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Enterprises have been storing
multidimensional data, using a star or
snowflake schema, in relational databases for
many years. Over time, relational database
vendors have added optimizations that
enhance query performance on these
schemas. During the 1990s many special-
purpose databases were developed that
could handle added calculational complexity
and that generally performed better than
relational engines. DB2® has added a number
of features that make it more competitive with
these special-purpose databases. In this
paper, we define meta-data extensions that
allow designers of multidimensional schemas
to describe the structure of those schemas to
multidimensional query and analysis tools.
The SQL (Structured Query Language)
extensions include a “cube” object that
returns row sets that are “slices” of the cube.
We also describe Web services for OLAP (on-
line analytical processing) that provide meta-
data for multidimensional data, as well as
XML (Extensible Markup Language) query
results.

On-line analytical processing (OLAP) is a term that
was coined in an unpublished 1993 white paper, Pro-
viding OLAP to User Analysts: An IT Mandate, by E. F.
Codd.1 By introducing this new term as a play on
the then-familiar term on-line transaction process-
ing (OLTP), the paper signaled a shift in the para-
digm for business analysis, in parallel with the shift
that had already occurred for transaction process-
ing. Instead of reviewing piles of static reports printed

on green-bar paper, the OLAP analyst could explore
business results interactively, dynamically adjusting
the view of the data—asking questions and getting
answers almost immediately. This freedom from
static answers to fixed questions on a fixed schedule
allows business analysts to operate more effectively
and to effect improvements in business operations.
In the white paper, the authors outlined 12 charac-
teristics of an OLAP system. In a 1995 update to the
white paper, six more characteristics were added.
These rules provide one point of view on what con-
stitutes an OLAP system, but are not definitive. One
reason is that the development of the white paper
was commissioned by Arbor Software (now Hype-
rion Solutions). Not surprisingly, the Arbor prod-
uct, Essbase**, generally follows the rules outlined,
whereas competitive products were often found lack-
ing when measured against the provided yardstick.
The ultimate meaning of OLAP is left to time and
the growing collection of products that claim to be
OLAP products, or have OLAP components.

Nigel Pendse, an analyst with Business Intelligence
Ltd. who publishes The OLAP Report, provides an-
other valuable point of view. In a Web page entitled
“What Is OLAP?”2 Pendse introduces a simpler
model, FASMI, to characterize OLAP systems. Although
no single definition is likely to receive universal sup-
port, Pendse’s characterization is much simpler than
the Codd rules. Briefly, the FASMI characteristics are:
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● Fast. In keeping with the spirit of the “O” in OLAP,
such systems need to provide results very quickly—
usually in just a few seconds, and seldom in more
than 20 or 30 seconds. This level of performance
is key in allowing analysts to work effectively with-
out distraction.

● Analytic. Considering the “A” in OLAP, OLAP sys-
tems generally must provide rich analytic functions
appropriate to a given application, with minimal
programming.

● Shared. An OLAP system is usually a shared re-
source. This means that there is a requirement for
OLAP systems to provide appropriate security and
integrity features. Ultimately, this can mean pro-
viding different access controls on each cell of a
database.

● Multidimensional. Multidimensionality is the pri-
mary requirement for an OLAP system. OLAP prod-
ucts present their data in a multidimensional
framework. Dimensions are collections of related
identifiers, or attributes (product, market, time,
channel, scenario, or customer, for example) of the
data values of the system. The identifiers (“The
Lord of the Rings—DVD,” “San Jose, California,”
“2002,” “Retail Rental,” and “John Q. Public,” for
example) belonging to the collection for a partic-
ular dimension generally have some sort of struc-
ture—usually hierarchical. Sometimes there is
more than one natural structure for these iden-
tifiers. The multidimensional characteristic means
that an OLAP system can quickly switch among var-
ious orientations of dimensions, as well as among
various subsets and structural arrangements of a
dimension. Because of the multidimensional na-
ture of OLAP systems, we often refer to the col-
lections of data that they implement as cubes.

● Store and calculate information. OLAP systems
must store and calculate information. Data for
OLAP systems often come from one or more op-
erational systems. Analytical models are applied
to these data, and the results must either be stored
in the system or generated at query time. The quan-
tity of information that a particular OLAP system
can manage is an important characteristic of that
system.

The bottom line is that OLAP systems allow their users
to do analysis at the speed of thought. They provide
consistently fast response to queries expressed in
terms of a business model that makes sense to the
user. They provide flexible views of data without lim-
iting the number of dimensions or levels of aggre-
gation or allocation.

Although many products have claimed the OLAP
label, no single product or model dominates strongly
enough to result in widely accepted application pro-
gramming interfaces (APIs), data definition languages
(DDLs), or data manipulation languages (DMLs). This
is in stark contrast to the world of relational data-
bases in which ODBC (Open Database Connectivity)
and SQL (Structured Query Language) are nearly
universally accepted. This is a great burden to de-
velopers of OLAP systems and applications. However,
the shift in the industry toward a service-oriented
architecture, using a pervasive infrastructure that in-
cludes HTTP (HyperText Transfer Protocol) and XML
(Extensible Markup Language), presents new oppor-
tunities for OLAP systems (see Figure 1).

A client or service requestor may access a server or
service provider through Web services and their in-
frastructure. SOAP (Simple Object Access Protocol)
essentially defines an RPC (remote procedure call)-
like XML protocol over HTTP between service re-
questor and provider. A service provider may be
registered in a UDDI (Universal Description and
Discovery Interface) registry for requestors to find
and discover services. In this paper we propose a set
of Web services for accessing OLAP data and meta-
data. This set includes services to discover data cubes,
explore the structure of a cube, and query data within
a cube. Service requestors might reside in small de-
vices such as cellular phones, in thin Web clients that
deploy a browser interface, or in thick clients that
perform some data analysis and visualization. The
service requestors access the OLAP system through
the Internet to retrieve OLAP data. An OLAP system
might provide a finance cube, a market-share cube,
an employee cube, and a customer cube. The
strength of this set of services comes from its per-
vasive and ubiquitous infrastructure based on HTTP
and XML, as well as the strict separation between the
OLAP requestor and the provider.

