
IBM InfoSphere Replication Server
IBM InfoSphere Data Event Publisher

Introduction to Replication and Event Publishing

Version 9.7

GC19-1028-02

���

IBM InfoSphere Replication Server
IBM InfoSphere Data Event Publisher

Introduction to Replication and Event Publishing

Version 9.7

GC19-1028-02

���

Note
Before using this information and the product that it supports, read the information in “Notices” on page 53.

© Copyright International Business Machines Corporation 2004, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Introduction to SQL
replication. 1
Infrastructure for an SQL replication environment . . 2
Registration of sources in SQL replication. 3
Subscription sets in SQL replication. 5
Capture of data from DB2 sources in SQL replication 9
Application of data to DB2 targets in SQL
replication 11
Capture of data from non-DB2 sources in SQL
replication 12
Application of data to non-DB2 targets in SQL
replication 13

Chapter 2. Introduction to Q replication 15
Infrastructure for a Q replication environment . . . 16
Sources and targets in Q replication 17
Capture of data in Q replication 19
Application of data to targets in Q replication . . . 20
Types of replication in Q replication 21

Chapter 3. Introduction to event
publishing 25
Infrastructure for an event publishing environment 26
Sources in event publishing 27
Capture of data in event publishing 29

Chapter 4. Comparison of SQL
replication and Q
replication—Overview 31
Comparison of the infrastructure of SQL replication
and Q replication 31
Comparison of sources and targets in SQL
replication and Q replication 31
Comparison of data capturing and applying in SQL
replication and Q replication 33

Replication solutions for common scenarios . . . 34

Chapter 5. Comparison of Q
replication, SQL replication, and event
publishing 37

Chapter 6. Comparison of Q replication
to high availability disaster recovery
(HADR) 39

Chapter 7. Comparison of event
publishing to DB2 MQ user-defined
functions. 41

Chapter 8. Administrative interfaces for
replication and publishing 43

Chapter 9. Utilities for replication and
publishing 45

Product documentation 47
Contacting IBM 47

How to read syntax diagrams 49

Product accessibility 51

Notices 53
Trademarks 55

Index 57

© Copyright IBM Corp. 2004, 2009 iii

iv Introduction to Replication and Event Publishing

Chapter 1. Introduction to SQL replication

SQL replication captures changes to sources and uses staging tables to store
committed transactional data. The changes are then read from the staging tables
and replicated to corresponding target tables. With staging tables, data can be
captured and staged once for delivery to multiple targets, in different formats, and
at different delivery intervals.

You can use SQL replication for a variety of purposes that require replicated data,
including capacity relief, feeding data warehouses and data marts, and auditing
change history.

You can replicate continuously, at intervals, or for one time only. Replicating
continuously can be useful if your applications need data in near-real-time, such as
applications for making airline reservations. Replicating at intervals can be useful
for replicating large batches of data during off-peak hours. You can also trigger
replication through database events.

Sources and targets can be either in DB2® databases or in non-DB2 relational
databases. You can replicate from sources and to targets in the following relational
database management systems: DB2 on Linux®, UNIX®, Windows®, z/OS®, and
iSeries®; Informix®; Microsoft® SQL Server; Oracle; Sybase; and Teradata (target
only). If you plan to replicate to or from a non-DB2 relational database, you will
need the federated server function of DB2 Information Integrator. See the IBM
WebSphere Information Integration Federated Systems Guide for more information
about federated servers.

You have considerable flexibility with the data that you want to replicate. For
example, you can choose to have all rows and columns replicated or you can
choose just a subset of these. By subsetting rows and columns, you transport across
your network only the data that you want.

You can also clean, aggregate, or otherwise manipulate data. If you manipulate
data, you can do so centrally at the source and then distribute the manipulated
data, or you can manipulate the data when you replicate it, so that some targets
get manipulated data and others do not.

The following figure shows a simple configuration in SQL replication. This topics
in this section describe the different parts of this figure.

© Copyright IBM Corp. 2004, 2009 1

Infrastructure for an SQL replication environment
SQL replication allows you to replicate data from DB2 sources to targets by using
two programs: Capture and Apply.

The Capture program runs on the source system. The Capture program reads DB2
recovery logs for changed source data and saves the committed changed data to
staging tables. The Apply program typically runs on the target system. The Apply
program retrieves captured data from staging tables and delivers the data to
targets. Both programs use a set of DB2 tables to track the information that they
require to do their tasks and to store information that they generate themselves,
such as information that you can use to find out how well they are performing.
You create these tables before you tell SQL replication what your replication
sources and targets are.

The Capture program uses a set of DB2 tables called Capture control tables. These
tables contain information about replication sources and the current position of the
Capture program in the DB2 recovery log. In most cases, the control tables for a
Capture program need to be on the same DB2 server as the sources associated with
the program.

You can run multiple Capture programs on the same DB2 server. Each Capture
program uses its own set of Capture control tables. The schema associated with a
set of Capture control tables identifies the Capture program that uses those control
tables. This schema is called a Capture schema.

If your sources are located on a non-DB2 relational database, triggers are used to
capture changes to them, though a set of control tables is still required.

The Apply program uses a set of DB2 tables called Apply control tables. These tables
contain information about your targets and where their corresponding sources are

Source server Target server

Capture
program

Apply
program

Log

Capture
control tables

Apply
control tables

Subscription-set member

Subscription set

Source
table

Target
table

CD table

DB2
process

Figure 1. A simple configuration in SQL replication

2 Introduction to Replication and Event Publishing

located. The control tables for the Apply program usually reside on the system
where the Apply program runs. Unlike with the Capture program, you can create
multiple Apply programs that use the same set of control tables. Each Apply
program is identified in these control tables by a name called an Apply qualifier.

For each supported operating system or platform that is supported by DB2 and for
each non-DB2 relational database management system that is supported by SQL
replication, you can set your own default specifications for the table spaces that
will be used by control tables.

The following figure shows the infrastructure for a simple configuration in SQL
replication.

Registration of sources in SQL replication
When you know what you want your replication sources to be, you tell SQL
replication about them by registering them. You can register sources that are DB2
tables and views, or tables on non-DB2 relational databases.

Note: When you register source tables on non-DB2 relational databases, you use
SQL replication together with DB2 Relational Connect. You map your source
database to a federated database and you create nicknames for each source table.

You can specify one of three methods for replicating a table. The first is called
full-refresh replication, and the second and third are types of change-capture
replication:

Replicate by refreshing the target table. Do not capture changes.
At intervals that you can specify later, the Apply program invokes one or

Source server Target server

Capture
program

Apply
program

Log

Capture
control tables

Apply
control tables

Subscription-set member

Subscription set

Source
table

Target
table

CD table

DB2
process

Figure 2. Infrastructure for a simple configuration in SQL replication. You create a set of DB2 relational tables on the
source server called Capture control tables. Information about sources is written to these tables. The Capture
program, which runs on the source server, uses this information to know what data it is supposed to capture.
Information about targets will go in the Apply control tables, which are typically on your target server. The Apply
program, which is also typically on your target server, uses this information to know which targets it is supposed to
write data to.

Chapter 1. SQL replication 3

more DB2 utilities to delete the content of the corresponding targets for the
registered table and load the targets with content derived from the
registered table. When you register the table, you need to provide only its
schema and name. You can choose to replicate this way if a target is small
or if you want to replicate infrequently. For this method of replication, no
Capture program or Capture triggers are involved.

Capture a row whenever the value changes in one or more columns that you
want to replicate.

This method, the most common way of using SQL replication, reduces the
amount of data that is replicated when changes frequently affect only
unregistered columns. For example, assume that you have 100 columns in
your table and you register 50 of those columns for replication. Whenever
a change is made to one of the 50 registered columns in your table, SQL
replication captures the values of those 50 columns for the row in which
the change occurred. If a row is changed, but the changes are limited to
other 50 columns, no data is captured for replication.

Capture a row whenever the value changes in any column of the table.
This method is often chosen when changes in the table almost always
occur in registered columns only, or when information is replicated for
auditing purposes. For example, you want to know only which rows are
changed in a table. Assume that you have 100 columns in your table and
you register the primary key columns for replication. Any time a change is
made to any of the columns in your table, SQL replication captures the
values of the primary key columns for the row in which the change
occurred.

When you register a table for either type of change-capture replication, you
provide SQL replication with the same information and SQL replication creates the
same objects:
v If your source is a DB2 table:

You tell SQL replication the schema and name of the source table, as well as the
columns that you want to replicate from it. The columns that you choose are
called registered columns. They are also referred to as after-image columns because
they contain values resulting from changes made to the source table. For
example, if in one row of a registered table the value in registered column A is
changed from 25 to 30, 30 is the after-image.
You can also choose to replicate the before-images of your registered columns,
which are the values that existed in the columns before changes were made to
the source table. In the example given in the preceding paragraph, 25 is the
before-image. Before-images are useful for a number of purposes, including
enabling the applying program to find rows in the target when key values have
changed.
SQL replication creates a change-data (CD) table in which to record committed
changes to the table. For every column that you register in the source table,
there is an identical column in the CD table. If you choose to replicate
before-images for a column, a column is created in the CD table to record those
before-images.

v If your source is a non-DB2 table:

You tell SQL replication the schema and name of the nickname for the source
table, as well as the columns that you want to replicate from the source table. As
is the case when you register DB2 tables, the columns that you choose are called
registered columns, and you can replicate after-images and before-images. SQL
replication creates three triggers, called Capture triggers, directly on the source

4 Introduction to Replication and Event Publishing

table in the non-DB2 relational database: one trigger for inserts, another trigger
for updates, and one more trigger for deletes. SQL replication also creates a
staging table for the source table. The staging table is called a consistent
change-data (CCD) table and is populated by the triggers. For example, when an
update occurs in the source table, the update trigger on that table stores the
update as a record in the corresponding CCD table. Only committed
transactional data is stored in the CCD table. A nickname for the CCD tables is
created on the federated database.

For every source server, you can set your own default naming conventions for CD
and CCD tables. You can also set your own defaults for the table spaces used for
CD and CCD tables.

For more information about registering views, see the IBM WebSphere Information
Integration SQL Replication Guide and Reference.

The following figure shows the objects that are involved when you register a
source table.

Subscription sets in SQL replication
After you register your sources, you create subscription sets, in which you pair your
sources with targets. Each source-target pair is referred to as a member of the
subscription set in which it is created.

You can use subscription sets to schedule the replication of data in one or more
source-target pairs from one source server to one target server. The Apply program
coordinates this replication so that it applies data to targets in a manner consistent
with the original transactions on the source server.

Source server Target server

Capture
program

Apply
program

Log

Capture
control tables

Apply
control tables

Subscription-set member

Subscription set

Source
table

Target
table

CD table

DB2
process

Figure 3. Registering a source table. When you register a source table for replication, SQL replication stores the
registration information in the Capture control tables. SQL replication also creates a CD table that the Capture
program will use to record changes to the source table.

