using one statement into the

DEPARTMENT table as in example 2, but do not assign a manager to the new

department.

 INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)

 VALUES (’B11’, ’PURCHASING’, ’B01’),

 (’E41’, ’DATABASE ADMINISTRATION’, ’E01’)

320 Common Criteria Certification: Administration and User Documentation - Volume 2

Example 4: Create a temporary table MA_EMP_ACT with the same columns as the

EMP_ACT table. Load MA_EMP_ACT with the rows from the EMP_ACT table

with a project number (PROJNO) starting with the letters ‘MA’.

 CREATE TABLE MA_EMP_ACT

 (EMPNO CHAR(6) NOT NULL,

 PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

 EMPTIME DEC(5,2),

 EMSTDATE DATE,

 EMENDATE DATE)

 INSERT INTO MA_EMP_ACT

 SELECT * FROM EMP_ACT

 WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Example 5: Use a C program statement to add a skeleton project to the PROJECT

table. Obtain the project number (PROJNO), project name (PROJNAME),

department number (DEPTNO), and responsible employee (RESPEMP) from host

variables. Use the current date as the project start date (PRSTDATE). Assign a

NULL value to the remaining columns in the table.

 EXEC SQL INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE)

 VALUES (:PRJNO, :PRJNM, :DPTNO, :REMP, CURRENT DATE);

Example 6: Specify an INSERT statement as the data-change-table-reference within a

SELECT statement. Define an extra include column whose values are specified in

the VALUES clause, which is then used as an ordering column for the inserted

rows.

 SELECT inorder.ordernum

 FROM (INSERT INTO orders(custno)INCLUDE (insertnum integer)

 VALUES(:cnum1, 1), (:cnum2, 2)) InsertedOrders

 ORDER BY insertnum;

Example 7: Use a C program statement to add a document to the DOCUMENTS

table. Obtain values for the document ID (DOCID) column and the document data

(XMLDOC) column from a host variable that binds to an SQL TYPE IS XML AS

BLOB_FILE.

 EXEC SQL INSERT INTO DOCUMENTS

 (DOCID, XMLDOC) VALUES (:docid, :xmldoc)

Example 8: For the following INSERT statements, assume that table SALARY_INFO

is defined with three columns, and that the last column is an implicitly hidden

ROW CHANGE TIMESTAMP column. In the following statement, the implicitly

hidden column is explicitly referenced in the column list and a value is provided

for it in the VALUES clause.

 INSERT INTO SALARY_INFO (LEVEL, SALARY, UPDATE_TIME)

 VALUES (2, 30000, CURRENT TIMESTAMP)

The following INSERT statement uses an implicit column list. An implicit column

list does not include implicitly hidden columns, so the VALUES clause only

contains values for the other two columns.

 INSERT INTO SALARY_INFO VALUES (2, 30000)

In this case, the UPDATE_TIME column must be defined to have a default value,

and that default value is used for the row that is inserted.

RENAME

The RENAME statement renames an existing table or index.

Chapter 1. SQL Statements for Administrators 321

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CONTROL privilege on the table or index

v Ownership of the table or index, as recorded in the OWNER column of the

SYSCAT.TABLES catalog view for a table, and the SYSCAT.INDEXES catalog

view for an index

v ALTERIN privilege on the schema

v DBADM authority

Syntax

��
 TABLE

RENAME

source-table-name

TO

target-identifier

INDEX

source-index-name

��

Description

TABLE source-table-name

Names the existing table that is to be renamed. The name, including the

schema name, must identify a table that already exists in the database

(SQLSTATE 42704). It must not be the name of a catalog table (SQLSTATE

42832), a materialized query table, a typed table (SQLSTATE 42997), a created

temporary table, a declared global temporary table (SQLSTATE 42995), a

nickname, or an object other than a table or an alias (SQLSTATE 42809). The

TABLE keyword is optional.

INDEX source-index-name

Names the existing index that is to be renamed. The name, including the

schema name, must identify an index that already exists in the database

(SQLSTATE 42704). It must not be the name of an index on a created

temporary table or a declared global temporary table (SQLSTATE 42995). The

schema name must not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT (SQLSTATE

42832).

target-identifier

Specifies the new name for the table or index without a schema name. The

schema name of the source object is used to qualify the new name for the

object. The qualified name must not identify a table, view, alias, or index that

already exists in the database (SQLSTATE 42710).

Rules

When renaming a table, the source table must not:

v Be referenced in any existing materialized query table definitions

v Be the subject table of an existing trigger

v Be a parent or dependent table in any referential integrity constraints

322 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|

|
|

|
|

v Be the scope of any existing reference column

v Be referenced by an XSR object that has been enabled for decomposition

An error (SQLSTATE 42986) is returned if the source table violates one or more of

these conditions.

When renaming an index:

v The source index must not be a system-generated index for an implementation

table on which a typed table is based (SQLSTATE 42858).

Notes

v Catalog entries are updated to reflect the new table or index name.

v All authorizations associated with the source table or index name are transferred

to the new table or index name (the authorization catalog tables are updated

appropriately).

v Indexes defined over the source table are transferred to the new table (the index

catalog tables are updated appropriately).

v RENAME TABLE invalidates any packages that are dependent on the source

table. RENAME INDEX invalidates any packages that are dependent on the

source index.

v If an alias is used for the source-table-name, it must resolve to a table name. The

table is renamed within the schema of this table. The alias is not changed by the

RENAME statement and continues to refer to the old table name.

v A table with primary key or unique constraints can be renamed if none of the

primary key or unique constraints are referenced by any foreign key.

Examples

Change the name of the EMP table to EMPLOYEE.

 RENAME TABLE EMP TO EMPLOYEE

 RENAME TABLE ABC.EMP TO EMPLOYEE

Change the name of the index NEW-IND to IND.

 RENAME INDEX NEW-IND TO IND

 RENAME INDEX ABC.NEW-IND TO IND

RENAME TABLESPACE

The RENAME TABLESPACE statement renames an existing table space.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include either

SYSCTRL or SYSADM authority.

Chapter 1. SQL Statements for Administrators 323

Syntax

�� RENAME TABLESPACE source-tablespace-name TO target-tablespace-name ��

Description

source-tablespace-name

Specifies the existing table space that is to be renamed, as a one-part name. It

is an SQL identifier (either ordinary or delimited). The table space name must

identify a table space that already exists in the catalog (SQLSTATE 42704).

target-tablespace-name

Specifies the new name for the table space, as a one-part name. It is an SQL

identifier (either ordinary or delimited). The new table space name must not

identify a table space that already exists in the catalog (SQLSTATE 42710), and

it cannot start with ’SYS’ (SQLSTATE 42939).

Rules

v The SYSCATSPACE table space cannot be renamed (SQLSTATE 42832).

v Any table spaces with ″rollforward pending″ or ″rollforward in progress″ states

cannot be renamed (SQLSTATE 55039)

Notes

v Renaming a table space will update the minimum recovery time of a table space

to the point in time when the rename took place. This implies that a roll forward

at the table space level must be to at least this point in time.

v The new table space name must be used when restoring a table space from a

backup image, where the rename was done after the backup was created.

Example

Change the name of the table space USERSPACE1 to DATA2000:

 RENAME TABLESPACE USERSPACE1 TO DATA2000

REVOKE (Database Authorities)

This form of the REVOKE statement revokes authorities that apply to the entire

database.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

To revoke ACCESSCTRL, DATAACCESS, DBADM, or SECADM authority,

SECADM is required. To revoke other authorities, ACCESSCTRL or SECADM

authority is required.

324 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

Syntax

��

REVOKE

�

 ,

ACCESSCTRL

BINDADD

CONNECT

CREATETAB

CREATE_EXTERNAL_ROUTINE

CREATE_NOT_FENCED_ROUTINE

DBADM

DATAACCESS

EXPLAIN

LOAD

QUIESCE_CONNECT

SECADM

SQLADM

WLMADM

ON DATABASE

�

�

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

BY ALL

��

Description

ACCESSCTRL

Revokes the authority to grant and revoke most database authorities and object

privileges.

BINDADD

Revokes the authority to create packages. The creator of a package

automatically has the CONTROL privilege on that package and retains this

privilege even if his BINDADD authority is subsequently revoked.

 The BINDADD authority cannot be revoked from an authorization-name holding

DBADM authority without also revoking the DBADM authority.

CONNECT

Revokes the authority to access the database.

 Revoking the CONNECT authority from a user does not affect any privileges

that were granted to that user on objects in the database. If the user is

subsequently granted the CONNECT authority again, all previously held

privileges are still valid (assuming they were not explicitly revoked).

The CONNECT authority cannot be revoked from an authorization-name

holding DBADM authority without also revoking the DBADM authority

(SQLSTATE 42504).

CREATETAB

Revokes the authority to create tables. The creator of a table automatically has

the CONTROL privilege on that table, and retains this privilege even if his

CREATETAB authority is subsequently revoked.

 The CREATETAB authority cannot be revoked from an authorization-name

holding DBADM authority without also revoking the DBADM authority

(SQLSTATE 42504).

Chapter 1. SQL Statements for Administrators 325

||
|

|
|||||||||||||||||||||||||||||||||||||||

|

|
|
|

CREATE_EXTERNAL_ROUTINE

Revokes the authority to register external routines. Once an external routine

has been registered, it continues to exist, even if

CREATE_EXTERNAL_ROUTINE is subsequently revoked from the

authorization ID that registered the routine.

 CREATE_EXTERNAL_ROUTINE authority cannot be revoked from an

authorization-name holding DBADM or CREATE_NOT_FENCED_ROUTINE

authority without also revoking DBADM or

CREATE_NOT_FENCED_ROUTINE authority (SQLSTATE 42504).

CREATE_NOT_FENCED_ROUTINE

Revokes the authority to register routines that execute in the database

manager’s process. Once a routine has been registered as not fenced, it

continues to run in this manner, even if CREATE_NOT_FENCED_ROUTINE is

subsequently revoked from the authorization ID that registered the routine.

 CREATE_NOT_FENCED_ROUTINE authority cannot be revoked from an

authorization-name holding DBADM authority without also revoking the

DBADM authority (SQLSTATE 42504).

DATAACCESS

Revokes the authority to access data.

DBADM

Revokes the DBADM authority.

 DBADM authority cannot be revoked from PUBLIC (because it cannot be

granted to PUBLIC).

CAUTION:

Revoking DBADM authority does not automatically revoke any privileges

that were held by the authorization-name on objects in the database.

EXPLAIN

Revokes the authority to explain, prepare, and describe static and dynamic

statements without requiring access to data.

LOAD

Revokes the authority to LOAD in this database.

QUIESCE_CONNECT

Revokes the authority to access the database while it is quiesced.

SECADM

Revokes the authority to administer database security.

SQLADM

Revokes the authority to monitor and tune SQL statements.

WLMADM

Revokes the authority to manage workload manager objects.

FROM

Indicates from whom the authorities are revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

326 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|

|
|
|

|

|
|

|
|

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes the authorities from PUBLIC.

BY ALL

Revokes each named privilege from all named users who were explicitly

granted those privileges, regardless of who granted them. This is the default

behavior.

Rules

Security administrator mandatory: The database must have at least one

authorization ID of type USER with the SECADM authority. The SECADM

authority cannot be revoked from every user authorization ID (SQLSTATE 42523).

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.DBAUTH catalog view

where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes

v Revoking a specific privilege does not necessarily revoke the ability to perform

an action. A user can proceed with a task if other privileges are held by PUBLIC,

a group, or a role, or if the user holds a higher level authority, such as DBADM.

v Compatibilities:

– For compatibility with previous versions of DB2:

- CREATE_NOT_FENCED can be specified in place of

CREATE_NOT_FENCED_ROUTINE
– For compatibility with DB2 for z/OS:

- SYSTEM can be specified in place of DATABASE

- NOT INCLUDING DEPENDANT PRIVILEGES may be specified as a

syntax alternative

Examples

Example 1: Given that USER6 is only a user and not a group, revoke the privilege

to create tables from the user USER6.

 REVOKE CREATETAB ON DATABASE FROM USER6

Example 2: Revoke BINDADD authority on the database from a group named

D024. There are two rows in the SYSCAT.DBAUTH catalog view for this grantee;

one with a GRANTEETYPE of U and one with a GRANTEETYPE of G.

 REVOKE BINDADD ON DATABASE FROM GROUP D024

Chapter 1. SQL Statements for Administrators 327

|
|
|

|

|

|
|

|

|

|
|

In this case, the GROUP keyword must be specified; otherwise an error will occur

(SQLSTATE 56092).

Example 3: Revoke security administrator authority from user Walid.

 REVOKE SECADM ON DATABASE FROM USER Walid

REVOKE (Exemption)

This form of the REVOKE statement revokes an exemption to a label-based access

control (LBAC) access rule.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� REVOKE EXEMPTION ON RULE DB2LBACREADARRAY

DB2LBACREADSET

DB2LBACREADTREE

DB2LBACWRITEARRAY

WRITEDOWN

WRITEUP

DB2LBACWRITESET

DB2LBACWRITETREE

ALL

 �

�

FOR

policy-name

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

��

Description

EXEMPTION ON RULE

Revokes the exemption on an access rule.

DB2LBACREADARRAY

Revokes an exemption on the predefined DB2LBACREADARRAY rule.

DB2LBACREADSET

Revokes an exemption on the predefined DB2LBACREADSET rule.

DB2LBACREADTREE

Revokes an exemption on the predefined DB2LBACREADTREE rule.

328 Common Criteria Certification: Administration and User Documentation - Volume 2

DB2LBACWRITEARRAY

Revokes an exemption on the predefined DB2LBACWRITEARRAY rule.

WRITEDOWN

Specifies that the exemption only applies to write down.

WRITEUP

Specifies that the exemption only applies to write up.

DB2LBACWRITESET

Revokes an exemption on the predefined DB2LBACWRITESET rule.

DB2LBACWRITETREE

Revokes an exemption on the predefined DB2LBACWRITETREE rule.

ALL

Revokes the exemptions on all of the predefined rules.

FOR policy-name

Specifies the name of the security policy on which exemptions are to be

revoked.

FROM

Specifies from whom the exemption is revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the

SYSCAT.SECURITYPOLICYEXEMPTIONS catalog view where the grantee is

authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Examples

Example 1: Revoke the exemption on access rule DB2LBACREADSET for security

policy DATA_ACCESS from user WALID.

 REVOKE EXEMPTION ON RULE DB2LBACREADSET FOR DATA_ACCESS

 FROM USER WALID

Example 2: Revoke an exemption on access rule DB2LBACWRITEARRAY with the

WRITEDOWN option for security policy DATA_ACCESS from user BOBBY.

 REVOKE EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEDOWN

 FOR DATA_ACCESS FROM USER BOBBY

Chapter 1. SQL Statements for Administrators 329

Example 3: Revoke an exemption on access rule DB2LBACWRITEARRAY with the

WRITEUP option for security policy DATA_ACCESS from user BOBBY.

 REVOKE EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEUP

 FOR DATA_ACCESS FROM USER BOBBY

REVOKE (Index Privileges)

This form of the REVOKE statement revokes the CONTROL privilege on an index.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

ACCESSCTRL or SECADM authority.

Syntax

�� REVOKE CONTROL ON INDEX index-name �

�

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

BY ALL

��

Description

CONTROL

Revokes the privilege to drop the index. This is the CONTROL privilege for

indexes, which is automatically granted to creators of indexes.

ON INDEX index-name

Specifies the name of the index on which the CONTROL privilege is to be

revoked.

FROM

Indicates from whom the privileges are revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

330 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes the privileges from PUBLIC.

BY ALL

Revokes the privilege from all named users who were explicitly granted that

privilege, regardless of who granted it. This is the default behavior.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.INDEXAUTH catalog view

where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes

v Revoking a specific privilege does not necessarily revoke the ability to perform

the action. A user can proceed with a task if other privileges are held by

PUBLIC, a group, or a role, or if the user holds authorities such as ALTERIN on

the schema of an index.

Examples

Example 1: Given that USER4 is only a user and not a group, revoke the privilege

to drop an index DEPTIDX from the user USER4.

 REVOKE CONTROL ON INDEX DEPTIDX FROM KIESLER

Example 2: Revoke the privilege to drop an index LUNCHITEMS from the user

CHEF and the group WAITERS.

 REVOKE CONTROL ON INDEX LUNCHITEMS

 FROM USER CHEF, GROUP WAITERS

REVOKE (Package Privileges)

This form of the REVOKE statement revokes CONTROL, BIND, and EXECUTE

privileges against a package.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

Chapter 1. SQL Statements for Administrators 331

v CONTROL privilege on the referenced package

v ACCESSCTRL or SECADM authority

ACCESSCTRL or SECADM authority is required to revoke the CONTROL

privilege.

Syntax

��

REVOKE

�

 ,

BIND

CONTROL

(1)

EXECUTE

�

�
 (2)

ON

PACKAGE

package-id

schema-name.

�

�

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

BY ALL

��

Notes:

1 RUN can be used as a synonym for EXECUTE.

2 PROGRAM can be used as a synonym for PACKAGE.

Description

BIND

Revokes the privilege to execute BIND or REBIND on—or to add a new

version of— the referenced package.

 The BIND privilege cannot be revoked from an authorization-name that holds

CONTROL privilege on the package, without also revoking the CONTROL

privilege.

CONTROL

Revokes the privilege to drop the package and to extend package privileges to

other users.

 Revoking CONTROL does not revoke the other package privileges.

EXECUTE

Revokes the privilege to execute the package.

 The EXECUTE privilege cannot be revoked from an authorization-name that

holds CONTROL privilege on the package without also revoking the

CONTROL privilege.

ON PACKAGE schema-name.package-id

Specifies the name of the package on which privileges are to be revoked. If a

332 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|
|

schema name is not specified, the package ID is implicitly qualified by the

default schema. The revoking of a package privilege applies to all versions of

the package.

FROM

Indicates from whom the privileges are revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes the privileges from PUBLIC.

BY ALL

Revokes each named privilege from all named users who were explicitly

granted those privileges, regardless of who granted them. This is the default

behavior.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.PACKAGEAUTH catalog

view where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes

v Revoking a specific privilege does not necessarily revoke the ability to perform

the action. A user can proceed with a task if other privileges are held by

PUBLIC, a group, or a role, or if the user holds privileges such as ALTERIN on

the schema of a package.

Examples

Example 1: Revoke the EXECUTE privilege on package CORPDATA.PKGA from

PUBLIC.

 REVOKE EXECUTE

 ON PACKAGE CORPDATA.PKGA

 FROM PUBLIC

Example 2: Revoke CONTROL authority on the RRSP_PKG package for the user

FRANK and for PUBLIC.

Chapter 1. SQL Statements for Administrators 333

REVOKE CONTROL

 ON PACKAGE RRSP_PKG

 FROM USER FRANK, PUBLIC

REVOKE (Role)

This form of the REVOKE statement revokes roles from users, groups, or other

roles.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v The WITH ADMIN OPTION on the role

v SECADM authority

SECADM authority is required to revoke the ADMIN OPTION FOR role-name from

an authorization-name or to revoke a role-name from an authorization-name that has

the WITH ADMIN OPTION on that role.

Syntax

��

�

 ,

ROLE

REVOKE

role-name

ADMIN OPTION FOR

�

�

�

 ,

BY ALL

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

��

Description

ADMIN OPTION FOR

Revokes the WITH ADMIN OPTION on role-name. The WITH ADMIN

OPTION on role-name must be held by authorization-name or by PUBLIC, if

PUBLIC is specified (SQLSTATE 42504). If the ADMIN OPTION FOR clause is

specified, only the WITH ADMIN OPTION on ROLE role-name is revoked, not

the role itself.

ROLE role-name

Specifies the role that is to be revoked. The role-name must identify an existing

role at the current server (SQLSTATE 42704) that has been granted to

authorization-name or to PUBLIC, if PUBLIC is specified (SQLSTATE 42504).

FROM

Specifies from whom the role is revoked.

334 Common Criteria Certification: Administration and User Documentation - Volume 2

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group.

ROLE

Specifies that the authorization-name identifies an existing role at the current

server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles. The list

of authorization IDs cannot include the authorization ID of the user issuing

the statement (SQLSTATE 42502).

PUBLIC

Revokes the specified roles from PUBLIC.

BY ALL

Revokes the role-name from each specified authorization-name that was explicitly

granted that role, regardless of who granted it. This is the default behavior.

Rules

v For each authorization-name specified, if none of the keywords USER, GROUP, or

ROLE is specified, then for all rows for the specified object in the

SYSCAT.ROLEAUTH catalog view where the grantee is authorization-name:

– If GRANTEETYPE is ’U’, USER is assumed.

– If GRANTEETYPE is ’G’, GROUP is assumed.

– If GRANTEETYPE is ’R’, ROLE is assumed.

– If GRANTEETYPE does not have the same value, an error is returned

(SQLSTATE 56092.
v The role-name must not identify a role, or a role that contains role-name, if the

role has either EXECUTE privilege on a routine or USAGE privilege on a

sequence, and an SQL object other than a package is dependent on the routine

or sequence (SQLSTATE 42893). The owner of the SQL object is either

authorization-name or any user that is a member of authorization-name, where

authorization-name is a role.

Notes

v If a role is revoked from an authorization-name or from PUBLIC, all privileges

that the role held are no longer available to the authorization-name or to PUBLIC

through that role.

v Revoking a role does not necessarily revoke the ability to perform a particular

action by way of a privilege that was granted to that role. A user might still be

able to proceed if other privileges are held by PUBLIC, by a group to which the

user belongs, by another role granted to the user, or if the user has a higher

level authority, such as DBADM.

Examples

Example 1: Revoke the role INTERN from the role DOCTOR and the role DOCTOR

from the role SPECIALIST.

 REVOKE ROLE INTERN FROM ROLE DOCTOR

 REVOKE ROLE DOCTOR FROM ROLE SPECIALIST

Example 2: Revoke the role INTERN from PUBLIC.

Chapter 1. SQL Statements for Administrators 335

REVOKE ROLE INTERN FROM PUBLIC

Example 3: Revoke the role SPECIALIST from user BOB and group TORONTO.

 REVOKE ROLE SPECIALIST FROM USER BOB, GROUP TORONTO BY ALL

REVOKE (routine privileges)

This form of the REVOKE statement revokes privileges on a routine (function,

method, or procedure) that is not defined in a module.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

ACCESSCTRL or SECADM authority.

Syntax

�� REVOKE EXECUTE ON function-designator

FUNCTION

*

schema.

method-designator

METHOD * FOR

type-name

*

schema.

procedure-designator

PROCEDURE

*

schema.

 �

�

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

BY ALL

RESTRICT

��

function-designator:

 FUNCTION function-name

SPECIFIC FUNCTION

function-name

method-designator:

 METHOD method-name

SPECIFIC METHOD

method-name

336 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|
|

||||

||||

procedure-designator:

 PROCEDURE procedure-name

SPECIFIC PROCEDURE

procedure-name

Description

EXECUTE

Revokes the privilege to run the identified user-defined function, method, or

procedure.

function-designator

Uniquely identifies the function from which the privilege is revoked. For more

information, see “Function, method, and procedure designators” on page 497.

FUNCTION schema.*

Identifies the explicit grant for all the existing and future functions in the

schema. Revoking the schema.* privilege does not revoke any privileges that

were granted on a specific function. In dynamic SQL statements, if a schema is

not specified, the schema in the CURRENT SCHEMA special register will be

used. In static SQL statements, if a schema is not specified, the schema in the

QUALIFIER precompile/bind option will be used.

method-designator

Uniquely identifies the method from which the privilege is revoked. For more

information, see “Function, method, and procedure designators” on page 497.

METHOD *

Identifies the explicit grant for all the existing and future methods for the type

type-name. Revoking the * privilege does not revoke any privileges that were

granted on a specific method.

FOR type-name

Names the type in which the specified method is found. The name must

identify a type already described in the catalog (SQLSTATE 42704). In

dynamic SQL statements, the value of the CURRENT SCHEMA special

register is used as a qualifier for an unqualified type name. In static SQL

statements, the QUALIFIER precompile/bind option implicitly specifies the

qualifier for unqualified type names. An asterisk (*) can be used in place of

type-name to identify the explicit grant on all existing and future methods

for all existing and future types in the schema. Revoking the privilege

using an asterisk for method and type-name does not revoke any privileges

that were granted on a specific method or on all methods for a specific

type.

procedure-designator

Uniquely identifies the procedure from which the privilege is revoked. For

more information, see “Function, method, and procedure designators” on page

497.

PROCEDURE schema.*

Identifies the explicit grant for all the existing and future procedures in the

schema. Revoking the schema.* privilege does not revoke any privileges that

were granted on a specific procedure. In dynamic SQL statements, if a schema

is not specified, the schema in the CURRENT SCHEMA special register will be

used. In static SQL statements, if a schema is not specified, the schema in the

QUALIFIER precompile/bind option will be used.

Chapter 1. SQL Statements for Administrators 337

||||

|
|

|
|

|

|

FROM

Specifies from whom the EXECUTE privilege is revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes the EXECUTE privilege from PUBLIC.

BY ALL

Revokes the EXECUTE privilege from all named users who were explicitly

granted the privilege, regardless of who granted it. This is the default behavior.

RESTRICT

Specifies that the EXECUTE privilege cannot be revoked if both of the

following are true (SQLSTATE 42893):

v The specified routine is used in a view, trigger, constraint, index extension,

SQL function, SQL method, transform group, or is referenced as the

SOURCE of a sourced function.

v The loss of the EXECUTE privilege would cause the owner of the view,

trigger, constraint, index extension, SQL function, SQL method, transform

group, or sourced function to no longer be able to execute the specified

routine.

Rules

v It is not possible to revoke the EXECUTE privilege on a function or method

defined with schema ’SYSIBM’ or ’SYSFUN’ (SQLSTATE 42832).

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.ROUTINEAUTH catalog

view where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes

v If a package depends on a routine (function, method, or procedure), and the

EXECUTE privilege on that routine is revoked from PUBLIC, a user, or a role,

the package becomes inoperative if the routine is a function or a method, and

the package becomes invalid if the routine is a procedure, unless the package

owner still holds the EXECUTE privilege on the routine. The package owner can

still hold the EXECUTE privilege if:

– The package owner was explicitly granted the EXECUTE privilege

338 Common Criteria Certification: Administration and User Documentation - Volume 2

– The package owner is a member of a role that holds the EXECUTE privilege

– The EXECUTE privilege was granted to PUBLIC

Because group privileges are not considered for static packages, the package

becomes inoperative (in the case of a function or a method) or invalid (in the

case of a procedure) even if a group to which the package owner belongs holds

the EXECUTE privilege.

Examples

Example 1: Revoke the EXECUTE privilege on function CALC_SALARY from user

JONES. Assume that there is only one function in the schema with function name

CALC_SALARY.

 REVOKE EXECUTE ON FUNCTION CALC_SALARY FROM JONES RESTRICT

Example 2: Revoke the EXECUTE privilege on procedure VACATION_ACCR from

all users at the current server.

 REVOKE EXECUTE ON PROCEDURE VACATION_ACCR FROM PUBLIC RESTRICT

Example 3: Revoke the EXECUTE privilege on function NEW_DEPT_HIRES from

HR (Human Resources). The function has two input parameters of type INTEGER

and CHAR(10), respectively. Assume that the schema has more than one function

named NEW_DEPT_HIRES.

 REVOKE EXECUTE ON FUNCTION NEW_DEPT_HIRES (INTEGER, CHAR(10))

 FROM HR RESTRICT

Example 4: Revoke the EXECUTE privilege on method SET_SALARY for type

EMPLOYEE from user Jones.

 REVOKE EXECUTE ON METHOD SET_SALARY FOR EMPLOYEE FROM JONES RESTRICT

REVOKE (Schema Privileges)

This form of the REVOKE statement revokes the privileges on a schema.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

ACCESSCTRL or SECADM authority.

Syntax

��

REVOKE

�

 ,

ALTERIN

CREATEIN

DROPIN

ON SCHEMA

schema-name

�

Chapter 1. SQL Statements for Administrators 339

|
|

�

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

BY ALL

��

Description

ALTERIN

Revokes the privilege to alter or comment on objects in the schema.

CREATEIN

Revokes the privilege to create objects in the schema.

DROPIN

Revokes the privilege to drop objects in the schema.

ON SCHEMA schema-name

Specifies the name of the schema on which privileges are to be revoked.

FROM

Indicates from whom the privileges are revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes the privileges from PUBLIC.

BY ALL

Revokes each named privilege from all named users who were explicitly

granted those privileges, regardless of who granted them. This is the default

behavior.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.SCHEMAAUTH catalog

view where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

340 Common Criteria Certification: Administration and User Documentation - Volume 2

Notes

v Revoking a specific privilege does not necessarily revoke the ability to perform

the action. A user can proceed with a task if other privileges are held by

PUBLIC, a group, or a role, or if the user holds a higher level authority such as

DBADM.

Examples

Example 1: Given that USER4 is only a user and not a group, revoke the privilege

to create objects in schema DEPTIDX from the user USER4.

 REVOKE CREATEIN ON SCHEMA DEPTIDX FROM USER4

Example 2: Revoke the privilege to drop objects in schema LUNCH from the user

CHEF and the group WAITERS.

 REVOKE DROPIN ON SCHEMA LUNCH

 FROM USER CHEF, GROUP WAITERS

REVOKE (Security Label)

This form of the REVOKE statement revokes a label-based access control (LBAC)

security label.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� REVOKE SECURITY LABEL security-label-name �

�

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

��

Description

SECURITY LABEL security-label-name

Revokes the security label security-label-name. The name must be qualified with

a security policy (SQLSTATE 42704) and must identify a security label that

exists at the current server (SQLSTATE 42704), and that is held by

authorization-name (SQLSTATE 42504).

Chapter 1. SQL Statements for Administrators 341

FROM

Specifies from whom the specified security label is revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.SECURITYLABELACCESS

catalog view where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Examples

Example 1: Revoke the security label EMPLOYEESECLABEL, which is part of the

security policy DATA_ACCESS, from user WALID.

 REVOKE SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABEL

 FROM USER WALID

REVOKE (Sequence Privileges)

This form of the REVOKE statement revokes privileges on a sequence.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared. However, if the bind option DYNAMICRULES BIND

applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

ACCESSCTRL or SECADM authority.

Syntax

��

REVOKE

�

 ,

ALTER

USAGE

ON SEQUENCE

sequence-name

�

342 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

�

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

RESTRICT

��

Description

ALTER

Revokes the privilege to change the properties of a sequence or to restart

sequence number generation using the ALTER SEQUENCE statement.

USAGE

Revokes the privilege to reference a sequence using nextval-expression or

prevval-expression.

ON SEQUENCE sequence-name

Identifies the sequence on which the specified privileges are to be revoked. The

sequence name, including an implicit or explicit schema qualifier, must

uniquely identify an existing sequence at the current server. If no sequence by

this name exists, an error is returned (SQLSTATE 42704).

FROM

Specifies from whom the privileges are revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes the specified privileges from PUBLIC.

RESTRICT

This optional keyword indicates that the statement will fail if any objects

depend on the privilege being revoked.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.SEQUENCEAUTH catalog

view where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Chapter 1. SQL Statements for Administrators 343

Notes

v Revoking a privilege on a sequence from the authorization ID under which a

package was bound will cause the package to become invalid if the

authorization ID does not continue to hold the privilege on the sequence

through different means; for example, through membership in a role that holds

the privilege.

v Revoking a specific privilege does not necessarily remove the ability to perform

an action. A user can proceed if other privileges are held by PUBLIC or by a

group to which the user belongs, or if the user has a higher level of authority,

such as DBADM.

Examples

Example 1: Revoke the USAGE privilege on a sequence called GENERATE_ID from

user ENGLES. There is one row in the SYSCAT.SEQUENCEAUTH catalog view for

this sequence and grantee, and the GRANTEETYPE value is U.

 REVOKE USAGE ON SEQUENCE GENERATE_ID FROM ENGLES

Example 2: Revoke alter privileges on sequence GENERATE_ID that were

previously granted to all local users. (Grants to specific users are not affected.)

 REVOKE ALTER ON SEQUENCE GENERATE_ID FROM PUBLIC

Example 3: Revoke all privileges on sequence GENERATE_ID from users PELLOW

and MLI, and from group PLANNERS.

 REVOKE ALTER, USAGE ON SEQUENCE GENERATE_ID

 FROM USER PELLOW, USER MLI, GROUP PLANNERS

REVOKE (Server Privileges)

This form of the REVOKE statement revokes the privilege to access and use a

specified data source in pass-through mode.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

ACCESSCTRL or SECADM authority.

Syntax

�� REVOKE PASSTHRU ON SERVER server-name FROM �

344 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

�

�

 ,

authorization-name

USER

GROUP

ROLE

PUBLIC

BY ALL

��

Description

SERVER server-name

Names the data source for which the privilege to use in pass-through mode is

being revoked. server-name must identify a data source that is described in the

catalog.

FROM

Specifies from whom the privilege is revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes from PUBLIC the privilege to pass through to server-name.

BY ALL

Revokes the privilege from all named users who were explicitly granted that

privilege, regardless of who granted it. This is the default behavior.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.PASSTHRUAUTH catalog

view where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Examples

Example 1: Revoke USER6’s privilege to pass through to data source MOUNTAIN.

 REVOKE PASSTHRU ON SERVER MOUNTAIN FROM USER USER6

Example 2: Revoke group D024’s privilege to pass through to data source

EASTWING.

Chapter 1. SQL Statements for Administrators 345

REVOKE PASSTHRU ON SERVER EASTWING FROM GROUP D024

The members of group D024 will no longer be able to use their group ID to pass

through to EASTWING. But if any members have the privilege to pass through to

EASTWING under their own user IDs, they will retain this privilege.

REVOKE (SETSESSIONUSER Privilege)

This form of the REVOKE statement revokes one or more SETSESSIONUSER

privileges from one or more authorization IDs.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

��

�

 ,

REVOKE SETSESSIONUSER ON

USER

session-authorization-name

FROM

PUBLIC

�

�

�

 ,

USER

authorization-name

GROUP

��

Description

SETSESSIONUSER ON

Revokes the privilege to assume the identity of a new authorization ID.

USER session-authorization-name

Specifies the authorization ID that the authorization-name is able to assume,

using the SET SESSION AUTHORIZATION statement. The

session-authorization-name must identify a user that the authorization-name can

assume, not a group (SQLSTATE 42504).

PUBLIC

Specifies that all privileges to set the session authorization will be revoked.

FROM

Specifies from whom the privilege is revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

authorization-name,...

Lists the authorization IDs of one or more users or groups.

346 Common Criteria Certification: Administration and User Documentation - Volume 2

The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

Examples

Example 1: User PAUL holds the privilege to set the session authorization to

WALID and therefore to execute SQL statements as user WALID. The following

statement revokes that privilege.

 REVOKE SETSESSIONUSER ON USER WALID

 FROM USER PAUL

Example 2: User GUYLAINE holds the privilege to set the session authorization to

BOBBY, RICK, or KEVIN and therefore to execute SQL statements as BOBBY,

RICK, or KEVIN. The following statement revokes the privilege to use two of those

authorization IDs. After this statement executes, GUYLAINE will only be able to

set the session authorization to KEVIN.

 REVOKE SETSESSIONUSER ON USER BOBBY, USER RICK

 FROM USER GUYLAINE

Example 3: The group ACCTG and user WALID can set session authorization to

any authorization ID. The following statement revokes that privilege from both

ACCTG and WALID.

 REVOKE SETSESSIONUSER ON PUBLIC

 FROM USER WALID, GROUP ACCTG

REVOKE (Table Space Privileges)

This form of the REVOKE statement revokes the USE privilege on a table space.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

ACCESSCTRL, SECADM, SYSCTRL, or SYSADM authority.

Syntax

�� REVOKE USE OF TABLESPACE tablespace-name FROM �

�

�

 ,

authorization-name

USER

GROUP

ROLE

PUBLIC

BY ALL

��

Chapter 1. SQL Statements for Administrators 347

|
|

Description

USE

Revokes the privilege to specify or default to the table space when creating a

table.

OF TABLESPACE tablespace-name

Specifies the table space on which the USE privilege is to be revoked. The table

space cannot be SYSCATSPACE (SQLSTATE 42838) or a SYSTEM

TEMPORARY table space (SQLSTATE 42809).

FROM

Indicates from whom the USE privilege is revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes the USE privilege from PUBLIC.

BY ALL

Revokes the privilege from all named users who were explicitly granted that

privilege, regardless of who granted it. This is the default behavior.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.TBSPACEAUTH catalog

view where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes

v Revoking the USE privilege does not necessarily revoke the ability to create

tables in that table space. A user may still be able to create tables in that table

space if the USE privilege is held by PUBLIC or a group, or if the user has a

higher level authority, such as DBADM.

Examples

Example 1: Revoke the privilege to create tables in table space PLANS from the

user BOBBY.

 REVOKE USE OF TABLESPACE PLANS FROM USER BOBBY

348 Common Criteria Certification: Administration and User Documentation - Volume 2

REVOKE (Table, View, or Nickname Privileges)

This form of the REVOKE statement revokes privileges on a table, view, or

nickname.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CONTROL privilege on the referenced table, view, or nickname

v ACCESSCTRL or SECADM authority

ACCESSCTRL or SECADM authority is required to revoke the CONTROL

privilege, or to revoke privileges on catalog tables and views.

Syntax

��

REVOKE

�

 PRIVILEGES

ALL

,

ALTER

CONTROL

DELETE

INDEX

INSERT

REFERENCES

SELECT

UPDATE

ON
 TABLE

table-name

view-name

nickname

�

�

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

BY ALL

��

Description

ALL or ALL PRIVILEGES

Revokes all privileges (except CONTROL) held by an authorization-name for

the specified tables, views, or nicknames.

 If ALL is not used, one or more of the keywords listed below must be used.

Each keyword revokes the privilege described, but only as it applies to the

tables, views, or nicknames named in the ON clause. The same keyword must

not be specified more than once.

Chapter 1. SQL Statements for Administrators 349

|

|
|

ALTER

Revokes the privilege to add columns to the base table definition; create or

drop a primary key or unique constraint on the table; create or drop a foreign

key on the table; add/change a comment on the table, view, or nickname;

create or drop a check constraint; create a trigger; add, reset, or drop a column

option for a nickname; or, change nickname column names or data types.

CONTROL

Revokes the ability to drop the table, view, or nickname, and the ability to

execute the RUNSTATS utility on the table and indexes.

 Revoking CONTROL privilege from an authorization-name does not revoke

other privileges granted to the user on that object.

DELETE

Revokes the privilege to delete rows from the table, updatable view, or

nickname.

INDEX

Revokes the privilege to create an index on the table or an index specification

on the nickname. The creator of an index or index specification automatically

has the CONTROL privilege over the index or index specification (authorizing

the creator to drop the index or index specification). In addition, the creator

retains this privilege even if the INDEX privilege is revoked.

INSERT

Revokes the privileges to insert rows into the table, updatable view, or

nickname, and to run the IMPORT utility.

REFERENCES

Revokes the privilege to create or drop a foreign key referencing the table as

the parent. Any column level REFERENCES privileges are also revoked.

SELECT

Revokes the privilege to retrieve rows from the table or view, to create a view

on a table, and to run the EXPORT utility against the table or view.

 Revoking SELECT privilege may cause some views to be marked inoperative.

(For information on inoperative views, see “CREATE VIEW”.)

UPDATE

Revokes the privilege to update rows in the table, updatable view, or

nickname. Any column level UPDATE privileges are also revoked.

ON TABLE table-name or view-name or nickname

Specifies the table, view, or nickname on which privileges are to be revoked.

The table-name cannot be a declared temporary table (SQLSTATE 42995).

FROM

Indicates from whom the privileges are revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

350 Common Criteria Certification: Administration and User Documentation - Volume 2

The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes the privileges from PUBLIC.

BY ALL

Revokes each named privilege from all named users who were explicitly

granted those privileges, regardless of who granted them. This is the default

behavior.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.TABAUTH and

SYSCAT.COLAUTH catalog views where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes

v If a privilege is revoked from the authorization-name that is the owner of the view

(as recorded in the OWNER column in SYSCAT.VIEWS), that privilege is also

revoked from any dependent views.

v If the owner of the view loses a SELECT privilege on some object on which the

view definition depends (or an object upon which the view definition depends is

dropped, or made inoperative in the case of another view), the view will be

made inoperative.

However, if a user who holds ACCESSCTRL or SECADM authority explicitly

revokes all privileges on the view from the owner, then the record of the

OWNER will not appear in SYSCAT.TABAUTH but nothing will happen to the

view - it remains operative.

v Privileges on inoperative views cannot be revoked.

v A package might become invalid when the authorization ID under which the

package was bound loses a privilege on an object on which the package

depends. The privilege can be lost in one of the following ways:

– The privilege is revoked from the authorization ID

– The privilege is revoked from a role of which the authorization ID is a

member

– The privilege is revoked from PUBLIC

A package remains invalid until a bind or rebind operation on the application is

successfully executed, or the application is executed and the database manager

successfully rebinds the application (using information stored in the catalogs).

Packages marked invalid due to a revoke may be successfully rebound without

any additional grants.

For example, if a package owned by USER1 contains a SELECT from table T1,

and the SELECT privilege on table T1 is revoked from USER1, the package will

be marked invalid. If SELECT authority is granted again, or if the user holds

DBADM authority, the package is successfully rebound when executed.

Chapter 1. SQL Statements for Administrators 351

|
|
|
|

Another example is a package owned by USER1, who is a member of role R1.

The package contains a SELECT from table T1, and the SELECT privilege on

table T1 is revoked from role R1. The package will be marked invalid, assuming

USER1 does not hold the SELECT privilege on table T1 by other means.

v Packages, triggers or views that include the use of OUTER(Z) in the FROM

clause, are dependent on having SELECT privilege on every subtable or subview

of Z. Similarly, packages, triggers, or views that include the use of DEREF(Y)

where Y is a reference type with a target table or view Z, are dependent on

having SELECT privilege on every subtable or subview of Z. Such packages

might become invalid, and such triggers or views made inoperative when the

authorization ID under which the packages were bound, or the owner of the

triggers or views loses the SELECT privilege. The SELECT privilege can be lost

in one of the following ways:

– SELECT privilege is revoked from the authorization ID

– SELECT privilege is revoked from a role of which the authorization ID is a

member

– SELECT privilege is revoked from PUBLIC
v Table, view, or nickname privileges cannot be revoked from an authorization-name

with CONTROL on the object without also revoking the CONTROL privilege

(SQLSTATE 42504).

v Revoking a specific privilege does not necessarily revoke the ability to perform

the action. A user can proceed with a task if other privileges are held by

PUBLIC, a group, or a role, or if the user holds privileges such as ALTERIN on

the schema of a table or a view.

v If the owner of the materialized query table loses a SELECT privilege on a table

on which the materialized query table definition depends (or a table upon which

the materialized query table definition depends is dropped), the materialized

query table will be dropped.

However, if a user who holds SECADM or ACCESSCTRL authority explicitly

revokes all privileges on the materialized query table from the owner, then the

record in SYSTABAUTH for the OWNER will be deleted, but nothing will

happen to the materialized query table - it remains operative.

v Revoking nickname privileges has no affect on data source object (table or view)

privileges.

v Revoking the SELECT privilege for a table or view that is directly or indirectly

referenced in an SQL function or method body may fail if the SQL function or

method body cannot be dropped because some other object is dependent on it

(SQLSTATE 42893).

v Revoking the SELECT privilege causes an SQL function or method body to be

dropped when:

– The owner of the SQL function or method body loses the SELECT privilege

on some object on which the SQL function or method body definition

depends; note that the privilege can be lost because of a revoke from PUBLIC

or from a role of which the owner is a member

– An object on which the SQL function or method body definition depends is

dropped

However, the revoke fails if another object depends on the function or method

(SQLSTATE 42893).

352 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|

Examples

Example 1: Revoke SELECT privilege on table EMPLOYEE from user ENGLES.

There is one row in the SYSCAT.TABAUTH catalog view for this table and grantee

and the GRANTEETYPE value is U.

 REVOKE SELECT

 ON TABLE EMPLOYEE

 FROM ENGLES

Example 2: Revoke update privileges on table EMPLOYEE previously granted to

all local users. Note that grants to specific users are not affected.

 REVOKE UPDATE

 ON EMPLOYEE

 FROM PUBLIC

Example 3: Revoke all privileges on table EMPLOYEE from users PELLOW and

MLI and from group PLANNERS.

 REVOKE ALL

 ON EMPLOYEE

 FROM USER PELLOW, USER MLI, GROUP PLANNERS

Example 4: Revoke SELECT privilege on table CORPDATA.EMPLOYEE from a

user named JOHN. There is one row in the SYSCAT.TABAUTH catalog view for

this table and grantee and the GRANTEETYPE value is U.

 REVOKE SELECT

 ON CORPDATA.EMPLOYEE FROM JOHN

or

 REVOKE SELECT

 ON CORPDATA.EMPLOYEE FROM USER JOHN

Note that an attempt to revoke the privilege from GROUP JOHN would result in

an error, since the privilege was not previously granted to GROUP JOHN.

Example 5: Revoke SELECT privilege on table CORPDATA.EMPLOYEE from a

group named JOHN. There is one row in the SYSCAT.TABAUTH catalog view for

this table and grantee and the GRANTEETYPE value is G.

 REVOKE SELECT

 ON CORPDATA.EMPLOYEE FROM JOHN

or

 REVOKE SELECT

 ON CORPDATA.EMPLOYEE FROM GROUP JOHN

Example 6: Revoke user SHAWN’s privilege to create an index specification on

nickname ORAREM1.

 REVOKE INDEX

 ON ORAREM1 FROM USER SHAWN

SET ROLE

The SET ROLE statement verifies that the authorization ID of the session is a

member of a specific role. An authorization ID acquires membership in a role

when the role is granted to the authorization ID, or to a group or role in which the

authorization ID is a member.

Chapter 1. SQL Statements for Administrators 353

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

None required.

Syntax

��
 =

SET ROLE

role-name

��

Description

role-name

Specifies a role in whose membership the authorization ID of the session is to

be verified. The role-name must identify an existing role at the current server

(SQLSTATE 42704). If the authorization ID of the session is not a member of

role-name, an error is returned (SQLSTATE 42501).

Notes

v All roles that have been granted to an authorization ID are used for

authorization checking. The SET ROLE statement does not affect which roles are

used for this authorization checking. Use the GRANT ROLE and REVOKE

ROLE statements to change the roles in which an authorization ID has

membership.

Examples

Example 1: User WALID has been granted the role EDITOR, but not the role

AUTHOR. Verify that WALID is a member of the EDITOR role.

 SET ROLE EDITOR

Example 2: Verify that WALID is not a member of the AUTHOR role. The following

statement returns an error (SQLSTATE 42501).

 SET ROLE AUTHOR

UPDATE

The UPDATE statement updates the values of specified columns in rows of a table,

view or nickname, or the underlying tables, nicknames, or views of the specified

fullselect. Updating a row of a view updates a row of its base table, if no

INSTEAD OF trigger is defined for the update operation on this view. If such a

trigger is defined, the trigger will be executed instead. Updating a row using a

nickname updates a row in the data source object to which the nickname refers.

The forms of this statement are:

v The Searched UPDATE form is used to update one or more rows (optionally

determined by a search condition).

354 Common Criteria Certification: Administration and User Documentation - Volume 2

v The Positioned UPDATE form is used to update exactly one row (as determined

by the current position of a cursor).

Invocation

An UPDATE statement can be embedded in an application program or issued

through the use of dynamic SQL statements. It is an executable statement that can

be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v UPDATE privilege on the target table, view, or nickname

v UPDATE privilege on each of the columns that are to be updated

v CONTROL privilege on the target table, view, or nickname

v DATAACCESS authority

If a row-fullselect is included in the assignment, the privileges held by the

authorization ID of the statement must include at least one of the following for

each referenced table, view, or nickname:

v SELECT privilege

v CONTROL privilege

v DATAACCESS authority

For each table, view, or nickname referenced by a subquery, the privileges held by

the authorization ID of the statement must also include at least one of the

following:

v SELECT privilege

v CONTROL privilege

v DATAACCESS authority

If the package used to process the statement is precompiled with SQL92 rules

(option LANGLEVEL with a value of SQL92E or MIA), and the searched form of

an UPDATE statement includes a reference to a column of the table, view, or

nickname in the right hand side of the assignment-clause, or anywhere in the

search-condition, the privileges held by the authorization ID of the statement must

also include at least one of the following:

v SELECT privilege

v CONTROL privilege

v DATAACCESS authority

If the specified table or view is preceded by the ONLY keyword, the privileges

held by the authorization ID of the statement must also include the SELECT

privilege for every subtable or subview of the specified table or view.

GROUP privileges are not checked for static UPDATE statements.

If the target of the update operation is a nickname, privileges on the object at the

data source are not considered until the statement is executed at the data source.

At this time, the authorization ID that is used to connect to the data source must

have the privileges that are required for the operation on the object at the data

Chapter 1. SQL Statements for Administrators 355

|

|

|

|

source. The authorization ID of the statement can be mapped to a different

authorization ID at the data source.

Syntax

searched-update:

�� UPDATE table-name

view-name

nickname

ONLY

(

table-name

)

view-name

(

fullselect

)

correlation-clause
 �

�
include-columns

 SET assignment-clause �

�
WHERE

search-condition

WITH

RR

RS

CS

UR

 ��

positioned-update:

�� UPDATE table-name

view-name

nickname

ONLY

(

table-name

)

view-name

correlation-clause
 �

� SET assignment-clause WHERE CURRENT OF cursor-name ��

correlation-clause:

 AS

correlation-name

�

,

(

column-name

)

include-columns:

INCLUDE

�

 ,

(

column-name

data-type

)

assignment-clause:

356 Common Criteria Certification: Administration and User Documentation - Volume 2

�

�

�

�

�

 ,

column-name

=

expression

NULL

DEFAULT

..attribute-name

,

,

(1)

(

column-name

)

=

(

expression

)

NULL

DEFAULT

..attribute-name

(2)

row-fullselect

Notes:

1 The number of expressions, NULLs and DEFAULTs must match the number

of column names.

2 The number of columns in the select list must match the number of column

names.

Description

table-name, view-name, nickname, or (fullselect)

Identifies the object of the update operation. The name must identify a table,

view, or nickname described in the catalog, but not a catalog table, a view of a

catalog table (unless it is one of the updatable SYSSTAT views), a

system-maintained materialized query table, or a read-only view that has no

INSTEAD OF trigger defined for its update operations.

 If table-name is a typed table, rows of the table or any of its proper subtables

may get updated by the statement. Only the columns of the specified table

may be set or referenced in the WHERE clause. For a positioned UPDATE, the

associated cursor must also have specified the same table, view or nickname in

the FROM clause without using ONLY.

If the object of the update operation is a fullselect, the fullselect must be

updatable, as defined in the “Updatable views” Notes item in the description

of the CREATE VIEW statement.

ONLY (table-name)

Applicable to typed tables, the ONLY keyword specifies that the statement

should apply only to data of the specified table and rows of proper subtables

cannot be updated by the statement. For a positioned UPDATE, the associated

cursor must also have specified the table in the FROM clause using ONLY. If

table-name is not a typed table, the ONLY keyword has no effect on the

statement.

ONLY (view-name)

Applicable to typed views, the ONLY keyword specifies that the statement

should apply only to data of the specified view and rows of proper subviews

cannot be updated by the statement. For a positioned UPDATE, the associated

cursor must also have specified the view in the FROM clause using ONLY. If

view-name is not a typed view, the ONLY keyword has no effect on the

statement.

correlation-clause

Can be used within search-condition or assignment-clause to designate a table,

view, nickname, or fullselect. For a description of correlation-clause, see

“table-reference” in the description of “Subselect”.

include-columns

Specifies a set of columns that are included, along with the columns of

table-name or view-name, in the intermediate result table of the UPDATE

Chapter 1. SQL Statements for Administrators 357

statement when it is nested in the FROM clause of a fullselect. The

include-columns are appended at the end of the list of columns that are

specified for table-name or view-name.

INCLUDE

Specifies a list of columns to be included in the intermediate result table of

the UPDATE statement.

column-name

Specifies a column of the intermediate result table of the UPDATE

statement. The name cannot be the same as the name of another include

column or a column in table-name or view-name (SQLSTATE 42711).

data-type

Specifies the data type of the include column. The data type must be one

that is supported by the CREATE TABLE statement.

SET

Introduces the assignment of values to column names.

assignment-clause

column-name

Identifies a column to be updated. The column-name must identify an

updatable column of the specified table, view, or nickname, or identify an

INCLUDE column. The object ID column of a typed table is not updatable

(SQLSTATE 428DZ). A column must not be specified more than once,

unless it is followed by ..attribute-name (SQLSTATE 42701).

 If it specifies an INCLUDE column, the column name cannot be qualified.

For a Positioned UPDATE:

v If the update-clause was specified in the select-statement of the cursor, each

column name in the assignment-clause must also appear in the

update-clause.

v If the update-clause was not specified in the select-statement of the cursor

and LANGLEVEL MIA or SQL92E was specified when the application

was precompiled, the name of any updatable column may be specified.

v If the update-clause was not specified in the select-statement of the cursor

and LANGLEVEL SAA1 was specified either explicitly or by default

when the application was precompiled, no columns may be updated.

..attribute-name

Specifies the attribute of a structured type that is set (referred to as an

attribute assignment. The column-name specified must be defined with a

user-defined structured type (SQLSTATE 428DP). The attribute-name must

be an attribute of the structured type of column-name (SQLSTATE 42703).

An assignment that does not involve the ..attribute-name clause is referred

to as a conventional assignment.

expression

Indicates the new value of the column. The expression is any expression of

the type described in “Expressions”. The expression cannot include an

aggregate function except when it occurs within a scalar fullselect

(SQLSTATE 42903).

 An expression may contain references to columns of the target table of the

UPDATE statement. For each row that is updated, the value of such a

column in an expression is the value of the column in the row before the

row is updated.

358 Common Criteria Certification: Administration and User Documentation - Volume 2

An expression cannot contain references to an INCLUDE column.

NULL

Specifies the null value and can only be specified for nullable columns

(SQLSTATE 23502). NULL cannot be the value in an attribute assignment

(SQLSTATE 429B9) unless it is specifically cast to the data type of the

attribute.

DEFAULT

Specifies that the default value should be used based on how the

corresponding column is defined in the table. The value that is inserted

depends on how the column was defined.

v If the column was defined as a generated column based on an

expression, the column value will be generated by the system, based on

the expression.

v If the column was defined using the IDENTITY clause, the value is

generated by the database manager.

v If the column was defined using the WITH DEFAULT clause, the value

is set to the default defined for the column (see default-clause in “ALTER

TABLE”).

v If the column was defined using the NOT NULL clause and the

GENERATED clause was not used, or the WITH DEFAULT clause was

not used, or DEFAULT NULL was used, the DEFAULT keyword cannot

be specified for that column (SQLSTATE 23502).

v If the column was defined using the ROW CHANGE TIMESTAMP

clause, the value is generated by the database manager.

The only value that a generated column defined with the GENERATED

ALWAYS clause can be set to is DEFAULT (SQLSTATE 428C9).

The DEFAULT keyword cannot be used as the value in an attribute

assignment (SQLSTATE 429B9).

The DEFAULT keyword cannot be used as the value in an assignment for

update on a nickname where the data source does not support DEFAULT

syntax.

row-fullselect

A fullselect that returns a single row with the number of columns

corresponding to the number of column-names specified for assignment. The

values are assigned to each corresponding column-name. If the result of the

row-fullselect is no rows, then null values are assigned.

 A row-fullselect may contain references to columns of the target table of the

UPDATE statement. For each row that is updated, the value of such a

column in an expression is the value of the column in the row before the

row is updated. An error is returned if there is more than one row in the

result (SQLSTATE 21000).

WHERE

Introduces a condition that indicates what rows are updated. You can omit the

clause, give a search condition, or name a cursor. If the clause is omitted, all

rows of the table, view or nickname are updated.

search-condition

Each column-name in the search condition, other than in a subquery, must

name a column of the table, view or nickname. When the search condition

Chapter 1. SQL Statements for Administrators 359

includes a subquery in which the same table is the base object of both the

UPDATE and the subquery, the subquery is completely evaluated before

any rows are updated.

 The search-condition is applied to each row of the table, view or nickname

and the updated rows are those for which the result of the

search-condition is true.

If the search condition contains a subquery, the subquery can be thought of

as being executed each time the search condition is applied to a row, and

the results used in applying the search condition. In actuality, a subquery

with no correlated references is executed only once, whereas a subquery

with a correlated reference may have to be executed once for each row.

CURRENT OF cursor-name

Identifies the cursor to be used in the update operation. The cursor-name

must identify a declared cursor, explained in “DECLARE CURSOR”. The

DECLARE CURSOR statement must precede the UPDATE statement in the

program.

 The specified table, view, or nickname must also be named in the FROM

clause of the SELECT statement of the cursor, and the result table of the

cursor must not be read-only. (For an explanation of read-only result

tables, see “DECLARE CURSOR”.)

When the UPDATE statement is executed, the cursor must be positioned

on a row; that row is updated.

This form of UPDATE cannot be used (SQLSTATE 42828) if the cursor

references:

v A view on which an INSTEAD OF UPDATE trigger is defined

v A view that includes an OLAP function in the select list of the fullselect

that defines the view

v A view that is defined, either directly or indirectly, using the WITH

ROW MOVEMENT clause

WITH

Specifies the isolation level at which the UPDATE statement is executed.

RR

Repeatable Read

RS

Read Stability

CS

Cursor Stability

UR

Uncommitted Read

The default isolation level of the statement is the isolation level of the package

in which the statement is bound. The WITH clause has no effect on nicknames,

which always use the default isolation level of the statement.

Rules

v Triggers: UPDATE statements may cause triggers to be executed. A trigger may

cause other statements to be executed, or may raise error conditions based on

the update values. If an update operation on a view causes an INSTEAD OF

trigger to fire, validity, referential integrity, and constraints will be checked

360 Common Criteria Certification: Administration and User Documentation - Volume 2

against the updates that are performed in the trigger, and not against the view

that caused the trigger to fire, or its underlying tables.

v Assignment: Update values are assigned to columns according to specific

assignment rules.

v Validity: The updated row must conform to any constraints imposed on the

table (or on the base table of the view) by any unique index on an updated

column.

If a view is used that is not defined using WITH CHECK OPTION, rows can be

changed so that they no longer conform to the definition of the view. Such rows

are updated in the base table of the view and no longer appear in the view.

If a view is used that is defined using WITH CHECK OPTION, an updated row

must conform to the definition of the view. For an explanation of the rules

governing this situation, see “CREATE VIEW”.

v Check constraint: Update value must satisfy the check-conditions of the check

constraints defined on the table.

An UPDATE to a table with check constraints defined has the constraint

conditions for each column updated evaluated once for each row that is

updated. When processing an UPDATE statement, only the check constraints

referring to the updated columns are checked.

v Referential integrity: The value of the parent unique keys cannot be changed if

the update rule is RESTRICT and there are one or more dependent rows.

However, if the update rule is NO ACTION, parent unique keys can be updated

as long as every child has a parent key by the time the update statement

completes. A non-null update value of a foreign key must be equal to a value of

the primary key of the parent table of the relationship.

v XML values: When an XML column value is updated, the new value must be a

well-formed XML document (SQLSTATE 2200M).

v Security policy: If the identified table or the base table of the identified view is

protected with a security policy, the session authorization ID must have the

label-based access control (LBAC) credentials that allow:

– Write access to all protected columns that are being updated (SQLSTATE

42512)

– Write access for any explicit value provided for a DB2SECURITYLABEL

column for security policies that were created with the RESTRICT NOT

AUTHORIZED WRITE SECURITY LABEL option (SQLSTATE 23523)

– Read and write access to all rows that are being updated (SQLSTATE 42519)

The session authorization ID must also have been granted a security label for

write access for the security policy if an implicit value is used for a

DB2SECURITYLABEL column (SQLSTATE 23523), which can happen when:

– The DB2SECURITYLABEL column is not included in the list of columns that

are to be updated (and so it will be implicitly updated to the security label

for write access of the session authorization ID)

– A value for the DB2SECURITYLABEL column is explicitly provided but the

session authorization ID does not have write access for that value, and the

security policy is created with the OVERRIDE NOT AUTHORIZED WRITE

SECURITY LABEL option

Notes

v If an update value violates any constraints, or if any other error occurs during

the execution of the UPDATE statement, no rows are updated. The order in

which multiple rows are updated is undefined.

Chapter 1. SQL Statements for Administrators 361

v An update to a view defined using the WITH ROW MOVEMENT clause could

cause a delete operation and an insert operation against the underlying tables of

the view. For details, see the description of the CREATE VIEW statement.

v When an UPDATE statement completes execution, the value of SQLERRD(3) in

the SQLCA is the number of rows that qualified for the update operation. In the

context of an SQL procedure statement, the value can be retrieved using the

ROW_COUNT variable of the GET DIAGNOSTICS statement. The SQLERRD(5)

field contains the number of rows inserted, deleted, or updated by all activated

triggers.

v Unless appropriate locks already exist, one or more exclusive locks are acquired

by the execution of a successful UPDATE statement. Until the locks are released,

the updated row can only be accessed by the application process that performed

the update (except for applications using the Uncommitted Read isolation level).

For further information on locking, see the descriptions of the COMMIT,

ROLLBACK, and LOCK TABLE statements.

v When updating the column distribution statistics for a typed table, the subtable

that first introduced the column must be specified.

v Multiple attribute assignments on the same structured type column occur in the

order specified in the SET clause and, within a parenthesized set clause, in

left-to-right order.

v An attribute assignment invokes the mutator method for the attribute of the

user-defined structured type. For example, the assignment st..a1=x has the

same effect as using the mutator method in the assignment st = st..a1(x).

v While a given column may be a target column in only one conventional

assignment, a column may be a target column in multiple attribute assignments

(but only if it is not also a target column in a conventional assignment).

v When an identity column defined as a distinct type is updated, the entire

computation is done in the source type, and the result is cast to the distinct type

before the value is actually assigned to the column. (There is no casting of the

previous value to the source type prior to the computation.)

v To have DB2 generate a value on a SET statement for an identity column, use

the DEFAULT keyword:

 SET NEW.EMPNO = DEFAULT

In this example, NEW.EMPNO is defined as an identity column, and the value

used to update this column is generated by DB2.

v For more information about consuming values of a generated sequence for an

identity column, or about exceeding the maximum value for an identity column,

see “INSERT”.

v With partitioned tables, an UPDATE WHERE CURRENT OF cursor-name

operation can move a row from one data partition to another. After this occurs,

the cursor is no longer positioned on the row, and no further UPDATE WHERE

CURRENT OF cursor-name modifications to that row are possible. The next row

in the cursor can be fetched, however.

v For a column defined using the ROW CHANGE TIMESTAMP clause, the value

is always changed on update of the row. If the column is not specified in the

SET list explicitly, the database manager still generates a value for that row. The

value is unique for each table partition within the database partition and is set

to the approximate timestamp corresponding to the row update.

Examples

v Example 1: Change the job (JOB) of employee number (EMPNO) ‘000290’ in the

EMPLOYEE table to ‘LABORER’.

362 Common Criteria Certification: Administration and User Documentation - Volume 2

UPDATE EMPLOYEE

 SET JOB = ’LABORER’

 WHERE EMPNO = ’000290’

v Example 2: Increase the project staffing (PRSTAFF) by 1.5 for all projects that

department (DEPTNO) ‘D21’ is responsible for in the PROJECT table.

 UPDATE PROJECT

 SET PRSTAFF = PRSTAFF + 1.5

 WHERE DEPTNO = ’D21’

v Example 3: All the employees except the manager of department (WORKDEPT)

‘E21’ have been temporarily reassigned. Indicate this by changing their job (JOB)

to NULL and their pay (SALARY, BONUS, COMM) values to zero in the

EMPLOYEE table.

 UPDATE EMPLOYEE

 SET JOB=NULL, SALARY=0, BONUS=0, COMM=0

 WHERE WORKDEPT = ’E21’ AND JOB <> ’MANAGER’

This statement could also be written as follows.

 UPDATE EMPLOYEE

 SET (JOB, SALARY, BONUS, COMM) = (NULL, 0, 0, 0)

 WHERE WORKDEPT = ’E21’ AND JOB <> ’MANAGER’

v Example 4: Update the salary and the commission column of the employee with

employee number 000120 to the average of the salary and of the commission of

the employees of the updated row’s department, respectively.

 UPDATE (SELECT EMPNO, SALARY, COMM,

 AVG(SALARY) OVER (PARTITION BY WORKDEPT),

 AVG(COMM) OVER (PARTITION BY WORKDEPT)

 FROM EMPLOYEE E) AS E(EMPNO, SALARY, COMM, AVGSAL, AVGCOMM)

 SET (SALARY, COMM) = (AVGSAL, AVGCOMM)

 WHERE EMPNO = ’000120’

The previous statement is semantically equivalent to the following statement,

but requires only one access to the EMPLOYEE table, whereas the following

statement specifies the EMPLOYEE table twice.

 UPDATE EMPLOYEE EU

 SET (EU.SALARY, EU.COMM)

 =

 (SELECT AVG(ES.SALARY), AVG(ES.COMM)

 FROM EMPLOYEE ES

 WHERE ES.WORKDEPT = EU.WORKDEPT)

 WHERE EU.EMPNO = ’000120’

v Example 5: In a C program display the rows from the EMPLOYEE table and

then, if requested to do so, change the job (JOB) of certain employees to the new

job keyed in.

 EXEC SQL DECLARE C1 CURSOR FOR

 SELECT *

 FROM EMPLOYEE

 FOR UPDATE OF JOB;

 EXEC SQL OPEN C1;

 EXEC SQL FETCH C1 INTO ... ;

 if (strcmp (change, "YES") == 0)

 EXEC SQL UPDATE EMPLOYEE

 SET JOB = :newjob

 WHERE CURRENT OF C1;

 EXEC SQL CLOSE C1;

v Example 6: These examples mutate attributes of column objects.

Assume that the following types and tables exist:

Chapter 1. SQL Statements for Administrators 363

CREATE TYPE POINT AS (X INTEGER, Y INTEGER)

 NOT FINAL WITHOUT COMPARISONS

 MODE DB2SQL

 CREATE TYPE CIRCLE AS (RADIUS INTEGER, CENTER POINT)

 NOT FINAL WITHOUT COMPARISONS

 MODE DB2SQL

 CREATE TABLE CIRCLES (ID INTEGER, OWNER VARCHAR(50), C CIRCLE

The following example updates the CIRCLES table by changing the OWNER

column and the RADIUS attribute of the CIRCLE column where the ID is 999:

 UPDATE CIRCLES

 SET OWNER = ’Bruce’

 C..RADIUS = 5

 WHERE ID = 999

The following example transposes the X and Y coordinates of the center of the

circle identified by 999:

 UPDATE CIRCLES

 SET C..CENTER..X = C..CENTER..Y,

 C..CENTER..Y = C..CENTER..X

 WHERE ID = 999

The following example is another way of writing both of the above statements.

This example combines the effects of both of the above examples:

 UPDATE CIRCLES

 SET (OWNER,C..RADIUS,C..CENTER..X,C..CENTER..Y) =

 (’Bruce’,5,C..CENTER..Y,C..CENTER..X)

 WHERE ID = 999

v Example 7: Update the XMLDOC column of the DOCUMENTS table with

DOCID ’001’ to the character string that is selected and parsed from the

XMLTEXT table.

 UPDATE DOCUMENTS SET XMLDOC =

 (SELECT XMLPARSE(DOCUMENT C1 STRIP WHITESPACE)

 FROM XMLTEXT WHERE TEXTID = ’001’)

 WHERE DOCID = ’001’

364 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 2. SQL Statements for Users

COMMIT

The COMMIT statement terminates a unit of work and commits the database

changes that were made by that unit of work.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

None required.

Syntax

��
 WORK

COMMIT

��

Description

The unit of work in which the COMMIT statement is executed is terminated and a

new unit of work is initiated. All changes made by the following statements

executed during the unit of work are committed: ALTER, COMMENT, CREATE,

DROP, GRANT, LOCK TABLE, REVOKE, SET INTEGRITY, SET Variable, and the

data change statements (INSERT, DELETE, MERGE, UPDATE), including those

nested in a query.

The following statements, however, are not under transaction control and changes

made by them are independent of the COMMIT statement:

v SET CONNECTION

v SET PASSTHRU

Note: Although the SET PASSTHRU statement is not under transaction control,

the passthru session initiated by the statement is under transaction control.

v SET SERVER OPTION

v Assignments to updatable special registers

All locks acquired by the unit of work subsequent to its initiation are released,

except necessary locks for open cursors that are declared WITH HOLD. All open

cursors not defined WITH HOLD are closed. Open cursors defined WITH HOLD

remain open, and the cursor is positioned before the next logical row of the result

table. (A FETCH must be performed before a positioned UPDATE or DELETE

statement is issued.) All LOB locators are freed. Note that this is true even when

the locators are associated with LOB values retrieved via a cursor that has the

WITH HOLD property.

© Copyright IBM Corp. 1993, 2009 365

|

All savepoints set within the transaction are released.

The following statements behave differently than other data definition language

(DDL) and data control language (DCL) statements. Changes made by these

statements do not take effect until the statement is committed, even for the current

connection that issues the statement. Only one of these statements can be issued by

any application at a time, and only one of these statements is allowed within any

one unit of work. Each statement must be followed by a COMMIT or a

ROLLBACK statement before another one of these statements can be issued.

v CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)

v CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

v CREATE WORK ACTION, ALTER WORK ACTION, or DROP (WORK ACTION)

v CREATE WORK CLASS, ALTER WORK CLASS, or DROP (WORK CLASS)

v CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)

v GRANT (Workload Privileges) or REVOKE (Workload Privileges)

Notes

v It is strongly recommended that each application process explicitly ends its unit

of work before terminating. If the application program ends normally without a

COMMIT or ROLLBACK statement then the database manager attempts a

commit or rollback depending on the application environment.

v For information on the impact of COMMIT on cached dynamic SQL statements,

see “EXECUTE”.

v For information on potential impacts of COMMIT on created temporary tables,

see “CREATE GLOBAL TEMPORARY TABLE”.

v For information on potential impacts of COMMIT on declared temporary tables,

see “DECLARE GLOBAL TEMPORARY TABLE”.

Example

Commit alterations to the database made since the last commit point.

 COMMIT WORK

CONNECT (Type 1)

The CONNECT (Type 1) statement connects an application process to the identified

application server according to the rules for remote unit of work.

An application process can only be connected to one application server at a time.

This is called the current server. A default application server may be established

when the application requester is initialized. If implicit connect is available and an

application process is started, it is implicitly connected to the default application

server. The application process can explicitly connect to a different application

server by issuing a CONNECT statement. A connection lasts until a CONNECT

RESET statement or a DISCONNECT statement is issued or until another

CONNECT statement changes the application server.

Invocation

Although an interactive SQL facility might provide an interface that gives the

appearance of interactive execution, this statement can only be embedded within

an application program. It is an executable statement that cannot be dynamically

366 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

prepared. When invoked using the command line processor, additional options can

be specified. For more information, refer to “Using command line SQL statements

and XQuery statements”.

Authorization

CONNECT processing goes through two levels of access control. Both levels must

be satisfied for the connection to be successful.

The first level of access control is authentication, where the user ID associated with

the connection must be successfully authenticated according to the authentication

method set up for the server. At successful authentication, a DB2 authorization ID

is derived from the connection user ID according to the authentication plug-in in

effect for the server. This DB2 authorization ID must then pass the second level of

access control for the connection, that is, authorization. To do so, this authorization

ID must hold at least one of the following authorities:

v CONNECT authority

v SECADM authority

v DBADM authority

v SYSADM authority

v SYSCTRL authority

v SYSMAINT authority

v SYSMON authority

Note: For a partitioned database, the user and group definitions must be identical

across all database partitions.

Syntax

�� CONNECT �

�
TO

server-name

host-variable

lock-block

authorization

RESET

(1)

authorization

 ��

authorization:

 USER authorization-name

host-variable
 USING password

host-variable
 �

�
NEW

password

CONFIRM

password

host-variable

lock-block:

 IN SHARE MODE

IN EXCLUSIVE MODE

ON SINGLE DBPARTITIONNUM

Chapter 2. SQL Statements for Users 367

|
|
|

|

|
|

|
|
|
|
|
|
|

|

|

|

|

|

|

|

|
|

|

Notes:

1 This form is only valid if implicit connect is enabled.

Description

CONNECT (with no operand)

Returns information about the current server. The information is returned in

the SQLERRP field of the SQLCA as described in “Successful Connection”.

 If a connection state exists, the authorization ID and database alias are placed

in the SQLERRMC field of the SQLCA. If the authorization ID is longer than 8

bytes, it will be truncated to 8 bytes, and the truncation will be flagged in the

SQLWARN0 and SQLWARN1 fields of the SQLCA, with ’W’ and ’A’,

respectively. If the database configuration parameter dyn_query_mgmt is

enabled, then the SQLWARN0 and SQLWARN7 fields of the SQLCA will be

flagged with ’W’ and ’E’, respectively.

If no connection exists and implicit connect is possible, then an attempt to

make an implicit connection is made. If implicit connect is not available, this

attempt results in an error (no existing connection). If no connection, then the

SQLERRMC field is blank.

The territory code and code page of the application server are placed in the

SQLERRMC field (as they are with a successful CONNECT statement).

This form of CONNECT:

v Does not require the application process to be in the connectable state.

v If connected, does not change the connection state.

v If unconnected and implicit connect is available, a connection to the default

application server is made. In this case, the country or region code and code

page of the application server are placed in the SQLERRMC field, like a

successful CONNECT statement.

v If unconnected and implicit connect is not available, the application process

remains unconnected.

v Does not close cursors.

TO server-name or host-variable

Identifies the application server by the specified server-name or a host-variable

which contains the server-name.

 If a host-variable is specified, it must be a character string variable with a length

attribute that is not greater than 8, and it must not include an indicator

variable. The server-name that is contained within the host-variable must be

left-justified and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server.

It must be listed in the application requester’s local directory.

When the CONNECT statement is executed, the application process must be in

the connectable state.

Successful Connection:

If the CONNECT statement is successful:

v All open cursors are closed, all prepared statements are destroyed, and all

locks are released from the previous application server.

v The application process is disconnected from its previous application server,

if any, and connected to the identified application server.

368 Common Criteria Certification: Administration and User Documentation - Volume 2

v The actual name of the application server (not an alias) is placed in the

CURRENT SERVER special register.

v Information about the application server is placed in the SQLERRP field of

the SQLCA. If the application server is an IBM product, the information has

the form pppvvrrm, where:

– ppp identifies the product as follows:

- DSN for DB2 for z/OS

- ARI for DB2 Server for VSE & VM

- QSQ for DB2 for i5/OS

- SQL for DB2 Database for Linux, UNIX, and Windows
– vv is a two-digit version identifier, such as ’08’

– rr is a two-digit release identifier, such as ’01’

– m is a one-character modification level identifier, such as ’0’.
This release (Version 9.5) of DB2 Database for Linux, UNIX, and Windows is

identified as ’SQL09050’.

v The SQLERRMC field of the SQLCA is set to contain the following values

(separated by X’FF’)

 1. the country or region code of the application server (or blanks if using

DB2 Connect),

 2. the code page of the application server (or CCSID if using DB2

Connect),

 3. the authorization ID (up to first 8 bytes only),

 4. the database alias,

 5. the platform type of the application server. Currently identified values

are:

Token Server

QAS DB2 for System i®

QDB2 DB2 for z/OS

QDB2/6000

DB2 Database for AIX

QDB2/HPUX

DB2 Database for HP-UX

QDB2/LINUX

DB2 Database for Linux

QDB2/NT

DB2 Database for Windows

QDB2/SUN

DB2 Database for Solaris Operating System

QSQLDS/VM

DB2 Server for VM

QSQLDS/VSE

DB2 Server for VSE
 6. The agent ID. It identifies the agent executing within the database

manager on behalf of the application. This field is the same as the

agent_id element returned by the database monitor.

Chapter 2. SQL Statements for Users 369

7. The agent index. It identifies the index of the agent and is used for

service.

 8. Database partition number. For a non-partitioned database, this is

always 0, if present.

 9. The code page of the application client.

10. Number of database partitions in a partitioned database. If the database

cannot be distributed, the value is 0 (zero). Token is present only with

Version 5 or later.
v The SQLERRD(1) field of the SQLCA indicates the maximum expected

difference in length of mixed character data (CHAR data types) when

converted to the database code page from the application code page. A value

of 0 or 1 indicates no expansion; a value greater than 1 indicates a possible

expansion in length; a negative value indicates a possible contraction.

v The SQLERRD(2) field of the SQLCA indicates the maximum expected

difference in length of mixed character data (CHAR data types) when

converted to the application code page from the database code page. A value

of 0 or 1 indicates no expansion; a value greater than 1 indicates a possible

expansion in length; a negative value indicates a possible contraction.

v The SQLERRD(3) field of the SQLCA indicates whether or not the database

on the connection is updatable. A database is initially updatable, but is

changed to read-only if a unit of work determines the authorization ID

cannot perform updates. The value is one of:

– 1 - updatable

– 2 - read-only
v The SQLERRD(4) field of the SQLCA returns certain characteristics of the

connection. The value is one of:

0 N/A (only possible if running from a down-level client that is

one-phase commit and is an updater).

1 one-phase commit.

2 one-phase commit; read-only (only applicable to connections to

DRDA1 databases in a TP Monitor environment).

3 two-phase commit.
v The SQLERRD(5) field of the SQLCA returns the authentication type for the

connection. The value is one of:

0 Authenticated on the server.

1 Authenticated on the client.

2 Authenticated using DB2 Connect.

4 Authenticated on the server with encryption.

5 Authenticated using DB2 Connect with encryption.

7 Authenticated using an external Kerberos security mechanism.

9 Authenticated using an external GSS API plug-in security

mechanism.

11 Authenticated on the server, which accepts encrypted data.

255 Authentication not specified.
v The SQLERRD(6) field of the SQLCA returns the database partition number

of the database partition to which the connection was made if the database

is distributed. Otherwise, a value of 0 is returned.

370 Common Criteria Certification: Administration and User Documentation - Volume 2

v The SQLWARN1 field in the SQLCA will be set to ’A’ if the authorization ID

of the successful connection is longer than 8 bytes. This indicates that

truncation has occurred. The SQLWARN0 field in the SQLCA will be set to

’W’ to indicate this warning.

v The SQLWARN7 field in the SQLCA will be set to ’E’ if the database

configuration parameter dyn_query_mgmt for the database is enabled. The

SQLWARN0 field in the SQLCA will be set to ’W’ to indicate this warning.

Unsuccessful Connection:

If the CONNECT statement is unsuccessful:

v The SQLERRP field of the SQLCA is set to the name of the module at the

application requester that detected the error. The first three characters of the

module name identify the product.

v If the CONNECT statement is unsuccessful because the application process

is not in the connectable state, the connection state of the application process

is unchanged.

v If the CONNECT statement is unsuccessful because the server-name is not

listed in the local directory, an error message (SQLSTATE 08001) is issued

and the connection state of the application process remains unchanged:

– If the application requester was not connected to an application server

then the application process remains unconnected.

– If the application requester was already connected to an application

server, the application process remains connected to that application

server. Any further statements are executed at that application server.
v If the CONNECT statement is unsuccessful for any other reason, the

application process is placed into the unconnected state.

IN SHARE MODE

Allows other concurrent connections to the database and prevents other users

from connecting to the database in exclusive mode.

IN EXCLUSIVE MODE

Prevents concurrent application processes from executing any operations at the

application server, unless they have the same authorization ID as the user

holding the exclusive lock. This option is not supported by DB2 Connect.

ON SINGLE DBPARTITIONNUM

Specifies that the coordinator database partition is connected in exclusive

mode and all other database partitions are connected in share mode. This

option is only effective in a partitioned database.

RESET

Disconnects the application process from the current server. A commit

operation is performed. If implicit connect is available, the application process

remains unconnected until an SQL statement is issued.

USER authorization-name/host-variable

Identifies the user ID trying to connect to the application server. If a

host-variable is specified, it must be a character string variable that does not

include an indicator variable. The user ID that is contained within the

host-variable must be left justified and must not be delimited by quotation

marks.

USING password/host-variable

Identifies the password of the user ID trying to connect to the application

server. The password or host-variable can be up to 14 bytes long. If a host

Chapter 2. SQL Statements for Users 371

variable is specified, it must be a character string variable with a length

attribute not greater than 14, and it must not include an indicator variable.

NEW password/host-variable CONFIRM password

Identifies the new password that should be assigned to the user ID identified

by the USER option. The password or host-variable can be up to 14 bytes long. If

a host variable is specified, it must be a character string variable with a length

attribute not greater than 14, and it must not include an indicator variable. The

system on which the password will be changed depends on how the user

authentication has been set up. New passwords can be assigned using this

clause on the following servers for the indicated (and later) releases: DB2

Universal Database Version 8 on AIX and Windows operating systems, DB2

Version 9.1 Fix Pack 3 or later on Linux operating systems, DB2 for z/OS

Version 7, DB2 for i5/OS V6R1. To support the changing passwords for DB2

database products on Linux, the DB2 instance must be configured to use the

security plug-ins IBMOSchgpwdclient and IBMOSchgpwdserver.

Notes

v It is good practice for the first SQL statement executed by an application process

to be the CONNECT statement.

v If a CONNECT statement is issued to the current application server with a

different user ID and password then the conversation is deallocated and

reallocated. All cursors are closed by the database manager (with the loss of the

cursor position if the WITH HOLD option was used).

v If a CONNECT statement is issued to the current application server with the

same user ID and password then the conversation is not deallocated and

reallocated. Cursors, in this case, are not closed.

v To use a multiple-partition partitioned database environment, the user or

application must connect to one of the database partitions listed in the

db2nodes.cfg file. You should try to ensure that not all users use the same

database partition as the coordinator partition.

v The authorization-name SYSTEM cannot be explicitly specified in the CONNECT

statement. However, on Windows operating systems, local applications running

under the Local System Account can implicitly connect to the database, such that

the user ID is SYSTEM.

v When connecting to Windows Server explicitly, the authorization-name or user

host-variable can be specified using the Microsoft Windows Security Account

Manager (SAM)-compatible name. The qualifier must be a NetBIOS style name,

which has a maximum length of 15 bytes. For example, ’Domain\User’.

v Compatibilities: For compatibility with previous versions of DB2 products:

– NODE can be specified in place of DBPARTITIONNUM

Examples

Example 1: In a C program, connect to the application server TOROLAB, using

database alias TOROLAB, user ID FERMAT, and password THEOREM.

 EXEC SQL CONNECT TO TOROLAB USER FERMAT USING THEOREM;

Example 2: In a C program, connect to an application server whose database alias is

stored in the host variable APP_SERVER (varchar(8)). Following a successful

connection, copy the 3-character product identifier of the application server to the

variable PRODUCT (char(3)).

372 Common Criteria Certification: Administration and User Documentation - Volume 2

EXEC SQL CONNECT TO :APP_SERVER;

 if (strncmp(SQLSTATE,’00000’,5))

 strncpy(PRODUCT,sqlca.sqlerrp,3);

CONNECT (Type 2)

The CONNECT (Type 2) statement connects an application process to the identified

application server and establishes the rules for application-directed distributed unit

of work. This server is then the current server for the process.

Most aspects of a CONNECT (Type 1) statement also apply to a CONNECT (Type

2) statement. Rather than repeating that material here, this section describes only

those elements of Type 2 that differ from Type 1.

Invocation

Although an interactive SQL facility might provide an interface that gives the

appearance of interactive execution, this statement can only be embedded within

an application program. It is an executable statement that cannot be dynamically

prepared. When invoked using the command line processor, additional options can

be specified. For more information, refer to “Using command line SQL statements

and XQuery statements”.

Authorization

CONNECT processing goes through two levels of access control. Both levels must

be satisfied for the connection to be successful.

The first level of access control is authentication, where the user ID associated with

the connection must be successfully authenticated according to the authentication

method set up for the server. At successful authentication, a DB2 authorization ID

is derived from the connection user ID according to the authentication plug-in in

effect for the server. This DB2 authorization ID must then pass the second level of

access control for the connection, that is, authorization. To do so, this authorization

ID must hold at least one of the following authorities:

v CONNECT authority

v SECADM authority

v DBADM authority

v SYSADM authority

v SYSCTRL authority

v SYSMAINT authority

v SYSMON authority

Note: For a partitioned database, the user and group definitions must be identical

across all database partitions.

Syntax

The selection between Type 1 and Type 2 is determined by precompiler options.

For an overview of these options, see “Connecting to distributed relational

databases”.

�� CONNECT �

Chapter 2. SQL Statements for Users 373

|
|
|

|

|
|

|
|
|
|
|
|
|

|

|

|

|

|

|

|

|
|

|

�
TO

server-name

host-variable

lock-block

authorization

RESET

(1)

authorization

 ��

authorization:

 USER authorization-name

host-variable
 USING password

host-variable
 �

�
NEW

password

CONFIRM

password

host-variable

lock-block:

 IN SHARE MODE

IN EXCLUSIVE MODE

ON SINGLE DBPARTITIONNUM

Notes:

1 This form is only valid if implicit connect is enabled.

Description

TO server-name/host-variable

The rules for coding the name of the server are the same as for Type 1.

 If the SQLRULES(STD) option is in effect, the server-name must not identify an

existing connection of the application process, otherwise an error (SQLSTATE

08002) is raised.

If the SQLRULES(DB2) option is in effect and the server-name identifies an

existing connection of the application process, that connection is made current

and the old connection is placed into the dormant state. That is, the effect of

the CONNECT statement in this situation is the same as that of a SET

CONNECTION statement.

For information about the specification of SQLRULES, see “Options that

Govern Distributed Unit of Work Semantics”.

Successful Connection

If the CONNECT statement is successful:

v A connection to the application server is either created (or made

non-dormant) and placed into the current and held states.

v If the CONNECT TO is directed to a different server than the current server,

then the current connection is placed into the dormant state.

v The CURRENT SERVER special register and the SQLCA are updated in the

same way as for CONNECT (Type 1).

Unsuccessful Connection

If the CONNECT statement is unsuccessful:

374 Common Criteria Certification: Administration and User Documentation - Volume 2

v No matter what the reason for failure, the connection state of the application

process and the states of its connections are unchanged.

v As with an unsuccessful Type 1 CONNECT, the SQLERRP field of the

SQLCA is set to the name of the module at the application requester or

server that detected the error.

CONNECT (with no operand), IN SHARE/EXCLUSIVE MODE, USER, and

USING

If a connection exists, Type 2 behaves like a Type 1. The authorization ID and

database alias are placed in the SQLERRMC field of the SQLCA. If a

connection does not exist, no attempt to make an implicit connection is made

and the SQLERRP and SQLERRMC fields return a blank. (Applications can

check if a current connection exists by checking these fields.)

 A CONNECT with no operand that includes USER and USING can still

connect an application process to a database using the DB2DBDFT

environment variable. This method is equivalent to a Type 2 CONNECT

RESET, but permits the use of a user ID and password.

RESET

Equivalent to an explicit connect to the default database if it is available. If a

default database is not available, the connection state of the application process

and the states of its connections are unchanged.

 Availability of a default database is determined by installation options,

environment variables, and authentication settings.

Rules

v As outlined in “Options that Govern Distributed Unit of Work Semantics”, a set

of connection options governs the semantics of connection management. Default

values are assigned to every preprocessed source file. An application can consist

of multiple source files precompiled with different connection options.

Unless a SET CLIENT command or API has been executed first, the connection

options used when preprocessing the source file containing the first SQL

statement executed at run time become the effective connection options.

If a CONNECT statement from a source file preprocessed with different

connection options is subsequently executed without the execution of any

intervening SET CLIENT command or API, an error (SQLSTATE 08001) is

returned. Note that once a SET CLIENT command or API has been executed, the

connection options used when preprocessing all source files in the application

are ignored.

Example 1 in the “Examples” section of this statement illustrates these rules.

v Although the CONNECT statement can be used to establish or switch

connections, CONNECT with the USER/USING clause will only be accepted

when there is no current or dormant connection to the named server. The

connection must be released before issuing a connection to the same server with

the USER/USING clause, otherwise it will be rejected (SQLSTATE 51022).

Release the connection by issuing a DISCONNECT statement or a RELEASE

statement followed by a COMMIT statement.

Notes

v Implicit connect is supported for the first SQL statement in an application with

Type 2 connections. In order to execute SQL statements on the default database,

first the CONNECT RESET or the CONNECT USER/USING statement must be

used to establish the connection. The CONNECT statement with no operands

Chapter 2. SQL Statements for Users 375

will display information about the current connection if there is one, but will not

connect to the default database if there is no current connection.

v The authorization-name SYSTEM cannot be explicitly specified in the CONNECT

statement. However, on Windows operating systems, local applications running

under the Local System Account can implicitly connect to the database, such that

the user ID is SYSTEM.

v When connecting to Windows Server explicitly, the authorization-name or user

host-variable can be specified using the Microsoft Windows Security Account

Manager (SAM)-compatible name. The qualifier must be a NetBIOS style name,

which has a maximum length of 15 bytes. For example, ’Domain\User’.

Comparing Type 1 and Type 2 CONNECT Statements:

The semantics of the CONNECT statement are determined by the CONNECT

precompiler option or the SET CLIENT API (see “Options that Govern Distributed

Unit of Work Semantics”). CONNECT Type 1 or CONNECT Type 2 can be

specified and the CONNECT statements in those programs are known as Type 1

and Type 2 CONNECT statements, respectively. Their semantics are described

below:

Use of CONNECT:

 Type 1 Type 2

Each unit of work can only establish

connection to one application server.

Each unit of work can establish connection to

multiple application servers.

The current unit of work must be committed

or rolled back before allowing a connection

to another application server.

The current unit of work need not be

committed or rolled back before connecting

to another application server.

The CONNECT statement establishes the

current connection. Subsequent SQL requests

are forwarded to this connection until

changed by another CONNECT.

Same as Type 1 CONNECT if establishing

the first connection. If switching to a

dormant connection and SQLRULES is set to

STD, then the SET CONNECTION statement

must be used instead.

Connecting to the current connection is valid

and does not change the current connection.

Same as Type 1 CONNECT if the SQLRULES

precompiler option is set to DB2. If

SQLRULES is set to STD, then the SET

CONNECTION statement must be used

instead.

Connecting to another application server

disconnects the current connection. The new

connection becomes the current connection.

Only one connection is maintained in a unit

of work.

Connecting to another application server

puts the current connection into the dormant

state. The new connection becomes the

current connection. Multiple connections can

be maintained in a unit of work.

If the CONNECT is for an application server

on a dormant connection, it becomes the

current connection.

Connecting to a dormant connection using

CONNECT is only allowed if

SQLRULES(DB2) was specified. If

SQLRULES(STD) was specified, then the SET

CONNECTION statement must be used

instead.

376 Common Criteria Certification: Administration and User Documentation - Volume 2

Type 1 Type 2

SET CONNECTION statement is supported

for Type 1 connections, but the only valid

target is the current connection.

SET CONNECTION statement is supported

for Type 2 connections to change the state of

a connection from dormant to current.

Use of CONNECT...USER...USING:

 Type 1 Type 2

Connecting with the USER...USING clauses

disconnects the current connection and

establishes a new connection with the given

authorization name and password.

Connecting with the USER/USING clause

will only be accepted when there is no

current or dormant connection to the same

named server.

Use of Implicit CONNECT, CONNECT RESET, and Disconnecting:

 Type 1 Type 2

CONNECT RESET can be used to disconnect

the current connection.

CONNECT RESET is equivalent to

connecting to the default application server

explicitly if one has been defined in the

system.

Connections can be disconnected by the

application at a successful COMMIT. Prior to

the commit, use the RELEASE statement to

mark a connection as release-pending. All

such connections will be disconnected at the

next COMMIT.

An alternative is to use the precompiler

options DISCONNECT(EXPLICIT),

DISCONNECT(CONDITIONAL),

DISCONNECT(AUTOMATIC), or the

DISCONNECT statement instead of the

RELEASE statement.

After using CONNECT RESET to disconnect

the current connection, if the next SQL

statement is not a CONNECT statement, then

it will perform an implicit connect to the

default application server if one has been

defined in the system.

CONNECT RESET is equivalent to an

explicit connect to the default application

server if one has been defined in the system.

It is an error to issue consecutive CONNECT

RESETs.

It is an error to issue consecutive CONNECT

RESETs ONLY if SQLRULES(STD) was

specified because this option disallows the

use of CONNECT to existing connection.

CONNECT RESET also implicitly commits

the current unit of work.

CONNECT RESET does not commit the

current unit of work.

If an existing connection is disconnected by

the system for whatever reasons, then

subsequent non-CONNECT SQL statements

to this database will receive an SQLSTATE of

08003.

If an existing connection is disconnected by

the system, COMMIT, ROLLBACK, and SET

CONNECTION statements are still

permitted.

The unit of work will be implicitly

committed when the application process

terminates successfully.

Same as Type 1.

Chapter 2. SQL Statements for Users 377

Type 1 Type 2

All connections (only one) are disconnected

when the application process terminates.

All connections (current, dormant, and those

marked for release pending) are disconnected

when the application process terminates.

CONNECT Failures:

 Type 1 Type 2

Regardless of whether there is a current

connection when a CONNECT fails (with an

error other than server-name not defined in

the local directory), the application process is

placed in the unconnected state. Subsequent

non-CONNECT statements receive an

SQLSTATE of 08003.

If there is a current connection when a

CONNECT fails, the current connection is

unaffected.

If there was no current connection when the

CONNECT fails, then the program is then in

an unconnected state. Subsequent

non-CONNECT statements receive an

SQLSTATE of 08003.

Examples

Example 1:

This example illustrates the use of multiple source programs (shown in the boxes),

some preprocessed with different connection options (shown above the code), and

one of which contains a SET CLIENT API call.

PGM1: CONNECT(2) SQLRULES(DB2) DISCONNECT(CONDITIONAL)

 ...

 exec sql CONNECT TO OTTAWA;

 exec sql SELECT col1 INTO :hv1

 FROM tbl1;

 ...

PGM2: CONNECT(2) SQLRULES(STD) DISCONNECT(AUTOMATIC)

 ...

 exec sql CONNECT TO QUEBEC;

 exec sql SELECT col1 INTO :hv1

 FROM tbl2;

 ...

PGM3: CONNECT(2) SQLRULES(STD) DISCONNECT(EXPLICIT)

 ...

 SET CLIENT CONNECT 2 SQLRULES DB2 DISCONNECT EXPLICIT

1

 exec sql CONNECT TO LONDON;

 exec sql SELECT col1 INTO :hv1

 FROM tbl3;

 ...

 1 Note: not the actual syntax of the SET CLIENT API

PGM4: CONNECT(2) SQLRULES(DB2) DISCONNECT(CONDITIONAL)

 ...

 exec sql CONNECT TO REGINA;

 exec sql SELECT col1 INTO :hv1

 FROM tbl4;

 ...

378 Common Criteria Certification: Administration and User Documentation - Volume 2

If the application executes PGM1 then PGM2:

v connect to OTTAWA runs: connect=2, sqlrules=DB2, disconnect=CONDITIONAL

v connect to QUEBEC fails with SQLSTATE 08001 because both SQLRULES and

DISCONNECT are different.

If the application executes PGM1 then PGM3:

v connect to OTTAWA runs: connect=2, sqlrules=DB2, disconnect=CONDITIONAL

v connect to LONDON runs: connect=2, sqlrules=DB2, disconnect=EXPLICIT

This is OK because the SET CLIENT API is run before the second CONNECT

statement.

If the application executes PGM1 then PGM4:

v connect to OTTAWA runs: connect=2, sqlrules=DB2, disconnect=CONDITIONAL

v connect to REGINA runs: connect=2, sqlrules=DB2, disconnect=CONDITIONAL

This is OK because the preprocessor options for PGM1 are the same as those for

PGM4.

Example 2:

This example shows the interrelationships of the CONNECT (Type 2), SET

CONNECTION, RELEASE, and DISCONNECT statements. S0, S1, S2, and S3

represent four servers.

Sequence Statement

Current

Server

Dormant

Connections

Release

Pending

0 v No statement v None v None v None

1 v SELECT * FROM TBLA v S0 (default) v None v None

2 v CONNECT TO S1

v SELECT * FROM TBLB

v S1

v S1

v S0

v S0

v None

v None

3 v CONNECT TO S2

v UPDATE TBLC SET ...

v S2

v S2

v S0, S1

v S0, S1

v None

v None

4 v CONNECT TO S3

v SELECT * FROM TBLD

v S3

v S3

v S0, S1, S2

v S0, S1, S2

v None

v None

5 v SET CONNECTION S2 v S2 v S0, S1, S3 v None

6 v RELEASE S3 v S2 v S0, S1 v S3

7 v COMMIT v S2 v S0, S1 v None

8 v SELECT * FROM TBLE v S2 v S0, S1 v None

9 v DISCONNECT S1

v SELECT * FROM TBLF

v S2

v S2

v S0

v S0

v None

v None

DISCONNECT

The DISCONNECT statement destroys one or more connections when there is no

active unit of work (that is, after a commit or rollback operation). If a single

connection is the target of the DISCONNECT statement, the connection is

destroyed only if the database has participated in an existing unit of work,

Chapter 2. SQL Statements for Users 379

regardless of whether there is an active unit of work. For example, if several other

databases have done work, but the target in question has not, it can still be

disconnected without destroying the connection.

Invocation

Although an interactive SQL facility might provide an interface that gives the

appearance of interactive execution, this statement can only be embedded within

an application program. It is an executable statement that cannot be dynamically

prepared.

Authorization

None required.

Syntax

��

DISCONNECT
 (1)

server-name

host-variable

CURRENT

SQL

ALL

��

Notes:

1 Note that an application server named CURRENT or ALL can only be

identified by a host variable.

Description

server-name or host-variable

Identifies the application server by the specified server-name or a host-variable

which contains the server-name.

 If a host-variable is specified, it must be a character string variable with a length

attribute that is not greater than 8, and it must not include an indicator

variable. The server-name that is contained within the host-variable must be

left-justified and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server.

It must be listed in the application requester’s local directory.

The specified database-alias or the database-alias contained in the host variable

must identify an existing connection of the application process. If the

database-alias does not identify an existing connection, an error (SQLSTATE

08003) is raised.

CURRENT

Identifies the current connection of the application process. The application

process must be in the connected state. If not, an error (SQLSTATE 08003) is

raised.

ALL

Indicates that all existing connections of the application process are to be

destroyed. An error or warning does not occur if no connections exist when

the statement is executed. The optional keyword SQL is included to be

consistent with the syntax of the RELEASE statement.

380 Common Criteria Certification: Administration and User Documentation - Volume 2

Rules

v Generally, the DISCONNECT statement cannot be executed while within a unit

of work. If attempted, an error (SQLSTATE 25000) is raised. The exception to this

rule is if a single connection is specified to be disconnected and the database has

not participated in an existing unit of work. In this case, it does not matter if

there is an active unit of work when the DISCONNECT statement is issued.

v The DISCONNECT statement cannot be executed at all in the Transaction

Processing (TP) Monitor environment (SQLSTATE 25000). It is used when the

SYNCPOINT precompiler option is set to TWOPHASE.

Notes

v If the DISCONNECT statement is successful, each identified connection is

destroyed.

If the DISCONNECT statement is unsuccessful, the connection state of the

application process and the states of its connections are unchanged.

v If DISCONNECT is used to destroy the current connection, the next executed

SQL statement should be CONNECT or SET CONNECTION.

v Type 1 CONNECT semantics do not preclude the use of DISCONNECT.

However, though DISCONNECT CURRENT and DISCONNECT ALL can be

used, they will not result in a commit operation like a CONNECT RESET

statement would do.

If server-name or host-variable is specified in the DISCONNECT statement, it must

identify the current connection because Type 1 CONNECT only supports one

connection at a time. Generally, DISCONNECT will fail if within a unit of work

with the exception noted in “Rules”.

v Resources are required to create and maintain remote connections. Thus, a

remote connection that is not going to be reused should be destroyed as soon as

possible.

v Connections can also be destroyed during a commit operation because the

connection option is in effect. The connection option could be AUTOMATIC,

CONDITIONAL, or EXPLICIT, which can be set as a precompiler option or

through the SET CLIENT API at run time. For information about the

specification of the DISCONNECT option, see “Distributed relational databases”.

Examples

Example 1: The SQL connection to IBMSTHDB is no longer needed by the

application. The following statement should be executed after a commit or rollback

operation to destroy the connection.

 EXEC SQL DISCONNECT IBMSTHDB;

Example 2: The current connection is no longer needed by the application. The

following statement should be executed after a commit or rollback operation to

destroy the connection.

 EXEC SQL DISCONNECT CURRENT;

Example 3: The existing connections are no longer needed by the application. The

following statement should be executed after a commit or rollback operation to

destroy all the connections.

 EXEC SQL DISCONNECT ALL;

Chapter 2. SQL Statements for Users 381

fullselect

��

subselect

(fullselect)

values-clause

�

UNION

subselect

UNION ALL

(fullselect)

EXCEPT

values-clause

EXCEPT ALL

INTERSECT

INTERSECT ALL

�

�
order-by-clause

fetch-first-clause

isolation-clause
 ��

values-clause:

VALUES

�

 ,

values-row

values-row:

�

 expression

NULL

row-expression

,

(

expression

)

NULL

The fullselect is a component of the select-statement, the INSERT statement, and the

CREATE VIEW statement. It is also a component of certain predicates which, in

turn, are components of a statement. A fullselect that is a component of a predicate

is called a subquery, and a fullselect that is enclosed in parentheses is sometimes

called a subquery.

The set operators UNION, EXCEPT, and INTERSECT correspond to the relational

operators union, difference, and intersection.

A fullselect specifies a result table. If a set operator is not used, the result of the

fullselect is the result of the specified subselect or values-clause.

The authorization for a fullselect is described in the Authorization section in ″SQL

queries″.

values-clause

Derives a result table by specifying the actual values, using expressions or row

expressions, for each column of a row in the result table. Multiple rows may be

specified. The result type of any expression in the values-clause cannot be a row

type (SQLSTATE 428H2).

382 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|
|
|

NULL can only be used with multiple specifications of values-row, either as the

column value of a single column result table or within a row-expression, and at

least one row in the same column must not be NULL (SQLSTATE 42608).

A values-row is specified by:

v A single expression for a single column result table

v n expressions (or NULL) separated by commas and enclosed in parentheses,

where n is the number of columns in the result table or, a row expression for

a multiple column result table.

A multiple row VALUES clause must have the same number of columns in

each values-row (SQLSTATE 42826).

The following are examples of values-clause and their meaning.

 VALUES (1),(2),(3) - 3 rows of 1 column

 VALUES 1, 2, 3 - 3 rows of 1 column

 VALUES (1, 2, 3) - 1 row of 3 columns

 VALUES (1,21),(2,22),(3,23) - 3 rows of 2 columns

A values-clause that is composed of n specifications of values-row, RE1

to REn,

where n is greater than 1, is equivalent to:

 RE1

UNION ALL RE2

... UNION ALL REn

This means that the corresponding columns of each values-row must be

comparable (SQLSTATE 42825).

UNION or UNION ALL

Derives a result table by combining two other result tables (R1 and R2). If

UNION ALL is specified, the result consists of all rows in R1 and R2. If

UNION is specified without the ALL option, the result is the set of all rows in

either R1 or R2, with the duplicate rows eliminated. In either case, however,

each row of the UNION table is either a row from R1 or a row from R2.

EXCEPT or EXCEPT ALL

Derives a result table by combining two other result tables (R1 and R2). If

EXCEPT ALL is specified, the result consists of all rows that do not have a

corresponding row in R2, where duplicate rows are significant. If EXCEPT is

specified without the ALL option, the result consists of all rows that are only in

R1, with duplicate rows in the result of this operation eliminated.

 For compatibility with other SQL implementations, MINUS can be specified as

a synonym for EXCEPT.

INTERSECT or INTERSECT ALL

Derives a result table by combining two other result tables (R1 and R2). If

INTERSECT ALL is specified, the result consists of all rows that are in both R1

and R2. If INTERSECT is specified without the ALL option, the result consists

of all rows that are in both R1 and R2, with the duplicate rows eliminated.

order-by-clause

See “subselect” for details of the order-by-clause. A fullselect that contains an

ORDER BY clause cannot be specified in (SQLSTATE 428FJ):

v A materialized query table

v The outermost fullselect of a view

Note: An ORDER BY clause in a fullselect does not affect the order of the rows

returned by a query. An ORDER BY clause only affects the order of the rows

returned if it is specified in the outermost fullselect.

Chapter 2. SQL Statements for Users 383

|
|
|

|

|

|
|
|

|
|

|

|
|
|
|

|
|

|

|
|

|
|
|

|

|

|
|
|

fetch-first-clause

See “subselect” for details of the fetch-first-clause. A fullselect that contains a

FETCH FIRST clause cannot be specified in (SQLSTATE 428FJ):

v A materialized query table

v The outermost fullselect of a view

Note: A FETCH FIRST clause in a fullselect does not affect the number of rows

returned by a query. A FETCH FIRST clause only affects the number of rows

returned if it is specified in the outermost fullselect.

isolation-clause

See “subselect” for details of the isolation-clause. If isolation-clause is specified for

a fullselect and it could apply equally to a subselect of the fullselect,

isolation-clause is applied to the fullselect. For example, consider the following

query.

 SELECT NAME FROM PRODUCT

 UNION

 SELECT NAME FROM CATALOG

 WITH UR

Even though the isolation clause WITH UR could apply only to the subselect

SELECT NAME FROM CATALOG, it is applied to the whole fullselect.

The number of columns in the result tables R1 and R2 must be the same

(SQLSTATE 42826). If the ALL keyword is not specified, R1 and R2 must not

include any columns having a data type of CLOB, DBCLOB, BLOB, distinct type

on any of these types, or structured type (SQLSTATE 42907).

The columns of the result are named as follows:

v If the nth column of R1 and the nth column of R2 have the same result column

name, then the nth column of R has the result column name.

v If the nth column of R1 and the nth column of R2 have different result column

names, a name is generated. This name cannot be used as the column name in

an ORDER BY or UPDATE clause.

The generated name can be determined by performing a DESCRIBE of the SQL

statement and consulting the SQLNAME field.

Duplicate rows: Two rows are duplicates if each value in the first is equal to the

corresponding value of the second. For determining duplicates, two null values are

considered equal, and two decimal floating-point representations of the same

number are considered equal. For example, 2.00 and 2.0 have the same value (2.00

and 2.0 compare as equal) but have different exponents, which allows you to

represent both 2.00 and 2.0. So, for example, if the result table of a UNION

operation contains a decimal floating-point column and multiple representations of

the same number exist, the one that is returned (for example, 2.00 or 2.0) is

unpredictable. For more information, see “Numeric comparisons” on page 733.

When multiple operations are combined in an expression, operations within

parentheses are performed first. If there are no parentheses, the operations are

performed from left to right with the exception that all INTERSECT operations are

performed before UNION or EXCEPT operations.

In the following example, the values of tables R1 and R2 are shown on the left.

The other headings listed show the values as a result of various set operations on

R1 and R2.

384 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

R1 R2

UNION

ALL UNION

EXCEPT

ALL EXCEPT

INTER-

SECT

ALL

INTER-

SECT

1 1 1 1 1 2 1 1

1 1 1 2 2 5 1 3

1 3 1 3 2 3 4

2 3 1 4 2 4

2 3 1 5 4

2 3 2 5

3 4 2

4 2

4 3

5 3

3

3

3

4

4

4

5

Examples of a fullselect

Example 1: Select all columns and rows from the EMPLOYEE table.

 SELECT * FROM EMPLOYEE

Example 2: List the employee numbers (EMPNO) of all employees in the

EMPLOYEE table whose department number (WORKDEPT) either begins with ’E’

or who are assigned to projects in the EMP_ACT table whose project number

(PROJNO) equals ’MA2100’, ’MA2110’, or ’MA2112’.

 SELECT EMPNO

 FROM EMPLOYEE

 WHERE WORKDEPT LIKE ’E%’

 UNION

 SELECT EMPNO

 FROM EMP_ACT

 WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

Example 3: Make the same query as in example 2, and, in addition, “tag” the rows

from the EMPLOYEE table with ’emp’ and the rows from the EMP_ACT table with

’emp_act’. Unlike the result from example 2, this query may return the same

EMPNO more than once, identifying which table it came from by the associated

“tag”.

 SELECT EMPNO, ’emp’

 FROM EMPLOYEE

 WHERE WORKDEPT LIKE ’E%’

 UNION

 SELECT EMPNO, ’emp_act’ FROM EMP_ACT

 WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

Chapter 2. SQL Statements for Users 385

Example 4: Make the same query as in example 2, only use UNION ALL so that

no duplicate rows are eliminated.

 SELECT EMPNO

 FROM EMPLOYEE

 WHERE WORKDEPT LIKE ’E%’

 UNION ALL

 SELECT EMPNO

 FROM EMP_ACT

 WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

Example 5: Make the same query as in Example 3, only include an additional two

employees currently not in any table and tag these rows as ″new″.

 SELECT EMPNO, ’emp’

 FROM EMPLOYEE

 WHEREWORKDEPTLIKE ’E%’

 UNION

 SELECT EMPNO, ’emp_act’

 FROM EMP_ACT

 WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

 UNION

 VALUES (’NEWAAA’, ’new’), (’NEWBBB’, ’new’)

Example 6: This example of EXCEPT produces all rows that are in T1 but not in

T2.

 (SELECT * FROM T1)

 EXCEPT ALL

 (SELECT * FROM T2)

If no NULL values are involved, this example returns the same results as

 SELECT ALL *

 FROM T1

 WHERE NOT EXISTS (SELECT * FROM T2

 WHERE T1.C1 = T2.C1 AND T1.C2 = T2.C2 AND...)

Example 7: This example of INTERSECT produces all rows that are in both tables

T1 and T2, removing duplicates.

 (SELECT * FROM T1)

 INTERSECT

 (SELECT * FROM T2)

If no NULL values are involved, this example returns the same result as

 SELECT DISTINCT * FROM T1

 WHERE EXISTS (SELECT * FROM T2

 WHERE T1.C1 = T2.C1 AND T1.C2 = T2.C2 AND...)

where C1, C2, and so on represent the columns of T1 and T2.

LOCK TABLE

The LOCK TABLE statement prevents concurrent application processes from using

or changing a table.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

386 Common Criteria Certification: Administration and User Documentation - Volume 2

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v SELECT privilege on the table

v CONTROL privilege on the table

v DATAACCESS authority

Syntax

�� LOCK TABLE table-name

nickname
 IN SHARE MODE

EXCLUSIVE
 ��

Description

table-name or nickname

Identifies the table or nickname. The table-name must identify a table that exists

at the application server, but it must not identify a catalog table, a created

temporary table, or a declared temporary table (SQLSTATE 42995). If the

table-name is a typed table, it must be the root table of the table hierarchy

(SQLSTATE 428DR). When a nickname is specified, DB2 will lock the

underlying object (that is, a table or view) of the data source to which the

nickname refers.

IN SHARE MODE

Prevents concurrent application processes from executing any but read-only

operations on the table.

IN EXCLUSIVE MODE

Prevents concurrent application processes from executing any operations on

the table. Note that EXCLUSIVE MODE does not prevent concurrent

application processes that are running at isolation level Uncommitted Read

(UR) from executing read-only operations on the table.

Notes

v Locking is used to prevent concurrent operations. A lock is not necessarily

acquired during execution of the LOCK TABLE statement if a suitable lock

already exists. The lock that prevents concurrent operations is held at least until

termination of the unit of work.

v In a partitioned database, a table lock is first acquired at the first database

partition in the database partition group (the database partition with the lowest

number) and then at other database partitions. If the LOCK TABLE statement is

interrupted, the table may be locked on some database partitions but not on

others. If this occurs, either issue another LOCK TABLE statement to complete

the locking on all database partitions, or issue a COMMIT or ROLLBACK

statement to release the current locks.

v This statement affects all database partitions in the database partition group.

v For partitioned tables, the only lock acquired for the LOCK TABLE statement is

at the table level; no data partition locks are acquired.

Example

Obtain a lock on the table EMP. Do not allow other programs to read or update the

table.

 LOCK TABLE EMP IN EXCLUSIVE MODE

Chapter 2. SQL Statements for Users 387

|

|
|

ROLLBACK

The ROLLBACK statement is used to back out of the database changes that were

made within a unit of work or a savepoint.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

None required.

Syntax

��
 WORK

ROLLBACK

TO SAVEPOINT

savepoint-name

��

Description

The unit of work in which the ROLLBACK statement is executed is terminated and

a new unit of work is initiated. All changes made to the database during the unit

of work are backed out.

The following statements, however, are not under transaction control, and changes

made by them are independent of the ROLLBACK statement:

v SET CONNECTION

v SET CURRENT DEFAULT TRANSFORM GROUP

v SET CURRENT DEGREE

v SET CURRENT EXPLAIN MODE

v SET CURRENT EXPLAIN SNAPSHOT

v SET CURRENT LOCK TIMEOUT

v SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

v SET CURRENT PACKAGESET

v SET CURRENT QUERY OPTIMIZATION

v SET CURRENT REFRESH AGE

v SET ENCRYPTION PASSWORD

v SET EVENT MONITOR STATE

v SET PASSTHRU

Note: Although the SET PASSTHRU statement is not under transaction control,

the passthru session initiated by the statement is under transaction control.

v SET PATH

v SET SCHEMA

v SET SERVER OPTION

388 Common Criteria Certification: Administration and User Documentation - Volume 2

The generation of sequence and identity values is not under transaction control.

Values generated and consumed by the nextval-expression or by inserting rows into

a table that has an identity column are independent of issuing the ROLLBACK

statement. Also, issuing the ROLLBACK statement does not affect the value

returned by the prevval-expression, nor the IDENTITY_VAL_LOCAL function.

Modification of the values of global variables is not under transaction control.

ROLLBACK statements do not affect the values assigned to global variables.

TO SAVEPOINT

Specifies that a partial rollback (ROLLBACK TO SAVEPOINT) is to be

performed. If no savepoint is active in the current savepoint level (see the

“Rules” section in the description of the SAVEPOINT statement), an error is

returned (SQLSTATE 3B502). After a successful rollback, the savepoint

continues to exist, but any nested savepoints are released and no longer exist.

The nested savepoints, if any, are considered to have been rolled back and then

released as part of the rollback to the current savepoint. If a savepoint-name is

not provided, rollback occurs to the most recently set savepoint within the

current savepoint level.

 If this clause is omitted, the ROLLBACK statement rolls back the entire

transaction. Furthermore, savepoints within the transaction are released.

savepoint-name

Specifies the savepoint that is to be used in the rollback operation. The

specified savepoint-name cannot begin with ’SYS’ (SQLSTATE 42939). After a

successful rollback operation, the named savepoint continues to exist. If the

savepoint name does not exist, an error (SQLSTATE 3B001) is returned. Data

and schema changes made since the savepoint was set are undone.

Notes

v All locks held are released on a ROLLBACK of the unit of work. All open

cursors are closed. All LOB locators are freed.

v Executing a ROLLBACK statement does not affect either the SET statements that

change special register values or the RELEASE statement.

v If the program terminates abnormally, the unit of work is implicitly rolled back.

v Statement caching is affected by the rollback operation.

v The impact on cursors resulting from a ROLLBACK TO SAVEPOINT depends

on the statements within the savepoint

– If the savepoint contains DDL on which a cursor is dependent, the cursor is

marked invalid. Attempts to use such a cursor results in an error (SQLSTATE

57007).

– Otherwise:

- If the cursor is referenced in the savepoint, the cursor remains open and is

positioned before the next logical row of the result table. (A FETCH must

be performed before a positioned UPDATE or DELETE statement is issued.)

- Otherwise, the cursor is not affected by the ROLLBACK TO SAVEPOINT (it

remains open and positioned).
v Dynamically prepared statement names are still valid, although the statement

may be implicitly prepared again, as a result of DDL operations that are rolled

back within the savepoint.

v A ROLLBACK TO SAVEPOINT operation will drop any created temporary

tables created within the savepoint. If a created temporary table is modified

within the savepoint and that table has been defined as not logged, then all

rows in the table are deleted.

Chapter 2. SQL Statements for Users 389

|
|
|
|

v A ROLLBACK TO SAVEPOINT operation will drop any declared temporary

tables declared within the savepoint. If a declared temporary table is modified

within the savepoint and that table has been defined as not logged, then all

rows in the table are deleted.

v All locks are retained after a ROLLBACK TO SAVEPOINT statement.

v All LOB locators are preserved following a ROLLBACK TO SAVEPOINT

operation.

Example

Delete the alterations made since the last commit point or rollback.

 ROLLBACK WORK

SELECT

The SELECT statement is a form of query. It can be embedded in an application

program or issued interactively.

select-statement

��

�

,

WITH

common-table-expression

 fullselect *

read-only-clause

update-clause

 �

� *

optimize-for-clause
 *

isolation-clause
 ��

The select-statement is the form of a query that can be directly specified in a

DECLARE CURSOR statement, or prepared and then referenced in a DECLARE

CURSOR statement. It can also be issued through the use of dynamic SQL

statements using the command line processor (or similar tools), causing a result

table to be displayed on the user’s screen. In either case, the table specified by a

select-statement is the result of the fullselect.

The authorization for a select-statement is described in the Authorization section in

″SQL queries″.

common-table-expression

�� table-name

�

,

(1)

(

column-name

)

 AS (fullselect) ��

Notes:

1 If a common table expression is recursive, or if the fullselect results in

duplicate column names, column names must be specified.

A common table expression permits defining a result table with a table-name that can

be specified as a table name in any FROM clause of the fullselect that follows.

Multiple common table expressions can be specified following the single WITH

390 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|

keyword. Each common table expression specified can also be referenced by name

in the FROM clause of subsequent common table expressions.

If a list of columns is specified, it must consist of as many names as there are

columns in the result table of the fullselect. Each column-name must be unique and

unqualified. If these column names are not specified, the names are derived from

the select list of the fullselect used to define the common table expression.

The table-name of a common table expression must be different from any other

common table expression table-name in the same statement (SQLSTATE 42726). If

the common table expression is specified in an INSERT statement the table-name

cannot be the same as the table or view name that is the object of the insert

(SQLSTATE 42726). A common table expression table-name can be specified as a

table name in any FROM clause throughout the fullselect. A table-name of a

common table expression overrides any existing table, view or alias (in the catalog)

with the same qualified name.

If more than one common table expression is defined in the same statement, cyclic

references between the common table expressions are not permitted (SQLSTATE

42835). A cyclic reference occurs when two common table expressions dt1 and dt2

are created such that dt1 refers to dt2 and dt2 refers to dt1.

If the fullselect of a common table expression contains a data-change-table-reference

in the FROM clause, the common table expression is said to modify data. A

common table expression that modifies data is always evaluated when the

statement is processed, regardless of whether the common table expression is used

anywhere else in the statement. If there is at least one common table expression

that reads or modifies data, all common table expressions are processed in the

order in which they occur, and each common table expression that reads or

modifies data is completely executed, including all constraints and triggers, before

any subsequent common table expressions are executed.

The common table expression is also optional prior to the fullselect in the CREATE

VIEW and INSERT statements.

A common table expression can be used:

v In place of a view to avoid creating the view (when general use of the view is

not required and positioned updates or deletes are not used)

v To enable grouping by a column that is derived from a scalar subselect or

function that is not deterministic or has external action

v When the desired result table is based on host variables

v When the same result table needs to be shared in a fullselect

v When the result needs to be derived using recursion

v When multiple SQL data change statements need to be processed within the

query

If the fullselect of a common table expression contains a reference to itself in a

FROM clause, the common table expression is a recursive common table expression.

Queries using recursion are useful in supporting applications such as bill of

materials (BOM), reservation systems, and network planning.

The following must be true of a recursive common table expression:

Chapter 2. SQL Statements for Users 391

v Each fullselect that is part of the recursion cycle must start with SELECT or

SELECT ALL. Use of SELECT DISTINCT is not allowed (SQLSTATE 42925).

Furthermore, the unions must use UNION ALL (SQLSTATE 42925).

v The column names must be specified following the table-name of the common

table expression (SQLSTATE 42908).

v The first fullselect of the first union (the initialization fullselect) must not include

a reference to any column of the common table expression in any FROM clause

(SQLSTATE 42836).

v If a column name of the common table expression is referred to in the iterative

fullselect, the data type, length, and code page for the column are determined

based on the initialization fullselect. The corresponding column in the iterative

fullselect must have the same data type and length as the data type and length

determined based on the initialization fullselect and the code page must match

(SQLSTATE 42825). However, for character string types, the length of the two

data types may differ. In this case, the column in the iterative fullselect must

have a length that would always be assignable to the length determined from

the initialization fullselect.

v Each fullselect that is part of the recursion cycle must not include any aggregate

functions, group-by-clauses, or having-clauses (SQLSTATE 42836).

The FROM clauses of these fullselects can include at most one reference to a

common table expression that is part of a recursion cycle (SQLSTATE 42836).

v The iterative fullselect and the overall recursive fullselect must not include an

order-by-clause (SQLSTATE 42836).

v Subqueries (scalar or quantified) must not be part of any recursion cycles

(SQLSTATE 42836).

When developing recursive common table expressions, remember that an infinite

recursion cycle (loop) can be created. Check that recursion cycles will terminate.

This is especially important if the data involved is cyclic. A recursive common

table expression is expected to include a predicate that will prevent an infinite

loop. The recursive common table expression is expected to include:

v In the iterative fullselect, an integer column incremented by a constant.

v A predicate in the where clause of the iterative fullselect in the form

″counter_col < constant″ or ″counter _col < :hostvar″.

A warning is issued if this syntax is not found in the recursive common table

expression (SQLSTATE 01605).

Recursion example: bill of materials

Bill of materials (BOM) applications are a common requirement in many business

environments. To illustrate the capability of a recursive common table expression

for BOM applications, consider a table of parts with associated subparts and the

quantity of subparts required by the part. For this example, create the table as

follows:

 CREATE TABLE PARTLIST

 (PART VARCHAR(8),

 SUBPART VARCHAR(8),

 QUANTITY INTEGER);

To give query results for this example, assume that the PARTLIST table is

populated with the following values:

392 Common Criteria Certification: Administration and User Documentation - Volume 2

PART SUBPART QUANTITY

 -------- -------- -----------

 00 01 5

 00 05 3

 01 02 2

 01 03 3

 01 04 4

 01 06 3

 02 05 7

 02 06 6

 03 07 6

 04 08 10

 04 09 11

 05 10 10

 05 11 10

 06 12 10

 06 13 10

 07 14 8

 07 12 8

Example 1: Single level explosion

The first example is called single level explosion. It answers the question, “What

parts are needed to build the part identified by ’01’?”. The list will include the

direct subparts, subparts of the subparts and so on. However, if a part is used

multiple times, its subparts are only listed once.

WITH RPL (PART, SUBPART, QUANTITY) AS

 (SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY

 FROM PARTLIST ROOT

 WHERE ROOT.PART = ’01’

 UNION ALL

 SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY

 FROM RPL PARENT, PARTLIST CHILD

 WHERE PARENT.SUBPART = CHILD.PART

)

SELECT DISTINCT PART, SUBPART, QUANTITY

 FROM RPL

 ORDER BY PART, SUBPART, QUANTITY;

The above query includes a common table expression, identified by the name RPL,

that expresses the recursive part of this query. It illustrates the basic elements of a

recursive common table expression.

The first operand (fullselect) of the UNION, referred to as the initialization fullselect,

gets the direct children of part ’01’. The FROM clause of this fullselect refers to the

source table and will never refer to itself (RPL in this case). The result of this first

fullselect goes into the common table expression RPL (Recursive PARTLIST). As in

this example, the UNION must always be a UNION ALL.

The second operand (fullselect) of the UNION uses RPL to compute subparts of

subparts by having the FROM clause refer to the common table expression RPL

and the source table with a join of a part from the source table (child) to a subpart

of the current result contained in RPL (parent). The result goes back to RPL again.

The second operand of UNION is then used repeatedly until no more children

exist.

The SELECT DISTINCT in the main fullselect of this query ensures the same

part/subpart is not listed more than once.

The result of the query is as follows:

Chapter 2. SQL Statements for Users 393

PART SUBPART QUANTITY

 -------- -------- -----------

 01 02 2

 01 03 3

 01 04 4

 01 06 3

 02 05 7

 02 06 6

 03 07 6

 04 08 10

 04 09 11

 05 10 10

 05 11 10

 06 12 10

 06 13 10

 07 12 8

 07 14 8

Observe in the result that from part ’01’ we go to ’02’ which goes to ’06’ and so on.

Further, notice that part ’06’ is reached twice, once through ’01’ directly and

another time through ’02’. In the output, however, its subcomponents are listed

only once (this is the result of using a SELECT DISTINCT) as required.

It is important to remember that with recursive common table expressions it is

possible to introduce an infinite loop. In this example, an infinite loop would be

created if the search condition of the second operand that joins the parent and

child tables was coded as:

 PARENT.SUBPART = CHILD.SUBPART

This example of causing an infinite loop is obviously a case of not coding what is

intended. However, care should also be exercised in determining what to code so

that there is a definite end of the recursion cycle.

The result produced by this example query could be produced in an application

program without using a recursive common table expression. However, this

approach would require starting of a new query for every level of recursion.

Furthermore, the application needs to put all the results back in the database to

order the result. This approach complicates the application logic and does not

perform well. The application logic becomes even harder and more inefficient for

other bill of material queries, such as summarized and indented explosion queries.

Example 2: Summarized explosion

The second example is a summarized explosion. The question posed here is, what

is the total quantity of each part required to build part ’01’. The main difference

from the single level explosion is the need to aggregate the quantities. The first

example indicates the quantity of subparts required for the part whenever it is

required. It does not indicate how many of the subparts are needed to build part

’01’.

WITH RPL (PART, SUBPART, QUANTITY) AS

 (

 SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY

 FROM PARTLIST ROOT

 WHERE ROOT.PART = ’01’

 UNION ALL

 SELECT PARENT.PART, CHILD.SUBPART, PARENT.QUANTITY*CHILD.QUANTITY

 FROM RPL PARENT, PARTLIST CHILD

 WHERE PARENT.SUBPART = CHILD.PART

)

394 Common Criteria Certification: Administration and User Documentation - Volume 2

SELECT PART, SUBPART, SUM(QUANTITY) AS "Total QTY Used"

 FROM RPL

 GROUP BY PART, SUBPART

 ORDER BY PART, SUBPART;

In the above query, the select list of the second operand of the UNION in the

recursive common table expression, identified by the name RPL, shows the

aggregation of the quantity. To find out how much of a subpart is used, the

quantity of the parent is multiplied by the quantity per parent of a child. If a part

is used multiple times in different places, it requires another final aggregation. This

is done by the grouping over the common table expression RPL and using the

SUM aggregate function in the select list of the main fullselect.

The result of the query is as follows:

 PART SUBPART Total Qty Used

 -------- -------- --------------

 01 02 2

 01 03 3

 01 04 4

 01 05 14

 01 06 15

 01 07 18

 01 08 40

 01 09 44

 01 10 140

 01 11 140

 01 12 294

 01 13 150

 01 14 144

Looking at the output, consider the line for subpart ’06’. The total quantity used

value of 15 is derived from a quantity of 3 directly for part ’01’ and a quantity of 6

for part ’02’ which is needed 2 times by part ’01’.

Example 3: Controlling depth

The question may come to mind, what happens when there are more levels of

parts in the table than you are interested in for your query? That is, how is a query

written to answer the question, “What are the first two levels of parts needed to

build the part identified by ’01’?” For the sake of clarity in the example, the level is

included in the result.

WITH RPL (LEVEL, PART, SUBPART, QUANTITY) AS

 (

 SELECT 1, ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY

 FROM PARTLIST ROOT

 WHERE ROOT.PART = ’01’

 UNION ALL

 SELECT PARENT.LEVEL+1, CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY

 FROM RPL PARENT, PARTLIST CHILD

 WHERE PARENT.SUBPART = CHILD.PART

 AND PARENT.LEVEL < 2

)

 SELECT PART, LEVEL, SUBPART, QUANTITY

 FROM RPL;

This query is similar to example 1. The column LEVEL was introduced to count the

levels from the original part. In the initialization fullselect, the value for the LEVEL

column is initialized to 1. In the subsequent fullselect, the level from the parent is

incremented by 1. Then to control the number of levels in the result, the second

fullselect includes the condition that the parent level must be less than 2. This

ensures that the second fullselect only processes children to the second level.

Chapter 2. SQL Statements for Users 395

The result of the query is:

 PART LEVEL SUBPART QUANTITY

 -------- ----------- -------- -----------

 01 1 02 2

 01 1 03 3

 01 1 04 4

 01 1 06 3

 02 2 05 7

 02 2 06 6

 03 2 07 6

 04 2 08 10

 04 2 09 11

 06 2 12 10

 06 2 13 10

update-clause

�� FOR UPDATE

�

,

OF

column-name

 ��

The FOR UPDATE clause identifies the columns that can be updated in a

subsequent Positioned UPDATE statement. Each column-name must be unqualified

and must identify a column of the table or view identified in the first FROM clause

of the fullselect. If the FOR UPDATE clause is specified without column names, all

updatable columns of the table or view identified in the first FROM clause of the

fullselect are included.

The FOR UPDATE clause cannot be used if one of the following is true:

v The cursor associated with the select-statement is not deletable .

v One of the selected columns is a non-updatable column of a catalog table and

the FOR UPDATE clause has not been used to exclude that column.

read-only-clause

�� FOR READ

FETCH
 ONLY ��

The FOR READ ONLY clause indicates that the result table is read-only and

therefore the cursor cannot be referred to in Positioned UPDATE and DELETE

statements. FOR FETCH ONLY has the same meaning.

Some result tables are read-only by nature. (For example, a table based on a

read-only view.) FOR READ ONLY can still be specified for such tables, but the

specification has no effect.

For result tables in which updates and deletes are allowed, specifying FOR READ

ONLY (or FOR FETCH ONLY) can possibly improve the performance of FETCH

operations by allowing the database manager to do blocking. For example, in

programs that contain dynamic SQL statements without the FOR READ ONLY or

ORDER BY clause, the database manager might open cursors as if the FOR

UPDATE clause were specified. It is recommended, therefore, that the FOR READ

ONLY clause be used to improve performance, except in cases where queries will

be used in positioned UPDATE or DELETE statements.

396 Common Criteria Certification: Administration and User Documentation - Volume 2

A read-only result table must not be referred to in a Positioned UPDATE or

DELETE statement, whether it is read-only by nature or specified as FOR READ

ONLY (FOR FETCH ONLY).

optimize-for-clause

�� OPTIMIZE FOR integer ROWS

ROW
 ��

The OPTIMIZE FOR clause requests special processing of the select statement. If the

clause is omitted, it is assumed that all rows of the result table will be retrieved; if

it is specified, it is assumed that the number of rows retrieved will probably not

exceed n, where n is the value of integer. The value of n must be a positive integer.

Use of the OPTIMIZE FOR clause influences query optimization, based on the

assumption that n rows will be retrieved. In addition, for cursors that are blocked,

this clause will influence the number of rows that will be returned in each block

(that is, no more than n rows will be returned in each block). If both the

fetch-first-clause and the optimize-for-clause are specified, the lower of the integer

values from these clauses will be used to influence the communications buffer size.

The values are considered independently for optimization purposes.

This clause does not limit the number of rows that can be fetched, or affect the

result in any other way than performance. Using OPTIMIZE FOR n ROWS can

improve performance if no more than n rows are retrieved, but may degrade

performance if more than n rows are retrieved.

If the value of n multiplied by the size of the row exceeds the size of the

communication buffer, the OPTIMIZE FOR clause will have no impact on the data

buffers. The size of the communication buffer is defined by the rqrioblk or the

aslheapsz configuration parameter.

isolation-clause

��

WITH

RR

lock-request-clause

RS

lock-request-clause

CS

UR

 ��

The optional isolation-clause specifies the isolation level at which the statement is

executed, and whether a specific type of lock is to be acquired.

v RR - Repeatable Read

v RS - Read Stability

v CS - Cursor Stability

v UR - Uncommitted Read

The default isolation level of the statement is the isolation level of the package in

which the statement is bound. When a nickname is used in a select-statement to

access data in DB2 family and Microsoft SQL Server data sources, the

isolation-clause can be included in the statement to specify the statement isolation

level. If the isolation-clause is included in statements that access other data sources,

the specified isolation level is ignored. The current isolation level on the federated

Chapter 2. SQL Statements for Users 397

server is mapped to a corresponding isolation level at the data source on each

connection to the data source. After a connection is made to a data source, the

isolation level cannot be changed for the duration of the connection.

lock-request-clause

�� USE AND KEEP SHARE LOCKS

UPDATE

EXCLUSIVE

 ��

The optional lock-request-clause specifies the type of lock that the database manager

is to acquire and hold:

SHARE

Concurrent processes can acquire SHARE or UPDATE locks on the data.

UPDATE

Concurrent processes can acquire SHARE locks on the data, but no

concurrent process can acquire an UPDATE or EXCLUSIVE lock.

EXCLUSIVE

Concurrent processes cannot acquire a lock on the data.

The lock-request-clause applies to all base table and index scans required by the

query, including those within subqueries, SQL functions and SQL methods. It has

no affect on locks placed by procedures, external functions, or external methods.

Any SQL function or SQL method invoked (directly or indirectly) by the statement

must be created with INHERIT ISOLATION LEVEL WITH LOCK REQUEST

(SQLSTATE 42601). The lock-request-clause cannot be used with a modifying query

that might invoke triggers or that requires referential integrity checks (SQLSTATE

42601).

Examples of a select-statement

Example 1: Select all columns and rows from the EMPLOYEE table.

 SELECT * FROM EMPLOYEE

Example 2: Select the project name (PROJNAME), start date (PRSTDATE), and end

date (PRENDATE) from the PROJECT table. Order the result table by the end date

with the most recent dates appearing first.

 SELECT PROJNAME, PRSTDATE, PRENDATE

 FROM PROJECT

 ORDER BY PRENDATE DESC

Example 3: Select the department number (WORKDEPT) and average

departmental salary (SALARY) for all departments in the EMPLOYEE table.

Arrange the result table in ascending order by average departmental salary.

 SELECT WORKDEPT, AVG(SALARY)

 FROM EMPLOYEE

 GROUP BY WORKDEPT

 ORDER BY 2

Example 4: Declare a cursor named UP_CUR to be used in a C program to update

the start date (PRSTDATE) and the end date (PRENDATE) columns in the

PROJECT table. The program must receive both of these values together with the

project number (PROJNO) value for each row.

398 Common Criteria Certification: Administration and User Documentation - Volume 2

EXEC SQL DECLARE UP_CUR CURSOR FOR

 SELECT PROJNO, PRSTDATE, PRENDATE

 FROM PROJECT

 FOR UPDATE OF PRSTDATE, PRENDATE;

Example 5: This example names the expression SAL+BONUS+COMM as

TOTAL_PAY

 SELECT SALARY+BONUS+COMM AS TOTAL_PAY

 FROM EMPLOYEE

 ORDER BY TOTAL_PAY

Example 6: Determine the employee number and salary of sales representatives

along with the average salary and head count of their departments. Also, list the

average salary of the department with the highest average salary.

Using a common table expression for this case saves the overhead of creating the

DINFO view as a regular view. During statement preparation, accessing the catalog

for the view is avoided and, because of the context of the rest of the fullselect, only

the rows for the department of the sales representatives need to be considered by

the view.

 WITH

 DINFO (DEPTNO, AVGSALARY, EMPCOUNT) AS

 (SELECT OTHERS.WORKDEPT, AVG(OTHERS.SALARY), COUNT(*)

 FROM EMPLOYEE OTHERS

 GROUP BY OTHERS.WORKDEPT

),

 DINFOMAX AS

 (SELECT MAX(AVGSALARY) AS AVGMAX FROM DINFO)

 SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY,

 DINFO.AVGSALARY, DINFO.EMPCOUNT, DINFOMAX.AVGMAX

 FROM EMPLOYEE THIS_EMP, DINFO, DINFOMAX

 WHERE THIS_EMP.JOB = ’SALESREP’

 AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

Example 7: Given two tables, EMPLOYEE and PROJECT, replace employee SALLY

with a new employee GEORGE, assign all projects lead by SALLY to GEORGE,

and return the names of the updated projects.

 WITH

 NEWEMP AS (SELECT EMPNO FROM NEW TABLE

 (INSERT INTO EMPLOYEE(EMPNO, FIRSTNME)

 VALUES(NEXT VALUE FOR EMPNO_SEQ, ’GEORGE’))),

 OLDEMP AS (SELECT EMPNO FROM EMPLOYEE WHERE FIRSTNME = ’SALLY’),

 UPPROJ AS (SELECT PROJNAME FROM NEW TABLE

 (UPDATE PROJECT

 SET RESPEMP = (SELECT EMPNO FROM NEWEMP)

 WHERE RESPEMP = (SELECT EMPNO FROM OLDEMP))),

 DELEMP AS (SELECT EMPNO FROM OLD TABLE

 (DELETE FROM EMPLOYEE

 WHERE EMPNO = (SELECT EMPNO FROM OLDEMP)))

 SELECT PROJNAME FROM UPPROJ;

Example 8: Retrieve data from the DEPT table. That data will later be updated with

a searched update, and should be locked when the query executes.

 SELECT DEPTNO, DEPTNAME, MGRNO

 FROM DEPT

 WHERE ADMRDEPT =’A00’

 FOR READ ONLY WITH RS USE AND KEEP EXCLUSIVE LOCKS

Chapter 2. SQL Statements for Users 399

SET INTEGRITY

The SET INTEGRITY statement is used to:

v Bring one or more tables out of set integrity pending state (previously known as

″check pending state″) by performing required integrity processing on those

tables.

v Bring one or more tables out of set integrity pending state without performing

required integrity processing on those tables.

v Place one or more tables in set integrity pending state.

v Place one or more tables into full access state.

v Prune the contents of one or more staging tables.