OLAP basics

Figure 2 illustrates a simple, three-dimensional OLAP
cube. Each dimension comprises a set of related
members. In our example, product, time, and loca-
tion are the dimensions of the cube. The members
of the location dimension are location, USA, Can-
ada, CA, NY, ON, SJC, PAS, YKT, TOR, 100, 200, 300,
and 400. Members of a dimension are usually orga-
nized into a hierarchy of levels that show the parent-
child relationships of the levels within a dimension.
Levels are sets of members that share a number of
common attributes. In our example, the elements
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100, 200, 300, and 400 belong to the store level. Al-
though not shown in Figure 2, this level has a mem-
ber attribute of “square_foot”—the size of each store
in square feet. The city level could also have at-
tributes that include “mayor,” while the state level
could have attributes that include “governor.” Note
that if members at a particular level of a hierarchy
are not unique (for example, 01 and 02 in the time
dimension), they must be combined with parent iden-
tifiers to form unique member names (1999-01, for
example). In order to show the hierarchical relation-
ship of the members in the figure, aggregate mem-
bers such as 1999 and SJC are not explicitly shown
as identifiers of a slice of the cube. However, con-
ceptually all members on an edge do identify such
a slice. So, (1999, VCRS, SJC) describes a cell of the
cube, in the same way that (1999-01, SDB, SJC) de-
scribes a cell. Each cell of the cube contains a vector
of two values: amount and quantity. Sometimes it is
convenient to consider these vectors of values as an-
other dimension of a cube.

This view of an OLAP cube does not explicitly de-
scribe how values are computed. Usually, hierarchi-
cal relationships imply simple aggregation, such as
CA � SJC � PAS. In many models, the mathematical
relationships in a hierarchy are more complex, and
they vary depending on the nature of the measure-
ments. For example, in a cube measuring sales and
inventory, sales values may be summed by time pe-
riod, whereas average or final values are more ap-
propriate for inventory. In many cases (particularly
with costs), only aggregate values are available and
an OLAP system is used to allocate those costs down
to lower levels. The ability of OLAP systems to han-
dle various types of calculations is a primary distin-
guishing factor among such systems.

Because the number of cells in a cube is the product
of the size of each dimension, OLAP cubes can be
very large. Consider the possibility of a large enter-
prise with 1000000 customers, 100000 products, 2500

Figure 1 Application scenario
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time periods, and 25 measurements. An OLAP sys-
tem implementing such a cube has to deal with the
potential of 6250000000000000 cells. The number
of potential cells is usually several orders of mag-
nitude greater than the number of populated cells;
thus OLAP systems must be designed to handle very
sparsely populated matrices.

Figure 3 shows a view of our sample cube that is typ-
ical of grid-based OLAP viewers (query processors).
From any such view, OLAP systems typically provide
operations that allow an analyst to quickly switch to
a related view. Operations typically provided include:

● Drill-down—navigate in a dimension from lesser
detail to greater detail. Figure 3 shows the result
of drilling down one level in the location dimen-
sion.

● Drill-up—navigate in a dimension from greater de-
tail to lesser detail. Figure 3 shows the result of
drilling up one level, to the top of the product di-
mension.

● Pivot—rearrange the ordering of dimensions in a
result. Figure 3 shows the result of switching the
product and time dimensions in the display grid.

Although the term OLAP is not yet ten years old, the
development of OLAP technology is quite a bit old-
er.3 IRI’s Express** and Comshare’s System W are
considered the progenitors of today’s OLAP systems.
Development of these systems began in the late 1960s
to try to model business operations using multidi-
mensional matrices and complex operations on them.
Multidimensional analysis has also been done using
SQL since the introduction of relational databases.
The 1990s saw a burst of research and development
in OLAP technology. OLAP systems today are gener-
ally classified by their general technological approach
into one of the following classes:

● Multidimensional OLAP (MOLAP)
● Relational OLAP (ROLAP)

Multidimensional OLAP refers to the family of OLAP
systems in which special-purpose file systems or in-
dexes are used to store cube data. There is a great
deal of academic research on, and numerous pat-
ents have been granted for, storage and index sys-
tems that optimize storage usage and query execu-
tion time for multidimensional data arrays. Express,
Essbase, TM1**, and Pilot Suite** are a few exam-

Figure 2 OLAP sales cube
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ples of products based on special-purpose storage
and indexing technology. Microsoft’s OLAP offering
also includes a MOLAP engine. These systems are of-
ten read-only systems that are loaded with base data
periodically, then derived results are calculated,
stored, and indexed. Scalability of MOLAP systems is
often limited by the size of the batch window within
which derived results must be calculated and stored.
To improve scalability, such systems often have a
means for deferring calculation of some derived re-
sults until query time.

Relational databases have been used extensively for
multidimensional analysis for many years. By far the
most common approach is to organize the data in
what is called a star schema. The simplest star sche-
mas consist of a fact table joined with a number of
dimension tables. The fact table contains one col-
umn for each dimension, plus one column for each
measure. A great deal has been written on the tech-

niques for designing star schemas and optimizing the
calculation of derived results. A classic work on the
subject is The Data Warehouse Toolkit, by Ralph Kim-
ball. 4

A simple example of a star schema is shown in Fig-
ure 4. The fact table has five columns. A row in the
fact table contains one key value per dimension and
two value columns—one for amount and one for
quantity. Each of the dimension key values matches
the key value in the key field of a single row of the
corresponding dimension table. In the highlighted
row of the fact table, the key value “1” of TID matches
the first row of the time dimension table, so we know
that the values in this row of the fact table are for
month 1 of year 1999. Similarly, we can match key
values of the PID and LID columns in the highlighted
row to find matches in the product and location di-
mension tables of (ELECTRO, CCOR, PHON) and (USA,
CA, SJC), respectively. We also know that the size of