Chapter 1. SQL replication 5

For each subscription set that you create, you tell SQL replication the following
details:

Which Apply program to use for processing the subscription set
When you create a subscription set, you associate it with an Apply
program by selecting an Apply qualifier. Each Apply program can process
more than one subscription set.

Where the source tables or views are located
The sources in the members of a subscription set are all located on the
same server.

Where the target tables are located
The targets in the members of a subscription set are all located on the same
server.

How often to replicate data from the sources to the targets
You can choose to replicate data in a subscription set at regular intervals,
continuously, or when an event occurs.

Interval timing
This method, also known as relative timing, is the simplest method
of scheduling your subscription set. The interval is approximate,
which depends on the workload or system resource available at the
time. The interval pertains to all the subscription-set members
within the subscription set. Therefore, all the tables will replicate
within the subscription set at the each interval.

Continuous replication
This method lets the Apply program replicate data in a
subscription set as frequently as it is able, depending on its
workload and available resources.

Event timing
This method lets an application or a user determine when to start
replicating. The application or user inserts a row into an Apply
control table called the events table. When the Apply program sees
that row, it begins replicating.

Whether to use data blocking
Data blocking allows you to specify how many minutes worth of change
data the Apply program can replicate at a time. The number of minutes
that you specify determines the size of the data block. If there is a backlog
of change data that is greater than the size of the data block, the Apply
program processes the subscription set by replicating a block of data at a
time until all of the current change data is replicated. One benefit of data
blocking is that by retrieving smaller sets of data, the Apply program can
lessen both the network load and the temporary space required for the
retrieved data. Another benefit is that if there is an error, the Apply
program has to rollback only the current block of data rather than the
entire set of change data.

For example, if you use SQL replication to populate the tables of a data
warehouse every 24 hours. Rather than replicate in one block the entire set
of changes made to your source tables every 24 hours, the Apply program
can replicate 20 minutes worth of changes at a time until the entire 24-hour
block of data is replicated. You can adjust the size of the block to match
your own requirements and restrictions.

Whether to issue one COMMIT for all applied data or to issue interim commits
The Apply program can apply data in table mode or in transaction mode.

6 Introduction to Replication and Event Publishing

In table mode, the Apply program processes the fetched changes for each
table separately, and then issues a single commit after all data is applied.
In transaction mode, the Apply program applies the fetched changes to all
of the target tables, in the order that the changes occurred in their
corresponding transactions on the source server. The Apply program
commits these transactions at transaction boundaries. You specify how
many transactions to apply before each commit.

Whether to transform data in the subscription set with SQL scripts or stored
procedures

When data in the source tables of the subscription set is replicated to
corresponding targets, you can use SQL scripts or stored procedures to
transform that data.

For each source-target pair that you create within a subscription set, you specify
whether to create a new target table or use an existing one. If you create a new
target table, you can specify one of the following types:

User copy
This read-only target type is the most common for basic data replication.
The structure of this type of target table can be the same as the source
table, or only a subset of the source columns. Before–images or
after–images and calculated columns can also be defined. This target type
requires replicated columns that uniquely describe each row of the target
table. These columns can be either a unique index or primary key.

Point-in-time
The structure of this read-only type of target table is similar to that of a
user copy target table. A timestamp column is added so that the Capture
program can indicate when data was committed in the source table. You
can select this target type if you want to keep track of the time when the
changes were applied to the target table.

Aggregate
This is a read–only target table that summarizes the entire contents of a
source table or its changed data. The target columns are defined from the
SQL column functions such as SUM, COUNT, MIN, MAX, and AVG. These
columns contain the computed value of the SQL function instead of the
actual source data. A timestamp is included to indicate when the Apply
program performed the aggregation. The two types of aggregation target
tables are:
v Base aggregate. Summarizes the entire contents of the source table every

time the source table is replicated. For example, you could use this
target type if you want to keep track of year-to-date summaries or
average sales by salesperson or region.

v Change aggregate. Summarizes the changes that occurred at the source
table since the source table was last replicated. For example, you could
use this target type to track monthly sales totals by salesperson, region,
or customer.

CCD This read-only target type contains committed changes that occurred at the
source, with replication control fields to determine the type operation from
the source table (insert, update, and delete). There are different types of
CCD tables and the type that you should use depends on your goals and
your replication requirement. With a CCD table, you can track the history
of source changes in various ways, depending on how you define the CCD

Chapter 1. SQL replication 7

table. For example, you can track before and after comparisons of the data,
when changes occurred, and which user ID made the update to the source
table.

You can also set up a multi-tier configuration, where your target CCD table
acts as a source to other target tables. Your source table is the first tier,
your CCD the second tier, and the targets mapped to your CCD the third
tier. One reason to set up a multi-tier replication environment is to provide
stable sources for the third-tier targets. Because you can collect changes
from tier 1 in CCD tables at tier 2, you can reduce the number of changes
replicated to the targets at tier 3. You can also avoid many of the database
connections to your source system, thus moving the connection cost to the
second tier.

Replica
This target type is used in update-anywhere replication. The other target
types are read-only, but this target type allows writes which can be
replicated back to the source table, which acts as a master table. If any
conflicts occur with the data in the master table, the change replicated from
the replica will be rejected. Replica target tables cannot be defined at
non-DB2 relational databases.

For each source-target pair, you also specify:
v Which source columns to replicate to the target. Although you can subset

columns when you register your source, you can subset further when you create
a subscription-set member.

v How to map columns from the source to columns in the target. If your target
table already exists in the target location, you tell SQL replication how the
registered columns in your source table or view map to the columns in the
target table. If you want SQL replication to create the target table for you, the
registered source columns are automatically mapped to the columns in the target
table.
In both cases, you can transform data by mapping a source column to a target
column with a corresponding data type or by mapping a source column to a
calculated column.

v A predicate for replicating a subset of rows to the target. You can subset the
rows that you replicate from the source.

v A method for loading the target table. In most cases, the data from the source
table is loaded into the target table so that the target table is identical to the
source table before replication begins. SQL replication allows for two methods of
loading a target table: automatic loads and manual loads.
For automatic loads, you can tell the Apply program to call one utility or a pair
of utilities. The Apply program can call the LOAD FROM CURSOR option of
the LOAD utility, the EXPORT and LOAD utilities, or the EXPORT and IMPORT
utilities, depending on the platform on which the Apply program is running.
You can also tell the Apply program to choose the option that is most
appropriate for the target table.
If you decide to load the target table manually, you can choose any method that
you prefer. After performing the load, you notify the Apply program that the
target table is ready and replication begins.

When you create a subscription-set member, you can also decide whether to
replicate only a subset of the registered source columns and whether to replicate
only a subset of the rows from the source.

8 Introduction to Replication and Event Publishing

For every target server, you can set your own default naming conventions for
target tables. You can also set your own defaults for the table spaces that are used
for your target tables.

The following figure shows a subscription set in a simple configuration in SQL
replication.

Capture of data from DB2 sources in SQL replication
After you register your DB2 replication sources and create subscription sets to pair
your sources with targets, you are ready to begin capturing the changes made to
your sources. You use a program called the Capture program to do this.

After you start the Capture program and that program receives signals from the
Apply program to indicate that the sources and targets are synchronized, the
Capture program reads the DB2 log sequentially for changes to the source tables in
which you are interested. If it reads a change to one of your source tables, the
Capture program adds the change to the corresponding database transaction that it
is retaining in memory. Transactions in memory are potentially subsets of the
corresponding transactions in the log; they contain only changes to your source
tables. The Capture program collects changes in memory until it reads either a
ROLLBACK or a COMMIT statement for the transaction in which those changes
are made. Upon reading a ROLLBACK statement, the Capture program erases
from memory the changes associated with the rolled-back transaction. Upon
reading a COMMIT, the Capture program stores the changes associated with the
committed transaction.

For example, if you registered Table A and Table B as replication sources. For each
of these tables, SQL replication creates a CD table as part of the registration
process. After you start the Capture program and after that program receives
signals from the Apply program to indicate that the target tables are synchronized

Source server Target server

Capture
program

Apply
program

Log

Capture
control tables

Apply
control tables

Subscription-set member

Subscription set

Source
table

Target
table

CD table

DB2
process

Figure 4. Creating a subscription set. You map sources to targets as part of creating subscription sets. A subscription
set groups together one or more source-target pairs, also called subscription-set members. In the figure, a source
table is mapped to a target table. The data replicated to the target is first staged in the CD table for the source.

Chapter 1. SQL replication 9

with the source tables, the Capture program reads the DB2 logs for changes to
those source tables. Application 1 makes a series of changes to Table A. Each
change is recorded in the DB2 logs. The Capture program collects these changes in
memory. Application 1 issues a ROLLBACK statement. When the Capture program
reads this statement, it erases from memory the changes that are associated with
that transaction.

Application 2 makes a series of changes to Table B. As before, the Capture program
collects theses changes in memory. Application 2 then issues a COMMIT statement.
When the Capture program reads this statement, it appends a copy of each change
to the CD table for Table B.

At least one Capture program must run on each server where replication sources
are located. However, you might want to have more than one Capture program on
a single server for the following reasons:

You want to increase parallelism
You can use multiple Capture programs to parallelize traffic. Multiple
Capture programs, which could also be helpful in large sysplex, can
improve performance and achieve higher throughput. The trade-off is
additional CPU overhead associated with multiple log readers. Using
multiple Capture programs also requires more DB2 connections.

You need to meet different replication requirements
You can create multiple Capture programs to direct the flow of source
changes toward different uses. For example, if you need to replicate a large
source table with very low latency and your current Capture program is
already capturing data for a large number of source tables, you could use
another Capture program to capture changes made only to that table.

For example, if you need to replicate one set of source tables with very low
latency, and you need to replicate another set of source tables to feed a
data warehouse on a daily basis, the performance and tuning requirements
might be very different. You could use a Capture program for each of these
separate sets of source tables, and tune each Capture program to the needs
of the respective applications.

You need to use separate encoding schemes
On z/OS systems, you can use multiple Capture programs to work with
UNICODE or EBCDIC encoding schemes separately.

The following figure shows the Capture program capturing data in a simple
configuration in SQL replication.

10 Introduction to Replication and Event Publishing

Application of data to DB2 targets in SQL replication
To start replicating data from sources to targets, you start the Apply program.
After you do so, the Apply program begins processing the subscription sets that
you assigned to it. The Apply program processes any active subscription sets one
at a time, according to the scheduling or event criteria that you specified when you
created the subscription sets.

For example, if you chose to replicate subscription set Set_One every 60 minutes,
the Apply program will replicate that subscription set as close to every 60 minutes
as possible. If the Apply program has other work to finish when the 60–minute
interval elapses, Set_One will be replicated as soon as the Apply program finishes
its other work.