When the statement is used to perform integrity processing for a table after it has

been loaded or attached, the system can incrementally process the table by

checking only the appended portion for constraints violations. If the subject table is

a materialized query table or a staging table, and load, attach, or detach operations

are performed on its underlying tables, the system can incrementally refresh the

materialized query table or incrementally propagate to the staging table with only

the delta portions of its underlying tables. However, there are some situations in

which the system will not be able to perform such optimizations and will instead

perform full integrity processing to ensure data integrity. Full integrity processing

is done by checking the entire table for constraints violations, recomputing a

materialized query table’s definition, or marking a staging table as inconsistent.

The latter implies that a full refresh of its associated materialized query table is

required. There is also a situation in which you might want to explicitly request

incremental processing by specifying the INCREMENTAL option.

The SET INTEGRITY statement is under transaction control.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges required to execute the SET INTEGRITY statement depend on the

purpose, as outlined below.

v Bringing tables out of set integrity pending state and performing the required

integrity processing.

The privileges held by the authorization ID of the statement must include at

least one of the following:

– CONTROL privilege on:

- The tables on which integrity processing is performed and, if exception

tables are provided for one or more of those tables, INSERT privilege on

the exception tables

- All descendent foreign key tables, descendent immediate materialized

query tables, and descendent immediate staging tables that will implicitly

be placed in set integrity pending state by the statement
– LOAD authority (with conditions). The following conditions must all be met

before LOAD authority can be considered as providing valid privileges:

400 Common Criteria Certification: Administration and User Documentation - Volume 2

- The required integrity processing does not involve the following actions:

v Refreshing a materialized query table

v Propagating to a staging table

v Updating a generated or identity column
- If exception tables are provided for one or more tables, the required access

is granted for the duration of the integrity processing to the tables on

which integrity processing is performed, and to the associated exception

tables. That is:

v SELECT and DELETE privilege on each table on which integrity

processing is performed, and

v INSERT privilege on the exception tables
– DATAACCESS authority

v Bringing tables out of set integrity pending state without performing the

required integrity processing.

The privileges held by the authorization ID of the statement must include at

least one of the following:

– CONTROL privilege on the tables that are being processed; CONTROL

privilege on each descendent foreign key table, descendent immediate

materialized query table, and descendent immediate staging table that will

implicitly be placed in set integrity pending state by the statement

– LOAD authority

– DATAACCESS authority

– DBADM authority
v Placing tables in set integrity pending state.

The privileges held by the authorization ID of the statement must include at

least one of the following:

– CONTROL privilege on:

- The specified tables, and

- The descendent foreign key tables that will be placed in set integrity

pending state by the statement, and

- The descendent immediate materialized query tables that will be placed in

set integrity pending state by the statement, and

- The descendent immediate staging tables that will be placed in set integrity

pending state by the statement
– LOAD authority

– DATAACCESS authority

– DBADM authority
v Place a table into the full access state.

The privileges held by the authorization ID of the statement must include at

least one of the following:

– CONTROL privilege on the tables that are placed into the full access state

– LOAD authority

– DATAACCESS authority

– DBADM authority
v Prune a staging table.

The privileges held by the authorization ID of the statement must include at

least one of the following:

– CONTROL privilege on the table being pruned

Chapter 2. SQL Statements for Users 401

|

|

|

|

|
|

|

|

|
|

|
|

|
|

|

|

|

|

|

– DATAACCESS authority

Syntax

�� SET INTEGRITY �

�

�

�

�

 ,

FOR

table-name

OFF

access-mode-clause

cascade-clause

FULL ACCESS

PRUNE

,

FOR

table-name

table-checked-options

IMMEDIATE CHECKED

check-options

,

FOR

table-name

table-unchecked-options

IMMEDIATE UNCHECKED

��

access-mode-clause:

 NO ACCESS

READ ACCESS

cascade-clause:

 CASCADE IMMEDIATE to-descendent-types

CASCADE DEFERRED

to-descendent-types:

�

 TO ALL TABLES

,

TO

MATERIALIZED QUERY TABLES

FOREIGN KEY TABLES

STAGING TABLES

table-checked-options:

�

 ,

online-options

GENERATE IDENTITY

query-optimization-options

online-options:

 ALLOW NO ACCESS

ALLOW READ ACCESS

ALLOW WRITE ACCESS

402 Common Criteria Certification: Administration and User Documentation - Volume 2

|

query-optimization-options:

ALLOW QUERY OPTIMIZATION

WITH REFRESH AGE ANY

USING REFRESH DEFERRED TABLES

check-options:

 * incremental-options *

FORCE GENERATED
 *

PRUNE
 �

� *

FULL ACCESS
 *

exception-clause

incremental-options:

INCREMENTAL

NOT INCREMENTAL

exception-clause:

FOR EXCEPTION

�

 ,

in-table-use-clause

in-table-use-clause:

 IN table-name USE table-name

table-unchecked-options:

�

 ,

integrity-options

FULL ACCESS

integrity-options:

�

 ALL

,

FOREIGN KEY

CHECK

MATERIALIZED QUERY

GENERATED COLUMN

STAGING

Description

FOR table-name

Identifies one or more tables for integrity processing. It must be a table

described in the catalog and must not be a view, catalog table, or typed table.

Chapter 2. SQL Statements for Users 403

OFF

Specifies that the tables are placed in set integrity pending state. Only very

limited activity is allowed on a table that is in set integrity pending state.

access-mode-clause

Specifies the readability of the table while it is in set integrity pending state.

NO ACCESS

Specifies that the table is to be put in set integrity pending no access state,

which does not allow read or write access to the table.

READ ACCESS

Specifies that the table is to be put in set integrity pending read access

state, which allows read access to the non-appended portion of the table.

This option is not allowed on a table that is in set integrity pending no

access state (SQLSTATE 428FH).

cascade-clause

Specifies whether the set integrity pending state of the table referenced in the

SET INTEGRITY statement is to be immediately cascaded to descendent tables.

CASCADE IMMEDIATE

Specifies that the set integrity pending state is to be immediately extended

to descendent tables.

to-descendent-types

Specifies the type of descendent tables to which the set integrity pending

state is immediately cascaded.

TO ALL TABLES

Specifies that the set integrity pending state is to be immediately

cascaded to all descendent tables of the tables in the invocation list.

Descendent tables include all descendent foreign key tables, immediate

staging tables, and immediate materialized query tables that are

descendants of the tables in the invocation list, or descendants of

descendent foreign key tables.

 Specifying TO ALL TABLES is equivalent to specifying TO FOREIGN

KEY TABLES, TO MATERIALIZED QUERY TABLES, and TO

STAGING TABLES, all in the same statement.

TO MATERIALIZED QUERY TABLES

If only TO MATERIALIZED QUERY TABLES is specified, the set

integrity pending state is to be immediately cascaded only to

descendent immediate materialized query tables. Other descendent

tables might later be put in set integrity pending state, if necessary,

when the table is brought out of set integrity pending state. If both TO

FOREIGN KEY TABLES and TO MATERIALIZED QUERY TABLES are

specified, the set integrity pending state will be immediately cascaded

to all descendent foreign key tables, all descendent immediate

materialized query tables of the tables in the invocation list, and to all

immediate materialized query tables that are descendants of the

descendent foreign key tables.

TO FOREIGN KEY TABLES

Specifies that the set integrity pending state is to be immediately

cascaded to descendent foreign key tables. Other descendent tables

might later be put in set integrity pending state, if necessary, when the

table is brought out of set integrity pending state.

404 Common Criteria Certification: Administration and User Documentation - Volume 2

TO STAGING TABLES

Specifies that the set integrity pending state is to be immediately

cascaded to descendent staging tables. Other descendent tables might

later be put in set integrity pending state, if necessary, when the table

is brought out of set integrity pending state. If both TO FOREIGN KEY

TABLES and TO STAGING TABLES are specified, the set integrity

pending state will be immediately cascaded to all descendent foreign

key tables, all descendent immediate staging tables of the tables in the

invocation list, and to all immediate staging tables that are descendants

of the descendent foreign key tables.

CASCADE DEFERRED

Specifies that only the tables in the invocation list are to be put in set

integrity pending state. The states of the descendent tables will remain

unchanged. Descendent foreign key tables might later be implicitly put in

set integrity pending state when their parent tables are checked for

constraints violations. Descendent immediate materialized query tables and

descendent immediate staging tables might be implicitly put in set

integrity pending state when one of their underlying tables is checked for

integrity violations.

If cascade-clause is not specified, the set integrity pending state is immediately

cascaded to all descendent tables.

IMMEDIATE CHECKED

Specifies that the table is to be taken out of set integrity pending state by

performing required integrity processing on the table. This is done in

accordance with the information set in the STATUS and CONST_CHECKED

columns of the SYSCAT.TABLES catalog view. That is:

v The value in the STATUS column must be ’C’ (the table is in set integrity

pending state), or an error is returned (SQLSTATE 51027), unless the table is

a descendent foreign key table, descendent materialized query table, or

descendent staging table of a table that is specified in the list, is in set

integrity pending state, and whose intermediate ancestors are also in the list.

v If the table being checked is in set integrity pending state, the value in

CONST_CHECKED indicates which integrity options are to be checked.

When the table is taken out of set integrity pending state, its descendent tables

are, if necessary, put in set integrity pending state. A warning to indicate that

descendent tables have been put in set integrity pending state is returned

(SQLSTATE 01586).

If the table is a system-maintained materialized query table, the data is

checked against the query and refreshed as necessary. (IMMEDIATE

CHECKED cannot be used for user-maintained materialized query tables.) If

the table is a staging table, the data is checked against its query definition and

propagated as necessary.

When the integrity of a child table is checked:

v None of its parents can be in set integrity pending state, or

v Each of its parents must be checked for constraints violations in the same

SET INTEGRITY statement

When an immediate materialized query table is refreshed, or deltas are

propagated to a staging table:

v None of its underlying tables can be in set integrity pending state, or

Chapter 2. SQL Statements for Users 405

v Each of its underlying tables must be checked in the same SET INTEGRITY

statement

Otherwise, an error is returned (SQLSTATE 428A8).

table-checked-options

online-options

Specifies the accessibility of the table while it is being processed.

ALLOW NO ACCESS

Specifies that no other users can access the table while it is being

processed, except if they are using the Uncommitted Read isolation

level.

ALLOW READ ACCESS

Specifies that other users have read-only access to the table while it

is being processed.

ALLOW WRITE ACCESS

Specifies that other users have read and write access to the table

while it is being processed.

GENERATE IDENTITY

Specifies that if the table includes an identity column, the values are

generated by the SET INTEGRITY statement. By default, when the

GENERATE IDENTITY option is specified, only attached rows will

have their identity column values generated by the SET INTEGRITY

statement. The NOT INCREMENTAL option must be specified in

conjunction with the GENERATE IDENTITY option to have the SET

INTEGRITY statement generate identity column values for all rows in

the table, including attached rows, loaded rows, and existing rows. If

the GENERATE IDENTITY option is not specified, the current identity

column values for all rows in the table are left unchanged.

query-optimization-options

Specifies the query optimization options for the maintenance of

REFRESH DEFERRED materialized query tables.

ALLOW QUERY OPTIMIZATION USING REFRESH DEFERRED

TABLES WITH REFRESH AGE ANY

Specifies that when the CURRENT REFRESH AGE special register

is set to ’ANY’, the maintenance of table-name will allow REFRESH

DEFERRED materialized query tables to be used to optimize the

query that maintains table-name. If table-name is not a REFRESH

DEFERRED materialized query table, an error is returned

(SQLSTATE 428FH). REFRESH IMMEDIATE materialized query

tables are always considered during query optimization.

check-options

incremental-options

INCREMENTAL

Specifies the application of integrity processing on the appended

portion (if any) of the table. If such a request cannot be satisfied

(that is, the system detects that the whole table needs to be

checked for data integrity), an error is returned (SQLSTATE 55019).

NOT INCREMENTAL

Specifies the application of integrity processing on the whole table.

If the table is a materialized query table, the materialized query

406 Common Criteria Certification: Administration and User Documentation - Volume 2

table definition is recomputed. If the table has at least one

constraint defined on it, this option causes full processing of

descendent foreign key tables and descendent immediate

materialized query tables. If the table is a staging table, it is set to

an inconsistent state.

If the incremental-options clause is not specified, the system determines

whether incremental processing is possible; if not, the whole table is

checked.

FORCE GENERATED

If the table includes generated by expression columns, the values are

computed on the basis of the expression and stored in the column. If

this option is not specified, the current values are compared to the

computed value of the expression, as though an equality check

constraint were in effect. If the table is processed for integrity

incrementally, generated columns are computed only for the appended

portion.

PRUNE

This option can be specified for staging tables only. Specifies that the

content of the staging table is to be pruned, and that the staging table

is to be set to an inconsistent state. If any table in the table-name list is

not a staging table, an error is returned (SQLSTATE 428FH). If the

INCREMENTAL check option is also specified, an error is returned

(SQLSTATE 428FH).

FULL ACCESS

Specifies that the table is to become fully accessible after the SET

INTEGRITY statement executes.

 When an underlying table (that has dependent immediate materialized

query tables or dependent immediate staging tables) in the invocation

list is incrementally processed, the underlying table is put in no data

movement state, as required, after the SET INTEGRITY statement

executes. When all incrementally refreshable dependent immediate

materialized query tables and staging tables are taken out of set

integrity pending state, the underlying table is automatically brought

out of the no data movement state into the full access state. If the

FULL ACCESS option is specified with the IMMEDIATE CHECKED

option, the underlying table is put directly in full access state

(bypassing the no data movement state). Dependent immediate

materialized query tables that have not been refreshed might undergo

a full recomputation in the subsequent REFRESH TABLE statement,

and dependent immediate staging tables that have not had the

appended portions of the table propagated to them might be flagged

as inconsistent.

When an underlying table in the invocation list requires full

processing, or does not have dependent immediate materialized query

tables, or dependent immediate staging tables, the underlying table is

put directly into full access state after the SET INTEGRITY statement

executes, regardless of whether the FULL ACCESS option was

specified.

exception-clause

FOR EXCEPTION

Specifies that any row that is in violation of a constraint being

Chapter 2. SQL Statements for Users 407

checked is to be moved to an exception table. Even if errors are

detected, the table is taken out of set integrity pending state. A

warning to indicate that one or more rows have been moved to the

exception tables is returned (SQLSTATE 01603).

 If the FOR EXCEPTION option is not specified and any constraints

are violated, only the first detected violation is returned

(SQLSTATE 23514). If there is a violation in any table, all of the

tables are left in set integrity pending state.

It is recommended to always use the FOR EXCEPTION option

when checking for constraints violations to prevent a rollback of

the SET INTEGRITY statement if a violation is found.

IN table-name

Specifies the table from which rows that violate constraints are to

be moved. There must be one exception table specified for each

table being checked. This clause cannot be specified for a

materialized query table or a staging table (SQLSTATE 428A7).

USE table-name

Specifies the exception table into which error rows are to be

moved.

FULL ACCESS

If the FULL ACCESS option is specified as the only operation of the statement,

the table is placed into the full access state without being rechecked for

integrity violations. However, dependent immediate materialized query tables

that have not been refreshed might require a full recomputation in subsequent

REFRESH TABLE statements, and dependent immediate staging tables that

have not had the delta portions of the table propagated to them might be

changed to incomplete state. This option can only be specified for a table that

is in the no data movement state or the no access state, but not in the set

integrity pending state (SQLSTATE 428FH).

PRUNE

This option can be specified for staging tables only. Specifies that the content of

the staging table is to be pruned, and that the staging table is to be set to an

inconsistent state. If any table in the table-name list is not a staging table, an

error is returned (SQLSTATE 428FH).

table-unchecked-options

integrity-options

Used to define the types of required integrity processing that are to be

bypassed when the table is taken out of the set integrity pending state.

ALL

The table will be immediately taken out of set integrity pending state

without any of its required integrity processing being performed.

FOREIGN KEY

Required foreign key constraints checking will not be performed when

the table is brought out of set integrity pending state.

CHECK

Required check constraints checking will not be performed when the

table is brought out of set integrity pending state.

MATERIALIZED QUERY

Required refreshing of a materialized query table will not be

performed when the table is brought out of set integrity pending state.

408 Common Criteria Certification: Administration and User Documentation - Volume 2

GENERATED COLUMN

Required generated column constraints checking will not be performed

when the table is brought out of set integrity pending state.

STAGING

Required propagation of data to a staging table will not be performed

when the table is brought out of set integrity pending state.

 If no other types of integrity processing are required on the table after a

specific type of integrity processing has been marked as bypassed, the

table is immediately taken out of set integrity pending state.

FULL ACCESS

Specifies that the tables are to become fully accessible after the SET

INTEGRITY statement executes.

 When an underlying table in the invocation list is incrementally processed,

and it has dependent immediate materialized query tables or dependent

immediate staging tables, the underlying table is placed, as required, in the

no data movement state after the SET INTEGRITY statement executes.

When all incrementally refreshable dependent immediate materialized

query tables and staging tables have been taken out of set integrity

pending state, the underlying table is automatically brought out of the no

data movement state into the full access state. If the FULL ACCESS option

is specified with the IMMEDIATE UNCHECKED option, the underlying

table is placed directly in full access state (it bypasses the no data

movement state). Dependent immediate materialized query tables that

have not been refreshed might undergo a full recomputation in the

subsequent REFRESH TABLE statement, and dependent immediate staging

tables that have not had the appended portions of the table propagated to

them mIGHT be flagged as inconsistent.

When an underlying table in the invocation list requires full processing, or

does not have dependent immediate materialized query tables, or

dependent immediate staging tables, the underlying table is placed directly

in full access state after the SET INTEGRITY statement executes, regardless

of whether the FULL ACCESS option has been specified.

If the FULL ACCESS option has been specified with the IMMEDIATE

UNCHECKED option, and the statement does not bring the table out of set

integrity pending state, an error is returned (SQLSTATE 428FH).

IMMEDIATE UNCHECKED

Specifies one of the following:

v The table is to be brought out of set integrity pending state immediately

without any required integrity processing.

v The table is to have one or more types of required integrity processing

bypassed when the table is brought out of set integrity pending state by a

subsequent SET INTEGRITY statement using the IMMEDIATE CHECKED

option.

Consider the data integrity implications of this option before using it. See the

“Notes” section below.

Notes

v Effects on tables in one of the restricted set integrity-related states:

– Use of INSERT, UPDATE, or DELETE is disallowed on a table that is in read

access state or in no access state. Furthermore, any statement that requires

Chapter 2. SQL Statements for Users 409

this type of modification to a table that is in such a state will be rejected. For

example, deletion of a row in a parent table that cascades to a dependent

table that is in the no access state is not allowed.

– Use of SELECT is disallowed on a table that is in the no access state.

Furthermore, any statement that requires read access to a table that is in the

no access state will be rejected.

– New constraints added to a table are normally enforced immediately.

However, if the table is in set integrity pending state, the checking of any

new constraints is deferred until the table is taken out of set integrity pending

state. If the table is in set integrity pending state, addition of a new constraint

places the table into set integrity pending no access state, because validity of

data is at risk.

– The CREATE INDEX statement cannot reference any table that is in read

access state or in no access state. Similarly, an ALTER TABLE statement to

add a primary key or a unique constraint cannot reference any table that is in

read access state or in no access state.

– The import utility is not allowed to operate on a table that is in read access

state or in no access state.

– The export utility is not allowed to operate on a table that is in no access

state, but is allowed to operate on a table that is in read access state. If a table

is in read access state, the export utility will only export the data that is in the

non-appended portion.

– Operations (like REORG, REDISTRIBUTE, update distribution key, update

multidimensional clustering key, update range clustering key, update table

partitioning key, and so on) that might involve data movement within a table

are not allowed on a table that is in any of the following states: read access,

no access, or no data movement.

– The load, backup, restore, update statistics, runstats, reorgchk, list history, and

rollforward utilities are allowed on a table that is in any of the following

states: full access, read access, no access, or no data movement.

– The ALTER TABLE, COMMENT, DROP TABLE, CREATE ALIAS, CREATE

TRIGGER, CREATE VIEW, GRANT, REVOKE, and SET INTEGRITY

statements can reference a table that is in any of the following states: full

access, read access, no access, or no data movement. However, they might

cause the table to be put into no access state.

– Packages, views, and any other objects that depend on a table that is in no

access state will return an error when the table is accessed at run time.

Packages that depend on a table that is in read access state will return an

error when an insert, update, or delete operation is attempted on the table at

run time.
The removal of violating rows by the SET INTEGRITY statement is not a delete

event. Therefore, triggers are never activated by a SET INTEGRITY statement.

Similarly, updating generated columns using the FORCE GENERATED option

does not activate triggers.

v Incremental processing will be used whenever the situation allows it, because it

is more efficient. The INCREMENTAL option is not needed in most cases. It is

needed, however, to ensure that integrity checks are indeed processed

incrementally. If the system detects that full processing is needed to ensure data

integrity, an error is returned (SQLSTATE 55019).

v Warning about the use of the IMMEDIATE UNCHECKED clause:

– This clause is intended to be used by utility programs, and its use by

application programs is not recommended. If there is data in the table that

410 Common Criteria Certification: Administration and User Documentation - Volume 2

does not meet the integrity specifications that were defined for the table, and

the IMMEDIATE UNCHECKED option is used, incorrect query results might

be returned.

The fact that the table was taken out of the set integrity pending state without

performing the required integrity processing will be recorded in the catalog

(the respective byte in the CONST_CHECKED column in the

SYSCAT.TABLES view will be set to ’U’). This indicates that the user has

assumed responsibility for data integrity with respect to the specific

constraints. This value remains unchanged until either:

- The table is put back into set integrity pending state (by referencing the

table in a SET INTEGRITY statement with the OFF option), at which time

’U’ values in the CONST_CHECKED column are changed to ’W’ values,

indicating that the user had previously assumed responsibility for data

integrity, and the system needs to verify the data.

- All unchecked constraints for the table are dropped.
The ’W’ state differs from the ’N’ state in that it records the fact that integrity

was previously checked by the user, but not yet by the system. If the user

issues the SET INTEGRITY ... IMMEDIATE CHECKED statement with the

NOT INCREMENTAL option, the system rechecks the whole table for data

integrity (or performs a full refresh on a materialized query table), and then

changes the ’W’ state to the ’Y’ state. If IMMEDIATE UNCHECKED is

specified, or if NOT INCREMENTAL is not specified, the ’W’ state is changed

back to the ’U’ state to record the fact that some data has still not been

verified by the system. In the latter case (when the NOT INCREMENTAL is

not specified), a warning is returned (SQLSTATE 01636).

If an underlying table’s integrity has been checked using the IMMEDIATE

UNCHECKED clause, the ’U’ values in the CONST_CHECKED column of the

underlying table will be propagated to the corresponding CONST_CHECKED

column of:

- Dependent immediate materialized query tables

- Dependent deferred materialized query tables

- Dependent staging tables
For a dependent immediate materialized query table, this propagation is done

whenever the underlying table is brought out of set integrity pending state,

and whenever the materialized query table is refreshed. For a dependent

deferred materialized query table, this propagation is done whenever the

materialized query table is refreshed. For dependent staging tables, this

propagation is done whenever the underlying table is brought out of set

integrity pending state. These propagated ’U’ values in the

CONST_CHECKED columns of dependent materialized query tables and

staging tables record the fact that these materialized query tables and staging

tables depend on some underlying table whose required integrity processing

has been bypassed using the IMMEDIATE UNCHECKED option.

For a materialized query table, the ’U’ value in the CONST_CHECKED

column that was propagated by the underlying table will remain until the

materialized query table is fully refreshed and none of its underlying tables

have a ’U’ value in their corresponding CONST_CHECKED column. After

such a refresh, the ’U’ value in the CONST_CHECKED column for the

materialized query table will be changed to ’Y’.

For a staging table, the ’U’ value in the CONST_CHECKED column that was

propagated by the underlying table will remain until the corresponding

Chapter 2. SQL Statements for Users 411

deferred materialized query table of the staging table is refreshed. After such

a refresh, the ’U’ value in the CONST_CHECKED column for the staging

table will be changed to ’Y’.

– If a child table and its parent table are checked in the same SET INTEGRITY

statement with the IMMEDIATE CHECKED option, and the parent table

requires full checking of its constraints, the child table will have its foreign

key constraints checked, independently of whether or not the child table has a

’U’ value in the CONST_CHECKED column for foreign key constraints.
v After appending data using LOAD INSERT or ALTER TABLE ATTACH, the SET

INTEGRITY statement with the IMMEDIATE CHECKED option checks the table

for constraints violations. The system determines whether incremental

processing on the table is possible. If so, only the appended portion is checked

for integrity violations. If not, the system checks the whole table for integrity

violations.

v Consider the statement:

 SET INTEGRITY FOR T IMMEDIATE CHECKED

Situations in which the system will require a full refresh, or will check the whole

table for integrity (the INCREMENTAL option cannot be specified) are:

– When new constraints have been added to T itself while it is in the set

integrity pending state

– When a LOAD REPLACE operation against T, it parents, or its underlying

tables has taken place

– When the NOT LOGGED INITIALLY WITH EMPTY TABLE option has been

activated after the last integrity check on T, its parents, or its underlying

tables

– The cascading effect of full processing, when any parent of T (or underlying

table, if T is a materialized query table or a staging table) has been checked

for integrity non-incrementally

– If the table space containing the table or its parent (or underlying table of a

materialized query table or a staging table) has been rolled forward to a point

in time, and the table and its parent (or underlying table if the table is a

materialized query table or a staging table) reside in different table spaces

– When T is a materialized query table, and a LOAD REPLACE or LOAD

INSERT operation directly into T has taken place after the last refresh
v If the conditions for full processing described in the previous bullet are not

satisfied, the system will attempt to check only the appended portion for

integrity, or perform an incremental refresh (if it is a materialized query table)

when the user does not specify the NOT INCREMENTAL option for the

statement SET INTEGRITY FOR T IMMEDIATE CHECKED.

v If an error occurs during integrity processing, all the effects of the processing

(including deleting from the original and inserting into the exception tables) will

be rolled back.

v If a SET INTEGRITY statement issued with the FORCE GENERATED option

fails because of a lack of log space, increase available active log space and

reissue the SET INTEGRITY statement. Alternatively, use the SET INTEGRITY

statement with the GENERATED COLUMN and IMMEDIATE UNCHECKED

options to bypass generated column checking for the table. Then, issue a SET

INTEGRITY statement with the IMMEDIATE CHECKED option and without the

FORCE GENERATED option to check the table for other integrity violations (if

applicable) and to bring it out of set integrity pending state. After the table is

out of the set integrity pending state, the generated columns can be updated to

their default (generated) values by assigning them to the keyword DEFAULT in

412 Common Criteria Certification: Administration and User Documentation - Volume 2

an UPDATE statement. This is accomplished by using either multiple searched

update statements based on ranges (each followed by a commit), or a

cursor-based approach using intermittent commits. A “with hold” cursor should

be used if locks are to be retained after intermittent commits using the

cursor-based approach.

v A table that was put into set integrity pending state using the CASCADE

DEFERRED option of the SET INTEGRITY statement or the LOAD command, or

through the ALTER TABLE statement with the ATTACH clause, and that is

checked for integrity violations using the IMMEDIATE CHECKED option of the

SET INTEGRITY statement, will have its descendent foreign key tables,

descendent immediate materialized query tables, and descendent immediate

staging tables put in set integrity pending state, as required:

– If the entire table is checked for integrity violations, its descendent foreign

key tables, descendent immediate materialized query tables, and descendent

immediate staging tables will be put in set integrity pending state.

– If the table is checked for integrity violations incrementally, its descendent

immediate materialized query tables and staging tables will be put in set

integrity pending state, and its descendent foreign key tables will remain in

their original states.

– If the table requires no checking at all, its descendent immediate materialized

query tables, descendent staging tables, and descendent foreign key tables

will remain in their original states.
v A table that was put in set integrity pending state using the CASCADE

DEFERRED option (of the SET INTEGRITY statement or the LOAD command),

and that is brought out of set integrity pending state using the IMMEDIATE

UNCHECKED option of the SET INTEGRITY statement, will have its descendent

foreign key tables, descendent immediate materialized query tables, and

descendent immediate staging tables put in set integrity pending state, as

required:

– If the table has been loaded using the REPLACE mode, its descendent foreign

key tables, descendent immediate materialized query tables, and descendent

immediate staging tables will be put in set integrity pending state.

– If the table has been loaded using the INSERT mode, its descendent

immediate materialized query tables and staging tables will be put in set

integrity pending state, and its descendent foreign key tables will remain in

their original states.

– If the table has not been loaded, its descendent immediate materialized query

tables, descendent staging tables, and its descendent foreign key tables will

remain in their original states.
v SET INTEGRITY is usually a long running statement. In light of this, to reduce

the risk of a rollback of the entire statement because of a lock timeout, you can

issue the SET CURRENT LOCK TIMEOUT statement with the WAIT option

before executing the SET INTEGRITY statement, and then reset the special

register to its previous value after the transaction commits. Note, however, that

the CURRENT LOCK TIMEOUT special register only impacts a specific set of

lock types.

v If you use the ALLOW QUERY OPTIMIZATION USING REFRESH DEFERRED

TABLES WITH REFRESH AGE ANY option, ensure that the maintenance order

is correct for REFRESH DEFERRED materialized query tables. For example,

consider two materialized query tables, MQT1 and MQT2, whose materialized

queries share the same underlying tables. The materialized query for MQT2 can

be calculated using MQT1, instead of the underlying tables. If separate

statements are used to maintain these two materialized query tables, and MQT2

Chapter 2. SQL Statements for Users 413

is maintained first, the system might choose to use the contents of MQT1, which

has not yet been maintained, to maintain MQT2. In this case, MQT1 would

contain current data, but MQT2 could still contain stale data, even though both

were maintained at almost the same time. The correct maintenance order, if two

SET INTEGRITY statements are used instead of one, is to maintain MQT1 first.

v When using the SET INTEGRITY statement to perform integrity processing on a

base table that has been loaded or attached, it is recommended that you process

its dependent REFRESH IMMEDIATE materialized query tables and its

PROPAGATE IMMEDIATE staging tables in the same SET INTEGRITY

statement to avoid putting these dependent tables in set integrity pending no

access state at the end of SET INTEGRITY processing. Note that for base tables

that have a large number of dependent REFRESH IMMEDIATE materialized

query tables and PROPAGATE IMMEDIATE staging tables, memory constraints

might make it impossible to process all of the dependents in the same statement

as the base table.

v If the FORCE GENERATED or the GENERATE IDENTITY option is specified,

and the column that is generated is part of a unique index, the SET INTEGRITY

statement returns an error (SQLSTATE 23505) and rolls back if it detects

duplicate keys in the unique index. This error is returned even if there is an

exception table for the table being processed.

This scenario can occur under the following circumstances:

– The SET INTEGRITY statement runs after a LOAD command against the

table, and the GENERATEDOVERRIDE or the IDENTITYOVERRIDE file type

modifier is specified during the load operation. To prevent this scenario, it is

recommended that you use the GENERATEDIGNORE or the

GENERATEDMISSING file type modifier instead of GENERATEDOVERRIDE,

and that you use the IDENTITYIGNORE or the IDENTITYMISSING modifier

instead of IDENTITYOVERRIDE. Using the recommended modifiers will

prevent the need for any generated by expression column or identity column

processing during SET INTEGRITY statement execution.

– The SET INTEGRITY statement is run after an ALTER TABLE statement that

alters the expression of a generated by expression column.
To bring a table out of the set integrity pending state after encountering such a

scenario:

– Do not use the FORCE GENERATED or the GENERATE IDENTITY option to

regenerate the column values. Instead, use the IMMEDIATE CHECKED

option in conjunction with the FOR EXCEPTION option to move any rows

that violate the generated column expression to an exception table. Then,

re-insert the rows into the table from the exception table, which will generate

the correct expression and perform unique key checking. This prevents

having to reprocess the entire table, because only those rows that violated the

generated column expression will need to be processed again.

– If the table being processed has attached partitions, detach those partitions

before performing the actions that are described in the previous bullet. Then,

re-attach the partitions and execute a SET INTEGRITY statement to process

integrity on the attached partitions separately.
v If a protected table is specified for the SET INTEGRITY statement along with an

exception table, all of the following table criteria must be met; otherwise, an

error is returned (SQLSTATE 428A5):

– The tables must be protected by the same security policy.

– If a column in the protected table has data type DB2SECURITYLABEL, the

corresponding column in the exception table must also have data type

DB2SECURITYLABEL.

414 Common Criteria Certification: Administration and User Documentation - Volume 2

– If a column in the protected table is protected by a security label, the

corresponding column in the exception table must also be protected by the

same security label.
v Compatibilities: For compatibility with previous versions of DB2:

– SET CONSTRAINTS can be specified in place of SET INTEGRITY

– SUMMARY can be specified in place of MATERIALIZED QUERY

Examples

Example 1: The following is an example of a query that provides information about

the set integrity pending state and the set integrity-related access restriction states

of tables. SUBSTR is used to extract individual bytes of the CONST_CHECKED

column of SYSCAT.TABLES. The first byte represents foreign key constraints; the

second byte represents check constraints; the fifth byte represents materialized

query table integrity; the sixth byte represents generated column constraints; the

seventh byte represents staging table integrity; and the eighth byte represents data

partitioning constraints. STATUS gives the set integrity pending state, and

ACCESS_MODE gives the set integrity-related access restriction state.

 SELECT TABNAME, STATUS, ACCESS_MODE,

 SUBSTR(CONST_CHECKED,1,1) AS FK_CHECKED,

 SUBSTR(CONST_CHECKED,2,1) AS CC_CHECKED,

 SUBSTR(CONST_CHECKED,5,1) AS MQT_CHECKED,

 SUBSTR(CONST_CHECKED,6,1) AS GC_CHECKED,

 SUBSTR(CONST_CHECKED,7,1) AS STG_CHECKED,

 SUBSTR(CONST_CHECKED,8,1) AS DP_CHECKED

 FROM SYSCAT.TABLES

Example 2: Put the PARENT table in set integrity pending no access state, and

immediately cascade the set integrity pending state to its descendants.

 SET INTEGRITY FOR PARENT OFF

 NO ACCESS CASCADE IMMEDIATE

Example 3: Put the PARENT table in set integrity pending read access state without

immediately cascading the set integrity pending state to its descendants.

 SET INTEGRITY FOR PARENT OFF

 READ ACCESS CASCADE DEFERRED

Example 4: Check integrity for a table named FACT_TABLE. If there are no

integrity violations detected, the table is brought out of set integrity pending state.

If any integrity violations are detected, the entire statement is rolled back, and the

table remains in set integrity pending state.

 SET INTEGRITY FOR FACT_TABLE IMMEDIATE CHECKED

Example 5: Check integrity for the SALES and PRODUCTS tables, and move the

rows that violate integrity into exception tables named SALES_EXCEPTIONS and

PRODUCTS_EXCEPTIONS. Both the SALES and PRODUCTS tables are brought

out of set integrity pending state, whether or not there are any integrity violations.

 SET INTEGRITY FOR SALES, PRODUCTS IMMEDIATE CHECKED

 FOR EXCEPTION IN SALES USE SALES_EXCEPTIONS,

 IN PRODUCTS USE PRODUCTS_EXCEPTIONS

Example 6: Enable FOREIGN KEY constraint checking in the MANAGER table, and

CHECK constraint checking in the EMPLOYEE table, to be bypassed with the

IMMEDIATE UNCHECKED option.

 SET INTEGRITY FOR MANAGER FOREIGN KEY,

 EMPLOYEE CHECK IMMEDIATE UNCHECKED

Chapter 2. SQL Statements for Users 415

Example 7: Add a check constraint and a foreign key to the EMP_ACT table, using

two ALTER TABLE statements. The SET INTEGRITY statement with the OFF

option is used to put the table in set integrity pending state, so that the constraints

are not checked immediately upon execution of the two ALTER TABLE statements.

The single SET INTEGRITY statement with the IMMEDIATE CHECKED option is

used to check both of the added constraints during a single pass through the table.

 SET INTEGRITY FOR EMP_ACT OFF;

 ALTER TABLE EMP_ACT ADD CHECK

 (EMSTDATE <= EMENDATE);

 ALTER TABLE EMP_ACT ADD FOREIGN KEY

 (EMPNO) REFERENCES EMPLOYEE;

 SET INTEGRITY FOR EMP_ACT IMMEDIATE CHECKED

 FOR EXCEPTION IN EMP_ACT USE EMP_ACT_EXCEPTIONS

Example 8: Update generated columns with the correct values.

 SET INTEGRITY FOR SALES IMMEDIATE CHECKED

 FORCE GENERATED

Example 9: Append (using LOAD INSERT) from different sources into an

underlying table (SALES) of a REFRESH IMMEDIATE materialized query table

(SALES_SUMMARY). Check SALES incrementally for data integrity, and refresh

SALES_SUMMARY incrementally. In this scenario, integrity checking for SALES

and refreshing of SALES_SUMMARY are incremental, because the system chooses

incremental processing. The ALLOW READ ACCESS option is used on the SALES

table to allow concurrent reads of existing data while integrity checking of the

loaded portion of the table is taking place.

 LOAD FROM 2000_DATA.DEL OF DEL

 INSERT INTO SALES ALLOW READ ACCESS;

 LOAD FROM 2001_DATA.DEL OF DEL

 INSERT INTO SALES ALLOW READ ACCESS;

 SET INTEGRITY FOR SALES ALLOW READ ACCESS IMMEDIATE CHECKED

 FOR EXCEPTION IN SALES USE SALES_EXCEPTIONS;

 REFRESH TABLE SALES_SUMMARY;

Example 10: Attach a new partition to a data partitioned table named SALES.

Incrementally check for constraints violations in the attached data of the SALES

table and incrementally refresh the dependent SALES_SUMMARY table. The

ALLOW WRITE ACCESS option is used on both tables to allow concurrent

updates while integrity checking is taking place.

 ALTER TABLE SALES

 ATTACH PARTITION STARTING (100) ENDING (200)

 FROM SOURCE;

 SET INTEGRITY FOR SALES ALLOW WRITE ACCESS, SALES_SUMMARY ALLOW WRITE ACCESS

 IMMEDIATE CHECKED FOR EXCEPTION IN SALES

 USE SALES_EXCEPTIONS;

Example 11: Detach a partition from a data partitioned table named SALES.

Incrementally refresh the dependent SALES_SUMMARY table.

 ALTER TABLE SALES

 DETACH PARTITION 2000_PART INTO ARCHIVE_TABLE;

 SET INTEGRITY FOR SALES_SUMMARY

 IMMEDIATE CHECKED;

Example 12: Bring a new user-maintained materialized query table out of set

integrity pending state.

 CREATE TABLE YEARLY_SALES

 AS (SELECT YEAR, SUM(SALES)AS SALES

 FROM FACT_TABLE GROUP BY YEAR)

416 Common Criteria Certification: Administration and User Documentation - Volume 2

DATA INITIALLY DEFERRED REFRESH DEFERRED MAINTAINED BY USER

 SET INTEGRITY FOR YEARLY_SALES

 ALL IMMEDIATE UNCHECKED

SET SCHEMA

The SET SCHEMA statement changes the value of the CURRENT SCHEMA special

register. It is not under transaction control. If the package is bound with the

DYNAMICRULES BIND option, this statement does not affect the qualifier used

for unqualified database object references.

Invocation

The statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
 CURRENT =

SET

SCHEMA

schema-name

USER

SESSION_USER

SYSTEM_USER

CURRENT_USER

host-variable

string-constant

��

Description

schema-name

This one-part name identifies a schema that exists at the application server. The

length must not exceed 128 bytes (SQLSTATE 42815). No validation that the

schema exists is made at the time that the schema is set. If a schema-name is

misspelled, the error will not be caught, and that could affect the way that

subsequent SQL statements execute.

USER

The value in the USER special register.

SESSION_USER

The value in the SESSION_USER special register.

SYSTEM_USER

The value in the SYSTEM_USER special register.

CURRENT_USER

The value in the CURRENT_USER special register.

host-variable

A variable of type CHAR or VARCHAR. The length of the contents of the

host-variable must not exceed 128 bytes (SQLSTATE 42815). It cannot be set to

null. If host-variable has an associated indicator variable, the value of that

indicator variable must not indicate a null value (SQLSTATE 42815).

Chapter 2. SQL Statements for Users 417

The characters of the host-variable must be left justified. When specifying the

schema-name with a host-variable, all characters must be specified in the exact

case intended as there is no conversion to uppercase characters.

string-constant

A character string constant with a maximum length of 128 bytes.

Rules

v If the value specified does not conform to the rules for a schema-name, an error

(SQLSTATE 3F000) is raised.

v The value of the CURRENT SCHEMA special register is used as the schema

name in all dynamic SQL statements, with the exception of the CREATE

SCHEMA statement, where an unqualified reference to a database object exists.

v The QUALIFIER bind option specifies the schema name for use as the qualifier

for unqualified database object names in static SQL statements.

Notes

v The initial value of the CURRENT SCHEMA special register is equivalent to

USER.

v Setting the CURRENT SCHEMA special register does not effect the CURRENT

PATH special register. Hence, the CURRENT SCHEMA will not be included in

the SQL path and functions, procedures and user-defined type resolution may

not find these objects. To include the current schema value in the SQL path,

whenever the SET SCHEMA statement is issued, also issue the SET PATH

statement including the schema name from the SET SCHEMA statement.

v CURRENT SQLID is accepted as a synonym for CURRENT SCHEMA and the

effect of a SET CURRENT SQLID statement will be identical to that of a SET

CURRENT SCHEMA statement. No other effects, such as statement

authorization changes, will occur.

Examples

Example 1: The following statement sets the CURRENT SCHEMA special register.

 SET SCHEMA RICK

Example 2: The following example retrieves the current value of the CURRENT

SCHEMA special register into the host variable called CURSCHEMA.

 EXEC SQL VALUES (CURRENT SCHEMA) INTO :CURSCHEMA;

The value would be RICK, set by the previous example.

SQL queries

A query specifies a result table. A query is a component of certain SQL statements.

The three forms of a query are:

v subselect

v fullselect

v select-statement.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

418 Common Criteria Certification: Administration and User Documentation - Volume 2

v For each table or view identified in the query, one of the following:

– SELECT privilege on the table or view

– CONTROL privilege on the table or view
v DATAACCESS authority

For each global variable used as an expression in the query, the privileges held by

the authorization ID of the statement must include one of the following:

v READ privilege on the global variable that is not defined in a module

v EXECUTE privilege on the module of the global variable that is defined in a

module

If the query contains an SQL data change statement, the authorization

requirements of that statement also apply to the query.

Group privileges, with the exception of PUBLIC, are not checked for queries that

are contained in static SQL statements or DDL statements.

For nicknames, authorization requirements of the data source for the object

referenced by the nickname are applied when the query is processed. The

authorization ID of the statement may be mapped to a different authorization ID at

the data source.

subselect

�� select-clause from-clause

where-clause

group-by-clause
 �

�
having-clause

order-by-clause

fetch-first-clause
 �

�
isolation-clause

 ��

The subselect is a component of the fullselect.

A subselect specifies a result table derived from the tables, views or nicknames

identified in the FROM clause. The derivation can be described as a sequence of

operations in which the result of each operation is input for the next. (This is only

a way of describing the subselect. The method used to perform the derivation can

be quite different from this description. If portions of the subselect do not actually

need to be executed for the correct result to be obtained, they might or might not

be executed.)

The authorization for a subselect is described in the Authorization section in ″SQL

queries″.

The clauses of the subselect are processed in the following sequence:

1. FROM clause

2. WHERE clause

3. GROUP BY clause

4. HAVING clause

5. SELECT clause

6. ORDER BY clause

Chapter 2. SQL Statements for Users 419

|

|

|

|

|
|

|

|
|

|
|

|

|

|||||||||||||||||||||
|

|
||||||||||||||||||||||||
|

|
||||||||||||

|

|

|
|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

7. FETCH FIRST clause

A subselect that contains an ORDER BY or FETCH FIRST clause cannot be

specified:

v In the outermost fullselect of a view.

v In a materialized query table.

v Unless the subselect is enclosed in parenthesis.

For example, the following is not valid (SQLSTATE 428FJ):

SELECT * FROM T1

 ORDER BY C1

UNION

SELECT * FROM T2

 ORDER BY C1

The following example is valid:

(SELECT * FROM T1

 ORDER BY C1)

UNION

(SELECT * FROM T2

 ORDER BY C1)

Note: An ORDER BY clause in a subselect does not affect the order of the rows

returned by a query. An ORDER BY clause only affects the order of the rows

returned if it is specified in the outermost fullselect.

select-clause

��

SELECT
 ALL

DISTINCT

�

*

,

expression

AS

new-column-name

exposed-name.*

��

The SELECT clause specifies the columns of the final result table, R. The column

values are produced by the application of the select list to R. The select list is the

names or expressions specified in the SELECT clause, and R is the result of the

previous operation of the subselect. For example, if the only clauses specified are

SELECT, FROM, and WHERE, R is the result of that WHERE clause.

ALL

Retains all rows of the final result table, and does not eliminate redundant

duplicates. This is the default.

DISTINCT

Eliminates all but one of each set of duplicate rows of the final result table. If

DISTINCT is used, no string column of the result table can be a LOB type,

distinct type based on LOB, or structured type. DISTINCT may be used more

than once in a subselect. This includes SELECT DISTINCT, the use of

DISTINCT in an aggregate function of the select list or HAVING clause, and

subqueries of the subselect.

 Two rows are duplicates of one another only if each value in the first is equal

to the corresponding value in the second. For determining duplicates, two null

values are considered equal, and two different decimal floating-point

420 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|
|

|

|

|

|

|
|
|
|
|

|

|
|
|
|
|

|
|
|

|

|||

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

representations of the same number are considered equal. For example, -0 is

equal to +0 and 2.0 is equal to 2.00. Each of the decimal floating-point special

values are also considered equal: -NAN equals -NAN, -SNAN equals -SNAN,

-INFINITY equals -INFINITY, INFINITY equals INFINITY, SNAN equals

SNAN, and NAN equals NAN.

When the data type of a column is decimal floating-point, and multiple

representations of the same number exist in the column, the particular value

that is returned for a SELECT DISTINCT can be any one of the representations

in the column. For more information, see “Numeric comparisons” on page 733.

For compatibility with other SQL implementations, UNIQUE can be specified

as a synonym for DISTINCT.

Select list notation

* Represents a list of names that identify the columns of table R, excluding any

columns defined as IMPLICITLY HIDDEN. The first name in the list identifies

the first column of R, the second name identifies the second column of R, and

so on.

 The list of names is established when the program containing the SELECT

clause is bound. Hence * (the asterisk) does not identify any columns that have

been added to a table after the statement containing the table reference has

been bound.

expression

Specifies the values of a result column. Can be any expression that is a valid

SQL language element, but commonly includes column names. Each column

name used in the select list must unambiguously identify a column of R. The

result type of the expression cannot be a row type (SQLSTATE 428H2).

new-column-name or AS new-column-name

Names or renames the result column. The name must not be qualified and

does not have to be unique. Subsequent usage of column-name is limited

as follows:

v A new-column-name specified in the AS clause can be used in the

order-by-clause, provided the name is unique.

v A new-column-name specified in the AS clause of the select list cannot be

used in any other clause within the subselect (where-clause,

group-by-clause or having-clause).

v A new-column-name specified in the AS clause cannot be used in the

update-clause.

v A new-column-name specified in the AS clause is known outside the

fullselect of nested table expressions, common table expressions and

CREATE VIEW.

name.*

Represents the list of names that identify the columns of the result table

identified by exposed-name, excluding any columns defined as IMPLICITLY

HIDDEN. The exposed-name may be a table name, view name, nickname, or

correlation name, and must designate a table, view or nickname named in the

FROM clause. The first name in the list identifies the first column of the table,

view or nickname, the second name in the list identifies the second column of

the table, view or nickname, and so on.

 The list of names is established when the statement containing the SELECT

clause is bound. Therefore, * does not identify any columns that have been

added to a table after the statement has been bound.

Chapter 2. SQL Statements for Users 421

|
|
|
|
|

|
|
|
|

|
|

|

||
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

The number of columns in the result of SELECT is the same as the number of

expressions in the operational form of the select list (that is, the list established

when the statement is prepared), and cannot exceed 500 for a 4K page size or

1012 for an 8K, 16K, or 32K page size.

Limitations on string columns

For limitations on the select list, see “Restrictions Using Varying-Length Character

Strings”.

Applying the select list

Some of the results of applying the select list to R depend on whether or not

GROUP BY or HAVING is used. The results are described in two separate lists.

If GROUP BY or HAVING is used

v An expression X (not an aggregate function) used in the select list must have a

GROUP BY clause with:

– a grouping-expression in which each expression or column-name

unambiguously identifies a column of R (see “group-by-clause” on page 435)

or

– each column of R referenced in X as a separate grouping-expression.
v The select list is applied to each group of R, and the result contains as many

rows as there are groups in R. When the select list is applied to a group of R,

that group is the source of the arguments of the aggregate functions in the select

list.

If neither GROUP BY nor HAVING is used

v Either the select list must not include any aggregate functions, or each

column-name in the select list must be specified within an aggregate function or

must be a correlated column reference.

v If the select does not include aggregate functions, then the select list is applied

to each row of R and the result contains as many rows as there are rows in R.

v If the select list is a list of aggregate functions, then R is the source of the

arguments of the functions and the result of applying the select list is one row.

In either case the nth column of the result contains the values specified by

applying the nth expression in the operational form of the select list.

Null attributes of result columns

Result columns do not allow null values if they are derived from:

v A column that does not allow null values

v A constant

v The COUNT or COUNT_BIG function

v A host variable that does not have an indicator variable

v A scalar function or expression that does not include an operand that allows

nulls

Result columns allow null values if they are derived from:

v Any aggregate function except COUNT or COUNT_BIG

v A column that allows null values

422 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|

|

|
|

|

|
|

|

|
|

|
|
|

|

|
|
|
|

|

|
|
|

|
|

|
|

|
|

|

|

|

|

|

|

|
|

|

|

|

v A scalar function or expression that includes an operand that allows nulls

v A NULLIF function with arguments containing equal values

v A host variable that has an indicator variable, an SQL parameter, an SQL

variable, or a global variable

v A result of a set operation if at least one of the corresponding items in the select

list is nullable

v An arithmetic expression or view column that is derived from an arithmetic

expression and the database is configured with DFT_SQLMATHWARN set to

Yes

v A scalar subselect

v A dereference operation

v A GROUPING SETS grouping-expression

Names of result columns

v If the AS clause is specified, the name of the result column is the name specified

on the AS clause.

v If the AS clause is not specified and a column list is specified in the correlation

clause, the name of the result column is the corresponding name in the

correlation column list.

v If neither an AS clause nor a column list in the correlation clause is specified

and the result column is derived only from a single column (without any

functions or operators), then the result column name is the unqualified name of

that column.

v If neither an AS clause nor a column list in the correlation clause is specified

and the result column is derived only from a single SQL variable or SQL

parameter (without any functions or operators), then the result column name is

the unqualified name of that SQL variable or SQL parameter.

v If neither an AS clause nor a column list in the correlation clause is specified

and the result column is derived using a dereference operation, then the result

column name is the unqualified name of the target column of the dereference

operation.

v All other result column names are unnamed. The system assigns temporary

numbers (as character strings) to these columns.

Data types of result columns

Each column of the result of SELECT acquires a data type from the expression

from which it is derived.

 When the expression is ... The data type of the result column is ...

the name of any numeric column the same as the data type of the column,

with the same precision and scale for

DECIMAL columns, or the same precision for

DECFLOAT columns.

a constant the same as the data type of the constant.

the name of any numeric variable the same as the data type of the variable,

with the same precision and scale for

DECIMAL variables, or the same precision

for DECFLOAT variables.

the name of any string column the same as the data type of the column,

with the same length attribute.

Chapter 2. SQL Statements for Users 423

|

|

|
|

|
|

|
|
|

|

|

|

|

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|

|||

||
|
|
|

||

||
|
|
|

||
|

When the expression is ... The data type of the result column is ...

the name of any string variable the same as the data type of the variable,

with the same length attribute; if the data

type of the variable is not identical to an SQL

data type (for example, a NUL-terminated

string in C), the result column is a

varying-length string.

the name of a datetime column the same as the data type of the column.

the name of a user-defined type column the same as the data type of the column.

the name of a reference type column the same as the data type of the column.

from-clause

��

�

 ,

FROM

table-reference

��

The FROM clause specifies an intermediate result table.

If only one table-reference is specified, the intermediate result table is simply the

result of that table-reference. If more than one table-reference is specified, the

intermediate result table consists of all possible combinations of the rows of the

specified table-reference (the Cartesian product). Each row of the result is a row

from the first table-reference concatenated with a row from the second table-reference,

concatenated in turn with a row from the third, and so on. The number of rows in

the result is the product of the number of rows in all the individual table

references. For a description of table-reference, see “table-reference.”

table-reference

��

�

 table-name

correlation-clause

tablesample-clause

nickname

view-name

correlation-clause

ONLY

(

table-name

)

OUTER

view-name

TABLE

(

function-name

(

)

)

,

correlation-clause

expression

(1)

xmltable-expression

correlation-clause

nested-table-expression

correlation-clause

data-change-table-reference

correlation-clause

collection-derived-table

correlation-clause

joined-table

 ��

correlation-clause:

�

 AS

correlation-name

,

(

column-name

)

424 Common Criteria Certification: Administration and User Documentation - Volume 2

||

||
|
|
|
|
|

||

||

||
|

|

||||||||||||||||

|

|

|
|
|
|
|
|
|
|

|

|||

|

|

|||||||||||||||||||||||||||||||

|

tablesample-clause:

 TABLESAMPLE BERNOULLI

SYSTEM
 (numeric-expression1) �

�
REPEATABLE

(

numeric-expression2

)

nested-table-expression:

 (fullselect)

(2)

LATERAL

continue-handler

WITHIN

continue-handler:

�

 ,

RETURN DATA UNTIL

specific-condition-value

specific-condition-value:

�

 VALUE

FEDERATED

SQLSTATE

string-constant

,

SQLCODE

integer-constant

data-change-table-reference:

 FINAL TABLE (insert-statement)

NEW

FINAL

TABLE

(

searched-update-statement

)

NEW

OLD

OLD TABLE

(

searched-delete-statement

)

collection-derived-table:

 UNNEST-table-function

(3)

WITH ORDINALITY

Notes:

1 An XMLTABLE expression can be part of a table-reference. In this case,

subexpressions within the XMLTABLE expression are in-scope of prior range

variables in the FROM clause. For more information, see the description of

“XMLTABLE”.

2 TABLE can be specified in place of LATERAL.

3 WITH ORDINALITY can be specified only if the argument to the UNNEST

Chapter 2. SQL Statements for Users 425

|

||||||||||||||||||||||
|

|
||||||||||||||||||

|

|

|||||||||||||||||||||||||

|

|

||||||||||||||||||||

|

|

||||||||||||||||||||||||||||||||

|

|

||

|

|

||||||||||||||||

|

|

||
|
|
|

||

||

table function is one or more ordinary array variables; an associative array

variable cannot be specified (SQLSTATE 428HT).

Each table-name, view-name or nickname specified as a table-reference must identify

an existing table, view or nickname at the application server or the table-name of a

common table expression defined preceding the fullselect containing the

table-reference. If the table-name references a typed table, the name denotes the

UNION ALL of the table with all its subtables, with only the columns of the

table-name. Similarly, if the view-name references a typed view, the name denotes the

UNION ALL of the view with all its subviews, with only the columns of the

view-name.

The use of ONLY(table-name) or ONLY(view-name) means that the rows of the

proper subtables or subviews are not included. If the table-name used with ONLY

does not have subtables, then ONLY(table-name) is equivalent to specifying

table-name. If the view-name used with ONLY does not have subviews, then

ONLY(view-name) is equivalent to specifying view-name.

The use of OUTER(table-name) or OUTER(view-name) represents a virtual table. If

the table-name or view-name used with OUTER does not have subtables or

subviews, then specifying OUTER is equivalent to not specifying OUTER.

OUTER(table-name) is derived from table-name as follows:

v The columns include the columns of table-name followed by the additional

columns introduced by each of its subtables (if any). The additional columns are

added on the right, traversing the subtable hierarchy in depth-first order.

Subtables that have a common parent are traversed in creation order of their

types.

v The rows include all the rows of table-name and all the rows of its subtables.

Null values are returned for columns that are not in the subtable for the row.

The previous points also apply to OUTER(view-name), substituting view-name for

table-name and subview for subtable.

The use of ONLY or OUTER requires the SELECT privilege on every subtable of

table-name or subview of view-name.

Each function-name together with the types of its arguments, specified as a table

reference must resolve to an existing table function at the application server.

A fullselect in parentheses is called a nested table expression.

A joined-table specifies an intermediate result set that is the result of one or more

join operations. For more information, see “joined-table” on page 433.

The exposed names of all table references should be unique. An exposed name is:

v A correlation-name

v A table-name that is not followed by a correlation-name

v A view-name that is not followed by a correlation-name

v A nickname that is not followed by a correlation-name

v An alias-name that is not followed by a correlation-name

If a correlation-clause does not follow a function-name reference, xmltable-expression,

nested table expression, or data-change-table-reference, there is no exposed name for

that table reference.

426 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|

|
|

|

|

|

|

|

|

|
|
|

Each correlation-name is defined as a designator of the immediately preceding

table-name, view-name, nickname, function-name reference, xmltable-expression, nested

table expression, or data-change-table-reference. Any qualified reference to a column

must use the exposed name. If the same table name, view or nickname name is

specified twice, at least one specification should be followed by a correlation-name.

The correlation-name is used to qualify references to the columns of the table, view

or nickname. When a correlation-name is specified, column-names can also be

specified to give names to the columns of the table reference. If the

correlation-clause does not include column-names, the exposed column names are

determined as follows:.

v Column names of the referenced table, view, or nickname when the table-reference

is a table-name, view-name, nickname, or alias-name

v Column names specified in the RETURNS clause of the CREATE FUNCTION

statement when the table-reference is a function-name reference

v Column names specified in the COLUMNS clause of the xmltable-expression when

the table-reference is an xmltable-expression

v Column names exposed by the fullselect when the table-reference is a

nested-table-expression

v Column names from the target table of the data change statement, along with

any defined INCLUDE columns when the table-reference is a

data-change-table-reference

In general, collection-derived tables, table functions, and nested table expressions

can be specified on any from-clause. Columns from the table functions, nested

table expressions, or collection-derived tables can be referenced in the select list

and in the rest of the subselect using the correlation name. The scope of this

correlation name is the same as correlation names for other tables, views, or

nicknames in the FROM clause. A nested table expression can be used:

v In place of a view to avoid creating the view (when general use of the view is

not required)

v When the desired result table is based on host variables

A collection-derived-table can be used to convert the elements of an array into values

of a column in separate rows. If WITH ORDINALITY is specified, an extra column

of data type INTEGER is appended. This column contains the position of the

element in the array. The columns can be referenced in the select list and the rest

of the subselect by using the names specified for the columns in the

correlation-clause. The collection-derived-table clause can only be used in a context

where arrays are supported (SQLSTATE 42887). See the “UNNEST table function”

for details.

An expression in the select list of a nested table expression that is referenced

within, or is the target of, a data change statement within a fullselect is only valid

when it does not include:

v A function that reads or modifies SQL data

v A function that is non-deterministic

v A function that has external action

v An OLAP function

If a view is referenced directly in, or as the target of a nested table expression in a

data change statement within a FROM clause, the view must either be symmetric

(have WITH CHECK OPTION specified) or satisfy the restriction for a WITH

CHECK OPTION view.

Chapter 2. SQL Statements for Users 427

|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|
|
|
|

If the target of a data change statement within a FROM clause is a nested table

expression, the modified rows are not requalified, WHERE clause predicates are

not re-evaluated, and ORDER BY or FETCH FIRST operations are not redone.

The optional tablesample-clause can be used to obtain a random subset (a sample)

of the rows from the specified table-name, rather than the entire contents of that

table-name, for this query. This sampling is in addition to any predicates that are

specified in the where-clause. Unless the optional REPEATABLE clause is specified,

each execution of the query will usually yield a different sample, except in

degenerate cases where the table is so small relative to the sample size that any

sample must return the same rows. The size of the sample is controlled by the

numeric-expression1 in parentheses, representing an approximate percentage (P) of

the table to be returned. The method by which the sample is obtained is specified

after the TABLESAMPLE keyword, and can be either BERNOULLI or SYSTEM. For

both methods, the exact number of rows in the sample may be different for each

execution of the query, but on average should be approximately P percent of the

table, before any predicates further reduce the number of rows.

The table-name must be a stored table. It can be a materialized query table (MQT)

name, but not a subselect or table expression for which an MQT has been defined,

because there is no guarantee that the database manager will route to the MQT for

that subselect.

Semantically, sampling of a table occurs before any other query processing, such as

applying predicates or performing joins. Repeated accesses of a sampled table

within a single execution of a query (such as in a nested-loop join or a correlated

subquery) will return the same sample. More than one table may be sampled in a

query.

BERNOULLI sampling considers each row individually. It includes each row in the

sample with probability P/100 (where P is the value of numeric-expression1), and

excludes each row with probability 1 - P/100, independently of the other rows. So

if the numeric-expression1 evaluated to the value 10, representing a ten percent

sample, each row would be included with probability 0.1, and excluded with

probability 0.9.

SYSTEM sampling permits the database manager to determine the most efficient

manner in which to perform the sampling. In most cases, SYSTEM sampling

applied to a table-name means that each page of table-name is included in the

sample with probability P/100, and excluded with probability 1 - P/100. All rows

on each page that is included qualify for the sample. SYSTEM sampling of a

table-name generally executes much faster than BERNOULLI sampling, because

fewer data pages need to be retrieved; however, it can often yield less accurate

estimates for aggregate functions (SUM(SALES), for example), especially if the

rows of table-name are clustered on any columns referenced in that query. The

optimizer may in certain circumstances decide that it is more efficient to perform

SYSTEM sampling as if it were BERNOULLI sampling, for example when a

predicate on table-name can be applied by an index and is much more selective

than the sampling rate P.

The numeric-expression1 specifies the size of the sample to be obtained from

table-name, expressed as a percentage. It must be a constant numeric expression

that cannot contain columns. The expression must evaluate to a positive number

that is less than or equal to 100, but can be between 1 and 0. For example, a value

of 0.01 represents one one-hundredth of a percent, meaning that 1 row in 10 000

would be sampled, on average. A numeric-expression1 that evaluates to 100 is

428 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

handled as if the tablesample-clause were not specified. If numeric-expression1

evaluates to the null value, or to a value that is greater than 100 or less than 0, an

error is returned (SQLSTATE 2202H).

It is sometimes desirable for sampling to be repeatable from one execution of the

query to the next; for example, during regression testing or query ″debugging″.

This can be accomplished by specifying the REPEATABLE clause. The

REPEATABLE clause requires the specification of a numeric-expression2 in

parentheses, which serves the same role as the seed in a random number

generator. Adding the REPEATABLE clause to the tablesample-clause of any

table-name ensures that repeated executions of that query (using the same value for

numeric-expression2) return the same sample, assuming, of course, that the data

itself has not been updated, reorganized, or repartitioned. To guarantee that the

same sample of table-name is used across multiple queries, use of a global

temporary table is recommended. Alternatively, the multiple queries could be

combined into one query, with multiple references to a sample that is defined

using the WITH clause.

Following are some examples:

Example 1: Request a 10% Bernoulli sample of the Sales table for auditing purposes.

 SELECT * FROM Sales

 TABLESAMPLE BERNOULLI(10)

Example 2: Compute the total sales revenue in the Northeast region for each

product category, using a random 1% SYSTEM sample of the Sales table. The

semantics of SUM are for the sample itself, so to extrapolate the sales to the entire

Sales table, the query must divide that SUM by the sampling rate (0.01).

SELECT SUM(Sales.Revenue) / (0.01)

 FROM Sales TABLESAMPLE SYSTEM(1)

 WHERE Sales.RegionName = ’Northeast’

 GROUP BY Sales.ProductCategory

Example 3: Using the REPEATABLE clause, modify the previous query to ensure

that the same (yet random) result is obtained each time the query is executed. (The

value of the constant enclosed by parentheses is arbitrary.)

SELECT SUM(Sales.Revenue) / (0.01)

 FROM Sales TABLESAMPLE SYSTEM(1) REPEATABLE(3578231)

 WHERE Sales.RegionName = ’Northeast’

 GROUP BY Sales.ProductCategory

Table function references

In general, a table function, together with its argument values, can be referenced in

the FROM clause of a SELECT in exactly the same way as a table or view. There

are, however, some special considerations which apply.

v Table Function Column Names

Unless alternate column names are provided following the correlation-name, the

column names for the table function are those specified in the RETURNS clause

of the CREATE FUNCTION statement. This is analogous to the names of the

columns of a table, which are defined in the CREATE TABLE statement.

v Table Function Resolution

The arguments specified in a table function reference, together with the function

name, are used by an algorithm called function resolution to determine the exact

function to be used. This is no different from what happens with other functions

(such as scalar functions) that are used in a statement.

Chapter 2. SQL Statements for Users 429

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|

|
|
|

|

|
|
|
|

|

|
|
|
|

v Table Function Arguments

As with scalar function arguments, table function arguments can in general be

any valid SQL expression. The following examples are valid syntax:

 Example 1: SELECT c1

 FROM TABLE(tf1(’Zachary’)) AS z

 WHERE c2 = ’FLORIDA’;

 Example 2: SELECT c1

 FROM TABLE(tf2 (:hostvar1, CURRENT DATE)) AS z;

 Example 3: SELECT c1

 FROM t

 WHERE c2 IN

 (SELECT c3 FROM

 TABLE(tf5(t.c4)) AS z -- correlated reference

) -- to previous FROM clause

v Table Functions That Modify SQL Data

Table functions that are specified with the MODIFIES SQL DATA option can

only be used as the last table reference in a select-statement, common-table-
expression, or RETURN statement that is a subselect, a SELECT INTO, or a

row-fullselect in a SET statement. Only one table function is allowed in one

FROM clause, and the table function arguments must be correlated to all other

table references in the subselect (SQLSTATE 429BL). The following examples

have valid syntax for a table function with the MODIFIES SQL DATA property:

 Example 1: SELECT c1

 FROM TABLE(tfmod(’Jones’)) AS z

 Example 2: SELECT c1

 FROM t1, t2, TABLE(tfmod(t1.c1, t2.c1)) AS z

 Example 3: SET var =

 (SELECT c1

 FROM TABLE(tfmod(’Jones’)) AS z

 Example 4: RETURN SELECT c1

 FROM TABLE(tfmod(’Jones’)) AS z

 Example 5: WITH v1(c1) AS

 (SELECT c1

 FROM TABLE(tfmod(:hostvar1)) AS z)

 SELECT c1

 FROM v1, t1 WHERE v1.c1 = t1.c1

Error tolerant nested-table-expression

Certain errors that occur within a nested-table-expression can be tolerated, and

instead of returning an error, the query can continue and return a result.

Specifying the RETURN DATA UNTIL clause will cause any rows that are returned

from the fullselect before the indicated condition is encountered to make up the

result set from the fullselect. This means that a partial result set (which could also

be an empty result set) from the fullselect is acceptable as the result for the

nested-table-expression.

The FEDERATED keyword restricts the condition to handle only errors that occur

at a remote data source.

The condition can be specified as an SQLSTATE value, with a string-constant length

of 5. You can optionally specify an SQLCODE value for each specified SQLSTATE

430 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|

|
|

value. For portable applications, specify SQLSTATE values as much as possible,

because SQLCODE values are generally not portable across platforms and are not

part of the SQL standard.

Only certain conditions can be tolerated. Errors that do not allow the rest of the

query to be executed cannot be tolerated, and an error is returned for the whole

query. The specific-condition-value might specify conditions that cannot actually be

tolerated by the database manager, even if a specific SQLSTATE or SQLCODE

value is specified, and for these cases, an error is returned.

The following SQLSTATE values and SQLCODE values have the potential, when

specified, to be tolerated by the database manager:

v SQLSTATE 08001; SQLCODEs -1336, -30080, -30081, -30082

v SQLSTATE 08004

v SQLSTATE 42501

v SQLSTATE 42704; SQLCODE -204

v SQLSTATE 42720

v SQLSTATE 28000

A query or view containing an error tolerant nested-table-expression is read-only.

The fullselect of an error tolerant nested-table-expression is not optimized using

materialized query tables.

Correlated references in table-references

Correlated references can be used in nested table expressions or as arguments to

table functions. The basic rule that applies for both these cases is that the

correlated reference must be from a table-reference at a higher level in the hierarchy

of subqueries. This hierarchy includes the table-references that have already been

resolved in the left-to-right processing of the FROM clause. For nested table

expressions, the LATERAL keyword must appear before the fullselect. So the

following examples are valid syntax:

 Example 1: SELECT t.c1, z.c5

 FROM t, TABLE(tf3(t.c2)) AS z -- t precedes tf3

 WHERE t.c3 = z.c4; -- in FROM, so t.c2

 -- is known

 Example 2: SELECT t.c1, z.c5

 FROM t, TABLE(tf4(2 * t.c2)) AS z -- t precedes tf4

 WHERE t.c3 = z.c4; -- in FROM, so t.c2

 -- is known

 Example 3: SELECT d.deptno, d.deptname,

 empinfo.avgsal, empinfo.empcount

 FROM department d,

 LATERAL (SELECT AVG(e.salary) AS avgsal,

 COUNT(*) AS empcount

 FROM employee e -- department precedes

 WHERE e.workdept=d.deptno -- and TABLE is

) AS empinfo; -- specified, so

 -- d.deptno is known

But the following examples are not valid:

 Example 4: SELECT t.c1, z.c5

 FROM TABLE(tf6(t.c2)) AS z, t -- cannot resolve t in t.c2!

 WHERE t.c3 = z.c4; -- compare to Example 1 above.

Chapter 2. SQL Statements for Users 431

|
|
|

|
|
|
|
|

|
|

|

|

|

|

|

|

|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

Example 5: SELECT a.c1, b.c5

 FROM TABLE(tf7a(b.c2)) AS a, TABLE(tf7b(a.c6)) AS b

 WHERE a.c3 = b.c4; -- cannot resolve b in b.c2!

 Example 6: SELECT d.deptno, d.deptname,

 empinfo.avgsal, empinfo.empcount

 FROM department d,

 (SELECT AVG(e.salary) AS avgsal,

 COUNT(*) AS empcount

 FROM employee e -- department precedes

 WHERE e.workdept=d.deptno -- but TABLE is not

) AS empinfo; -- specified, so

 -- d.deptno is unknown

Data change table references

A data-change-table-reference clause specifies an intermediate result table. This table

is based on the rows that are directly changed by the searched UPDATE, searched

DELETE, or INSERT statement that is included in the clause. A

data-change-table-reference can be specified as the only table-reference in the FROM

clause of the outer fullselect that is used in a select-statement, a SELECT INTO

statement, or a common table expression. A data-change-table-reference can be

specified as the only table reference in the only fullselect in a SET Variable

statement (SQLSTATE 428FL). The target table or view of the data change

statement is considered to be a table or view that is referenced in the query;

therefore, the authorization ID of the query must have SELECT privilege on that

target table or view. A data-change-table-reference clause cannot be specified in a

view definition, materialized query table definition, or FOR statement (SQLSTATE

428FL).

The target of the UPDATE, DELETE, or INSERT statement cannot be a temporary

view defined in a common table expression (SQLSTATE 42807).

FINAL TABLE

Specifies that the rows of the intermediate result table represent the set of rows

that are changed by the SQL data change statement as they appear at the

completion of the data change statement. If there are AFTER triggers or

referential constraints that result in further operations on the table that is the

target of the SQL data change statement, an error is returned (SQLSTATE

560C6). If the target of the SQL data change statement is a view that is defined

with an INSTEAD OF trigger for the type of data change, an error is returned

(SQLSTATE 428G3).

NEW TABLE

Specifies that the rows of the intermediate result table represent the set of rows

that are changed by the SQL data change statement prior to the application of

referential constraints and AFTER triggers. Data in the target table at the

completion of the statement might not match the data in the intermediate

result table because of additional processing for referential constraints and

AFTER triggers.

OLD TABLE

Specifies that the rows of the intermediate result table represent the set of rows

that are changed by the SQL data change statement as they existed prior to the

application of the data change statement.

(searched-update-statement)

Specifies a searched UPDATE statement. A WHERE clause or a SET clause in

the UPDATE statement cannot contain correlated references to columns outside

of the UPDATE statement.

432 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

(searched-delete-statement)

Specifies a searched DELETE statement. A WHERE clause in the DELETE

statement cannot contain correlated references to columns outside of the

DELETE statement.

(insert-statement)

Specifies an INSERT statement. A fullselect in the INSERT statement cannot

contain correlated references to columns outside of the fullselect of the INSERT

statement.

The content of the intermediate result table for a data-change-table-reference is

determined when the cursor opens. The intermediate result table contains all

manipulated rows, including all the columns in the specified target table or view.

All the columns of the target table or view for an SQL data change statement are

accessible using the column names from the target table or view. If an INCLUDE

clause was specified within a data change statement, the intermediate result table

will contain these additional columns.

joined-table

��
 INNER

table-reference

JOIN

table-reference

ON

join-condition

outer

table-reference

CROSS JOIN

table-reference

(

joined-table

)

��

outer:

 OUTER

LEFT

RIGHT

FULL

A joined table specifies an intermediate result table that is the result of either an

inner join or an outer join. The table is derived by applying one of the join

operators: CROSS, INNER, LEFT OUTER, RIGHT OUTER, or FULL OUTER to its

operands.

Cross joins represent the cross product of the tables, where each row of the left

table is combined with every row of the right table. Inner joins can be thought of

as the cross product of the tables, keeping only the rows where the join condition

is true. The result table might be missing rows from either or both of the joined

tables. Outer joins include the inner join and preserve these missing rows. There

are three types of outer joins:

v Left outer join includes rows from the left table that were missing from the

inner join.

v Right outer join includes rows from the right table that were missing from the

inner join.

v Full outer join includes rows from both the left and right tables that were

missing from the inner join.

If a join-operator is not specified, INNER is implicit. The order in which multiple

joins are performed can affect the result. Joins can be nested within other joins. The

order of processing for joins is generally from left to right, but based on the

Chapter 2. SQL Statements for Users 433

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|||

|

|

||||||||||||||||||||||||

|

|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

position of the required join-condition. Parentheses are recommended to make the

order of nested joins more readable. For example:

 TB1 LEFT JOIN TB2 ON TB1.C1=TB2.C1

 RIGHT JOIN TB3 LEFT JOIN TB4 ON TB3.C1=TB4.C1

 ON TB1.C1=TB3.C1

is the same as:

 (TB1 LEFT JOIN TB2 ON TB1.C1=TB2.C1)

 RIGHT JOIN (TB3 LEFT JOIN TB4 ON TB3.C1=TB4.C1)

 ON TB1.C1=TB3.C1

A joined table can be used in any context in which any form of the SELECT

statement is used. A view or a cursor is read-only if its SELECT statement includes

a joined table.

A join-condition is a search-condition, except that:

v It cannot contain any subqueries, scalar or otherwise

v It cannot include any dereference operations or the DEREF function, where the

reference value is other than the object identifier column

v It cannot include an SQL function

v Any column referenced in an expression of the join-condition must be a column

of one of the operand tables of the associated join (in the scope of the same

joined-table clause)

v Any function referenced in an expression of the join-condition of a full outer join

must be deterministic and have no external action

v It cannot include an XMLQUERY or XMLEXISTS expression

An error occurs if the join condition does not comply with these rules (SQLSTATE

42972).

Column references are resolved using the rules for resolution of column name

qualifiers. The same rules that apply to predicates apply to join conditions.

Join operations

A join-condition specifies pairings of T1 and T2, where T1 and T2 are the left and

right operand tables of the JOIN operator of the join-condition. For all possible

combinations of rows of T1 and T2, a row of T1 is paired with a row of T2 if the

join-condition is true. When a row of T1 is joined with a row of T2, a row in the

result consists of the values of that row of T1 concatenated with the values of that

row of T2. The execution might involve the generation of a null row. The null row

of a table consists of a null value for each column of the table, regardless of

whether the columns allow null values.

The following summarizes the result of the join operations:

v The result of T1 CROSS JOIN T2 consists of all possible pairings of their rows.

v The result of T1 INNER JOIN T2 consists of their paired rows where the

join-condition is true.

v The result of T1 LEFT OUTER JOIN T2 consists of their paired rows where the

join-condition is true and, for each unpaired row of T1, the concatenation of that

row with the null row of T2. All columns derived from T2 allow null values.

v The result of T1 RIGHT OUTER JOIN T2 consists of their paired rows where the

join-condition is true and, for each unpaired row of T2, the concatenation of that

row with the null row of T1. All columns derived from T1 allow null values.

434 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|
|

|

|
|
|

|
|
|

|

|

|
|

|

|
|
|

|
|

|

|
|

|
|

|

|
|
|
|
|
|
|
|

|

|

|
|

|
|
|

|
|
|

v The result of T1 FULL OUTER JOIN T2 consists of their paired rows and, for

each unpaired row of T2, the concatenation of that row with the null row of T1

and, for each unpaired row of T1, the concatenation of that row with the null

row of T2. All columns derived from T1 and T2 allow null values.

where-clause

�� WHERE search-condition ��

The WHERE clause specifies an intermediate result table that consists of those

rows of R for which the search-condition is true. R is the result of the FROM clause

of the subselect.

The search-condition must conform to the following rules:

v Each column-name must unambiguously identify a column of R or be a correlated

reference. A column-name is a correlated reference if it identifies a column of a

table-reference in an outer subselect.

v An aggregate function must not be specified unless the WHERE clause is

specified in a subquery of a HAVING clause and the argument of the function is

a correlated reference to a group.

Any subquery in the search-condition is effectively executed for each row of R, and

the results are used in the application of the search-condition to the given row of R.

A subquery is actually executed for each row of R only if it includes a correlated

reference. In fact, a subquery with no correlated references may be executed just

once, whereas a subquery with a correlated reference may have to be executed

once for each row.

group-by-clause

��

�

 ,

GROUP BY

grouping-expression

grouping-sets

super-groups

��

The GROUP BY clause specifies an intermediate result table that consists of a

grouping of the rows of R. R is the result of the previous clause of the subselect.

In its simplest form, a GROUP BY clause contains a grouping expression. A grouping

expression is an expression used in defining the grouping of R. Each expression or

column name included in grouping-expression must unambiguously identify a

column of R (SQLSTATE 42702 or 42703). A grouping expression cannot include a

scalar fullselect or an XMLQUERY or XMLEXISTS expression (SQLSTATE 42822),

or any expression or function that is not deterministic or has an external action

(SQLSTATE 42845).

Note: The following expressions, which do not contain an explicit column

reference, can be used in a grouping-expression to identify a column of R:

v ROW CHANGE TIMESTAMP FOR table-designator

v ROW CHANGE TOKEN FOR table-designator

v RID_BIT or RID scalar function

Chapter 2. SQL Statements for Users 435

|
|
|
|

|

|||||||||
|

|
|
|

|

|
|
|

|
|
|

|
|
|
|
|
|

|

||||||||||||||||||||||||

|

|
|

|
|
|
|
|
|
|

|
|

|

|

|

More complex forms of the GROUP BY clause include grouping-sets and

super-groups. For a description of these forms, see “grouping-sets” and

“super-groups” on page 437, respectively.

The result of GROUP BY is a set of groups of rows. Each row in this result

represents the set of rows for which the grouping-expression is equal. For grouping,

all null values from a grouping-expression are considered equal.

If a grouping-expression contains decimal floating-point columns, and multiple

representations of the same number exist in these columns, the number that is

returned can be any of the representations of the number.

A grouping-expression can be used in a search condition in a HAVING clause, in an

expression in a SELECT clause or in a sort-key-expression of an ORDER BY clause

(see “order-by-clause” on page 442 for details). In each case, the reference specifies

only one value for each group. For example, if the grouping-expression is col1+col2,

then an allowed expression in the select list would be col1+col2+3. Associativity

rules for expressions would disallow the similar expression, 3+col1+col2, unless

parentheses are used to ensure that the corresponding expression is evaluated in

the same order. Thus, 3+(col1+col2) would also be allowed in the select list. If the

concatenation operator is used, the grouping-expression must be used exactly as the

expression was specified in the select list.

If the grouping-expression contains varying-length strings with trailing blanks, the

values in the group can differ in the number of trailing blanks and may not all

have the same length. In that case, a reference to the grouping-expression still

specifies only one value for each group, but the value for a group is chosen

arbitrarily from the available set of values. Thus, the actual length of the result

value is unpredictable.

As noted, there are some cases where the GROUP BY clause cannot refer directly

to a column that is specified in the SELECT clause as an expression

(scalar-fullselect, not deterministic or external action functions). To group using

such an expression, use a nested table expression or a common table expression to

first provide a result table with the expression as a column of the result. For an

example using nested table expressions, see Example A9.

grouping-sets

��

�

�

 ,

GROUPING SETS

(

grouping-expression

)

super-groups

,

(

grouping-expression

)

super-groups

��

A grouping-sets specification allows multiple grouping clauses to be specified in a

single statement. This can be thought of as the union of two or more groups of

rows into a single result set. It is logically equivalent to the union of multiple

subselects with the group by clause in each subselect corresponding to one

grouping set. A grouping set can be a single element or can be a list of elements

436 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

||

|

|
|
|
|
|

delimited by parentheses, where an element is either a grouping-expression or a

super-group. Using grouping-sets allows the groups to be computed with a single

pass over the base table.

The grouping-sets specification allows either a simple grouping-expression to be used,

or the more complex forms of super-groups. For a description of super-groups, see

“super-groups.”

Note that grouping sets are the fundamental building blocks for GROUP BY

operations. A simple GROUP BY with a single column can be considered a

grouping set with one element. For example:

 GROUP BY a

is the same as

 GROUP BY GROUPING SETS((a))

and

 GROUP BY a,b,c

is the same as

 GROUP BY GROUPING SETS((a,b,c))

Non-aggregation columns from the select list of the subselect that are excluded

from a grouping set will return a null for such columns for each row generated for

that grouping set. This reflects the fact that aggregation was done without

considering the values for those columns.

Example C2 through Example C7 illustrate the use of grouping sets.

super-groups

��
 (1)

ROLLUP

(

grouping-expression-list

)

(2)

CUBE

(

grouping-expression-list

)

grand-total

��

grouping-expression-list:

�

�

 ,

grouping-expression

,

(

grouping-expression

)

grand-total:

 ()

Notes:

1 Alternate specification when used alone in group-by-clause is:

grouping-expression-list WITH ROLLUP.

Chapter 2. SQL Statements for Users 437

|
|
|

|
|
|

|
|
|

|

|

|

|

|

|

|

|
|
|
|

|

|

|||||||||||||||||||||||||||||||||

|

|

||||||||||||||||||||||||||||||||

|

|

|||||||||||
|

|

||
|

2 Alternate specification when used alone in group-by-clause is:

grouping-expression-list WITH CUBE.

ROLLUP (grouping-expression-list)

A ROLLUP grouping is an extension to the GROUP BY clause that produces a

result set containing sub-total rows in addition to the “regular” grouped rows.

Sub-total rows are “super-aggregate” rows that contain further aggregates

whose values are derived by applying the same aggregate functions that were

used to obtain the grouped rows. These rows are called sub-total rows, because

that is their most common use; however, any aggregate function can be used

for the aggregation. For instance, MAX and AVG are used in Example C8. The

GROUPING aggregate function can be used to indicate if a row was generated

by the super-group.

 A ROLLUP grouping is a series of grouping-sets. The general specification of a

ROLLUP with n elements

 GROUP BY ROLLUP(C1,C2,...,Cn-1,Cn)

is equivalent to

 GROUP BY GROUPING SETS((C1,C2,...,Cn-1,Cn)

 (C1,C2,...,Cn-1)

 ...

 (C1,C2)

 (C1)

 ())

Note that the n elements of the ROLLUP translate to n+1 grouping sets. Note

also that the order in which the grouping-expressions is specified is significant

for ROLLUP. For example:

 GROUP BY ROLLUP(a,b)

is equivalent to

 GROUP BY GROUPING SETS((a,b)

 (a)

 ())

while

 GROUP BY ROLLUP(b,a)

is the same as

 GROUP BY GROUPING SETS((b,a)

 (b)

 ())

The ORDER BY clause is the only way to guarantee the order of the rows in

the result set. Example C3 illustrates the use of ROLLUP.

CUBE (grouping-expression-list)

A CUBE grouping is an extension to the GROUP BY clause that produces a

result set that contains all the rows of a ROLLUP aggregation and, in addition,

contains ″cross-tabulation″ rows. Cross-tabulation rows are additional

″super-aggregate″ rows that are not part of an aggregation with sub-totals. The

GROUPING aggregate function can be used to indicate if a row was generated

by the super-group.

 Like a ROLLUP, a CUBE grouping can also be thought of as a series of

grouping-sets. In the case of a CUBE, all permutations of the cubed

438 Common Criteria Certification: Administration and User Documentation - Volume 2

||
|

|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|
|
|

|
|
|

|

|

|
|
|

|

|

|

|
|
|

|
|

|
|
|
|
|
|
|

|
|

grouping-expression-list are computed along with the grand total. Therefore, the

n elements of a CUBE translate to 2**n (2 to the power n) grouping-sets. For

example, a specification of:

 GROUP BY CUBE(a,b,c)

is equivalent to:

 GROUP BY GROUPING SETS((a,b,c)

 (a,b)

 (a,c)

 (b,c)

 (a)

 (b)

 (c)

 ())

Note that the three elements of the CUBE translate into eight grouping sets.

The order of specification of elements does not matter for CUBE. ’CUBE

(DayOfYear, Sales_Person)’ and ’CUBE (Sales_Person, DayOfYear)’ yield the

same result sets. The use of the word ’same’ applies to content of the result set,

not to its order. The ORDER BY clause is the only way to guarantee the order

of the rows in the result set. Example C4 illustrates the use of CUBE.

grouping-expression-list

A grouping-expression-list is used within a CUBE or ROLLUP clause to define

the number of elements in the CUBE or ROLLUP operation. This is controlled

by using parentheses to delimit elements with multiple grouping-expressions.

 The rules for a grouping-expression are described in “group-by-clause” on page

435. For example, suppose that a query is to return the total expenses for the

ROLLUP of City within a Province but not within a County. However, the

clause:

 GROUP BY ROLLUP(Province, County, City)

results in unwanted subtotal rows for the County. In the clause:

 GROUP BY ROLLUP(Province, (County, City))

the composite (County, City) forms one element in the ROLLUP and, therefore,

a query that uses this clause will yield the desired result. In other words, the

two-element ROLLUP:

 GROUP BY ROLLUP(Province, (County, City))

generates:

 GROUP BY GROUPING SETS((Province, County, City)

 (Province)

 ())

and the three-element ROLLUP generates:

 GROUP BY GROUPING SETS((Province, County, City)

 (Province, County)

 (Province)

 ())

Example C2 also utilizes composite column values.

grand-total

Both CUBE and ROLLUP return a row which is the overall (grand total)

aggregation. This may be separately specified with empty parentheses within

Chapter 2. SQL Statements for Users 439

|
|
|

|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|

|

|

|
|
|

|

|

|
|
|

|

|
|
|
|

|

|
|
|

the GROUPING SET clause. It may also be specified directly in the GROUP BY

clause, although there is no effect on the result of the query. Example C4 uses

the grand-total syntax.

Combining grouping sets

This can be used to combine any of the types of GROUP BY clauses. When simple

grouping-expression fields are combined with other groups, they are ″appended″ to

the beginning of the resulting grouping sets. When ROLLUP or CUBE expressions

are combined, they operate like ″multipliers″ on the remaining expression, forming

additional grouping set entries according to the definition of either ROLLUP or

CUBE.

For instance, combining grouping-expression elements acts as follows:

 GROUP BY a, ROLLUP(b,c)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c)

 (a,b)

 (a))

Or similarly,

 GROUP BY a, b, ROLLUP(c,d)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c,d)

 (a,b,c)

 (a,b))

Combining of ROLLUP elements acts as follows:

 GROUP BY ROLLUP(a), ROLLUP(b,c)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c)

 (a,b)

 (a)

 (b,c)

 (b)

 ())

Similarly,

 GROUP BY ROLLUP(a), CUBE(b,c)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c)

 (a,b)

 (a,c)

 (a)

 (b,c)

 (b)

 (c)

 ())

Combining of CUBE and ROLLUP elements acts as follows:

 GROUP BY CUBE(a,b), ROLLUP(c,d)

is equivalent to

440 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|

|
|
|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|
|

|

|

|

GROUP BY GROUPING SETS((a,b,c,d)

 (a,b,c)

 (a,b)

 (a,c,d)

 (a,c)

 (a)

 (b,c,d)

 (b,c)

 (b)

 (c,d)

 (c)

 ())

Like a simple grouping-expression, combining grouping sets also eliminates

duplicates within each grouping set. For instance,

 GROUP BY a, ROLLUP(a,b)

is equivalent to

 GROUP BY GROUPING SETS((a,b)

 (a))

A more complete example of combining grouping sets is to construct a result set

that eliminates certain rows that would be returned for a full CUBE aggregation.

For example, consider the following GROUP BY clause:

 GROUP BY Region,

 ROLLUP(Sales_Person, WEEK(Sales_Date)),

 CUBE(YEAR(Sales_Date), MONTH (Sales_Date))

The column listed immediately to the right of GROUP BY is simply grouped, those

within the parenthesis following ROLLUP are rolled up, and those within the

parenthesis following CUBE are cubed. Thus, the above clause results in a cube of

MONTH within YEAR which is then rolled up within WEEK within Sales_Person

within the Region aggregation. It does not result in any grand total row or any

cross-tabulation rows on Region, Sales_Person or WEEK(Sales_Date) so produces

fewer rows than the clause:

 GROUP BY ROLLUP (Region, Sales_Person, WEEK(Sales_Date),

 YEAR(Sales_Date), MONTH(Sales_Date))

having-clause

�� HAVING search-condition ��

The HAVING clause specifies an intermediate result table that consists of those

groups of R for which the search-condition is true. R is the result of the previous

clause of the subselect. If this clause is not GROUP BY, R is considered to be a

single group with no grouping columns.

Each column-name in the search condition must do one of the following:

v Unambiguously identify a grouping column of R.

v Be specified within an aggregate function.

v Be a correlated reference. A column-name is a correlated reference if it identifies a

column of a table-reference in an outer subselect.

Chapter 2. SQL Statements for Users 441

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|

|
|

|

|
|
|

|
|
|
|
|
|
|

|
|

|

|||||||||
|

|
|
|
|

|

|

|

|
|

A group of R to which the search condition is applied supplies the argument for

each aggregate function in the search condition, except for any function whose

argument is a correlated reference.

If the search condition contains a subquery, the subquery can be thought of as

being executed each time the search condition is applied to a group of R, and the

results used in applying the search condition. In actuality, the subquery is executed

for each group only if it contains a correlated reference. For an illustration of the

difference, see Example A6 and Example A7.

A correlated reference to a group of R must either identify a grouping column or

be contained within an aggregate function.

When HAVING is used without GROUP BY, the select list can only include column

names when they are arguments to an aggregate function, correlated column

references, global variables, host variables, literals, special registers, SQL variables,

or SQL parameters.

Note: The following expressions can only be specified in a HAVING clause if they

are contained within an aggregate function (SQLSTATE 42803):

v ROW CHANGE TIMESTAMP FOR table-designator

v ROW CHANGE TOKEN FOR table-designator

v RID_BIT or RID scalar function

order-by-clause

��

ORDER BY

�

 ,

ASC

sort-key

DESC

ORDER OF

table-designator

INPUT SEQUENCE

��

sort-key:

 simple-column-name

simple-integer

sort-key-expression

The ORDER BY clause specifies an ordering of the rows of the result table. If a

single sort specification (one sort-key with associated direction) is identified, the

rows are ordered by the values of that sort specification. If more than one sort

specification is identified, the rows are ordered by the values of the first identified

sort specification, then by the values of the second identified sort specification, and

so on. Each sort-key cannot have a data type of CLOB, DBCLOB, BLOB, distinct

type on any of these types, or structured type (SQLSTATE 42907).

A named column in the select list may be identified by a sort-key that is a

simple-integer or a simple-column-name. An unnamed column in the select list must

be identified by an simple-integer or, in some cases, by a sort-key-expression that

matches the expression in the select list (see details of sort-key-expression). A column

is unnamed if the AS clause is not specified and it is derived from a constant, an

expression with operators, or a function.

442 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

|

|

|

|

|||||||||||||||||||||||||||||||||||||||

|

|

|||||||||||||||||||

|

|
|
|
|
|
|
|

|
|
|
|
|
|

Ordering is performed in accordance with comparison rules. If an ORDER BY

clause contains decimal floating-point columns, and multiple representations of the

same number exist in these columns, the ordering of the multiple representations

of the same number is unspecified. The null value is higher than all other values. If

the ORDER BY clause does not completely order the rows, rows with duplicate

values of all identified columns are displayed in an arbitrary order.

simple-column-name

Usually identifies a column of the result table. In this case, simple-column-name

must be the column name of a named column in the select list.

 The simple-column-name can also identify a column name of a table, view, or

nested table identified in the FROM clause if the query is a subselect. This

includes columns defined as implicitly hidden. An error occurs if the subselect:

v Specifies DISTINCT in the select-clause (SQLSTATE 42822)

v Produces a grouped result and the simple-column-name is not a

grouping-expression (SQLSTATE 42803).

Determining which column is used for ordering the result is described under

“Column names in sort keys” below.

simple-integer

Must be greater than 0 and not greater than the number of columns in the

result table (SQLSTATE 42805). The integer n identifies the nth column of the

result table.

sort-key-expression

An expression that is not simply a column name or an unsigned integer

constant. The query to which ordering is applied must be a subselect to use this

form of sort-key. The sort-key-expression cannot include a correlated scalar

fullselect (SQLSTATE 42703), an XMLQUERY or XMLEXISTS expression

(SQLSTATE 42822), or a function with an external action (SQLSTATE 42845).

 Any column-name within a sort-key-expression must conform to the rules

described under “Column names in sort keys” below.

There are a number of special cases that further restrict the expressions that

can be specified.

v DISTINCT is specified in the SELECT clause of the subselect (SQLSTATE

42822).

The sort-key-expression must match exactly with an expression in the select

list of the subselect (scalar-fullselects are never matched).

v The subselect is grouped (SQLSTATE 42803).

The sort-key-expression can:

– be an expression in the select list of the subselect,

– include a grouping-expression from the GROUP BY clause of the subselect

– include an aggregate function, constant or host variable.

ASC

Uses the values of the column in ascending order. This is the default.

DESC

Uses the values of the column in descending order.

ORDER OF table-designator

Specifies that the same ordering used in table-designator should be applied to

the result table of the subselect. There must be a table reference matching

table-designator in the FROM clause of the subselect that specifies this clause

(SQLSTATE 42703). The subselect (or fullselect) corresponding to the specified

Chapter 2. SQL Statements for Users 443

|
|
|
|
|
|

|
|
|

|
|
|

|

|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|

|

|

|

|

|
|

|
|

|
|
|
|
|

table-designator must include an ORDER BY clause that is dependant on the

data (SQLSTATE 428FI). The ordering that is applied is the same as if the

columns of the ORDER BY clause in the nested subselect (or fullselect) were

included in the outer subselect (or fullselect), and these columns were specified

in place of the ORDER OF clause.

 Note that this form is not allowed in a fullselect (other than the degenerative

form of a fullselect). For example, the following is not valid:

(SELECT C1 FROM T1

 ORDER BY C1)

UNION

SELECT C1 FROM T2

 ORDER BY ORDER OF T1

The following example is valid:

SELECT C1 FROM

 (SELECT C1 FROM T1

 UNION

 SELECT C1 FROM T2

 ORDER BY C1) AS UTABLE

ORDER BY ORDER OF UTABLE

INPUT SEQUENCE

Specifies that, for an INSERT statement, the result table will reflect the input

order of ordered data rows. INPUT SEQUENCE ordering can only be specified

if an INSERT statement is used in a FROM clause (SQLSTATE 428G4). See

“table-reference” on page 424. If INPUT SEQUENCE is specified and the input

data is not ordered, the INPUT SEQUENCE clause is ignored.

Notes

v Column names in sort keys:

– The column name is qualified.

The query must be a subselect (SQLSTATE 42877). The column name must

unambiguously identify a column of some table, view or nested table in the

FROM clause of the subselect (SQLSTATE 42702). The value of the column is

used to compute the value of the sort specification.

– The column name is unqualified.

- The query is a subselect.

If the column name is identical to the name of more than one column of

the result table, the column name must unambiguously identify a column

of some table, view or nested table in the FROM clause of the ordering

subselect (SQLSTATE 42702). If the column name is identical to one

column, that column is used to compute the value of the sort specification.

If the column name is not identical to a column of the result table, then it

must unambiguously identify a column of some table, view or nested table

in the FROM clause of the fullselect in the select-statement (SQLSTATE

42702).

- The query is not a subselect (it includes set operations such as union,

except or intersect).

The column name must not be identical to the name of more than one

column of the result table (SQLSTATE 42702). The column name must be

identical to exactly one column of the result table (SQLSTATE 42707), and

this column is used to compute the value of the sort specification.
v Limits: The use of a sort-key-expression or a simple-column-name where the column

is not in the select list may result in the addition of the column or expression to

the temporary table used for sorting. This may result in reaching the limit of the

444 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

number of columns in a table or the limit on the size of a row in a table.

Exceeding these limits will result in an error if a temporary table is required to

perform the sorting operation.

fetch-first-clause

��
 1

FETCH FIRST

integer

ROW

ROWS

ONLY

��

The fetch-first-clause sets a maximum number of rows that can be retrieved. It lets

the database manager know that the application does not want to retrieve more

than integer rows, regardless of how many rows there might be in the result table

when this clause is not specified. An attempt to fetch beyond integer rows is

handled the same way as normal end of data (SQLSTATE 02000). The value of

integer must be a positive integer (not zero).

Use of the fetch-first-clause influences query optimization of the subselect or

fullselect, based on the fact that at most integer rows will be retrieved. If both the

fetch-first-clause is specified in the outermost fullselect and the optimize-for-clause

is specified for the select statement, the database manager will use the integer from

the optimize-for-clause to influence query optimization of the outermost fullselect.

Limiting the result table to the first integer rows can improve performance. The

database manager will cease processing the query once it has determined the first

integer rows. If both the fetch-first-clause and the optimize-for-clause are specified, the

lower of the integer values from these clauses is used to influence the

communications buffer size.

If the fullselect contains an SQL data change statement in the FROM clause, all the

rows are modified regardless of the limit on the number of rows to fetch.

isolation-clause

��

WITH

RR

lock-request-clause

RS

lock-request-clause

CS

UR

 ��

The optional isolation-clause specifies the isolation level at which the subselect or

fullselect is executed, and whether a specific type of lock is to be acquired.

v RR - Repeatable-Read

v RS - Read Stability

v CS - Cursor Stability

v UR - Uncommitted Read

Chapter 2. SQL Statements for Users 445

|
|
|

|

|||||||||||||||||||||||||||

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|

|||||||||||||||||||||||||||||||||||

|

|
|

|

|

|

|

lock-request-clause

�� USE AND KEEP SHARE LOCKS

UPDATE

EXCLUSIVE

 ��

The lock-request-clause applies only to queries and to positioning read operations

within an insert, update, or delete operation. The insert, update, and delete

operations themselves will execute using locking determined by the database

manager.

The optional lock-request-clause specifies the type of lock that the database manager

is to acquire and hold:

SHARE

Concurrent processes can acquire SHARE or UPDATE locks on the data.

UPDATE

Concurrent processes can acquire SHARE locks on the data, but no

concurrent process can acquire an UPDATE or EXCLUSIVE lock.

EXCLUSIVE

Concurrent processes cannot acquire a lock on the data.

isolation-clause restrictions:

v The isolation-clause is not supported for a CREATE TABLE, CREATE VIEW, or

ALTER TABLE statement (SQLSTATE 42601).

v The isolation-clause cannot be specified for a subselect or fullselect that will cause

trigger invocation, referential integrity scans, or MQT maintenance (SQLSTATE

42601).

v A subselect or fullselect cannot include a lock-request-clause if that subselect or

fullselect references any SQL functions that are not declared with the option

INHERIT ISOLATION LEVEL WITH LOCK REQUEST (SQLSTATE 42601).

v A subselect or fullselect that contains a lock-request-clause are not be eligible for

MQT routing.

v If an isolation-clause is specified for a subselect or fullselect within the body of an

SQL function, SQL method, or trigger, the clause is ignored and a warning is

returned.

v If an isolation-clause is specified for a subselect or fullselect that is used by a

scrollable cursor, the clause is ignored and a warning is returned.

v Neither isolation-clause nor lock-request-clause can be specified in the context

where they will cause conflict isolation or lock intent on a common table

expression (SQLSTATE 42601). This restriction does not apply to aliases or base

tables. The following examples create an isolation conflict on a and returns an

error:

– View:

create view a as (...);

(select * from a with RR USE AND KEEP SHARE LOCKS)

UNION ALL

(select * from a with UR);

– Common table expression:

WITH a as (...)

(select * from a with RR USE AND KEEP SHARE LOCKS)

UNION ALL

(select * from a with UR);

446 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|||||||||||||||||||

|

|
|
|
|

|
|

|
|

|
|
|

|
|

|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|
|

|

|
|
|
|

|

|
|
|
|

v An isolation-clause cannot be specified in an XML context (SQLSTATE 2200M).

Examples of subselects

Example A1: Select all columns and rows from the EMPLOYEE table.

 SELECT * FROM EMPLOYEE

Example A2: Join the EMP_ACT and EMPLOYEE tables, select all the columns

from the EMP_ACT table and add the employee’s surname (LASTNAME) from the

EMPLOYEE table to each row of the result.

 SELECT EMP_ACT.*, LASTNAME

 FROM EMP_ACT, EMPLOYEE

 WHERE EMP_ACT.EMPNO = EMPLOYEE.EMPNO

Example A3: Join the EMPLOYEE and DEPARTMENT tables, select the employee

number (EMPNO), employee surname (LASTNAME), department number

(WORKDEPT in the EMPLOYEE table and DEPTNO in the DEPARTMENT table)

and department name (DEPTNAME) of all employees who were born

(BIRTHDATE) earlier than 1930.

 SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME

 FROM EMPLOYEE, DEPARTMENT

 WHERE WORKDEPT = DEPTNO

 AND YEAR(BIRTHDATE) < 1930

Example A4: Select the job (JOB) and the minimum and maximum salaries

(SALARY) for each group of rows with the same job code in the EMPLOYEE table,

but only for groups with more than one row and with a maximum salary greater

than or equal to 27000.

 SELECT JOB, MIN(SALARY), MAX(SALARY)

 FROM EMPLOYEE

 GROUP BY JOB

 HAVING COUNT(*) > 1

 AND MAX(SALARY) >= 27000

Example A5: Select all the rows of EMP_ACT table for employees (EMPNO) in

department (WORKDEPT) ‘E11’. (Employee department numbers are shown in the

EMPLOYEE table.)

 SELECT *

 FROM EMP_ACT

 WHERE EMPNO IN

 (SELECT EMPNO

 FROM EMPLOYEE

 WHERE WORKDEPT = ’E11’)

Example A6: From the EMPLOYEE table, select the department number

(WORKDEPT) and maximum departmental salary (SALARY) for all departments

whose maximum salary is less than the average salary for all employees.

 SELECT WORKDEPT, MAX(SALARY)

 FROM EMPLOYEE

 GROUP BY WORKDEPT

 HAVING MAX(SALARY) < (SELECT AVG(SALARY)

 FROM EMPLOYEE)

The subquery in the HAVING clause would only be executed once in this example.

Example A7: Using the EMPLOYEE table, select the department number

(WORKDEPT) and maximum departmental salary (SALARY) for all departments

whose maximum salary is less than the average salary in all other departments.

Chapter 2. SQL Statements for Users 447

|

|

|

|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|
|

SELECT WORKDEPT, MAX(SALARY)

 FROM EMPLOYEE EMP_COR

 GROUP BY WORKDEPT

 HAVING MAX(SALARY) < (SELECT AVG(SALARY)

 FROM EMPLOYEE

 WHERE NOT WORKDEPT = EMP_COR.WORKDEPT)

In contrast to Example A6, the subquery in the HAVING clause would need to be

executed for each group.

Example A8: Determine the employee number and salary of sales representatives

along with the average salary and head count of their departments.

This query must first create a nested table expression (DINFO) in order to get the

AVGSALARY and EMPCOUNT columns, as well as the DEPTNO column that is

used in the WHERE clause.

 SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY, DINFO.AVGSALARY, DINFO.EMPCOUNT

 FROM EMPLOYEE THIS_EMP,

 (SELECT OTHERS.WORKDEPT AS DEPTNO,

 AVG(OTHERS.SALARY) AS AVGSALARY,

 COUNT(*) AS EMPCOUNT

 FROM EMPLOYEE OTHERS

 GROUP BY OTHERS.WORKDEPT

) AS DINFO

 WHERE THIS_EMP.JOB = ’SALESREP’

 AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

Using a nested table expression for this case saves the overhead of creating the

DINFO view as a regular view. During statement preparation, accessing the catalog

for the view is avoided and, because of the context of the rest of the query, only

the rows for the department of the sales representatives need to be considered by

the view.

Example A9: Display the average education level and salary for 5 random groups of

employees.

This query requires the use of a nested table expression to set a random value for

each employee so that it can subsequently be used in the GROUP BY clause.

 SELECT RANDID , AVG(EDLEVEL), AVG(SALARY)

 FROM (SELECT EDLEVEL, SALARY, INTEGER(RAND()*5) AS RANDID

 FROM EMPLOYEE

) AS EMPRAND

 GROUP BY RANDID

Example A10: Query the EMP_ACT table and return those project numbers that

have an employee whose salary is in the top 10 of all employees.

 SELECT EMP_ACT.EMPNO,PROJNO

 FROM EMP_ACT

 WHERE EMP_ACT.EMPNO IN

 (SELECT EMPLOYEE.EMPNO

 FROM EMPLOYEE

 ORDER BY SALARY DESC

 FETCH FIRST 10 ROWS ONLY)

Example A11: Assuming that PHONES and IDS are two SQL variables with array

values of the same cardinality, turn these arrays into a table with three columns

(one for each array and one for the position), and one row per array element.

 SELECT T.PHONE, T.ID, T.INDEX FROM UNNEST(PHONES, IDS)

 WITH ORDINALITY AS T(PHONE, ID, INDEX)

 ORDER BY T.INDEX

448 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

Examples of joins

Example B1: This example illustrates the results of the various joins using tables J1

and J2. These tables contain rows as shown.

 SELECT * FROM J1

 W X

 --- ------

 A 11

 B 12

 C 13

 SELECT * FROM J2

 Y Z

 --- ------

 A 21

 C 22

 D 23

The following query does an inner join of J1 and J2 matching the first column of

both tables.

 SELECT * FROM J1 INNER JOIN J2 ON W=Y

 W X Y Z

 --- ------ --- ------

 A 11 A 21

 C 13 C 22

In this inner join example the row with column W=’C’ from J1 and the row with

column Y=’D’ from J2 are not included in the result because they do not have a

match in the other table. Note that the following alternative form of an inner join

query produces the same result.

 SELECT * FROM J1, J2 WHERE W=Y

The following left outer join will get back the missing row from J1 with nulls for

the columns of J2. Every row from J1 is included.

 SELECT * FROM J1 LEFT OUTER JOIN J2 ON W=Y

 W X Y Z

 --- ------ --- ------

 A 11 A 21

 B 12 - -

 C 13 C 22

The following right outer join will get back the missing row from J2 with nulls for

the columns of J1. Every row from J2 is included.

 SELECT * FROM J1 RIGHT OUTER JOIN J2 ON W=Y

 W X Y Z

 --- ------ --- ------

 A 11 A 21

 C 13 C 22

 - - D 23

The following full outer join will get back the missing rows from both J1 and J2

with nulls where appropriate. Every row from both J1 and J2 is included.

 SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y

 W X Y Z

 --- ------ --- ------

Chapter 2. SQL Statements for Users 449

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

A 11 A 21

 C 13 C 22

 - - D 23

 B 12 - -

Example B2: Using the tables J1 and J2 from the previous example, examine what

happens when and additional predicate is added to the search condition.

 SELECT * FROM J1 INNER JOIN J2 ON W=Y AND X=13

 W X Y Z

 --- ------ --- ------

 C 13 C 22

The additional condition caused the inner join to select only 1 row compared to the

inner join in Example B1.

Notice what the impact of this is on the full outer join.

 SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y AND X=13

 W X Y Z

 --- ------ --- ------

 - - A 21

 C 13 C 22

 - - D 23

 A 11 - -

 B 12 - -

The result now has 5 rows (compared to 4 without the additional predicate) since

there was only 1 row in the inner join and all rows of both tables must be

returned.

The following query illustrates that placing the same additional predicate in

WHERE clause has completely different results.

 SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y

 WHERE X=13

 W X Y Z

 --- ------ --- ------

 C 13 C 22

The WHERE clause is applied after the intermediate result of the full outer join.

This intermediate result would be the same as the result of the full outer join

query in Example B1. The WHERE clause is applied to this intermediate result and

eliminates all but the row that has X=13. Choosing the location of a predicate when

performing outer joins can have significant impact on the results. Consider what

happens if the predicate was X=12 instead of X=13. The following inner join

returns no rows.

 SELECT * FROM J1 INNER JOIN J2 ON W=Y AND X=12

Hence, the full outer join would return 6 rows, 3 from J1 with nulls for the

columns of J2 and 3 from J2 with nulls for the columns of J1.

 SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y AND X=12

 W X Y Z

 --- ------ --- ------

 - - A 21

 - - C 22

450 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|

|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

- - D 23

 A 11 - -

 B 12 - -

 C 13 - -

If the additional predicate is in the WHERE clause instead, 1 row is returned.

 SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y

 WHERE X=12

 W X Y Z

 --- ------ --- ------

 B 12 - -

Example B3: List every department with the employee number and last name of

the manager, including departments without a manager.

 SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAME

 FROM DEPARTMENT LEFT OUTER JOIN EMPLOYEE

 ON MGRNO = EMPNO

Example B4: List every employee number and last name with the employee

number and last name of their manager, including employees without a manager.

 SELECT E.EMPNO, E.LASTNAME, M.EMPNO, M.LASTNAME

 FROM EMPLOYEE E LEFT OUTER JOIN

 DEPARTMENT INNER JOIN EMPLOYEE M

 ON MGRNO = M.EMPNO

 ON E.WORKDEPT = DEPTNO

The inner join determines the last name for any manager identified in the

DEPARTMENT table and the left outer join guarantees that each employee is listed

even if a corresponding department is not found in DEPARTMENT.

Examples of grouping sets, cube, and rollup

The queries in Example C1 through Example C4 use a subset of the rows in the

SALES tables based on the predicate ’WEEK(SALES_DATE) = 13’.

 SELECT WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 SALES_PERSON, SALES AS UNITS_SOLD

 FROM SALES

 WHERE WEEK(SALES_DATE) = 13

which results in:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD

 ----------- ----------- --------------- -----------

 13 6 LUCCHESSI 3

 13 6 LUCCHESSI 1

 13 6 LEE 2

 13 6 LEE 2

 13 6 LEE 3

 13 6 LEE 5

 13 6 GOUNOT 3

 13 6 GOUNOT 1

 13 6 GOUNOT 7

 13 7 LUCCHESSI 1

 13 7 LUCCHESSI 2

 13 7 LUCCHESSI 1

 13 7 LEE 7

 13 7 LEE 3

 13 7 LEE 7

 13 7 LEE 4

Chapter 2. SQL Statements for Users 451

|
|
|
|

|

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

13 7 GOUNOT 2

 13 7 GOUNOT 18

 13 7 GOUNOT 1

Example C1: Here is a query with a basic GROUP BY clause over 3 columns:

 SELECT WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 SALES_PERSON, SUM(SALES) AS UNITS_SOLD

 FROM SALES

 WHERE WEEK(SALES_DATE) = 13

 GROUP BY WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON

 ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD

 ----------- ----------- --------------- -----------

 13 6 GOUNOT 11

 13 6 LEE 12

 13 6 LUCCHESSI 4

 13 7 GOUNOT 21

 13 7 LEE 21

 13 7 LUCCHESSI 4

Example C2: Produce the result based on two different grouping sets of rows from

the SALES table.

 SELECT WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 SALES_PERSON, SUM(SALES) AS UNITS_SOLD

 FROM SALES

 WHERE WEEK(SALES_DATE) = 13

 GROUP BY GROUPING SETS ((WEEK(SALES_DATE), SALES_PERSON),

 (DAYOFWEEK(SALES_DATE), SALES_PERSON))

 ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD

 ----------- ----------- --------------- -----------

 13 - GOUNOT 32

 13 - LEE 33

 13 - LUCCHESSI 8

 - 6 GOUNOT 11

 - 6 LEE 12

 - 6 LUCCHESSI 4

 - 7 GOUNOT 21

 - 7 LEE 21

 - 7 LUCCHESSI 4

The rows with WEEK 13 are from the first grouping set and the other rows are

from the second grouping set.

Example C3: If you use the 3 distinct columns involved in the grouping sets of

Example C2 and perform a ROLLUP, you can see grouping sets for

(WEEK,DAY_WEEK,SALES_PERSON), (WEEK, DAY_WEEK), (WEEK) and grand

total.

SELECT WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 SALES_PERSON, SUM(SALES) AS UNITS_SOLD

 FROM SALES

 WHERE WEEK(SALES_DATE) = 13

 GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)

 ORDER BY WEEK, DAY_WEEK, SALES_PERSON

452 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

This results in:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD

 ----------- ----------- --------------- -----------

 13 6 GOUNOT 11

 13 6 LEE 12

 13 6 LUCCHESSI 4

 13 6 - 27

 13 7 GOUNOT 21

 13 7 LEE 21

 13 7 LUCCHESSI 4

 13 7 - 46

 13 - - 73

 - - - 73

Example C4: If you run the same query as Example C3 only replace ROLLUP with

CUBE, you can see additional grouping sets for (WEEK,SALES_PERSON),

(DAY_WEEK,SALES_PERSON), (DAY_WEEK), (SALES_PERSON) in the result.

 SELECT WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 SALES_PERSON, SUM(SALES) AS UNITS_SOLD

 FROM SALES

 WHERE WEEK(SALES_DATE) = 13

 GROUP BY CUBE (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)

 ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD

 ----------- ----------- --------------- -----------

 13 6 GOUNOT 11

 13 6 LEE 12

 13 6 LUCCHESSI 4

 13 6 - 27

 13 7 GOUNOT 21

 13 7 LEE 21

 13 7 LUCCHESSI 4

 13 7 - 46

 13 - GOUNOT 32

 13 - LEE 33

 13 - LUCCHESSI 8

 13 - - 73

 - 6 GOUNOT 11

 - 6 LEE 12

 - 6 LUCCHESSI 4

 - 6 - 27

 - 7 GOUNOT 21

 - 7 LEE 21

 - 7 LUCCHESSI 4

 - 7 - 46

 - - GOUNOT 32

 - - LEE 33

 - - LUCCHESSI 8

 - - - 73

Example C5: Obtain a result set which includes a grand-total of selected rows from

the SALES table together with a group of rows aggregated by SALES_PERSON

and MONTH.

 SELECT SALES_PERSON,

 MONTH(SALES_DATE) AS MONTH,

 SUM(SALES) AS UNITS_SOLD

 FROM SALES

Chapter 2. SQL Statements for Users 453

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

GROUP BY GROUPING SETS ((SALES_PERSON, MONTH(SALES_DATE)),

 ()

)

 ORDER BY SALES_PERSON, MONTH

This results in:

 SALES_PERSON MONTH UNITS_SOLD

 --------------- ----------- -----------

 GOUNOT 3 35

 GOUNOT 4 14

 GOUNOT 12 1

 LEE 3 60

 LEE 4 25

 LEE 12 6

 LUCCHESSI 3 9

 LUCCHESSI 4 4

 LUCCHESSI 12 1

 - - 155

Example C6: This example shows two simple ROLLUP queries followed by a

query which treats the two ROLLUPs as grouping sets in a single result set and

specifies row ordering for each column involved in the grouping sets.

Example C6-1:

 SELECT WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 SUM(SALES) AS UNITS_SOLD

 FROM SALES

 GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE))

 ORDER BY WEEK, DAY_WEEK

results in:

 WEEK DAY_WEEK UNITS_SOLD

 ----------- ----------- -----------

 13 6 27

 13 7 46

 13 - 73

 14 1 31

 14 2 43

 14 - 74

 53 1 8

 53 - 8

 - - 155

Example C6-2:

 SELECT MONTH(SALES_DATE) AS MONTH,

 REGION,

 SUM(SALES) AS UNITS_SOLD

 FROM SALES

 GROUP BY ROLLUP (MONTH(SALES_DATE), REGION);

 ORDER BY MONTH, REGION

results in:

 MONTH REGION UNITS_SOLD

 ----------- --------------- -----------

 3 Manitoba 22

 3 Ontario-North 8

 3 Ontario-South 34

 3 Quebec 40

 3 - 104

 4 Manitoba 17

 4 Ontario-North 1

454 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

4 Ontario-South 14

 4 Quebec 11

 4 - 43

 12 Manitoba 2

 12 Ontario-South 4

 12 Quebec 2

 12 - 8

 - - 155

Example C6-3:

 SELECT WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 MONTH(SALES_DATE) AS MONTH,

 REGION,

 SUM(SALES) AS UNITS_SOLD

 FROM SALES

 GROUP BY GROUPING SETS (ROLLUP(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE)),

 ROLLUP(MONTH(SALES_DATE), REGION))

ORDER BY WEEK, DAY_WEEK, MONTH, REGION

results in:

 WEEK DAY_WEEK MONTH REGION UNITS_SOLD

 ----------- ----------- ----------- --------------- -----------

 13 6 - - 27

 13 7 - - 46

 13 - - - 73

 14 1 - - 31

 14 2 - - 43

 14 - - - 74

 53 1 - - 8

 53 - - - 8

 - - 3 Manitoba 22

 - - 3 Ontario-North 8

 - - 3 Ontario-South 34

 - - 3 Quebec 40

 - - 3 - 104

 - - 4 Manitoba 17

 - - 4 Ontario-North 1

 - - 4 Ontario-South 14

 - - 4 Quebec 11

 - - 4 - 43

 - - 12 Manitoba 2

 - - 12 Ontario-South 4

 - - 12 Quebec 2

 - - 12 - 8

 - - - - 155

 - - - - 155

Using the two ROLLUPs as grouping sets causes the result to include duplicate

rows. There are even two grand total rows.

Observe how the use of ORDER BY has affected the results:

v In the first grouped set, week 53 has been repositioned to the end.

v In the second grouped set, month 12 has now been positioned to the end and

the regions now appear in alphabetic order.

v Null values are sorted high.

Example C7: In queries that perform multiple ROLLUPs in a single pass (such as

Example C6-3) you may want to be able to indicate which grouping set produced

each row. The following steps demonstrate how to provide a column (called

GROUP) which indicates the origin of each row in the result set. By origin, we

mean which one of the two grouping sets produced the row in the result set.

Chapter 2. SQL Statements for Users 455

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|

|

|
|
|
|
|

Step 1: Introduce a way of ″generating″ new data values, using a query which

selects from a VALUES clause (which is an alternate form of a fullselect). This

query shows how a table can be derived called ″X″ having 2 columns ″R1″ and

″R2″ and 1 row of data.

 SELECT R1,R2

 FROM (VALUES(’GROUP 1’,’GROUP 2’)) AS X(R1,R2);

results in:

 R1 R2

 ------- -------

 GROUP 1 GROUP 2

Step 2: Form the cross product of this table ″X″ with the SALES table. This add

columns ″R1″ and ″R2″ to every row.

 SELECT R1, R2, WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 MONTH(SALES_DATE) AS MONTH,

 REGION,

 SALES AS UNITS_SOLD

 FROM SALES,(VALUES(’GROUP 1’,’GROUP 2’)) AS X(R1,R2)

This add columns ″R1″ and ″R2″ to every row.

Step 3: Now we can combine these columns with the grouping sets to include these

columns in the rollup analysis.

 SELECT R1, R2,

 WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 MONTH(SALES_DATE) AS MONTH,

 REGION, SUM(SALES) AS UNITS_SOLD

 FROM SALES,(VALUES(’GROUP 1’,’GROUP 2’)) AS X(R1,R2)

 GROUP BY GROUPING SETS ((R1, ROLLUP(WEEK(SALES_DATE),

 DAYOFWEEK(SALES_DATE))),

 (R2,ROLLUP(MONTH(SALES_DATE), REGION)))

 ORDER BY WEEK, DAY_WEEK, MONTH, REGION

results in:

 R1 R2 WEEK DAY_WEEK MONTH REGION UNITS_SOLD

 ------- ------- -------- --------- --------- --------------- -----------

 GROUP 1 - 13 6 - - 27

 GROUP 1 - 13 7 - - 46

 GROUP 1 - 13 - - - 73

 GROUP 1 - 14 1 - - 31

 GROUP 1 - 14 2 - - 43

 GROUP 1 - 14 - - - 74

 GROUP 1 - 53 1 - - 8

 GROUP 1 - 53 - - - 8

 - GROUP 2 - - 3 Manitoba 22

 - GROUP 2 - - 3 Ontario-North 8

 - GROUP 2 - - 3 Ontario-South 34

 - GROUP 2 - - 3 Quebec 40

 - GROUP 2 - - 3 - 104

 - GROUP 2 - - 4 Manitoba 17

 - GROUP 2 - - 4 Ontario-North 1

 - GROUP 2 - - 4 Ontario-South 14

 - GROUP 2 - - 4 Quebec 11

 - GROUP 2 - - 4 - 43

 - GROUP 2 - - 12 Manitoba 2

 - GROUP 2 - - 12 Ontario-South 4

 - GROUP 2 - - 12 Quebec 2

456 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|

|
|

|

|
|
|

|
|

|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

- GROUP 2 - - 12 - 8

 - GROUP 2 - - - - 155

 GROUP 1 - - - - - 155

Step 4: Notice that because R1 and R2 are used in different grouping sets,

whenever R1 is non-null in the result, R2 is null and whenever R2 is non-null in

the result, R1 is null. That means you can consolidate these columns into a single

column using the COALESCE function. You can also use this column in the

ORDER BY clause to keep the results of the two grouping sets together.

 SELECT COALESCE(R1,R2) AS GROUP,

 WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 MONTH(SALES_DATE) AS MONTH,

 REGION, SUM(SALES) AS UNITS_SOLD

 FROM SALES,(VALUES(’GROUP 1’,’GROUP 2’)) AS X(R1,R2)

 GROUP BY GROUPING SETS ((R1, ROLLUP(WEEK(SALES_DATE),

 DAYOFWEEK(SALES_DATE))),

 (R2,ROLLUP(MONTH(SALES_DATE), REGION)))

 ORDER BY GROUP, WEEK, DAY_WEEK, MONTH, REGION;

results in:

 GROUP WEEK DAY_WEEK MONTH REGION UNITS_SOLD

 ------- ----------- ----------- ----------- --------------- -----------

 GROUP 1 13 6 - - 27

 GROUP 1 13 7 - - 46

 GROUP 1 13 - - - 73

 GROUP 1 14 1 - - 31

 GROUP 1 14 2 - - 43

 GROUP 1 14 - - - 74

 GROUP 1 53 1 - - 8

 GROUP 1 53 - - - 8

 GROUP 1 - - - - 155

 GROUP 2 - - 3 Manitoba 22

 GROUP 2 - - 3 Ontario-North 8

 GROUP 2 - - 3 Ontario-South 34

 GROUP 2 - - 3 Quebec 40

 GROUP 2 - - 3 - 104

 GROUP 2 - - 4 Manitoba 17

 GROUP 2 - - 4 Ontario-North 1

 GROUP 2 - - 4 Ontario-South 14

 GROUP 2 - - 4 Quebec 11

 GROUP 2 - - 4 - 43

 GROUP 2 - - 12 Manitoba 2

 GROUP 2 - - 12 Ontario-South 4

 GROUP 2 - - 12 Quebec 2

 GROUP 2 - - 12 - 8

 GROUP 2 - - - - 155

Example C8: The following example illustrates the use of various aggregate

functions when performing a CUBE. The example also makes use of cast functions

and rounding to produce a decimal result with reasonable precision and scale.

 SELECT MONTH(SALES_DATE) AS MONTH,

 REGION,

 SUM(SALES) AS UNITS_SOLD,

 MAX(SALES) AS BEST_SALE,

 CAST(ROUND(AVG(DECIMAL(SALES)),2) AS DECIMAL(5,2)) AS AVG_UNITS_SOLD

 FROM SALES

 GROUP BY CUBE(MONTH(SALES_DATE),REGION)

 ORDER BY MONTH, REGION

This results in:

Chapter 2. SQL Statements for Users 457

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|

MONTH REGION UNITS_SOLD BEST_SALE AVG_UNITS_SOLD

----------- --------------- ----------- ----------- --------------

 3 Manitoba 22 7 3.14

 3 Ontario-North 8 3 2.67

 3 Ontario-South 34 14 4.25

 3 Quebec 40 18 5.00

 3 - 104 18 4.00

 4 Manitoba 17 9 5.67

 4 Ontario-North 1 1 1.00

 4 Ontario-South 14 8 4.67

 4 Quebec 11 8 5.50

 4 - 43 9 4.78

 12 Manitoba 2 2 2.00

 12 Ontario-South 4 3 2.00

 12 Quebec 2 1 1.00

 12 - 8 3 1.60

 - Manitoba 41 9 3.73

 - Ontario-North 9 3 2.25

 - Ontario-South 52 14 4.00

 - Quebec 53 18 4.42

 - - 155 18 3.87

TRANSFER OWNERSHIP

The TRANSFER OWNERSHIP statement transfers ownership of a database object.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v Ownership of the object

v SECADM authority

Syntax

�� TRANSFER OWNERSHIP OF objects TO new-owner PRESERVE PRIVILEGES ��

objects:

458 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

�

�

�

 FOR TABLE

ALIAS

alias-name

PUBLIC

FOR SEQUENCE

CONSTRAINT

table-name.constraint-name

DATABASE PARTITION GROUP

db-partition-group-name

EVENT MONITOR

event-monitor-name

FUNCTION

function-name

(

)

,

data-type

SPECIFIC FUNCTION

specific-name

FUNCTION MAPPING

function-mapping-name

INDEX

index-name

INDEX EXTENSION

index-extension-name

METHOD

method-name

FOR

type-name

(

)

,

data-type

SPECIFIC METHOD

specific-name

NICKNAME

nickname

PACKAGE

package-id

schema-name.

VERSION

version-id

PROCEDURE

procedure-name

(

)

,

data-type

SPECIFIC PROCEDURE

specific-name

SCHEMA

schema-name

SEQUENCE

sequence-name

TABLE

table-name

TABLE HIERARCHY

root-table-name

TABLESPACE

tablespace-name

TRIGGER

trigger-name

TYPE

type-name

DISTINCT

TYPE MAPPING

type-mapping-name

VARIABLE

variable-name

VIEW

view-name

VIEW HIERARCHY

root-view-name

XSROBJECT

xsrobject-name

new-owner:

 USER authorization-name

SESSION_USER

SYSTEM_USER

Description

ALIAS alias-name

Identifies the alias that is to have its ownership transferred. The alias-name

must identify an alias that is described in the catalog (SQLSTATE 42704). If

PUBLIC is specified, the alias-name must identify a public alias that exists at

the current server (SQLSTATE 42704).

Chapter 2. SQL Statements for Users 459

|
|
|

FOR TABLE, or FOR SEQUENCE

Specifies the object type for the alias.

FOR TABLE

The alias is for a table, view, or nickname. When ownership of the alias

is transferred, the value in the OWNER column for the alias in the

SYSCAT.TABLES catalog view is replaced with the authorization ID of

the new owner.

FOR SEQUENCE

The alias is for a sequence. When ownership of the alias is transferred,

the value in the OWNER column for the alias in the

SYSCAT.SEQUENCES catalog view is replaced with the authorization

ID of the new owner.

CONSTRAINT table-name.constraint-name

Identifies the constraint that is to have its ownership transferred. The

table-name.constraint-name combination must identify a constraint and the table

that it constrains. The constraint-name must identify a constraint that is

described in the catalog (SQLSTATE 42704).

 When ownership of the constraint is transferred, the value in the OWNER

column for the constraint in the SYSCAT.TABCONST catalog view is replaced

with the authorization ID of the new owner.

v If the constraint is a FOREIGN KEY constraint, the OWNER column in the

SYSCAT.REFERENCES catalog view is replaced with the authorization ID of

the new owner.

v If the constraint is a PRIMARY KEY or UNIQUE constraint, the OWNER

column in the SYSCAT.INDEXES catalog view for the index that was created

implicitly for this constraint is replaced with the authorization ID of the new

owner. If the index existed, and it is reused in this case, the owner of the

index is not changed.

DATABASE PARTITION GROUP db-partition-group-name

Identifies the database partition group that is to have its ownership

transferred. The db-partition-group-name must identify a database partition

group that is described in the catalog (SQLSTATE 42704).

 When ownership of the database partition group is transferred, the value in

the OWNER column for the database partition group in the

SYSCAT.DBPARTITIONGROUPS catalog view is replaced with the

authorization ID of the new owner.

EVENT MONITOR event-monitor-name

Identifies the event monitor that is to have its ownership transferred. The

event-monitor-name must identify an event monitor that is described in the

catalog (SQLSTATE 42704).

 When ownership of the event monitor is transferred, the value in the OWNER

column for the event monitor in the SYSCAT.EVENTMONITORS catalog view

is replaced with the authorization ID of the new owner.

If the identified event monitor is active, an error is returned (SQLSTATE

429BT).

If there are event files in the target path of a WRITE TO FILE event monitor

whose ownership is being transferred, the event files are not deleted.

When ownership of WRITE TO TABLE event monitors is transferred, table

information in the SYSCAT.EVENTTABLES catalog view is retained.

460 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|
|
|
|

|
|
|
|
|

FUNCTION

Identifies the function that is to have its ownership transferred. The specified

function instance must be a user-defined function or function template that is

described in the catalog. Ownership of functions that are implicitly generated

by the CREATE TYPE (Distinct) and CREATE TYPE (Structured) statements

cannot be transferred (SQLSTATE 429BT).

 There are several different ways to identify the function instance.

FUNCTION function-name

Identifies the particular function that is to have its ownership transferred,

and is valid only if there is exactly one function instance with that

function-name. The function thus identified can have any number of

parameters defined for it. In dynamic SQL statements, the CURRENT

SCHEMA special register is used as a qualifier for an unqualified object

name. In static SQL statements, the QUALIFIER precompile or bind option

implicitly specifies the qualifier for unqualified object names. If no function

by this name exists in the named or implied schema, an error is returned

(SQLSTATE 42704). If there is more than one specific instance of the

function in the named or implied schema, an error is returned (SQLSTATE

42725).

FUNCTION function-name (data-type,...)

Provides the function signature, which uniquely identifies the function

whose ownership is to be transferred. The function selection algorithm is

not used.

function-name

Specifies the name of the function whose ownership is to be

transferred. In dynamic SQL statements, the CURRENT SCHEMA

special register is used as a qualifier for an unqualified object name. In

static SQL statements, the QUALIFIER precompile or bind option

implicitly specifies the qualifier for unqualified object names.

(data-type,...)

Specified data types must match the types and positions that were

specified on the CREATE FUNCTION statement. The number of data

types and the logical concatenation of the data types are used to

identify the specific function whose ownership is to be transferred.

 If the data-type is unqualified, the type name is resolved by searching

the schemas on the SQL path. This also applies to data type names

specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the

parameterized data types. Instead, an empty set of parentheses can be

coded to indicate that these attributes are to be ignored when looking

for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter

value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly

match that specified in the CREATE FUNCTION statement.

A type of FLOAT(n) does not need to match the defined value for n,

because 0<n<25 means REAL, and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

The FOR BIT DATA attribute is not considered to be part of the

signature for matching purposes. So, for example, a CHAR FOR BIT

Chapter 2. SQL Statements for Users 461

DATA specified in the signature would match a function defined with

CHAR only; the reverse would also be true.

 If no function with the specified signature exists in the named or implied

schema, an error is returned (SQLSTATE 42883).

When ownership of the function is transferred, the value in the OWNER

column for the function in the SYSCAT.ROUTINES catalog view is replaced

with the authorization ID of the new owner.

SPECIFIC FUNCTION specific-name

Identifies the particular user-defined function that is to have its ownership

transferred, using the specific name either specified or defaulted to at function

creation time. In dynamic SQL statements, the CURRENT SCHEMA special

register is used as a qualifier for an unqualified object name. In static SQL

statements, the QUALIFIER precompile or bind option implicitly specifies the

qualifier for unqualified object names. The specific-name must identify a specific

function instance in the named or implied schema; otherwise, an error is

returned (SQLSTATE 42704).

 When ownership of the specific function is transferred, the value in the

OWNER column for the specific function in the SYSCAT.ROUTINES catalog

view is replaced with the authorization ID of the new owner.

FUNCTION MAPPING function-mapping-name

Identifies the function mapping that is to have its ownership transferred. The

function-mapping-name must identify a function mapping that is described in

the catalog (SQLSTATE 42704).

 When ownership of the function mapping is transferred, the value in the

OWNER column for the function mapping in the SYSCAT.FUNCMAPPINGS

catalog view is replaced with the authorization ID of the new owner.

INDEX index-name

Identifies the index or index specification that is to have its ownership

transferred. The index-name must identify an index or index specification that is

described in the catalog (SQLSTATE 42704).

 When ownership of the index is transferred, the value in the OWNER column

for the index in the SYSCAT.INDEXES catalog view is replaced with the

authorization ID of the new owner.

Ownership of an index cannot be transferred if the table on which the index is

defined is a global temporary table (SQLSTATE 429BT).

INDEX EXTENSION index-extension-name

Identifies the index extension that is to have its ownership transferred. The

index-extension-name must identify an index extension that is described in the

catalog (SQLSTATE 42704).

 When ownership of the index extension is transferred, the value in the

OWNER column for the index extension in the SYSCAT.INDEXEXTENSIONS

catalog view is replaced with the authorization ID of the new owner.

METHOD

Identifies the method that is to have its ownership transferred. The method

body specified must be a method that is described in the catalog (SQLSTATE

42704). The ownership of methods that are implicitly generated by the

CREATE TYPE statement cannot be transferred (SQLSTATE 429BT).

 There are several different ways to identify the method body.

462 Common Criteria Certification: Administration and User Documentation - Volume 2

METHOD method-name

Identifies the particular method that is to have its ownership transferred,

and is valid only if there is exactly one method instance with name

method-name and subject type type-name. Thus, the method identified can

have any number of parameters. If no method by this name exists for the

type type-name, an error is returned (SQLSTATE 42704). If there is more

than one specific instance of the method for the named data type, an error

is returned (SQLSTATE 42725).

METHOD method-name (data-type,...)

Provides the method signature, which uniquely identifies the method

whose ownership is to be transferred. The method selection algorithm is

not used.

method-name

Specifies the name of the method whose ownership is to be

transferred. The name must be an unqualified identifier.

(data-type, ...)

Specified data types must match the types and positions that were

specified on the CREATE TYPE or ALTER TYPE statement. The

number of data types and the logical concatenation of the data types

are used to identify the specific method instance whose ownership is

to be transferred.

 If data-type is unqualified, the type name is resolved by searching the

schemas on the SQL path.

It is not necessary to specify the length, precision, or scale for the

parameterized data types. Instead, an empty set of parentheses can be

coded to indicate that these attributes are to be ignored when looking

for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter

value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly

match that specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for n,

because 0<n<25 means REAL and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

If no method with the specified signature exists for the named data

type, an error is returned (SQLSTATE 42883).

FOR type-name

Names the type for which the specified method is to have its

ownership transferred. The name must identify a type that is described

in the catalog (SQLSTATE 42704). In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an

unqualified type name. In static SQL statements, the QUALIFIER

precompile or bind option implicitly specifies the qualifier for

unqualified type names.

 When ownership of the method is transferred, the value in the OWNER

column for the method in the SYSCAT.ROUTINES catalog view is replaced

with the authorization ID of the new owner.

SPECIFIC METHOD specific-name

Identifies the particular method that is to have its ownership transferred. If the

Chapter 2. SQL Statements for Users 463

specific name is unqualified, the CURRENT SCHEMA special register is used

as a qualifier for an unqualified specific name in dynamic SQL. In static SQL

statements, the QUALIFIER precompile or bind option implicitly specifies the

qualifier for an unqualified specific name. The specific-name must identify a

method; otherwise, an error is returned (SQLSTATE 42704).

 When ownership of the specific method is transferred, the value in the

OWNER column for the specific method in the SYSCAT.ROUTINES catalog

view is replaced with the authorization ID of the new owner.

NICKNAME nickname

Identifies the nickname that is to have its ownership transferred. The nickname

must be a nickname that is described in the catalog (SQLSTATE 42704).

 When ownership of the nickname is transferred, the value in the OWNER

column for the nickname in the SYSCAT.TABLES catalog view is replaced with

the authorization ID of the new owner.

PACKAGE schema-name.package-id

Identifies the package that is to have its ownership transferred. If a schema

name is not specified, the package identifier is implicitly qualified by the

default schema. The schema name and package identifier, together with the

implicitly or explicitly specified version identifier, must identify a package that

is described in the catalog (SQLSTATE 42704).

VERSION version-id

Identifies which package version is to have its ownership transferred. If a

value is not specified, the version defaults to the empty string, and the

ownership of this package is transferred. If multiple packages with the

same package name but different versions exist, only the ownership of the

package whose version-id is specified in the TRANSFER OWNERSHIP

statement is transferred. Delimit the version identifier with double

quotation marks when it:

v Is generated by the VERSION(AUTO) precompiler option

v Begins with a digit

v Contains lowercase or mixed-case letters

If the statement is invoked from an operating system command prompt,

precede each double quotation mark delimiter with a back slash character

to ensure that the operating system does not strip the delimiters.

 When ownership of the package is transferred, the value in the BOUNDBY

column for the package in the SYSCAT.PACKAGES catalog view is replaced

with the authorization ID of the new owner.

The ownership of packages that are associated with SQL procedures cannot be

transferred (SQLSTATE 429BT).

PROCEDURE

Identifies the procedure that is to have its ownership transferred. The

procedure instance specified must be a procedure that is described in the

catalog.