Figure 3 Standard OLAP operations

1999-01

1999-02

USA
Canada
USA
Canada

ELECTRO
Amount
      16225
        1948
      16902
        1954

CLOTH
Amount
     5062
       122
     5331
       127

Quantity
        731
          45
        770
          48

Quantity
      1112
        122
        807
        131

MED
Amount
     8311
       845
     6449
       912

Quantity
      1703
        223
      1769
        244

INITIAL QUERY RESULT

1999-01

1999-02

USA

Canada

USA

Canada

CA
NY

ON

CA
NY

ON

ELECTRO
Amount
      16225
        8546
        7679
        1948
        1948
      16902
        8695
        8207
        1954
        1954

CLOTH
Amount
      5062
      4395
        667
        122
        122
      5331
      4585
        746
        127
        127

Quantity
        731
         619
         112
           45

45
770
649
121
48
48

Quantity
      1112
        878

234
122
122
807
777
30

131
131

MED
Amount
       8311
       5962
       2349
         845
         845
       6449
       5992
         457
         912
         912

Quantity
      1703
      894

809
223
223

1769
904
865
244
244

ELECTRO

MED

CLOTH

USA
Canada
USA
Canada
USA
Canada

1999-01
Amount
      16225
        1948
        8311
          845
        5062
          122

Quantity
       1769
         244
         807
         131
         770
           48

1999-02
Amount
     16902
       1954
       6449
         912
       5331
         127

Quantity
      1703
        223
      1112
        122
        731
          45

RESULT AFTER PIVOT

1999-01

1999-02

USA
Canada
USA
Canada

Amount
     29598
       2915
     28682
       2993

Quantity
      3546
        390
      3346
        423

RESULT AFTER DRILL-UP

RESULT AFTER DRILL-DOWN

COLOSSI, MALLOY, AND REINWALD IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002718



the store in SJC is 500, because of the dimensional
attribute column in the location dimension table.

In the late 1980s and early 1990s, a number of prod-
ucts were designed to exploit this method of orga-
nizing multidimensional data. In 1986, Ralph Kim-
ball launched Red Brick Systems to develop a
relational database system designed specifically to
handle star schema queries. However, the SQL lan-
guage as implemented in the early 1990s had some
serious performance problems in implementing large
OLAP cubes. Some of the most serious problems
were:

● GROUP BY could not be used to return the results
for cells with different levels of aggregation. This
meant that many different queries were required
to obtain all cell values.

● Highly aggregated queries could reference virtu-
ally every row in the fact table in order to return
very few cell values.

● There was generally no memory of the results of
such huge calculations—the relational engine had
to start “from scratch” with each query. As aggre-
gates for various levels were computed, the rows
of the fact table were read repeatedly.

● SQL supported only a few aggregation functions
(SUM, COUNT, AVG, MIN, and MAX), although some
relational database systems had extensions with ad-
ditional analytic capabilities.

● The relational database catalogs did not contain
meta-data about the structure of star schemas.
Such meta-data were relegated to the domain of
tools and applications. As a result, star schemas
had to be “described” multiple times—once for
each application or tool used.

● Because the meta-data were not part of the da-
tabase catalog, key structural information was un-
available to query compilers.

Historically, the standard approach to solving the
performance problems encountered in ROLAP sys-
tems was to maintain a number of summary fact ta-
bles and associated dimension tables. In such a sys-
tem, whenever data in the fact table are modified,
the corresponding summary tables must be adjusted,
as well. Despite these problems, relational OLAP sys-
tems were widely implemented. At query time, if a
summary table was not available with the desired ag-
gregations, the OLAP system had to choose an ap-
propriate summary table containing partially aggre-
gated results, or query the base fact table. The cost
of generating the summaries is paid only once, and
then can be amortized over many queries.

SQL extensions

During the 1990s, DB2* (Database 2*) responded to
the competitive pressure of the MOLAP vendors by
adding a number of features that addressed the dif-
ficulties of using DB2 as an OLAP engine. These fea-
tures address some of the concerns just outlined. Im-
proved grouping operations were added to reduce
the number of queries required to access cube data
and increase the efficiency of the queries that are
executed. Additional summary functions were added
to increase the analytical power of DB2. Automatic
summary tables or materialized query tables were
added to reduce query times and to reduce the ex-
tent of redundant query processing. With respect to
both function and performance, these features make
DB2 a competitive offering as a highly scalable OLAP
engine. We describe these major additions to DB2 in
more detail in the following subsections.

Aggregate computation. Until a few years ago, re-
lational databases allowed the calculation of aggre-

Figure 4 A simple star schema
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gates at only a single level per query. This forced re-
lational OLAP systems to run multiple queries against
the database in order to calculate cells at varying lev-
els. To facilitate OLAP-type query creation and pro-
vide more advanced optimizations, DB2 implemented
three new operators that were added to the SQL stan-
dard to allow a single query to generate multiple ag-
gregates: ROLLUP, CUBE, and GROUPING SETS. These
operators are extensions to the GROUP BY clause and
specify that aggregates be generated at multiple lev-
els.5

It is important to note that these operators are more
than mere shorthand for generating multiple group-
ing sets. Because multiple grouping sets are re-
quested in a single statement, DB2 can build an ex-
ecution plan that generates all the grouping sets in
such a way that each input row needed for the cal-
culation is referenced only once. This can result in
performance improvements of orders of magnitude,
especially when the set of input rows does not fit in
the buffer pool (cache).

ROLLUP. The ROLLUP operator, an extension of the
GROUP BY clause, generates multiple subtotal group-
ing clauses, based on a list of columns. This has the
same effect, in OLAP terms, of a hierarchy calcula-
tion in a given dimension. Consider a dimension such
as location, which has a hierarchy composed of coun-
try, state, and city. The ROLLUP(country, state, city)
clause generates the grouping clauses that represent
the calculation of the hierarchy. The general spec-
ification of a ROLLUP of n elements

�c1, c2, . . . , cn�1, cn�

is equivalent to the following grouping clauses

�c1, c2, . . . , cn�1, cn�
�c1, c2, . . . , cn�1�
· · ·
�c1, c2�
�c1�
�

Note that n elements in a ROLLUP clause translate
to n � 1 grouping clauses. The empty grouping
clause represents the grand total.