The following list describes how the Apply program processes each member of a
subscription set.

For sources that you registered for change-capture replication
The first time that the Apply program processes the corresponding
subscription set, the Apply program can populate the targets with the
content of the sources. You can tell the Apply program to call one or more
utilities, such as the EXPORT and LOAD utilities, to populate the targets.
The utilities that the Apply program chooses depends on the platform on
which the Apply program is running.

Then, at the time intervals that you specified when you created your
subscription sets or whenever an event occurs, the Apply program reads
the CD tables of your sources for rows that were inserted into the CD table

Source server Target server

Capture
program

Apply
program

Log

Capture
control tables

Apply
control tables

Subscription-set member

Subscription set

Source
table

Target
table

CD table

DB2
process

Figure 5. Capturing data from a DB2 source table. The Capture program reads the DB2 recovery log for changes
made to your sources and then stages those changes in relational tables. In the figure, the Capture program reads the
DB2 log for changes to the source table and stages committed transactional data in the source’s change-data (CD)
table. The Capture program continuously updates its control tables with information that you can use to monitor its
progress.

Chapter 1. SQL replication 11

since the Apply program last looked. The rows in the CD tables indicate
whether they are records of deletes, updates, or inserts to the
corresponding sources.

The Apply program uses the data from the CD table to insert, update, and
delete rows in the target. Predicates are used to identify the rows to be
updated or deleted.

For sources that you registered for full-refresh replication
At intervals that you specify the Apply program populates the targets with
the content of the sources. You can tell the Apply program to call one or
more utilities, such as the EXPORT and LOAD utilities, to refresh your
target tables. The utilities that the Apply program chooses depends on the
platform on which the Apply program is running.

The following figure shows the Apply program applying data in a simple
configuration in SQL replication.

Capture of data from non-DB2 sources in SQL replication

The Capture program is not involved in capturing changes made to tables on
non-DB2 relational databases. Instead, when you register such a table, SQL
replication creates three triggers (called Capture triggers) on the table that run after
the event (an INSERT trigger, a DELETE trigger, and an UPDATE trigger) and also
creates a consistent change-data (CCD) table, which is similar to a CD table
because it stores records of changes made to the source table. SQL replication also
creates corresponding nicknames for the CCD tables on the same federated server
where the nicknames for the source tables are located. The Apply program accesses
the CCD tables through these nicknames.

Source server Target server

Capture
program

Apply
program

Log

Capture
control tables

Apply
control tables

Subscription-set member

Subscription set

Source
table

Target
table

CD table

DB2
process

Figure 6. Applying data to DB2 targets. The Apply program reads data from staging tables and makes the appropriate
changes to targets. In the figure, the Apply program reads data from the source table’s CD table and then makes the
appropriate changes to the target table. The Apply program continuously updates its control tables with information
that you can use to monitor its progress.

12 Introduction to Replication and Event Publishing

When one of these triggers is activated by a change to the source table, the trigger
records the change in the CCD table. If the application transaction is rolled back,
the new records in the staging table are rolled back, too. Only changes that are part
of committed transactions are replicated.

SQL replication also creates a fourth trigger on a non-DB2 relational database that
is used as a source database. This is the pruning trigger that deletes replicated
records from the CCD tables after the Apply program successfully replicates
changes to target tables.

The following figure shows how changes to a source table on a non-DB2 relational
database are replicated to a DB2 target table.

Application of data to non-DB2 targets in SQL replication
As when replicating to DB2 targets, the Apply program can replicate to non-DB2
targets in two ways: through change-capture replication and through full-refresh
replication.

Change-capture replication for targets on a non-DB2 relational database
If the source is on a DB2 server, the Apply program reads the change-data
(CD) table for the source. The Apply program then applies the changes to
the target by accessing the target table’s nickname on a federated database.

If the source is on a non-DB2 relational database, the Apply program reads
the CCD table for the source by accessing the CCD table’s nickname. It
then applies the changes to the target table by accessing the target table’s
nickname. The nickname for the CCD table and the nickname for the target
table can be in the same DB2 federated database or in different ones.

Full-refresh replication for targets on a non-DB2 relational database
If the source is on a DB2 server, the Apply program reads the source

Source server

Nicknames for
source tables

Source server

Apply
program

Nicknames for
control tables

Apply
control tables

Subscription-set member

Subscription set

CCD table Target
table

Nickname for
CCD table

Non-DB2
relational database

Source table

Control tables

Figure 7. Replicating data from non-DB2 sources to DB2 targets.. Triggers populate a staging table called a
consistent-change-data (CCD) table with records of changes made to a source table. The Apply program reads the
CCD table through that table’s nickname on the federated database. The Apply program then makes the appropriate
changes to the target table.

Chapter 1. SQL replication 13

directly, deletes the rows of the target table by accessing the target table’s
nickname, and inserts the source rows into the target table by accessing the
target table’s nickname.

If the source is on a non-DB2 relational database, the Apply program reads
the rows of the source by accessing the source’s nickname. It then deletes
the rows of the target by accessing the nickname, and inserts the source
rows into the target table by accessing the target table’s nickname. The
nickname for the source table and the nickname for the target table can be
in the same DB2 federated database or in different ones.

The following figure shows how changes to a DB2 source table are replicated to a
table on a non-DB2 relational database.

Source server Target server

Capture
program

Apply
program

Log

Capture
control tables

Apply
control tables

Non-DB2 relational
database and
target server

Subscription-set member

Target table

Subscription set

Source
table

Target
nickname

CD table

DB2
process

Figure 8. Replicating from DB2 sources to non-DB2 targets. The Capture program populates a CD table with the
changes made to the corresponding source table. The Apply program reads the data in the CD table and applies the
changes to the target table through the target’s nickname on the DB2 Information Integrator federated database.

14 Introduction to Replication and Event Publishing

Chapter 2. Introduction to Q replication

Q replication is a replication solution that can replicate large volumes of data at
low levels of latency. Q replication captures changes to source tables and converts
committed transactional data to messages.

The data is not staged in tables. As soon as the data is committed at the source
and read by Q replication, the data is sent. The messages are sent to the target
location through WebSphere® MQ message queues. At the target location, the
messages are read from the queues and converted back into transactional data. The
transactions are then applied to your target tables with a highly parallelized
method that preserves the integrity of your data.

You can use Q replication for a variety of purposes that require replicated data,
including failover, capacity relief, geographically distributed applications, and data
availability during rolling upgrades or other planned outages.

Sources and targets can be on the following relational database management
systems:
v DB2 for Linux, UNIX, and Windows
v DB2 for z/OS
v Informix (target only)
v Microsoft SQL Server (target only)
v Oracle (target only)
v Sybase (target only)

You can also use Q replication to replicate data from non-relational tables by using
WebSphere Classic Replication Server for z/OS, WebSphere MQ, and WebSphere
Replication Server. Classic replication uses its own mechanism for capturing
changes. The Classic capture components converts transactions to WebSphere MQ
messages that are picked up by the Q Apply program on the WebSphere
Replication Server.

Classic replication sources can be on the following nonrelational data sources:
v Adabas databases
v CA-IDMS databases
v IMS™ databases
v CICS® VSAM files
v VSAM files

You can replicate a subset of columns and rows from the source tables. All
subsetting occurs at the source location so that only the data that you want is
transported across the network. If you want to perform data transformations, you
can use the SQL column expressions feature in Q Apply or pass replicated data to
your own stored procedures.

The following figure shows a simple configuration in Q replication. The topics in
this section describe different parts of this figure.

© Copyright IBM Corp. 2004, 2009 15

Infrastructure for a Q replication environment
With Q replication you replicate committed transactional data from source tables to
target tables by using two programs: Q Capture and Q Apply.

Q Capture program
The Q Capture program reads the recovery logs for changed source data
and writes the changes to WebSphere MQ queues. For Classic replication
source servers, the Classic capture components read changes and write the
changes to WebSphere MQ queues.

Q Apply program
The Q Apply program retrieves captured changes from queues and writes
the changes to targets.

The Q Capture and the Q Apply programs use a set of control tables to track the
information that they require to do their tasks and to store information that they
generate themselves, such as information that you can use to find out how well
they are performing. You create these tables before you tell Q replication what
your replication sources and targets are.

The Q Capture program uses a set of control tables called Q Capture control tables.
These tables contain information about your replication sources, the targets that
correspond to them, and which WebSphere MQ queue manager and queues are
being used by the Q Capture program. These tables also contain data that you can
use to check and monitor the Q Capture program’s performance, such as data
about the Q Capture program’s current position in the recovery log.

Source server Target server

Q Capture
program

Q Apply
program

Log

Q Capture
control tables

Q Apply
control tables

Source
table

Target
table

Replication
queue map

Administration
queue

Q subscription

DB2 process

Figure 9. A simple configuration in Q replication

16 Introduction to Replication and Event Publishing

You can run multiple Q Capture programs. Each Q Capture program uses its own
set of control tables. The schema that is associated with a set of Q Capture control
tables identifies the Q Capture program that uses those control tables. This schema
is called a Q Capture schema.

The Q Apply program uses a set of control tables called Q Apply control tables.
These tables contain information about targets and where their corresponding
sources are located, and information about which WebSphere MQ queue manager
and queues are being used by the Q Apply program. Like the Q Capture control
tables, these tables also contain data that you can use to check and monitor the Q
Apply program’s performance.

Like Q Capture programs, you can run multiple Q Apply programs. Each Q Apply
program uses its own set of control tables. The schema associated with a set of Q
Apply control tables identifies the Q Apply program that uses those control tables.
This schema is called a Q Apply schema.

The following figure shows the infrastructure for a simple configuration in Q
replication.

Sources and targets in Q replication
You pair source tables with targets by defining Q subscriptions.

When you create a Q subscription, you specify the following primary attributes:

The source server and source table
The source server can be a DB2 server that contains at least one set of Q

Figure 10. Infrastructure for a simple configuration in Q replication. You create a set of DB2 relational tables on the
source server called Q Capture control tables. Information about your sources and targets is written to these tables.
The Q Capture program, which runs on the source server, uses this information to determine the data to capture and
send to the Q Apply program. Information about your source and target tables goes in the Q Apply control tables,
which are on your target server. The Q Apply program, which runs on the target server, uses this information to
determine which target tables to write data to.

Chapter 2. Q replication 17

Capture control tables, or a WebSphere Classic Replication Server for z/OS.
You can use a DB2 or Oracle relational table on a source server as your
source table. For Classic replication, you can use tables or views on the
nonrelational database.

The target server and target table or stored procedure

You can replicate data to DB2 tables, federated tables, or a stored
procedure on a DB2 server.