 There are several different ways to identify the procedure instance.

PROCEDURE procedure-name

Identifies the particular procedure that is to have its ownership transferred,

and is valid only if there is exactly one procedure with the procedure-name

in the schema. The procedure thus identified can have any number of

parameters defined for it. In dynamic SQL statements, the CURRENT

464 Common Criteria Certification: Administration and User Documentation - Volume 2

SCHEMA special register is used as a qualifier for an unqualified object

name. In static SQL statements, the QUALIFIER precompile or bind option

implicitly specifies the qualifier for unqualified object names. If no

procedure by this name exists in the named or implied schema, an error is

returned (SQLSTATE 42704). If there is more than one specific instance of

the procedure in the named or implied schema, an error is returned

(SQLSTATE 42725).

PROCEDURE procedure-name (data-type,...)

Provides the procedure signature, which uniquely identifies the procedure

whose ownership is to be transferred.

procedure-name

Specifies the procedure name of the procedure whose ownership is to

be transferred. In dynamic SQL statements, the CURRENT SCHEMA

special register is used as a qualifier for an unqualified object name. In

static SQL statements, the QUALIFIER precompile or bind option

implicitly specifies the qualifier for unqualified object names.

(data-type,...)

Specified data types must match the types and positions that were

specified on the CREATE PROCEDURE statement. The number of data

types and the logical concatenation of the data types are used to

identify the specific procedure whose ownership is to be transferred.

 If the data-type is unqualified, the type name is resolved by searching

the schemas on the SQL path. This also applies to data type names

specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the

parameterized data types. Instead, an empty set of parentheses can be

coded to indicate that these attributes are to be ignored when looking

for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter

value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly

match that specified in the CREATE PROCEDURE statement.

A type of FLOAT(n) does not need to match the defined value for n,

because 0<n<25 means REAL and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

If no procedure with the specified signature exists in the named or implied

schema, an error is returned (SQLSTATE 42883).

 When ownership of the procedure is transferred, the value in the OWNER

column for the procedure in the SYSCAT.ROUTINES catalog view is replaced

with the authorization ID of the new owner.

Transferring ownership of an SQL procedure that has an associated package

also implicitly transfers ownership of the package to the new owner.

SPECIFIC PROCEDURE specific-name

Identifies the particular procedure that is to have its ownership transferred,

using the specific name either specified or defaulted to at procedure creation

time. In dynamic SQL statements, the CURRENT SCHEMA special register is

used as a qualifier for an unqualified object name. In static SQL statements, the

QUALIFIER precompile or bind option implicitly specifies the qualifier for

Chapter 2. SQL Statements for Users 465

unqualified object names. The specific-name must identify a specific procedure

instance in the named or implied schema; otherwise, an error is returned

(SQLSTATE 42704).

 When ownership of the specific procedure is transferred, the value in the

OWNER column for the specific procedure in the SYSCAT.ROUTINES catalog

view is replaced with the authorization ID of the new owner.

SCHEMA schema-name

Identifies the schema that is to have its ownership transferred. The schema-name

must identify a schema that is described in the catalog (SQLSTATE 42704).

 When ownership of the schema is transferred, the value in the OWNER

column and the DEFINER column for the schema in the SYSCAT.SCHEMATA

catalog view is replaced with the authorization ID of the new owner.

Ownership of system-defined schemas (where the definer is SYSIBM) cannot

be transferred (SQLSTATE 42832).

SEQUENCE sequence-name

Identifies the sequence that is to have its ownership transferred. The

sequence-name must identify a sequence that is described in the catalog

(SQLSTATE 42704).

 When ownership of the sequence is transferred, the value in the OWNER

column for the schema in the SYSCAT.SEQUENCES catalog view is replaced

with the authorization ID of the new owner.

TABLE table-name

Identifies the table that is to have its ownership transferred. The table-name

must identify a table that exists in the database (SQLSTATE 42704) and must

not identify a declared temporary table (SQLSTATE 42995).

 When ownership of the table is transferred:

v The value in the OWNER column for the table in the SYSCAT.TABLES

catalog view is replaced with the authorization ID of the new owner.

v The value in the OWNER column for all dependent objects on the table in

the SYSCAT.TABDEP catalog view is replaced with the authorization ID of

the new owner.

Ownership of subtables in a table hierarchy cannot be transferred (SQLSTATE

429BT).

In a federated system, ownership of a remote table that was created using

transparent DDL can be transferred. Transferring the ownership of a remote

table will not transfer ownership of the nickname that is associated with the

table. Ownership of such a nickname can be transferred explicitly using the

TRANSFER OWNERSHIP statement.

TABLE HIERARCHY root-table-name

Identifies the typed table that is the root table in a typed table hierarchy that is

to have its ownership transferred. The root-table-name must identify a typed

table that is the root table in the typed table hierarchy (SQLSTATE 428DR), and

must refer to a typed table that exists in the database (SQLSTATE 42704).

 When ownership of the table hierarchy is transferred:

v The value in the OWNER column for the root table and all of its subtables

in the SYSCAT.TABLES catalog view is replaced with the authorization ID of

the new owner.

466 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

v The value in the OWNER column for all dependent objects on the table and

all of its subtables in the SYSCAT.TABDEP catalog view is replaced with the

authorization ID of the new owner.

TABLESPACE tablespace-name

Identifies the table space that is to have its ownership transferred. The

tablespace-name must identify a table space that is described in the catalog

(SQLSTATE 42704).

 When ownership of the table space is transferred, the value in the OWNER

column for the table space in the SYSCAT.TABLESPACES catalog view is

replaced with the authorization ID of the new owner.

TRIGGER trigger-name

Identifies the trigger that is to have its ownership transferred. The trigger-name

must identify a trigger that is described in the catalog (SQLSTATE 42704).

 When ownership of the trigger is transferred, the value in the OWNER column

for the trigger in the SYSCAT.TRIGGERS catalog view is replaced with the

authorization ID of the new owner.

TYPE type-name

Identifies the user-defined type that is to have its ownership transferred. The

type-name must identify a type that is described in the catalog (SQLSTATE

42704). If DISTINCT is specified, type-name must identify a distinct type that is

described in the catalog (SQLSTATE 42704).

 In dynamic SQL statements, the CURRENT SCHEMA special register is used

as a qualifier for an unqualified object name. In static SQL statements, the

QUALIFIER precompile or bind option implicitly specifies the qualifier for

unqualified object names.

When ownership of the type is transferred, the value in the OWNER column

for the type in the SYSCAT.DATATYPES catalog view is replaced with the

authorization ID of the new owner.

TYPE MAPPING type-mapping-name

Identifies the user-defined data type mapping that is to have its ownership

transferred. The type-mapping-name must identify a data type mapping that is

described in the catalog (SQLSTATE 42704).

 When ownership of the type mapping is transferred, the value in the OWNER

column for the type mapping in the SYSCAT.TYPEMAPPINGS catalog view is

replaced with the authorization ID of the new owner.

VARIABLE variable-name

Indicates that the object whose ownership is to be transferred is a created

global variable. The variable-name must identify a global variable that exists at

the current server (SQLSTATE 42704).

 When the global variable is transferred, the value in the OWNER column for

the global variable in the SYSCAT.VARIABLES catalog view is replaced with

the authorization ID of the new owner.

VIEW view-name

Identifies the view that is to have its ownership transferred. The view-name

must identify a view that exists in the database (SQLSTATE 42704).

 When ownership of the view is transferred:

v The value in the OWNER column for the view in the SYSCAT.VIEWS

catalog view is replaced with the authorization ID of the new owner.

Chapter 2. SQL Statements for Users 467

v The value in the OWNER column for all dependent objects on the view in

the SYSCAT.TABDEP catalog view is replaced with the authorization ID of

the new owner.

The ownership of a subview in a view hierarchy cannot be transferred

(SQLSTATE 429BT).

VIEW HIERARCHY root-view-name

Identifies the typed view that is the root view in a typed view hierarchy that is

to have its ownership transferred. The root-view-name must identify a typed

view that is the root view in the typed view hierarchy (SQLSTATE 428DR), and

must refer to a typed view that exists in the database (SQLSTATE 42704).

 When ownership of the view hierarchy is transferred:

v The value in the OWNER column for the root view and all of its subviews

in the SYSCAT.VIEWS catalog view is replaced with the authorization ID of

the new owner.

v The value in the OWNER column for all dependent objects on the view and

all of its subviews in the SYSCAT.TABDEP catalog view is replaced with the

authorization ID of the new owner.

XSROBJECT xsrobject-name

Identifies the XSR object that is to have its ownership transferred. The

xsrobject-name must identify an XSR object that is described in the catalog

(SQLSTATE 42704).

 When ownership of the XSR object is transferred, the value in the OWNER

column for the XSR object in the SYSCAT.XSROBJECTS catalog view is

replaced with the authorization ID of the new owner.

USER authorization-name

Specifies the authorization ID to which ownership of the object is being

transferred.

SESSION_USER

Specifies that the value of the SESSION_USER special register is to be used as

the authorization ID to which ownership of the object is being transferred.

SYSTEM_USER

Specifies that the value of the SYSTEM_USER special register is to be used as

the authorization ID to which ownership of the object is being transferred.

PRESERVE PRIVILEGES

Specifies that the current owner of an object that is to have its ownership

transferred will continue to hold any existing privileges on the object after the

transfer. For example, any privileges that were granted to the creator of a view

when that view was created continue to be held by the original owner even

after ownership has been transferred to another user.

Rules

v Ownership of most system-defined objects (where the owner is SYSIBM) cannot

be transferred (SQLSTATE 42832). However, you can transfer ownership of

implicitly created schema objects that have SYSIBM in the OWNER column and

do not have SYSIBM in the DEFINER column.

v Ownership of schemas whose name starts with ’SYS’ cannot be transferred

(SQLSTATE 42832).

v Ownership of the following objects cannot be explicitly transferred (SQLSTATE

429BT):

468 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|

– Subtables in a table hierarchy (they are transferred with the root hierarchy

table)

– Subviews in a view hierarchy (they are transferred with the root hierarchy

view)

– Indexes that are defined on global temporary tables

– Methods or functions that are implicitly generated when a user-defined type

is created

– Packages that depend on SQL procedures (they are transferred with the SQL

procedure)

– Event monitors that are active (they can be transferred when they are not

active)
v An authorization ID that has SECADM authority cannot transfer the ownership

of an object to itself, if it is not already the owner of the object (SQLSTATE

42502).

Notes

v All privileges that the current owner has that were granted as part of the

creation of the object are transferred to the new owner. If the current owner has

had a privilege on the object revoked, and that privilege was subsequently

granted back, the privilege is not transferred. For implicitly created schema

objects that have not already been transferred, the new owner is granted

CREATEIN, DROPIN, and ALTERIN privileges on the schema and can also

grant these privileges to other users.

v When the ownership of a database object is transferred, the new owner must

have the set of privileges on the base objects, as indicated by the object’s

dependencies, that are required to maintain the object’s existence unchanged.

The new owner does not need the privileges required to create the object if those

privileges are not required to maintain the object’s existence.

For example:

– Consider a view with SELECT and INSERT dependencies on an underlying

table. The privileges held by the new owner of the view must include at least

SELECT (with or without the GRANT OPTION) and INSERT (with or

without the GRANT OPTION) for the ownership transfer to be successful. If

the dependencies were SELECT WITH GRANT OPTION and INSERT WITH

GRANT OPTION, the privileges held by the new owner of the view must

include at least SELECT WITH GRANT OPTION and INSERT WITH GRANT

OPTION.

– Consider a view with a dependency on a routine. The privileges held by the

new owner of the view must include at least EXECUTE on the dependent

routine.

– Consider a trigger with a dependency on a table. The privileges held by the

new owner of the trigger must include the same set of privileges on the table

that are indicated by the trigger’s dependencies. ALTER privilege on the table

on which the trigger is defined is not required.
The following table lists the system catalog views that describe the objects on

which other database objects depend.

 Table 17. Catalog Views that Describe Objects on which Other Objects Depend

Database Object System Catalog View

CONSTRAINT SYSCAT.CONSTDEP

FUNCTION SYSCAT.ROUTINEDEP; SYSCAT.ROUTINES

(for a sourced function)

Chapter 2. SQL Statements for Users 469

|
|
|
|
|
|
|

Table 17. Catalog Views that Describe Objects on which Other Objects Depend (continued)

Database Object System Catalog View

INDEX SYSCAT.INDEXDEP

INDEX EXTENSION SYSCAT.INDEXEXTENSIONDEP

METHOD SYSCAT.ROUTINEDEP

PACKAGE SYSCAT.PACKAGEDEP

PROCEDURE SYSCAT.ROUTINEDEP

TABLE SYSCAT.TABDEP

TRIGGER SYSCAT.TRIGDEP

VIEW SYSCAT.TABDEP

XSROBJECT SYSCAT.XSROBJECTDEP

If ownership of a database object that depends on another object is to be

transferred successfully, the new owner of the database object must hold certain

privileges on the dependent object of that dependency:

– If the dependent object is a sequence, the new owner must have the USAGE

privilege on that sequence.

– If the dependent object is a function, method, or procedure, the new owner

must have the EXECUTE privilege on that function, method, or procedure.

– If the dependent object is a package, the new owner must have the EXECUTE

privilege on that package.

– If the dependent object is an XSR object, the new owner must have the

USAGE privilege on that XSR object.

For any other dependent object of a dependency, use the TABAUTH column in

the appropriate system catalog view to determine what privileges the new

owner must hold.

v If an attempt is made to transfer ownership of an object to its owner, a warning

is returned (SQLSTATE 01676).

v Ownership of the following database objects cannot be transferred, because these

objects have no owner: audit policies, buffer pools, roles, security labels, security

label components, security policies, servers, transformation functions, trusted

contexts, user mappings, and wrappers. Note that there is no OWNER column

in the SYSCAT.AUDITPOLICIES, SYSCAT.BUFFERPOOLS, SYSCAT.CONTEXTS,

SYSCAT.ROLES, SYSCAT.SECURITYLABELS,

SYSCAT.SECURITYLABELCOMPONENTS, SYSCAT.SECURITYPOLICIES,

SYSCAT.SERVERS, SYSCAT.TRANSFORMS, SYSCAT.USEROPTIONS, and

SYSCAT.WRAPPERS catalog views.

v The schema name of an object whose ownership was transferred does not

automatically change.

v Compatibilities: For consistency with other SQL statements:

– NODEGROUP can be specified in place of DATABASE PARTITION GROUP

– SYNONYM can be specified in place of ALIAS

Examples

Example 1: Transfer ownership of table T1 to PAUL.

 TRANSFER OWNERSHIP OF TABLE WALID.T1

 TO USER PAUL PRESERVE PRIVILEGES

470 Common Criteria Certification: Administration and User Documentation - Volume 2

|

The value in the OWNER column for the table WALID.T1 in the SYSCAT.TABLES

catalog view is replaced with ’PAUL’. Paul is implicitly granted the following

privileges on table WALID.T1 (assuming that the previous owner of the table did

not lose any privileges on it): CONTROL and ALTER, DELETE, INDEX, INSERT,

SELECT, UPDATE, REFERENCE (WITH GRANT OPTION).

Example 2: Assume that JOHN creates tables T1 and T2, and that MIKE holds

SELECT privilege on tables JOHN.T1 and JOHN.T2. MIKE creates view V1 that

depends on tables JOHN.T1 and JOHN.T2. Transfer ownership of view V1 to

HENRY, who has DBADM authority.

 TRANSFER OWNERSHIP OF VIEW V1

 TO USER HENRY PRESERVE PRIVILEGES

The value in the OWNER column for the view V1 in the SYSCAT.VIEWS catalog

view is replaced with ’HENRY’. A new row is added to SYSCAT.TABAUTH with

the following values: GRANTOR = ’SYSIBM’, GRANTEE = ’HENRY’, and

TABNAME = ’V1’.

Example 3: Assume that HENRY, who holds DBADM authority, creates a trigger

TR1 that depends on table T1. Transfer ownership of trigger TR1 to WALID, who

does not hold DBADM authority.

 TRANSFER OWNERSHIP OF TRIGGER TR1

 TO USER WALID PRESERVE PRIVILEGES

Ownership of the trigger is transferred successfully, even though Walid does not

hold DBADM authority.

Example 4: Assume that JOHN creates tables T1 and T2, and that MIKE holds

SELECT privilege on table JOHN.T1 and CONTROL privilege on table JOHN.T2.

PAUL holds SELECT privilege on tables JOHN.T1 and JOHN.T2. MIKE creates

view V1 that depends on tables JOHN.T1 and JOHN.T2. The view has an entry for

the SELECT privilege in SYSCAT.TABAUTH and two SELECT dependencies in

SYSCAT.TABDEP for tables JOHN.T1 and JOHN.T2. Transfer ownership of view

V1 to PAUL, who is a regular user.

 TRANSFER OWNERSHIP OF VIEW V1

 TO USER PAUL PRESERVE PRIVILEGES

Ownership of the view is transferred successfully, even though Paul does not hold

CONTROL privilege on table JOHN.T2. Paul only needs SELECT privilege on

tables JOHN.T1 and JOHN.T2 to maintain the view’s existence. (The view only has

SELECT privilege because Paul did not hold CONTROL privilege on both tables

when the view was created and, as a result, he was not granted CONTROL on the

view.) The value in the OWNER column for the view V1 in the SYSCAT.VIEWS

catalog view is replaced with ’PAUL’. The value in the OWNER column for the

view V1 in the SYSCAT.TABDEP catalog view is replaced with ’PAUL’. A new row

is added to SYSCAT.TABAUTH with the following values: GRANTOR = ’SYSIBM’,

GRANTEE = ’PAUL’, and TABNAME = ’V1’.

Example 5: Assume that JOHN creates table T1, and that PUBLIC holds SELECT

privilege on JOHN.T1. PAUL holds SELECT privilege on JOHN.T1 explicitly, and

creates view V1 that depends on table JOHN.T1. Transfer ownership of view V1 to

MIKE, who is not a DBADM, but who holds the required privileges to acquire

view ownership through the special group PUBLIC.

 TRANSFER OWNERSHIP OF VIEW V1

 TO USER MIKE PRESERVE PRIVILEGES

Chapter 2. SQL Statements for Users 471

Ownership of the view is transferred successfully, because Mike holds SELECT

privilege on table JOHN.T1 through PUBLIC. The value in the OWNER column for

the view V1 in the SYSCAT.VIEWS catalog view is replaced with ’MIKE’. The

value in the OWNER column for the view V1 in the SYSCAT.TABDEP catalog view

is replaced with ’MIKE’. A new row is added to SYSCAT.TABAUTH with the

following values: GRANTOR = ’SYSIBM’, GRANTEE = ’MIKE’, and TABNAME =

’V1’.

Example 6: Similar to example 5, assume that JOHN creates table T1, and that role

R1 holds SELECT privilege on JOHN.T1. PAUL holds SELECT privilege on

JOHN.T1 explicitly, and creates view V1 that depends on table JOHN.T1. Transfer

ownership of view V1 to MIKE, who is not a DBADM, but who holds the required

privileges through membership in role R1 to acquire view ownership.

 TRANSFER OWNERSHIP OF VIEW V1

 TO USER MIKE PRESERVE PRIVILEGES

Ownership of the view is transferred successfully, because Mike holds SELECT

privilege on table JOHN.T1 through membership in role R1. The value in the

OWNER column for the view V1 in the SYSCAT.VIEWS catalog view is replaced

with ’MIKE’. The value in the OWNER column for the view V1 in the

SYSCAT.TABDEP catalog view is replaced with ’MIKE’. A new row is added to

SYSCAT.TABAUTH with the following values: GRANTOR = ’SYSIBM’, GRANTEE

= ’MIKE’, and TABNAME = ’V1’.

472 Common Criteria Certification: Administration and User Documentation - Volume 2

Part 2. Functions

© Copyright IBM Corp. 1993, 2009 473

474 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 3. Functions

Functions overview

A function is an operation that is denoted by a function name followed by a pair of

parentheses enclosing the specification of arguments (there may be no arguments).

Built-in functions are provided with the database manager; they return a single

result value, and are identified as part of the SYSIBM schema. Built-in functions

include column functions (such as AVG), operator functions (such as “+”), casting

functions (such as DECIMAL), and others (such as SUBSTR).

User-defined functions are registered to a database in SYSCAT.ROUTINES (using the

CREATE FUNCTION statement). User-defined functions are never part of the

SYSIBM schema. One such set of functions is provided with the database manager

in a schema called SYSFUN, and another in a schema called SYSPROC.

Functions are classified as aggregate (column) functions, scalar functions, row

functions, or table functions.

v The argument of an aggregate function is a collection of like values. An aggregate

function returns a single value (possibly null), and can be specified in an SQL

statement wherever an expression can be used.

v The arguments of a scalar function are individual scalar values, which can be of

different types and have different meanings. A scalar function returns a single

value (possibly null), and can be specified in an SQL statement wherever an

expression can be used.

v The argument of a row function is a structured type. A row function returns a

row of built-in data types and can only be specified as a transform function for a

structured type.

v The arguments of a table function are individual scalar values, which can be of

different types and have different meanings. A table function returns a table to

the SQL statement, and can be specified only within the FROM clause of a

SELECT statement.

The function name, combined with the schema, gives the fully qualified name of a

function. The combination of schema, function name, and input parameters make

up a function signature.

In some cases, the input parameter type is specified as a specific built-in data type,

and in other cases, it is specified through a general variable like any-numeric-type. If

a particular data type is specified, an exact match will only occur with the

specified data type. If a general variable is used, each of the data types associated

with that variable results in an exact match.

Additional functions may be available, because user-defined functions can be

created in different schemas, using one of the function signatures as a source. You

can also create external functions in your applications.

© Copyright IBM Corp. 1993, 2009 475

DBPARTITIONNUM

�� DBPARTITIONNUM (column-name) ��

The schema is SYSIBM.

The DBPARTITIONNUM function returns the database partition number for a row.

For example, if used in a SELECT clause, it returns the database partition number

for each row in the result set.

The argument must be the qualified or unqualified name of any column in the

table. Because row-level information is returned, the result is the same regardless

of which column is specified. The column can have any data type.

If column-name references a column in a view, the expression for the column in the

view must reference a column of the underlying base table, and the view must be

deletable. A nested or common table expression follows the same rules as a view.

The specific row (and table) for which the database partition number is returned

by the DBPARTITIONNUM function is determined from the context of the SQL

statement that uses the function.

The database partition number returned on transition variables and tables is

derived from the current transition values of the distribution key columns. For

example, in a before insert trigger, the function returns the projected database

partition number, given the current values of the new transition variables.

However, the values of the distribution key columns might be modified by a

subsequent before insert trigger. Thus, the final database partition number of the

row when it is inserted into the database might differ from the projected value.

The data type of the result is INTEGER and is never null. If there is no

db2nodes.cfg file, the result is 0.

This function cannot be used as a source function when creating a user-defined

function. Because the function accepts any data type as an argument, it is not

necessary to create additional signatures to support user-defined distinct types.

The DBPARTITIONNUM function cannot be used on replicated tables, within

check constraints, or in the definition of generated columns (SQLSTATE 42881).

For compatibility with previous versions of DB2 products, NODENUMBER can be

specified in place of DBPARTITIONNUM.

Examples:

v Count the number of instances in which the row for a given employee in the

EMPLOYEE table is on a different database partition than the description of the

employee’s department in the DEPARTMENT table.

 SELECT COUNT(*) FROM DEPARTMENT D, EMPLOYEE E

 WHERE D.DEPTNO=E.WORKDEPT

 AND DBPARTITIONNUM(E.LASTNAME) <> DBPARTITIONNUM(D.DEPTNO)

v Join the EMPLOYEE and DEPARTMENT tables so that the rows of the two

tables are on the same database partition.

 SELECT * FROM DEPARTMENT D, EMPLOYEE E

 WHERE DBPARTITIONNUM(E.LASTNAME) = DBPARTITIONNUM(D.DEPTNO)

476 Common Criteria Certification: Administration and User Documentation - Volume 2

v Using a before trigger on the EMPLOYEE table, log the employee number and

the projected database partition number of any new row in the EMPLOYEE

table in a table named EMPINSERTLOG1.

 CREATE TRIGGER EMPINSLOGTRIG1

 BEFORE INSERT ON EMPLOYEE

 REFERENCING NEW AW NEWTABLE

 FOR EACH ROW

 INSERT INTO EMPINSERTLOG1

 VALUES(NEWTABLE.EMPNO, DBPARTITIONNUM

 (NEWTABLE.EMPNO))

DECRYPT_BIN and DECRYPT_CHAR

�� DECRYPT_BIN

DECRYPT_CHAR
 (encrypted-data)

,

password-string-expression
 ��

The schema is SYSIBM.

The DECRYPT_BIN and DECRYPT_CHAR functions both return a value that is the

result of decrypting encrypted-data. The password used for decryption is either the

password-string-expression value or the encryption password value that was assigned

by the SET ENCRYPTION PASSWORD statement. To maintain the best level of

security on your system, it is recommended that you do not pass the encryption

password explicitly with the DECRYPT_BIN and DECRYPT_CHAR functions in

your query; instead, use the SET ENCRYPTION PASSWORD statement to set the

password, and use a host variable or dynamic parameter markers when you use

the SET ENCRYPTION PASSWORD statement, rather than a literal string.

The DECRYPT_BIN and DECRYPT_CHAR functions can only decrypt values that

are encrypted using the ENCRYPT function (SQLSTATE 428FE).

encrypted-data

An expression that returns a CHAR FOR BIT DATA or VARCHAR FOR BIT

DATA value as a complete, encrypted data string. The data string must have

been encrypted using the ENCRYPT function.

password-string-expression

An expression that returns a CHAR or VARCHAR value with at least 6 bytes

and no more than 127 bytes (SQLSTATE 428FC). This expression must be the

same password used to encrypt the data (SQLSTATE 428FD). If the value of

the password argument is null or not provided, the data will be decrypted

using the encryption password value that was assigned for the session by the

SET ENCRYPTION PASSWORD statement (SQLSTATE 51039).

The result of the DECRYPT_BIN function is VARCHAR FOR BIT DATA. The result

of the DECRYPT_CHAR function is VARCHAR. If encrypted-data included a hint,

the hint is not returned by the function. The length attribute of the result is the

length of the data type of encrypted-data minus 8 bytes. The actual length of the

value returned by the function will match the length of the original string that was

encrypted. If encrypted-data includes bytes beyond the encrypted string, these bytes

are not returned by the function.

If the first argument can be null, the result can be null. If the first argument is null,

the result is the null value.

Chapter 3. Functions 477

|
|
|
|
|
|
|
|
|

If the data is decrypted on a different system, which uses a code page that is

different from the code page in which the data was encrypted, expansion might

occur when converting the decrypted value to the database code page. In such

situations, the encrypted-data value should be cast to a VARCHAR string with a

larger number of bytes.

Examples

The following example demonstrates the use of the DECRYPT_CHAR function by

showing code fragments from an embedded SQL application.

EXEC SQL BEGIN DECLARE SECTION;

 char hostVarCreateTableStmt[100];

 char hostVarSetEncPassStmt[200];

 char hostVarPassword[128];

 char hostVarInsertStmt1[200];

 char hostVarInsertStmt2[200];

 char hostVarSelectStmt1[200];

 char hostVarSelectStmt2[200];

EXEC SQL END DECLARE SECTION;

/* prepare the statement */

strcpy(hostVarCreateTableStmt, "CREATE TABLE EMP (SSN VARCHAR(24) FOR BIT DATA)");

EXEC SQL PREPARE hostVarCreateTableStmt FROM :hostVarCreateTableStmt;

/* execute the statement */

EXEC SQL EXECUTE hostVarCreateTableStmt;

Use the SET ENCRYPTION PASSWORD statement to set an encryption password

for the session:

/* prepare the statement with a parameter marker */

strcpy(hostVarSetEncPassStmt, "SET ENCRYPTION PASSWORD = ?");

EXEC SQL PREPARE hostVarSetEncPassStmt FROM :hostVarSetEncPassStmt;

/* execute the statement for hostVarPassword = ’Pac1f1c’ */

strcpy(hostVarPassword, "Pac1f1c");

EXEC SQL EXECUTE hostVarSetEncPassStmt USING :hostVarPassword;

/* prepare the statement */

strcpy(hostVarInsertStmt1, "INSERT INTO EMP(SSN) VALUES ENCRYPT(’289-46-8832’)");

EXEC SQL PREPARE hostVarInsertStmt1 FROM :hostVarInsertStmt1;

/* execute the statement */

EXEC SQL EXECUTE hostVarInsertStmt1;

/* prepare the statement */

strcpy(hostVarSelectStmt1, "SELECT DECRYPT_CHAR(SSN) FROM EMP");

EXEC SQL PREPARE hostVarSelectStmt1 FROM :hostVarSelectStmt1;

/* execute the statement */

EXEC SQL EXECUTE hostVarSelectStmt1;

This query returns the value ’289-46-8832’.

Pass the encryption password explicitly:

/* prepare the statement */

strcpy(hostVarInsertStmt2, "INSERT INTO EMP (SSN) VALUES ENCRYPT(’289-46-8832’,?)");

EXEC SQL PREPARE hostVarInsertStmt2 FROM :hostVarInsertStmt2;

/* execute the statement for hostVarPassword = ’Pac1f1c’ */

strcpy(hostVarPassword, "Pac1f1c");

EXEC SQL EXECUTE hostVarInsertStmt2 USING :hostVarPassword;

/* prepare the statement */

478 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|

strcpy(hostVarSelectStmt2, "SELECT DECRYPT_CHAR(SSN,?) FROM EMP");

EXEC SQL PREPARE hostVarSelectStmt2 FROM :hostVarSelectStmt2;

/* execute the statement for hostVarPassword = ’Pac1f1c’ */

strcpy(hostVarPassword, "Pac1f1c");

EXEC SQL EXECUTE hostVarSelectStmt2 USING :hostVarPassword;

This query returns the value ’289-46-8832’.

ENCRYPT

�� ENCRYPT �

� (data-string-expression)

,

password-string-expression

,

hint-string-expression

 ��

The schema is SYSIBM.

The ENCRYPT function returns a value that is the result of encrypting

data-string-expression. The password used for encryption is either the

password-string-expression value or the encryption password value that was assigned

by the SET ENCRYPTION PASSWORD statement. To maintain the best level of

security on your system, it is recommended that you do not pass the encryption

password explicitly with the ENCRYPT function in your query; instead, use the

SET ENCRYPTION PASSWORD statement to set the password, and use a host

variable or dynamic parameter markers when you use the SET ENCRYPTION

PASSWORD statement, rather than a literal string.

In a Unicode database, if a supplied argument is a graphic string, it is first

converted to a character string before the function is executed.

data-string-expression

An expression that returns a CHAR or a VARCHAR value that is to be

encrypted. The length attribute for the data type of data-string-expression is

limited to 32663 without a hint-string-expression argument, and 32631 when the

hint-string-expression argument is specified (SQLSTATE 42815).

password-string-expression

An expression that returns a CHAR or a VARCHAR value with at least 6 bytes

and no more than 127 bytes (SQLSTATE 428FC). The value represents the

password used to encrypt data-string-expression. If the value of the password

argument is null or not provided, the data is encrypted using the encryption

password value that was assigned for the session by the SET ENCRYPTION

PASSWORD statement (SQLSTATE 51039).

hint-string-expression

An expression that returns a CHAR or a VARCHAR value with at most 32

bytes that will help data owners remember passwords (for example, ’Ocean’ as

a hint to remember ’Pacific’). If a hint value is given, the hint is embedded into

the result and can be retrieved using the GETHINT function. If this argument

is null or not provided, no hint will be embedded in the result.

The result data type of the function is VARCHAR FOR BIT DATA.

v When the optional hint parameter is specified, the length attribute of the result

is equal to the length attribute of the unencrypted data + 8 bytes + the number

of bytes until the next 8-byte boundary + 32 bytes for the length of the hint.

Chapter 3. Functions 479

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

v When the optional hint parameter is not specified, the length attribute of the

result is equal to the length attribute of the unencrypted data + 8 bytes + the

number of bytes until the next 8-byte boundary.

If the first argument can be null, the result can be null. If the first argument is null,

the result is the null value.

Note that the encrypted result is longer than the data-string-expression value.

Therefore, when assigning encrypted values, ensure that the target is declared with

sufficient size to contain the entire encrypted value.

Notes

v Encryption algorithm: The internal encryption algorithm is RC2 block cipher

with padding; the 128-bit secret key is derived from the password using an MD5

message digest.

v Encryption passwords and data: Password management is the user’s

responsibility. Once the data is encrypted, only the password that was used

when encrypting it can be used to decrypt it (SQLSTATE 428FD).

The encrypted result might contain null terminator and other unprintable

characters. Any assignment or cast to a length that is shorter than the suggested

data length might result in failed decryption in the future, and lost data. Blanks

are valid encrypted data values that might be truncated when stored in a

column that is too short.

v Administration of encrypted data: Encrypted data can only be decrypted on

servers that support the decryption functions corresponding to the ENCRYPT

function. Therefore, replication of columns with encrypted data should only be

done to servers that support the DECRYPT_BIN or the DECRYPT_CHAR

function.

Examples

The following example demonstrates the use of the ENCRYPT function by showing

code fragments from an embedded SQL application.

EXEC SQL BEGIN DECLARE SECTION;

 char hostVarCreateTableStmt[100];

 char hostVarSetEncPassStmt[200];

 char hostVarPassword[128];

 char hostVarInsertStmt1[200];

 char hostVarInsertStmt2[200];

 char hostVarInsertStmt3[200];

EXEC SQL END DECLARE SECTION;

/* prepare the statement */

strcpy(hostVarCreateTableStmt, "CREATE TABLE EMP (SSN VARCHAR(24) FOR BIT DATA)");

EXEC SQL PREPARE hostVarCreateTableStmt FROM :hostVarCreateTableStmt;

/* execute the statement */

EXEC SQL EXECUTE hostVarCreateTableStmt;

Use the SET ENCRYPTION PASSWORD statement to set an encryption password

for the session:

/* prepare the statement with a parameter marker */

strcpy(hostVarSetEncPassStmt, "SET ENCRYPTION PASSWORD = ?");

EXEC SQL PREPARE hostVarSetEncPassStmt FROM :hostVarSetEncPassStmt;

/* execute the statement for hostVarPassword = ’Pac1f1c’ */

strcpy(hostVarPassword, "Pac1f1c");

EXEC SQL EXECUTE hostVarSetEncPassStmt USING :hostVarPassword;

480 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

/* prepare the statement */

strcpy(hostVarInsertStmt1, "INSERT INTO EMP(SSN) VALUES ENCRYPT(’289-46-8832’)");

EXEC SQL PREPARE hostVarInsertStmt1 FROM :hostVarInsertStmt1;

/* execute the statement */

EXEC SQL EXECUTE hostVarInsertStmt1;

Pass the encryption password explicitly:

/* prepare the statement */

strcpy(hostVarInsertStmt2, "INSERT INTO EMP(SSN) VALUES ENCRYPT(’289-46-8832’,?)");

EXEC SQL PREPARE hostVarInsertStmt2 FROM :hostVarInsertStmt2;

/* execute the statement for hostVarPassword = ’Pac1f1c’ */

strcpy(hostVarPassword, "Pac1f1c");

EXEC SQL EXECUTE hostVarInsertStmt2 USING :hostVarPassword;

Define a password hint:

/* prepare the statement */

strcpy(hostVarInsertStmt3, "INSERT INTO EMP(SSN) VALUES ENCRYPT(’289-46-8832’,?,’Ocean’)");

EXEC SQL PREPARE hostVarInsertStmt3 FROM :hostVarInsertStmt3;

/* execute the statement for hostVarPassword = ’Pac1f1c’ */

strcpy(hostVarPassword, "Pac1f1c");

EXEC SQL EXECUTE hostVarInsertStmt3 USING :hostVarPassword;

GETHINT

�� GETHINT (encrypted-data) ��

The schema is SYSIBM.

The GETHINT function will return the password hint if one is found in the

encrypted-data. A password hint is a phrase that will help data owners remember

passwords; for example, ’Ocean’ as a hint to remember ’Pacific’. In a Unicode

database, if a supplied argument is a graphic string, it is first converted to a

character string before the function is executed.

encrypted-data

An expression that returns a CHAR FOR BIT DATA or VARCHAR FOR BIT

DATA value that is a complete, encrypted data string. The data string must

have been encrypted using the ENCRYPT function (SQLSTATE 428FE).

The result of the function is VARCHAR(32). The result can be null; if the hint

parameter was not added to the encrypted-data by the ENCRYPT function or the

first argument is null, the result is the null value.

Example:

In this example the hint ’Ocean’ is stored to help the user remember the encryption

password ’Pacific’.

 INSERT INTO EMP (SSN) VALUES ENCRYPT(’289-46-8832’, ’Pacific’,’Ocean’);

 SELECT GETHINT(SSN)

 FROM EMP;

The value returned is ’Ocean’.

Chapter 3. Functions 481

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

HASHEDVALUE

�� HASHEDVALUE (column-name) ��

The schema is SYSIBM.

The HASHEDVALUE function returns the distribution map index of the row

obtained by applying the partitioning function on the distribution key value of the

row. For example, if used in a SELECT clause, it returns the distribution map index

for each row of the table that was used to form the result of the SELECT

statement.

The distribution map index returned on transition variables and tables is derived

from the current transition values of the distribution key columns. For example, in

a before insert trigger, the function will return the projected distribution map index

given the current values of the new transition variables. However, the values of the

distribution key columns may be modified by a subsequent before insert trigger.

Thus, the final distribution map index of the row when it is inserted into the

database may differ from the projected value.

The argument must be the qualified or unqualified name of a column in a table.

The column can have any data type. (This function cannot be used as a source

function when creating a user-defined function. Because it accepts any data type as

an argument, it is not necessary to create additional signatures to support

user-defined distinct types.) If column-name references a column of a view the

expression in the view for the column must reference a column of the underlying

base table and the view must be deletable. A nested or common table expression

follows the same rules as a view.

The specific row (and table) for which the distribution map index is returned by

the HASHEDVALUE function is determined from the context of the SQL statement

that uses the function.

The data type of the result is INTEGER in the range 0 to 32767. For a table with no

distribution key, the result is always 0. A null value is never returned. Since

row-level information is returned, the results are the same, regardless of which

column is specified for the table.

The HASHEDVALUE function cannot be used on replicated tables, within check

constraints, or in the definition of generated columns (SQLSTATE 42881).

For compatibility with versions earlier than Version 8, the function name

PARTITION can be substituted for HASHEDVALUE.

Example:

v List the employee numbers (EMPNO) from the EMPLOYEE table for all rows

with a distribution map index of 100.

 SELECT EMPNO FROM EMPLOYEE

 WHERE HASHEDVALUE(PHONENO) = 100

v Log the employee number and the projected distribution map index of the new

row into a table called EMPINSERTLOG2 for any insertion of employees by

creating a before trigger on the table EMPLOYEE.

482 Common Criteria Certification: Administration and User Documentation - Volume 2

|

CREATE TRIGGER EMPINSLOGTRIG2

 BEFORE INSERT ON EMPLOYEE

 REFERENCING NEW AW NEWTABLE

 FOR EACH ROW

 INSERT INTO EMPINSERTLOG2

 VALUES(NEWTABLE.EMPNO, HASHEDVALUE(NEWTABLE.EMPNO))

SECLABEL

�� SECLABEL (security-policy-name , security-label-string) ��

The schema is SYSIBM.

The SECLABEL function returns an unnamed security label with a data type of

DB2SECURITYLABEL. Use the SECLABEL function to insert a security label with

given component values without having to create a named security label.

security-policy-name

A string that specifies a security policy that exists at the current server

(SQLSTATE 42704). The string must be a character or graphic string constant or

host variable.

security-label-string

An expression that returns a valid representation of a security label for the

security policy named by security-policy-name (SQLSTATE 4274I). The

expression must return a value that is a built-in CHAR, VARCHAR,

GRAPHIC, or VARGRAPHIC data type.

Examples:

v The following statement inserts a row in table REGIONS which is protected by

the security policy named CONTRIBUTIONS. The security label for the row to

be inserted is given by the SECLABEL function. The security policy

CONTRIBUTIONS has two components. The security label given has the

element LIFE MEMBER for first component, the elements BLUE and YELLOW

for the second component.

 INSERT INTO REGIONS

 VALUES (SECLABEL(’CONTRIBUTIONS’, ’LIFE MEMBER:(BLUE,YELLOW)’),

 1, ’Northeast’)

v The following statement inserts a row in table CASE_IDS which is protected by

the security policy named TS_SECPOLICY, which has three components. The

security label is provided by the SECLABEL function. The security label inserted

has the element HIGH PROFILE for the first component, the empty value for the

second component and the element G19 for the third component.

 INSERT INTO CASE_IDS

 VALUES (SECLABEL(’TS_SECPOLICY’, ’HIGH PROFILE:():G19’) , 3, ’KLB’)

SECLABEL_BY_NAME

�� SECLABEL_BY_NAME (security-policy-name , security-label-name) ��

The schema is SYSIBM.

Chapter 3. Functions 483

The SECLABEL_BY_NAME function returns the specified security label. The

security label returned has a data type of DB2SECURITYLABEL. Use this function

to insert a named security label.

security-policy-name

A string that specifies a security policy that exists at the current server

(SQLSTATE 42704). The string must be a character or graphic string constant or

host variable.

security-label-name

An expression that returns the name of a security label that exists at the

current server for the security policy named by security-policy-name (SQLSTATE

4274I). The expression must return a value that is a built-in CHAR, VARCHAR,

GRAPHIC, or VARGRAPHIC data type.

Examples:

v User Tina is trying to insert a row in table REGIONS which is protected by the

security policy named CONTRIBUTIONS. Tina wants the row to be protected by

the security label named EMPLOYEESECLABEL. This statement fails because

CONTRIBUTIONS.EMPLOYEESECLABEL is an unknown identifier:

 INSERT INTO REGIONS

 VALUES (CONTRIBUTIONS.EMPLOYEESECLABEL, 1, ’Southwest’) -- incorrect

This statement fails because the first value is a string, it does not have a data

type of DB2SECURITYLABEL:

 INSERT INTO REGIONS

 VALUES (’CONTRIBUTIONS.EMPLOYEESECLABEL’, 1, ’Southwest’) -- incorrect

This statement succeeds because the SECLABEL_BY_NAME function returns a

security label that has a data type of DB2SECURITYLABEL:

 INSERT INTO REGIONS

 VALUES (SECLABEL_BY_NAME(’CONTRIBUTIONS’, ’EMPLOYEESECLABEL’),

 1, ’Southwest’) -- correct

SECLABEL_TO_CHAR

�� SECLABEL_TO_CHAR (security-policy-name , security-label) ��

The schema is SYSIBM.

The SECLABEL_TO_CHAR function accepts a security label and returns a string

that contains all elements in the security label. The string is in the security label

string format.

security-policy-name

A string that specifies a security policy that exists at the current server

(SQLSTATE 42704). The string must be a character or graphic string constant or

host variable.

security-label

An expression that returns a security label value that is valid for the security

policy named by security-policy-name (SQLSTATE 4274I). The expression must

return a value that is a built-in SYSPROC.DB2SECURITYLABEL distinct type.

484 Common Criteria Certification: Administration and User Documentation - Volume 2

Notes

v If the authorization ID of the statement executes this function on a security label

being read from a column with a data type of DB2SECURITYLABEL then that

authorization ID’s LBAC credentials might affect the output of the function. In

such a case an element is not included in the output if the authorization ID does

not have read access to that element. An authorization ID has read access to an

element if its LBAC credentials would allow it to read data that was protected

by a security label containing only that element, and no others.

For the rule set DB2LBACRULES only components of type TREE can contain

elements that you do not have read access to. For other types of component, if

any one of the elements block read access then you will not be able to read the

row at all. So only components of type tree will have elements excluded in this

way.

Example:

v The EMP table has two columns, RECORDNUM and LABEL; RECORDNUM

has data type INTEGER, and LABEL has type DB2SECURITYLABEL. Table EMP

is protected by security policy DATA_ACCESSPOLICY, which uses the

DB2LBACRULES rule set and has only one component (GROUPS, of type

TREE). GROUPS has five elements: PROJECT, TEST, DEVELOPMENT,

CURRENT, AND FIELD. The following diagram shows the relationship of these

elements to one another:

 PROJECT

 ________|________

 | |

 TEST DEVELOPMENT

 ______|______

 | |

 CURRENT FIELD

The EMP table contains the following data:

RECORDNUM LABEL

--------- ----------------

 1 PROJECT

 2 (TEST, FIELD)

 3 (CURRENT, FIELD)

The user whose ID is Djavan holds a security label for reading that contains

only the DEVELOPMENT element. This means that Djavan has read access to

the DEVELOPMENT, CURRENT, and FIELD elements:

 SELECT RECORDNUM, SECLABEL_TO_CHAR(’DATA_ACCESSPOLICY’, LABEL) FROM EMP

returns:

RECORDNUM LABEL

--------- ----------------

 2 FIELD

 3 (CURRENT, FIELD)

The row with a RECORDNUM value of 1 is not included in the output, because

Djavan’s LBAC credentials do not allow him to read that row. In the row with a

RECORDNUM value of 2, element TEST is not included in the output, because

Djavan does not have read access to that element; Djavan would not have been

able to access the row at all if TEST were the only element in the security label.

Because Djavan has read access to elements CURRENT and FIELD, both

elements appear in the output.

Now Djavan is granted an exemption to the DB2LBACREADTREE rule. This

means that no element of a TREE type component will block read access. The

same query returns:

Chapter 3. Functions 485

|

RECORDNUM LABEL

--------- ----------------

 1 PROJECT

 2 (TEST, FIELD)

 3 (CURRENT, FIELD)

This time the output includes all rows and all elements, because the exemption

gives Djavan read access to all of the elements.

TABLE_NAME

�� TABLE_NAME (object-name)

,

object-schema
 ��

The schema is SYSIBM.

The TABLE_NAME function returns an unqualified name of the object found after

any alias chains have been resolved. The specified object-name (and object-schema)

are used as the starting point of the resolution. If the starting point does not refer

to an alias, the unqualified name of the starting point is returned. The resulting

name may be of a table, view, or undefined object. In a Unicode database, if a

supplied argument is a graphic string, it is first converted to a character string

before the function is executed.

object-name

A character expression representing the unqualified name (usually of an

existing alias) to be resolved. object-name must have a data type of CHAR or

VARCHAR and a length greater than 0 and less than 129 bytes.

object-schema

A character expression representing the schema used to qualify the supplied

object-name value before resolution. object-schema must have a data type of

CHAR or VARCHAR and a length greater than 0 and less than 129 bytes.

 If object-schema is not supplied, the default schema is used for the qualifier.

The data type of the result of the function is VARCHAR(128). If object-name can be

null, the result can be null; if object-name is null, the result is the null value. If

object-schema is the null value, the default schema name is used. The result is the

character string representing an unqualified name. The result name could represent

one of the following:

table The value for object-name was either a table name (the input value is

returned) or an alias name that resolved to the table whose name is

returned.

view The value for object-name was either a view name (the input value is

returned) or an alias name that resolved to the view whose name is

returned.

undefined object

 The value for object-name was either an undefined object (the input value is

returned) or an alias name that resolved to the undefined object whose

name is returned.

Therefore, if a non-null value is given to this function, a value is always returned,

even if no object with the result name exists.

486 Common Criteria Certification: Administration and User Documentation - Volume 2

Note: To improve performance in partitioned database configurations by avoiding

the unnecessary communication that occurs between the coordinator partition and

catalog partition when using the TABLE_SCHEMA and TABLE_NAME scalar

functions, the BASE_TABLE table function can be used instead.

TABLE_SCHEMA

�� TABLE_SCHEMA (object-name

,

object-schema
) ��

The schema is SYSIBM.

The TABLE_SCHEMA function returns the schema name of the object found after

any alias chains have been resolved. The specified object-name (and object-schema)

are used as the starting point of the resolution. If the starting point does not refer

to an alias, the schema name of the starting point is returned. The resulting schema

name may be of a table, view, or undefined object. In a Unicode database, if a

supplied argument is a graphic string, it is first converted to a character string

before the function is executed.

object-name

A character expression representing the unqualified name (usually of an

existing alias) to be resolved. object-name must have a data type of CHAR or

VARCHAR and a length greater than 0 and less than 129 bytes.

object-schema

A character expression representing the schema used to qualify the supplied

object-name value before resolution. object-schema must have a data type of

CHAR or VARCHAR and a length greater than 0 and less than 129 bytes.

 If object-schema is not supplied, the default schema is used for the qualifier.

The data type of the result of the function is VARCHAR(128). If object-name can be

null, the result can be null; if object-name is null, the result is the null value. If

object-schema is the null value, the default schema name is used. The result is the

character string representing a schema name. The result schema could represent

the schema name for one of the following:

table The value for object-name was either a table name (the input or default

value of object-schema is returned) or an alias name that resolved to a table

for which the schema name is returned.

view The value for object-name was either a view name (the input or default

value of object-schema is returned) or an alias name that resolved to a view

for which the schema name is returned.

undefined object

The value for object-name was either an undefined object (the input or

default value of object-schema is returned) or an alias name that resolved to

an undefined object for which the schema name is returned.

Therefore, if a non-null object-name value is given to this function, a value is always

returned, even if the object name with the result schema name does not exist. For

example, TABLE_SCHEMA(’DEPT’, ’PEOPLE’) returns ’PEOPLE ’ if the catalog entry is

not found.

Chapter 3. Functions 487

Note: To improve performance in partitioned database configurations by avoiding

the unnecessary communication that occurs between the coordinator partition and

catalog partition when using the TABLE_SCHEMA and TABLE_NAME scalar

functions, the BASE_TABLE table function can be used instead.

Examples:

v PBIRD tries to select the statistics for a given table from SYSCAT.TABLES using

an alias PBIRD.A1 defined on the table HEDGES.T1.

 SELECT NPAGES, CARD FROM SYSCAT.TABLES

 WHERE TABNAME = TABLE_NAME (’A1’)

 AND TABSCHEMA = TABLE_SCHEMA (’A1’)

The requested statistics for HEDGES.T1 are retrieved from the catalog.

v Select the statistics for an object called HEDGES.X1 from SYSCAT.TABLES using

HEDGES.X1. Use TABLE_NAME and TABLE_SCHEMA since it is not known

whether HEDGES.X1 is an alias or a table.

 SELECT NPAGES, CARD FROM SYSCAT.TABLES

 WHERE TABNAME = TABLE_NAME (’X1’,’HEDGES’)

 AND TABSCHEMA = TABLE_SCHEMA (’X1’,’HEDGES’)

Assuming that HEDGES.X1 is a table, the requested statistics for HEDGES.X1

are retrieved from the catalog.

v Select the statistics for a given table from SYSCAT.TABLES using an alias

PBIRD.A2 defined on HEDGES.T2 where HEDGES.T2 does not exist.

 SELECT NPAGES, CARD FROM SYSCAT.TABLES

 WHERE TABNAME = TABLE_NAME (’A2’,’PBIRD’)

 AND TABSCHEMA = TABLE_SCHEMA (’A2’,PBIRD’)

The statement returns 0 records as no matching entry is found in

SYSCAT.TABLES where TABNAME = ’T2’ and TABSCHEMA = ’HEDGES’.

v Select the qualified name of each entry in SYSCAT.TABLES along with the final

referenced name for any alias entry.

 SELECT TABSCHEMA AS SCHEMA, TABNAME AS NAME,

 TABLE_SCHEMA (BASE_TABNAME, BASE_TABSCHEMA) AS REAL_SCHEMA,

 TABLE_NAME (BASE_TABNAME, BASE_TABSCHEMA) AS REAL_NAME

 FROM SYSCAT.TABLES

The statement returns the qualified name for each object in the catalog and the

final referenced name (after alias has been resolved) for any alias entries. For all

non-alias entries, BASE_TABNAME and BASE_TABSCHEMA are null so the

REAL_SCHEMA and REAL_NAME columns will contain nulls.

488 Common Criteria Certification: Administration and User Documentation - Volume 2

Part 3. Applications

© Copyright IBM Corp. 1993, 2009 489

490 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 4. Application considerations

About SQL statements

How SQL statements are invoked

SQL statements are classified as executable or non-executable.

An executable statement can be invoked in four ways. It can be:

v Embedded in an application program

v Embedded in an SQL procedure.

v Prepared and executed dynamically

v Issued interactively

Depending on the statement, some or all of these methods can be used.

(Statements embedded in REXX are prepared and executed dynamically.)

A non-executable statement can only be embedded in an application program.

Another SQL statement construct is the select-statement. A select-statement can be

invoked in three ways. It can be:

v Included in DECLARE CURSOR, and executed implicitly by OPEN, FETCH and

CLOSE (static invocation)

v Prepared dynamically, referenced in DECLARE CURSOR, and executed

implicitly by OPEN, FETCH and CLOSE (dynamic invocation)

v Issued interactively

Embedding a statement in an application program

SQL statements can be included in a source program that will be submitted to a

precompiler. Such statements are said to be embedded in the program. An

embedded statement can be placed anywhere in the program where a host

language statement is allowed. Each embedded statement must be preceded by the

keywords EXEC SQL.

An executable statement embedded in an application program is executed every

time a statement of the host language would be executed if it were specified in the

same place. Thus, a statement within a loop is executed every time the loop is

executed, and a statement within a conditional construct is executed only when the

condition is satisfied.

An embedded statement can contain references to host variables. A host variable

referenced in this way can be used in two ways. It can be used:

v As input (the current value of the host variable is used in the execution of the

statement)

v As output (the variable is assigned a new value as a result of executing the

statement)

© Copyright IBM Corp. 1993, 2009 491

In particular, all references to host variables in expressions and predicates are

effectively replaced by current values of the variables; that is, the variables are

used as input.

All executable statements should be followed by a test of the SQL return code.

Alternatively, the WHENEVER statement (which is itself non-executable) can be

used to change the flow of control immediately after the execution of an embedded

statement.

All objects referenced in data manipulation language (DML) statements must exist

when the statements are bound to a database.

An embedded non-executable statement is processed only by the precompiler. The

precompiler reports any errors encountered in the statement. The statement is never

processed during program execution; therefore, such statements should not be

followed by a test of the SQL return code.

Statements can be included in the SQL-procedure-body portion of the CREATE

PROCEDURE statement. Such statements are said to be embedded in the SQL

procedure. Whenever an SQL statement description refers to a host-variable, an

SQL-variable can be used if the statement is embedded in an SQL procedure.

Dynamic preparation and execution

An application program can dynamically build an SQL statement in the form of a

character string placed in a host variable. In general, the statement is built from

some data available to the program (for example, input from a workstation). The

statement (not a select-statement) constructed can be prepared for execution by

means of the (embedded) PREPARE statement, and executed by means of the

(embedded) EXECUTE statement. Alternatively, an (embedded) EXECUTE

IMMEDIATE statement can be used to prepare and execute the statement in one

step.

A statement that is going to be dynamically prepared must not contain references

to host variables. It can instead contain parameter markers. (For rules concerning

parameter markers, see “PREPARE”.) When the prepared statement is executed,

the parameter markers are effectively replaced by current values of the host

variables specified in the EXECUTE statement. Once prepared, a statement can be

executed several times with different values for the host variables. Parameter

markers are not allowed in the EXECUTE IMMEDIATE statement.

Successful or unsuccessful execution of the statement is indicated by the setting of

an SQL return code in the SQLCA after the EXECUTE (or EXECUTE IMMEDIATE)

statement completes. The SQL return code should be checked, as described above.

For more information, see “SQL return codes (SQLCODE and SQLSTATE)” on

page 493.

Static invocation of a select-statement

A select-statement can be included as a part of the (non-executable) DECLARE

CURSOR statement. Such a statement is executed every time the cursor is opened

by means of the (embedded) OPEN statement. After the cursor is open, the result

table can be retrieved, one row at a time, by successive executions of the FETCH

statement.

492 Common Criteria Certification: Administration and User Documentation - Volume 2

Used in this way, the select-statement can contain references to host variables.

These references are effectively replaced by the values that the variables have when

the OPEN statement executes.

Dynamic invocation of a select-statement

An application program can dynamically build a select-statement in the form of a

character string placed in a host variable. In general, the statement is built from

some data available to the program (for example, a query obtained from a

workstation). The statement so constructed can be prepared for execution by

means of the (embedded) PREPARE statement, and referenced by a

(non-executable) DECLARE CURSOR statement. The statement is then executed

every time the cursor is opened by means of the (embedded) OPEN statement.

After the cursor is open, the result table can be retrieved, one row at a time, by

successive executions of the FETCH statement.

Used in this way, the select-statement must not contain references to host variables.

It can contain parameter markers instead. The parameter markers are effectively

replaced by the values of the host variables specified in the OPEN statement.

Interactive invocation

A capability for entering SQL statements from a workstation is part of the

architecture of the database manager. A statement entered in this way is said to be

issued interactively. Such a statement must be an executable statement that does

not contain parameter markers or references to host variables, because these make

sense only in the context of an application program.

SQL use with other host systems

SQL statement syntax exhibits minor variations among different types of host

systems (DB2 for z/OS, DB2 for System i, DB2 Database for Linux, UNIX, and

Windows). Regardless of whether the SQL statements in an application are static or

dynamic, it is important — if the application is meant to access different database

host systems — to ensure that the SQL statements and precompile/bind options

are supported on the database systems that the application will access.

Further information about SQL statements used in other host systems can be found

in the DB2 for System i SQL Reference and the DB2 for z/OS SQL Reference.

SQL return codes (SQLCODE and SQLSTATE)

An application program containing executable SQL statements can use either

SQLCODE or SQLSTATE values to handle return codes from SQL statements.

There are two ways in which an application can get access to these values.

v Include a structure named SQLCA. The SQLCA includes an integer variable

named SQLCODE and a character string variable named SQLSTATE. In REXX,

an SQLCA is provided automatically. In other languages, an SQLCA can be

obtained by using the INCLUDE SQLCA statement.

v If LANGLEVEL SQL92E is specified as a precompile option, a variable named

SQLCODE or SQLSTATE can be declared in the SQL declare section of the

program. If neither of these variables is declared in the SQL declare section, it is

assumed that a variable named SQLCODE is declared elsewhere in the program.

With LANGLEVEL SQL92E, the program should not have an INCLUDE SQLCA

statement.

Chapter 4. Application considerations 493

An SQLCODE is set by the database manager after each SQL statement executes.

All database managers conform to the ISO/ANSI SQL standard, as follows:

v If SQLCODE = 0 and SQLWARN0 is blank, execution was successful.

v If SQLCODE = 100, “no data” was found. For example, a FETCH statement

returned no data, because the cursor was positioned after the last row of the

result table.

v If SQLCODE > 0 and not = 100, execution was successful with a warning.

v If SQLCODE = 0 and SQLWARN0 = ’W’, execution was successful, but one or

more warning indicators were set.

v If SQLCODE < 0, execution was not successful.

The meaning of SQLCODE values other than 0 and 100 is product-specific.

An SQLSTATE is set by the database manager after each SQL statement executes.

Application programs can check the execution of SQL statements by testing

SQLSTATE instead of SQLCODE. SQLSTATE provides common codes for common

error conditions. Application programs can test for specific errors or classes of

errors. The coding scheme is the same for all IBM database managers, and is based

on the ISO/ANSI SQL92 standard.

SQL comments

Static SQL statements can include host language or SQL comments. Dynamic SQL

statements can include SQL comments. There are two types of SQL comments:

simple comments

Simple comments are introduced by two consecutive hyphens (--) and end

with the end of line.

bracketed comments

Bracketed comments are introduced by /* and end with */.

The following rules apply to the use of simple comments:

v The two hyphens must be on the same line and must not be separated by a

space.

v Simple comments can be started wherever a space is valid (except within a

delimiter token or between ’EXEC’ and ’SQL’).

v Simple comments cannot be continued to the next line.

v In COBOL, the hyphens must be preceded by a space.

The following rules apply to the use of bracketed comments:

v The /* must be on the same line and must not be separated by a space.

v The */ must be on the same line and must not be separated by a space.

v Bracketed comments can be started wherever a space is valid (except within a

delimiter token or between ’EXEC’ and ’SQL’).

v Bracketed comments can be continued to subsequent lines.

Example 1: This example shows how to include simple comments in a statement:

 CREATE VIEW PRJ_MAXPER -- PROJECTS WITH MOST SUPPORT PERSONNEL

 AS SELECT PROJNO, PROJNAME -- NUMBER AND NAME OF PROJECT

 FROM PROJECT

 WHERE DEPTNO = ’E21’ -- SYSTEMS SUPPORT DEPT CODE

 AND PRSTAFF > 1

494 Common Criteria Certification: Administration and User Documentation - Volume 2

Example 2: This example shows how to include bracketed comments in a statement:

 CREATE VIEW PRJ_MAXPER /* PROJECTS WITH MOST SUPPORT

 PERSONNEL */

 AS SELECT PROJNO, PROJNAME /* NUMBER AND NAME OF PROJECT */

 FROM PROJECT

 WHERE DEPTNO = ’E21’ /* SYSTEMS SUPPORT DEPT CODE */

 AND PRSTAFF > 1

About SQL control statements

SQL control statements, also called SQL Procedural Language (SQL PL), are SQL

statements that allow SQL to be used in a manner similar to writing a program in

a structured programming language. SQL control statements provide the capability

to control the logic flow, declare, and set variables, and handle warnings and

exceptions. Some SQL control statements include other nested SQL statements. SQL

control statements can be used in the body of a routine, trigger or a compound

statement.

References to SQL parameters, SQL variables, and global

variables

SQL parameters, SQL variables, and global variables can be referenced anywhere in

an SQL procedure statement where an expression or variable can be specified. Host

variables cannot be specified in SQL routines, SQL triggers or dynamic compound

statements. SQL parameters can be referenced anywhere in the routine, and can be

qualified with the routine name. SQL variables can be referenced anywhere in the

compound statement in which they are declared, and can be qualified with the

label name specified at the beginning of the compound statement. If an SQL

parameter or SQL variable has a row data type, fields can be referenced anywhere

an SQL parameter or SQL variable can be referenced. Global variables can be

referenced within any expression as long as the expression is not required to be

deterministic. The following scenarios require deterministic expressions, which

preclude the use of global variables:

v Check constraints

v Definitions of generated columns

v Refresh immediate MQTs

All SQL parameters, SQL variables, row variable fields, and global variables are

considered nullable. The name of an SQL parameter, SQL variable, row variable

field, or global variable in an SQL routine can be the same as the name of a

column in a table or view referenced in the routine. The name of an SQL variable

or row variable field can also be the same as the name of another SQL variable or

row variable field declared in the same routine. This can occur when the two SQL

variables are declared in different compound statements. The compound statement

that contains the declaration of an SQL variable determines the scope of that

variable. For more information, see “Compound SQL (Procedure)”.

The name of an SQL variable or SQL parameter in an SQL routine can be the same

as the name of an identifier used in certain SQL statements. If the name is not

qualified, the following rules describe whether the name refers to the identifier or

to the SQL parameter or SQL variable:

v In the SET PATH and SET SCHEMA statements, the name is checked as an SQL

parameter or SQL variable. If not found as an SQL variable or SQL parameter, it

is used as an identifier.

v In the CONNECT, DISCONNECT, RELEASE, and SET CONNECTION

statements, the name is used as an identifier.

Chapter 4. Application considerations 495

|

|

|
|
|

|
|
|

|
|

Names that are the same should be explicitly qualified. Qualifying a name clearly

indicates whether the name refers to a column, SQL variable, SQL parameter, row

variable field, or global variable. If the name is not qualified, or qualified but still

ambiguous, the following rules describe whether the name refers to a column, an

SQL variable, an SQL parameter, or a global variable:

v If the tables and views specified in an SQL routine body exist at the time the

routine is created, the name is first checked as a column name. If not found as a

column, it is then checked as an SQL variable in the compound statement, then

checked as an SQL parameter, and then, finally, checked as a global variable.

v If the referenced tables or views do not exist at the time the routine is created,

the name is first checked as an SQL variable in the compound statement, then as

an SQL parameter, and then as a global variable. The variable can be declared

within the compound statement that contains the reference, or within a

compound statement in which that compound statement is nested. If two SQL

variables are within the same scope and have the same name, which can happen

if they are declared in different compound statements, the SQL variable that is

declared in the innermost compound statement is used. If not found, it is

assumed to be a column.

References to labels

Labels can be specified on most SQL procedure statements. The compound

statement that contains the statement that defines a label determines the scope of

that label name. A label name must be unique within the compound statement in

which it is defined, including any labels defined in compound statements that are

nested within that compound statement (SQLSTATE 42734). The label must not be

the same as a label specified on the compound statement itself (SQLSTATE 42734),

or the same as the name of the routine that contains the SQL procedure statement

(SQLSTATE 42734).

A label name can only be referenced within the compound statement in which it is

defined, including any compound statements that are nested within that

compound statement. A label can be used to qualify the name of an SQL variable,

or it can be specified as the target of a GOTO, LEAVE, or ITERATE statement.

References to SQL condition names

The name of an SQL condition can be the same as the name of another SQL

condition declared in the same routine. This can occur when the two SQL

conditions are declared in different compound statements. The compound

statement that contains the declaration of an SQL condition name determines the

scope of that condition name. A condition name must be unique within the

compound statement in which it is declared, excluding any declarations in

compound statements that are nested within that compound statement (SQLSTATE

42734). A condition name can only be referenced within the compound statement

in which it is declared, including any compound statements that are nested within

that compound statement. When there is a reference to a condition name, the

condition that is declared in the innermost compound statement is the condition

that is used. For more information, see “Compound SQL (Procedure)”.

References to SQL statement names

The name of an SQL statement can be the same as the name of another SQL

statement declared in the same routine. This can occur when the two SQL

statements are declared in different compound statements. The compound

496 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

statement that contains the declaration of an SQL statement name determines the

scope of that statement name. A statement name must be unique within the

compound statement in which it is declared, excluding any declarations in

compound statements that are nested within that compound statement (SQLSTATE

42734). A statement name can only be referenced within the compound statement

in which it is declared, including any compound statements that are nested within

that compound statement. When there is a reference to a statement name, the

statement that is declared in the innermost compound statement is the statement

that is used. For more information, see “Compound SQL (Procedure)”.

References to SQL cursor names

Cursor names include the names of declared cursors and the names of cursor

variables.

The name of an SQL cursor can be the same as the name of another SQL cursor

declared in the same routine. This can occur when the two SQL cursors are

declared in different compound statements.

The compound statement that contains the declaration of an SQL cursor

determines the scope of that cursor name. A cursor name must be unique within

the compound statement in which it is declared, excluding any declarations in

compound statements that are nested within that compound statement (SQLSTATE

42734). A cursor name can only be referenced within the compound statement in

which it is declared, including any compound statements that are nested within

that compound statement. When there is a reference to a cursor name, the cursor

that is declared in the innermost compound statement is the cursor that is used.

For more information, see “Compound SQL (Procedure)”.

If the cursor constructor assigned to a cursor variable contains a reference to a

local SQL variable, then any OPEN statement that uses the cursor variable must be

within the scope where the local SQL variable was declared.

Function, method, and procedure designators

The following sections describe syntax fragments that are used to uniquely identify

a function, method, or procedure that is not defined in a module.

Function designator

A function designator uniquely identifies a single function. Function designators

typically appear in DDL statements for functions (such as DROP or ALTER). A

function designator must not identify a module function (SQLSTATE 42883).

function-designator:

�

 FUNCTION function-name

(

)

,

data-type

SPECIFIC FUNCTION

specific-name

FUNCTION function-name

Identifies a particular function, and is valid only if there is exactly one function

instance with the name function-name in the schema. The identified function

Chapter 4. Application considerations 497

|
|

|
|
|

|

|
|

can have any number of parameters defined for it. In dynamic SQL statements,

the CURRENT SCHEMA special register is used as a qualifier for an

unqualified object name. In static SQL statements, the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified object

names. If no function by this name exists in the named or implied schema, an

error (SQLSTATE 42704) is raised. If there is more than one instance of the

function in the named or implied schema, an error (SQLSTATE 42725) is raised.

FUNCTION function-name (data-type,...)

Provides the function signature, which uniquely identifies the function. The

function resolution algorithm is not used.

function-name

Specifies the name of the function. In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an

unqualified object name. In static SQL statements, the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified

object names.

(data-type,...)

Values must match the data types that were specified (in the corresponding

position) on the CREATE FUNCTION statement. The number of data

types, and the logical concatenation of the data types, is used to identify

the specific function instance.

 If a data type is unqualified, the type name is resolved by searching the

schemas on the SQL path. This also applies to data type names specified

for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the

parameterized data types. Instead, an empty set of parentheses can be

coded to indicate that these attributes are to be ignored when looking for a

data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value

indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that

specified in the CREATE FUNCTION statement.

A type of FLOAT(n) does not need to match the defined value for n,

because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.

Matching occurs on the basis of whether the type is REAL or DOUBLE.

If no function with the specified signature exists in the named or implied

schema, an error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION specific-name

Identifies a particular user-defined function, using the name that is specified or

defaulted to at function creation time. In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an unqualified

object name. In static SQL statements, the QUALIFIER precompile/bind option

implicitly specifies the qualifier for unqualified object names. The specific-name

must identify a specific function instance in the named or implied schema;

otherwise, an error (SQLSTATE 42704) is raised.

Method designator

A method designator uniquely identifies a single method. Method designators

typically appear in DDL statements for methods (such as DROP or ALTER).

498 Common Criteria Certification: Administration and User Documentation - Volume 2

method-designator:

�

 METHOD method-name FOR type-name

(

)

,

data-type

SPECIFIC METHOD

specific-name

METHOD method-name

Identifies a particular method, and is valid only if there is exactly one method

instance with the name method-name for the type type-name. The identified

method can have any number of parameters defined for it. If no method by

this name exists for the type, an error (SQLSTATE 42704) is raised. If there is

more than one instance of the method for the type, an error (SQLSTATE 42725)

is raised.

METHOD method-name (data-type,...)

Provides the method signature, which uniquely identifies the method. The

method resolution algorithm is not used.

method-name

Specifies the name of the method for the type type-name.

(data-type,...)

Values must match the data types that were specified (in the corresponding

position) on the CREATE TYPE statement. The number of data types, and

the logical concatenation of the data types, is used to identify the specific

method instance.

 If a data type is unqualified, the type name is resolved by searching the

schemas on the SQL path. This also applies to data type names specified

for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the

parameterized data types. Instead, an empty set of parentheses can be

coded to indicate that these attributes are to be ignored when looking for a

data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value

indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that

specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for n,

because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.

Matching occurs on the basis of whether the type is REAL or DOUBLE.

If no method with the specified signature exists for the type in the named

or implied schema, an error (SQLSTATE 42883) is raised.

FOR type-name

Names the type with which the specified method is to be associated. The

name must identify a type already described in the catalog (SQLSTATE

42704). In dynamic SQL statements, the CURRENT SCHEMA special

register is used as a qualifier for an unqualified object name. In static SQL

statements, the QUALIFIER precompile/bind option implicitly specifies the

qualifier for unqualified object names.

Chapter 4. Application considerations 499

SPECIFIC METHOD specific-name

Identifies a particular method, using the name that is specified or defaulted to

at method creation time. In dynamic SQL statements, the CURRENT SCHEMA

special register is used as a qualifier for an unqualified object name. In static

SQL statements, the QUALIFIER precompile/bind option implicitly specifies

the qualifier for unqualified object names. The specific-name must identify a

specific method instance in the named or implied schema; otherwise, an error

(SQLSTATE 42704) is raised.

Procedure designator

A procedure designator uniquely identifies a single procedure. Procedure

designators typically appear in DDL statements for procedures (such as DROP or

ALTER). A procedure designator must not identify a module procedure

(SQLSTATE 42883).

procedure-designator:

�

 PROCEDURE procedure-name

(

)

,

data-type

SPECIFIC PROCEDURE

specific-name

PROCEDURE procedure-name

Identifies a particular procedure, and is valid only if there is exactly one

procedure instance with the name procedure-name in the schema. The identified

procedure can have any number of parameters defined for it. In dynamic SQL

statements, the CURRENT SCHEMA special register is used as a qualifier for

an unqualified object name. In static SQL statements, the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified object

names. If no procedure by this name exists in the named or implied schema,

an error (SQLSTATE 42704) is raised. If there is more than one instance of the

procedure in the named or implied schema, an error (SQLSTATE 42725) is

raised.

PROCEDURE procedure-name (data-type,...)

Provides the procedure signature, which uniquely identifies the procedure. The

procedure resolution algorithm is not used.

procedure-name

Specifies the name of the procedure. In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an

unqualified object name. In static SQL statements, the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified

object names.

(data-type,...)

Values must match the data types that were specified (in the corresponding

position) on the CREATE PROCEDURE statement. The number of data

types, and the logical concatenation of the data types, is used to identify

the specific procedure instance.

 If a data type is unqualified, the type name is resolved by searching the

schemas on the SQL path. This also applies to data type names specified

for a REFERENCE type.

500 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

It is not necessary to specify the length, precision, or scale for the

parameterized data types. Instead, an empty set of parentheses can be

coded to indicate that these attributes are to be ignored when looking for a

data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value

indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that

specified in the CREATE PROCEDURE statement.

A type of FLOAT(n) does not need to match the defined value for n,

because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.

Matching occurs on the basis of whether the type is REAL or DOUBLE.

If no procedure with the specified signature exists in the named or implied

schema, an error (SQLSTATE 42883) is raised.

SPECIFIC PROCEDURE specific-name

Identifies a particular procedure, using the name that is specified or defaulted

to at procedure creation time. In dynamic SQL statements, the CURRENT

SCHEMA special register is used as a qualifier for an unqualified object name.

In static SQL statements, the QUALIFIER precompile/bind option implicitly

specifies the qualifier for unqualified object names. The specific-name must

identify a specific procedure instance in the named or implied schema;

otherwise, an error (SQLSTATE 42704) is raised.

Database connection management via embedded SQL applications

Connecting to DB2 databases in embedded SQL applications

Before working with a database, you are required to establish a connection to that

database. Embedded SQL provides multiple ways in which to include code for

establishing database connections. Depending on the embedded SQL host

programming language there might be one or more way of doing this.

Database connections can be established implicitly or explicitly. An implicit

connection is a connection where the user ID is presumed to be the current user

ID. This type of connection is not recommended for database applications. Explicit

database connections, which require that a user ID and password be specified, are

strongly recommended.

Connecting to DB2 databases in C and C++ Embedded SQL

applications

When working with C and C++ applications, a database connection can be

established by executing the following statement.

 EXEC SQL CONNECT TO sample;

If you want to use a specific user id (herrick) and password (mypassword), use the

following statement:

 EXEC SQL CONNECT TO sample USER herrick USING mypassword;

Chapter 4. Application considerations 501

Connecting to DB2 databases in COBOL Embedded SQL

applications

When working with COBOL applications, a database connection is established by

executing the following statement. This statement creates a connection to the

sample database using the default user name.

 EXEC SQL CONNECT TO sample END-EXEC.

If you want to use a specific user id (herrick) and password (mypassword), use the

following statement:

 EXEC SQL CONNECT TO sample USER herrick USING mypassword END-EXEC.

Connecting to DB2 databases in FORTRAN Embedded SQL

applications

When working with FORTRAN applications, a database connection is established

by executing the following statement. This statement creates a connection to the

sample database using the default user name.

 EXEC SQL CONNECT TO sample

If you want to use a specific user id (herrick) and password (mypassword), use the

following statement:

 EXEC SQL CONNECT TO sample USER herrick USING mypassword

Connecting to DB2 databases in REXX Embedded SQL

applications

When working with REXX applications, a database connection is established by

executing the following statement. This statement creates a connection to the

sample database using the default user name.

 CALL SQLEXEC ’CONNECT TO sample’

If you want to use a specific user id (herrick) and password (mypassword), use the

following statement:

 CALL SQLEXEC ’CONNECT TO sample USER herrick USING mypassword’

Disconnecting from embedded SQL applications

The disconnect statement is the final step in working with a database. This topic

will provide examples of the disconnect statement in the supported host languages.

Disconnecting from DB2 databases in C and C++ Embedded SQL

applications

When working with C and C++ applications, a database connection is closed by

issuing the following statement:

 EXEC SQL CONNECT RESET;

Disconnecting from DB2 databases in COBOL Embedded SQL

applications

When working with COBOL applications, a database connection is closed by

issuing the following statement:

 EXEC SQL CONNECT RESET END-EXEC.

502 Common Criteria Certification: Administration and User Documentation - Volume 2

Disconnecting from DB2 databases in REXX Embedded SQL

applications

When working with REXX applications, a database connection is closed by issuing

the following statement:

 CALL SQLEXEC ’CONNECT RESET’

When working with FORTRAN applications, a database connection is closed by

issuing the following statement:

 EXEC SQL CONNECT RESET

Considerations for routines

Security of routines

The security of routines is paramount to ensure their continued functioning, to

minimize the risk of tampering, and to protect the database system environment.

There are a few categories of routine security considerations each with varying

levels of risk. One must be aware of these risks when developing or maintaining

routines so as to mitigate unfortunate outcomes as much as possible.

Security control of who can create routines

The security of routines begins when users are given the necessary privileges to

execute the CREATE statement required to create routines in the database. When

granting these privileges, it is important to understand the corresponding risks:

v Users with the privilege to execute the CREATE statement for a routine can

create multiple routines.

v Users with the privilege to execute the CREATE statement for a routine can

create routines that can modify the database layout or database data subject to

the other privileges that user has.

v Users that successfully create routines are automatically granted the EXECUTE

privilege required to invoke the routine.

v Users that successfully create routines are automatically granted the ALTER

ROUTINE privilege required to modify the routine.

To minimize the risk of users modifying the database and data:

v Minimize the number of users that have the privilege to create routines.

v Ensure that the user IDs of departed employees are removed, or if they are

re-used, be sure to assess the procedure related privileges.

Refer to the topics on controlling access to database objects and data for more on

how to grant and revoke privileges from one, many, or all database users.

Security control of who can invoke routines

It is easy to determine when users require privileges: they are unable to do

something. It is harder to determine when users no longer require these privileges.

This is particularly true when it comes to users with privileges to invoke routines,

as allowing them to retain their privileges can introduce risks:

v Users that have been granted the EXECUTE privilege to invoke a routine will

continue to be able to invoke the routine until this privilege is removed. If the

routine contains sensitive logic or acts on sensitive data this can be a business

risk.

Chapter 4. Application considerations 503

To minimize the risk of users modifying the database and data:

v Minimize the number of users that have the privilege to invoke routines.

v Ensure that the user IDs of departed employees are removed, or if they are

re-used, be sure to assess the procedure related privileges.

v If you suspect that someone is maliciously invoking routines, you should revoke

the EXECUTE privilege for each of those routines.

Security control of routines defined with FENCED or NOT

FENCED clauses

When formulating the CREATE statement for a routine, you must determine

whether you want to specify the FENCED clause or NOT FENCED clause. Once

you understand the benefits of creating a routine as fenced or unfenced it is

important to assess the risks associated with running routines with external

implementations as NOT FENCED.

v Routines created with the NOT FENCED clause can accidentally or maliciously

corrupt the database manager’s shared memory, damage the database control

structures, or access database manager resources which can cause the database

manager to fail. There is also the risk that they will corrupt databases and their

tables.

To ensure the integrity of the database manager and its databases:

v Thoroughly screen routines you intend to create that specify the NOT FENCED

clause. These routines must be fully tested, debugged, and not exhibit any

unexpected side-effects. In the examination of the routine code, pay close

attention to memory management and the use of static variables. The greatest

potential for corruption arises when code does not properly manage memory or

incorrectly uses static variables. These problems are prevalent in languages other

than Java(TM) and .NET programming languages.

In order to register a NOT FENCED routine, the

CREATE_NOT_FENCED_ROUTINE authority is required. When granting the

CREATE_NOT_FENCED_ROUTINE authority, be aware that the recipient can

potentially gain unrestricted access to the database manager and all its resources.

Note: NOT FENCED routines are not supported in Common Criteria compliant

configurations.

Securing routines

When creating routines it is important to ensure that the routines, routine libraries

(in the case of external routines), and the privileges of the users that will interact

with the routines are managed with routine security in mind.

Although it might not be necessary to have anything as elaborate as a routine

security strategy, it helps to be mindful of the factors contributing to the security of

routines and to follow a disciplined approach when securing routines.

Prerequisites

v Read the topic, ″Security of routines″.

v To fully secure routines within the database system you must have:

– Root user access on the database server operating system.

– One of the SECADM or ACCESSCTRL authorities.

504 Common Criteria Certification: Administration and User Documentation - Volume 2

|

Whether you are creating a routine, or assessing an existing routine, the procedure

for securing a routine is similar.

1. Limit the number of user IDs with the privileges required to create routines

and ensure that these users are allowed to have these privileges.

v Upon successful execution of the CREATE statement for a routine, this user

ID will automatically be granted other privileges including the EXECUTE

privilege, which allows the user to invoke the routine, and the GRANT

EXECUTE privilege, which allows the user to grant the ability to invoke the

routine to other users.

v Ensure that the users with this privilege are few and that the right users get

this privilege.
2. Assess the routine for potentially malicious or inadequately reviewed or tested

code.

v Consider the origin of the routine. Is the party that supplied the routine

reliable?

v Look for malicious code such as code that attempts to read or write to the

database server file system and or replace files there.

v Look for poorly implemented code related to memory management, pointer

manipulation, and the use of static variables that might cause the routine to

fail.

v Verify that the code has been adequately tested.
3. Reject routines that appear to be excessively unsafe or poorly coded - the risk is

not always worth it.

4. Contain the risks associated with only somewhat potentially risky routines.

v SQL user-defined SQL routines are by default created as NOT FENCED

THREADSAFE routines, because they are safe to run within the database

manager memory space. For these routines you do not need to do anything.

v Specify the FENCED clause in the CREATE statement for the routine. This

will ensure that the routine operation does not affect the database manager.

This is a default clause.

v If the routine is multi-threaded, specify the NOT THREADSAFE clause in the

CREATE statement for the routine. This will ensure that any failures or

malicious code in the routine do not impact other routines that might run in

a shared thread process.
5. If the routine is an external routine, you must put the routine implementation

library or class file on the database server. Follow the general recommendations

for deploying routines and the specific recommendations for deploying external

routine library or class files.

Guidelines for stored procedures

Stored procedures permit one call to a remote database to execute a

preprogrammed procedure in a database application environment in which many

situations are repetitive. For example, for receiving a fixed set of data, performing

the same set of multiple requests against a database, or returning a fixed set of

data might represent several accesses to the database.

Processing a single SQL statement for a remote database requires sending two

transmissions: one request and one receive. Because an application contains many

SQL statements it requires many transmissions to complete its work.

Chapter 4. Application considerations 505

However, when a IBM data server client uses a stored procedure that encapsulates

many SQL statements, it requires only two transmissions for the entire process.

Stored procedures usually run in processes separate from the database agents. This

separation requires the stored procedure and agent processes to communicate

through a router. However, a special kind of stored procedure that runs in the

agent process might improve performance, although it carries significant risks of

corrupting data and databases.

These risky stored procedures are those created as not fenced. For a not-fenced

stored procedure, nothing separates the stored procedure from the database control

structures that the database agent uses. If a DBA wants to ensure that the stored

procedure operations will not accidentally or maliciously damage the database

control structures, the not fenced option is omitted.

Because of the risk of damaging your database, use not fenced stored procedures

only when you need the maximum possible performance benefits. In addition,

make absolutely sure that the procedure is well coded and has been thoroughly

tested before allowing it to run as a not-fenced stored procedure. If a fatal error

occurs while running a not-fenced stored procedure, the database manager

determines whether the error occurred in the application or database manager

code and performs the appropriate recovery.

A not-fenced stored procedure can corrupt the database manager beyond recovery,

possibly resulting in lost data and the possibility of a corrupt database. Exercise

extreme caution when you run not-fenced trusted stored procedures. In almost all

cases, the proper performance analysis of an application results in the good

performance without using not-fenced stored procedures. For example, triggers

might improve performance.

Security Considerations when Using SQL in Applications

Precompilation of embedded SQL applications with the

PRECOMPILE command

Once you have created the embedded SQL application’s source files, you must

precompile each host language file containing SQL statements with the PREP

command, using the options specific to the host language. The precompiler

converts SQL statements contained in the source file to comments, and generates

the DB2 run-time API calls for those statements.

You must always precompile a source file against a specific database, even if

eventually you do not use the database with the application. In practice, you can

use a test database for development, and after you fully test the application, you

can bind its bind file to one or more production databases. This practice is known

as deferred binding.

Note: Running an embedded application on an older client version than the client

where precompilation occurred is not supported, regardless of where the

application was compiled. For example, it is not supported to precompile an

embedded application on a DB2 V9.5 client and then attempt to run the

application on a DB2 V9.1 client.
If your application uses a code page that is not the same as your database code

page, you need to consider which code page to use when precompiling.

506 Common Criteria Certification: Administration and User Documentation - Volume 2

If your application uses user-defined functions (UDFs) or user-defined distinct

types (UDTs), you may need to use the FUNCPATH option when you precompile

your application. This option specifies the function path that is used to resolve

UDFs and UDTs for applications containing static SQL. If FUNCPATH is not

specified, the default function path is SYSIBM, SYSFUN, USER, where USER refers

to the current user ID.

Before precompiling an application you must connect to a server, either implicitly

or explicitly. Although you precompile application programs at the client

workstation and the precompiler generates modified source and messages on the

client, the precompiler uses the server connection to perform some of the

validation.

The precompiler also creates the information the database manager needs to

process the SQL statements against a database. This information is stored in a

package, in a bind file, or in both, depending on the precompiler options selected.

A typical example of using the precompiler follows. To precompile a C embedded

SQL source file called filename.sqc, you can issue the following command to create a

C source file with the default name filename.c and a bind file with the default

name filename.bnd:

 DB2 PREP filename.sqc BINDFILE

The precompiler generates up to four types of output:

Modified Source

This file is the new version of the original source file after the precompiler

converts the SQL statements into DB2 run-time API calls. It is given the

appropriate host language extension.

Package

If you use the PACKAGE option (the default), or do not specify any of the

BINDFILE, SYNTAX, or SQLFLAG options, the package is stored in the

connected database. The package contains all the information required to

issue the static SQL statements of a particular source file against this

database only. Unless you specify a different name with the PACKAGE

USING option, the precompiler forms the package name from the first 8

characters of the source file name.

 If you use the PACKAGE option without SQLERROR CONTINUE, the

database used during the precompile process must contain all of the

database objects referenced by the static SQL statements in the source file.

For example, you cannot precompile a SELECT statement unless the table

it references exists in the database.

With the VERSION option, the bindfile (if the BINDFILE option is used)

and the package (either if bound at PREP time or if bound separately) will

be designated with a particular version identifier. Many versions of

packages with the same name and creator can exist at once.

Bind File

If you use the BINDFILE option, the precompiler creates a bind file (with

extension .bnd) that contains the data required to create a package. This

file can be used later with the BIND command to bind the application to

one or more databases. If you specify BINDFILE and do not specify the

PACKAGE option, binding is deferred until you invoke the BIND command.

Note that for the command line processor (CLP), the default for PREP does

Chapter 4. Application considerations 507

not specify the BINDFILE option. Thus, if you are using the CLP and want

the binding to be deferred, you need to specify the BINDFILE option.

 Specifying SQLERROR CONTINUE creates a package, even if errors occur

when binding SQL statements. Those statements that fail to bind for

authorization or existence reasons can be incrementally bound at execution

time if VALIDATE RUN is also specified. Any attempt to issue them at run

time generates an error.

Message File

If you use the MESSAGES option, the precompiler redirects messages to

the indicated file. These messages include warning and error messages that

describe problems encountered during precompilation. If the source file

does not precompile successfully, use the warning and error messages to

determine the problem, correct the source file, and then attempt to

precompile the source file again. If you do not use the MESSAGES option,

precompilation messages are written to the standard output.

Compiling and linking source files containing embedded SQL

When precompiling embedded SQL source files, the PRECOMPILE command

generates modified source files with a file extension applicable to the programming

language.

Compile the modified source files (and any additional source files that do not

contain SQL statements) using the appropriate host language compiler. The

language compiler converts each modified source file into an object module.

Refer to the programming documentation for your operating platform for any

exceptions to the default compiler options. Refer to your compiler’s documentation

for a complete description of available compiler options.

The host language linker creates an executable application. For example:

v On Windows operating systems, the application can be an executable file or a

dynamic link library (DLL).

v On UNIX and Linux based operating systems, the application can be an

executable load module or a shared library.

Note: Although applications can be DLLs on Windows operating systems, the

DLLs are loaded directly by the application and not by the DB2 database manager.

On Windows operating systems, the database manager loads embedded SQL

stored procedures and user-defined functions as DLLs.

To create the executable file, link the following:

v User object modules, generated by the language compiler from the modified

source files and other files not containing SQL statements.

v Host language library APIs, supplied with the language compiler.

v The database manager library containing the database manager APIs for your

operating environment. Refer to the appropriate programming documentation

for your operating platform for the specific name of the database manager

library you need for your database manager APIs.

508 Common Criteria Certification: Administration and User Documentation - Volume 2

Package recreation using the BIND command and an existing

bind file

Binding is the process that creates the package the database manager needs to

access the database when the application is executed. By default the PRECOMPILE

command creates a package. Binding is done implicitly at precompile time unless

the BINDFILE option is specified. The PACKAGE option allows you to specify a

package name for the package created at precompile time.

A typical example of using the BIND command follows. To bind a bind file named

filename.bnd to the database, you can issue the following command:

 BIND filename.bnd

One package is created for each separately precompiled source code module. If an

application has five source files, of which three require precompilation, three

packages or bind files are created. By default, each package is given a name that is

the same as the name of the source module from which the .bnd file originated,

but truncated to 8 characters. To explicitly specify a different package name, you

must use the PACKAGE USING option on the PREP command. The version of a

package is given by the VERSION precompile option and defaults to the empty

string. If the name and schema of this newly created package is the same as a

package that currently exists in the target database, but the version identifier

differs, a new package is created and the previous package still remains. However

if a package exists that matches the name, schema and the version of the package

being bound, then that package is dropped and replaced with the new package

being bound (specifying ACTION ADD on the bind would prevent that and an

error (SQL0719) would be returned instead).

Generating sequential values

Generating sequential values is a common database application development

problem. The best solution to that problem is to use sequences and sequence

expressions in SQL. Each sequence is a uniquely named database object that can be

accessed only by sequence expressions.

There are two sequence expressions: the PREVIOUS VALUE expression and the

NEXT VALUE expression. The PREVIOUS VALUE expression returns the value

most recently generated in the application process for the specified sequence. Any

NEXT VALUE expressions occurring in the same statement as the PREVIOUS

VALUE expression have no effect on the value generated by the PREVIOUS

VALUE expression in that statement. The NEXT VALUE sequence expression

increments the value of the sequence and returns the new value of the sequence.

To create a sequence, issue the CREATE SEQUENCE statement. For example, to

create a sequence called id_values using the default attributes, issue the following

statement:

 CREATE SEQUENCE id_values

To generate the first value in the application session for the sequence, issue a

VALUES statement using the NEXT VALUE expression:

VALUES NEXT VALUE FOR id_values

1

 1

 1 record(s) selected.

Chapter 4. Application considerations 509

To update the value of a column with the next value of the sequence, include the

NEXT VALUE expression in the UPDATE statement, as follows:

UPDATE staff

 SET id = NEXT VALUE FOR id_values

 WHERE id = 350

To insert a new row into a table using the next value of the sequence, include the

NEXT VALUE expression in the INSERT statement, as follows:

INSERT INTO staff (id, name, dept, job)

 VALUES (NEXT VALUE FOR id_values, ‘Kandil’, 51, ‘Mgr’)

Managing sequence behavior

You can tailor the behavior of sequences to meet the needs of your application.

You change the attributes of a sequence when you issue the CREATE SEQUENCE

statement to create a new sequence, and when you issue the ALTER SEQUENCE

statement for an existing sequence.

Following are some of the attributes of a sequence that you can specify:

Data type

The AS clause of the CREATE SEQUENCE statement specifies the numeric

data type of the sequence. The data type determines the possible minimum

and maximum values of the sequence. The minimum and maximum

values for a data type are listed in the SQL Reference. You cannot change

the data type of a sequence; instead, you must drop the sequence by

issuing the DROP SEQUENCE statement and issue a CREATE SEQUENCE

statement with the new data type.

Start value

The START WITH clause of the CREATE SEQUENCE statement sets the

initial value of the sequence. The RESTART WITH clause of the ALTER

SEQUENCE statement resets the value of the sequence to a specified value.

Minimum value

The MINVALUE clause sets the minimum value of the sequence.

Maximum value

The MAXVALUE clause sets the maximum value of the sequence.

Increment value

The INCREMENT BY clause sets the value that each NEXT VALUE

expression adds to the current value of the sequence. To decrement the

value of the sequence, specify a negative value.

Sequence cycling

The CYCLE clause causes the value of a sequence that reaches its

maximum or minimum value to generate its respective minimum value or

maximum value on the following NEXT VALUE expression.

Note: CYCLE should only be used if unique numbers are not required or

if it can be guaranteed that older sequence values are not in use anymore

once the sequence cycles.

For example, to create a sequence called id_values that starts with a minimum

value of 0, has a maximum value of 1000, increments by 2 with each NEXT

VALUE expression, and returns to its minimum value when the maximum value is

reached, issue the following statement:

510 Common Criteria Certification: Administration and User Documentation - Volume 2

CREATE SEQUENCE id_values

 START WITH 0

 INCREMENT BY 2

 MAXVALUE 1000

 CYCLE

Sequences compared to identity columns

Although sequences and identity columns seem to serve similar purposes for DB2

applications, there is an important difference. An identity column automatically

generates values for a column in a single table using the LOAD utility. A sequence

generates sequential values upon request that can be used in any SQL statement

using the CREATE SEQUENCE statement.

Identity columns

Allow the database manager to automatically generate a unique numeric

value for each row that is added to the table. If you are creating a table

and you know you will need to uniquely identify each row that is added

to that table, then you can add an identity column to the table definition as

part of the CREATE TABLE statement:

 CREATE TABLE <table name>

 (<column name 1> INT,

 <column name 2>, DOUBLE,

 <column name 3> INT NOT NULL GENERATED ALWAYS AS IDENTITY

 (START WITH <value 1>, INCREMENT BY <value 2>))

In this example, the third column identifies the identity column. One of the

attributes that you can define is the value used in the column to uniquely

define each row when a row is added. The value following the

INCREMENT BY clause shows by how much subsequent values of the

identity column contents will be increased for every row added to the

table.

Once created, the identity properties can be changed or removed using the

ALTER TABLE statement. You can also use the ALTER TABLE statement to

add identity properties on other columns.

Sequences

Allow the automatic generation of values. Sequences are ideally suited to

the task of generating unique key values. Applications can use sequences

to avoid possible concurrency and performance problems resulting from

the generation of a unique counter through other means. Unlike an identity

column, a sequence is not tied to a particular table column, nor is it bound

to a unique table column and only accessible through that table column.

 A sequence can be created, and later altered, so that it generates values by

incrementing or decrementing values either without a limit; or to a

user-defined limit, and then stopping; or to a user-defined limit, then

cycling back to the beginning and starting again. Sequences are only

supported in single partition databases.

The following example shows how to create a sequence called orderseq:

 CREATE SEQUENCE orderseq

 START WITH 1

 INCREMENT BY 1

 NOMAXVALUE

 NOCYCLE

 CACHE 50

In this example, the sequence starts at 1 and increases by 1 with no upper

limit. There is no reason to cycle back to the beginning and restart from 1

Chapter 4. Application considerations 511

because there is no assigned upper limit. The CACHE parameter specifies

the maximum number of sequence values that the database manager

preallocates and keeps in memory.

Authorization Considerations for Embedded SQL

An authorization allows a user or group to perform a general task such as

connecting to a database, creating tables, or administering a system. A privilege

gives a user or group the right to access one specific database object in a specified

way. DB2® uses a set of privileges to provide protection for the information that

you store in it.

Most SQL statements require some type of privilege on the database objects which

the statement utilizes. Most API calls usually do not require any privilege on the

database objects which the call utilizes, however, many APIs require that you

possess the necessary authority to start them. You can use the DB2 APIs to perform

the DB2 administrative functions from within your application program. For

example, to recreate a package stored in the database without the need for a bind

file, you can use the sqlarbnd (or REBIND) API.

Groups provide a convenient means of performing authorization for a collection of

users without having to grant or revoke privileges for each user individually.

Group membership is considered for the execution of dynamic SQL statements, but

not for static SQL statements. PUBLIC privileges are, however, considered for the

execution of static SQL statements. For example, suppose you have an embedded

SQL stored procedure with statically bound SQL queries against a table called

STAFF. If you try to build this procedure with the CREATE PROCEDURE statement, and

your account belongs to a group that has the select privilege for the STAFF table,

the CREATE statement will fail with a SQL0551N error. For the CREATE statement to

work, your account directly needs the select privilege on the STAFF table.

When you design your application, consider the privileges your users will need to

run the application. The privileges required by your users depend on:

v Whether your application uses dynamic SQL, including JDBC and DB2 CLI, or

static SQL. For information about the privileges required to issue a statement,

see the description of that statement.

v Which APIs the application uses. For information about the privileges and

authorities required for an API call, see the description of that API.

Groups provide a convenient means of performing authorization for a collection of

users without having to grant or revoke privileges for each user individually. In

general, group membership is considered for dynamic SQL statements, but is not

considered for static SQL statements. The exception to this general case occurs

when privileges are granted to PUBLIC: these are considered when static SQL

statements are processed.

Consider two users, PAYROLL and BUDGET, who need to perform queries against

the STAFF table. PAYROLL is responsible for paying the employees of the

company, so it needs to issue a variety of SELECT statements when issuing

paychecks. PAYROLL needs to be able to access each employee’s salary. BUDGET

is responsible for determining how much money is needed to pay the salaries.

BUDGET should not, however, be able to see any particular employee’s salary.

Because PAYROLL issues many different SELECT statements, the application you

design for PAYROLL could probably make good use of dynamic SQL. The

512 Common Criteria Certification: Administration and User Documentation - Volume 2

dynamic SQL would require that PAYROLL have SELECT privilege on the STAFF

table. This requirement is not a problem because PAYROLL requires full access to

the table.

BUDGET, on the other hand, should not have access to each employee’s salary.

This means that you should not grant SELECT privilege on the STAFF table to

BUDGET. Because BUDGET does need access to the total of all the salaries in the

STAFF table, you could build a static SQL application to execute a SELECT

SUM(SALARY) FROM STAFF, bind the application and grant the EXECUTE

privilege on your application’s package to BUDGET. This enables BUDGET to

obtain the required information, without exposing the information that BUDGET

should not see.

Effect of DYNAMICRULES bind option on dynamic SQL

The PRECOMPILE command and BIND command option DYNAMICRULES

determines what values apply at run-time for the following dynamic SQL

attributes:

v The authorization ID that is used during authorization checking.

v The qualifier that is used for qualification of unqualified objects.

v Whether the package can be used to dynamically prepare the following

statements: GRANT, REVOKE, ALTER, CREATE, DROP, COMMENT ON,

RENAME, SET INTEGRITY and SET EVENT MONITOR STATE statements.

In addition to the DYNAMICRULES value, the run-time environment of a package

controls how dynamic SQL statements behave at run-time. The two possible

run-time environments are:

v The package runs as part of a stand-alone program

v The package runs within a routine context

The combination of the DYNAMICRULES value and the run-time environment

determine the values for the dynamic SQL attributes. That set of attribute values is

called the dynamic SQL statement behavior. The four behaviors are:

Run behavior

DB2 uses the authorization ID of the user (the ID that initially connected to

DB2) executing the package as the value to be used for authorization

checking of dynamic SQL statements and for the initial value used for

implicit qualification of unqualified object references within dynamic SQL

statements.

Bind behavior

At run-time, DB2 uses all the rules that apply to static SQL for

authorization and qualification. That is, take the authorization ID of the

package owner as the value to be used for authorization checking of

dynamic SQL statements and the package default qualifier for implicit

qualification of unqualified object references within dynamic SQL

statements.

Define behavior

Define behavior applies only if the dynamic SQL statement is in a package

that is run within a routine context, and the package was bound with

DYNAMICRULES DEFINEBIND or DYNAMICRULES DEFINERUN. DB2

uses the authorization ID of the routine definer (not the routine’s package

binder) as the value to be used for authorization checking of dynamic SQL

statements and for implicit qualification of unqualified object references

within dynamic SQL statements within that routine.

Chapter 4. Application considerations 513

Invoke behavior

 Invoke behavior applies only if the dynamic SQL statement is in a package

that is run within a routine context, and the package was bound with

DYNAMICRULES INVOKEBIND or DYNAMICRULES INVOKERUN. DB2

uses the current statement authorization ID in effect when the routine is

invoked as the value to be used for authorization checking of dynamic

SQL and for implicit qualification of unqualified object references within

dynamic SQL statements within that routine. This is summarized by the

following table:

 Invoking Environment ID Used

Any static SQL Implicit or explicit value of the OWNER of

the package the SQL invoking the routine

came from.

Used in definition of view or trigger Definer of the view or trigger.

Dynamic SQL from a run behavior package ID used to make the initial connection to

DB2.

Dynamic SQL from a define behavior

package

Definer of the routine that uses the package

that the SQL invoking the routine came

from.

Dynamic SQL from an invoke behavior

package

Current authorization ID invoking the

routine.

The following table shows the combination of the DYNAMICRULES value and the

run-time environment that yields each dynamic SQL behavior.

 Table 18. How DYNAMICRULES and the Run-Time Environment Determine Dynamic SQL Statement Behavior

DYNAMICRULES Value Behavior of Dynamic SQL

Statements in a Standalone Program

Environment

Behavior of Dynamic SQL Statements in

a Routine Environment

BIND Bind behavior Bind behavior

RUN Run behavior Run behavior

DEFINEBIND Bind behavior Define behavior

DEFINERUN Run behavior Define behavior

INVOKEBIND Bind behavior Invoke behavior

INVOKERUN Run behavior Invoke behavior

The following table shows the dynamic SQL attribute values for each type of

dynamic SQL behavior.

 Table 19. Definitions of Dynamic SQL Statement Behaviors

Dynamic SQL

Attribute

Setting for Dynamic

SQL Attributes:

Bind Behavior

Setting for Dynamic

SQL Attributes: Run

Behavior

Setting for Dynamic

SQL Attributes:

Define Behavior

Setting for Dynamic SQL

Attributes: Invoke

Behavior

Authorization ID The implicit or

explicit value of the

OWNER BIND

option

ID of User Executing

Package

Routine definer (not

the routine’s package

owner)

Current statement

authorization ID when

routine is invoked.

514 Common Criteria Certification: Administration and User Documentation - Volume 2

Table 19. Definitions of Dynamic SQL Statement Behaviors (continued)

Dynamic SQL

Attribute

Setting for Dynamic

SQL Attributes:

Bind Behavior

Setting for Dynamic

SQL Attributes: Run

Behavior

Setting for Dynamic

SQL Attributes:

Define Behavior

Setting for Dynamic SQL

Attributes: Invoke

Behavior

Default qualifier

for unqualified

objects

The implicit or

explicit value of the

QUALIFIER BIND

option

CURRENT

SCHEMA Special

Register

Routine definer (not

the routine’s package

owner)

Current statement

authorization ID when

routine is invoked.

Can execute

GRANT,

REVOKE, ALTER,

CREATE, DROP,

COMMENT ON,

RENAME, SET

INTEGRITY and

SET EVENT

MONITOR STATE

No Yes No No

Units of work and transactions

Units of work

A transaction is commonly referred to in DB2 Database for Linux, UNIX, and

Windows as a unit of work. A unit of work is a recoverable sequence of operations

within an application process. It is used by the database manager to ensure that a

database is in a consistent state. Any reading from or writing to the database is

done within a unit of work.

For example, a bank transaction might involve the transfer of funds from a savings

account to a checking account. After the application subtracts an amount from the

savings account, the two accounts are inconsistent, and remain so until the amount

is added to the checking account. When both steps are completed, a point of

consistency is reached. The changes can be committed and made available to other

applications.

A unit of work is started implicitly when the first SQL statement is issued against

the database. All subsequent reads and writes by the same application are

considered part of the same unit of work. The application must end the unit of

work by issuing either a COMMIT or a ROLLBACK statement. The COMMIT

statement makes permanent all changes made within a unit of work. The

ROLLBACK statement removes these changes from the database. If the application

ends normally without either of these statements being explicitly issued, the unit

of work is automatically committed. If it ends abnormally in the middle of a unit

of work, the unit of work is automatically rolled back. Once issued, a COMMIT or

a ROLLBACK cannot be stopped. With some multi-threaded applications, or some

operating systems (such as Windows), if the application ends normally without

either of these statements being explicitly issued, the unit of work is automatically

rolled back. It is recommended that your applications always explicitly commit or

roll back complete units of work. If part of a unit of work does not complete

successfully, the updates are rolled back, leaving the participating tables as they

were before the transaction began. This ensures that requests are neither lost nor

duplicated.

There is no physical representation of a unit of work because it is a series of

instructions (SQL statements).

Chapter 4. Application considerations 515

Remote unit of work

A remote unit of work lets a user or application program read or update data at one

location per unit of work. It supports access to one database within a unit of work.

While an application program can update several remote databases, it can only

access one database within a unit of work.

Remote unit of work has the following characteristics:

v Multiple requests (SQL statements) per unit of work are supported.

v Multiple cursors per unit of work are supported.

v Each unit of work can update only one database.

v The application program either commits or rolls back the unit of work. In certain

error circumstances, the database server or DB2® Connect™ might roll back the

unit of work.

For example, Figure 2 shows a database client running a funds transfer application

that accesses a database containing checking and savings account tables, as well as

a transaction fee schedule. The application must:

v Accept the amount to transfer from the user interface.

v Subtract the amount from the savings account, and determine the new balance.

v Read the fee schedule to determine the transaction fee for a savings account

with the given balance.

v Subtract the transaction fee from the savings account.

v Add the amount of the transfer to the checking account.

v Commit the transaction (unit of work).

 To set up such an application, you must:

1. Create the tables for the savings account, checking account and transaction fee

schedule in the same database.

2. If physically remote, set up the database server to use the appropriate

communications protocol.

3. If physically remote, catalog the node and the database to identify the database

on the database server.

4. Precompile your application program to specify a type 1 connection; that is,

specify CONNECT(1) on the PREP command.

Figure 2. Using a Single Database in a Transaction

516 Common Criteria Certification: Administration and User Documentation - Volume 2

Concurrent transactions and multi-threaded database access

in embedded SQL applications

One feature of some operating systems is the ability to run several threads of

execution within a single process. The multiple threads allow an application to

handle asynchronous events, and makes it easier to create event-driven

applications, without resorting to polling schemes. The information that follows

describes how the DB2 database manager works with multiple threads, and lists

some design guidelines that you should keep in mind.

If you are not familiar with terms relating to the development of multi-threaded

applications (such as critical section and semaphore), consult the programming

documentation for your operating system.

A DB2 embedded SQL application can execute SQL statements from multiple

threads using contexts. A context is the environment from which an application

runs all SQL statements and API calls. All connections, units of work, and other

database resources are associated with a specific context. Each context is associated

with one or more threads within an application. Developing multi-threaded

embedded SQL applications with thread-safe code is only supported in C and C++.

It is possible to write your own precompiler, that along with features supplied by

the language allows concurrent multithread database access.

For each executable SQL statement in a context, the first run-time services call

always tries to obtain a latch. If it is successful, it continues processing. If not

(because an SQL statement in another thread of the same context already has the

latch), the call is blocked on a signaling semaphore until that semaphore is posted,

at which point the call gets the latch and continues processing. The latch is held

until the SQL statement has completed processing, at which time it is released by

the last run-time services call that was generated for that particular SQL statement.

The net result is that each SQL statement within a context is executed as an atomic

unit, even though other threads may also be trying to execute SQL statements at

the same time. This action ensures that internal data structures are not altered by

different threads at the same time. APIs also use the latch used by run-time

services; therefore, APIs have the same restrictions as run-time services routines

within each context.

Contexts may be exchanged between threads in a process, but not exchanged

between processes. One use of multiple contexts is to provide support for

concurrent transactions.

In the default implementation of threaded applications against a DB2 database,

serialization of access to the database is enforced by the database APIs. If one

thread performs a database call, calls made by other threads will be blocked until

the first call completes, even if the subsequent calls access database objects that are

unrelated to the first call. In addition, all threads within a process share a commit

scope. True concurrent access to a database can only be achieved through separate

processes, or by using the APIs that are described in this topic.

DB2 database systems provide APIs that can be used to allocate and manipulate

separate environments (contexts) for the use of database APIs and embedded SQL.

Each context is a separate entity, and any connection or attachment using one

context is independent of all other contexts (and thus all other connections or

attachments within a process). In order for work to be done on a context, it must

Chapter 4. Application considerations 517

first be associated with a thread. A thread must always have a context when

making database API calls or when using embedded SQL.

All DB2 database system applications are multithreaded by default, and are

capable of using multiple contexts. You can use the following DB2 APIs to use

multiple contexts. Specifically, your application can create a context for a thread,

attach to or detach from a separate context for each thread, and pass contexts

between threads. If your application does not call any of these APIs, DB2 will

automatically manage the multiple contexts for your application:

v sqleAttachToCtx - Attach to context

v sqleBeginCtx - Create and attach to an application context

v sqleDetachFromCtx - Detach from context

v sqleEndCtx - Detach and destory application context

v sqleGetCurrentCtx - Get current context

v sqleInterruptCtx - Interrupt context

These APIs have no effect (that is, they are no-ops) on platforms that do not

support application threading.

Contexts need not be associated with a given thread for the duration of a

connection or attachment. One thread can attach to a context, connect to a

database, detach from the context, and then a second thread can attach to the

context and continue doing work using the already existing database connection.

Contexts can be passed around among threads in a process, but not among

processes.

Even if the new APIs are used, the following APIs continue to be serialized:

v sqlabndx - Bind

v sqlaprep - Precompile Program

v sqluexpr - Export

v db2Import and sqluimpr - Import

Note:

1. The DB2 CLI automatically uses multiple contexts to achieve thread-safe,

concurrent database access on platforms that support multi-threading. While

not recommended by DB2, users can explicitly disable this feature if required.

2. By default, AIX does not permit 32-bit applications to attach to more than 11

shared memory segments per process, of which a maximum of 10 can be used

for DB2 connections.

When this limit is reached, DB2 returns SQLCODE -1224 on an SQL

CONNECT. DB2 Connect also has the 10-connection limitation if local users are

running two-phase commit with a TP Monitor (TCP/IP).

The AIX environment variable EXTSHM can be used to increase the maximum

number of shared memory segments to which a process can attach.

To use EXTSHM with DB2, do the following:

In client sessions:

export EXTSHM=ON

When starting the DB2 server:

export EXTSHM=ON

db2set DB2ENVLIST=EXTSHM

db2start

518 Common Criteria Certification: Administration and User Documentation - Volume 2

On DPF, also add the following lines to your userprofile or usercshrc files:

EXTSHM=ON

export EXTSHM

An alternative is to move the local database or DB2 Connect into another

machine and to access it remotely, or to access the local database or the DB2

Connect database with TCP/IP loop-back by cataloging it as a remote node that

has the TCP/IP address of the local machine.

Security and Java Applications

The sections that follow describe security considerations for SQLJ, JDBC, the Type

2 JDBC driver, and the Universal JDBC driver.

SQLJ SET-TRANSACTION-clause

The SET TRANSACTION clause sets the isolation level for the current unit of

work.

Syntax

�� SET TRANSACTION ISOLATION LEVEL READ COMMITTED

READ UNCOMMITTED

REPEATABLE READ

SERIALIZABLE

 ��

Description

ISOLATION LEVEL

Specifies one of the following isolation levels:

READ COMMITTED

Specifies that the current DB2 isolation level is cursor stability.

READ UNCOMMITTED

Specifies that the current DB2 isolation level is uncommitted read.

REPEATABLE READ

Specifies that the current DB2 isolation level is read stability.

SERIALIZABLE

Specifies that the current DB2 isolation level is repeatable read.

Usage notes

You can execute SET TRANSACTION only at the beginning of a transaction.

Setting the isolation level for an SQLJ transaction

To set the isolation level for a unit of work within an SQLJ program, use the SET

TRANSACTION ISOLATION LEVEL clause.

The following table shows the values that you can specify in the SET

TRANSACTION ISOLATION LEVEL clause and their DB2 equivalents.

 Table 20. Equivalent SQLJ and DB2 isolation levels

SET TRANSACTION value DB2 isolation level

SERIALIZABLE Repeatable read

Chapter 4. Application considerations 519

Table 20. Equivalent SQLJ and DB2 isolation levels (continued)

SET TRANSACTION value DB2 isolation level

REPEATABLE READ Read stability

READ COMMITTED Cursor stability

READ UNCOMMITTED Uncommitted read

The isolation level affects the underlying JDBC connection as well as the SQLJ

connection.

SQLJ context-clause

A context clause specifies a connection context, an execution context, or both. You

use a connection context to connect to a data source. You use an execution context

to monitor and modify SQL statement execution.

Syntax

�� [connection-context]

execution-context

connection-context

,

execution context

 ��

Description

connection-context

Specifies a valid Java identifier that is declared earlier in the SQLJ program.

That identifier must be declared as an instance of the connection context class

that SQLJ generates for a connection declaration clause.

execution-context

Specifies a valid Java identifier that is declared earlier in the SQLJ program.

That identifier must be declared as an instance of class

sqlj.runtime.ExecutionContext.

Usage notes

v If you do not specify a connection context in an executable clause, SQLJ uses the

default connection context.

v If you do not specify an execution context, SQLJ obtains the execution context

from the connection context of the statement.

Connecting to a data source using SQLJ

In an SQLJ application, as in any other DB2 application, you must be connected to

a data source before you can execute SQL statements.

You can use one of six techniques to connect to a data source in an SQLJ program.

Two use the JDBC DriverManager interface, two use the JDBC DataSource

interface, one uses a previously created connection context, and one uses the

default connection.

SQLJ connection-declaration-clause

The connection declaration clause declares a connection to a data source in an

SQLJ application program.

520 Common Criteria Certification: Administration and User Documentation - Volume 2

Syntax

��

Java-modifiers
 context Java-class-name

implements-clause

with-clause
 ��

Description

Java-modifiers

Specifies modifiers that are valid for Java class declarations, such as static,

public, private, or protected.

Java-class-name

Specifies a valid Java identifier. During the program preparation process, SQLJ

generates a connection context class whose name is this identifier.

implements-clause

See ″SQLJ implements-clause″ for a description of this clause. In a connection

declaration clause, the interface class to which the implements clause refers

must be a user-defined interface class.

with-clause

See ″SQLJ with-clause″ for a description of this clause.

Usage notes

v SQLJ generates a connection class declaration for each connection declaration

clause you specify. SQLJ data source connections are objects of those generated

connection classes.

v You can specify a connection declaration clause anywhere that a Java class

definition can appear in a Java program.

Closing the connection to a data source in an SQLJ

application

When you have finished with a connection to a data source, you need to close the

connection to the data source. Doing so releases the connection context object’s

DB2 and SQLJ resources immediately.

To close the connection to the data source, use one of the ConnectionContext.close

methods.

v If you execute ConnectionContext.close() or

ConnectionContext.close(ConnectionContext.CLOSE_CONNECTION), the

connection context, as well as the connection to the data source, are closed.

v If you execute

ConnectionContext.close(ConnectionContext.KEEP_CONNECTION) the

connection context is closed, but the connection to the data source is not.

The following code closes the connection context, but does not close the connection

to the data source.

...

ctx = new EzSqljctx(con0); // Create a connection context object

 // from JDBC connection con0

... // Perform various SQL operations

 EzSqljctx.close(ConnectionContext.KEEP_CONNECTION);

 // Close the connection context but keep

 // the connection to the data source open

Chapter 4. Application considerations 521

JDBC Considerations

How JDBC applications connect to a data source

Before you can execute SQL statements in any SQL program, you must be

connected to a data source.

The IBM Data Server Driver for JDBC and SQLJ supports type 2 and type 4

connectivity. Connections to DB2 databases can use type 2 or type 4 connectivity.

Connections to IBM Informix® Dynamic Server (IDS) databases can use type 4

connectivity.

The following figure shows how a Java application connects to a data source using

IBM Data Server Driver for JDBC and SQLJ type 2 connectivity.

 The following figure shows how a Java application connects to a data source using

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.

Java application

DriverManager
or

DataSource

Local database
or DB2

subsystem

JDBC driver*

Database
server

*Java byte code executed under JVM,
and native code

Figure 3. Java application flow for IBM Data Server Driver for JDBC and SQLJ type 2

connectivity

522 Common Criteria Certification: Administration and User Documentation - Volume 2

Connecting to a data source using the DataSource interface

If your applications need to be portable among data sources, you should use the

DataSource interface.

Using DriverManager to connect to a data source reduces portability because the

application must identify a specific JDBC driver class name and driver URL. The

driver class name and driver URL are specific to a JDBC vendor, driver

implementation, and data source.

When you connect to a data source using the DataSource interface, you use a

DataSource object.

The simplest way to use a DataSource object is to create and use the object in the

same application, as you do with the DriverManager interface. However, this

method does not provide portability.

The best way to use a DataSource object is for your system administrator to create

and manage it separately, using WebSphere Application Server or some other tool.

The program that creates and manages a DataSource object also uses the Java

Naming and Directory Interface (JNDI) to assign a logical name to the DataSource

object. The JDBC application that uses the DataSource object can then refer to the

object by its logical name, and does not need any information about the underlying

data source. In addition, your system administrator can modify the data source

attributes, and you do not need to change your application program.

To learn more about using WebSphere to deploy DataSource objects, go to this

URL on the Web:

http://www.ibm.com/software/webservers/appserv/

To learn about deploying DataSource objects yourself, see ″Creating and deploying

DataSource objects″.

Java application

DriverManager
or

DataSource

JDBC driver*

Database
server

*Java byte code executed under JVM

DRDA

Figure 4. Java application flow for IBM Data Server Driver for JDBC and SQLJ type 4

connectivity

Chapter 4. Application considerations 523

You can use the DataSource interface and the DriverManager interface in the same

application, but for maximum portability, it is recommended that you use only the

DataSource interface to obtain connections.

To obtain a connection using a DataSource object that the system administrator has

already created and assigned a logical name to, follow these steps:

1. From your system administrator, obtain the logical name of the data source to

which you need to connect.

2. Create a Context object to use in the next step. The Context interface is part of

the Java Naming and Directory Interface (JNDI), not JDBC.

3. In your application program, use JNDI to get the DataSource object that is

associated with the logical data source name.

4. Use the DataSource.getConnection method to obtain the connection.

You can use one of the following forms of the getConnection method:

getConnection();

getConnection(String user, String password);

Use the second form if you need to specify a user ID and password for the

connection that are different from the ones that were specified when the

DataSource was deployed.

Example of obtaining a connection using a DataSource object that was created by the

system administrator: In this example, the logical name of the data source that you

need to connect to is jdbc/sampledb. The numbers to the right of selected

statements correspond to the previously-described steps.

Example of creating and using a DataSource object in the same application:

import java.sql.*; // JDBC base

import javax.sql.*; // Addtional methods for JDBC

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC and SQLJ �1�

 // interfaces

DB2SimpleDataSource dbds=new DB2SimpleDataSource(); �2�

dbds.setDatabaseName("dbloc1"); �3�

 // Assign the location name

dbds.setDescription("Our Sample Database");

 // Description for documentation

dbds.setUser("john");

 // Assign the user ID

dbds.setPassword("dbadm");

 // Assign the password

Connection con=dbds.getConnection(); �4�

 // Create a Connection object

 Note Description

1 Import the package that contains the implementation of the DataSource interface.

import java.sql.*;

import javax.naming.*;

import javax.sql.*;

...

Context ctx=new InitialContext(); �2�

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb"); �3�

Connection con=ds.getConnection(); �4�

Figure 5. Obtaining a connection using a DataSource object

Figure 6. Creating and using a DataSource object in the same application

524 Common Criteria Certification: Administration and User Documentation - Volume 2

Note Description

2 Creates a DB2SimpleDataSource object. DB2SimpleDataSource is one of the IBM

Data Server Driver for JDBC and SQLJ implementations of the DataSource

interface. See ″Creating and deploying DataSource objects″ for information on

DB2’s DataSource implementations.

3 The setDatabaseName, setDescription, setUser, and setPassword methods assign

attributes to the DB2SimpleDataSource object. See ″Properties for the IBM Data

Server Driver for JDBC and SQLJ″ for information about the attributes that you

can set for a DB2SimpleDataSource object under the IBM Data Server Driver for

JDBC and SQLJ.

4 Establishes a connection to the data source that DB2SimpleDataSource object dbds

represents.

JDBC connection objects

When you connect to a data source by either connection method, you create a

Connection object, which represents the connection to the data source.

You use this Connection object to do the following things:

v Create Statement, PreparedStatement, and CallableStatement objects for

executing SQL statements. These are discussed in ″Executing SQL statements in

JDBC applications″.

v Gather information about the data source to which you are connected. This

process is discussed in ″Learning about a data source using DatabaseMetaData

methods″.

v Commit or roll back transactions. You can commit transactions manually or

automatically. These operations are discussed in ″Commit or roll back a JDBC

transaction″.

v Close the connection to the data source. This operation is discussed in

″Disconnecting from data sources in JDBC applications″.

Committing or rolling back JDBC transactions

In JDBC, to commit or roll back transactions explicitly, use the commit or rollback

methods.

For example:

 Connection con;

 ...

con.commit();

If autocommit mode is on, the database manager performs a commit operation

after every SQL statement completes. To set autocommit mode on, invoke the

Connection.setAutoCommit(true) method. To set autocommit mode off, invoke the

Connection.setAutoCommit(false) method. To determine whether autocommit

mode is on, invoke the Connection.getAutoCommit method.

Connections that participate in distributed transactions cannot invoke the

setAutoCommit(true) method.

When you change the autocommit state, the database manager executes a commit

operation, if the application is not already on a transaction boundary.

While a connection is participating in a distributed transaction, the associated

application cannot issue the commit or rollback methods.

Chapter 4. Application considerations 525

Disconnecting from data sources in JDBC applications

When you have finished with a connection to a data source, it is essential that you

close the connection to the data source. Doing this releases the Connection object’s

database and JDBC resources immediately.

To close the connection to the data source, use the close method. For example:

 Connection con;

 ...

con.close();

For a connection to a DB2 data source, if autocommit mode is not on, the

connection needs to be on a unit-of-work boundary before you close the

connection.

For a connection to an IBM Informix Dynamic Server database, if the database

supports logging, and autocommit mode is not on, the connection needs to be on a

unit-of-work boundary before you close the connection.

Type 2 JDBC Driver Considerations

Security under the DB2 JDBC Type 2 Driver

The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2

Driver) supports user ID and password security.

You must set the user ID and the password, or set neither. If you do not set a user

ID and password, the driver uses the user ID and password of the user who is

currently logged on to the operating system.

To specify user ID and password security for a JDBC connection, use one of the

following techniques.

For the DriverManager interface: you can specify the user ID and password

directly in the DriverManager.getConnection invocation. For example:

import java.sql.*; // JDBC base

...

String id = "db2adm"; // Set user ID

Sring pw = "db2adm"; // Set password

String url = "jdbc:db2:toronto";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, id, pw);

 // Create connection

Alternatively, you can set the user ID and password by setting the user and

password properties in a Properties object, and then invoking the form of the

getConnection method that includes the Properties object as a parameter. For

example:

import java.sql.*; // JDBC base

import COM.ibm.db2.jdbc.*; // DB2 JDBC Type 2 driver

 // implementation of JDBC

...

Properties properties = new java.util.Properties();

 // Create Properties object

properties.put("user", "db2adm"); // Set user ID for the connection

properties.put("password", "db2adm"); // Set password for the connection

String url = "jdbc:db2:toronto";

526 Common Criteria Certification: Administration and User Documentation - Volume 2

// Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create connection

For the DataSource interface: you can specify the user ID and password directly in

the DataSource.getConnection invocation. For example:

import java.sql.*; // JDBC base

import COM.ibm.db2.jdbc.*; // DB2 JDBC Type 2 driver

 // implementation of JDBC

...

Context ctx=new InitialContext(); // Create context for JNDI

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");

 // Get DataSource object

String id = "db2adm"; // Set user ID

Sring pw = "db2adm"; // Set password

Connection con = ds.getConnection(id, pw);

 // Create connection

Alternatively, if you create and deploy the DataSource object, you can set the user

ID and password by invoking the DataSource.setUser and DataSource.setPassword

methods after you create the DataSource object. For example:

import java.sql.*; // JDBC base

import COM.ibm.db2.jdbc.*; // DB2 JDBC Type 2 driver

 // implementation of JDBC

...

DB2DataSource db2ds = new DB2DataSource();

 // Create DataSource object

db2ds.setDatabaseName("toronto"); // Set location

db2ds.setUser("db2adm"); // Set user ID

db2ds.setPassword("db2adm"); // Set password

How DB2 applications connect to a data source using the

DriverManager interface with the DB2 JDBC Type 2 Driver

A JDBC application can establish a connection to a data source using the JDBC

DriverManager interface, which is part of the java.sql package.

The Java application first loads the JDBC driver by invoking the Class.forName

method. After the application loads the driver, it connects to a data source by

invoking the DriverManager.getConnection method.

For the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2

Driver), you load the driver by invoking the Class.forName method with the

following argument:

COM.ibm.db2.jdbc.app.DB2Driver

The following code demonstrates loading the DB2 JDBC Type 2 Driver:

try {

 // Load the DB2 JDBC Type 2 Driver with DriverManager

 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

} catch (ClassNotFoundException e) {

 e.printStackTrace();

}

The catch block is used to print an error if the driver is not found.

After you load the driver, you connect to the data source by invoking the

DriverManager.getConnection method. You can use one of the following forms of

getConnection:

Chapter 4. Application considerations 527

getConnection(String url);

getConnection(String url, user, password);

getConnection(String url, java.util.Properties info);

The url argument represents a data source.

For the DB2 JDBC Type 2 Driver, specify a URL of the following form:

Syntax for a URL for the DB2 JDBC Type 2 Driver:

�� jdbc : db2 : database ��

The parts of the URL have the following meanings:

jdbc:db2:

jdbc:db2: indicates that the connection is to a DB2 data source.

database

A database alias. The alias refers to the DB2 database catalog entry on the DB2

client.

The info argument is an object of type java.util.Properties that contains a set of

driver properties for the connection. Specifying the info argument is an alternative

to specifying property=value strings in the URL.

Specifying a user ID and password for a connection: There are several ways to specify a

user ID and password for a connection:

v Use the form of the getConnection method that specifies user and password.

v Use the form of the getConnection method that specifies info, after setting the

user and password properties in a java.util.Properties object.

Example: Setting the user ID and password in user and password parameters:

String url = "jdbc:db2:toronto";

 // Set URL for data source

String user = "db2adm";

String password = "db2adm";

Connection con = DriverManager.getConnection(url, user, password);

 // Create connection

Example: Setting the user ID and password in a java.util.Properties object:

Properties properties = new Properties(); // Create Properties object

properties.put("user", "db2adm"); // Set user ID for connection

properties.put("password", "db2adm"); // Set password for connection

String url = "jdbc:db2:toronto";

 // Set URL for data source

Connection con = DriverManager.getConnection(url, properties);

 // Create connection

Universal JDBC Driver Considerations

User ID and password security under the IBM Data Server

Driver for JDBC and SQLJ

With the IBM Data Server Driver for JDBC and SQLJ, one of the available security

methods is user ID and password security.

528 Common Criteria Certification: Administration and User Documentation - Volume 2

To specify user ID and password security for a JDBC connection, use one of the

following techniques.

For the DriverManager interface: You can specify the user ID and password

directly in the DriverManager.getConnection invocation. For example:

import java.sql.*; // JDBC base

...

String id = "dbadm"; // Set user ID

String pw = "dbadm"; // Set password

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, id, pw);

 // Create connection

Another method is to set the user ID and password directly in the URL string. For

example:

import java.sql.*; // JDBC base

...

String url =

 "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose:user=dbadm;password=dbadm;";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url);

 // Create connection

Alternatively, you can set the user ID and password by setting the user and

password properties in a Properties object, and then invoking the form of the

getConnection method that includes the Properties object as a parameter.

Optionally, you can set the securityMechanism property to indicate that you are

using user ID and password security. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

Properties properties = new java.util.Properties();

 // Create Properties object

properties.put("user", "dbadm"); // Set user ID for the connection

properties.put("password", "dbadm"); // Set password for the connection

properties.put("securityMechanism",

 new String("" + com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY +

 ""));

 // Set security mechanism to

 // user ID and password

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create connection

For the DataSource interface: you can specify the user ID and password directly in

the DataSource.getConnection invocation. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

Context ctx=new InitialContext(); // Create context for JNDI

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");

 // Get DataSource object

String id = "dbadm"; // Set user ID

String pw = "dbadm"; // Set password

Connection con = ds.getConnection(id, pw);

 // Create connection

Chapter 4. Application considerations 529

Alternatively, if you create and deploy the DataSource object, you can set the user

ID and password by invoking the DataSource.setUser and DataSource.setPassword

methods after you create the DataSource object. Optionally, you can invoke the

DataSource.setSecurityMechanism method property to indicate that you are using

user ID and password security. For example:

...

com.ibm.db2.jcc.DB2SimpleDataSource ds = // Create DB2SimpleDataSource object

 new com.ibm.db2.jcc.DB2SimpleDataSource();

ds.setDriverType(4); // Set driver type

ds.setDatabaseName("san_jose"); // Set location

ds.setServerName("mvs1.sj.ibm.com"); // Set server name

ds.setPortNumber(5021); // Set port number

ds.setUser("dbadm"); // Set user ID

ds.setPassword("dbadm"); // Set password

ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY);

 // Set security mechanism to

 // user ID and password

User ID-only security under the IBM Data Server Driver for

JDBC and SQLJ

With the IBM Data Server Driver for JDBC and SQLJ, one of the available security

methods is user-ID only security.

To specify user ID security for a JDBC connection, use one of the following

techniques.

For the DriverManager interface: Set the user ID and security mechanism by

setting the user and securityMechanism properties in a Properties object, and then

invoking the form of the getConnection method that includes the Properties object

as a parameter. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver

 // for JDBC and SQLJ

 // implementation of JDBC

...

Properties properties = new Properties();

 // Create a Properties object

properties.put("user", "db2adm"); // Set user ID for the connection

properties.put("securityMechanism",

 new String("" + com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY + ""));

 // Set security mechanism to

 // user ID only

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, you

can set the user ID and security mechanism by invoking the DataSource.setUser

and DataSource.setSecurityMechanism methods after you create the DataSource

object. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver

 // for JDBC and SQLJ

 // implementation of JDBC

...

com.ibm.db2.jcc.DB2SimpleDataSource db2ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create DB2SimpleDataSource object

530 Common Criteria Certification: Administration and User Documentation - Volume 2

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setServerName("mvs1.sj.ibm.com");

 // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setUser("db2adm"); // Set the user ID

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY);

 // Set security mechanism to

 // user ID only

Kerberos security under the IBM Data Server Driver for JDBC

and SQLJ

JDBC support for Kerberos security is available for IBM Data Server Driver for

JDBC and SQLJ type 4 connectivity only.

To enable JDBC support for Kerberos security, you also need to enable the

following components of your software development kit (SDK) for Java:

v Java Cryptography Extension

v Java Generic Security Service (JGSS)

v Java Authentication and Authorization Service (JAAS)

See the documentation for your SDK for Java for information on how to enable

these components.

There are three ways to specify Kerberos security for a connection:

v With a user ID and password

v Without a user ID or password

v With a delegated credential

Kerberos security with a user ID and password

For this case, Kerberos uses the specified user ID and password to obtain a

ticket-granting ticket (TGT) that lets you authenticate to the database server.

You need to set the user, password, kerberosServerPrincipal, and

securityMechanism properties. Set the securityMechanism property to

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY (11). The

kerberosServerPrincipal property specifies the principal name that the database

server registers with a Kerberos Key Distribution Center (KDC).

For the DriverManager interface: Set the user ID, password, Kerberos server, and

security mechanism by setting the user, password, kerberosServerPrincipal, and

securityMechanism properties in a Properties object, and then invoking the form of

the getConnection method that includes the Properties object as a parameter. For

example, use code like this to set the Kerberos security mechanism with a user ID

and password:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

Properties properties = new Properties(); // Create a Properties object

properties.put("user", "db2adm"); // Set user ID for the connection

properties.put("password", "db2adm"); // Set password for the connection

properties.put("kerberosServerPrincipal",

 "sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

properties.put("securityMechanism",

Chapter 4. Application considerations 531

new String("" +

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY + ""));

 // Set security mechanism to

 // Kerberos

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, set

the Kerberos server and security mechanism by invoking the

DataSource.setKerberosServerPrincipal and DataSource.setSecurityMechanism

methods after you create the DataSource object. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

com.ibm.db2.jcc.DB2SimpleDataSource db2ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create the DataSource object

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setUser("db2adm"); // Set the user

db2ds.setPassword("db2adm"); // Set the password

db2ds.setServerName("mvs1.sj.ibm.com");

 // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setKerberosServerPrincipal(

 "sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

 // Set security mechanism to

 // Kerberos

Kerberos security with no user ID or password

For this case, the Kerberos default credentials cache must contain a ticket-granting

ticket (TGT) that lets you authenticate to the database server.

You need to set the kerberosServerPrincipal and securityMechanism properties.

Set the securityMechanism property to

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY (11).

For the DriverManager interface: Set the Kerberos server and security mechanism

by setting the kerberosServerPrincipal and securityMechanism properties in a

Properties object, and then invoking the form of the getConnection method that

includes the Properties object as a parameter. For example, use code like this to set

the Kerberos security mechanism without a user ID and password:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

Properties properties = new Properties(); // Create a Properties object

properties.put("kerberosServerPrincipal",

 “sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

properties.put("securityMechanism",

 new String("" +

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY + ""));

 // Set security mechanism to

 // Kerberos

532 Common Criteria Certification: Administration and User Documentation - Volume 2

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, set

the Kerberos server and security mechanism by invoking the

DataSource.setKerberosServerPrincipal and DataSource.setSecurityMechanism

methods after you create the DataSource object. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

DB2SimpleDataSource db2ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create the DataSource object

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setServerName("mvs1.sj.ibm.com");

 // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setKerberosServerPrincipal(

 "sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

 // Set security mechanism to

 // Kerberos

Kerberos security with a delegated credential from another

principal

For this case, you authenticate to the database server using a delegated credential

that another principal passes to you.

You need to set the kerberosServerPrincipal, gssCredential, and

securityMechanism properties. Set the securityMechanism property to

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY (11).

For the DriverManager interface: Set the Kerberos server, delegated credential, and

security mechanism by setting the kerberosServerPrincipal, and

securityMechanism properties in a Properties object. Then invoke the form of the

getConnection method that includes the Properties object as a parameter. For

example, use code like this to set the Kerberos security mechanism without a user

ID and password:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

Properties properties = new Properties(); // Create a Properties object

properties.put("kerberosServerPrincipal",

 “sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

properties.put("gssCredential",delegatedCredential);

 // Set the delegated credential

properties.put("securityMechanism",

 new String("" +

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY + ""));

 // Set security mechanism to

 // Kerberos

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

Chapter 4. Application considerations 533

// Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, set

the Kerberos server, delegated credential, and security mechanism by invoking the

DataSource.setKerberosServerPrincipal, DataSource.setGssCredential, and

DataSource.setSecurityMechanism methods after you create the DataSource object.

For example:

DB2SimpleDataSource db2ds = new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create the DataSource object

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setServerName("mvs1.sj.ibm.com"); // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setKerberosServerPrincipal(

 "sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

db2ds.setGssCredential(delegatedCredential);

 // Set the delegated credential

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

 // Set security mechanism to

 // Kerberos

Encrypted password, user ID, or user ID and password

security under the IBM Data Server Driver for JDBC and SQLJ

IBM Data Server Driver for JDBC and SQLJ supports encrypted password security,

encrypted user ID security, or encrypted user ID and encrypted password security

for accessing data sources.

The IBM Data Server Driver for JDBC and SQLJ supports 56-bit DES (weak)

encryption or 256-bit AES (strong) encryption. AES encryption is available with

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity only. You set the

encryptionAlgorithm driver property to choose between 56-bit DES encryption

(encryptionAlgorithm value of 1) and 256-bit AES encryption (encryptionAlgorithm

value of 2). 256-bit AES encryption is used for a connection only if the database

server supports it and is configured to use it.

If you use encrypted password security, encrypted user ID security, or encrypted

user ID and encrypted password security, the IBM Java Cryptography Extension

(JCE) needs to be enabled on your client. The IBM JCE is part of the IBM SDK for

Java, Version 1.4.2 or later.

The IBM JCE needs to use 56-bit DES or 256-bit AES encrypted client/server

communication from the IBM Data Server Driver for JDBC and SQLJ driver to DB2

Database for Linux, UNIX, and Windows servers.

For AES encryption, you need to get the unrestricted policy file for JCE. It is

available at the following URL: https://www14.software.ibm.com/webapp/iwm/
web/preLogin.do?source=jcesdk

Connections to DB2 for i V6R1 or later servers can use encrypted password

security or encrypted user ID and encrypted password security. For encrypted

password security or encrypted user ID and encrypted password security, the IBM

Java Cryptography Extension (ibmjceprovidere.jar) must be installed on your client.

The IBM JCE is part of the IBM SDK for Java, Version 1.4.2 or later.

534 Common Criteria Certification: Administration and User Documentation - Volume 2

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk

You can also use encrypted security-sensitive data in addition to encrypted user ID

security or encrypted user ID and encrypted password security. You specify

encryption of security-sensitive data through the

ENCRYPTED_USER_AND_DATA_SECURITY or

ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY securityMechanism value.

ENCRYPTED_USER_AND_DATA_SECURITY is valid for connections to DB2 for z/OS®

servers only, and only for DES encryption (encryptionAlgorithm value of 1).