It is very common for an OLAP application to have
multiple dimensions. A ROLLUP for each dimension
returns results that represent an OLAP cube, in a re-
lational way. The combination of more than one
ROLLUP operator in a single statement results in the
Cartesian product of the grouping clauses generated
for each ROLLUP. For example, combining the fol-
lowing pair of ROLLUP operators in a single statement

ROLLUP (country, state), ROLLUP (year, month)

results in the generation of the following grouping
clauses

(country, state, year, month)
(country, state, year)
(country, state)
(country, year, month)
(country, year)
(country)
(year, month)
(year)
�

Queries that use ROLLUP operators include all the
generated grouping clauses in a single result set.
Hence, the result set includes the union of all group-
ing clause columns, plus the aggregated columns. In
order to combine results of different grouping sets,
DB2 returns nulls in any grouping columns in which
a given row is not a member, as illustrated in the fol-
lowing example. See Table 1 for the result.

SELECT country, state, SUM (amt) AS revenue
FROM fact f, location l
WHERE f.lid � l.lid
GROUP BY ROLLUP (country, state)

In the example in Table 1, the row with the aggre-
gate revenue for USA is designated by a null (shown
as a dash) in the state column. The row with the ag-
gregate revenue for all countries and states is des-
ignated by a null in both the country and state col-
umns.

CUBE. The CUBE operator is an extension of the
GROUP BY clause that generates subtotals for all the
permutations of the grouping columns plus the grand

Table 1 Result of ROLLUP query

country state revenue

— — 235329.24
CANADA — 35754.64
CANADA ON 35754.64
USA — 199574.60
USA CA 103910.41
USA NY 95664.19
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total. OLAP cubes that have one attribute per dimen-
sion benefit from the CUBE operator because a com-
plete cube can be calculated with a single statement
using a single grouping clause. For example,

CUBE (time, product, location)

results in the following grouping clauses

(time, product, location)
(time, product)
(time, location)
(product, location)
(time)
(product)
(location)
( )

Because the CUBE operator generates all the permu-
tations on the columns, the resulting number of
grouping clauses for n columns is 2 n . The column
order does not matter for the CUBE operator—CUBE
(time, customer) and CUBE (customer, time) yield
the same result set.

Ironically, because dimensions in real OLAP cubes
nearly always have multilevel hierarchies, the CUBE
operator is of very little use in large-scale OLAP sys-
tems. Applying CUBE to the columns forming the lev-
els of a single, multilevel dimension results in group-
ing sets that are not generally of practical interest.

GROUPING SETS. The GROUPING SETS operator al-
lows multiple grouping clauses to be specified in a
single statement. This can be thought of as the union
of two or more groups of rows into a single result
set. It is logically equivalent to the union of multiple
subselects, with the GROUP BY clause in each sub-
select corresponding to one grouping set. The fol-
lowing example makes use of two groupings in the
GROUPING SETS definition. See Table 2 for the re-
sult.

SELECT country, state, prodline,
SUM (amt) AS revenue

FROM fact f, location l, product p
WHERE f.lid � l.lid AND

f.pid � p.pid
GROUP BY GROUPING SETS ( (country, state),

(prodline) )

In the context of OLAP systems, the primary benefit
of the GROUPING SETS operator is in limiting the size
of summary tables (discussed in the next subsection).
OLAP queries typically have multiple ROLLUP claus-
es—one for each dimension. The number of group-
ing sets in a result set is the product of the number
of grouping sets for each ROLLUP. The number of
grouping sets for each ROLLUP is one more than the
number of columns in the ROLLUP. This means that
a summary table built for a five-dimensional OLAP
cube in which each dimension had three levels would
result in (3 � 1)5 � 1024 grouping sets! The
GROUPING SETS operator can be used to explicitly
choose which grouping sets to use in such a summary
table.

Automatic summary tables. Queries running against
a data warehouse can easily become computation-
ally expensive, thereby limiting the query through-
put of the data warehouse. These queries are fre-
quently aggregations of data, and the queries
performed tend to have very similar aggregations.
Automatic summary tables (ASTs) were introduced
in DB2 to provide a means to precompute and store
information that is repeatedly computed and ac-
cessed. ASTs are a special type of materialized query
table, specialized for holding aggregates, or summa-
ries. Figure 5 shows an example of how ASTs can re-
duce query time.

On the left side of the figure, similar queries have
to go through all of the steps involved in joining fact
and dimension tables and computing aggregates. On
the right side, the AST stores the common work done

Table 2 Result of GROUPING SETS query

country state prodline revenue

CANADA ON — 35754.64
USA CA — 103910.41
USA NY — 95664.19
— — CLOTHING 53912.31
— — ELECTRONICS 77944.12
— — MEDICAL 103472.81
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for a large number of queries, thereby reducing the
computation needed for subsequent queries. One of
the most important design points is that DB2 is able
to automatically reroute queries that can make use
of an existing AST. This allows any application to ex-
ploit the advantages of ASTs without having to change
how queries are written to the database.

Another key design point is that DB2 provides alter-
nate currency models for AST maintenance. There
are two basic modes:

1. Refresh immediate. DB2 watches for changes in any
of the tables that affect values maintained in an
AST. If an insert, update, or delete occurs in a ta-
ble that is a source table for the AST, DB2 includes
the appropriate changes to the AST as part of the
originating transaction. In this mode, DB2 is re-
sponsible for keeping the AST consistent.

2. Refresh deferred. In this mode, changes to source
tables do not trigger DB2’s automatic AST main-
tenance. This gives the database administrator
(DBA) full control of when the AST maintenance
should be performed, and makes the DBA respon-
sible for determining AST currency.