If you need to transform replicated data, you can use a stored procedure as
a target or you can use SQL column expressions that are run by the Q
Apply program. If you want to keep a history of what changed at the
source, you can use a consistent-change-data (CCD) table as a target.

The “Comparison of sources and targets in SQL replication and Q
replication” on page 31 topic provides further details about the sources and
targets for SQL replication and Q replication.

Which source columns to replicate to the target table or stored procedure
You can subset the columns that you replicate from the source.

How to map the source columns to the target columns or parameters in a stored
procedure

If your target table exists in the target location, you tell Q replication how
the selected columns in your source table correspond to the columns in the
target table. If you want Q replication to create the target table for you, the
selected source columns are automatically mapped to the columns in the
target table.

If you are replicating to a stored procedure, you tell Q replication how the
selected columns in your source table correspond to the parameters in your
stored procedure.

A predicate for replicating a subset of rows to the target table
You can subset the rows that you replicate from the source by using a
predicate. A predicate limits the rows that are returned, like a WHERE
clause in a SQL statement. In Classic replication, you must define views on
tables to accomplish row filtering.

The method of loading the target table
In most cases, the data from the source table is loaded into the target table
so that the target table is identical to the source table before replication
begins. Q replication allows for two methods of loading a target table after
you start a Q subscription: automatic loads and manual loads.

For automatic loads, the Q Apply program manages the loading of target
tables. The Q Apply program calls one utility or a pair of utilities to
perform the load. You can tell the Q Apply program to call the LOAD
FROM CURSOR option of the LOAD utility, the EXPORT and LOAD
utilities, or the EXPORT and IMPORT utilities, depending on the platform
on which the Q Apply program is running. You can also tell the Q Apply
program to determine which of these options is most appropriate for the Q
subscription.

For manual loads, you handle the loading of target tables, and then signal
the replication programs when loading is done.

The WebSphere MQ message queues to use for transporting messages
The Q Capture program puts messages on a queue called a send queue. The
Q Apply program receives the messages on a queue called a receive queue.
(These names are used only in Q replication, not in WebSphere MQ.) You

18 Introduction to Replication and Event Publishing

choose a replication queue map to tell Q replication which send queue and
receive queue you want to use for the messages for your Q subscription.

The following figure shows the parts of a Q subscription in a simple configuration
in Q replication.

Capture of data in Q replication
The Q Capture program reads database recovery log sequentially for changes to
source tables. If the Q Capture program reads a change to one of your source
tables, it adds the change to the corresponding database transaction that is retained
in memory.

Transactions in memory are therefore potentially subsets of the corresponding
transactions in the log because they contain only changes to the source tables in
your Q subscriptions. When the Q Capture program reads the COMMIT statement
for a transaction, it converts the transaction into a message and puts the messages
on a send queue.

For example, you create two Q subscriptions for two different source tables on the
same source server: QSUB1 and QSUB2. Both Q subscriptions use the same
replication queue map. The Q Capture program reads a COMMIT for a database
transaction that involves changes to the source tables in both Q subscriptions. The
Q Capture program converts the changes into a message and writes the message to
the send queue that is part of the replication queue map.

You can run more than one Q Capture program. Although one Q Capture program
can capture changes made to many sources and send those changes to many target
servers, in some situations you might benefit from having more than one Q
Capture program. For example, you can use multiple Q Capture programs to

Source server Target server

Q Capture
program

Q Apply
program

Log

Q Capture
control tables

Q Apply
control tables

Source
table

Target
table

Replication
queue map

Administration
queue

Q subscription

DB2 process

Figure 11. Creating a Q subscription. You map sources to targets by creating Q subscriptions. One Q subscription
maps one source table to one target table. Data for the Q subscription is replicated across a send queue and a
receive queue, both of which are part of a replication queue map.

Chapter 2. Q replication 19

parallelize traffic. Multiple Q Capture programs, which could also be helpful in
large sysplexes, can improve performance and achieve higher throughput. The
trade-off is additional CPU overhead associated with multiple log readers. Using
multiple Q Capture programs also requires more database connections.

The following figure shows the Q Capture program capturing data in a simple
configuration in Q replication.

Application of data to targets in Q replication
The Q Apply program reads the messages that contain committed transactional
data for Q subscriptions. These messages arrive at the target server on receive
queues. The Q Apply program converts the messages to SQL and applies the
transactions to the relevant target tables.

The Q Apply program is multithreaded and can apply several transactions
concurrently, whenever those transactions are not dependent on one another. If
transactions are dependent on one another, the Q Apply program applies them in
the order in which they were committed at the source server.

The Q Apply program can receive messages for a large number of Q subscriptions
on a single receive queue and apply the transactions at very high rates of speed. In
most cases, you can use a single replication queue map between one source server
and one target server and not experience noticeable latency.

A single pair of Q Capture and Q Apply programs can be configured with multiple
replication queue maps. If multiple applications are running at the source server
that update independent sets of tables, then you should consider defining multiple

Source server Target server

Q Capture
program

Q Apply
program

Log

Q Capture
control tables

Q Apply
control tables

Source
table

Target
table

Replication
queue map

Administration
queue

Q subscription

DB2 process

Figure 12. Capturing data in Q replication. The Q Capture program reads recovery log for changes made to your
sources and converts committed transactional data to messages, which it puts on a send queue. The Q Capture
program continuously updates its control tables with information that you can use to monitor its progress.

20 Introduction to Replication and Event Publishing

replication queue maps to allow for parallel delivery and application of data for
each independent set of tables. A Q Apply program will create a multithreaded
process for each receive queue.

In most cases, one Q Apply program per server is sufficient, even for replication
configurations with a high volume of transactions being replicated to a large
number of tables. A single Q Apply program can be configured to process one or
more receive queues. You can also run multiple Q Apply programs on a server if,
for example, you require the data on one or more receive queues to be processed
differently than the data on other receive queues.

The following figure shows the Q Apply program applying data in a simple
configuration in Q replication.

Types of replication in Q replication
With Q replication, you can configure three different types of replication.

Unidirectional replication

In unidirectional replication, changes that occur to a source are replicated
to a target. Target tables are typically used exclusively by read-only
applications. You can replicate all of the rows and columns from a source,
or you can choose to replicate column and row subsets. No replication
takes place from the target back to the source.

You can have one source replicating to one target, one source replicating to
multiple targets, multiple sources replicating to one target, or multiple
sources replicating to multiple targets. For each source and its
corresponding target, there is one Q subscription. Q subscriptions should
use the same replication queue map if their targets are logically related; by

Source server Target server

Q Capture
program

Q Apply
program

Log

Q Capture
control tables

Q Apply
control tables

Source
table

Target
table

Replication
queue map

Administration
queue

Q subscription

DB2 process

Figure 13. Applying data in Q replication. The Q Apply program reads messages from a receive queue, converts them
to SQL, and applies data to target tables. The Q Apply program continuously updates its control tables with
information that you can use to monitor its progress.

Chapter 2. Q replication 21

grouping Q subscriptions this way, you ensure that the data applied to the
targets is consistent with the original transactions on the source server.

At each source server, you create at least one set of Q Capture control
tables. At each target server, you create at least one set of Q Apply control
tables.

For Q subscriptions in unidirectional replication, you can have the Q
Apply program call a stored procedure and pass the source data as input
parameters to the stored procedure. Instead of the source columns
mapping to target columns, the source columns map to parameters in the
stored procedure. By mapping source columns directly to parameters in a
stored procedure, you avoid the need to parse the incoming data and have
a clean, simple programming model. The Q Apply program calls a stored
procedure for each row operation instead of inserting the rows into a table.
The stored procedure is responsible for getting the source data to its final
destination.

Unidirectional replication is the only configuration that is available for
Classic replication.

Bidirectional replication

In bidirectional replication, replication occurs between tables on two
servers. Tables on one server that are involved in replication are identical
in structure to the corresponding tables on the other server. Two
corresponding tables have the same number of columns, the same column
names, and compatible data types, though they can have different schemas
and names. You can choose to replicate subsets of columns. Changes made
to a table on either server are replicated to the corresponding table on the
other server.

Applications on one server can make changes to a table at the same time
that applications on the other server make changes to the corresponding
table. If conflicts occur in the data that is replicated between corresponding
tables, you can choose which of the two tables takes precedence. Conflicts
are found by comparing old values to current values. This method of
detection might not find all conflicts in your data, but requires less
overhead than other methods.

For every two corresponding tables, there are two Q subscriptions. For
example, if you are replicating between Table_One on server Red and
Table_Two on server Blue, there are these two Q subscriptions:
v One Q subscription replicating from Table_One to Table_Two
v One Q subscription replicating from Table_Two to Table_One

When you create the Q subscriptions, if you want an initial load performed
automatically, you can choose which table contains the data that you want
to start with. In this example, if you specify that Table_One contains the
data that you want to start with, Table_Two will be loaded with the data
from Table_One.

A Q Capture program and a Q Apply program run at both servers. The Q
Capture program and Q Apply program on each server have matching
schemas. For example:
v If on one server the schema of the Q Capture program is Green, the

schema of the Q Apply program on that server is also Green.
v If on the other server the schema of the Q Capture program is Yellow,

the schema of the Q Apply program on that server is also Yellow.

22 Introduction to Replication and Event Publishing

Peer-to-peer replication

In peer-to-peer replication, replication occurs between tables on two or
more servers. Tables on one server that are involved in replication are
identical in structure to the corresponding tables on the other servers. All
corresponding tables have the same number of columns, the same column
names, and compatible data types, though they can have different schemas
and names. You can choose to replicate subsets of columns. Changes made
to a table on any server are replicated to the corresponding tables on the
other servers.

Applications on one server can make changes to a table at the same time
that applications on the other servers make changes to the corresponding
tables. Conflicts are detected and resolved with the help of version
columns and triggers that are added to the tables when you create the Q
subscriptions. Convergence is possible with peer-to-peer replication, which
means that if changes to replicated tables are stopped and all changes are
propagated, corresponding tables will be identical.

For each pair of corresponding tables, there are two Q subscriptions. For
example, if you are replicating between Table_One on server Red,
Table_Two on server Blue, and Table_Three on server Green, there are
three pairs of corresponding tables:
v Table_One and Table_Two
v Table_Two and Table_Three
v Table_One and Table_Three

For each of these pairs, there are two Q subscriptions. For example,
between Table_One and Table_Two, there are these two Q subscriptions:
v One Q subscription replicating from Table_One to Table_Two
v One Q subscription replicating from Table_Two to Table_One

A Q Capture program and a Q Apply program run at each server. The Q
Capture program and Q Apply program on each server have matching
schemas. For example, if you are replicating between two servers:
v If on one server the schema of the Q Capture program is Blue, the

schema of the Q Apply program on the same server is also Blue.
v If on the other server the schema of the Q Capture program is Red, the

schema of the Q Apply program on the same server is also Red.