DB2 for z/OS or DB2 Database for Linux, UNIX, and Windows database servers

encrypt the following data when you specify encryption of security-sensitive data:

v SQL statements that are being prepared, executed, or bound into a package

v Input and output parameter information

v Result sets

v LOB data

v XML data

v Results of describe operations

Before you can use encrypted security-sensitive data, the z/OS Integrated

Cryptographic Services Facility needs to be installed and enabled on the z/OS

operating system.

To specify encrypted user ID or encrypted password security for a JDBC

connection, use one of the following techniques.

For the DriverManager interface: Set the user ID, password, and security

mechanism by setting the user, password, and securityMechanism properties in a

Properties object, and then invoking the form of the getConnection method that

includes the Properties object as a parameter. For example, use code like this to set

the user ID and encrypted password security mechanism, with AES encryption:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

Properties properties = new Properties(); // Create a Properties object

properties.put("user", "dbadm"); // Set user ID for the connection

properties.put("password", "dbadm"); // Set password for the connection

properties.put("securityMechanism", "2");

 new String("" + com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY +

 ""));

 // Set security mechanism to

 // user ID and encrypted password

properties.put("encryptionAlgorithm", "2");

 // Request AES security

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, you

can set the user ID, password, and security mechanism by invoking the

DataSource.setUser, DataSource.setPassword, and

DataSource.setSecurityMechanism methods after you create the DataSource object.

For example, use code like this to set the encrypted user ID and encrypted

password security mechanism, with AES encryption:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

com.ibm.db2.jcc.DB2SimpleDataSource ds =

Chapter 4. Application considerations 535

new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create the DataSource object

ds.setDriverType(4); // Set the driver type

ds.setDatabaseName("san_jose"); // Set the location

ds.setServerName("mvs1.sj.ibm.com");

 // Set the server name

ds.setPortNumber(5021); // Set the port number

ds.setUser("db2adm"); // Set the user ID

ds.setPassword("db2adm"); // Set the password

ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY);

 // Set security mechanism to

 // User ID and encrypted password

ds.setEncryptionAlgorithm(2); // Request AES encryption

Security under the IBM Data Server Driver for JDBC and SQLJ

When you use the IBM Data Server Driver for JDBC and SQLJ, you choose a

security mechanism by specifying a value for the securityMechanism property.

You can set this property in one of the following ways:

v If you use the DriverManager interface, set securityMechanism in a

java.util.Properties object before you invoke the form of the getConnection

method that includes the java.util.Properties parameter.

v If you use the DataSource interface, and you are creating and deploying your

own DataSource objects, invoke the DataSource.setSecurityMechanism method

after you create a DataSource object.

You can determine the security mechanism that is in effect for a connection by

calling the DB2Connection.getDB2SecurityMechanism method.

The following table lists the security mechanisms that the IBM Data Server Driver

for JDBC and SQLJ supports, and the data sources that support those security

mechanisms.

 Table 21. Database server support for IBM Data Server Driver for JDBC and SQLJ security mechanisms

Security mechanism Supported by

DB2 Database for

Linux, UNIX, and

Windows

DB2 for z/OS IBM Informix

Dynamic Server

DB2 for i

User ID and password Yes Yes Yes Yes

User ID only Yes Yes Yes Yes

User ID and encrypted

password

Yes Yes Yes Yes2

Encrypted user ID Yes Yes No No

Encrypted user ID and

encrypted password

Yes Yes Yes Yes2

Encrypted user ID and

encrypted security-sensitive

data

No Yes No No

Encrypted user ID,

encrypted password, and

encrypted security-sensitive

data

Yes Yes No No

Kerberos1 Yes Yes No Yes

536 Common Criteria Certification: Administration and User Documentation - Volume 2

Table 21. Database server support for IBM Data Server Driver for JDBC and SQLJ security mechanisms (continued)

Security mechanism Supported by

Plugin1 Yes No No No

Note:

1. Available for IBM Data Server Driver for JDBC and SQLJ type 4 connectivity only.

2. The version of the data source must be DB2 for i V6R1 or later.

The following table lists the security mechanisms that the IBM Data Server Driver

for JDBC and SQLJ supports, and the value that you need to specify for the

securityMechanism property to specify each security mechanism.

The default security mechanism is CLEAR_TEXT_PASSWORD_SECURITY. If the

server does not support CLEAR_TEXT_PASSWORD_SECURITY but supports

ENCRYPTED_USER_AND_PASSWORD_SECURITY, the IBM Data Server Driver

for JDBC and SQLJ driver updates the security mechanism to

ENCRYPTED_USER_AND_PASSWORD_SECURITY and attempts to connect to the

server. Any other mismatch in security mechanism support between the requester

and the server results in an error.

 Table 22. Security mechanisms supported by the IBM Data Server Driver for JDBC and SQLJ

Security mechanism securityMechanism property value

User ID and password DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY

User ID only DB2BaseDataSource.USER_ONLY_SECURITY

User ID and encrypted password DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY

Encrypted user ID DB2BaseDataSource.ENCRYPTED_USER_ONLY_SECURITY

Encrypted user ID and encrypted

password

DB2BaseDataSource.ENCRYPTED_USER_AND_PASSWORD_SECURITY

Encrypted user ID and encrypted

security-sensitive data

DB2BaseDataSource.ENCRYPTED_USER_AND_DATA_SECURITY

Encrypted user ID, encrypted

password, and encrypted

security-sensitive data

DB2BaseDataSource.ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

Kerberos DB2BaseDataSource.KERBEROS_SECURITY

Plugin DB2BaseDataSource.PLUGIN_SECURITY

The following table shows possible DB2 Database for Linux, UNIX, and Windows

server authentication types and the compatible IBM Data Server Driver for JDBC

and SQLJ securityMechanism property values.

 Table 23. Compatible DB2 Database for Linux, UNIX, and Windows server authentication types and IBM Data Server

Driver for JDBC and SQLJ securityMechanism values

DB2 Database for Linux, UNIX, and

Windows server authentication type securityMechanism setting

CLIENT USER_ONLY_SECURITY

SERVER CLEAR_TEXT_PASSWORD_SECURITY

SERVER_ENCRYPT CLEAR_TEXT_PASSWORD_SECURITY,

ENCRYPTED_PASSWORD_SECURITY, or

ENCRYPTED_USER_AND_PASSWORD_SECURITY

DATA_ENCRYPT ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

Chapter 4. Application considerations 537

Table 23. Compatible DB2 Database for Linux, UNIX, and Windows server authentication types and IBM Data Server

Driver for JDBC and SQLJ securityMechanism values (continued)

DB2 Database for Linux, UNIX, and

Windows server authentication type securityMechanism setting

KERBEROS KERBEROS_SECURITY or PLUGIN_SECURITY2

KRB_SERVER_ENCRYPT KERBEROS_SECURITY , PLUGIN_SECURITY1,

ENCRYPTED_PASSWORD_SECURITY, or

ENCRYPTED_USER_AND_PASSWORD_SECURITY

GSSPLUGIN PLUGIN_SECURITY1 or KERBEROS_SECURITY

GSS_SERVER_ENCRYPT3 CLEAR_TEXT_PASSWORD_SECURITY,

ENCRYPTED_PASSWORD_SECURITY,

ENCRYPTED_USER_AND_PASSWORD_SECURITY,

PLUGIN_SECURITY, or KERBEROS_SECURITY

Notes:

1. For PLUGIN_SECURITY, the plugin must be a Kerberos plugin.

2. For PLUGIN_SECURITY, one of the plugins at the server identifies itself as supporting Kerberos.

3. GSS_SERVER_ENCRYPT is a combination of GSSPLUGIN and SERVER_ENCRYPT.

Connecting to a data source using the DriverManager

interface with the IBM Data Server Driver for JDBC and SQLJ

A JDBC application can establish a connection to a data source using the JDBC

DriverManager interface, which is part of the java.sql package.

The steps for establishing a connection are:

1. Load the JDBC driver by invoking the Class.forName method.

If you are using JDBC 4.0, you do not need to explicitly load the JDBC driver.

For the IBM Data Server Driver for JDBC and SQLJ, you load the driver by

invoking the Class.forName method with the following argument:

com.ibm.db2.jcc.DB2Driver

For compatibility with previous JDBC drivers, you can use the following

argument instead:

COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

The following code demonstrates loading the IBM Data Server Driver for JDBC

and SQLJ:

try {

 // Load the IBM Data Server Driver for JDBC and SQLJ with DriverManager

 Class.forName("com.ibm.db2.jcc.DB2Driver");

} catch (ClassNotFoundException e) {

 e.printStackTrace();

}

The catch block is used to print an error if the driver is not found.

2. Connect to a data source by invoking the DriverManager.getConnection

method.

You can use one of the following forms of getConnection:

getConnection(String url);

getConnection(String url, user, password);

getConnection(String url, java.util.Properties info);

538 Common Criteria Certification: Administration and User Documentation - Volume 2

For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity, the

getConnection method must specify a user ID and password, through

parameters or through property values.

The url argument represents a data source, and indicates what type of JDBC

connectivity you are using.

The info argument is an object of type java.util.Properties that contains a set of

driver properties for the connection. Specifying the info argument is an

alternative to specifying property=value; strings in the URL. See ″Properties for

the IBM Data Server Driver for JDBC and SQLJ″ for the properties that you can

specify.

There are several ways to specify a user ID and password for a connection:

v Use the form of the getConnection method that specifies url with

property=value; clauses, and include the user and password properties in the

URL.

v Use the form of the getConnection method that specifies user and password.

v Use the form of the getConnection method that specifies info, after setting the

user and password properties in a java.util.Properties object.

Example: Establishing a connection and setting the user ID and password in a URL:

String url = "jdbc:db2://myhost:5021/mydb:" +

 "user=dbadm;password=dbadm;";

 // Set URL for data source

Connection con = DriverManager.getConnection(url);

 // Create connection

Example: Establishing a connection and setting the user ID and password in user and

password parameters:

String url = "jdbc:db2://myhost:5021/mydb";

 // Set URL for data source

String user = "dbadm";

String password = "dbadm";

Connection con = DriverManager.getConnection(url, user, password);

 // Create connection

Example: Establishing a connection and setting the user ID and password in a

java.util.Properties object:

Properties properties = new Properties(); // Create Properties object

properties.put("user", "dbadm"); // Set user ID for connection

properties.put("password", "dbadm"); // Set password for connection

String url = "jdbc:db2://myhost:5021/mydb";

 // Set URL for data source

Connection con = DriverManager.getConnection(url, properties);

 // Create connection

Chapter 4. Application considerations 539

540 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 5. Security and Routines

Benefits of using routines

The following benefits can be gained by using routines:

Encapsulate application logic that can be invoked from an SQL interface

In an environment containing many different client applications that have

common requirements, the effective use of routines can simplify code

reuse, code standardization, and code maintenance. If a particular aspect of

common application behavior needs to be changed in an environment

where routines are used, only the affected routine that encapsulates the

behavior requires modification. Without routines, application logic changes

are required in each application.

Enable controlled access to other database objects

Routines can be used to control access to database objects. A user might

not have permission to generally issue a particular SQL statement, such as

CREATE TABLE; however the user can be given permission to invoke

routines that contain one or more specific implementations of the

statement, thus simplifying privilege management through encapsulation

of privileges.

Improve application performance by reducing network traffic

When applications run on a client computer, each SQL statement is sent

separately from the client computer to the database server computer to be

executed and each result set is returned separately. This can result in high

levels of network traffic. If a piece of work can be identified that requires

extensive database interaction and little user interaction, it makes sense to

install this piece of work on the server to minimize the quantity of

network traffic and to allow the work to be done on the more powerful

database servers.

Allow for faster, more efficient SQL execution

Because routines are database objects, they are more efficient at

transmitting SQL requests and data than client applications. Therefore, SQL

statements executed within routines can perform better than if executed in

client applications. Routines that are created with the NOT FENCED clause

run in the same process as the database manager, and can therefore use

shared memory for communication, which can result in improved

application performance.

Allow the interoperability of logic implemented in different programming

languages

Because code modules might be implemented by different programmers in

different programming languages, and because it is generally desirable to

reuse code when possible, DB2 routines support a high degree of

interoperability.

v Client applications in one programming language can invoke routines

that are implemented in a different programming language. For example

C client applications can invoke .NET common language runtime

routines.

v Routines can invoke other routines regardless of the routine type or

routine implementation. For example a Java procedure can invoke an

embedded SQL scalar function.

© Copyright IBM Corp. 1993, 2009 541

v Routines created in a database server on one operating system can be

invoked from a DB2 client running on a different operating system.

The benefits described above are just some of the many benefits of using routines.

Using routines can be beneficial to a variety of users including database

administrators, database architects, and database application developers. For this

reason there are many useful applications of routines that you might want to

explore.

There are various kinds of routines that address particular functional needs and

various routine implementations. The choice of routine type and implementation

can impact the degree to which the above benefits are exhibited. In general,

routines are a powerful way of encapsulating logic so that you can extend your

SQL, and improve the structure, maintenance, and potentially the performance of

your applications.

External scalar functions

External scalar functions are scalar functions that have their logic implemented in

an external programming language.

These functions can be developed and used to extend the set of existing SQL

functions and can be invoked in the same manner as DB2 built-in functions such

as LENGTH and COUNT. That is, they can be referenced in SQL statements

wherever an expression is valid.

The execution of external scalar function logic takes place on the DB2 database

server, however unlike built-in or user-defined SQL scalar functions, the logic of

external functions can access the database server filesystem, perform system calls

or access a network.

External scalar functions can read SQL data, but cannot modify SQL data.

External scalar functions can be repeatedly invoked for a single reference of the

function and can maintain state between these invocations by using a scratchpad,

which is a memory buffer. This can be powerful if a function requires some initial,

but expensive, setup logic. The setup logic can be done on a first invocation using

the scratchpad to store some values that can be accessed or updated in subsequent

invocations of the scalar function.

Features of external scalar functions

v Can be referenced as part of an SQL statement anywhere an expression

is supported.

v The output of a scalar function can be used directly by the invoking SQL

statement.

v For external scalar user-defined functions, state can be maintained

between the iterative invocations of the function by using a scratchpad.

v Can provide a performance advantage when used in predicates, because

they are executed at the server. If a function can be applied to a

candidate row at the server, it can often eliminate the row from

consideration before transmitting it to the client machine, reducing the

amount of data that must be passed from server to client.

Limitations

v Cannot do transaction management within a scalar function. That is, you

cannot issue a COMMIT or a ROLLBACK within a scalar function.

542 Common Criteria Certification: Administration and User Documentation - Volume 2

v Cannot return result sets.

v Scalar functions are intended to return a single scalar value per set of

inputs.

v External scalar functions are not intended to be used for a single

invocation. They are designed such that for a single reference to the

function and a given set of inputs, that the function be invoked once per

input, and return a single scalar value. On the first invocation, scalar

functions can be designed to do some setup work, or store some

information that can be accessed in subsequent invocations. SQL scalar

functions are better suited to functionality that requires a single

invocation.

v

In a single partition database external scalar functions can contain SQL

statements. These statements can read data from tables, but cannot

modify data in tables. If the database has more than one partition then

there must be no SQL statements in an external scalar function. SQL

scalar functions can contain SQL statements that read or modify data.

Common uses

v Extend the set of DB2 built-in functions.

v Perform logic inside an SQL statement that SQL cannot natively

perform.

v Encapsulate a scalar query that is commonly reused as a subquery in

SQL statements. For example, given a postal code, search a table for the

city where the postal code is found.

Supported languages

v C

v C++

v Java

v OLE

v .NET common language runtime languages

Note:

1. There is a limited capability for creating aggregate functions. Also known as

column functions, these functions receive a set of like values (a column of data)

and return a single answer. A user-defined aggregate function can only be

created if it is sourced upon a built-in aggregate function. For example, if a

distinct type SHOESIZE exists that is defined with base type INTEGER, you

could define a function, AVG(SHOESIZE), as an aggregate function sourced on the

existing built-in aggregate function, AVG(INTEGER).

2. You can also create function that return a row. These are known as row

functions and can only be used as a transform function for structured types.

The output of a row function is a single row.

Methods

Methods enable you to define behaviors for structured types. They are like scalar

UDFs, but can only be defined for structured types.

Methods share all the features of scalar UDFs, in addition to the following features:

Features

v Strongly associated with the structured type.

Chapter 5. Security and Routines 543

v Can be sensitive to the dynamic type of the subject type.

Limitations

v Can only return a scalar value.

v Can only be used with structured types.

v Cannot be invoked against typed tables.

Common uses

v Providing operations on structured types.

v Encapsulating the structured type.

Supported languages

v SQL

v C/C++

v Java™

v OLE

Security considerations for routines

Developing and deploying routines provides you with an opportunity to greatly

improve the performance and effectiveness of your database applications. There

can, however, be security risks if the deployment of routines is not managed

correctly by the database administrator. The following sections describe security

risks and means by which you can mitigate these risks. The security risks are

followed by a section on how to safely deploy routines whose security is

unknown.

Security risks

NOT FENCED routines can access database manager resources

NOT FENCED routines run in the same process as the database manager.

Because of their close proximity to the database engine, NOT FENCED

routines can accidentally or maliciously corrupt the database manager’s

shared memory, or damage the database control structures. Either form of

damage will cause the database manager to fail. NOT FENCED routines

can also corrupt databases and their tables.

 To ensure the integrity of the database manager and its databases, you

must thoroughly screen routines you intend to register as NOT FENCED.

These routines must be fully tested, debugged, and exhibit no unexpected

side-effects. In the examination of the routine, pay close attention to

memory management and the use of static variables. The greatest potential

for corruption arises when code does not properly manage memory or

incorrectly uses static variables. These problems are prevalent in languages

other than Java and .NET programming languages.

In order to register a NOT FENCED routine, the

CREATE_NOT_FENCED_ROUTINE authority is required. When granting

the CREATE_NOT_FENCED_ROUTINE authority, be aware that the

recipient can potentially gain unrestricted access to the database manager

and all its resources.

Note: NOT FENCED routines are not supported in Common Criteria

compliant configurations.

544 Common Criteria Certification: Administration and User Documentation - Volume 2

FENCED THREADSAFE routines can access memory in other FENCED

THREADSAFE routines

FENCED THREADSAFE routines run as threads inside a shared process.

Each of these routines are able to read the memory used by other routine

threads in the same process. Therefore, it is possible for one threaded

routine to collect sensitive data from other routines in the threaded

process. Another risk inherent in the sharing of a single process, is that one

routine thread with flawed memory management can corrupt other routine

threads, or cause the entire threaded process to crash.

 To ensure the integrity of other FENCED THREADSAFE routines, you

must thoroughly screen routines you intend to register as FENCED

THREADSAFE. These routines must be fully tested, debugged, and exhibit

no unexpected side-effects. In the examination of the routine, pay close

attention to memory management and the use of static variables. This is

where the greatest potential for corruption exists, particularly in languages

other than Java.

In order to register a FENCED THREADSAFE routine, the

CREATE_EXTERNAL_ROUTINE authority is required. When granting the

CREATE_EXTERNAL_ROUTINE authority, be aware that the recipient can

potentially monitor or corrupt the memory of other FENCED

THREADSAFE routines.

Write access to the database server by the owner of fenced processes can result

in database manager corruption

The user ID under which fenced processes run is defined by the db2icrt

(create instance) or db2iupdt (update instance) system commands. This

user ID must not have write access to the directory where routine libraries

and classes are stored (in UNIX environments, sqllib/function; in Windows

environments, sqllib\function). This user ID must also not have read or

write access to any database, operating system, or otherwise critical files

and directories on the database server.

 If the owner of fenced processes does have write access to various critical

resources on the database server, the potential for system corruption exists.

For example, a database administrator registers a routine received from an

unknown source as FENCED NOT THREADSAFE, thinking that any

potential harm can be averted by isolating the routine in its own process.

However, the user ID that owns fenced processes has write access to the

sqllib/function directory. Users invoke this routine, and unbeknownst to

them, it overwrites a library in sqllib/function with an alternate version of

a routine body that is registered as NOT FENCED. This second routine has

unrestricted access to the entire database manager, and can thereby

distribute sensitive information from database tables, corrupt the

databases, collect authentication information, or crash the database

manager.

Ensure the user ID that owns fenced processes does not have write access

to critical files or directories on the database server (especially

sqllib/function and the database data directories).

Vulnerability of routine libraries and classes

If access to the directory where routine libraries and classes are stored is

not controlled, routine libraries and classes can be deleted or overwritten.

As discussed in the previous item, the replacement of a NOT FENCED

routine body with a malicious (or poorly coded) routine can severely

compromise the stability, integrity, and privacy of the database server and

its resources.

Chapter 5. Security and Routines 545

To protect the integrity of routines, you must manage access to the

directory containing the routine libraries and classes. Ensure that the

fewest possible number of users can access this directory and its files.

When assigning write access to this directory, be aware that this privilege

can provide the owner of the user ID unrestricted access to the database

manager and all its resources.

Deploying potentially insecure routines

If you happen to acquire a routine from an unknown source, be sure you know

exactly what it does before you build, register, and invoke it. It is recommended

that you register it as FENCED and NOT THREADSAFE unless you have tested it

thoroughly, and it exhibits no unexpected side-effects.

If you need to deploy a routine that does not meet the criteria for secure routines,

register the routine as FENCED and NOT THREADSAFE. To ensure that database

integrity is maintained, FENCED and NOT THREADSAFE routines:

v Run in a separate DB2 process, shared with no other routines. If they

abnormally terminate, the database manager will be unaffected.

v Use memory that is distinct from memory used by the database. An inadvertent

mistake in a value assignment will not affect the database manager.

Connection contexts in SQLJ routines

With the introduction of multithreaded routines in DB2 Universal Database,

Version 8, it is important that SQLJ routines avoid the use of the default connection

context. That is, each SQL statement must explicitly indicate the ConnectionContext

object, and that context must be explicitly instantiated in the Java method. For

instance, in previous releases of DB2, a SQLJ routine could be written as follows:

 class myClass

 {

 public static void myRoutine(short myInput)

 {

 DefaultContext ctx = DefaultContext.getDefaultContext();

 #sql { some SQL statement };

 }

 }

This use of the default context causes all threads in a multithreaded environment

to use the same connection context, which, in turn, will result in unexpected

failures.

The SQLJ routine above must be changed as follows:

 #context MyContext;

 class myClass

 {

 public static void myRoutine(short myInput)

 {

 MyContext ctx = new MyContext("jdbc:default:connection", false);

 #sql [ctx] { some SQL statement };

 ctx.close();

 }

 }

This way, each invocation of the routine will create its own unique

ConnectionContext (and underlying JDBC connection), which avoids unexpected

interference by concurrent threads.

546 Common Criteria Certification: Administration and User Documentation - Volume 2

External routine library and class management

To successfully develop and invoke external routines, external routine library and

class files must be deployed and managed properly.

External routine library and class file management can be minimal if care is taken

when external routines are first created and library and class files deployed.

The main external routine management considerations are the following:

v Deployment of external routine library and class files

v Security of external routine library and class files

v Resolution of external routine libraries and classes

v Modifications to external routine library and class files

v Backup and restore of external routine library and class files

System administrators, database administrators and database application

developers should all take responsibility to ensure that external routine library and

class files are secure and correctly preserved during routine development and

database administration tasks.

Rebuilding DB2 routine shared libraries

DB2 will cache the shared libraries used for stored procedures and user-defined

functions once loaded. If you are developing a routine, you might want to test

loading the same shared library a number of times, and this caching can prevent

you from picking up the latest version of a shared library. The way to avoid

caching problems depends on the type of routine:

1. Fenced, not threadsafe routines. The database manager configuration keyword

KEEPFENCED has a default value of YES. This keeps the fenced mode process

alive. This default setting can interfere with reloading the library. It is best to

change the value of this keyword to NO while developing fenced, not

threadsafe routines, and then change it back to YES when you are ready to load

the final version of your shared library. For more information, see “Updating

the database manager configuration file.”

2. Trusted or threadsafe routines. Except for SQL routines (including SQL

procedures), the only way to ensure that an updated version of a DB2 routine

library is picked up when that library is used for trusted, or threadsafe

routines, is to recycle the DB2 instance by entering db2stop followed by

db2start on the command line. This is not needed for an SQL routine because

when it is recreated, the compiler uses a new unique library name to prevent

possible conflicts.

For routines other than SQL routines, you can also avoid caching problems by

creating the new version of the routine with a differently named library (for

example foo.a becomes foo.1.a), and then using either the ALTER PROCEDURE or

ALTER FUNCTION SQL statement with the new library.

Updating the database manager configuration file

This file contains important settings for application development.

Chapter 5. Security and Routines 547

The keyword KEEPFENCED has the default value YES. For fenced, not threadsafe

routines (stored procedures and UDFs), this keeps the routine process alive. It is

best to change the value of this keyword to NO while developing these routines,

and then change it back to YES when you are ready to load the final version of

your shared library. For more information, see “Rebuilding DB2 routine shared

libraries” on page 547.

Note: KEEPFENCED was known as KEEPDARI in previous versions of DB2.

For Java application development, you need to update the JDK_PATH keyword with

the path where the Java Development Kit is installed.

Note: JDK_PATH was known as JDK11_PATH in previous versions of DB2.

To change these settings enter:

 db2 update dbm cfg using <keyword> <value>

For example, to set the keyword KEEPFENCED to NO:

 db2 update dbm cfg using KEEPFENCED NO

To set the JDK_PATH keyword to the directory /home/db2inst/jdk13:

 db2 update dbm cfg using JDK_PATH /home/db2inst/jdk13

To view the current settings in the database manager configuration file, enter:

 db2 get dbm cfg

Note: On Windows, you need to enter these commands in a DB2 command

window.

548 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 6. SQLCA (SQL communications area)

An SQLCA is a collection of variables that is updated at the end of the execution

of every SQL statement. A program that contains executable SQL statements and is

precompiled with option LANGLEVEL SAA1 (the default) or MIA must provide

exactly one SQLCA, though more than one SQLCA is possible by having one

SQLCA per thread in a multi-threaded application.

When a program is precompiled with option LANGLEVEL SQL92E, an SQLCODE

or SQLSTATE variable may be declared in the SQL declare section or an SQLCODE

variable can be declared somewhere in the program.

An SQLCA should not be provided when using LANGLEVEL SQL92E. The SQL

INCLUDE statement can be used to provide the declaration of the SQLCA in all

languages but REXX. The SQLCA is automatically provided in REXX.

To display the SQLCA after each command executed through the command line

processor, issue the command db2 -a. The SQLCA is then provided as part of the

output for subsequent commands. The SQLCA is also dumped in the db2diag log

file.

SQLCA field descriptions

 Table 24. Fields of the SQLCA. The field names shown are those present in an SQLCA that

is obtained via an INCLUDE statement.

Name Data Type Field Values

sqlcaid CHAR(8) An ″eye catcher″ for storage dumps containing ’SQLCA’.

The sixth byte is ’L’ if line number information is returned

from parsing an SQL procedure body.

sqlcabc INTEGER Contains the length of the SQLCA, 136.

sqlcode INTEGER Contains the SQL return code.

Code Means

0 Successful execution (although one or more

SQLWARN indicators may be set).

positive

Successful execution, but with a warning

condition.

negative

Error condition.

sqlerrml SMALLINT Length indicator for sqlerrmc, in the range 0 through 70. 0

means that the value of sqlerrmc is not relevant.

© Copyright IBM Corp. 1993, 2009 549

|

Table 24. Fields of the SQLCA (continued). The field names shown are those present in an

SQLCA that is obtained via an INCLUDE statement.

Name Data Type Field Values

sqlerrmc VARCHAR

(70)

Contains one or more tokens, separated by X’FF’, which are

substituted for variables in the descriptions of error

conditions.

This field is also used when a successful connection is

completed.

When a NOT ATOMIC compound SQL statement is issued,

it may contain information on up to seven errors.

The last token might be followed by X’FF’. The sqlerrml

value will include any trailing X’FF’.

sqlerrp CHAR(8) Begins with a three-letter identifier indicating the product,

followed by five alphanumeric characters indicating the

version, release, and modification level of the product. The

characters A-Z indicate a modification level higher than 9.

A indicates modification level 10, B indicates modification

level 11, and so on. For example, SQL0907C means DB2

Version 9, release 7, modification level 12).

If SQLCODE indicates an error condition, this field

identifies the module that returned the error.

This field is also used when a successful connection is

completed.

sqlerrd ARRAY Six INTEGER variables that provide diagnostic information.

These values are generally empty if there are no errors,

except for sqlerrd(6) from a partitioned database.

sqlerrd(1) INTEGER If connection is invoked and successful, contains the

maximum expected difference in length of mixed character

data (CHAR data types) when converted to the database

code page from the application code page. A value of 0 or 1

indicates no expansion; a value greater than 1 indicates a

possible expansion in length; a negative value indicates a

possible contraction.

On successful return from an SQL procedure, contains the

return status value from the SQL procedure.

sqlerrd(2) INTEGER

If connection is invoked and successful, contains the

maximum expected difference in length of mixed character

data (CHAR data types) when converted to the application

code page from the database code page. A value of 0 or 1

indicates no expansion; a value greater than 1 indicates a

possible expansion in length; a negative value indicates a

possible contraction. If the SQLCA results from a NOT

ATOMIC compound SQL statement that encountered one

or more errors, the value is set to the number of statements

that failed.

550 Common Criteria Certification: Administration and User Documentation - Volume 2

Table 24. Fields of the SQLCA (continued). The field names shown are those present in an

SQLCA that is obtained via an INCLUDE statement.

Name Data Type Field Values

sqlerrd(3) INTEGER If PREPARE is invoked and successful, contains an estimate

of the number of rows that will be returned. After INSERT,

UPDATE, DELETE, or MERGE, contains the actual number

of rows that qualified for the operation. For a TRUNCATE

statement, the value will be -1. If compound SQL is

invoked, contains an accumulation of all sub-statement

rows. If CONNECT is invoked, contains 1 if the database

can be updated, or 2 if the database is read only.

If the OPEN statement is invoked, and the cursor contains

SQL data change statements, this field contains the sum of

the number of rows that qualified for the embedded insert,

update, delete, or merge operations.

If CREATE PROCEDURE for an SQL procedure is invoked,

and an error is encountered when parsing the SQL

procedure body, contains the line number where the error

was encountered. The sixth byte of sqlcaid must be ’L’ for

this to be a valid line number.

sqlerrd(4) INTEGER

If PREPARE is invoked and successful, contains a relative

cost estimate of the resources required to process the

statement. If compound SQL is invoked, contains a count of

the number of successful sub-statements. If CONNECT is

invoked, contains 0 for a one-phase commit from a

down-level client; 1 for a one-phase commit; 2 for a

one-phase, read-only commit; and 3 for a two-phase

commit.

sqlerrd(5) INTEGER

Contains the total number of rows deleted, inserted, or

updated as a result of both:

v The enforcement of constraints after a successful delete

operation

v The processing of triggered SQL statements from

activated triggers

If compound SQL is invoked, contains an accumulation of

the number of such rows for all sub-statements. In some

cases, when an error is encountered, this field contains a

negative value that is an internal error pointer. If

CONNECT is invoked, contains an authentication type

value of 0 for server authentication; 1 for client

authentication; 2 for authentication using DB2 Connect; 4

for SERVER_ENCRYPT authentication; 5 for authentication

using DB2 Connect with encryption; 7 for KERBEROS

authentication; 9 for GSSPLUGIN authentication; 11 for

DATA_ENCRYPT authentication; and 255 for unspecified

authentication.

sqlerrd(6) INTEGER For a partitioned database, contains the partition number of

the database partition that encountered the error or

warning. If no errors or warnings were encountered, this

field contains the partition number of the coordinator

partition. The number in this field is the same as that

specified for the database partition in the db2nodes.cfg file.

Chapter 6. SQLCA (SQL communications area) 551

|
|

Table 24. Fields of the SQLCA (continued). The field names shown are those present in an

SQLCA that is obtained via an INCLUDE statement.

Name Data Type Field Values

sqlwarn Array A set of warning indicators, each containing a blank or W.

If compound SQL is invoked, contains an accumulation of

the warning indicators set for all sub-statements.

sqlwarn0 CHAR(1) Blank if all other indicators are blank; contains ’W’ if at

least one other indicator is not blank.

sqlwarn1 CHAR(1) Contains ’W’ if the value of a string column was truncated

when assigned to a host variable. Contains ’N’ if the null

terminator was truncated. Contains ’A’ if the CONNECT or

ATTACH is successful, and the authorization name for the

connection is longer than 8 bytes. Contains ’P’ if the

PREPARE statement relative cost estimate stored in

sqlerrd(4) exceeded the value that could be stored in an

INTEGER or was less than 1, and either the CURRENT

EXPLAIN MODE or the CURRENT EXPLAIN SNAPSHOT

special register is set to a value other than NO.

sqlwarn2 CHAR(1) Contains ’W’ if null values were eliminated from the

argument of an aggregate function.

a

If CONNECT is invoked and successful, contains ’D’ if the

database is in quiesce state, or ’I’ if the instance is in

quiesce state.

sqlwarn3 CHAR(1) Contains ’W’ if the number of columns is not equal to the

number of host variables. Contains ’Z’ if the number of

result set locators specified on the ASSOCIATE LOCATORS

statement is less than the number of result sets returned by

a procedure.

sqlwarn4 CHAR(1) Contains ’W’ if a prepared UPDATE or DELETE statement

does not include a WHERE clause.

sqlwarn5 CHAR(1) Contains ’E’ if an error was tolerated during SQL statement

execution.

sqlwarn6 CHAR(1) Contains ’W’ if the result of a date calculation was adjusted

to avoid an impossible date.

sqlwarn7 CHAR(1) Reserved for future use.

If CONNECT is invoked and successful, contains ’E’ if the

dyn_query_mgmt database configuration parameter is

enabled.

sqlwarn8 CHAR(1) Contains ’W’ if a character that could not be converted was

replaced with a substitution character. Contains ’Y’ if there

was an unsuccessful attempt to establish a trusted

connection.

sqlwarn9 CHAR(1) Contains ’W’ if arithmetic expressions with errors were

ignored during aggregate function processing.

sqlwarn10 CHAR(1) Contains ’W’ if there was a conversion error when

converting a character data value in one of the fields in the

SQLCA.

sqlstate CHAR(5) A return code that indicates the outcome of the most

recently executed SQL statement.

a Some functions may not set SQLWARN2 to W, even though null values were eliminated,

because the result was not dependent on the elimination of null values.

552 Common Criteria Certification: Administration and User Documentation - Volume 2

Error reporting

The order of error reporting is as follows:

1. Severe error conditions are always reported. When a severe error is reported,

there are no additions to the SQLCA.

2. If no severe error occurs, a deadlock error takes precedence over other errors.

3. For all other errors, the SQLCA for the first negative SQL code is returned.

4. If no negative SQL codes are detected, the SQLCA for the first warning (that is,

positive SQL code) is returned.

In a partitioned database system, the exception to this rule occurs if a data

manipulation operation is invoked against a table that is empty on one

database partition, but has data on other database partitions. SQLCODE +100 is

only returned to the application if agents from all database partitions return

SQL0100W, either because the table is empty on all database partitions, or there

are no more rows that satisfy the WHERE clause in an UPDATE statement.

SQLCA usage in partitioned database systems

In partitioned database systems, one SQL statement may be executed by a number

of agents on different database partitions, and each agent may return a different

SQLCA for different errors or warnings. The coordinator agent also has its own

SQLCA.

To provide a consistent view for applications, all SQLCA values are merged into

one structure, and SQLCA fields indicate global counts, such that:

v For all errors and warnings, the sqlwarn field contains the warning flags received

from all agents.

v Values in the sqlerrd fields indicating row counts are accumulations from all

agents.

Note that SQLSTATE 09000 may not be returned every time an error occurs during

the processing of a triggered SQL statement.

Chapter 6. SQLCA (SQL communications area) 553

554 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 7. SQLDA (SQL descriptor area)

An SQLDA is a collection of variables that is required for execution of the SQL

DESCRIBE statement. The SQLDA variables are options that can be used by the

PREPARE, OPEN, FETCH, and EXECUTE statements. An SQLDA communicates

with dynamic SQL; it can be used in a DESCRIBE statement, modified with the

addresses of host variables, and then reused in a FETCH or EXECUTE statement.

SQLDAs are supported for all languages, but predefined declarations are provided

only for C, REXX, FORTRAN, and COBOL.

The meaning of the information in an SQLDA depends on its use. In PREPARE

and DESCRIBE, an SQLDA provides information to an application program about

a prepared statement. In OPEN, EXECUTE, and FETCH, an SQLDA describes host

variables.

In DESCRIBE and PREPARE, if any one of the columns being described is either a

LOB type (LOB locators and file reference variables do not require doubled

SQLDAs), reference type, or a user-defined type, the number of SQLVAR entries

for the entire SQLDA will be doubled. For example:

v When describing a table with 3 VARCHAR columns and 1 INTEGER column,

there will be 4 SQLVAR entries

v When describing a table with 2 VARCHAR columns, 1 CLOB column, and 1

integer column, there will be 8 SQLVAR entries

In EXECUTE, FETCH, and OPEN, if any one of the variables being described is a

LOB type (LOB locators and file reference variables do not require doubled

SQLDAs) or a structured type, the number of SQLVAR entries for the entire

SQLDA must be doubled. (Distinct types and reference types are not relevant in

these cases, because the additional information in the double entries is not required

by the database. Array, cursor and row types are not supported as SQLDA

variables in EXECUTE, FETCH and OPEN statements.)

SQLDA field descriptions

An SQLDA consists of four variables followed by an arbitrary number of

occurrences of a sequence of variables collectively named SQLVAR. In OPEN,

FETCH, and EXECUTE, each occurrence of SQLVAR describes a host variable. In

DESCRIBE and PREPARE, each occurrence of SQLVAR describes a column of a

result table or a parameter marker. There are two types of SQLVAR entries:

v Base SQLVARs: These entries are always present. They contain the base

information about the column, parameter marker, or host variable such as data

type code, length attribute, column name, host variable address, and indicator

variable address.

v Secondary SQLVARs: These entries are only present if the number of SQLVAR

entries is doubled as per the rules outlined above. For user-defined types

(excluding reference types), they contain the user-defined type name. For

reference types, they contain the target type of the reference. For LOBs, they

contain the length attribute of the host variable and a pointer to the buffer that

contains the actual length. (The distinct type and LOB information does not

overlap, so distinct types can be based on LOBs without forcing the number of

© IBM Corporation 1993, 2008 555

|
|

|

SQLVAR entries on a DESCRIBE to be tripled.) If locators or file reference

variables are used to represent LOBs, these entries are not necessary.

In SQLDAs that contain both types of entries, the base SQLVARs are in a block

before the block of secondary SQLVARs. In each, the number of entries is equal to

the value in SQLD (even though many of the secondary SQLVAR entries may be

unused).

The circumstances under which the SQLVAR entries are set by DESCRIBE is

detailed in “Effect of DESCRIBE on the SQLDA” on page 560.

Fields in the SQLDA header

 Table 25. Fields in the SQLDA Header

C Name

SQL Data

Type

Usage in DESCRIBE and PREPARE (set

by the database manager except for

SQLN)

Usage in FETCH, OPEN, and EXECUTE

(set by the application prior to executing

the statement)

sqldaid CHAR(8) The seventh byte of this field is a flag

byte named SQLDOUBLED. The database

manager sets SQLDOUBLED to the

character ’2’ if two SQLVAR entries have

been created for each column; otherwise it

is set to a blank (X’20’ in ASCII, X’40’ in

EBCDIC). See “Effect of DESCRIBE on the

SQLDA” on page 560 for details on when

SQLDOUBLED is set.

The seventh byte of this field is used

when the number of SQLVARs is doubled.

It is named SQLDOUBLED. If any of the

host variables being described is a

structured type, BLOB, CLOB, or

DBCLOB, the seventh byte must be set to

the character ’2’; otherwise it can be set to

any character but the use of a blank is

recommended.

sqldabc INTEGER For 32 bit, the length of the SQLDA, equal

to SQLN*44+16. For 64 bit, the length of

the SQLDA, equal to SQLN*56+16

For 32 bit, the length of the SQLDA, >= to

SQLN*44+16. For 64 bit, the length of the

SQLDA, >= to SQLN*56+16.

sqln SMALLINT Unchanged by the database manager.

Must be set to a value greater than or

equal to zero before the DESCRIBE

statement is executed. Indicates the total

number of occurrences of SQLVAR.

Total number of occurrences of SQLVAR

provided in the SQLDA. SQLN must be

set to a value greater than or equal to

zero.

sqld SMALLINT Set by the database manager to the

number of columns in the result table or

to the number of parameter markers.

The number of host variables described

by occurrences of SQLVAR.

556 Common Criteria Certification: Administration and User Documentation - Volume 2

Fields in an occurrence of a base SQLVAR

 Table 26. Fields in a Base SQLVAR

Name Data Type Usage in DESCRIBE and PREPARE Usage in FETCH, OPEN, and EXECUTE

sqltype SMALLINT Indicates the data type of the column or

parameter marker, and whether it can

contain nulls. (Parameter markers are

always considered nullable.) Table 28 on

page 561 lists the allowable values and

their meanings.

Note that for a distinct, array, cursor, row,

or reference type, the data type of the

base type is placed into this field. For a

structured type, the data type of the result

of the FROM SQL transform function of

the transform group (based on the

CURRENT DEFAULT TRANSFORM

GROUP special register) for the type is

placed into this field. There is no

indication in the base SQLVAR that it is

part of the description of a user-defined

type or reference type.

Same for host variable. Host variables for

datetime values must be character string

variables. For FETCH, a datetime type

code means a fixed-length character

string. If sqltype is an even number value,

the sqlind field is ignored.

sqllen SMALLINT The length attribute of the column or

parameter marker. For datetime columns

and parameter markers, the length of the

string representation of the values. See

Table 28 on page 561.

Note that the value is set to 0 for large

object strings (even for those whose

length attribute is small enough to fit into

a two byte integer).

The length attribute of the host variable.

See Table 28 on page 561.

Note that the value is ignored by the

database manager for CLOB, DBCLOB,

and BLOB columns. The len.sqllonglen

field in the Secondary SQLVAR is used

instead.

sqldata pointer For string SQLVARS, sqldata contains the

code page. For character-string SQLVARs

where the column is defined with the

FOR BIT DATA attribute, sqldata contains

0. For other character-string SQLVARS,

sqldata contains either the SBCS code

page for SBCS data, or the SBCS code

page associated with the composite MBCS

code page for MBCS data. For Japanese

EUC, Traditional Chinese EUC, and

Unicode UTF-8 character-string SQLVARS,

sqldata contains 954, 964, and 1208

respectively.

For all other column types, sqldata is

undefined.

Contains the address of the host variable

(where the fetched data will be stored).

sqlind pointer For character-string SQLVARS, sqlind

contains 0, except for MBCS data, when

sqlind contains the DBCS code page

associated with the composite MBCS code

page.

For all other types, sqlind is undefined.

Contains the address of an associated

indicator variable, if there is one;

otherwise, not used. If sqltype is an even

number value, the sqlind field is ignored.

Chapter 7. SQLDA (SQL descriptor area) 557

|

Table 26. Fields in a Base SQLVAR (continued)

Name Data Type Usage in DESCRIBE and PREPARE Usage in FETCH, OPEN, and EXECUTE

sqlname VARCHAR

(30)

Contains the unqualified name of the

column or parameter marker.

For columns and parameter markers that

have a system-generated name, the

thirtieth byte is set to X’FF’. For column

names specified by the AS clause, this

byte is X’00’.

When connecting to a host database,

sqlname can be set to indicate a FOR BIT

DATA string as follows:

v The sixth byte of the SQLDAID in the

SQLDA header is set to ’+’

v The length of sqlname is 8

v The first two bytes of sqlname are

X’0000’

v The third and fourth bytes of sqlname

are X’0000’

v The remaining four bytes of sqlname

are reserved and should be set to

X’00000000’

When working with XML data, sqlname

can be set to indicate an XML subtype as

follows:

v The length of sqlname is 8

v The first two bytes of sqlname are

X’0000’

v The third and fourth bytes of sqlname

are X’0000’

v The fifth byte of sqlname is X’01’

v The remaining three bytes of sqlname

are reserved and should be set to

X’000000’

Fields in an occurrence of a secondary SQLVAR

 Table 27. Fields in a Secondary SQLVAR

Name Data Type

Usage in DESCRIBE and

PREPARE

Usage in FETCH, OPEN, and

EXECUTE

len.sqllonglen INTEGER The length attribute of a

BLOB, CLOB, or DBCLOB

column or parameter

marker.

The length attribute of a BLOB,

CLOB, or DBCLOB host variable. The

database manager ignores the

SQLLEN field in the Base SQLVAR

for the data types. The length

attribute stores the number of bytes

for a BLOB or CLOB, and the

number of double-byte characters for

a DBCLOB.

reserve2 CHAR(3) for 32

bit, and CHAR(11)

for 64 bit.

Not used. Not used.

558 Common Criteria Certification: Administration and User Documentation - Volume 2

Table 27. Fields in a Secondary SQLVAR (continued)

Name Data Type

Usage in DESCRIBE and

PREPARE

Usage in FETCH, OPEN, and

EXECUTE

sqlflag4 CHAR(1) The value is X’01’ if the

SQLVAR represents a

reference type with a target

type named in

sqldatatype_name. The

value is X’12’ if the

SQLVAR represents a

structured type, with the

user-defined type name in

sqldatatype_name.

Otherwise, the value is

X’00’.

Set to X’01’ if the SQLVAR represents

a reference type with a target type

named in sqldatatype_name. Set to

X’12’ if the SQLVAR represents a

structured type, with the

user-defined type name in

sqldatatype_name. Otherwise, the

value is X’00’.

sqldatalen pointer Not used. Used for BLOB, CLOB, and DBCLOB

host variables only.

If this field is NULL, then the actual

length (in double-byte characters)

should be stored in the 4 bytes

immediately before the start of the

data and SQLDATA should point to

the first byte of the field length.

If this field is not NULL, it contains a

pointer to a 4 byte long buffer that

contains the actual length in bytes

(even for DBCLOB) of the data in the

buffer pointed to from the SQLDATA

field in the matching base SQLVAR.

Note that, whether or not this field is

used, the len.sqllonglen field must be

set.

sqldatatype_name VARCHAR(27) For a user-defined type, the

database manager sets this

to the fully qualified

user-defined type name.1

For a reference type, the

database manager sets this

to the fully qualified type

name of the target type of

the reference.

For structured types, set to the fully

qualified user-defined type name in

the format indicated in the table

note.1

reserved CHAR(3) Not used. Not used.

1 The first 8 bytes contain the schema name of the type (extended to the right with spaces, if necessary). Byte 9

contains a dot (.). Bytes 10 to 27 contain the low order portion of the type name, which is not extended to the right

with spaces.

Note that, although the prime purpose of this field is for the name of user-defined types, the field is also set for IBM

predefined data types. In this case, the schema name is SYSIBM, and the low order portion of the name is the name

stored in the TYPENAME column of the DATATYPES catalog view. For example:

type name length sqldatatype_name

--------- ------ ----------------

A.B 10 A .B

INTEGER 16 SYSIBM .INTEGER

"Frank’s".SMINT 13 Frank’s .SMINT

MY."type " 15 MY .type

Chapter 7. SQLDA (SQL descriptor area) 559

Effect of DESCRIBE on the SQLDA

For a DESCRIBE OUTPUT or PREPARE OUTPUT INTO statement, the database

manager always sets SQLD to the number of columns in the result set, or the

number of output parameter markers. For a DESCRIBE INPUT or PREPARE

INPUT INTO statement, the database manager always sets SQLD to the number of

input parameter markers in the statement. Note that a parameter marker that

corresponds to an INOUT parameter in a CALL statement is described in both the

input and output descriptors.

The SQLVARs in the SQLDA are set in the following cases:

v SQLN >= SQLD and no entry is either a LOB, user-defined type or reference

type

The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank.

v SQLN >= 2*SQLD and at least one entry is a LOB, user-defined type or reference

type

Two times SQLD SQLVAR entries are set, and SQLDOUBLED is set to ’2’.

v SQLD <= SQLN < 2*SQLD and at least one entry is a distinct, array, cursor, row,

or reference type, but there are no LOB entries or structured type entries

The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank. If the

SQLWARN bind option is YES, a warning SQLCODE +237 (SQLSTATE 01594) is

issued.

The SQLVARs in the SQLDA are NOT set (requiring allocation of additional space

and another DESCRIBE) in the following cases:

v SQLN < SQLD and no entry is either a LOB, user-defined type or reference type

No SQLVAR entries are set and SQLDOUBLED is set to blank. If the SQLWARN

bind option is YES, a warning SQLCODE +236 (SQLSTATE 01005) is issued.

Allocate SQLD SQLVARs for a successful DESCRIBE.

v SQLN < SQLD and at least one entry is a distinct, array, cursor, row, or reference

type, but there are no LOB entries or structured type entries

No SQLVAR entries are set and SQLDOUBLED is set to blank. If the SQLWARN

bind option is YES, a warning SQLCODE +239 (SQLSTATE 01005) is issued.

Allocate 2*SQLD SQLVARs for a successful DESCRIBE including the names of

the distinct, array, cursor, and row types and target types of reference types.

v SQLN < 2*SQLD and at least one entry is a LOB or a structured type

No SQLVAR entries are set and SQLDOUBLED is set to blank. A warning

SQLCODE +238 (SQLSTATE 01005) is issued (regardless of the setting of the

SQLWARN bind option).

Allocate 2*SQLD SQLVARs for a successful DESCRIBE.

References in the above lists to LOB entries include distinct type entries whose

source type is a LOB type.

The SQLWARN option of the BIND or PREP command is used to control whether

the DESCRIBE (or PREPARE INTO) will return the warning SQLCODEs +236,

+237, +239. It is recommended that your application code always consider that

these SQLCODEs could be returned. The warning SQLCODE +238 is always

returned when there are LOB or structured type entries in the select list and there

are insufficient SQLVARs in the SQLDA. This is the only way the application can

know that the number of SQLVARs must be doubled because of a LOB or

structured type entry in the result set.

560 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|

|

If a structured type entry is being described, but no FROM SQL transform is

defined (either because no TRANSFORM GROUP was specified using the

CURRENT DEFAULT TRANSFORM GROUP special register (SQLSTATE 42741) or

because the name group does not have a FROM SQL transform function defined

(SQLSTATE 42744)), the DESCRIBE will return an error. This error is the same

error returned for a DESCRIBE of a table with a structured type entry.

If the database manager returns identifiers that are longer than those that can be

stored in the SQLDA, the identifier is truncated and a warning is returned

(SQLSTATE 01665); however, when the name of a structured type is truncated, an

error is returned (SQLSTATE 42622). For details on identifier length limitations, see

“SQL and XQuery limits” .

SQLTYPE and SQLLEN

Table 28 shows the values that may appear in the SQLTYPE and SQLLEN fields of

the SQLDA. In DESCRIBE and PREPARE INTO, an even value of SQLTYPE means

that the column does not allow nulls, and an odd value means the column does

allow nulls. In FETCH, OPEN, and EXECUTE, an even value of SQLTYPE means

that no indicator variable is provided, and an odd value means that SQLIND

contains the address of an indicator variable.

 Table 28. SQLTYPE and SQLLEN values for DESCRIBE, FETCH, OPEN, and EXECUTE

For DESCRIBE and PREPARE INTO For FETCH, OPEN, and EXECUTE

SQLTYPE Column Data Type SQLLEN

Host Variable Data

Type SQLLEN

384/385 date 10 fixed-length character

string representation

of a date

length attribute of the

host variable

388/389 time 8 fixed-length character

string representation

of a time

length attribute of the

host variable

392/393 timestamp 19 for TIMESTAMP(0)

otherwise 20+p for

TIMESTAMP(p)

fixed-length character

string representation

of a timestamp

length attribute of the

host variable

400/401 N/A N/A NULL-terminated

graphic string

length attribute of the

host variable

404/405 BLOB 0

* BLOB Not used.

*

408/409 CLOB 0

* CLOB Not used.

*

412/413 DBCLOB 0

* DBCLOB Not used.

*

448/449 varying-length

character string

length attribute of the

column

varying-length

character string

length attribute of the

host variable

452/453 fixed-length character

string

length attribute of the

column

fixed-length character

string

length attribute of the

host variable

456/457 long varying-length

character string

length attribute of the

column

long varying-length

character string

length attribute of the

host variable

460/461 not applicable not applicable NULL-terminated

character string

length attribute of the

host variable

464/465 varying-length

graphic string

length attribute of the

column

varying-length

graphic string

length attribute of the

host variable

468/469 fixed-length graphic

string

length attribute of the

column

fixed-length graphic

string

length attribute of the

host variable

Chapter 7. SQLDA (SQL descriptor area) 561

|
|
|

Table 28. SQLTYPE and SQLLEN values for DESCRIBE, FETCH, OPEN, and EXECUTE (continued)

For DESCRIBE and PREPARE INTO For FETCH, OPEN, and EXECUTE

SQLTYPE Column Data Type SQLLEN

Host Variable Data

Type SQLLEN

472/473 long varying-length

graphic string

length attribute of the

column

long graphic string length attribute of the

host variable

480/481 floating-point 8 for double

precision, 4 for single

precision

floating-point 8 for double

precision, 4 for single

precision

484/485 packed decimal precision in byte 1;

scale in byte 2

packed decimal precision in byte 1;

scale in byte 2

492/493 big integer 8 big integer 8

496/497 large integer 4 large integer 4

500/501 small integer 2 small integer 2

916/917 not applicable not applicable BLOB file reference

variable

267

920/921 not applicable not applicable CLOB file reference

variable

267

924/925 not applicable not applicable DBCLOB file

reference variable.

267

960/961 not applicable not applicable BLOB locator 4

964/965 not applicable not applicable CLOB locator 4

968/969 not applicable not applicable DBCLOB locator 4

988/989 XML 0 not applicable; use an

XML AS <string or

binary LOB type>

host variable instead

not used

996 decimal floating-point 8 for DECFLOAT(16),

16 for DECFLOAT(34)

decimal floating-point 8 for DECFLOAT(16),

16 for DECFLOAT(34)

2440/2441 row not applicable row not used

2440/2441 cursor not applicable row not used

Note:

v The len.sqllonglen field in the secondary SQLVAR contains the length attribute of the column.

v The SQLTYPE has changed from the previous version for portability in DB2. The values from the previous version

(see previous version SQL Reference) continue to be supported.

Unrecognized and unsupported SQLTYPEs

The values that appear in the SQLTYPE field of the SQLDA are dependent on the

level of data type support available at the sender as well as at the receiver of the

data. This is particularly important as new data types are added to the product.

New data types may or may not be supported by the sender or receiver of the data

and may or may not even be recognized by the sender or receiver of the data.

Depending on the situation, the new data type may be returned, or a compatible

data type agreed upon by both the sender and receiver of the data may be

returned or an error may result.

562 Common Criteria Certification: Administration and User Documentation - Volume 2

|||||

|||||

When the sender and receiver agree to use a compatible data type, the following

indicates the mapping that will take place. This mapping will take place when at

least one of the sender or the receiver does not support the data type provided.

The unsupported data type can be provided by either the application or the

database manager.

 Data Type Compatible Data Type

BIGINT DECIMAL(19, 0)

ROWID1 VARCHAR(40) FOR BIT DATA

1 ROWID is supported by DB2 Universal Database for z/OS Version 8.

Note that no indication is given in the SQLDA that the data type is substituted.

Packed decimal numbers

Packed decimal numbers are stored in a variation of Binary Coded Decimal (BCD)

notation. In BCD, each nybble (four bits) represents one decimal digit. For

example, 0001 0111 1001 represents 179. Therefore, read a packed decimal value

nybble by nybble. Store the value in bytes and then read those bytes in

hexadecimal representation to return to decimal. For example, 0001 0111 1001

becomes 00000001 01111001 in binary representation. By reading this number as

hexadecimal, it becomes 0179.

The decimal point is determined by the scale. In the case of a DEC(12,5) column,

for example, the rightmost 5 digits are to the right of the decimal point.

Sign is indicated by a nybble to the right of the nybbles representing the digits. A

positive or negative sign is indicated as follows:

 Table 29. Values for Sign Indicator of a Packed Decimal Number

Sign

Representation

Binary Decimal Hexadecimal

Positive (+) 1100 12 C

Negative (-) 1101 13 D

In summary:

v To store any value, allocate p/2+1 bytes, where p is precision.

v Assign the nybbles from left to right to represent the value. If a number has an

even precision, a leading zero nybble is added. This assignment includes leading

(insignificant) and trailing (significant) zero digits.

v The sign nybble will be the second nybble of the last byte.

For example:

 Column Value Nybbles in Hexadecimal Grouped by Bytes

DEC(8,3) 6574.23 00 65 74 23 0C

DEC(6,2) -334.02 00 33 40 2D

DEC(7,5) 5.2323 05 23 23 0C

DEC(5,2) -23.5 02 35 0D

Chapter 7. SQLDA (SQL descriptor area) 563

SQLLEN field for decimal

The SQLLEN field contains the precision (first byte) and scale (second byte) of the

decimal column. If writing a portable application, the precision and scale bytes

should be set individually, versus setting them together as a short integer. This will

avoid integer byte reversal problems.

For example, in C:

 ((char *)&(sqlda->sqlvar[i].sqllen))[0] = precision;

 ((char *)&(sqlda->sqlvar[i].sqllen))[1] = scale;

564 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 8. Identifiers

An identifier is a token that is used to form a name. An identifier in an SQL

statement is either an SQL identifier or a host identifier.

v SQL identifiers

There are two types of SQL identifiers: ordinary and delimited.

– An ordinary identifier is an uppercase letter followed by zero or more

characters, each of which is an uppercase letter, a digit, or the underscore

character. Note that ordinary identifiers are converted to uppercase. An

ordinary identifier should not be a reserved word.

Examples

 WKLYSAL WKLY_SAL

– A delimited identifier is a sequence of one or more characters enclosed by

double quotation marks. Two consecutive quotation marks are used to

represent one quotation mark within the delimited identifier. In this way an

identifier can include lowercase letters.

Examples

 "WKLY_SAL" "WKLY SAL" "UNION" "wkly_sal"

Character conversion of identifiers created on a double-byte code page, but used

by an application or database on a multi-byte code page, may require special

consideration: After conversion, such identifiers may exceed the length limit for

an identifier.

v Host identifiers

A host identifier is a name declared in the host program. The rules for forming a

host identifier are the rules of the host language. A host identifier should not be

greater than 255 bytes in length and should not begin with SQL or DB2 (in

uppercase or lowercase characters).

Naming conventions and implicit object name qualifications

The rules for forming a database object name depend on the type of the object

designated by the name. A name may consist of a single SQL identifier or it may

be qualified with one or more identifiers that more specifically identify the object.

A period must separate each identifier.

The following object names, when used in the context of an SQL procedure, are

permitted to use only the characters allowed in an ordinary identifier, even if the

names are delimited:

v condition-name

v label

v parameter-name

v procedure-name

v SQL-variable-name

v statement-name

The syntax diagrams use different terms for different types of names. The

following list defines these terms.

alias-name

A schema-qualified name that designates an alias.

© Copyright IBM Corp. 1993, 2009 565

|
|
|
|

attribute-name

An identifier that designates an attribute of a structured data type.

authorization-name

An identifier that designates a user, group, or role. For a user or a group:

v Valid characters are: ’A’ through ’Z’; ’a’ through ’z’; ’0’ through ’9’; ’#’;

’@’; ’$’; ’_’; ’!’; ’ ’(’; ’)’; ’{’; ’}’; ’-’; ’.’; and ’^’.

v The following characters must be delimited with quotation marks when

entered through the command line processor: ’!’; ’ ’(’; ’)’; ’{’; ’}’; ’-’; ’.’;

and ’^’.

v The name must not begin with the characters ’SYS’, ’IBM’, or ’SQL’.

v The name must not be: ’ADMINS’, ’GUESTS’, ’LOCAL’, ’PUBLIC’, or

’USERS’.

v A delimited authorization ID must not contain lowercase letters.

bufferpool-name

An identifier that designates a buffer pool.

column-name

A qualified or unqualified name that designates a column of a table or

view. The qualifier is a table name, a view name, a nickname, or a

correlation name.

component-name

An identifier that designates a security label component.

condition-name

A qualified or unqualified name that designates a condition. An

unqualified condition name in an SQL statement is implicitly qualified,

depending on its context. If the condition is defined in a module and used

outside of the same module, it must be qualified by the module-name.

constraint-name

An identifier that designates a referential constraint, primary key

constraint, unique constraint, or a table check constraint.

correlation-name

An identifier that designates a result table.

cursor-name

An identifier that designates an SQL cursor. For host compatibility, a

hyphen character may be used in the name.

cursor-type-name

A qualified or unqualified name that designates a user-defined cursor type.

An unqualified cursor-type-name in an SQL statement is implicitly

qualified, depending on context.

cursor-variable-name

A qualified or unqualified name that designates a global variable, local

variable or an SQL parameter of a cursor type. An unqualified cursor

variable name in an SQL statement is implicitly qualified, depending on

context.

data-source-name

An identifier that designates a data source. This identifier is the first part

of a three-part remote object name.

db-partition-group-name

An identifier that designates a database partition group.

566 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|

|
|
|
|

|
|
|
|
|

descriptor-name

A colon followed by a host identifier that designates an SQL descriptor

area (SQLDA). For the description of a host identifier, see “References to

host variables” on page 582. Note that a descriptor name never includes an

indicator variable.

distinct-type-name

A qualified or unqualified name that designates a distinct type. The

unqualified form of distinct-type-name is an SQL identifier. An unqualified

distinct type name in an SQL statement is implicitly qualified. The implicit

qualifier is a schema name or a module name, which is determined by the

context in which distinct-type-name appears. The qualified form is a

schema-name followed by a period and an SQL identifier or a

module-name (which can also be qualified by a schema-name) followed by

a period and an SQL identifier. If the distinct type is defined in a module

and used outside of the same module, it must be qualified by the

module-name.

event-monitor-name

An identifier that designates an event monitor.

function-mapping-name

An identifier that designates a function mapping.

function-name

A qualified or unqualified name that designates a function. The

unqualified form of function-name is an SQL identifier. An unqualified

function name in an SQL statement is implicitly qualified. The implicit

qualifier is a schema name, which is determined by the context in which

the function appears. The qualified form could be is a schema-name

followed by a period and an SQL identifier or a module-name followed by

a period and an SQL identifier. If the function is published in a module

and used outside of the same module, it must be qualified by the

module-name.

global-variable-name

A qualified or unqualified name that designates a global variable. An

unqualified global variable name in an SQL statement is implicitly

qualified, depending on context.If the global variable is defined in a

module and used outside of the same module, it must be qualified by the

module-name.

group-name

An unqualified identifier that designates a transform group defined for a

structured type.

host-variable

A sequence of tokens that designates a host variable. A host variable

includes at least one host identifier, explained in “References to host

variables” on page 582.

index-name

A schema-qualified name that designates an index or an index

specification.

label An identifier that designates a label in an SQL procedure.

method-name

An identifier that designates a method. The schema context for a method is

determined by the schema of the subject type (or a supertype of the subject

type) of the method.

Chapter 8. Identifiers 567

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

module-name

A qualified or unqualified name that designates a module. An unqualified

module-name in an SQL statement is implicitly qualified. The implicit

qualifier is a schema name, which is determined by the context in which

the module-name appears. The qualified form is a schema-name followed

by a period and an SQL identifier.

nickname

A schema-qualified name that designates a federated server reference to a

table or a view.

package-name

A schema-qualified name that designates a package. If a package has a

version ID that is not the empty string, the package name also includes the

version ID at the end of the name, in the form: schema-id.package-
id.version-id.

parameter-name

An identifier that designates a parameter that can be referenced in a

procedure, user-defined function, method, or index extension.

partition-name

An identifier that designates a data partition in a partitioned table.

procedure-name

A qualified or unqualified name that designates a procedure. The

unqualified form of procedure-name is an SQL identifier. An unqualified

procedure name in an SQL statement is implicitly qualified. The implicit

qualifier is a schema name, which is determined by the context in which

the procedure appears. The qualified form is a schema-name followed by a

period and an SQL identifier or a module-name followed by a period and

an SQL identifier. If the procedure is defined in a module and used outside

of the same module, it must be qualified by the module-name.

remote-authorization-name

An identifier that designates a data source user. The rules for authorization

names vary from data source to data source.

remote-function-name

A name that designates a function registered to a data source database.

remote-object-name

A three-part name that designates a data source table or view, and that

identifies the data source in which the table or view resides. The parts of

this name are data-source-name, remote-schema-name, and

remote-table-name.

remote-schema-name

A name that designates the schema to which a data source table or view

belongs. This name is the second part of a three-part remote object name.

remote-table-name

A name that designates a table or view at a data source. This name is the

third part of a three-part remote object name.

remote-type-name

A data type supported by a data source database. Do not use the long

form for built-in types (use CHAR instead of CHARACTER, for example).

role-name

An identifier that designates a role.

568 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

row-type-name

A qualified or unqualified name that designates a row type. The

unqualified form of row-type-name is an SQL identifier. An unqualified

row-type-name in an SQL statement is implicitly qualified. The implicit

qualifier is a schema name, which is determined by the context in which

the row-type-name appears as described by the rules in “Unqualified

user-defined type, function, procedure, and specific names”. The qualified

form is a schema-name followed by a period and an SQL identifier.

savepoint-name

An identifier that designates a savepoint.

schema-name

An identifier that provides a logical grouping for SQL objects. A schema

name used as a qualifier for the name of an object may be implicitly

determined:

v from the value of the CURRENT SCHEMA special register

v from the value of the QUALIFIER precompile/bind option

v on the basis of a resolution algorithm that uses the CURRENT PATH

special register

v on the basis of the schema name for another object in the same SQL

statement.

To avoid complications, it is recommended that the name SESSION not be

used as a schema, except as the schema for declared global temporary

tables (which must use the schema name SESSION).

security-label-name

A qualified or unqualified name that designates a security label. An

unqualified security label name in an SQL statement is implicitly qualified

by the applicable security-policy-name, when one applies. If no

security-policy-name is implicitly applicable, the name must be qualified.

security-policy-name

An identifier that designates a security policy.

sequence-name

An identifier that designates a sequence.

server-name

An identifier that designates an application server. In a federated system,

the server name also designates the local name of a data source.

specific-name

A qualified or unqualified name that designates a specific name. An

unqualified specific name in an SQL statement is implicitly qualified,

depending on context.

SQL-variable-name

The name of a local variable in an SQL procedure statement. SQL variable

names can be used in other SQL statements where a host variable name is

allowed. The name can be qualified by the label of the compound

statement that declared the SQL variable.

statement-name

An identifier that designates a prepared SQL statement.

Chapter 8. Identifiers 569

|
|
|
|
|
|
|
|

|
|
|

supertype-name

A qualified or unqualified name that designates the supertype of a type.

An unqualified supertype name in an SQL statement is implicitly qualified,

depending on context.

table-name

A schema-qualified name that designates a table.

table-reference

A qualified or unqualified name that designates a table. An unqualified

table reference in a common table expression is implicitly qualified by the

default schema.

tablespace-name

An identifier that designates a table space.

trigger-name

A schema-qualified name that designates a trigger.

type-mapping-name

An identifier that designates a data type mapping.

type-name

A qualified or unqualified name that designates a type. An unqualified

type name in an SQL statement is implicitly qualified, depending on

context.

typed-table-name

A schema-qualified name that designates a typed table.

typed-view-name

A schema-qualified name that designates a typed view.

user-defined-type-name

A qualified or unqualified name that designates a user-defined data type.

The unqualified form of user-defined-type-name is an SQL identifier. An

unqualified user-defined-type-name in an SQL statement is implicitly

qualified. The implicit qualifier is a schema name or a module name,

which is determined by the context in which user-defined-type-name

appears. The qualified form is a schema-name followed by a period and an

SQL identifier or a module-name (which can also be qualified by a

schema-name) followed by a period and an SQL identifier. If the

user-defined data type is defined in a module and used outside of the

same module, it must be qualified by the module-name.

view-name

A schema-qualified name that designates a view.

wrapper-name

An identifier that designates a wrapper.

XML-schema-name

A qualified or unqualified name that designates an XML schema.

xsrobject-name

A qualified or unqualified name that designates an object in the XML

schema repository.

Aliases for database objects

An alias can be thought of as an alternative name for an SQL object. An SQL

object, therefore, can be referred to in an SQL statement by its name or by an alias.

570 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

A public alias is an alias which can always be referenced without qualifying its

name with a schema name. The implicit qualifier of a public alias is SYSPUBLIC,

which can also be specified explicitly.

Aliases are also known as synonyms.

An alias can be used wherever the object it is based on can be used. An alias can

be created even if the object does not exist (although it must exist by the time a

statement referring to it is compiled). It can refer to another alias if no circular or

repetitive references are made along the chain of aliases. An alias can only refer to

a module, nickname, sequence, table, view, or another alias within the same

database. An alias name cannot be used where a new object name is expected,

such as in the CREATE TABLE or CREATE VIEW statements; for example, if the

table alias name PERSONNEL has been created, subsequent statements such as

CREATE TABLE PERSONNEL... will return an error.

The option of referring to an object by an alias is not explicitly shown in the syntax

diagrams, or mentioned in the descriptions of SQL statements.

A new unqualified alias of a given object type, say for a sequence, cannot have the

same fully-qualified name as an existing object of that object type. For example, a

sequence alias named ORDERID cannot be defined in the KANDIL schema for the

sequence named KANDIL.ORDERID.

The effect of using an alias in an SQL statement is similar to that of text

substitution. The alias, which must be defined by the time that the SQL statement

is compiled, is replaced at statement compilation time by the qualified object name.

For example, if PBIRD.SALES is an alias for DSPN014.DIST4_SALES_148, then at

compilation time:

 SELECT * FROM PBIRD.SALES

effectively becomes

 SELECT * FROM DSPN014.DIST4_SALES_148

Authorization IDs and authorization names

An authorization ID is a character string that is obtained by the database manager

when a connection is established between the database manager and either an

application process or a program preparation process. It designates a set of

privileges. It may also designate a user or a group of users, but this property is not

controlled by the database manager.

Authorization IDs are used by the database manager to provide:

v Authorization checking of SQL statements

v A default value for the QUALIFIER precompile/bind option and the CURRENT

SCHEMA special register. The authorization ID is also included in the default

CURRENT PATH special register and the FUNCPATH precompile/bind option.

An authorization ID applies to every SQL statement. The authorization ID that

applies to a static SQL statement is the authorization ID that is used during

program binding. The authorization ID that applies to a dynamic SQL statement is

based on the DYNAMICRULES option supplied at bind time, and on the current

runtime environment for the package issuing the dynamic SQL statement:

v In a package that has bind behavior, the authorization ID used is the

authorization ID of the package owner.

Chapter 8. Identifiers 571

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|

|

|

|

v In a package that has define behavior, the authorization ID used is the

authorization ID of the corresponding routine’s definer.

v In a package that has run behavior, the authorization ID used is the current

authorization ID of the user executing the package.

v In a package that has invoke behavior, the authorization ID used is the

authorization ID currently in effect when the routine is invoked. This is called

the runtime authorization ID.

For more information, see “Dynamic SQL characteristics at run time” on page 573.

An authorization name specified in an SQL statement should not be confused with

the authorization ID of the statement. An authorization name is an identifier that is

used within various SQL statements. An authorization name is used in the

CREATE SCHEMA statement to designate the owner of the schema. An

authorization name is used in the GRANT and REVOKE statements to designate a

target of the grant or revoke operation. Granting privileges to X means that X (or a

member of the group or role X) will subsequently be the authorization ID of

statements that require those privileges.

Examples:

v Assume that SMITH is the user ID and the authorization ID that the database

manager obtained when a connection was established with the application

process. The following statement is executed interactively:

 GRANT SELECT ON TDEPT TO KEENE

SMITH is the authorization ID of the statement. Therefore, in a dynamic SQL

statement, the default value of the CURRENT SCHEMA special register is

SMITH, and in static SQL, the default value of the QUALIFIER precompile/bind

option is SMITH. The authority to execute the statement is checked against

SMITH, and SMITH is the table-name implicit qualifier based on qualification

rules described in “Naming conventions and implicit object name qualifications”

on page 565.

KEENE is an authorization name specified in the statement. KEENE is given the

SELECT privilege on SMITH.TDEPT.

v Assume that SMITH has administrative authority and is the authorization ID of

the following dynamic SQL statements, with no SET SCHEMA statement issued

during the session:

 DROP TABLE TDEPT

Removes the SMITH.TDEPT table.

 DROP TABLE SMITH.TDEPT

Removes the SMITH.TDEPT table.

 DROP TABLE KEENE.TDEPT

Removes the KEENE.TDEPT table. Note that KEENE.TDEPT and SMITH.TDEPT

are different tables.

 CREATE SCHEMA PAYROLL AUTHORIZATION KEENE

KEENE is the authorization name specified in the statement that creates a

schema called PAYROLL. KEENE is the owner of the schema PAYROLL and is

given CREATEIN, ALTERIN, and DROPIN privileges, with the ability to grant

them to others.

572 Common Criteria Certification: Administration and User Documentation - Volume 2

Dynamic SQL characteristics at run time

The BIND option DYNAMICRULES determines the authorization ID that is used

for checking authorization when dynamic SQL statements are processed. In

addition, the option also controls other dynamic SQL attributes, such as the

implicit qualifier that is used for unqualified object references, and whether certain

SQL statements can be invoked dynamically.

The set of values for the authorization ID and other dynamic SQL attributes is

called the dynamic SQL statement behavior. The four possible behaviors are run,

bind, define, and invoke. As the following table shows, the combination of the

value of the DYNAMICRULES BIND option and the runtime environment

determines which of the behaviors is used. DYNAMICRULES RUN, which implies

run behavior, is the default.

 Table 30. How DYNAMICRULES and the runtime environment determine dynamic SQL

statement behavior

DYNAMICRULES value

Behavior of dynamic SQL statements

Standalone program

environment Routine environment

BIND Bind behavior Bind behavior

RUN Run behavior Run behavior

DEFINEBIND Bind behavior Define behavior

DEFINERUN Run behavior Define behavior

INVOKEBIND Bind behavior Invoke behavior

INVOKERUN Run behavior Invoke behavior

Run behavior

DB2 uses the authorization ID of the user (the ID that initially connected to

DB2) executing the package as the value to be used for authorization

checking of dynamic SQL statements and for the initial value used for

implicit qualification of unqualified object references within dynamic SQL

statements.

Bind behavior

At run time, DB2 uses all the rules that apply to static SQL for

authorization and qualification. It takes the authorization ID of the package

owner as the value to be used for authorization checking of dynamic SQL

statements, and the package default qualifier for implicit qualification of

unqualified object references within dynamic SQL statements.

Define behavior

Define behavior applies only if the dynamic SQL statement is in a package

that is run within a routine context, and the package was bound with

DYNAMICRULES DEFINEBIND or DYNAMICRULES DEFINERUN. DB2

uses the authorization ID of the routine definer (not the routine’s package

binder) as the value to be used for authorization checking of dynamic SQL

statements, and for implicit qualification of unqualified object references

within dynamic SQL statements within that routine.

Invoke behavior

Invoke behavior applies only if the dynamic SQL statement is in a package

that is run within a routine context, and the package was bound with

DYNAMICRULES INVOKEBIND or DYNAMICRULES INVOKERUN. DB2

uses the statement authorization ID in effect when the routine is invoked

Chapter 8. Identifiers 573

as the value to be used for authorization checking of dynamic SQL, and for

implicit qualification of unqualified object references within dynamic SQL

statements within that routine. This is summarized by the following table.

 Invoking Environment ID Used

any static SQL implicit or explicit value of the OWNER of

the package the SQL invoking the routine

came from

used in definition of view or trigger definer of the view or trigger

dynamic SQL from a bind behavior package implicit or explicit value of the OWNER of

the package the SQL invoking the routine

came from

dynamic SQL from a run behavior package ID used to make the initial connection to

DB2

dynamic SQL from a define behavior

package

definer of the routine that uses the package

that the SQL invoking the routine came from

dynamic SQL from an invoke behavior

package

the current authorization ID invoking the

routine

Restricted statements when run behavior does not apply

When bind, define, or invoke behavior is in effect, you cannot use the following

dynamic SQL statements: GRANT, REVOKE, ALTER, CREATE, DROP, COMMENT,

RENAME, SET INTEGRITY, SET EVENT MONITOR STATE; or queries that

reference a nickname.

Considerations regarding the DYNAMICRULES option

The CURRENT SCHEMA special register cannot be used to qualify unqualified

object references within dynamic SQL statements executed from bind, define or

invoke behavior packages. This is true even after you issue the SET CURRENT

SCHEMA statement to change the CURRENT SCHEMA special register; the

register value is changed but not used.

In the event that multiple packages are referenced during a single connection, all

dynamic SQL statements prepared by those packages will exhibit the behavior

specified by the DYNAMICRULES option for that specific package and the

environment in which they are used.

It is important to keep in mind that when a package exhibits bind behavior, the

binder of the package should not have any authorities granted that the user of the

package should not receive, because a dynamic statement will be using the

authorization ID of the package owner. Similarly, when a package exhibits define

behavior, the definer of the routine should not have any authorities granted that

the user of the package should not receive.

Authorization IDs and statement preparation

If the VALIDATE BIND option is specified at bind time, the privileges required to

manipulate tables and views must also exist at bind time. If these privileges or the

referenced objects do not exist, and the SQLERROR NOPACKAGE option is in

effect, the bind operation will be unsuccessful. If the SQLERROR CONTINUE

574 Common Criteria Certification: Administration and User Documentation - Volume 2

option is specified, the bind operation will be successful, and any statements in

error will be flagged. Any attempt to execute such a statement will result in an

error.

If a package is bound with the VALIDATE RUN option, all normal bind processing

is completed, but the privileges required to use the tables and views that are

referenced in the application need not exist yet. If a required privilege does not

exist at bind time, an incremental bind operation is performed whenever the

statement is first executed in an application, and all privileges required for the

statement must exist. If a required privilege does not exist, execution of the

statement is unsuccessful.

Authorization checking at run time is performed using the authorization ID of the

package owner.

Column names

The meaning of a column name depends on its context. A column name can be used

to:

v Declare the name of a column, as in a CREATE TABLE statement.

v Identify a column, as in a CREATE INDEX statement.

v Specify values of the column, as in the following contexts:

– In an aggregate function, a column name specifies all values of the column in

the group or intermediate result table to which the function is applied. For

example, MAX(SALARY) applies the function MAX to all values of the

column SALARY in a group.

– In a GROUP BY or ORDER BY clause, a column name specifies all values in

the intermediate result table to which the clause is applied. For example,

ORDER BY DEPT orders an intermediate result table by the values of the

column DEPT.

– In an expression, a search condition, or a scalar function, a column name

specifies a value for each row or group to which the construct is applied. For

example, when the search condition CODE = 20 is applied to some row, the

value specified by the column name CODE is the value of the column CODE

in that row.
v Temporarily rename a column, as in the correlation-clause of a table-reference in a

FROM clause.

Qualified column names

A qualifier for a column name may be a table, view, nickname, alias, or correlation

name.

Whether a column name may be qualified depends on its context:

v Depending on the form of the COMMENT ON statement, a single column name

may need to be qualified. Multiple column names must be unqualified.

v Where the column name specifies values of the column, it may be qualified at

the user’s option.

v In the assignment-clause of an UPDATE statement, it may be qualified at the

user’s option.

v In all other contexts, a column name must not be qualified.

Chapter 8. Identifiers 575

Where a qualifier is optional, it can serve two purposes. They are described under

“Column name qualifiers to avoid ambiguity” on page 577 and “Column name

qualifiers in correlated references” on page 579.

Correlation names

A correlation name can be defined in the FROM clause of a query and in the first

clause of an UPDATE or DELETE statement. For example, the clause FROM

X.MYTABLE Z establishes Z as a correlation name for X.MYTABLE.

 FROM X.MYTABLE Z

With Z defined as a correlation name for X.MYTABLE, only Z can be used to

qualify a reference to a column of that instance of X.MYTABLE in that SELECT

statement.

A correlation name is associated with a table, view, nickname, alias, nested table

expression, table function, or data change table reference only within the context in

which it is defined. Hence, the same correlation name can be defined for different

purposes in different statements, or in different clauses of the same statement.

As a qualifier, a correlation name can be used to avoid ambiguity or to establish a

correlated reference. It can also be used merely as a shorter name for a table

reference. In the example, Z might have been used merely to avoid having to enter

X.MYTABLE more than once.

If a correlation name is specified for a table, view, nickname, or alias name, any

qualified reference to a column of that instance of the table, view, nickname, or

alias must use the correlation name, rather than the table, view, nickname, or alias

name. For example, the reference to EMPLOYEE.PROJECT in the following

example is incorrect, because a correlation name has been specified for

EMPLOYEE:

Example

 FROM EMPLOYEE E

 WHERE EMPLOYEE.PROJECT=’ABC’ * incorrect*

The qualified reference to PROJECT should instead use the correlation name, ″E″,

as shown below:

 FROM EMPLOYEE E

 WHERE E.PROJECT=’ABC’

Names specified in a FROM clause are either exposed or non-exposed. A table, view,

nickname, or alias name is said to be exposed in the FROM clause if a correlation

name is not specified. A correlation name is always an exposed name. For example,

in the following FROM clause, a correlation name is specified for EMPLOYEE but

not for DEPARTMENT, so DEPARTMENT is an exposed name, and EMPLOYEE is

not:

 FROM EMPLOYEE E, DEPARTMENT

A table, view, nickname, or alias name that is exposed in a FROM clause may be

the same as any other table name, view name or nickname exposed in that FROM

clause or any correlation name in the FROM clause. This may result in ambiguous

column name references which returns an error (SQLSTATE 42702).

576 Common Criteria Certification: Administration and User Documentation - Volume 2

The first two FROM clauses shown below are correct, because each one contains no

more than one reference to EMPLOYEE that is exposed:

1. Given the FROM clause:

 FROM EMPLOYEE E1, EMPLOYEE

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the

second instance of EMPLOYEE in the FROM clause. A qualified reference to the

first instance of EMPLOYEE must use the correlation name “E1” (E1.PROJECT).

2. Given the FROM clause:

 FROM EMPLOYEE, EMPLOYEE E2

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the

first instance of EMPLOYEE in the FROM clause. A qualified reference to the

second instance of EMPLOYEE must use the correlation name “E2”

(E2.PROJECT).

3. Given the FROM clause:

 FROM EMPLOYEE, EMPLOYEE

the two exposed table names included in this clause (EMPLOYEE and

EMPLOYEE) are the same. This is allowed, but references to specific column

names would be ambiguous (SQLSTATE 42702).

4. Given the following statement:

 SELECT *

 FROM EMPLOYEE E1, EMPLOYEE E2 * incorrect *

 WHERE EMPLOYEE.PROJECT = ’ABC’

the qualified reference EMPLOYEE.PROJECT is incorrect, because both

instances of EMPLOYEE in the FROM clause have correlation names. Instead,

references to PROJECT must be qualified with either correlation name

(E1.PROJECT or E2.PROJECT).

5. Given the FROM clause:

 FROM EMPLOYEE, X.EMPLOYEE

a reference to a column in the second instance of EMPLOYEE must use

X.EMPLOYEE (X.EMPLOYEE.PROJECT). If X is the CURRENT SCHEMA

special register value in dynamic SQL or the QUALIFIER precompile/bind

option in static SQL, then the columns cannot be referenced since any such

reference would be ambiguous.

The use of a correlation name in the FROM clause also allows the option of

specifying a list of column names to be associated with the columns of the result

table. As with a correlation name, these listed column names become the exposed

names of the columns that must be used for references to the columns throughout

the query. If a column name list is specified, then the column names of the

underlying table become non-exposed.

Given the FROM clause:

 FROM DEPARTMENT D (NUM,NAME,MGR,ANUM,LOC)

a qualified reference such as D.NUM denotes the first column of the

DEPARTMENT table that is defined in the table as DEPTNO. A reference to

D.DEPTNO using this FROM clause is incorrect since the column name DEPTNO

is a non-exposed column name.

Column name qualifiers to avoid ambiguity

In the context of a function, a GROUP BY clause, ORDER BY clause, an expression,

or a search condition, a column name refers to values of a column in some table,

Chapter 8. Identifiers 577

view, nickname, nested table expression or table function. The tables, views,

nicknames, nested table expressions and table functions that might contain the

column are called the object tables of the context. Two or more object tables might

contain columns with the same name; one reason for qualifying a column name is

to designate the table from which the column comes. Qualifiers for column names

are also useful in SQL procedures to distinguish column names from SQL variable

names used in SQL statements.

A nested table expression or table function will consider table-references that precede

it in the FROM clause as object tables. The table-references that follow are not

considered as object tables.

Table designators

A qualifier that designates a specific object table is called a table designator. The

clause that identifies the object tables also establishes the table designators for

them. For example, the object tables of an expression in a SELECT clause are

named in the FROM clause that follows it:

 SELECT CORZ.COLA, OWNY.MYTABLE.COLA

 FROM OWNX.MYTABLE CORZ, OWNY.MYTABLE

Table designators in the FROM clause are established as follows:

v A name that follows a table, view, nickname, alias, nested table expression or

table function is both a correlation name and a table designator. Thus, CORZ is a

table designator. CORZ is used to qualify the first column name in the select list.

v An exposed table, view name, nickname or alias is a table designator. Thus,

OWNY.MYTABLE is a table designator. OWNY.MYTABLE is used to qualify the

second column name in the select list.

When qualifying a column with the exposed table name form of a table designator,

either the qualified or unqualified form of the exposed table name can be used. If

the qualified form is used, the qualifier must be the same as the default qualifier

for the exposed table name.

For example, assume that the current schema is CORPDATA.

SELECT CORPDATA.EMPLOYEE.WORKDEPT FROM EMPLOYEE

is valid because the EMPLOYEE table referenced in the FROM clause fully

qualifies to CORPDATA.EMPLOYEE, which matches the qualifier for the

WORKDEPT column.

SELECT EMPLOYEE.WORKDEPT, REGEMP.WORKDEPT

 FROM CORPDATA.EMPLOYEE, REGION.EMPLOYEE REGEMP

is also valid, because the first select list column references the unqualified exposed

table designator CORPDATA.EMPLOYEE, which is in the FROM clause, and the

second select list column references the correlation name REGEMP of the table

object REGION.EMPLOYEE, which is also in the FROM clause.

Now assume that the current schema is REGION.

SELECT CORPDATA.EMPLOYEE.WORKDEPT FROM EMPLOYEE

is not valid because the EMPLOYEE table referenced in the FROM clause fully

qualifies to REGION.EMPLOYEE, and the qualifier for the WORKDEPT column

represents the CORPDATA.EMPLOYEE table.

578 Common Criteria Certification: Administration and User Documentation - Volume 2

Each table designator should be unique within a particular FROM clause to avoid

the possibility of ambiguous references to columns.

Avoiding undefined or ambiguous references

When a column name refers to values of a column, exactly one object table must

include a column with that name. The following situations are considered errors:

v No object table contains a column with the specified name. The reference is

undefined.

v The column name is qualified by a table designator, but the table designated

does not include a column with the specified name. Again the reference is

undefined.

v The name is unqualified, and more than one object table includes a column with

that name. The reference is ambiguous.

v The column name is qualified by a table designator, but the table designated is

not unique in the FROM clause and both occurrences of the designated table

include the column. The reference is ambiguous.

v The column name is in a nested table expression which is not preceded by the

TABLE keyword or in a table function or nested table expression that is the right

operand of a right outer join or a full outer join and the column name does not

refer to a column of a table-reference within the nested table expression’s

fullselect. The reference is undefined.

Avoid ambiguous references by qualifying a column name with a uniquely defined

table designator. If the column is contained in several object tables with different

names, the table names can be used as designators. Ambiguous references can also

be avoided without the use of the table designator by giving unique names to the

columns of one of the object tables using the column name list following the

correlation name.

When qualifying a column with the exposed table name form of a table designator,

either the qualified or unqualified form of the exposed table name may be used.

However, the qualifier used and the table used must be the same after fully

qualifying the table name, view name or nickname and the table designator.

1. If the authorization ID of the statement is CORPDATA:

 SELECT CORPDATA.EMPLOYEE.WORKDEPT

 FROM EMPLOYEE

is a valid statement.

2. If the authorization ID of the statement is REGION:

 SELECT CORPDATA.EMPLOYEE.WORKDEPT

 FROM EMPLOYEE * incorrect *

is invalid, because EMPLOYEE represents the table REGION.EMPLOYEE, but

the qualifier for WORKDEPT represents a different table,

CORPDATA.EMPLOYEE.

Column name qualifiers in correlated references

A fullselect is a form of a query that may be used as a component of various SQL

statements. A fullselect used within a search condition of any statement is called a

subquery. A fullselect used to retrieve a single value as an expression within a

statement is called a scalar fullselect or scalar subquery. A fullselect used in the

FROM clause of a query is called a nested table expression. Subqueries in search

conditions, scalar subqueries and nested table expressions are referred to as

subqueries through the remainder of this topic.

Chapter 8. Identifiers 579

A subquery may include subqueries of its own, and these may, in turn, include

subqueries. Thus an SQL statement may contain a hierarchy of subqueries. Those

elements of the hierarchy that contain subqueries are said to be at a higher level

than the subqueries they contain.

Every element of the hierarchy contains one or more table designators. A subquery

can reference not only the columns of the tables identified at its own level in the

hierarchy, but also the columns of the tables identified previously in the hierarchy,

back to the highest level of the hierarchy. A reference to a column of a table

identified at a higher level is called a correlated reference.

For compatibility with existing standards for SQL, both qualified and unqualified

column names are allowed as correlated references. However, it is good practice to

qualify all column references used in subqueries; otherwise, identical column

names may lead to unintended results. For example, if a table in a hierarchy is

altered to contain the same column name as the correlated reference and the

statement is prepared again, the reference will apply to the altered table.

When a column name in a subquery is qualified, each level of the hierarchy is

searched, starting at the same subquery as the qualified column name appears and

continuing to the higher levels of the hierarchy until a table designator that

matches the qualifier is found. Once found, it is verified that the table contains the

given column. If the table is found at a higher level than the level containing

column name, then it is a correlated reference to the level where the table

designator was found. A nested table expression must be preceded with the

optional TABLE keyword in order to search the hierarchy above the fullselect of

the nested table expression.

When the column name in a subquery is not qualified, the tables referenced at

each level of the hierarchy are searched, starting at the same subquery where the

column name appears and continuing to higher levels of the hierarchy, until a

match for the column name is found. If the column is found in a table at a higher

level than the level containing column name, then it is a correlated reference to the

level where the table containing the column was found. If the column name is

found in more than one table at a particular level, the reference is ambiguous and

considered an error.

In either case, T, used in the following example, refers to the table designator that

contains column C. A column name, T.C (where T represents either an implicit or

an explicit qualifier), is a correlated reference if, and only if, these conditions are

met:

v T.C is used in an expression of a subquery.

v T does not designate a table used in the from clause of the subquery.

v T designates a table used at a higher level of the hierarchy that contains the

subquery.

Since the same table, view or nickname can be identified at many levels, unique

correlation names are recommended as table designators. If T is used to designate

a table at more than one level (T is the table name itself or is a duplicate

correlation name), T.C refers to the level where T is used that most directly

contains the subquery that includes T.C. If a correlation to a higher level is needed,

a unique correlation name must be used.

The correlated reference T.C identifies a value of C in a row or group of T to which

two search conditions are being applied: condition 1 in the subquery, and condition

580 Common Criteria Certification: Administration and User Documentation - Volume 2

2 at some higher level. If condition 2 is used in a WHERE clause, the subquery is

evaluated for each row to which condition 2 is applied. If condition 2 is used in a

HAVING clause, the subquery is evaluated for each group to which condition 2 is

applied.

For example, in the following statement, the correlated reference X.WORKDEPT (in

the last line) refers to the value of WORKDEPT in table EMPLOYEE at the level of

the first FROM clause. (That clause establishes X as a correlation name for

EMPLOYEE.) The statement lists employees who make less than the average salary

for their department.

 SELECT EMPNO, LASTNAME, WORKDEPT

 FROM EMPLOYEE X

 WHERE SALARY < (SELECT AVG(SALARY)

 FROM EMPLOYEE

 WHERE WORKDEPT = X.WORKDEPT)

The next example uses THIS as a correlation name. The statement deletes rows for

departments that have no employees.

 DELETE FROM DEPARTMENT THIS

 WHERE NOT EXISTS(SELECT *

 FROM EMPLOYEE

 WHERE WORKDEPT = THIS.DEPTNO)

References to variables

A variable in an SQL statement specifies a value that can be changed when the SQL

statement is executed. There are several types of variables used in SQL statements:

host variable

Host variables are defined by statements of a host language. For more

information about how to refer to host variables, see “References to host

variables” on page 582.

transition variable

Transition variables are defined in a trigger and refer to either the old or

new values of columns. For more information about how to refer to

transition variables, see “CREATE TRIGGER statement” in the SQL

Reference, Volume 2 .

SQL variable

SQL variables are defined by an SQL compound statement in an SQL

function, SQL method, SQL procedure, trigger, or dynamic SQL statement.

For more information about SQL variables, see “References to SQL

parameters, SQL variables, and global variables” in the SQL Reference,

Volume 2 .

global variable

Global variables are defined by the CREATE VARIABLE statement. For

more information about global variables, see “CREATE VARIABLE” and

“References to SQL parameters, SQL variables, and global variables” in the

SQL Reference, Volume 2 .

module variable

Module variables are defined by the ALTER MODULE statement using the

ADD VARIABLE or PUBLISH VARIABLE operation. For more information

about module variables, see “ALTER MODULE”.

SQL parameter

SQL parameters are defined by a CREATE FUNCTION, CREATE

METHOD, or CREATE PROCEDURE statement. For more information

Chapter 8. Identifiers 581

|
|
|
|

about SQL parameters, see “References to SQL parameters, SQL variables,

and global variables” in the SQL Reference, Volume 2 .

parameter marker

Parameter markers are specified in a dynamic SQL statement where host

variables would be specified if the statement were a static SQL statement.

An SQL descriptor or parameter binding is used to associate a value with a

parameter marker during dynamic SQL statement processing. For more

information about parameter markers, see Parameter markers.

References to host variables

A host variable is either:

v A variable in a host language such as a C variable, a C++ variable, a COBOL

data item, a FORTRAN variable, or a Java variable

or:

v A host language construct that was generated by an SQL precompiler from a

variable declared using SQL extensions

that is referenced in an SQL statement. Host variables are either directly defined by

statements in the host language or are indirectly defined using SQL extensions.

A host variable in an SQL statement must identify a host variable described in the

program according to the rules for declaring host variables.

All host variables used in an SQL statement must be declared in an SQL

DECLARE section in all host languages except REXX. No variables may be

declared outside an SQL DECLARE section with names identical to variables

declared inside an SQL DECLARE section. An SQL DECLARE section begins with

BEGIN DECLARE SECTION and ends with END DECLARE SECTION.

The meta-variable host-variable, as used in the syntax diagrams, shows a reference

to a host variable. A host-variable as the target variable in a SET variable statement

or in the INTO clause of a FETCH, SELECT INTO, or VALUES INTO statement,

identifies a host variable to which a value from a column of a row or an expression

is assigned. In all other contexts a host-variable specifies a value to be passed to

the database manager from the application program.

The meta-variable host-variable in syntax diagrams can generally be expanded to:

�� :host-identifier

INDICATOR

:host-identifier

 ��

Each host-identifier must be declared in the source program. The variable

designated by the second host-identifier must have a data type of small integer.

The first host-identifier designates the main variable. Depending on the operation, it

either provides a value to the database manager or is provided a value from the

database manager. An input host variable provides a value in the runtime

application code page. An output host variable is provided a value that, if

necessary, is converted to the runtime application code page when the data is

copied to the output application variable. A given host variable can serve as both

an input and an output variable in the same program.

582 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|

r0000975.dita#r0000975/l975

The second host-identifier designates its indicator variable. The purposes of the

indicator variable are to:

v Specify the null value. A negative value of the indicator variable specifies the

null value. A value of -2 indicates a numeric conversion or arithmetic expression

error occurred in deriving the result

v Record the original length of a truncated string (if the source of the value is not

a large object type)

v Record the seconds portion of a time if the time is truncated on assignment to a

host variable.

For example, if :HV1:HV2 is used to specify an insert or update value, and if HV2

is negative, the value specified is the null value. If HV2 is not negative the value

specified is the value of HV1.

Similarly, if :HV1:HV2 is specified in an INTO clause of a FETCH, SELECT INTO,

or VALUES INTO statement, and if the value returned is null, HV1 is not changed,

and HV2 is set to a negative value. If the database is configured with

DFT_SQLMATHWARN yes (or was during binding of a static SQL statement),

HV2 could be -2. If HV2 is -2, a value for HV1 could not be returned because of an

error converting to the numeric type of HV1, or an error evaluating an arithmetic

expression that is used to determine the value for HV1. When accessing a database

with a client version earlier than DB2 Universal Database Version 5, HV2 will be -1

for arithmetic exceptions. If the value returned is not null, that value is assigned to

HV1 and HV2 is set to zero (unless the assignment to HV1 requires string

truncation of a non-LOB string; in which case HV2 is set to the original length of

the string). If an assignment requires truncation of the seconds part of a time, HV2

is set to the number of seconds.

If the second host identifier is omitted, the host-variable does not have an indicator

variable. The value specified by the host-variable reference :HV1 is always the

value of HV1, and null values cannot be assigned to the variable. Thus, this form

should not be used in an INTO clause unless the corresponding column cannot

contain null values. If this form is used and the column contains nulls, the

database manager will generate an error at run time.

An SQL statement that references host variables must be within the scope of the

declaration of those host variables. For host variables referenced in the SELECT

statement of a cursor, that rule applies to the OPEN statement rather than to the

DECLARE CURSOR statement.

Example

Using the PROJECT table, set the host variable PNAME (VARCHAR(26)) to the

project name (PROJNAME), the host variable STAFF (dec(5,2)) to the mean staffing

level (PRSTAFF), and the host variable MAJPROJ (char(6)) to the major project

(MAJPROJ) for project (PROJNO) ‘IF1000’. Columns PRSTAFF and MAJPROJ may

contain null values, so provide indicator variables STAFF_IND (smallint) and

MAJPROJ_IND (smallint).

 SELECT PROJNAME, PRSTAFF, MAJPROJ

 INTO :PNAME, :STAFF :STAFF_IND, :MAJPROJ :MAJPROJ_IND

 FROM PROJECT

 WHERE PROJNO = ’IF1000’

MBCS Considerations: Whether multi-byte characters can be used in a host

variable name depends on the host language.

Chapter 8. Identifiers 583

|
|

|

|
|
|
|
|
|

|
|
|
|

|
|

Host variables in dynamic SQL

In dynamic SQL statements, parameter markers are used instead of host variables.

A parameter marker represents a position in a dynamic SQL statement where the

application will provide a value; that is, where a host variable would be found if

the statement string were a static SQL statement. The following example shows a

static SQL statement using host variables:

 INSERT INTO DEPARTMENT

 VALUES (:hv_deptno, :hv_deptname, :hv_mgrno, :hv_admrdept)

This example shows a dynamic SQL statement using unnamed parameter markers:

 INSERT INTO DEPARTMENT VALUES (?, ?, ?, ?)

This example shows a dynamic SQL statement using named parameter markers:

 INSERT INTO DEPARTMENT

 VALUES (:deptno, :deptname, :mgrno, :admrdept)

Named parameter markers can be used to improve the readability of dynamic

statement. Although named parameter markers look like host variables, named

parameter markers have no associated value and therefore a value must be

provided for the parameter marker when the statement is executed. If the INSERT

statement using named parameter markers has been prepared and given the

prepared statement name of DYNSTMT, then values can be provided for the

parameter markers using the following statement:

 EXECUTE DYNSTMT

 USING :hv_deptno, :hv_deptname :hv_mgrno, :hv_admrdept

This same EXECUTE statement could be used if the INSERT statement using

unnamed parameter markers had been prepared and given the prepared statement

name of DYNSTMT.

References to BLOB, CLOB, and DBCLOB host variables

Regular BLOB, CLOB, and DBCLOB variables, LOB locator variables (see

“References to locator variables”), and LOB file reference variables (see “References

to BLOB, CLOB, and DBCLOB file reference variables” on page 585) can be defined

in all host languages. Where LOBs are allowed, the term host-variable in a syntax

diagram can refer to a regular host variable, a locator variable, or a file reference

variable. Since these are not native data types, SQL extensions are used and the

precompilers generate the host language constructs necessary to represent each

variable. In the case of REXX, LOBs are mapped to strings.

It is sometimes possible to define a large enough variable to hold an entire large

object value. If this is true and if there is no performance benefit to be gained by

deferred transfer of data from the server, a locator is not needed. However, since

host language or space restrictions will often dictate against storing an entire large

object in temporary storage at one time and/or because of performance benefit, a

large object may be referenced via a locator and portions of that object may be

selected into or updated from host variables that contain only a portion of the

large object at one time.

References to locator variables

A locator variable is a host variable that contains the locator representing a LOB

value on the application server.

584 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|
|
|
|
|

|
|

|

|

|

|
|

|
|
|
|
|
|
|

|
|

|
|
|

A locator variable in an SQL statement must identify a locator variable described

in the program according to the rules for declaring locator variables. This is always

indirectly through an SQL statement.

The term locator variable, as used in the syntax diagrams, shows a reference to a

locator variable. The meta-variable locator-variable can be expanded to include a

host-identifier the same as that for host-variable.

As with all other host variables, a large object locator variable may have an

associated indicator variable. Indicator variables for large object locator host

variables behave in the same way as indicator variables for other data types. When

a null value is returned from the database, the indicator variable is set and the

locator host variable is unchanged. This means a locator can never point to a null

value.

If a locator-variable that does not currently represent any value is referenced, an

error is raised (SQLSTATE 0F001).

At transaction commit, or any transaction termination, all locators acquired by that

transaction are released.

References to BLOB, CLOB, and DBCLOB file reference

variables

BLOB, CLOB, and DBCLOB file reference variables are used for direct file input

and output for LOBs, and can be defined in all host languages. Since these are not

native data types, SQL extensions are used and the precompilers generate the host

language constructs necessary to represent each variable. In the case of REXX,

LOBs are mapped to strings.

A file reference variable represents (rather than contains) the file, just as a LOB

locator represents, rather than contains, the LOB bytes. Database queries, updates

and inserts may use file reference variables to store or to retrieve single column

values.

A file reference variable has the following properties:

Data Type

BLOB, CLOB, or DBCLOB. This property is specified when the variable is

declared.

Direction

This must be specified by the application program at run time (as part of

the File Options value). The direction is one of:

v Input (used as a source of data on an EXECUTE statement, an OPEN

statement, an UPDATE statement, an INSERT statement, or a DELETE

statement).

v Output (used as the target of data on a FETCH statement or a SELECT

INTO statement).

File name

This must be specified by the application program at run time. It is one of:

v The complete path name of the file (which is advised).

v A relative file name. If a relative file name is provided, it is appended to

the current path of the client process.

Chapter 8. Identifiers 585

Within an application, a file should only be referenced in one file reference

variable.

File Name Length

This must be specified by the application program at run time. It is the

length of the file name (in bytes).

File Options

An application must assign one of a number of options to a file reference

variable before it makes use of that variable. Options are set by an

INTEGER value in a field in the file reference variable structure. One of the

following values must be specified for each file reference variable:

v Input (from client to server)

SQL_FILE_READ

This is a regular file that can be opened, read and closed. (The

option is SQL-FILE-READ in COBOL, sql_file_read in

FORTRAN, and READ in REXX.)
v Output (from server to client)

SQL_FILE_CREATE

Create a new file. If the file already exists, an error is returned.

(The option is SQL-FILE-CREATE in COBOL, sql_file_create in

FORTRAN, and CREATE in REXX.)

SQL_FILE_OVERWRITE (Overwrite)

If an existing file with the specified name exists, it is

overwritten; otherwise a new file is created. (The option is

SQL-FILE-OVERWRITE in COBOL, sql_file_overwrite in

FORTRAN, and OVERWRITE in REXX.)

SQL_FILE_APPEND

If an existing file with the specified name exists, the output is

appended to it; otherwise a new file is created. (The option is

SQL-FILE-APPEND in COBOL, sql_file_append in FORTRAN,

and APPEND in REXX.)

Data Length

This is unused on input. On output, the implementation sets the

data length to the length of the new data written to the file. The

length is in bytes.

As with all other host variables, a file reference variable may have an associated

indicator variable.

Example of an output file reference variable (in C)

Given a declare section coded as:

 EXEC SQL BEGIN DECLARE SECTION

 SQL TYPE IS CLOB_FILE hv_text_file;

 char hv_patent_title[64];

 EXEC SQL END DECLARE SECTION

Following preprocessing this would be:

 EXEC SQL BEGIN DECLARE SECTION

 /* SQL TYPE IS CLOB_FILE hv_text_file; */

 struct {

 unsigned long name_length; // File Name Length

 unsigned long data_length; // Data Length

 unsigned long file_options; // File Options

586 Common Criteria Certification: Administration and User Documentation - Volume 2

char name[255]; // File Name

 } hv_text_file;

 char hv_patent_title[64];

 EXEC SQL END DECLARE SECTION

Then, the following code can be used to select from a CLOB column in the

database into a new file referenced by :hv_text_file.

 strcpy(hv_text_file.name, "/u/gainer/papers/sigmod.94");

 hv_text_file.name_length = strlen("/u/gainer/papers/sigmod.94");

 hv_text_file.file_options = SQL_FILE_CREATE;

 EXEC SQL SELECT content INTO :hv_text_file from papers

 WHERE TITLE = ’The Relational Theory behind Juggling’;

Example of an input file reference variable (in C)

Given the same declare section as above, the following code can be used to insert

the data from a regular file referenced by :hv_text_file into a CLOB column.

 strcpy(hv_text_file.name, "/u/gainer/patents/chips.13");

 hv_text_file.name_length = strlen("/u/gainer/patents/chips.13");

 hv_text_file.file_options = SQL_FILE_READ:

 strcpy(:hv_patent_title, "A Method for Pipelining Chip Consumption");

 EXEC SQL INSERT INTO patents(title, text)

 VALUES(:hv_patent_title, :hv_text_file);

References to structured type host variables

Structured type variables can be defined in all host languages except FORTRAN,

REXX, and Java. Since these are not native data types, SQL extensions are used and

the precompilers generate the host language constructs necessary to represent each

variable.

As with all other host variables, a structured type variable may have an associated

indicator variable. Indicator variables for structured type host variables behave in

the same way as indicator variables for other data types. When a null value is

returned from the database, the indicator variable is set and the structured type

host variable is unchanged.

The actual host variable for a structured type is defined as a built-in data type. The

built-in data type associated with the structured type must be assignable:

v from the result of the FROM SQL transform function for the structured type as

defined by the specified TRANSFORM GROUP option of the precompile

command; and

v to the parameter of the TO SQL transform function for the structured type as

defined by the specified TRANSFORM GROUP option of the precompile

command.

If using a parameter marker instead of a host variable, the appropriate parameter

type characteristics must be specified in the SQLDA. This requires a ″doubled″ set

of SQLVAR structures in the SQLDA, and the SQLDATATYPE_NAME field of the

secondary SQLVAR must be filled with the schema and type name of the

structured type. If the schema is omitted in the SQLDA structure, an error results

(SQLSTATE 07002).

Chapter 8. Identifiers 587

Example

Define the host variables hv_poly and hv_point (of type POLYGON, using built-in

type BLOB(1048576)) in a C program.

 EXEC SQL BEGIN DECLARE SECTION;

 static SQL

 TYPE IS POLYGON AS BLOB(1M)

 hv_poly, hv_point;

 EXEC SQL END DECLARE SECTION;

SQL path

The SQL path is an ordered list of schema names. The database manager uses the

SQL path to resolve the schema name for unqualified data type names (both

built-in types and distinct types), global variable names, module names, function

names, and procedure names that appear in any context other than as the main

object of a CREATE, DROP, COMMENT, GRANT or REVOKE statement. For

details, see “Qualification of unqualified object names”.

For example, if the SQL path is SYSIBM. SYSFUN, SYSPROC, SYSIBMADM,

SMITH, XGRAPHICS2 and an unqualified distinct type name MYTYPE was

specified, the database manager looks for MYTYPE first in schema SYSIBM, then

SYSFUN, then SYSPROC, then SYSIBMADM, then SMITH, and then

XGRAPHICS2.

The SQL path used depends on the SQL statement:

v For static SQL statements (except for a CALL variable statement), the SQL path

used is the SQL path specified when the containing package, procedure,

function, trigger, or view was created.

v For dynamic SQL statements (and for a CALL variable statement), the SQL path

is the value of the CURRENT PATH special register. CURRENT PATH can be set

by the SET PATH statement.

If the SQL path is not explicitly specified, the SQL path is the system path

followed by the authorization ID of the statement. .

Qualification of unqualified object names

Unqualified object names are implicitly qualified. The rules for qualifying a name

differ depending on the type of object that the name identifies.

Unqualified alias, index, package, sequence, table, trigger, and

view names

Unqualified alias, index, package, sequence, table, trigger, and view names are

implicitly qualified by the default schema.

For static SQL statements, the default schema is the default schema specified when

the containing function, package, procedure, or trigger was created.

For dynamic SQL statements, the default schema is the default schema specified

for the application process. The default schema can be specified for the application

process by using the SET SCHEMA statement. If the default schema is not

explicitly specified, the default schema is the authorization ID of the statement.

588 Common Criteria Certification: Administration and User Documentation - Volume 2

Unqualified user-defined type, function, procedure, specific,

global variable and module names

The qualification of data type (both built-in types and distinct types), global

variable, module, function, procedure, and specific names depends on the SQL

statement in which the unqualified name appears:

v If an unqualified name is the main object of a CREATE, ALTER, COMMENT,

DROP, GRANT, or REVOKE statement, the name is implicitly qualified using the

same rules as for qualifying unqualified table names (See “Unqualified alias,

index, package, sequence, table, trigger, and view names”). The main object of

an ADD, COMMENT, DROP or PUBLISH operation of the ALTER MODULE

statement must be specified without any qualifier.

v If the context of the reference is within a module, the database manager searches

the module for the object, applying the appropriate resolution for the type of

object to find a match. If no match is found, the search continues as specified in

the next bullet.

v Otherwise, the implicit schema name is determined as follows:

– For distinct type names, the database manager searches the SQL path and

selects the first schema in the SQL path such that the data type exists in the

schema.

– For global variables, the database manager searches the SQL path and selects

the first schema in the SQL path such that the global variable exists in the

schema.

– For procedure names, the database manager uses the SQL path in conjunction

with procedure resolution.

– For function names, the database manager uses the SQL path in conjunction

with function resolution .

– For specific names specified for sourced functions, see “CREATE FUNCTION

(Sourced)”.

Resolving qualified object names

Objects that are defined in a module that are available for use outside the module

must be qualified by the module name. Since a module is a schema object that can

also be implicitly qualified, the published module objects can be qualified using an

unqualified module name or a schema-qualified module name. When an

unqualified module name is used, the reference to the module object appears the

same as a schema-qualified object that is not part of a module. Within a specific

scope, such as a compound SQL statement, a two-part identifier could also be:

v a column name qualified by a table name

v a row field name qualified by a variable name

v a variable name qualified by a label

v a routine parameter name qualified by a routine name

These objects are resolved within their scope, before considering either schema

objects or module object. The following process is used to resolve objects with

two-part identifiers that could be a schema object or a module object.

v If the context of the reference is within a module and the qualifier matches the

module name, the database manager searches the module for the object,

applying the appropriate resolution for the type of object to find a match among

published and unpublished module objects. If no match is found, the search

continues as specified in the next bullets.

Chapter 8. Identifiers 589

|
|
|

v Assume that the qualifier is a schema name and, if the schema exists, resolve the

object in the schema.

v If the qualifier is not an existing schema or the object is not found in the schema

that matches the qualifier and the qualifier did not match the context module

name, search for the first module that matches the qualifier in the schemas on

the SQL path. If authorized to the matching module, resolve to the object in that

module, considering only published module objects.

v If the qualifier is not found as a module on the SQL path and the qualifier did

not match the context module name, check for a module public synonym that

matches the qualifier. If found, resolve the object in the module identified by the

module public synonym, considering only published module objects.

590 Common Criteria Certification: Administration and User Documentation - Volume 2

Part 4. Security plug-ins

Only the default IBM-supplied operating-system based authentication and group

plug-ins are supported in Common Criteria compliant environments. User-written

or third-party plug-ins are not supported. In addition, Kerberos-based

authorization is not supported. The sections that follow are for informational

purposes only.

© Copyright IBM Corp. 1993, 2009 591

592 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 9. An overview of security plug-ins

Security plug-ins

Authentication for the DB2 database system is done using security plug-ins. A

security plug-in is a dynamically-loadable library that provides authentication

security services.

The DB2 database system provides the following types of plug-ins:

v Group retrieval plug-in: retrieves group membership information for a given

user.

v Client authentication plug-in: manages authentication on a DB2 client.

v Server authentication plug-in: manages authentication on a DB2 server.

The DB2 database manager supports two mechanisms for plug-in authentication:

User ID/password authentication

This involves authentication using a user ID and password. The following

authentication types are implemented using user ID/password

authentication plug-ins:

 - CLIENT

 - SERVER

 - SERVER_ENCRYPT

 - DATA_ENCRYPT

 - DATA_ENCRYPT_CMP

These authentication types determine how and where authentication of a

user occurs. The authentication type used depends on the authentication

type specified by the authentication database manager configuration

parameter. If the SRVCON_AUTH parameter is specified it takes

precedence over AUTHENTICATION when dealing with connect or attach

operations.

GSS-API authentication

GSS-API is formally known as Generic Security Service Application Program

Interface, Version 2 (IETF RFC2743) and Generic Security Service API Version

2: C-Bindings (IETF RFC2744). Kerberos authentication is also implemented

using GSS-API. The following authentication types are implemented using

GSS-API authentication plug-ins:

 - KERBEROS

 - GSSPLUGIN

 - KRB_SERVER_ENCRYPT

 - GSS_SERVER_ENCRYPT

KRB_SERVER_ENCRYPT and GSS_SERVER_ENCRYPT support both

GSS-API authentication and user ID/password authentication; however,

GSS-API authentication is the preferred authentication type.

Note: Authentication types determine how and where a user is authenticated. To

use a particular authentication type, update the authentication database manager

configuration parameter.

© Copyright IBM Corp. 1993, 2009 593

Each of the plug-ins can be used independently or in conjunction with one or more

of the other plug-ins. For example, you might only use a server authentication

plug-in and assume the DB2 defaults for client and group authentication.

Alternatively, you might have only a group or client authentication plug-in. The

only situation where both a client and server plug-in are required is for GSS-API

authentication plug-ins.

The default behavior is to use a user ID/password plug-in that implements an

operating-system-level mechanism for authentication. In previous releases, the

default behavior is to directly use operating-system-level authentication without a

plug-in implementation. Client-side Kerberos support is available on Solaris, AIX,

Windows, and Linux operating systems. For Windows platforms, Kerberos support

is enabled by default.

DB2 database systems include sets of plug-ins for group retrieval, user

ID/password authentication, and for Kerberos authentication. With the security

plug-in architecture you can customize DB2 client and server authentication

behavior by either developing your own plug-ins, or buying plug-ins from a third

party.

Deployment of security plug-ins on DB2 clients

DB2 clients can support one group plug-in, one user ID/password authentication

plug-in, and will negotiate with the DB2 server for a particular GSS-API plug-in.

This negotiation consists of a scan by the client of the DB2 server’s list of

implemented GSS-API plug-ins for the first authentication plug-in name that

matches an authentication plug-in implemented on the client. The server’s list of

plug-ins is specified in the srvcon_gssplugin_list database manager configuration

parameter value, which contains the names of all of the plug-ins that are

implemented on the server. The following figure portrays the security plug-in

infrastructure on a DB2 client.

User ID/password
client plug-in

Kerberos GSS-API
client plug-in

GSS-API
client plug-in

Group plug-in

DB2 Client

Security layer

Plug-in interface

Figure 7. Deploying Security Plug-ins on DB2 Clients

594 Common Criteria Certification: Administration and User Documentation - Volume 2

Deployment of security plug-ins on DB2 servers

DB2 servers can support one group plug-in, one user ID/password authentication

plug-in, and multiple GSS-API plug-ins. The multiple GSS-API plug-ins are

specified in the srvcon_gssplugin_list database manager configuration parameter

value as a list. Only one GSS-API plug-in in this list can be a Kerberos plug-in.

In addition to server-side security plug-ins, you might also need to deploy client

authorization plug-ins on your database server. When you run instance-level

operations like db2start and db2trc, the DB2 database manager performs

authorization checking for these operations using client authentication plug-ins.

Therefore, you should install the client authentication plug-in that corresponds to

the server plug-in that is specified by the authentication database manager

configuration parameter. There is a main distinction between authentication and

srvcon_auth. Specifically, they could be set to different values to cause one

mechanism to be used to authenticate database connections and another

mechanism to be used for local authorization. The most common usage is

srvcon_auth set as GSSPLUGIN and authentication set as SERVER. If you do not use

client authentication plug-ins on the database server, instance level operations such

as db2start will fail. For example, if the authentication type is SERVER and no

user-supplied client plug-in is used, the DB2 database system will use the

IBM-shipped default client operating-system plug-in. The following figure portrays

the security plug-in infrastructure on a DB2 server.

Note: The integrity of your DB2 database system installation can be compromised

if the deployment of security plug-ins are not adequately coded, reviewed, and

tested. The DB2 database system takes precaution against many common types of

failures, but it cannot guarantee complete integrity when user-written security

plug-ins are deployed.

Enabling security plug-ins

The system administrator can specify the names of the plug-ins to use for each

authentication mechanism by updating certain plug-in-related database manager

configuration parameters. If these parameters are null, they will default to the

User ID/password
client plug-in

Kerberos GSS-API
client plug-in

GSS-API
client plug-in

Group plug-in

DB2 Server

Security layer

Plug-in interface

User ID/password
server plug-in

Kerberos GSS-API
server plug-in

GSS-API
server plug-in

Figure 8. Deploying Security Plug-ins on DB2 Servers

Chapter 9. An overview of security plug-ins 595

DB2-supplied plug-ins for group retrieval, user ID/password management, or

Kerberos (if authentication is set to Kerberos -- on the server). DB2 does not

provide a default GSS-API plug-in. Therefore, if system administrators specify an

authentication type of GSSPLUGIN in authentication parameter, they must also

specify a GSS-API authentication plug-in in srvcon_gssplugin_list.

How DB2 loads security plug-ins

All of the supported plug-ins identified by the database manager configuration

parameters are loaded when the database manager starts.

The DB2 client will load a plug-in appropriate for the security mechanism

negotiated with the server during connect or attach operations. It is possible that a

client application can cause multiple security plug-ins to be concurrently loaded

and used. This situation can occur, for example, in a threaded program that has

concurrent connections to different databases from different instances.

Actions other than connect or attach operations require authorization (such as

updating the database manager configuration, starting and stopping the database

manager, turning DB2 trace on and off) as well. For such actions, the DB2 client

program will load a plug-in specified in another database manager configuration

parameter. If authentication is set to GSSPLUGIN, DB2 database manager will use

the plug-in specified by local_gssplugin. If authentication is set to KERBEROS, DB2

database manager will use the plug-in specified by clnt_krb_plugin. Otherwise, DB2

database manager will use the plug-in specified by clnt_pw_plugin.

Security plug-ins APIs can be called from either an IPv4 platform or an IPv6

platform. An IPv4 address is a 32-bit address that has a readable form a.b.c.d,

where each of a-d represents a decimal number from 0-255. An IPv6 address is a

128-bit address of the form a:b:c:d:e:f:g:h, where each of a-h represents 4 hex digits.

Developing security plug-ins

If you are developing a security plug-in, you need to implement the standard

authentication functions that DB2 database manager will use. If you are using your

own customized security plug-in, you can use a user ID of up to 255 characters on

a connect statement issued through the CLP or a dynamic SQL statement. For the

available types of plug-ins, the functionality you will need to implement is as

follows:

Group retrieval

Gets the list of groups to which a user belongs.

User ID/password authentication

v Identifies the default security context (client only).

v Validates and optionally changes a password.

v Determines if a given string represents a valid user (server only).

v Modifies the user ID or password provided on the client before it is sent

to the server (client only).

v Returns the DB2 authorization ID associated with a given user.

GSS-API authentication

v Implements the required GSS-API functions.

v Identifies the default security context (client only).

596 Common Criteria Certification: Administration and User Documentation - Volume 2

v Generates initial credentials based on a user ID and password and

optionally changes password (client only).

v Creates and accepts security tickets.

v Returns the DB2 authorization ID associated with a given GSS-API

security context.

Security plug-in library locations

After you acquire your security plug-ins (either by developing them yourself, or

purchasing them from a third party), copy them to specific locations on your

database server.

DB2 clients looks for client-side user authentication plug-ins in the following

directory:

v UNIX 32-bit: $DB2PATH/security32/plugin/client

v UNIX 64-bit: $DB2PATH/security64/plugin/client

v WINDOWS 32-bit and 64-bit: $DB2PATH\security\plugin\instance name\client

Note: On Windows-based platforms, the subdirectories instance name and client are

not created automatically. The instance owner has to manually create them.

The DB2 database manager looks for server-side user authentication plug-ins in the

following directory:

v UNIX 32-bit: $DB2PATH/security32/plugin/server

v UNIX 64-bit: $DB2PATH/security64/plugin/server

v WINDOWS 32-bit and 64-bit: $DB2PATH\security\plugin\instance name\server

Note: On Windows-based platforms, the subdirectories instance name and server are

not created automatically. The instance owner has to manually create them.

The DB2 database manager looks for group plug-ins in the following directory:

v UNIX 32-bit: $DB2PATH/security32/plugin/group

v UNIX 64-bit: $DB2PATH/security64/plugin/group

v WINDOWS 32-bit and 64-bit: $DB2PATH\security\plugin\instance name\group

Note: On Windows-based platforms, the subdirectories instance name and group are

not created automatically. The instance owner has to manually create them.

Security plug-in naming conventions

Security plug-in libraries must have a platform-specific file name extension.

Security plug-in libraries written in C or C++ must have a platform-specific file

name extension:

v Windows: .dll

v AIX: .a or .so, and if both extensions exist, .a extension is used.

v Linux, HP IPF and Solaris: .so

v HPUX on PA-RISC: .sl or .so, and if both extensions exist, .sl extension is

used.

Note: Users can also develop security plug-ins with the DB2 Universal JDBC

Driver.

Chapter 9. An overview of security plug-ins 597

For example, assume you have a security plug-in library called MyPlugin. For each

supported operating system, the appropriate library file name follows:

v Windows 32-bit: MyPlugin.dll

v Windows 64-bit: MyPlugin64.dll

v AIX 32 or 64-bit: MyPlugin.a or MyPlugin.so

v SUN 32 or 64-bit, Linux 32 or 64 bit, HP 32 or 64 bit on IPF: MyPlugin.so

v HP-UX 32 or 64-bit on PA-RISC: MyPlugin.sl or MyPlugin.so

Note: The suffix ″64″ is only required on the library name for 64-bit Windows

security plug-ins.

When you update the database manager configuration with the name of a security

plug-in, use the full name of the library without the ″64″ suffix and omit both the

file extension and any qualified path portion of the name. Regardless of the

operating system, a security plug-in library called MyPlugin would be registered as

follows:

UPDATE DBM CFG USING CLNT_PW_PLUGIN MyPlugin

The security plug-in name is case sensitive, and must exactly match the library

name. DB2 database systems use the value from the relevant database manager

configuration parameter to assemble the library path, and then uses the library

path to load the security plug-in library.

To avoid security plug-in name conflicts, you should name the plug-in using the

authentication method used, and an identifying symbol of the firm that wrote the

plug-in. For instance, if the company Foo, Inc. wrote a plug-in implementing the

authentication method FOOsomemethod, the plug-in could have a name like

FOOsomemethod.dll.

The maximum length of a plug-in name (not including the file extension and the

″64″ suffix) is limited to 32 bytes. There is no maximum number of plug-ins

supported by the database server, but the maximum length of the

comma-separated list of plug-ins in the database manager configuration is 255

bytes. Two defines located in the include file sqlenv.h identifies these two limits:

#define SQL_PLUGIN_NAME_SZ 32 /* plug-in name */

#define SQL_SRVCON_GSSPLUGIN_LIST_SZ 255 /* GSS API plug-in list */

The security plug-in library files must have the following file permissions:

v Owned by the instance owner.

v Readable by all users on the system.

v Executable by all users on the system.

Security plug-in support for two-part user IDs

The DB2 database manager on Windows supports the use of two-part user IDs,

and the mapping of two-part user IDs to two-part authorization IDs.

For example, consider a Windows operating system two-part user ID composed of

a domain and user ID such as: MEDWAY\pieter. In this example, MEDWAY is a domain

and pieter is the user name. In DB2 database systems, you can specify whether

this two-part user ID should be mapped to either a one-part authorization ID or a

two-part authorization ID.

598 Common Criteria Certification: Administration and User Documentation - Volume 2

The mapping of a two-part user ID to a two-part authorization ID is supported,

but is not the default behavior. By default, both one-part user IDs and two-part

user IDs map to one-part authorization IDs. The mapping of a two-part user ID to

a two-part authorization ID is supported, but is not the default behavior.

The default mapping of a two-part user ID to a one-part user ID allows a user to

connect to the database using:

db2 connect to db user MEDWAY\pieter using pw

In this situation, if the default behavior is used, the user ID MEDWAY\pieter is

resolved to the authorization ID PIETER. If the support for mapping a two-part

user ID to a two-part authorization ID is enabled, the authorization ID would be

MEDWAY\PIETER.

To enable DB2 to map two-part user IDs to two-part authorization IDs, DB2

supplies two sets of authentication plug-ins:

v One set exclusively maps a one-part user ID to a one-part authorization ID and

maps a two-part user-ID to a one-part authorization ID.

v Another set maps both one-part user ID or two-part user ID to a two-part

authorization ID.

If a user name in your work environment can be mapped to multiple accounts

defined in different locations (such as local account, domain account, and trusted

domain accounts), you can specify the plug-ins that enable two-part authorization

ID mapping.

It is important to note that a one-part authorization ID, such as, PIETER and a

two-part authorization ID that combines a domain and a user ID like

MEDWAY\pieter are functionally distinct authorization IDs. The set of privileges

associated with one of these authorization IDs can be completely distinct from the

set of privileges associated with the other authorization ID. Care should be taken

when working with one-part and two-part authorization IDs.

The following table identifies the kinds of plug-ins supplied by DB2 database

systems, and the plug-in names for the specific authentication implementations.

 Table 31. DB2 security plug-ins

Authentication type

Name of one-part user ID

plug-in

Name of two-part user ID

plug-in

User ID/password (client) IBMOSauthclient IBMOSauthclientTwoPart

User ID/password (server) IBMOSauthserver IBMOSauthserverTwoPart

Kerberos IBMkrb5 IBMkrb5TwoPart

Note: On Windows 64-bit platforms, the characters ″64″ are appended to the

plug-in names listed here.

When you specify an authentication type that requires a user ID/password or

Kerberos plug-in, the plug-ins that are listed in the ″Name of one-part user ID

plug-in″ column in the previous table are used by default.

To map a two-part user ID to a two-part authorization ID, you must specify that

the two-part plug-in, which is not the default plug-in, be used. Security plug-ins

are specified at the instance level by setting the security related database manager

configuration parameters as follows:

Chapter 9. An overview of security plug-ins 599

For server authentication that maps two-part user IDs to two-part authorization

IDs, you must set:

v srvcon_pw_plugin to IBMOSauthserverTwoPart

v clnt_pw_plugin to IBMOSauthclientTwoPart

For client authentication that maps two-part user IDs to two-part authorization

IDs, you must set:

v srvcon_pw_plugin to IBMOSauthserverTwoPart

v clnt_pw_plugin to IBMOSauthclientTwoPart

For Kerberos authentication that maps two-part user IDs to two-part authorization

IDs, you must set:

v srvcon_gssplugin_list to IBMOSkrb5TwoPart

v clnt_krb_plugin to IBMkrb5TwoPart

The security plug-in libraries accept two-part user IDs specified in a Microsoft

Windows Security Account Manager compatible format. For example, in the

format: domain\user ID. Both the domain and user ID information will be used by

the DB2 authentication and authorization processes at connection time.

You should consider implementing the two-part plug-ins when creating new

databases to avoid conflicts with one-part authorization IDs in existing databases.

New databases that use two-part authorization IDs must be created in a separate

instance from databases that use single-part authorization IDs.

32-bit and 64-bit considerations for security plug-ins

In general, a 32-bit DB2 instance uses the 32-bit security plug-in and a 64-bit DB2

instance uses the 64-bit security plug-in. However, on a 64-bit instance, DB2

supports 32-bit applications, which require the 32-bit plug-in library.

A database instance where both the 32-bit and the 64-bit applications can run is

known as a hybrid instance. If you have a hybrid instance and intend to run 32-bit

applications, ensure that the required 32-bit security plug-ins are available in the

32-bit plug-in directory. For 64-bit DB2 instances on Linux and UNIX operating

systems, excluding Linux on IPF, the directories security32 and security64

appear. For a 64-bit DB2 instance on Windows on x64 or IPF, both 32-bit and 64-bit

security plug-ins are located in the same directory, but 64-bit plug-in names have a

suffix, ″64″.

If you want to upgrade from a 32-bit instance to a 64-bit instance, you should

obtain versions of your security plug-ins that are recompiled for 64-bit.

If you acquired your security plug-ins from a vendor that does not supply 64-bit

plug-in libraries, you can implement a 64-bit stub that executes a 32-bit application.

In this situation, the security plug-in is an external program rather than a library.

Security plug-in problem determination

Problems with security plug-ins are reported in two ways: through SQL errors and

through the administration notification log.

Following are the SQLCODE values related to security plug-ins:

600 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

v SQLCODE -1365 is returned when a plug-in error occurs during db2start or

db2stop.

v SQLCODE -1366 is returned whenever there is a local authorization problem.

v SQLCODE -30082 is returned for all connection-related plug-in errors.

The administration notification logs are a good resource for debugging and

administrating security plug-ins. To see the an administration notification log file

on UNIX, check sqllib/db2dump/instance name.N.nfy. To see an administration

notification log on Windows operating systems, use the Event Viewer tool. The

Event Viewer tool can be found by navigating from the Windows operating system

″Start″ button to Settings -> Control Panel -> Administrative Tools -> Event

Viewer. Following are the administration notification log values related to security

plug-ins:

v 13000 indicates that a call to a GSS-API security plug-in API failed with an error,

and returned an optional error message.

SQLT_ADMIN_GSS_API_ERROR (13000)

Plug-in "plug-in name" received error code "error code" from

GSS API "gss api name" with the error message "error message"

v 13001 indicates that a call to a DB2 security plug-in API failed with an error, and

returned an optional error message.

SQLT_ADMIN_PLUGIN_API_ERROR(13001)

Plug-in "plug-in name" received error code "error code" from DB2

security plug-in API "gss api name" with the error message

"error message"

v 13002 indicates that DB2 failed to unload a plug-in.

SQLT_ADMIN_PLUGIN_UNLOAD_ERROR (13002)

Unable to unload plug-in "plug-in name". No further action required.

v 13003 indicates a bad principal name.

SQLT_ADMIN_INVALID_PRIN_NAME (13003)

The principal name "principal name" used for "plug-in name"

is invalid. Fix the principal name.

v 13004 indicates that the plug-in name is not valid. Path separators (On UNIX ″/″

and on Windows ″\″) are not allowed in the plug-in name.

SQLT_ADMIN_INVALID_PLGN_NAME (13004)

The plug-in name "plug-in name" is invalid. Fix the plug-in name.

v 13005 indicates that the security plug-in failed to load. Ensure the plug-in is in

the correct directory and that the appropriate database manager configuration

parameters are updated.

SQLT_ADMIN_PLUGIN_LOAD_ERROR (13005)

Unable to load plug-in "plug-in name". Verify the plug-in existence and

directory where it is located is correct.

v 13006 indicates that an unexpected error was encountered by a security plug-in.

Gather all the db2support information, if possible capture a db2trc, and then call

IBM support for further assistance.

SQLT_ADMIN_PLUGIN_UNEXP_ERROR (13006)

Plug-in encountered unexpected error. Contact IBM Support for further assistance.

Note: If you are using security plug-ins on a Windows 64-bit database server and

are seeing a load error for a security plug-in, see the topics about 32-bit and 64-bit

considerations and security plug-in naming conventions. The 64-bit plug-in library

requires the suffix ″64″ on the library name, but the entry in the security plug-in

database manager configuration parameters should not indicate this suffix.

Chapter 9. An overview of security plug-ins 601

|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

|

|
|

|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|

Deploying a group retrieval plug-in

To customize the DB2 security system’s group retrieval behavior, you can develop

your own group retrieval plug-in or buy one from a third party.

After you acquire a group retrieval plug-in that is suitable for your database

management system, you can deploy it.

v To deploy a group retrieval plug-in on the database server, perform the

following steps:

1. Copy the group retrieval plug-in library into the server’s group plug-in

directory.

2. Update the database manager configuration parameter group_plugin with the

name of the plug-in.
v To deploy a group retrieval plug-in on database clients, perform the following

steps:

1. Copy the group retrieval plug-in library in the client’s group plug-in

directory.

2. On the database client, update the database manager configuration

parameter group_plugin with the name of the plug-in.

Deploying a user ID/password plug-in

To customize the DB2 security system’s user ID/password authentication behavior,

you can develop your own user ID/password authentication plug-ins or buy one

from a third party.

Depending on their intended usage, all user ID-password based authentication

plug-ins must be placed in either the client plug-in directory or the server plug-in

directory. If a plug-in is placed in the client plug-in directory, it will be used both

for local authorization checking and for validating the client when it attempts to

connect with the server. If the plug-in is placed in the server plug-in directory, it

will be used for handling incoming connections to the server and for checking

whether an authorization ID exists and is valid whenever the GRANT statement is

issued without specifying either the keyword USER or GROUP. In most situations,

user ID/password authentication requires only a server-side plug-in. It is possible,

though generally deemed less useful, to have only a client user ID/password

plug-in. It is possible, though quite unusual to require matching user ID/password

plug-ins on both the client and the server.

Note: You must stop the DB2 server or any applications using the plug-ins before

you deploy a new version of an existing plug-in. Undefined behavior including

traps will occur if a process is still using a plug-in when a new version (with the

same name) is copied over it. This restriction is not in effect when you deploy a

plugin for the first time or when the plug-in is not in use.

After you acquire user ID/password authentication plug-ins that are suitable for

your database management system, you can deploy them.

v To deploy a user ID/password authentication plug-in on the database server,

perform the following steps on the database server:

1. Copy the user ID/password authentication plug-in library in the server

plug-in directory.

2. Update the database manager configuration parameter srvcon_pw_plugin with

the name of the server plug-in. This plug-in is used by the server when it is

handling CONNECT and ATTACH requests.

602 Common Criteria Certification: Administration and User Documentation - Volume 2

3. Either:

– Set the database manager configuration parameter srvcon_auth to the

CLIENT, SERVER, SERVER_ENCRYPT, DATA_ENCRYPT, or

DATA_ENCRYPT_CMP authentication type. Or:

– Set the database manager configuration parameter srvcon_auth to

NOT_SPECIFIED and set authentication to CLIENT, SERVER,

SERVER_ENCRYPT, DATA_ENCRYPT, or DATA_ENCRYPT_CMP

authentication type.
v To deploy a user ID/password authentication plug-in on database clients,

perform the following steps on each client:

1. Copy the user ID/password authentication plug-in library in the client

plug-in directory.

2. Update the database manager configuration parameter clnt_pw_plugin with

the name of the client plug-in. This plug-in is loaded and called regardless of

where the authentication is being done, not only when the database

configuration parameter, authentication is set to CLIENT.
v For local authorization on a client, server, or gateway using a user ID/password

authentication plug-in, perform the following steps on each client, server, or

gateway:

1. Copy the user ID/password authentication plug-in library in the client

plug-in directory on the client, server, or gateway.

2. Update the database manager configuration parameter clnt_pw_plugin with

the name of the plug-in.

3. Set the authentication database manager configuration parameter to CLIENT,

SERVER, SERVER_ENCRYPT, DATA_ENCRYPT, or DATA_ENCRYPT_CMP.

Deploying a GSS-API plug-in

To customize the DB2 security system’s authentication behavior, you can develop

your own authentication plug-ins using the GSS-API, or buy one from a third

party.

In the case of plug-in types other than Kerberos, you must have matching plug-in

names on the client and the server along with the same plug-in type. The plug-ins

on the client and server need not be from the same vendor, but they must generate

and consume compatible GSS-API tokens. Any combination of Kerberos plug-ins

deployed on the client and the server is acceptable since Kerberos plug-ins are

standardized. However, different implementations of less standardized GSS-API

mechanisms, such as x.509 certificates, might only be partially compatible with

DB2 database systems. Depending on their intended usage, all GSS-API

authentication plug-ins must be placed in either the client plug-in directory or the

server plug-in directory. If a plug-in is placed in the client plug-in directory, it will

be used for local authorization checking and when a client attempts to connect

with the server. If the plug-in is placed in the server plug-in directory, it will be

used for handling incoming connections to the server and for checking whether an

authorization ID exists and is valid whenever the GRANT statement is issued

without specifying either the keyword USER or GROUP.

Note: You must stop the DB2 server or any applications using the plug-ins before

you deploy a new version of an existing plug-in. Undefined behavior including

traps will occur if a process is still using a plug-in when a new version (with the

same name) is copied over it. This restriction is not in effect when you deploy a

plugin for the first time or when the plug-in is not in use.

Chapter 9. An overview of security plug-ins 603

After you acquire GSS-API authentication plug-ins that are suitable for your

database management system, you can deploy them.

v To deploy a GSS-API authentication plug-in on the database server, perform the

following steps on the server:

1. Copy the GSS-API authentication plug-in library in the server plug-in

directory. You can copy numerous GSS-API plug-ins into this directory.

2. Update the database manager configuration parameter srvcon_gssplugin_list

with an ordered, comma-delimited list of the names of the plug-ins installed

in the GSS-API plug-in directory.