OLAP applications usually require many different ag-
gregates to be computed when a user is manipulat-
ing a specific OLAP cube. DB2 provides special sup-
port for ASTs to handle OLAP cubes. ASTs can utilize

statements that include the GROUP BY extensions.
These extensions, such as ROLLUP, offer the database
administrator a way to define an OLAP cube inside
DB2. When an OLAP application queries the multi-
dimensional schema, DB2 reroutes the query to the
AST that has the result already calculated. This al-
lows DB2 to significantly improve the query response
time. Another important capability of the AST sup-
port allows DB2 to compute nonexisting aggregates
by using more general computed aggregates. For ex-
ample, if DB2 has an aggregate for sales by month,
and the query requests sales by quarter, DB2’s op-
timizer is able to calculate quarter figures by read-
ing the month aggregate. This saves processing time,
because the number of rows that must be read is
smaller.

Normally, an OLAP cube includes multiple dimen-
sions, with one hierarchy per dimension. The follow-
ing example shows how a simple cube with three di-
mensions can be defined using an AST.

CREATE SUMMARY TABLE CUBE AS (
SELECT l.country, l.state, l.city,

p.prodline, p.prodgroup, p.product,
t.year, t.month,
SUM(f.amt) AS revenue,
COUNT (*) AS count

FROM fact f, location l, product p, time t
WHERE f.lid � l.lid AND

Figure 5 Using ASTs to reduce OLAP query time
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f.pid � p.pid AND
f.tid � t.tid

GROUP BY ROLLUP (l.country, l.state, l.city),
ROLLUP (p.prodline, p.prodgroup, p.product),
ROLLUP (t.year, t.month)

) AS DATA INITIALLY DEFERRED
REFRESH IMMEDIATE

In this example, the AST includes 48 grouping clauses,
due to the combination of the three ROLLUP clauses.

ASTs that define complete cubes tend to have a large
number of grouping clauses. This usually results in
large ASTs, which increases AST maintenance costs.
However, the DBA can create ASTs by utilizing the
GROUPING SETS operator. In this case, a smaller num-
ber of slices of a cube are defined in the AST, making
the AST simpler and smaller. This reduces the main-
tenance cost for the AST, but defers some costs to
query time. This is the DB2 form of the classical tun-
ing exercise for OLAP systems—balancing up-front
calculation time and storage expenses vs the perfor-
mance of queries. Finding the optimal balance usu-
ally requires an understanding of the query patterns
of users of a given system.

Analytic functions. Another area in which DB2 has
improved over the years is in the calculation of an-
alytic functions. OLAP applications usually require
more complex calculations than those provided by
basic aggregation functions, such as SUM and AVG.
Recent extensions include ranking functions, statis-
tical functions, and sliding window operators.

The ranking functions introduced by DB2 compute
the ordinal rank of a row with respect to a specific
ordering expression. If RANK is specified, the rank of
a row is defined as 1 plus the number of rows that
strictly precede the row. Thus, if two or more rows
are not distinct with respect to the ordering, then
there will be one or more gaps in the sequential rank
numbering. If DENSE_RANK is specified, the rank of
a row is defined as 1 plus the number of preceding
rows that are distinct with respect to the ordering.
This eliminates the gaps in the sequential rank num-
bering. The following example shows how to use
RANK to rank states and provinces by sales revenue.
See Table 3 for the result.

SELECT country, state, prodline,
SUM (amt) AS revenue,
RANK � OVER
(ORDER BY SUM (amt) desc) AS rank

FROM fact f, location l, product p

WHERE f.lid � l.lid AND
f.pid � p.pid

GROUP BY country, state

New statistical functions were introduced to improve
the support to complex OLAP applications. These
functions include correlation, variance, covariance,
standard deviation, and a family of linear regression
functions.

Sliding window operators give the ability to analyze
data with respect to a window that is dynamically de-
termined. The window, a set of rows, is determined
according to the operation requested, for example,
“ROWS BETWEEN 3 PRECEDING AND 3 FOLLOWING.”
Given such a window, the aggregation function is ap-
plied. Sliding window operators are useful in appli-
cations designed to calculate, for instance, the seven-
day centered average of a stock for each day that it
was traded.

Multidimensional meta-data

Multidimensional data have been stored in relational
databases for many years. However, the information
that describes the structure of these schemas has
been stored only in proprietary repositories of spe-
cific OLAP tools. Keeping these meta-data apart from
the data has prevented easy meta-data exchange
among different OLAP tools and has forced DBAs to
define the very same information in different places,
with all kinds of complications. In this section we pro-
pose extensions to the relational database catalog
in order to capture such structures, facilitating the
exchange of information by having a central repos-
itory for the structural information. If this informa-
tion were available to DB2, its optimizer would be
able to use techniques specific to star schemas.

The multidimensional meta-data object model is de-
signed to describe the schemas used in relational da-
tabases to represent multidimensional data. The
most common way to organize such data is by using
a star or snowflake schema (in snowflake schemas
the dimension tables are normalized). The paradigm

Table 3 Result of query using RANK

country state revenue rank

CANADA ON 35754.64 3
USA CA 103910.41 1
USA NY 95664.19 2
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utilized to represent multidimensional data in the
object model is the star schema. However, the model
is flexible enough to handle more normalized sche-
mas. To provide a better understanding of the model,
multidimensional meta-data objects are categorized
as belonging to one of the following three layers:

● Base/relational layer. This provides base infrastruc-
ture to other objects and encapsulates important
concepts of the relational database.

● Multidimensional layer. Common multidimensional
constructs are provided in this layer. The objects
here reference objects in the base/relational layer,
providing a multidimensional abstraction over the
relational database.

● OLAP layer. This layer contains high-level objects
that represent the main OLAP structures. By group-
ing objects from other layers, the OLAP layer pro-
vides OLAP cubes with different degrees of com-
plexity.

Figure 6 shows the objects of the multidimensional
meta-data model and the layering of those objects.
We propose that these new conceptual objects be-
come an integral part of the relational database cat-
alog. Another key design point for the objects is that
many are independently useful—they provide impor-
tant information about the underlying relational
schema, whether or not they are included in a more
complex multidimensional structure.

