
IBM DB2 Cube Views

Setup and User’s Guide

Version 8

SC18-7298-00

���

IBM DB2 Cube Views

Setup and User’s Guide

Version 8

SC18-7298-00

���

Note
Note: Before using this information and the product it supports, read the information in “Notices” on page 185.

First Edition (June 2003)

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at
www.ibm.com/planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1800–IBM-4YOU
(425–4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book. v
Who should read this book v
Online information vi

Chapter 1. Getting started with DB2 Cube
Views 1
What is DB2 Cube Views 1
Setting up DB2 Cube Views 3

Installation requirements 3
Installing DB2 Cube Views 4
Setting up a database for DB2 Cube Views 4
Setting up the MDSAMPLE sample
database 5

Starting the OLAP Center 6
Browsing cubes by using DB2 Office Connect 6
The db2mdapiclient utility for importing,
exporting, and optimizing metadata 7

Overview of the db2mdapiclient utility . . 7
The db2mdapiclient command —
manipulating metadata. 8

Chapter 2. Multidimensional metadata
objects 11
About DB2 Cube Views metadata 11

Metadata objects that map to relational
tables 12
Example of a cube model that maps to
relational tables 15

General metadata properties 19
Metadata object naming conventions . . . 20

Cube models 21
Facts objects 22
Dimensions 23
Hierarchies 23
Measures 28
Attributes 30
Attribute relationships 32
Joins 34
Cubes 35
Cube facts 36
Cube dimensions 36
Cube hierarchies 37
Metadata object rules 38

Base rules 38
Completeness rules 41

Optimization rules 41

Chapter 3. Cube model optimization . . . 43
Summary tables 43
Overview of the optimization process . . . 48
Metadata design considerations for
optimization 52
Constraint definitions for optimization . . . 53
Optimizing a cube model 57
Parameters for the Optimization Advisor . . 58

Optimizing for particular query types . . 58
Disk space limitations 63
Data sampling 64
Time limitations. 64
Specifying table spaces 65

Example of an SQL script to create summary
tables 65

DROP TABLE statement 66
CREATE TABLE statement 67
CREATE INDEX statements 68
RUNSTATS statement 68

Testing query results 68
Troubleshooting summary tables 69
Summary table maintenance 71
Dropping a summary table 73

Chapter 4. Troubleshooting the IMPORT or
the CREATE and ALTER operations . . . 75
Avoiding a validation error by using the
IMPORT or the CREATE and ALTER
operation order 75

Shared attribute referenced by a dimension 75
Shared attributes referenced by an altered
join 77

Appendix A. API Reference 81
API overview 81
DB2 Cube Views stored procedure 82
Parameters 84

Input and output parameters 84
Sample parameters 85

Metadata operations 87
Retrieval operation. 88
Modification operations 89
Administration operation 94

© Copyright IBM Corp. 2003 iii

Operation arguments 96
Operation operands 100
Message structure. 101
Metadata object retrieval results 102
Sequencing the operation steps 102

Metadata object format 102
Application programming notes 105
Configuration file 107

Run-time tracing 108
Log files 108

Error logging 109
Examples 110

Appendix B. Code page support 111
Reading UTF-8 encoded files 113
Code page restrictions 114

Appendix C. Sample files 115
Sample database files 115
Sample application files 115

Appendix D. Messages 121
SQLSTATE, API, and other server messages 121
OLAP Center messages 166

Appendix E. Status messages from DB2
and DB2 Cube Views 183

Notices 185
Trademarks 187

Glossary 189

Index 193

Contacting IBM 197
Product Information 197
Comments on the documentation 198

iv IBM DB2 Cube Views: Setup and User’s Guide

About this book

You might see the phrase DB2 Multidimensional Metadata Management in the
product. That phrase refers to DB2 Cube Views.

This book provides information about the following DB2 Cube Views topics:
v How to get started with DB2 Cube Views
v The OLAP Center (graphical user interface), which you can use to import

and export metadata, create cube models and cubes
v Optimization, which helps you improve the performance of OLAP queries
v Metadata objects that can be stored in the DB2 Universal Database™ (DB2®)

catalogs
v Application programming interface (API), with which you can create

applications that use SQL to access data
v Examples of how to build dimensions and complex measures from

metadata objects; these dimensions and measures can be used to model
typical business scenarios

Who should read this book

With DB2 Cube Views, you can capture multidimensional metadata from
OLAP and database tools and store that metadata in the DB2 catalogs. You
can then use that metadata to create OLAP (online analytical processing) cube
models and cubes. (Cubes are subsets of cube models.)

You can use Office Connect Analytic Edition to browse the data in cube
models and cubes. Office Connect Analytic is a tool that displays OLAP data
in spreadsheets.

DB2 Cube Views also provides an Optimization Advisor that will help you to
improve the performance of queries that are issued to the cube models by
providing SQL scripts to build summary tables.

Read this book if you are a database administrator who works with OLAP
metadata and DB2 Universal Database (DB2). You should be familiar with:
v The DB2 catalogs and automatic summary tables (ASTs)
v OLAP concepts, such as cubes, dimensions, hierarchies, and measures
v API concepts and CLI, ODBC, JDBC, XML and DB2 stored procedures

© Copyright IBM Corp. 2003 v

Online information

This section provides Web addresses related to this product.

http://www.ibm.com/redbooks
IBM® Redbooks™ Web site

Search for, view, download, or order hardcopy/CD-ROM versions of
the following Redbooks from the Redbooks Web site:
v DB2 UDB’s High Function Business Intelligence in e-business

SG24-6546-00
v Up and Running with DB2 UDB ESE Partitioning for Performance

in an e-Business Intelligence World SG24-6917-00
v Database Performance Tuning on AIX® SG24-5511-01
v DB2 UDB V7.1 Performance Tuning Guide SG24-6012-00

http://www.ibm.com/software/data/
IBM Data Management Web site

http://www.ibm.com/software/data/db2/udb/winos2unix/support/
DB2 Universal Database and DB2 Connect™ Online Support Web site

http://www.ibm.com/cgi-
bin/db2www/data/db2/udb/winos2unix/support/download.d2w/report

DB2 Maintenance - Fixpaks for DB2 UDB Web site

http://www.ibm.com/software/data/developer
The DB2 Developer Domain Web site

http://www.ibm.com/software/data/db2/library
DB2 Product and Service Technical Library Web site

http://www.ibm.com/cgi-
bin/db2www/data/db2/udb/winos2unix/support/v8pubs.d2w/en_main

DB2 Publications Web site

vi IBM DB2 Cube Views: Setup and User’s Guide

Chapter 1. Getting started with DB2 Cube Views

This chapter describes the following topics:
v What is DB2 Cube Views

This section describes the benefits of using DB2 Cube Views and the
components that are provided with it.

v Setting up DB2 Cube Views

This section describes how to install DB2 Cube Views and how to configure
the sample data.

v Starting the OLAP Center

This section describes how to start the OLAP Center so that you can begin
managing your metadata.

v Browsing cubes by using DB2 Office Connect™

This section describes how to browse the sample DB2 Cube Views cube in
DB2 Office Connect.

v The db2mdapiclient utility for importing, exporting, and optimizing
metadata

This section describes the db2mdapiclient command and how to
manipulate metadata with it.

What is DB2 Cube Views

DB2 Cube Views is an add-on feature of DB2 Universal Database that
improves the ability of DB2 to perform OLAP processing. You can use DB2
Cube Views to streamline the deployment and management of OLAP
solutions, and improve the performance of OLAP tools and applications. With
DB2 Cube Views, you can describe the dimensional structure of your
relational tables and create OLAP constructs. You can store the structural
information and the OLAP constructs as multidimensional metadata in the
DB2 database.

Using the new multidimensional metadata in DB2 provides two major
benefits:

Improve the flow of the multidimensional metadata between business
intelligence tools and applications

Using the OLAP Center, a graphical interface that is provided, users
of warehousing and business intelligence tools can store the
multidimensional metadata as part of the DB2 database, and make it
available for all tools and applications.

© Copyright IBM Corp. 2003 1

Enhance the performance of OLAP-style queries
Based on the multidimensional metadata, you can create DB2
summary tables using the recommendations from the Optimization
Advisor in the OLAP Center. The summary tables contain
precalculated data that maps to your OLAP structures. Queries that
are generated from the warehousing or business intelligence
application with the same OLAP structure will gain performance
improvement.

DB2 Cube Views exploits DB2 features such as summary tables, different
index schemes, OLAP-style operators, and aggregation functions. The
following components are provided:

Multidimensional metadata objects
You can create a set of metadata objects to dimensionally model your
relational data and OLAP structures. DB2 Cube Views stores each of
the metadata objects that you create in the DB2 catalog. For more
information on metadata objects and how they map to relational data,
see “About DB2 Cube Views metadata” on page 11.

OLAP Center
With the OLAP Center, you can create, manipulate, import, or export
cube models, cubes, and other metadata objects to be used in OLAP
tools. The OLAP Center provides easy-to-use wizards and windows to
help you work with your metadata. For example, the Optimization
Advisor analyzes your metadata and recommends how to build
summary tables that store and index aggregated data for your
OLAP-style SQL queries. To start the OLAP Center, see “Starting the
OLAP Center” on page 6. After you start the OLAP Center, see
“Optimizing a cube model” on page 57 to use the Optimization
Advisor wizard.

DB2 Office Connect™ Analytic Edition
DB2 Office Connect Analytic Edition is an easy-to-use spreadsheet
add-in tool for querying OLAP data in DB2. With DB2 Office Connect
Analytic Edition, you can connect to a DB2 database, select a DB2
Cube Views cube, and explore the data in Microsoft® Excel™.

Multidimensional Services
DB2 Cube Views provides a SQL-based and XML-based application
programming interface (API) for OLAP tools and application
developers. Through CLI, ODBC, or JDBC connections or by using
embedded SQL to DB2, applications and tools can use a single stored
procedure to create, modify, and retrieve metadata objects.

Sample data
A sample application and database are available to help you learn

2 IBM DB2 Cube Views: Setup and User’s Guide

how to use the product. See Appendix C, “Sample files”, on page 115
for more information on the sample data that is provided.

You can also exchange metadata objects between the DB2 catalog and OLAP
tools. To import or export metadata objects to or from the DB2 catalog,
utilities called metadata bridges are available for specific OLAP and database
tools. See the documentation for your particular OLAP or database tool to
find out if a metadata bridge is provided.

Setting up DB2 Cube Views

DB2 Cube Views expands the DB2 catalog to include multidimensional
metadata or OLAP metadata. You can use OLAP Center to create, modify, and
browse the OLAP metadata. You can also use the DB2 Office Connect
Analytics Edition, an add-in for Microsoft Excel, to browse OLAP data.

Installation requirements
For additional installation information, including disk and memory
requirements, see the DB2 Cube Views Installation Notes for your operating
system. This document is available from the Installation Prerequisites button
on the Launch Pad after you start the installation program.

Prerequisites:

Before you install the DB2 Cube Views, ensure that you have the required
software.
v Server component:

On Microsoft® Windows®

Windows NT® 4 or Windows 2000® 32-bit, Windows XP
Professional

On AIX
AIX Version 4.3.3 32-bit, AIX 5L 32-bit, or AIX 5L 64-bit

On Linux®:
Linux Red Hat™ 8 (kernel 2.4.18/ glibc 2.2.93-5) 32-bit, or Linux
SuSE 8.0 (kernel 2.4.18/ glibc 2.2.5) 32–bit

For the latest information on distribution and kernel levels
supported by DB2, go to: http://www.ibm.com/db2/linux/validate

On Sun Solaris™ Operating System
Solaris 8 32-bit, or Solaris 9 32-bit

v Client component: Windows NT 4, Windows 2000, or Windows XP 32–bit
v DB2 Universal Database Version 8.1 FixPak 2
v Optional: DB2 Office Connect Analytics Edition 4.0

Chapter 1. Getting started with DB2 Cube Views 3

To use DB2 Office Connect Analytics Edition, you need Microsoft Excel
2000 (Office 2000® with service pack 1 or later) or Microsoft Excel XP
(Office XP® with service pack 1 or later).

Installing DB2 Cube Views

Procedure:

To install DB2 Cube Views on Windows:
1. Insert the DB2 Cube Views CD-ROM. The installation program starts

automatically.
2. On the Launchpad, check the Installation Notes for the latest installation,

disk, and memory requirements. Additionally, check the readme.txt file in
the root of the DB2 Cube Views CD-ROM for any additional instructions.

3. Click Install Products to begin the installation, and follow the prompts.
4. Optional: You can Install DB2 Office Connect Analytics Edition by

inserting the DB2 Office Connect CD-ROM and following the instructions
in the Installation Notes, which are located in the install.html file on the
CD.

To set up DB2 Cube Views on AIX, Linux, or Solaris Operating System, follow
these steps:
1. Insert the DB2 Cube Views CD-ROM.
2. Switch to the directory for your UNIX® operating system and launch the

db2setup file.
3. On the Launchpad, check the Installation Notes for the latest installation,

disk, and memory requirements. Additionally, check the readme.txt file in
the root of the DB2 Cube Views CD-ROM for any additional instructions.

Setting up a database for DB2 Cube Views
To prepare a database, you must set up the database to be used with DB2
Cube Views. This includes:
v Registering the DB2 Cube Views stored procedure with the database
v Creating metadata catalog tables for DB2 Cube Views.

When you first log on to a database that is not configured for DB2 Cube
Views by using the OLAP Center, the OLAP Center sets up the database for
you. Alternatively, you can set up the database using the db2mdapi.sql script
file. Do not alter the db2mdapi.sql file or your results will be unpredictable.

Procedure:

To set up a database using the db2mdapi.sql script file:
1. Open the DB2 Command window and connect to your database.

4 IBM DB2 Cube Views: Setup and User’s Guide

2. Change to the SQLLIB\misc directory and enter the following command in
the DB2 Command window:
db2 -tvf db2mdapi.sql

Setting up the MDSAMPLE sample database

DB2 Cube Views provides sample data that you can use to create a sample
database called MDSAMPLE. The sample data includes a set of tables
containing data about a fictional company that sells beverages. A set of OLAP
metadata objects that describe the sample data tables are also included.

Procedure:

To create and populate the sample MDSAMPLE database, open the DB2
Command window and enter the following commands:
1. Create a sample database called MDSAMPLE:

db2 create db mdsample

2. Connect to the database:
db2 connect to mdsample

3. Run the db2mdapi.sql script to set up the database for DB2 Cube Views.
Change to the SQLLIB\misc directory and enter the following command:
db2 -tvf db2mdapi.sql

4. Change to the SQLLIB\samples\olap\mdsample directory. Then, create the
MDSAMPLE tables by entering the following DB2 command:
db2 -tvf MDSampleTables.sql

You can create the DB2 Cube Views multidimensional metadata by importing
the definitions from an XML file exported from a business intelligence
application.

For example, the following procedure populates the DB2 Cube Views catalog
tables with a complete description of the MDSAMPLE database.

Procedure:

To import the MDSAMPLE metadata:
1. Start the OLAP Center and connect to the MDSAMPLE database.
2. Click OLAP Center —> Import.
3. Browse for the MDSampleMetadata.xml file in the

SQLLIB/samples/olap/mdsample directory. Click Next.
4. Browse the metadata in the OLAP Center. For information about using the

OLAP Center, see the OLAP Center online help.

Chapter 1. Getting started with DB2 Cube Views 5

Starting the OLAP Center

Procedure:

To start the OLAP Center:
1. Click Start –> Programs –> IBM DB2 –> Business Intelligence Tools –>

OLAP Center. A database connection window opens.
2. In the database connection window, enter the following information:

v In the Database name field, enter or select the name of the database to
which you want to connect.

v In the User name field, enter the user ID for the database you specified.
v In the Password field, enter the password for the user ID you specified.
v Click OK.

Refreshing the objects in the OLAP Center:

The OLAP Center shows a snapshot in time of the OLAP metadata objects in
the database. Although DB2 Cube Views always ensures the integrity of the
metadata objects that it manages, the contents of the OLAP Center window
are not automatically updated when objects are created in the database by
another OLAP Center user or by an API application. If another user or an API
application changes the metadata, you can select View —> Refresh to see the
new state of the database. Multiple users who work on the same metadata
objects at the same time can experience errors because they might not see the
most recent data in the database. Multiple users should not work on the same
set of objects at the same time.

Browsing cubes by using DB2 Office Connect

You can use DB2 Office Connect to browse the data in DB2 Cube Views cubes.

Procedures:

To browse the sample DB2 Cube Views cube in DB2 Office Connect:
1. Create an ODBC database for the MDSAMPLE database using the ODBC

Data Source Administration tool in Microsoft Windows.
2. Start Excel.
3. Open the Project Manager. Click DB2 Office Connect —> Project

Manager. Use the Project Manager to connect to the MDSAMPLE database
and open the sample cube.

4. In the Cube Wizard - Introduction window, click Next. The Cube Wizard -
Select Cube window opens.

6 IBM DB2 Cube Views: Setup and User’s Guide

5. Expand the SalesModel cube model, then select the Sales cube. Click
Finish. There are new items under Data sources in the Project Manager
window. Expand each item to see the MDSAMPLE data.

6. Drag and drop the Sales cube to the Worksheets folder to see the cube
data in an Excel spreadsheet.

The db2mdapiclient utility for importing, exporting, and optimizing metadata

The db2mdapiclient utility is provided as sample source code for coding an
application for Multidimensional Services.

Overview of the db2mdapiclient utility
This utility is a thin wrapper to the Multidimensional Services stored
procedure interface. The utility is provided as sample source code to show
how to code an application against the API. The source code is located in
\SQLLIB\samples\olap\client\db2mdapiclient.cpp.

You can use the db2mdapiclient utility to perform any of the operations that
are supported by the DB2 Cube Views stored procedure, MD_MESSAGE(),
which are described in the following table:

Table 1. Multidimensional Services operations that the db2mdapiclient utility can
perform

Task Operation

Export metadata to a file DESCRIBE

Import metadata from a file CREATE or IMPORT

Change existing metadata ALTER or RENAME

Delete existing metadata DROP

Verify that the existing metadata is valid VALIDATE

The db2mdapiclient utility uses files to hold the XML that is passed to and
received from the MD_MESSAGE() stored procedure.