3. Either:

– Setting the database manager configuration parameter srvcon_auth to

GSSPLUGIN or GSS_SERVER_ENCRYPT is a way to enable the server to

use GSSAPI PLUGIN authentication method. Or:

– Setting the database manager configuration parameter srvcon_auth to

NOT_SPECIFIED and setting authentication to GSSPLUGIN or

GSS_SERVER_ENCRYPT is a way to enable the server to use GSSAPI

PLUGIN authentication method.
v To deploy a GSS-API authentication plug-in on database clients, perform the

following steps on each client:

1. Copy the GSS-API authentication plug-in library in the client plug-in

directory. You can copy numerous GSS-API plug-ins into this directory. The

client selects a GSS-API plug-in for authentication during a CONNECT or

ATTACH operation by picking the first GSS-API plug-in contained in the

server’s plug-in list that is available on the client.

2. Optional: Catalog the databases that the client will access, indicating that the

client will only accept a GSS-API authentication plug-in as the authentication

mechanism. For example:

CATALOG DB testdb AT NODE testnode AUTHENTICATION GSSPLUGIN

v For local authorization on a client, server, or gateway using a GSS-API

authentication plug-in, perform the following steps:

1. Copy the GSS-API authentication plug-in library in the client plug-in

directory on the client, server, or gateway.

2. Update the database manager configuration parameter local_gssplugin with

the name of the plug-in.

3. Set the authentication database manager configuration parameter to

GSSPLUGIN, or GSS_SERVER_ENCRYPT.

Deploying a Kerberos plug-in

To customize the DB2 security system’s Kerberos authentication behavior, you can

develop your own Kerberos authentication plug-ins or buy one from a third party.

Note that the Kerberos security plug-in will not support IPv6.

Note: You must stop the DB2 server or any applications using the plug-ins before

you deploy a new version of an existing plug-in. Undefined behavior including

traps will occur if a process is still using a plug-in when a new version (with the

same name) is copied over it. This restriction is not in effect when you deploy a

plugin for the first time or when the plug-in is not in use.

After you acquire Kerberos authentication plug-ins that are suitable for your

database management system, you can deploy them.

604 Common Criteria Certification: Administration and User Documentation - Volume 2

v To deploy a Kerberos authentication plug-in on the database server, perform the

following steps on the server:

1. Copy the Kerberos authentication plug-in library in the server plug-in

directory.

2. Update the database manager configuration parameter

srvcon_gssplugin_list, which is presented as an ordered, comma delimited

list, to include the Kerberos server plug-in name. Only one plug-in in this list

can be a Kerberos plug-in. If this list is blank and authentication is set to

KERBEROS or KRB_SVR_ENCRYPT, the default DB2 Kerberos plug-in:

IBMkrb5 will be used.

3. If necessary, set the srvcon_auth database manager configuration parameter

to override the current authentication type. If the srvcon_auth database

manager configuration parameter is not set, the DB2 database manager uses

the value of the authentication configuration parameter. If the authentication

configuration parameter is currently set to any of the following

authentication types, you can deploy and use a Kerberos plug-in:

– KERBEROS

– KRB_SERVER_ENCRYPT

– GSSPLUGIN

– GSS_SERVER_ENCRYPT

If you need to override the current authentication type, set the srvcon_auth

configuration parameter to one of the following authentication types:

– KERBEROS

– KRB_SERVER_ENCRYPT

– GSSPLUGIN

– GSS_SERVER_ENCRYPT
v To deploy a Kerberos authentication plug-in on database clients, perform the

following steps on each client:

1. Copy the Kerberos authentication plug-in library in the client plug-in

directory.

2. Update the database manager configuration parameter clnt_krb_plugin with

the name of the Kerberos plug-in. If clnt_krb_plugin is blank, DB2 assumes

that the client cannot use Kerberos authentication. This setting is only

appropriate when the server cannot support plug-ins. If both the server and

the client support security plug-ins, the default server plug-in, IBMkrb5

would be used over the client value of clnt_krb_plugin. For local

authorization on a client, server, or gateway using a Kerberos authentication

plug-in, perform the following steps:

a. Copy the Kerberos authentication plug-in library in the client plug-in

directory on the client, server, or gateway.

b. Update the database manager configuration parameter clnt_krb_plugin

with the name of the plug-in.

c. Set the authentication database manager configuration parameter to

KERBEROS, or KRB_SERVER_ENCRYPT.
3. Optional: Catalog the databases that the client will access, indicating that the

client will only use a Kerberos authentication plug-in. For example:

CATALOG DB testdb AT NODE testnode AUTHENTICATION KERBEROS

 TARGET PRINCIPAL service/host@REALM

Chapter 9. An overview of security plug-ins 605

Note: For platforms supporting Kerberos, the IBMkrb5 library will be present in the

client plug-in directory. The DB2 database manager recognizes this library as a

valid GSS-API plug-in, because Kerberos plug-ins are implemented using GSS-API

plug-in.

Restrictions on security plug-ins

There are certain restrictions on the use of security plug-ins.

DB2 database family support restrictions

You cannot use a GSS-API plug-in to authenticate connections between DB2 clients

on Linux, UNIX, and Windows and another DB2 family servers such as DB2 for

z/OS. You also cannot authenticate connections from another DB2 database family

product, acting as a client, to a DB2 server on Linux, UNIX, or Windows.

If you use a DB2 client on Linux, UNIX, or Windows to connect to other DB2

database family servers, you can use client-side user ID/password plug-ins (such

as the IBM-shipped operating system authentication plug-in), or you can write

your own user ID/password plug-in. You can also use the built-in Kerberos

plug-ins, or implement your own.

With a DB2 client on Linux, UNIX, or Windows, you should not catalog a database

using the GSSPLUGIN authentication type.

Restrictions on the AUTHID identifier. Version 9.5, and later, of the DB2 database

system allows you to have an 128-byte authorization ID, but when the

authorization ID is interpreted as an operating system user ID or group name, the

operating system naming restrictions apply (for example, a limitation to 8 or 30

character user IDs and 30 character group names). Therefore, while you can grant

an 128-byte authorization ID, it is not possible to connect as a user that has that

authorization ID. If you write your own security plugin, you should be able to

take full advantage of the extended sizes for the authorization ID. For example,

you can give your security plugin a 30-byte user ID and it can return an 128-byte

authorization ID during authentication that you are able to connect with.

InfoSphere Federation Server support restrictions

DB2 II does not support the use of delegated credentials from a GSS_API plug-in

to establish outbound connections to data sources. Connections to data sources

must continue to use the CREATE USER MAPPING command.

Database Administration Server support restrictions

The DB2 Administration Server (DAS) does not support security plug-ins. The DAS

only supports the operating system authentication mechanism.

Security plug-in problem and restriction for DB2 clients

(Windows)

When developing security plug-ins that will be deployed in DB2 clients on

Windows operating systems, do not unload any auxiliary libraries in the plug-in

termination function. This restriction applies to all types of client security plug-ins,

including group, user ID and password, Kerberos, and GSS-API plug-ins. Since

these termination APIs such as db2secPluginTerm, db2secClientAuthPluginTerm

606 Common Criteria Certification: Administration and User Documentation - Volume 2

and db2secServerAuthPluginTerm are not called on any Windows platform, you

need to do the appropriate resource cleanup.

This restriction is related to cleanup issues associated with the unloading of DLLs

on Windows.

Loading plug-in libraries on AIX with extension of .a or .so

On AIX, security plug-in libraries can have a file name extension of .a or .so. The

mechanism used to load the plug-in library depends on which extension is used:

v Plug-in libraries with a file name extension of .a

Plug-in libraries with file name extensions of .a are assumed to be archives

containing shared object members. These members must be named shr.o (32-bit)

or shr64.o (64-bit). A single archive can contain both the 32-bit and 64-bit

members, allowing it to be deployed on both types of platforms.

For example, to build a 32-bit archive style plug-in library:

 xlc_r -qmkshrobj -o shr.o MyPlugin.c -bE:MyPlugin.exp

 ar rv MyPlugin.a shr.o

v Plug-in libraries with a file name extension of .so

Plug-in libraries with file name extensions of .so are assumed to be dynamically

loadable shared objects. Such an object is either 32-bit or 64-bit, depending on

the compiler and linker options used when it was built. For example, to build a

32-bit plug-in library:

 xlc_r -qmkshrobj -o MyPlugin.so MyPlugin.c -bE:MyPlugin.exp

On all platforms other than AIX, security plug-in libraries are always assumed to

be dynamically loadable shared objects.

GSS-API security plug-ins do not support message encryption

and signing

Message encryption and signing is not available in GSS-API security plug-ins.

Chapter 9. An overview of security plug-ins 607

608 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 10. Developing security plug-ins

This chapter will focus on creating user specific security plug-ins along with

restrictions and error messages. To develop a security plug-in, you need an

initialization function, and the plug-in must return a integer value to indicate

success or failure of the execution of the API.

How DB2 loads security plug-ins

So that the DB2 database system has the necessary information to call security

plug-in functions, a security plug-in must have a correctly set up initialization

function.

Each plug-in library must contain an initialization function with a specific name

determined by the plug-in type:

v Server side authentication plug-in: db2secServerAuthPluginInit()

v Client side authentication plug-in: db2secClientAuthPluginInit()

v Group plug-in: db2secGroupPluginInit()

This function is known as the plug-in initialization function. The plug-in

initialization function initializes the specified plug-in and provides DB2 with

information that it requires to call the plug-in’s functions. The plug-in initialization

function accepts the following parameters:

v The highest version number of the function pointer structure that the DB2

instance invoking the plugin can support

v A pointer to a structure containing pointers to all the APIs requiring

implementation

v A pointer to a function that adds log messages to the db2diag log files

v A pointer to an error message string

v The length of the error message

The following is a function signature for the initialization function of a group

retrieval plug-in:

 SQL_API_RC SQL_API_FN db2secGroupPluginInit(

 db2int32 version,

 void *group_fns,

 db2secLogMessage *logMessage_fn,

 char **errormsg,

 db2int32 *errormsglen);

Note: If the plug-in library is compiled as C++, all functions must be declared

with: extern "C". DB2 relies on the underlying operating system dynamic loader

to handle the C++ constructors and destructors used inside of a C++ user-written

plug-in library.

The initialization function is the only function in the plug-in library that uses a

prescribed function name. The other plug-in functions are referenced through

function pointers returned from the initialization function. Server plug-ins are

loaded when the DB2 server starts. Client plug-ins are loaded when required on

the client. Immediately after DB2 loads a plug-in library, it will resolve the location

of this initialization function and call it. The specific task of this function is as

follows:

© Copyright IBM Corp. 1993, 2009 609

|

v Cast the functions pointer to a pointer to an appropriate functions structure

v Fill in the pointers to the other functions in the library

v Fill in the version number of the function pointer structure being returned

DB2 can potentially call the plug-in initialization function more than once. This

situation can occur when an application dynamically loads the DB2 client library,

unloads it, and reloads it again, then performs authentication functions from a

plug-in both before and after reloading. In this situation, the plug-in library might

not be unloaded and then re-loaded; however, this behavior varies depending on

the operating system.

Another example of DB2 issuing multiple calls to a plug-in initialization function

occurs during the execution of stored procedures or federated system calls, where

the database server can itself act as a client. If the client and server plug-ins on the

database server are in the same file, DB2 could call the plug-in initialization

function twice.

If the plug-in detects that db2secGroupPluginInit is called more than once, it

should handle this event as if it was directed to terminate and reinitialize the

plug-in library. As such, the plug-in initialization function should do the entire

cleanup tasks that a call to db2secPluginTerm would do before returning the set of

function pointers again.

On a DB2 server running on a UNIX or Linux-based operating system, DB2 can

potentially load and initialize plug-in libraries more than once in different

processes.

Calling sequences for the security plug-in APIs

The sequence with which the DB2 database manager calls the security plug-in APIs

varies according to the scenario in which the security plug-in API is called.

These are the main scenarios in which the DB2 database manager will call security

plug-in APIs:

v On a client for a database connection (implicit and explicit)

– CLIENT

– Server based (SERVER, SERVER_ENCRYPT, DATA_ENCRYPT)

– GSSAPI and Kerberos
v On a client, server, or gateway for local authorization

v On a server for a database connection

v On a server for a grant statement

v On a server to get a list of groups to which an authorization ID belongs

Note: The DB2 database servers treat database actions requiring local

authorizations, such as db2start, db2stop, and db2trc like client applications.

For each of these operations, the sequence with which the DB2 database manager

calls the security plug-in APIs is different. Following are the sequences of APIs

called by the DB2 database manager for each of these scenarios.

CLIENT - implicit

When the user-configured authentication type is CLIENT, the DB2 client

application will call the following security plug-in APIs:

v db2secGetDefaultLoginContext();

610 Common Criteria Certification: Administration and User Documentation - Volume 2

v db2secValidatePassword();

v db2secFreetoken();

For an implicit authentication, that is, when you connect without

specifying a particular user ID or password, the db2secValidatePassword

API is called if you are using a user ID/password plug-in. This API

permits plug-in developers to prohibit implicit authentication if necessary.

CLIENT - explicit

On an explicit authentication, that is, when you connect to a database in

which both the user ID and password are specified, if the authentication

database manager configuration parameter is set to CLIENT the DB2 client

application will call the following security plug-in APIs multiple times if

the implementation requires it:

v db2secRemapUserid();

v db2secValidatePassword();

v db2secFreeToken();

Server based (SERVER, SERVER_ENCRYPT, DATA_ENCRYPT) - implicit

On an implicit authentication, when the client and server have negotiated

user ID/password authentication (for instance, when the srvcon_auth

parameter at the server is set to SERVER; SERVER_ENCRYPT,

DATA_ENCRYPT, or DATA_ENCRYPT_CMP), the client application will

call the following security plug-in APIs:

v db2secGetDefaultLoginContext();

v db2secFreeToken();

Server based (SERVER, SERVER_ENCRYPT, DATA_ENCRYPT) - explicit

On an explicit authentication, when the client and server have negotiated

userid/password authentication (for instance, when the srvcon_auth

parameter at the server is set to SERVER; SERVER_ENCRYPT,

DATA_ENCRYPT, or DATA_ENCRYPT_CMP), the client application will

call the following security plug-in APIs:

v db2secRemapUserid();

GSSAPI and Kerberos - implicit

On an implicit authentication, when the client and server have negotiated

GSS-API or Kerberos authentication (for instance, when the srvcon_auth

parameter at the server is set to KERBEROS; KRB_SERVER_ENCRYPT,

GSSPLUGIN, or GSS_SERVER_ENCRYPT), the client application will call

the following security plug-in APIs. (The call to gss_init_sec_context() will

use GSS_C_NO_CREDENTIAL as the input credential.)

v db2secGetDefaultLoginContext();

v db2secProcessServerPrincipalName();

v gss_init_sec_context();

v gss_release_buffer();

v gss_release_name();

v gss_delete_sec_context();

v db2secFreeToken();

With multi-flow GSS-API support, gss_init_sec_context() can be called

multiple times if the implementation requires it.

GSSAPI and Kerberos - explicit

If the negotiated authentication type is GSS-API or Kerberos, the client

application will call the following security plug-in APIs for GSS-API

Chapter 10. Developing security plug-ins 611

plug-ins in the following sequence. These APIs are used for both implicit

and explicit authentication unless otherwise stated.

v db2secProcessServerPrincipalName();

v db2secGenerateInitialCred(); (For explicit authentication only)

v gss_init_sec_context();

v gss_release_buffer ();

v gss_release_name();

v gss_release_cred();

v db2secFreeInitInfo();

v gss_delete_sec_context();

v db2secFreeToken();

The API gss_init_sec_context() may be called multiple times if a mutual

authentication token is returned from the server and the implementation

requires it.

On a client, server, or gateway for local authorization

For a local authorization, the DB2 command being used will call the

following security plug-in APIs:

v db2secGetDefaultLoginContext();

v db2secGetGroupsForUser();

v db2secFreeToken();

v db2secFreeGroupList();

These APIs will be called for both user ID/password and GSS-API

authentication mechanisms.

On a server for a database connection

For a database connection on the database server, the DB2 agent process or

thread will call the following security plug-in APIs for the user

ID/password authentication mechanism:

v db2secValidatePassword(); Only if the authentication database

configuration parameter is not CLIENT

v db2secGetAuthIDs();

v db2secGetGroupsForUser();

v db2secFreeToken();

v db2secFreeGroupList();

For a CONNECT to a database, the DB2 agent process or thread will call

the following security plug-in APIs for the GSS-API authentication

mechanism:

v gss_accept_sec_context();

v gss_release_buffer();

v db2secGetAuthIDs();

v db2secGetGroupsForUser();

v gss_delete_sec_context();

v db2secFreeGroupListMemory();

On a server for a GRANT statement

For a GRANT statement that does not specify the USER or GROUP

keyword, (for example, ″GRANT CONNECT ON DATABASE TO user1″), the DB2

612 Common Criteria Certification: Administration and User Documentation - Volume 2

agent process or thread must be able to determine if user1 is a user, a

group, or both. Therefore, the DB2 agent process or thread will call the

following security plug-in APIs:

v db2secDoesGroupExist();

v db2secDoesAuthIDExist();

On a server to get a list of groups to which an authid belongs

From your database server, when you need to get a list of groups to which

an authorization ID belongs, the DB2 agent process or thread will call the

following security plug-in API with only the authorization ID as input:

v db2secGetGroupsForUser();

There will be no token from other security plug-ins.

Restrictions for developing security plug-in libraries

There are certain restrictions that affect how you develop plug-in libraries.

Following are the restrictions for developing plug-in libraries.

C-linkage

Plug-in libraries must be linked with C-linkage. Header files providing the

prototypes, data structures needed to implement the plug-ins, and error

code definitions are provided for C/C++ only. Functions that DB2 will

resolve at load time must be declared with extern ″C″ if the plug-in library

is compiled as C++.

.NET common language runtime is not supported

The .NET common language runtime (CLR) is not supported for compiling

and linking source code for plug-in libraries.

Signal handlers

Plug-in libraries must not install signal handlers or change the signal mask,

because this will interfere with DB2’s signal handlers. Interfering with the

DB2 signal handlers could seriously interfere with DB2’s ability to report

and recover from errors, including traps in the plug-in code itself. Plug-in

libraries should also never throw C++ exceptions, as this can also interfere

with DB2’s error handling.

Thread-safe

Plug-in libraries must be thread-safe and re-entrant. The plug-in

initialization function is the only API that is not required to be re-entrant.

The plug-in initialization function could potentially be called multiple

times from different processes; in which case, the plug-in will cleanup all

used resources and reinitialize itself.

Exit handlers and overriding standard C library and operating system calls

Plug-in libraries should not override standard C library or operating

system calls. Plug-in libraries should also not install exit handlers or

pthread_atfork handlers. The use of exit handlers is not recommended

because they could be unloaded before the program exits.

Library dependencies

On Linux or UNIX, the processes that load the plug-in libraries can be

setuid or setgid, which means that they will not be able to rely on the

$LD_LIBRARY_PATH, $SHLIB_PATH, or $LIBPATH environment variables to find

dependent libraries. Therefore, plug-in libraries should not depend on

additional libraries, unless any dependant libraries are accessible through

other methods, such as the following:

Chapter 10. Developing security plug-ins 613

v By being in /lib or /usr/lib

v By having the directories they reside in being specified OS-wide (such as

in the ld.so.conf file on Linux)

v By being specified in the RPATH in the plug-in library itself

This restriction is not applicable to Windows operating systems.

Symbol collisions

When possible, plug-in libraries should be compiled and linked with any

available options that reduce the likelihood of symbol collisions, such as

those that reduce unbound external symbolic references. For example, use

of the ″-Bsymbolic″ linker option on HP, Solaris, and Linux can help

prevent problems related to symbol collisions. However, for plug-ins

written on AIX, do not use the "-brtl" linker option explicitly or

implicitly.

32-bit and 64-bit applications

32-bit applications must use 32-bit plug-ins. 64-bit applications must use

64-bit plug-ins. Refer to the topic about 32-bit and 64-bit considerations for

more details.

Text strings

Input text strings are not guaranteed to be null-terminated, and output

strings are not required to be null-terminated. Instead, integer lengths are

given for all input strings, and pointers to integers are given for lengths to

be returned.

Passing authorization ID parameters

An authorization ID (authid) parameter that DB2 passes into a plug-in (an

input authid parameter) will contain an upper-case authid, with padded

blanks removed. An authid parameter that a plug-in returns to DB2 (an

output authid parameter) does not require any special treatment, but DB2

will fold the authid to upper-case and pad it with blanks according to the

internal DB2 standard.

Size limits for parameters

The plug-in APIs use the following as length limits for parameters:

#define DB2SEC_MAX_AUTHID_LENGTH 255

#define DB2SEC_MAX_USERID_LENGTH 255

#define DB2SEC_MAX_USERNAMESPACE_LENGTH 255

#define DB2SEC_MAX_PASSWORD_LENGTH 255

#define DB2SEC_MAX_DBNAME_LENGTH 128

A particular plug-in implementation may require or enforce smaller

maximum lengths for the authorization IDs, user IDs, and passwords. In

particular, the operating system authentication plug-ins supplied with DB2

database systems are restricted to the maximum user, group and

namespace length limits enforced by the operating system for cases where

the operating system limits are lower than those stated above.

Security plug-in library extensions in AIX

On AIX systems, security plug-in libraries can have a file name extension

of .a or .so. The mechanism used to load the plug-in library depends on

which extension is used:

v Plug-in libraries with a file name extension of .a are assumed to be

archives containing shared object members. These members must be

named shr.o (32-bit) or shr64.o (64-bit). A single archive can contain both

the 32-bit and 64-bit members, allowing it to be deployed on both types

of platforms.

614 Common Criteria Certification: Administration and User Documentation - Volume 2

For example, to build a 32-bit archive style plug-in library:

 xlc_r -qmkshrobj -o shr.o MyPlugin.c -bE:MyPlugin.exp

 ar rv MyPlugin.a shr.o

v Plug-in libraries with a file name extension of .so are assumed to be

dynamically loadable shared objects. Such an object is either 32-bit or

64-bit, depending on the compiler and linker options used when it was

built. For example, to build a 32-bit plug-in library:

 xlc_r -qmkshrobj -o MyPlugin.so MyPlugin.c -bE:MyPlugin.exp

On all platforms other than AIX, security plug-in libraries are always

assumed to be dynamically loadable shared objects.

Return codes for security plug-ins

All security plug-in APIs must return an integer value to indicate the success or

failure of the execution of the API. A return code value of 0 indicates that the API

ran successfully. All negative return codes, with the exception of -3, -4, and -5,

indicate that the API encountered an error.

All negative return codes returned from the security-plug-in APIs are mapped to

SQLCODE -1365, SQLCODE -1366, or SQLCODE -30082, with the exception of

return codes with the -3, -4, or -5. The values -3, -4, and -5 are used to indicate

whether or not an authorization ID represents a valid user or group.

All the security plug-in API return codes are defined in db2secPlugin.h, which can

be found in the DB2 include directory: SQLLIB/include.

Details regarding all of the security plug-in return codes are presented in the

following table:

 Table 32. Security plug-in return codes

Return

code

Define value Meaning Applicable APIs

0 DB2SEC_PLUGIN_OK The plug-in API executed

successfully.

All

-1

 DB2SEC_PLUGIN_UNKNOWNERROR

The plug-in API encountered an

unexpected error.

All

-2 DB2SEC_PLUGIN_BADUSER The user ID passed in as input is

not defined.

 db2secGenerateInitialCred

db2secValidatePassword

db2secRemapUserid

db2secGetGroupsForUser

-3

 DB2SEC_PLUGIN

_INVALIDUSERORGROUP

No such user or group.

 db2secDoesAuthIDExist

db2secDoesGroupExist

-4

 DB2SEC_PLUGIN

_USERSTATUSNOTKNOWN

Unknown user status. This is not

treated as an error by DB2; it is

used by a GRANT statement to

determine if an authid represents

a user or an operating system

group.

db2secDoesAuthIDExist

Chapter 10. Developing security plug-ins 615

Table 32. Security plug-in return codes (continued)

Return

code

Define value Meaning Applicable APIs

-5

 DB2SEC_PLUGIN

_GROUPSTATUSNOTKNOWN

Unknown group status. This is

not treated as an error by DB2; it

is used by a GRANT statement to

determine if an authid represents

a user or an operating system

group.

db2secDoesGroupExist

-6 DB2SEC_PLUGIN_UID_EXPIRED User ID expired.

 db2secValidatePassword

db2GetGroupsForUser

db2secGenerateInitialCred

-7 DB2SEC_PLUGIN_PWD_EXPIRED Password expired.

 db2secValidatePassword

db2GetGroupsForUser

db2secGenerateInitialCred

-8 DB2SEC_PLUGIN_USER_REVOKED User revoked.

 db2secValidatePassword

db2GetGroupsForUser

-9

 DB2SEC_PLUGIN

_USER_SUSPENDED

User suspended.

 db2secValidatePassword

db2GetGroupsForUser

-10 DB2SEC_PLUGIN_BADPWD Bad password.

 db2secValidatePassword

db2secRemapUserid

db2secGenerateInitialCred

-11

 DB2SEC_PLUGIN

_BAD_NEWPASSWORD

Bad new password.

 db2secValidatePassword

db2secRemapUserid

-12

 DB2SEC_PLUGIN

_CHANGEPASSWORD

_NOTSUPPORTED

Change password not supported.

 db2secValidatePassword

db2secRemapUserid

db2secGenerateInitialCred

-13 DB2SEC_PLUGIN_NOMEM Plug-in attempt to allocate

memory failed due to insufficient

memory.

All

-14 DB2SEC_PLUGIN_DISKERROR Plug-in encountered a disk error. All

-15 DB2SEC_PLUGIN_NOPERM Plug-in attempt to access a file

failed because of wrong

permissions on the file.

All

-16 DB2SEC_PLUGIN_NETWORKERROR Plug-in encountered a network

error.

All

-17

 DB2SEC_PLUGIN

_CANTLOADLIBRARY

Plug-in is unable to load a

required library.

 db2secGroupPluginInit

db2secClientAuthPluginInit

db2secServerAuthPluginInit

-18

 DB2SEC_PLUGIN_CANT

_OPEN_FILE

Plug-in is unable to open and

read a file for a reason other than

missing file or inadequate file

permissions.

All

616 Common Criteria Certification: Administration and User Documentation - Volume 2

Table 32. Security plug-in return codes (continued)

Return

code

Define value Meaning Applicable APIs

-19 DB2SEC_PLUGIN_FILENOTFOUND Plug-in is unable to open and

read a file, because the file is

missing from the file system.

All

-20

 DB2SEC_PLUGIN

_CONNECTION_DISALLOWED

The plug-in is refusing the

connection because of the

restriction on which database is

allowed to connect, or the

TCP/IP address cannot connect

to a specific database.

All server-side plug-in APIs.

-21 DB2SEC_PLUGIN_NO_CRED GSS API plug-in only: initial

client credential is missing.

 db2secGetDefaultLoginContext

db2secServerAuthPluginInit

-22 DB2SEC_PLUGIN_CRED_EXPIRED GSS API plug-in only: client

credential has expired.

 db2secGetDefaultLoginContext

db2secServerAuthPluginInit

-23

 DB2SEC_PLUGIN

_BAD_PRINCIPAL_NAME

GSS API plug-in only: the

principal name is invalid.

db2secProcessServerPrincipalName

-24

 DB2SEC_PLUGIN

_NO_CON_DETAILS

This return code is returned by

the db2secGetConDetails callback

(for example, from DB2 to the

plug-in) to indicate that DB2 is

unable to determine the client’s

TCP/IP address.

db2secGetConDetails

-25

 DB2SEC_PLUGIN

_BAD_INPUT_PARAMETERS

Some parameters are not valid or

are missing when plug-in API is

called.

All

-26

 DB2SEC_PLUGIN

_INCOMPATIBLE_VER

The version of the APIs reported

by the plug-in is not compatible

with DB2.

 db2secGroupPluginInit

db2secClientAuthPluginInit

db2secServerAuthPluginInit

-27 DB2SEC_PLUGIN_PROCESS_LIMIT Insufficient resources are

available for the plug-in to create

a new process.

All

-28 DB2SEC_PLUGIN_NO_LICENSES The plug-in encountered a user

license problem. A possibility

exists that the underlying

mechanism license has reached

the limit.

All

-29 DB2SEC_PLUGIN_ROOT_NEEDED The plug-in is trying to run an

application that requires root

privileges.

All

-30 DB2SEC_PLUGIN_UNEXPECTED_SYSTEM_ERROR The plug-in encountered an

unexpected system error. A

possibility exists that the current

system configuration is not

supported.

All

Chapter 10. Developing security plug-ins 617

|

|

Error message handling for security plug-ins

When an error occurs in a security plug-in API, the API can return an ASCII text

string in the errormsg field to provide a more specific description of the problem

than the return code.

For example, the errormsg string can contain "File /home/db2inst1/mypasswd.txt

does not exist." DB2 will write this entire string into the DB2 administration

notification log, and will also include a truncated version as a token in some SQL

messages. Because tokens in SQL messages can only be of limited length, these

messages should be kept short, and important variable portions of these messages

should appear at the front of the string. To aid in debugging, consider adding the

name of the security plug-in to the error message.

For non-urgent errors, such as password expired errors, the errormsg string will

only be dumped when the DIAGLEVEL database manager configuration parameter

is set at 4.

The memory for these error messages must be allocated by the security plug-in.

Therefore, the plug-ins must also provide an API to free this memory:

db2secFreeErrormsg.

The errormsg field will only be checked by DB2 if an API returns a non-zero value.

Therefore, the plug-in should not allocate memory for this returned error message

if there is no error.

At initialization time a message logging function pointer, logMessage_fn, is passed

to the group, client, and server plug-ins. The plug-ins can use the function to log

any debugging information to the db2diag log files. For example:

 // Log an message indicate init successful

 (*(logMessage_fn))(DB2SEC_LOG_CRITICAL,

 "db2secGroupPluginInit successful",

 strlen("db2secGroupPluginInit successful"));

For more details about each parameter for the db2secLogMessage function, refer to

the initialization API for each of the plug-in types.

618 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|
|
|
|

|
|

Chapter 11. Security plug-in APIs

Security plug-in APIs

To enable you to customize the DB2 database system authentication and group

membership lookup behavior, the DB2 database system provides APIs that you can

use to modify existing plug-in modules or build new security plug-in modules.

When you develop a security plug-in module, you need to implement the standard

authentication or group membership lookup functions that the DB2 database

manager will invoke. For the three available types of plug-in modules, the

functionality you need to implement is as follows:

Group retrieval

Retrieves group membership information for a given user and determines

if a given string represents a valid group name.

User ID/password authentication

Authentication that identifies the default security context (client only),

validates and optionally changes a password, determines if a given string

represents a valid user (server only), modifies the user ID or password

provided on the client before it is sent to the server (client only), returns

the DB2 authorization ID associated with a given user.

GSS-API authentication

Authentication that implements the required GSS-API functions, identifies

the default security context (client side only), generates initial credentials

based on user ID and password, and optionally changes password (client

side only), creates and accepts security tickets, and returns the DB2

authorization ID associated with a given GSS-API security context.

The following are the definitions for terminology used in the descriptions of the

plug-in APIs.

Plug-in

A dynamically loadable library that DB2 will load to access user-written

authentication or group membership lookup functions.

Implicit authentication

A connection to a database without specifying a user ID or a password.

Explicit authentication

A connection to a database in which both the user ID and password are

specified.

Authid

An internal ID representing an individual or group to which authorities

and privileges within the database are granted. Internally, a DB2 authid is

folded to upper-case and is a minimum of 8 characters (blank padded to 8

characters). Currently, DB2 requires authids, user IDs, passwords, group

names, namespaces, and domain names that can be represented in 7-bit

ASCII.

Local authorization

Authorization that is local to the server or client that implements it, that

checks if a user is authorized to perform an action (other than connecting

© Copyright IBM Corp. 1993, 2009 619

to the database), such as starting and stopping the database manager,

turning DB2 trace on and off, or updating the database manager

configuration.

Namespace

A collection or grouping of users within which individual user identifiers

must be unique. Common examples include Windows domains and

Kerberos Realms. For example, within the Windows domain

″usa.company.com″ all user names must be unique. For example,

″user1@usa.company.com″. The same user ID in another domain, as in the

case of ″user1@canada.company.com″, however refers to a different person.

A fully qualified user identifier includes a user ID and namespace pair; for

example, ″user@domain.name″ or ″domain\user″.

Input Indicates that DB2 will fill in the value for the security plug-in API

parameter.

Output

Indicates that the security plug-in API will fill in the value for the API

parameter.

Group plug-in APIs

APIs for group retrieval plug-ins

For the group retrieval plug-in module, you need to implement the following APIs:

v db2secGroupPluginInit

Note: The db2secGroupPluginInit API takes as input a pointer, *logMessage_fn,

to an API with the following prototype:

SQL_API_RC (SQL_API_FN db2secLogMessage)

(

db2int32 level,

void *data,

db2int32 length

);

The db2secLogMessage API allows the plug-in to log messages to the db2diag

log files for debugging or informational purposes. This API is provided by the

DB2 database system, so you need not implement it.

v db2secPluginTerm

v db2secGetGroupsForUser

v db2secDoesGroupExist

v db2secFreeGroupListMemory

v db2secFreeErrormsg

v The only API that must be resolvable externally is db2secGroupPluginInit. This

API will take a void * parameter, which should be cast to the type:

typedef struct db2secGroupFunctions_1

{

db2int32 version;

db2int32 plugintype;

SQL_API_RC (SQL_API_FN * db2secGetGroupsForUser)

(

const char *authid,

db2int32 authidlen,

const char *userid,

db2int32 useridlen,

const char *usernamespace,

620 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

db2int32 usernamespacelen,

db2int32 usernamespacetype,

const char *dbname,

db2int32 dbnamelen,

const void *token,

db2int32 tokentype,

db2int32 location,

const char *authpluginname,

db2int32 authpluginnamelen,

void **grouplist,

db2int32 *numgroups,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secDoesGroupExist)

(

const char *groupname,

db2int32 groupnamelen,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secFreeGroupListMemory)

(

void *ptr,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)

(

char *msgtobefree

);

SQL_API_RC (SQL_API_FN * db2secPluginTerm)

(

char **errormsg,

db2int32 *errormsglen

);

} db2secGroupFunctions_1;

The db2secGroupPluginInit API assigns the addresses for the rest of the

externally available functions.

Note: The _1 indicates that this is the structure corresponding to version 1 of the

API. Subsequent interface versions will have the extension _2, _3, and so on.

db2secGroupPluginInit API - Initialize group plug-in

Initialization API, for the group-retrieval plug-in, that the DB2 database manager

calls immediately after loading the plug-in.

API and data structure syntax

SQL_API_RC SQL_API_FN db2secGroupPluginInit

 (db2int32 version,

 void *group_fns,

 db2secLogMessage *logMessage_fn,

 char **errormsg,

 db2int32 *errormsglen);

Chapter 11. Security plug-in APIs 621

db2secGroupPluginInit API parameters

version

Input. The highest version of the API supported by the instance loading

that plugin. The value DB2SEC_API_VERSION (in db2secPlugin.h)

contains the latest version number of the API that the DB2 database

manager currently supports.

group_fns

Output. A pointer to the db2secGroupFunctions_<version_number> (also

known as group_functions_<version_number>) structure. The

db2secGroupFunctions_<version_number> structure contains pointers to

the APIs implemented for the group-retrieval plug-in. In future, there

might be different versions of the APIs (for example,

db2secGroupFunctions_<version_number>), so the group_fns parameter is

cast as a pointer to the db2secGroupFunctions_<version_number> structure

corresponding to the version the plug-in has implemented. The first

parameter of the group_functions_<version_number> structure tells DB2

the version of the APIs that the plug-in has implemented. Note: The

casting is done only if the DB2 version is higher or equal to the version of

the APIs that the plug-in has implemented. The version number represents

the version of the APIs implemented by the plugin, and the pluginType

should be set to DB2SEC_PLUGIN_TYPE_GROUP.

logMessage_fn

Input. A pointer to the db2secLogMessage API, which is implemented by

the DB2 database system. The db2secGroupPluginInit API can call the

db2secLogMessage API to log messages to the db2diag log files for

debugging or informational purposes. The first parameter (level) of

db2secLogMessage API specifies the type of diagnostic errors that will be

recorded in the db2diag log files and the last two parameters respectively

are the message string and its length. The valid values for the first

parameter of dbesecLogMessage API (defined in db2secPlugin.h) are:

v DB2SEC_LOG_NONE: (0) No logging

v DB2SEC_LOG_CRITICAL: (1) Severe Error encountered

v DB2SEC_LOG_ERROR: (2) Error encountered

v DB2SEC_LOG_WARNING: (3) Warning

v DB2SEC_LOG_INFO: (4) Informational

The message text will show up in the diag.log only if the value of the

’level’ parameter of the db2secLogMessage API is less than or equal to the

diaglevel database manager configuration parameter. So for example, if

you use the DB2SEC_LOG_INFO value, the message text will only show up in

the db2diag log files if the diaglevel database manager configuration

parameter is set to 4.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secGroupPluginInit API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secPluginTerm - Clean up group plug-in resources

Frees resources used by the group-retrieval plug-in.

622 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|
|
|

|

|

|

|

|

|
|
|
|
|
|

This API is called by the DB2 database manager just before it unloads the

group-retrieval plug-in. It should be implemented in a manner that it does a

proper cleanup of any resources the plug-in library holds, for instance, free any

memory allocated by the plug-in, close files that are still open, and close network

connections. The plug-in is responsible for keeping track of these resources in

order to free them. This API is not called on any Windows platform.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secPluginTerm)

 (char **errormsg,

 db2int32 *errormsglen);

db2secPluginTerm API parameters

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secPluginTerm API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secGetGroupsForUser API - Get list of groups for user

Returns the list of groups to which a user belongs.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secGetGroupsForUser)

 (const char *authid,

 db2int32 authidlen,

 const char *userid,

 db2int32 useridlen,

 const char *usernamespace,

 db2int32 usernamespacelen,

 db2int32 usernamespacetype,

 const char *dbname,

 db2int32 dbnamelen,

 void *token,

 db2int32 tokentype,

 db2int32 location,

 const char *authpluginname,

 db2int32 authpluginnamelen,

 void **grouplist,

 db2int32 *numgroups,

 char **errormsg,

 db2int32 *errormsglen);

db2secGetGroupsForUser API parameters

authid Input. This parameter value is an SQL authid, which means that DB2

converts it to an uppercase character string with no trailing blanks. DB2

will always provide a non-null value for the authid parameter. The API

must be able to return a list of groups to which the authid belongs without

depending on the other input parameters. It is permissible to return a

shortened or empty list if this cannot be determined.

 If a user does not exist, the API must return the return code

DB2SEC_PLUGIN_BADUSER. DB2 does not treat the case of a user not

existing as an error, since it is permissible for an authid to not have any

groups associated with it. For example, the db2secGetAuthids API can

Chapter 11. Security plug-in APIs 623

return an authid that does not exist on the operating system. The authid is

not associated with any groups, however, it can still be assigned privileges

directly.

If the API cannot return a complete list of groups using only the authid,

then there will be some restrictions on certain SQL functions related to

group support. For a list of possible problem scenarios, refer to the Usage

notes section in this topic.

authidlen

Input. Length in bytes of the authid parameter value. The DB2 database

manager always provides a non-zero value for the authidlen parameter.

userid Input. This is the user ID corresponding to the authid. When this API is

called on the server in a non-connect scenario, this parameter will not be

filled by DB2.

useridlen

Input. Length in bytes of the userid parameter value.

usernamespace

Input. The namespace from which the user ID was obtained. When the

user ID is not available, this parameter will not be filled by the DB2

database manager.

usernamespacelen

Input. Length in bytes of the usernamespace parameter value.

usernamespacetype

Input. The type of namespace. Valid values for the usernamespacetype

parameter (defined in db2secPlugin.h) are:

v DB2SEC_NAMESPACE_SAM_COMPATIBLE Corresponds to a username

style like domain\myname

v DB2SEC_NAMESPACE_USER_PRINCIPAL Corresponds to a username

style like myname@domain.ibm.com

Currently, the DB2 database system only supports the value

DB2SEC_NAMESPACE_SAM_COMPATIBLE. When the user ID is not

available, the usernamespacetype parameter is set to the value

DB2SEC_USER_NAMESPACE_UNDEFINED (defined in db2secPlugin.h).

dbname

Input. Name of the database being connected to. This parameter can be

NULL in a non-connect scenario.

dbnamelen

Input. Length in bytes of the dbname parameter value. This parameter is

set to 0 if dbname parameter is NULL in a non-connect scenario.

token Input. A pointer to data provided by the authentication plug-in. It is not

used by DB2. It provides the plug-in writer with the ability to coordinate

user and group information. This parameter might not be provided in all

cases (for example, in a non-connect scenario), in which case it will be

NULL. If the authentication plug-in used is GSS-API based, the token will

be set to the GSS-API context handle (gss_ctx_id_t).

tokentype

Input. Indicates the type of data provided by the authentication plug-in. If

the authentication plug-in used is GSS-API based, the token will be set to

the GSS-API context handle (gss_ctx_id_t). If the authentication plug-in

624 Common Criteria Certification: Administration and User Documentation - Volume 2

used is user ID/password based, it will be a generic type. Valid values for

the tokentype parameter (defined in db2secPlugin.h) are:

v DB2SEC_GENERIC: Indicates that the token is from a user ID/password

based plug-in.

v DB2SEC_GSSAPI_CTX_HANDLE: Indicates that the token is from a GSS-API

(including Kerberos) based plug-in.

location

Input. Indicates whether DB2 is calling this API on the client side or server

side. Valid values for the location parameter (defined in db2secPlugin.h)

are:

v DB2SEC_SERVER_SIDE: The API is to be called on the database server.

v DB2SEC_CLIENT_SIDE: The API is to be called on a client.

authpluginname

Input. Name of the authentication plug-in that provided the data in the

token. The db2secGetGroupsForUser API might use this information in

determining the correct group memberships. This parameter might not be

filled by DB2 if the authid is not authenticated (for example, if the authid

does not match the current connected user).

authpluginnamelen

Input. Length in bytes of the authpluginname parameter value.

grouplist

Output. List of groups to which the user belongs. The list of groups must

be returned as a pointer to a section of memory allocated by the plug-in

containing concatenated varchars (a varchar is a character array in which

the first byte indicates the number of bytes following it). The length is an

unsigned char (1 byte) and that limits the maximum length of a

groupname to 255 characters. For example, ″\006GROUP1\
007MYGROUP\008MYGROUP3″. Each group name should be a valid DB2

authid. The memory for this array must be allocated by the plug-in. The

plug-in must therefore provide an API, such as the

db2secFreeGroupListMemory API that DB2 will call to free the memory.

numgroups

Output. The number of groups contained in the grouplist parameter.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secGetGroupsForUser API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

Usage notes

The following is a list of scenarios when problems can occur if an incomplete

group list is returned by this API to DB2:

v Alternate authorization is provided in CREATE SCHEMA statement. Group

lookup will be performed against the AUTHORIZATION NAME parameter if

there are nested CREATE statements in the CREATE SCHEMA statement.

v Processing a jar file in an MPP environment. In an MPP environment, the jar

processing request is sent from the coordinator node with the session authid.

Chapter 11. Security plug-in APIs 625

The catalog node received the requests and process the jar files based on the

privilege of the session authid (the user executing the jar processing requests).

– Install jar file. The session authid needs to have one of the following rights:

DBADM, or CREATEIN (implicit or explicit on the jar schema). The operation

will fail if the above rights are granted to group containing the session authid,

but not explicitly to the session authid.

– Remove jar file. The session authid needs to have one of the following rights:

DBADM, or DROPIN (implicit or explicit on the jar schema), or is the definer

of the jar file. The operation will fail if the above rights are granted to group

containing the session authid, but not explicitly to the session authid, and if

the session authid is not the definer of the jar file.

– Replace jar file. This is same as removing the jar file, followed by installing

the jar file. Both of the above apply.
v When SET SESSION_USER statement is issued. Subsequent DB2 operations are

run under the context of the authid specified by this statement. These operations

will fail if the privileges required are owned by one of the SESSION_USER’s

group is not explicitly granted to the SESSION_USER authid.

db2secDoesGroupExist API - Check if group exists

Determines if an authid represents a group.

If the groupname exists, the API must be able to return the value

DB2SEC_PLUGIN_OK, to indicate success. It must also be able to return the value

DB2SEC_PLUGIN_INVALIDUSERORGROUP if the group name is not valid. It is

permissible for the API to return the value

DB2SEC_PLUGIN_GROUPSTATUSNOTKNOWN if it is impossible to determine if

the input is a valid group. If an invalid group

(DB2SEC_PLUGIN_INVALIDUSERORGROUP) or group not known

(DB2SEC_PLUGIN_GROUPSTATUSNOTKNOWN) value is returned, DB2 might

not be able to determine whether the authid is a group or user when issuing the

GRANT statement without the keywords USER and GROUP, which would result

in the error SQLCODE -569, SQLSTATE 56092 being returned to the user.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secDoesGroupExist)

 (const char *groupname,

 db2int32 groupnamelen,

 char **errormsg,

 db2int32 *errormsglen);

db2secDoesGroupExist API parameters

groupname

Input. An authid, upper-cased, with no trailing blanks.

groupnamelen

Input. Length in bytes of the groupname parameter value.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secDoesGroupExist API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

626 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|

|
|
|
|
|

db2secFreeGroupListMemory API - Free group list memory

Frees the memory used to hold the list of groups from a previous call to

db2secGetGroupsForUser API.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secFreeGroupListMemory)

 (void *ptr,

 char **errormsg,

 db2int32 *errormsglen);

db2secFreeGroupListMemory API parameters

ptr Input. Pointer to the memory to be freed.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secFreeGroupListMemory API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in the errormsg parameter.

db2secFreeErrormsg API - Free error message memory

Frees the memory used to hold an error message from a previous API call. This is

the only API that does not return an error message. If this API returns an error,

DB2 will log it and continue.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secFreeErrormsg)

 (char *errormsg);

db2secFreeErrormsg API parameters

msgtofree

Input. A pointer to the error message allocated from a previous API call.

User authentication plug-in APIs

APIs for user ID/password authentication plug-ins

For the user ID/password plug-in module, you need to implement the following

client-side APIs:

v db2secClientAuthPluginInit

Note: The db2secClientAuthPluginInit API takes as input a pointer,

*logMessage_fn, to an API with the following prototype:

SQL_API_RC (SQL_API_FN db2secLogMessage)

(

db2int32 level,

void *data,

db2int32 length

);

The db2secLogMessage API allows the plug-in to log messages to the db2diag

log files for debugging or informational purposes. This API is provided by the

DB2 database system, so you need not implement it.

Chapter 11. Security plug-in APIs 627

|
|
|

v db2secClientAuthPluginTerm

v db2secGenerateInitialCred (Only used for gssapi)

v db2secRemapUserid (Optional)

v db2secGetDefaultLoginContext

v db2secValidatePassword

v db2secProcessServerPrincipalName (This is only for GSS-API)

v db2secFreeToken (Functions to free memory held by the DLL)

v db2secFreeErrormsg

v db2secFreeInitInfo

v The only API that must be resolvable externally is db2secClientAuthPluginInit.

This API will take a void * parameter, which should be cast to either:

typedef struct db2secUseridPasswordClientAuthFunctions_1

{

db2int32 version;

db2int32 plugintype;

SQL_API_RC (SQL_API_FN * db2secGetDefaultLoginContext)

(

char authid[DB2SEC_MAX_AUTHID_LENGTH],

db2int32 *authidlen,

char userid[DB2SEC_MAX_USERID_LENGTH],

db2int32 *useridlen,

db2int32 useridtype,

char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32 *usernamespacelen,

db2int32 *usernamespacetype,

const char *dbname,

db2int32 dbnamelen,

void **token,

char **errormsg,

db2int32 *errormsglen

);

/* Optional */

SQL_API_RC (SQL_API_FN * db2secRemapUserid)

(

char userid[DB2SEC_MAX_USERID_LENGTH],

db2int32 *useridlen,

char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32 *usernamespacelen,

db2int32 *usernamespacetype,

char password[DB2SEC_MAX_PASSWORD_LENGTH],

db2int32 *passwordlen,

char newpassword[DB2SEC_MAX_PASSWORD_LENGTH],

db2int32 *newpasswordlen,

const char *dbname,

db2int32 dbnamelen,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secValidatePassword)

(

const char *userid,

db2int32 useridlen,

const char *usernamespace,

db2int32 usernamespacelen,

db2int32 usernamespacetype,

const char *password,

db2int32 passwordlen,

const char *newpassword,

db2int32 newpasswordlen,

const char *dbname,

628 Common Criteria Certification: Administration and User Documentation - Volume 2

db2int32 dbnamelen,

db2Uint32 connection_details,

void **token,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secFreeToken)

(

void **token,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)

(

char *errormsg

);

SQL_API_RC (SQL_API_FN * db2secClientAuthPluginTerm)

(

char **errormsg,

db2int32 *errormsglen

);

}

or

typedef struct db2secGssapiClientAuthFunctions_1

{

db2int32 version;

db2int32 plugintype;

SQL_API_RC (SQL_API_FN * db2secGetDefaultLoginContext)

(

char authid[DB2SEC_MAX_AUTHID_LENGTH],

db2int32 *authidlen,

char userid[DB2SEC_MAX_USERID_LENGTH],

db2int32 *useridlen,

db2int32 useridtype,

char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32 *usernamespacelen,

db2int32 *usernamespacetype,

const char *dbname,

db2int32 dbnamelen,

void **token,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secProcessServerPrincipalName)

(

const void *data,

gss_name_t *gssName,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secGenerateInitialCred)

(

const char *userid,

db2int32 useridlen,

const char *usernamespace,

db2int32 usernamespacelen,

db2int32 usernamespacetype,

const char *password,

db2int32 passwordlen,

Chapter 11. Security plug-in APIs 629

const char *newpassword,

db2int32 newpasswordlen,

const char *dbname,

db2int32 dbnamelen,

gss_cred_id_t *pGSSCredHandle,

void **initInfo,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secFreeToken)

(

void *token,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)

(

char *errormsg

);

SQL_API_RC (SQL_API_FN * db2secFreeInitInfo)

(

void *initInfo,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secClientAuthPluginTerm)

(

char **errormsg,

db2int32 *errormsglen

);

/* GSS-API specific functions -- refer to db2secPlugin.h

 for parameter list*/

 OM_uint32 (SQL_API_FN * gss_init_sec_context)(<parameter list>);

 OM_uint32 (SQL_API_FN * gss_delete_sec_context)(<parameter list>);

 OM_uint32 (SQL_API_FN * gss_display_status)(<parameter list>);

 OM_uint32 (SQL_API_FN * gss_release_buffer)(<parameter list>);

 OM_uint32 (SQL_API_FN * gss_release_cred)(<parameter list>);

 OM_uint32 (SQL_API_FN * gss_release_name)(<parameter list>);

 }

You should use the db2secUseridPasswordClientAuthFunctions_1 structure if

you are writing an user ID/password plug-in. If you are writing a GSS-API

(including Kerberos) plug-in, you should use the

db2secGssapiClientAuthFunctions_1 structure.

For the user ID/password plug-in library, you will need to implement the

following server-side APIs:

v db2secServerAuthPluginInit

The db2secServerAuthPluginInit API takes as input a pointer, *logMessage_fn, to

the db2secLogMessage API, and a pointer, *getConDetails_fn, to the

db2secGetConDetails API with the following prototypes:

SQL_API_RC (SQL_API_FN db2secLogMessage)

(

db2int32 level,

void *data,

db2int32 length

);

630 Common Criteria Certification: Administration and User Documentation - Volume 2

SQL_API_RC (SQL_API_FN db2secGetConDetails)

(

db2int32 conDetailsVersion,

const void *pConDetails

);

The db2secLogMessage API allows the plug-in to log messages to the db2diag

log files for debugging or informational purposes. The db2secGetConDetails API

allows the plug-in to obtain details about the client that is trying to attempt to

have a database connection. Both the db2secLogMessage API and

db2secGetConDetails API are provided by the DB2 database system, so you do

not need to implement them. The db2secGetConDetails API in turn, takes as its

second parameter,pConDetails, a pointer to one of the following structures:

db2sec_con_details_1:

typedef struct db2sec_con_details_1

{

 db2int32 clientProtocol;

 db2Uint32 clientIPAddress;

 db2Uint32 connect_info_bitmap;

 db2int32 dbnameLen;

 char dbname[DB2SEC_MAX_DBNAME_LENGTH + 1];

} db2sec_con_details_1;

db2sec_con_details_2:

typedef struct db2sec_con_details_2

{

 db2int32 clientProtocol; /* See SQL_PROTOCOL_ in sqlenv.h */

 db2Uint32 clientIPAddress; /* Set if protocol is TCPIP4 */

 db2Uint32 connect_info_bitmap;

 db2int32 dbnameLen;

 char dbname[DB2SEC_MAX_DBNAME_LENGTH + 1];

 db2Uint32 clientIP6Address[4];/* Set if protocol is TCPIP6 */

} db2sec_con_details_2;

db2sec_con_details_3:

typedef struct db2sec_con_details_3

{

 db2int32 clientProtocol; /* See SQL_PROTOCOL_ in sqlenv.h */

 db2Uint32 clientIPAddress; /* Set if protocol is TCPIP4 */

 db2Uint32 connect_info_bitmap;

 db2int32 dbnameLen;

 char dbname[DB2SEC_MAX_DBNAME_LENGTH + 1];

 db2Uint32 clientIP6Address[4];/* Set if protocol is TCPIP6 */

 db2Uint32 clientPlatform; /* SQLM_PLATFORM_* from sqlmon.h */

 db2Uint32 _reserved[16];

} db2sec_con_details_3;

The possible values for conDetailsVersion are

DB2SEC_CON_DETAILS_VERSION_1, DB2SEC_CON_DETAILS_VERSION_2,

and DB2SEC_CON_DETAILS_VERSION_3 representing the version of the API.

Note: While using db2sec_con_details_1, db2sec_con_details_2, or

db2sec_con_details_3, consider the following:

– Existing plugins that are using the db2sec_con_details_1 structure and the

DB2SEC_CON_DETAILS_VERSION_1 value will continue to work as they did

with Version 8.2 when calling the db2GetConDetails API. If this API is called

on an IPv4 platform, the client IP address is returned in the clientIPAddress

field of the structure. If this API is called on an IPv6 platform,a value of 0 is

returned in the clientIPAddress field. To retrieve the client IP address on an

IPv6 platform, the security plug-in code should be changed to use either the

db2sec_con_details_2 structure and the DB2SEC_CON_DETAILS_VERSION_2

Chapter 11. Security plug-in APIs 631

|
|
|
|
|
|
|

value, or the db2sec_con_details_3 structure and the

DB2SEC_CON_DETAILS_VERSION_3 value .

– New plugins should use the db2sec_con_details_3 structure and the

DB2SEC_CON_DETAILS_VERSION_3 value. If the db2secGetConDetails API

is called on an IPv4 platform, the client IP address is returned in the

clientIPAddress field of the db2sec_con_details_3 structure and if the API is

called on an IPv6 platform the client IP address is returned in the

clientIP6Address field of the db2sec_con_details_3 structure. The clientProtocol

field of the connection details structure will be set to one of

SQL_PROTOCOL_TCPIP (IPv4, with v1 of the structure),

SQL_PROTOCOL_TCPIP4 (IPv4, with v2 of the structure) or

SQL_PROTOCOL_TCPIP6 (IPv6, with v2 or v3 of the structure).

– The structure db2sec_con_details_3 is identical to the structure

db2sec_con_details_2 except that it contains an additional field (clientPlatform)

that identifies the client platform type (as reported by the communication

layer) using platform type constants defined in sqlmon.h, such as

SQLM_PLATFORM_AIX.
v db2secServerAuthPluginTerm

v db2secValidatePassword

v db2secGetAuthIDs

v db2secDoesAuthIDExist

v db2secFreeToken

v db2secFreeErrormsg

v The only API that must be resolvable externally is db2secServerAuthPluginInit.

This API will take a void * parameter, which should be cast to either:

typedef struct db2secUseridPasswordServerAuthFunctions_1

{

db2int32 version;

db2int32 plugintype;

 /* parameter lists left blank for readability

 see above for parameters */

SQL_API_RC (SQL_API_FN * db2secValidatePassword)(<parameter list>);

SQL_API_RC (SQL_API_FN * db2secGetAuthIDs)(<parameter list);

SQL_API_RC (SQL_API_FN * db2secDoesAuthIDExist)(<parameter list>);

SQL_API_RC (SQL_API_FN * db2secFreeToken)(<parameter list>);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)(<parameter list>);

SQL_API_RC (SQL_API_FN * db2secServerAuthPluginTerm)();

} userid_password_server_auth_functions;

or

typedef struct db2secGssapiServerAuthFunctions_1

{

db2int32 version;

db2int32 plugintype;

gss_buffer_desc serverPrincipalName;

gss_cred_id_t ServerCredHandle;

SQL_API_RC (SQL_API_FN * db2secGetAuthIDs)(<parameter list);

SQL_API_RC (SQL_API_FN * db2secDoesAuthIDExist)(<parameter list>);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)(<parameter list>);

SQL_API_RC (SQL_API_FN * db2secServerAuthPluginTerm)();

/* GSS-API specific functions

refer to db2secPlugin.h for parameter list*/

OM_uint32 (SQL_API_FN * gss_accept_sec_context)(<parameter list>);

OM_uint32 (SQL_API_FN * gss_display_name)(<parameter list>);

OM_uint32 (SQL_API_FN * gss_delete_sec_context)(<parameter list>);

OM_uint32 (SQL_API_FN * gss_display_status)(<parameter list>);

632 Common Criteria Certification: Administration and User Documentation - Volume 2

OM_uint32 (SQL_API_FN * gss_release_buffer)(<parameter list>);

OM_uint32 (SQL_API_FN * gss_release_cred)(<parameter list>);

OM_uint32 (SQL_API_FN * gss_release_name)(<parameter list>);

} gssapi_server_auth_functions;

You should use the db2secUseridPasswordServerAuthFunctions_1 structure if

you are writing an user ID/password plug-in. If you are writing a GSS-API

(including Kerberos) plug-in, you should use the

db2secGssapiServerAuthFunctions_1 structure.

db2secClientAuthPluginInit API - Initialize client authentication

plug-in

Initialization API, for the client authentication plug-in, that the DB2 database

manager calls immediately after loading the plug-in.

API and data structure syntax

SQL_API_RC SQL_API_FN db2secClientAuthPluginInit

 (db2int32 version,

 void *client_fns,

 db2secLogMessage *logMessage_fn,

 char **errormsg,

 db2int32 *errormsglen);

db2secClientAuthPluginInit API parameters

version

Input. The highest version number of the API that the DB2 database

manager currently supports. The DB2SEC_API_VERSION value (in

db2secPlugin.h) contains the latest version number of the API that DB2

currently supports.

client_fns

Output. A pointer to memory provided by the DB2 database manager for a

db2secGssapiClientAuthFunctions_<version_number> structure (also

known as gssapi_client_auth_functions_<version_number>), if GSS-API

authentication is used, or a

db2secUseridPasswordClientAuthFunctions_<version_number> structure

(also known as

userid_password_client_auth_functions_<version_number>), if

userid/password authentication is used. The

db2secGssapiClientAuthFunctions_<version_number> structure and

db2secUseridPasswordClientAuthFunctions_<version_number> structure

respectively contain pointers to the APIs implemented for the GSS-API

authentication plug-in and userid/password authentication plug-in. In

future versions of DB2, there might be different versions of the APIs, so the

client_fns parameter is cast as a pointer to the

gssapi_client_auth_functions_<version_number> structure corresponding to

the version the plug-in has implemented.

 The first parameter of the gssapi_client_auth_functions_<version_number>

structure or the userid_password_client_auth_functions_<version_number>

structure tells the DB2 database manager the version of the APIs that the

plug-in has implemented.

Note: The casting is done only if the DB2 version is higher or equal to the

version of the APIs that the plug-in has implemented.

Chapter 11. Security plug-in APIs 633

Inside the gssapi_server_auth_functions_<version_number> or

userid_password_server_auth_functions_<version_number> structure, the

plugintype parameter should be set to one of

DB2SEC_PLUGIN_TYPE_USERID_PASSWORD,

DB2SEC_PLUGIN_TYPE_GSSAPI, or DB2SEC_PLUGIN_TYPE_KERBEROS.

Other values can be defined in future versions of the API.

logMessage_fn

Input. A pointer to the db2secLogMessage API, which is implemented by

the DB2 database manager. The db2secClientAuthPluginInit API can call

the db2secLogMessage API to log messages to the db2diag log files for

debugging or informational purposes. The first parameter (level) of

db2secLogMessage API specifies the type of diagnostic errors that will be

recorded in the db2diag log files and the last two parameters respectively

are the message string and its length. The valid values for the first

parameter of dbesecLogMessage API (defined in db2secPlugin.h) are:

v DB2SEC_LOG_NONE (0) No logging

v DB2SEC_LOG_CRITICAL (1) Severe Error encountered

v DB2SEC_LOG_ERROR (2) Error encountered

v DB2SEC_LOG_WARNING (3) Warning

v DB2SEC_LOG_INFO (4) Informational

The message text will show up in the db2diag log files only if the value of

the ’level’ parameter of the db2secLogMessage API is less than or equal to

the diaglevel database manager configuration parameter. For example, if

you use the DB2SEC_LOG_INFO value, the message text will only appear

in the db2diag log files if the diaglevel database manager configuration

parameter is set to 4.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secClientAuthPluginInit API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secClientAuthPluginTerm API - Clean up client

authentication plug-in resources

Frees resources used by the client authentication plug-in.

This API is called by the DB2 database manager just before it unloads the client

authentication plug-in. It should be implemented in a manner that it does a proper

cleanup of any resources the plug-in library holds, for instance, free any memory

allocated by the plug-in, close files that are still open, and close network

connections. The plug-in is responsible for keeping track of these resources in

order to free them. This API is not called on any Windows platform.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secClientAuthPluginTerm)

 (char **errormsg,

 db2int32 *errormsglen);

634 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|
|
|

|

|

|

|

|

|
|
|
|
|
|

db2secClientAuthPluginTerm API parameters

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secClientAuthPluginTerm API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secRemapUserid API - Remap user ID and password

This API is called by the DB2 database manager on the client side to remap a

given user ID and password (and possibly new password and usernamespace) to

values different from those given at connect time.

The DB2 database manager only calls this API if a user ID and a password are

supplied at connect time. This prevents a plug-in from remapping a user ID by

itself to a user ID/password pair. This API is optional and is not called if it is not

provided or implemented by the security plug-in.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secRemapUserid)

 (char userid[DB2SEC_MAX_USERID_LENGTH],

 db2int32 *useridlen,

 char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

 db2int32 *usernamespacelen,

 db2int32 *usernamespacetype,

 char password[DB2SEC_MAX_PASSWORD_LENGTH],

 db2int32 *passwordlen,

 char newpasswd[DB2SEC_MAX_PASSWORD_LENGTH],

 db2int32 *newpasswdlen,

 const char *dbname,

 db2int32 dbnamelen,

 char **errormsg,

 db2int32 *errormsglen);

db2secRemapUserid API parameters

userid Input or output. The user ID to be remapped. If there is an input user ID

value, then the API must provide an output user ID value that can be the

same or different from the input user ID value. If there is no input user ID

value, then the API should not return an output user ID value.

useridlen

Input or output. Length in bytes of the userid parameter value.

usernamespace

Input or output. The namespace of the user ID. This value can optionally

be remapped. If no input parameter value is specified, but an output value

is returned, then the usernamespace will only be used by the DB2 database

manager for CLIENT type authentication and is disregarded for other

authentication types.

usernamespacelen

Input or output. Length in bytes of the usernamespace parameter value.

Under the limitation that the usernamespacetype parameter must be set to

the value DB2SEC_NAMESPACE_SAM_COMPATIBLE (defined in

db2secPlugin.h), the maximum length currently supported is 15 bytes.

Chapter 11. Security plug-in APIs 635

usernamespacetype

Input or output. Old and new namespacetype value. Currently, the only

supported namespace type value is

DB2SEC_NAMESPACE_SAM_COMPATIBLE (corresponds to a username

style like domain\myname).

password

Input or output. As an input, it is the password that is to be remapped. As

an output it is the remapped password. If an input value is specified for

this parameter, the API must be able to return an output value that differs

from the input value. If no input value is specified, the API must not

return an output password value.

passwordlen

Input or output. Length in bytes of the password parameter value.

newpasswd

Input or output. As an input, it is the new password that is to be set. As

an output it is the confirmed new password.

Note: This is the new password that is passed by the DB2 database

manager into the newpassword parameter of the db2secValidatePassword

API on the client or the server (depending on the value of the

authentication database manager configuration parameter). If a new

password was passed as input, then the API must be able to return an

output value and it can be a different new password. If there is no new

password passed in as input, then the API should not return an output

new password.

newpasswdlen

Input or output. Length in bytes of the newpasswd parameter value.

dbname

Input. Name of the database to which the client is connecting.

dbnamelen

Input. Length in bytes of the dbname parameter value.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secRemapUserid API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secGetDefaultLoginContext API - Get default login context

Determines the user associated with the default login context, in other words,

determines the DB2 authid of the user invoking a DB2 command without explicitly

specifying a user ID (either an implicit authentication to a database, or a local

authorization). This API must return both an authid and a user ID.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secGetDefaultLoginContext)

 (char authid[DB2SEC_MAX_AUTHID_LENGTH],

 db2int32 *authidlen,

 char userid[DB2SEC_MAX_USERID_LENGTH],

 db2int32 *useridlen,

 db2int32 useridtype,

636 Common Criteria Certification: Administration and User Documentation - Volume 2

char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

 db2int32 *usernamespacelen,

 db2int32 *usernamespacetype,

 const char *dbname,

 db2int32 dbnamelen,

 void **token,

 char **errormsg,

 db2int32 *errormsglen);

db2secGetDefaultLoginContext API parameters

authid Output. The parameter in which the authid should be returned. The

returned value must conform to DB2 authid naming rules, or the user will

not be authorized to perform the requested action.

authidlen

Output. Length in bytes of the authid parameter value.

userid Output. The parameter in which the user ID associated with the default

login context should be returned.

useridlen

Output. Length in bytes of the userid parameter value.

useridtype

Input. Indicates if the real or effective user ID of the process is being

specified. On Windows, only the real user ID exists. On UNIX and Linux,

the real user ID and effective user ID can be different if the uid user ID for

the application is different than the ID of the user executing the process.

Valid values for the userid parameter (defined in db2secPlugin.h) are:

DB2SEC_PLUGIN_REAL_USER_NAME

Indicates that the real user ID is being specified.

DB2SEC_PLUGIN_EFFECTIVE_USER_NAME

Indicates that the effective user ID is being specified.

Note: Some plug-in implementations might not distinguish

between the real and effective userid. In particular, a plug-in that

does not use the UNIX or Linux identity of the user to establish

the DB2 authorization ID can safely ignore this distinction.

usernamespace

Output. The namespace of the user ID.

usernamespacelen

Output. Length in bytes of the usernamespace parameter value. Under the

limitation that the usernamespacetype parameter must be set to the value

DB2SEC_NAMESPACE_SAM_COMPATIBLE (defined in db2secPlugin.h),

the maximum length currently supported is 15 bytes.

usernamespacetype

Output. Namespacetype value. Currently, the only supported namespace

type is DB2SEC_NAMESPACE_SAM_COMPATIBLE (corresponds to a

username style like domain\myname).

dbname

Input. Contains the name of the database being connected to, if this call is

being used in the context of a database connection. For local authorization

actions or instance attachments, this parameter is set to NULL.

dbnamelen

Input. Length in bytes of the dbname parameter value.

Chapter 11. Security plug-in APIs 637

token Output. This is a pointer to data allocated by the plug-in that it might pass

to subsequent authentication calls in the plug-in, or possibly to the group

retrieval plug-in. The structure of this data is determined by the plug-in

writer.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secGetDefaultLoginContext API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secGenerateInitialCred API - Generate initial credentials

The db2secGenerateInitialCred API obtains the initial GSS-API credentials based on

the user ID and password that are passed in.

For Kerberos, this is the ticket-granting ticket (TGT). The credential handle that is

returned in pGSSCredHandle parameter is the handle that is used with the

gss_init_sec_context API and must be either an INITIATE or BOTH credential. The

db2secGenerateInitialCred API is only called when a user ID, and possibly a

password are supplied. Otherwise, the DB2 database manager specifies the value

GSS_C_NO_CREDENTIAL when calling the gss_init_sec_context API to signify

that the default credential obtained from the current login context is to be used.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secGenerateInitialCred)

 (const char *userid,

 db2int32 useridlen,

 const char *usernamespace,

 db2int32 usernamespacelen,

 db2int32 usernamespacetype,

 const char *password,

 db2int32 passwordlen,

 const char *newpassword,

 db2int32 newpasswordlen,

 const char *dbname,

 db2int32 dbnamelen,

 gss_cred_id_t *pGSSCredHandle,

 void **InitInfo,

 char **errormsg,

 db2int32 *errormsglen);

db2secGenerateInitialCred API parameters

userid Input. The user ID whose password is to be verified on the database

server.

useridlen

Input. Length in bytes of the userid parameter value.

usernamespace

Input. The namespace from which the user ID was obtained.

usernamespacelen

Input. Length in bytes of the usernamespace parameter value.

usernamespacetype

Input. The type of namespace.

638 Common Criteria Certification: Administration and User Documentation - Volume 2

password

Input. The password to be verified.

passwordlen

Input. Length in bytes of the password parameter value.

newpassword

Input. A new password if the password is to be changed. If no change is

requested, the newpassword parameter is set to NULL. If it is not NULL,

the API should validate the old password before setting the password to its

new value. The API does not have to honour a request to change the

password, but if it does not, it should immediately return with the return

value DB2SEC_PLUGIN_CHANGEPASSWORD_NOTSUPPORTED without

validating the old password.

newpasswordlen

Input. Length in bytes of the newpassword parameter value.

dbname

Input. The name of the database being connected to. The API is free to

ignore this parameter, or the API can return the value

DB2SEC_PLUGIN_CONNECTION_DISALLOWED if it has a policy of

restricting access to certain databases to users who otherwise have valid

passwords.

dbnamelen

Input. Length in bytes of the dbname parameter value.

pGSSCredHandle

Output. Pointer to the GSS-API credential handle.

InitInfo

Output. A pointer to data that is not known to DB2. The plug-in can use

this memory to maintain a list of resources that are allocated in the process

of generating the credential handle. The DB2 database manager calls the

db2secFreeInitInfo API at the end of the authentication process, at which

point these resources are freed. If the db2secGenerateInitialCred API does

not need to maintain such a list, then it should return NULL.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secGenerateInitialCred API execution is not successful.

Note: For this API, error messages should not be created if the return

value indicates a bad user ID or password. An error message should only

be returned if there is an internal error in the API that prevented it from

completing properly.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secValidatePassword API - Validate password

Provides a method for performing user ID and password style authentication

during a database connect operation.

Chapter 11. Security plug-in APIs 639

Note: When the API is run on the client side, the API code is run with the

privileges of the user executing the CONNECT statement. This API will only be

called on the client side if the authentication configuration parameter is set to

CLIENT.

When the API is run on the server side, the API code is run with the privileges of

the instance owner.

The plug-in writer should take the above into consideration if authentication

requires special privileges (such as root level system access on UNIX).

This API must return the value DB2SEC_PLUGIN_OK (success) if the password is

valid, or an error code such as DB2SEC_PLUGIN_BADPWD if the password is

invalid.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secValidatePassword)

 (const char *userid,

 db2int32 useridlen,

 const char *usernamespace,

 db2int32 usernamespacelen,

 db2int32 usernamespacetype,

 const char *password,

 db2int32 passwordlen,

 const char *newpasswd,

 db2int32 newpasswdlen,

 const char *dbname,

 db2int32 dbnamelen,

 db2Uint32 connection_details,

 void **token,

 char **errormsg,

 db2int32 *errormsglen);

db2secValidatePassword API parameters

userid Input. The user ID whose password is to be verified.

useridlen

Input. Length in bytes of the userid parameter value.

usernamespace

Input. The namespace from which the user ID was obtained.

usernamespacelen

Input. Length in bytes of the usernamespace parameter value.

usernamespacetype

Input. The type of namespace. Valid values for the usernamespacetype

parameter (defined in db2secPlugin.h) are:

v DB2SEC_NAMESPACE_SAM_COMPATIBLE Corresponds to a username style like

domain\myname

v DB2SEC_NAMESPACE_USER_PRINCIPAL Corresponds to a username style like

myname@domain.ibm.com

Currently, the DB2 database system only supports the value

DB2SEC_NAMESPACE_SAM_COMPATIBLE. When the user ID is not

available, the usernamespacetype parameter is set to the value

DB2SEC_USER_NAMESPACE_UNDEFINED (defined in db2secPlugin.h).

password

Input. The password to be verified.

640 Common Criteria Certification: Administration and User Documentation - Volume 2

passwordlen

Input. Length in bytes of the password parameter value.

newpasswd

Input. A new password, if the password is to be changed. If no change is

requested, this parameter is set to NULL. If this parameter is not NULL,

the API should validate the old password before changing it to the new

password. The API does not have to fulfill a request to change the

password, but if it does not, it should immediately return with the return

value DB2SEC_PLUGIN_CHANGEPASSWORD_NOTSUPPORTED without

validating the old password.

newpasswdlen

Input. Length in bytes of the newpasswd parameter value.

dbname

Input. The name of the database being connected to. The API is free to

ignore the dbname parameter, or it can return the value

DB2SEC_PLUGIN_CONNECTIONREFUSED if it has a policy of restricting

access to certain databases to users who otherwise have valid passwords.

This parameter can be NULL.

dbnamelen

Input. Length in bytes of the dbname parameter value. This parameter is

set to 0 if dbname parameter is NULL.

connection_details

Input. A 32-bit parameter of which 3 bits are currently used to store the

following information:

v The rightmost bit indicates whether the source of the user ID is the

default from the db2secGetDefaultLoginContext API, or was explicitly

provided during the connect.

v The second-from-right bit indicates whether the connection is local

(using Inter Process Communication (IPC) or a connect from one of the

nodes in the db2nodes.cfg in the partitioned database environment), or

remote (through a network or loopback). This gives the API the ability

to decide whether clients on the same machine can connect to the DB2

server without a password. Due to the default operating-system-based

user ID/password plugin, local connections are permitted without a

password from clients on the same machine (assuming the user has

connect privileges).

v The third-from-right bit indicates whether the DB2 database manager is

calling the API from the server side or client side.

The bit values are defined in db2secPlugin.h:

v DB2SEC_USERID_FROM_OS (0x00000001) Indicates that the user ID is

obtained from OS and not explicitly given on the connect statement.

v DB2SEC_CONNECTION_ISLOCAL (0x00000002) Indicates a local connection.

v DB2SEC_VALIDATING_ON_SERVER_SIDE (0x0000004) Indicates whether the

DB2 database manager is calling from the server side or client side to

validate password. If this bit value is set, then the DB2 database

manager is calling from server side; otherwise, it is calling from the

client side.

The DB2 database system default behavior for an implicit authentication is

to allow the connection without any password validation. However,

plug-in developers have the option to disallow implicit authentication by

returning a DB2SEC_PLUGIN_BADPASSWORD error.

Chapter 11. Security plug-in APIs 641

token Input. A pointer to data which can be passed as a parameter to subsequent

API calls during the current connection. Possible APIs that might be called

include db2secGetAuthIDs API and db2secGetGroupsForUser API.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secValidatePassword API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secProcessServerPrincipalName API - Process service

principal name returned from server

The db2secProcessServerPrincipalName API processes the service principal name

returned from the server and returns the principal name in the gss_name_t internal

format to be used with the gss_init_sec_context API.

The db2secProcessServerPrincipalName API also processes the service principal

name cataloged with the database directory when Kerberos authentication is used.

Ordinarily, this conversion uses the gss_import_name API. After the context is

established, the gss_name_t object is freed through the call to gss_release_name

API. The db2secProcessServerPrincipalName API returns the value

DB2SEC_PLUGIN_OK if gssName parameter points to a valid GSS name; a

DB2SEC_PLUGIN_BAD_PRINCIPAL_NAME error code is returned if the principal

name is invalid.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secProcessServerPrincipalName)

 (const char *name,

 db2int32 namelen,

 gss_name_t *gssName,

 char **errormsg,

 db2int32 *errormsglen);

db2secProcessServerPrincipalName API parameters

name Input. Text name of the service principal in GSS_C_NT_USER_NAME

format; for example, service/host@REALM.

namelen

Input. Length in bytes of the name parameter value.

gssName

Output. Pointer to the output service principal name in the GSS-API

internal format.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secProcessServerPrincipalName API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

642 Common Criteria Certification: Administration and User Documentation - Volume 2

db2secFreeToken API - Free memory held by token

Frees the memory held by a token. This API is called by the DB2 database

manager when it no longer needs the memory held by the token parameter.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secFreeToken)

 (void *token,

 char **errormsg,

 db2int32 *errormsglen);

db2secFreeToken API parameters

token Input. Pointer to the memory to be freed.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secFreeToken API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secFreeInitInfo API - Clean up resources held by the

db2secGenerateInitialCred

Frees any resources allocated by the db2secGenerateInitialCred API. This can

include, for example, handles to underlying mechanism contexts or a credential

cache created for the GSS-API credential cache.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secFreeInitInfo)

 (void *initinfo,

 char **errormsg,

 db2int32 *errormsglen);

db2secFreeInitInfo API parameters

initinfo

Input. A pointer to data that is not known to the DB2 database manager.

The plug-in can use this memory to maintain a list of resources that are

allocated in the process of generating the credential handle. These

resources are freed by calling this API.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secFreeInitInfo API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secServerAuthPluginInit - Initialize server authentication

plug-in

The db2secServerAuthPluginInit API is the initialization API for the server

authentication plug-in that the DB2 database manager calls immediately after

loading the plug-in.

Chapter 11. Security plug-in APIs 643

In the case of GSS-API, the plug-in is responsible for filling in the server’s

principal name in the serverPrincipalName parameter inside the

gssapi_server_auth_functions structure at initialization time and providing the

server’s credential handle in the serverCredHandle parameter inside the

gssapi_server_auth_functions structure. The freeing of the memory allocated to

hold the principal name and the credential handle must be done by the

db2secServerAuthPluginTerm API by calling the gss_release_name and

gss_release_cred APIs.

API and data structure syntax

SQL_API_RC SQL_API_FN db2secServerAuthPluginInit

 (db2int32 version,

 void *server_fns,

 db2secGetConDetails *getConDetails_fn,

 db2secLogMessage *logMessage_fn,

 char **errormsg,

 db2int32 *errormsglen);

db2secServerAuthPluginInit API parameters

version

Input. The highest version number of the API that the DB2 database

manager currently supports. The DB2SEC_API_VERSION value (in

db2secPlugin.h) contains the latest version number of the API that the DB2

database manager currently supports.

server_fns

Output. A pointer to memory provided by the DB2 database manager for a

db2secGssapiServerAuthFunctions_<version_number> structure (also

known as gssapi_server_auth_functions_<version_number>), if GSS-API

authentication is used, or a

db2secUseridPasswordServerAuthFunctions_<version_number> structure

(also known as

userid_password_server_auth_functions_<version_number>), if

userid/password authentication is used. The

db2secGssapiServerAuthFunctions_<version_number> structure and

db2secUseridPasswordServerAuthFunctions_<version_number> structure

respectively contain pointers to the APIs implemented for the GSS-API

authentication plug-in and userid/password authentication plug-in.

 The server_fns parameter is cast as a pointer to the

gssapi_server_auth_functions_<version_number> structure corresponding

to the version the plug-in has implemented. The first parameter of the

gssapi_server_auth_functions_<version_number> structure or the

userid_password_server_auth_functions_<version_number> structure tells

theDB2 database manager the version of the APIs that the plug-in has

implemented.

Note: The casting is done only if the DB2 version is higher or equal to the

version of the APIs that the plug-in has implemented.

Inside the gssapi_server_auth_functions_<version_number> or

userid_password_server_auth_functions_<version_number> structure, the

plugintype parameter should be set to one of

DB2SEC_PLUGIN_TYPE_USERID_PASSWORD,

DB2SEC_PLUGIN_TYPE_GSSAPI, or DB2SEC_PLUGIN_TYPE_KERBEROS.

Other values can be defined in future versions of the API.

644 Common Criteria Certification: Administration and User Documentation - Volume 2

getConDetails_fn

Input. Pointer to the db2secGetConDetails API, which is implemented by

DB2. The db2secServerAuthPluginInit API can call the

db2secGetConDetails API in any one of the other authentication APIs to

obtain details related to the database connection. These details include

information about the communication mechanism associated with the

connection (such as the IP address, in the case of TCP/IP), which the

plug-in writer might need to reference when making authentication

decisions. For example, the plug-in could disallow a connection for a

particular user, unless that user is connecting from a particular IP address.

The use of the db2secGetConDetails API is optional.

 If the db2secGetConDetails API is called in a situation not involving a

database connection, it returns the value

DB2SEC_PLUGIN_NO_CON_DETAILS, otherwise, it returns 0 on success.

The db2secGetConDetails API takes two input parameters; pConDetails,

which is a pointer to the db2sec_con_details_<version_number> structure,

and conDetailsVersion, which is a version number indicating which

db2sec_con_details structure to use. Possible values are

DB2SEC_CON_DETAILS_VERSION_1 when db2sec_con_details1 is used or

DB2SEC_CON_DETAILS_VERSION_2 when db2sec_con_details2. The

recommended version number to use is

DB2SEC_CON_DETAILS_VERSION_2.

Upon a successful return, the db2sec_con_details structure (either

db2sec_con_details1 or db2sec_con_details2) will contain the following

information:

v The protocol used for the connection to the server. The listing of protocol

definitions can be found in the file sqlenv.h (located in the include

directory) (SQL_PROTOCOL_*). This information is filled out in the

clientProtocol parameter.

v The TCP/IP address of the inbound connect to the server if the

clientProtocol is SQL_PROTOCOL_TCPIP or SQL_PROTOCOL_TCPIP4.

This information is filled out in the clientIPAddress parameter.

v The database name the client is attempting to connect to. This will not

be set for instance attachments. This information is filled out in the

dbname and dbnameLen parameters.

v A connection information bit-map that contains the same details as

documented in the connection_details parameter of the

db2secValidatePassword API. This information is filled out in the

connect_info_bitmap parameter.

v The TCP/IP address of the inbound connect to the server if the

clientProtocol is SQL_PROTOCOL_TCPIP6. This information is filled out

in the clientIP6Address parameter and it is only available if

DB2SEC_CON_DETAILS_VERSION_2 is used for db2secGetConDetails

API call.

logMessage_fn

 Input. A pointer to the db2secLogMessage API, which is implemented by

the DB2 database manager. The db2secClientAuthPluginInit API can call

the db2secLogMessage API to log messages to the db2diag log files for

debugging or informational purposes. The first parameter (level) of

db2secLogMessage API specifies the type of diagnostic errors that will be

recorded in the db2diag log files and the last two parameters respectively

Chapter 11. Security plug-in APIs 645

|
|
|
|
|
|

are the message string and its length. The valid values for the first

parameter of dbesecLogMessage API (defined in db2secPlugin.h) are:

DB2SEC_LOG_NONE (0)

No logging

DB2SEC_LOG_CRITICAL (1)

Severe Error encountered

DB2SEC_LOG_ERROR (2)

Error encountered

DB2SEC_LOG_WARNING (3)

Warning

DB2SEC_LOG_INFO (4)

Informational

The message text will appear in the db2diag log files only if the value of

the ’level’ parameter of the db2secLogMessage API is less than or equal to

the diaglevel database manager configuration parameter.

So for example, if you use the DB2SEC_LOG_INFO value, the message text

will only appear in the db2diag log files if the diaglevel database manager

configuration parameter is set to 4.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secServerAuthPluginInit API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secServerAuthPluginTerm API - Clean up server

authentication plug-in resources

The db2secServerAuthPluginTerm API frees resources used by the server

authentication plug-in.

This API is called by the DB2 database manager just before it unloads the server

authentication plug-in. It should be implemented in a manner that it does a proper

cleanup of any resources the plug-in library holds, for instance, free any memory

allocated by the plug-in, close files that are still open, and close network

connections. The plug-in is responsible for keeping track of these resources in

order to free them. This API is not called on any Windows platform.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secServerAuthPluginTerm)

 (char **errormsg,

 db2int32 *errormsglen);

db2secServerAuthPluginTerm API parameters

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secServerAuthPluginTerm API execution is not successful.

646 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secGetAuthIDs API - Get authentication IDs

Returns an SQL authid for an authenticated user. This API is called during

database connections for both user ID/password and GSS-API authentication

methods.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secGetAuthIDs)

 (const char *userid,

 db2int32 useridlen,

 const char *usernamespace,

 db2int32 usernamespacelen,

 db2int32 usernamespacetype,

 const char *dbname,

 db2int32 dbnamelen,

 void **token,

 char SystemAuthID[DB2SEC_MAX_AUTHID_LENGTH],

 db2int32 *SystemAuthIDlen,

 char InitialSessionAuthID[DB2SEC_MAX_AUTHID_LENGTH],

 db2int32 *InitialSessionAuthIDlen,

 char username[DB2SEC_MAX_USERID_LENGTH],

 db2int32 *usernamelen,

 db2int32 *initsessionidtype,

 char **errormsg,

 db2int32 *errormsglen);

db2secGetAuthIDs API parameters

userid Input. The authenticated user. This is usually not used for GSS-API

authentication unless a trusted context is defined to permit switch user

operations without authentication. In those situations, the user name

provided for the switch user request is passed in this parameter.

useridlen

Input. Length in bytes of the userid parameter value.

usernamespace

Input. The namespace from which the user ID was obtained.

usernamespacelen

Input. Length in bytes of the usernamespace parameter value.

usernamespacetype

Input. Namespacetype value. currently, the only supported namespace type

value is DB2SEC_NAMESPACE_SAM_COMPATIBLE (corresponds to a

username style like domain\myname).

dbname

Input. The name of the database being connected to. The API can ignore

this, or it can return differing authids when the same user connects to

different databases. This parameter can be NULL.

dbnamelen

Input. Length in bytes of the dbname parameter value. This parameter is

set to 0 if dbname parameter is NULL.

token Input or output. Data that the plug-in might pass to the

db2secGetGroupsForUser API. For GSS-API, this is a context handle

(gss_ctx_id_t). Ordinarily, token is an input-only parameter and its value is

Chapter 11. Security plug-in APIs 647

taken from the db2secValidatePassword API. It can also be an output

parameter when authentication is done on the client and therefore

db2secValidatePassword API is not called. In environments where a trusted

context is defined that allows switch user operations without

authentication, the db2secGetAuthIDs API must be able to accommodate

receiving a NULL value for this token parameter and be able to derive a

system authorization ID based on the userid and useridlen input

parameters above.

SystemAuthID

Output. The system authorization ID that corresponds to the ID of the

authenticated user. The size is 255 bytes, but the DB2 database manager

currently uses only up to (and including) 30 bytes.

SystemAuthIDlen

Output. Length in bytes of the SystemAuthID parameter value.

InitialSessionAuthID

Output. Authid used for this connection session. This is usually the same

as the SystemAuthID parameter but can be different in some situations, for

instance, when issuing a SET SESSION AUTHORIZATION statement. The

size is 255 bytes, but the DB2 database manager currently uses only up to

(and including) 30 bytes.

InitialSessionAuthIDlen

Output. Length in bytes of the InitialSessionAuthID parameter value.

username

Output. A username corresponding to the authenticated user and authid.

This will only be used for auditing and will be logged in the ″User ID″

field in the audit record for CONNECT statement. If the API does not fill

in the username parameter, the DB2 database manager copies it from the

userid.

usernamelen

Output. Length in bytes of the username parameter value.

initsessionidtype

Output. Session authid type indicating whether or not the

InitialSessionAuthid parameter is a role or an authid. The API should

return one of the following values (defined in db2secPlugin.h):

v DB2SEC_ID_TYPE_AUTHID (0)

v DB2SEC_ID_TYPE_ROLE (1)

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secGetAuthIDs API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secDoesAuthIDExist - Check if authentication ID exists

Determines if the authid represents an individual user (for example, whether the

API can map the authid to an external user ID).

648 Common Criteria Certification: Administration and User Documentation - Volume 2

The API should return the value DB2SEC_PLUGIN_OK if it is successful - the

authid is valid, DB2SEC_PLUGIN_INVALID_USERORGROUP if it is not valid, or

DB2SEC_PLUGIN_USERSTATUSNOTKNOWN if the authid existence cannot be

determined.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secDoesAuthIDExist)

 (const char *authid,

 db2int32 authidlen,

 char **errormsg,

 db2int32 *errormsglen);

db2secDoesAuthIDExist API parameters

authid Input. The authid to validate. This is upper-cased, with no trailing blanks.

authidlen

Input. Length in bytes of the authid parameter value.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secDoesAuthIDExist API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length of the error

message string in errormsg parameter.

GSS-API plug-in APIs

Required APIs and definitions for GSS-API authentication

plug-ins

Following is a complete list of GSS-APIs required for the DB2 security plug-in

interface.

The supported APIs follow these specifications: Generic Security Service Application

Program Interface, Version 2 (IETF RFC2743) and Generic Security Service API Version

2: C-Bindings (IETF RFC2744). Before implementing a GSS-API based plug-in, you

should have a complete understanding of these specifications.

 Table 33. Required APIs and Definitions for GSS-API authentication plug-ins

Name Description

Client-side APIs gss_init_sec_context Initiate a security context with a peer application.

Server-side APIs gss_accept_sec_context Accept a security context initiated by a peer application.

Server-side APIs gss_display_name Convert an internal format name to text.

Common APIs gss_delete_sec_context Delete an established security context.

Common APIs gss_display_status Obtain the text error message associated with a GSS-API

status code.

Common APIs gss_release_buffer Delete a buffer.

Common APIs gss_release_cred Release local data structures associated with a GSS-API

credential.

Common APIs gss_release_name Delete internal format name.

Required

definitions

GSS_C_DELEG_FLAG Requests delegation.

Chapter 11. Security plug-in APIs 649

Table 33. Required APIs and Definitions for GSS-API authentication plug-ins (continued)

Name Description

Required

definitions

GSS_C_EMPTY_BUFFER Signifies that the gss_buffer_desc does not contain any

data.

Required

definitions

GSS_C_GSS_CODE Indicates a GSS major status code.

Required

definitions

GSS_C_INDEFINITE Indicates that the mechanism does not support context

expiration.

Required

definitions

GSS_C_MECH_CODE Indicates a GSS minor status code.

Required

definitions

GSS_C_MUTUAL_FLAG Mutual authentication requested.

Required

definitions

GSS_C_NO_BUFFER Signifies that the gss_buffer_t variable does not point to

a valid gss_buffer_desc structure.

Required

definitions

GSS_C_NO_CHANNEL_BINDINGS No communication channel bindings.

Required

definitions

GSS_C_NO_CONTEXT Signifies that the gss_ctx_id_t variable does not point to

a valid context.

Required

definitions

GSS_C_NO_CREDENTIAL Signifies that gss_cred_id_t variable does not point to a

valid credential handle.

Required

definitions

GSS_C_NO_NAME Signifies that the gss_name_t variable does not point to a

valid internal name.

Required

definitions

GSS_C_NO_OID Use default authentication mechanism.

Required

definitions

GSS_C_NULL_OID_SET Use default mechanism.

Required

definitions

GSS_S_COMPLETE API completed successfully.

Required

definitions

GSS_S_CONTINUE_NEEDED Processing is not complete and the API must be called

again with the reply token received from the peer.

Restrictions for GSS-API authentication plug-ins

The following is a list of restrictions for GSS-API authentication plug-ins.

v The default security mechanism is always assumed; therefore, there is no OID

consideration.

v The only GSS services requested in gss_init_sec_context() are mutual

authentication and delegation. The DB2 database manager always requests a

ticket for delegation, but does not use that ticket to generate a new ticket.

v Only the default context time is requested.

v Context tokens from gss_delete_sec_context() are not sent from the client to

the server and vice-versa.

v Anonymity is not supported.

v Channel binding is not supported

v If the initial credentials expire, the DB2 database manager does not automatically

renew them.

v The GSS-API specification stipulates that even if gss_init_sec_context() or

gss_accept_sec_context() fail, either function must return a token to send to

650 Common Criteria Certification: Administration and User Documentation - Volume 2

the peer. However, because of DRDA limitations, the DB2 database manager

only sends a token if gss_init_sec_context() fails and generates a token on the

first call.

Security plug-in API versioning

The DB2 database system supports version numbering of the security plug-in APIs.

These version numbers are integers starting with 1 for DB2 UDB, Version 8.2.

The version number that DB2 passes to the security plug-in APIs is the highest

version number of the API that DB2 can support, and corresponds to the version

number of the structure. If the plug-in can support a higher API version, it must

return function pointers for the version that DB2 has requested. If the plug-in only

supports a lower version of the API, the plug-in should fill in function pointers for

the lower version. In either situation, the security plug-in APIs should return the

version number for the API it is supporting in the version field of the functions

structure.

For DB2, the version numbers of the security plug-ins will only change when

necessary (for example, when there are changes to the parameters of the APIs).

Version numbers will not automatically change with DB2 release numbers.

Security plug-in samples

UNIX and Linux directories: The ’C’ samples are located in sqllib/samples/
security/plugins and the JCC GSS-API plugin samples (.java) are located in

sqllib/samples/java/jdbc

Windows directory: The ’C’ samples are located in sqllib\samples\security\
plugins and the JCC GSS-API plugin samples (.java) are located in

sqllib\samples\java\jdbc

 Table 34. Security plug-in sample program files

Sample program name Program description

combined.c Combined user ID and password authentication and

group lookup sample

group_file.c Simple file-based group management plug-in sample

gssapi_simple.c Basic GSS-API authentication plug-in sample (both

client and server)

IBMLDAPauthclient.c Implements a client side DB2 security plugin that

interacts with an LDAP user registry

IBMLDAPauthserver.c Implements a server side DB2 security plugin that

interacts with an LDAP user registry

IBMLDAPconfig.c Contains functions related to finding and parsing the

configuration file for a DB2 LDAP security plugin

IBMLDAPgroups.c Implements a DB2 security plugin for LDAP-based

group lookup

IBMLDAPutils.c Contains utility functions used in the DB2 LDAP

security plugin

IBMLDAPutils.h LDAP security plugin header file

JCCKerberosPlugin.java Implements a GSS-API Plugin that does Kerberos

authentication using IBM DB2 Universal Driver

Chapter 11. Security plug-in APIs 651

Table 34. Security plug-in sample program files (continued)

Sample program name Program description

JCCKerberosPluginTest.java Uses JCCKerberosPlugin to get a DB2 Connection using

IBM DB2 Universal Driver.

JCCSimpleGSSPlugin.java Implements a GSS-API Plugin that does userid and

password checking using IBM DB2 Universal Driver.

JCCSimpleGSSContext.java Implements a GSSContext to be used by

JCCSimpleGSSPlugin

JCCSimpleGSSCredential.java Implements a GSSCredential to be used by

JCCSimpleGSSPlugin

JCCSimpleGSSException.java Implements a GSSException to be used by

JCCSimpleGSSPlugin

JCCSimpleGSSName.java Implements a GSSName to be used by

JCCSimpleGSSPlugin

JCCSimpleGSSPluginTest.java Uses JCCSimpleGSSPlugin to get a DB2 Connection

using IBM DB2 Universal Driver.

652 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 12. Security Plug-In Configuration Parameters

clnt_krb_plugin - Client Kerberos plug-in

This parameter specifies the name of the default Kerberos plug-in library to be

used for client-side authentication and local authorization.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null or IBMkrb5 [any valid string]

By default, the value is null on Linux and UNIX systems, and IBMkrb5 on

Windows operating systems. The plug-in is used when the client is authenticated

using KERBEROS authentication, or when local authorization is performed and the

authentication type in the DBM CFG is KERBEROS.

clnt_pw_plugin - Client userid-password plug-in

This parameter specifies the name of the userid-password plug-in library to be

used for client-side authentication and local authorization.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null [any valid string]

By default, the value is null and the DB2-supplied userid-password plug-in library

is used. The plug-in is used when the client is authenticated using CLIENT

authentication, or when local authorization is performed and the authentication

type in the DBM CFG is CLIENT, SERVER, SERVER_ENCRYPT or

DATA_ENCRYPT. For non-root installations, if the DB2 userid and password

plug-in library is used, the db2rfe command must be run before using your DB2

product.

© Copyright IBM Corp. 1993, 2009 653

group_plugin - Group plug-in

This parameter specifies the name of the group plug-in library.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null [any valid string]

By default, this value is null, and DB2 uses the operating system group lookup.

The plug-in will be used for all group lookups. For non-root installations, if the

DB2 userid and password plug-in library is used, the db2rfe command must be

run before using your DB2 product.

local_gssplugin - GSS API plug-in used for local instance level

authorization

This parameter specifies the name of the default GSS API plug-in library to be

used for instance level local authorization when the value of the authentication

database manager configuration parameter is set to GSSPLUGIN or

GSS_SERVER_ENCRYPT.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null [any valid string]

srvcon_auth - Authentication type for incoming connections at the

server

This parameter specifies how and where user authentication is to take place when

handling incoming connections at the server; it is used to override the current

authentication type.

Configuration type

Database manager

Applies to

654 Common Criteria Certification: Administration and User Documentation - Volume 2

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null [CLIENT; SERVER; SERVER_ENCRYPT; KERBEROS;

KRB_SERVER_ENCRYPT; GSSPLUGIN; GSS_SERVER_ENCRYPT]

If a value is not specified, DB2 uses the value of the authentication database

manager configuration parameter.

For a description of each authentication type, see “authentication - Authentication

type” on page 678.

srvcon_gssplugin_list - List of GSS API plug-ins for incoming

connections at the server

This parameter specifies the GSS API plug-in libraries that are supported by the

database server. It handles incoming connections at the server when the

srvcon_auth parameter is specified as KERBEROS, KRB_SERVER_ENCRYPT,

GSSPLUGIN or GSS_SERVER_ENCRYPT, or when srvcon_auth is not specified, and

authentication is specified as KERBEROS, KRB_SERVER_ENCRYPT, GSSPLUGIN

or GSS_SERVER_ENCRYPT.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null [any valid string]

By default, the value is null. If the authentication type is GSSPLUGIN and this

parameter is NULL, an error is returned. If the authentication type is KERBEROS

and this parameter is NULL, the DB2-supplied kerberos module or library is used.

This parameter is not used if another authentication type is used.

When the authentication type is KERBEROS and the value of this parameter is not

NULL, the list must contain exactly one Kerberos plug-in, and that plug-in is used

for authentication (all other GSS plug-ins in the list are ignored). If there is more

than one Kerberos plug-in, an error is returned.

Each GSS API plug-in name must be separated by a comma (,) with no space

either before or after the comma. Plug-in names should be listed in the order of

preference.

Chapter 12. Security Plug-In Configuration Parameters 655

srvcon_pw_plugin - Userid-password plug-in for incoming connections

at the server

This parameter specifies the name of the default userid-password plug-in library to

be used for server-side authentication. It handles incoming connections at the

server when the srvcon_auth parameter is specified as CLIENT, SERVER,

SERVER_ENCRYPT, or DATA_ENCRYPT or when srvcon_auth is not specified, and

authentication is specified as CLIENT, SERVER, SERVER_ENCRYPT, or

DATA_ENCRYPT.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null [any valid string]

By default, the value is null and the DB2-supplied userid-password plug-in library

is used. The plug-in will be used for all group lookups. For non-root installations,

if the DB2 userid and password plug-in library is used, the db2rfe command must

be run before using your DB2 product.

srv_plugin_mode - Server plug-in mode

This parameter specifies whether plug-ins are to run in fenced mode or unfenced

mode. Unfenced mode is the only supported mode.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

UNFENCED

656 Common Criteria Certification: Administration and User Documentation - Volume 2

Part 5. Configuration Parameters

© Copyright IBM Corp. 1993, 2009 657

658 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 13. Configuration Parameters

Configuration parameters

When a DB2 database instance or a database is created, a corresponding

configuration file is created with default parameter values. You can modify these

parameter values to improve performance and other characteristics of the instance

or database.

The disk space and memory allocated by the database manager on the basis of

default values of the parameters might be sufficient to meet your needs. In some

situations, however, you might not be able to achieve maximum performance using

these default values.

Configuration files contain parameters that define values such as the resources

allocated to the DB2 database products and to individual databases, and the

diagnostic level. There are two types of configuration files:

v The database manager configuration file for each DB2 instance

v The database configuration file for each individual database.

The database manager configuration file is created when a DB2 instance is created.

The parameters it contains affect system resources at the instance level,

independent of any one database that is part of that instance. Values for many of

these parameters can be changed from the system default values to improve

performance or increase capacity, depending on your system’s configuration.

There is one database manager configuration file for each client installation as well.

This file contains information about the client enabler for a specific workstation. A

subset of the parameters available for a server are applicable to the client.

Database manager configuration parameters are stored in a file named db2systm.

This file is created when the instance of the database manager is created. In Linux

and UNIX environments, this file can be found in the sqllib subdirectory for the

instance of the database manager. In Windows, the default location of this file

varies from edition to edition of the Windows family of operating systems; to

verify the default directory on Windows, check the setting of the DB2INSTPROF

registry variable using the command DB2SET DB2INSTPROF. You can also change

the default instance directory by changing the DB2INSTPROF registry variable. If

the DB2INSTPROF variable is set, the file is in the instance subdirectory of the

directory specified by the DB2INSTPROF variable.

Other profile-registry variables that specify where run-time data files should go

should query the value of DB2INSTPROF. This includes the following variables:

v DB2CLINIPATH

v DIAGPATH

v SPM_LOG_PATH

Database configuration parameters are stored in a file named SQLDBCON for

databases created before Version 8.2; all database configuration parameters are

stored in a file named SQLDBCONF for databases created in Version 8.2 and later.

These files cannot be directly edited, and can only be changed or viewed via a

supplied API or by a tool which calls that API.

© Copyright IBM Corp. 1993, 2009 659

|
|
|
|

In a partitioned database environment, this file resides on a shared file system so

that all database partition servers have access to the same file. The configuration of

the database manager is the same on all database partition servers.

Most of the parameters either affect the amount of system resources that will be

allocated to a single instance of the database manager, or they configure the setup

of the database manager and the different communications subsystems based on

environmental considerations. In addition, there are other parameters that serve

informative purposes only and cannot be changed. All of these parameters have

global applicability independent of any single database stored under that instance

of the database manager.

A database configuration file is created when a database is created, and resides where

that database resides. There is one configuration file per database. Its parameters

specify, among other things, the amount of resource to be allocated to that

database. Values for many of the parameters can be changed to improve

performance or increase capacity. Different changes may be required, depending on

the type of activity in a specific database.

Configuring the DB2 database manager with configuration parameters

The disk space and memory allocated by the database manager on the basis of

default values of the parameters might be sufficient to meet your needs. In some

situations, however, you might not be able to achieve maximum performance using

these default values.

Since the default values are oriented towards machines that have relatively small

memory resources and are dedicated as database servers, you might need to

modify these values if your environment has:

v Large databases

v Large numbers of connections

v High performance requirements for a specific application

v Unique query or transaction loads or types

Equivalent
physical object

Database

Database
configuration parameters

Database manager
configuration parameters

Operating system
configuration file

System

Instance

Database
object or concept

Figure 9. Relationship between database objects and configuration files

660 Common Criteria Certification: Administration and User Documentation - Volume 2

Each transaction processing environment is unique in one or more aspects. These

differences can have a profound impact on the performance of the database

manager when using the default configuration. For this reason, you are strongly

advised to tune your configuration for your environment.

A good starting point for tuning your configuration is to use the Configuration

Advisor or the AUTOCONFIGURE command which will generate values for

parameters based on your responses to questions about workload characteristics.

Some configuration parameters can be set to AUTOMATIC, allowing the database

manager to automatically manage these parameters to reflect the current resource

requirements. To turn off the AUTOMATIC setting of a configuration parameter

while maintaining the current internal setting, use the MANUAL keyword with the

UPDATE DATABASE CONFIGURATION command. If the database manager

updates the value of these parameters, the get db/dbm cfg show detail commands

will show the new value.

Parameters for an individual database are stored in a configuration file named

SQLDBCONF. This file is stored along with other control files for the database in the

SQLnnnnn directory, where nnnnn is a number assigned when the database was

created. Each database has its own configuration file, and most of the parameters

in the file specify the amount of resources allocated to that database. The file also

contains descriptive information, as well as flags that indicate the status of the

database.

Attention: If you edit db2systm, SQLDBCON, or SQLDBCONF using a method other than

those provided by the database manager, you might make the database unusable.

Do not change these files using methods other than those documented and

supported by the database manager.

In a partitioned database environment, a separate SQLDBCONF file exists for each

database partition. The values in the SQLDBCONF file may be the same or different at

each database partition, but the recommendation is that in a homogeneous

environment, the configuration parameter values should be the same on all

database partitions. Typically, there could be a catalog node needing different

database configuration parameters setting, while the other data partitions have

different values again, depending on their machine types, and other information.

Updating configuration parameters using the command line processor:

 Commands to change the settings can be entered as follows:

For database manager configuration parameters:

v GET DATABASE MANAGER CONFIGURATION (or GET DBM CFG)

v UPDATE DATABASE MANAGER CONFIGURATION (or UPDATE

DBM CFG)

v RESET DATABASE MANAGER CONFIGURATION (or RESET DBM

CFG) to reset all database manager parameters to their default values

v AUTOCONFIGURE.

For database configuration parameters:

v GET DATABASE CONFIGURATION (or GET DB CFG)

v UPDATE DATABASE CONFIGURATION (or UPDATE DB CFG)

v RESET DATABASE CONFIGURATION (or RESET DB CFG) to reset all

database parameters to their default values

v AUTOCONFIGURE.

Chapter 13. Configuration Parameters 661

Updating configuration parameters using application programming interfaces

(APIs).

 The APIs can be called from an application or a host-language program.

Call the following DB2 APIs to view or update configuration parameters:

v db2AutoConfig - Access the Configuration Advisor

v db2CfgGet - Get the database manager or database configuration

parameters

v db2CfgSet - Set the database manager or database configuration

parameters

Updating configuration parameters using common SQL application

programming interface (API) procedures.

You can call the common SQL API procedures from an SQL-based

application, a DB2 command line, or a command script. Call the following

procedures to view or update configuration parameters:

v GET_CONFIG - Get the database manager or database configuration

parameters

v SET_CONFIG - Set the database manager or database configuration

parameters

Updating configuration parameters using the Configuration Assistant

The Configuration Assistant can also be used to set the database manager

configuration parameters on a client. Other parameters can be changed

online; these are called configurable online configuration parameters.

Viewing updated configuration values

 For some database manager configuration parameters, the database

manager must be stopped (db2stop) and then restarted (db2start) for the

new parameter values to take effect.

For some database parameters, changes will only take effect when the

database is reactivated, or switched from offline to online. In these cases,

all applications must first disconnect from the database. (If the database

was activated, or switched from offline to online, then it must be

deactivated and reactivated.) Then, at the first new connect to the database,

the changes will take effect.

If you change the setting of a configurable online database manager

configuration parameter while you are attached to an instance, the default

behavior of the UPDATE DBM CFG command will be to apply the change

immediately. If you do not want the change applied immediately, use the

DEFERRED option on the UPDATE DBM CFG command.

To change a database manager configuration parameter online:

 db2 attach to <instance-name>

 db2 update dbm cfg using <parameter-name> <value>

 db2 detach

For clients, changes to the database manager configuration parameters take

effect the next time the client connects to a server.

If you change a configurable online database configuration parameter

while connected, the default behavior is to apply the change online,

wherever possible. You should note that some parameter changes might

take a noticeable amount of time to take effect due to the overhead

associated with allocating space. To change configuration parameters

online from the command line processor, a connection to the database is

required. To change a database configuration parameter online:

662 Common Criteria Certification: Administration and User Documentation - Volume 2

db2 connect to <dbname>

 db2 update db cfg using <parameter-name> <parameter-value>

 db2 connect reset

Each configurable online configuration parameter has a propagation class

associated with it. The propagation class indicates when you can expect a

change to the configuration parameter to take effect. There are three

propagation classes:

v Immediate: Parameters that change immediately upon command or API

invocation. For example, diaglevel has a propagation class of immediate.

v Statement boundary: Parameters that change on statement and

statement-like boundaries. For example, if you change the value of

sortheap, all new requests will start using the new value.

v Transaction boundary: Parameters that change on transaction

boundaries. For example, a new value for dl_expint is updated after a

COMMIT statement.

While new parameter values might not be immediately effective, viewing

the parameter settings (using the GET DATABASE MANAGER

CONFIGURATION or GET DATABASE CONFIGURATION command) will

always show the latest updates. Viewing the parameter settings using the

SHOW DETAIL clause on these commands will show both the latest

updates and the values in memory.

Rebinding applications after updating database configuration parameters

 Changing some database configuration parameters can influence the access

plan chosen by the SQL and XQuery optimizer. After changing any of

these parameters, you should consider rebinding your applications to

ensure the best access plan is being used for your SQL and XQuery

statements. Any parameters that were modified online (for example, by

using the UPDATE DATABASE CONFIGURATION IMMEDIATE

command) will cause the SQL and XQuery optimizer to choose new access

plans for new query statements. However, the query statement cache will

not be purged of existing entries. To clear the contents of the query cache,

use the FLUSH PACKAGE CACHE statement.

Note: A number of configuration parameters (for example, userexit) are

described as having acceptable values of either “Yes” or “No”, or “On” or

“Off” in the help and other DB2 documentation. To clarify, “Yes” should be

considered equivalent to “On” and “No” should be considered equivalent

to “Off”.

Configuration parameters summary

The following tables list the parameters in the database manager and database

configuration files for database servers. When changing the database manager and

database configuration parameters, consider the detailed information for each

parameter. Specific operating environment information including defaults is part of

each parameter description.

Database Manager Configuration Parameter Summary

For some database manager configuration parameters, the database manager must

be stopped (db2stop) and restarted (db2start) for the new parameter values to take

effect. Other parameters can be changed online; these are called configurable online

configuration parameters. If you change the setting of a configurable online database

manager configuration parameter while you are attached to an instance, the default

Chapter 13. Configuration Parameters 663

behavior of the UPDATE DBM CFG command applies the change immediately. If

you do not want the change applied immediately, use the DEFERRED option on

the UPDATE DBM CFG command.

The column “Auto” in the following table indicates whether the parameter

supports the AUTOMATIC keyword on the UPDATE DBM CFG command.

When updating a parameter to automatic, it is also possible to specify a starting

value as well as the AUTOMATIC keyword. Note that the value can mean

something different for each parameter, and in some cases it is not applicable.

Before specifying a value, read the parameter’s documentation to determine what

it represents. In the following example, num_poolagents will be updated to

AUTOMATIC and DB2 will use 20 as the minimum number of idle agents to pool:

 db2 update dbm cfg using num_poolagents 20 automatic

To unset the AUTOMATIC feature, the parameter can be updated to a value or the

MANUAL keyword can be used. When a parameter is updated to MANUAL, the

parameter is no longer automatic and is set to its current value (as displayed in the

Current Value column from the GET DBM CFG SHOW DETAIL and GET DB CFG

SHOW DETAIL commands).

The column “Perf. Impact” provides an indication of the relative importance of

each parameter as it relates to system performance. It is impossible for this column

to apply accurately to all environments; you should view this information as a

generalization.

v High — indicates the parameter can have a significant impact on performance.

You should consciously decide the values of these parameters, which, in some

cases, means that you will accept the default values provided.

v Medium — indicates that the parameter can have some impact on performance.

Your specific environment and needs will determine how much tuning effort

should be focused on these parameters.

v Low — indicates that the parameter has a less general or less significant impact

on performance.

v None — indicates that the parameter does not directly impact performance.

Although you do not have to tune these parameters for performance

enhancement, they can be very important for other aspects of your system

configuration, such as communication support, for example.

The columns “Token”, “Token Value”, and “Data Type” provide information that

you will need when calling the db2CfgGet or the db2CfgSet API. This information

includes configuration parameter identifiers, entries for the token element in the

db2CfgParam data structure, and data types for values that are passed to the

structure.

 Table 35. Configurable Database Manager Configuration Parameters

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value Data Type Additional Information

agent_stack_sz No No Low SQLF_KTN_AGENT_STACK_
SZ

61 Uint16 “agent_stack_sz - Agent stack

size” on page 749

agentpri No No High SQLF_KTN_AGENTPRI 26 Sint16 “agentpri - Priority of

agents” on page 751

alternate_auth_enc

6

No No Low SQLF_KTN_ALTERNATE_AUTH_ENC 938 Uint16 “alternate_auth_enc -

Alternate encryption

algorithm for incoming

connections at server

configuration parameter” on

page 752

664 Common Criteria Certification: Administration and User Documentation - Volume 2

|

Table 35. Configurable Database Manager Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value Data Type Additional Information

aslheapsz No No High SQLF_KTN_ASLHEAPSZ 15 Uint32 “aslheapsz - Application

support layer heap size” on

page 755

audit_buf_sz No No High SQLF_KTN_AUDIT_BUF_SZ 312 Sint32 “audit_buf_sz - Audit buffer

size” on page 677

authentication1 No No Low SQLF_KTN_
AUTHENTICATION

78 Uint16 “authentication -

Authentication type” on page

678

catalog_noauth Yes No None SQLF_KTN_CATALOG_
NOAUTH

314 Uint16 “catalog_noauth - Cataloging

allowed without authority”

on page 680

clnt_krb_plugin No No None SQLF_KTN_CLNT_KRB_
PLUGIN

812 char(33) “clnt_krb_plugin - Client

Kerberos plug-in” on page

653

clnt_pw_plugin No No None SQLF_KTN_CLNT_PW_
PLUGIN

811 char(33) “clnt_pw_plugin - Client

userid-password plug-in” on

page 653

cluster_mgr No No None SQLF_KTN_CLUSTER_MGR 920 char(262) “cluster_mgr - Cluster

manager name” on page 763

comm_bandwidth Yes No Medium SQLF_KTN_COMM_
BANDWIDTH

307 float “comm_bandwidth -

Communications bandwidth”

on page 764

conn_elapse Yes No Medium SQLF_KTN_CONN_ELAPSE 508 Uint16 “conn_elapse - Connection

elapse time” on page 697

cpuspeed Yes No High SQLF_KTN_CPUSPEED 42 float “cpuspeed - CPU speed” on

page 766

dft_account_str Yes No None SQLF_KTN_DFT_
ACCOUNT_STR

28 char(25) “dft_account_str - Default

charge-back account” on

page 774

dft_monswitches

v

 dft_mon_bufpool

v dft_mon_lock

v dft_mon_sort

v dft_mon_stmt

v dft_mon_table

v dft_mon_

timestamp

v dft_mon_uow

Yes No Medium SQLF_KTN_DFT_
MONSWITCHES2

v SQLF_KTN_DFT_MON_
BUFPOOL

v SQLF_KTN_DFT_MON_LOCK

v SQLF_KTN_DFT_MON_SORT

v SQLF_KTN_DFT_MON_STMT

v SQLF_KTN_DFT_MON_
TABLE

v SQLF_KTN_DFT_MON_
TIMESTAMP

v SQLF_KTN_DFT_MON_
UOW

29

v 33

v 34

v 35

v 31

v 32

v 36

v 30

Uint16

v Uint16

v Uint16

v Uint16

v Uint16

v Uint16

v Uint16

v Uint16

“dft_monswitches - Default

database system monitor

switches” on page 777

dftdbpath Yes No None SQLF_KTN_DFTDBPATH 27 char(215) “dftdbpath - Default database

path” on page 681

diaglevel Yes No Low SQLF_KTN_DIAGLEVEL 64 Uint16 “diaglevel - Diagnostic error

capture level” on page 782

diagpath Yes No None SQLF_KTN_DIAGPATH 65 char(215) “diagpath - Diagnostic data

directory path” on page 782

dir_cache No No Medium SQLF_KTN_DIR_CACHE 40 Uint16 “dir_cache - Directory cache

support” on page 783

discover3 No No Medium SQLF_KTN_DISCOVER 304 Uint16 “discover - Discovery mode”

on page 785

discover_inst Yes No Low SQLF_KTN_DISCOVER_INST 308 Uint16 “discover_inst - Discover

server instance” on page 786

fcm_num_buffers Yes Yes Medium SQLF_KTN_FCM_NUM_
BUFFERS

503 Uint32 “fcm_num_buffers - Number

of FCM buffers” on page 697

fcm_num_

channels

Yes Yes Medium SQLF_KTN_FCM_NUM_
CHANNELS

902 Uint32 “fcm_num_channels -

Number of FCM channels”

on page 698

Chapter 13. Configuration Parameters 665

Table 35. Configurable Database Manager Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value Data Type Additional Information

fed_noauth Yes No None SQLF_KTN_FED_NOAUTH 806 Uint16 “fed_noauth - Bypass

federated authentication” on

page 788

federated Yes No Medium SQLF_KTN_FEDERATED 604 Sint16 “federated - Federated

database system support” on

page 789

federated_async Yes Yes Medium SQLF_KTN_FEDERATED_
ASYNC

849 Sint32 “federated_async - Maximum

asynchronous TQs per query

configuration parameter” on

page 789

fenced_pool Yes Yes Medium SQLF_KTN_FENCED_POOL 80 Sint32 “fenced_pool - Maximum

number of fenced processes”

on page 790

group_plugin No No None SQLF_KTN_GROUP_PLUGIN 810 char(33) “group_plugin - Group

plug-in” on page 654

health_mon Yes No Low SQLF_KTN_HEALTH_MON 804 Uint16 “health_mon - Health

monitoring” on page 795

indexrec4 Yes No Medium SQLF_KTN_INDEXREC 20 Uint16 “indexrec - Index re-creation

time” on page 796

instance_memory Yes Yes Medium SQLF_KTN_INSTANCE_
MEMORY

803 Uint64 “instance_memory - Instance

memory” on page 798

intra_parallel No No High SQLF_KTN_INTRA_PARALLEL 306 Sint16 “intra_parallel - Enable

intra-partition parallelism” on

page 800

java_heap_sz No No High SQLF_KTN_JAVA_HEAP_SZ 310 Sint32 “java_heap_sz - Maximum

Java interpreter heap size” on

page 801

jdk_path No No None SQLF_KTN_JDK_PATH 311 char(255) “jdk_path - Software

Developer’s Kit for Java

installation path” on page

803

keepfenced No No Medium SQLF_KTN_KEEPFENCED 81 Uint16 “keepfenced - Keep fenced

process” on page 803

local_gssplugin No No None SQLF_KTN_LOCAL_
GSSPLUGIN

816 char(33) “local_gssplugin - GSS API

plug-in used for local

instance level authorization”

on page 654

max_connections Yes Yes Medium SQLF_KTN_MAX_
CONNECTIONS

802 Sint32 “max_connections -

Maximum number of client

connections” on page 813

max_connretries Yes No Medium SQLF_KTN_MAX_
CONNRETRIES

509 Uint16 “max_connretries - Node

connection retries” on page

699

max_coordagents Yes Yes Medium SQLF_KTN_MAX_
COORDAGENTS

501 Sint32 “max_coordagents -

Maximum number of

coordinating agents” on page

814

max_querydegree Yes No High SQLF_KTN_MAX_
QUERYDEGREE

303 Sint32 “max_querydegree -

Maximum query degree of

parallelism” on page 815

max_time_diff No No Medium SQLF_KTN_MAX_TIME_DIFF 510 Uint16 “max_time_diff - Maximum

time difference among

nodes” on page 699

mon_heap_sz Yes Yes Low SQLF_KTN_MON_HEAP_SZ 79 Uint16 “mon_heap_sz - Database

system monitor heap size” on

page 821

notifylevel Yes No Low SQLF_KTN_NOTIFYLEVEL 605 Sint16 “notifylevel - Notify level” on

page 824

num_initagents No No Medium SQLF_KTN_NUM_
INITAGENTS

500 Uint32 “num_initagents - Initial

number of agents in pool” on

page 826

666 Common Criteria Certification: Administration and User Documentation - Volume 2

Table 35. Configurable Database Manager Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value Data Type Additional Information

num_initfenced No No Medium SQLF_KTN_NUM_
INITFENCED

601 Sint32 “num_initfenced - Initial

number of fenced processes”

on page 827

num_poolagents Yes Yes High SQLF_KTN_NUM_
POOLAGENTS

502 Sint32 “num_poolagents - Agent

pool size” on page 830

numdb No No Low SQLF_KTN_NUMDB 6 Uint16 “numdb - Maximum number

of concurrently active

databases including host and

System i databases” on page

833

query_heap_sz No No Medium SQLF_KTN_QUERY_HEAP_SZ 49 Sint32 “query_heap_sz - Query heap

size” on page 837

resync_interval No No None SQLF_KTN_RESYNC_
INTERVAL

68 Uint16 “resync_interval - Transaction

resync interval” on page 841

rqrioblk No No High SQLF_KTN_RQRIOBLK 1 Uint16 “rqrioblk - Client I/O block

size” on page 842

sheapthres No No High SQLF_KTN_SHEAPTHRES 21 Uint32 “sheapthres - Sort heap

threshold” on page 845

spm_log_file_sz No No Low SQLF_KTN_SPM_LOG_FILE_
SZ

90 Sint32 “spm_log_file_sz - Sync point

manager log file size” on

page 851

spm_log_path No No Medium SQLF_KTN_SPM_LOG_PATH 313 char(226) “spm_log_path - Sync point

manager log file path” on

page 852

spm_max_resync No No Low SQLF_KTN_SPM_MAX_
RESYNC

91 Sint32 “spm_max_resync - Sync

point manager resync agent

limit” on page 853

spm_name No No None SQLF_KTN_SPM_NAME 92 char(8) “spm_name - Sync point

manager name” on page 853

srvcon_auth No No None SQLF_KTN_SRVCON_AUTH 815 Uint16 “srvcon_auth -

Authentication type for

incoming connections at the

server” on page 654

srvcon_gssplugin_

list

No No None SQLF_KTN_SRVCON_
GSSPLUGIN_ LIST

814 char(256) “srvcon_gssplugin_list - List

of GSS API plug-ins for

incoming connections at the

server” on page 655

srv_plugin_mode No No None SQLF_KTN_SRV_PLUGIN_
MODE

809 Uint16 “srv_plugin_mode - Server

plug-in mode” on page 656

srvcon_pw_plugin No No None SQLF_KTN_SRVCON_PW_
PLUGIN

813 char(33) “srvcon_pw_plugin -

Userid-password plug-in for

incoming connections at the

server” on page 656

ssl_svr_keydb No No None SQLF_KTN_SSL_SVR_KEYDB 930 char(1023) “ssl_svr_keydb - SSL key file

path for incoming SSL

connections at the server

configuration parameter” on

page 692

ssl_svr_stash No No None SQLF_KTN_SSL_SVR_STASH 931 char(1023) “ssl_svr_stash - SSL stash file

path for incoming SSL

connections at the server

configuration parameter” on

page 692

ssl_svr_label No No None SQLF_KTN_SSL_SVR_LABEL 932 char(1023) “ssl_svr_label - Label in the

key file for incoming SSL

connections at the server

configuration parameter” on

page 693

ssl_svcename No No None SQLF_KTN_SSL_SVCENAME 933 char(14) “ssl_svcename - SSL service

name configuration

parameter” on page 693

Chapter 13. Configuration Parameters 667

Table 35. Configurable Database Manager Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value Data Type Additional Information

ssl_cipherspecs No No None SQLF_KTN_SSL_CIPHERSPECS 934 char(255) “ssl_cipherspecs - Supported

cipher specifications at the

server configuration

parameter” on page 694

ssl_versions No No None SQLF_KTN_SSL_VERSIONS 935 char(255) “ssl_versions - Supported SSL

versions at the server

configuration parameter” on

page 694

ssl_clnt_keydb No No None SQLF_KTN_SSL_CLNT_KEYDB 936 char(1023) “ssl_clnt_keydb - SSL key file

path for outbound SSL

connections at the client

configuration parameter” on

page 695

ssl_clnt_stash No No None SQLF_KTN_SSL_CLNT_STASH 937 char(1023) “ssl_clnt_stash - SSL stash file

path for outbound SSL

connections at the client

configuration parameter” on

page 695

start_stop_time Yes No Low SQLF_KTN_START_STOP_
TIME

511 Uint16 “start_stop_time - Start and

stop timeout” on page 700

svcename No No None SQLF_KTN_SVCENAME 24 char(14) “svcename - TCP/IP service

name” on page 681

sysadm_group No No None SQLF_KTN_SYSADM_
GROUP

39 char(128) “sysadm_group - System

administration authority

group name” on page 682

sysctrl_group No No None SQLF_KTN_SYSCTRL_
GROUP

63 char(128) “sysctrl_group - System

control authority group

name” on page 683

sysmaint_group No No None SQLF_KTN_SYSMAINT_
GROUP

62 char(128) “sysmaint_group - System

maintenance authority group

name” on page 683

sysmon_group No No None SQLF_KTN_SYSMON
GROUP

808 char(128) “sysmon_group - System

monitor authority group

name” on page 684

tm_database No No None SQLF_KTN_TM_DATABASE 67 char(8) “tm_database - Transaction

manager database name” on

page 855

tp_mon_name No No None SQLF_KTN_TP_MON_NAME 66 char(19) “tp_mon_name - Transaction

processor monitor name” on

page 856

trust_allclnts5 No No None SQLF_KTN_TRUST_ALLCLNTS 301 Uint16 “trust_allclnts - Trust all

clients” on page 685

trust_clntauth No No None SQLF_KTN_TRUST_
CLNTAUTH

302 Uint16 “trust_clntauth - Trusted

clients authentication” on

page 858

util_impact_lim Yes No High SQLF_KTN_UTIL_IMPACT_
LIM

807 Uint32 “util_impact_lim - Instance

impact policy” on page 862

668 Common Criteria Certification: Administration and User Documentation - Volume 2

Table 35. Configurable Database Manager Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value Data Type Additional Information

Note:

1. The valid values are defined in sqlenv.h.

2.

 Bit 1 (xxxx xxx1): dft_mon_uow

 Bit 2 (xxxx xx1x): dft_mon_stmt

 Bit 3 (xxxx x1xx): dft_mon_table

 Bit 4 (xxxx 1xxx): dft_mon_buffpool

 Bit 5 (xxx1 xxxx): dft_mon_lock

 Bit 6 (xx1x xxxx): dft_mon_sort

 Bit 7 (x1xx xxxx): dft_mon_timestamp

3. Valid values (defined in sqlutil.h):

 SQLF_DSCVR_KNOWN (1)

 SQLF_DSCVR_SEARCH (2)

4. Valid values (defined in sqlutil.h):

 SQLF_INX_REC_SYSTEM (0)

 SQLF_INX_REC_REFERENCE (1)

5. Valid values (defined in sqlutil.h):

 SQLF_TRUST_ALLCLNTS_NO (0)

 SQLF_TRUST_ALLCLNTS_YES (1)

 SQLF_TRUST_ALLCLNTS_DRDAONLY (2)

6. Valid values (defined in sqlenv.h):

 SQL_ALTERNATE_AUTH_ENC_AES (0)

 SQL_ALTERNATE_AUTH_ENC_AES_CMP (1)

 SQL_ALTERNATE_AUTH_ENC_NOTSPEC (255)

 Table 36. Informational Database Manager Configuration Parameters

Parameter Token

Token

Value

Data

Type Additional Information

nodetype1 SQLF_KTN_NODETYPE 100 Uint16 Chapter 17, “nodetype - Machine node type,” on

page 707

release SQLF_KTN_RELEASE 101 Uint16 “release - Configuration file release level” on page

838

Note:

1. Valid values (defined in sqlutil.h):

 SQLF_NT_STANDALONE (0)

 SQLF_NT_SERVER (1)

 SQLF_NT_REQUESTOR (2)

 SQLF_NT_STAND_REQ (3)

 SQLF_NT_MPP (4)

 SQLF_NT_SATELLITE (5)

Database Configuration Parameter Summary

The following table lists the parameters in the database configuration file. When

changing the database configuration parameters, consider the detailed information

for the parameter.

For some database configuration parameters, changes only take effect when the

database is reactivated. In these cases, all applications must first disconnect from

the database. (If the database was activated, then it must be deactivated and

reactivated.) The changes take effect at the next connection to the database. Other

parameters can be changed online; these are called configurable online configuration

parameters.

Chapter 13. Configuration Parameters 669

Refer to the Database Manager Configuration Parameter Summary section above

for a description of the “Auto.”, “Perf. Impact”, “Token”, “Token Value”, and

“Data Type” columns.

The AUTOMATIC keyword is also supported on the UPDATE DB CFG command.

In the following example, database_memory will be updated to AUTOMATIC and

the database manager will use 20000 as a starting value when making further

changes to this parameter:

db2 update db cfg using for sample using database_memory 20000 automatic

Starting with Version 9.5, you can update and reset database configuration

parameter values across some or all platforms without having to issue the db2_all

command, or without having to update or reset each partition individually. For

details, see Configuring databases across multiple partitions.

 Table 37. Configurable Database Configuration Parameters

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value

Data

Type Additional Information

alt_collate No No None SQLF_DBTN_ALT_COLLATE 809 Uint32 “alt_collate - Alternate collating

sequence” on page 752

applheapsz Yes Yes Medium SQLF_DBTN_APPLHEAPSZ 51 Uint16 “applheapsz - Application heap

size” on page 754

appl_memory Yes Yes Medium SQLF_DBTN_APPL_MEMORY 904 Uint64 “appl_memory - Application

Memory configuration

parameter” on page 753

archretrydelay Yes No None SQLF_DBTN_
ARCHRETRYDELAY

828 Uint16 “archretrydelay - Archive retry

delay on error” on page 755

v auto_maint

v

 auto_db_backup

v auto_tbl_maint

v auto_runstats

v auto_stats_prof

v auto_stmt_stats

v auto_prof_upd

v auto_reorg

Yes No Medium

v SQLF_DBTN_AUTO_MAINT

v SQLF_DBTN_AUTO_DB_
BACKUP

v SQLF_DBTN_AUTO_TBL_
MAINT

v SQLF_DBTN_AUTO_
RUNSTATS

v SQLF_DBTN_AUTO_STATS_
PROF

v SQLF_DBTN_AUTO_STMT_
STATS

v SQLF_DBTN_AUTO_PROF_
UPD

v SQLF_DBTN_AUTO_REORG

v 831

v 833

v 835

v 837

v 839

v 905

v 844

v 841

Uint16 “auto_maint - Automatic

maintenance” on page 757

auto_del_rec_obj Yes No Medium SQLF_DBTN_AUTO_DEL_
REC_OBJ

912 Uint16 “auto_del_rec_obj - Automated

deletion of recovery objects

configuration parameter” on

page 757

autorestart Yes No Low SQLF_DBTN_AUTO_RESTART 25 Uint16 Chapter 15, “autorestart - Auto

restart enable,” on page 703

auto_reval Yes No Medium SQLF_DBTN_AUTO_REVAL 920 Uint16 auto_reval - Automatic

revalidation and invalidation

configuration parameter

avg_appls Yes Yes High SQLF_DBTN_AVG_APPLS 47 Uint16 “avg_appls - Average number

of active applications” on page

759

blk_log_dsk_ful Yes No None SQLF_DBTN_BLK_LOG_DSK_
FUL

804 Uint16 “blk_log_dsk_ful - Block on log

disk full” on page 760

catalogcache_sz Yes No Medium SQLF_DBTN_
CATALOGCACHE_SZ

56 Uint32 “catalogcache_sz - Catalog

cache size” on page 761

chngpgs_thresh No No High SQLF_DBTN_CHNGPGS_
THRESH

38 Uint16 “chngpgs_thresh - Changed

pages threshold” on page 762

cur_commit No No Medium SQLF_DBTN_CUR_COMMIT 917 Uint32 “cur_commit - Currently

committed configuration

parameter” on page 766

670 Common Criteria Certification: Administration and User Documentation - Volume 2

Table 37. Configurable Database Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value

Data

Type Additional Information

database_memory Yes Yes Medium SQLF_DBTN_DATABASE_
MEMORY

803 Uint64 “database_memory - Database

shared memory size” on page

768

dbheap Yes Yes Medium SQLF_DBTN_DB_HEAP 58 Uint64 “dbheap - Database heap” on

page 771

db_mem_thresh Yes No Low SQLF_DBTN_DB_MEM_
THRESH

849 Uint16 “db_mem_thresh - Database

memory threshold” on page

771

decflt_rounding No No None SQLF_DBTN_DECFLT_
ROUNDING

913 Uint16 “decflt_rounding - Decimal

floating point rounding

configuration parameter” on

page 773

dec_to_char_fmt Yes Yes Medium SQLF_DBTN_DEC_TO_CHAR_FMT

v 0 (v95)

v 1

(NEW)

Uint16 dec_to_char_fmt - Decimal to

character function

configuration parameter

dft_degree Yes No High SQLF_DBTN_DFT_DEGREE 301 Sint32 “dft_degree - Default degree”

on page 775

dft_extent_sz Yes No Medium SQLF_DBTN_DFT_EXTENT_SZ 54 Uint32 “dft_extent_sz - Default extent

size of table spaces” on page

776

dft_loadrec_ses Yes No Medium SQLF_DBTN_DFT_LOADREC_
SES

42 Sint16 “dft_loadrec_ses - Default

number of load recovery

sessions” on page 776

dft_mttb_types No No None SQLF_DBTN_DFT_MTTB_
TYPES

843 Uint32 “dft_mttb_types - Default

maintained table types for

optimization” on page 778

dft_prefetch_sz Yes Yes Medium SQLF_DBTN_DFT_PREFETCH_
SZ

40 Sint16 “dft_prefetch_sz - Default

prefetch size” on page 778

dft_queryopt Yes No Medium SQLF_DBTN_DFT_QUERYOPT 57 Sint32 “dft_queryopt - Default query

optimization class” on page 779

dft_refresh_age No No Medium SQLF_DBTN_DFT_REFRESH_
AGE

702 char(22) “dft_refresh_age - Default

refresh age” on page 780

dft_sqlmathwarn No No None SQLF_DBTN_DFT_
SQLMATHWARN

309 Sint16 “dft_sqlmathwarn - Continue

upon arithmetic exceptions” on

page 780

discover_db Yes No Medium SQLF_DBTN_DISCOVER 308 Uint16 “discover_db - Discover

database” on page 786

dlchktime Yes No Medium SQLF_DBTN_DLCHKTIME 9 Uint32 “dlchktime - Time interval for

checking deadlock” on page

686

dyn_query_mgmt No No Low SQLF_DBTN_DYN_QUERY_
MGMT

604 Uint16 “dyn_query_mgmt - Dynamic

SQL and XQuery query

management” on page 787

enable_xmlchar Yes No None SQLF_DBTN_ENABLE_
XMLCHAR

853 Uint32 “enable_xmlchar - Enable

conversion to XML

configuration parameter” on

page 787

failarchpath Yes No None SQLF_DBTN_FAILARCHPATH 826 char(243) “failarchpath - Failover log

archive path” on page 788

hadr_local_host No No None SQLF_DBTN_HADR_LOCAL_
HOST

811 char(256) “hadr_local_host - HADR local

host name” on page 792

hadr_local_svc No No None SQLF_DBTN_HADR_LOCAL_
SVC

812 char(41) “hadr_local_svc - HADR local

service name” on page 792

hadr_peer_

window

No No Low (see

Note 4)

SQLF_DBTN_HADR_PEER_
WINDOW

914 Uint32 “hadr_peer_window - HADR

peer window configuration

parameter” on page 793

hadr_remote_host No No None SQLF_DBTN_HADR_REMOTE_
HOST

813 char(256) “hadr_remote_host - HADR

remote host name” on page 793

hadr_remote_inst No No None SQLF_DBTN_HADR_REMOTE_
INST

815 char(9) “hadr_remote_inst - HADR

instance name of the remote

server” on page 794

Chapter 13. Configuration Parameters 671

Table 37. Configurable Database Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value

Data

Type Additional Information

hadr_remote_svc No No None SQLF_DBTN_HADR_REMOTE_
SVC

814 char(41) “hadr_remote_svc - HADR

remote service name” on page

794

hadr_syncmode No No None SQLF_DBTN_HADR_
SYNCMODE

817 Uint32 “hadr_syncmode - HADR

synchronization mode for log

write in peer state” on page

794

hadr_timeout No No None SQLF_DBTN_HADR_TIMEOUT 816 Uint32 “hadr_timeout - HADR timeout

value” on page 795

indexrec2 Yes No Medium SQLF_DBTN_INDEXREC 30 Uint16 “indexrec - Index re-creation

time” on page 796

locklist Yes Yes High

when it

affects

escala-

tion

SQLF_DBTN_LOCK_LIST 704 Uint64 “locklist - Maximum storage

for lock list” on page 686

locktimeout No No Medium SQLF_DBTN_LOCKTIMEOUT 34 Sint16 “locktimeout - Lock timeout”

on page 689

logarchmeth1 Yes No None SQLF_DBTN_
LOGARCHMETH1

822 char(252) “logarchmeth1 - Primary log

archive method” on page 804

logarchmeth2 Yes No None SQLF_DBTN_
LOGARCHMETH2

823 char(252) “logarchmeth2 - Secondary log

archive method” on page 806

logarchopt1 Yes No None SQLF_DBTN_LOGARCHOPT1 824 char(243) “logarchopt1 - Primary log

archive options” on page 807

logarchopt2 Yes No None SQLF_DBTN_LOGARCHOPT2 825 char(243) “logarchopt2 - Secondary log

archive options” on page 807

logbufsz No No High SQLF_DBTN_LOGBUFSZ 33 Uint16 “logbufsz - Log buffer size” on

page 808

logfilsiz No No Medium SQLF_DBTN_LOGFIL_SIZ 92 Uint32 “logfilsiz - Size of log files” on

page 808

logindexbuild Yes No None SQLF_DBTN_
LOGINDEXBUILD

818 Uint32 “logindexbuild - Log index

pages created” on page 809

logprimary No No Medium SQLF_DBTN_LOGPRIMARY 16 Uint16 “logprimary - Number of

primary log files” on page 810

logretain3 No No Low SQLF_DBTN_LOG_RETAIN 23 Uint16 “logretain - Log retain enable”

on page 811

logsecond Yes No Medium SQLF_DBTN_LOGSECOND 17 Uint16 “logsecond - Number of

secondary log files” on page

812

max_log Yes Yes SQLF_DBTN_MAX_LOG 807 Uint16 “max_log - Maximum log per

transaction” on page 815

maxappls Yes Yes Medium SQLF_DBTN_MAXAPPLS 6 Uint16 “maxappls - Maximum number

of active applications” on page

816

maxfilop Yes No Medium SQLF_DBTN_MAXFILOP 3 Uint16 “maxfilop - Maximum database

files open per application” on

page 817

maxlocks Yes Yes High

when it

affects

escala-

tion

SQLF_DBTN_MAXLOCKS 15 Uint16 “maxlocks - Maximum percent

of lock list before escalation”

on page 690

min_dec_div_3 No No High SQLF_DBTN_MIN_DEC_DIV_3 605 Sint32 “min_dec_div_3 - Decimal

division scale to 3” on page 818

mincommit Yes No High SQLF_DBTN_MINCOMMIT 32 Uint16 “mincommit - Number of

commits to group” on page 819

mirrorlogpath No No Low SQLF_DBTN_
MIRRORLOGPATH

806 char(242) “mirrorlogpath - Mirror log

path” on page 820

mon_act_metrics Yes No Medium SQLF_DBTN_MON_ACT_METRICS 931 Uint16 com.ibm.db2.luw.admin.config.doc/doc/r0054936.dita#r0054936

mon_deadlock Yes No Medium SQLF_DBTN_MON_DEADLOCK 934 Uint16 com.ibm.db2.luw.admin.config.doc/doc/r0054940.dita#r0054940

mon_locktimeout Yes No Medium SQLF_DBTN_MON_LOCKTIMEOUT 933 Uint16 com.ibm.db2.luw.admin.config.doc/doc/r0054939.dita#r0054939

672 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

Table 37. Configurable Database Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value

Data

Type Additional Information

mon_lockwait Yes No Medium SQLF_DBTN_MON_LOCKWAIT 935 Uint16 com.ibm.db2.luw.admin.config.doc/doc/r0054941.dita#r0054941

mon_lw_thresh Yes No Medium SQLF_DBTN_MON_LW_THRESH 936 Uint32 com.ibm.db2.luw.admin.config.doc/doc/r0054942.dita#r0054942

mon_obj_metrics Yes No Medium SQLF_DBTN_MON_OBJ_METRICS 937 Uint16 com.ibm.db2.luw.admin.config.doc/doc/r0054937.dita#r0054937

mon_req_metrics Yes No Medium SQLF_DBTN_MON_REQ_METRICS 930 Uint16 com.ibm.db2.luw.admin.config.doc/doc/r0054934.dita#r0054934

mon_uow_data Yes No Medium SQLF_DBTN_MON_UOW_DATA 932 Uint16 com.ibm.db2.luw.admin.config.doc/doc/r0054938.dita#r0054938

newlogpath No No Low SQLF_DBTN_NEWLOGPATH 20 char(242) “newlogpath - Change the

database log path” on page 822

num_db_backups Yes No None SQLF_DBTN_NUM_DB_
BACKUPS

601 Uint16 “num_db_backups - Number of

database backups” on page 825

num_freqvalues Yes No Low SQLF_DBTN_NUM_
FREQVALUES

36 Uint16 “num_freqvalues - Number of

frequent values retained” on

page 825

num_iocleaners No Yes High SQLF_DBTN_NUM_
IOCLEANERS

37 Uint16 “num_iocleaners - Number of

asynchronous page cleaners”

on page 827

num_ioservers No Yes High SQLF_DBTN_NUM_
IOSERVERS

39 Uint16 “num_ioservers - Number of

I/O servers” on page 829

num_log_span Yes Yes SQLF_DBTN_NUM_LOG_
SPAN

808 Uint16 “num_log_span - Number log

span” on page 830

num_quantiles Yes No Low SQLF_DBTN_NUM_
QUANTILES

48 Uint16 “num_quantiles - Number of

quantiles for columns” on page

831

numarchretry Yes No None SQLF_DBTN_
NUMARCHRETRY

827 Uint16 “numarchretry - Number of

retries on error” on page 832

overflowlogpath No No Medium SQLF_DBTN_
OVERFLOWLOGPATH

805 char(242) “overflowlogpath - Overflow

log path” on page 834

pckcachesz Yes Yes High SQLF_DBTN_PCKCACHE_SZ 505 Uint32 “pckcachesz - Package cache

size” on page 835

rec_his_retentn No No None SQLF_DBTN_REC_HIS_
RETENTN

43 Sint16 “rec_his_retentn - Recovery

history retention period” on

page 838

self_tuning_mem Yes No High SQLF_DBTN_SELF_TUNING_
MEM

848 Uint16 “self_tuning_mem- Self-tuning

memory” on page 843

seqdetect Yes No High SQLF_DBTN_SEQDETECT 41 Uint16 “seqdetect - Sequential

detection flag” on page 845

sheapthres_shr Yes Yes High SQLF_DBTN_SHEAPTHRES_
SHR

802 Uint32 “sheapthres_shr - Sort heap

threshold for shared sorts” on

page 847

softmax No No Medium SQLF_DBTN_SOFTMAX 5 Uint16 “softmax - Recovery range and

soft checkpoint interval” on

page 849

sortheap Yes Yes High SQLF_DBTN_SORT_HEAP 52 Uint32 “sortheap - Sort heap size” on

page 850

stat_heap_sz Yes Yes Low SQLF_DBTN_STAT_HEAP_SZ 45 Uint32 “stat_heap_sz - Statistics heap

size” on page 853

stmt_conc Yes No Medium SQLF_DBTN_STMT_CONC 919 Uint32 stmt_conc - Statement

concentrator configuration

parameter

stmtheap Yes Yes Medium SQLF_DBTN_STMT_HEAP 821 Uint32 “stmtheap - Statement heap

size” on page 854

trackmod No No Low SQLF_DBTN_TRACKMOD 703 Uint16 “trackmod - Track modified

pages enable” on page 858

tsm_mgmtclass Yes No None SQLF_DBTN_TSM_
MGMTCLASS

307 char(30) “tsm_mgmtclass - Tivoli

Storage Manager management

class” on page 859

tsm_nodename Yes No None SQLF_DBTN_TSM_
NODENAME

306 char(64) “tsm_nodename - Tivoli

Storage Manager node name”

on page 859

Chapter 13. Configuration Parameters 673

Table 37. Configurable Database Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value

Data

Type Additional Information

tsm_owner Yes No None SQLF_DBTN_TSM_OWNER 305 char(64) “tsm_owner - Tivoli Storage

Manager owner name” on page

860

tsm_password Yes No None SQLF_DBTN_TSM_PASSWORD 501 char(64) “tsm_password - Tivoli Storage

Manager password” on page

860

userexit No No Low SQLF_DBTN_USER_EXIT 24 Uint16 “userexit - User exit enable” on

page 861

util_heap_sz Yes No Low SQLF_DBTN_UTIL_HEAP_SZ 55 Uint32 “util_heap_sz - Utility heap

size” on page 861

vendoropt Yes No None SQLF_DBTN_VENDOROPT 829 char(242) “vendoropt - Vendor options”

on page 863<

wlm_collect_int Yes No Low SQLF_DBTN_WLM_COLLECT_
INT

907 Sint32 “wlm_collect_int - Workload

management collection interval

configuration parameter” on

page 863

Note: The bits of SQLF_DBTN_AUTONOMIC_SWITCHES indicate the default settings for a number of auto-maintenance configuration parameters.