OLAP layer: Cube model vs cube. In our proposal,
OLAP concepts are represented in two different lev-
els of complexity in the catalog, offering broader sup-

port to the various OLAP applications. A brief de-
scription of these objects follows:

Cube model. The purpose of a cube model is to de-
scribe OLAP structures to a given application or tool.
Cube models tend to describe all views that differ-
ent users might want for the data that are being an-
alyzed. A cube model groups dimensions and facts,
and offers the flexibility of multiple hierarchies for
dimensions. It conveys the structural information
needed by query design tools and applications that
generate complex queries on star schema databases.

Cube. The purpose of a cube is to define a standard
relational view of an OLAP structure. Because a cube
defines a view, it is the only object type that can be
queried directly using SQL. In addition to the rela-
tional view, a cube provides an XML document that
describes the roles of its columns in multidimensional
terms.

Each cube is derived from a single cube model. In
the process of defining a cube, the designer selects
a subset of the possible elements, choosing a single
hierarchy for each dimension. This ensures that the
cube unambiguously defines a single relational re-
sult set. The simplicity of a cube makes it useful to
less sophisticated OLAP applications, such as porta-
ble devices powered by Web services. Figure 7 shows
a cube model created based on the star schema of
Figure 4. Note that the time dimension references
two different hierarchies.

Multidimensional layer. The objects in our proposed
multidimensional layer are used as building blocks

Figure 6 Multidimensional meta-data objects
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to describe OLAP environments. Most objects refer
to other objects in order to provide a higher level
of abstraction. The main objects are described here.

The facts object plays the role of a fact table in a star
schema. Just as a fact table does, a facts object gath-
ers measurement entities, represented in the cata-
log by measures. These need not come from the same
table, allowing the designer to group measures as
required for any OLAP application.

The dimension object plays the role of a dimension
table in a star schema. Dimensions group related at-
tributes, which together describe some aspect of one
or more measures. Dimensions also refer to hierar-
chies that can be applied, providing a way to nav-
igate and make calculations.

Cube fact and cube dimension objects are used only
in the context of a cube. They are used to reduce the
scope of a cube model so that a cube contains only
those attributes and measures that are required for
a given application or report. A cube dimension also
refers to a single cube hierarchy, which defines nav-
igational and computational paths among the ele-
ments of the cube dimension.

Base/relational layer. In our proposal, the
base/relational layer contains the most elementary
objects. These are primarily used in objects of the
multidimensional layer, though in some cases they
are used in the OLAP layer.

A hierarchy describes parent-child relationships
among attributes. This information is referred to by

a dimension to indicate how dimension members can
be browsed, and how to aggregate data in the dimen-
sion.

A cube hierarchy is very similar to a hierarchy; how-
ever, a cube dimension refers to only a single cube
hierarchy. This restriction allows a single SELECT
statement to calculate the cells of a cube.

Attribute and measure objects are abstractions of a
relational database column. However, they are de-
fined by an SQL expression that can include multiple
columns. Measures are more specialized than at-
tributes—they include aggregation functions (col-
umn functions) that are used to calculate higher-level
summaries from lower-level data.

Join and attribute relationship objects define relation-
ships between two attributes. The join object de-
scribes which relational joins are meaningful to the
designer of the multidimensional model. Joins are
used to describe the connections between tables in
a database. They are referred to by cube model, facts,
and dimension objects. An attribute relationship
describes a functional relationship in which the value
of the first attribute determines the value of the sec-
ond attribute. For example: the city attribute deter-
mines the mayor attribute.

OLAP sales cube example. Figure 2 illustrates a sim-
ple OLAP cube with three dimensions and two mea-
sures. The sales cube is described in this section uti-

Figure 7 Cube model example
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lizing the multidimensional meta-data. Figure 8
shows the multidimensional objects created for the
example and the relationship among those objects.

Using our meta-data schema, we might create a view
as part of the definition of a cube object named sales.
The data values for all of the cells in our exam-
ple cube could then be calculated simply by
SELECT * FROM sales. To do so, in the SELECT clause
of the view, the fact and dimension tables are joined
and ROLLUP operators are used to compute sub-
totals and totals of revenue and volume. Figure 9
shows the annotated result set illustrating the ter-
minology used to describe the example cube shown
in Figure 2. Note that in practice, querying all of the
cells of a cube would be quite unusual—most real
cubes are too large for such a query to be practical.
Instead, the sales cube defined here would be que-
ried using predicates to limit the data retrieved to
the subset of interest for a report or analytical ex-
ercise.

CREATE VIEW sales AS (SELECT
p.prodline, p.prodgroup, p.products,
l.country, l.state, l.city,
l.locid AS store, l.size AS square_foot,
t.year, t.month,
SUM (f.amt) AS amount,
SUM (f.qty) as quantity

FROM fact f,

time t,
product p,
location l

WHERE f.tid � t.tid AND
f.pid � p.pid AND
f.lid � l.lid AND

GROUP BY
ROLLUP (p.prodline, p.prodgroup, p.products),
ROLLUP (l.country, l.state, l.city, (l.locid, l.size)),
ROLLUP (t.year, t.month));

Web services for OLAP

The software industry is shifting toward a service-
oriented architecture over existing infrastructure, in-
cluding HTTP and XML. New applications run in small
devices such as cellular phones, thin Web clients de-
ploy a browser interface, and thick clients perform
some data analysis and visualization. Easy access to
remote data through the Web, without any client
downloads, is crucial. The Web service framework
provides standards for protocols such as SOAP over
HTTP, interface descriptions through WSDL (Web
Services Description Language), and service discov-
ery through UDDI registries. In the context of the
Web service framework, Web services for OLAP pro-
vide access to OLAP data, including its meta-data
(cube model, cubes) as sketched in Figure 1. A cli-
ent application can discover OLAP providers in UDDI
registries, retrieve XML descriptions of cube models

Figure 8 OLAP sales cube meta-data
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and cubes, and execute slicing and dicing queries on
XML cubes.6 The Web services approach for OLAP
discussed in this paper focuses on XML cubes for
ROLAP with XPath (XML Path Language) for slicing
queries.

Web services in the context of OLAP. Figure 10
sketches the architecture of Web services for OLAP.
An OLAP provider offers Web services to retrieve
meta-data, to execute slice and dice queries, and to
retrieve member data.