For importing, the db2mdapiclient utility typically uses an XML file that is
produced by a DB2 Cube Views bridge or that was exported from the OLAP
Center. For exporting, the db2mdapiclient utility produces an XML file that a
DB2 Cube Views bridge utility can use to add metadata to a database or
OLAP tool. The character encoding used for the input and output XML files is
important. For more information on character encoding, see Appendix B,
“Code page support”, on page 111.

Chapter 1. Getting started with DB2 Cube Views 7

The db2mdapiclient command — manipulating metadata
To see a list of parameters for the db2mdapiclient command, you can enter
db2mdapiclient.exe at a command line. The typical syntax for the
db2mdapiclient command is:
db2mdapiclient -d dbname -u user -p password -i request.xml -o response.xml

-m inputmetadata.xml -n outputmetadata.xml

The minimal syntax for the db2mdapiclient command is:
db2mdapiclient -d dbname -i request.xml -o response.xml

You can use the command line flags to indicate the role of the specified files
and the size of the files that can be processed. Each time the db2mdapiclient
utility is invoked, it uses a minimum of two or a maximum of four of the
following files:

request.xml
This required input file contains the operation to perform.

response.xml
This required output file contains the response XML from the
MD_MESSAGE() stored procedure. The third argument in the
MD_MESSAGE() stored procedure returns the response XML.

inputmetadata.xml
This optional input file contains DB2 Cube Views metadata.

outputmetadata.xml
This optional output file contains the response metadata XML, if
applicable, from the second argument of the MD_MESSAGE() stored
procedure.

C: \ >

DB2 database

OLAP
Center

Command line
utility DB2

catalog

Stored procedure
API

db2mdapiclient

Figure 1. The db2mdapiclient utility and the OLAP Center transfer metadata through
Multidimensional Services

8 IBM DB2 Cube Views: Setup and User’s Guide

The following diagram shows how the MD_MESSAGE() stored procedure is
associated with the two input and two output files:

For example, to import DB2 Cube Views metadata for the MDSAMPLE
database, change to the ..\SQLLIB\samples\olap\xml\input directory and
enter the following command:
db2mdapiclient -d MDSAMPLE -u db2admin -p mypasswrd -i create.xml

-o myresponse.xml -m MDSampleMetadata.xml

For a description of the sample files that are provided, see Appendix C,
“Sample files”, on page 115. For more information on the Multidimensional
Services operations, see the Appendix A, “API Reference”, on page 81.

<requestXML>

<inputMetadataXML>

MD_MESSAGE (arg1, arg2, arg3)

<responseXML>

<outputMetadataXML>

Input files

Output files

Stored procedure

Figure 2. How the stored procedure handles the two input and output files from the db2mdapiclient
utility

Chapter 1. Getting started with DB2 Cube Views 9

10 IBM DB2 Cube Views: Setup and User’s Guide

Chapter 2. Multidimensional metadata objects

This chapter describes the following topics:
v Overview of DB2 Cube Views metadata
v General metadata properties
v Cube models
v Facts objects
v Dimensions
v Hierarchies
v Measures
v Attributes
v Attribute relationships
v Joins
v Cubes
v Cube facts
v Cube dimensions
v Cube hierarchies
v Metadata object rules

About DB2 Cube Views metadata

DB2 Cube Views metadata objects describe relational tables as OLAP
structures, but these metadata objects are different from traditional OLAP
objects. Metadata objects store metadata about the data in the base tables, they
describe where pertinent data is located, and they describe relationships
within the base data. DB2 Cube Views manages the following 12 metadata
objects and stores them in the DB2 catalog:
v Cube models
v Facts objects
v Dimensions
v Hierarchies
v Measures
v Attributes
v Attribute relationships
v Joins
v Cubes

© Copyright IBM Corp. 2003 11

v Cube facts
v Cube dimensions
v Cube hierarchies

Metadata provides a new perspective from which to understand your data.
DB2 Cube Views extends the DB2 catalog so that in addition to storing
information about tables and columns, the DB2 catalog contains information
about how the tables and columns relate to OLAP objects and the
relationships between those objects.

Some metadata objects act as a base to directly access relational data by
aggregating data or directly corresponding to particular columns in relational
tables. Other objects describe relationships between the base metadata objects
and link these base metadata objects. All of the objects can be grouped by
their relationships to each other into a multidimensional metadata object
called a cube model. Essentially, a cube model represents a particular
grouping and configuration of relational tables.

Metadata objects that map to relational tables
A cube model can be constructed in many ways, but is often built to represent
a relational star schema or snowflake schema. (A star schema has a facts table
at the center and one or more dimension tables joined to the fact table, and a
snowflake schema is an extension of a star schema such that one or more
dimensions are defined by multiple tables.) A cube model that is based on a
simple star schema is built around a central facts object. The facts object
contains a set of measures that describe how to aggregate data from the fact
table across dimensions. Measures describe data calculations from columns in
a relational table and are joined to create the facts object. Figure 3 on page 13
shows how measures and a facts object relate to relational data.

12 IBM DB2 Cube Views: Setup and User’s Guide

Dimensions are connected to the facts object in a cube model like the
dimension tables are connected to the fact table in a star schema. Columns of
data from relational tables are represented by attributes that are joined to
make a dimension.

Figure 4 on page 14 shows how dimensions are built from relational tables.
Hierarchies store information about how the attributes within a dimension are
related to each other and structured. A hierarchy provides a way to calculate
and navigate the dimension. Each dimension has a corresponding hierarchy
with levels that are defined for each member attribute. In a cube model, each
dimension can have multiple hierarchies.

Relational tables in DB2

OLAP model objects

Facts

Measure Measure

Figure 3. How a facts object and measures relate to relational data

Chapter 2. Multidimensional metadata objects 13

All of the dimensions are connected to a central facts object to create a cube
model based on a star schema. Joins can connect tables to create a facts object
or a dimension. In a cube model, joins can connect facts objects to dimensions.
The dimensions have information about all of their corresponding hierarchies,
attributes, and related joins. Facts objects have information about all of their
component measures, attributes, and related joins. Figure 5 on page 15 shows
how the metadata objects fit together in a cube model and map to a relational
star schema.

Attribute

Relational tables in DB2

OLAP model objects

Dimension Dimension

Attribute Join Attribute

Figure 4. How dimensions are built from relational tables

14 IBM DB2 Cube Views: Setup and User’s Guide

You can reuse the components of a cube model to create more precise cubes
for specific applications. A cube is the most precise metadata object and is the
closest object to an OLAP conceptual cube. A cube is a specific instance or
subset of a cube model. A cube has a specific set of similar but more
restrictive metadata objects derived from the parent cube model: cube
dimensions, cube hierarchies, and cube facts. A cube can have only one cube
hierarchy defined for each cube dimension, but a dimension can have many
hierarchies that are defined for the cube model. Because of this structural
difference between a cube and a cube model, you can retrieve most cubes
with a single SQL statement.

Example of a cube model that maps to relational tables
A cube model is often built to represent a relational star schema or snowflake
schema. Figure 6 on page 16 shows a star schema with a Sales fact table, and

Relational tables in DB2

OLAP model objects

Cube
Model

Dimension Join Facts

Attribute

Join

Attribute

Measure Measure

Dimension

Attribute Join

Figure 5. How metadata objects fit together and map to a relational star schema

Chapter 2. Multidimensional metadata objects 15

Time, Product and Region dimension tables. The primary key in each
dimension table is joined to the corresponding foreign key in the Sales fact
table. For example, Time.TimeID = Sales.TimeID, Product.ProductID =
Sales.ProductID, and Region.RegionID = Sales.RegionID.

The cube model based on this star schema is built around the Sales facts
object that describes aggregated relational data from the Sales fact table.
Measures describe how to calculate data from columns in the Sales table. The
facts object also includes attributes that correspond to the foreign keys in the
fact table that are used to join the dimensions to the facts object. In this
example, the Sales facts object has two measures: Sales and Costs; it has three
attributes: Facts_TimeID, Facts_ProductID, and Facts_RegionID.

Dimensions are connected to the facts object in a cube model like the
dimension tables are connected to the fact table in a star schema. Columns of
data from relational tables are represented by attribute objects referenced by
the dimension. In this example, the Time dimension references five attributes:
TimeID, Year, Quarter, Month, and Day. The Product dimension references

Sales
table

Time ID
Product ID
Region ID
Sales
Costs

Time
table

Time ID
Year
Quarter
Month
Day

Product
table

Product ID
Group
Line
Product

Region
table

Region ID
Country
State
County
City
City_Pop
Postal code

Figure 6. Example of a star schema

16 IBM DB2 Cube Views: Setup and User’s Guide

four attributes: ProductID, Group, Line, and Product. The Region dimension
references seven attributes: RegionID, Country, State, County, City, City_Pop,
and Postal_code.

A join is created to connect each dimension to the facts object. The three joins
in this example are Time, Product, and Region. Figure 7 shows the cube model
that is described in this example.

Hierarchies store information about how the attributes within a dimension are
related to each other and structured. As a metadata object, a hierarchy
provides a way to calculate and navigate the dimension. Each dimension has
a corresponding hierarchy with each member attribute in a logical level. In a
cube model, each dimension can have multiple hierarchies.

In this example, the Region dimension has two hierarchies: the Region
overview hierarchy and the Region detail hierarchy, as shown in Figure 8 on
page 18. The Region overview hierarchy uses a subset of the attributes in the
Region dimension: Country, State, and County. The Region detail hierarchy

Region

Join

Measures

Attributes

Sales
facts

Facts_Time ID
Facts_Product ID
Facts_Region ID

Sales
Costs

Time
dimension

Time ID
Year
Quarter
Month
Day

Product
dimension

Product ID
Group
Line
Product

Region
dimension

Region ID
Country
State
County
City
City_Pop
Postal code

Time Product

Figure 7. Cube model based on star schema example

Chapter 2. Multidimensional metadata objects 17

uses all of the attributes in the Region dimension. City_Pop is an attribute
that is used in an attribute relationship with City. The Region detail hierarchy
has five levels: Country, State, County, City and Postal Code. You can include
City_Pop as a related attribute in the hierarchy because it adds extra
information to the hierarchy attribute. For example, when you query data for
a specific city, you can also include data about the city’s population.

You can also build one or more cubes for the cube model. For this example,
the cube model has one cube, shown in Figure 9 on page 19. The cube facts
object references all of the Sales and Costs measures from the cube model
facts object. The cube has one cube dimension that references the three
dimensions in the cube model. The Region cube dimension has a Region cube
hierarchy with a subset of the Country, State, and County attributes. The Time
cube dimension has a Time cube hierarchy with a subset of the Year, Quarter,
and Month attributes. The Product cube dimension has a Product cube
hierarchy with a subset of the Group, Line, and Product attributes. The cube
has only one cube hierarchy that is defined per cube dimension. (A cube can
have only one cube hierarchy per cube dimension.)

Region overview
hierarchy

Country
State

County

Attributes

City_Pop
Postal code

Attribute
relationship

Region detail
hierarchy

Country
State

County
City

Region
dimension

Region ID
Country
State
County
City
City_Pop
Zip Code

Figure 8. Region dimension with two hierarchies

18 IBM DB2 Cube Views: Setup and User’s Guide

General metadata properties

Each metadata object has a set of general properties and object-specific
properties. The general properties are used to identify the object instances, to
describe the usage or role of the object instances, and to track object instance
changes. The objects are named by using a schema in the same way that other
DB2 objects are named. If you do not want to use the default user name
schema for an object, you need to fully qualify the object with the schema
name that you want.

The following table describes the general properties that exist for all metadata
objects.

Sales
cube

Region cube
hierarchy

Country
State

County

Time cube
hierarchy

Year
Quarter

Month

Product cube
hierarchy

Group
Line

Product

Product
cube dimension

Time
cube dimension

Region
cube dimension

Attribute

Cube
facts

Sales
Costs

Measure

Figure 9. Cube based on cube model example

Chapter 2. Multidimensional metadata objects 19

Table 2. General metadata object properties

Property Description

Name Name of the object.

Schema Schema that owns the object.

Business name Name presented to the user. This name can be used in
graphic user interfaces as a name more meaningful to the
user.

Comments Textual description or comment on the nature or usage of
the object.

Create time Time that the object was created.

Creator User (schema) that defined the object.

Modify time Time the object was last modified.

Modifier User (schema) that performed the modification.

In addition to a common set of general properties, each metadata object has a
set of specific properties. These specific properties describe the components
and qualities that define the metadata object. For information about properties
that are specific to each metadata object, see the topic for that object.

Metadata object naming conventions
DB2 provides two different naming conventions to name objects: ordinary and
delimited. For metadata objects, the delimited convention is used when
naming objects and referring to DB2 tables and columns. The delimited
convention allows mixed case names, spaces, and special characters, such as
national language characters. The complete set of characters is determined by
the code page of the database in which the objects are stored.

The following conventions apply to the metadata objects:

Table 3. Naming conventions for DB2 Cube Views metadata objects

Object Convention

Schema v Length: 1-30 bytes

v Restricted names: schema names must not be SESSION
or begin with SYS. Only the uppercase names are
restricted.

Name of object v Length: 1-128 bytes

v No other restrictions.

Business name of object v Length: 1-128 bytes

v No other restrictions

20 IBM DB2 Cube Views: Setup and User’s Guide

Table 3. Naming conventions for DB2 Cube Views metadata objects (continued)

Object Convention

Comments for objects v Length: 0-254 bytes

v No other restrictions

Table schema that is used
in referencing columns

v Length: 1 to 128 bytes

v No other restrictions

Table name that is used
in referencing columns

v Length: 1 to 128 bytes

v No other restrictions

Column Name that is
used in referencing
columns

v Length: 1-128 bytes

v No other restrictions

Cube models

The DB2 Cube Views cube model is a representation of a logical star schema
or snowflake schema. The cube model is a grouping of relevant dimension
objects around a central facts object. Each dimension can have multiple
hierarchies. The structural information about how to join the tables that are
used by the facts and dimension objects is referenced by the cube model. Also
stored in the cube model is enough information to retrieve OLAP data. Other
reporting and OLAP tools that understand the cube model and can display
multiple views of a specific dimension can benefit from its use.

Cube models define a complex set of relationships and can be used to
selectively expose relevant facts and dimensions to an application. Each join
object that connects a dimension to the central facts object is stored with the
corresponding dimension as a set. Subsets of cube model components can be
used by many cubes for different analysis purposes.

You can create an empty cube model in the OLAP Center by using the Cube
Model wizard. An empty cube model does not have a facts object or any
dimensions. With the wizards in the OLAP Center, you can complete the cube
model by creating the facts object and one or more dimensions. You can also
create a complete cube model using the Quick Start wizard. DB2 Cube Views
will validate your cube model by ensuring that you have the mandatory
components:
v A facts object
v At least one dimension
v At least one corresponding hierarchy for each dimension
v Joins between the existing facts object and dimensions
v Attributes (if any) that reference valid tables

Chapter 2. Multidimensional metadata objects 21

For more information about creating cube models, see the online help in the
OLAP Center.

The properties that are specific to cube models are described in the following
table.

Table 4. Cube model properties

Property Description

Facts object Facts object that is used in the cube model

Set of (dimension, join) Dimensions that are used in the cube model and their
corresponding joins

Facts objects

The facts object groups related the measures that are interesting to a particular
application. Multiple relational fact tables can be joined on specific attributes
to map additional related measures. The facts object stores information about
the attributes that are used in fact-to-dimension joins, and the attributes and
joins that are used to map the additional measures across multiple database
tables. Therefore, in addition to a set of measures, a facts object stores a set of
attributes and a set of joins. A facts object is used in a cube model as the
center of a star schema.

You can use the Facts wizard in the OLAP Center to create a facts object. In
the Facts wizard you specify one or more fact tables and any necessary joins,
measures, and aggregations for the measures.

The specific properties of a facts object are described in the following table.

Table 5. Facts object properties

Property Description

Set of measures Set of all related measures in the facts object

Set of attributes Set of all attributes that are used in the facts object

Set of joins Set of all joins that are needed to join all of the specified
measures and attributes

22 IBM DB2 Cube Views: Setup and User’s Guide

Dimensions

Dimensions provide a way to categorize a set of related attributes that
together describe one aspect of a measure. Dimensions are used in cube
models to organize the data in the facts object according to logical categories
such as Region, Product, or Time. Related attributes and the joins that are
required to group these attributes are defined in the properties of the
dimension.

Dimensions reference one or more hierarchies. Hierarchies describe the
relationship and structure of the referenced attributes and can be used in the
navigation and calculation of the dimension.

Dimensions also have a type that describes if the dimension is time-oriented.
For example, a dimension called Time might contain attributes like Year,
Quarter, and Month and is a Time type. Another dimension called Region
might contain attributes like Country, State, City, and Population and is a
Regular type. Type information can be used by applications to intelligently
and appropriately perform time related functions.

You can use the Dimension wizard in the OLAP Center to create a new
dimension in the context of a cube model or without a reference to a cube
model. You can also add an existing dimension to a cube model by using the
Add Dimension wizard.

The specific properties of dimensions are described in the following table.

Table 6. Dimension properties

Property Description

Set of attributes Set of all attributes that are used in the dimension.

Set of joins Set of all joins that are required to join all of the
specified attributes. Only the joins that are required to
join the dimension tables are specified here.

Set of hierarchies Set of hierarchies that apply to the dimension.

Type Dimension type that can be REGULAR or TIME

Hierarchies

A hierarchy defines relationships among a set of one or more attributes in the
dimension of a cube model. These relationships provide a navigational and
computational means of traversing dimensions. Multiple hierarchies can be
defined for a dimension of a cube model. Hierarchies also reference a set of
attribute relationships that link attributes in the hierarchy to other related
attributes. The attributes that are directly related by an attribute relationship

Chapter 2. Multidimensional metadata objects 23

can be queried as part of the hierarchy. For example, a hierarchy for a Region
dimension can have a City attribute, and an attribute relationship can link
City to a CityPopulation attribute. This hierarchy can include CityPopulation
information in a query that includes City.

The hierarchy type describes the relationship among the attributes within the
hierarchy. The following four hierarchy types are supported:

Balanced
A hierarchy with meaningful levels and branches that have a
consistent depth. Each attribute’s logical parent is in the level directly
above it. A balanced hierarchy can represent time where the meaning
and depth of each level, such as Year, Quarter and Month, is
consistent. They are consistent because each level represents the same
type of information, and each level is logically equivalent.Figure 10
shows an example of a balanced time hierarchy.