The individual bits making up this composite parameter are:

1.

Default => Bit 1 on (xxxx xxxx xxxx xxx1): auto_maint

Bit 2 off (xxxx xxxx xxxx xx0x): auto_db_backup

Bit 3 on (xxxx xxxx xxxx x1xx): auto_tbl_maint

Bit 4 on (xxxx xxxx xxxx 1xxx): auto_runstats

Bit 5 off (xxxx xxxx xxx0 xxxx): auto_stats_prof

Bit 6 off (xxxx xxxx xx0x xxxx): auto_prof_upd

Bit 7 off (xxxx xxxx x0xx xxxx): auto_reorg

Bit 8 off (xxxx xxxx 0xxx xxxx): auto_storage

Bit 9 off (xxxx xxx0 xxxx xxxx): auto_stmt_stats

0 0 0 D

Maximum => Bit 1 on (xxxx xxxx xxxx xxx1): auto_maint

Bit 2 off (xxxx xxxx xxxx xx1x): auto_db_backup

Bit 3 on (xxxx xxxx xxxx x1xx): auto_tbl_maint

Bit 4 on (xxxx xxxx xxxx 1xxx): auto_runstats

Bit 5 off (xxxx xxxx xxx1 xxxx): auto_stats_prof

Bit 6 off (xxxx xxxx xx1x xxxx): auto_prof_upd

Bit 7 off (xxxx xxxx x1xx xxxx): auto_reorg

Bit 8 off (xxxx xxxx 1xxx xxxx): auto_storage

Bit 9 off (xxxx xxx1 xxxx xxxx): auto_stmt_stats

0 1 F F

2. Valid values (defined in sqlutil.h):

 SQLF_INX_REC_SYSTEM (0)

 SQLF_INX_REC_REFERENCE (1)

 SQLF_INX_REC_RESTART (2)

3. Valid values (defined in sqlutil.h):

 SQLF_LOGRETAIN_NO (0)

 SQLF_LOGRETAIN_RECOVERY (1)

 SQLF_LOGRETAIN_CAPTURE (2)

4. If you set the hadr_peer_window parameter to a non-zero time value, then the primary database might seem to hang on transactions when it is

in disconnected peer state, because it is waiting for confirmation from the standby database even though it is not connected to the standby

database.

 Table 38. Informational Database Configuration Parameters

Parameter Token

Token

Value Data Type Additional Information

backup_pending SQLF_DBTN_BACKUP_PENDING 112 Uint16 “backup_pending - Backup

pending indicator” on page 760

codepage SQLF_DBTN_CODEPAGE 101 Uint16 “codepage - Code page for the

database” on page 763

codeset SQLF_DBTN_CODESET 120 char(9)1 “codeset - Codeset for the

database” on page 763

collate_info SQLF_DBTN_COLLATE_INFO 44 char(260) “collate_info - Collating

information” on page 764

country/region SQLF_DBTN_COUNTRY 100 Uint16 “country/region - Database

territory code” on page 766

674 Common Criteria Certification: Administration and User Documentation - Volume 2

Table 38. Informational Database Configuration Parameters (continued)

Parameter Token

Token

Value Data Type Additional Information

database_consistent SQLF_DBTN_CONSISTENT 111 Uint16 Chapter 16, “database_consistent

- Database is consistent,” on

page 705

database_level SQLF_DBTN_DATABASE_LEVEL 124 Uint16 “database_level - Database

release level” on page 768

hadr_db_role SQLF_DBTN_HADR_DB_ROLE 810 Uint32 “hadr_db_role - HADR database

role” on page 791

log_retain_status SQLF_DBTN_LOG_RETAIN_STATUS 114 Uint16 “log_retain_status - Log retain

status indicator” on page 804

loghead SQLF_DBTN_LOGHEAD 105 char(12) “loghead - First active log file”

on page 809

logpath SQLF_DBTN_LOGPATH 103 char(242) “logpath - Location of log files”

on page 810

multipage_alloc SQLF_DBTN_MULTIPAGE_ALLOC 506 Uint16 “multipage_alloc - Multipage file

allocation enabled” on page 822

numsegs SQLF_DBTN_NUMSEGS 122 Uint16 “numsegs - Default number of

SMS containers” on page 833

pagesize SQLF_DBTN_PAGESIZE 846 Uint32 “pagesize - Database default

page size” on page 835

release SQLF_DBTN_RELEASE 102 Uint16 “release - Configuration file

release level” on page 838

restore_pending SQLF_DBTN_RESTORE_PENDING 503 Uint16 “restore_pending - Restore

pending” on page 839

restrict_access SQLF_DBTN_RESTRICT_ACCESS 852 Sint32 Chapter 18, “restrict_access -

Database has restricted access

configuration parameter,” on

page 709

rollfwd_pending SQLF_DBTN_ROLLFWD_PENDING 113 Uint16 “rollfwd_pending - Roll forward

pending indicator” on page 841

territory SQLF_DBTN_TERRITORY 121 char(5)2 “territory - Database territory”

on page 854

user_exit_status SQLF_DBTN_USER_EXIT_STATUS 115 Uint16 “user_exit_status - User exit

status indicator” on page 861

Note:

1. char(17) on HP-UX, Linux and the Solaris operating system.

2. char(33) on HP-UX, Linux and the Solaris operating system.

DB2 Administration Server (DAS) Configuration Parameter

Summary

 Table 39. DAS Configuration Parameters

Parameter Parameter Type Additional Information

authentication Configurable “authentication - Authentication type DAS” on page 679

contact_host Configurable Online “contact_host - Location of contact list” on page 765

das_codepage Configurable Online “das_codepage - DAS code page” on page 767

das_territory Configurable Online “das_territory - DAS territory” on page 768

dasadm_group Configurable “dasadm_group - DAS administration authority group name” on page 680

db2system Configurable Online “db2system - Name of the DB2 server system” on page 770

discover Configurable Online “discover - DAS discovery mode” on page 785

exec_exp_task Configurable “exec_exp_task - Execute expired tasks” on page 788

jdk_64_path Configurable Online “jdk_64_path - 64-Bit Software Developer’s Kit for Java installation path DAS” on

page 802

jdk_path Configurable Online “jdk_path - Software Developer’s Kit for Java installation path DAS” on page 802

sched_enable Configurable “sched_enable - Scheduler mode” on page 843

sched_userid Informational “sched_userid - Scheduler user ID” on page 843

smtp_server Configurable Online “smtp_server - SMTP server” on page 848

Chapter 13. Configuration Parameters 675

Table 39. DAS Configuration Parameters (continued)

Parameter Parameter Type Additional Information

toolscat_db Configurable “toolscat_db - Tools catalog database” on page 855

toolscat_inst Configurable “toolscat_inst - Tools catalog database instance” on page 856

toolscat_schema Configurable “toolscat_schema - Tools catalog database schema” on page 856

Configuration parameter section headings

Each of the configuration parameter descriptions contain some or all of the

following section headings, as applicable. In some cases they are mutually

exclusive, for example, valid values are not needed if the [range] is specified. In

most cases, these headings are self-explanatory.

 Table 40.

Section heading Description and possible values

Configuration type Possible values are:

v Database manager

v Database

v DB2 Administration Server

Applies to If applicable, lists the data server types that the configuration parameter applies to.

Possible values are:

v Client

v Database server with local and remote clients

v Database server with local clients

v DB2 Administration Server

v OLAP functions

v Partitioned database server with local and remote clients

v Partitioned database server with local and remote clients when federation is

enabled.

v Satellite database server with local clients

Parameter type Possible values are:

v Configurable (the database manager must be restarted to have the changes take

effect)

v Configurable online (can be dynamically updated online without having to restart

the database manager)

v Informational (values are for your information only and cannot be updated)

Default [range] If applicable, lists the default value and the possible ranges, including NULL values or

automatic settings. If the range differs by platform, then the values are listed by

platform or platform type, for example, 32-bit or 64-bit platforms. Note that in most

cases the default value is not listed as part of the range.

Unit of measure If applicable, lists the unit of measure. Possible values are:

v Bytes

v Counter

v Megabytes per second

v Milliseconds

v Minutes

v Pages (4 KB)

v Percentage

v Seconds

Valid values If applicable, lists the valid value. This heading is mutually exclusive with the default

[range] heading.

Examples If applicable, lists examples.

Propagation class If applicable, possible values are:

v Immediate

v Statement boundary

When allocated If applicable, indicates when the configuration parameter is allocated by the database

manager.

676 Common Criteria Certification: Administration and User Documentation - Volume 2

Table 40. (continued)

Section heading Description and possible values

When freed If applicable, indicates when the configuration parameter is freed by the database

manager.

Restrictions If applicable, lists any restrictions that apply to the configuration parameter.

Limitations If applicable, lists any limitations that apply to the configuration parameter.

Recommendations If applicable, lists any recommendations that apply to the configuration parameter.

Usage notes If applicable, lists any usage notes that apply to the configuration parameter.

Changing the database configuration across multiple database

partitions

When you have a database that is distributed across more than one database

partition, the database configuration file should be the same on all database

partitions.

Consistency is required since the SQL compiler compiles distributed SQL

statements based on information in the node configuration file and creates an

access plan to satisfy the needs of the SQL statement. Maintaining different

configuration files on database partitions could lead to different access plans,

depending on which database partition the statement is prepared. Use db2_all to

maintain the configuration files across all database partitions.

Security-Related Configuration Parameters

audit_buf_sz - Audit buffer size

This parameter specifies the size of the buffer used when auditing the database.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

0 [0 - 65 000]

Unit of measure

Pages (4 KB)

When allocated

When DB2 is started

When freed

When DB2 is stopped

The default value for this parameter is zero (0). If the value is zero (0), the audit

buffer is not used. If the value is greater than zero (0), space is allocated for the

audit buffer where the audit records will be placed when they are generated by the

audit facility. The value times 4 KB pages is the amount of space allocated for the

Chapter 13. Configuration Parameters 677

audit buffer. The audit buffer cannot be allocated dynamically; DB2 must be

stopped and then restarted before the new value for this parameter takes effect.

By changing this parameter from the default to some value larger than zero (0), the

audit facility writes records to disk asynchronously compared to the execution of

the statements generating the audit records. This improves DB2 performance over

leaving the parameter value at zero (0). The value of zero (0) means the audit

facility writes records to disk synchronously with (at the same time as) the

execution of the statements generating the audit records. The synchronous

operation during auditing decreases the performance of applications running in

DB2.

authentication - Authentication type

This parameter specifies and determines how and where authentication of a user

takes place.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

SERVER [CLIENT; SERVER; SERVER_ENCRYPT; DATA_ENCRYPT;

DATA_ENCRYPT_CMP; KERBEROS; KRB_SERVER_ENCRYPT;

GSSPLUGIN; GSS_SERVER_ENCRYPT]

If authentication is SERVER, the user ID and password are sent from the client to

the server so that authentication can take place on the server. The value

SERVER_ENCRYPT provides the same behavior as SERVER, except that any user

IDs and passwords sent over the network are encrypted.

A value of DATA_ENCRYPT means the server accepts encrypted SERVER

authentication schemes and the encryption of user data. The authentication works

exactly the same way as SERVER_ENCRYPT.

The following user data are encrypted when using this authentication type:

v SQL statements

v SQL program variable data

v Output data from the server processing an SQL statement and including a

description of the data

v Some or all of the answer set data resulting from a query

v Large object (LOB) streaming

v SQLDA descriptors

A value of DATA_ENCRYPT_CMP means the server accepts encrypted SERVER

authentication schemes and the encryption of user data. In addition, this

authentication type allows compatibility with earlier products that do not support

DATA_ENCRYPT authentication type. These products are permitted to connect

678 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|

with the SERVER_ENCRYPT authentication type and without encrypting user data.

Products supporting the new authentication type must use it. This authentication

type is only valid in the server’s database manager configuration file and is not

valid when used on the CATALOG DATABASE command.

Note: For a standards compliance (defined in the “Standards compliance” topic)

configuration, SERVER is the only supported value.

A value of CLIENT indicates that all authentication takes place at the client. No

authentication needs to be performed at the server.

A value of KERBEROS means that authentication is performed at a Kerberos server

using the Kerberos security protocol for authentication. With an authentication

type of KRB_SERVER_ENCRYPT at the server and clients that support the

Kerberos security system, the effective system authentication type is KERBEROS. If

the clients do not support the Kerberos security system, the system authentication

type is effectively equivalent to SERVER_ENCRYPT.

A value of GSSPLUGIN means that authentication is performed using an external

GSSAPI-based security mechanism. With an authentication type of

GSS_SERVER_ENCRYPT at the server and clients that support the GSSPLUGIN

security mechanism, the effective system authentication type is GSSPLUGIN (that

is, if the clients support one of the server’s plug-ins). If the clients do not support

the GSSPLUGIN security mechanism, the system authentication type is effectively

equivalent to SERVER_ENCRYPT.

Recommendation: Typically, the default value (SERVER) is adequate for local

clients. If remote clients are connecting to the database server then

SERVER_ENCRYPT is the suggested value to protect the user ID and password.

authentication - Authentication type DAS

This parameter determines how and where authentication of a user takes place.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable

Default [range]

SERVER_ENCRYPT [SERVER_ENCRYPT; KERBEROS_ENCRYPT]

If authentication is SERVER_ENCRYPT, then the user ID and password are sent

from the client to the server so authentication can take place on the server. User

IDs and passwords sent over the network are encrypted.

A value of KERBEROS_ENCRYPT means that authentication is performed at a

Kerberos server using the Kerberos security protocol for authentication.

Note: The KERBEROS_ENCRYPT authentication type is only supported on servers

running Windows.

This parameter can only be updated from a Version 9 command line processor

(CLP).

Chapter 13. Configuration Parameters 679

|
|
|

catalog_noauth - Cataloging allowed without authority

This parameter specifies whether users are able to catalog and uncatalog databases

and nodes, or DCS and ODBC directories, without SYSADM authority.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Database server with local and remote clients

NO [NO (0) — YES (1)]

Client; Database server with local clients

YES [NO (0) — YES (1)]

The default value (0) for this parameter indicates that SYSADM authority is

required. When this parameter is set to 1 (yes), SYSADM authority is not required.

dasadm_group - DAS administration authority group name

This parameter defines the group name with DAS Administration (DASADM)

authority for the DAS.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable

Default [range]

Null [any valid group name]

DASADM authority is the highest level of authority within the DAS.

DASADM authority is determined by the security facilities used in a specific

operating environment.

v For the Windows operating systems, this parameter can be set to any local group

that is defined in the Windows security database. Group names are accepted as

long as they are 30 bytes or less in length. If “NULL” is specified for this

parameter, all members of the Administrators group have DASADM authority.

v For Linux and UNIX systems, if “NULL” is specified as the value of this

parameter, the DASADM group defaults to the primary group of the instance

owner.

If the value is not “NULL”, the DASADM group can be any valid UNIX group

name.

680 Common Criteria Certification: Administration and User Documentation - Volume 2

This parameter can only be updated from a Version 8 command line processor

(CLP).

dftdbpath - Default database path

This parameter contains the default file path used to create databases under the

database manager. If no path is specified when a database is created, the database

is created under the path specified by the dftdbpath parameter.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

UNIX Home directory of instance owner [any existing path]

Windows

Drive on which DB2 is installed [any existing path]

In a partitioned database environment, you should ensure that the path on which

the database is being created is not an NFS-mounted path (on Linix and UNIX

platforms), or a network drive (in a Windows environment). The specified path

must physically exist on each database partition server. To avoid confusion, it is

best to specify a path that is locally mounted on each database partition server.

The maximum length of the path is 205 characters. The system appends the

database partition name to the end of the path.

Given that databases can grow to a large size and that many users could be

creating databases (depending on your environment and intentions), it is often

convenient to be able to have all databases created and stored in a specified

location. It is also good to be able to isolate databases from other applications and

data both for integrity reasons and for ease of backup and recovery.

For Linux and UNIX environments, the length of the dftdbpath name cannot exceed

215 characters and must be a valid, absolute, path name. For Windows, the

dftdbpath can be a drive letter, optionally followed by a colon.

Recommendation: If possible, put high volume databases on a different disk than

other frequently accessed data, such as the operating system files and the database

logs.

svcename - TCP/IP service name

This parameter contains the name of the TCP/IP port which a database server will

use to await communications from remote client nodes. This name must be the

reserved for use by the database manager.

Configuration type

Database manager

Chapter 13. Configuration Parameters 681

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default

Null

In order to accept connection requests from a Data Server Runtime Client using

TCP/IP, the database server must be listening on a port designated to that server.

The system administrator for the database server must reserve a port (number n)

and define its associated TCP/IP service name in the services file at the server.

The database server port (number n) and its TCP/IP service name need to be

defined in the services file on the database client.

On Linux and UNIX systems, the services file is located in: /etc/services

The svcename parameter should be set to the service name associated with the main

connection port so that when the database server is started, it can determine on

which port to listen for incoming connection requests.

sysadm_group - System administration authority group name

This parameter defines the group name with SYSADM authority for the database

manager instance.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default

NULL

The SYSADM authority level is the highest level of administrative authority at the

instance level. Users with SYSADM authority can run some utilities and issue

some database and database manager commands within the instance.

SYSADM authority is determined by the security facilities used in a specific

operating environment.

v For the Windows operating system, this parameter can be set to local or domain

group. Group names must adhere to the length limits specified in SQL and XML

limits. The following users have SYSADM authority if ″NULL″ is specified for

sysadm_group database manager configuration parameter:

– Members of the local Administrators group

682 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|
|
|
|

|

– Members of the Administrators group at the Domain Controller if

DB2_GRP_LOOKUP is not set or set to DOMAIN

– Members of DB2ADMNS group if Extended Security feature is enabled. The

location of the DB2ADMNS group was decided during installation

– The LocalSystem account
v For Linux and UNIX systems, if “NULL” is specified as the value of this

parameter, the SYSADM group defaults to the primary group of the instance

owner.

If the value is not “NULL”, the SYSADM group can be any valid UNIX group

name.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG

USING SYSADM_GROUP NULL. You must specify the keyword “NULL” in

uppercase.

sysctrl_group - System control authority group name

This parameter defines the group name with system control (SYSCTRL) authority.

SYSCTRL has privileges allowing operations affecting system resources, but does

not allow direct access to data.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default

Null

Group names on all platforms are accepted as long as they adhere to the length

limits specified in SQL and XML limits.

Attention: This parameter must be NULL for Windows clients when system

security is used (that is, authentication is CLIENT, SERVER or any other valid

authentication). This is because the Windows operating systems do not store group

information, thereby providing no way of determining if a user is a member of a

designated SYSCTRL group. When a group name is specified, no user can be a

member of it.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG

USING SYSCTRL_GROUP NULL. You must specify the keyword NULL in

uppercase.

sysmaint_group - System maintenance authority group name

This parameter defines the group name with system maintenance (SYSMAINT)

authority.

Configuration type

Database manager

Chapter 13. Configuration Parameters 683

|
|

|
|

|

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default

Null

SYSMAINT has privileges to perform maintenance operations on all databases

associated with an instance without having direct access to data.

Group names on all platforms are accepted as long as they adhere to the length

limits specified in SQL and XML limits.

Attention: This parameter must be NULL for Windows clients when system

security is used (that is, authentication is CLIENT, SERVER, or any other valid

authentication). This is because the Windows operating systems do not store group

information, thereby providing no way of determining if a user is a member of a

designated SYSMAINT group. When a group name is specified, no user can be a

member of it.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG

USING SYSMAINT_GROUP NULL. You must specify the keyword NULL in

uppercase.

sysmon_group - System monitor authority group name

This parameter defines the group name with system monitor (SYSMON) authority.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default

Null

Users having SYSMON authority at the instance level have the ability to take

database system monitor snapshots of a database manager instance or its

databases. SYSMON authority includes the ability to use the following commands:

v GET DATABASE MANAGER MONITOR SWITCHES

v GET MONITOR SWITCHES

v GET SNAPSHOT

v LIST ACTIVE DATABASES

v LIST APPLICATIONS

684 Common Criteria Certification: Administration and User Documentation - Volume 2

v LIST DCS APPLICATIONS

v RESET MONITOR

v UPDATE MONITOR SWITCHES

Users with SYSADM, SYSCTRL, or SYSMAINT authority automatically have the

ability to take database system monitor snapshots and to use these commands.

Group names on all platforms are accepted as long as they adhere to the length

limits specified in SQL and XML limits.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG

USING SYSMON_GROUP NULL. You must specify the keyword NULL in

uppercase.

trust_allclnts - Trust all clients

This parameter and trust_clntauth are used to determine where users are validated

to the database environment.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

YES [NO, YES, DRDAONLY]

This parameter is only active when the authentication parameter is set to CLIENT.

By accepting the default of “YES” for this parameter, all clients are treated as

trusted clients. This means that the server assumes that a level of security is

available at the client and the possibility that users can be validated at the client.

This parameter can only be changed to “NO” if the authentication parameter is set

to CLIENT. If this parameter is set to “NO”, the untrusted clients must provide a

userid and password combination when they connect to the server. Untrusted

clients are operating system platforms that do not have a security subsystem for

authenticating users.

Setting this parameter to “DRDAONLY” protects against all clients except clients

from DB2 for OS/390® and z/OS, DB2 for VM and VSE, and DB2 for OS/400®.

Only these clients can be trusted to perform client-side authentication. All other

clients must provide a user ID and password to be authenticated by the server.

When trust_allclnts is set to “DRDAONLY”, the trust_clntauth parameter is used to

determine where the clients are authenticated. If trust_clntauth is set to “CLIENT”,

authentication occurs at the client. If trust_clntauth is set to “SERVER”,

authentication occurs at the client if no password is provided, and at the server if a

password is provided.

Chapter 13. Configuration Parameters 685

Locking Configuration Parameters

dlchktime - Time interval for checking deadlock

This parameter defines the frequency at which the database manager checks for

deadlocks among all the applications connected to a database.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

10 000 (10 seconds) [1 000 - 600 000]

Unit of measure

Milliseconds

A deadlock occurs when two or more applications connected to the same database

wait indefinitely for a resource. The waiting is never resolved because each

application is holding a resource that the other needs to continue.

Note:

1. In a partitioned database environment, this parameter applies to the catalog

node only.

2. In a partitioned database environment, a deadlock is not flagged until after the

second iteration.

Recommendation: Increasing this parameter decreases the frequency of checking

for deadlocks, thereby increasing the time that application programs must wait for

the deadlock to be resolved.

Decreasing this parameter increases the frequency of checking for deadlocks,

thereby decreasing the time that application programs must wait for the deadlock

to be resolved but increasing the time that the database manager takes to check for

deadlocks. If the deadlock interval is too small, it can decrease runtime

performance, because the database manager is frequently performing deadlock

detection. If this parameter is set lower to improve concurrency, you should ensure

that maxlocks and locklist are set appropriately to avoid unnecessary lock escalation,

which can result in more lock contention and as a result, more deadlock situations.

locklist - Maximum storage for lock list

This parameter indicates the amount of storage that is allocated to the lock list.

There is one lock list per database and it contains the locks held by all applications

concurrently connected to the database.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

686 Common Criteria Certification: Administration and User Documentation - Volume 2

Default [range]

UNIX Automatic [4 - 524 288]

Windows Database server with local and remote clients

Automatic [4 - 524 288]

Windows 64-bit Database server with local clients

Automatic [4 - 524 288]

Windows 32-bit Database server with local clients

Automatic [4 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

When the first application connects to the database

When freed

When last application disconnects from the database

Locking is the mechanism that the database manager uses to control concurrent

access to data in the database by multiple applications. Both rows and tables can

be locked. The database manager can also acquire locks for internal use.

When this parameter is set to AUTOMATIC, it is enabled for self tuning. This

allows the memory tuner to dynamically size the memory area controlled by this

parameter as the workload requirements change. Because the memory tuner trades

memory resources between different memory consumers, there must be at least

two memory consumers enabled for self tuning in order for self tuning to be active

The value of locklist is tuned together with the maxlocks parameter, therefore

disabling self tuning of the locklist parameter automatically disables self tuning of

the maxlocks parameter. Enabling self tuning of the locklist parameter automatically

enables self tuning of the maxlocks parameter.

Automatic tuning of this configuration parameter will only occur when self tuning

memory is enabled for the database (the self_tuning_mem configuration parameter

is set to ″ON.″)

On 32-bit platforms, each lock requires 48 or 96 bytes of the lock list, depending on

whether other locks are held on the object:

v 96 bytes are required to hold a lock on an object that has no other locks held on

it

v 48 bytes are required to record a lock on an object that has an existing lock held

on it.

On 64-bit platforms (except HP-UX/PA-RISC), each lock requires 64 or 128 bytes of

the lock list, depending on whether other locks are held on the object:

v 128 bytes are required to hold a lock on an object that has no other locks held on

it

v 64 bytes are required to record a lock on an object that has an existing lock held

on it.

On 64-bit HP-UX/PA-RISC, each lock requires 80 or 160 bytes of the lock list,

depending on whether or not other locks are held on the object.

Chapter 13. Configuration Parameters 687

When the percentage of the lock list used by one application reaches maxlocks, the

database manager will perform lock escalation, from row to table, for the locks

held by the application. Although the escalation process itself does not take much

time, locking entire tables (versus individual rows) decreases concurrency, and

overall database performance might decrease for subsequent accesses against the

affected tables. Suggestions of how to control the size of the lock list are:

v Perform frequent COMMITs to release locks.

v When performing many updates, lock the entire table before updating (using the

SQL LOCK TABLE statement). This will use only one lock, keeps others from

interfering with the updates, but does reduce concurrency of the data.

You can also use the LOCKSIZE option of the ALTER TABLE statement to

control how locking is done for a specific table.

Use of the Repeatable Read isolation level might result in an automatic table

lock.

v Use the Cursor Stability isolation level when possible to decrease the number of

share locks held. If application integrity requirements are not compromised use

Uncommitted Read instead of Cursor Stability to further decrease the amount of

locking.

v Set locklist to AUTOMATIC. The lock list will increase synchronously to avoid

lock escalation or a lock list full situation.

Once the lock list is full, performance can degrade since lock escalation will

generate more table locks and fewer row locks, thus reducing concurrency on

shared objects in the database. Additionally there might be more deadlocks

between applications (since they are all waiting on a limited number of table

locks), which will result in transactions being rolled back. Your application will

receive an SQLCODE of -912 when the maximum number of lock requests has

been reached for the database.

Recommendation: If lock escalations are causing performance concerns you might

need to increase the value of this parameter or the maxlocks parameter. You can use

the database system monitor to determine if lock escalations are occurring. Refer to

the lock_escals (lock escalations) monitor element.

The following steps might help in determining the number of pages required for

your lock list:

1. Calculate a lower bound for the size of your lock list, using one of the following

calculations, depending on your environment:

a.

 (512 * x * maxappls) / 4096

b. with Concentrator enabled:

 (512 * x * max_coordagents) / 4096

c. in a partitioned database with Concentrator enabled:

 (512 * x * max_coordagents * number of database partitions) / 4096

where 512 is an estimate of the average number of locks per application and x

is the number of bytes required for each lock against an object that has an

existing lock (40 bytes on 32-bit platforms, 64 bytes on 64-bit platforms).

2. Calculate an upper bound for the size of your lock list:

 (512 * y * maxappls) / 4096

where y is the number of bytes required for the first lock against an object (80

bytes on 32-bit platforms, 128 bytes on 64-bit platforms).

688 Common Criteria Certification: Administration and User Documentation - Volume 2

3. Estimate the amount of concurrency you will have against your data and based

on your expectations, choose an initial value for locklist that falls between the

upper and lower bounds that you have calculated.

4. Using the database system monitor, as described below, tune the value of this

parameter.

If maxappls or max_coordagents are set to AUTOMATIC in your applicable scenario,

you should also set locklist to AUTOMATIC.

You can use the database system monitor to determine the maximum number of

locks held by a given transaction. Refer to the locks_held_top (maximum number of

locks held) monitor element.

This information can help you validate or adjust the estimated number of locks per

application. In order to perform this validation, you will have to sample several

applications, noting that the monitor information is provided at a transaction level,

not an application level.

You might also want to increase locklist if maxappls is increased, or if the

applications being run perform infrequent commits.

You should consider rebinding applications (using the REBIND command) after

changing this parameter.

locktimeout - Lock timeout

This parameter specifies the number of seconds that an application will wait to

obtain a lock, helping avoid global deadlocks for applications.

Configuration type

Database

Parameter type

Configurable

Default [range]

-1 [-1; 0 - 32 767]

Unit of measure

Seconds

If you set this parameter to 0, locks are not waited for. In this situation, if no lock

is available at the time of the request, the application immediately receives a -911.

If you set this parameter to -1, lock timeout detection is turned off. In this

situation a lock will be waited for (if one is not available at the time of the request)

until either of the following:

v The lock is granted

v A deadlock occurs.

Recommendation: In a transaction processing (OLTP) environment, you can use an

initial starting value of 30 seconds. In a query-only environment you could start

with a higher value. In both cases, you should use benchmarking techniques to

tune this parameter.

The value should be set to quickly detect waits that are occurring because of an

abnormal situation, such as a transaction that is stalled (possibly as a result of a

Chapter 13. Configuration Parameters 689

user leaving their workstation). You should set it high enough so valid lock

requests do not time out because of peak workloads, during which time, there is

more waiting for locks.

You can use the database system monitor to help you track the number of times an

application (connection) experienced a lock timeout or that a database detected a

timeout situation for all applications that were connected.

High values of the lock_timeout (number of lock timeouts) monitor element can be

caused by:

v Too low a value for this configuration parameter.

v An application (transaction) that is holding locks for an extended period. You

can use the database system monitor to further investigate these applications.

v A concurrency problem, that could be caused by lock escalations (from row-level

to a table-level lock).

maxlocks - Maximum percent of lock list before escalation

This parameter defines a percentage of the lock list held by an application that

must be filled before the database manager performs lock escalation.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

Automatic [1 - 100]

Unit of measure

Percentage

Lock escalation is the process of replacing row locks with table locks, reducing the

number of locks in the list. When the number of locks held by any one application

reaches this percentage of the total lock list size, lock escalation will occur for the

locks held by that application. Lock escalation also occurs if the lock list runs out

of space.

The database manager determines which locks to escalate by looking through the

lock list for the application and finding the table with the most row locks. If after

replacing these with a single table lock, the maxlocks value is no longer exceeded,

lock escalation will stop. If not, it will continue until the percentage of the lock list

held is below the value of maxlocks. The maxlocks parameter multiplied by the

maxappls parameter cannot be less than 100.

When this parameter is set to AUTOMATIC, it is enabled for self tuning. This

allows the memory tuner to dynamically size the memory area controlled by this

parameter as the workload requirements change. Because the memory tuner trades

memory resources between different memory consumers, there must be at least

two memory consumers enabled for self tuning in order for self tuning to be

active.

The value of locklist is tuned together with the maxlocks parameter, therefore

disabling self tuning of the locklist parameter automatically disables self tuning of

690 Common Criteria Certification: Administration and User Documentation - Volume 2

the maxlocks parameter. Enabling self tuning of the locklist parameter

automatically enables self tuning of the maxlocks parameter.

Automatic tuning of this configuration parameter will only occur when self tuning

memory is enabled for the database (the self_tuning_mem configuration parameter

is set to ON).

On 32-bit platforms, each lock requires 48 or 96 bytes of the lock list, depending on

whether other locks are held on the object:

v 96 bytes are required to hold a lock on an object that has no other locks held on

it.

v 48 bytes are required to record a lock on an object that has an existing lock held

on it.

On 64-bit platforms (except HP-UX/PA-RISC), each lock requires 64 or 128 bytes of

the lock list, depending on whether other locks are held on the object:

v 128 bytes are required to hold a lock on an object that has no other locks held on

it.

v 64 bytes are required to record a lock on an object that has an existing lock held

on it.

On 64-bit HP-UX/PA-RISC, each lock requires 80 or 160 bytes of the lock list,

depending on whether or not other locks are held on the object.

Recommendation: The following formula allows you to set maxlocks to allow an

application to hold twice the average number of locks:

 maxlocks = 2 * 100 / maxappls

Where 2 is used to achieve twice the average and 100 represents the largest

percentage value allowed. If you have only a few applications that run

concurrently, you could use the following formula as an alternative to the first

formula:

 maxlocks = 2 * 100 / (average number of applications running

concurrently)

One of the considerations when setting maxlocks is to use it in conjunction with

the size of the lock list (locklist). The actual limit of the number of locks held by

an application before lock escalation occurs is:

v maxlocks * locklist * 4096 /(100 * 48) on a 32-bit system

v maxlocks * locklist * 4096 /(100 * 80) on a 64-bit system

HP-UX/PA-RISC environment

v maxlocks * locklist * 4096 /(100 * 64) on other 64-bit systems

Where 4096 is the number of bytes in a page, 100 is the largest percentage value

allowed for maxlocks, and 48 is the number of bytes per lock on a 32-bit system,

80 is the number of bytes per lock on a HP-UX/PA-RISC 64-bit system, and 64 is

the number of bytes per lock on other 64-bit systems. If you know that one of your

applications requires 1000 locks, and you do not want lock escalation to occur, then

you should choose values for maxlocks and locklist in this formula so that the

result is greater than 1000. (Using 10 for maxlocks and 100 for locklist, this

formula results in greater than the 1000 locks needed.)

If maxlocks is set too low, lock escalation happens when there is still enough lock

space for other concurrent applications. If maxlocks is set too high, a few

Chapter 13. Configuration Parameters 691

applications can consume most of the lock space, and other applications will have

to perform lock escalation. The need for lock escalation in this case results in poor

concurrency.

You can use the database system monitor to help you track and tune this

configuration parameter.

SSL Configuration Parameters

ssl_svr_keydb - SSL key file path for incoming SSL

connections at the server configuration parameter

This configuration parameter specifies a fully qualified file path of the key file to

be used for SSL setup at server-side.

Configuration type

Database manager

 Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null

The SSL key file has extension .kdb by default, and stores personal certificates,

personal certificate requests and signer certificates. This key file is accessed during

the instance startup and the servers personal certificate is sent to the client for

server authentication during SSL handshake.

By default, the value is Null. During the instance start up, you must define if the

DB2COMM registry variable contains SSL. Otherwise, the instance starts up

without SSL protocol support.

ssl_svr_stash - SSL stash file path for incoming SSL

connections at the server configuration parameter

This configuration parameter specifies a fully qualified file path of the stash file to

be used for SSL setup at server-side.

Configuration type

Database manager

 Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null

692 Common Criteria Certification: Administration and User Documentation - Volume 2

The SSL stash file has extension .sth by default, and stores an encrypted version of

the key database password. The password held in the stash file is used to access

the SSL key file during the instance startup.

By default, the value is Null. During the instance start up, you must define if the

DB2COMM registry variable contains SSL. Otherwise, the instance starts up

without SSL protocol support.

ssl_svr_label - Label in the key file for incoming SSL

connections at the server configuration parameter

This configuration parameter specifies a label of the personal certificate of the

server in the key database.

Configuration type

Database manager

 Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null

By default, the value is null. When establishing a SSL connection, the server

certificate specified by this configuration parameter is sent to the client for server

authentication. If the value is null, the default certificate defined in the key file is

used. If the default does not exist, the connection fails.

ssl_svcename - SSL service name configuration parameter

This configuration parameter specifies the name of the port that a database server

uses to await communications from remote client nodes using SSL protocol.

Configuration type

Database manager

 Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null

This configuration parameter contains the port that a database server uses to await

communications from remote client nodes through SSL protocol. This service name

must be reserved for use by the database manager. During instance startup, you

must define if the DB2COMM registry variable contains SSL. Otherwise the

instance starts up without SSL protocol support.

Chapter 13. Configuration Parameters 693

If DB2COMM contains both TCP/IP and SSL, the port specified by ssl_svcename

must not be the same as the svcename. Otherwise, the instance starts up without

either SSL or TCP/IP protocol support.

On UNIX systems, the services file is located in: /etc/services

The database server SSL port (number n) and its service name needs to be defined

in the services file on the database client.

ssl_versions - Supported SSL versions at the server

configuration parameter

This configuration parameter specifies Secure Sockets Layer (SSL) and Transport

Layer Security (TLS) versions that the server supports for incoming connection

requests.

Configuration type

Database manager

 Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default

Null [TLSv1]

If you set the parameter to Null or TLSv1, the parameter enables support for TLS

version 1.0 (RFC2246) and TLS version 1.1 (RFC4346).

During SSL handshake, the client and the server negotiate and find the most secure

version to use either TLS version 1.0 or TLS version 1.1. If there is no compatible

version between the client and the server, the connection fails. If the client

supports TLS version 1.0 and TLS version 1.1, but the server support TLS version

1.0 only, then TLS version 1.0 is used.

ssl_cipherspecs - Supported cipher specifications at the

server configuration parameter

This configuration parameter specifies the cipher suites that the server allows for

incoming connection requests when using SSL protocol.

Configuration type

Database manager

 Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null [TLS_RSA_WITH_AES_256_CBC_SHA;

694 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

|
|
|
|
|

TLS_RSA_WITH_AES_128_CBC_SHA ;

TLS_RSA_WITH_3DES_EDE_CBC_SHA]

You can specify multiple cipher specifications, such as

TLS_RSA_WITH_AES_256_CBC_SHA or TLS_RSA_WITH_AES_128_CBC_SHA or

TLS_RSA_WITH_3DES_EDE_CBC_SHA they must be separated by a comma (,)

with no space either before or after the comma.

During SSL handshake, if Null or multiple values are specified, the client and the

server negotiate and find the most secure cipher suites to use. If no compatible

cipher suites is found, the connection fails. You cannot prioritize the cipher suites

by specifying one before the another.

ssl_clnt_keydb - SSL key file path for outbound SSL

connections at the client configuration parameter

This configuration parameter specifies the fully qualified file path of the key file to

be used for SSL connection at the client-side.

Configuration type

Database manager

 Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null

The SSL key file has extension .kbd by default, and stores the signer certificate

from the servers personal certificate. For a self-signed server personal certificate,

the signer certificate is the public key. For a certificate authority signed server

personal certificate, the signer certificate is the root CA certificate. The key file is

accessed by the client to verify the servers personal certificate during the SSL

handshake.

By default, the value is Null. Depending on your application type, you should

specify the client SSL key file path by the database manager configuration

parameter ssl_clnt_keydb, the connection string ssl_clnt_keydb, or the db2cli.ini

keyword ssl_clnt_keydb for a SSL connection request. If none of them is specified,

the SSL connection fails.

ssl_clnt_stash - SSL stash file path for outbound SSL

connections at the client configuration parameter

This configuration parameter specifies the fully qualified file path of the stash file

to be used for SSL connections at the client-side.

Configuration type

Database manager

 Applies to

v Database server with local and remote clients

v Database server with local clients

Chapter 13. Configuration Parameters 695

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null

The SSL stash file has extension .sth by default, and stores an encrypted version of

the key database password. The password held in the stash file is used to access

the SSL key file during an SSL connection request.

By default the value is Null. Depending on your application type, you can specify

the client SSL stash file path by the database manager configuration parameter

ssl_clnt_stash, the connection string ssl_clnt_stash, or the db2cli.ini keyword

ssl_clnt_stash for a SSL connection request. If none of them is specified, the SSL

connection fails.

696 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 14. Communications in a partitioned database

environment

The following parameters provide information about communications in the

partitioned database environment.

conn_elapse - Connection elapse time

This parameter specifies the number of seconds within which a TCP/IP connection

is to be established between two database partition servers.

Configuration type

Database manager

Applies to

Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

10 [0–100]

Unit of measure

Seconds

If the attempt to connect succeeds within the time specified by this parameter,

communications are established. If it fails, another attempt is made to establish

communications. If the connection is attempted the number of times specified by

the max_connretries parameter and always times out, an error is issued.

fcm_num_buffers - Number of FCM buffers

This parameter specifies the number of 4 KB buffers that are used for internal

communications (messages) both among and within database servers.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

32-bit platforms

Automatic [128 - 65 300]

© IBM Corporation 1993, 2008 697

64-bit platforms

Automatic [128 - 524 288]
v Database server with local and remote clients: the default is 1024

v Database server with local clients: the default is 512

v Partitioned database server with local and remote clients: the default is

4096

On single-partition database systems, this parameter is used only if

intra-partition parallelism is enabled by changing the intra_parallel

parameter from its default value of NO to YES.

It is possible to set both an initial value and the AUTOMATIC attribute.

When set to AUTOMATIC, FCM monitors resource usage and can either increase

or decrease resources, if they are not used within 30 minutes. The amount by

which resources can be increased or decreased depends on the platform, in

particular, that on Linux it can only be increased 25% above the starting value. If

the database manager cannot allocate the number of resources specified when an

instance is started, it scales back the configuration values incrementally until it can

start the instance.

If you have multiple logical nodes on the same machine, you might find it

necessary to increase the value of this parameter. You might also find it necessary

to increase the value of this parameter if you run out of message buffers because of

the number of users on the system, the number of database partition servers on the

system, or the complexity of the applications.

If you are using multiple logical nodes, one pool of fcm_num_buffers buffers is

shared by all the multiple logical nodes on the same machine. The size of the pool

will be determined by multiplying the fcm_num_buffers value times the number of

logical nodes on that physical machine. Re-examine the value you are using;

consider how many FCM buffers in total will be allocated on the machine (or

machines) where the multiple logical nodes reside.

fcm_num_channels - Number of FCM channels

This parameter specifies the number of FCM channels for each database partition.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

v Satellite database server with local clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

UNIX 32-bit platforms

Automatic, with starting values of 256, 512, 2 048 [128 - 120 000]

698 Common Criteria Certification: Administration and User Documentation - Volume 2

UNIX 64-bit platforms

Automatic, with starting values of 256, 512, 2 048 [128 - 524 288]

Windows 32-bit

Automatic, with a starting value 10 000 [128 - 120 000]

Windows 64-bit

Automatic, with starting values of 256, 512, 2 048 [128 - 524 288]
v For database server with local and remote clients, the starting value is

512.

v For database server with local clients, the starting value is 256.

v For partitioned database environment servers with local and remote

clients, the starting value is 2 048.

On non-partitioned database environments, the intra_parallel parameter

must be active before fcm_num_channels can be used.

An FCM channel represents a logical communication end point between EDUs

running in the DB2 engine. Both control flows (request and reply) and data flows

(table queue data) rely on channels to transfer data between partitions.

When set to AUTOMATIC, FCM monitors channel usage, incrementally allocating

and releasing resources as requirements change.

max_connretries - Node connection retries

This parameter specifies the maximum number of times an attempt will be made

to establish a TCP/IP connection between two database partition servers.

Configuration type

Database manager

Applies to

Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

5 [0–100]

If the attempt to establish communication between two database partition servers

fails (for example, the value specified by the conn_elapse parameter is reached),

max_connretries specifies the number of connection retries that can be made to a

database partition server. If the value specified for this parameter is exceeded, an

error is returned.

max_time_diff - Maximum time difference among nodes

This parameter specifies the maximum time difference, in minutes, that is

permitted among the database partition servers listed in the node configuration

file.

Configuration type

Database manager

Chapter 14. Communications in a partitioned database environment 699

Applies to

Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

60 [1 - 1 440]

Unit of measure

Minutes

Each database partition server has its own system clock. If two or more database

partition servers are associated with a transaction, and the time difference between

their clocks is more than the amount specified by the MAX_TIME_DIFF parameter, the

transaction is rejected and an SQLCODE is returned. (The transaction is rejected

only if data modification is associated with it.)

A SQLCODE may also be returned in database partitioned environments where

DB2 compares the system clock to the virtual timestamp (VTS) saved to the

SQLOGCTL.LFH log control file. If the timestamp in the .LFH file is less than the

system time, the time in the database log is set to the VTS until the system clock

matches this time. The SQL1473N error message will also be returned, despite the

time difference between multiple nodes being smaller than MAX_TIME_DIFF

parameter value.

DB2 uses Coordinated Universal Time (UTC), so different time zones are not a

consideration when you set this parameter. The Coordinated Universal Time is the

same as Greenwich Mean Time.

start_stop_time - Start and stop timeout

This parameter specifies the time, in minutes, within which all database partition

servers must respond to a START DBM or a STOP DBM command. It is also used

as the timeout value during an ADD DBPARTITIONNUM operation.

Configuration type

Database manager

Applies to

Database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

10 [1 - 1 440]

Unit of measure

Minutes

Database partition servers that do not respond to a DB2START command within

the specified time send a message to the db2start error log in the log subdirectory

of the sqllib subdirectory of the home directory for the instance. You should issue

a DB2STOP on these nodes before restarting them.

700 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|

Database partition servers that do not respond to a DB2STOP command within the

specified time send a message to the db2stop error log in the log subdirectory of

the sqllib subdirectory of the home directory for the instance. You can either issue

db2stop for each database partition server that does not respond, or for all of them.

(Those that are already stopped will return stating that they are stopped.)

If a db2start or db2stop operation in a multi-partition database is not completed

within the value specified by the start_stop_time database manager configuration

parameter, the database partitions that have timed out will be killed internally.

Environments with many database partitions with a low value for start_stop_time

might experience this behavior. To resolve this behavior, increase the value of

start_stop_time.

When adding a new database partition using one of the DB2START, START

DATABASE MANAGER, or ADD DBPARTITIONNUM commands, the add

database partition operation must determine whether or not each database in the

instance is enabled for automatic storage. This is done by communicating with the

catalog partition for each database. If automatic storage is enabled, the storage

path definitions are retrieved as part of that communication. Likewise, if system

temporary table spaces are to be created with the database partitions, the operation

might have to communicate with another database partition server to retrieve the

table space definitions for the database partitions that reside on that server. These

factors should be considered when determining the value of the start_stop_time

parameter.

Chapter 14. Communications in a partitioned database environment 701

702 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 15. autorestart - Auto restart enable

This parameter determines whether the database manager can, in the event of an

abnormal termination of the database, automatically call the restart database utility

when an application connects to a database.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

On [On; Off]

The restart database utility performs a Crash recovery if the database terminated

abnormally (because, for example, of a power failure or a system software failure)

while applications were connected to it. It applies any committed transactions that

were in the database buffer pool but were not written to disk at the time of the

failure. It also backs out any uncommitted transactions that might have been

written to disk.

If autorestart is not enabled, then an application that attempts to connect to a

database which needs to have crash recovery performed (needs to be restarted)

will receive a SQL1015N error. In this case, the application can call the restart

database utility, or you can restart the database by selecting the restart operation of

the recovery tool.

© IBM Corporation 1993, 2008 703

704 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 16. database_consistent - Database is consistent

This parameter indicates whether the database is in a consistent state.

Configuration type

Database

Parameter type

Informational

YES indicates that all transactions have been committed or rolled back so that the

data is consistent. If the system “crashes” while the database is consistent, you do

not need to take any special action to make the database usable.

NO indicates that a transaction is pending or some other task is pending on the

database and the data is not consistent at this point. If the system “crashes” while

the database is not consistent, you will need to restart the database using the

RESTART DATABASE command to make the database usable.

© IBM Corporation 1993, 2008 705

706 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 17. nodetype - Machine node type

This parameter provides information about the DB2 products which you have

installed on your machine and, as a result, information about the type of database

manager configuration.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Informational

The following are the possible values returned by this parameter and the products

associated with that node type:

v Database server with local and remote clients – a DB2 server product,

supporting local and remote Data Server Runtime Clients, and capable of

accessing other remote database servers.

v Client – a Data Server Runtime Client capable of accessing remote database

servers.

v Database server with local clients – a DB2 relational database management

system, supporting local Data Server Runtime Clients and capable of accessing

other, remote database servers.

v Partitioned database server with local and remote clients – a DB2 server

product, supporting local and remote Data Server Runtime Clients, and capable

of accessing other remote database servers, and capable of parallelism.

© IBM Corporation 1993, 2008 707

708 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 18. restrict_access - Database has restricted access

configuration parameter

This parameter indicates whether the database was created using the restrictive set

of default actions. In other words, if it was created with the RESTRICTIVE clause

in the CREATE DATABASE command.

Configuration type

Database

Parameter type

Informational

YES The RESTRICTIVE clause was used in the CREATE DATABASE command

when this database was created.

NO The RESTRICTIVE clause was not used in the CREATE DATABASE command

when this database was created.

© Copyright IBM Corp. 1993, 2009 709

710 Common Criteria Certification: Administration and User Documentation - Volume 2

Part 6. Recovery considerations

© Copyright IBM Corp. 1993, 2009 711

712 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 19. Crash Recovery and Database Logs

Crash recovery

Transactions (or units of work) against a database can be interrupted unexpectedly.

If a failure occurs before all of the changes that are part of the unit of work are

completed and committed, the database is left in an inconsistent and unusable

state. Crash recovery is the process by which the database is moved back to a

consistent and usable state. This is done by rolling back incomplete transactions

and completing committed transactions that were still in memory when the crash

occurred (Figure 10). When a database is in a consistent and usable state, it has

attained what is known as a ″point of consistency″.

 A transaction failure results from a severe error or condition that causes the

database or the database manager to end abnormally. Partially completed units of

work, or UOW that have not been flushed to disk at the time of failure, leave the

database in an inconsistent state. Following a transaction failure, the database must

be recovered. Conditions that can result in transaction failure include:

v A power failure on the machine, causing the database manager and the database

partitions on it to go down

v A hardware failure such as memory corruption, or disk, CPU, or network

failure.

v A serious operating system error that causes DB2 to go down

v An application terminating abnormally.

If you want the rollback of incomplete units of work to be done automatically by

the database manager, enable the automatic restart (autorestart) database

configuration parameter by setting it to ON. (This is the default value.) If you do

not want automatic restart behavior, set the autorestart database configuration

parameter to OFF. As a result, you will need to issue the RESTART DATABASE

command when a database failure occurs. If the database I/O was suspended

before the crash occurred, you must specify the WRITE RESUME option of the

RESTART DATABASE command in order for the crash recovery to continue. The

administration notification log records when the database restart operation begins.

1

2

3

4

rollback

rollback

rollback

rollback

Units of work

Crash
All four rolled back

TIME

Figure 10. Rolling Back Units of Work (Crash Recovery)

© Copyright IBM Corp. 1993, 2009 713

If crash recovery is applied to a database that is enabled for forward recovery (that

is, the logarchmeth1 configuration parameter is not set to OFF), and an error occurs

during crash recovery that is attributable to an individual table space, that table

space will be taken offline, and cannot be accessed until it is repaired. Crash

recovery continues. At the completion of crash recovery, the other table spaces in

the database will be accessible, and connections to the database can be established.

However, if the table space that is taken offline is the table space that contains the

system catalogs, it must be repaired before any connections will be permitted.

714 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 20. Application processes, concurrency, and recovery

All SQL programs execute as part of an application process or agent. An application

process involves the execution of one or more programs, and is the unit to which

the database manager allocates resources and locks. Different application processes

might involve the execution of different programs, or different executions of the

same program.

More than one application process can request access to the same data at the same

time. Locking is the mechanism that is used to maintain data integrity under such

conditions, preventing, for example, two application processes from updating the

same row of data simultaneously.

The database manager acquires locks to prevent uncommitted changes made by

one application process from being accidentally perceived by any other process.

The database manager releases all locks it has acquired and retained on behalf of

an application process when that process ends. However, an application process

can explicitly request that locks be released sooner. This is done using a commit

operation, which releases locks that were acquired during a unit of work and also

commits database changes that were made during the unit of work.

A unit of work (UOW) is a recoverable sequence of operations within an application

process. A unit of work is initiated when an application process starts, or when the

previous UOW ends because of something other than the termination of the

application process. A unit of work ends with a commit operation, a rollback

operation, or the end of an application process. A commit or rollback operation

affects only the database changes that were made within the UOW that is ending.

The database manager provides a means of backing out of uncommitted changes

that were made by an application process. This might be necessary in the event of

a failure on the part of an application process, or in the case of a deadlock or lock

timeout situation. An application process can explicitly request that its database

changes be cancelled. This is done using a rollback operation.

As long as these changes remain uncommitted, other application processes are

unable to see them, and the changes can be rolled back. This is not true, however,

if the prevailing isolation level is uncommitted read (UR). After they are

committed, these database changes are accessible to other application processes

and can no longer be rolled back.

Both DB2 call level interface (CLI) and embedded SQL allow for a connection

mode called concurrent transactions, which supports multiple connections, each of

which is an independent transaction. An application can have multiple concurrent

connections to the same database.

Locks that are acquired by the database manager on behalf of an application

process are held until the end of a UOW, except when the isolation level is cursor

stability (CS, in which the lock is released as the cursor moves from row to row) or

uncommitted read (UR).

An application process is never prevented from performing operations because of

its own locks. However, if an application uses concurrent transactions, the locks

from one transaction might affect the operation of a concurrent transaction.

© IBM Corporation 1993, 2008 715

The initiation and the termination of a UOW define points of consistency within an

application process. For example, a banking transaction might involve the transfer

of funds from one account to another. Such a transaction would require that these

funds be subtracted from the first account, and then added to the second account.

Following the subtraction step, the data is inconsistent. Only after the funds have

been added to the second account is consistency reestablished. When both steps

are complete, the commit operation can be used to end the UOW, thereby making

the changes available to other application processes. If a failure occurs before the

UOW ends, the database manager will roll back any uncommitted changes to

restore data consistency.

Point of
consistency

New point of
consistency

Begin unit
of work

Commit
End unit of work

one unit of work

database updatesTIME LINE

Figure 11. Unit of work with a COMMIT statement

Point of
consistency

New point of
consistency

Begin unit
of work

Failure;
Begin rollback

Data is returned to
its initial state;

End unit of work

one unit of work

database
updates

back out
updatesTIME LINE

Figure 12. Unit of work with a ROLLBACK statement

716 Common Criteria Certification: Administration and User Documentation - Volume 2

Chapter 21. Recovering from transaction failures in a

partitioned database environment

If a transaction failure occurs in a partitioned database environment, database

recovery is usually necessary on both the failed database partition server and any

other database partition server that was participating in the transaction:

v Crash recovery occurs on the failed database partition server after the failure

condition is corrected.

v Database partition failure recovery on the other (still active) database partition

servers occurs immediately after the failure has been detected.

In a partitioned database environment, the database partition server on which a

transaction is submitted is the coordinator partition, and the first agent that

processes the transaction is the coordinator agent. The coordinator agent is

responsible for distributing work to other database partition servers, and it keeps

track of which ones are involved in the transaction. When the application issues a

COMMIT statement for a transaction, the coordinator agent commits the

transaction by using the two-phase commit protocol. During the first phase, the

coordinator partition distributes a PREPARE request to all the other database

partition servers that are participating in the transaction. These servers then

respond with one of the following:

READ-ONLY

No data change occurred at this server

YES Data change occurred at this server

NO Because of an error, the server is not prepared to commit

If one of the servers responds with a NO, the transaction is rolled back. Otherwise,

the coordinator partition begins the second phase.

During the second phase, the coordinator partition writes a COMMIT log record,

then distributes a COMMIT request to all the servers that responded with a YES.

After all the other database partition servers have committed, they send an

acknowledgement of the COMMIT to the coordinator partition. The transaction is

complete when the coordinator agent has received all COMMIT acknowledgments

from all the participating servers. At this point, the coordinator agent writes a

FORGET log record.

Transaction failure recovery on an active database partition

server

If any database partition server detects that another server is down, all work that

is associated with the failed database partition server is stopped:

v If the still active database partition server is the coordinator partition for an

application, and the application was running on the failed database partition

server (and not ready to COMMIT), the coordinator agent is interrupted to do

failure recovery. If the coordinator agent is in the second phase of COMMIT

processing, SQL0279N is returned to the application, which in turn loses its

database connection. Otherwise, the coordinator agent distributes a ROLLBACK

request to all other servers participating in the transaction, and SQL1229N is

returned to the application.

© Copyright IBM Corp. 1993, 2009 717

v If the failed database partition server was the coordinator partition for the

application, then agents that are still working for the application on the active

servers are interrupted to do failure recovery. The transaction is rolled back

locally on each database partition where the transaction is not in prepared state.

On those database partitions where the transaction is in prepared state, the

transaction becomes in doubt. The coordinator database partition is not aware

that the transaction is in doubt on some database partitions because the

coordinator database partition is not available.

v If the application connected to the failed database partition server (before it

failed), but neither the local database partition server nor the failed database

partition server is the coordinator partition, agents working for this application

are interrupted. The coordinator partition will either send a ROLLBACK or a

DISCONNECT message to the other database partition servers. The transaction

will only be in doubt on database partition servers that are still active if the

coordinator partition returns SQL0279.

Any process (such as an agent or deadlock detector) that attempts to send a

request to the failed server is informed that it cannot send the request.

Transaction failure recovery on the failed database partition

server

If the transaction failure causes the database manager to end abnormally, you can

issue the db2start command with the RESTART option to restart the database

manager once the database partition has been restarted. If you cannot restart the

database partition, you can issue db2start to restart the database manager on a

different database partition.

If the database manager ends abnormally, database partitions on the server can be

left in an inconsistent state. To make them usable, crash recovery can be triggered

on a database partition server:

v Explicitly, through the RESTART DATABASE command

v Implicitly, through a CONNECT request when the autorestart database

configuration parameter has been set to ON

Crash recovery reapplies the log records in the active log files to ensure that the

effects of all complete transactions are in the database. After the changes have been

reapplied, all uncommitted transactions are rolled back locally, except for indoubt

transactions. There are two types of indoubt transaction in a partitioned database

environment:

v On a database partition server that is not the coordinator partition, a transaction

is in doubt if it is prepared but not yet committed.

v On the coordinator partition, a transaction is in doubt if it is committed but not

yet logged as complete (that is, the FORGET record is not yet written). This

situation occurs when the coordinator agent has not received all the COMMIT

acknowledgments from all the servers that worked for the application.

Crash recovery attempts to resolve all the indoubt transactions by doing one of the

following. The action that is taken depends on whether the database partition

server was the coordinator partition for an application:

v If the server that restarted is not the coordinator partition for the application, it

sends a query message to the coordinator agent to discover the outcome of the

transaction.

718 Common Criteria Certification: Administration and User Documentation - Volume 2

v If the server that restarted is the coordinator partition for the application, it

sends a message to all the other agents (subordinate agents) that the coordinator

agent is still waiting for COMMIT acknowledgments.

It is possible that crash recovery might not be able to resolve all the indoubt

transactions. For example, some of the database partition servers might not be

available. If the coordinator partition completes crash recovery before other

database partitions involved in the transaction, crash recovery will not be able to

resolve the indoubt transaction. This is expected because crash recovery is

performed by each database partition independently. In this situation, the SQL

warning message SQL1061W is returned. Because indoubt transactions hold

resources, such as locks and active log space, it is possible to get to a point where

no changes can be made to the database because the active log space is being held

up by indoubt transactions. For this reason, you should determine whether

indoubt transactions remain after crash recovery, and recover all database partition

servers that are required to resolve the indoubt transactions as quickly as possible.

Note: In a partitioned database server environment, the RESTART database

command is run on a per-node basis. In order to ensure that the database is

restarted on all nodes, use the following recommended command:

db2_all "db2 restart database <database_name>"

If one or more servers that are required to resolve an indoubt transaction cannot be

recovered in time, and access is required to database partitions on other servers,

you can manually resolve the indoubt transaction by making an heuristic decision.

You can use the LIST INDOUBT TRANSACTIONS command to query, commit,

and roll back the indoubt transaction on the server.

Note: The LIST INDOUBT TRANSACTIONS command is also used in a

distributed transaction environment. To distinguish between the two types of

indoubt transactions, the originator field in the output that is returned by the LIST

INDOUBT TRANSACTIONS command displays one of the following:

v DB2 Enterprise Server Edition, which indicates that the transaction originated in

a partitioned database environment.

v XA, which indicates that the transaction originated in a distributed environment.

Identifying the failed database partition server

When a database partition server fails, the application will typically receive one of

the following SQLCODEs. The method for detecting which database manager

failed depends on the SQLCODE received:

SQL0279N

This SQLCODE is received when a database partition server involved in a

transaction is terminated during COMMIT processing.

SQL1224N

This SQLCODE is received when the database partition server that failed is

the coordinator partition for the transaction.

SQL1229N

This SQLCODE is received when the database partition server that failed is

not the coordinator partition for the transaction.

Determining which database partition server failed is a two-step process.

1. Find the partition server that detected the failure by examining the SQLCA.

The SQLCA associated with SQLCODE SQL1229N contains the node number of

Chapter 21. Recovering from transaction failures in a partitioned database environment 719

the server that detected the error in the sixth array position of the sqlerrd field.

(The node number that is written for the server corresponds to the node

number in the db2nodes.cfg file.)

2. Examine the administration notification log on the server found in step one for

the node number of the failed server.

Note: If multiple logical nodes are being used on a processor, the failure of one

logical node can cause other logical nodes on the same processor to fail.

720 Common Criteria Certification: Administration and User Documentation - Volume 2

Part 7. Appendixes

© Copyright IBM Corp. 1993, 2009 721

722 Common Criteria Certification: Administration and User Documentation - Volume 2

Appendix A. Related topics (linked to from topics in this

book)

SQL Reference topics

Assignments and comparisons

The basic operations of SQL are assignment and comparison. Assignment

operations are performed during the execution of INSERT, UPDATE, FETCH,

SELECT INTO, VALUES INTO and SET transition-variable statements. Arguments

of functions are also assigned when invoking a function. Comparison operations

are performed during the execution of statements that include predicates and other

language elements such as MAX, MIN, DISTINCT, GROUP BY, and ORDER BY.

One basic rule for both operations is that the data type of the operands involved

must be compatible. The compatibility rule also applies to set operations.

Another basic rule for assignment operations is that a null value cannot be

assigned to a column that cannot contain null values, nor to a host variable that

does not have an associated indicator variable.

Following is a compatibility matrix showing the system-defined data type

compatibilities for assignment and comparison operations.

 Table 41. Data Type Compatibility for Assignments and Comparisons

Operands

Binary

Integer

Decimal

Number

Floating-

point

Decimal

Floating-
point

Character

String

Graphic

String Date Time

Time-

stamp

Binary

String Boolean UDT

Binary

Integer

Yes Yes Yes Yes Yes Yes

5 No No No No No

2

Decimal

Number

Yes Yes Yes Yes Yes Yes

5 No No No No No

2

Floating

point

Yes Yes Yes Yes Yes Yes

5 No No No No No

2

Decimal

Floating

point

Yes Yes Yes Yes Yes Yes

5 No No No No No

2

Character

String

Yes Yes Yes Yes Yes Yes

5,6 Yes Yes Yes No

3 No

2

Graphic

string

Yes

5 Yes

5 Yes

5 Yes

5 Yes

5,6 Yes Yes

5 Yes

5 Yes

5 No No

2

Date No No No No Yes Yes

5 Yes No Yes No No

2

Time No No No No Yes Yes

5 No Yes

1 No No

2

Time-

stamp

No No No No Yes Yes

5 Yes

1 Yes No No

2

Binary

string

No No No No Yes3 No No No No Yes No

2

Boolean No No No No No No No No No No Yes

7 2

UDT

2 2 2 2 2 2 2 2 2 2 2 Yes

© Copyright IBM Corp. 1993, 2009 723

|
|

|
|
|||

|||

|||

|||

||||||||

|||||||||

|||| |
||||
|||||

||

|||||||||||
|

Table 41. Data Type Compatibility for Assignments and Comparisons (continued)

Operands

Binary

Integer

Decimal

Number

Floating-

point

Decimal

Floating-
point

Character

String

Graphic

String Date Time

Time-

stamp

Binary

String Boolean UDT

1 A TIMESTAMP value can be assigned to a TIME value; however, a TIME value cannot be assigned to a TIMESTAMP value and a TIMESTAMP value

cannot be compared with a TIME value.

2 A user-defined distinct type value is only comparable to a value defined with the same user-defined distinct type. In general, assignments are

supported between a distinct type value and its source data type. A user-defined structured type is not comparable and can only be assigned to an

operand of the same structured type or one of its supertypes. Some additional assignment rules apply to row, cursor, and array types. For additional

information see “User-defined type assignments” on page 730.

3 Support for assignment only (not comparison) and only for character strings defined as FOR BIT DATA.

4 For information on assignment and comparison of reference types, see “Reference type assignments” on page 732 and “Reference type comparisons”

on page 738.

5 Only supported for Unicode databases.

6 Bit data and graphic strings are not compatible.

7 Variables of Boolean data type cannot be directly compared; comparison can only be done with the literal values TRUE, FALSE, NULL.

Numeric assignments

For numeric assignments, overflow is not allowed.

v When assigning to an exact numeric data type, overflow occurs if any digit of

the whole part of the number would be eliminated. If necessary, the fractional

part of a number is truncated.

v When assigning to an approximate numeric data type or decimal floating-point,

overflow occurs if the most significant digit of the whole part of the number is

eliminated. For floating-point and decimal floating-point numbers, the whole

part of the number is the number that would result if the floating-point or

decimal floating-point number were converted to a decimal number with

unlimited precision. If necessary, rounding may cause the least significant digits

of the number to be eliminated.

For decimal floating-point, truncation of the whole part of the number is not

allowed and results in an error.

For floating-point numbers, underflow is also not allowed. Underflow occurs for

numbers between 1 and -1 if the most significant digit other than zero would be

eliminated. For decimal floating-point, underflow is allowed and depending on

the rounding mode, results in zero or the smallest positive number or the largest

negative number that can be represented along with a warning.

An overflow or underflow warning is returned instead of an error if an overflow

or underflow occurs on assignment to a host variable with an indicator variable.

In this case, the number is not assigned to the host variable and the indicator

variable is set to negative 2.

For decimal floating-point numbers, the CURRENT DECFLOAT ROUNDING

MODE special register indicates the rounding mode in effect.

Assignments to integer

When a decimal, floating-point, or decimal floating-point number is assigned to an

integer column or variable, the fractional part of the number is eliminated. As a

result, a number between 1 and -1 is reduced to 0.

724 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|

|
|
|
|

|

|
|

|

|

|

Assignments to decimal

When an integer is assigned to a decimal column or variable, the number is first

converted to a temporary decimal number and then, if necessary, to the precision

and scale of the target. The precision and scale of the temporary decimal number is

5,0 for a small integer, 11,0 for a large integer, or 19,0 for a big integer.

When a decimal number is assigned to a decimal column or variable, the number

is converted, if necessary, to the precision and the scale of the target. The necessary

number of leading zeros is added, and in the fractional part of the decimal number

the necessary number of trailing zeros is added, or the necessary number of

trailing digits is eliminated.

When a floating-point number is assigned to a decimal column or variable, the

number is first converted to a temporary decimal number of precision 31, and

then, if necessary, truncated to the precision and scale of the target. In this

conversion, the number is rounded (using floating-point arithmetic) to a precision

of 31 decimal digits. As a result, a number between 1 and -1 that is less than the

smallest positive number or greater than the largest negative number that can be

represented in the decimal column or variable is reduced to 0. The scale is given

the largest possible value that allows the whole part of the number to be

represented without loss of significance.

When a decimal floating-point number is assigned to a decimal column or variable,

the number is rounded to the precision and scale of the decimal column or

variable. As a result, a number between 1 and -1 that is less than the smallest

positive number or greater than the largest negative number that can be

represented in the decimal column or variable is reduced to 0 or rounded to the

smallest positive or largest negative value that can be represented in the decimal

column or variable, depending on the rounding mode.

Assignments to floating-point

Floating-point numbers are approximations of real numbers. Hence, when an

integer, decimal, floating-point, or decimal floating-point number is assigned to a

floating-point column or variable, the result may not be identical to the original

number. The number is rounded to the precision of the floating-point column or

variable using floating-point arithmetic. A decimal floating-point value is first

converted to a string representation, and is then converted to a floating-point

number.

Assignments to decimal floating-point

When an integer number is assigned to a decimal floating-point column or

variable, the number is first converted to a temporary decimal number and then to

a decimal floating-point number. The precision and scale of the temporary decimal

number is 5,0 for a small integer, 11,0 for a large integer, or 19,0 for a big integer.

Rounding may occur when assigning a BIGINT to a DECFLOAT(16) column or

variable.

When a decimal number is assigned to a decimal floating-point column or variable,

the number is converted to the precision (16 or 34) of the target. Leading zeros are

eliminated. Depending on the precision and scale of the decimal number and the

precision of the target, the value might be rounded.

Appendix A. Related topics (linked to from topics in this book) 725

When a floating-point number is assigned to a decimal floating-point column or

variable, the number is first converted to a temporary string representation of the

floating-point number. The string representation of the number is then converted to

decimal floating-point.

When a DECFLOAT(16) number is assigned to a DECFLOAT(34) column or

variable, the resulting value is identical to the DECFLOAT(16) number.

When a DECFLOAT(34) number is assigned to a DECFLOAT(16) column or

variable, the exponent of the source is converted to the corresponding exponent in

the result format. The mantissa of the DECFLOAT(34) number is rounded to the

precision of the target.

Assignments from strings to numeric

When a string is assigned to a numeric data type, it is converted to the target

numeric data type using the rules for a CAST specification. For more information,

see “CAST specification” in the SQL Reference, Volume 1.

String assignments

There are two types of assignments:

v In storage assignment, a value is assigned and truncation of significant data is not

desirable; for example, when assigning a value to a column

v In retrieval assignment, a value is assigned and truncation is allowed; for

example, when retrieving data from the database

The rules for string assignment differ based on the assignment type.

Storage assignment

The basic rule is that the length of the string assigned to the target must not be

greater than the length attribute of the target. If the length of the string is greater

than the length attribute of the target, the following actions might occur:

v The string is assigned with trailing blanks truncated (from all string types except

LOB strings) to fit the length attribute of the target

v An error is returned (SQLSTATE 22001) when:

– Non-blank characters would be truncated from other than a LOB string

– Any character (or byte) would be truncated from a LOB string

If a string is assigned to a fixed-length target, and the length of the string is less

than the length attribute of the target, the string is padded to the right with the

necessary number of single-byte, double-byte, or UCS-2 blanks. The pad character

is always a blank, even for columns defined with the FOR BIT DATA attribute.

(UCS-2 defines several SPACE characters with different properties. For a Unicode

database, the database manager always uses the ASCII SPACE at position x’0020’

as UCS-2 blank. For an EUC database, the IDEOGRAPHIC SPACE at position

x’3000’ is used for padding GRAPHIC strings.)

Retrieval assignment

The length of a string that is assigned to a target can be longer than the length

attribute of the target. When a string is assigned to a target, and the length of the

string is longer than the length attribute of the target, the string is truncated on the

726 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|
|
|

|
|

|

|

right by the necessary number of characters (or bytes). When this occurs, a

warning is returned (SQLSTATE 01004), and the value ’W’ is assigned to the

SQLWARN1 field of the SQLCA.

Furthermore, if an indicator variable is provided, and the source of the value is not

a LOB, the indicator variable is set to the original length of the string.

If a character string is assigned to a fixed-length target, and the length of the string

is less than the length attribute of the target, the string is padded to the right with

the necessary number of single-byte, double-byte, or UCS-2 blanks. The pad

character is always a blank, even for strings defined with the FOR BIT DATA

attribute. (UCS-2 defines several SPACE characters with different properties. For a

Unicode database, the database manager always uses the ASCII SPACE at position

x’0020’ as UCS-2 blank. For an EUC database, the IDEOGRAPHIC SPACE at

position x’3000’ is used for padding GRAPHIC strings.)

Retrieval assignment of C NUL-terminated host variables is handled on the basis

of options that are specified with the PREP or BIND command.

Conversion rules for string assignments

A character string or graphic string assigned to a column or host variable is first

converted, if necessary, to the code page of the target. Character conversion is

necessary only if all of the following are true:

v The code pages are different.

v The string is neither null nor empty.

v Neither string has a code page value of 0 (FOR BIT DATA).

For Unicode databases, character strings can be assigned to a graphic column, and

graphic strings can be assigned to a character column.

MBCS considerations for character string assignments

There are several considerations when assigning character strings that could

contain both single and multi-byte characters. These considerations apply to all

character strings, including those defined as FOR BIT DATA.

v Blank padding is always done using the single-byte blank character (X’20’).

v Blank truncation is always done based on the single-byte blank character (X’20’).

The double-byte blank character is treated like any other character with respect

to truncation.

v Assignment of a character string to a host variable may result in fragmentation

of MBCS characters if the target host variable is not large enough to contain the

entire source string. If an MBCS character is fragmented, each byte of the MBCS

character fragment in the target is set to a single-byte blank character (X’20’), no

further bytes are moved from the source, and SQLWARN1 is set to ’W’ to

indicate truncation. Note that the same MBCS character fragment handling

applies even when the character string is defined as FOR BIT DATA.

DBCS considerations for graphic string assignments

Graphic string assignments are processed in a manner analogous to that for

character strings. For non-Unicode databases, graphic string data types are

compatible only with other graphic string data types, and never with numeric,

character string, or datetime data types. For Unicode databases, graphic string data

Appendix A. Related topics (linked to from topics in this book) 727

types are compatible with character string data types. However, graphic and

character string data types cannot be used interchangeably in the SELECT INTO or

the VALUES INTO statement.

If a graphic string value is assigned to a graphic string column, the length of the

value must not be greater than the length of the column.

If a graphic string value (the ’source’ string) is assigned to a fixed length graphic

string data type (the ’target’, which can be a column or host variable), and the

length of the source string is less than that of the target, the target will contain a

copy of the source string which has been padded on the right with the necessary

number of double-byte blank characters to create a value whose length equals that

of the target.

If a graphic string value is assigned to a graphic string host variable and the length

of the source string is greater than the length of the host variable, the host variable

will contain a copy of the source string which has been truncated on the right by

the necessary number of double-byte characters to create a value whose length

equals that of the host variable. (Note that for this scenario, truncation need not be

concerned with bisection of a double-byte character; if bisection were to occur,

either the source value or target host variable would be an ill-defined graphic

string data type.) The warning flag SQLWARN1 in the SQLCA will be set to ’W’.

The indicator variable, if specified, will contain the original length (in double-byte

characters) of the source string. In the case of DBCLOB, however, the indicator

variable does not contain the original length.

Retrieval assignment of C NUL-terminated host variables (declared using wchar_t)

is handled based on options specified with the PREP or BIND command.

Assignments from numeric to strings

When a number is assigned to a string data type, it is converted to the target string

data type using the rules for a CAST specification. For more information, see

“CAST specification” in the SQL Reference, Volume 1.

If a nonblank character is truncated during the cast of a numeric value to a

character or graphic data type, a warning is returned. This truncation behavior is

unlike the assignment to a character or graphic data type that follows storage

assignment rules, where if a nonblank character is truncated during assignment, an

error is returned.

Datetime assignments

A TIME value can be assigned only to a TIME column or to a string variable or

string column.

A DATE can be assigned to a DATE, TIMESTAMP or string data type. When a

DATE value is assigned to a TIMESTAMP data type, the missing time information

is assumed to be all zeros.

A TIMESTAMP value can be assigned to a DATE, TIME, TIMESTAMP or string

data type. When a TIMESTAMP value is assigned to a DATE data type, the date

portion is extracted and the time portion is truncated. When a TIMESTAMP value

is assigned to a TIME data type, the date portion is ignored and the time portion is

extracted, but with the fractional seconds truncated. When a TIMESTAMP value is

assigned to a TIMESTAMP with lower precision, the excess fractional seconds are

728 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

truncated. When a TIMESTAMP value is assigned to a TIMESTAMP with higher

precision, missing digits are assumed to be zeros.

The assignment must not be to a CLOB, DBCLOB, or BLOB variable or column.

When a datetime value is assigned to a string variable or string column,

conversion to a string representation is automatic. Leading zeros are not omitted

from any part of the date, time, or timestamp. The required length of the target

will vary, depending on the format of the string representation. If the length of the

target is greater than required, and the target is a fixed-length string, it is padded

on the right with blanks. If the length of the target is less than required, the result

depends on the type of datetime value involved, and on the type of target.

When the target is not a host variable and has a character data type, truncation is

not allowed. The length attribute of the column must be at least 10 for a date, 8 for

a time, 19 for a TIMESTAMP(0), and 20+p for TIMESTAMP(p).

When the target is a string host variable, the following rules apply:

v For a DATE: If the length of the host variable is less than 10 characters, an error

is returned.

v For a TIME: If the USA format is used, the length of the host variable must not

be less than 8 characters; in other formats the length must not be less than 5

characters.

If ISO or JIS formats are used, and if the length of the host variable is less than 8

characters, the seconds part of the time is omitted from the result and assigned

to the indicator variable, if provided. The SQLWARN1 field of the SQLCA is set

to indicate the omission.

v For a TIMESTAMP: If the length of the host variable is less than 19 characters,

an error is returned. If the length is less than 32 characters, but greater than or

equal to 19 characters, trailing digits of the fractional seconds part of the value

are omitted. The SQLWARN1 field of the SQLCA is set to indicate the omission.

When a DATE is assigned to a TIMESTAMP, the time and fractional components of

the timestamp are set to midnight and 0, respectively. When a TIMESTAMP is

assigned to a DATE, the date portion is extracted and the time and fractional

components are truncated.

When a TIMESTAMP is assigned to a TIME, the DATE portion is ignored and the

fractional components are truncated.

XML assignments

The general rule for XML assignments is that only an XML value can be assigned

to XML columns or to XML variables. There are exceptions to this rule, as follows.

v Processing of input XML host variables: This is a special case of the XML

assignment rule, because the host variable is based on a string value. To make

the assignment to XML within SQL, the string value is implicitly parsed into an

XML value using the setting of the CURRENT IMPLICIT XMLPARSE OPTION

special register. This determines whether to preserve or to strip whitespace,

unless the host variable is an argument of the XMLVALIDATE function, which

always strips unnecessary whitespace.

v Assigning strings to input parameter markers of data type XML: If an input

parameter marker has an implicit or explicit data type of XML, the value bound

(assigned) to that parameter marker could be a character string variable, graphic

Appendix A. Related topics (linked to from topics in this book) 729

|
|

|
|
|

|

|
|
|

|
|
|
|

|
|

string variable, or binary string variable. In this case, the string value is

implicitly parsed into an XML value using the setting of the CURRENT

IMPLICIT XMLPARSE OPTION special register to determine whether to

preserve or to strip whitespace, unless the parameter marker is an argument of

the XMLVALIDATE function, which always strips unnecessary whitespace.

v Assigning strings directly to XML columns in data change statements: If

assigning directly to a column of type XML in a data change statement, the

assigned expression can also be a character string or a binary string. In this case,

the result of XMLPARSE (DOCUMENT expression STRIP WHITESPACE) is assigned to

the target column. The supported string data types are defined by the supported

arguments for the XMLPARSE function. Note that this XML assignment

exception does not allow character or binary string values to be assigned to SQL

variables or to SQL parameters of data type XML.

v Assigning XML to strings on retrieval: If retrieving XML values into host

variables using a FETCH INTO statement or an EXECUTE INTO statement in

embedded SQL, the data type of the host variable can be CLOB, DBCLOB, or

BLOB. If using other application programming interfaces (such as CLI, JDBC, or

.NET), XML values can be retrieved into the character, graphic, or binary string

types that are supported by the application programming interface. In all of

these cases, the XML value is implicitly serialized to a string encoded in UTF-8

and, for character or graphic string variables, converted into the client code

page.

Character string or binary string values cannot be retrieved into XML host

variables. Values in XML host variables cannot be assigned to columns, SQL

variables, or SQL parameters of a character string data type or a binary string data

type.

Assignment to XML parameters and variables in inlined SQL bodied UDFs and

SQL procedures is done by reference. Passing parameters of data type XML to

invoke an inlined SQL UDF or SQL procedure is also done by reference. When

XML values are passed by reference, any input node trees are used directly. This

direct usage preserves all properties, including document order, the original node

identities, and all parent properties.

User-defined type assignments

For distinct types and structured types, different rules are applied for assignments

to host variables than are used for all other assignments.

Distinct Types: Assignment to host variables is done based on the source type of

the distinct type. That is, it follows the rule:

v A value of a distinct type on the right hand side of an assignment is assignable

to a host variable on the left hand side if and only if the source type of this

distinct type is assignable to this host variable.

If the target of the assignment is a column based on a distinct type, the source data

type must be castable to the target data type.

Structured Types: Assignment to and from host variables is based on the declared

type of the host variable; that is, it follows the rule:

v A value of a structured type on the right hand side of an assignment is

assignable to a host variable on the left hand side if and only if the declared

type of the host variable is the structured type or a supertype of the structured

type.

730 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|

If the target of the assignment is a column of a structured type, the source data

type must be the target data type or a subtype of the target data type.

For array types, different rules are applied for assignments to SQL variables and

parameters. The validity of an assignment to an SQL variable or parameter is

determined according to the following rules:

v If the right hand side of the assignment is an SQL variable or parameter, an

invocation of the TRIM_ARRAY function, an invocation of the ARRAY_DELETE

function, or a CAST expression, then its type must be the same as the type of

the SQL variable or parameter on the left hand side of the assignment.

v If the right hand side of the assignment is an array constructor or an invocation

of the ARRAY_AGG function, then it is implicitly cast to the type of the SQL

variable or parameter on the left hand side.

For example, assuming that the type of variable V is MYARRAY, the statement:

 SET V = ARRAY[1,2,3];

is equivalent to:

SET V = CAST(ARRAY[1,2,3] AS MYARRAY);

And the statement:

SELECT ARRAY_AGG(C1) INTO V FROM T

is equivalent to:

SELECT CAST(ARRAY_AGG(C1) AS MYARRAY) INTO V FROM T

Additional information about specific user-defined types is in the sections that

follow:

Array type assignments

The value for an element of an array must be assignable to the data type of the

array elements. The assignment rules for that data type apply to the value

assignment. The value specified for an index in the array must be assignable to the

data type of the index for the array. The assignment rules for that data type apply

to the value assignment. For an ordinary array the index data type is INTEGER

and for an associative array the data type is either INTEGER or VARCHAR(n),

where n is any valid length attribute for the VARCHAR data type. If the index

value for an assignment to an ordinary array is larger the current cardinality of the

array, then the cardinality of the array is increased to the new index value,

provided the value does not exceed the maximum value for an INTEGER data

type. An assignment of one new element to an associative array increases the

cardinality by exactly 1 since the index values can be sparse.

The following are valid assignments involving array type values:

v Array variable to another array variable with the same array type as the source

variable.

v An expression of type array to an array variable, where the array element type

in the source expression is assignable to the array element type in the target

array variable.

Row type assignments

Assignments to fields within a row variable must conform to the same rules as if

the field itself was a variable of the same data type as the field. A row variable can

Appendix A. Related topics (linked to from topics in this book) 731

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|

be assigned only to a row variable with the same user-defined row type. When

using FETCH, SELECT, or VALUES INTO to assign values to a row variable, the

source value types must be assignable to the target row fields.If the source or the

target variable (or both) of an assignment is anchored to the row of a table or view,

the number of fields must be the same and the field types of the source value must

be assignable to the field types of the target value.

Cursor type assignments

Assignments to cursors depend on the type of cursor. The following values are

assignable to a variable or parameter of built-in type CURSOR:

v A cursor value constructor

v A value of built-in type CURSOR

v A value of any user-defined cursor type

The following values are assignable to a variable or parameter of a weakly-typed

user defined cursor type:

v A cursor value constructor

v A value of built-in type CURSOR

v A value of a user-defined cursor type with the same type name

The following values are assignable to a variable or parameter of strongly-typed

user defined cursor type:

v A cursor value constructor

v A value of a user-defined cursor type with the same type name

Boolean type assignments

The following system-defined values are assignable to a variable, parameter, or

return type of built-in type BOOLEAN:

v TRUE

v FALSE

v NULL

The result of the evaluation of a search condition can also be assigned. If the

search condition evaluates to unknown, the value of NULL is assigned.

Reference type assignments

A reference type with a target type of T can be assigned to a reference type column

that is also a reference type with target type of S where S is a supertype of T. If an

assignment is made to a scoped reference column or variable, no check is

performed to ensure that the actual value being assigned exists in the target table

or view defined by the scope.

Assignment to host variables is done based on the representation type of the

reference type. That is, it follows the rule:

v A value of a reference type on the right hand side of an assignment is assignable

to a host variable on the left hand side if and only if the representation type of

this reference type is assignable to this host variable.

732 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|
|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

If the target of the assignment is a column, and the right hand side of the

assignment is a host variable, the host variable must be explicitly cast to the

reference type of the target column.

Numeric comparisons

Numbers are compared algebraically; that is, with regard to sign. For example, -2

is less than +1.

If one number is an integer and the other is decimal, the comparison is made with

a temporary copy of the integer, which has been converted to decimal.

When decimal numbers with different scales are compared, the comparison is

made with a temporary copy of one of the numbers that has been extended with

trailing zeros so that its fractional part has the same number of digits as the other

number.

If one number is floating-point and the other is integer or decimal, the comparison

is made with a temporary copy of the other number, which has been converted to

double-precision floating-point.

Two floating-point numbers are equal only if the bit configurations of their

normalized forms are identical.

If one number is decimal floating-point and the other number is integer, decimal,

single precision floating-point, or double precision floating-point, the comparison is

made with a temporary copy of the other number, which has been converted to

decimal floating-point.

If one number is DECFLOAT(16) and the other number is DECFLOAT(34), the

DECFLOAT(16) value is converted to DECFLOAT(34) before the comparison is

made.

The decimal floating-point data type supports both positive and negative zero.

Positive and negative zero have different binary representations, but the = (equal)

predicate will return true for comparisons of negative and positive zero.

The COMPARE_DECFLOAT and TOTALORDER scalar functions can be used to

perform comparisons at a binary level if, for example, a comparison of 2.0 <> 2.00

is required.

The decimal floating-point data type supports the specification of negative and

positive NaN (quiet and signalling), and negative and positive infinity. From an

SQL perspective, INFINITY = INFINITY, NAN = NAN, SNAN = SNAN, and -0 =

0.

The comparison and ordering rules for special values are as follows:

v (+/-) INFINITY compares equal only to (+/-) INFINITY of the same sign.

v (+/-) NAN compares equal only to (+/-) NAN of the same sign.

v (+/-) SNAN compares equal only to (+/-) SNAN of the same sign.

The ordering among different special values is as follows:

v -NAN < -SNAN < -INFINITY < 0 < INFINITY < SNAN < NAN

Appendix A. Related topics (linked to from topics in this book) 733

When string and numeric data types are compared, the string is cast to

DECFLOAT(34) using the rules for a CAST specification. For more information, see

“CAST specification” in the SQL Reference, Volume 1. The string must contain a

valid string representation of a number.

String comparisons

Character strings are compared according to the collating sequence specified when

the database was created, except those with a FOR BIT DATA attribute, which are

always compared according to their bit values.

When comparing character strings of unequal lengths, the comparison is made

using a logical copy of the shorter string, which is padded on the right with blanks

sufficient to extend its length to that of the longer string. This logical extension is

done for all character strings, including those tagged as FOR BIT DATA.

Character strings (except character strings tagged as FOR BIT DATA) are compared

according to the collating sequence specified when the database was created. For

example, the default collating sequence supplied by the database manager may

give lowercase and uppercase versions of the same character the same weight. The

database manager performs a two-pass comparison to ensure that only identical

strings are considered equal to each other. In the first pass, strings are compared

according to the database collating sequence. If the weights of the characters in the

strings are equal, a second ″tie-breaker″ pass is performed to compare the strings

on the basis of their actual code point values.

Two strings are equal if they are both empty or if all corresponding bytes are

equal. If either operand is null, the result is unknown.

LOB strings are not supported in any comparison operations that use the basic

comparison operators (=, <>, <, >, <=, and >=). They are supported in comparisons

using the LIKE predicate and the POSSTR function.

Portions of strings can be compared using the SUBSTR and VARCHAR scalar

functions. For example, given the columns:

 MY_SHORT_CLOB CLOB(300)

 MY_LONG_VAR VARCHAR(8000)

then the following is valid:

 WHERE VARCHAR(MY_SHORT_CLOB) > VARCHAR(SUBSTR(MY_LONG_VAR,1,300))

Examples:

For these examples, ’A’, ’Á’, ’a’, and ’á’, have the code point values X’41’, X’C1’,

X’61’, and X’E1’ respectively.

Consider a collating sequence where the characters ’A’, ’Á’, ’a’, ’á’ have weights

136, 139, 135, and 138. Then the characters sort in the order of their weights as

follows:

’a’ < ’A’ < ’á’ < ’Á’

Now consider four DBCS characters D1, D2, D3, and D4 with code points 0xC141,

0xC161, 0xE141, and 0xE161, respectively. If these DBCS characters are in CHAR

columns, they sort as a sequence of bytes according to the collation weights of

734 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|

|
|

|
|

|

those bytes. First bytes have weights of 138 and 139, therefore D3 and D4 come

before D2 and D1; second bytes have weights of 135 and 136. Hence, the order is

as follows:

D4 < D3 < D2 < D1

However, if the values being compared have the FOR BIT DATA attribute, or if

these DBCS characters were stored in a GRAPHIC column, the collation weights

are ignored, and characters are compared according to their code points as follows:

 ’A’ < ’a’ < ’Á’ < ’á’

The DBCS characters sort as sequence of bytes, in the order of code points as

follows:

D1 < D2 < D3 < D4

Now consider a collating sequence where the characters ’A’, ’Á’, ’a’, ’á’ have

(non-unique) weights 74, 75, 74, and 75. Considering collation weights alone (first

pass), ’a’ is equal to ’A’, and ’á’ is equal to ’Á’. The code points of the characters

are used to break the tie (second pass) as follows:

’A’ < ’a’ < ’Á’ < ’á’

DBCS characters in CHAR columns sort a sequence of bytes, according to their

weights (first pass) and then according to their code points to break the tie (second

pass). First bytes have equal weights, so the code points (0xC1 and 0xE1) break the

tie. Therefore, characters D1 and D2 sort before characters D3 and D4. Then the

second bytes are compared in similar way, and the final result is as follows:

D1 < D2 < D3 < D4

Once again, if the data in CHAR columns have the FOR BIT DATA attribute, or if

the DBCS characters are stored in a GRAPHIC column, the collation weights are

ignored, and characters are compared according to their code points:

D1 < D2 < D3 < D4

For this particular example, the result happens to be the same as when collation

weights were used, but obviously this is not always the case.

Conversion rules for comparison

When two strings are compared, one of the strings is first converted, if necessary,

to the encoding scheme and code page of the other string.

Ordering of results

Results that require sorting are ordered based on the string comparison rules

discussed in “String comparisons” on page 734. The comparison is performed at

the database server. On returning results to the client application, code page

conversion may be performed. This subsequent code page conversion does not

affect the order of the server-determined result set.

MBCS considerations for string comparisons

Mixed SBCS/MBCS character strings are compared according to the collating

sequence specified when the database was created. For databases created with

default (SYSTEM) collation sequence, all single-byte ASCII characters are sorted in

correct order, but double-byte characters are not necessarily in code point

sequence. For databases created with IDENTITY sequence, all double-byte

Appendix A. Related topics (linked to from topics in this book) 735

characters are correctly sorted in their code point order, but single-byte ASCII

characters are sorted in their code point order as well. For databases created with

COMPATIBILITY sequence, a compromise order is used that sorts properly for

most double-byte characters, and is almost correct for ASCII. This was the default

collation table in DB2 Version 2.

Mixed character strings are compared byte-by-byte. This may result in unusual

results for multi-byte characters that occur in mixed strings, because each byte is

considered independently.

Example:

For this example, ’A’, ’B’, ’a’, and ’b’ double-byte characters have the code point

values X’8260’, X’8261’, X’8281’, and X’8282’, respectively.

Consider a collating sequence where the code points X’8260’, X’8261’, X’8281’, and

X’8282’ have weights 96, 65, 193, and 194. Then:

 ’B’ < ’A’ < ’a’ < ’b’

and

 ’AB’ < ’AA’ < ’Aa’ < ’Ab’ < ’aB’ < ’aA’ < ’aa’ < ’ab’

Graphic string comparisons are processed in a manner analogous to that for

character strings.

Graphic string comparisons are valid between all graphic string data types except

DBCLOB.

For graphic strings, the collating sequence of the database is not used. Instead,

graphic strings are always compared based on the numeric (binary) values of their

corresponding bytes.

Using the previous example, if the literals were graphic strings, then:

 ’A’ < ’B’ < ’a’ < ’b’

and

 ’AA’ < ’AB’ < ’Aa’ < ’Ab’ < ’aA’ < ’aB’ < ’aa’ < ’ab’

When comparing graphic strings of unequal lengths, the comparison is made using

a logical copy of the shorter string which is padded on the right with double-byte

blank characters sufficient to extend its length to that of the longer string.

Two graphic values are equal if they are both empty or if all corresponding

graphics are equal. If either operand is null, the result is unknown. If two values

are not equal, their relation is determined by a simple binary string comparison.

As indicated in this section, comparing strings on a byte by byte basis can produce

unusual results; that is, a result that differs from what would be expected in a

character by character comparison. The examples shown here assume the same

MBCS code page, however, the situation can be further complicated when using

different multi-byte code pages with the same national language. For example,

consider the case of comparing a string from a Japanese DBCS code page and a

Japanese EUC code page.

736 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

Datetime comparisons

A DATE, TIME, or TIMESTAMP value may be compared either with another value

of the same data type or with a string representation of that data type. A DATE or

a string representation of a date can also be compared with a TIMESTAMP, where

the missing time information for the date value is assumed to be all zeros. All

comparisons are chronological, which means the farther a point in time is from

January 1, 0001, the greater the value of that point in time.

Comparisons involving TIME values and string representations of time values

always include seconds. If the string representation omits seconds, zero seconds is

implied.

Comparisons involving TIMESTAMP values are chronological without regard to

representations that might be considered equivalent.

Example:

 TIMESTAMP(’1990-02-23-00.00.00’) > ’1990-02-22-24.00.00’

User-defined type comparisons

Values with a user-defined distinct type can only be compared with values of

exactly the same user-defined distinct type. The user-defined distinct type must

have been defined using the WITH COMPARISONS clause.

Example:

Given the following YOUTH distinct type and CAMP_DB2_ROSTER table:

 CREATE TYPE YOUTH AS INTEGER WITH COMPARISONS

 CREATE TABLE CAMP_DB2_ROSTER

 (NAME VARCHAR(20),

 ATTENDEE_NUMBER INTEGER NOT NULL,

 AGE YOUTH,

 HIGH_SCHOOL_LEVEL YOUTH)

The following comparison is valid:

 SELECT * FROM CAMP_DB2_ROSTER

 WHERE AGE > HIGH_SCHOOL_LEVEL

The following comparison is not valid:

 SELECT * FROM CAMP_DB2_ROSTER

 WHERE AGE > ATTENDEE_NUMBER

However, AGE can be compared to ATTENDEE_NUMBER by using a function or

CAST specification to cast between the distinct type and the source type. The

following comparisons are all valid:

 SELECT * FROM CAMP_DB2_ROSTER

 WHERE INTEGER(AGE) > ATTENDEE_NUMBER

 SELECT * FROM CAMP_DB2_ROSTER

 WHERE CAST(AGE AS INTEGER) > ATTENDEE_NUMBER

 SELECT * FROM CAMP_DB2_ROSTER

 WHERE AGE > YOUTH(ATTENDEE_NUMBER)

 SELECT * FROM CAMP_DB2_ROSTER

 WHERE AGE > CAST(ATTENDEE_NUMBER AS YOUTH)

Appendix A. Related topics (linked to from topics in this book) 737

|
|
|

Values with a user-defined structured type cannot be compared with any other

value (the NULL predicate and the TYPE predicate can be used).

Comparisons of array type values are not supported. Elements of arrays can be

compared based on the comparison rules for the data type of the elements.

Row type comparisons

A row variable cannot be compared to another row variable even if the row type

name is the same. Individual fields within a row type can be compared to other

values and the comparison rules for the data type of the field apply.

Cursor type comparisons

A cursor variable cannot be compared to another cursor variable even if the cursor

type name is the same.

Boolean type comparisons

A Boolean value can be compared with a Boolean literal value. A value of TRUE is

greater than a value of FALSE.

Reference type comparisons

Reference type values can be compared only if their target types have a common

supertype. The appropriate comparison function will only be found if the schema

name of the common supertype is included in the SQL path. The comparison is

performed using the representation type of the reference types. The scope of the

reference is not considered in the comparison.

XML comparisons in a non-Unicode database

When performed in a non-Unicode database, comparisons between XML data and

character or graphic string values require a code page conversion of one of the two

sets of data being compared. Character or graphic values used in an SQL or

XQuery statement, either as a query predicate or as a host variable with a

character or graphic string data type, are converted to the database code page prior

to comparison. If any characters included in this data have code points that are not

part of the database code page, substitution characters are added in their place,

potentially causing unexpected results for the query.

For example, a client with a UTF-8 code page is used to connect to a database

server created with the Greek encoding ISO8859-7. The expression ΣGΣM

is sent as

the predicate of an XQuery statement, where ΣG

represents the Greek sigma

character in Unicode (U+03A3) and ΣM

represents the mathematical symbol sigma

in Unicode (U+2211). This expression is first converted to the database code page,

so that both ″Σ″ characters are converted to the equivalent code point for sigma in

the Greek database code page, 0xD3. We may denote this code point as ΣA. The

newly converted expression ΣAΣA

is then converted again to UTF-8 for comparison

with the target XML data. Since the distinction between these two code points was

lost as a result of the code page conversion required to pass the predicate

expression into the database, the two initially distinct values ΣG

and ΣM

are passed

to the XML parser as the expression ΣGΣG. This expression then fails to match when

compared to the value ΣGΣM

in an XML document.

738 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

|
|
|

|

|
|

|

|
|

One way to avoid the unexpected query results that may be caused by code page

conversion issues is to ensure that all characters used in a query expression have

matching code points in the database code page. Characters that do not have

matching code points can be included through the use of a Unicode character

entity reference. A character entity reference will always bypass code page

conversion. For example, using the character entity reference ࢣ in place of

the ΣM

character ensures that the correct Unicode code point is used for the

comparison, regardless of the database code page.

CURRENT CLIENT_ACCTNG

The CURRENT CLIENT_ACCTNG (or CLIENT ACCTNG) special register contains

the value of the accounting string from the client information specified for this

connection. The data type of the register is VARCHAR(255). The default value of

this register is an empty string.

The value of the accounting string can be changed by using the Set Client

Information (sqleseti) API.

Note that the value provided via the sqleseti API is in the application code page,

and the special register value is stored in the database code page. Depending on

the data values used when setting the client information, truncation of the data

value stored in the special register may occur during code page conversion.

Example: Get the current value of the accounting string for this connection.

 VALUES (CURRENT CLIENT_ACCTNG)

 INTO :ACCT_STRING

CURRENT DATE

The CURRENT DATE (or CURRENT_DATE) special register specifies a date that is

based on a reading of the time-of-day clock when the SQL statement is executed at

the application server. If this special register is used more than once within a single

SQL statement, or used with CURRENT TIME or CURRENT TIMESTAMP within a

single statement, all values are based on a single clock reading.

When used in an SQL statement inside a routine, CURRENT DATE is not inherited

from the invoking statement.

In a federated system, CURRENT DATE can be used in a query intended for data

sources. When the query is processed, the date returned will be obtained from the

CURRENT DATE register at the federated server, not from the data sources.

Example: Run the following command from the DB2 CLP to obtain the current date.

 db2 values CURRENT DATE

Example: Using the PROJECT table, set the project end date (PRENDATE) of the

MA2111 project (PROJNO) to the current date.

 UPDATE PROJECT

 SET PRENDATE = CURRENT DATE

 WHERE PROJNO = ’MA2111’

CURRENT DECFLOAT ROUNDING MODE

The CURRENT DECFLOAT ROUNDING MODE special register specifies the

rounding mode that is used for DECFLOAT values.

Appendix A. Related topics (linked to from topics in this book) 739

The data type is VARCHAR(128). The following rounding modes are supported:

v ROUND_CEILING rounds the value towards positive infinity. If all of the

discarded digits are zero or if the sign is negative, the result is unchanged

(except for the removal of the discarded digits). Otherwise, the result coefficient

is incremented by 1.

v ROUND_DOWN rounds the value towards 0 (truncation). The discarded digits

are ignored.

v ROUND_FLOOR rounds the value towards negative infinity. If all of the

discarded digits are zero or if the sign is positive, the result is unchanged

(except for the removal of the discarded digits). Otherwise, the sign is negative

and the result coefficient is incremented by 1.

v ROUND_HALF_EVEN rounds the value to the nearest value. If the values are

equidistant, rounds the value so that the final digit is even. If the discarded

digits represent more than half of the value of a number in the next left position,

the result coefficient is incremented by 1. If they represent less than half, the

result coefficient is not adjusted (that is, the discarded digits are ignored).

Otherwise, the result coefficient is unaltered if its rightmost digit is even, or

incremented by 1 if its rightmost digit is odd (to make an even digit).

v ROUND_HALF_UP rounds the value to the nearest value. If the values are

equidistant, rounds the value up. If the discarded digits represent half or more

than half of the value of a number in the next left position, the result coefficient

is incremented by 1. Otherwise, the discarded digits are ignored.

The value of the DECFLOAT rounding mode on a client can be confirmed to

match that of the server by invoking the SET CURRENT DECFLOAT ROUNDING

MODE statement. However, this statement cannot be used to change the rounding

mode of the server. The initial value of CURRENT DECFLOAT ROUNDING

MODE is determined by the decflt_rounding database configuration parameter

and can only be changed by changing the value of this database configuration

parameter.

CURRENT DEFAULT TRANSFORM GROUP

The CURRENT DEFAULT TRANSFORM GROUP special register specifies a

VARCHAR(18) value that identifies the name of the transform group used by

dynamic SQL statements for exchanging user-defined structured type values with

host programs. This special register does not specify the transform groups used in

static SQL statements, or in the exchange of parameters and results with external

functions or methods.

Its value can be set by the SET CURRENT DEFAULT TRANSFORM GROUP

statement. If no value is set, the initial value of the special register is the empty

string (a VARCHAR with a length of zero).

In a dynamic SQL statement (that is, one which interacts with host variables), the

name of the transform group used for exchanging values is the same as the value

of this special register, unless this register contains the empty string. If the register

contains the empty string (no value was set by using the SET CURRENT

DEFAULT TRANSFORM GROUP statement), the DB2_PROGRAM transform

group is used for the transform. If the DB2_PROGRAM transform group is not

defined for the structured type subject, an error is raised at run time (SQLSTATE

42741).

Examples:

740 Common Criteria Certification: Administration and User Documentation - Volume 2

Set the default transform group to MYSTRUCT1. The TO SQL and FROM SQL

functions defined in the MYSTRUCT1 transform are used to exchange user-defined

structured type variables with the host program.

 SET CURRENT DEFAULT TRANSFORM GROUP = MYSTRUCT1

Retrieve the name of the default transform group assigned to this special register.

 VALUES (CURRENT DEFAULT TRANSFORM GROUP)

CURRENT DEGREE

The CURRENT DEGREE special register specifies the degree of intra-partition

parallelism for the execution of dynamic SQL statements. (For static SQL, the

DEGREE bind option provides the same control.) The data type of the register is

CHAR(5). Valid values are ANY or the string representation of an integer between

1 and 32 767, inclusive.

If the value of CURRENT DEGREE represented as an integer is 1 when an SQL

statement is dynamically prepared, the execution of that statement will not use

intra-partition parallelism.

If the value of CURRENT DEGREE represented as an integer is greater than 1 and

less than or equal to 32 767 when an SQL statement is dynamically prepared, the

execution of that statement can involve intra-partition parallelism with the

specified degree.

If the value of CURRENT DEGREE is ANY when an SQL statement is dynamically

prepared, the execution of that statement can involve intra-partition parallelism

using a degree determined by the database manager.

The actual runtime degree of parallelism will be the lower of:

v The value of the maximum query degree (max_querydegree) configuration

parameter

v The application runtime degree

v The SQL statement compilation degree.

If the intra_parallel database manager configuration parameter is set to NO, the

value of the CURRENT DEGREE special register will be ignored for the purpose of

optimization, and the statement will not use intra-partition parallelism.

The value can be changed by invoking the SET CURRENT DEGREE statement.

The initial value of CURRENT DEGREE is determined by the dft_degree database

configuration parameter.

CURRENT EXPLAIN MODE

The CURRENT EXPLAIN MODE special register holds a VARCHAR(254) value

which controls the behavior of the Explain facility with respect to eligible dynamic

SQL statements. This facility generates and inserts Explain information into the

Explain tables. This information does not include the Explain snapshot. Possible

values are YES, EXPLAIN, NO, REOPT, RECOMMEND INDEXES, and EVALUATE

INDEXES. (For static SQL, the EXPLAIN bind option provides the same control. In

the case of the PREP and BIND commands, the EXPLAIN option values are: YES,

NO, and ALL.)

Appendix A. Related topics (linked to from topics in this book) 741

YES Enables the Explain facility and causes Explain information for a dynamic

SQL statement to be captured when the statement is compiled.

EXPLAIN

Enables the facility, but dynamic statements are not executed.

NO Disables the Explain facility.

REOPT

Enables the Explain facility and causes Explain information for a dynamic

(or incremental-bind) SQL statement to be captured only when the

statement is reoptimized using real values for the input variables (host

variables, special registers, global variables, or parameter markers).

RECOMMEND INDEXES

Recommends a set of indexes for each dynamic query. Populates the

ADVISE_INDEX table with the set of indexes.

EVALUATE INDEXES

Explains dynamic queries as though the recommended indexes existed.

The indexes are picked up from the ADVISE_INDEX table.

The initial value is NO. The value can be changed by invoking the SET CURRENT

EXPLAIN MODE statement.

The CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT special

register values interact when the Explain facility is invoked. The CURRENT

EXPLAIN MODE special register also interacts with the EXPLAIN bind option.

RECOMMEND INDEXES and EVALUATE INDEXES can only be set for the

CURRENT EXPLAIN MODE register, and must be set using the SET CURRENT

EXPLAIN MODE statement.

Example: Set the host variable EXPL_MODE (VARCHAR(254)) to the value

currently in the CURRENT EXPLAIN MODE special register.

 VALUES CURRENT EXPLAIN MODE

 INTO :EXPL_MODE

CURRENT EXPLAIN SNAPSHOT

The CURRENT EXPLAIN SNAPSHOT special register holds a CHAR(8) value that

controls the behavior of the Explain snapshot facility. This facility generates

compressed information, including access plan information, operator costs, and

bind-time statistics.

Only the following statements consider the value of this register: CALL,

Compound SQL (Dynamic), DELETE, INSERT, MERGE, REFRESH, SELECT,

SELECT INTO, SET INTEGRITY, UPDATE, VALUES, or VALUES INTO. Possible

values are YES, EXPLAIN, NO, and REOPT. (For static SQL, the EXPLSNAP bind

option provides the same control. In the case of the PREP and BIND commands,

the EXPLSNAP option values are: YES, NO, and ALL.)

YES Enables the Explain snapshot facility and takes a snapshot of the internal

representation of a dynamic SQL statement as the statement is compiled.

EXPLAIN

Enables the Explain snapshot facility, but dynamic statements are not

executed.

NO Disables the Explain snapshot facility.

742 Common Criteria Certification: Administration and User Documentation - Volume 2

REOPT

Enables the Explain facility and causes Explain information for a dynamic

(or incremental-bind) SQL statement to be captured only when the

statement is reoptimized using real values for the input variables (host

variables, special registers, global variables, or parameter markers).

The initial value is NO. The value can be changed by invoking the SET CURRENT

EXPLAIN SNAPSHOT statement.

The CURRENT EXPLAIN SNAPSHOT and CURRENT EXPLAIN MODE special

register values interact when the Explain facility is invoked. The CURRENT

EXPLAIN SNAPSHOT special register also interacts with the EXPLSNAP bind

option.

Example: Set the host variable EXPL_SNAP (char(8)) to the value currently in the

CURRENT EXPLAIN SNAPSHOT special register.

 VALUES CURRENT EXPLAIN SNAPSHOT

 INTO :EXPL_SNAP

CURRENT FEDERATED ASYNCHRONY

The CURRENT FEDERATED ASYNCHRONY special register specifies the degree

of asynchrony for the execution of dynamic SQL statements. (The

FEDERATED_ASYNCHRONY bind option provides the same control for static

SQL.) The data type of the register is INTEGER. Valid values are ANY

(representing -1) or an integer between 0 and 32 767, inclusive. If, when an SQL

statement is dynamically prepared, the value of CURRENT FEDERATED

ASYNCHRONY is:

v 0, the execution of that statement will not use asynchrony

v Greater than 0 and less than or equal to 32 767, the execution of that statement

can involve asynchrony using the specified degree

v ANY (representing -1), the execution of that statement can involve asynchrony

using a degree that is determined by the database manager

The value of the CURRENT FEDERATED ASYNCHRONY special register can be

changed by invoking the SET CURRENT FEDERATED ASYNCHRONY statement.

The initial value of the CURRENT FEDERATED ASYNCHRONY special register is

determined by the federated_async database manager configuration parameter if

the dynamic statement is issued through the command line processor (CLP). The

initial value is determined by the FEDERATED_ASYNCHRONY bind option if the

dynamic statement is part of an application that is being bound.

Example: Set the host variable FEDASYNC (INTEGER) to the value of the

CURRENT FEDERATED ASYNCHRONY special register.

 VALUES CURRENT FEDERATED ASYNCHRONY INTO :FEDASYNC

CURRENT IMPLICIT XMLPARSE OPTION

The CURRENT IMPLICIT XMLPARSE OPTION special register specifies the

whitespace handling options that are to be used when serialized XML data is

implicitly parsed by the DB2 server, without validation. An implicit non-validating

parse operation occurs when an SQL statement is processing an XML host variable

Appendix A. Related topics (linked to from topics in this book) 743

or an implicitly or explicitly typed XML parameter marker that is not an argument

of the XMLVALIDATE function. The data type of the register is VARCHAR(19).

The value of the CURRENT IMPLICIT XMLPARSE OPTION special register can be

changed by invoking the SET CURRENT IMPLICIT XMLPARSE OPTION

statement. Its initial value is ’STRIP WHITESPACE’.

Examples:

Retrieve the value of the CURRENT IMPLICIT XMLPARSE OPTION special

register into a host variable named CURXMLPARSEOPT:

 EXEC SQL VALUES (CURRENT IMPLICIT XMLPARSE OPTION) INTO :CURXMLPARSEOPT;

Set the CURRENT IMPLICIT XMLPARSE OPTION special register to ’PRESERVE

WHITESPACE’.

 SET CURRENT IMPLICIT XMLPARSE OPTION = ’PRESERVE WHITESPACE’

Whitespace is then preserved when the following SQL statement executes:

 INSERT INTO T1 (XMLCOL1) VALUES (?)

CURRENT ISOLATION

The CURRENT ISOLATION special register holds a CHAR(2) value that identifies

the isolation level (in relation to other concurrent sessions) for any dynamic SQL

statements issued within the current session.

The possible values are:

(blanks)

Not set; use the isolation attribute of the package.

UR Uncommitted Read

CS Cursor Stability

RR Repeatable Read

RS Read Stability

The value of the CURRENT ISOLATION special register can be changed by the

SET CURRENT ISOLATION statement.

Until a SET CURRENT ISOLATION statement is issued within a session, or after

RESET has been specified for SET CURRENT ISOLATION, the CURRENT

ISOLATION special register is set to blanks and is not applied to dynamic SQL

statements; the isolation level used is taken from the isolation attribute of the

package which issued the dynamic SQL statement. Once a SET CURRENT

ISOLATION statement has been issued, the CURRENT ISOLATION special register

provides the isolation level for any subsequent dynamic SQL statement compiled

within the session, regardless of the settings for the package issuing the statement.

This will remain in effect until the session ends or until a SET CURRENT

ISOLATION statement is issued with the RESET option.

Example: Set the host variable ISOLATION_MODE (CHAR(2)) to the value

currently stored in the CURRENT ISOLATION special register.

 VALUES CURRENT ISOLATION

 INTO :ISOLATION_MODE

744 Common Criteria Certification: Administration and User Documentation - Volume 2

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

The CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special

register specifies a VARCHAR(254) value that identifies the types of tables that can

be considered when optimizing the processing of dynamic SQL queries.

Materialized query tables are never considered by static embedded SQL queries.

The initial value of CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION is SYSTEM. Its value can be changed by the SET CURRENT

MAINTAINED TABLE TYPES FOR OPTIMIZATION statement.

CURRENT MDC ROLLOUT MODE

The CURRENT MDC ROLLOUT MODE special register specifies the behavior on

multidimensional clustering (MDC) tables of DELETE statements that qualify for

rollout processing.

The default value of this register is determined by the DB2_MDC_ROLLOUT

registry variable. The value can be changed by invoking the SET CURRENT MDC

ROLLOUT MODE statement. When the CURRENT MDC ROLLOUT MODE

special register is set to a particular value, the execution behavior of subsequent

DELETE statements that qualify for rollout is impacted. The DELETE statement

does not need to be recompiled for the behavior to change.

CURRENT OPTIMIZATION PROFILE

The CURRENT OPTIMIZATION PROFILE special register specifies the qualified

name of the optimization profile to be used by DML statements that are

dynamically prepared for optimization.

The initial value is the null value. The value can be changed by invoking the SET

CURRENT OPTIMIZATION PROFILE statement. An optimization profile that is

not qualified with a schema name will be implicitly qualified with the value of the

CURRENT DEFAULT SCHEMA special register.

Example 1: Set the optimization profile to ’JON.SALES’.

 SET CURRENT OPTIMIZATION PROFILE = JON.SALES

Example 2: Get the current value of the optimization profile name for this

connection.

 VALUES (CURRENT OPTIMIZATION PROFILE) INTO :PROFILE

CURRENT PACKAGE PATH

The CURRENT PACKAGE PATH special register specifies a VARCHAR(4096)

value that identifies the path to be used when resolving references to packages that

are needed when executing SQL statements.

The value can be an empty or a blank string, or a list of one or more schema

names that are delimited with double quotation marks and separated by commas.

Any double quotation marks appearing as part of the string will need to be

represented as two double quotation marks, as is common practice with delimited

identifiers. The delimiters and commas contribute to the length of the special

register.

This special register applies to both static and dynamic statements.

Appendix A. Related topics (linked to from topics in this book) 745

The initial value of CURRENT PACKAGE PATH in a user-defined function,

method, or procedure is inherited from the invoking application. In other contexts,

the initial value of CURRENT PACKAGE PATH is an empty string. The value is a

list of schemas only if the application process has explicitly specified a list of

schemas by means of the SET CURRENT PACKAGE PATH statement.

Examples:

An application will be using multiple SQLJ packages (in schemas SQLJ1 and

SQLJ2) and a JDBC package (in schema DB2JAVA). Set the CURRENT PACKAGE

PATH special register to check SQLJ1, SQLJ2, and DB2JAVA, in that order.

 SET CURRENT PACKAGE PATH = "SQLJ1", "SQLJ2", "DB2JAVA"

Set the host variable HVPKLIST to the value currently stored in the CURRENT

PACKAGE PATH special register.

 VALUES CURRENT PACKAGE PATH INTO :HVPKLIST

CURRENT PATH

The CURRENT PATH (or CURRENT_PATH) special register specifies a

VARCHAR(2048) value that identifies the SQL path used when resolving

unqualified function names, procedure names, data type names, global variable

names, and module object names in dynamically prepared SQL statements.

CURRENT FUNCTION PATH is a synonym for CURRENT PATH. The initial value

is the default value specified below. For static SQL, the FUNCPATH bind option

provides an SQL path that is used for function and data type resolution.

The CURRENT PATH special register contains a list of one or more schema names

that are enclosed by double quotation marks and separated by commas. For

example, an SQL path specifying that the database manager is to look first in the

FERMAT schema, then in the XGRAPHIC schema, and finally in the SYSIBM

schema, is returned in the CURRENT PATH special register as:

"FERMAT","XGRAPHIC","SYSIBM"

The default value is “SYSIBM”,“SYSFUN”,“SYSPROC”,“SYSIBMADM”,X, where X

is the value of the USER special register, delimited by double quotation marks. The

value can be changed by invoking the SET CURRENT PATH statement. The

schema SYSIBM does not need to be specified. If it is not included in the SQL path,

it is implicitly assumed to be the first schema. SYSIBM does not take up any of the

2048 bytes if it is implicitly assumed.

A data type that is not qualified with a schema name will be implicitly qualified

with the first schema in the SQL path that contains a data type with the same

unqualified name. There are exceptions to this rule, as outlined in the descriptions

of the following statements: CREATE TYPE (Distinct), CREATE FUNCTION,

COMMENT, and DROP.

Example: Using the SYSCAT.ROUTINES catalog view, find all user-defined routines

that can be invoked without qualifying the routine name, because the CURRENT

PATH special register contains the schema name.

 SELECT ROUTINENAME, ROUTINESCHEMA FROM SYSCAT.ROUTINES

 WHERE POSITION (ROUTINESCHEMA, CURRENT PATH, CODEUNITS16) <> 0

746 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

CURRENT QUERY OPTIMIZATION

The CURRENT QUERY OPTIMIZATION special register specifies an INTEGER

value that controls the class of query optimization performed by the database

manager when binding dynamic SQL statements. The QUERYOPT bind option

controls the class of query optimization for static SQL statements. The possible

values range from 0 to 9. For example, if the query optimization class is set to 0

(minimal optimization), then the value in the special register is 0. The default value

is determined by the dft_queryopt database configuration parameter. The value

can be changed by invoking the SET CURRENT QUERY OPTIMIZATION

statement.

Example: Using the SYSCAT.PACKAGES catalog view, find all plans that were

bound with the same setting as the current value of the CURRENT QUERY

OPTIMIZATION special register.

 SELECT PKGNAME, PKGSCHEMA FROM SYSCAT.PACKAGES

 WHERE QUERYOPT = CURRENT QUERY OPTIMIZATION

CURRENT REFRESH AGE

The CURRENT REFRESH AGE special register specifies a timestamp duration

value with a data type of DECIMAL(20,6). It is the maximum duration since a

particular timestamped event occurred to a cached data object (for example, a

REFRESH TABLE statement processed on a system-maintained REFRESH

DEFERRED materialized query table), such that the cached data object can be used

to optimize the processing of a query. If CURRENT REFRESH AGE has a value of

99 999 999 999 999, and the query optimization class is 5 or more, the types of

tables specified in CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

are considered when optimizing the processing of a dynamic SQL query.

The value of CURRENT REFRESH AGE must be 0 or 99 999 999 999 999. The

initial value is 0. The value can be changed by invoking the SET CURRENT

REFRESH AGE statement.

CURRENT TIME

The CURRENT TIME (or CURRENT_TIME) special register specifies a time that is

based on a reading of the time-of-day clock when the SQL statement is executed at

the application server. If this special register is used more than once within a single

SQL statement, or used with CURRENT DATE or CURRENT TIMESTAMP within

a single statement, all values are based on a single clock reading.

When used in an SQL statement inside a routine, CURRENT TIME is not inherited

from the invoking statement.

In a federated system, CURRENT TIME can be used in a query intended for data

sources. When the query is processed, the time returned will be obtained from the

CURRENT TIME register at the federated server, not from the data sources.

Example: Run the following command from the DB2 CLP to obtain the current

time.

 db2 values CURRENT TIME

Example: Using the CL_SCHED table, select all the classes (CLASS_CODE) that

start (STARTING) later today. Today’s classes have a value of 3 in the DAY column.

Appendix A. Related topics (linked to from topics in this book) 747

SELECT CLASS_CODE FROM CL_SCHED

 WHERE STARTING > CURRENT TIME AND DAY = 3

CURRENT TIMESTAMP

The CURRENT TIMESTAMP (or CURRENT_TIMESTAMP) special register specifies

a timestamp that is based on a reading of the time-of-day clock when the SQL

statement is executed at the application server. If this special register is used more

than once within a single SQL statement, or used with CURRENT DATE or

CURRENT TIME within a single statement, all values are based on a single clock

reading. It is possible for separate CURRENT TIMESTAMP special register requests

to return the same value; if unique values are required, consider using the

GENERATE_UNIQUE function, a sequence, or an identity column.

If a timestamp with a specific precision is desired, the special register can be

referenced as CURRENT TIMESTAMP(integer), where integer can range from 0 to

12. The default precision is 6. The precision of the clock reading varies by platform

and the resulting value is padded with zeros where the precision of the retrieved

clock reading is less than the precision of the request.

When used in an SQL statement inside a routine, CURRENT TIMESTAMP is not

inherited from the invoking statement.

In a federated system, CURRENT TIMESTAMP can be used in a query intended

for data sources. When the query is processed, the timestamp returned will be

obtained from the CURRENT TIMESTAMP register at the federated server, not

from the data sources.

SYSDATE can also be specified as a synonym for CURRENT TIMESTAMP(0).

Example: Insert a row into the IN_TRAY table. The value of the RECEIVED column

should be a timestamp that indicates when the row was inserted. The values for

the other three columns come from the host variables SRC (char(8)), SUB (char(64)),

and TXT (VARCHAR(200)).

 INSERT INTO IN_TRAY

 VALUES (CURRENT TIMESTAMP, :SRC, :SUB, :TXT)

CURRENT TIMEZONE

The CURRENT TIMEZONE (or CURRENT_TIMEZONE) special register specifies

the difference between UTC (Coordinated Universal Time, formerly known as

GMT) and local time at the application server. The difference is represented by a

time duration (a decimal number in which the first two digits are the number of

hours, the next two digits are the number of minutes, and the last two digits are

the number of seconds). The number of hours is between -24 and 24 exclusive.

Subtracting CURRENT TIMEZONE from a local time converts that local time to

UTC. The time is calculated from the operating system time at the moment the

SQL statement is executed. (The CURRENT TIMEZONE value is determined from

C runtime functions.)

The CURRENT TIMEZONE special register can be used wherever an expression of

the DECIMAL(6,0) data type is used; for example, in time and timestamp

arithmetic.

When used in an SQL statement inside a routine, CURRENT TIMEZONE is not

inherited from the invoking statement.

748 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|
|
|
|

|

Example: Insert a record into the IN_TRAY table, using a UTC timestamp for the

RECEIVED column.

 INSERT INTO IN_TRAY VALUES (

 CURRENT TIMESTAMP - CURRENT TIMEZONE,

 :source,

 :subject,

 :notetext)

CURRENT USER

The CURRENT USER (or CURRENT_USER) special register specifies the

authorization ID that is to be used for statement authorization. For static SQL

statements, the value represents the authorization ID that is used when the

package is bound. For dynamic SQL statements, the value is the same as the value

of the SESSION_USER special register for packages bound with the

DYNAMICRULES(RUN) bind option. The data type of the register is

VARCHAR(128).

Example: Select table names whose schema matches the value of the CURRENT

USER special register.

 SELECT TABNAME FROM SYSCAT.TABLES

 WHERE TABSCHEMA = CURRENT USER AND TYPE = ’T’

If this statement is executed as a static SQL statement, it returns the tables whose

schema name matches the binder of the package that includes the statement. If this

statement is executed as a dynamic SQL statement, it returns the tables whose

schema name matches the current value of the SESSION_USER special register.

Configuration parameter topics

agent_stack_sz - Agent stack size

This parameter determines the virtual memory that is allocated by DB2 for each

agent.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Linux (32-bit)

256 [16 – 1024]

Linux (64-bit) and UNIX

1024 [256 – 32768]

Windows

16 [8 – 1000]

Unit of measure

Pages (4 KB)

Appendix A. Related topics (linked to from topics in this book) 749

When allocated

When an agent is initialized to do work for an application

When freed

When an agent completes the work to be done for an application

You can use this parameter to optimize memory utilization of the server for a

given set of applications. More complex queries will use more stack space,

compared to the space used for simple queries.

This parameter is used to set the initial committed stack size for each agent in a

Windows environment. By default, each agent stack can grow up to the default

reserve stack size of 256 KB (64 4-KB pages). This limit is sufficient for most

database operations. On UNIX and Linux, agent_stack_sz will be rounded up to the

next larger power-of-2 based value. The default setting for UNIX should be

sufficient for most workloads

However, when preparing a large SQL or XQuery statement, the agent can run out

of stack space and the system will generate a stack overflow exception

(0xC00000FD). When this happens, the server will shut down because the error is

non-recoverable.

Note: In Version 9.5 and later, sqlcode -973 will be returned instead of a stack

overflow exception..

The agent stack size can be increased by setting agent_stack_sz to a value larger

than the default reserve stack size of 64 pages. Note that the value for

agent_stack_sz, when larger than the default reserve stack size, is rounded by the

Windows operating system to the nearest multiple of 1 MB; setting the agent stack

size to 128 4-KB pages actually reserves a 1 MB stack for each agent. Setting the

value for agent_stack_sz less than the default reserve stack size will have no effect

on the maximum limit because the stack still grows if necessary up to the default

reserve stack size. In this case, the value for agent_stack_sz is the initial committed

memory for the stack when an agent is created.

You can change the default reserve stack size by using the db2hdr utility to change

the header information for the db2syscs.exe file. Changing the default reserve stack

size will affect all threads while changing agent_stack_sz only affects the stack size

for agents. The advantage of changing the default stack size using the db2hdr

utility is that it provides a better granularity, therefore allowing the stack size to be

set at the minimum required stack size. However, you will have to stop and restart

DB2 for a change to db2syscs.exe to take effect.

Recommendation: If you will be working with large or complex XML data in a

32-bit environment, you should update agent_stack_sz to at least 256 4-KB pages.

Very complex XML schemas might require agent_stack_sz to be set much closer to

the limit in order to avoid stack overflow exceptions during schema registration or

during XML document validation.

You might be able to reduce the stack size in order to make more address space

available to other clients, if your environment matches the following:

v Contains only simple applications (for example light OLTP), in which there are

never complex queries

v Requires a relatively large number of concurrent clients (for example, more than

100).

750 Common Criteria Certification: Administration and User Documentation - Volume 2

On Windows, the agent stack size and the number of concurrent clients are

inversely related: a larger stack size reduces the potential number of concurrent

clients that can be running. This occurs because address space is limited on

Windows platforms.

agentpri - Priority of agents

This parameter is deprecated in Version 9.5, but is still being used by pre-Version

9.5 data servers and clients. Any value specified for this configuration parameter

will continue to work exactly as it did in previous versions, and this parameter

will continue to be fully supported. If this parameter is used for workload

management (WLM), then the WLM service class agent priority will be ignored.

Note: The following information applies only to pre-Version 9.5 data servers and

clients.

This parameter controls the priority given both to all agents, and to other database

manager instance processes and threads, by the operating system scheduler. This

priority determines how CPU time is given to the database manager processes,

agents, and threads relative to the other processes and threads running on the

machine.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

AIX -1 (system) [41 - 125]

Other UNIX

-1 (system) [41 - 128]

Windows

-1 (system) [0 - 6]

Solaris

-1 (system) [0 - 59]

When the parameter is set to -1 or system, no special action is taken and the

database manager is scheduled in the normal way that the operating system

schedules all processes and threads. When the parameter is set to a value other

than -1 or system, the database manager will create its processes and threads with

a static priority set to the value of the parameter. Therefore, this parameter allows

you to control the priority with which the database manager processes and threads

(in a partitioned database environment, this also includes coordinating and

subagents, the parallel system controllers, and the FCM daemons) will execute on

your machine.

You can use this parameter to increase database manager throughput. The values

for setting this parameter are dependent on the operating system on which the

database manager is running. For example, in a Linux or UNIX environment,

numerically low values yield high priorities. When the parameter is set to a value

Appendix A. Related topics (linked to from topics in this book) 751

between 41 and 125, the database manager creates its agents with a UNIX static

priority set to the value of the parameter. This is important in Linux and UNIX

environments because numerically low values yield high priorities for the database

manager, but other processes (including applications and users) might experience

delays because they cannot obtain enough CPU time. You should balance the

setting of this parameter with the other activity expected on the machine.

Restrictions:

v If you set this parameter to a non-default value on Linux and UNIX platforms,

you cannot use the governor to alter agent priorities.

v On the Solaris operating system, you should not change the default value (-1).

Changing the default value sets the priority of DB2 processes to real-time, which

can monopolize all available resources on the system.

Recommendation: The default value should be used initially. This value provides a

good compromise between response time to other users/applications and database

manager throughput.

If database performance is a concern, you can use benchmarking techniques to

determine the optimum setting for this parameter. You should take care when

increasing the priority of the database manager because performance of other user

processes can be severely degraded, especially when the CPU utilization is very

high. Increasing the priority of the database manager processes and threads can

have significant performance benefits.

alt_collate - Alternate collating sequence

This parameter specifies the collating sequence that is to be used for Unicode

tables in a non-Unicode database.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null [IDENTITY_16BIT]

Until this parameter is set, Unicode tables and routines cannot be created in a

non-Unicode database. Once set, this parameter cannot be changed or reset.

This parameter cannot be set for Unicode databases.

alternate_auth_enc - Alternate encryption algorithm for

incoming connections at server configuration parameter

This configuration parameter specifies the alternate encryption algorithm used to

encrypt the user IDs and passwords submitted to a DB2 database server for

752 Common Criteria Certification: Administration and User Documentation - Volume 2

authentication. Specifically, this parameter affects the encryption algorithm when

the authentication method negotiated between the DB2 client and the DB2

database server is SERVER_ENCRYPT.

Configuration type

Database manager

 Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

NOT_SPECIFIED [AES_CMP; AES_ONLY]

The user ID and password submitted for authentication on the DB2 database

server are encrypted when the authentication method negotiated between the DB2

client and the DB2 server is SERVER_ENCRYPT. The authentication method

negotiated depends on the authentication type setting on the server and the

authentication type requested by the client. The choice of the encryption algorithm

used to encrypt the user ID and password depends on the setting of the

alternate_auth_enc database manager configuration parameter. It can be either

DES or AES depending on this setting.

When the default (NOT_SPECIFIED) value is used, the database server accepts the

encryption algorithm that the client proposes.

When alternate_auth_enc is set to AES_ONLY, the database server will only accept

connections that use AES encryption. If the client does not support AES

encryption, then the connection is rejected.

When alternate_auth_enc is set to AES_CMP, the database server will accept user

IDs and passwords that are encrypted using either AES or DES, but it will

negotiate for AES if the client supports AES encryption.

appl_memory - Application Memory configuration parameter

This parameter allows DBAs and ISVs to control the maximum amount of

application memory that is allocated by DB2 database agents to service application

requests. By default, its value is set to AUTOMATIC, meaning that all application

memory requests will be allowed as long as the total amount of memory allocated

by the database partition is within the instance_memory limits.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Default [range]

Automatic [128 - 4 294 967 295]

Appendix A. Related topics (linked to from topics in this book) 753

|
|
|

|
|
|

Unit of measure

Pages (4 KB)

When allocated

During database activation

When freed

During database deactivation

Note: When appl_memory is set to AUTOMATIC, the initial application memory

allocation at database activation time is minimal, and increases (or decreases) as

needed. The change is applied in memory and the value of appl_memory does not

change on disk as shown by db2 get db cfg show detail. On next activation, the

value will be recalculated. If appl_memory is set to a specific value, then the

requested amount of memory is allocated initially during database activation, and

the application memory size does not change. If the initial amount of application

memory cannot be allocated from the operating system, or exceeds the

instance_memory limit, database activation fails with an SQL1084C error (Shared

memory segments cannot be allocated).

applheapsz - Application heap size

In previous releases, the applheapsz database configuration parameter referred to

the amount of application memory each individual database agent working for

that application could consume. With Version 9.5, applheapsz refers to the total

amount of application memory that can be consumed by the entire application. For

DPF, Concentrator, or SMP configurations, this means that the applheapsz value

used in previous releases may need to be increased under similar workloads,

unless the AUTOMATIC setting is used.