A client application composes a SOAP request en-
velope and sends it through SOAP and HTTP to the
OLAP provider. To respond to the request, the OLAP
provider computes a result and sends a SOAP re-
sponse envelope back to the client application. In
the subsequent sections, we describe the SOAP en-
velopes for the Web services for OLAP.

DescribeCube Web service. The DescribeCube�
Web service allows a client application to retrieve
meta-data about cubes. The meta-data include all
of the data necessary for a client application to con-

Figure 9 Sales cube

ProdLine ProdGroup Products  Country State  City  Store  Square_Foot Year Month Amount Quantity

-             -              - - -      -       - -  - - 129033   15422 
-             -              - - -      -       - -  2000 -   64845     7717 
-            -              - - -      -       - -  2000 2   31426     3712 
-             -              - - -      -       - -  2000 1   33419     4005 
-             -              - - -      -       - -  1999 -   64188     7705 
-             -              - - -      -       - -  1999 2   31675     3769 
-             -              - - -      -       - -  1999 1   32513     3936 
           ...
-             - - USA NY - - -  1999 -   20105     2171 
-             - - USA NY - - -  1999 2     9410     1016 
-             - - USA NY - - -  1999 1   10695     1155 
-             - - USA NY YKT - -  1999 -   20105     2171 
-             - - USA NY YKT - -  1999 2     9410     1016 
-             - - USA NY YKT - -  1999 1   10695     1155 
-             - - USA NY YKT 300 600  1999 -   20105     2171 
-             - - USA NY YKT 300 600  1999 2     9410     1016 
-             - - USA NY YKT 300 600  1999 1   10695     1155 
           ...
MED - - - - - - -  1999 -   16517     2172 
MED - - - - - - -  1999 2     7361       938 
MED - - - - - - -  1999 1     9156     1234 
           ...
CLOTH JEANS BLUE Canada ON TOR - -  1999 2       127         48 
CLOTH JEANS BLUE Canada ON TOR - -  1999 1       122         45 
CLOTH JEANS BLUE Canada ON TOR 400 900  1999 -       249         93 
CLOTH JEANS BLUE Canada ON TOR 400 900  1999 2       127         48 
CLOTH JEANS BLUE Canada ON TOR 400 900  1999 1       122         45 

224 record(s) selected.
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struct and submit slicing queries through the Exe-
cute� Web service (see next subsection). The meta-
data do not include any members or measures data.
For conceptual purposes, we assume that all of the
meta-data are organized in a virtual XML document.
The meta-data for the sales cube shown in Figure
2 are listed in the XML document in Figure 11. The
XML document contains a sales XML element with
three XML subelements for product, location, and
time dimensions. Contained in the XML elements for
dimensions are XML elements for the levels in the
dimensions. Measures are represented in a similar
way.

A client application may ask for particular informa-
tion in the virtual XML document through an XPath
query expression. For example, a client application
may ask for a description of the product dimension
in the sales cube as

DescribeCube (‘/Cubes/Sales/Product’)

In an informal way, the signature of the Describe-
Cube� Web service is defined as follows:

DescribeCube ( IN XPath-Predicate AS string,
OUT Description AS XML )

This signature can be translated into a WSDL descrip-
tion of the Web service. The format of the output
message is described in XML schema with an instance
as described in Figure 11.

Execute Web service. The Execute Web service re-
trieves the XML representation of a cube. An XML
cube contains member and measure data. Figure 12
shows the XML cube for the example in Figure 2. The
Sales root element contains two top-level XML el-
ements: Members and Measures. The Members el-

Figure 11 Virtual XML document of the DescribeCube( )  Web service

<Cubes>
   <Sales businessName=“Sales Cube” description=“Sales figures for Company IBM”>
      <Product kind=“dimension” businessName=“Product Dimension” definer=“John Doe”>
         <ProductLine kind=“level” description=“Product lines for Company IBM”>
            <ProductGroup kind=“level” description=“Product Groups for Company IBM”>
               <Products kind=“level” /> 
            </ProductGroup>
         </ProductLine>
      </Product>
      <Location kind=“dimension”>
         <Country kind=“level”>
            <State kind=“level”>
               <City kind=“level”>
                  <Store kind=“level” square_foot=“integer” /> 
               </City>
            </State>
         </Country>
      </Location>
      <Time kind=“dimension” businessName=“Time Dimension” description=“Timeline for Company IBM”>
         <Year kind=“level”>
            <Quarter kind=“level”>
               <Month kind=“level” /> 
            </Quarter>  
         </Year>
      </Time>
      <Amount kind=“measure” businessName=“Sales Figures” datatype=“float” aggregator=“sum” /> 
      <Quantity kind=“measure” businessName=“Product Quantities” /> 
   </Sales>
   <Purchases businessName=“Purchases Cube” description=“Purchases by Company IBM”>
      ...
   </Purchases>
</Cubes>
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ement contains one XML element per dimension (us-
ing the dimension name as the element name)
describing the levels of the dimension and their mem-
ber values. The Measures element contains one XML
cell element per row in the result set (see Figure 9).
The column values in the result set are represented
as attributes of the cell element. Attributes for null
values are absent. Attributes with member values
identify a cell in a cube. Attributes with measures,
amount, and quantity, in our example, contain the
aggregated values as shown in Figure 12.

The algorithm for mapping a relational result set to
an XML cube works as follows. The root element of
the XML cube is the name of the cube. Contained
in the root element are the members and measures
elements. The members XML element contains, per
dimension in the cube, a dimension element with the
same dimension name as the XML element name.
Contained in the dimension elements are the level
XML elements. The level names are used as XML el-
ement names. The member values are attribute val-
ues of the level XML elements. For example, level

ProductLine in dimension Product has an attribute
called name with member value “Electro.” The lev-
els are nested according to the cube definition. The
measures XML element contains a “cell” XML ele-
ment per row in the ROLAP result set. The columns
in the result set become attributes with the column
name as attribute name. Null values are absent at-
tributes.

The Execute Web service supports two kinds of pred-
icates: content restriction, with or without reachabil-
ity, and shape subsetting.