Chapter 2. Q replication 23

24 Introduction to Replication and Event Publishing

Chapter 3. Introduction to event publishing

Event publishing captures changes to source tables and converts committed
transactional data to messages in an Extensible Markup Language (XML) format or
delimited format. Each message can contain an entire transaction or only a
row-level change. These messages are put on WebSphere MQ message queues and
read by a message broker or other applications. You can publish subsets of
columns and rows from source tables so that you publish only the data that you
need.

You can use event publishing for a variety of purposes that require published data,
including feeding central information brokers and Web applications, and triggering
actions based on updates, inserts, or deletes to source tables.

Source tables can be on DB2 servers on Linux, UNIX, Windows, or z/OS. To make
use of WebSphere MQ message queues for transporting data, have WebSphere MQ
available on your source and on the system where messages are received.

Event publishing can be very useful in a variety of different applications. Consider
a scenario in which changing prices and inventory are published to potential
buyers. For example, a food wholesaler procures perishable food products such as
bananas from world markets in bulk and sells them to grocery food retailers and
distributors.

The value of bananas decreases the longer that they are in the warehouse. The
wholesaler wants to inform its potential buyers of the changing price and
inventory data and can set up event publishing to do just that. Each time the price
changes, an XML or delimited message can be sent to potential buyers, informing
them of the ″price change event.″

Each buyer (retailer or distributor) wants to maximize profit. These organizations
can determine when to buy the bananas based upon price, age (or time to spoil),
and historical knowledge regarding how quickly they can sell a certain quantity. If
they purchase too early, they will pay a higher price for the bananas and will not
achieve the maximum profit. Buying too late will likely result in spoilage and
again profit will not be maximized. Profit maximization can be achieved by timing
the purchase appropriately. Applications can receive the event notification
messages and generate purchase orders automatically at the right time to maximize
profit.

The following figure shows a simple configuration in event publishing. The topics
listed above each highlight and describe different sections of this figure.

© Copyright IBM Corp. 2004, 2009 25

Infrastructure for an event publishing environment
Event publishing allows you to publish committed transactional or row-level data
from DB2 tables as messages in WebSphere MQ message queues. The messages can
be read and interpreted directly by user applications, or they can first be
interpreted by a message broker such as WebSphere Business Integration Message
Broker or a DB2 MQ listener daemon.

Event publishing captures data by using a program called the Q Capture program.
This is the same Q Capture program that is used in Q replication. In fact, it is
possible for one Q Capture program to be involved in Q replication and event
publishing at the same time. The Q Capture program uses a set of control tables,
called Q Capture control tables, to store the information that the Q Capture program
requires to perform its tasks (such as information about what its sources are and
what to publish from its sources) and to store information that it generates itself
(such as information about how well it is performing).

You can run multiple Q Capture programs on the same DB2 server. Each Q
Capture program uses its own set of control tables. The schema associated with a
set of Q Capture control tables identifies the Q Capture program that uses those
control tables. This schema is called a Q Capture schema.

The following figure shows the infrastructure in a simple configuration in event
publishing.

Source server

Q Capture
program

Log

Q Capture
control tables Publication

Source
table

Publishing
queue map

DB2 process

Send queue

Message

User application

Figure 14. A simple configuration in event publishing

26 Introduction to Replication and Event Publishing

Sources in event publishing
With event publishing, you create objects called publications to define how changes
from a single source table are published to a WebSphere MQ message queue. You
can then have an application retrieve and use those messages.

When you create a publication, you specify the following attributes:

The source server and source table to publish data from
A source servers is a DB2 server that contains at least one set of Q Capture
control tables. You can use a DB2 relational table located on a source server
as your source table.

The columns that contain data that you want to publish
You can subset the columns that you publish from the source.

A predicate for publishing a subset of rows
You can subset the rows that you publish from the source.

Message format
You can choose to publish the messages in an XML format or in a
delimited format such as comma separated values (CSV). Your choice of
format likely depends on the application that consumes the messages. For
example, you could publish data to a Web application by using an XML
format or you could publish data to WebSphere DataStage® by using a
comma separated values format.

Which publishing queue map to use
The Q Capture program writes data to a WebSphere MQ object that is
referred to in event publishing as a send queue. The send queue passes the
data to another queue that a user application can read the data from. Event

Source server

Q Capture
program

Log

Q Capture
control tables Publication

Source
table

Publishing
queue map

DB2 process

Send queue

Message

User application

Figure 15. Infrastructure for a simple configuration in event publishing. You create a set of DB2 relational tables on the
source server called Q Capture control tables. Information about your sources is written to these tables. The Q
Capture program, which runs on the source server, uses this information to know what data to capture and publish.

Chapter 3. Event publishing 27

publishing conveniently lets you group a send queue and other options for
sending data messages into an object called a publishing queue map. For
every publication, you select a publishing queue map to use. Multiple
publications can use the same publishing queue map.

The publishing queue map that you select determines whether each
message that the Q Capture program sends contains committed data for all
source rows changed in a transaction or for only a single source row
changed in a transaction.

For example, you might want each message to contain committed data for
all source rows involved in a transaction if your application handles
purchase orders. In this case, you want a collection of data published
together, such as product type, price, shipping address, and billing
information, so that with one message you could start processes in systems
for billing, shipping, and inventory tracking.

You might want each message to contain committed data for one source
row involved in a transaction if you are providing streaming information
to a Web application that provides stock quotes. In this case, each change
to a stock price is unassociated with any other data.

Whether values in unchanged non-key columns should be published together
with updates to other non-key columns

By default, if there are updates to one or more of the columns that you
selected, the updates are published but the values in the unchanged
columns are not. For example, from table T1 you want to publish columns
A1 (the primary key), A2, and A3. If a transaction updates a value in
column A2 and then commits, the Q Capture program will publish a
message that contains only the new value in column A2, as well as the
value in the key column A1.

You can choose to have the messages contain updated and unchanged
values in non-key columns. If column A2 is updated, the Q Capture
program will publish a message that contains the new value in column A2
and the unchanged value in column A3, in addition to the value in the key
column A1.

You might want to choose this option if it is easier to write your
application to always expect a value for each column. You also might want
to choose this option if you are writing an application to audit changes to
your table and that application needs a complete snapshot of each row.

Whether to include new and old values for the data in updated non-key
columns, or only the new values

When there are updates to one or more of the columns that you selected,
the message containing those updates will provide only the new values by
default. For example, from table T2 you want to publish columns B1 (the
primary key) and B2. If a transaction updates column B2 from 5 to 6, the
message that contains that update will provide only the value 6.

You can choose to have the messages provide the old values together with
the new ones. In this case, the message that contains the update to column
B2 provides both the value 5 and the value 6.

Choose to send old values if the application that receives the published
changes requires both old and new values. For example, your application
might be aggregating information and finding the difference between the
old and new values. Also, if you are publishing significant price changes to

28 Introduction to Replication and Event Publishing

a Web application and that application requires the old prices, sending the
old prices along with the new prices saves the application from having to
look up the old prices elsewhere.

The following figure shows a publication in a simple configuration in event
publishing.

Capture of data in event publishing
The Q Capture program reads the DB2 log sequentially for changes to the source
tables. If it reads a change to one of your source tables, the Q Capture program
adds the change to the corresponding database transaction that it is retaining in
memory.

Transactions in memory are therefore potentially subsets of the corresponding
transactions in the log; they contain only changes to your source tables. When the
Q Capture program reads the COMMIT statement for a transaction, it converts the
transaction into one or more messages, depending on whether you want to send
row-level messages or transaction-level messages and depending on how many
send queues are being used by the source tables that are involved in the
transaction. The Q Capture program then puts the message on the corresponding
send queues.

For example, you create three publications: PUB1, PUB2, and PUB3. PUB1 and
PUB2 use the same publishing queue map (which uses SENDQ1), and you want to
use these publications to publish messages that contain committed row-level
changes. For PUB3, you choose a different publishing queue map (which uses
SENDQ2), and you want to use this publication to publish messages that contain
committed transaction-level changes. A publishing queue map can send either
row-level messages or transaction-level messages, but it cannot send both types of
messages.

Source server

Q Capture
program

Log

Q Capture
control tables Publication

Source
table

Publishing
queue map

DB2 process

Send queue

Message

User application

Figure 16. A publication. A publication tells the Q Capture program which changes to capture for a source table and
which send queue to use for transporting messages.

Chapter 3. Event publishing 29

The Q Capture program reads a COMMIT for a database transaction that involves
changes to the source tables in all three publications. The Q Capture program
converts the parts of the transaction that involve the source tables in PUB1 and
PUB2 to row–level messages that it writes to SENDQ1. The Q Capture program
also converts the parts of the transaction that involve the source table in PUB3 to a
transaction-level message that it writes to SENDQ2.

You can run more than one Q Capture program on the same source server.
Although one Q Capture program can capture changes made to many sources and
send those changes to many user applications, in some situations you might
benefit from running more than one Q Capture program. For example, multiple Q
Capture programs, which could also be helpful in large sysplexes, can improve
performance and achieve higher throughput. The trade-off is additional CPU
overhead associated with multiple log readers. Using multiple Q Capture programs
also requires more DB2 connections.

The following figure shows the Q Capture program capturing data in a simple
configuration in event publishing.

Figure 17. Capturing data in event publishing. The Q Capture program reads the DB2 recovery log for changes made
to sources and converts committed transactional data to messages, which the Q Capture program puts on a send
queue. The send queue transports data to any number of possible applications that can read the messages. The Q
Capture program continuously updates its control tables with information that you can use to monitor its progress.

30 Introduction to Replication and Event Publishing

Chapter 4. Comparison of SQL replication and Q
replication—Overview

This section describes the similarities and differences between SQL replication and
Q replication.

Comparison of the infrastructure of SQL replication and Q replication
The location of the control tables and the number of Capture and Apply programs
per server differ between SQL replication and Q replication.

Table 1 compares the infrastructure of SQL replication and Q replication.

Table 1. Comparison of the infrastructure in SQL replication and Q replication

Points of comparison SQL replication Q replication

Location of the control
tables for the
capturing program

You must create the control tables for a
Capture program on the DB2 server where
the Capture program runs. In most cases,
this server is the same DB2 server where the
sources associated with the program are
located.

You must create the control tables for a Q
Capture program on the server (DB2 or
non-DB2) where the Q Capture program runs.
This server is the same DB2 server where the
source tables associated with that program
are located.

Number of capturing
programs possible per
DB2 server

Multiple, each with its own set of control
tables and identified by the schema of those
control tables.

Multiple, each with its own set of control
tables and identified by the schema of those
control tables.

Location of the control
tables for applying
program

You can create the control tables for the
Apply program on any server that can
connect to the source server and the target
server. In general, the control tables should
be located on the server where the Apply
program runs.