With Version 9.5, this database configuration parameter has a default value of

AUTOMATIC, meaning that it increases as needed until either the appl_memory

limit is reached, or the instance_memory limit is reached.

Configuration type

Database

Parameter type

Configurable online

Default [range]

Automatic [16 - 60 000]

Unit of measure

Pages (4 KB)

When allocated

When an application associates with, or connects to, a database.

When freed

When the application disassociates or disconnects from the database.

Note: This parameter defines the maximum size of the application heap. One

application heap is allocated per database application when the application first

connects with the database. The heap is shared by all database agents working for

that application. (In previous releases, each database agent allocated its own

application heap.) Memory is allocated from the application heap as needed to

process the application, up to the limit specified by this parameter. When set to

AUTOMATIC, the application heap is allowed to grow as needed up to either the

754 Common Criteria Certification: Administration and User Documentation - Volume 2

appl_memory limit for the database, or the instance_memory limit for the database

partition. The entire application heap is freed when the application disconnects

with the database.

The online changed value takes effect at an application connection boundary, that

is, after it is changed dynamically, currently connected applications still use the old

value, but all newly connected applications will use the new value.

archretrydelay - Archive retry delay on error

This parameter specifies the number of seconds to wait after a failed archive

attempt before trying to archive the log file again.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

20 [0 - 65 535]

Subsequent retries will only take affect if the value of the numarchretry database

configuration parameter is at least 1.

aslheapsz - Application support layer heap size

The application support layer heap represents a communication buffer between the

local application and its associated agent. This buffer is allocated as shared

memory by each database manager agent that is started.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

15 [1 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

When the database manager agent process is started for the local

application

When freed

When the database manager agent process is terminated

Appendix A. Related topics (linked to from topics in this book) 755

If the request to the database manager, or its associated reply, do not fit into the

buffer they will be split into two or more send-and-receive pairs. The size of this

buffer should be set to handle the majority of requests using a single

send-and-receive pair. The size of the request is based on the storage required to

hold:

v The input SQLDA

v All of the associated data in the SQLVARs

v The output SQLDA

v Other fields which do not generally exceed 250 bytes.

In addition to this communication buffer, this parameter is also used for two other

purposes:

v It is used to determine the I/O block size when a blocking cursor is opened.

This memory for blocked cursors is allocated out of the application’s private

address space, so you should determine the optimal amount of private memory

to allocate for each application program. If the Data Server Runtime Client

cannot allocate space for a blocking cursor out of an application’s private

memory, a non-blocking cursor will be opened.

v It is used to determine the communication size between agents and db2fmp

processes. (A db2fmp process can be a user-defined function or a fenced stored

procedure.) The number of bytes is allocated from shared memory for each

db2fmp process or thread that is active on the system.

The data sent from the local application is received by the database manager into a

set of contiguous memory allocated from the query heap. The aslheapsz parameter

is used to determine the initial size of the query heap (for both local and remote

clients). The maximum size of the query heap is defined by the query_heap_sz

parameter.

Recommendation: If your application’s requests are generally small and the

application is running on a memory constrained system, you might want to reduce

the value of this parameter. If your queries are generally very large, requiring more

than one send and receive request, and your system is not constrained by memory,

you might want to increase the value of this parameter.

Use the following formula to calculate a minimum number of pages for aslheapsz:

 aslheapsz >= (sizeof(input SQLDA)

 + sizeof(each input SQLVAR)

 + sizeof(output SQLDA)

 + 250) / 4096

where sizeof(x) is the size of x in bytes that calculates the number of pages of a

given input or output value.

You should also consider the effect of this parameter on the number and potential

size of blocking cursors. Large row blocks might yield better performance if the

number or size of rows being transferred is large (for example, if the amount of

data is greater than 4096 bytes). However, there is a trade-off in that larger record

blocks increase the size of the working set memory for each connection.

Larger record blocks might also cause more fetch requests than are actually

required by the application. You can control the number of fetch requests using the

OPTIMIZE FOR clause on the SELECT statement in your application.

756 Common Criteria Certification: Administration and User Documentation - Volume 2

auto_del_rec_obj - Automated deletion of recovery objects

configuration parameter

This parameter specifies whether database log files, backup images, and load copy

images should be deleted when their associated recovery history file entry is

pruned.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

OFF [ON; OFF]

You can prune the entries in the recovery history file using the PRUNE HISTORY

command or the db2Prune API. You can also configure the IBM Data Server

database manager to automatically prune the recovery history file after each full

database backup. If you set the auto_del_rec_obj database configuration parameter

to ON, then the database manager will also delete the corresponding physical log

files, backup images, and load copy images when it prunes the history file. The

database manager can only delete recovery objects such as database logs, backup

images, and load copy images when your storage media is disk, or if you are using

a storage manager, such as the Tivoli® Storage Manager.

auto_maint - Automatic maintenance

This parameter is the parent of all the other automatic maintenance database

configuration parameters (auto_db_backup, auto_tbl_maint, auto_runstats,

auto_stats_prof, auto_stmt_stats, auto_prof_upd, and auto_reorg).

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

ON [ON; OFF]

When this parameter is disabled, all of its child parameters are also disabled, but

their settings, as recorded in the database configuration file, do not change. When

this parent parameter is enabled, recorded values for its child parameters take

effect. In this way, automatic maintenance can be enabled or disabled globally.

By default, this parameter is set to ON.

Appendix A. Related topics (linked to from topics in this book) 757

You can enable or disable individual automatic maintenance features

independently by setting the following parameters:

auto_db_backup

This automated maintenance parameter enables or disables automatic

backup operations for a database. A backup policy (a defined set of rules

or guidelines) can be used to specify the automated behavior. The objective

of the backup policy is to ensure that the database is being backed up

regularly. The backup policy for a database is created automatically when

the DB2 Health Monitor first runs. By default, this parameter is set to OFF.

To be enabled, this parameter must be set to ON, and its parent parameter

must also be enabled.

auto_tbl_maint

This parameter is the parent of all table maintenance parameters

(auto_runstats, auto_stats_prof, auto_prof_upd, and auto_reorg). When this

parameter is disabled, all of its child parameters are also disabled, but their

settings, as recorded in the database configuration file, do not change.

When this parent parameter is enabled, recorded values for its child

parameters take effect. In this way, table maintenance can be enabled or

disabled globally.

 By default, this parameter is set to ON.

auto_runstats

This automated table maintenance parameter enables or disables automatic

table runstats operations for a database. A runstats policy (a defined set of

rules or guidelines) can be used to specify the automated behavior.

Statistics collected by the runstats utility are used by the optimizer to

determine the most efficient plan for accessing the physical data. To be

enabled, this parameter must be set to On, and its parent parameters must

also be enabled.

 By default, this parameter is set to ON.

auto_stats_prof

When enabled, this automated table maintenance parameter turns on

statistical profile generation, designed to improve applications whose

workloads include complex queries, many predicates, joins, and grouping

operations over several tables. To be enabled, this parameter must be set to

ON, and its parent parameters must also be enabled.

 By default, this parameter is set to OFF.

auto_stmt_stats

 This parameter enables and disables the collection of real-time statistics. It

is a child of the auto_runstats configuration parameter. This feature is

enabled only if the parent, auto_runstats configuration parameter, is also

enabled. For example, to enable auto_stmt_stats, set auto_maint,

auto_tbl_maint, and auto_runstats to ON. To preserve the child value, the

auto_runstats configuration parameter can be ON while the auto_maint

configuration parameter is OFF. The corresponding Auto Runstats feature

will still be OFF.

Assuming that both Auto Runstats and Auto Reorg are enabled, the

settings are as follows:

 Automatic maintenance (AUTO_MAINT) = ON

 Automatic database backup (AUTO_DB_BACKUP) = OFF

 Automatic table maintenance (AUTO_TBL_MAINT) = ON

 Automatic runstats (AUTO_RUNSTATS) = ON

758 Common Criteria Certification: Administration and User Documentation - Volume 2

Automatic statement statistics (AUTO_STMT_STATS) = OFF

 Automatic statistics profiling (AUTO_STATS_PROF) = OFF

 Automatic profile updates (AUTO_PROF_UPD) = OFF

 Automatic reorganization (AUTO_REORG) = ON

You can disable both Auto Runstats and Auto Reorg features temporarily

by setting auto_tbl_maint to OFF. Both features can be enabled later by

setting auto_tbl_maint back to ON. You do not need to issue db2stop or

db2start commands to have the changes take effect.

By default, this parameter is set to OFF.

auto_prof_upd

When enabled, this automated table maintenance parameter (a child of

auto_stats_prof) specifies that the runstats profile is to be updated with

recommendations. When this parameter is disabled, recommendations are

stored in the opt_feedback_ranking table, which you can inspect when

manually updating the runstats profile. To be enabled, this parameter must

be set to ON, and its parent parameters must also be enabled.

 By default, this parameter is set to OFF.

auto_reorg

This automated table maintenance parameter enables or disables automatic

table and index reorganization for a database. A reorganization policy (a

defined set of rules or guidelines) can be used to specify the automated

behavior. To be enabled, this parameter must be set to ON, and its parent

parameters must also be enabled.

 By default, this parameter is set to OFF.

avg_appls - Average number of active applications

This parameter is used by the query optimizer to help estimate how much buffer

pool will be available at run-time for the access plan chosen.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Statement boundary

Default [range]

Automatic [1 – maxappls]

Unit of measure

Counter

Recommendation: When running DB2 in a multi-user environment, particularly

with complex queries and a large buffer pool, you might want the query optimizer

to know that multiple query users are using your system so that the optimizer

should be more conservative in assumptions of buffer pool availability.

When setting this parameter, you should estimate the number of complex query

applications that typically use the database. This estimate should exclude all light

OLTP applications. If you have trouble estimating this number, you can multiply

the following:

v An average number of all applications running against your database. The

database system monitor can provide information about the number of

Appendix A. Related topics (linked to from topics in this book) 759

applications at any given time and using a sampling technique, you can

calculate an average over a period of time. The information from the database

system monitor includes both OLTP and non-OLTP applications.

v Your estimate of the percentage of complex query applications.

As with adjusting other configuration parameters that affect the optimizer, you

should adjust this parameter in small increments. This allows you to minimize

path selection differences.

You should consider rebinding applications (using the REBIND PACKAGE

command) after changing this parameter.

backup_pending - Backup pending indicator

This parameter indicates whether you need to do a full backup of the database

before accessing it.

Configuration type

Database

Parameter type

Informational

This parameter is only on if the database configuration is changed so that the

database moves from being nonrecoverable to recoverable (that is, initially both the

logretain and userexit parameters were set to NO, then either one or both of these

parameters is set to YES, and the update to the database configuration is accepted).

blk_log_dsk_ful - Block on log disk full

This parameter can be set to prevent disk full errors from being generated when

DB2 cannot create a new log file in the active log path.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

No [Yes; No]

Instead of generating a disk full error, DB2 will attempt to create the log file every

five minutes until it succeeds. After each attempt, DB2 writes a message to the

Administration Notification log. The only way that you can confirm that your

application is hanging because of a log disk full condition is to monitor the

Administration Notification log. Until the log file is successfully created, any user

application that attempts to update table data will not be able to commit

transactions. Read-only queries might not be directly affected; however, if a query

needs to access data that is locked by an update request, or a data page that is

fixed in the buffer pool by the updating application, read-only queries will also

appear to hang.

Setting blk_log_dsk_ful to yes causes applications to hang when DB2 encounters a

log disk full error, thus allowing you to resolve the error and allowing the

760 Common Criteria Certification: Administration and User Documentation - Volume 2

transaction to complete. You can resolve a disk full situation by moving old log

files to another file system or by enlarging the file system, so that hanging

applications can complete.

If blk_log_dsk_ful is set to no, then a transaction that receives a log disk full error

will fail and will be rolled back. In some situations, the database will come down if

a transaction causes a log disk full error.

catalogcache_sz - Catalog cache size

This parameter specifies the maximum space in pages that the catalog cache can

use from the database heap.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

-1 [MAXAPPLS*5]

Unit of measure

Pages (4 KB)

When allocated

When the database is initialized

When freed

When the database is shut down

This parameter is allocated out of the database shared memory, and is used to

cache system catalog information. In a partitioned database system, there is one

catalog cache for each database partition.

Caching catalog information at individual database partitions allows the database

manager to reduce its internal overhead by eliminating the need to access the

system catalogs (or the catalog node in a partitioned database environment) to

obtain information that has previously been retrieved. The use of the catalog cache

can help improve the overall performance of:

v Binding packages and compiling SQL and XQuery statements

v Operations that involve checking database-level privileges, routine privileges,

global variable privileges and role authorizations

v Applications that are connected to non-catalog nodes in a partitioned database

environment

By taking the default (-1) in a server or partitioned database environment, the

value used to calculate the page allocation is five times the value specified for the

maxappls configuration parameter. The exception to this occurs if five times

maxappls is less than 8. In this situation, the default value of -1 will set

catalogcache_sz to 8.

Recommendation: Start with the default value and tune it by using the database

system monitor. When tuning this parameter, you should consider whether the

extra memory being reserved for the catalog cache might be more effective if it

was allocated for another purpose, such as the buffer pool or package cache.

Appendix A. Related topics (linked to from topics in this book) 761

Tuning this parameter is particularly important if a workload involves many SQL

or XQuery compilations for a brief period of time, with few or no compilations

thereafter. If the cache is too large, memory might be wasted holding copies of

information that will no longer be used.

In an partitioned database environment, consider if the catalogcache_sz at the

catalog node needs to be set larger since catalog information that is required at

non-catalog nodes will always first be cached at the catalog node.

The cat_cache_lookups (catalog cache lookups), cat_cache_inserts (catalog cache

inserts), cat_cache_overflows (catalog cache overflows), and cat_cache_size_top (catalog

cache high water mark) monitor elements can help you determine whether you

should adjust this configuration parameter.

Note: The catalog cache exists on all nodes in a partitioned database environment.

Since there is a local database configuration file for each node, each node’s

catalogcache_sz value defines the size of the local catalog cache. In order to provide

efficient caching and avoid overflow scenarios, you need to explicitly set the

catalogcache_sz value at each node and consider the feasibility of possibly setting

the catalogcache_sz on non-catalog nodes to be smaller than that of the catalog

node; keep in mind that information that is required to be cached at non-catalog

nodes will be retrieved from the catalog node’s cache. Hence, a catalog cache at a

non-catalog node is like a subset of the information in the catalog cache at the

catalog node.

In general, more cache space is required if a unit of work contains several dynamic

SQL or XQuery statements or if you are binding packages that contain a large

number of static SQL or XQuery statements.

chngpgs_thresh - Changed pages threshold

This parameter specifies the level (percentage) of changed pages at which the

asynchronous page cleaners will be started, if they are not currently active.

Configuration type

Database

Parameter type

Configurable

Default [range]

60 [5 – 99]

Unit of measure

Percentage

Asynchronous page cleaners will write changed pages from the buffer pool (or the

buffer pools) to disk before the space in the buffer pool is required by a database

agent. As a result, database agents should not have to wait for changed pages to

be written out so that they might use the space in the buffer pool. This improves

overall performance of the database applications.

When the page cleaners are started, they will build a list of the pages to write to

disk. Once they have completed writing those pages to disk, they will become

inactive again and wait for the next trigger to start.

762 Common Criteria Certification: Administration and User Documentation - Volume 2

When the DB2_USE_ALTERNATE_PAGE_CLEANING registry variable is set (that

is, the alternate method of page cleaning is used), the chngpgs_thresh parameter has

no effect, and the database manager automatically determines how many dirty

pages to maintain in the buffer pool.

Recommendation: For databases with a heavy update transaction workload, you

can generally ensure that there are enough clean pages in the buffer pool by

setting the parameter value to be equal-to or less-than the default value. A

percentage larger than the default can help performance if your database has a

small number of very large tables.

cluster_mgr - Cluster manager name

This parameter enables the database manager to communicate incremental cluster

configuration changes to the specified cluster manager.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Multi-partitioned database server with local and remote clients

Parameter type

Informational

Default

No default

Valid values

v TSA

This parameter is set during high availability cluster configuration using the DB2

High Availability Instance Configuration Utility (db2haicu).

codepage - Code page for the database

This parameter shows the code page that was used to create the database. The

codepage parameter is derived based on the codeset parameter.

Configuration type

Database

Parameter type

Informational

codeset - Codeset for the database

This parameter shows the codeset that was used to create the database. Codeset is

used by the database manager to determine codepage parameter values.

Configuration type

Database

Parameter type

Informational

Appendix A. Related topics (linked to from topics in this book) 763

collate_info - Collating information

This parameter determines the database’s collating sequence. For a language-aware

collation, the first 256 bytes contain the string representation of the collation name

(for example, ″SYSTEM_819_US″).

This parameter can only be displayed using the db2CfgGet API. It cannot be

displayed through the command line processor or the Control Center.

Configuration type

Database

Parameter type

Informational

This parameter provides 260 bytes of database collating information. The first 256

bytes specify the database collating sequence, where byte “n” contains the sort

weight of the code point whose underlying decimal representation is “n” in the

code page of the database.

The last 4 bytes contain internal information about the type of the collating

sequence. The last four bytes of the parameter is an integer. The integer is sensitive

to the endian order of the platform. The possible values are:

v 0 – The sequence contains non-unique weights

v 1 – The sequence contains all unique weights

v 2 – The sequence is the identity sequence, for which strings are compared byte

for byte.

v 3 – The sequence is NLSCHAR, used for sorting characters in a TIS620-1 (code

page 874) Thai database.

v 4 – The sequence is IDENTITY_16BIT, which implements the “CESU-8

Compatibility Encoding Scheme for UTF–16: 8–bit” algorithm as specified in the

Unicode Technical Report #26 available at the Unicode Technical Consortium

Web site at http://www.unicode.org

v X’8001’ – The sequence is UCA400_NO, which implements the Unicode

Collation® Algorithm (UCA) based on the Unicode Standard version 4.00, with

normalization implicitly set to ON.

v X’8002’ – The sequence is UCA400_LTH, which implements the Unicode

Collation Algorithm (UCA) based on the Unicode Standard version 4.00, and

sorts all Thai characters as per the Royal Thai Dictonary order.

v X’8003’ – The sequence is UCA400_LSK, which implements the Unicode

Collation Algorithm (UCA) based on the Unicode Standard version 4.00, and

sorts all Slovakian characters properly.

Note: For a language-aware collation, the first 256 bytes contain the string

representation of the collation name.

If you use this internal type information, you need to consider byte reversal when

retrieving information for a database on a different platform.

You can specify the collating sequence at database creation time.

comm_bandwidth - Communications bandwidth

This parameter helps the query optimizer determine access paths by indicating the

bandwidth between database partition servers.

764 Common Criteria Certification: Administration and User Documentation - Volume 2

Configuration type

Database manager

Applies to

Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Statement boundary

Default [range]

-1 [.1 - 100 000]

 A value of -1 causes the parameter value to be reset to the default. The

default value is calculated based on the speed of the underlying

communications adapter. A value of 100 can be expected for systems using

Gigabit Ethernet.

Unit of measure

Megabytes per second

The value calculated for the communications bandwidth, in megabytes per second,

is used by the query optimizer to estimate the cost of performing certain

operations between the database partition servers of a partitioned database system.

The optimizer does not model the cost of communications between a client and a

server, so this parameter should reflect only the nominal bandwidth between the

database partition servers, if any.

You can explicitly set this value to model a production environment on your test

system or to assess the impact of upgrading hardware.

Recommendation: You should only adjust this parameter if you want to model a

different environment.

The communications bandwidth is used by the optimizer in determining access

paths. You should consider rebinding applications (using the REBIND PACKAGE

command) after changing this parameter.

contact_host - Location of contact list

This parameter specifies the location where the contact information used for

notification by the Scheduler and the Health Monitor is stored.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Null [any valid DB2 administration server TCP/IP hostname]

The location is defined to be a DB2 administration server’s TCP/IP hostname.

Allowing contact_host to be located on a remote DAS provides support for sharing

Appendix A. Related topics (linked to from topics in this book) 765

a contact list across multiple DB2 administration servers. If contact_host is not

specified, the DAS assumes the contact information is local.

This parameter can only be updated from a Version 8 command line processor

(CLP).

country/region - Database territory code

This parameter shows the territory code used to create the database.

Configuration type

Database

Parameter type

Informational

cpuspeed - CPU speed

This parameter reflects the CPU speed of the machine(s) the database is installed

on.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Propagation class

Statement boundary

Default [range]

-1 [1x10-10 — 1] A value of -1 will cause the parameter value to be reset

based on the running of the measurement program.

Unit of measure

Milliseconds

This program is executed if benchmark results are not available if the data for the

IBM RS/6000® model 530H is not found in the file, or if the data for your machine

is not found in the file.

You can explicitly set this value to model a production environment on your test

system or to assess the impact of upgrading hardware. By setting it to -1, cpuspeed

will be re-computed.

Recommendation: You should only adjust this parameter if you want to model a

different environment.

The CPU speed is used by the optimizer in determining access paths. You should

consider rebinding applications (using the REBIND PACKAGE command) after

changing this parameter.

cur_commit - Currently committed configuration parameter

This parameter controls the behavior of cursor stability (CS) scans.

766 Common Criteria Certification: Administration and User Documentation - Volume 2

Configuration type

Database

Parameter type

Configurable

Default [range]

ON [ON, AVAILABLE, DISABLED]

For new databases, the default is set to ON. When the default is set to ON your

query will return the currently committed value of the data at the time when your

query is submitted.

During database upgrade, the cur_commit configuration parameter is set to

DISABLED to maintain the same behavior as in previous releases. If you want to

use currently committed on cursor stability scans, you need to set the cur_commit

configuration parameter to ON after the upgrade.

You can explicitly set the cur_commit configuration parameter to AVAILABLE.

Once you set this parameter, you need to explicitly request for currently committed

behavior to see the results that are currently committed.

Note: Three registry variables DB2_EVALUNCOMMITTED, DB2_SKIPDELETED,

and DB2_SKIPINSERTED are affected by currently committed when cursor

stability isolation level is used. These registry variables are ignored when USE

CURRENTLY COMMITTED or WAIT FOR OUTCOME are specified explicitly on

the bind or statement prepare time.

Recommendation: Increase the size of the buffer area using log buffer size

parameter logbufsz if there is considerable read activity on a dedicated log disk, or

there is high disk utilization. When increasing the value of logbufsz parameter,

you should also consider the dbheap parameter since the log buffer area uses

space controlled by the dbheap parameter.

das_codepage - DAS code page

This parameter indicates the code page used by the DB2 administration server.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Null [any valid DB2 code page]

If the parameter is null, then the default code page of the system is used. This

parameter should be compatible with the locale of the local DB2 instances.

Otherwise, the DB2 administration server cannot communicate with the DB2

instances.

This parameter can only be updated from a Version 8 command line processor

(CLP).

Appendix A. Related topics (linked to from topics in this book) 767

das_territory - DAS territory

This parameter shows the territory used by the DB2 administration server.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Null [any valid DB2 territory]

If the parameter is null, then the default territory of the system is used.

This parameter can only be updated from a Version 8 command line processor

(CLP).

database_level - Database release level

This parameter indicates the release level of the database manager which can use

the database.

Configuration type

Database

Parameter type

Informational

In the case of an incomplete or failed database upgrade, this parameter will reflect

the release level of the database before the upgrade and might differ from the

release parameter (the release level of the database configuration file). Otherwise

the value of database_level will be identical to value of the release parameter.

database_memory - Database shared memory size

This parameter specifies the amount of memory that is reserved for the database

shared memory region. If this amount is less than the amount calculated from the

individual memory parameters (for example, locklist, utility heap, bufferpools, and

so on), the larger amount will be used.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Default [range]

Automatic [Computed, 0 - 4 294 967 295]

Unit of measure

Pages (4 KB)

768 Common Criteria Certification: Administration and User Documentation - Volume 2

When allocated

When the database is activated

When freed

When the database is deactivated

Setting this parameter to AUTOMATIC enables self-tuning. When enabled, the

memory tuner determines the overall memory requirements for the database and

increases or decreases the amount of memory allocated for database shared

memory depending on the current database requirements. For example, if the

current database requirements are high, and there is sufficient free memory on the

system, more memory will be consumed by database shared memory. Once the

database memory requirements drop, or the amount of free memory on the system

drops too low, some database shared memory is released.

The memory tuner will always leave a minimum amount of memory free based on

the calculated benefit to providing additional memory to the instance. If there is a

great benefit to providing an instance with more memory, then the memory tuner

will maintain a lower amount of free memory. If the benefit is lower, then more

free memory will be maintained. This allows databases to cooperate in the

distribution of system memory.

Because the memory tuner trades memory resources between different memory

consumers, there must be at least two memory consumers enabled for self-tuning

to be active.

Automatic tuning of this configuration parameter will only occur when self-tuning

memory is enabled for the database (the self_tuning_mem configuration parameter

is set to ON).

To simplify the management of this parameter, the COMPUTED setting instructs

the database manager to calculate the amount of memory needed, and to allocate it

at database activation time. The database manager will also allocate some

additional memory to satisfy peak memory requirements for any heap in the

database shared memory region whenever a heap exceeds its configured size.

Other operations, such as dynamic configuration updates, also have access to this

additional memory. The db2pd command, with the -memsets option, can be used

to monitor the amount of unused memory left in the database shared memory

region.

Recommendation: This value will usually remain at AUTOMATIC. For

environments that do not support the AUTOMATIC setting, this should be set to

COMPUTED. For example, the additional memory can be used for creating new

buffer pools, or for increasing the size of existing buffer pools.

Note: In Version 9.5, when you set database_memory configuration parameter to

AUTOMATIC, the initial database shared memory allocation is the configured size

of all heaps and buffer pools defined for the database, and the memory increases

as needed. If database_memory is set to a specific value, then that requested amount

of memory is allocated initially, during database activation. If the initial amount of

memory cannot be allocated from the operating system, or exceeds the

instance_memory limit, database activation fails with an SQL1084C error (Shared

memory segments cannot be allocated).

Controlling DB2 Memory consumption:

When instance_memory is set to AUTOMATIC, a fixed upper bound on total

memory consumption for the instance is set at instance startup (db2start).

Appendix A. Related topics (linked to from topics in this book) 769

Actual memory consumption by the database manager varies depending

on the workload. When self-tuning memory manager is enabled to perform

database_memory tuning (by default for new databases), during run-time,

self-tuning memory manager dynamically updates the size of

performance-critical heaps within the database shared memory set

according to the free physical memory on the system, while ensuring that

there is sufficient free instance_memory available for functional memory

requirements. For more information, see the instance_memory configuration

parameter.

Limitation on some Linux1 kernels:

Due to operating system limitations on some Linux kernels, self-tuning

memory manager currently does not allow setting database_memory to

AUTOMATIC. However, this setting is now allowed on these kernels only

when instance_memory is set to a specific value, and not AUTOMATIC. If

database_memory is set to AUTOMATIC, and instance_memory is later set

back to AUTOMATIC, the database_memory configuration parameter is

automatically updated to COMPUTED during the next database activation.

If some databases are already active, self-tuning memory manager stops

tuning the overall database_memory sizes.

1On Linux, this parameter supports the AUTOMATIC setting on RHEL5 and on

SUSE 10 SP1 and newer. All other validated Linux distributions will return to

COMPUTED if the kernel does not support this feature.

db2system - Name of the DB2 server system

This parameter specifies the name that is used by your users and database

administrators to identify the DB2 server system.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable Online

Default [range]

TCP/IP host name [any valid system name]

If possible, this name should be unique within your network.

This name is displayed in the system level of the Control Center’s object tree to aid

administrators in the identification of server systems that can be administered from

the Control Center.

When using the ’Search the Network’ function of the Configuration Assistant, DB2

discovery returns this name and it is displayed at the system level in the resulting

object tree. This name aids users in identifying the system that contains the

database they want to access. A value for db2system is set at installation time as

follows:

v On Windows, the setup program sets it equal to the computer name specified

for the Windows system.

v On UNIX systems, it is set equal to the UNIX system’s TCP/IP hostname.

770 Common Criteria Certification: Administration and User Documentation - Volume 2

db_mem_thresh - Database memory threshold

This parameter represents the maximum percentage of committed, but currently

unused, database shared memory that the database manager will allow before

starting to release committed pages of memory back to the operating system.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

10 [0–100]

Unit of measure

Percentage

This database configuration parameter relates to how the database manager

handles excess unused database shared memory. Typically, as pages of memory are

touched by a process, they are committed, meaning that a page of memory has

been allocated by the operating system and occupies space either in physical

memory or in a page file on disk. Depending on the database workload, there

might be peak database shared memory requirements at a certain times of day.

Once the operating system has enough committed memory to meet those peak

requirements, that memory remains committed, even after peak memory

requirements have subsided.

Acceptable values are whole numbers in the range of 0 (immediately release any

unused database shared memory) to 100 (never release any unused database

shared memory). The default is 10 (release unused memory only when more than

10% of database shared memory is currently unused), which should be suitable for

most workloads.

This configuration parameter can be updated dynamically. Care should be taken

when updating this parameter, as setting the value too low could cause excessive

memory thrashing on the box (memory pages constantly being committed and

then released), and setting the value too high might prevent the database manager

from returning any database shared memory back to the operating system for

other processes to use.

This configuration parameter will be ignored (meaning that unused database

shared memory pages will remain committed) if the database shared memory

region is pinned through the DB2_PINNED_BP registry variable, configured for

large pages through the DB2_LARGE_PAGE_MEM registry variable, or if releasing

of memory is explicitly disabled through the DB2MEMDISCLAIM registry variable.

Some versions of Linux do not support releasing subranges of a shared memory

segment back to the operating system. On such platforms, this parameter will be

ignored.

dbheap - Database heap

This parameter determines the maximum memory used by the database heap.

Appendix A. Related topics (linked to from topics in this book) 771

With Version 9.5, this database configuration parameter has a default value of

AUTOMATIC, meaning that the database heap can increase as needed until either

the database_memory limit is reached, or the instance_memory limit is reached.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

Automatic [32 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

When the database is activated

When freed

When the database is deactivated

There is one database heap per database, and the database manager uses it on

behalf of all applications connected to the database. It contains control block

information for tables, indexes, table spaces, and buffer pools. It also contains

space for the log buffer (logbufsz) and temporary memory used by utilities.

Therefore, the size of the heap will be dependent on a large number of variables.

The control block information is kept in the heap until all applications disconnect

from the database.

The minimum amount the database manager needs to get started is allocated at

the first connection. The data area is expanded as needed until either the

configured upper limit is reached, or, if set to AUTOMATIC, until all

database_memory or instance_memory, or memory for both, is exhausted.

The following formula can be used as a rough guideline when deciding on a value

to assign to the dbheap configuration parameter:

 10K per tablespace + 4K per table + (1K + 4*extents used),

 per range clustered table (RCT)

The dbheap value that you configure represents only a portion of the database heap

that is allocated. The database heap is the main memory area used to satisfy global

database memory requirements. It is sized to include basic allocations needed for

the startup of a database in addition to the dbheap value. Tools which report

memory usage such as Memory Tracker, Snapshot Monitor, and db2pd report the

statistics of this larger database heap. There is no separate tracking of the

allocations that are represented by the dbheap configuration parameter. Therefore, it

is normal for the statistics on database heap memory usage reported from these

tools to exceed the configured value for the dbheap parameter.

You can use the database system monitor to track the highest amount of memory

that was used for the database heap, using the db_heap_top (maximum database

heap allocated) element.

Note:

772 Common Criteria Certification: Administration and User Documentation - Volume 2

v Workload Management (WLM) work class sets and work action sets are stored

in the database heap. However, a very small part of the memory is consumed

for this.

v Trusted contexts, Workload Management, and Audit policy information is cached

in memory for fast processing. This memory is allocated from the database heap.

Therefore, user-defined trusted contexts, workload management, and audit

policy objects would impose more memory requirements on the database heap.

In this case, it is suggested that you set your database heap configuration to

AUTOMATIC so that the database manager automatically manages the database

heap size.

decflt_rounding - Decimal floating point rounding

configuration parameter

This parameter allows you to specify the rounding mode for decimal floating point

(DECFLOAT). The rounding mode affects decimal floating-point operations in the

server, and in LOAD.

Configuration type

Database

Parameter type

Configurable

 See “Consequences of changing decflt_rounding” on page 774 below.

Default [range]

ROUND_HALF_EVEN [ROUND_CEILING, ROUND_FLOOR,

ROUND_HALF_UP, ROUND_DOWN]

DB2 supports five IEEE-compliant decimal floating point rounding modes. The

rounding mode specifies how to round the result of a calculation when the result

exceeds the precision. The definitions for all the rounding modes are as follows:

ROUND_CEILING

Round towards +infinity. If all of the discarded digits are zero or if the

sign is negative the result is unchanged. Otherwise, the result coefficient

should be incremented by 1 (rounded up).

ROUND_FLOOR

Round towards -infinity. If all of the discarded digits are zero or if the sign

is positive the result is unchanged. Otherwise, the sign is negative and the

result coefficient should be incremented by 1.

ROUND_HALF_UP

Round to nearest; if equidistant, round up 1. If the discarded digits

represent greater than or equal to half (0.5) of the value of a 1 in the next

left position then the result coefficient should be incremented by 1

(rounded up). Otherwise, the discarded digits (0.5 or less) are ignored.

ROUND_HALF_EVEN

Round to nearest; if equidistant, round so that the final digit is even. If the

discarded digits represent greater than half (0.5) the value of a one in the

next left position, then the result coefficient should be increment by 1

(rounded up). If they represent less than half, then the result coefficient is

not adjusted, that is, the discarded digits are ignored. Otherwise, if they

represent exactly half, the result coefficient is unaltered if its rightmost

digit is even, or incremented by 1 (rounded up) if its rightmost digit is

Appendix A. Related topics (linked to from topics in this book) 773

odd, to make an even digit. This rounding mode is the default rounding

mode as per IEEE decimal floating point specification and is the default

rounding mode in DB2 products.

ROUND_DOWN

Round towards 0 (truncation). The discarded digits are ignored.

Table 42 shows the result of rounding of 12.341, 12.345, 12.349, 12.355, and -12.345,

each to 4 digits, under different rounding modes:

 Table 42. Decimal floating point rounding modes

Rounding mode 12.341 12.345 12.349 12.355 -12.345

ROUND_DOWN 12.34 12.34 12.34 12.35 -12.34

ROUND_HALF_UP 12.34 12.35 12.35 12.36 -12.35

ROUND_HALF_EVEN 12.34 12.34 12.35 12.36 -12.34

ROUND_FLOOR 12.34 12.34 12.34 12.35 -12.35

ROUND_CEILING 12.35 12.35 12.35 12.36 -12.34

Consequences of changing decflt_rounding

v Previously constructed materialized query tables (MQTs) could contain results

that differ from what would be produced with the new rounding mode. To

correct this problem, refresh potentially impacted MQTs.

v The results of a trigger may be affected by the new rounding mode. Changing it

has no effect on data that has already been written.

v Constraints that allowed data to be inserted into a table, if reevaluated, might

reject that same data. Similarly constraints that did not allow data to be inserted

into a table, if reevaluated, might accept that same data. Use the SET

INTEGRITY statement to check for and correct such problems. The value of a

generated column whose calculation is dependent on decflt_rounding could be

different for two identical rows except for the generated column value, if one

row was inserted before the change to decflt_rounding and the other was

inserted after.

v The rounding mode is not compiled into sections. Therefore, static SQL does not

need to be recompiled after changing decflt_rounding.

Note: The value of this configuration parameter is not changed dynamically but

will become effective only after all applications disconnect from the database. If the

database is activated, it must be deactivated.

dft_account_str - Default charge-back account

This parameter acts as the default suffix of accounting identifiers.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

774 Common Criteria Certification: Administration and User Documentation - Volume 2

Propagation class

Immediate

Default [range]

Null [any valid string]

With each application connect request, an accounting identifier consisting of a DB2

Connect-generated prefix and the user supplied suffix is sent from the application

requester to a DRDA® application server. This accounting information provides a

mechanism for system administrators to associate resource usage with each user

access.

Note: This parameter is only applicable to DB2 Connect.

The suffix is supplied by the application program calling the sqlesact() API or

the user setting the environment variable DB2ACCOUNT. If a suffix is not

supplied by either the API or environment variable, DB2 Connect uses the value of

this parameter as the default suffix value. This parameter is particularly useful for

earlier database clients (anything prior to version 2) that do not have the capability

to forward an accounting string to DB2 Connect.

Recommendation: Set this accounting string using the following:

v Alphabetics (A through Z)

v Numerics (0 through 9)

v Underscore (_).

dft_degree - Default degree

This parameter specifies the default value for the CURRENT DEGREE special

register and the DEGREE bind option.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Connection

Default [range]

1 [-1(ANY), 1 - 32 767]

The default value is 1.

A value of 1 means no intra-partition parallelism. A value of -1 (or ANY) means

the optimizer determines the degree of intra-partition parallelism based on the

number of processors and the type of query.

The degree of intra-partition parallelism for an SQL statement is specified at

statement compilation time using the CURRENT DEGREE special register or the

DEGREE bind option. The maximum runtime degree of intra-partition parallelism

for an active application is specified using the SET RUNTIME DEGREE command.

The Maximum Query Degree of Parallelism (max_querydegree) configuration

parameter specifies the maximum query degree of intra-partition parallelism for all

SQL queries.

The actual runtime degree used is the lowest of:

Appendix A. Related topics (linked to from topics in this book) 775

v max_querydegree configuration parameter

v application runtime degree

v SQL statement compilation degree

dft_extent_sz - Default extent size of table spaces

This parameter sets the default extent size of table spaces.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

32 [2 – 256]

Unit of measure

Pages

When a table space is created, EXTENTSIZE n can be optionally specified, where n is

the extent size. If you do not specify the extent size on the CREATE TABLESPACE

statement, the database manager uses the value given by this parameter.

Recommendation: In many cases, you will want to explicitly specify the extent size

when you create the table space. Before choosing a value for this parameter, you

should understand how you would explicitly choose an extent size for the

CREATE TABLESPACE statement.

dft_loadrec_ses - Default number of load recovery sessions

This parameter specifies the default number of sessions that will be used during

the recovery of a table load.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

1 [1 - 30 000]

Unit of measure

Counter

The value should be set to an optimal number of I/O sessions to be used to

retrieve a load copy. The retrieval of a load copy is an operation similar to restore.

You can override this parameter through entries in the copy location file specified

by the environment variable DB2LOADREC.

The default number of buffers used for load retrieval is two more than the value of

this parameter. You can also override the number of buffers in the copy location

file.

776 Common Criteria Certification: Administration and User Documentation - Volume 2

This parameter is applicable only if roll forward recovery is enabled.

dft_monswitches - Default database system monitor switches

This parameter allows you to set a number of switches which are each internally

represented by a bit of the parameter.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Note: The change takes effect immediately if you explicitly ATTACH to the

instance before modifying the dft_mon_xxxx switch settings. Otherwise the

setting takes effect the next time the instance is restarted.

Default

All switches turned off, except dft_mon_timestamp, which is turned on by

default

The parameter is unique in that you can update each of these switches

independently by setting the following parameters:

dft_mon_uow

Default value of the snapshot monitor’s unit of work (UOW) switch

dft_mon_stmt

Default value of the snapshot monitor’s statement switch

dft_mon_table

Default value of the snapshot monitor’s table switch

dft_mon_bufpool

Default value of the snapshot monitor’s buffer pool switch

dft_mon_lock

Default value of the snapshot monitor’s lock switch

dft_mon_sort

Default value of the snapshot monitor’s sort switch

dft_mon_timestamp

Default value of the snapshot monitor’s timestamp switch

Recommendation: Any switch (except dft_mon_timestamp) that is turned ON

instructs the database manager to collect monitor data related to that switch.

Collecting additional monitor data increases database manager overhead which can

impact system performance. Turning the dft_mon_timestamp switch OFF becomes

important as CPU utilization approaches 100%. When this occurs, the CPU time

required for issuing timestamps increases dramatically. Furthermore, if the

timestamp switch is turned OFF, the overall cost of other data under monitor

switch control is greatly reduced.

Appendix A. Related topics (linked to from topics in this book) 777

All monitoring applications inherit these default switch settings when the

application issues its first monitoring request (for example, setting a switch,

activating the event monitor, taking a snapshot). You should turn on a switch in

the configuration file only if you want to collect data starting from the moment the

database manager is started. (Otherwise, each monitoring application can set its

own switches and the data it collects becomes relative to the time its switches are

set.)

dft_mttb_types - Default maintained table types for

optimization

This parameter specifies the default value for the CURRENT MAINTAINED

TABLE TYPES FOR OPTIMIZATION special register. The value of this register

determines what types of refresh deferred materialized query tables will be used

during query optimization.

Configuration type

Database

Parameter type

Configurable

Default [range]

SYSTEM [ALL, NONE, FEDERATED_TOOL, SYSTEM, USER, or a list of

values]

You can specify a list of values separated by commas; for example,

‘USER,FEDERATED_TOOL’. ALL or NONE cannot be listed with other values, and

you cannot specify the same value more than once. For use with the db2CfgSet

and db2CfgGet APIs, the acceptable parameter values are: 8 (ALL), 4 (NONE), 16

(FEDERATED_TOOL), 1 (SYSTEM) and 2 (USER). Multiple values can be specified

together using bitwise OR; for example, 18 would be the equivalent of

USER,FEDERATED_TOOL. As before, the values 4 and 8 cannot be used with

other values.

dft_prefetch_sz - Default prefetch size

This parameter sets the default prefetch size of table spaces.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Automatic [0 - 32 767]

Unit of measure

Pages

When a table space is created, PREFETCHSIZE n can optionally be specified,

where n represents the number of pages the database manager will read if

prefetching is being performed. If you do not specify the prefetch size on

invocation of the CREATE TABLESPACE statement, the database manager uses the

current value of the dft_prefetch_sz parameter.

778 Common Criteria Certification: Administration and User Documentation - Volume 2

If a table space is created with AUTOMATIC DFT_PREFETCH_SZ, the prefetch

size of the table space will become AUTOMATIC, which means that DB2 will

automatically calculate and update the prefetch size of the table space, using the

following equation:

 prefetch size = (# containers) * (# physical spindles) * extent size

where the number of physical spindles defaults to 1 and can be specified through

the DB2 registry variable DB2_PARALLEL_IO. This calculation is performed:

v At database start-up time

v When a table space is first created with AUTOMATIC prefetch size

v When the number of containers for a table space changes through execution of

an ALTER TABLESPACE statement

v When the prefetch size for a table space is updated to be AUTOMATIC through

execution of an ALTER TABLESPACE statement

The AUTOMATIC state of the prefetch size can be turned on or off as soon as the

prefetch size is updated manually through invocation of the ALTER TABLESPACE

statement.

Recommendation: Using system monitoring tools, you can determine if your CPU

is idle while the system is waiting for I/O. Increasing the value of this parameter

can help if the table spaces being used do not have a prefetch size defined for

them.

This parameter provides the default for the entire database, and it might not be

suitable for all table spaces within the database. For example, a value of 32 might

be suitable for a table space with an extent size of 32 pages, but not suitable for a

table space with an extent size of 25 pages. Ideally, you should explicitly set the

prefetch size for each table space.

To help minimize I/O for table spaces defined with the default extent size

(dft_extent_sz), you should set this parameter as a factor or whole multiple of the

value of the dft_extent_sz parameter. For example, if the dft_extent_sz parameter is

32, you could set dft_prefetch_sz to 16 (a fraction of 32) or to 64 (a whole multiple of

32). If the prefetch size is a multiple of the extent size, the database manager might

perform I/O in parallel, if the following conditions are true:

v The extents being prefetched are on different physical devices

v Multiple I/O servers are configured (num_ioservers).

dft_queryopt - Default query optimization class

The query optimization class is used to direct the optimizer to use different

degrees of optimization when compiling SQL and XQuery queries. This parameter

provides additional flexibility by setting the default query optimization class used

when neither the SET CURRENT QUERY OPTIMIZATION statement nor the

QUERYOPT option on the bind command are used.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Connection

Appendix A. Related topics (linked to from topics in this book) 779

Default [range]

5 [0 — 9]

Unit of measure

Query Optimization Class (see below)

The query optimization classes currently defined are:

v 0 - minimal query optimization.

v 1 - roughly comparable to DB2 Version 1.

v 2 - slight optimization.

v 3 - moderate query optimization.

v 5 - significant query optimization with heuristics to limit the effort expended on

selecting an access plan. This is the default.

v 7 - significant query optimization.

v 9 - maximal query optimization

dft_refresh_age - Default refresh age

This parameter represents the maximum time duration since a REFRESH TABLE

statement has been processed on a specific REFRESH DEFERRED materialized

query table. After this time limit is exceeded, the materialized query table is not

used to satisfy queries until the materialized query table is refreshed.

Configuration type

Database

Parameter type

Configurable

Default [range]

0 [0, 99999999999999 (ANY)]

This parameter has the default value used for the REFRESH AGE if the CURRENT

REFRESH AGE special register is not specified. This parameter specifies a time

stamp duration value with a data type of DECIMAL(20,6). If the CURRENT

REFRESH AGE has a value of 99999999999999 (ANY), and the QUERY

OPTIMIZATION class has a value of two, or five or more, REFRESH DEFERRED

materialized query tables are considered to optimize the processing of a dynamic

query.

dft_sqlmathwarn - Continue upon arithmetic exceptions

This parameter sets the default value that determines the handling of arithmetic

errors and retrieval conversion errors as errors or warnings during SQL statement

compilation.

Configuration type

Database

Parameter type

Configurable

Default [range]

No [No, Yes]

For static SQL statements, the value of this parameter is associated with the

package at bind time. For dynamic SQL DML statements, the value of this

parameter is used when the statement is prepared.

780 Common Criteria Certification: Administration and User Documentation - Volume 2

Attention: If you change the dft_sqlmathwarn value for a database, the behavior of

check constraints, triggers, and views that include arithmetic expressions might

change. This might, in turn, have an impact on the data integrity of the database.

You should only change the setting of dft_sqlmathwarn for a database after carefully

evaluating how the new arithmetic exception handling behavior might impact

check constraints, triggers, and views. Once changed, subsequent changes require

the same careful evaluation.

As an example, consider the following check constraint, which includes a division

arithmetic operation:

A/B > 0

When dft_sqlmathwarn is “No” and an INSERT with B=0 is attempted, the division

by zero is processed as an arithmetic error. The insert operation fails because DB2

cannot check the constraint. If dft_sqlmathwarn is changed to “Yes”, the division by

zero is processed as an arithmetic warning with a NULL result. The NULL result

causes the predicate to evaluate to UNKNOWN and the insert operation succeeds.

If dft_sqlmathwarn is changed back to “No”, an attempt to insert the same row will

fail, because the division by zero error prevents DB2 from evaluating the

constraint. The row inserted with B=0 when dft_sqlmathwarn was “Yes” remains in

the table and can be selected. Updates to the row that cause the constraint to be

evaluated will fail, while updates to the row that do not require constraint

re-evaluation will succeed.

Before changing dft_sqlmathwarn from “No” to “Yes”, you should consider

rewriting the constraint to explicitly handle nulls from arithmetic expressions. For

example:

 (A/B > 0) AND (CASE

 WHEN A IS NULL THEN 1

 WHEN B IS NULL THEN 1

 WHEN A/B IS NULL THEN 0

 ELSE 1

 END

 = 1)

can be used if both A and B are nullable. And, if A or B is not-nullable, the

corresponding IS NULL WHEN-clause can be removed.

Before changing dft_sqlmathwarn from “Yes” to “No”, you should first check for

data that might become inconsistent by using, for example, predicates such as the

following:

 WHERE A IS NOT NULL AND B IS NOT NULL AND A/B IS NULL

When inconsistent rows are isolated, you should take appropriate action to correct

the inconsistency before changing dft_sqlmathwarn. You can also manually re-check

constraints with arithmetic expressions after the change. To do this, first place the

affected tables in a check pending state (with the OFF clause of the SET

CONSTRAINTS statement), then request that the tables be checked (with the

IMMEDIATE CHECKED clause of the SET CONSTRAINTS statement). Inconsistent

data will be indicated by an arithmetic error, which prevents the constraint from

being evaluated.

Recommendation: Use the default setting of no, unless you specifically require

queries to be processed that include arithmetic exceptions. Then specify the value

Appendix A. Related topics (linked to from topics in this book) 781

of yes. This situation can occur if you are processing SQL statements that, on other

database managers, provide results regardless of the arithmetic exceptions that

occur.

diaglevel - Diagnostic error capture level

This parameter specifies the type of diagnostic errors that will be recorded in the

db2diag log file.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

3 [0 — 4]

Valid values for this parameter are:

v 0 – No diagnostic data captured

v 1 – Severe errors only

v 2 – All errors

v 3 – All errors and warnings

v 4 – All errors, warnings and informational messages

The diagpath configuration parameter is used to specify the directory that will

contain the error file, alert log file, and any dump files that might be generated,

based on the value of the diaglevel parameter.

Recommendation: You might want to increase the value of this parameter to

gather additional problem determination data to help resolve a problem.

diagpath - Diagnostic data directory path

This parameter allows you to specify the fully qualified path for DB2 diagnostic

information.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

782 Common Criteria Certification: Administration and User Documentation - Volume 2

Propagation class

Immediate

Default [range]

Null [any valid path name]

This directory could possibly contain dump files, trap files, an error log, a

notification file, an alert log file, and first occurrence data collection (FODC)

packages, depending on your platform.

If this parameter is null, the diagnostic information will be written to files in one

of the following directories or folders:

v In Windows environments:

– User data files, for example, files under instance directories, are written to a

location that is different from where the code is installed, as follows:

- In Windows Vista environments, user data files are written to

ProgramData\IBM\DB2\.

- In Windows 2003 and XP environments, user data files are written to

Documents and Settings\All Users\Application Data\IBM\DB2\Copy

Name, where Copy Name is the name of your DB2 copy.
v In Linux and UNIX environments: Information is written to

INSTHOME/sqllib/db2dump, where INSTHOME is the home directory of the

instance.

In Version 9.5, the default value of DB2INSTPROF at the global level is stored at

the new location shown above. Other profile registry variables that specify the

location of the runtime data files should query the value of DB2INSTPROF. The

other variables include the following ones:

v DB2CLIINIPATH

v DIAGPATH

v SPM_LOG_PATH

Recommendation: Use the default setting for the diagpath configuration parameter

or use a centralized location for the diagpath value of multiple instances.

In a partitioned database environment, the diagpath parameter should use local

storage at the host to get the best performance from logging. This creates a

separate logging and diagnostic directory for each physical partition. You can use

the PD_GET_DIAG_HIST table function to retrieve the log records from the

different partitions, and the PD_GET_LOG_MSGS table function to retrieve the

notification log from all partitions.

dir_cache - Directory cache support

This parameter determines whether the database, node and DCS directory files will

be cached in memory.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Appendix A. Related topics (linked to from topics in this book) 783

Parameter type

Configurable

Default [range]

Yes [Yes; No]

When allocated

v When an application issues its first connect, the application directory

cache is allocated

v When a database manager instance is started (db2start), the server

directory cache is allocated.

When freed

v When an the application process terminates, the application directory

cache is freed

v When a database manager instance is stopped (db2stop), the server

directory cache is freed.

The use of the directory cache reduces connect costs by eliminating directory file

I/O and minimizing the directory searches required to retrieve directory

information. There are two types of directory caches:

v An application directory cache that is allocated and used for each application

process on the machine at which the application is running.

v A server directory cache that is allocated and used for some of the internal

database manager processes.

For application directory caches, when an application issues its first connect, each

directory file is read and the information is cached in private memory for this

application. The cache is used by the application process on subsequent connect

requests and is maintained for the life of the application process. If a database is

not found in the application directory cache, the directory files are searched for the

information, but the cache is not updated. If the application modifies a directory

entry, the next connect within that application will cause the cache for this

application to be refreshed. The application directory cache for other applications

will not be refreshed. When the application process terminates, the cache is freed.

(To refresh the directory cache used by a command line processor session, issue a

db2 terminate command.)

For server directory caches, when a database manager instance is started

(db2start), each directory file is read and the information is cached in the server

memory. This cache is maintained until the instance is stopped (db2stop). If a

directory entry is not found in this cache, the directory files are searched for the

information. This server directory cache is never refreshed during the time the

instance is running.

Recommendation: Use directory caching if your directory files do not change

frequently and performance is critical.

In addition, on remote clients, directory caching can be beneficial if your

applications issue several different connection requests. In this case, caching

reduces the number of times a single application must read the directory files.

Directory caching can also improve the performance of taking database system

monitor snapshots. In addition, you should explicitly reference the database name

on the snapshot call, instead of using database aliases.

784 Common Criteria Certification: Administration and User Documentation - Volume 2

Note: Errors might occur when performing snapshot calls if directory caching is

turned on and if databases are cataloged, uncataloged, created, or dropped after

the database manager is started.

discover - DAS discovery mode

This parameter determines the type of discovery mode that is started when the

DB2 Administration Server starts.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

SEARCH [DISABLE; KNOWN; SEARCH]
v If discover = SEARCH, the administration server handles SEARCH discovery

requests from clients. SEARCH provides a superset of the functionality provided

by KNOWN discovery. When discover = SEARCH, the administration server

will handle both SEARCH and KNOWN discovery requests from clients.

v If discover = KNOWN, the administration server handles only KNOWN

discovery requests from clients.

v If discover = DISABLE, then the administration server will not handle any type

of discovery request. The information for this server system is essentially hidden

from clients.

The default discovery mode is SEARCH.

This parameter can only be updated from a Version 8 command line processor

(CLP).

discover - Discovery mode

This parameter determines what kind of discovery requests, if any, the client can

make.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

SEARCH [DISABLE, KNOWN, SEARCH]

From a client perspective, one of the following will occur:

Appendix A. Related topics (linked to from topics in this book) 785

v If discover = SEARCH, the client can issue search discovery requests to find DB2

server systems on the network. Search discovery provides a superset of the

functionality provided by KNOWN discovery. If discover = SEARCH, both search

and known discovery requests can be issued by the client.

v If discover = KNOWN, only known discovery requests can be issued from the

client. By specifying some connection information for the administration server

on a particular system, all the instance and database information on the DB2

system is returned to the client.

v If discover = DISABLE, discovery is disabled at the client.

The default discovery mode is SEARCH.

discover_db - Discover database

This parameter is used to prevent information about a database from being

returned to a client when a discovery request is received at the server.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Enable [Disable, Enable]

The default for this parameter is that discovery is enabled for this database.

By changing this parameter value to “Disable”, it is possible to hide databases with

sensitive data from the discovery process. This can be done in addition to other

database security controls on the database.

discover_inst - Discover server instance

This parameter specifies whether this instance can be detected by DB2 discovery.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

ENABLE [ENABLE, DISABLE]

The parameter’s default, enable, specifies that the instance can be detected, while

disable prevents the instance from being discovered.

786 Common Criteria Certification: Administration and User Documentation - Volume 2

dyn_query_mgmt - Dynamic SQL and XQuery query

management

This parameter determines whether Query Patroller will capture information about

submitted queries.

Important: This parameter has been deprecated because it is associated with

Query Patroller functionality. With the new workload management features

introduced in DB2 Version 9.5, Query Patroller and its related components have

been deprecated in Version 9.7 and might be removed in a future release.

Configuration type

Database

Parameter type

Configurable Online

Default [range]

0 (DISABLE) [1(ENABLE), 0 (DISABLE)]

This parameter is relevant where DB2 Query Patroller is installed. If this parameter

is set to “ENABLE”, Query Patroller captures information about the query, such as

the submitter ID and the estimated cost of execution, as calculated by the

optimizer. These values are used to determine whether the query should be

managed by Query Patroller, based on user- and system-level thresholds.

If this parameter is set to “DISABLE”, Query Patroller does not capture any

information about submitted queries, and no query management takes place.

enable_xmlchar - Enable conversion to XML configuration

parameter

This parameter determines whether XMLPARSE operations can be performed on

non-BIT DATA CHAR (or CHAR-type) expressions in an SQL statement.

Configuration type

Database

Parameter type

Configurable

Default [range]

Yes [Yes; No]

When pureXML® features are used in a non-Unicode database, the XMLPARSE

function can cause character substitutions to occur as SQL string data is converted

from the client code page into the database code page, and then into Unicode for

internal storage. Setting enable_xmlchar to NO blocks the usage of character data

types during XML parsing, and any attempts to insert character types into a

non-Unicode database will generate an error. The BLOB data type and FOR BIT

DATA data types are still allowed when enable_xmlchar is set to NO, as code page

conversion does not occur when these data types are used to pass XML data into a

database.

By default, enable_xmlchar is set to YES so that parsing of character data types is

allowed. In this case, you should ensure that any XML data to be inserted contains

only code points that are part of the database code page, in order to avoid

substitution characters being introduced during insertion of the XML data.

Appendix A. Related topics (linked to from topics in this book) 787

|
|
|
|

Note: The client needs to disconnect and reconnect to the agent for this change to

be reflected.

exec_exp_task - Execute expired tasks

This parameter specifies whether or not the Scheduler will execute tasks that have

been scheduled in the past, but have not yet been executed.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable

Default [range]

No [Yes; No]

The Scheduler only detects expired tasks when it starts up. For example, if you

have a job scheduled to run every Saturday, and the Scheduler is turned off on

Friday and then restarted on Monday, the job scheduled for Saturday is now a job

that is scheduled in the past. If exec_exp_task is set to Yes, your Saturday job will

run when the Scheduler is restarted.

This parameter can only be updated from a Version 8 command line processor

(CLP).

failarchpath - Failover log archive path

This parameter specifies a path to which DB2 will try to archive log files if the log

files cannot be archived to either the primary or the secondary (if set) archive

destinations because of a media problem affecting those destinations. This specified

path must reference a disk.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

Null []

If there are log files in the path specified by the current value of failarchpath, any

updates to failarchpath will not take effect immediately. Instead, the update will

take effect when all applications disconnect.

fed_noauth - Bypass federated authentication

This parameter determines whether federated authentication will be bypassed at

the instance.

788 Common Criteria Certification: Administration and User Documentation - Volume 2

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

No [Yes; No]

When fed_noauth is set to yes, authentication is set to server or server_encrypt, and

federated is set to yes, then authentication at the instance is bypassed. It is assumed

that authentication will happen at the data source. Exercise caution when

fed_noauth is set to yes. Authentication is done at neither the client nor at DB2. Any

user who knows the SYSADM authentication name can assume SYSADM authority

for the federated server.

federated - Federated database system support

This parameter enables or disables support for applications submitting distributed

requests for data managed by data sources (such as the DB2 Family and Oracle).

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

No [Yes; No]

federated_async - Maximum asynchronous TQs per query

configuration parameter

This parameter determines the maximum number of asynchrony table queues

(ATQs) in the access plan that the federated server supports.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients when

federation is enabled.

Parameter type

Configurable online

Appendix A. Related topics (linked to from topics in this book) 789

Default [range]

0 [0 to 32 767 inclusive, -1, ANY]

 When ANY or -1 is specified, the optimizer determines the number of

ATQs for the access plan. The optimizer assigns an ATQ to all eligible

SHIP or remote pushdown operators in the plan. The value that is

specified for DB2_MAX_ASYNC_REQUESTS_PER_QUERY server option

limits the number of asynchronous requests.

Recommendation

The federated_async configuration parameter supplies the default or starting

value for the special register and the bind option. You can override the

value of this parameter by setting the value of the CURRENT FEDERATED

ASYNCHRONY special register, FEDERATED_ASYNCHRONY bind

option, or FEDERATED_ASYNCHRONY prepcompile option to a higher or

a lower number.

If the special register or the bind option do not override the federated_async

configuration parameter, the value of the parameter determines the maximum

number of ATQs in the access plan that the federated server allows. If the special

register or the bind option overrides this parameter, the value of the special

register or the bind option determines the maximum number of ATQs in the plan.

Any changes to the federated_async configuration parameter affect dynamic

statements as soon as the current unit of work commits. Subsequent dynamic

statements recognize the new value automatically. A restart of the federated

database is not needed. Embedded SQL packages are not invalidated nor implicitly

rebound when the value of the federated_async configuration parameter changes.

If you want the new value of the federated_async configuration parameter to affect

static SQL statements, you need to rebind the package.

fenced_pool - Maximum number of fenced processes

This parameter represents the number of threads cached in each db2fmp process

for threaded db2fmp processes (processes serving threadsafe stored procedures and

UDFs). For nonthreaded db2fmp processes, this parameter represents the number

of processes cached.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Default [range]

-1 (max_coordagents), Automatic [-1; 0–64 000]

Unit of measure

Counter

Restrictions:

v If this parameter is updated dynamically, and the value is decreased, the

database manager does not proactively terminate db2fmp threads or processes,

790 Common Criteria Certification: Administration and User Documentation - Volume 2

instead it stops caching them as they are used in order to reduce the number of

cached db2fmp’s down to the new value.

v If this parameter is updated dynamically, and the value is increased, the

database manager caches more db2fmp threads and processes when they are

created.

v When this parameter is set to -1, the default, it assumes the value of the

max_coordagents configuration parameter. Note that only the value of

max_coordagents is assumed and not the automatic setting or behavior.

v When this parameter is set to AUTOMATIC, also the default:

– The database manager allows the number of db2fmp threads and processes

cached to increase based on the high water mark of coordinating agents.

Specifically, the automatic behavior of this parameter allows it to grow

depending on the maximum number of coordinating agents the database

manager has ever registered, at the same time, since it started.

– The value assigned to this parameter represents a lower bound for the

number of db2fmp threads and process to cache.

Recommendation: If your environment uses fenced stored procedures or user

defined functions, then this parameter can be used to ensure that an appropriate

number of db2fmp processes are available to process the maximum number of

concurrent stored procedures and UDFs that run on the instance, ensuring that no

new fenced mode processes need to be created as part of stored procedure and

UDF execution.

If you find that the default value is not appropriate for your environment because

an inappropriate amount of system resource is being given to db2fmp processes

and is affecting performance of the database manager, the following might be

useful in providing a starting point for tuning this parameter:

 fenced_pool = # of applications allowed to make stored procedure and

 UDF calls at one time

If keepfenced is set to YES, then each db2fmp process that is created in the cache

pool will continue to exist and will use system resources even after the fenced

routine call has been processed and returned to the agent.

If keepfenced is set to NO, then nonthreaded db2fmp processes will terminate when

they complete execution, and there is no cache pool. Multithreaded db2fmp

processes will continue to exist, but no threads will be pooled in these processes.

This means that even when keepfenced is set to NO, you can have one threaded C

db2fmp process and one threaded Java db2fmp process on your system.

In previous versions, this parameter was known as maxdari.

hadr_db_role - HADR database role

This parameter indicates the current role of a database, whether the database is

online or offline.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

Appendix A. Related topics (linked to from topics in this book) 791

Parameter type

Informational

Valid values are: STANDARD, PRIMARY, or STANDBY.

Note: When a database is active, the HADR role of the database can also be

determined using the GET SNAPSHOT FOR DATABASE command.

hadr_local_host - HADR local host name

This parameter specifies the local host for high availability disaster recovery

(HADR) TCP communication.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

Parameter type

Configurable

Default

Null

Either a host name or an IP address can be used. If a host name is specified and it

maps to multiple IP addresses, an error is returned, and HADR will not start up. If

the host name maps to multiple IP addresses (even if you specify the same host

name on primary and standby), primary and standby can end up mapping this

host name to different IP addresses, because some DNS servers return IP address

lists in non-deterministic order.

A host name is in the form: myserver.ibm.com. An IP address is in the form:

″12.34.56.78″.

hadr_local_svc - HADR local service name

This parameter specifies the TCP service name or port number for which the local

high availability disaster recovery (HADR) process accepts connections.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

Parameter type

Configurable

Default

Null

The value for hadr_local_svc on the Primary or Standby database systems cannot

be the same as the value of svcename or svcename +1 on their respective nodes.

If you are using SSL, do not set hadr_local_svc on the Primary or Standby

database system to the same value as you set for ssl_svcename.

792 Common Criteria Certification: Administration and User Documentation - Volume 2

|
|

hadr_peer_window - HADR peer window configuration

parameter

When you set hadr_peer_window to a non-zero time value, then a HADR

primary-standby database pair continues to behave as though still in peer state, for

the configured amount of time, if the primary database loses connection with the

standby database. This helps ensure data consistency.

Configuration type

Database

Parameter type

Configurable

Default [range]

0 [0 − 4 294 967 295]

Unit of measure

Seconds

Usage notes:

v The value will need to be the same on both primary and standby

databases.

v A recommended minimum value is 120 seconds.

v The hadr_peer_window value is ignored when the hadr_syncmode

value is set to ASYNC. That is, the value is treated as if it were set to

zero (0), since it is not meaningful in ASYNC mode.

v To avoid impacting the availability of the primary database when the

standby database is intentionally shut down, for example, for

maintenance, the peer window is not invoked if the standby database is

explicitly deactivated while the HADR pair is in peer state.

v The takeover operation with the hadr_peer_window parameter may

behave incorrectly if the primary database clock and the standby

database clock are not synchronized to within 5 seconds of each other.

That is, the operation may succeed when it should fail, or fail when it

should succeed. You should use a time synchronization service (for

example, NTP) to keep the clocks synchronized to the same source.

v On the standby databases, the peer window end time is based on the

last heartbeat message received from the primary database rather than

disconnection. Therefore, the standby database’s remaining time in

S-DisconnectedPeer state before transition to S-RemoteCatchupPending

ranges from (hadr_peer_window - hadr_timeout) seconds to

(hadr_peer_window) seconds, depending on when and how the

disconnection occurred.

hadr_remote_host - HADR remote host name

This parameter specifies the TCP/IP host name or IP address of the remote high

availability disaster recovery (HADR) database server.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

Parameter type

Configurable

Appendix A. Related topics (linked to from topics in this book) 793

Default

Null

Similar to hadr_local_host, this parameter must map to only one IP address.

hadr_remote_inst - HADR instance name of the remote server

This parameter specifies the instance name of the remote server. Administration

tools, such as the DB2 Control Center, use this parameter to contact the remote

server. High availability disaster recovery (HADR) also checks whether a remote

database requesting a connection belongs to the declared remote instance.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

Parameter type

Configurable

Default

Null

hadr_remote_svc - HADR remote service name

This parameter specifies the TCP service name or port number that will be used by

the remote high availability disaster recovery (HADR) database server.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

Parameter type

Configurable

Default

Null

hadr_syncmode - HADR synchronization mode for log write in

peer state

This parameter specifies the synchronization mode, which determines how primary

log writes are synchronized with the standby when the systems are in peer state.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

Parameter type

Configurable

Default [range]

NEARSYNC [ASYNC; SYNC]

794 Common Criteria Certification: Administration and User Documentation - Volume 2

Valid values for this parameter are:

SYNC This mode provides the greatest protection against transaction loss, but at a

higher cost of transaction response time.

 In this mode, log writes are considered successful only when logs have

been written to log files on the primary database and when the primary

database has received acknowledgement from the standby database that

the logs have also been written to log files on the standby database. The

log data is guaranteed to be stored at both sites.

NEARSYNC

This mode provides somewhat less protection against transaction loss, in

exchange for a shorter transaction response time than that of SYNC mode.

 In this mode, log writes are considered successful only when the log

records have been written to the log files on the primary database and

when the primary database has received acknowledgement from the

standby system that the logs have also been written to main memory on

the standby system. Loss of data occurs only if both sites fail

simultaneously and if the target site has not transferred to nonvolatile

storage all of the log data that it has received.

ASYNC

This mode has the highest probability of transaction loss in the event of

primary failure, in exchange for the shortest transaction response time

among the three modes.

 In this mode, log writes are considered successful only when the log

records have been written to the log files on the primary database and

have been delivered to the TCP layer of the primary system’s host

machine. Because the primary system does not wait for acknowledgement

from the standby system, transactions might be considered committed

when they are still on their way to the standby.

hadr_timeout - HADR timeout value

This parameter specifies the time (in seconds) that the high availability disaster

recovery (HADR) process waits before considering a communication attempt to

have failed.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

Parameter type

Configurable

Default [range]

120 [1 - 4 294 967 295]

health_mon - Health monitoring

This parameter allows you to specify whether you want to monitor an instance, its

associated databases, and database objects according to various health indicators.

Configuration type

Database manager

Appendix A. Related topics (linked to from topics in this book) 795

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

On [On; Off]

Related Parameters

If health_mon is turned on (the default), an agent will collect information about the

health of the objects you have selected. If an object is considered to be in an

unhealthy position, based on thresholds that you have set, notifications can be

sent, and actions can be taken automatically. If health_mon is turned off, the health

of objects will not be monitored.

You can use the Health Center or the CLP to select the instance and database

objects that you want to monitor. You can also specify where notifications should

be sent, and what actions should be taken, based on the data collected by the

health monitor.

indexrec - Index re-creation time

This parameter indicates when the database manager will attempt to rebuild

invalid indexes, and whether or not any index build will be redone during DB2

rollforward or HADR log replay on the standby database.

Configuration type

Database and Database Manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

UNIX Database Manager

restart [restart; restart_no_redo; access; access_no_redo]

Windows Database Manager

restart [restart; restart_no_redo; access; access_no_redo]

Database

Use system setting [system; restart; restart_no_redo; access;

access_no_redo]

There are five possible settings for this parameter:

SYSTEM

use system setting specified in the database manager configuration file to

decide when invalid indexes will be rebuilt, and whether any index build

log records are to be redone during DB2 rollforward or HADR log replay.

(Note: This setting is only valid for database configurations.)

796 Common Criteria Certification: Administration and User Documentation - Volume 2

ACCESS

Invalid indexes are rebuilt when the index is first accessed. Any fully

logged index builds are redone during DB2 rollforward or HADR log

replay. When HADR is started and an HADR takeover occurs, any invalid

indexes are rebuilt after takeover when the underlying table is first

accessed.

ACCESS_NO_REDO

Invalid indexes will be rebuilt when the underlying table is first accessed.

Any fully logged index build will not be redone during DB2 rollforward or

HADR log replay and those indexes will be left invalid. When HADR is

started and an HADR takeover takes place, any invalid indexes will be

rebuilt after takeover when the underlying table is first accessed.

RESTART

The default value for indexrec. Invalid indexes will be rebuilt when a

RESTART DATABASE command is either explicitly or implicitly issued.

Any fully logged index build will be redone during DB2 rollforward or

HADR log replay. When HADR is started and an HADR takeover takes

place, any invalid indexes will be rebuilt at the end of takeover.

 Note that a RESTART DATABASE command is implicitly issued if the

autorestart parameter is enabled.

RESTART_NO_REDO

Invalid indexes will be rebuilt when a RESTART DATABASE command is

either explicitly or implicitly issued. (A RESTART DATABASE command is

implicitly issued if the autorestart parameter is enabled.) Any fully logged

index build will not be redone during DB2 rollforward or HADR log

replay and instead those indexes will be rebuilt when rollforward

completes or when HADR takeover takes place.

Indexes can become invalid when fatal disk problems occur. If this happens to the

data itself, the data could be lost. However, if this happens to an index, the index

can be recovered by re-creating it. If an index is rebuilt while users are connected

to the database, two problems could occur:

v An unexpected degradation in response time might occur as the index file is

re-created. Users accessing the table and using this particular index would wait

while the index was being rebuilt.

v Unexpected locks might be held after index re-creation, especially if the user

transaction that caused the index to be re-created never performed a COMMIT

or ROLLBACK.

Recommendation: The best choice for this option on a high-user server and if

restart time is not a concern, would be to have the index rebuilt at DATABASE

RESTART time as part of the process of bringing the database back online after a

crash.

Setting this parameter to “ACCESS” or to “ACCESS_NO_REDO” will result in a

degradation of the performance of the database manager while the index is being

re-created. Any user accessing that specific index or table would have to wait until

the index is recreated.

If this parameter is set to “RESTART”, the time taken to restart the database will be

longer due to index re-creation, but normal processing would not be impacted

once the database has been brought back online.

Appendix A. Related topics (linked to from topics in this book) 797

Note: At database recovery time, all SQL procedure executables on the file system

that belong to the database being recovered are removed. If indexrec is set to

RESTART, all SQL procedure executables are extracted from the database catalog

and put back on the file system at the next connection to the database. If indexrec is

not set to RESTART, an SQL executable is extracted to the file system only on first

execution of that SQL procedure.

The difference between the RESTART and the RESTART_NO_REDO values, or

between the ACCESS and the ACCESS_NO_REDO values, is only significant when

full logging is activated for index build operations, such as CREATE INDEX and

REORG INDEX operations, or for an index rebuild. You can activate logging by

enabling the logindexbuild database configuration parameter or by enabling LOG

INDEX BUILD when altering a table. By setting indexrec to either RESTART or

ACCESS, operations involving a logged index build can be rolled forward without

leaving the index object in an invalid state, which would require the index to be

rebuilt at a later time.

instance_memory - Instance memory

This parameter specifies the maximum amount of memory that can be allocated for

a database partition.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Default [range]

32-bit platforms

Automatic [0 - 1 000 000]

64-bit platforms

Automatic [0 - 68 719 476 736]

Unit of measure

Pages (4 KB)

When allocated

When the instance is started

When freed

When the instance is stopped

The default value of instance_memory is AUTOMATIC, meaning that its actual

value is computed at database partition activation time (db2start). The actual value

used is between 75 percent and 95 percent of the physical RAM on the system,

divided by the number of configured local database partitions in the instance. This

value should be suitable for dedicated database server systems.

Note:

v If the specified value of instance_memory is larger than the amount of physical

memory on the system, then db2start fails with a SQL1220N (The database

manager shared memory set cannot be allocated.)

798 Common Criteria Certification: Administration and User Documentation - Volume 2

v If instance_memory is dynamically updated to a value less than the amount of

physical RAM, the request is processed and a new upper limit is set. Dynamic

decreases to instance_memory are allowed only if the new setting is larger than

the current amount of in-use instance_memory, otherwise, the request is

deferred to the next db2start.

v If instance_memory is dynamically updated to a value greater than the amount

of physical RAM while the instance is active, the request is deferred, and the

next db2start fails with a SQL1220N (The database manager shared memory set

cannot be allocated.)

When fast communication manager (FCM) shared memory is allocated, each local

database partition’s share of the overall FCM shared memory size for the system is

accounted for in that database partition’s instance_memory limit.

If memory is requested for a particular heap, and the database partition memory

limit (instance_memory) has already been reached, then DB2 will first attempt to

reduce memory usage in all shared and private heaps by the requested amount of

memory. If there is still insufficient free instance_memory, then the request fails,

and the application that initiated the request receives an appropriate SQLCODE

that describes which heap experienced an out-of-memory failure.

The exception to this behavior is for memory requests that are known to be critical

to the operation of DB2 (that is, failing the memory request results the database is

marked as invalid, or the instance is shut down). Note that the critical requests

will first attempt to reduce current memory usage by the database partition. If

there is still insufficient free instance_memory, DB2 still requests that memory

from the operating system. If the operating system allows the memory request,

then the current value of instance_memory will exceed the configured limit,

however, all other non-critical memory requests will fail until enough memory has

been freed.

Note: Restriction for DPF instances: although instance_memory specifies the

amount of memory a single DB2 database partition might allocate, it is an

instance-level configuration parameter, so all database partitions have the same

instance_memory setting. However, if instance_memory is set to AUTOMATIC,

the actual upper bound is computed individually on each separate machine based

on the amount of RAM and the number of local partitions defined, so it is possible

for different partitions to have different memory limits in effect.

Controlling DB2 Memory consumption:

When instance_memory is set to AUTOMATIC, a fixed upper bound on

total memory consumption for the instance is set at instance startup

(db2start). Actual memory consumption by DB2 varies depending on the

workload. When STMM is enabled to perform database_memory tuning

(by default for new databases), during run-time, STMM dynamically

updates the size of performance-critical heaps within the database shared

memory set according to the free physical memory on the system, while

ensuring that there is sufficient free instance_memory available for

functional memory requirements.

 Depending on workload, DB2’s default memory configuration adapts to

the memory requirements of the instance without requiring explicit

self-tuning of overall instance memory. For instance:

v For heavily-used instances, STMM increases the size of

performance-critical heaps as needed. More functional memory is

consumed, as there are more database agents servicing applications and

Appendix A. Related topics (linked to from topics in this book) 799

consuming functional memory. If there is enough free instance_memory

but very little free physical memory on the system, STMM starts

decreasing the size of performance-critical heaps ensure that the system

does not start paging. As functional memory requirements drop, free

physical memory on the system should increase, and STMM will start

increasing the performance-critical heaps again.

v For less heavily-used instances, there is less functional memory

consumed by the instance, and if there is insufficient free physical

memory left on the system, STMM shrinks performance-critical heaps.

If instance_memory is set to a specific value, and at least one active

database has an AUTOMATIC value for database_memory, and STMM is

enabled for that database, then STMM increases the database_memory size

such that DB2 uses almost the entire amount of memory specified by

instance_memory, ensuring only that enough free instance_memory is

available for functional memory requests. In this scenario, STMM does not

monitor free physical memory on the machine, therefore, instance_memory

must be configured properly to ensure that paging will not occur.

Use the new admin_get_dbp_mem_usage user-defined function (UDF) to

get the total memory consumption by a DB2 instance for a specific

database partition, or for all database partitions. This UDF also returns the

current upper bound value.

Limitation on some Linux kernels:

Due to operating system limitations on some Linux kernels, STMM does

not allow setting database_memory to AUTOMATIC unless

instance_memory is set to a specific value (not AUTOMATIC). If

database_memory is set to AUTOMATIC, and instance_memory is later

set back to AUTOMATIC, the database_memory configuration parameter

will be updated to COMPUTED during the next database activation. If

some databases are already active, STMM stops tuning their overall

database_memory sizes. This limitation is removed on Red Hat Enterprise

Linux (RHEL) 5 and SUSE Linux Enterprise Server 10 SP1 or higher

platforms.

intra_parallel - Enable intra-partition parallelism

This parameter specifies whether the database manager can use intra-partition

parallelism.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

NO (0) [SYSTEM (-1), NO (0), YES (1)]

 A value of -1 causes the parameter value to be set to “YES” or “NO” based

on the hardware on which the database manager is running.

800 Common Criteria Certification: Administration and User Documentation - Volume 2

Some of the operations that can take advantage of parallel performance

improvements when this parameter is ″YES″ include database queries and index

creation.

Note:

v Parallel index creation does not use this configuration parameter.

v If you change this parameter value, packages might be rebound to the database,

and some performance degradation might occur.

java_heap_sz - Maximum Java interpreter heap size

This parameter determines the maximum size of the heap that is used by the Java

interpreter started to service Java DB2 stored procedures and UDFs.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

HP-UX

4096 [0 - 524 288]

All other operating systems

2048 [0 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

When a Java stored procedure or UDF starts

When freed

When the db2fmp process (fenced) or the db2agent process (trusted)

terminates.

There is one heap for each DB2 process (one for each agent or subagent on Linux

and UNIX platforms, and one for each instance on other platforms). There is one

heap for each fenced UDF and fenced stored procedure process. There is one heap

per agent (not including sub-agents) for trusted routines. There is one heap per

db2fmp process running a Java stored procedure. For multithreaded db2fmp

processes, multiple applications using threadsafe fenced routines are serviced from

a single heap. In all situations, only the agents or processes that run Java UDFs or

stored procedures ever allocate this memory. On partitioned database systems, the

same value is used at each database partition.

XML data is materialized when passed to stored procedures as IN, OUT, or INOUT

parameters. When you are using Java stored procedures, the heap size might need

to be increased based on the quantity and size of XML arguments, and the number

of external stored procedures that are being executed concurrently.

Appendix A. Related topics (linked to from topics in this book) 801

jdk_64_path - 64-Bit Software Developer’s Kit for Java

installation path DAS

This parameter specifies the directory under which the 64-Bit Software Developer’s

Kit (SDK) for Java, to be used for running DB2 administration server functions, is

installed.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Null [any valid path]

Note: This is different from the jdk_path configuration parameter, which specifies

a 32-bit SDK for Java.

Environment variables used by the Java interpreter are computed from the value of

this parameter. This parameter is only used on those platforms that support both

32- and 64-bit instances.

Those platforms are:

v 64-bit kernels of AIX, HP-UX, and Solaris operating systems

v 64-bit Windows on X64 and IPF

v 64-bit Linux kernel on AMD64 and Intel EM64T systems (x64), POWER, and

zSeries.

On all other platforms, only jdk_path is used.

Because there is no default value for this parameter, you should specify a value

when you install the SDK for Java.

This parameter can only be updated from a Version 8 command line processor

(CLP).

jdk_path - Software Developer’s Kit for Java installation path

DAS

This parameter specifies the directory under which the Software Developer’s Kit

(SDK) for Java, to be used for running DB2 administration server functions, is

installed.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable Online

Propagation class

Immediate

802 Common Criteria Certification: Administration and User Documentation - Volume 2

Default [range]

Default Java install path [any valid path]

Environment variables used by the Java interpreter are computed from the value of

this parameter.

On Windows operating systems, Java files (if needed) are placed under the sqllib

directory (in java\jdk) during DB2 installation. The jdk_path configuration

parameter is then set to sqllib\java\jdk. Java is never actually installed by DB2 on

Windows platforms; the files are merely placed under the sqllib directory, and this

is done regardless of whether or not Java is already installed.

This parameter can only be updated from a Version 8 command line processor

(CLP).

jdk_path - Software Developer’s Kit for Java installation path

This parameter specifies the directory under which the Software Developer’s Kit

(SDK) for Java, to be used for running Java stored procedures and user-defined

functions, is installed. The CLASSPATH and other environment variables used by

the Java interpreter are computed from the value of this parameter.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null [Valid path]

If the SDK for Java was installed with your DB2 product, this parameter is set

properly. However, if you reset the database manager (dbm cfg) parameter, you

need to specify where the SDK for Java is installed.

keepfenced - Keep fenced process

This parameter indicates whether or not a fenced mode process is kept after a

fenced mode routine call is complete. Fenced mode processes are created as

separate system entities in order to isolate user-written fenced mode code from the

database manager agent process. This parameter is only applicable on database

servers.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Appendix A. Related topics (linked to from topics in this book) 803

Default [range]

Yes [Yes; No]

If keepfenced is set to no, and the routine being executed is not threadsafe, a new

fenced mode process is created and destroyed for each fenced mode invocation. If

keepfenced is set to no, and the routine being executed is threadsafe, the fenced

mode process persists, but the thread created for the call is terminated. If keepfenced

is set to yes, a fenced mode process or thread is reused for subsequent fenced

mode calls. When the database manager is stopped, all outstanding fenced mode

processes and threads will be terminated.

Setting this parameter to yes will result in additional system resources being

consumed by the database manager for each fenced mode process that is activated,

up to the value contained in the fenced_pool parameter. A new process is only

created when no existing fenced mode process is available to process a subsequent

fenced routine invocation. This parameter is ignored if fenced_pool is set to 0.

Recommendation: In an environment in which the number of fenced mode

requests is large relative to the number of non-fenced mode requests, and system

resources are not constrained, then this parameter can be set to yes. This will

improve the fenced mode process performance by avoiding the initial fenced mode

process creation overhead since an existing fenced mode process will be used to

process the call. In particular, for Java routines, this will save the cost of starting

the Java Virtual Machine (JVM), a very significant performance improvement.

For example, in an OLTP debit-credit banking transaction application, the code to

perform each transaction could be performed in a stored procedure which executes

in a fenced mode process. In this application, the main workload is performed out

of fenced mode processes. If this parameter is set to no, each transaction incurs the

overhead of creating a new fenced mode process, resulting in a significant

performance reduction. If, however, this parameter is set to yes, each transaction

would try to use an existing fenced mode process, which would avoid this

overhead.

In previous versions of DB2, this parameter was known as keepdari.

log_retain_status - Log retain status indicator

If set (when the logretain parameter setting is equal to Recovery), this parameter

indicates that log files are being retained for use in roll-forward recovery.

Configuration type

Database

Parameter type

Informational

logarchmeth1 - Primary log archive method

This parameter specifies the media type of the primary destination for archived

logs.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

804 Common Criteria Certification: Administration and User Documentation - Volume 2

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

OFF [LOGRETAIN, USEREXIT, DISK, TSM, VENDOR]

OFF Specifies that the log archiving method is not to be used. If both

logarchmeth1 and logarchmeth2 are set to OFF, the database is

considered to be using circular logging and will not be rollforward

recoverable. This is the default.

LOGRETAIN

This value can only be used for logarchmeth1 and is equivalent to

setting the logretain configuration parameter to RECOVERY. If you

specify this value, the logretain configuration parameters will

automatically be updated.

USEREXIT

This value is only valid for logarchmeth1 and is equivalent to

setting the userexit configuration parameter to ON. If specify this

value, the userexit configuration parameter will be automatically

updated.

DISK This value must be followed by a colon(:) and then a fully

qualified existing path name where the log files will be archived.

For example, if you set logarchmeth1 to DISK:/u/dbuser/
archived_logs the archive log files will be placed in a directory

called /u/dbuser/archived_logs.

Note: If you are archiving to tape, you can use the db2tapemgr

utility to store and retrieve log files.

TSM If specified without any additional configuration parameters, this

value indicates that log files should be archived on the local TSM

server using the default management class. If followed by a

colon(:) and a TSM management class, the log files will be archived

using the specified management class.

 When archiving logs using TSM, before using the management

class specified by the database configuration parameter, TSM first

attempts to bind the object to the management class specified in

the INCLUDE-EXCLUDE list found in the TSM client options file.

If a match is not found, the default TSM management class

specified on the TSM server will be used. TSM will then rebind the

object to the management class specified by the database

configuration parameter.

Thus, the default management class, as well as the management

class specified by the database configuration parameter, must

contain an archive copy group, or the archive operation will fail.

VENDOR

Specifies that a vendor library will be used to archive the log files.

This value must be followed by a colon(:) and the name of the

library. The APIs provided in the library must use the backup and

restore APIs for vendor products.

Note:

Appendix A. Related topics (linked to from topics in this book) 805

1. If either logarchmeth1 or logarchmeth2 is set to a value other

than OFF, the database is configured for rollforward recovery.

2. If you update the userexit or logretain configuration

parameters logarchmeth1 will automatically be updated and

vice versa. However, if you are using either userexit or

logretain, logarchmeth2 must be set to OFF.

logarchmeth2 - Secondary log archive method

This parameter specifies the media type of the secondary destination for archived

logs.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

OFF [LOGRETAIN, USEREXIT, DISK, TSM, VENDOR]

OFF Specifies that the log archiving method is not to be used. If both

logarchmeth1 and logarchmeth2 are set to OFF, the database is

considered to be using circular logging and will not be rollforward

recoverable. This is the default.

LOGRETAIN

This value can only be used for logarchmeth1 and is equivalent to

setting the logretain configuration parameter to RECOVERY. If you

specify this value, the logretain configuration parameters will

automatically be updated.

USEREXIT

This value is only valid for logarchmeth1 and is equivalent to

setting the userexit configuration parameter to ON. If specify this

value, the userexit configuration parameter will be automatically

updated.

DISK This value must be followed by a colon(:) and then a fully

qualified existing path name where the log files will be archived.

For example, if you set logarchmeth1 to DISK:/u/dbuser/
archived_logs the archive log files will be placed in a directory

called /u/dbuser/archived_logs.

Note: If you are archiving to tape, you can use the db2tapemgr

utility to store and retrieve log files.

TSM If specified without any additional configuration parameters, this

value indicates that log files should be archived on the local TSM

server using the default management class. If followed by a

colon(:) and a TSM management class, the log files will be archived

using the specified management class.

806 Common Criteria Certification: Administration and User Documentation - Volume 2

VENDOR

Specifies that a vendor library will be used to archive the log files.

This value must be followed by a colon(:) and the name of the

library. The APIs provided in the library must use the backup and

restore APIs for vendor products.

Note:

1. If either logarchmeth1 or logarchmeth2 is set to a value other than

OFF, the database is configured for rollforward recovery.

2. If you update the userexit or logretain configuration parameters

logarchmeth1 will automatically be updated and vice versa.

However, if you are using either userexit or logretain,

logarchmeth2 must be set to OFF.

If this path is specified, log files will be archived to both this destination and the

destination specified by the logarchmeth1 database configuration parameter.

logarchopt1 - Primary log archive options

This parameter specifies the options field for the primary destination for archived

logs (if required).

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

Null [not applicable]

logarchopt2 - Secondary log archive options

This parameter specifies the options field for the secondary destination for

archived logs (if required).

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

Null [not applicable]

Appendix A. Related topics (linked to from topics in this book) 807

logbufsz - Log buffer size

This parameter allows you to specify the amount of the database heap (defined by

the dbheap parameter) to use as a buffer for log records before writing these records

to disk.

Configuration type

Database

Parameter type

Configurable

Default [range]

32-bit platforms

8 [4 - 4 096]

64-bit platforms

8 [4 - 131 070]

Unit of measure

Pages (4 KB)

Log records are written to disk when one of the following occurs:

v A transaction commits or a group of transactions commit, as defined by the

mincommit configuration parameter

v The log buffer is full

v As a result of some other internal database manager event.

This parameter must also be less than or equal to the dbheap parameter. Buffering

the log records will result in more efficient logging file I/O because the log records

will be written to disk less frequently and more log records will be written at each

time.

Recommendation: Increase the size of this buffer area if there is considerable read

activity on a dedicated log disk, or there is high disk utilization. When increasing

the value of this parameter, you should also consider the dbheap parameter since

the log buffer area uses space controlled by the dbheap parameter.

You can use the database system monitor to determine how much of the log buffer

space is used for a particular transaction (or unit of work). Refer to the

log_space_used (unit of work log space used) monitor element.

logfilsiz - Size of log files

This parameter defines the size of each primary and secondary log file. The size of

these log files limits the number of log records that can be written to them before

they become full and a new log file is required.

Configuration type

Database

Parameter type

Configurable

Default [range]

UNIX 1000 [4 - 1 048 572]

Windows

1000 [4 - 1 048 572]

808 Common Criteria Certification: Administration and User Documentation - Volume 2

Unit of measure

Pages (4 KB)

The use of primary and secondary log files as well as the action taken when a log

file becomes full are dependent on the type of logging that is being performed:

v Circular logging

A primary log file can be reused when the changes recorded in it have been

committed. If the log file size is small and applications have processed a large

number of changes to the database without committing the changes, a primary

log file can quickly become full. If all primary log files become full, the database

manager will allocate secondary log files to hold the new log records.

v Log retention logging

When a primary log file is full, the log is archived and a new primary log file is

allocated.

Recommendation: You must balance the size of the log files with the number of

primary log files:

v The value of the logfilsiz should be increased if the database has a large number

of update, delete, or insert transactions running against it which will cause the

log file to become full very quickly.

Note: The upper limit of log file size, combined with the upper limit of the

number of log files (logprimary + logsecond), gives an upper limit of 1024 GB of

active log space.

A log file that is too small can affect system performance because of the

overhead of archiving old log files, allocating new log files, and waiting for a

usable log file.

v The value of the logfilsiz should be reduced if disk space is scarce, since primary

logs are preallocated at this size.

A log file that is too large can reduce your flexibility when managing archived

log files and copies of log files, since some media might not be able to hold an

entire log file.

If you are using log retention, the current active log file is closed and truncated

when the last application disconnects from a database. When the next connection

to the database occurs, the next log file is used. Therefore, if you understand the

logging requirements of your concurrent applications, you might be able to

determine a log file size that will not allocate excessive amounts of wasted space.

loghead - First active log file

This parameter contains the name of the log file that is currently active.

Configuration type

Database

Parameter type

Informational

logindexbuild - Log index pages created

This parameter specifies whether index creation, recreation, or reorganization

operations are to be logged so that indexes can be reconstructed during DB2

rollforward operations or high availability disaster recovery (HADR) log replay

procedures.

Appendix A. Related topics (linked to from topics in this book) 809

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

Off [On; Off]

logpath - Location of log files

This parameter contains the current path being used for logging purposes.

Configuration type

Database

Parameter type

Informational

You cannot change this parameter directly as it is set by the database manager

after a change to the newlogpath parameter becomes effective.

When a database is created, the recovery log file for it is created in a subdirectory

of the directory containing the database. The default is a subdirectory named

SQLOGDIR under the directory created for the database.

logprimary - Number of primary log files

This parameter allows you to specify the number of primary log files to be

preallocated. The primary log files establish a fixed amount of storage allocated to

the recovery log files.

Configuration type

Database

Parameter type

Configurable

Default [range]

3 [2 - 256]

Unit of measure

Counter

When allocated

v The database is created

v A log is moved to a different location (which occurs when the logpath

parameter is updated)

v When the database is next started following an increase following an

increase in the value of this parameter (logprimary), provided that the

database is not started as an HADR standby database

v A log file has been archived and a new log file is allocated (the logretain

or userexit parameter must be enabled)

810 Common Criteria Certification: Administration and User Documentation - Volume 2

v If the logfilsiz parameter has been changed, the log files are re-sized

during the next database startup, provided that it is not started as an

HADR standby database

When freed

Not freed unless this parameter decreases. If decreased, unneeded log files

are deleted during the next connection to the database.

Under circular logging, the primary logs are used repeatedly in sequence. That is,

when a log is full, the next primary log in the sequence is used if it is available. A

log is considered available if all units of work with log records in it have been

committed or rolled-back. If the next primary log in sequence is not available, then

a secondary log is allocated and used. Additional secondary logs are allocated and

used until the next primary log in the sequence becomes available or the limit

imposed by the logsecond parameter is reached. These secondary log files are

dynamically deallocated as they are no longer needed by the database manager.

The number of primary and secondary log files must comply with the following:

v If logsecond has a value of -1, logprimary <= 256.

v If logsecond does not have a value of -1, (logprimary + logsecond) <= 256.

Recommendation: The value chosen for this parameter depends on a number of

factors, including the type of logging being used, the size of the log files, and the

type of processing environment (for example, length of transactions and frequency

of commits).

Increasing this value will increase the disk requirements for the logs because the

primary log files are preallocated during the very first connection to the database.

If you find that secondary log files are frequently being allocated, you might be

able to improve system performance by increasing the log file size (logfilsiz) or by

increasing the number of primary log files.

For databases that are not frequently accessed, in order to save disk storage, set the

parameter to 2. For databases enabled for roll-forward recovery, set the parameter

larger to avoid the overhead of allocating new logs almost immediately.

You can use the database system monitor to help you size the primary log files.

Observation of the following monitor values over a period of time will aid in

better tuning decisions, as average values might be more representative of your

ongoing requirements.

v sec_log_used_top (maximum secondary log space used)

v tot_log_used_top (maximum total log space used)

v sec_logs_allocated (secondary logs allocated currently)

logretain - Log retain enable

This parameter is deprecated in Version 9.5, but is still being used by pre-Version

9.5 data servers and clients. Any value specified for this configuration parameter

will be ignored by the DB2 Version 9.5 database manager.

Note: The following information applies only to pre-Version 9.5 data servers and

clients.

This parameter determines whether active log files are retained and available for

roll-forward recovery.

Appendix A. Related topics (linked to from topics in this book) 811

Configuration type

Database

Parameter type

Configurable

Default [range]

No [Recovery; No]

The values are as follows:

v No, to indicate that logs are not retained.

v Recovery, to indicate that the logs are retained, and can be used for forward

recovery.

If logretain is set to Recovery or userexit is set to Yes, the active log files will be

retained and become online archive log files for use in roll-forward recovery. This

is called log retention logging.

After logretain is set to Recovery or userexit is set to Yes (or both), you must make

a full backup of the database. This state is indicated by the backup_pending flag

parameter.

Note:

Both logarchmeth1 or logretain will enable rollforward recovery. However, only

one method should be enabled for a database at one time.

If using logarchmeth1, do not set the logretain and userexit configuration

parameters. If the logretain configuration parameter is set to recover, the value for

logarchmeth1 will automatically be set to logretain.

It is recommended that logarchmeth1 (and logarchmeth2) be used rather than

logretain and userexit to activate archive logging and rollforward recovery. The

logretain and userexit options have been kept to support users who have not yet

migrated to logarchmeth1.

logsecond - Number of secondary log files

This parameter specifies the number of secondary log files that are created and

used for recovery log files (only as needed).

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

2 [-1; 0 – 254]

Unit of measure

Counter

When allocated

As needed when logprimary is insufficient (see detail below)

812 Common Criteria Certification: Administration and User Documentation - Volume 2

When freed

Over time as the database manager determines they will no longer be

required.

When the primary log files become full, the secondary log files (of size logfilsiz) are

allocated one at a time as needed, up to a maximum number as controlled by this

parameter. An error code will be returned to the application, and the database will

be shut down, if more secondary log files are required than are allowed by this

parameter.

If you set logsecond to -1, the database is configured with infinite active log space.

There is no limit on the size or the number of in-flight transactions running on the

database. If you set logsecond to -1, you still use the logprimary and logfilsiz

configuration parameters to specify how many log files the database manager

should keep in the active log path. If the database manager needs to read log data

from a log file, but the file is not in the active log path, the database manager

retrieves the log file from the archive to the active log path. (The database manager

retrieves the files to the overflow log path, if you have configured one.) Once the

log file is retrieved, the database manager will cache this file in the active log path

so that other reads of log data from the same file will be fast. The database

manager will manage the retrieval, caching, and removal of these log files as

required.

If your log path is a raw device, you must configure the overflowlogpath

configuration parameter in order to set logsecond to -1.

By setting logsecond to -1, you will have no limit on the size of the unit of work or

the number of concurrent units of work. However, rollback (both at the savepoint

level and at the unit of work level) could be very slow due to the need to retrieve

log files from the archive. Crash recovery could also be very slow for the same

reason. The database manager writes a message to the administration notification

log to warn you that the current set of active units of work has exceeded the

primary log files. This is an indication that rollback or crash recovery could be

extremely slow.

To set logsecond to -1, the logarchmeth1 configuration parameter must be set to a

value other than OFF or LOGRETAIN.

Recommendation: Use secondary log files for databases that have periodic needs

for large amounts of log space. For example, an application that is run once a

month might require log space beyond that provided by the primary log files.

Since secondary log files do not require permanent file space they are

advantageous in this type of situation.

When infinite logging is enabled (logsecond to -1), the database manager does not

reserve active log space for transactions that may need to roll back and write log

records. During rollback processing, if both the active log path and archive target

are full (or if the archive target is inaccessible), then the blk_log_dsk_ful (block on

log disk full db configuration parameter) should also be ENABLED to avoid

database failures.

max_connections - Maximum number of client connections

This parameter indicates the maximum number of client connections allowed per

database partition.

Appendix A. Related topics (linked to from topics in this book) 813

Configuration type

Database manager

Parameter type

Configurable online

Applies to

v Database server with local and remote clients

v Database server with local clients

v Database Server or Connect Server with local and remote clients″ (for

max_connections, max_coordagents, num_initagents, num_poolagents, and

also federated_async, if you are using a Federated environment)

Default [range]

-1 and AUTOMATIC (max_coordagents) [-1 and AUTOMATIC; 1–64 000]

 A setting of -1 means that the value associated with max_coordagents will be

used, not the automatic setting or behavior. AUTOMATIC means that the

database manager picks the value for this parameter using whatever

technique works best. AUTOMATIC is an ON/OFF switch in the

configuration file and is independent of the value, hence both -1 and

AUTOMATIC can be the default setting.

For details, see: “Restrictions and behavior when configuring

max_coordagents and max_connections” on page 839.

The Concentrator

The Concentrator is OFF when max_connections is equal to or less than

max_coordagents. The Concentrator is ON when max_connections is greater than

max_coordagents.

This parameter controls the maximum number of client applications that can be

connected to a database partition in the instance. Typically, each application is

assigned a coordinator agent. The agent facilitates the operations between the

application and the database. When the default value for this parameter is used,

the Concentrator feature is not activated. As a result, each agent operates within its

own private memory and shares database manager and database global resources,

such as the buffer pool, with other agents. When the parameter is set to a value

greater than the default, the Concentrator feature is activated.

max_coordagents - Maximum number of coordinating agents

This parameter is used to limit the number of coordinating agents.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Default [range]

200, Automatic [-1; 0–64 000]

 A setting of -1 translates into a value of 200.

814 Common Criteria Certification: Administration and User Documentation - Volume 2

For details, see: “Restrictions and behavior when configuring

max_coordagents and max_connections” on page 839.

The Concentrator

When the Concentrator is OFF, that is, when max_connections is equal to or less

than max_coordagents, this parameter determines the maximum number of

coordinating agents that can exist at one time on a server node.

One coordinating agent is acquired for each local or remote application that

connects to a database or attaches to an instance. Requests that require an instance

attachment include CREATE DATABASE, DROP DATABASE, and Database System

Monitor commands.

When the Concentrator is ON, that is, when max_connections is greater than

max_coordagents, there might be more connections than coordinator agents to

service them. An application is in an active state only if there is a coordinator

agent servicing it. Otherwise, the application is in an inactive state. Requests from

an active application will be serviced by the database coordinator agent (and

subagents in SMP or MPP configurations). Requests from an inactive application

will be queued until a database coordinator agent is assigned to service the

application, when the application becomes active. As a result, this parameter might

be used to control the load on the system.

max_log - Maximum log per transaction

This parameter specifies if there is a limit to the percentage of log space that a

transaction can consume, and what that limit is.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

0 [0 — 100]

Unit of measure

Percentage

If the value is not 0, this parameter indicates the percentage of primary log space

that can be consumed by one transaction.

If the value is set to 0, there is no limit regarding how much space (as a percentage

of total primary log space) one single transaction can consume. This was the

behavior of transactions prior to Version 8.

max_querydegree - Maximum query degree of parallelism

This parameter specifies the maximum degree of intra-partition parallelism that is

used for any SQL statement executing on this instance of the database manager. An

SQL statement will not use more than this number of parallel operations within a

database partition when the statement is executed.

Configuration type

Database manager

Appendix A. Related topics (linked to from topics in this book) 815

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Statement boundary

Default [range]

-1 (ANY) [ANY, 1 - 32 767] (ANY means system-determined)

The intra_parallel configuration parameter must be set to “YES” to enable the

database partition to use intra-partition parallelism for SQL statements. The

intra_parallel parameter is no longer required for parallel index creation.

The default value for this configuration parameter is -1. This value means that the

system uses the degree of parallelism determined by the optimizer; otherwise, the

user-specified value is used.

Note: The degree of parallelism for an SQL statement can be specified at statement

compilation time using the CURRENT DEGREE special register or the DEGREE

bind option.

The maximum query degree of parallelism for an active application can be

modified using the SET RUNTIME DEGREE command. The actual runtime degree

used is the lower of:

v max_querydegree configuration parameter

v Application runtime degree

v SQL statement compilation degree

This configuration parameter applies to queries only.

maxappls - Maximum number of active applications

This parameter specifies the maximum number of concurrent applications that can

be connected (both local and remote) to a database. Since each application that

attaches to a database causes some private memory to be allocated, allowing a

larger number of concurrent applications will potentially use more memory.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Automatic [1 - 60 000]

Unit of measure

Counter

816 Common Criteria Certification: Administration and User Documentation - Volume 2

Setting maxappls to automatic has the effect of allowing any number of connected

applications. The database manager will dynamically allocate the resources it needs

to support new applications.

If you do not want to set this parameter to automatic, the value of this parameter

must be equal to or greater than the sum of the connected applications, plus the

number of these same applications that might be concurrently in the process of

completing a two-phase commit or rollback. Then add to this sum the anticipated

number of indoubt transactions that might exist at any one time.

When an application attempts to connect to a database, but maxappls has already

been reached, an error is returned to the application indicating that the maximum

number of applications have been connected to the database.

In a partitioned database environment, this is the maximum number of

applications that can be concurrently active against a database partition. This

parameter limits the number of active applications against the database partition

on a database partition server, regardless of whether the server is the coordinator

node for the application or not. The catalog node in a partitioned database

environment requires a higher value for maxappls than is the case for other types of

environments because, in the partitioned database environment, every application

requires a connection to the catalog node.

Recommendation: Increasing the value of this parameter without lowering the

maxlocks parameter or increasing the locklist parameter could cause you to reach the

database limit on locks (locklist) rather than the application limit and as a result

cause pervasive lock escalation problems.

To a certain extent, the maximum number of applications is also governed by

max_coordagents. An application can only connect to the database, if there is an

available connection (maxappls) as well as an available coordinating agent

(max_coordagents).

maxfilop - Maximum database files open per application

This parameter specifies the maximum number of file handles that can be open for

each database.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Transaction boundary

Default [range]

AIX, Sun, HP, and Linux 64-bit

61 440 [64 - 61 440]

Linux 32-bit

30 720 [64 - 30 720]

Windows 32-bit

32 768 [64 - 32 768]

Windows 64-bit

65 335 [64 - 65 335]

Appendix A. Related topics (linked to from topics in this book) 817

Unit of measure

Counter

If opening a file causes this value to be exceeded, some files in use by this

database are closed. If maxfilop is too small, the overhead of opening and closing

files will become excessive and might degrade performance.

Both SMS table spaces and DMS table space file containers are treated as files in

the database manager’s interaction with the operating system, and file handles are

required. More files are generally used by SMS table spaces compared to the

number of containers used for a DMS file table space. Therefore, if you are using

SMS table spaces, you will need a larger value for this parameter compared to

what you would require for DMS file table spaces.

You can also use this parameter to ensure that the overall total of file handles used

by the database manager does not exceed the operating system limit by limiting

the number of handles per database to a specific number; the actual number will

vary depending on the number of databases running concurrently.

min_dec_div_3 - Decimal division scale to 3

This parameter is provided as a quick way to enable a change to computation of

the scale for decimal division in SQL.

Configuration type

Database

Parameter type

Configurable

Default [range]

No [Yes, No]

The min_dec_div_3 database configuration parameter changes the resulting scale of

a decimal arithmetic operation involving division. It can be set to ″Yes″ or ″No″.

The default value for min_dec_div_3 is ″No″. If the value is ″No″, the scale is

calculated as 31-p+s-s’. If set to ″Yes″, the scale is calculated as MAX(3, 31-p+s-s’).

This causes the result of decimal division to always have a scale of at least 3.

Precision is always 31.

Changing this database configuration parameter might cause changes to

applications for existing databases. This can occur when the resulting scale for

decimal division would be impacted by changing this database configuration

parameter. Listed below are some possible scenarios that might impact

applications. These scenarios should be considered before changing the

min_dec_div_3 on a database server with existing databases.

v If the resulting scale of one of the view columns is changed, a view that is

defined in an environment with one setting could fail with SQLCODE -344 when

referenced after the database configuration parameter is changed. The message

SQL0344N refers to recursive common table expressions, however, if the object

name (first token) is a view, then you will need to drop the view and create it

again to avoid this error.

v A static package will not change behavior until the package is rebound, either

implicitly or explicitly. For example, after changing the value from NO to YES,

the additional scale digits might not be included in the results until rebind

occurs. For any changed static packages, an explicit REBIND command can be

used to force a rebind.

818 Common Criteria Certification: Administration and User Documentation - Volume 2

v A check constraint involving decimal division might restrict some values that

were previously accepted. Such rows now violate the constraint but will not be

detected until one of the columns involved in the check constraint row is

updated or the SET INTEGRITY statement with the IMMEDIATE CHECKED

option is processed. To force checking of such a constraint, perform an ALTER

TABLE statement in order to drop the check constraint and then perform an

ALTER TABLE statement to add the constraint again.

Note: min_dec_div_3 also has the following limitations:

1. The command GET DB CFG FOR DBNAME will not display the min_dec_div_3

setting. The best way to determine the current setting is to observe the

side-effect of a decimal division result. For example, consider the following

statement:

VALUES (DEC(1,31,0)/DEC(1,31,5))

If this statement returns sqlcode SQL0419N, the database does not have

min_dec_div_3 support, or it is set to ″No″. If the statement returns 1.000,

min_dec_div_3 is set to ″Yes″.

2. min_dec_div_3 does not appear in the list of configuration keywords when you

run the following command: ? UPDATE DB CFG

mincommit - Number of commits to group

This parameter allows you to delay the writing of log records to disk until a

minimum number of commits have been performed, helping reduce the database

manager overhead associated with writing log records.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

1 [1 – 25]

Unit of measure

Counter

This delay will improve performance when you have multiple applications

running against a database and many commits are requested by the applications

within a very short time frame.

This grouping of commits will only occur when the value of this parameter is

greater than one and when the number of applications connected to the database is

greater than or equal to the value of this parameter. When commit grouping is

being performed, application commit requests could be held until either one

second has elapsed or the number of commit requests equals the value of this

parameter.

This parameter should be incremented by small amounts only; for example one (1).

You should also use multi-user tests to verify that increasing the value of this

parameter provides the expected results.

Appendix A. Related topics (linked to from topics in this book) 819

Changes to the value specified for this parameter take effect immediately; you do

not have to wait until all applications disconnect from the database.

Recommendation: Increase this parameter from its default value if multiple

read/write applications typically request concurrent database commits. This will

result in more efficient logging file I/O as it will occur less frequently and write

more log records each time it does occur.

You could also sample the number of transactions per second and adjust this

parameter to accommodate the peak number of transactions per second (or some

large percentage of it). Accommodating peak activity would minimize the

overhead of writing log records during transaction intensive periods.

If you increase mincommit, you might also need to increase the logbufsz parameter

to avoid having a full log buffer force a write during these transaction intensive

periods. In this case, the logbufsz should be equal to:

 mincommit * (log space used, on average, by a transaction)

You can use the database system monitor to help you tune this parameter in the

following ways:

v Calculating the peak number of transactions per second:

Taking monitor samples throughout a typical day, you can determine your

transaction intensive periods. You can calculate the total transactions by adding

the following monitor elements:

– commit_sql_stmts (commit statements attempted)

– rollback_sql_stmts (rollback statements attempted)

Using this information and the available timestamps, you can calculate the

number of transactions per second.

v Calculating the log space used per transaction:

Using sampling techniques over a period of time and a number of transactions,

you can calculate an average of the log space used with the following monitor

element:

– log_space_used (unit of work log space used)

mirrorlogpath - Mirror log path

This parameter allows you to specify a string of up to 242 bytes for the mirror log

path. The string must point to a path name, and it must be a fully qualified path

name, not a relative path name.

Configuration type

Database

Parameter type

Configurable

Default [range]

Null [any valid path or device]

Note: In a single or multi-partition DB2 ESE environment, the node number is

automatically appended to the path. This is done to maintain the uniqueness of the

path in multiple logical node configurations.

If mirrorlogpath is configured, DB2 will create active log files in both the log path

and the mirror log path. All log data will be written to both paths. The mirror log

820 Common Criteria Certification: Administration and User Documentation - Volume 2

path has a duplicated set of active log files, such that if there is a disk error or

human error that destroys active log files on one of the paths, the database can still

function.

If the mirror log path is changed, there might be log files in the old mirror log

path. These log files might not have been archived, so you might need to archive

these log files manually. Also, if you are running replication on this database,

replication might still need the log files from before the log path change. If the

database is configured with the User Exit Enable (userexit) database configuration

parameter set to Yes, and if all the log files have been archived either by DB2

automatically or by yourself manually, then DB2 will be able to retrieve the log

files to complete the replication process. Otherwise, you can copy the files from the

old mirror log path to the new mirror log path.

If logpath or newlogpath specifies a raw device as the location where the log files are

stored, mirror logging, as indicated by mirrorlogpath, is not allowed. If logpath or

newlogpath specifies a file path as the location where the log files are stored, mirror

logging is allowed and mirrorlogpath must also specify a file path.

Recommendation: Just like the log files, the mirror log files should be on a

physical disk that does not have high I/O.

It is strongly recommended that this path be on a separate device than the primary

log path.

You can use the database system monitor to track the number of I/Os related to

database logging.

The following data elements return the amount of I/O activity related to database

logging. You can use an operating system monitor tool to collect information about

other disk I/O activity, then compare the two types of I/O activity.

v log_reads (number of log pages read)

v log_writes (number of log pages written).

mon_heap_sz - Database system monitor heap size

This parameter determines the amount of the memory, in pages, to allocate for

database system monitor data. Memory is allocated from the monitor heap when

you perform database monitoring activities such as taking a snapshot, turning on a

monitor switch, resetting a monitor, or activating an event monitor.

With Version 9.5, this database configuration parameter has a default value of

AUTOMATIC, meaning that the monitor heap can increase as needed until the

instance_memory limit is reached.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Appendix A. Related topics (linked to from topics in this book) 821

Default [range]

Automatic [0 - 60 000]

Unit of measure

Pages (4 KB)

When allocated

When the database manager is started with the db2start command

When freed

When the database manager is stopped with the db2stop command

A value of zero prevents the database manager from collecting database system

monitor data.

Recommendation: The amount of memory required for monitoring activity

depends on the number of monitoring applications (applications taking snapshots

or event monitors), which switches are set, and the level of database activity.

If the configured memory in this heap runs out and no more unreserved memory

is available in the instance shared memory region, one of the following will occur:

v When the first application connects to the database for which this event monitor

is defined, an error message is written to the administration notification log.

v If an event monitor being started dynamically using the SET EVENT MONITOR

statement fails, an error code is returned to your application.

v If a monitor command or API subroutine fails, an error code is returned to your

application.

multipage_alloc - Multipage file allocation enabled

Multipage file allocation is used to improve insert performance. It applies to SMS

table spaces only. If enabled, all SMS table spaces are affected: there is no selection

possible for individual SMS table spaces.

Configuration type

Database

Parameter type

Informational

The default for the parameter is Yes: multipage file allocation is enabled.

Following database creation, this parameter cannot be set to No. Multipage file

allocation cannot be disabled once it has been enabled. The db2empfa tool can be

used to enable multipage file allocation for a database that currently has it

disabled.

newlogpath - Change the database log path

This parameter allows you to specify a string of up to 242 bytes to change the

location where the log files are stored.

Configuration type

Database

Parameter type

Configurable

Default [range]

Null [any valid path or device]

822 Common Criteria Certification: Administration and User Documentation - Volume 2

The string can point to either a path name or to a raw device. Note that as of DB2

Version 9, the use of raw devices for database logging is deprecated. As an

alternative to using raw logs, you can use either direct input/output (DIO) or

concurrent input/output (CIO).

If the string points to a path name, it must be a fully qualified path name, not a

relative path name.

In a single or multi-partition DB2 ESE environment, the node number is

automatically appended to the path. This is done to maintain the uniqueness of the

path in multiple logical node configurations.

If you want to use replication, and your log path is a raw device, the

overflowlogpath configuration parameter must be configured.

To specify a device, specify a string that the operating system identifies as a

device. For example:

v On Windows, \\.\d: or \\.\PhysicalDisk5

Note: You must have Windows Version 4.0 with Service Pack 3 or later installed

to be able to write logs to a device.

v On Linux and UNIX platforms, /dev/rdblog8

Note: You can only specify a device on AIX, Windows 2000, Windows, Solaris,

HP-UX, and Linux platforms.

The new setting does not become the value of logpath until both of the following

occur:

v The database is in a consistent state, as indicated by the database_consistent

parameter.

v All applications are disconnected from the database

When the first new connection is made to the database, the database manager will

move the logs to the new location specified by logpath.

There might be log files in the old log path. These log files might not have been

archived. You might need to archive these log files manually. Also, if you are

running replication on this database, replication might still need the log files from

before the log path change. If the database is configured with the User Exit Enable

(userexit) database configuration parameter set to Yes, and if all the log files have

been archived either by DB2 automatically or by yourself manually, then DB2 will

be able to retrieve the log files to complete the replication process. Otherwise, you

can copy the files from the old log path to the new log path.

If logpath or newlogpath specifies a raw device as the location where the log files are

stored, mirror logging, as indicated by mirrorlogpath, is not allowed. If logpath or

newlogpath specifies a file path as the location where the log files are stored, mirror

logging is allowed and mirrorlogpath must also specify a file path.

Recommendation: Ideally, the log files will be on a physical disk which does not

have high I/O. For instance, avoid putting the logs on the same disk as the

operating system or high volume databases. This will allow for efficient logging

activity with a minimum of overhead such as waiting for I/O.

Appendix A. Related topics (linked to from topics in this book) 823

You can use the database system monitor to track the number of I/Os related to

database logging.

The monitor elements log_reads (number of log pages read) and log_writes (number

of log pages written) return the amount of I/O activity related to database logging.

You can use an operating system monitor tool to collect information about other

disk I/O activity, then compare the two types of I/O activity.

Do not use a network or local file system that is shared as the log path for both the

primary and standby databases in a DB2 High Availability Disaster Recovery

(HADR) database pair. The primary and standby databases each have copies of the

transaction logs – the primary database ships logs to the standby database. If the

log path for both the primary and standby databases points to the same physical

location, then the primary and standby database would use the same physical files

for their respective copies of the logs. The database manager returns an error if the

database manager detects a shared log path.

notifylevel - Notify level

This parameter specifies the type of administration notification messages that are

written to the administration notification log.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

3 [0 — 4]

On Linux and UNIX platforms, the administration notification log is a text file

called instance.nfy. On Windows, all administration notification messages are

written to the Event Log. The errors can be written by DB2, the Health Monitor,

the Capture and Apply programs, and user applications.

Valid values for this parameter are:

v 0 — No administration notification messages captured. (This setting is not

recommended.)

v 1 — Fatal or unrecoverable errors. Only fatal and unrecoverable errors are

logged. To recover from some of these conditions, you might need assistance

from DB2 service.

v 2 — Immediate action required. Conditions are logged that require immediate

attention from the system administrator or the database administrator. If the

condition is not resolved, it could lead to a fatal error. Notification of very

significant, non-error activities (for example, recovery) might also be logged at

this level. This level will capture Health Monitor alarms.

824 Common Criteria Certification: Administration and User Documentation - Volume 2

v 3 — Important information, no immediate action required. Conditions are

logged that are non-threatening and do not require immediate action but might

indicate a non-optimal system. This level will capture Health Monitor alarms,

Health Monitor warnings, and Health Monitor attentions.

v 4 — Informational messages.

The administration notification log includes messages having values up to and

including the value of notifylevel. For example, setting notifylevel to 3 will cause the

administration notification log to include messages applicable to levels 1, 2, and 3.

For a user application to be able to write to the notification file or Windows Event

Log, it must call the db2AdminMsgWrite API.

Recommendation: You might want to increase the value of this parameter to

gather additional problem determination data to help resolve a problem. Note that

you must set notifylevel to a value of 2 or higher for the Health Monitor to send

any notifications to the contacts defined in its configuration.

num_db_backups - Number of database backups

This parameter specifies the number of database backups to retain for a database.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Transaction boundary

Default [range]

12 [1 - 32 767]

After the specified number of backups is reached, old backups are marked as

expired in the recovery history file. Recovery history file entries for the table space

backups and load copy backups that are related to the expired database backup are

also marked as expired. When a backup is marked as expired, the physical

backups can be removed from where they are stored (for example, disk, tape,

TSM). The next database backup will prune the expired entries from the recovery

history file.

The rec_his_retentn configuration parameter should be set to a value compatible

with the value of num_db_backups. For example, if num_db_backup is set to a large

value, the value for rec_his_retentn should be large enough to support that number

of backups.

num_freqvalues - Number of frequent values retained

This parameter allows you to specify the number of “most frequent values” that

will be collected when the WITH DISTRIBUTION option is specified on the

RUNSTATS command.

Configuration type

Database

Parameter type

Configurable Online

Appendix A. Related topics (linked to from topics in this book) 825

Propagation class

Immediate

Default [range]

10 [0 - 32 767]

Unit of measure

Counter

Increasing the value of this parameter increases the amount of statistics heap

(stat_heap_sz) used when collecting statistics.

The “most frequent value” statistics help the optimizer understand the distribution

of data values within a column. A higher value results in more information being

available to the query optimizer but requires additional catalog space. When 0 is

specified, no frequent-value statistics are retained, even if you request that

distribution statistics be collected.

You can also specify the number of frequent values retained as part of the

RUNSTATS command at the table or the column level. by using the

NUM_FREQVALUES option. If none is specified, the num_freqvalues configuration

parameter value is used. Changing the number of frequent values retained through

the RUNSTATS command is easier than making the change using the

num_freqvalues database configuration parameter.

Updating this parameter can help the optimizer obtain better selectivity estimates

for some predicates (=, <, >) over data that is non-uniformly distributed. More

accurate selectivity calculations might result in the choice of more efficient access

plans.

After changing the value of this parameter, you need to:

v Run the RUNSTATS command again to collect statistics with the changed

number of frequent values

v Rebind any packages containing static SQL or XQuery statements.

When using RUNSTATS, you have the ability to limit the number of frequent

values collected at both the table level and the column level. This allows you to

optimize on space occupied in the catalogs by reducing the distribution statistics

for columns where they could not be exploited and yet still using the information

for critical columns.

Recommendation: In order to update this parameter you should determine the

degree of non-uniformity in the most important columns (in the most important

tables) that typically have selection predicates. This can be done using an SQL

SELECT statement that provides an ordered ranking of the number of occurrences

of each value in a column. You should not consider uniformly distributed, unique,

long, or LOB columns. A reasonable practical value for this parameter lies in the

range of 10 to 100.

Note that the process of collecting frequent value statistics requires significant CPU

and memory (stat_heap_sz) resources.

num_initagents - Initial number of agents in pool

This parameter determines the initial number of idle agents that are created in the

agent pool at DB2START time.

826 Common Criteria Certification: Administration and User Documentation - Volume 2

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Default [range]

0 [0–64 000]

The database manager always starts the num_initagents idle agents as part of the

db2start command, except if the value of this parameter is greater than

num_poolagents during start up and num_poolagents is not set to AUTOMATIC. In

this case, the database manager only starts the num_poolagents idle agents since

there is no reason to start more idle agents than can be pooled.

num_initfenced - Initial number of fenced processes

This parameter indicates the initial number of nonthreaded, idle db2fmp processes

that are created in the db2fmp pool at START DBM time.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Default [range]

0 [0–64 000]

Setting this parameter will reduce the initial startup time for running

non-threadsafe C and Cobol routines. This parameter is ignored if keepfenced is not

specified.

It is much more important to set fenced_pool to an appropriate size for your system

than to start up a number of db2fmp processes at START DBM time.

In previous versions, this parameter was known as num_initdaris.

num_iocleaners - Number of asynchronous page cleaners

This parameter allows you to specify the number of asynchronous page cleaners

for a database.

Configuration type

Database

Parameter type

Configurable

Appendix A. Related topics (linked to from topics in this book) 827

|
|

|
|

Default [range]

Automatic [0 – 255]

Unit of measure

Counter

These page cleaners write changed pages from the buffer pool to disk before the

space in the buffer pool is required by a database agent. As a result, database

agents should not have to wait for changed pages to be written out so that they

might use the space in the buffer pool. This improves overall performance of the

database applications.

If you set the parameter to zero (0), no page cleaners are started and as a result,

the database agents will perform all of the page writes from the buffer pool to

disk. This parameter can have a significant performance impact on a database

stored across many physical storage devices, since in this case there is a greater

chance that one of the devices will be idle. If no page cleaners are configured, your

applications might encounter periodic log full conditions.

If this parameter is set to AUTOMATIC, the number of page cleaners started will

be based on the number of CPUs configured on the current machine, as well as the

number of local logical database partitions in a partitioned database environment.

There will always be at least one page cleaner started when this parameter is set to

AUTOMATIC.

The number of page cleaners to start when this parameter is set to AUTOMATIC

will be calculated using the following formula:

number of page cleaners = max(ceil(# CPUs / # local logical DPs) – 1, 1)

This formula ensures that the number of page cleaners is distributed almost evenly

across your logical database partitions, and that there are no more page cleaners

than there are CPUs.

If the applications for a database primarily consist of transactions that update data,

an increase in the number of cleaners will speed up performance. Increasing the

page cleaners will also decrease recovery time from soft failures, such as power

outages, because the contents of the database on disk will be more up-to-date at

any given time.

Recommendation: Consider the following factors when setting the value for this

parameter:

v Application type

– If it is a query-only database that will not have updates, set this parameter to

be zero (0). The exception would be if the query work load results in many

TEMP tables being created (you can determine this by using the explain

utility).

– If transactions are run against the database, set this parameter to be between

one and the number of physical storage devices used for the database.
v Workload

Environments with high update transaction rates might require more page

cleaners to be configured.

v Buffer pool sizes

Environments with large buffer pools might also require more page cleaners to

be configured.

828 Common Criteria Certification: Administration and User Documentation - Volume 2

You can use the database system monitor to help you tune this configuration

parameter using information from the event monitor about write activity from a

buffer pool:

v The parameter can be reduced if both of the following conditions are true:

– pool_data_writes is approximately equal to pool_async_data_writes

– pool_index_writes is approximately equal to pool_async_index_writes.
v The parameter should be increased if either of the following conditions are true:

– pool_data_writes is much greater than pool_async_data_writes

– pool_index_writes is much greater than pool_async_index_writes.

num_ioservers - Number of I/O servers

This parameter specifies the number of I/O servers for a database. No more than

this number of I/Os for prefetching and utilities can be in progress for a database

at any time.

Configuration type

Database

Parameter type

Configurable

Default [range]

Automatic [1 – 255]

Unit of measure

Counter

When allocated

When an application connects to a database

When freed

When an application disconnects from a database

I/O servers, also called prefetchers, are used on behalf of the database agents to

perform prefetch I/O and asynchronous I/O by utilities such as backup and

restore. An I/O server waits while an I/O operation that it initiated is in progress.

Non-prefetch I/Os are scheduled directly from the database agents and as a result

are not constrained by num_ioservers.

If this parameter is set to AUTOMATIC, the number of prefetchers started will be

based on the parallelism settings of the table spaces in the current database

partition. (Parallelism settings are controlled by the DB2_PARALLEL_IO

environment variable.) For each DMS table space, the value of this parallelism

setting will be multiplied by the maximum number of containers in the table space

stripe set. For each SMS table space, the value of this parallelism setting will be

multiplied by the number of containers in the table space. The largest result over

all table spaces in the current database partition will be used as the number of

prefetchers to start. There will always be at least three prefetchers started when

this parameter is set to AUTOMATIC.

When this parameter is set to AUTOMATIC, the number of prefetchers to start will

be calculated at database activation time based on the following formula:

number of prefetchers = max(max over all table spaces

(parallelism setting * [SMS: # containers;

 DMS: max # containers in stripe set]), 3)

Appendix A. Related topics (linked to from topics in this book) 829

Recommendation: In order to fully exploit all the I/O devices in the system, a

good value to use is generally one or two more than the number of physical

devices on which the database resides. It is better to configure additional I/O

servers, since there is minimal overhead associated with each I/O server and any

unused I/O servers will remain idle.

num_log_span - Number log span

This parameter specifies whether there is a limit to how many log files one

transaction can span, and what that limit is.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

0 [0 - 65 535]

Unit of measure

Counter

If the value is not 0, this parameter indicates the number of active log files that one

active transaction is allowed to span.

If the value is set to 0, there is no limit to how many log files one single

transaction can span. This was the behavior of transactions prior to Version 8.

num_poolagents - Agent pool size

This parameter sets the maximum size of the idle agent pool.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Default

100, Automatic [-1, 0–64 000]

This configuration parameter is set to AUTOMATIC with a value of 100 as the

default. A setting of -1 is still supported, and translates into a value of 100. When

this parameter is set to AUTOMATIC, the database manager automatically

manages the number of idle agents to pool. Typically, this means that once an

agent completes its work, it is not terminated, but becomes idle for a period of

time. Depending on the workload and type of agent, it might be terminated after a

certain amount of time.

830 Common Criteria Certification: Administration and User Documentation - Volume 2

When using AUTOMATIC, you can still specify a value for the num_poolagents

configuration parameter. Additional idle agents will always be pooled when the

current number of pooled idle agents is less than or equal to the value that you

specified.

Examples:

num_poolagents is set to 100 and AUTOMATIC

As an agent becomes free, it is added to the idle agent pool, where at some

point the database manager evaluates whether it should be terminated or

not. At the time when the database manager considers terminating the

agent, if the total number of idle agents pooled is greater than 100, this

agent will be terminated. If there are less than 100 idle agents, the idle

agent will remain awaiting work. Using the AUTOMATIC setting allows

additional idle agents beyond 100 to be pooled, which might be useful

during periods of heavier system activity when the frequency of work can

fluctuate on a larger scale. For cases where there are likely to be less than

100 idle agents at any given time, agents are guaranteed to be pooled.

Periods of light system activity can benefit from this by incurring a less

start up cost for new work.

num_poolagents is configured dynamically

If the parameter value is increased to a value greater than the number of

pooled agents, the effects are immediate. As new agents become idle, they

are pooled. If the parameter value is decreased, the database manager does

not immediately reduce the number of agents in the pool. Rather, the pool

size remains as it is, and agents are terminated as they are used and

become idle again–gradually reducing the number of agents in the pool to

the new limit.

Recommendation: For most environments the default of 0 and AUTOMATIC will

be sufficient. If you have a specific workload where you feel too many agents are

being created and terminated, you can consider increasing the value of

num_poolagents while leaving the parameter set to AUTOMATIC.

num_quantiles - Number of quantiles for columns

This parameter controls the number of quantiles that will be collected when the

WITH DISTRIBUTION option is specified on the RUNSTATS command.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

20 [0 - 32 767]

Unit of measure

Counter

Increasing the value of this parameter increases the amount of statistics heap

(stat_heap_sz) used when collecting statistics.

The “quantile” statistics help the optimizer understand the distribution of data

values within a column. A higher value results in more information being available

Appendix A. Related topics (linked to from topics in this book) 831

to the query optimizer but requires additional catalog space. When 0 or 1 is

specified, no quantile statistics are retained, even if you request that distribution

statistics be collected.

You can also specify the number of quantiles collected as part of the RUNSTATS

command at the table or the column level, by using the NUM_QUANTILES

option. If none is specified, the num_quantiles configuration parameter value is

used. Changing the number of quantiles that will be collected through the

RUNSTATS command is easier than making the change using the num_quantiles

database configuration parameter.

Updating this parameter can help obtain better selectivity estimates for range

predicates over data that is non-uniformly distributed. Among other optimizer

decisions, this information has a strong influence on whether an index scan or a

table scan will be chosen. (It is more efficient to use a table scan to access a range

of values that occur frequently and it is more efficient to use an index scan for a

range of values that occur infrequently.)

After changing the value of this parameter, you need to:

v Run the RUNSTATS command again to collect statistics with the changed

number of frequent values

v Rebind any packages containing static SQL or XQuery statements.

When using RUNSTATS, you have the ability to limit the number of quantiles

collected at both the table level and the column level. This allows you to optimize

on space occupied in the catalogs by reducing the distribution statistics for

columns where they could not be exploited and yet still using the information for

critical columns.

Recommendation: This default value for this parameter guarantees a maximum

estimation error of approximately 2.5% for any single-sided range predicate (>, >=,

<, or <=), and a maximum error of 5% for any BETWEEN predicate. A simple way

to approximate the number of quantiles is:

v Determine the maximum error that is tolerable in estimating the number of rows

of any range query, as a percentage, P.

v The number of quantiles should be approximately 100/P if most of your

predicates are BETWEEN predicates, and 50/P if most of your predicates are

other types of range predicates (<, <=, >, or >=).

For example, 25 quantiles should result in a maximum estimate error of 4% for

BETWEEN predicates and of 2% for ″>″ predicates. A reasonable practical value for

this parameter lies in the range of 10 to 50.

numarchretry - Number of retries on error

This parameter specifies the number of times that DB2 is to try archiving a log file

to the primary or the secondary archive directory before trying to archive log files

to the failover directory.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

832 Common Criteria Certification: Administration and User Documentation - Volume 2

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

5 [0 - 65 535]

This parameter is only used if the failarchpath database configuration parameter is

set. If numarchretry is not set, DB2 will continuously retry archiving to the primary

or the secondary log path.

numdb - Maximum number of concurrently active databases

including host and System i databases

This parameter specifies the number of local databases that can be concurrently

active (that is, have applications connected to them), or the maximum number of

different database aliases that can be cataloged on a DB2 Connect server.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

UNIX 8 [1 — 256]

Windows Database server with local and remote clients

8 [1 — 256]

Windows Database server with local clients

3 [1 — 256]

Unit of measure

Counter

Each database takes up storage, and an active database uses a new shared memory

segment.

Recommendation: It is generally best to set this value to the actual number of

databases that are already defined to the database manager, and to add about 10%

to this value to allow for growth.

Changing the numdb parameter can impact the total amount of memory allocated.

As a result, frequent updates to this parameter are not recommended. When

updating this parameter, you should consider the other configuration parameters

that can allocate memory for a database or an application connected to that

database.

numsegs - Default number of SMS containers

This parameter is deprecated in Version 9.5, but is still being used by pre-Version

9.5 data servers and clients. Any value specified for this configuration parameter

will be ignored by the DB2 Version 9.5 database manager.

Appendix A. Related topics (linked to from topics in this book) 833

Note: The following information applies only to pre-Version 9.5 data servers and

clients.

Configuration type

Database

Parameter type

Informational

Unit of measure

Counter

This parameter indicates the number of containers that will be created within the

default table spaces. It also shows the information used when you created your

database, whether it was specified explicitly or implicitly on the CREATE

DATABASE command.

This parameter only applies to SMS table spaces; the CREATE TABLESPACE

statement does not use it in any way.

overflowlogpath - Overflow log path

This parameter specifies a location for DB2 to find log files needed for a

rollforward operation, as well as where to store active log files retrieved from the

archive. It also gives a location for finding and storing log files needed for using

db2ReadLog API.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

NULL [any valid path]

This parameter can be used for several functions, depending on your logging

requirements.

v This parameter allows you to specify a location for DB2 to find log files that are

needed for a rollforward operation. It is similar to the OVERFLOW LOG PATH

option on the ROLLFORWARD command. Instead of always specifying

OVERFLOW LOG PATH on every ROLLFORWARD command, you can set this

configuration parameter once. However, if both are used, the OVERFLOW LOG

PATH option will overwrite the overflowlogpath configuration parameter, for that

particular rollforward operation.

v If logsecond is set to -1, overflowlogpath allows you to specify a directory for DB2

to store active log files retrieved from the archive. (Active log files have to be

retrieved for rollback operations if they are no longer in the active log path).

Without overflowlogpath, DB2 will retrieve the log files into the active log path.

Using overflowlogpath allows you to provide additional resource for DB2 to store

the retrieved log files. The benefit includes spreading the I/O cost to different

disks, and allowing more log files to be stored in the active log path.

v If you need to use the db2ReadLog API (prior to DB2 V8, db2ReadLog was

called sqlurlog) for replication, for example, overflowlogpath allows you to specify

a location for DB2 to search for log files that are needed for this API. If the log

file is not found (in either the active log path or the overflow log path) and the

834 Common Criteria Certification: Administration and User Documentation - Volume 2

database is configured with userexit enabled, DB2 will retrieve the log file.

overflowlogpath also allows you to specify a directory for DB2 to store the log

files retrieved. The benefit comes from reducing the I/O cost on the active log

path and allowing more log files to be stored in the active log path.

v If you have configured a raw device for the active log path, overflowlogpath must

be configured if you want to set logsecond to -1, or if you want to use the

db2ReadLog API.

To set overflowlogpath, specify a string of up to 242 bytes. The string must point to a

path name, and it must be a fully qualified path name, not a relative path name.

The path name must be a directory, not a raw device.

Note: In a single or multi-partition DB2 ESE environment, the node number is

automatically appended to the path. This is done to maintain the uniqueness of the

path in multiple logical node configurations.

pagesize - Database default page size

This parameter contains the value that was used as the default page size when the

database was created. Possible values are: 4 096, 8 192, 16 384 and 32 768. When a

buffer pool or table space is created in that database, the same default page size

applies.

Configuration type

Database

Parameter type

Informational

pckcachesz - Package cache size

This parameter is allocated out of the database shared memory, and is used for

caching of sections for static and dynamic SQL and XQuery statements on a

database.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

32-bit operating systems

Automatic [-1, 32 - 128 000]

64-bit operating systems

Automatic [-1, 32 - 2 147 483 646]

Unit of measure

Pages (4 KB)

When allocated

When the database is initialized

When freed

When the database is shut down

Appendix A. Related topics (linked to from topics in this book) 835

|

In a partitioned database system, there is one package cache for each database

partition.

Caching packages allows the database manager to reduce its internal overhead by

eliminating the need to access the system catalogs when reloading a package; or, in

the case of dynamic SQL or XQuery statements, eliminating the need for

compilation. Sections are kept in the package cache until one of the following

occurs:

v The database is shut down

v The package or dynamic SQL or XQuery statement is invalidated

v The cache runs out of space.

This caching of the section for a static or dynamic SQL or XQuery statement can

improve performance, especially when the same statement is used multiple times

by applications connected to a database. This is particularly important in a

transaction processing environment.

When this parameter is set to AUTOMATIC, it is enabled for self tuning. When

self_tuning_mem is set to ON, the memory tuner will dynamically size the memory

area controlled by pckcachesz as the workload requirements change. Because the

memory tuner trades memory resources between different memory consumers,

there must be at least two memory consumers enabled for self tuning in order for

self tuning to be active.

Automatic tuning of this configuration parameter will only occur when self tuning

memory is enabled for the database (the self_tuning_mem configuration parameter

is set to ″ON.″)

When this parameter is set to -1, the value used to calculate the page allocation is

eight times the value specified for the maxappls configuration parameter. The

exception to this occurs if eight times maxappls is less than 32. In this situation, the

default value of -1 will set pckcachesz to 32.

Recommendation: When tuning this parameter, you should consider whether the

extra memory being reserved for the package cache might be more effective if it

was allocated for another purpose, such as the buffer pool or catalog cache. For

this reason, you should use benchmarking techniques when tuning this parameter.

Tuning this parameter is particularly important when several sections are used

initially and then only a few are run repeatedly. If the cache is too large, memory

is wasted holding copies of the initial sections.