Content-restriction predicates filter rows in the
ROLAP result set, and consequently remove cell XML
elements in the XML cube. Content restriction with-
out reachability means that the corresponding mem-
bers remain in the XML cube, whereas reachability
means that only dimension members that are used
to identify cells for measures remain. Shape subset-
ting allows identification of the dimensions and lev-
els that should be retrieved in an XML cube.

Figure 12  XML document from the Execute( )  Web service

<Sales>
   <Members>
      <Product> 
         <ProductLine name=“ELECTRO”>
            <ProductGroup name=“VCR”>
               <Products name=“SDB”/>
            </ProductGroup>
            <ProductGroup name=“CCOR”>
               <Products name=“PHON”/>
            </ProductGroup>
         </ProductLine>
         <ProductLine name=“MED”>
            <ProductGroup name=“ANBIO”>
               <Products name=“C225”/>
            </ProductGroup>
         </ProductLine>
      </Product>
   <Location>
      <Country name=“USA”>
         <State name=“NY”>
            <City name=“YKT”>
               <Store name=“300” square_foot=“600”/>
             </City>
         </State>
      </Country>
   </Location>
     ...
   </Members>

  <Measures>
      <cell amount=“129033” quantity=“15422” /> 
      <cell year=“2000” amount=“64845” quantity=“7717” /> 
      <cell year=“2000” month=“2” amount=“31426”
         quantity=“3712” /> 
      <cell year=“2000” month=“1” amount=“23419”
         quantity=“4005” /> 
      <cell year=“1999” amount=“64188” quantity=“7705” /> 
      <cell year=“1999” month=“2” amount=“31675”
         quantity=“3769” /> 
      <cell year=“1999” month=“1” amount=“127”
         quantity=“48” /> 
              ...
      <cell  prodLineName=“CLOTH” 
         prodGroupName=“JEANS” prodName=“BLUE” 
         country=“Canada” state=“ON” city=“TOR”
         year=“2000” amount=“14.00”  quantity=“2 ” />
      <cell prodLineName=“CLOTH”
         prodGroupName=“JEANS” prodName=“BLUE”
         country=“Canada” state=“ON” city=“TOR”
         year=“2000” month=“2” 
         amount=“14.00” quantity=“2 ” />
   </Measures>
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The signature of the Execute� Web service is de-
fined as follows:

Execute ( IN Cube-Identifier AS string
[,IN Content-Restriction [WITH REACHABILITY]]
[, IN Shape-Subsetting AS string]
, OUT XMLCube AS XML)

For example, the query that returns the entire sales
cube is specified as follows:

Execute (‘Sales’)

It returns the XML cube in Figure 12.

The query for product group “VCR” is expressed
through an XPath predicate on the product group
(with reachability):

Execute (‘Sales’,
‘/Sales/Product/Productline/Productgroup

[@ProdGroupName�“VCR”]’)

This XPath expression does not change the mem-
bers results in the XML cube. However, the XPath
predicate is semantically translated into a corre-
sponding SQL predicate on the relational result set:

SELECT . . .
FROM Sales
WHERE ProdGroupName�‘VCRS’

The same Web service invocation with reachability
means that members in the XML cube that are not
used to identify measures are filtered out.

Shape subsetting in a Web service is necessary to se-
lect dimensions and levels in an XML cube with many
dimensions and many levels. The following query re-
trieves the sales cube for product group “VCR” with
location dimension to level “country” and time di-
mension to level “year”:

Execute (‘Sales’,
‘/Sales/Product/ProductLine/ProductGroup

[@ProdGroupName�“VCR”]’,
‘/Sales/Time/Year’ AND ‘/Sales/Location/Country’)

Semantically this is equivalent to an SQL query, on
the ROLAP result set, that filters rows for which ev-
erything is null except the year and country columns.

Members Web service. The Members� Web ser-
vice returns just member data without any measure.

The signature of the Members� Web service is de-
fined as follows:

Members ( IN Cube-Identifier AS string
[,IN Predicate AS String]
[,OUT Result AS XML] )

For example, the call

Members (‘Sales’, ‘/Sales/Members/Product/
ProductLine [@Name�“ELECTRO”]/

ProductGroup’)

returns all product group names in product line
“Electro” in the sales cube:

�Sales�

�ProductGroup Name�“VCR”/�
�ProductGroup Name�“CCOR”/�

�/Sales�

Conclusion and a look at the future

The past decade has seen great strides in the func-
tionality provided by DB2 to address multidimen-
sional analysis. With respect to specialized OLAP sys-
tems, it has been transformed from a spectator to
a viable competitor, incorporating comparable com-
putational and management capabilities. Although
some will certainly survive, DB2 and other relational
engines seem to be on a path that will relegate spe-
cialized engines to the service of niche markets.

The introduction of the cube object provides a model
that shifts the access paradigm of relational OLAP.
Applications now can, in a single SQL query, retrieve
multidimensional data at varying levels of aggrega-
tion, without any need to include code to manage
summary tables and aggregation currency. DB2 is
poised to assume responsibility for storage and cal-
culation management activities that, until now, have
been handled by relational OLAP products and ap-
plications.

The last decade has also seen a dizzying progression
of changes in the Internet and the development of
Web applications. Widespread acceptance of Web
services, as the model for Web-based applications
to locate and interact with each other, promises to
provide the basis upon which virtually any electronic
device could include analytical applications that de-
liver on the promise of OLAP—consistently fast que-
ries, using a flexible framework, in terms familiar to
its users.
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Although much progress has been made, there is am-
ple opportunity for improvement. Better perfor-
mance in the relational engine, with less manual
intervention, is still needed. The Web services
described here provide a means to query a predefined
OLAP cube. We are currently working on extensions
to these services to allow more sophisticated Web-
service applications to find dimensional data repos-
itories and dynamically design, create, and query
OLAP objects.

*Trademark or registered trademark of International Business
Machines.

**Trademark or registered trademark of Hyperion Solutions Cor-
poration, Oracle Corporation, Applix, Inc., or Pilot Software.
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