You must create the control tables for a Q
Apply program on the server (DB2 or
non-DB2) where the target tables associated
with that program are located.

Number of applying
programs possible per
DB2 server

Multiple, each sharing one set of control
tables and identified by a string called an
Apply qualifier.

Multiple, each with its own set of control
tables and identified by the schema of those
control tables.

Comparison of sources and targets in SQL replication and Q
replication

Sources and targets in SQL replication differ from sources and targets in Q
replication. In addition, the way that you interact with these objects differs for the
two types of replication.

The following table compares the sources and targets in SQL and Q replication

© Copyright IBM Corp. 2004, 2009 31

Table 2. Comparison of sources and targets in SQL replication and Q replication

Points of comparison SQL replication Q replication

Source and target
platforms

Sources and targets can be on the
following relational database management
systems:

v DB2 for Linux, UNIX, and Windows

v DB2 for z/OS

v DB2 for iSeries

v Informix

v Microsoft SQL Server

v Oracle

v Sybase

v Teradata (for targets only)

Sources and targets can be on the following
relational database management systems:

v DB2 for Linux, UNIX, and Windows

v DB2 for z/OS

v Informix (target only)

v Microsoft SQL Server (target only)

v Oracle (target only)

v Sybase (target only)

Classic replication sources can be on the
following nonrelational data sources:

v Adabas databases

v CA-IDMS databases

v IMS databases

v CICS VSAM files

v VSAM files

Database objects that can
be targets

v DB2 tables and views.

v Tables on non-DB2 relational databases.

v DB2 tables and stored procedures.

v Tables on non-DB2 relational databases.

Pairing of sources and
targets

You register a source. This registration
information is stored in the Capture
control tables. Then, you create one or
more subscription-set members to map this
registered source to targets. Information
about these subscription-set members is
stored in Apply control tables.

You create a Q subscription to map a
source to a single target. No registration of
the source is required. A source can be
replicated to multiple targets by creating
one Q subscription for each target.
Information about the Q subscription is
stored in Q Capture control tables and the
Q Apply control tables.

Grouping of sources-target
pairs

You group source–target pairs into
subscription sets. Each source–target pair is
referred to as a subscription-set member.

You can group Q subscriptions by
replication queue map. No subscription set
object exists in Q replication.

Subsetting of source
columns and rows
allowed?

Yes. Yes.

Transforming data You can transform data by using stored
procedures or SQL statements that are run
by the Apply program. On the source
server, the stored procedures or SQL
statements can transform staged data. On
the target server, the stored procedures or
SQL statements can transform data in
targets.

The stored procedure interface limits
transformations. The Apply program
passes no parameters to a stored procedure
and runs it once for an entire subscription
set rather than for each subscription–set
member.

You can also use triggers to transform data
that the Capture program writes to staging
tables.

You can transform data by using stored
procedures or SQL statements that are run
by the Q Apply program.

The Q Apply program calls the stored
procedures and passes the changed data to
them as parameters. This method of using
stored procedures allows considerable
versatility for data transformation.

Q replication supports all DB2 SQL
expressions for computed columns.

32 Introduction to Replication and Event Publishing

Comparison of data capturing and applying in SQL replication and Q
replication

The location of the Capture and Apply programs and the method of transporting
the data differ between SQL replication and Q replication.

Table 3 compares data capturing and applying in SQL replication and Q
replication.

Table 3. Comparison of data capturing and applying in SQL replication and Q replication

Points of comparison SQL replication Q replication

Location of the
capturing program

The Capture program runs on the DB2
server where its control tables are located.
In most cases, the source tables are also on
the same server.

The Q Capture program typically runs on the
server (DB2 or non-DB2) where its control
tables are located. The source tables are also on
the same server. On Linux, UNIX, and
Windows, Q Capture can run on a system that
is remote from the source table.

In Classic replication, the Classic capture
components consist of agents and services that
run on the data server.

How changed data is
captured

The Capture program reads the recovery
log and stores committed transactional data
in staging tables.

The Q Capture program reads the recovery log
and converts committed transactional data to
messages.

In Classic replication, the Classic capture
components read the log and pass the changed
data through multiple services that convert the
data to a relational format.

How changed data is
transported

The Apply program fetches data from
staging tables and applies the data to
targets with DB2 SQL.

The Q Capture program or Classic capture
components put data as messages in queues.
WebSphere MQ moves the messages to the
target system. The Q Apply program gets these
messages from queues and applies data to the
targets by using DB2 SQL.

Location of the
applying program

Apply programs can run on any DB2
server in your network, provided that they
can connect to the servers that contain the
source, target, and Apply control tables.

Q Apply programs typically run on target
servers. On Linux, UNIX, and Windows, Q
Apply can run on a system that is remote from
the target table.

How data is applied to
DB2 targets

The Apply program can process a
subscription set in table mode or
transaction mode.

In table mode, the Apply program
processes the fetched changes for each table
separately, and then issues a single commit
after all data is applied.

In transaction mode, the Apply program
applies the fetched changes to all of the
target tables, in the order that the changes
occurred in their corresponding
transactions on the source server. The
Apply program commits these transactions
at transaction boundaries. You specify how
many transactions to apply before each
commit.

The Q Apply program can apply transactions
concurrently whenever they do not involve
dependent changes to the target tables. The Q
Apply program uses various methods of
conflict handling and resolution to make
bidirectional and multidirectional replication
possible.

Chapter 4. Comparison of SQL replication and Q replication—Overview 33

Replication solutions for common scenarios
Choose the replication solution that works best for your scenario.

Table 4 describes the most common scenarios that are possible with SQL replication
and Q replication and recommends which replication technology to use for each
scenario. The recommendations are general and might not apply for your
particular needs.

Table 4. Recommended replication solutions for common replication scenarios

Configuration Description of configuration Recommended replication solution

Data consolidation
You can replicate data from many sources
to a central repository. Data consolidation
configurations are most often used to build
data warehouses or consolidate data from
multiple points of sale.

You can use either SQL replication or Q replication
successfully in this scenario.

Data distribution
You can replicate data from a source to one
or more targets that reside anywhere in a
distributed network, for example,
distributing a price list to multiple points of
sale. Applications use the local target tables
so that they do not overload the network or
central server. You can choose to have a
subset of columns and rows replicated so
that each site sees only the data that it
needs to see.

You can use SQL replication, Q replication, or a
combination of both. SQL replication has better
data distribution capabilities because you can stage
the data once and replicate to many targets.

SQL replication provides better two-tier
distribution to many targets because the captured
data is written once to the changed data tables. Q
replication offers lower latency and throughput.

A three-tier distribution that uses both Q
replication and SQL replication takes advantage of
the strengths of each. Q replication can replicate
data from the source server faster and with less
overhead to a CCD table. One or more SQL Apply
programs are used to then distribute the data from
the CCD table to many targets.

Update-anywhere
replication You can replicate data between a master

data source and one or more replicas of the
source. Changes made to the master source
are propagated to the replicas, and changes
made to the replicas are also propagated to
the master source. Whenever a conflict
occurs between the data sent from the
master source and data sent from a replica,
the data from the master source takes
precedence.

In a typical hub-and-spoke configuration with
more than one replica, SQL replication is required.
Such a configuration replicates from one master
data source to multiple replicas.

For a scenario with a single master and a single
replica, Q replication is recommended.

Hot standby
You can replicate data from a production
server to a backup server. If the production
server goes down, applications can
instantly start using data on the backup
server. When the production server is back
online, committed changes made at the
backup server can be replicated to the
production server and applications can then
use the data on the production server again.

Q replication is recommended. Either bidirectional
or peer-to-peer replication can be used in this
configuration, depending on the needs of your
applications.

34 Introduction to Replication and Event Publishing

Table 4. Recommended replication solutions for common replication scenarios (continued)

Configuration Description of configuration Recommended replication solution

Peer-to-peer
replication You can replicate data between table copies

on two or more servers. Committed
changes made to one table copy are
replicated to all other corresponding table
copies. This type of replication can support
geographically-distributed applications.

For example, an online business might have
three servers on three continents. Each
server contains the same product and
ordering information. Customers typically
access the product data and provide
ordering information at the server on their
home continents. However, if the server on
one continent goes down, those customers
can be rerouted to a server on another
continent. Later, their ordering information
can be replicated back to the server for their
continent so that local financial and
shipping offices have access to the
information.

Q replication is recommended because of its
strengths in conflict detection and resolution.
Peer-to-peer replication is easy to set up in Q
replication through the Replication Center.

Auditing or
change history

You can maintain a history of all table
changes for auditing or for feeding an
Extract-Transform-Load (ETL) tool. You can
maintain a history of changes in tables
called consistent-change-data (CCD) tables
to audit or track a history of source table
changes.

The target CCD tables contain columns that
provide details about the changes that
occurred. These columns include the log
sequence number, the type of operation
(Insert, Update, Delete), the commit time,
transaction ID, user ID, and the values that
were modified.

You can use either SQL replication or Q replication
successfully in this scenario. Depending on your
performance requirements and other
considerations, use Q replication for high
throughput and lower latency.

Query offloading
When an online transaction processing
(OLTP) server is overloaded, you can
improve the performance of the OLTP
application on that server by offloading the
query workload to another server.

For example, a cable television company
might have a large number of technicians
handling customer tickets during each
working day. The tables used to keep track
of these tickets receive a large number of
updates, inserts, and deletes per day. These
tables are on a production system that
handles other aspects of the business at the
same time. The company could replicate
relevant tables to another system and run a
reporting tool on that system.

Q replication is recommended. You can also use
SQL replication.

Chapter 4. Comparison of SQL replication and Q replication—Overview 35

Table 4. Recommended replication solutions for common replication scenarios (continued)

Configuration Description of configuration Recommended replication solution

Replicate data
from nonrelational
database

You can replicate data from VSAM, IMS,
Computer Associates CA-IDMS, and
Software AG Adabas data sources to DB2 or
federated DB2 targets such as Informix,
Microsoft SQL Server, Oracle, and Sybase.

Q replication is recommended. Q replication offers
lower latency, higher throughput and less CPU
usage at the source. This configuration requires
WebSphere Classic Replication Server for z/OS at
the nonrelational data source and WebSphere
Replication Server at the target.

36 Introduction to Replication and Event Publishing

Chapter 5. Comparison of Q replication, SQL replication, and
event publishing

Q replication, SQL replication, and event publishing differ in their uses. You can
compare these differences to determine which solution best works for your
environment.

The following table compares the main features of Q replication, SQL replication,
and event publishing.

Table 5. Comparison of the main features in Q replication, SQL replication, and event publishing

Points of comparison Q replication SQL replication Event publishing

Uses Multiple, including failover,
capacity relief, supporting
geographically distributed
applications, and data
availability for planned or
rolling upgrades or outages.