Unbalanced
A hierarchy with levels that have a consistent parent-child relationship
but have a logically inconsistent levels. The hierarchy branches also
have inconsistent depths. An unbalanced hierarchy can represent an
organization chart. For example, Figure 11 on page 25 shows a CEO on
the top level of the hierarchy and at least two of the people that might
branch off below including the chief operating officer and the
executive secretary. The chief operating officer has more people
branching off also, but the executive secretary does not. The
parent-child relationships on both branches of the hierarchy are
consistent. However, the levels of both branches are not logical
equivalents. For example, an executive secretary is not the logical
equivalent of a chief operating officer.

Jan Jan

1st Qtr

MarFeb

1st Qtr

MarFeb

2001 2002

Figure 10. Example of a balanced hierarchy

24 IBM DB2 Cube Views: Setup and User’s Guide

Ragged
A hierarchy in which each level has a consistent meaning, but the
branches have inconsistent depths because at least one member
attribute in a branch level is unpopulated. A ragged hierarchy can
represent a geographic hierarchy in which the meaning of each level
such as city or country is used consistently, but the depth of the
hierarchy varies. Figure 12 on page 26 shows a geographic hierarchy
that has Continent, Country, Province/State, and City levels defined.
One branch has North America as the Continent, United States as the
Country, California as the Province/State, and San Francisco as the
City. However, the hierarchy becomes ragged when one member does
not have an entry at all of the levels. For example, another branch has
Europe as the Continent, Greece as the Country, and Athens as the
City, but has no entry for the Province/State level because this level is
not applicable to Greece. In this example, the Greece and United
States branches descend to different depths, creating a ragged
hierarchy.

Executive
secretary

Chief
operating

officer

Director
of

communications

Communications
specialist

CEO

Figure 11. Example of an unbalanced hierarchy

Chapter 2. Multidimensional metadata objects 25

Network
A hierarchy in which the order of levels is not specified, but in which
levels do have semantic meaning. For example, Figure 13 shows a
network hierarchy that describes product attributes such as Color,
Size, and PackageType. Because the attribute levels do not have an
inherent parent-child relationship, the order of the levels is not
important. A widget company might have member entries like white
for Color, small for Size, and shrink wrap for PackageType. A second
member entry might be red for Color, large for Size, and box for
PackageType.

A hierarchy also specifies the deployment mechanisms for the hierarchy. A
deployment mechanism defines how to interpret the attributes of a hierarchy.
The following two deployment mechanisms are supported:

Standard
Uses the level definitions of the hierarchy, where each attribute in the

San Francisco

North America

United States

California

Europe

Greece

Athens

Figure 12. Example of a ragged hierarchy

Shrink wrap

White

Small

Red

Large

Box

Figure 13. Example of a network hierarchy

26 IBM DB2 Cube Views: Setup and User’s Guide

hierarchy defines one level. For example, a balanced hierarchy for a
Time dimension would be organized by each defined level including
Year, Quarter, and Month. Standard deployment can be used with all
four hierarchy types. Table 7 shows how some of the balanced
hierarchy attributes for a Time dimension are organized using a
standard deployment

Table 7. Standard deployment of a balanced hierarchy for a Time dimension

Year Quarter Month

2001 1st Qtr Jan

2001 1st Qtr Feb

2001 1st Qtr Mar

2002 1st Qtr Jan

2002 1st Qtr Feb

2002 1st Qtr Mar

Recursive
Uses the inherent parent—child relationships between the attributes of
the hierarchy. An unbalanced hierarchy using a recursive deployment
is represented as parent-child attribute pairs. For example, Table 8
shows the attribute pairs for the unbalanced hierarchy describing an
organization chart shown in Figure 11 on page 25. The parent—child
attribute pairs include: chief executive officer and executive secretary,
chief executive officer and chief operating officer, chief operating
officer and director of communications, director of communications
and communications specialist. Recursive deployment can only be
used with an unbalanced hierarchy.

Table 8. Recursive deployment of an unbalanced hierarchy for an Organization
dimension

Parent attribute Child attribute

Chief executive officer Executive secretary

Chief executive officer Chief operating officer

Chief operating officer Director of communications

Director of communications Communications specialist

You can create a hierarchy in the OLAP Center using the Hierarchy wizard.
You can define a hierarchy for a dimension after you have created the
dimension.

Chapter 2. Multidimensional metadata objects 27

The properties of a hierarchy object are described in the following table.

Table 9. Hierarchy properties

Property Description

List of attributes Ordered list of attributes from the top to
the bottom of a hierarchy. In the case of a
recursive hierarchy, two attributes are
used as parent and child.

Set of attribute relationships Set of all attribute relationships that link
hierarchy attributes to other attributes.

Type Hierarchy type can be BALANCED,
UNBALANCED, RAGGED, NETWORK

Deployment Hierarchy deployment can be
STANDARD, RECURSIVE

Measures

Measures define a measurement entity and is used in facts objects. Measures
become meaningful within the context of a dimension. For example, a revenue
of 300 is not meaningful by itself. When you put a revenue measure in the
context of a dimension, such as Region, the measure becomes meaningful: the
revenue for New York is 300. Common examples of measures are Revenue,
Cost, and Profit.

A measure is defined by a combination of two properties: an SQL expression
list and an aggregation list. Measures are defined by the aggregation of SQL
expressions. Table columns, attributes, and measures are mapped to a
template to build SQL expressions. The resulting SQL expressions are then
used as input for the first aggregation function of the measure. If a measure
has more than one aggregation, the aggregation functions are performed in
the order that they are listed, with each subsequent aggregation taking the
previous aggregation’s result as its input. If the SQL expression for the
measure only references other measures, the aggregation function is optional.
The aggregation function is optional because the referenced measures provide
the aggregation.

An SQL expression for the measure is created by the combination of two
properties: a template and a list of columns, attributes, and measures. The
template uses a token notation where {$$n} is the token and n references a
specific column, attribute, or measure from the list. The list of columns,
attributes, and measures is ordered and the position of a column, attribute or
measure in the list corresponds to the token n value.

28 IBM DB2 Cube Views: Setup and User’s Guide

SQL expressions are used as input to the first aggregation. Each aggregation
specifies a function that is applied to a corresponding list of dimensions. The
aggregation function can be any aggregation function that is supported by the
underlying database. The following aggregation functions are supported in
DB2 Cube Views:
v AVG
v CORRELATION
v COUNT
v COUNT_BIG
v COVARIANCE
v MAX
v MIN
v REGRESSION functions (all 9 types)
v STTDEV
v SUM
v VARIANCE

Each dimension can be aggregated only once by the measure object. A
measure must have one aggregation with an empty list of dimensions, and
any other aggregations must each have an explicit list of dimensions. The
aggregation for an empty list of dimensions is applied to all dimensions in the
cube model that are not specifically being used by another aggregation.

An example of a simple measure that directly maps to a column is Revenue.
The Revenue measure can be created for a cube model with three dimensions:
Product, Market, and Time. Revenue has an SQL expression template
template = "{$$1}" that represents a simple mapping to the column specified
in the one-item list of columns, attributes, and measures where list =
"Column Fact.Rev". The aggregation list is (SUM, <NULL>) where SUM is the
aggregation function, and <NULL> is an empty list of dimensions. The SQL
expression is used as input for the SUM aggregation function, which results in
the SQL expression: SUM(Fact.Rev).

A more complicated measure, Profit, might have an SQL expression template
template = "{$$1} - {$$2}", where the list of attributes, columns, and
measures is list = "Measure Revenue, Column Fact.Cost". Replacing the
tokens with the correct references, the SQL expression becomes "Revenue -
Fact.Cost". Expanding the revenue measure reference to its column reference,
the SQL expression becomes: "Fact.Rev - Fact.Cost". The Profit measure’s
aggregation list is : (SUM, <NULL>). Using the profit SQL expression as input
for the SUM aggregation function, the Profit measure’s SQL is: SUM(Fact.Rev -
Fact.Cost).

Chapter 2. Multidimensional metadata objects 29

If the measure has an aggregation function, such as CORRELATION, that
requires two or more parameters, the measure will have two or more SQL
expressions.

Measures also have a data type that is based on SQL data types. DB2 Cube
Views automatically determines the data type of a measure. Each name, when
fully qualified by a schema, must be unique among measures and attributes.

The OLAP Center hides much of the complexity of the metadata object
definition. In the OLAP Center, you do not have to explicitly define the
measure’s list of SQL expression or aggregation list. If you want to create a
measure that directly maps to a column, attribute, or other measure, you
select the source when you create the measure in the Facts wizard or the Facts
Properties window. If you want to create a calculated measure, you can use
the SQL Expression Builder window to create the source expression. The SQL
Expression Builder provides lists of available columns, attributes, and
measures, operators, and functions and constants. In the Measure Properties
window you can view the data type of the source data for the measure, and
the data type of the measure after the source data has been aggregated.

The following table describes the specific properties that define a measure.
The OLAP Center defines each of these for you when you create a measure.

Table 10. Measure properties

Property Description

List of SQL expressions (template,
[(list of columns, attributes and
measures])

List of SQL expressions used as input for the first
aggregation function of the measure. Each SQL
expression has a template and an ordered list of
columns, attributes, and measures.

List of aggregations (function, list
of dimensions)

List of aggregations specifying how to calculate
the measure. Each aggregation has an SQL
aggregation function and an optional list of
dimensions to apply the function to.

Data type (schema, name, length,
scale)

Determines the data type of the measure. The
data type is based on SQL data types, and
composed by data type schema, name, length,
and scale. The OLAP Center displays the schema
only if it is a schema other than SYSIBM.

Attributes

An attribute represents the basic abstraction of the database table columns. An
attribute is defined by a SQL expression that can be a simple mapping to a
table column, can involve multiple columns and other attributes, and can
involve all functionality of the underlying database such as user-defined

30 IBM DB2 Cube Views: Setup and User’s Guide

functions. When other attributes are used in the defining SQL expression, the
other attributes cannot form attribute reference loops. For example, if
Attribute A references Attribute B, then Attribute B cannot reference Attribute
A.

The OLAP Center for DB2 Cube Views hides much of the complexity of the
attribute object definition. In the OLAP Center, you do not need to explicitly
define the expression template or parameter list of the attribute. If you want
to create an attribute that directly maps to a column, you select the source
column when you create the attribute in the Dimension wizard or the
Dimension Properties window. If you want to create a calculated attribute,
you can use the SQL Expression Builder window to create the source
expression. The SQL Expression Builder provides lists of available attributes,
columns, operators, functions, and constants.

If you want to create an attribute without using the OLAP Center, you must
create the attribute’s SQL expression definition as a combination of two
properties: a template and a list of columns and attributes. The template uses
a token notation where {$$n} is the token with n referencing a specific column
or attribute from the list. The list of columns and attributes is ordered and the
position of a column or attribute in the list corresponds to the token n value.
For example, the template template = "{$$1} || ’ ’ || {$$2}" can be used
with a corresponding list such as list = "Column CUSTOMER.FIRSTNAME,
Attribute LastName" to concatenate the first name and last name of customers
with a space between the names. Replacing the template tokens with the
correct list references, the SQL expression is "Customer.FirstName || ’ ’ ||
LastName". The attribute reference is further expanded to a column reference
to form the SQL expression: "Customer.FirstName || ’ ’ ||
Customer.LastName".

Each name, when fully qualified by a schema, must be unique among
attributes and measures.

The following table describes the specific properties that define an attribute.
The OLAP Center defines each of these for you when you create an attribute
object.

Table 11. Attribute properties

Property Description

SQL expression template SQL expression that defines the attribute. The
template references columns and attributes by
using a {$$n} notation, where n is an ordinal
number corresponding to the list of columns
and attributes.

Chapter 2. Multidimensional metadata objects 31

Table 11. Attribute properties (continued)

Property Description

List of columns and attributes for
SQL expression

Ordered list of all columns and attributes
composing the attribute. These columns and
attributes are applied as specified in the SQL
expression template.

Data type (schema, name, length,
scale)

Determines the data type of the attribute. The
data type is based on SQL data types, and
composed by data type schema, name, length,
and scale. The OLAP Center displays the
schema only if it is a schema other than
SYSIBM.

Attribute relationships

An attribute relationship describes relationships of attributes in general. The
relationships consist of the following properties:
v A left and a right attribute
v A type
v A cardinality
v Determining a possible functional dependency

Type describes what the role of the right attribute is with respect to the left
attribute. There are two possible types: Descriptive and Associated.

Descriptive
Specifies that the right attribute is a descriptor of the left attribute. For
example, a ProductName right attribute describes a ProductCode left
attribute.

Associated
Specifies that the right attribute is associated with the left attribute,
but is not a descriptor of the left attribute. For example, a
CityPopulation right attribute is associated with but not a descriptor
of CityID.

Cardinality describes how the instances of the left and right attributes are
related. You can use the following cardinalities for attribute relationships:

1:1 There is at most one left-attribute instance for each right attribute
instance, and at most one right attribute instance for each left-attribute
instance.

32 IBM DB2 Cube Views: Setup and User’s Guide

1:Many
There is at most one left-attribute instance for each right-attribute
instance, and any number of right-attribute instances for each
left-attribute instance.

Many:1
There is any number of left-attribute instances for each right-attribute
instance, and at most one right-attribute instance for each left-attribute
instance.

Many:Many
There is any number of left-attribute instances for each right-attribute
instance, and any number of right-attribute instances for each
left-attribute instance.

The functional dependency property tells whether the attribute relationship
defines a functional relationship between two attributes. Specifying that an
attribute relationship is a functional dependency means that you guarantee
that every instance of the left attribute will determine the instance of the right
attribute. You cannot define a functional dependency unless the left attribute
is unique. For example, if you have a hierarchy with Country, State, and City
with City_Pop included in an attribute relationship with City, City can
determine City_Pop. However, outside the context of the hierarchy, you might
have multiple cities with the same name, such as Concord, California and
Concord, New Hampshire. The attribute relationship between City and
City_Pop is not a functional dependency. You can define several attribute
relationships that are functional dependencies for a hierarchy based on unique
IDs, such as CountryID, StateID, and CityID. You can have attribute
relationships between CountryID and Country, StateID and State, CityID and
City and CityID and City_Pop. Each of attribute relationships is also a
functional dependency.

The main use of an attribute relationship is within the context of a hierarchy
in a dimension. Attributes that are directly related to the hierarchy attributes
can be queried as part of the hierarchy. This allows each level of the hierarchy
to define attributes that complement the information of a given level. For
example, a hierarchy can have a City attribute. The City attribute can be
related to a City_Pop attribute with an attribute relationship. With the
attribute relationship information, you can include City_Pop information in a
query that includes City.

You can explicitly and implicitly create an attribute relationship object in the
OLAP Center. You can explicitly create an attribute relationship using the
Attribute Relationship wizard. Open the Attribute Relationship wizard from
the Relational objects view and specify all of the object definition properties.
You can implicitly create an attribute relationship when you define a
hierarchy for a dimension. In the Hierarchy wizard, you can optionally define

Chapter 2. Multidimensional metadata objects 33

related attributes for any of the hierarchy attributes. In the Related Attributes
Selection window which you can open from the Hierarchy wizard, you can
see only the attributes used in attribute relationships with a valid cardinality
per the validation rules described in “Metadata object rules” on page 38. For
each related attribute that you add, the OLAP Center creates an attribute
relationship with the hierarchy attribute as the left attribute and the related
attribute as the right attribute. You can view and modify these attribute
relationships from the Attribute Relationships folder in the Relational Objects
View.

The specific properties that define an attribute relationship object are
described in the following table.

Table 12. Attribute relationship properties

Property Description

Left attribute Left attribute used in the relationship.

Right attribute Right attribute used in the relationship.

Type Type of relationship described by the attribute
relationship. The type is used to determine
what role an attribute serves: DESCRIPTIVE,
ASSOCIATED

Cardinality Cardinality expected in the join: 1:1, 1:Many,
Many:1, Many:Many

Functional dependency Determines if the attribute relationship is also
a functional dependency: YES, NO

Joins

A join object joins two relational tables together. A join references attributes
that reference columns in the tables being joined. The simplest form of a join
references two attributes: one that maps to a column in the first table and one
that maps to a column in the second table. You also specify an operator to
indicate how the columns will be compared.

A join can also be used to model composite joins where two or more columns
from the first table are joined to the same number of columns in the second
table. A composite join uses pairs of attributes to map corresponding columns
together. Each pair of attributes has an operator that indicates how that pair
of columns will be compared. A join also has a type and cardinality. The join
types map to relational join types. Joins can be used in dimensions to join
dimension tables or in a cube model to join the dimensions of a cube model
to its facts object or within a facts object to join multiple fact tables together.
You can use the Join wizard in the OLAP Center to create a join.

34 IBM DB2 Cube Views: Setup and User’s Guide

The specific properties that define a join are described in the following table.

Table 13. Join properties

Property Description

List of (left attribute, right attribute,
operator)

Left attribute: The attribute on the left side of
the join. Right attribute: The attribute on the
right side of the join. Operator: Operator
expected in the join =, <, >, <>, >=, <=.

Type Type of join expected: INNER, FULL OUTER,
LEFT OUTER, RIGHT OUTER

Cardinality Cardinality expected in the join: 1:1, 1:Many,
Many:1, Many:Many

Cubes

A cube is a precise definition of an OLAP cube that can be delivered using a
single SQL statement. A cube, which is derived from a cube model, contains a
subset of objects from the cube model. The cube facts and list of cube
dimensions are subsets of those in the referenced cube model. Cubes are
appropriate for tools and applications that do not use multiple hierarchies
because cube dimensions allow only one cube hierarchy per cube dimension.

Cube metadata can be used when optimizing a cube model for extract and
drill through queries. You can use the Cube wizard in the OLAP Center to
create a cube. You must have a complete cube model to create an associated
cube. The properties of a cube object are described in the following table.

Table 14. Cube properties

Property Description

Cube model Cube model from which the cube is derived.

Cube facts Cube facts used in the cube. The cube facts is
derived from the facts object in the cube
model.

List of cube dimensions Ordered list of cube dimensions used in the
cube. The cube dimension is derived from the
dimensions in the cube model. One cube
hierarchy is associated with each cube
dimension.