The following monitor elements can help you determine whether you should

adjust this configuration parameter:

v pkg_cache_lookups (package cache lookups)

v pkg_cache_inserts (package cache inserts)

v pkg_cache_size_top (package cache high water mark)

v pkg_cache_num_overflows (package cache overflows)

Note: The package cache is a working cache, so you cannot set this parameter to

zero. There must be sufficient memory allocated in this cache to hold all sections of

the SQL or XQuery statements currently being executed. If there is more space

836 Common Criteria Certification: Administration and User Documentation - Volume 2

allocated than currently needed, then sections are cached. These sections can

simply be executed the next time they are needed without having to load or

compile them.

The limit specified by the pckcachesz parameter is a soft limit. This limit can be

exceeded, if required, if memory is still available in the database shared set. You

can use the pkg_cache_size_top monitor element to determine the largest that the

package cache has grown, and the pkg_cache_num_overflows monitor element to

determine how many times the limit specified by the pckcachesz parameter has

been exceeded.

query_heap_sz - Query heap size

This parameter is deprecated in Version 9.5, but is still being used by pre-Version

9.5 data servers and clients. Any value specified for this configuration parameter

will be ignored by the DB2 Version 9.5 database manager.

Note: The following information applies only to pre-Version 9.5 data servers and

clients.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

1 000 [2 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

When an application (either local or remote) connects to the database

When freed

When the application disconnects from the database, or detaches from the

instance

This parameter specifies the maximum amount of memory that can be allocated

for the query heap, ensuring that an application does not consume unnecessarily

large amounts of virtual memory within an agent.

A query heap is used to store each query in the agent’s private memory. The

information for each query consists of the input and output SQLDA, the statement

text, the SQLCA, the package name, creator, section number, and consistency

token.

The query heap is also used for the memory allocated for blocking cursors. This

memory consists of a cursor control block and a fully resolved output SQLDA.

The initial query heap allocated will be the same size as the application support

layer heap, as specified by the aslheapsz parameter. The query heap size must be

greater than or equal to two (2), and must be greater than or equal to the aslheapsz

Appendix A. Related topics (linked to from topics in this book) 837

parameter. If this query heap is not large enough to handle a given request, it will

be reallocated to the size required by the request (not exceeding query_heap_sz). If

this new query heap is more than 1.5 times larger than aslheapsz, the query heap

will be reallocated to the size of aslheapsz when the query ends.

Recommendation: In most cases the default value will be sufficient. As a

minimum, you should set query_heap_sz to a value at least five times larger than

aslheapsz. This will allow for queries larger than aslheapsz and provide additional

memory for three or four blocking cursors to be open at a given time.

If you have very large LOBs, you might need to increase the value of this

parameter so the query heap will be large enough to accommodate those LOBs.

rec_his_retentn - Recovery history retention period

This parameter specifies the number of days that historical information on backups

will be retained.

Configuration type

Database

Parameter type

Configurable

Default [range]

366 [-1; 0 - 30 000]

Unit of measure

Days

If the recovery history file is not needed to keep track of backups, restores, and

loads, this parameter can be set to a small number.

If value of this parameter is -1, the number of entries indicating full database

backups (and any table space backups that are associated with the database

backup) will correspond with the value specified by the num_db_backups parameter.

Other entries in the recovery history file can only be pruned by explicitly using the

available commands or APIs.

No matter how small the retention period, the most recent full database backup

plus its restore set will always be kept, unless you use the PRUNE utility with the

FORCE option.

release - Configuration file release level

This parameter specifies the release level of the configuration file.

Configuration type

Database manager, Database

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Informational

838 Common Criteria Certification: Administration and User Documentation - Volume 2

restore_pending - Restore pending

This parameter states whether a RESTORE PENDING status exists in the database.

Configuration type

Database

Parameter type

Informational

Restrictions and behavior when configuring max_coordagents

and max_connections

The Version 9.5 default for the max_coordagents and max_connections parameters will

be AUTOMATIC, with max_coordagents set to 200 and max_connections set to -1

(that is, set to the value of max_coordagents). These settings set Concentrator to OFF.

While configuring max_coordagents or max_connections online, there will be some

restrictions and behavior to be aware of:

v If the value of max_coordagents is increased, the setting takes effect immediately

and new requests will be allowed to create new coordinating agents. If the value

is decreased, the number of coordinating agents will not be reduced

immediately. Rather, the number of coordinating agents will no longer increase,

and existing coordinating agents might terminate after finishing their current set

of work, in order to reduce the overall number of coordinating agents. New

requests for work that require a coordinating agent will not be serviced until the

total number of coordinating agents falls below the new value and a

coordinating agent becomes free.

v If the value for max_connections is increased, the setting takes effect immediately

and new connections previously blocked because of this parameter will be

allowed. If the value is decreased, the database manager will not actively

terminate existing connections; instead, new connections will not be allowed

until enough of the existing connections are terminated to bring the value down

below the new maximum.

v If max_connections is set to -1 (default), then the maximum number of

connections allowed is the same as max_coordagents, and when max_coordagents is

updated offline or online; the maximum number of connections allowed will be

updated as well.

While changing the value of max_coordagents or max_connections online, you cannot

change it such that connection Concentrator will be turned either ON, if it’s off, or

OFF, if it’s ON. For example, if at START DBM time max_coordagents is less than

max_connections (Concentrator is ON), then all updates done online to these two

parameters must maintain the relationship max_coordagents < max_connections.

Similarly, if at START DBM time, max_coordagents is greater than or equal to

max_connections (Concentrator is OFF), then all updates done online must maintain

this relationship.

When you perform this type of update online, the database manager does not fail

the operation, instead it defers the update. The warning SQL1362W message is

returned, similar to any case when updating the database manager configuration

parameters where IMMEDIATE is specified, but is not possible.

When setting max_coordagents or max_connections to AUTOMATIC, the following

behavior can be expected:

Appendix A. Related topics (linked to from topics in this book) 839

|
|
|
|
|
|
|
|

v Both of these parameters can be configured with a starting value and an

AUTOMATIC setting. For example, the following command associates a value of

200 and AUTOMATIC to the max_coordagents parameter:

 UPDATE DBM CONFIG USING max_coordagents 200 AUTOMATIC

These parameters will always have a value associated with them, either the

value set as default, or some value that you specified. If only AUTOMATIC is

specified when updating either parameter, that is, no value is specified, and the

parameter previously had a value associated with it, that value would remain.

Only the AUTOMATIC setting would be affected.

Note: When Concentrator is ON, the values assigned to these two configuration

parameters are important even when the parameters are set to AUTOMATIC.

v If both parameters are set to AUTOMATIC, the database manager allows the

number of connections and coordinating agents to increase as needed to suit the

workload. However, the following caveats apply:

1. When Concentrator is OFF, the database manager maintains a one-to-one

ratio: for every connection there will be only one coordinating agent.

2. When Concentrator is ON, the database manager tries to maintain the ratio

of coordinating agents to connections set by the values in the parameters.

Note:

– The approach used to maintain the ratio is designed to be unintrusive and

does not guarantee the ratio will be maintained perfectly. New

connections are always allowed in this scenario, though they may have to

wait for an available coordinating agent. New coordinating agents will be

created as needed to maintain the ratio. As connections are terminated, the

database manager might also terminate coordinating agents to maintain

the ratio

– The database manager will not reduce the ratio that you set. The initial

values of max_coordagents and max_connections that you set are considered

a lower bound.
v The current and delayed values of both these parameters can be displayed

through various means, such as CLP or APIs. The values displayed will always

be the values set by the user. For example, if the following command were

issued, and then 30 concurrent connections performing work on the instance

were started, the displayed values for max_connections and max_coordagents will

still be 20, AUTOMATIC:

 UPDATE DBM CFG USING max_connections 20 AUTOMATIC,

 max_coordagents 20 AUTOMATIC

To determine the real number of connections and coordinating agents currently

running monitor elements, you can also use the Health Monitor.

v If max_connections is set to AUTOMATIC with a value greater than

max_coordagents (so that Concentrator is ON), and max_coordagents is not set to

AUTOMATIC, then the database manager allows an unlimited number of

connections that will use only a limited number of coordinating agents.

Note: Connections might have to wait for available coordinating agents.

The use of the AUTOMATIC option for the max_coordagents and max_connections

configuration parameters is only valid in the following two scenarios:″. :

1. Both parameters are set to AUTOMATIC

840 Common Criteria Certification: Administration and User Documentation - Volume 2

2. Concentrator is enabled with max_connections set to AUTOMATIC, while

max_coordagents is not.

All other configurations using AUTOMATIC for these parameters will be blocked

and will return SQL6112N, with a reason code that explains the valid settings of

AUTOMATIC for these two parameters.

resync_interval - Transaction resync interval

This parameter specifies the time interval in seconds for which a transaction

manager (TM), resource manager (RM) or sync point manager (SPM) should retry

the recovery of any outstanding indoubt transactions found in the TM, the RM, or

the SPM. This parameter is applicable when you have transactions running in a

distributed unit of work (DUOW) environment. This parameter also applies to

recovery of federated database systems.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

180 [1 - 60 000]

Unit of measure

Seconds

Recommendation: If, in your environment, indoubt transactions will not interfere

with other transactions against your database, you might want to increase the

value of this parameter. If you are using a DB2 Connect gateway to access DRDA2

application servers, you should consider the effect indoubt transactions might have

at the application servers even though there will be no interference with local data

access. If there are no indoubt transactions, the performance impact will be

minimal.

rollfwd_pending - Roll forward pending indicator

This parameter informs you whether or not a roll-forward recovery is required,

and where it is required.

Configuration type

Database

Parameter type

Informational

This parameter can indicate one of the following states:

v DATABASE, meaning that a roll-forward recovery procedure is required for this

database

v TABLESPACE, meaning that one or more table spaces need to be rolled forward

v NO, meaning that the database is usable and no roll-forward recovery is

required.

Appendix A. Related topics (linked to from topics in this book) 841

The recovery (using ROLLFORWARD DATABASE) must complete before you can

access the database or table space.

rqrioblk - Client I/O block size

This parameter specifies the size of the communication buffer between remote

applications and their database agents on the database server. It is also used to

determine the I/O block size at the Data Server Runtime Client when a blocking

cursor is opened.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

32 767 [4 096 - 65 535]

Unit of measure

Bytes

When allocated

v When a remote client application issues a connection request for a server

database

v When a blocking cursor is opened, additional blocks are opened at the

client

When freed

v When the remote application disconnects from the server database

v When the blocking cursor is closed

When a Data Server Runtime Client requests a connection to a remote database,

this communication buffer is allocated on the client. On the database server, a

communication buffer of 32 767 bytes is initially allocated, until a connection is

established and the server can determine the value of rqrioblk at the client. Once

the server knows this value, it will reallocate its communication buffer if the

client’s buffer is not 32 767 bytes.

The memory for blocked cursors is allocated out of the application’s private

address space, so you should determine the optimal amount of private memory to

allocate for each application program. If the Data Server Runtime Client cannot

allocate space for a blocking cursor out of an application’s private memory, a

non-blocking cursor will be opened.

Recommendation: For non-blocking cursors, a reason for increasing the value of

this parameter would be if the data (for example, large object data) to be

transmitted by a single query statement is so large that the default value is

insufficient.

You should also consider the effect of this parameter on the number and potential

size of blocking cursors. Large row blocks might yield better performance if the

842 Common Criteria Certification: Administration and User Documentation - Volume 2

number or size of rows being transferred is large (for example, if the amount of

data is greater than 4 096 bytes). However, there is a trade-off in that larger record

blocks increase the size of the working set memory for each connection.

Larger record blocks might also cause more fetch requests than are actually

required by the application. You can control the number of fetch requests using the

OPTIMIZE FOR clause on the SELECT statement in your application.

sched_enable - Scheduler mode

This parameter indicates whether or not the Scheduler is started by the

administration server.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable

Default [range]

Off [On; Off]

The Scheduler allows tools such as the Task Center to schedule and execute tasks

at the administration server.

This parameter can only be updated from a Version 8 command line processor

(CLP).

sched_userid - Scheduler user ID

This parameter specifies the user ID used by the Scheduler to connect to the tools

catalog database. This parameter is only relevant if the tools catalog database is

remote to the DB2 administration server.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Informational

Default [range]

Null [any valid user ID]

The userid and password used by the Scheduler to connect to the remote tools

catalog database are specified using the db2admin command.

self_tuning_mem- Self-tuning memory

This parameter determines whether the memory tuner will dynamically distribute

available memory resources as required between memory consumers that are

enabled for self-tuning.

Configuration type

Database

Appendix A. Related topics (linked to from topics in this book) 843

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Single-database partition environments

ON [ON; OFF]

Multi-database partition environments

OFF [ON; OFF]

In a database that is upgraded from an earlier version, self_tuning_mem will

be set to OFF.

Because memory is being traded between memory consumers, there must be at

least two memory consumers enabled for self-tuning in order for the memory

tuner to be active. When self_tuning_mem is set to ON, but there are less than two

memory consumers enabled for self-tuning, the memory tuner is inactive. (The

exception to this is the sort heap memory area, which can be tuned regardless of

whether other memory consumers are enabled for self-tuning or not.) When

database_memory is set to a numeric value, it is considered enabled for self-tuning.

This parameter is ON by default in single database partition environments. In

multi-database partition environments, it is OFF by default.

The memory consumers that can be enabled for self-tuning include:

v Buffer pools (controlled by the size parameter of the ALTER BUFFERPOOL and

CREATE BUFFERPOOL statements)

v Package cache (controlled by the pckcachesz configuration parameter)

v Lock List (controlled by the locklist and maxlocks configuration parameters)

v Sort heap (controlled by the sheapthres_shr and sortheap configuration parameters)

v Database shared memory (controlled by the database_memory configuration

parameter)

To view the current setting for this parameter, use the GET DATABASE

CONFIGURATION command specifying the SHOW DETAIL parameter. The

possible settings returned for this parameter are:

Self Tuning Memory (SELF_TUNING_MEM) = OFF

Self Tuning Memory (SELF_TUNING_MEM) = ON (Active)

Self Tuning Memory (SELF_TUNING_MEM) = ON (Inactive)

Self Tuning Memory (SELF_TUNING_MEM) = ON

The following values indicate:

v ON (Active) - the memory tuner is actively tuning the memory on the system

v ON (Inactive) - that although the parameter is set ON, self-tuning is not

occurring because there are less than two memory consumers enabled for

self-tuning

v ON without (Active) or (Inactive) - from a query without the SHOW DETAIL

option, or without a database connection.

In partitioned environments, the self_tuning_mem configuration parameter will only

show ON (Active) for the database partition on which the tuner is running. On all

other nodes self_tuning_mem will show ON (Inactive). As a result, to determine if

844 Common Criteria Certification: Administration and User Documentation - Volume 2

the memory tuner is active in a partitioned database, you must check the

self_tuning_mem parameter on all database partitions.

If you have upgraded to DB2 Version 9 from an earlier version of DB2 and you

plan to use the self-tuning memory feature, you should configure the following

health indicators to disable threshold or state checking:

v Shared Sort Memory Utilization - db.sort_shrmem_util

v Percentage of sorts that overflowed - db.spilled_sorts

v Long Term Shared Sort Memory Utilization - db.max_sort_shrmem_util

v Lock List Utilization - db.locklist_util

v Lock Escalation Rate - db.lock_escal_rate

v Package Cache Hit Ratio - db.pkgcache_hitratio

One of the objectives of the self-tuning memory feature is to avoid having memory

allocated to a memory consumer when it is not immediately required. Therefore,

utilization of the memory allocated to a memory consumer might approach 100%

before more memory is allocated. By disabling these health indicators, you will

avoid unnecessary alerts triggered by the high rate of memory utilization by a

memory consumer.

Instances created in DB2 Version 9 will have these health indicators disabled by

default.

seqdetect - Sequential detection flag

This parameter controls whether the database manager is allowed to detect

sequential page reading during I/O activity.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

Yes [Yes; No]

The database manager can monitor I/O, and if sequential page reading is

occurring the database manager can activate I/O prefetching. This type of

sequential prefetch is known as sequential detection.

If this parameter is set to No, prefetching takes place only if the database manager

knows it will be useful, for example table sorts, table scans, or list prefetch.

Recommendation: In most cases, you should use the default value for this

parameter. Try turning sequential detection off, only if other tuning efforts were

unable to correct serious query performance problems.

sheapthres - Sort heap threshold

This parameter is an instance-wide soft limit on the total amount of memory that

can be consumed by private sorts at any given time. When the total private sort

memory consumption for an instance reaches this limit, the memory allocated for

additional incoming private sort requests is considerably reduced.

Appendix A. Related topics (linked to from topics in this book) 845

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

v OLAP functions

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

UNIX 32-bit platforms

0 [0 - 2 097 152]

Windows 32-bit platforms

0 [0 - 2 097 152]

64-bit platforms

0 [0 - 2 147 483 647]

Unit of measure

Pages (4 KB)

Examples of operations that use the sort heap include: sorts, hash joins, dynamic

bitmaps (used for index ANDing and Star Joins), and table in-memory operations.

Explicit definition of the threshold prevents the database manager from using

excessive amounts of memory for large numbers of sorts.

There is no reason to increase the value of this parameter when moving from a

non-partitioned to a partitioned database environment. Once you have tuned the

database and database manager configuration parameters on a single database

partition environment, the same values will in most cases work well in a

partitioned database environment. The only way to set this parameter to different

values on different nodes or database partitions is to create more than one DB2

instance. This will require managing different DB2 databases over different

database partition groups. Such an arrangement defeats the purpose of many of

the advantages of a partitioned database environment.

When the instance-level sheapthres is set to 0, then the tracking of sort memory

consumption is done at the database level only and memory allocation for sorts is

constrained by the value of the database-level sheapthres_shr configuration

parameter.

Automatic tuning of sheapthres_shr is allowed only when the database manager

configuration parameter sheapthres is set to 0.

This parameter will not be dynamically updatable if any of the following are true:

v The starting value for sheapthres is 0 and the target value is a value different

from 0.

v The starting value for sheapthres is a value different from 0 and the target value

is 0.

846 Common Criteria Certification: Administration and User Documentation - Volume 2

Recommendation: Ideally, you should set this parameter to a reasonable multiple

of the largest sortheap parameter you have in your database manager instance. This

parameter should be at least two times the largest sortheap defined for any

database within the instance.

If you are doing private sorts and your system is not memory constrained, an ideal

value for this parameter can be calculated using the following steps:

1. Calculate the typical sort heap usage for each database:

 (typical number of concurrent agents running against the database)

 * (sortheap, as defined for that database)

2. Calculate the sum of the above results, which provides the total sort heap that

could be used under typical circumstances for all databases within the instance.

You should use benchmarking techniques to tune this parameter to find the proper

balance between sort performance and memory usage.

You can use the database system monitor to track the sort activity, using the post

threshold sorts (post_threshold_sorts) monitor element.

sheapthres_shr - Sort heap threshold for shared sorts

This parameter represents a soft limit on the total amount of database shared

memory that can be used by sort memory consumers at any one time.

Configuration type

Database

Applies to

OLAP functions

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

32-bit platforms

Automatic [250 - 524 288]

64-bit platforms

Automatic [250 - 2 147 483 647]

Unit of measure

Pages (4 KB)

There are other sort memory consumers in addition to sort, like hash join, index

ANDing, block index ANDing, merge join, and in-memory tables. When the total

amount of shared memory for shared sort memory consumers approaches the

sheapthres_shr limit, a memory throttling mechanism is activated and the future

shared sort memory consumer requests might be granted less memory than

requested, but will always be granted more than the minimum they need for

finishing the task. Once the sheapthres_shr limit is exceeded, all requests of shared

sort memory from sort memory consumers will be granted the minimum amount

of memory required to finish the task. When the total amount of shared memory

for active shared sort memory consumers reaches this limit, subsequent sorts could

fail (SQL0955C).

Appendix A. Related topics (linked to from topics in this book) 847

When the value of the database manager configuration parameter sheapthres is 0,

all sort memory consumers for the database will use the database shared memory

with sheapthres_shr instead of private sort memory.

When sheapthres_shr is set to AUTOMATIC, it is enabled for self tuning. This

allows the memory tuner to dynamically size the memory area controlled by this

parameter as the workload requirements change. Because the memory tuner trades

memory resources between different memory consumers, there must be at least

two memory consumers enabled for self tuning in order for self tuning to be

active. Memory consumers include SHEAPTHRES_SHR, PCKCACHESZ, BUFFER

POOL (each buffer pool counts as one), LOCKLIST, and DATABASE_MEMORY.

Automatic tuning of sheapthres_shr is allowed only when the database manager

configuration parameter sheapthres is set to 0.

The value of sortheap is tuned together with the sheapthres_shr parameter therefore

disabling self tuning of the sortheap parameter automatically disables self tuning of

the sheapthres_shr parameter. Enabling self tuning of the sheapthres_shr parameter

automatically enables self tuning of the sortheap parameter.

Automatic tuning of this configuration parameter will only occur when self tuning

memory is enabled for the database (the self_tuning_mem configuration parameter

is set to ″ON.″)

When the value of this parameter is updated online, only new requests of

shared-sort memory made after the update will use the new value. It is

recommended that you reduce the value of sortheap before reducing the value of

sheapthres_shr and to increase the value of sheapthres_shr before increasing the value

of sortheap.

When the database manager configuration parameter sheapthres is greater than 0,

sheapthres_shr is only meaningful in two cases:

v if the intra_parallel database manager configuration parameter is set to yes,

because when intra_parallel is set to no, there will be no shared sorts.

v if the Concentrator is on (that is, when max_connections is greater than

max_coordagents), because sorts that use a cursor declared with the WITH HOLD

option will be allocated from shared memory.

smtp_server - SMTP server

When the Scheduler is on, this parameter identifies the SMTP server that the

Scheduler will use to send e-mail and pager notifications.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Null [any valid SMTP server TCP/IP hostname]

848 Common Criteria Certification: Administration and User Documentation - Volume 2

This parameter is used by the Scheduler and the Health Monitor.

This parameter can only be updated from a Version 8 command line processor

(CLP).

softmax - Recovery range and soft checkpoint interval

This parameter determines the frequency of soft checkpoints and the recovery

range, which help out in the crash recovery process.

Configuration Type

Database

Parameter Type

Configurable

Default [range]

100 [1 – 100 * logprimary]

Unit of Measure

Percentage of the size of one primary log file

This parameter is used to:

v Influence the number of logs that need to be recovered following a crash (such

as a power failure). For example, if the default value is used, the database

manager will try to keep the number of logs that need to be recovered to 1. If

you specify 300 as the value of this parameter, the database manager will try to

keep the number of logs that need to be recovered to 3.

To influence the number of logs required for crash recovery, the database

manager uses this parameter to trigger the page cleaners to ensure that pages

older than the specified recovery window are already written to disk.

v Determine the frequency of soft checkpoints.

At the time of a database failure resulting from an event such as a power failure,

there might have been changes to the database which:

v Have not been committed, but updated the data in the buffer pool

v Have been committed, but have not been written from the buffer pool to the

disk

v Have been committed and written from the buffer pool to the disk.

When a database is restarted, the log files will be used to perform a crash recovery

of the database which ensures that the database is left in a consistent state (that is,

all committed transactions are applied to the database and all uncommitted

transactions are not applied to the database).

To determine which records from the log file need to be applied to the database,

the database manager uses information recorded in a log control file. (The database

manager actually maintains two copies of the log control file, SQLOGCTL.LFH.1

and SQLOGCTL.LFH.2, so that if one copy is damaged, the database manager can

still use the other copy.) These log control files are periodically written to disk,

and, depending on the frequency of this event, the database manager might be

applying log records of committed transactions or applying log records that

describe changes that have already been written from the buffer pool to disk.

These log records have no impact on the database, but applying them introduces

some overhead into the database restart process.

Appendix A. Related topics (linked to from topics in this book) 849

The log control files are always written to disk when a log file is full, and during

soft checkpoints. You can use this configuration parameter to trigger additional soft

checkpoints.

The timing of soft checkpoints is based on the difference between the “current

state” and the “recorded state”, given as a percentage of the logfilsiz. The “recorded

state” is determined by the oldest valid log record indicated in the log control files

on disk, while the “current state” is determined by the log control information in

memory. (The oldest valid log record is the first log record that the recovery

process would read.) The soft checkpoint will be taken if the value calculated by

the following formula is greater than or equal to the value of this parameter:

 ((space between recorded and current states) / logfilsiz) * 100

Recommendation: You might want to increase or reduce the value of this

parameter, depending on whether your acceptable recovery window is greater than

or less than one log file. Lowering the value of this parameter will cause the

database manager both to trigger the page cleaners more often and to take more

frequent soft checkpoints. These actions can reduce both the number of log records

that need to be processed and the number of redundant log records that are

processed during crash recovery.

Note however, that more page cleaner triggers and more frequent soft checkpoints

increase the overhead associated with database logging, which can impact the

performance of the database manager. Also, more frequent soft checkpoints might

not reduce the time required to restart a database, if you have:

v Very long transactions with few commit points.

v A very large buffer pool and the pages containing the committed transactions

are not written back to disk very frequently. (Note that the use of asynchronous

page cleaners can help avoid this situation.)

In both of these cases, the log control information kept in memory does not change

frequently and there is no advantage in writing the log control information to disk,

unless it has changed.

sortheap - Sort heap size

This parameter defines the maximum number of private memory pages to be used

for private sorts, or the maximum number of shared memory pages to be used for

shared sorts.

Configuration type

Database

Applies to

OLAP functions

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

32-bit platforms

Automatic [16 - 524 288]

64-bit platforms

Automatic [16 - 4 194 303]

850 Common Criteria Certification: Administration and User Documentation - Volume 2

Unit of measure

Pages (4 KB)

When allocated

As needed to perform sorts

When freed

When sorting is complete

If the sort is a private sort, then this parameter affects agent private memory. If the

sort is a shared sort, then this parameter affects the database shared memory. Each

sort has a separate sort heap that is allocated as needed, by the database manager.

This sort heap is the area where data is sorted. If directed by the optimizer, a

smaller sort heap than the one specified by this parameter is allocated using

information provided by the optimizer.

When this parameter is set to AUTOMATIC, it is enabled for self tuning. This

allows the memory tuner to dynamically size the memory area controlled by this

parameter as the workload requirements change.

The value of sortheap is tuned together with the sheapthres_shr parameter,

therefore disabling self tuning of the sortheap parameter can not be done without

disabling self tuning of the sheapthres_shr parameter. Enabling self tuning of the

sheapthres_shr parameter automatically enables self tuning of the sortheap

parameter. The sortheap parameter can, however, be enabled for self tuning

without the sheapthres_shr parameter being AUTOMATIC.

Automatic tuning of sortheap is allowed only when the database manager

configuration parameter sheapthres is set to 0.

Automatic tuning of this configuration parameter will only occur when self tuning

memory is enabled for the database (the self_tuning_mem configuration parameter

is set to ON.)

Recommendation: When working with the sort heap, you should consider the

following:

v Appropriate indexes can minimize the use of the sort heap.

v Hash join buffers, block index ANDing, merge join, table in memory and

dynamic bitmaps (used for index ANDing and Star Joins) use sort heap memory.

Increase the size of this parameter when these techniques are used.

v Increase the size of this parameter when frequent large sorts are required.

v When increasing the value of this parameter, you should examine whether the

sheapthres and sheapthres_shr parameters in the database manager

configuration file also need to be adjusted.

v The sort heap size is used by the optimizer in determining access paths. You

should consider rebinding applications (using the REBIND command) after

changing this parameter.

When the sortheap value is updated, the database manager will immediately start

using this new value for any current or new sorts.

spm_log_file_sz - Sync point manager log file size

This parameter identifies the sync point manager (SPM) log file size in 4 KB pages.

Configuration type

Database manager

Appendix A. Related topics (linked to from topics in this book) 851

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

256 [4 - 1000]

Unit of measure

Pages (4 KB)

The log file is contained in the spmlog sub-directory under sqllib and is created

the first time SPM is started.

Recommendation: The sync point manager log file size should be large enough to

maintain performance, but small enough to prevent wasted space. The size

required depends on the number of transactions using protected conversations,

and how often COMMIT or ROLLBACK is issued.

To change the size of the SPM log file:

1. Determine that there are no indoubt transactions by using the LIST DRDA

INDOUBT TRANSACTIONS command.

2. If there are none, stop the database manager.

3. Update the database manager configuration with a new SPM log file size.

4. Go to the $HOME/sqllib directory and issue rm -fr spmlog to delete the current

SPM log. (Note: This shows the AIX command. Other systems might require a

different remove or delete command.)

5. Start the database manager. A new SPM log of the specified size is created

during the startup of the database manager.

spm_log_path - Sync point manager log file path

This parameter specifies the directory where the sync point manager (SPM) logs

are written.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

sqllib/spmlog [any valid path or device]

By default, the logs are written to the sqllib/spmlog directory, which, in a

high-volume transaction environment, can cause an I/O bottleneck. Use this

parameter to have the SPM log files placed on a faster disk than the current

sqllib/spmlog directory. This allows for better concurrency among the SPM agents.

852 Common Criteria Certification: Administration and User Documentation - Volume 2

spm_max_resync - Sync point manager resync agent limit

This parameter identifies the number of agents that can simultaneously perform

resync operations.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

20 [10 — 256]

spm_name - Sync point manager name

This parameter identifies the name of the sync point manager (SPM) instance to

the database manager.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default

Derived from the TCP/IP hostname

stat_heap_sz - Statistics heap size

This parameter indicates the maximum size of the heap used in collecting statistics

using the RUNSTATS command.

With Version 9.5, this database configuration parameter has a default value of

AUTOMATIC, meaning that it increases as needed until either the appl_memory

limit is reached, or the instance_memory limit is reached.

Configuration type

Database

Parameter type

Configurable online

Default [range]

Automatic [1 096 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

When the RUNSTATS utility is started

Appendix A. Related topics (linked to from topics in this book) 853

When freed

When the RUNSTATS utility is completed

Recommendation: The default setting of AUTOMATIC is recommended.

stmtheap - Statement heap size

This parameter specifies the size of the statement heap, which is used as a work

space for the SQL or XQuery compiler during compilation of an SQL or XQuery

statement.

With Version 9.5, this database configuration parameter has a default value of

AUTOMATIC, meaning that it increases as needed until either the appl_memory

limit is reached, or the instance_memory limit is reached.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Statement boundary

Default [range]

For both 32-bit and 64-bit platforms

Automatic [128 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

For each statement during precompiling or binding

When freed

When precompiling or binding of each statement is complete

This area does not stay permanently allocated, but is allocated and released for

every SQL or XQuery statement handled. Note that for dynamic SQL or XQuery

statements, this work area will be used during execution of your program;

whereas, for static SQL or XQuery statements, it is used during the bind process

but not during program execution.

Recommendation: In most cases the default AUTOMATIC setting for this

parameter is acceptable. When set to AUTOMATIC, there is an internal limit on the

total amount of memory allocated during the dynamic programming join

enumeration phase of compilation. If this limit is exceeded, the statement is

compiled using greedy join enumeration, and is only limited by the amount of

remaining appl_memory or instance_memory, or both. If your application is receiving

SQL0437W warnings, and the runtime performance for your query is not

acceptable, you might want to consider setting a sufficiently large manual stmtheap

value to ensure that dynamic join enumeration is always used.

Note: Dynamic join enumeration occurs only at optimization classes 3 and higher

(5 is the default).

territory - Database territory

This parameter shows the territory used to create the database. territory is used by

the database manager when processing data that is territory sensitive.

854 Common Criteria Certification: Administration and User Documentation - Volume 2

Configuration type

Database

Parameter type

Informational

tm_database - Transaction manager database name

This parameter identifies the name of the transaction manager (TM) database for

each DB2 instance.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

1ST_CONN [any valid database name]

A TM database can be:

v A local DB2 database

v A remote DB2 database that does not reside on a host or AS/400 system

v A DB2 for OS/390 Version 5 database if accessed via TCP/IP and the sync point

manager (SPM) is not used.

The TM database is a database that is used as a logger and coordinator, and is

used to perform recovery for indoubt transactions.

You can set this parameter to 1ST_CONN, which will set the TM database to be

the first database to which a user connects.

Recommendation: For simplified administration and operation, you might want to

create a few databases over a number of instances and use these databases

exclusively as TM databases.

toolscat_db - Tools catalog database

This parameter indicates the tools catalog database used by the Scheduler.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable

Default [range]

Null [any valid database alias]

This database must be in the database directory of the instance specified by

toolscat_inst.

Appendix A. Related topics (linked to from topics in this book) 855

This parameter can only be updated from a Version 8 command line processor

(CLP).

toolscat_inst - Tools catalog database instance

This parameter indicates the instance name that is used by the Scheduler, along

with toolscat_db and toolscat_schema, to identify the tools catalog database.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable

Default [range]

Null [any valid instance]

The tools catalog database contains task information created by the Task Center

and the Control Center. The tools catalog database must be listed in the database

directory of the instance specified by this configuration parameter. The database

can be local or remote. If the tools catalog database is local, the instance must be

configured for TCP/IP. If the database is remote, the database partition cataloged

in the database directory must be a TCP/IP node.

This parameter can only be updated from a Version 8 command line processor

(CLP).

toolscat_schema - Tools catalog database schema

This parameter indicates the schema of the tools catalog database used by the

Scheduler.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable

Default [range]

Null [any valid schema]

The schema is used to uniquely identify a set of tools catalog tables and views

within the database.

This parameter can only be updated from a Version 8 command line processor

(CLP).

tp_mon_name - Transaction processor monitor name

This parameter identifies the name of the transaction processing (TP) monitor

product being used.

Configuration type

Database manager

Applies to

856 Common Criteria Certification: Administration and User Documentation - Volume 2

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default

No default

Valid values

v CICS®

v MQ

v ENCINA

v CB

v SF

v TUXEDO

v TOPEND

v blank or some other value (for UNIX and Windows; no other possible

values for Solaris or SINIX)
v If applications are run in a WebSphere® Enterprise Server Edition CICS

environment, this parameter should be set to “CICS”

v If applications are run in a WebSphere Enterprise Server Edition Encina®

environment, this parameter should be set to “ENCINA”

v If applications are run in a WebSphere Enterprise Server Edition Component

Broker environment, this parameter should be set to “CB”

v If applications are run in an IBM MQSeries® environment, this parameter should

be set to “MQ”

v If applications are run in a BEA Tuxedo environment, this parameter should be

set to “TUXEDO”

v If applications are run in an IBM San Francisco environment, this parameter

should be set to “SF”.

IBM WebSphere EJB and Microsoft® Transaction Server users do not need to

configure any value for this parameter.

If none of the above products are being used, this parameter should not be

configured but left blank.

In previous versions of IBM DB2 on Windows, this parameter contained the path

and name of the DLL which contained the XA Transaction Manager’s functions

ax_reg and ax_unreg. This format is still supported. If the value of this parameter

does not match any of the above TP Monitor names, it will be assumed that the

value is a library name which contains the ax_reg and ax_unreg functions. This is

true for UNIX and Windows environments.

TXSeries® CICS and Encina Users: In previous versions of this product on

Windows it was required to configure this parameter as “libEncServer:C” or

“libEncServer:E”. While this is still supported, it is no longer required. Configuring

the parameter as “CICS” or “ENCINA” is sufficient.

Appendix A. Related topics (linked to from topics in this book) 857

MQSeries Users: In previous versions of this product on Windows it was required

to configure this parameter as “mqmax”. While this is still supported, it is no

longer required. Configuring the parameter as “MQ” is sufficient.

Component Broker Users: In previous versions of this product on Windows it was

required to configure this parameter as “somtrx1i”. While this is still supported, it

is no longer required. Configuring the parameter as “CB” is sufficient.

San Francisco Users: In previous versions of this product on Windows it was

required to configure this parameter as “ibmsfDB2”. While this is still supported, it

is no longer required. Configuring the parameter as “SF” is sufficient.

The maximum length of the string that can be specified for this parameter is 19

characters.

It is also possible to configure this information in IBM DB2 Version 9.1’s XA OPEN

string. If multiple Transaction Processing Monitors are using a single DB2 instance,

then it will be required to use this capability.

trackmod - Track modified pages enable

This parameter specifies whether the database manager will track database

modifications so that the backup utility can detect which subsets of the database

pages must be examined by an incremental backup and potentially included in the

backup image.

Configuration type

Database

Parameter type

Configurable

Default [range]

No [Yes, No]

After setting this parameter to ″Yes″, you must take a full database backup in

order to have a baseline against which incremental backups can be taken. Also, if

this parameter is enabled and if a table space is created, then a backup must be

taken which contains that table space. This backup could be either a database

backup or a table space backup. Following the backup, incremental backups will

be permitted to contain this table space.

trust_clntauth - Trusted clients authentication

This parameter specifies whether a trusted client is authenticated at the server or

the client when the client provides a userid and password combination for a

connection. This parameter (and trust_allclnts) is only active if the authentication

parameter is set to CLIENT. If a user ID and password are not provided, the client

is assumed to have validated the user, and no further validation is performed at

the server.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

858 Common Criteria Certification: Administration and User Documentation - Volume 2

Parameter type

Configurable

Default [range]

CLIENT [CLIENT, SERVER]

If this parameter is set to CLIENT (the default), the trusted client can connect

without providing a user ID and password combination, and the assumption is

that the operating system has already authenticated the user. If it is set to SERVER,

the user ID and password will be validated at the server.

The numeric value for CLIENT is 0. The numeric value for SERVER is 1.

tsm_mgmtclass - Tivoli Storage Manager management class

The Tivoli Storage Manager management class determines how the TSM server

should manage the backup versions of the objects being backed up.

Configuration type

Database

Parameter type

Configurable

Default [range]

Null [any string]

The default is that there is no DB2-specified management class.

When performing any TSM backup, before using the management class specified

by the database configuration parameter, TSM first attempts to bind the backup

object to the management class specified in the INCLUDE-EXCLUDE list found in

the TSM client options file. If a match is not found, the default TSM management

class specified on the TSM server will be used. TSM will then rebind the backup

object to the management class specified by the database configuration parameter.

Thus, the default management class, as well as the management class specified by

the database configuration parameter, must contain a backup copy group, or the

backup operation will fail.

tsm_nodename - Tivoli Storage Manager node name

This parameter is used to override the default setting for the node name associated

with the Tivoli Storage Manager (TSM) product.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Statement boundary

Default [range]

Null [any string]

The node name is needed to allow you to restore a database that was backed up to

TSM from another node.

Appendix A. Related topics (linked to from topics in this book) 859

The default is that you can only restore a database from TSM on the same node

from which you did the backup. It is possible for the tsm_nodename to be

overridden during a backup done through DB2 (for example, with the BACKUP

DATABASE command).

tsm_owner - Tivoli Storage Manager owner name

This parameter is used to override the default setting for the owner associated

with the Tivoli Storage Manager (TSM) product.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Statement boundary

Default [range]

Null [any string]

The owner name is needed to allow you to restore a database that was backed up

to TSM from another node. It is possible for the tsm_owner to be overridden during

a backup done through DB2 (for example, with the BACKUP DATABASE

command).

Note: The owner name is case sensitive.

The default is that you can only restore a database from TSM on the same node

from which you did the backup.

tsm_password - Tivoli Storage Manager password

This parameter is used to override the default setting for the password associated

with the Tivoli Storage Manager (TSM) product.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Statement boundary

Default [range]

Null [any string]

The password is needed to allow you to restore a database that was backed up to

TSM from another node.

Note: If the tsm_nodename is overridden during a backup done with DB2 (for

example, with the BACKUP DATABASE command), the tsm_password might also

have to be set.

The default is that you can only restore a database from TSM on the same node

from which you did the backup. It is possible for the tsm_nodename to be

overridden during a backup done with DB2.

860 Common Criteria Certification: Administration and User Documentation - Volume 2

user_exit_status - User exit status indicator

If set to On, this parameter indicates that the database manager is enabled for

roll-forward recovery and that the user exit program will be used to archive and

retrieve log files when called by the database manager.

Configuration type

Database

Parameter type

Informational

userexit - User exit enable

This parameter is deprecated in Version 9.5, but is still being used by pre-Version

9.5 data servers and clients. Any value specified for this configuration parameter

will be ignored by the DB2 Version 9.5 database manager.

Note: The following information applies only to pre-Version 9.5 data servers and

clients.

If this parameter is enabled, log retention logging is performed regardless of how

the logretain parameter is set. This parameter also indicates that a user exit

program should be used to archive and retrieve the log files.

Configuration type

Database

Parameter type

Configurable

Default [range]

Off [On; Off]

Log files are archived when the log file is full. They are retrieved when the

ROLLFORWARD utility needs to use them to restore a database.

After logretain, or userexit, or both of these parameters are enabled, you must make

a full backup of the database. This state is indicated by the backup_pending flag

parameter.

If both of these parameters are de-selected, roll-forward recovery becomes

unavailable for the database because logs will no longer be retained. In this case,

the database manager deletes all log files in the logpath directory (including online

archive log files), allocates new active log files, and reverts to circular logging.

util_heap_sz - Utility heap size

This parameter indicates the maximum amount of memory that can be used

simultaneously by the BACKUP, RESTORE, and LOAD (including load recovery)

utilities.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Appendix A. Related topics (linked to from topics in this book) 861

Default [range]

5000 [16 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

As required by the database manager utilities

When freed

When the utility no longer needs the memory

Recommendation: Use the default value unless your utilities run out of space, in

which case you should increase this value. If memory on your system is

constrained, you might want to lower the value of this parameter to limit the

memory used by the database utilities. If the parameter is set too low, you might

not be able to run utilities concurrently. You should update this parameter

dynamically as needed. For a small number of utilities, set this parameter to a

small value. For a large number of utilities, or for memory intensive utilities, you

should set this parameter to a larger value.

util_impact_lim - Instance impact policy

This parameter allows the database administrator (DBA) to limit the performance

degradation of a throttled utility on the workload.

Configuration type

Database manager

Applies to

v Database server with local clients

v Database server with local and remote clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

10 [1 - 100]

Unit of measure

Percentage of allowable impact on workload

If the performance degradation is limited, the DBA can then run online utilities

during critical production periods, and be guaranteed that the performance impact

on production work will be within acceptable limits.

For example, a DBA specifying a util_impact_lim (impact policy) value of 10 can

expect that a throttled backup invocation will not impact the workload by more

than 10 percent.

If util_impact_lim is 100, no utility invocations will be throttled. In this case, the

utilities can have an arbitrary (and undesirable) impact on the workload. If

util_impact_lim is set to a value that is less than 100, it is possible to invoke utilities

in throttled mode. To run in throttled mode, a utility must also be invoked with a

non-zero priority.

862 Common Criteria Certification: Administration and User Documentation - Volume 2

Recommendation: Most users will benefit from setting util_impact_lim to a low

value (for example, between 1 and 10).

A throttled utility will usually take longer to complete than an unthrottled utility.

If you find that a utility is running for an excessively long time, increase the value

of util_impact_lim, or disable throttling altogether by setting util_impact_lim to 100.

vendoropt - Vendor options

This parameter specifies additional parameters that DB2 might need to use to

communicate with storage systems during backup, restore, or load copy

operations.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

Null []

Restriction

You cannot use the vendoropt configuration parameter to specify

vendor-specific options for snapshot backup or restore operations. You

must use the OPTIONS parameter of the backup or restore utilities instead.

wlm_collect_int - Workload management collection interval

configuration parameter

This parameter specifies a collect and reset interval, in minutes, for workload

management (WLM) statistics.

Every x wlm_collect_int minutes, (where x is the value of the wlm_collect_int

parameter) all workload management statistics are collected and sent to any active

statistics event monitor; then the statistics are reset. If an active event monitor

exists, depending on how it was created, the statistics are written either to file or

to a table. If it does not exist, the statistics are only reset and not collected.

The collect and reset process is initiated from the catalog partition. The

wlm_collect_int parameter must be specified on the catalog partition. It is not used

on other partitions.

Configuration type

Database

Parameter type

Configurable online

Default [range]

0 [0 (no collection performed), 5 - 32 767]

The workload management statistics collected by a statistics event monitor can be

used to monitor both short term and long term system behavior. A small interval

Appendix A. Related topics (linked to from topics in this book) 863

can be used to obtain both short term and long term system behavior because the

results can be merged together to obtain long term behavior. However, having to

manually merge the results from different intervals complicates the analysis. If it’s

not required, a small interval unnecessarily increases the overhead. Therefore,

reduce the interval to capture shorter term behavior, and increase the interval to

reduce overhead when only analysis of long term behavior is sufficient.

The interval needs to be customized per database, not for each SQL request, or

command invocation, or application. There are no other configuration parameters

that need to be considered.

Note: All WLM statistics table functions return statistics that have been

accumulated since the last time the statistics were reset. The statistics will be reset

regularly on the interval specified by this configuration parameter.

864 Common Criteria Certification: Administration and User Documentation - Volume 2

Appendix B. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hardcopy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an e-mail to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a

DB2 technical issue that the documentation does not resolve, contact your local

IBM service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English and translated DB2

Version 9.7 manuals in PDF format can be downloaded from www.ibm.com/
support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be

available in your country or region.

© Copyright IBM Corp. 1993, 2009 865

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

The form number increases each time a manual is updated. Ensure that you are

reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF

or the hard-copy books.

 Table 43. DB2 technical information

Name Form Number Available in print Last updated

Administrative API

Reference

SC27-2435-00 Yes

Administrative Routines

and Views

SC27-2436-00 No

Call Level Interface

Guide and Reference,

Volume 1

SC27-2437-00 Yes

Call Level Interface

Guide and Reference,

Volume 2

SC27-2438-00 Yes

Command Reference SC27-2439-00 Yes

Data Movement Utilities

Guide and Reference

SC27-2440-00 Yes

Data Recovery and High

Availability Guide and

Reference

SC27-2441-00 Yes

Database Administration

Concepts and

Configuration Reference

SC27-2442-00 Yes

Database Monitoring

Guide and Reference

SC27-2458-00 Yes

Database Security Guide SC27-2443-00 Yes

DB2 Text Search Guide SC27-2459-00 Yes

Developing ADO.NET

and OLE DB

Applications

SC27-2444-00 Yes

Developing Embedded

SQL Applications

SC27-2445-00 Yes

Developing Java

Applications

SC27-2446-00 Yes

Developing Perl, PHP,

Python, and Ruby on

Rails Applications

SC27-2447-00 No

Developing User-defined

Routines (SQL and

External)

SC27-2448-00 Yes

Getting Started with

Database Application

Development

GI11-9410-00 Yes

Getting Started with

DB2 Installation and

Administration on Linux

and Windows

GI11-9411-00 Yes

866 Common Criteria Certification: Administration and User Documentation - Volume 2

||

||||

|
|
|||

|
|
|||

|
|
|

|||

|
|
|

|||

||||

|
|
|||

|
|
|

|||

|
|
|

|||

|
|
|||

||||

||||

|
|
|

|||

|
|
|||

|
|
|||

|
|
|

|||

|
|
|

|||

|
|
|

|||

|
|
|
|

|||

Table 43. DB2 technical information (continued)

Name Form Number Available in print Last updated

Globalization Guide SC27-2449-00 Yes

Installing DB2 Servers GC27-2455-00 Yes

Installing IBM Data

Server Clients

GC27-2454-00 No

Message Reference

Volume 1

SC27-2450-00 No

Message Reference

Volume 2

SC27-2451-00 No

Net Search Extender

Administration and

User’s Guide

SC27-2469-00 No

SQL Procedural

Languages: Application

Enablement and Support

SC23-9838-00 Yes

Partitioning and

Clustering Guide

SC27-2453-00 Yes

pureXML Guide SC27-2465-00 Yes

Query Patroller

Administration and

User’s Guide

SC27-2467-00 No

Spatial Extender and

Geodetic Data

Management Feature

User’s Guide and

Reference

SC27-2468-00 No

SQL Procedural

Language Guide

SC27-2470-00 Yes

SQL Reference, Volume 1 SC27-2456-00 Yes

SQL Reference, Volume 2 SC27-2457-00 Yes

Troubleshooting and

Tuning Database

Performance

SC27-2461-00 Yes

Upgrading to DB2

Version 9.7

SC27-2452-00 Yes

Visual Explain Tutorial SC27-2462-00 No

What’s New for DB2

Version 9.7

SC27-2463-00 Yes

Workload Manager

Guide and Reference

SC27-2464-00 Yes

XQuery Reference SC27-2466-00 No

 Table 44. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Installing and

Configuring DB2

Connect Personal Edition

SC27-2432-00 Yes

Appendix B. Overview of the DB2 technical information 867

|

||||

||||

||||

|
|
|||

|
|
|||

|
|
|||

|
|
|

|||

|
|
|

|||

|
|
|||

||||

|
|
|

|||

|
|
|
|
|

|||

|
|
|||

||||

||||

|
|
|

|||

|
|
|||

||||

|
|
|||

|
|
|||

||||
|

Table 44. DB2 Connect-specific technical information (continued)

Name Form Number Available in print Last updated

Installing and

Configuring DB2

Connect Servers

SC27-2433-00 Yes

DB2 Connect User’s

Guide

SC27-2434-00 Yes

 Table 45. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-02 Yes

Information Integration:

ASNCLP Program

Reference for Replication

and Event Publishing

SC19-1018-04 Yes

Information Integration:

Configuration Guide for

Federated Data Sources

SC19-1034-02 No

Information Integration:

SQL Replication Guide

and Reference

SC19-1030-02 Yes

Information Integration:

Introduction to

Replication and Event

Publishing

SC19-1028-02 Yes

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r7.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/

868 Common Criteria Certification: Administration and User Documentation - Volume 2

||

||||

|
|
|

|||

|
|
|
|

|||

|
|
|

|||

|
|
|

|||

|
|
|
|

|||

|

|
|
|

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://www.ibm.com/shop/publications/order

publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 865.

Displaying SQL state help from the command line processor

DB2 products return an SQLSTATE value for conditions that can be the result of an

SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state

class codes.

To start SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

Accessing different versions of the DB2 Information Center

For DB2 Version 9.7 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

Appendix B. Overview of the DB2 technical information 869

|
|

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you must also change the

regional settings of your operating system to the locale and language of your

choice.

Updating the DB2 Information Center installed on your computer or

intranet server

A locally installed DB2 Information Center must be updated periodically.

Before you begin

A DB2 Version 9.7 Information Center must already be installed. For details, see

the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in

Installing DB2 Servers. All prerequisites and restrictions that applied to installing

the Information Center also apply to updating the Information Center.

About this task

An existing DB2 Information Center can be updated automatically or manually:

v Automatic updates - updates existing Information Center features and

languages. An additional benefit of automatic updates is that the Information

Center is unavailable for a minimal period of time during the update. In

addition, automatic updates can be set to run as part of other batch jobs that run

periodically.

v Manual updates - should be used when you want to add features or languages

during the update process. For example, a local Information Center was

originally installed with both English and French languages, and now you want

870 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|

|

|

|
|
|
|

|

|

|
|
|
|
|

|
|
|

to also install the German language; a manual update will install German, as

well as, update the existing Information Center features and languages.

However, a manual update requires you to manually stop, update, and restart

the Information Center. The Information Center is unavailable during the entire

update process.

Procedure

This topic details the process for automatic updates. For manual update

instructions, see the “Manually updating the DB2 Information Center installed on

your computer or intranet server” topic.

To automatically update the DB2 Information Center installed on your computer or

intranet server:

1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7

directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the ic-update script:

ic-update

2. On Windows operating systems,

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2

Information Center\Version 9.7 directory, where <Program Files> represents

the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the ic-update.bat file:

ic-update.bat

Results

The DB2 Information Center restarts automatically. If updates were available, the

Information Center displays the new and updated topics. If Information Center

updates were not available, a message is added to the log. The log file is located in

doc\eclipse\configuration directory. The log file name is a randomly generated

number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your

computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install

documentation updates from IBM.

Updating your locally-installed DB2 Information Center manually requires that

you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to apply updates. The Workstation version of the DB2

Information Center always runs in stand-alone mode. .

Appendix B. Overview of the DB2 technical information 871

|
|
|
|
|

|

|
|
|

|
|

|

|
|
|

|

|

|

|

|

|
|
|
|

|

|

|

|

|
|
|
|
|

2. Use the Update feature to see what updates are available. If there are updates

that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, mirror the update

site to a local file system using a machine that is connected to the internet and

has the DB2 Information Center installed. If many users on your network will

be installing the documentation updates, you can reduce the time required for

individuals to perform the updates by also mirroring the update site locally

and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.

However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later

in this section must be run as an administrator. To open a command prompt or

graphical tool with full administrator privileges, right-click the shortcut and then

select Run as administrator.

To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv97 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the <Program

Files>\IBM\DB2 Information Center\Version 9.7 directory, where

<Program Files> represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.7 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information

Center.

3. Click the Update button (

). (JavaScript must be enabled in your browser.)

On the right panel of the Information Center, click Find Updates. A list of

updates for existing documentation displays.

4. To initiate the installation process, check the selections you want to install, then

click Install Updates.

872 Common Criteria Certification: Administration and User Documentation - Volume 2

|

|
|

|

5. After the installation process has completed, click Finish.

6. Stop the stand-alone Information Center:

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

Note: The help_end batch file contains the commands required to safely stop

the processes that were started with the help_start batch file. Do not use

Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely stop the

processes that were started with the help_start script. Do not use any other

method to stop the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv97 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 database products.

Appendix B. Overview of the DB2 technical information 873

|

http://publib.boulder.ibm.com/infocenter/db2luw/v9

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting Guide

or the Database fundamentals section of the DB2 Information Center. There

you will find information about how to isolate and identify problems using

DB2 diagnostic tools and utilities, solutions to some of the most common

problems, and other advice on how to solve problems you might encounter

with your DB2 database products.

DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/support/db2_9/

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

874 Common Criteria Certification: Administration and User Documentation - Volume 2

http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.

Information about non-IBM products is based on information available at the time

of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,

contact the IBM Intellectual Property Department in your country or send

inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

© IBM Corporation 1993, 2009 875

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs, in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

876 Common Criteria Certification: Administration and User Documentation - Volume 2

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corp., registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web at “Copyright and

trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

v Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

v UNIX is a registered trademark of The Open Group in the United States and

other countries.

v Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix C. Notices 877

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

878 Common Criteria Certification: Administration and User Documentation - Volume 2

Index

A
administration notification log 713

agent pool size configuration

parameter 830

agent process
applheapsz configuration

parameter 754

aslheapsz configuration

parameter 755

priority of agents configuration

parameter 751

agent_stack_sz database manager

configuration parameter 749

agentpri database manager configuration

parameter 751

ALIAS clause
COMMENT statement 83

DROP statement 245

MODULE clause
COMMENT statement 83

aliases
adding comments to catalog 83

alias name 565

deleting using DROP statement 245

description 565

TABLE_NAME function 486

TABLE_SCHEMA function 487

ALL clause
SELECT statement 419

ALL option 382

ALL PRIVILEGES clause
GRANT statement (Table, View or

Nickname) 307

REVOKE table, view or nickname

privileges 349

alt_collate configuration parameter 752

ALTER AUDIT POLICY statement 3

ALTER clause
GRANT statement (Table, View or

Nickname) 307

REVOKE statement, removing

privilege 349

ALTER DATABASE PARTITION GROUP

statement 6

ALTER FUNCTION statement 9

ALTER METHOD statement 11

ALTER NODEGROUP statement
see ALTER DATABASE PARTITION

GROUP 6

ALTER PROCEDURE (External)

statement 12

ALTER SECURITY LABEL COMPONENT

statement 14

ALTER SECURITY POLICY

statement 17

ALTER TABLE statement
authorization required 20

examples 20

syntax diagram 20

ALTER TABLESPACE statement
description 66

ALTER VIEW statement
authorization 78

description 78

syntax diagram 78

alternate_auth_enc 753

alternate_auth_enc configuration

parameter 753

ambiguous reference errors 565

APIs
for setting contexts between threads

sqleAttachToCtx() 517

sqleBeginCtx() 517

sqleDetachFromCtx() 517

sqleEndCtx() 517

sqleGetCurrentCtx() 517

sqleInterruptCtx() 517

sqleSetTypeCtx() 517

plug-in 620, 627

security plug-in 619, 621, 623, 626,

627, 633, 634, 635, 636, 638, 640, 642,

643, 644, 646, 647, 649

appl_memory database configuration

parameter 753

application development
routines 541

application performance
comparison of sequences and identity

columns 511

application processes
definition 715

application programs
controlling sequences 510

application support layer heap size

configuration parameter 755

applications
maximum number of coordinating

agents at node 814

archretrydelay configuration

parameter 755

AS clause
CREATE VIEW statement 225

in SELECT clause 419

ORDER BY clause 419

ASC clause
CREATE INDEX statement 101

SELECT statement 419

aslheapsz configuration parameter 755

assignments
basic SQL operations 723

asterisk (*)
in select column names 419

in subselect column names 419

asterisks
select column names 419

subselect column names 419

ASUTIME
in CREATE PROCEDURE

statement 124

asynchronous
events 517

attributes
attribute name 565

AUDIT statement 80

audit_buf_sz configuration

parameter 677

authentication
GSS-API 593

ID/password 593

Kerberos 593

plug-ins
API for checking if authentication

ID exists 649

API for cleaning client

authentication resources 634

API for cleaning up resources 643

API for getting authentication

IDs 647

API for initializing a client

authentication plug-in 633

API for initializing server

authentication 644

API for validating passwords 640

clean up server

authentication 646

deploying 602, 604

for initializing a client

authentication plug-in 633

library locations 597

user ID/ password 627

security plug-in 593

trust all clients configuration

parameter 685

trusted clients authentication

configuration parameter 858

two-part user IDs 598

authentication configuration

parameter 678

authentication DAS configuration

parameter 679

authorities
defining group names

system administration authority

group name configuration

parameter 682

system control authority group

name configuration

parameter 683

system maintenance authority

group name configuration

parameter 683

authorization ID 565

authorization names
definition 565

description 565

restrictions governing 565

authorizations
granting control on database

operations 278

granting control on index 285

granting create on schema 295

public control on index 285

© Copyright IBM Corp. 1993, 2009 879

authorizations (continued)
public create on schema 295

revoking 324

auto restart enable configuration

parameter 703

auto_del_rec_obj database configuration

parameter 757

auto_maint configuration parameter 757

automatic restart 713

avg_appls configuration parameter 759

B
backup

track modified pages 858

backup_pending configuration

parameter 760

BIGINT data type
CREATE TABLE statement 143

binary large objects (BLOBs) 143

Bind API
creating packages 509

bind behavior
DYNAMICRULES 513

BIND command
creating packages 509

bind options
overview 509

BINDADD parameter
grant privilege 278

binding
changing configuration

parameters 659, 660

GRANT statement 286

overview 509

revoking all privileges 331

blk_log_dsk_ful configuration parameter
details 760

BLOBs (binary large objects)
CREATE TABLE statement 143

books
printed

ordering 868

buffer insert 313

buffer pools
deleting using DROP statement 245

names 565

BUFFERPOOL clause
ALTER TABLESPACE statement 66

CREATE TABLESPACE

statement 212

DROP statement 245

bypass federated authentication

configuration parameter 789

C
C/C++ applications

multiple thread database access 517

C/C++ language
connecting to databases 501

disconnecting from databases 502

CASCADE delete rule 143

catalog cache size configuration

parameter 761

catalog_noauth configuration

parameter 680

catalogcache_sz database configuration

parameter 761

catalogs
COMMENT statement 83

CCSID (coded character set identifier)
CREATE TABLE statement 143

change the database log path

configuration parameter 822

CHAR VARYING data type 143

character conversion
rules for assignments 723

rules for comparison 723

CHARACTER data type 143

character strings
assignment 723

comparisons 723

equality
collating sequence examples 723

definition 723

CHARACTER VARYING data type 143

CHECK clause
CREATE VIEW statement 225

check constraints
ALTER TABLE statement 20

CREATE TABLE statement 143

INSERT statement 313

chngpgs_thresh configuration

parameter 762

client I/O block size configuration

parameter 842

client support
client I/O block size configuration

parameter 842

TCP/IP service name configuration

parameter 681

clnt_krb_plugin configuration

parameter 653

clnt_pw_plugin configuration

parameter 653

CLOBs (character large objects)
data type

creating columns 143

CLOSE in CREATE INDEX

statement 101

closing connection
importance of 521, 526

CLUSTER clause
CREATE INDEX statement 101

cluster managers
cluster manager name configuration

parameter 763

cluster_mgr configuration

parameter 763

COBOL language
Connecting to databases 501

Disconnecting from databases 502

code pages
database configuration

parameter 763

codepage database configuration

parameter 763

codeset databse configuration

parameter 763

collate_info database configuration

parameter 764

collating sequences
string comparison rules 723

COLLID
in CREATE PROCEDURE

statement 124

COLUMN clause
COMMENT statement 83

column options
CREATE TABLE statement 143

columns
adding comments to catalog 83

adding with ALTER TABLE

statement 20

ambiguous name reference

errors 565

column name
definition 565

qualification in COMMENT ON

statement 565

uses 565

constraint name
FOREIGN KEY rules 143

creating index keys 101

grant add privileges 307

GROUP BY
use in limiting in SELECT

clause 419

grouping column names in GROUP

BY 419

HAVING
use in limiting in SELECT

clause 419

HAVING clause
search names rules 419

inserting values 313

names
in ORDER BY clause 419

INSERT statement 313

qualified conditions 565

unqualified conditions 565

naming conventions 565

nested table expression 565

null values
in ALTER TABLE statement,

prevention 20

in result columns 419

qualified column name rules 565

result data 419

scalar fullselect 565

searching using WHERE clause 419

SELECT clause syntax diagram 419

string assignment rules 723

subquery 565

undefined name reference errors 565

updating 354

combining grouping sets 419

comm_bandwidth database manager

configuration parameter
description 765

COMMENT statement 83

comments
in catalog table 83

SQL static statements 491

commit
number of commits to group

(mincommit) 819

release of locks 715

880 Common Criteria Certification: Administration and User Documentation - Volume 2

commit (continued)
transaction, JDBC 525

COMMIT ON RETURN
in CREATE PROCEDURE

statement 124

COMMIT statement
description 365

Common Criteria
supported interfaces xi

Common Criteria certification ix

common table expressions
definition 390

recursive 390

select statement 390

communications
connection elapse time 697

comparing 723

comparison
SQL operation 723

compatibility
data types 723

rules 723

rules for operation types 723

compiling
overview 508

component-name
description 565

composite column values 419

concurrency control
LOCK TABLE statement 386

maximum number of active

applications 816

condition name
SQL procedures 565

configuration
changing database parameters 660

configuration file release level

configuration parameter 838

configuration files
description 659

location 659

configuration parameters 692, 693, 694,

695, 753, 767

agent_stack_sz 749

agentpri 751

alt_collate 752

appl_memory 753

applheapsz 754

archretrydelay 755

aslheapsz 755

audit_buf_sz 677

authentication 678

authentication (DAS) 679

auto_del_rec_obj 757

auto_maint 757

autorestart 703

avg_appls 759

backup_pending 760

blk_log_dsk_ful 760

catalog_noauth 680

catalogcache_sz 761

chngpgs_thresh 762

clnt_krb_plugin 653

clnt_pw_plugin 653

cluster_mgr 763

codepage 763

codeset 763

configuration parameters (continued)
collate_info 764

comm_bandwidth 765

conn_elapse 697

contact_host 765

cpuspeed 766

das_codepage 767

das_territory 768

dasadm_group 680

database
changing 659

database_consistent 705

database_level 768

database_memory 768

db_mem_thresh 771

db2system 770

dbheap 772

decflt_rounding 773

description 659

dft_account_str 774

dft_degree 775

dft_extent_sz 776

dft_loadrec_ses 776

dft_monswitches 777

dft_mttb_types 778

dft_prefetch_sz 778

dft_queryopt 779

dft_refresh_age 780

dft_sqlmathwarn 780

dftdbpath 681

diaglevel 782

diagpath 782

dir_cache 783

discover 785

discover (DAS) 785

discover_db 786

discover_inst 786

dlchktime 686

dyn_query_mgmt 787

enable_xmlchar 787

exec_exp_task 788

failarchpath 788

fcm_num_buffers 697

fcm_num_channels 698

fed_noauth 789

federated 789

federated_async 789

fenced_pool 790

group_plugin 654

hadr_db_role 791

hadr_local_host 792

hadr_local_svc 792

hadr_peer_window 793

hadr_remote_host 793

hadr_remote_inst 794

hadr_remote_svc 794

hadr_syncmode 794

hadr_timeout 795

health_mon 795

indexrec 796

instance_memory 798

intra_parallel 800

java_heap_sz 801

jdk_64_path 802

jdk_path 803

jdk_path (DAS) 802

keepfenced 803

configuration parameters (continued)
local_gssplugin 654

locklist 686

locktimeout 689

log_retain_status 804

logarchmeth1 804

logarchmeth2 806

logarchopt1 807

logarchopt2 807

logbufsz 808

logfilsiz 808

loghead 809

logindexbuild 810

logpath 810

logprimary 810

logretain 811

logsecond 812

max_connections 814

restrictions 839

max_connretries 699

max_coordagents 814

restrictions 839

max_querydegree 815

max_time_diff 699

maxappls 816

maxfilop 817

maxlocks 690

maxlog 815

min_dec_div_3 818

mincommit 819

mirrorlogpath 820

mon_heap_sz 821

multipage_alloc 822

newlogpath 822

nodetype 707

notifylevel 824

num_db_backups 825

num_freqvalues 825

num_initagents 827

num_initfenced 827

num_iocleaners 827

num_ioservers 829

num_poolagents 830

num_quantiles 831

numarchretry 832

numdb 833

numlogspan 830

numsegs 834

overflowlogpath 834

pagesize 835

pckcachesz 835

query_heap_sz 837

rec_his_retentn 838

release 838

restore_pending 839

restrict_access 709

resync_interval 841

rollfwd_pending 841

rqrioblk 842

sched_enable 843

sched_userid 843

self_tuning_mem 843

seqdetect 845

sheapthres 846

sheapthres_shr 847

smtp_server 848

softmax 849

Index 881

configuration parameters (continued)
sortheap 850

spm_log_file_sz 851

spm_log_path 852

spm_max_resync 853

spm_name 853

srv_plugin_mode 656

srvcon_auth 654

srvcon_gssplugin_list 655

srvcon_pw_plugin 656

start_stop_time 700

stat_heap_sz 853

stmtheap 854

summary
database 663

database manager 663

section heading descriptions 663

svcename 681

sysadm_group 682

sysctrl_group 683

sysmaint_group 683

sysmon_group 684

territory 855

tm_database 855

toolscat_db 855

toolscat_inst 856

toolscat_schema 856

tp_mon_name 856

trackmod 858

trust_allclnts 685

trust_clntauth 858

tsm_mgmtclass 859

tsm_nodename 859

tsm_owner 860

tsm_password 860

user_exit_status 861

userexit 861

util_heap_sz 861

util_impact_lim 862

vendoropt 863

wlm_collect_int configuration

parameter 863

conn_elapse configuration

parameter 697

CONNECT parameter
GRANT...ON DATABASE

statement 278

CONNECT statement
application server information 366

disconnecting from current

server 366

implicit connection 366

new password information 366

Type 2 373

with no operand, returning

information 366

CONNECT TO statement
successful connection 366, 373

unsuccessful connection 366, 373

connecting to a data source
DataSource interface 523

SQLJ 520

connection context
class 520

closing 521

default 520

object 520

connection declaration clause
SQLJ 521

connection elapse time configuration

parameter 697

connections
elapse time 697

consistency
points of 715

CONSTRAINT clause 83

constraints
adding comments to catalog 83

adding with ALTER TABLE 20

dropping
with ALTER TABLE 20

names, definition 565

contact_host configuration

parameter 765

container clause
CREATE TABLESPACE

statement 212

containers
CREATE TABLESPACE

statement 212

context clause
SQLJ 520

contexts
setting in multithreaded DB2

applications
described 517

SQLJ routines 546

CONTROL clause
GRANT statement (Table, View or

Nickname) 307

revoking 349

CONTROL parameter
revoking privileges for packages 331

conversions
datetime to string variable 723

numeric, scale and precision,

summary 723

rules
assignments 723

comparisons 723

Coordinated Universal Time 699

COPY
CREATE INDEX statement 101

correlated reference
in nested table expression 565

in scalar fullselect 565

in subquery 565

in subselect 419

correlation name
definition 565

FROM clause
subselect rules 419

in SELECT clause
syntax diagram 419

qualified reference 565

rules 565

cpuspeed configuration parameter
described 766

crash recovery 713

CREATE AUDIT POLICY statement 95

CREATE DATABASE PARTITION

GROUP statement 98

CREATE FUNCTION statement
description 100

CREATE INDEX statement
column-names in index keys 101

description 101

XML column 101

CREATE METHOD statement
description 119

CREATE NODEGROUP statement
CREATE DATABASE PARTITION

GROUP statement 98

CREATE PROCEDURE (SQL)

statement 124

CREATE ROLE statement 134

CREATE SCHEMA statement 135

CREATE SECURITY LABEL

COMPONENT statement 139

CREATE SECURITY LABEL

statement 137

CREATE SECURITY POLICY

statement 141

CREATE TABLE statement
syntax diagram 143

CREATE TABLESPACE statement
description 212

CREATE VIEW statement
description 225

CREATETAB parameter
GRANT...ON DATABASE

statement 278

creating
databases, granting authority 278

cross-tabulation rows 419

CUBE grouping
examples 419

query description 419

cur_commit 767

cur_commit configuration

parameter 767

CURRENT CLIENT_ACCTNG special

register 739

CURRENT DATE special register 739

CURRENT DECFLOAT ROUNDING

MODE special register 740

CURRENT DEFAULT TRANSFORM

GROUP special register 740

CURRENT DEGREE special register
description 741

CURRENT EXPLAIN MODE special

register
description 741

CURRENT EXPLAIN SNAPSHOT special

register
description 742

CURRENT FEDERATED ASYNCHRONY

special register 743

CURRENT FUNCTION PATH special

register
description 746

CURRENT IMPLICIT XMLPARSE

OPTION special register 743

CURRENT ISOLATION special

register 744

CURRENT MAINTAINED TABLE TYPES

FOR OPTIMIZATION special

register 745

CURRENT MDC ROLLOUT MODE

special register 745

882 Common Criteria Certification: Administration and User Documentation - Volume 2

CURRENT OPTIMIZATION PROFILE

special register 745

CURRENT PACKAGE PATH special

register 745

CURRENT PATH special register
description 746

CURRENT QUERY OPTIMIZATION

special register
description 747

CURRENT REFRESH AGE special

register
description 747

CURRENT TIME special register 747

CURRENT TIMESTAMP special

register 748

CURRENT TIMEZONE special

register 748

CURRENT USER special register 749

cursor name
definition 565

cursor variable name
definition 565

cursors
deleting, search condition details 239

terminating for unit of work 388

WITH HOLD
lock clause of COMMIT statement,

effect 365

D
DAS discovery mode configuration

parameter 785

das_codepage configuration

parameter 767

das_territory configuration

parameter 768

dasadm_group configuration

parameter 680

data
integrity

locks 386

data source
connecting to using JDBC 522

connecting using DriverManager 538

connecting using JDBC

DataSource 523

data sources
identifying 565

data structures
packed decimal 555

data types
result columns 419

database authorities
granting

GRANT (database authorities)

statement 278

database configuration file
changing 677

database configuration parameters
autorestart 713

database heap configuration

parameter 772

database manager
machine node type configuration

parameter 707

start timeout 700

database manager (continued)
stop timeout 700

database manager configuration

parameters
summary 663

database partition groups
adding comments to catalog 83

adding partitions 6

creating 98

distribution map creation 98

dropping partitions 6

database partitions
database configuration updates 677

database system monitor
default database system monitor

switches configuration

parameter 777

database territory code configuration

parameter 766

database_consistent configuration

parameter 705

database_level configuration

parameter 768

database_memory database configuration

parameter
description 768

database-managed space (DMS)
table spaces

CREATE TABLESPACE

statement 212

databases
accessing

granting authority 278

multiple threads 517

appl_memory configuration

parameter 753

autorestart configuration

parameter 703

backup_pending configuration

parameter 760

codepage configuration

parameter 763

codeset configuration parameter 763

collating information 764

configuration parameter

summary 663

contexts 517

CREATE TABLESPACE

statement 212

distributed 515

maximum number of concurrently

active databases 833

release level configuration

parameter 838

territory code configuration

parameter 766

territory configuration parameter 855

db_mem_thresh configuration

parameter 771

DB2 administration server (DAS)
configuration parameters

authentication 679

contact_host 765

das_codepage 767

das_territory 768

dasadm_group 680

db2system 770

DB2 administration server (DAS)

(continued)
configuration parameters (continued)

exec_exp_task 788

jdk_64_path 802

jdk_path 802

sched_enable 843

sched_userid 843

smtp_server 848

toolscat_db 855

toolscat_inst 856

toolscat_schema 856

DB2 Information Center
languages 869

updating 870, 871

versions 869

viewing in different languages 869

DB2 JDBC Type 2 Driver
DriverManager interface 527

security 526

DB2INSTPROF registry variable
location 659

db2nodes.cfg file
ALTER DATABASE PARTITION

GROUP statement 6

CONNECT (Type 1) statement 366

CREATE DATABASE PARTITION

GROUP statement 98

DBPARTITIONNUM function 476

DB2SECURITYLABEL data type
CREATE TABLE statement 143

db2system configuration parameter 770

DBADM (database administration)

authority
granting 278

DBCLOB data type
CREATE TABLE statement 143

dbheap database configuration parameter
overview 772

DBPARTITIONNUM function
description 476

deadlocks
checking for 686

dlchktime configuration

parameter 686

debugging
security plug-ins 600

decflt_rounding database configuration

parameter 773

decimal conversion 723

DECIMAL data type
assignments

cursor type 723

conversion
floating-point 723

decimal division scale to 3 configuration

parameter 818

DECRYPT_BIN function 477

DECRYPT_CHAR function 477

decrypting information 477

default connection context 520

default database path configuration

parameter 681

default number of SMS containers

configuration parameter 834

deletable views
description 225

Index 883

DELETE statement
description 239

dependent objects
DROP statement 245

descriptor-name
syntax diagram 565

dft_account_str configuration

parameter 774

dft_degree configuration parameter
description 775

dft_extent_sz configuration

parameter 776

dft_loadrec_ses configuration

parameter 776

dft_mon_bufpool configuration

parameter 777

dft_mon_lock configuration

parameter 777

dft_mon_sort configuration

parameter 777

dft_mon_stmt configuration

parameter 777

dft_mon_table configuration

parameter 777

dft_mon_timestamp configuration

parameter 777

dft_mon_uow configuration

parameter 777

dft_monswitches configuration

parameter 777

dft_mttb_types configuration

parameter 778

dft_prefetch_sz configuration

parameter 778

dft_queryopt configuration

parameter 779

dft_refresh_age configuration

parameter 780

dft_sqlmathwarn configuration

parameter 780

dftdbpath configuration parameter 681

diaglevel configuration parameter
description 782

diagpath configuration parameter 782

dir_cache configuration parameter 783

directory cache support configuration

parameter
description 783

DISCONNECT statement 379

discover server instance configuration

parameter 786

discover_db configuration

parameter 786

discover_inst configuration

parameter 786

discovery feature
discovery mode configuration

parameter 785

discovery mode configuration

parameter 785

DISTINCT keyword
subselect statement 419

distinct types
comparisons

overview 723

DROP statement 245

names 565

distributed relational databases
units of work 515

dlchktime configuration parameter 686

documentation
overview 865

PDF 865

printed 865

terms and conditions of use 874

double-byte character set (DBCS)
characters truncated during

assignment 723

DriverManager interface
DB2 JDBC Type 2 Driver 527

DROP statement
description 245

transforms 245

dyn_query_mgmt configuration

parameter
description 787

dynamic SQL
cursors

DECLARE CURSOR

statement 491

DYNAMICRULES effects 513

EXECUTE statement
invoking SQL statements 491

FETCH statement
invoking SQL statements 491

invoking statements 491

OPEN statement 491

PREPARE statement
invoking SQL statements 491

SQLDA
description 555

DYNAMICRULES precompile/bind

option
effects on dynamic SQL 513

E
embedded SQL applications

authorization 512

overview 491

enable_xmlchar database configuration

parameter
description 787

ENCRYPT scalar function 479

encrypted security-sensitive data
IBM Data Server Driver for JDBC and

SQLJ 534

encrypted user ID or encrypted password

security
IBM Data Server Driver for JDBC and

SQLJ 534

encryption
ENCRYPT function 479

GETHINT function 481

error messages
return codes 491

security plug-ins 618

SQLCA definitions 549

UPDATE statement 354

event monitors
DROP statement 245

names 565

EXCEPT operator of fullselect 382

exception tables
SET INTEGRITY statement 400

EXCLUSIVE MODE connection 366

exec_exp_task configuration

parameter 788

executable SQL statements 491

EXECUTE IMMEDIATE statement
embedded 491

EXECUTE statement
embedded 491

exposed correlation names
FROM clause 565

expressions
GROUP BY clause 419

ORDER BY clause 419

SELECT clause 419

subselect 419

F
failarchpath configuration

parameter 788

failed database partition server 717

failure transaction 713

FCM (Fast Communications Manager)
channels 698

monitor elements
fcm_num_channels 698

fcm_num_buffers configuration

parameter 697

fcm_num_channel configuration

parameter 698

fed_noauth configuration parameter 789

federated configuration parameter 789

federated databases
system support configuration

parameter 789

federated_async database manager

configuration parameter 789

fenced_pool database manager

configuration parameter 790

FIELDPROC clause
in ALTER TABLE statement 20

file reference variables
BLOBs 565

CLOBs 565

DBCLOBs 565

first active log file configuration

parameter 809

flagger utility for precompiling 506

FLOAT data type 143

floating point
to decimal conversion 723

FOR BIT DATA clause
CREATE TABLE statement 143

FOR clause
CREATE TABLE statement 143

FOR FETCH ONLY clause
SELECT statement 390

FOR READ ONLY clause
SELECT statement 390

FOREIGN KEY clause 143

foreign keys
adding with ALTER TABLE 20

constraint name conventions 143

dropping with ALTER TABLE 20

884 Common Criteria Certification: Administration and User Documentation - Volume 2

FORTRAN language
Connecting to databases 501

FREEPAGE in CREATE INDEX

statement 101

FROM clause
correlation-name example 565

DELETE statement 239

exposed names explained 565

non-exposed names explained 565

subselect syntax 419

use of correlation names 565

fullselect
CREATE VIEW statement 225

detailed syntax 382

examples 382

initialization 390

iterative 390

multiple operations, order of

execution 382

ORDER BY clause 419

subquery role, search condition 565

table reference 419

FUNCTION clause in COMMENT ON

statement 83

function designator syntax element 497

function mappings
mapping name 565

function name 565

functions
adding comments to catalog 83

arguments 475

client plug-in
check if authentication ID

exists 649

clean up client authentication 634

clean up resources 643

clean up server

authentication 646

free memory held by token 643

generate initial credentials 638

get authentication IDs 647

get default login context 636

initialize client authentication 633

initialize server

authentication 644

process service principal

name 642

remap user ID and password 635

validate password 640

description 475

group plug-in
check if group exists 626

clean up 623

free error message memory 627

free group list memory 627

get list of groups 623

initialization 621

in expressions 475

scalar
DBPARTITIONNUM 476

DECRYPTBIN 477

DECRYPTCHAR 477

ENCRYPT 479

GETHINT 481

HASHEDVALUE 482

NODENUMBER (see

DBPARTITIONNUM) 476

functions (continued)
scalar (continued)

PARTITION (see

HASHEDVALUE) 482

SECLABEL 483

SECLABEL_BY_NAME 483

SECLABEL_TO_CHAR 484

TABLE_NAME 486

TABLE_SCHEMA 487

G
GBPCACHE

in CREATE INDEX statement 101

generated columns
CREATE TABLE statement 143

GETHINT function
description 481

values and arguments 481

grand total row 419

GRANT (Exemption) statement 283

GRANT (Package Privileges)

statement 286

GRANT (Role) statement 289

GRANT (routine privileges) statement
description 291

GRANT (Schema Privileges) statement
description 295

GRANT (Security Label) statement 297

GRANT (Sequence Privileges) statement
description 300

GRANT (Server Privileges) statement
description 302

GRANT (SETSESSIONUSER Privilege)

statement 303

GRANT (Table Space Privileges)

statement
description 305

GRANT statement
CONTROL ON INDEX

description 285

CREATE ON SCHEMA 295

database authority
description 278

Nickname Privileges 307

Package Privileges
description 286

Table Privileges 307

Table, View or Nickname Privileges
description 307

View Privileges 307

GRAPHIC data type
CREATE TABLE statement 143

GROUP BY clause
subselect results 419

subselect rules and syntax 419

group_plugin configuration

parameter 654

grouping-expression 419

groups
defining names 565

GSS-APIs
authentication plug-ins 649

Restrictions 649

H
hadr_db_role configuration

parameter 791

hadr_local_host configuration

parameter 792

hadr_local_svc configuration

parameter 792

hadr_peer_window database

configuration parameter
description 793

hadr_remote_host configuration

parameter 793

hadr_remote_inst configuration

parameter 794

hadr_remote_svc configuration

parameter 794

hadr_syncmode configuration

parameter 794

hadr_timeout configuration

parameter 795

HASHEDVALUE function 482

hashing on partition keys 143

HAVING clause 419

health monitor
health_mon configuration

parameter 795

health_mon configuration parameter 795

help
configuring language 869

SQL statements 869

host identifiers
overview 565

host variables
BLOB 565

CLOB 565

DBCLOB 565

embedded SQL statements 491

indicator variables 565

inserting in rows 313

overview 565

syntax diagrams 565

I
IBM Data Server Driver for JDBC and

SQLJ
connecting to a data source

DriverManager interface 538

encrypted user ID or encrypted

password security 534

Kerberos security 531

security 536

user ID and password security 529

user ID-only security 530

identifiers
delimited 565

host 565

ordinary 565

SQL 565

Identifiers
cursor-name 565

identity columns
comparison with sequences 511

CREATE TABLE statement 143

implicit connections
CONNECT statement 366

Index 885

implicit schemas
GRANT (Database Authorities)

statement 278

REVOKE (Database Authorities)

statement 324

IN
CREATE TABLE statement 143

IN EXCLUSIVE MODE clause
LOCK TABLE statement 386

IN SHARE MODE clause
LOCK TABLE statement 386

INCLUDE clause
CREATE INDEX statement 101

INDEX clause
COMMENT statement 83

CREATE INDEX statement 101

GRANT statement (Table, View or

Nickname) 307

REVOKE statement, removing

privileges 349

INDEX keyword
DROP statement 245

index over XML data
CREATE INDEX statement 101

Syntax and option descriptions 101

indexes
catalog specification comments,

adding 83

correspondence to inserted row

values 313

deleting
using the DROP statement 245

grant control 285, 307

name
definition 565

primary key constraint 143

unique constraint 143

primary key, use in matching 20

privileges
revoking 330

renaming 321

unique key, use in matching 20

indexrec configuration parameter 796

indicator variables
description 565

host variable, uses in declaring 565

initial number of agents in pool

configuration parameter 827

initial number of fenced processes

configuration parameter 827

initializing
fullselect 390

inoperative
views 225

INSERT
inserting values 313

restrictions leading to failure 313

INSERT clause
GRANT statement (Table, View or

Nickname) 307

REVOKE statement, removing

privileges 349

INSERT statement
description 313

insertable views 225

instances
instance_memory configuration

parameter 798

INTEGER data type 143

integers
decimal conversion summary 723

in ORDER BY clause 419

integrity constraints
adding comments to catalog 83

intermediate result tables 419

INTERSECT operator
duplicate rows, use of ALL 382

of fullselect, role in comparison 382

INTO clause
FETCH statement, use in host

variable 565

INSERT statement, naming table or

view 313

restrictions on using 313

SELECT INTO statement, use in host

variable 565

values from applications

programs 565

intra_parallel database manager

configuration parameter 800

invoke behavior
DYNAMICRULES 513

IS clause
COMMENT statement 83

isolation level
SQLJ 519

isolation levels
in DELETE statement 239, 313, 354,

390

iterative fullselect 390

J
Java

applications 519

java_heap_sz database manager

configuration parameter 801

JDBC connection
using 525

JDBC transaction
committing 525

rolling back 525

jdk_64_path configuration

parameter 802

jdk_path configuration parameter
application development 547

description 803

jdk_path DAS configuration

parameter 802

joins
CREATE TABLE statement 143

subselect component of fullselect 419

tables
subselect clause 419

types
full outer 419

inner 419

left outer 419

right outer 419

K
keepfenced configuration parameter

description 803

updating 547

Kerberos authentication protocol
samples 651

Kerberos security
IBM Data Server Driver for JDBC and

SQLJ 531

L
label-based access control (LBAC)

ALTER SECURITY LABEL

COMPONENT statement 14

ALTER SECURITY POLICY

statement 17

CREATE SECURITY LABEL

COMPONENT statement 139

CREATE SECURITY LABEL

statement 137

CREATE SECURITY POLICY

statement 141

GRANT (Exemption) statement 283

GRANT (Security Label)

statement 297

REVOKE (Exemption) statement 328

REVOKE (Security Label)

statement 341

labels
object names in SQL procedures 565

latches
status with multiple threads 517

lateral correlation 419

LBAC (label-based access control)
ALTER SECURITY LABEL

COMPONENT statement 14

ALTER SECURITY POLICY

statement 17

CREATE SECURITY LABEL

COMPONENT statement 139

CREATE SECURITY LABEL

statement 137

CREATE SECURITY POLICY

statement 141

GRANT (Exemption) statement 283

GRANT (Security Label)

statement 297

REVOKE (Exemption) statement 328

REVOKE (Security Label)

statement 341

rule exemptions
GRANT (Exemption)

statement 283

REVOKE (Exemption)

statement 328

security label components
ALTER SECURITY LABEL

COMPONENT statement 14

CREATE SECURITY LABEL

COMPONENT statement 139

security labels
ALTER SECURITY LABEL

COMPONENT statement 14

CREATE SECURITY LABEL

COMPONENT statement 139

886 Common Criteria Certification: Administration and User Documentation - Volume 2

LBAC (label-based access control)

(continued)
security labels (continued)

CREATE SECURITY LABEL

statement 137

GRANT (Security Label)

statement 297

REVOKE (Security Label)

statement 341

security policies
ALTER SECURITY POLICY

statement 17

CREATE SECURITY POLICY

statement 141

libraries
security plug-in

loading in DB2 609

restrictions 613

shared
rebuilding routine 547

linking
description 508

LOAD parameter
GRANT...ON DATABASE

statement 278

loading
granting database authority 278

local_gssplugin configuration

parameter 654

locators
variable description 565

LOCK TABLE statement
description 386

locklist configuration parameter
description 686

locks
COMMIT statement 365

definition 715

during UPDATE 354

INSERT statement, default rules

for 313

LOCK TABLE statement 386

maximum percent of lock list before

escalation 690

maximum storage for lock list 686

restricting access 386

terminating for unit of work 388

time interval for checking deadlock

configuration parameter 686

locktimeout configuration

parameter 689

log_retain_status configuration

parameter 804

logarchmeth1 configuration

parameter 804

logarchmeth2 configuration

parameter 806

logarchopt1 configuration parameter 807

logarchopt2 configuration parameter 807

LOGBUFSZ configuration

parameter 808

logfilsiz configuration parameter 808

loghead configuration parameter 809

logindexbuild configuration

parameter 810

logpath configuration parameter 810

logprimary configuration parameter 810

logretain database configuration

parameter 811

logs
block on log disk full configuration

parameter 760

creating table without initial

logging 143

first active log file configuration

parameter 809

location of log files configuration

parameter 810

log buffer size configuration

parameter 808

log retain enable configuration

parameter 811

log retain status indicator

configuration parameter 804

mirror log path configuration

parameter 820

newlogpath configuration

parameter 822

number of primary log files

configuration parameter 810

number of secondary log files

configuration parameter 812

overflow log path configuration

parameter 834

recovery range and soft checkpoint

interval configuration

parameter 849

size of log files configuration

parameter 808

user exit enable configuration

parameter 861

logsecond configuration parameter 812

M
MANAGED BY clause

CREATE TABLESPACE

statement 212

materialized query tables (MQTs)
definition 143

max_connections database manager

configuration parameter
restrictions 839

max_connretries configuration

parameter 699

max_coordagents database manager

configuration parameter 814

restrictions 839

max_logicagents configuration

parameter 814

max_querydegree configuration

parameter 815

max_time_diff configuration

parameter 699

maxappls configuration parameter 816

MAXDARI configuration parameter
renamed to fenced_pool configuration

parameter 790

maxfilop database configuration

parameter 817

maximum database files open per

application configuration

parameter 817

maximum Java interpreter heap size

configuration parameter 801

maximum log per transaction

configuration parameter 815

maximum number of active applications

configuration parameter 816

maximum number of concurrently active

databases configuration parameter 833

maximum number of coordinating agents

configuration parameter 814

maximum number of fenced processes

configuration parameter 790

maximum percent of lock list before

escalation configuration parameter 690

maximum query degree of parallelism

configuration parameter 815

maximum storage for lock list

configuration parameter 686

maximum time difference among nodes

configuration parameter 699

maxlocks configuration parameter 690

maxlog configuration parameter 815

memory
applheapsz configuration

parameter 754

application memory configuration

parameter 753

aslheapsz configuration

parameter 755

dbheap configuration parameter 772

instance memory configuration

parameter 798

package cache size configuration

parameter 835

sort heap size configuration

parameter 850

sort heap threshold configuration

parameter 846

statement heap size configuration

parameter 854

METHOD clause
DROP statement 245

method designator syntax element 497

method name 565

methods
common uses 543

features 543

limitations 543

supported languages 543

min_dec_div_3 configuration

parameter 818

mincommit configuration parameter 819

mirror log path configuration

parameter 820

mirrorlogpath configuration

parameter 820

MODE keyword
LOCK TABLE statement 386

MODULE keyword
DROP statement 245

mon_heap_sz database manager

configuration parameter 821

MQTs (materialized query tables)
definition 143

multi-threaded applications
SQLJ routines 546

Index 887

multipage_alloc configuration

parameter 822

N
names

deleting rows 239

subselect columns 419

naming conventions
identifiers 565

qualified column rules 565

nested table expressions 419

newlogpath configuration

parameter 822

NICKNAME clause in DROP

statements 245

nicknames
definition 565

FROM clause
exposed names 565

nonexposed names 565

subselect 419

privileges
grant 307

grant control 307

revoking 349

qualifying a column name 565

SELECT clause 419

NO ACTION delete rule 143

node connection retries configuration

parameter 699

NODENUMBER function
DBPARTITIONNUM 476

nodes
connection elapse time 697

coordinating agents 814

maximum time difference among 699

nodetype configuration parameter 707

nonexecutable SQL statements
invoking 491

precompiler requirements 491

nonexposed correlation-name in FROM

clause 565

NOT FENCED routines 544

NOT NULL clause
in the CREATE TABLE statement 143

notices 875

notify level configuration parameter
overview 824

NULL value
SQL

assignment 723

grouping-expressions, allowable

uses 419

occurrences in duplicate rows 419

result columns 419

specified by indicator

variable 565

num_db_backups configuration

parameter
overview 825

num_freqvalues configuration

parameter 825

num_initfenced database manager

configuration parameter 827

num_iocleaners configuration

parameter 827

num_ioservers configuration

parameter 829

num_poolagents database manager

configuration parameter 830

num_quantiles configuration

parameter 831

numarchretry configuration

parameter 832

number log span configuration

parameter 830

number of commits to group

configuration parameter 819

number of database backups

configuration parameter 825

numbers
precision 555

scale 555

NUMDB
configuration parameter 833

numeric
assignments in SQL operations 723

comparisons 723

numinitagents configuration

parameter 827

numlogspan configuration

parameter 830

numsegs database configuration

parameter
overview 834

O
object identifier (OID)

columns
overview 143

CREATE TABLE statement 143

CREATE VIEW statement 225

object table 565

OF clause
CREATE VIEW statement 225

OID
see object identifier (OID) 143

ON clause
CREATE INDEX statement 101

ON TABLE clause
GRANT statement 307

REVOKE statement 349

ON UPDATE clause 143

on-db-partitions-clause
CREATE TABLESPACE

statement 212

ONLY clause
DELETE statement 239

UPDATE statement 354

operations
assignments 723

comparisons 723

OPTION clause
CREATE VIEW statement 225

ORDER BY clause
select statement 419

ordering DB2 books 868

outer joins
joined table 419

overflowlogpath configuration

parameter 834

P
packages

ALTER TABLE STATEMENT 20

authority to create
granting 278

authorization IDs
binding 565

dynamic statements 565

catalog comments 83

COMMIT statement effect on

cursors 365

creating
BIND command and existing bind

file 509

deleting 245

names
overview 565

privileges
granting 286

revoking using REVOKE (package

privileges) statement 331

revoking using REVOKE (table,

view, or nickname privileges)

statement 349

pages
sizes

database default 835

pagesize configuration parameter 835

parallelism
configuration parameters

dft_degree 775

intra_parallel 800

max_querydegree 815

parameter markers
dynamic SQL

host variables 565

parameters
naming conventions 565

PARTITION function
substitution for HASHEDVALUE

name 482

partitioned database environment
communications 697

partitioned database environments
transactions

failure recovery 717

partitioning keys
adding 20

defining when creating tables 143

dropping 20

partitioning maps
creating for database partition

groups 98

pckcachesz configuration parameter 835

performance
managing sequences 510

partitioning key

recommendation 143

routines
benefits 541

PIECESIZE
CREATE INDEX statement 101

plug-ins
group retrieval 620

GSS-API authentication 649

ID authentication 627

password authentication 627

888 Common Criteria Certification: Administration and User Documentation - Volume 2

plug-ins (continued)
security 593

APIs 610, 619

deploying 602, 603, 604

error messages 618

library restrictions 613

naming conventions 597

restrictions (GSS-API

authentication) 650

restrictions (summary) 606

return codes 615

samples 651

versions 651

point of consistency
database 713, 715

pool size for agents
controlling 830

positional updating of columns by

row 354

precision
numbers

SQLLEN variable 555

precompiling
accessing host application servers

through DB2 Connect 506

accessing multiple servers 506

embedded SQL applications 506

flagger utility 506

non-executable SQL statements 491

PREPARE statement
embedded 491

primary keys
adding

ALTER TABLE statement 20

CREATE TABLE statement 143

dropping 20

privileges required 307

privileges
database

revoking 339

INDEX
revoking 330

packages
revoking 331, 349

revoking
REVOKE statement 349

problem determination
information available 874

security plug-ins 600

tutorials 874

procedure designator syntax

element 497

procedures
authorization for creating

CREATE PROCEDURE (SQL)

statement 124

creating 124

names
overview 565

PROGRAM
DROP statement 245

protocols
TCP/IP service name configuration

parameter 681

PUBLIC AT ALL LOCATIONS 307

Q
qualified column names 565

Qualified names 565

qualifiers
object name 565

queries
authorization IDs 418

definition 418

examples
SELECT statement 390

recursive 390

statement heap size configuration

parameter 854

query_heap_sz database manager

configuration parameter 837

R
read-only views 225

REAL SQL data type
CREATE TABLE statement 143

rec_his_retentn configuration

parameter 838

records
locks to row data 313

recovery
auto restart enable configuration

parameter 703

backup pending indicator

configuration parameter 760

crash 713

default number of load recovery

sessions configuration

parameter 776

index re-creation time configuration

parameter 796

log retain status indicator

configuration parameter 804

number of database backups

configuration parameter 825

restore pending configuration

parameter 839

roll forward pending indicator

configuration parameter 841

two-phase commit protocol 717

user exit status indicator configuration

parameter 861

recovery history file
retention period configuration

parameter 838

recovery range and soft checkpoint

interval configuration parameter 849

recursion queries 390

recursive common table expression 390

reference types
comparisons 723

REFERENCES clause
GRANT statement (Table, View or

Nickname) 307

REVOKE statement, removing

privileges 349

referential constraints
adding comments to catalog 83

release configuration parameter 838

releasing resources
closing connection 521, 526

remote
function name 565

type name 565

remote access
CONNECT statement

EXCLUSIVE MODE, dedicated

connection 366

ON SINGLE DBPARTITIONNUM,

dedicated connection 366

server information only, no

operand 366

SHARE MODE, read-only for

non-connector 366

successful connections 366

unsuccessful connections 366

remote authorization name 565

remote unit of work
characteristics 516

example 516

overview 516

remote-object-name 565

remote-schema-name 565

remote-table-name 565

RENAME statement 321

RENAME TABLESPACE statement 323

Resolution of identifiers 565

RESTART DATABASE command 713

restore_pending configuration

parameter 839

RESTRICT delete rule 143

restrict_access configuration

parameter 709

RESTRICTIVE option
CREATE DATABASE

database configuration

parameter 709

result columns
subselect 419

result tables
query 418

resync_interval configuration

parameter 841

return codes
embedded statements 491

executable SQL statements 491

REVOKE (Exemption) statement 328

REVOKE (Package Privileges)

statement 331

REVOKE (Role) statement 334

REVOKE (Security Label) statement 341

REVOKE (Sequence Privileges) statement
description 342

REVOKE (SETSESSIONUSER Privilege)

statement 346

REVOKE statement
database authorities 324

index privileges 330

nickname privileges 349

package privileges 331

routine privileges 336

schema privileges 339

server privileges 344

table privileges 349

table space privileges 347

view privileges 349

REXX language
Connecting to databases 501

Index 889

REXX language (continued)
Disconnecting from databases 502

roll back
transaction, JDBC 525

rollback
definition 715

ROLLBACK statement
description 388

syntax 388

ROLLBACK TO SAVEPOINT statement
description 388

rollforward utility
roll forward pending indicator 841

rollfwd_pending configuration

parameter 841

ROLLUP grouping of GROUP BY

clause 419

routines
altering 547

benefits 541

classes 547

creating
security 503

description 541

invoking
security 503

libraries 547

NOT FENCED
security 503, 504, 544

rebuilding shared libraries 547

scalar UDFs
overview 542

security 503, 504, 544

THREADSAFE
security 544

row fullselect
UPDATE statement 354

rows
deleting 239

grant privilege 307

GROUP BY clause 419

HAVING clause 419

index keys with UNIQUE clause 101

indexes 101

inserting 313

locks to row data, INSERT

statement 313

restrictions leading to failure 313

SELECT clause
syntax diagram 419

updating column values, UPDATE

statement 354

rqrioblk configuration parameter 842

run behavior
DYNAMICRULES 513

run-time authorization ID 565

run-time services
multiple threads

effect on latches 517

S
sampling

subselect tablesample-clauses 419

savepoints
names 565

ROLLBACK TO SAVEPOINT 388

scalar functions
description 542

scale
data

comparisons in SQL 723

determined by SQLLEN

variable 555

number conversion in SQL 723

numbers
determined by SQLLEN

variable 555

sched_enable configuration

parameter 843

sched_userid configuration

parameter 843

SCHEMA clause
COMMENT statement 83

DROP statement 245

schemas
adding comments to catalog 83

CREATE SCHEMA statement 135

implicit
granting authority 278

revoking authority 324

names 565

scope
adding with ALTER TABLE

statement 20

adding with ALTER VIEW

statement 78

CREATE VIEW statement 225

defining with added column 20

defining with CREATE TABLE

statement 143

SCOPE clause
ALTER TABLE statement 20

ALTER VIEW statement 78

CREATE TABLE statement 143

CREATE VIEW statement 225

search conditions
HAVING clause

arguments and rules 419

WHERE clause 419

with DELETE
row selection 239

with UPDATE
arguments and rules 354

SECADM
database authority

GRANT (Database Authorities)

statement 278

revoking 324

parameter
GRANT (Database Authorities)

statement 278

REVOKE (Database Authorities)

statement 324

SECLABEL
scalar function 483

SECLABEL_BY_NAME scalar function
description 483

SECLABEL_TO_CHAR scalar function
description 484

SECURED WITH clause
ALTER TABLE statement 20

CREATE TABLE statement 143

security
applications 519

CONNECT statement 366

DB2 JDBC Type 2 Driver 526

IBM Data Server Driver for JDBC and

SQLJ 536

plug-ins 593

32 bit considerations 600

64 bit considerations 600

API for validating passwords 640

API versions 651

APIs 619, 621, 623, 626, 627, 633,

634, 635, 636, 638, 642, 643, 644,

646, 647, 649

APIs for group retrieval 620

APIs for GSS-API 649

APIs for user ID/password 627

calling sequence of, order in which

called 610

configuration parameters 653,

654, 656, 678

debugging, problem

determination 600

deploying 602, 603, 604

deployment 593, 606

developing 593

enabling 593

error messages 618

GSS-API 603

GSS-API on restrictions 650

initialization 609

libraries; location of security

plug-in 597

limitations on deployment of

plug-ins 606

loading 593, 609

naming 597

overview 593

restrictions on libraries 613

return codes 615

SQLCODES and SQLSTATES 600

two-part user ID support 598

routines 503, 504

samples 651

security administrator authority

(SECADM)
GRANT (Database Authorities)

statement 278

revoking 324

SECURITY LABEL clause
COMMENT statement 83

DROP statement 245

SECURITY LABEL COMPONENT clause
COMMENT statement 83

DROP statement 245

security labels (LBAC)
ALTER SECURITY LABEL

COMPONENT statement 14

CREATE SECURITY LABEL

COMPONENT statement 139

CREATE SECURITY LABEL

statement 137

GRANT (Security Label)

statement 297

policies
ALTER SECURITY POLICY

statement 17

890 Common Criteria Certification: Administration and User Documentation - Volume 2

security labels (LBAC) (continued)
policies (continued)

CREATE SECURITY POLICY

statement 141

REVOKE (Security Label)

statement 341

security plug-ins
developing 609

SECURITY POLICY clause
COMMENT statement 83

CREATE TABLE statement 143

DROP statement 245

security-label-name 565

security-policy-name 565

security, encrypted security-sensitive data
IBM Data Server Driver for JDBC and

SQLJ 534

security, encrypted user ID or encrypted

password
IBM Data Server Driver for JDBC and

SQLJ 534

security, Kerberos
IBM Data Server Driver for JDBC and

SQLJ 531

security, user ID and password
IBM Data Server Driver for JDBC and

SQLJ 529

security, user ID-only
IBM Data Server Driver for JDBC and

SQLJ 530

SELECT clause
GRANT statement (Table, View or

Nickname) 307

list notation
column reference 419

REVOKE statement, removing

privileges 349

with DISTINCT keyword 419

select list
application rules and syntax 419

description 419

notation rules and conventions 419

SELECT statement
definition 390

description 390

examples 390

fullselect detailed syntax 382

subselects 419

VALUES clause 382

select-statement SQL statement construct
definition 491

dynamic invocation 491

static invocation 491

self tuning memory
enabling 843

self_tuning_mem
configuration parameter 843

seqdetect configuration parameter 845

SEQUENCE clause
COMMENT statement 83

sequence expressions
description 509

sequences
comparison with identity

columns 511

DROP statement 245

managing behavior 510

sequences (continued)
using 509

sequential values
generating 509

serialization
SQL statement execution 517

servers
granting privileges 302

names 565

SET clause
UPDATE statement 354

SET CONSTRAINTS statement 400

SET CURRENT SQLID statement 417

set integrity pending state 400

SET INTEGRITY statement 400

SET NULL delete rule 143

set operators
EXCEPT, comparing differences 382

INTERSECT, role of AND in

comparisons 382

UNION, correspondence to OR 382

SET PASSTHRU statement
independence from COMMIT

statement 365

independence from ROLLBACK

statement 388

SET ROLE statement 354

SET SCHEMA statement 417

SET SERVER OPTION statement
independence from COMMIT

statement 365

independence from ROLLBACK

statement 388

SET TRANSACTION clause
SQLJ 519

SETSESSIONUSER privilege
GRANT (SETSESSIONUSER Privilege)

statement 303

REVOKE (SETSESSIONUSER

Privilege) statement 346

SHARE MODE connection 366

SHARE option
LOCK TABLE statement 386

shared libraries
rebuilding routine 547

sheapthres configuration parameter 846

sheapthres_shr configuration

parameter 847

shift-in characters
not truncated by assignments 723

single precision float data type 143

SMALLINT data type
static SQL 143

SMS (system managed space)
table spaces

CREATE TABLESPACE

statement 212

smtp_server configuration

parameter 848

softmax configuration parameter 849

sortheap database configuration

parameter
description 850

sorting
ordering of results 723

sort heap size configuration

parameter 850

sorting (continued)
sort heap threshold configuration

parameter 846

sort heap threshold for shared

sorts 847

string comparisons 723

sources
embedded SQL applications 506

special registers
CLIENT ACCTNG 739

CURRENT CLIENT_ACCTNG 739

CURRENT DATE 739

CURRENT DECFLOAT ROUNDING

MODE 740

CURRENT DEFAULT TRANSFORM

GROUP 740

CURRENT DEGREE 741

CURRENT EXPLAIN MODE 741

CURRENT EXPLAIN

SNAPSHOT 742

CURRENT FEDERATED

ASYNCHRONY 743

CURRENT FUNCTION PATH 746

CURRENT IMPLICIT XMLPARSE

OPTION 743

CURRENT ISOLATION 744

CURRENT MAINTAINED TABLE

TYPES FOR OPTIMIZATION 745

CURRENT MDC ROLLOUT

MODE 745

CURRENT OPTIMIZATION

PROFILE 745

CURRENT PACKAGE PATH 745

CURRENT PATH 746

CURRENT QUERY

OPTIMIZATION 747

CURRENT REFRESH AGE 747

CURRENT TIME 747

CURRENT TIMESTAMP 748

CURRENT TIMEZONE 748

CURRENT USER 749

SPECIFIC FUNCTION clause
COMMENT statement 83

specific name
definition 565

SPECIFIC PROCEDURE clause
COMMENT statement 83

spm_log_file_sz configuration

parameter 851

spm_log_path configuration

parameter 852

spm_max_resync configuration

parameter 853

spm_name configuration parameter 853

SQL (Structured Query Language)
authorization

embedded SQL 512

SQL objects
deleting 245

SQL operations
basic 723

SQL path 565

SQL return codes 491

SQL statements
ALTER AUDIT POLICY 3

ALTER DATABASE PARTITION

GROUP 6

Index 891

SQL statements (continued)
ALTER FUNCTION 9

ALTER METHOD 11

ALTER NODEGROUP (see ALTER

DATABASE PARTITION

GROUP) 6

ALTER PROCEDURE (External) 12

ALTER SECURITY LABEL

COMPONENT 14

ALTER SECURITY POLICY 17

ALTER TABLE 20

ALTER TABLESPACE 66

ALTER VIEW 78

AUDIT 80

COMMENT 83

COMMIT 365

CONNECT (Type 1) 366

CONNECT (Type 2) 373

control 495

CREATE AUDIT POLICY 95

CREATE DATABASE PARTITION

GROUP 98

CREATE FUNCTION, overview 100

CREATE INDEX 101

CREATE METHOD 119

CREATE NODEGROUP (see CREATE

DATABASE PARTITION

GROUP) 98

CREATE PROCEDURE (SQL) 124

CREATE ROLE 134

CREATE SCHEMA 135

CREATE SECURITY LABEL 137

CREATE SECURITY LABEL

COMPONENT 139

CREATE SECURITY POLICY 141

CREATE TABLE 143

CREATE TABLESPACE 212

CREATE VIEW 225

DELETE 239

DISCONNECT 379

displaying help 869

DROP 245

DROP TRANSFORM 245

embedded 491

GRANT (Database Authorities 278

GRANT (Exemption) 283

GRANT (Index Privileges) 285

GRANT (Nickname Privileges) 307

GRANT (Package Privileges) 286

GRANT (Role) 289

GRANT (routine privileges) 291

GRANT (Schema Privileges) 295

GRANT (Security Label) 297

GRANT (Sequence Privileges) 300

GRANT (Server Privileges) 302

GRANT (SETSESSIONUSER

Privilege) 303

GRANT (Table Privileges) 307

GRANT (Table Space Privileges) 305

GRANT (View Privileges) 307

INSERT 313

interactive entry 491

invoking 491

LOCK TABLE 386

RENAME 321

RENAME TABLESPACE 323

REVOKE (Database Authorities) 324

SQL statements (continued)
REVOKE (Exemption) 328

REVOKE (Index Privileges) 330

REVOKE (Nickname Privileges) 349

REVOKE (Package Privileges) 331

REVOKE (Role) 334

REVOKE (routine privileges) 336

REVOKE (Schema Privileges) 339

REVOKE (Security Label) 341

REVOKE (Sequence Privileges) 342

REVOKE (Server Privileges) 344

REVOKE (SETSESSIONUSER

Privilege) 346

REVOKE (Table Privileges) 349

REVOKE (Table Space

Privileges) 347

REVOKE (View Privileges) 349

ROLLBACK 388

ROLLBACK TO SAVEPOINT 388

SELECT 390

serializing execution 517

SET CONSTRAINTS 400

SET INTEGRITY 400

SET ROLE 354

SET SCHEMA 417

statement heap size configuration

parameter 854

TRANSFER OWNERSHIP 458

UPDATE 354

SQL subquery
WHERE clause 419

SQL syntax
GROUP BY clause

subselect 419

multiple operations, order of

execution 382

SELECT clause description 419

WHERE clause search conditions 419

SQL variable name 565

SQL/XML
CREATE INDEX statement 101

SQL92 standard
rules for dynamic SQL 417

SQLCA (SQL communication area)
description 549

entry changed by UPDATE 354

error reporting 549

partitioned database systems 549

viewing interactively 549

SQLCA structure
overview 491

SQLCODE
description 491

SQLD field in SQLDA 555

SQLDA (SQL descriptor area)
contents 555

SQLDABC field in SQLDA 555

SQLDAID field in SQLDA 555

SQLDATA field in SQLDA 555

SQLDATALEN field in SQLDA 555

SQLDATATYPE_NAME field in

SQLDA 555

SQLDBCON configuration file 659, 660

SQLDBCONF configuration file 659, 660

sqleAttachToCtx API 517

sqleBeginCtx API 517

sqleDetachFromCtx API 517

sqleEndCtx API 517

sqleGetCurrentCtx API 517

sqleInterruptCtx API 517

sqleSetTypeCtx API 517

SQLIND field in SQLDA 555

SQLJ
connecting to a data source 520

connection declaration clause 521

context clause 520

isolation level 519

routines
connection contexts 546

SET TRANSACTION clause 519

SQLLEN field in SQLDA 555

SQLLONGLEN field in SQLDA 555

SQLN field in SQLDA 555

SQLNAME field in SQLDA 555

SQLSTATE
description 491

SQLTYPE field in SQLDA 555

SQLVAR field in SQLDA 555

srv_plugin_mode configuration

parameter 656

srvcon_auth configuration

parameter 654

srvcon_gssplugin_list configuration

parameter 655

srvcon_pw_plugin configuration

parameter 656

ssl_cipherspecs 694

ssl_cipherspecs configuration

parameter 694

ssl_clnt_keydb 695

ssl_clnt_keydb configuration

parameter 695

ssl_clnt_stash 695

ssl_clnt_stash configuration

parameter 695

ssl_svcename 693

ssl_svcename configuration

parameter 693

ssl_svr_keydb 692

ssl_svr_keydb configuration

parameter 692

ssl_svr_label 693

ssl_svr_label configuration

parameter 693

ssl_svr_stash 692

ssl_svr_stash configuration

parameter 692

ssl_versions 694

ssl_versions configuration

parameter 694

standards
setting rules for dynamic SQL 417

start and stop timeout configuration

parameter 700

start_stop_time configuration

parameter 700

stat_heap_sz database configuration

parameter 853

statement heap size configuration

parameter 854

statements
names 565

static SQL
DECLARE CURSOR statement 491

892 Common Criteria Certification: Administration and User Documentation - Volume 2

static SQL (continued)
FETCH statement 491

invoking 491

OPEN statement 491

select 491

statements 491

STAY RESIDENT
CREATE PROCEDURE

statement 124

STMM (Self-Tuning Memory Manager)
enabling 843

stmtheap database configuration

parameter 854

storage
backing out, unit of work,

ROLLBACK 388

storage structures
ALTER TABLESPACE statement 66

CREATE TABLESPACE

statement 212

stored procedures
fenced 505

how used 505

strings
assignment conversion rules 723

Structured Query Language (SQL)
assignments 723

basic operands, assignments and

comparisons 723

comparison operation, overview 723

control statements 495

structured types
DROP statement 245

host variables 565

sub-total rows 419

subqueries
HAVING clause 419

using fullselect as search

condition 565

WHERE clause 419

subselect
description 419

example sequence of operations 419

examples 419

FROM clause
subselect 419

summary tables
definition 143

super-aggregate rows 419

super-groups 419

supertypes
identifier names 565

svcename configuration parameter 681

symmetric super-aggregate rows 419

SYNONYM clause
in place of ALIAS clause 245

synonyms
DROP ALIAS statement 245

qualifying a column name 565

syntax
common elements 497

elements 497

function designator 497

method designator 497

procedure designator 497

sysadm_group configuration

parameter 682

sysctrl_group configuration

parameter 683

sysmaint_group configuration

parameter 683

sysmon_group configuration

parameter 684

system-containers
CREATE TABLESPACE

statement 212

T
TABLE clause

COMMENT statement 83

DROP statement 245

table reference 419

TABLE HIERARCHY clause
DROP statement 245

table name
CREATE TABLE statement 143

table reference
alias 419

nested table expressions 419

nickname 419

table name 419

view name 419

table spaces
adding

comments to catalog 83

creating
CREATE TABLESPACE

statement 212

deleting using DROP statement 245

dropping
DROP statement 245

grant privileges 305

identification
CREATE TABLE statement 143

index
CREATE TABLE statement 143

name 565

page size 212

renaming 323

revoking privileges 347

TABLE_NAME function
alias 486

description 486

values and arguments 486

TABLE_SCHEMA function
alias 487

description 487

values and arguments 487

tables
adding

columns, ALTER TABLE 20

comments to catalog 83

alias 245

altering 20

authorization for creating 143

correlation name 565

creating
granting authority 278

SQL statement instructions 143

deleting
using DROP statement 245

designator to avoid ambiguity 565

exception 400

tables (continued)
exposed names in FROM clause 565

expressions
common table expressions 390

FROM clause
subselect naming conventions 419

generated columns 20

grant privileges 307

indexes 101

inserting rows 313

joining
partitioning key

considerations 143

names
description 565

in ALTER TABLE statement 20

in FROM clause 419

in LOCK TABLE statement 386

in SELECT clause, syntax

diagram 419

nested table expression 565

non-exposed names in FROM

clause 565

qualified column name 565

reference 419

renaming 321

restricting shared access, LOCK

TABLE statement 386

revoking privileges 349

scalar fullselect 565

schemas 135

subquery 565

unique correlation names 565

updating by row and column,

UPDATE statement 354

TABLESPACE clause
COMMENT statement 83

TCP/IP service name configuration

parameter 681

termination
unit of work 365, 388

terms and conditions
use of publications 874

territory configuration parameter 855

threads
multiple

using in DB2 applications 517

THREADSAFE routines 544

time
deadlock configuration parameter,

interval for checking 686

difference among nodes,

maximum 699

TIME data types
CREATE TABLE statement 143

TIMESTAMP data type
CREATE TABLE statement 143

Tivoli Storage Manager (TSM)
management class configuration

parameter 859

node name configuration

parameter 859

owner name configuration

parameter 860

password configuration

parameter 860

Index 893

tm_database configuration

parameter 855

TO clause
GRANT statement

database authority 278

index privileges 285

package privileges 286

schema priveleges 295

table priveleges 307

toolscat_db configuration parameter 855

toolscat_inst configuration

parameter 856

toolscat_schema configuration

parameter 856

tp_mon_name configuration

parameter 856

track modified pages enable

configuration parameter 858

trackmod configuration parameter 858

transaction processing monitors
transaction processing monitor name

configuration parameter 856

transactions
description 515

failure recovery
n the failed database partition

server 717

on active database partition

server 717

reducing the impact of failure 713

TRANSFER OWNERSHIP statement 458

transformations
DROP statement 245

TRIGGER clause
COMMENT statement 83

triggers
adding comments to catalog 83

dropping 245

INSERT statement 313

names 565

updates
UPDATE statement 354

troubleshooting
online information 874

security plug-ins 600

tutorials 874

truncation
numbers 723

trust_allclnts configuration

parameter 685

trust_clntauth configuration

parameter 858

tsm_mgmtclass configuration

parameter 859

tsm_nodename configuration

parameter 859

tsm_owner configuration parameter 860

tsm_password configuration

parameter 860

tutorials
problem determination 874

troubleshooting 874

Visual Explain 873

two-phase commit
protocol 717

type 2 indexes 101

TYPE clause
COMMENT statement 83

DROP statement 245

type mapping
name 565

type name 565

typed tables
names 565

typed views
defining subviews 225

names 565

U
undefined reference errors 565

UNDER clause
CREATE VIEW statement 225

UNION operator
role in comparison of fullselect 382

UNIQUE clause
ALTER TABLE statement 20

CREATE INDEX statement 101

CREATE TABLE statement 143

unique constraints
adding with ALTER TABLE 20

ALTER TABLE statement 20

CREATE TABLE statement 143

dropping with ALTER TABLE 20

unique correlation names
table designators 565

unique keys
ALTER TABLE statement 20

CREATE TABLE statement 143

units of work (UOW) 515

canceling 388

COMMIT statement 365

definition 715

remote 516

ROLLBACK statement, effect 388

terminating 365

terminating without saving

changes 388

Unqualified names 565

UPDATE clause
GRANT statement (Table, View or

Nickname) 307

REVOKE statement, removing

privileges 349

UPDATE statement
description 354

row fullselect 354

updates
DB2 Information Center 870, 871

updatable views 225

user data
directories 782

user exit enable configuration

parameter 861

user exit status indicator configuration

parameter 861

user ID and password security
IBM Data Server Driver for JDBC and

SQLJ 529

user ID-only security
IBM Data Server Driver for JDBC and

SQLJ 530

user IDs
two-part user IDs 598

user_exit_status configuration

parameter 861

user-defined functions
CREATE FUNCTION statement

description 100

description 475

DROP statement 245

REVOKE (Database Authorities)

statement 324

user-defined types
adding comments to catalog 83

distinct data types
CREATE TABLE statement 143

structured types 143

userexit database configuration

parameter 861

USING clause
CREATE INDEX statement 101

util_heap_sz configuration

parameter 861

util_impact_lim configuration parameter
described 862

V
VALUES clause

fullselect 382

loading one row 313

rules for number of values 313

VARCHAR data type
CREATE TABLE statement 143

vendoropt configuration parameter 863

VIEW clause
CREATE VIEW statement 225

DROP statement 245

VIEW HIERARCHY clause
DROP statement 245

view name
definition 565

in ALTER VIEW statement 78

views
adding comments to catalog 83

alias 245

column names 225

control privilege
granting 307

limitations on 307

creating 225

deletable 225

deleting using DROP statement 245

exposed names in FROM clause 565

FROM clause
subselect naming conventions 419

grant privileges 307

inoperative 225

insertable 225

inserting rows in viewed table 313

names in FROM clause 419

names in SELECT clause
syntax diagram 419

non-exposed names in FROM

clause 565

preventing view definition loss, WITH

CHECK OPTION 354

qualifying a column name 565

894 Common Criteria Certification: Administration and User Documentation - Volume 2

views (continued)
read-only 225

revoking privileges 349

schemas 135

updatable 225

updating rows by columns 354

WITH CHECK OPTION 354

Vista
user data directories 782

Visual Explain
tutorial 873

W
WHENEVER statement

changing flow of control 491

WHERE clause
DELETE statement 239

subselect component of fullselect 419

UPDATE statement 354

WITH common table expression
select-statement 390

wlm_collect_int database configuration

parameter
description 863

wrappers
names 565

X
XML

CREATE INDEX statement 101

XML columns
CREATE INDEX statement 101

XML data
CREATE INDEX statement 101

XQuery statements
statement heap size configuration

parameter 854

Index 895

896 Common Criteria Certification: Administration and User Documentation - Volume 2

����

Printed in USA

SC14-7214-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

DB

2
Ve

rs
io

n
9.

7
fo

r L
in

ux
, U

NI
X,

an

d
W

in
do

w
s

Co
m

m
on

Cr

ite
ria

Ce

rti
fic

at
io

n:

Ad

m
in

is
tra

tio
n

an
d

Us
er

Do

cu
m

en
ta

tio
n

- V
ol

um
e

2
�
�

�

	Contents
	Common Criteria certification of DB2 products
	Supported interfaces for a Common Criteria evaluated configuration
	About this book
	Part 1. SQL Statements
	Chapter 1. SQL Statements for Administrators
	ALTER AUDIT POLICY
	ALTER DATABASE PARTITION GROUP
	ALTER FUNCTION
	ALTER METHOD
	ALTER PROCEDURE (External)
	ALTER SECURITY LABEL COMPONENT
	ALTER SECURITY POLICY
	ALTER TABLE
	ALTER TABLESPACE
	ALTER VIEW
	AUDIT
	COMMENT
	CREATE AUDIT POLICY
	CREATE DATABASE PARTITION GROUP
	CREATE FUNCTION
	CREATE INDEX
	CREATE METHOD
	CREATE PROCEDURE (SQL)
	CREATE ROLE
	CREATE SCHEMA
	CREATE SECURITY LABEL
	CREATE SECURITY LABEL COMPONENT
	CREATE SECURITY POLICY
	CREATE TABLE
	CREATE TABLESPACE
	CREATE VIEW
	DELETE
	DROP
	GRANT (Database Authorities)
	GRANT (Exemption)
	GRANT (Index Privileges)
	GRANT (Package Privileges)
	GRANT (Role)
	GRANT (routine privileges)
	GRANT (Schema Privileges)
	GRANT (Security Label)
	GRANT (Sequence Privileges)
	GRANT (Server Privileges)
	GRANT (SETSESSIONUSER Privilege)
	GRANT (Table Space Privileges)
	GRANT (Table, View, or Nickname Privileges)
	INSERT
	RENAME
	RENAME TABLESPACE
	REVOKE (Database Authorities)
	REVOKE (Exemption)
	REVOKE (Index Privileges)
	REVOKE (Package Privileges)
	REVOKE (Role)
	REVOKE (routine privileges)
	REVOKE (Schema Privileges)
	REVOKE (Security Label)
	REVOKE (Sequence Privileges)
	REVOKE (Server Privileges)
	REVOKE (SETSESSIONUSER Privilege)
	REVOKE (Table Space Privileges)
	REVOKE (Table, View, or Nickname Privileges)
	SET ROLE
	UPDATE

	Chapter 2. SQL Statements for Users
	COMMIT
	CONNECT (Type 1)
	CONNECT (Type 2)
	DISCONNECT
	fullselect
	LOCK TABLE
	ROLLBACK
	SELECT
	select-statement
	SET INTEGRITY
	SET SCHEMA
	SQL queries
	subselect
	TRANSFER OWNERSHIP

	Part 2. Functions
	Chapter 3. Functions
	Functions overview
	DBPARTITIONNUM
	DECRYPT_BIN and DECRYPT_CHAR
	ENCRYPT
	GETHINT
	HASHEDVALUE
	SECLABEL
	SECLABEL_BY_NAME
	SECLABEL_TO_CHAR
	TABLE_NAME
	TABLE_SCHEMA

	Part 3. Applications
	Chapter 4. Application considerations
	About SQL statements
	How SQL statements are invoked
	About SQL control statements
	Function, method, and procedure designators

	Database connection management via embedded SQL applications
	Connecting to DB2 databases in embedded SQL applications
	Disconnecting from embedded SQL applications

	Considerations for routines
	Security of routines
	Securing routines

	Guidelines for stored procedures
	Security Considerations when Using SQL in Applications
	Precompilation of embedded SQL applications with the PRECOMPILE command
	Compiling and linking source files containing embedded SQL
	Package recreation using the BIND command and an existing bind file
	Generating sequential values
	Managing sequence behavior
	Sequences compared to identity columns
	Authorization Considerations for Embedded SQL
	Effect of DYNAMICRULES bind option on dynamic SQL

	Units of work and transactions
	Units of work
	Remote unit of work
	Concurrent transactions and multi-threaded database access in embedded SQL applications

	Security and Java Applications
	SQLJ SET-TRANSACTION-clause
	Setting the isolation level for an SQLJ transaction
	SQLJ context-clause
	Connecting to a data source using SQLJ
	SQLJ connection-declaration-clause
	Closing the connection to a data source in an SQLJ application

	JDBC Considerations
	How JDBC applications connect to a data source
	Connecting to a data source using the DataSource interface
	JDBC connection objects
	Committing or rolling back JDBC transactions
	Disconnecting from data sources in JDBC applications

	Type 2 JDBC Driver Considerations
	Security under the DB2 JDBC Type 2 Driver
	How DB2 applications connect to a data source using the DriverManager interface with the DB2 JDBC Type 2 Driver

	Universal JDBC Driver Considerations
	User ID and password security under the IBM Data Server Driver for JDBC and SQLJ
	User ID-only security under the IBM Data Server Driver for JDBC and SQLJ
	Kerberos security under the IBM Data Server Driver for JDBC and SQLJ
	Encrypted password, user ID, or user ID and password security under the IBM Data Server Driver for JDBC and SQLJ
	Security under the IBM Data Server Driver for JDBC and SQLJ
	Connecting to a data source using the DriverManager interface with the IBM Data Server Driver for JDBC and SQLJ

	Chapter 5. Security and Routines
	Benefits of using routines
	External scalar functions
	Methods
	Security considerations for routines
	Connection contexts in SQLJ routines
	External routine library and class management
	Rebuilding DB2 routine shared libraries
	Updating the database manager configuration file

	Chapter 6. SQLCA (SQL communications area)
	Chapter 7. SQLDA (SQL descriptor area)
	Chapter 8. Identifiers
	Part 4. Security plug-ins
	Chapter 9. An overview of security plug-ins
	Security plug-ins
	Security plug-in library locations
	Security plug-in naming conventions
	Security plug-in support for two-part user IDs
	32-bit and 64-bit considerations for security plug-ins
	Security plug-in problem determination
	Deploying a group retrieval plug-in
	Deploying a user ID/password plug-in
	Deploying a GSS-API plug-in
	Deploying a Kerberos plug-in
	Restrictions on security plug-ins

	Chapter 10. Developing security plug-ins
	How DB2 loads security plug-ins
	Calling sequences for the security plug-in APIs
	Restrictions for developing security plug-in libraries
	Return codes for security plug-ins
	Error message handling for security plug-ins

	Chapter 11. Security plug-in APIs
	Security plug-in APIs
	Group plug-in APIs
	APIs for group retrieval plug-ins
	db2secGroupPluginInit API - Initialize group plug-in
	db2secPluginTerm - Clean up group plug-in resources
	db2secGetGroupsForUser API - Get list of groups for user
	db2secDoesGroupExist API - Check if group exists
	db2secFreeGroupListMemory API - Free group list memory
	db2secFreeErrormsg API - Free error message memory

	User authentication plug-in APIs
	APIs for user ID/password authentication plug-ins
	db2secClientAuthPluginInit API - Initialize client authentication plug-in
	db2secClientAuthPluginTerm API - Clean up client authentication plug-in resources
	db2secRemapUserid API - Remap user ID and password
	db2secGetDefaultLoginContext API - Get default login context
	db2secGenerateInitialCred API - Generate initial credentials
	db2secValidatePassword API - Validate password
	db2secProcessServerPrincipalName API - Process service principal name returned from server
	db2secFreeToken API - Free memory held by token
	db2secFreeInitInfo API - Clean up resources held by the db2secGenerateInitialCred
	db2secServerAuthPluginInit - Initialize server authentication plug-in
	db2secServerAuthPluginTerm API - Clean up server authentication plug-in resources
	db2secGetAuthIDs API - Get authentication IDs
	db2secDoesAuthIDExist - Check if authentication ID exists

	GSS-API plug-in APIs
	Required APIs and definitions for GSS-API authentication plug-ins
	Restrictions for GSS-API authentication plug-ins

	Security plug-in API versioning
	Security plug-in samples

	Chapter 12. Security Plug-In Configuration Parameters
	clnt_krb_plugin - Client Kerberos plug-in
	clnt_pw_plugin - Client userid-password plug-in
	group_plugin - Group plug-in
	local_gssplugin - GSS API plug-in used for local instance level authorization
	srvcon_auth - Authentication type for incoming connections at the server
	srvcon_gssplugin_list - List of GSS API plug-ins for incoming connections at the server
	srvcon_pw_plugin - Userid-password plug-in for incoming connections at the server
	srv_plugin_mode - Server plug-in mode

	Part 5. Configuration Parameters
	Chapter 13. Configuration Parameters
	Configuration parameters
	Configuring the DB2 database manager with configuration parameters
	Configuration parameters summary
	Changing the database configuration across multiple database partitions
	Security-Related Configuration Parameters
	audit_buf_sz - Audit buffer size
	authentication - Authentication type
	authentication - Authentication type DAS
	catalog_noauth - Cataloging allowed without authority
	dasadm_group - DAS administration authority group name
	dftdbpath - Default database path
	svcename - TCP/IP service name
	sysadm_group - System administration authority group name
	sysctrl_group - System control authority group name
	sysmaint_group - System maintenance authority group name
	sysmon_group - System monitor authority group name
	trust_allclnts - Trust all clients

	Locking Configuration Parameters
	dlchktime - Time interval for checking deadlock
	locklist - Maximum storage for lock list
	locktimeout - Lock timeout
	maxlocks - Maximum percent of lock list before escalation

	SSL Configuration Parameters
	ssl_svr_keydb - SSL key file path for incoming SSL connections at the server configuration parameter
	ssl_svr_stash - SSL stash file path for incoming SSL connections at the server configuration parameter
	ssl_svr_label - Label in the key file for incoming SSL connections at the server configuration parameter
	ssl_svcename - SSL service name configuration parameter
	ssl_versions - Supported SSL versions at the server configuration parameter
	ssl_cipherspecs - Supported cipher specifications at the server configuration parameter
	ssl_clnt_keydb - SSL key file path for outbound SSL connections at the client configuration parameter
	ssl_clnt_stash - SSL stash file path for outbound SSL connections at the client configuration parameter

	Chapter 14. Communications in a partitioned database environment
	conn_elapse - Connection elapse time
	fcm_num_buffers - Number of FCM buffers
	fcm_num_channels - Number of FCM channels
	max_connretries - Node connection retries
	max_time_diff - Maximum time difference among nodes
	start_stop_time - Start and stop timeout

	Chapter 15. autorestart - Auto restart enable
	Chapter 16. database_consistent - Database is consistent
	Chapter 17. nodetype - Machine node type
	Chapter 18. restrict_access - Database has restricted access configuration parameter
	Part 6. Recovery considerations
	Chapter 19. Crash Recovery and Database Logs
	Crash recovery

	Chapter 20. Application processes, concurrency, and recovery
	Chapter 21. Recovering from transaction failures in a partitioned database environment
	Part 7. Appendixes
	Appendix A. Related topics (linked to from topics in this book)
	SQL Reference topics
	Assignments and comparisons
	CURRENT CLIENT_ACCTNG
	CURRENT DATE
	CURRENT DECFLOAT ROUNDING MODE
	CURRENT DEFAULT TRANSFORM GROUP
	CURRENT DEGREE
	CURRENT EXPLAIN MODE
	CURRENT EXPLAIN SNAPSHOT
	CURRENT FEDERATED ASYNCHRONY
	CURRENT IMPLICIT XMLPARSE OPTION
	CURRENT ISOLATION
	CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
	CURRENT MDC ROLLOUT MODE
	CURRENT OPTIMIZATION PROFILE
	CURRENT PACKAGE PATH
	CURRENT PATH
	CURRENT QUERY OPTIMIZATION
	CURRENT REFRESH AGE
	CURRENT TIME
	CURRENT TIMESTAMP
	CURRENT TIMEZONE
	CURRENT USER

	Configuration parameter topics
	agent_stack_sz - Agent stack size
	agentpri - Priority of agents
	alt_collate - Alternate collating sequence
	alternate_auth_enc - Alternate encryption algorithm for incoming connections at server configuration parameter
	appl_memory - Application Memory configuration parameter
	applheapsz - Application heap size
	archretrydelay - Archive retry delay on error
	aslheapsz - Application support layer heap size
	auto_del_rec_obj - Automated deletion of recovery objects configuration parameter
	auto_maint - Automatic maintenance
	avg_appls - Average number of active applications
	backup_pending - Backup pending indicator
	blk_log_dsk_ful - Block on log disk full
	catalogcache_sz - Catalog cache size
	chngpgs_thresh - Changed pages threshold
	cluster_mgr - Cluster manager name
	codepage - Code page for the database
	codeset - Codeset for the database
	collate_info - Collating information
	comm_bandwidth - Communications bandwidth
	contact_host - Location of contact list
	country/region - Database territory code
	cpuspeed - CPU speed
	cur_commit - Currently committed configuration parameter
	das_codepage - DAS code page
	das_territory - DAS territory
	database_level - Database release level
	database_memory - Database shared memory size
	db2system - Name of the DB2 server system
	db_mem_thresh - Database memory threshold
	dbheap - Database heap
	decflt_rounding - Decimal floating point rounding configuration parameter
	dft_account_str - Default charge-back account
	dft_degree - Default degree
	dft_extent_sz - Default extent size of table spaces
	dft_loadrec_ses - Default number of load recovery sessions
	dft_monswitches - Default database system monitor switches
	dft_mttb_types - Default maintained table types for optimization
	dft_prefetch_sz - Default prefetch size
	dft_queryopt - Default query optimization class
	dft_refresh_age - Default refresh age
	dft_sqlmathwarn - Continue upon arithmetic exceptions
	diaglevel - Diagnostic error capture level
	diagpath - Diagnostic data directory path
	dir_cache - Directory cache support
	discover - DAS discovery mode
	discover - Discovery mode
	discover_db - Discover database
	discover_inst - Discover server instance
	dyn_query_mgmt - Dynamic SQL and XQuery query management
	enable_xmlchar - Enable conversion to XML configuration parameter
	exec_exp_task - Execute expired tasks
	failarchpath - Failover log archive path
	fed_noauth - Bypass federated authentication
	federated - Federated database system support
	federated_async - Maximum asynchronous TQs per query configuration parameter
	fenced_pool - Maximum number of fenced processes
	hadr_db_role - HADR database role
	hadr_local_host - HADR local host name
	hadr_local_svc - HADR local service name
	hadr_peer_window - HADR peer window configuration parameter
	hadr_remote_host - HADR remote host name
	hadr_remote_inst - HADR instance name of the remote server
	hadr_remote_svc - HADR remote service name
	hadr_syncmode - HADR synchronization mode for log write in peer state
	hadr_timeout - HADR timeout value
	health_mon - Health monitoring
	indexrec - Index re-creation time
	instance_memory - Instance memory
	intra_parallel - Enable intra-partition parallelism
	java_heap_sz - Maximum Java interpreter heap size
	jdk_64_path - 64-Bit Software Developer's Kit for Java installation path DAS
	jdk_path - Software Developer's Kit for Java installation path DAS
	jdk_path - Software Developer's Kit for Java installation path
	keepfenced - Keep fenced process
	log_retain_status - Log retain status indicator
	logarchmeth1 - Primary log archive method
	logarchmeth2 - Secondary log archive method
	logarchopt1 - Primary log archive options
	logarchopt2 - Secondary log archive options
	logbufsz - Log buffer size
	logfilsiz - Size of log files
	loghead - First active log file
	logindexbuild - Log index pages created
	logpath - Location of log files
	logprimary - Number of primary log files
	logretain - Log retain enable
	logsecond - Number of secondary log files
	max_connections - Maximum number of client connections
	max_coordagents - Maximum number of coordinating agents
	max_log - Maximum log per transaction
	max_querydegree - Maximum query degree of parallelism
	maxappls - Maximum number of active applications
	maxfilop - Maximum database files open per application
	min_dec_div_3 - Decimal division scale to 3
	mincommit - Number of commits to group
	mirrorlogpath - Mirror log path
	mon_heap_sz - Database system monitor heap size
	multipage_alloc - Multipage file allocation enabled
	newlogpath - Change the database log path
	notifylevel - Notify level
	num_db_backups - Number of database backups
	num_freqvalues - Number of frequent values retained
	num_initagents - Initial number of agents in pool
	num_initfenced - Initial number of fenced processes
	num_iocleaners - Number of asynchronous page cleaners
	num_ioservers - Number of I/O servers
	num_log_span - Number log span
	num_poolagents - Agent pool size
	num_quantiles - Number of quantiles for columns
	numarchretry - Number of retries on error
	numdb - Maximum number of concurrently active databases including host and System i databases
	numsegs - Default number of SMS containers
	overflowlogpath - Overflow log path
	pagesize - Database default page size
	pckcachesz - Package cache size
	query_heap_sz - Query heap size
	rec_his_retentn - Recovery history retention period
	release - Configuration file release level
	restore_pending - Restore pending
	Restrictions and behavior when configuring max_coordagents and max_connections
	resync_interval - Transaction resync interval
	rollfwd_pending - Roll forward pending indicator
	rqrioblk - Client I/O block size
	sched_enable - Scheduler mode
	sched_userid - Scheduler user ID
	self_tuning_mem- Self-tuning memory
	seqdetect - Sequential detection flag
	sheapthres - Sort heap threshold
	sheapthres_shr - Sort heap threshold for shared sorts
	smtp_server - SMTP server
	softmax - Recovery range and soft checkpoint interval
	sortheap - Sort heap size
	spm_log_file_sz - Sync point manager log file size
	spm_log_path - Sync point manager log file path
	spm_max_resync - Sync point manager resync agent limit
	spm_name - Sync point manager name
	stat_heap_sz - Statistics heap size
	stmtheap - Statement heap size
	territory - Database territory
	tm_database - Transaction manager database name
	toolscat_db - Tools catalog database
	toolscat_inst - Tools catalog database instance
	toolscat_schema - Tools catalog database schema
	tp_mon_name - Transaction processor monitor name
	trackmod - Track modified pages enable
	trust_clntauth - Trusted clients authentication
	tsm_mgmtclass - Tivoli Storage Manager management class
	tsm_nodename - Tivoli Storage Manager node name
	tsm_owner - Tivoli Storage Manager owner name
	tsm_password - Tivoli Storage Manager password
	user_exit_status - User exit status indicator
	userexit - User exit enable
	util_heap_sz - Utility heap size
	util_impact_lim - Instance impact policy
	vendoropt - Vendor options
	wlm_collect_int - Workload management collection interval configuration parameter

	Appendix B. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix C. Notices
	Index