Multiple, including capacity
relief, wide distributions
and consolidations, feeding
data warehouses and data
marts, and auditing change
history.

Multiple, including
publishing DB2
transactional data for
warehouse consumption,
application integration, and
automating business
processes.

How data is replicated or
published

Committed transactional
data is captured and put on
WebSphere MQ message
queues. An applying
program reads the
information from message
queues and applies the
transactions to target tables.

Committed transactional
data is captured and stored
in staging tables. An
applying program reads the
information from the
staging tables and applies
the transactions to target
tables.

Committed transactional
data is captured and
published on WebSphere
MQ message queues in
either an XML format or a
compact, delimited format
for consuming applications.

Sources DB2 tables, and for Classic
replication the following
nonrelational databases:
IMS, CA-IDMS, Adabas,
and CICS VSAM.

Tables (DB2, Oracle, Sybase,
Informix, and Microsoft
SQL Server), views

DB2 tables

Targets Tables (DB2, Oracle, Sybase,
Informix, Microsoft SQL
Server, and Teradata),
stored procedures

Tables (DB2, Oracle, Sybase,
Informix, Microsoft SQL
Server, and Teradata), views

User application, DataStage,
or other consuming
application

Filtering possible? Column and row filtering. Column and row filtering. Column and row filtering.

Where the filtering is
done?

Source Source, target, or both. Source

Data transformation
possible?

Data cleansing, data
aggregation, and calculated
columns in target tables.
Transformation with
user-developed stored
procedures.

Data cleansing, data
aggregation, and calculated
columns in target tables.
Manipulate data once and
replicate to many targets.
Manipulate data and
replicate to selected targets.

Any required data
transformation is performed
by the user application.

Utilities supported for
automatic loads of target
tables

EXPORT/IMPORT,
EXPORT/LOAD, LOAD
FROM CURSOR option of
the LOAD utility,
depending on the target
platform.

EXPORT/IMPORT,
EXPORT/LOAD, LOAD
FROM CURSOR option of
the LOAD utility,
depending on the target
platform.

No automatic loads because
there are no target tables.

© Copyright IBM Corp. 2004, 2009 37

Table 5. Comparison of the main features in Q replication, SQL replication, and event publishing (continued)

Points of comparison Q replication SQL replication Event publishing

Supported operating
systems

Linux, UNIX, Windows,
z/OS

Linux, UNIX, Windows,
z/OS, System i®

Linux, UNIX, Windows,
z/OS

Supported relational
database management
systems

DB2, Informix, Microsoft
SQL Server, Oracle, Sybase,
Teradata

DB2, Informix, Microsoft
SQL Server, Oracle, Sybase,
Teradata

DB2

Administrative interfaces Graphical user interface or
command-line processor

Graphical user interface or
command-line processor

Graphical user interface or
command-line processor

38 Introduction to Replication and Event Publishing

Chapter 6. Comparison of Q replication to high availability
disaster recovery (HADR)

DB2 high availability disaster recovery (HADR) provides a high-availability
technology to help you recover from complete site failures, as well as to support
applications that demand ultrafast failover for partial site failures.

HADR is also useful for rolling upgrades and other kinds of planned outages.
HADR ships database log records for an entire database from a source copy of the
database (called the primary) to a target copy of the database (called the standby).
The standby database cannot be accessed by applications. The standby is initialized
by using a restore or a split mirror, which is an identical and independent copy of
disk volumes that can be attached to a different system and can be used in various
ways.

When you start HADR, it retrieves log records and replays those records on the
standby until the standby catches up to the in-memory log set of the primary. The
primary then writes log data to local disk and sends them to the standby. Updates
to the standby database occur by rolling forward log data that is generated on the
primary database and shipped to the standby database.

You can also use Q replication to protect your data from complete site failures and
to support application failover for partial site failures, as well as for rolling
upgrades and other planned outages. Table 6 summarizes the differences between
HADR and Q replication when used for the same purposes as HADR.

Table 6. Comparison of HADR with Q replication

Points of comparison High availability disaster recovery Q replication

What is the scope of the setup
procedure?

Entire DB2 database. Tables within a DB2 database or
subsystem.

How is data propagated to the standby? Log operations are shipped to the
standby database and replayed
continuously through forward
recovery.

Committed transactional data are
captured from the DB2 recovery log
and applied to target tables.

Is synchronous replication possible? Yes. No.

Is asynchronous replication possible? Yes. Yes.

Are client applications automatically
rerouted to the standby?

Yes. Yes.

Which operating systems are
supported?

Linux, UNIX, and Windows. Linux, UNIX, Windows, z/OS.

Can applications read data from the
standby?

No. Yes.

Can applications write data to the
standby?

No. Yes.

Is SQL Data Definition Language
(DDL) automatically replicated in
addition to SQL Data Manipulation
Language (DML)?

Yes. No.

© Copyright IBM Corp. 2004, 2009 39

Table 6. Comparison of HADR with Q replication (continued)

Points of comparison High availability disaster recovery Q replication

On what hardware, operating system,
and version of DB2 can the standby
run?

Hardware, operating system, and
version of DB2 must be identical to
those where the source database is
located.

Hardware, operating system, and
version of DB2 can be different from
those where the source database is
located.

Are there tools for monitoring
performance?

Yes. Yes.

Is network compression and encryption
built in?

No. Yes.

Can the source and standby databases
be partitioned?

No. Yes.

For more information about HADR, see the Data Recovery and High Availability
Guide and Reference.

40 Introduction to Replication and Event Publishing

Chapter 7. Comparison of event publishing to DB2 MQ
user-defined functions

You can use WebSphere MQ functions that are available in DB2 as user-defined
functions in scenarios similar to those scenarios that you can set up with event
publishing. These functions allow users to use SQL to access WebSphere MQ
message queues from DB2.

These functions can be used by applications written in any of the programming
languages supported by DB2 in a wide variety of scenarios:

Data collection
The application receives information in the form of messages from one or
more sources. An information source can be any application. The
application receives the data from queues and stores the data in database
tables for additional processing.

Workload distribution
The application posts work requests to a queue that is shared by multiple
instances of the same application. When an application instance is ready to
perform some work, it receives a message that contains a work request
from the head of the queue. Multiple instances of the application can share
the workload that is represented by a single queue of pooled requests.

Application signaling
In a situation where several processes collaborate, you can use messages to
coordinate their efforts. These messages might contain commands or
requests to perform work.

Event publishing differs from the DB2 WebSphere MQ functions in that you can
publish events as messages without having to modify the applications that
generate these events. If you want to use the DB2 WebSphere MQ functions, you
have to code your applications to work with them.

© Copyright IBM Corp. 2004, 2009 41

42 Introduction to Replication and Event Publishing

Chapter 8. Administrative interfaces for replication and
publishing

Replication and publishing provide three administrative interfaces for setting up,
operating, and monitoring the health of your environment.

You can use the following interfaces to administer replication and publishing:

Replication Center
The Replication Center is a graphical user interface that you can use to
define, operate, and monitor your replication and publishing environments.
It comes with the DB2 Administration Client and runs on Linux and
Windows systems. The Replication Center provides a single interface for
administering your replication environments on different platforms across
multiple systems. Among its features:
v Launchpads that show you step by step how to configure basic

replication and publishing environments.
v Wizards that help you set up simple to highly customized replication

and publishing configurations.
v Profiles that you can customize that let you create replication objects

with schemas, names, and other attributes that conform to your own
conventions and storage requirements.

ASNCLP command-line program
The ASNCLP program generates SQL scripts for defining and changing
replication and publishing environments. The program runs on Linux,
UNIX, Windows, and UNIX System Services (USS) for z/OS. The ASNCLP
program does not run natively on z/OS or System i.

You can use the ASNCLP to administer SQL replication, Q replication,
Classic replication, event publishing, and the Replication Alert Monitor.
You can build ASNCLP input files and run them to generate SQL scripts,
or you can run ASNCLP commands interactively from an operating system
prompt. You can also run the ASNCLP program in execute-immediately
mode, which is useful for operational commands such as START QSUB,
STOP QSUB, or LIST.

Replication Dashboard
The Replication Dashboard is a Web-based, graphical user interface that
helps you monitor and manage the health of replication and event
publishing.

The dashboard provides an overall summary of replication and publishing
configurations in a convenient tabular format with high-level status
indicators. You can drill down for more detailed information on queues
and queue depth, subscriptions, latency, and exceptions, and generate
detailed reports to help track performance or diagnose problems. You can
also view up to 24 moving graphs for near-real-time performance
information.

You can change program parameters, start, stop, and reinitialize
subscriptions, and start and stop queues. The dashboard also provides a
convenient way to view alerts from the Replication Alert Monitor program.

© Copyright IBM Corp. 2004, 2009 43

44 Introduction to Replication and Event Publishing

Chapter 9. Utilities for replication and publishing

Three utilities that work with the replication and publishing technologies help you
monitor your replication and publishing environments and keep sources and
targets synchronized.

Q Replication Dashboard
The Q Replication Dashboard provides Web-based health monitoring of
DB2 and Q replication and event publishing. The rich Web interface
includes live graphs of throughput and latency, a health summary that
helps you quickly identify and troubleshoot problems, and at-a-glance
status information on programs, queues, Q subscriptions, and other objects.
For information about downloading the dashboard tool, see the ″Q
Replication Tools″ page at http://www-01.ibm.com/support/
docview.wss?uid=swg27007070.

Replication Alert Monitor
The Replication Alert Monitor is a utility that checks the health of
programs that are part of the replication and event publishing solutions.
The monitor checks for situations in which a program terminates, issues a
warning or error message, reaches a threshold for a specified value, or
performs a certain action. You tell the Replication Alert Monitor which
situations to watch for. If any of them occur, the Replication Alert Monitor
sends an e-mail message to the person or group of persons that are
designated as the appropriate contacts for such a situation.

For example, you might have the Replication Alert Monitor notify you
when a replication program is not running or has reached the maximum
amount of memory that you expect it to use.

Reconciliation utilities
Source and target tables can lose synchronization when, for example, a
target table is changed by an application. The asntdiff and asntrepair
utilities can detect and repair differences between source and target tables
in Q replication and SQL replication. By using them, you can avoid
comparing tables manually and having to reload targets to resynchronize
them with sources.

The asntdiff utility generates a relational table of the differences between a
source and target table. After you run the asntdiff utility, you can run the
asntrepair utility, which uses this table of differences to determine which
rows to insert, update, or delete at the target table to synchronize it with
the source table.

© Copyright IBM Corp. 2004, 2009 45

http://www-01.ibm.com/support/docview.wss?uid=swg27007070
http://www-01.ibm.com/support/docview.wss?uid=swg27007070

46 Introduction to Replication and Event Publishing

Product documentation

Documentation is provided in a variety of locations and formats, including in help
that is opened directly from the product interface, in a suite-wide information
center, and in PDF file books.