Chapter 2. Multidimensional metadata objects 35

Cube facts

A cube facts has a subset of measures in an ordered list from a specific facts
object. A cube facts allows a cube the flexibility to scope a cube model’s facts.
The structural information, such as the joins and attributes, is referenced from
the parent facts object.

In the OLAP Center, you create a cube in the context of a cube model, using
the Cube wizard. You do not need to explicitly define the cube facts because
the OLAP Center knows the cube facts is derived from the facts object in the
associated cube model. You select which measures from the cube model facts
object that you want to use in the cube.

The specific properties that define a cube facts are described in the following
table.

Table 15. Cube facts properties

Property Description

Facts Facts from which the cube facts is derived.

List of measures Ordered list of measures that is used in a cube.
All measures must be part of the facts from
which the cube facts is derived.

Cube dimensions

A cube dimension is used to scope a dimension for use in a cube. The cube
dimension object references the dimension from which it is derived and the
relevant cube hierarchy for the given cube. Only one cube hierarchy can be
applied to a cube dimension. The joins and attributes that apply to the cube
dimension are referenced from the dimension definition.

In the OLAP Center, you create a cube in the context of a cube model, using
the Cube wizard. You select which of the cube model dimensions that you
want to have in your cube. For each dimension that you include as a cube
dimension, you can select which attributes to include in the cube hierarchy.

The specific properties that define a cube dimension object are described in
the following table.

Table 16. Cube dimension properties

Property Description

Dimension Dimension from which the cube
dimension is derived.

36 IBM DB2 Cube Views: Setup and User’s Guide

Table 16. Cube dimension properties (continued)

Property Description

Cube hierarchy Cube hierarchy that applies to the cube
dimension.

Cube hierarchies

A cube hierarchy is a subset of a hierarchy, and it is used in a cube. A cube
hierarchy references the hierarchy from which it is derived (parent hierarchy),
and it can have a subset of the attributes from the parent hierarchy.
Additionally, a cube hierarchy object references the attribute relationships that
apply to the cube. Only one cube hierarchy can be defined for a cube
dimension of a cube. In general, a cube hierarchy has the same hierarchy type
and deployment mechanism as the hierarchy from which it is derived. If the
hierarchy is the network type, the cube hierarchy is balanced if there are no
missing members and ragged if there are missing members.

In the OLAP Center you create a cube in the context of a cube model by using
the Cube wizard. You select which of the cube model dimensions you want to
have in your cube. For each dimension you include as a cube dimension, you
can select which attributes to include in the cube hierarchy. If a selected
dimension has related attributes defined, you can include the related
attributes in your cube hierarchy. An attribute relationship exists for each
related attribute in the hierarchy.

The specific properties that define a cube hierarchy are described in the
following table.

Table 17. Cube hierarchy properties

Property Description

Hierarchy Hierarchy from which the cube hierarchy is
derived.

Lists of attributes Ordered list of all attributes from the top to
the bottom of the cube hierarchy. The order of
the attributes should be the same as in the
parent hierarchy.

Set of attribute relationships Set of all attribute relationships that link cube
hierarchy attributes to other attributes.

Chapter 2. Multidimensional metadata objects 37

Metadata object rules

Three types of rules apply to metadata objects: base rules, cube model
completeness rules, and optimization rules. These rules ensure that each object
is valid both in and out of the context of a cube model and that effective SQL
queries can be written and optimized.

For information about how to create metadata objects, see the online help in
the OLAP Center.

Base rules
Base rules define an object’s validity outside the context of its use. Every
metadata object has its own set of rules. An instance of a metadata object is
valid if it follows all of the object rules. The base rules for each type of
metadata object are listed in the following sections.

Cube model base rules:
v A cube model must refer to zero or one facts.
v A cube model must refers to zero or more dimensions.
v Dimension—join pairs must have both a dimension and a join.
v All attributes on one side of a dimension to fact join must exist in the

dimension’s attribute list and all attributes on the other side of the join
must exist in the facts’ attribute list.

v A cube model must reference all the explicit dimensions referenced by the
aggregations of the measures from the cube model’s facts. If a cube model
has dimensions, an aggregation with empty list of dimensions must match
to at least one dimension from the cube model. Ensure that the dimension
is not referenced in other aggregations of the same measure. However, if a
cube model has no dimensions, all the measures must have only
aggregations with an empty list of dimensions.

Facts objects base rules:
v A facts object must refer to at least one measure.
v All attributes and measures referenced by a facts object must be able to be

joined within the facts object. Only the joins of the facts object are
considered.

v Exactly one join can be defined between any two tables within the facts
object.

v Join loops are not allowed within a facts object.
v Joins referenced by a facts object must refer to the attributes of the facts

object.

Dimension base rules:
v A dimension must refer to at least one attribute.

38 IBM DB2 Cube Views: Setup and User’s Guide

v All attributes referenced by a dimension must be able to be joined within
the dimension. Only the joins of the dimension are considered.

v Join loops are not allowed within a dimension.
v Exactly one join can be defined between any two tables within the

dimension.
v Hierarchies referenced by a dimension must refer to the attributes of the

dimension.
v Attribute relationships that are referenced by the hierarchies of a dimension

must refer to the attributes of the dimension.
v Joins referenced by a dimension must refer to the attributes of the

dimension.

Hierarchy base rules:
v A hierarchy must refer to at least one attribute.
v Exactly two attributes must exist for a recursive deployment.
v Every attribute relationship within a hierarchy must refer to two attributes

where the left attribute is part of the hierarchy and the right attribute is not
part of the hierarchy.

v Every attribute relationship within a hierarchy must have a cardinality of
1:1 or Many:1.

v Standard deployment can be used for all types of hierarchies and a
recursive deployment can only be used for unbalanced hierarchies.

Measure base rules:
v Each SQL expression template can have zero or more of the following

parameters: attributes, columns, and measures.
v Attributes and measures used as parameters for a SQL expression template

cannot form a dependency loop.
v The SQL template of a measure cannot be an empty string.
v A SQL template cannot use aggregation functions.
v If at least one measure, and only measures are referenced, defining an

aggregation is optional.
v The number of SQL templates must match the number of parameters of the

first aggregation function, if an aggregation exists.
v A measure with multiple SQL templates must define at least one step in the

aggregation script.
v If a measure refers to a second measure that defines multiple SQL

templates, then the referring measure cannot have an aggregation script.
v A multi parameter aggregation function can only be used in the first

aggregation.

Chapter 2. Multidimensional metadata objects 39

v If a measure defines one or more aggregations, one aggregation must
specify an empty list of dimensions.

v A measure can reference each dimension only once either within an
aggregation or across aggregations.

v In a SQL template, token indicators must begin numbering with 1 and must
continue numbering consecutively.

v Within a SQL expression, every column, attribute, and measure must be
referenced at least once.

Attribute base rules:
v Each SQL template have have zero or more of the following parameters

attributes and columns.
v Attributes used as parameters for a SQL expression template cannot form a

dependency loop.
v The SQL template of an attribute cannot be an empty string.
v The SQL template cannot have aggregation functions.
v In a SQL template, token indicators must begin numbering with 1 and must

continue numbering consecutively.
v Within a SQL expression, every column and attribute must be referenced at

least once.

Attribute relationship rules:
v An attribute relationship must refer to two attributes.
v An attribute relationship cannot be defined as a functional dependency

with a Many:Many cardinality.

Join rules:
v A join must refer to at least one triplet (left attribute, right attribute,

operator).
v A valid operation must be defined for each join triplet. The data types of

the left and right attributes should be compatible with each other and with
the specified operation.

v All left attributes must resolve into one or more columns of a single table.
v All right attributes must resolve into one or more columns of a single table.

Cube rules:
v A cube must refer to one cube facts.
v A cube must refer to at least one cube dimension.
v Cube facts must be derived from the facts used in the referenced cube

model.

40 IBM DB2 Cube Views: Setup and User’s Guide

v All cube dimensions must be derived from the dimensions used in the
referenced cube model.

Cube facts rules:
v A cube facts must refer to one facts.
v A cube facts must refer to at least one measure.
v All measures referenced by a cube facts must also be referenced in the

corresponding facts.
v

Cube dimension rules:
v A cube dimension must refer to one dimension.
v A cube dimension must refer to one cube hierarchy.
v The referenced cube hierarchy must be derived from a hierarchy used in the

referenced dimension.

Cube hierarchy rules:
v A cube hierarchy must refer to one hierarchy.
v A cube hierarchy must refer to at least one attribute.
v All referenced attributes must be used in the referenced hierarchy.
v Cube hierarchy attributes must be listed in the same order as in the

referenced hierarchy. Attribute order does not apply to network hierarchies.
v Every attribute relationship referenced by a cube hierarchy must refer to

two attributes where the left attribute is referenced by the cube hierarchy
and the right attribute is not referenced by the cube hierarchy.

v All attribute relationships referred to in a cube hierarchy must also be
referred to in the corresponding hierarchy.

Completeness rules
Cube model completeness rules extend the base rules to ensure that a cube
model links to other objects appropriately and that effective SQL queries can
be written.

Cube model completeness rules:
v A cube model must refer to one facts.
v A cube model must refer to at least one dimension.

Optimization rules
Optimization rules further extend the base rules and cube model
completeness rules. These rules ensure that the SQL queries created for the
metadata can be optimized successfully.

Join optimization rules:

Chapter 2. Multidimensional metadata objects 41

v A constraint must be defined for the columns that participate in a join. If
the same set of columns are used on both sides of the equality, a primary
key must be defined that matches the set of columns. If different sets of
columns are used on each side of the equality, one side must have a
matching primary key, and the other side must have a matching foreign key
and reference the primary key.

v The join cardinality must be 1:1, Many:1, or 1:Many. In a join with the same
set of columns on both sides of the equality, the cardinality must be 1:1. For
all other joins, the cardinality must have 1 on the side with the primary key
defined, and N on the side with the foreign key defined. If the foreign key
side also has a primary key defined, a 1 must be used for the cardinality of
that side.

v All attributes used in the join must resolve to nonnullable SQL expressions.
v The join type must be an inner join.

Dimension optimization rule:
v A dimension must have one primary table to which joins attach with a 1:1

or Many:1 cardinality.

Cube model optimization rule:
v The join used to join the facts and dimension must have a cardinality of 1:1

or Many:1 and must join a facts’ table to a dimension’s primary table.

42 IBM DB2 Cube Views: Setup and User’s Guide

Chapter 3. Cube model optimization

This chapter describes the following topics:
v Summary tables
v Overview of the optimization process
v Metadata design considerations for optimization
v Constraint definitions for optimization
v Optimizing a cube model
v Parameters for the Optimization Advisor
v Example of an SQL script to create summary tables
v Testing query results
v Troubleshooting summary tables
v Summary table maintenance
v Dropping a summary table

Summary tables

DB2 Cube Views uses DB2 summary tables to improve the performance of
queries issued to cube models. A summary table is a special type of a
materialized query table (MQT) that specifically includes summary data.
Because the Optimization Advisor always recommends MQTs with
summarized data, the term summary table is used in the DB2 Cube Views
documentation to describe the recommended MQTs.

You can complete expensive calculations and joins for your queries ahead of
time and store that data in a summary table. When you run queries that can
use the precomputed data, DB2 will reroute the queries to the summary table.
A query does not need to match the precomputed calculations exactly. If you
use simple analytics like SUM and COUNT, DB2 can dynamically aggregate
from the precomputed data. Many different queries can be satisfied by one
summary table. Using summary tables can dramatically improve query
performance for queries that access commonly used data or that involve
aggregated data over one or more dimensions or tables.

Figure 14 on page 44 shows a cube model based on a star schema with a Sales
facts object and Time, Region, and Product dimensions. The dimensions each
have a set of attributes, the facts object has measures and attributes, and each
dimension is joined to the facts by a facts-dimension join.

© Copyright IBM Corp. 2003 43

The hierarchy for each dimension in the cube model is shown in Figure 15 on
page 45. The highlighted boxes connected by the thick dark line represent the
data that actually exists in the base tables. Sales data is stored at the Day
level, Postal code level, and Product level. Data above the base level in the
hierarchy must be aggregated. If you query a base table for sales data from a
particular quarter, DB2 must dynamically add the daily sales data to return
the quarterly sales figures. For example, you can use the following original
query to see the sales data for each country by each quarter in 2002 and each
product line in electronics:
SELECT QUARTER, COUNTRY, LINE, SUM(SALES)
FROM TIME, REGION, PRODUCT, SALES
WHERE SALES.REGIONID = REGION.REGIONID

AND SALES.TIMEID = TIME.TIMEID
AND SALES.PRODUCTID = PRODUCT.PRODUCTID
AND YEAR = ’2002’
AND GROUP = ’Electronics’

GROUP BY COUNTRY, QUARTER, LINE;

Region

Join

Measures

Attributes

Sales
facts

Facts_Time ID
Facts_Product ID
Facts_Region ID

Sales
Costs

Time
dimension

Time ID
Year
Quarter
Month
Day

Product
dimension

Product ID
Group
Line
Product

Region
dimension

Region ID
Country
State
County
City
City_Pop
Postal code

Time Product

Figure 14. Cube model with a Sales facts object and Time, Product and Region dimensions

44 IBM DB2 Cube Views: Setup and User’s Guide

The thin line connecting the Quarter-Country-Line slice in Figure 15 represents
the slice that the query accesses. Quarter-Country-Line is a slice of the cube
model and includes one level from each hierarchy. Summary tables are
defined to satisfy queries at or above a particular slice. A summary table can
be built for the Quarter-Country-Line slice accessed by the query. Any other
queries that access data at or above that slice including All Time, Year, All
Regions, All Products, and Group can be satisfied by the summary table with
some additional aggregating. However, if you wanted to query more detailed
data below the slice, such as Month or City, DB2 cannot use the summary
table for that query.

In Figure 16 on page 46, the dotted line defines the Quarter-City-Line slice. A
summary table built for the Quarter-City-Line slice can satisfy any query that
accesses data at or above the slice. All of the data that can be satisfied by a
summary table built for the Quarter-City-Line slice is included in the top set
of highlighted boxes.

All
Time

All
Regions

All
Products

Time Region Product

Year Country

StateQuarter

Month

Day

County

City

Zip code

Group

Line

Product

Figure 15. Time, Region, and Product hierarchies. Shows the slice that the previously described
query uses.

Chapter 3. Cube model optimization 45

The rewriter in the DB2 SQL compiler knows about the summary tables, and
can automatically rewrite queries to read from the summary table instead of
the base tables. Rewritten queries are typically much faster because the
summary tables are usually much smaller than the base tables and contain
preaggregated data. Users continue to write queries against the base tables.
DB2 will decide when to use a summary table for a particular query and will
rewrite the user’s query to go against the summary tables instead, as shown
in Figure 17 on page 47. The rewritten query accesses only one table, but the
original query accesses multiple tables to return the same results.

You can use the DB2 EXPLAIN facility to see if the query was rerouted, and if
applicable, which table it was rerouted to. For more information on using
DB2EXPLAIN, see “Testing query results” on page 68.

All
Time

All
Regions

All
Products

Time Region Product

Year Country

StateQuarter

Month

Day

County

City

Zip code

Group

Line

Product

Figure 16. Time, Region, and Product hierarchies. The highlighted data can be satisfied by a
summary table built at the Quarter-City-Line slice.

46 IBM DB2 Cube Views: Setup and User’s Guide

The query to see the sales data for each country by each quarter in 2002 and
each product line in electronics, can be rewritten to use the summary table
built for the Quarter–City–Line slice. The original query:
SELECT QUARTER, COUNTRY, LINE, SUM(SALES)
FROM TIME, REGION, PRODUCT, SALES
WHERE SALES.REGIONID = REGION.REGIONID

AND SALES.TIMEID = TIME.TIMEID
AND SALES.PRODUCTID = PRODUCT.PRODUCTID
AND YEAR = ’2002’
AND GROUP = ’Electronics’

GROUP BY COUNTRY, QUARTER, LINE;

can be rewritten as:
SELECT QUARTER, COUNTRY, LINE, SUM(SALES)
FROM SUMMARYTABLE1
WHERE YEAR = ’2002’

AND GROUP = ’Electronics’
GROUP BY QUARTER, COUNTRY, LINE;

SQL

SQL

Summary table

Can DB2
rewrite?

No Yes

DB2
optimizer

Query

Rewritten query

Figure 17. DB2 query rewrite process

Chapter 3. Cube model optimization 47

The rewritten query is much simpler and quicker for DB2 to complete because
the table joins are precomputed so DB2 accesses one table instead of three.
DB2 needs to calculate data for Country from the higher level City instead of
from the lower level Postal code, so the summary table has fewer rows than
the base tables because there are fewer cities than zip codes. DB2 does not
need to perform any additional calculations to return sales data by Quarter
and Line because the data is already aggregated at these levels. Because the
summary table joins the tables used in the query ahead of time, the joins do
not need to be performed at the time the query is issued. For more complex
queries, the performance gains can be dramatic.

When the Optimization Advisor recommends a summary table, all of the
measures in the cube model are included. Additionally, all attributes and all
corresponding attribute relationships defined at or above the slice are
included in the table. Figure 18 shows the summary table for the
Quarter-City-Line slice. Only two measures, Sales and Costs, are included,
and only one attribute is included by an attribute relationship, City_Pop.
However, if you define fifty measures for your cube model, all fifty are
included in the summary table.

Overview of the optimization process

Optimizing with DB2 Cube Views can improve the performance of
OLAP-style SQL queries. The Optimization Advisor wizard can help you
optimize your cube models by creating summary tables. DB2 summary tables
can improve query performance because they contain precomputed results
from one or more tables that can be used in a query. Costly table joins and
complex calculations can be computed in advance and stored in a summary
table so that future queries using these aggregations can run much faster. For
more information on summary tables, see “Summary tables” on page 43.

The Optimization Advisor will analyze your metadata and the information
that you provide to the wizard and recommend the appropriate summary

Gro
up

Sta
te

Ye
ar

Qua
rte

r

Cou
nt

ry

Cou
nt

y

City City
_P

op

Lin
e

Sale
s

Cos
ts

..
.

..
.

..
.

..
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

2002 1 USA CA Santa
Clara

San
Jose

900000 Electronics Radio 11300 200

2002 1 USA MA Suffolk Boston 6057826 Electronics Radio 45870 1000

..
.

..
.