You can also order IBM® publications in hardcopy format online or through your
local IBM representative.

To order publications online, go to the IBM Publications Center at
www.ibm.com/shop/publications/order.

You can send your comments about documentation in the following ways:
v Online reader comment form: www.ibm.com/software/data/rcf/
v E-mail: comments@us.ibm.com

Contacting IBM
You can contact IBM for customer support, software services, product information,
and general information. You can also provide feedback on products and
documentation.

Customer support

For customer support for IBM products and for product download information, go
to the support and downloads site at www.ibm.com/support/us/.

You can open a support request by going to the software support service request
site at www.ibm.com/software/support/probsub.html.

My IBM

You can manage links to IBM Web sites and information that meet your specific
technical support needs by creating an account on the My IBM site at
www.ibm.com/account/us/.

Software services

For information about software, IT, and business consulting services, go to the
solutions site at www.ibm.com/businesssolutions/us/en.

Information Management product support

For Information Management product support, news, and other product
information, go to the Information Management support site at
www.ibm.com/software/data/support/.

Federation, replication, and event publishing products support

For support, go to:
v IBM InfoSphere Federation Server

www.ibm.com/software/data/integration/support/federation_server/

© Copyright IBM Corp. 2004, 2009 47

http://www.ibm.com/shop/publications/order
http://www.ibm.com/software/data/rcf/
http://www.ibm.com/support/us/
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/account/us/
http://www.ibm.com/businesssolutions/us/en
http://www.ibm.com/software/data/support/
http://www.ibm.com/software/data/integration/support/info_server/

v IBM InfoSphere Replication Server
www.ibm.com/software/data/integration/support/replication_server/

v IBM InfoSphere Data Event Publisher
www.ibm.com/software/data/integration/support/data_event_publisher/

Classic products support

For support, go to:
v IBM InfoSphere Classic Federation Server for z/OS

www.ibm.com/software/data/integration/support/classic_federation_server_z/
v IBM InfoSphere Classic Replication Server for z/OS

www.ibm.com/software/data/infosphere/support/replication-server-z/
v IBM InfoSphere Classic Data Event Publisher for z/OS

www.ibm.com/software/data/integration/support/data_event_publisher_z/
v IBM InfoSphere Data Integration Classic Connector for z/OS

www.ibm.com/software/data/integration/support/data_integration_classic_connector_z/

General information

To find general information about IBM, go to www.ibm.com.

Product feedback

You can provide general product feedback through the Consumability Survey at
www.ibm.com/software/data/info/consumability-survey.

Documentation feedback

You can click the feedback link in any topic in the information center to comment
on the information center.

You can also send your comments about PDF file books, the information center, or
any other documentation in the following ways:
v Online reader comment form: www.ibm.com/software/data/rcf/
v E-mail: comments@us.ibm.com

48 Introduction to Replication and Event Publishing

http://www.ibm.com/software/data/integration/support/replication_server/
http://www.ibm.com/software/data/integration/support/data_event_publisher/
http://www.ibm.com/software/data/integration/support/classic_federation_server_z/
http://www.ibm.com/software/data/infosphere/support/replication-server-z/
http://www.ibm.com/software/data/integration/support/data_event_publisher_z/
http://www.ibm.com/software/data/integration/support/data_integration_classic_connector_z/
http://www.ibm.com
http://www.ibm.com/software/data/info/consumability-survey/
http://www.ibm.com/software/data/rcf/

How to read syntax diagrams

The following rules apply to the syntax diagrams that are used in this information:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line. The following conventions are used:
– The >>--- symbol indicates the beginning of a syntax diagram.
– The ---> symbol indicates that the syntax diagram is continued on the next

line.
– The >--- symbol indicates that a syntax diagram is continued from the

previous line.
– The --->< symbol indicates the end of a syntax diagram.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the syntax element and is used only for readability.

��
optional_item

required_item ��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path, and the
remaining choices are shown below.

��
default_choice

required_item
optional_choice1
optional_choice2

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

© Copyright IBM Corp. 2004, 2009 49

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

Fragment-name:

required_item
optional_item

v Keywords, and their minimum abbreviations if applicable, appear in uppercase.
They must be spelled exactly as shown.

v Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

v Separate keywords and parameters by at least one space if no intervening
punctuation is shown in the diagram.

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols,
exactly as shown in the diagram.

v Footnotes are shown by a number in parentheses, for example (1).

50 Introduction to Replication and Event Publishing

Product accessibility

You can get information about the accessibility status of IBM products.

The IBM InfoSphere™ Information Server product modules and user interfaces are
not fully accessible. The installation program installs the following product
modules and components:
v IBM InfoSphere Business Glossary
v IBM InfoSphere Business Glossary Anywhere
v InfoSphere DataStage and QualityStage Administrator
v IBM InfoSphere FastTrack
v IBM InfoSphere Information Analyzer
v IBM InfoSphere Information Services Director
v IBM InfoSphere Metadata Workbench

For more information about IBM product accessibility status, go to
http://www.ibm.com/able/product_accessibility/index.html.

Accessible documentation

Accessible documentation for IBM Information Server products is provided in an
information center. The information center presents the documentation in XHTML
1.0 format, which is viewable in most Web browsers. XHTML allows you to set
display preferences in your browser. It also allows you to use screen readers and
other assistive technologies to access the documentation.

© Copyright IBM Corp. 2004, 2009 51

http://www.ibm.com/able/product_accessibility/index.html

52 Introduction to Replication and Event Publishing

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2004, 2009 53

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not

54 Introduction to Replication and Event Publishing

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided ″AS IS″, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM trademarks and certain non-IBM trademarks are marked on their first
occurrence in this information with the appropriate symbol.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at ″Copyright and
trademark information″ at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies:

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency, which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Notices 55

http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both

Other company, product, or service names may be trademarks or service marks of
others.

56 Introduction to Replication and Event Publishing

Index

A
accessibility 47
Apply control tables

definition 2
location 31

Apply program
definition 2
location 33

Apply qualifier
definition 2

applying data
Q replication 20
SQL replication

DB2 targets 11
non-DB2 targets 13

ASNCLP program 43

B
bidirectional replication 21

C
Capture control tables

definition 2
location 31

Capture program
definition 2
location 33

Capture schema
definition 2

Capture triggers 12
capturing data

event publishing 29
Q replication 19
SQL replication

DB2 sources 9
non-DB2 sources 12

CCD tables 12, 13
CCD targets 5
CD tables 3, 11, 12
change-capture replication 3
comparison

Q replication and SQL replication 31
comparison of replication and publishing

solutions 37
customer support 47

D
DB2 MQ user-defined functions 41
documentation

accessible 47

E
event publishing

capturing data 29

event publishing (continued)
comparison to DB2 MQ user-defined

functions 41
infrastructure 26
introduction 25
sources 27

event timing 5

F
full-refresh replication 3

H
high availability disaster recovery

(HADR)
comparison to Q replication 39

I
IBM support 47
infrastructure

event publishing 26
Q replication 16
SQL replication 2

interval timing 5

L
legal notices 53
loading target tables

Q replication 17
SQL replication 11

M
mapping

sources to targets
Q replication 17
SQL replication 5

P
peer-to-peer replication 21
point-in-time targets 5
product accessibility

accessibility 51
publishing queue map 27

Q
Q Apply control tables

definition 16
location 31

Q Apply program
definition 16
location 33

Q Apply schema
definition 16

Q Capture control tables
definition

event publishing 26
Q replication 16

location
event publishing 26
Q replication 31

Q Capture program
definition

event publishing 26
Q replication 16

location
event publishing 26
Q replication 33

Q Capture schema
definition

event publishing 26
Q replication 16

Q replication
applying data 20
auditing 34
capturing data 19
common scenarios 34
Data consolidation 34
Data distribution 34
hub-and-spoke 34
infrastructure 16
introduction 15
source-target pairs 17

Q subscriptions
definition 17

R
registering sources in SQL replication 3
replica targets 5
replication

bidirectional 21
change-capture 3
common scenarios 34
full-refresh 3
peer-to-peer 21
unidirectional 21

Replication Alert Monitor 45
replication and publishing solutions

comparison 37
Replication Center 43
replication queue map 17

S
screen readers 47
software services 47
source tables

event publishing 27
Q replication 19
SQL replication 3

© Copyright IBM Corp. 2004, 2009 57

source-target pairs
Q replication 17
SQL replication 5

SQL replication
applying data

DB2 targets 11
non-DB2 targets 13

auditing 34
capturing data

DB2 sources 9
non-DB2 sources 12

change-capture replication 3
common scenarios 34
Data consolidation 34
Data distribution 34
full-refresh replication 3
hub-and-spoke 34
infrastructure 2
introduction 1
registering sources 3
source-target pairs 5

SQL replication and Q replication
comparison

applying data 33
capturing data 33
infrastructure 31
sources and targets 31

subscription sets
definition 5

support, customer 47

T
target tables

Q replication 17
SQL replication 5

tdiff 45
trademarks 55
trepair 45
triggers

Capture 12

U
unidirectional replication 21

classic replication 21
user copy targets 5

X
XML publications 27

58 Introduction to Replication and Event Publishing

����

Printed in USA

GC19-1028-02

	Contents
	Chapter 1. Introduction to SQL replication
	Infrastructure for an SQL replication environment
	Registration of sources in SQL replication
	Subscription sets in SQL replication
	Capture of data from DB2 sources in SQL replication
	Application of data to DB2 targets in SQL replication
	Capture of data from non-DB2 sources in SQL replication
	Application of data to non-DB2 targets in SQL replication

	Chapter 2. Introduction to Q replication
	Infrastructure for a Q replication environment
	Sources and targets in Q replication
	Capture of data in Q replication
	Application of data to targets in Q replication
	Types of replication in Q replication

	Chapter 3. Introduction to event publishing
	Infrastructure for an event publishing environment
	Sources in event publishing
	Capture of data in event publishing

	Chapter 4. Comparison of SQL replication and Q replication—Overview
	Comparison of the infrastructure of SQL replication and Q replication
	Comparison of sources and targets in SQL replication and Q replication
	Comparison of data capturing and applying in SQL replication and Q replication
	Replication solutions for common scenarios

	Chapter 5. Comparison of Q replication, SQL replication, and event publishing
	Chapter 6. Comparison of Q replication to high availability disaster recovery (HADR)
	Chapter 7. Comparison of event publishing to DB2 MQ user-defined functions
	Chapter 8. Administrative interfaces for replication and publishing
	Chapter 9. Utilities for replication and publishing
	Product documentation
	Contacting IBM

	How to read syntax diagrams
	Product accessibility
	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	P
	Q
	R
	S
	T
	U
	X