Figure 18. Summary table created for the Quarter–City–Line slice

48 IBM DB2 Cube Views: Setup and User’s Guide

tables. After running the Optimization Advisor, you will have an SQL file that
can build the set of recommended summary tables. You have the option of
modifying the SQL before you run it to create the summary tables.

Running the Optimization Advisor is just one step in the optimization
process. Before you begin optimizing, you need to think about several issues
including, but not limited to:
v How to effectively use DB2 constraints on the base tables
v What types of queries you want to optimize for
v How much space you want to provide
v How you will maintain the accuracy of your summary tables

Before you can optimize, you must define constraints on your base tables. For
more information on the types of constraints that are required, see “Constraint
definitions for optimization” on page 53.

Many parts of the optimization process are iterative and might need to be
repeated to fine tune and maintain your performance gains. Figure 19 on
page 50 shows an overview of the main steps in the optimization process.

Chapter 3. Cube model optimization 49

The optimization process includes these general tasks:
v Measure performance

Before you run the DB2 Cube Views Optimization Advisor, you should
measure the current performance for a specific set of typical queries.
Performance measurement is an optional step that provides a benchmark so
that you can later analyze the success of the optimization. You can use the
db2batch Benchmark Tool provided with DB2 Universal Database to create
a benchmark. For more information on using db2batch, see “Testing query
results” on page 68. You run sample queries to complete the performance
benchmark, but the Optimization Advisor does not require sample queries
because it is metadata based and makes recommendations without knowing
the specific queries that will be issued.

SQL

Compare performance
after optimization

Improvement
?

Maintain summary
tables

NoYes

No

Benchmark performance
before optimization

Run Advisor

Build summary
tables

Significant
metadata changes

?

Yes

Figure 19. Overview of the main steps in the optimization process

50 IBM DB2 Cube Views: Setup and User’s Guide

v Run the Optimization Advisor wizard

You provide several important parameters to the wizard including: types of
queries that you want to optimize for, disk space and time limitations,
update method, and table space locations. For more information on these
parameter choices, see “Parameters for the Optimization Advisor” on
page 58. The Optimization Advisor creates its recommendations based on
the information that you provide, metadata, DB2 statistics, and any data
sampling that you allow. The Optimization Advisor considers the
parameters that you specify and generates two SQL files. One SQL file
contains the SQL commands to build a set of recommended summary
tables. The other SQL file contains the SQL commands to update the
recommended summary tables.

v Create the summary tables

You can create the summary tables immediately after completing the
wizard, or you can add the operation to your normal database maintenance
schedule. Creating the summary tables can require significant time and
processing resources. After the summary tables are built, verify that the
performance of queries against the optimized cube model are improved.
Run the same set of sample queries that you ran before optimizing, and
compare the performance results. If you do not see significant performance
gains, you might need to run the Optimization Advisor wizard again and
allocate more disk space, or time, or both, or you might need to change
other settings. For more information on how to verify and analyze your
performance results, see “Testing query results” on page 68.

v Maintain the summary tables

After your summary tables are created, you need to regularly maintain the
tables to ensure that they stay appropriately synchronized with your data.
When you run the Optimization Advisor wizard, you choose either a
refresh-immediate or refresh-deferred update option. If you choose the
immediate update option, DB2 keeps your base tables and summary tables
synchronized and incrementally updates the summary tables when the
underlying tables are changed. DB2 supports incremental maintenance for
simple aggregations such as SUM and COUNT. For other aggregations, the
Optimization Advisor recommends the deferred option regardless of which
refresh option you select. If you choose the deferred option, you will
rebuild your summary tables to update them. You can decide when to
perform the summary table update. If you make significant changes
throughout your base tables, deferring the update can be more efficient
than incremental updates. When choosing between these options, you need
to make trade-offs between the resources that you can allocate to the
maintenance and how precisely the data must be synchronized. For more
information on the immediate and deferred update options, see “Summary
table maintenance” on page 71.

v Periodic reevaluation

Chapter 3. Cube model optimization 51

You need to periodically reevaluate the summary tables to ensure that they
continue to meet your needs. If you significantly change the metadata by
adding or updating a cube model, you might need to run the Optimization
Advisor again and build a new set of summary tables. If you add a
metadata object such as a new dimension or measure, queries that access
data from the new object will not be able to use the existing summary
tables. However, queries that do not use the new object will continue to use
the summary tables. If you update a metadata object to include data that
was not previously optimized for, queries that access the updated object
will not be able to use the summary tables. If you delete one or more
objects, the effectiveness of the summary tables is not changed, but you are
wasting disk space on aggregations that are no longer used.
In addition to significant metadata changes, you might also need to run the
wizard again if the regularly performed query types change and are not the
type that you optimized for.
Each time you run the wizard and build new tables, you should complete
the whole optimization process again including creating a benchmark and
analyzing the performance of the summary tables.
If you drop a cube model you can also drop the associated summary tables
if they are not used for any other purpose. DB2 Cube Views does not drop
summary tables when the associated cube model is dropped. For more
information on how to drop a summary table, see “Dropping a summary
table” on page 73.

Restriction: DB2 in a federated environment does not use the summary tables
that are created by the Optimization Advisor.

Metadata design considerations for optimization

The way that you design your metadata affects the summary tables
recommended by the Optimization Advisor wizard. Generally you want to
define your facts objects, dimensions, and joins in a particular way according
to the structure of your data. You have few choices in the basic structure of
these objects, so you can rarely improve the recommended summary tables by
altering these objects. However, you do have some flexibility in selecting
which cubes, measures, and attribute relationships you want to include for a
particular cube model.

Cubes Cubes impact the effectiveness of optimization for extract and
drill-through queries. These types of queries optimize for a subset of
the cube model based on the cubes that you define. If you expect
users to perform extract and drill-through queries, you should build
cubes to reflect the data that these queries will likely access. If you
perform both extract and drill-through queries for a particular cube
model, you should build two cube models: one with cubes designed
for extract queries, and a second with cubes designed for drill-through

52 IBM DB2 Cube Views: Setup and User’s Guide

queries. You should not build both types of cubes for one cube model.
For more information on extract and drill-through queries, see
“Parameters for the Optimization Advisor” on page 58.

Measures
Each measure defined for the cube model is included as a column in
the summary table. You cannot choose to optimize for a subset of
measures; all measures are automatically included. If you have a large
number of measures, your summary table might require a large
amount of disk space. If limited disk space is a concern, you might
choose to include only critical measures in your cube model and drop
any measures that you do not expect to use regularly.

Attribute relationships
Like measures, all attributes involved in attribute relationship in the
cube model are included as columns in the summary table. For
example, if you define City_Pop and Mayor in an attribute
relationship with the City attribute that is defined in your hierarchy,
City_Pop and Mayor will also be included in the summary table if
City is. Including attribute relationships provides the benefit of being
able to group your query results on these items, but at the cost of disk
space. If limited disk space is a concern, you might choose to drop all
or some of the attribute relationships for your cube model.

Constraint definitions for optimization

You must define constraints on your base tables before you can use the
Optimization Advisor wizard. The constraints need to enforce the base, cube
model completeness, and optimization rules that are described in “Metadata
object rules” on page 38. Ensure that the SQL queries created for the metadata
can be optimized successfully. The rules primarily define how to join together
the metadata objects of your cube model.

You can use informational constraints for the foreign key constraints that you
need to define. Informational constraints are a new type of constraint offered
in DB2 Universal Database, Version 8. Informational constraints provide a way
to improve query performance without increasing maintenance costs. These
constraints can be used by the DB2 SQL compiler but are not enforced by the
database manager. This type of constraint allows DB2 to know about the
relationships in the data without requiring the relationship to be enforced. See
the DB2 Information Center for details about how to define informational
constraints. For constraints involving primary keys, you must use the
database-enforced constraints provided with DB2.

Each column that participates in a join must have a constraint defined. For
example, columns involved in facts-to-dimension joins and if applicable
dimension-to-dimension joins used in a snowflake schema need constraints.

Chapter 3. Cube model optimization 53

To optimize a cube model based on the simple star schema shown in
Figure 20, you need to define constraints on each of the facts-to-dimension
joins. The three facts-to-dimension joins are:
v between Time.TimeID and Sales.TimeID
v between Product.ProductID and Sales.ProductID
v between Region.RegionID and Sales.RegionID

Several rules apply to each of these joins. You can use informational
constraints only for foreign key constraints.

For the join between the Time and Sales tables, you must define constraints
for the following rules:
v TimeID is the primary key in the Time table.
v Time.TimeID and Sales.TimeID are both nonnullable columns.
v Sales.TimeID is a foreign key referencing Time.TimeID. Foreign key

constraints can be defined as informational constraints.

Sales
table

Time ID
Product ID
Region ID
Sales
Costs

Time
table

Time ID
Year
Quarter
Month
Day

Product
table

Product ID
Group
Line
Product

Region
table

Region ID
Country
State
County
City
City_Pop
Postal code

Figure 20. Relational tables used in a simple star schema

54 IBM DB2 Cube Views: Setup and User’s Guide

v The join cardinality is 1:Many (Time.TimeID : Sales.TimeID) if Sales.TimeID
is not the primary key for the Sales table. If the Sales.TimeID is the primary
key for the Sales table, then the join cardinality is 1:1.

v The join type is INNER JOIN.

For the join between the Product and Sales tables, you must define constraints
for the following rules:
v ProductID is the primary key in the Product table.
v Product.ProductID and Sales.ProductID are both nonnullable columns.
v Sales.ProductID is a foreign key referencing Product.ProductID. Foreign key

constraints can be defined as informational constraints.
v The join cardinality is 1:Many (Product.ProductID : Sales.ProductID) if

Sales.ProductID is not the primary key for the Sales table. If
Sales.ProductID is the primary key for the Sales table, the the join
cardinality is 1:1.

v The join type is INNER JOIN.

For the join between the Region and Sales tables, you must define constraints
for the following rules:
v RegionID is the primary key in the Region table.
v Region.RegionID and Sales.RegionID are both nonnullable columns.
v Sales.RegionID is a foreign key referencing Region.RegionID. Foreign key

constraints can be defined as informational constraints.
v The join cardinality is 1:Many (Region.RegionID : Sales.RegionID) if

Sales.RegionID is not the primary key for the Sales table. If Sales.RegionID
is the primary key for the Sales table, the the join cardinality is 1:1.

v The join type is INNER JOIN.

If your cube model is based on a snowflake schema, you must define
additional constraints on the joins between the dimension tables. Each
dimension has a primary dimension table, to which one or more additional
dimensions can join. The primary dimension table is the only table that can
join to the fact table. Each of the outrigger tables that join directly to the
primary table must have a join cardinality of Many:1 (where Many is on the
side of the primary table) or 1:1. The primary dimension table usually has the
most detailed level of information of all of the dimension tables because of
these join cardinality rules. If a set of dimension tables only uses 1:1 join
cardinalities, then all of the tables have the same level of detail.

Figure 21 on page 56 shows a valid set of dimension tables in a snowflake
schema dimension. The primary dimension table is the Customer table, with
three additional outrigger tables including City and CustomerGroup joined
directly to Customer, and CityInfo joined to City. The join cardinalities are

Chapter 3. Cube model optimization 55

semantically valid because there can be many customers in a city or a
customer group, and one set of city information exists per city. This is a valid
dimension for optimization because it conforms to the optimization validation
rules. The dimension has only one primary table, and the City and
CustomerGroup tables joined directly to the primary table are joined with a
Many:1 cardinality. The CityInfo table is joined with a 1:1 cardinality which is
also valid. The Customer table has the most detailed level of information out
of the four dimension tables.
Figure 22 on page 57 shows an invalid set of dimension tables in a snowflake

schema dimension. Because of the cardinality relationships that are defined, it
is not possible for any of these tables to be the primary dimension table in a
cube model that will be optimized. Although the cardinalities are semantically
valid, if any of these tables joined with the fact table as the primary
dimension table, the data in the fact table would be multiplied, which causes
what is known as a fan trap. For example, if Customer is the primary
dimension table, the 1:Many join cardinality between Region and SalesRep
makes the dimension invalid for optimization. If each region has five sales
representatives, then when the SalesRep and Region tables are joined, there
are five entries for each region. When these tables are joined with the City
and Customer tables, and ultimately with the fact table, an additional five
rows are added for each existing row in the City, Customer and facts table.
Repeating the same fact row five times causes the measures to be
miscalculated. Each of the other tables in the dimension has similar problems.
The City table cannot be the primary dimension table because of the 1:Many
joins between City and Customer and between Region and SalesRep. The
Region table cannot join with the fact table because every join in the
dimension is a 1:Many join to the Region table. The SalesRep table cannot be
the primary dimension table either because of the 1:Many joins between the
Region and City tables and the City and Customer tables.

Many : 1

Many : 1

1 : 1

Primary
dimension
table

Valid dimension for optimization

Customer

City CityInfo

CustomerGroup

Figure 21. A set of dimension tables used in one dimension that can be optimized

56 IBM DB2 Cube Views: Setup and User’s Guide

Optimizing a cube model

Use the Optimization Advisor wizard to create SQL that can build a set of
recommended summary tables for a cube model.

By optimizing for queries performed against a cube model, you can improve
the performance of products that issue OLAP-style SQL queries. Summary
tables aggregate commonly accessed data to speed up query performance.

Prerequisites:

You must have DB2 constraints specified for your base tables used in the cube
model. Constraints must be specified between each fact table and dimension
table and between each dimension table in a snowflake schema. The
constraints must be specified on nonnullable columns. DB2 Universal
Database, Version 8 offers informational constraints a new type of constraint
that is less costly because it is not enforced. You can use informational
constraints to define foreign key constraints. For more information on defining
constraints, see “Constraint definitions for optimization” on page 53.

Procedure:

To optimize a cube model:
1. Open the Optimization Advisor wizard by right-clicking a cube model in

the OLAP Center object tree and clicking Optimization Advisor.
2. On the Query page, specify the types of queries that you want to optimize

for. The information that you provide is used to improve the optimization
results. You should select the type or types of queries that you expect to be
performed most often. The query types describe how DB2 relational data
is typically accessed. The available types of queries are explained in
“Parameters for the Optimization Advisor” on page 58.

Many : 1

1 : Many

1 : Many

City

Invalid dimension for optimization

Region SalesRep

Customer

Figure 22. A set of dimension tables used in one dimension that cannot be optimized

Chapter 3. Cube model optimization 57

3. On the Limitations page, specify how much disk space you want to allow
for the summary tables and indexes that will be built. Specify if you want
to allow data sampling. Also specify the maximum amount of time you
want to allow for the Optimization Advisor to determine
recommendations. The more space, information, and time that you specify,
the more significantly your performance results will improve.

4. On the Summary Tables page, specify if you want immediate or deferred
update summary tables. For more information on the update options, see
“Summary table maintenance” on page 71. Specify which table space to
store the summary tables and summary table indexes in. Click Next to
have the wizard determine the recommendations for creating and
refreshing the summary tables.

5. On the Summary page, enter a unique file name in both the Create
summary tables SQL script field and the Refresh summary tables SQL
script field. To view information, errors, or warnings about the
recommendations, click the Details push button. To view either SQL script,
click the corresponding Show SQL push button.

6. Click Finish to save the recommended SQL scripts into the file names that
you specified and close the Optimization Advisor wizard.

7. Run the SQL scripts. If you are creating large summary tables, building the
summary tables might require a substantial amount of time to complete.
You can use the DB2 Command Center or Command Window to run the
SQL scripts. To run the SQL scripts from the DB2 Command Window:
a. Change to the directory where you saved the SQL scripts.
b. Connect to the database of the cube model that you optimized. For

example, enter: db2 connect to MDSAMPLE.
c. Enter the following command:

db2 -tvf filename

where filename is the name of the Create summary table SQL script.

Parameters for the Optimization Advisor

You provide several types of input to the Optimization Advisor wizard. The
choices that you provide for each parameter affect the summary tables that
the wizard recommends and the performance improvements that you gain. Be
sure to supply accurate information and to make careful decisions between
cost and performance requirements.

Optimizing for particular query types
You specify the type or types of queries that you want to optimize the cube
model for. The query types describe when and how DB2 relational data is
typically accessed. This information helps the Optimization Advisor
understand which portions of the cube model are queried most frequently.

58 IBM DB2 Cube Views: Setup and User’s Guide

In the figures for each of the query types in this section, the hierarchies for
three dimensions of a cube model are shown. The Time dimension has a
hierarchy including All Time, Year, Quarter, Month, and Day. The Region
dimension has a hierarchy including All Regions, Country, State, County, City,
and Zip code. The Product dimension has a hierarchy including All Products,
Group, Line, and Product. The heavy line connecting Day-Zip code-Product
levels denotes the slice that corresponds to the base data. The highlighted
portions are examples of the parts of a cube model that each query typically
accesses.

The four types of queries are explained in this list:

Drill-down
Drill-down queries usually access a subset of data that is focused at
the top of a cube model as shown in Figure 23 on page 60. Queries can
go to any level in the cube model. When users drill deep into one
dimension, they typically stay much higher in the other dimensions.
Optimizing for drill-down queries will mostly benefit queries that stay
in the upper levels of the cube model. Relational OLAP (ROLAP)
spreadsheet applications are usually used to perform drill-down
queries. For example, a spreadsheet application user might start by
accessing the revenue for all regions and all products for the year
2002. Then the user can move deeper into the data by querying for
revenue by quarter in all regions and for each country. Performance is
usually very important for these types of queries because they are
issued real-time by a user who has to wait for the results to be
processed. Optimization is based on the entire cube model and not the
cubes defined for the model.

Chapter 3. Cube model optimization 59

Summary tables for drill-down queries aggregate data to the very top
of the cube model. These queries are likely to show a large
performance improvement. Querying for information at the top of a
cube model against the base tables requires the data aggregations to
be calculated repeatedly for each query. With summary tables in place,
the data is already aggregated so that little to no additional
calculations to be are required to satisfy the queries.

Report
Report queries are equally likely to access any part of the cube model,
as shown in Figure 24 on page 61. Any cubes defined for the cube
model are not significant for this type of query optimization. Report
queries are often issued in batches. Query performance is usually not
as critical for report queries as for drill-down queries because a user is
less likely to be waiting for an immediate response to each individual
query.

All
Time

All
Regions

All
Products

Time Region Product

Year Country

StateQuarter

Month

Day

County

City

Zip code

Group

Line

Product

Figure 23. Drill-down style queries access a subset of data at the top of a cube model

60 IBM DB2 Cube Views: Setup and User’s Guide

Optimization is based on the entire cube model and not the cubes
defined for the model.

Extract
Extract queries access only the base level of a cube defined for the
cube model and are used to load data into a Multidimensional OLAP
(MOLAP) data store. The cubes defined for the cube model logically
map to the MOLAP cubes that you want to load the data into. The
Quarter-State-Line slice highlighted in Figure 25 on page 62 represents
the base level of a cube defined for the cube model. Data aggregated
to this level is loaded into a MOLAP application for further
processing.

All
Time

All
Regions

All
Products

Time Region Product

Year Country

StateQuarter

Month

Day

County

City

Zip code

Group

Line

Product

Figure 24. Report style queries are equally likely to access any part of a cube model

Chapter 3. Cube model optimization 61

Performance improvements will vary depending on how close the
slice of data that corresponds to the base level of the cube is to the
bottom of the cube model. The higher the slice is on the cube model,
the higher the expected performance improvements are.

Drill-through
Drill-through queries access any part of a cube defined for the cube
model. For drill-through queries, the cubes defined for a cube model
logically map to hybrid cubes which allow a user to access MOLAP
data and the lower-level data that remains in the relational database.
The Quarter-State-Line slice that is highlighted in Figure 26 on page 63
represents the bottom slice of a cube that is defined for the cube
model. The Quarter-State-Product slice illustrates that the query can
drill past the bottom of the cube into relational data.

All
Time

All
Regions

All
Products

Time Region Product

Year Country

StateQuarter

Month

Day

County

City

Zip code

Group

Line

Product

Figure 25. Extract style queries access a subset of data that corresponds to the base level of a
cube defined for the cube model

62 IBM DB2 Cube Views: Setup and User’s Guide

Drill through query optimization is based on the cubes defined for the
cube model. A subset of the cube model as defined by the cubes will
be optimized for.

Disk space limitations
You specify an approximate amount of disk space that can be used for
summary tables. The Optimization Advisor cannot know the exact size of the
summary tables until they are built, so it recommends summary tables that
are as close to the specified amount of disk space as possible. The summary
tables that are built might use more or less space than the user specified.

The amount of disk space that you specify is directly related to the
optimization results. Increasing the disk space can increase both the number
of queries with improved performance and the degree of improvement. You
should consider the following factors when choosing the amount of disk
space:
v The query performance levels that you want

All
Time

All
Regions

All
Products

Time Region Product

Year Country

StateQuarter

Month

Day

County

City

Zip code

Group

Line

Product

Figure 26. Drill-through style queries access a subset of cube model data that corresponds to any
part of a defined cube

Chapter 3. Cube model optimization 63

v The number of cube models that you are optimizing for
v How critical each cube model is
v How frequently each cube model is used
v The availability and cost of the disk space

Typically, you can see significant improvement by allowing a moderate
amount of disk space, such as 1% to 10% of the space currently used by the
relational tables that are referenced by the cube model. Table 18 shows the
relationship between the amount of disk space used for summary tables and
the expected query performance improvement. When deciding how much
space to provide, consider each cube model in the context of all of your
metadata and base tables.

Table 18. Percentages of disk space used and the corresponding expected performance
improvements.

Percentage of base tables disk space used
for summary tables

Expected improvement for relevant
queries

Less than 1% Low

5% Medium

50% High

Unlimited Highest

Data sampling
Data sampling is a way for the Optimization Advisor to examine the data in
your cube model. This provides the Optimization Advisor with more
information so that it can create the most effective set of recommendations.
Recommendations created with data sampling will match the specified disk
space more accurately. Without data sampling, the Optimization Advisor will
analyze only the metadata and DB2 statistics to determine the
recommendations.

Time limitations
The time that you specify is the maximum amount of time that the
Optimization Advisor can use to determine the recommendations. The more
time that you allow for the Optimization Advisor to run, the better the results.
The following table provides some approximate guidelines for the amount of
time you should provide to the Optimization Advisor. Performance results
will vary, and you might need to allow more time than is specified in
Table 19.

Table 19. Guidelines for how much time to provide to the Optimization Advisor

Database optimization scenario Approximate time limit

Not performing data sampling 5 to 30 minutes

64 IBM DB2 Cube Views: Setup and User’s Guide

Table 19. Guidelines for how much time to provide to the Optimization
Advisor (continued)

Database optimization scenario Approximate time limit

Performing data sampling on a small
database that is less than 10 gigabytes in
size

1 hour or less

Performing data sampling on a large
database that is more than 10 gigabytes in
size

Several hours

Specifying table spaces
You might want to create a new table space specifically for your summary
tables. You can define a tablespace with various page sizes. Summary tables
are often very wide, and work best in a table space with a wide page size,
such as 32 KB. Make sure that you also have a temporary space with a page
size that corresponds with the table space that the summary tables are stored
in.

The Optimization Advisor will restrict the row length of the recommended
summary table based on the page size of the specified tablespace. Providing a
tablespace with a larger page size gives the Optimization Advisor more
flexibility in building the summary tables.

Example of an SQL script to create summary tables

The Optimization Advisor wizard provides a create summary tables SQL
script that contains the necessary SQL commands to build one or more
summary tables. Figure 27 on page 66 shows part of a sample create summary
tables SQL script that creates one summary table. In SQL script sample, the
summary table is called DB2INFO.MQT0000000021T01, where 21 is the cube
model ID and T01 is the summary table ID. The cube model ID can be up to
10 digits long. The summary table ID identifies the summary table within the
cube model. The summary table ID allows for up to 99 summary tables in one
cube model. Do not change the summary table name that the Optimization
Advisor wizard defines. If you change the table name, DB2 Cube Views can
not keep track of the summary tables that it creates for the cube model.

Chapter 3. Cube model optimization 65

If more than one summary table is recommended for your cube model, your
create summary tables SQL script will include a set of these statements for
each summary table.

The following sections explain the statements in the sample create summary
tables SQL script:

DROP TABLE statement
Each summary table that will be created is first dropped to ensure that a table
with that name does not already exist. In Figure 27, the
DB2INFO.MQT0000000021T01 table is dropped with the statement: DROP
TABLE DB2INFO.MQT0000000021T01;.

DROP TABLE ;

UPDATE COMMAND OPTIONS USING c OFF;

CREATE SUMMARY TABLE AS
(SELECT

SUM(T2."COGS") AS "COGS",
SUM(T2."MARKETING"+T2."PAYROLL") AS "EXPENSE",
SUM(T2."MARKETING") AS "MARKETING",
SUM(T2."PAYROLL") AS "PAYROLL",
SUM(T2."SALES"-(T2."COGS"+(T2."MARKETING"+T2."PAYROLL"))) AS "PROFIT",
SUM(T2."SALES"-(T2."COGS"+(T2."MARKETING"+T2."PAYROLL")))/SUM(T2."SALES") AS "PROFITMARGIN",
SUM(T2."SALES") AS "SALES",

T4."REGION" AS "REGION",
T4."DIRECTOR" AS "DIRECTOR",
T5."FAMILY" AS "FAMILY",
T5."FAMILYNAME" AS "FAMILYNAME"

FROM
"TBC"."MARKET" AS T1,
"TBC"."SALESFACT" AS T2,
"TBC"."PRODUCT" AS T3,
"TBC"."REGION" AS T4,
"TBC"."FAMILY" AS T5

WHERE
T1."STATEID"=T2."STATEID" AND
T3."PRODUCTID"=T2."PRODUCTID" AND
T1."REGIONID"=T4."REGIONID" AND
T3."FAMILYID"=T5."FAMILYID"

GROUP BY GROUPING SETS (
(
T4."REGION",
T4."DIRECTOR"
),

(
T4."REGION",
T4."DIRECTOR",
T5."FAMILY",
T5."FAMILYNAME"
)))

DATA INITIALLY DEFERRED
REFRESH DEFERRED
NOT LOGGED INITIALLY;

COMMENT ON TABLE IS 'AST created for cube model TBC.TBCSalesModel';

REFRESH TABLE ;

CREATE INDEX ON ("FAMILY");

CREATE INDEX ON ("REGION")
CLUSTER;

REORG TABLE ;

RUNSTATS ON TABLE AND INDEXES ALL;

DB2INFO.MQT0000000001T01

DB2INFO.MQT0000000001T01

DB2INFO.MQT0000000001T01

DB2INFO.MQT0000000001T01

DB2INFO.IDX0000000001T0101 DB2INFO.MQT0000000001T01

DB2INFO.IDX0000000001T0101 DB2INFO.MQT0000000001T01

DB2INFO.MQT0000000001T01

DB2INFO.MQT0000000001T01

COMMIT;

Fact and dimension tables

Maps to measures

Maps to attributes

Joins fact and dimension tables.
If applicable, joins dimension to dimension tables
in a snowflake schema

Creates nonclustered index

Creates clustered index

Maps to one slice of cube model

Maps to another slice of cube model

Sets summary tables as refresh deferred

Figure 27. Part of a sample create summary tables SQL script

66 IBM DB2 Cube Views: Setup and User’s Guide

CREATE TABLE statement
The script creates the summary table using a CREATE TABLE statement. This
statement is the largest part of the script and includes the SELECT statement
with the SELECT, FROM, WHERE, and GROUP BY clauses, and the update
method definition. The summary table is created with aggregated data from
the fact and dimension tables, so the CREATE TABLE statement selects the
data from these tables to build the summary table.

The table name is defined in the first line of the CREATE TABLE statement:
CREATE SUMMARY TABLE DB2INFO.MQT0000000021T01.

The SELECT clause shown in Figure 27 on page 66 has seven lines that begin
with SUM. Each of these lines maps to one of the cube model’s measures. For
example, SUM(T2."MARKETING"+T2."PAYROLL") AS "EXPENSE" maps to the
Expense measure with the aggregation function SUM. The cube model that
the summary table is being created for has the following measures: COGS,
Expense, Marketing, Payroll, Profit, ProfitMargin, and Sales. The next four
lines that select a column without performing any calculations, map to
attributes. For example, T4."REGION" AS "REGION" maps to the Region
attribute. The cube model that the summary table is being created for has the
following attributes: Region, Director, Family, and FamilyName.

The tables in the FROM clause are the fact and dimension tables used in the
cube model. This example uses the Market, SalesFact, Product, Region, and
Family tables.

The WHERE clause defines the joins between the fact and dimension tables,
and each join maps to a join object in the cube model. If the cube model is
based on a snowflake schema, the dimension-to-dimension joins are also
included in the WHERE clause.

The GROUP BY GROUPING SETS clause maps to slices defined for the cube
model. Figure 27 on page 66 shows two grouping sets, each mapping to a
different slice. The groupings can include three types of metadata to define
the slice:
v Level attributes from the hierarchy at the slice level
v Level attributes that are above the slice attributes
v Attributes involved in an attribute relationship with a level attribute

In the example shown, the cube model being optimized has the following
hierarchies: Region [Region, State], Product [Family, SKU], and Time [Year,
Quarter, Month, Day]. If a level from a hierarchy is not included in the
grouping set, then the slice is at the highest level, such as All Time, All
Regions, or All Products. The first slice in the GROUP BY clause is the
Region-All Products-All Time slice, and includes Region and Director

Chapter 3. Cube model optimization 67

attributes. Region is the highest level in the Region hierarchy, so no additional
level attributes are included. Director is used in an attribute relationship with
Region, so it is included in the slice definition. The second slice is the
Region-Family-All Time slice and includes Region, Director, Family, and
FamilyName attributes. Region and Family are level attributes. Director is
used in an attribute relationship with Region and FamilyName is used in an
attribute relationship with Family, so both Director and FamilyName are
included in the slice definition. Each of the level attributes in the slice are
attributes that the SELECT clause maps to.

The last part of the CREATE TABLE statement is the update method
definition. In Figure 27 on page 66, the last three lines of the CREATE TABLE
statement set the summary table as refresh deferred:
DATA INITIALLY DEFERRED
REFRESH DEFERRED
NOT LOGGED INITIALLY;

If you define a summary table as refresh immediate, the statements would be:
DATA INITIALLY DEFERRED
REFRESH IMMEDIATE
NOT LOGGED INITIALLY;

CREATE INDEX statements
The Optimization Advisor wizard recommends one or more indexes for your
summary table, they will be created after the summary table is created. In
Figure 27 on page 66, both a clustered and nonclustered index are created.
After the indexes are created, the REORG statement is used to reorganize the
table according to the clustering index. In some cases, this can improve read
performance on the table.

RUNSTATS statement
After all the recommended aspects of the summary table are created, the
RUNSTATS statement updates the DB2 optimizer statistics that the DB2
optimizer uses to consider the summary tables and indexes for query
rerouting. The last statement for each summary table is the COMMIT
statement so that everything is committed to the database at once.

Testing query results

You can use the db2batch Benchmark Tool in DB2 Universal Database to
benchmark your query performance results before and after you create the
summary tables with the Optimization Advisor.

Procedure:

To test the performance of your queries:

68 IBM DB2 Cube Views: Setup and User’s Guide

1. Create an input file with the queries that you want to test separated by
semicolons.

2. Enter the following command on a command line:
db2batch -d dbname -f file_name -cli

where dbname specifies the database to run the queries against, file_name
specifies the input file with your SQL queries, and -cli specifies to run in
CLI mode. The db2batch tool summarizes performance results and
provides both arithmetic and geometric means. For syntax and options,
enter db2batch -h on a command line. See the DB2 Information Center for
more information on the db2batch Benchmark Tool and creating
benchmark tests.

If you are satisfied with the performance results after creating the
recommended summary tables, you do not need to do any additional
performance analysis.

If your queries do not improve as much as you expected, you can run the
Optimization Advisor wizard again and allow more disk space and time and
enable data sampling if you did not enable it before. Allowing more disk
space will most likely have the largest effect on performance. The more space
that you provide for the summary tables, the more improvement you will see.
If you allow the wizard to perform data sampling, the wizard can make better
recommendations. Likewise, the more time that you allow for the wizard to
create the recommendations, the better the recommendations are likely to be.

If you are not satisfied with the performance results because your queries do
not improve at all or only very little, or if your queries perform satisfactorily
for a period of time and then decrease in performance, see “Troubleshooting
summary tables”.

Troubleshooting summary tables

Prerequisites:

Before you use DB2EXPLAIN to verify that DB2 is using the summary tables,
you should:
v Verify that the statistics are up to date on the base tables and the summary

tables.
v Identify which queries are performing unacceptably if you do not already

know. You can use the DB2 SQL Snapshot Monitor to capture slow queries.

Procedure:

Chapter 3. Cube model optimization 69

To use DB2EXPLAIN to verify that DB2 is using the summary tables:
1. Create the explain tables. To set up the explain tables for your database,

connect to the database and run the following command from your
\SQLLIB\misc directory:
db2 -tvf explain.ddl

2. Run the explain facility. When explain mode is turned on, the SQL queries
do not run and only information requests for the explain command are
processed. Run the following series of SQL commands to turn explain
mode on, set the refresh age so that DB2 considers summary tables if they
are refresh-deferred, run the query, turn explain mode off, and query the
explain table to see if the query was rerouted:
set current explain mode explain

set current refresh age any

SELECT SUM(SALES) FROM MDSAMPLE.SALESFACT

set current explain mode no

SELECT EXPLAIN_TIME, EXPLAIN_LEVEL AS "LEV",
QUERYNO, STATEMENT_TEXT

FROM EXPLAIN_STATEMENT
WHERE STATEMENT_TEXT LIKE ’%SALESFACT%’
ORDER BY EXPLAIN_TIME

3. View the explain information and check that your rewritten query is
rerouted to a summary table. For example, you might see a report like the
following sample::
2002-06-30-23.22.12.325002 O 11 SELECT SUM(SALES)

FROM MDSAMPLE.SALESFACT
2002-06-30-23.22.12.325002 P 11 SELECT Q3.$C0

FROM (SELECT SUM(Q2.$C0) FROM (SELECT Q1.SALESFACT_SALES
FROM DB2INFO.MQT0000000021T01 AS Q1) AS Q2) AS Q3

There are two lines for one execution of the query. The line marked with
an O is the original query that is sent to DB2. The line marked with a P is
the query as rewritten by DB2. You can see in the rewritten query from
this example that DB2 selected data from the DB2INFO.MQT0000000021T01
summary table.

4. If the query is rerouted to the summary table you might need to run the
Optimization Advisor wizard again with different options.

5. If the query is not rerouted to a summary table, determine the reason and
take the appropriate action. The reasons why a query might not be
rerouted to a summary table include:

Summary table does not exist
First, make sure that the summary table exists. If it does not exist, run

70 IBM DB2 Cube Views: Setup and User’s Guide

the Optimization Advisor wizard to generate the Create summary
tables SQL script. Then run the script to create the summary tables.

Refresh-deferred summary table has expired
If your summary table exists and you set it up to be refresh-deferred,
you might need to update the refresh age. You can set the table’s
refresh age to be as large as possible and session independent by
setting (DFT_REFRESH_AGE) = 99999999999999.

Query accesses data that is not included in the summary table
If your query is accessing data that is not in your summary table, DB2
will not reroute the query. If you added a new measure after you
create your summary tables, that new measure does not exist in your
summary tables. If you try to query the new measure, DB2 cannot
reroute the query to the summary table because the summary table
does not contain all of the data to satisfy the query. Additionally, if
you try to query data that is below the cube model slice that the
summary table is built for, you cannot use the summary table.

Query contains constructs that cannot be rerouted
DB2 cannot reroute queries that use some complex query constructs.
Some complex constructions that inhibit DB2 from rerouting the
queries are recursion and physical property functions like:
v NODENUMBER
v Outer joins
v Unions
v XMLAGG
v Window aggregation functions, which are aggregation functions

specified with the OVER clause

.

Summary table maintenance

When the data in your base tables changes, you need to update your
summary tables. You can update your summary tables in two different ways:
refresh immediate or refresh deferred. You choose to create refresh-immediate
or refresh-deferred summary tables when you run the Optimization Advisor
wizard. The choice that you make affects the update setting for the tables and
the refresh summary tables SQL script. For both options, you need to run the
refresh summary tables script as part of your normal database maintenance
schedule. Running the refresh script can require significant time and
processing resources. Make sure you allocate enough time in your
maintenance batch window to complete the updates.

Refresh-immediate

Chapter 3. Cube model optimization 71

Refresh-immediate summary tables are kept closely synchronized with
your base tables. DB2 tracks the changes to the base tables so that it
can incrementally update the summary tables by changing only the
portion of the summary tables that corresponds to the changed
portion of the base tables. If it is important to you that the summary
table data be kept in unison with your base tables, use the
refresh-immediate option. Refresh-immediate might be a good choice
if, for example, your base tables are updated with weekly sales data,
and users complete weekly reports reflecting the updated sales data.

If you commonly have many changes scattered throughout your base
tables, refresh- immediate is probably not the best choice because it
can require significant overhead for DB2 to track the changes and
individually perform the update statements to aggregate the changes
again.

If you update your base tables using regular SQL statements, such an
INSERT, UPDATE, and DELETE, DB2 automatically synchronizes the
affected summary tables after you change your base tables. However,
if you update your base tables using the DB2 LOAD or IMPORT
commands, you need to manually trigger the synchronization by
running the refresh script after you complete the update.

Immediate update cannot be used in all situations, and the
Optimization Advisor wizard might recommend the deferred option if
necessary.

Refresh-deferred

Refresh deferred summary tables are usually updated less frequently
than refresh immediate because you have to manually synchronize the
summary tables with the base tables. The summary tables are based
on a snapshot of the data at the time that they are created. Each
update re-creates the summary table based on the current data, but
has no knowledge of how the data changed since the summary table
was last created.

Refresh deferred is a good choice when you are making significant
changes throughout the corresponding base tables or if you are
updating data more quickly than you need to access it. For example,
if your sales data is updated weekly but you need to create reports on
a quarterly basis only, you can use the refresh-deferred option and
rebuild your summary tables each quarter before running your report.

72 IBM DB2 Cube Views: Setup and User’s Guide

Dropping a summary table

DB2 Cube Views does not drop the associated summary tables when you
drop a cube model. If you do not use the summary tables for any other
purpose, you can drop the tables to free up disk space. Summary tables are a
type of table, and can be dropped using the normal DB2 procedures using the
Control Center or the command line. Any associated indexes are also dropped
with the summary table.

The summary tables are defined in the DB2INFO schema. The summary table
name includes the cube model ID. For example, a summary table might be
named DB2INFO.MQT0000000021T01, where 21 is the cube model ID and T01
uniquely identifies the summary table within the cube model. The cube model
ID can be up to 10 digits long. The summary table ID allows for up to 99
summary tables in one cube model.

Procedure:

To drop a summary table from a command line, enter DROP TABLE table_name.

Chapter 3. Cube model optimization 73

74 IBM DB2 Cube Views: Setup and User’s Guide

Chapter 4. Troubleshooting the IMPORT or the CREATE
and ALTER operations

This chapter describes how to avoid a validation error in two sample
situations when using the IMPORT or the CREATE and ALTER operations.

Avoiding a validation error by using the IMPORT or the CREATE and ALTER
operation order

In addition to using the Import wizard in OLAP Center to import metadata
objects to DB2, you can use the Multidimensional Services IMPORT operation
or a combination of the CREATE and ALTER operations. The IMPORT
operation internally uses a combination of CREATE and ALTER to import
each specified object. OLAP Center uses the IMPORT operation to import
metadata objects.

When you use the Multidimensional Services stored procedure, you pass an
in-memory XML document to the stored procedure. In the OLAP Center
Import wizard, you specify an XML file for the import operation. The XML
structure that is contained in the input file to the Import wizard can be the
same XML document passed in-memory to the Multidimensional Services
stored procedure. You also specify import options. The import options are
specified in a second in-memory XML structure for Multidimensional Services,
and in the Import wizard in the OLAP Center. The import file or in-memory
XML document needs to specify any objects that you want to create or alter.
You do not need to specify existing, unchanged objects in the import XML.
However, this section includes all of the metadata objects in the descriptions
of the import XML to illustrate all of the object relationships that are involved.

A validation error can occur when you use one operation to import or create
and alter objects that share referenced objects. Multidimensional Services
requires that metadata objects are processed and validated in a particular
order, such that referenced objects must appear before referencing objects.
Enforcing this requirement can create a situation in which a referenced object
knows about a new object before the referencing object does, which is not
allowed.

This section describes two sample error situations and how to avoid the
validation error.

Shared attribute referenced by a dimension
A dimension references hierarchies, attribute relationships, and attributes. The
validation ordering rules require that these objects are processed in the

© Copyright IBM Corp. 2003 75

following order for any operation: attribute, attribute relationship, hierarchy,
dimension. When you import or alter a dimension, validation errors can occur
because of the way that dimensions share attributes with other referenced
objects such as hierarchies and attribute relationships. For example, suppose
that a dimension (D1) exists in a cube model (CM1), and references a
hierarchy (H1) that in turn references an attribute (A1). If the import file
contains a dimension (D1) in a cube model (CM1) that refers to a hierarchy
(H1), and H1 refers to an attribute relationship (AR1) that refers to two
attributes (A1 and A2), you will encounter a validation error when you
import. To import the metadata as described in the import file,
Multidimensional Services sequentially performs the following operations and
validates the state of the metadata after each operation:
1. Create A2
2. Create AR1
3. Alter H1 by adding A2
4. Alter H1 by adding AR1 (Fails)
5. Alter D1 by adding A2

A validation error occurs between steps 4 and 5 because the state of the
metadata after step 4 is invalid. The validation rules require that attribute
relationships used by a hierarchy in a dimension must refer only to attributes
used in the dimension. However, because Multidimensional Services performs
operations according to a specific order of metadata objects, it is not possible
to complete this import scenario in one operation. Because an error is
encountered, the metadata is not changed. The following diagram illustrates
this error scenario.

Database before
import

1. Create A2
2. Create AR1
3. Alter H1 by adding A2
4. Alter H1 by adding AR1

Database after
import

Import file API operations

CM D1 1 H1 AR1

A2

A1

CM D1 1 H1 A1

Same as before import

(FAILS)
5. Alter D1 by adding A2

To successfully complete this scenario, you must divide the import operation
into two separate operations. For example, you can first use an import file
with a dimension (D1), that exists in a cube model (CM1), and references a
hierarchy with one attribute (A1). D1 also references a second attribute (A2),
and a floating attribute relationship (AR1) references both A1 and A2. To
import the metadata as described in the import file, Multidimensional Services
sequentially performs the following operations, which can all be successfully
validated:
1. Create A2
2. Create AR1

76 IBM DB2 Cube Views: Setup and User’s Guide

3. Alter D1 by adding A2

This import operation is completed successfully and D1 now references A2 so
that in your next import operation you can successfully add A2 and AR1
referencing A1 and A2 to H1. The second import file contains a dimension
(D1), in a cube model (CM1) which refers to a hierarchy (H1), and H1 refers
to an attribute relationship (AR1) that refers to two attributes (A1 and A2). To
import the metadata as described in the import file, Multidimensional Services
needs to sequentially perform only the following operations:
1. Alter H1 by adding A2
2. Alter H1 by adding AR1

The following diagram illustrates the two-step approach used in this scenario.

Database before
import

CM D1 1 H1 A1
1. Create A2
2. Create AR1
3. Alter D1 by adding A2

Database after
import 1

Import file 1 API operations

1. Alter H1 by adding A2
4. Alter H1 by adding AR1

Import file 2 API operations Database after
import 2

Database before
import

CM D1 1 H1 AR1

A2

A1

CM D1 1 H1 AR1

A2

A1
CM D1 1 H1

A2

A1

AR1

CM D1 1 H1

A2

A1

AR1

CM D1 1 H1

A2

A1

AR1

Shared attributes referenced by an altered join
Attributes can also be referenced by facts objects, dimensions, and
facts-to-dimension joins. The validation ordering rules require that these
objects are processed in the following order for an operation: attribute, join,
dimension, facts object. When you import or alter a join object, validation
errors can occur because of the way that joins share the attributes in the join
pairs with other objects such as facts objects and dimensions.

For example, suppose that a facts object (F1), a dimension (D1), and a facts to
dimension join (J1) exist in a cube model (CM1). F1 references two attributes
(A1 and A2), D1 references another two attributes (A3 and A4), and J1 joins
F1 and D1 together in the set of two attribute pairs: A1 and A3, and A2 and
A4. You might want to change the metadata by adding an additional attribute,
A5 to D1, and altering J1 so that it joins on the attribute pairs A1 and A5, and
A2 and A4. However, if you attempt to complete these changes in a single
operation, you will encounter a validation error. To import the metadata as
described, Multidimensional Services sequentially attempts the following
operations and validates the state of the metadata after each operation:

Chapter 4. Troubleshooting the IMPORT or the CREATE and ALTER operations 77

1. Create A5
2. Alter J1 to use A5 instead of A3 (Fails)
3. Alter D1 by adding A5

A validation error occurs between steps 2 and 3 because the the metadata is in
an invalid state after step 2. The validation rules require that all attributes on
one side of a facts-to-dimension join must exist in the facts object’s attribute
list, and all attributes on the other side of the join must exist in the
dimension’s attribute list. Because Multidimensional Services performs
operations individually and sequentially according to a specific order, the A5
attribute on one side of J1 is not yet included in D1’s attribute list, which
makes the cube model invalid. The metadata is not changed because the
operation fails. This import scenario cannot be completed in one operation.
The following diagram illustrates this error scenario.

CM1

A4

A3

A2

A1

J1

D1

F1
Same as before import

Database before
import

Database after
import

Import file API operations

1. Create A5
2. Alter J1 to use A5

instead of A3 ()
3. Alter D1 by adding A5

Fails

CM1

A4

A3

A2

A1

J1

D1

F1

A5

To successfully complete this scenario, you must divide the import operation
into two separate operations. For example, you can first use an import file
that adds an attribute (A5) to the dimension (D1), but does not alter the join
(J1) between D1 and the facts object (F1). To import the metadata as described
in the import file, Multidimensional Services sequentially performs the
following operations, which can all be successfully validated:
1. Create A5
2. Alter D1 by adding A5

This import operation is completed successfully and D1 now references A5 so
that in your next import operation you can successfully alter J1 to join F1 and
D1 using A5 instead of A3 in one of the join attribute pairs. Because A5
already exists and is referenced by D1 after the first import operation,
Multidimensional Services needs to sequentially perform only the following
operation:
1. Alter J1 to use A5 instead of A3

78 IBM DB2 Cube Views: Setup and User’s Guide

The following diagram illustrates the two-step approach used in this scenario.

A4

A3

A2

A1

J1

D1

CM1

F1

A5

1. Create A5
2. Alter D1 by adding A5

Database before
import

Import file 2 API operations Database after
import 2

CM1

A4

A3

A2

A1

J1

D1

F1

A5

1. Alter J1 to use A5
instead of A3

A4

A3

A2

A1

J1

D1

CM1

A4

A3

A2

A1

CM1 J1

D1

F1

A5

A2

A1

Database before
import

Import file 1 API operations Database after
import 1

F1

CM1

A4

A3
J1

D1

F1

A5

CM1

A4

A3

A2

A1

J1

D1

F1

A5

Chapter 4. Troubleshooting the IMPORT or the CREATE and ALTER operations 79

80 IBM DB2 Cube Views: Setup and User’s Guide

Appendix A. API Reference

DB2 Cube Views offers Multidimensional Services, which is an application
programming Interface (API) that provides programmatic access to metadata
stored in DB2 Cube Views. Using the API, applications can interact with
metadata using DB2 Cube Views metadata objects without having to interact
with relational tables and joins. Applications using the API can create and
modify metadata objects that model multidimensional and OLAP constructs in
a data warehouse.

The API uses SQL with ODBC, the DB2 CLI, and JDBC, and the API makes
extensive use of XML.

API overview

The API for DB2 Cube Views provides access to the metadata stored in the
system catalog tables of a DB2 database. Figure 28 shows how data and
metadata is exchanged through the API.

The API is composed of a single stored procedure registered to a DB2
database. This stored procedure accepts input and output parameters in which

DB2 database

DB2 Cube Views
API

Warehouse
data

Business
intelligence
application

Data Warehouse
tables

System catalog tables

Metadata

Application
metadata

Figure 28. Data exchange though the DB2 Cube Views API

© Copyright IBM Corp. 2003 81

you can express complex metadata and metadata operations. The API
parameter format is defined by an XML schema.

To effectively use the API, you must understand:
1. The DB2 Cube Views metadata objects and their relationships
2. The API parameter format, which is an XML Schema
3. XML, including the parsing and generation of XML, and schemas
4. DB2 application programming involving the calling of stored procedures
5. Error handling in DB2 Cube Views.

DB2 Cube Views stored procedure

The stored procedure is called md_message and it processes parameters
expressed in the DB2 Cube Views parameter format. The procedure extracts
operation and metadata information from the input parameters, and then it
performs the requested metadata operations. The procedure generates output
parameters that contain the execution status (success or failure) of requested
operations, in addition to containing metadata information, depending on the
operation.

The DB2 Cube Views stored procedure, is implemented as a DB2 stored
procedure. It can be used by any application that makes use of any of DB2’s
programming interfaces. The name of the stored procedure is case insensitive,
while the name and contents of the stored procedure’s parameters are case
sensitive. The syntax of md_message and a prototype are shown in the
following example:
Syntax: call md_message (request, metadata, response)
Prototype: md_message (request IN CLOB(1M),

metadata INOUT CLOB(1M),
response OUT CLOB(1M))

The request, metadata, and response parameters are of type CLOB, which is a
DB2 data type. An application populates the request parameter with a
description of the operation to be performed, and it can optionally populate
the metadata parameter with the metadata that the operation should act upon.
After consuming the input parameters, md_message returns the status of the
operation in the response parameter, and returns the requested metadata in the
metadata parameter. The metadata parameter is used for both input and output
of metadata. DB2 handles the transfer of parameter structures between
business intelligence applications and the md_message stored procedure on
the database server.

The size of the CLOB arguments can vary. 1M is the default, which is used by
the sqllib/misc/db2mdapi.sql script. You can recatalog the stored procedure
with any size for the CLOB parameters up to 2 GB. When you increase the

82 IBM DB2 Cube Views: Setup and User’s Guide

size of the parameter, more memory is used by the stored procedure at run
time because output parameter buffers are preallocated to the cataloged size
when the stored procedure is started. If the size is too small, input and output
parameters might have their data truncated if they exceed the cataloged sizes.

For a description on how to write programs that use DB2 stored procedures,
see the DB2 Application Development Guide. For a description of the issues
related to programming with the API, refer to section “Application
programming notes” on page 105.

The following example shows how to call the DB2 Cube Views stored
procedure from an embedded SQL application:

// Standard declarations
// ...

// Include the Communication Area to access error details
EXEC SQL INCLUDE SQLCA;

// SQL declarations of host variables that will be used for calling the
// DB2 Cube Views stored procedure
EXEC SQL BEGIN DECLARE SECTION;

// Allocate CLOB for the request parameter
SQL TYPE is CLOB(1M) request;

// Allocate CLOB for the metadata parameter
SQL TYPE is CLOB(1M) metadata;

// Allocate CLOB for the response parameter
SQL TYPE is CLOB(1M) response;

EXEC SQL END DECLARE SECTION;

// Connect to database and other application initializations
// ...

// Populate the request parameter structure with the operation
strcpy(request.data, “<request><describe> ... </describe></request>”);

// string length with end-of-string
request.length = strlen(request.data) + 1;

// Populate the metadata parameter structure with the metadata
strcpy(metadata.data, “”);

Figure 29. Example of an embedded SQL application calling the md_message stored procedure
(Part 1 of 2)

Appendix A. API Reference 83

Parameters

The API for DB2 Cube Views offers three types of metadata operations:
retrieval, modification, and administration. Each type includes one or more
operations, and each operation has its own set of parameters. Before
understanding the metadata operations, which are described in “Metadata
operations” on page 87, it is useful to first understand how the parameters
work.

The parameter format defines the standard by which metadata operations and
objects are represented and exchanged between business intelligence
applications and DB2 Cube Views. The parameter format uses XML to
represent DB2 Cube Views metadata operations and objects. The XML Schema
defines the parameter format.

Input and output parameters
There are two kinds of input parameters for each metadata operation:

Input parameter Parameter content

request Contains the description of one operation
being requested of the stored procedure. The
operation description contains options that
affect its behavior and scope.

// string length with EOS
metadata.length = strlen(metadata.data) + 1;

// Call DB2 Cube Views stored procedure
EXEC SQL CALL “DB2INFO.MD_MESSAGE”(:request,:metadata,:response);

// Check that the stored procedure has returned without errors
if (sqlca.sqlcode)
{
// error checking using sqlaintp()
}

// Process response parameter structure to determine success of operation
// ...

// Process metadata parameter structure to extract requested metadata
// ...

// Disconnect from database and other application terminations
// ...

Figure 29. Example of an embedded SQL application calling the md_message stored procedure
(Part 2 of 2)

84 IBM DB2 Cube Views: Setup and User’s Guide

metadata Contains representations of metadata objects
that will be used with the operation described
in the request parameter.

Each metadata operation also has two kinds of output parameters:

Output parameter Parameter content

response Contains all the results of the operation
performed by the stored procedure, except
metadata objects.

metadata Contains representations of metadata objects
that were requested by the operation
described in the request input parameter.

Figure 30 shows how the parameters work.

Sample parameters
The following examples show how you can structure parameters in the three
types of metadata operations. In these examples portions of the XML
structures are excluded, but are represented with an ellipsis (...).

Retrieval operation
The following examples show how a retrieval operation called describe is
structured. See “Retrieval operation” on page 88 for more information about
the describe operation. The metadata parameter is empty on input, but
populated on output.

Request:
<olap:request xmlns:olap="http://www.ibm.com/olap" ... >

<describe objectType="cube" recurse="no">
<restriction>

<predicate property="schema" operator="=" value ="myschema"/>
</restriction>

</describe>

DB2 Cube Views
API

Application metadata

Metadata objects

Input Parameters Output Parameters

Metadata objects

Metadata

Request
operation description

Response
operation status
operation results

Figure 30. API parameters

Appendix A. API Reference 85

</olap:request>

<olap:metadata xmlns:olap="http://www.ibm.com/olap" ... />

Response:
<olap:response xmlns:olap="http://www.ibm.com/olap" ... >

<describe>
<status id="0" text="Operation completed
successfully."type="informational"/>

</describe>
</olap:response>

<olap:metadata xmlns:olap="http://www.ibm.com/olap" ... >
<cube name="cube1" schema="myschema" ... > ... </cube>

...
<cube name="cubeN" schema="myschema" ... > ... </cube>"

</olap:metadata>

Modification operations
The following examples show how a modification operation called create is
structured. See “Modification operations” on page 89for more information
about the create operation and other modification operations. The metadata
parameter is populated on input, but empty on output.

Request:
<olap:request xmlns:olap="http://www.ibm.com/olap" ... >

<create/>
</olap:request>

<olap:metadata xmlns:olap="http://www.ibm.com/olap" ... >
<attribute name="LocationID" ... > ... </attribute>
<attribute name="Country" ... > ... </attribute>
<attribute name="State" ... > ... </attribute>
<attribute name="City" ... > ... </attribute>
<dimension name="Location" ... type="regular">

<attributeRef name="LocationID" ... </attributeRef>
<attributeRef name="Country" ... </attributeRef>
<attributeRef name="State" ... </attributeRef>
<attributeRef name="City" ... </attributeRef>

...
</dimension>

</olap:metadata>

Response:
<olap:response xmlns:olap="http://www.ibm.com/olap" ... >

<create>
<status id="0" text="Operation completed
successfully."type="informational"/>

</create>
</olap:response>

b<olap:metadata xmlns:olap="http://www.ibm.com/olap" ... >

86 IBM DB2 Cube Views: Setup and User’s Guide

Administration operation
The following examples show how an administration operation called
validate is structured. See “Administration operation” on page 94 for more
information about the validate operation.

Request:
<olap:request xmlns:olap="http://www.ibm.com/olap" ... >

<validate objectType="cube" mode="base">
<restriction>

<predicate property="schema" operator="=" value ="myschema"/>
</restriction>

</describe>
</olap:request>

<olap:metadata xmlns:olap="http://www.ibm.com/olap" ... />

Response:
<olap:response xmlns:olap="http://www.ibm.com/olap" ... >

<validate>
<status id="1" text="...Additional information

returned."type="informational"/>
<info><message id="6299" text="At least one

database view was found during validation."
type="warning"/></info>

</validate>
</olap:response>

<olap:metadata xmlns:olap="http://www.ibm.com/olap" ... >

Metadata operations

Table 20 shows the three types of metadata operations that can be requested
and responded to. Each type has one or more operations:

Table 20. List of metadata operations

Types of metadata
operation

Metadata operations

Retrieval “Describe” on page 88

Modification “Create” on page 90
“Alter” on page 90
“Rename” on page 91
“Drop” on page 92
“Import” on page 93

Administration “Validate” on page 94

Retrieval Operations
Retrieval operations deal with querying and retrieving metadata from
DB2 Cube Views. These operations involve arguments that restrict the

Appendix A. API Reference 87

scope of a data query and retrieval. The results generated from
retrieval operations typically involve metadata object information.

Modification Operations
Modification operations deal with creating, updating, and deleting
metadata objects. The operands for these operations involve the
metadata being modified. The results generated from modification
operations contain operation status indicators describing the success
or failure of the requested operations.

Administration Operations
Administration operations deal with validating the integrity of the
DB2 Cube Views metadata. These operations involve arguments that
restrict the scope of validation actions. The results generated from
validation operations contain operation status indicators describing
the success or failure of the requested operations.

In the following section, objects that appear in the metadata parameter are
indicated with an asterisk (*).

Retrieval operation
DB2 Cube Views includes one retrieval operation: Describe.

Describe
This operation performs retrievals of metadata object information. This
operation returns information for one or more metadata objects of the
specified objectType (for example, single dimension object, a set of dimension
objects, a set of objects including all object types). In recursive mode, this
operation also returns information for all other metadata objects encountered
during the traversal of all object-association paths beginning from the set of
objects satisfying the objectType specification. Table 21 on page 89 lists the
components in a Describe request parameter, and Table 22 on page 89 lists the
components of the Describe response parameter.

88 IBM DB2 Cube Views: Setup and User’s Guide

Table 21. Describe Request Components

Name Type Data
type

Valid Values Description

objectType argument XML
string

all
cubeModel
cube
cubeFacts
cubeDimension
cubeHierachy
dimension
facts
hierarchy
attributeRelationship
join
measure
attribute

Types of DB2
Cube Views
metadata objects
being retrieved.
One of the valid
values can be
specified for this
parameter.

restriction argument

[optional]

XML
string

See “Operation arguments”
on page 96.

Limits the scope
of a metadata
retrieval. This is
analogous to
predicates in
SQL.

recurse argument XML
string

yes
no

Enables/disables
recursive
retrieval of
metadata objects.

Table 22. Describe Response Components

Name Type Data type Valid Values Description

status status
message

DB2 Cube Views
message structure

See section
“Message
structure” on
page 101.

Message
indicating status
of requested
operation.

object* retrieval
results

XML element See “Metadata
object retrieval
results” on
page 102.

Requested
metadata data
objects. This
value is the
empty string if
an error was
encountered
during the
operation.

Modification operations
DB2 Cube Views includes five modification operations:
v Create

Appendix A. API Reference 89

v Alter
v Rename
v Drop
v Import

As part of carrying out a modification operation, the stored procedure ensures
that objects are complete. They also validate referential integrity between
objects. Metadata validations can also be carried out as independent metadata
operations; see “Validate” on page 94 for more information.

Create
This operation creates metadata objects. This operation accepts one or more
metadata object operands and creates these objects in DB2 Cube Views in the
order that they are passed to the operation. Sequences of objects passed to this
operation can be composed of objects of different type.

Objects passed to this operation can optionally reference other objects. If
references exist between objects, they must be reflected in the ordering of the
objects. For example, if MyObject references YourObject, then YourObject must
be passed to the operation before MyOblect. For more information about how
metadata objects can reference each other, see “Metadata object format” on
page 102.

This operation validates each object. Errors are returned if the object being
created already exists, or if an object referenced by the object being created
does not already exist. If an input object specifies a schema that does not
exist, the operation creates it, if you have sufficient authority in the database.

Table 23. Create Request Components

Name Type Data type Valid values Description

object* operand XML
element

See “Operation
operands” on page 100.

Objects being
created.

Table 24. Create Response Components

Name Type Data type Valid values Description

status status
message

DB2 Cube Views message
structure

See section
“Message
structure” on
page 101.

Message
indicating status
of requested
operation.

Alter
This operation updates metadata object information. It accepts one or more
metadata object operands and updates their object counterparts in the

90 IBM DB2 Cube Views: Setup and User’s Guide

metadata catalog tables. Objects are updated in the order that they are passed
to the operation. Sequences of objects passed to this operation can be
composed of objects of different type.

Objects passed to this operation can optionally reference other objects. If
references exist between objects, they must be reflected in the ordering of the
objects. For more information about how metadata objects can reference each
other, see “Metadata object format” on page 102.

This operation cannot update the schema or the name of an object. Object
names can be changed with the rename operation.

This operation performs validate of each object. Errors are returned if the
object being updated does not exist.

Table 25. Alter Request Components

Name Type Data type Valid Values Description

object* operand XML
element

See “Operation operands”
on page 100.

Objects being
updated.

Table 26. Alter Response Components

Name Type Data type Valid Values Description

status status
message

DB2 Cube Views
message structure

See section
“Message
structure” on
page 101.

Message indicating
status of requested
operation.

Rename
This operation renames a single DB2 Cube Views metadata object identified
by its current schema and name. Only the name of an object might be
changed; the schema of an object cannot be changed. The operation can
rename objects even if they are currently being referenced by other metadata
objects.

Appendix A. API Reference 91

Table 27. Rename Request Components

Name Type Data
type

Valid Values Description

objectType argument XML
string

cubeModel
cube
cubeFacts
cubeDimension
cubeHierachy
dimension
facts
hierarchy
attributeRelationship
join
measure
attribute

Type of DB2 Cube
Views metadata
object being
renamed. One of the
valid values can be
specified for this
parameter.

currentRef operand DB2
MMM
object
reference

See “Operation
operands” on page 100.

Current schema and
name of the
metadata object
being renamed.

newRef operand DB2
MMM
object
reference

See “Operation
operands” on page 100.

New schema and
name of the
metadata object
being renamed.

Table 28. Rename Response Components

Name Type Data type Valid Values Description

status status
message

DB2 Cube Views
message structure

See section “Message
structure” on
page 101.

Message indicating
status of requested
operation.

Drop
This operation deletes metadata objects from DB2 Cube Views. This operation
deletes one or more metadata objects depending on the objectType and
restriction specified. If the object being dropped is currently being referenced
by another metadata object, an error is returned.

92 IBM DB2 Cube Views: Setup and User’s Guide

Table 29. Drop Request Components

Name Type Data
type

Valid Values Description

objectType argument XML
string

See “Operation
arguments” on
page 96.

Types of metadata
object being deleted.
One of the valid
values can be
specified for this
parameter.

restriction argument

[optional]

XML
string

See “Operation
arguments” on
page 96.

Limits the scope of a
metadata deletion.
This is analogous to
predicates in SQL.

Table 30. Drop Response Components

Name Type Data type Valid Values Description

status status
message

DB2 Cube Views
message structure

See section “Message
structure” on
page 101.

Message indicating
status of requested
operation.

Import
This operation creates metadata objects or reports the existence of metadata
objects in the metadata catalog. While creating metadata objects, this operation
behaves similar to the create operation, except for the manner with which it
deals with the presence of preexisting metadata objects. There are various
modes of operation for import. What defines these modes are the actions that
will be taken against a metadata object upon the determination of whether or
not the object already exists in the metadata catalog.

Depending on the mode being run, errors are returned if the object being
created already exists, or if an object referenced by the object being created
does not already exist. Similar to the create operation, if an input object
specifies a schema that does not exist, the operation creates it, if you have
sufficient authority in the database.

Validation of each object is performed implicitly by this operation.

See “Create” on page 90 for details on metadata object and reference ordering
during metadata object creation.

See “Operation arguments” on page 96 for a detailed description of the
various operation modes.

Appendix A. API Reference 93

Table 31. Import Request Components

Name Type Data
type

Valid Values Description

mode argument XML
string

create new
- ignore collisions
create new
- replace collisions
create new
- abort on collision
report new
- report collisions

Defines the actions to be
taken for new and
existing objects being
imported.

object* operand XML
element

See “Operation operands”
on page 100.

Objects being imported.

Table 32. Import Response Components

Name Type Data type Valid Values Description

status status
message

DB2 Cube Views
message structure

See section
“Message
structure” on
page 101.

Message
indicating status
of requested
operation.

newList reference list XML element See the
description for
mode in
“Operation
arguments” on
page 96.

List of
name-schema
pairs referencing
those objects
deemed ″new″
by the operation.

collisionList reference list XML element See the
description for
mode in
“Operation
arguments” on
page 96.

List of
name-schema
pairs referencing
those objects
deemed
″collisions″ by
the operation.

Administration operation
DB2 Cube Views includes one administration operation: Validate.

Validate
This operation checks the validity of one or more metadata objects. Validity is
defined as an object’s conformance to the DB2 Cube Views object rules. The
objects to be acted upon by this operation are specified using the objectType
and restriction arguments . The extent of the validation actions to be
performed is specified using the mode argument.

94 IBM DB2 Cube Views: Setup and User’s Guide

The following are examples of the types of check performed as part of the
validate operation:
1. Completeness of metadata object information
2. Referential integrity between metadata objects
3. Existence of referenced relational table columns and views
4. Correctness of SQL Expression stored in metadata objects (i.e., attributes

and measures)
5. Specialization/subset relationships between various objects (i.e., cube

model and cube, dimension and cube dimension, facts and cube facts,
hierarchy and cube hierarchy)

This operation terminates upon the first occurrence of an invalid metadata
object. Information describing the validation violation is returned by this
operation when a violation is encountered. Validation of each object is also
performed implicitly by the create, alter, and import operations. See “Operation
arguments” on page 96 for a detailed description of the various operation
modes.

Table 33. Validate Request Components

Name Type Data
type

Valid Values Description

objectType argument XML
string

See “Operation
arguments” on
page 96.

Types of DB2 Cube
Views metadata object
being validated. One of
the valid values can be
specified for this
parameter.

restriction argument

[optional]

XML
string

See “Operation
arguments” on
page 96.

Limits the scope of a
metadata validation.
This is analogous to
predicates in SQL.

mode argument XML
string

base
cubeModel

completeness
optimization

Defines the extent of
the validation actions
to be performed.

Table 34. Validate Response Components

Name Type Data type Valid Values Description

status status
message

DB2 Cube Views message
structure

See section
“Message
structure” on
page 101.

Message
indicating status
of requested
operation.

Appendix A. API Reference 95

Table 34. Validate Response Components (continued)

Name Type Data type Valid Values Description

info message list List of message structures See section
“Message
structure” on
page 101.

List of messages
describing the
warnings and
errors generated
by the validate
operation.

Operation arguments
Various arguments are available for each metadata operation. These
arguments tailor an operation’s behavior to its particular application. DB2
Cube Views offers five arguments for the metadata operations:
v objectType
v recurse
v restriction
v mode (for the import operation)
v mode (for the validate operation)

objectType
This argument specifies the type of metadata objects involved in the requested
operation. The following object types correspond directly to the DB2 Cube
Views metadata object model.
v all
v cubeModel
v cube
v cubeDimension
v cubeFacts
v cubeHierarchy
v dimension
v facts
v hierarchy
v attributeRelationship
v join
v measure
v attribute

recurse
This parameter controls whether or not a given operation performs in a
recursive manner. In non-recursive mode, a given operation performs its
actions on only the metadata objects directly matching the objectType and

96 IBM DB2 Cube Views: Setup and User’s Guide

restriction parameter specifications. In recursive mode, a given operation starts
with the non-recursive mode set of metadata objects and additionally
performs its actions on all other metadata objects encountered during the
traversal of all object-association paths beginning from the non-recursive
mode set of objects. The recurse options available are as follows:
v yes
v no

As an example, a non-recursive operation might return a list of dimensions;
whereas, a recursive operation might return not only a list of dimensions, but
also all other objects (of different types) referenced by those dimensions and
in turn objects referenced by those objects.

restriction
This argument enables a metadata operation to be restricted or limited in its
scope. The use of this argument is analogous to the use of predicates in a SQL
query. Restrictions are expressed in XML using the <restriction> and
<predicate> tags as defined by the DB2 Cube Views XML Schema. A predicate
element contains a property attribute, an operator attribute, and a value
attribute.

Restrictions can be based upon those object properties common to all of the
metadata objects, as well as upon the relationships between metadata objects.

Property-based predicates require that the property attribute associated with a
predicate element must specify one of the following:
v name
v schema

The operator attribute associated with a predicate element must specify the
equal sign (=).

The value attribute associated with a predicate element is the string
representation of the value to be compared against the property specified by
the property attribute.

Refer to “Sequencing the operation steps” on page 102 for a description of
how the restriction parameter relates to the overall sequencing of operation
steps.

Example: This example restricts the scope of an operation to the objects in the
ABC schema:
<restriction>

<predicate property="schema" operator="=" value="ABC">
</restriction>

Appendix A. API Reference 97

mode (for import)
This argument sets the mode for the import operation. The following table
describes the various modes available.

In this section, the term ″collision″ refers to the situation where an object
passed into the import operation as input already exists within the metadata
catalog.

Table 35. Import modes

Mode Description Returned Reference Lists

Create new -
ignore collisions

v Input objects that do NOT collide
are created.

v Input objects that collide are NOT
created.

v Preexisting objects are NOT
altered.

v Errors are NOT generated by
collisions.

newList

Contains the name-schema
pairs for the objects
successfully created.

collisionList

Contains the name-schema
pairs for the objects involved
in a collision, and therefore
not created.

Create new -
replace collisions

v Input objects that do NOT collide
are created.

v Input objects that collide replace
preexisting objects.

v Preexisting objects are replaced by
the input objects.

v Errors are NOT generated by
collisions.

newList

Contains the name-schema
pairs for the objects
successfully created.

collisionList

Contains the name-schema
pairs for the objects involved
in a collision, and therefore
used to replace preexisting
objects.

98 IBM DB2 Cube Views: Setup and User’s Guide

Table 35. Import modes (continued)

Mode Description Returned Reference Lists

Create new -

abort on collision

v Input objects are created only if
no collisions exist for the entire
operation.

v In the case of a collision, no
objects are created as part of the
operation.

v Preexisting objects are NOT
altered.

v Errors are generated by collisions.

newList

Contains the name-schema
pairs for the objects either
successfully created, or the
non-colliding objects, which
were not created, in the
situation where collisions
occurred during the
operation.

collisionList

Contains the name-schema
pairs for the objects involved
in a collision, and therefore
not created.

Report new -
report collisions

v No objects are created.

v Reports on the collision status of
the input objects.

v Preexisting objects are NOT
altered.

v Errors are NOT generated by
collisions.

newList

Contains the name-schema
pairs for the objects not
involved in a collision, and
not created.

collisionList

Contains the name-schema
pairs for the objects involved
in a collision, and not
created.

Elements of the newList and collisionList must adhere to a predefined
ordering. The following list shows the relative ordering between reference
types in addition to the XML tags used.
1. <attributeRef>
2. <joinRef>
3. <attributeRelationshipRef>
4. <hierarchyRef>
5. <cubeHierarchyRef>
6. <dimensionRef>
7. <cubeDimensionRef>
8. <measureRef>
9. <factsRef>

Appendix A. API Reference 99

10. <cubeFactsRef>
11. <cubeModelRef>
12. <cubeRef>

mode (for validate)
This argument sets the mode for the validate operation. The following table
describes the various modes available. The types of rules indicated in the
table below refer to categories of the DB2 Cube Views object rules.

Table 36. Validate modes

Mode Description

base v Check conformance to the Base Rules

cubeModel completeness v Check conformance to the Cube Model
Completeness Rules

v Check conformance to the Base Rules

optimization v Check conformance to the Optimization Rules

v Check conformance to the Cube Model
Completeness Rules

v Check conformance to the Base Rules

Operation operands
When an operation requires metadata objects or their references to accompany
the request, these objects or references are termed the ″operands″ of the
operation. The following are descriptions of the various operands passed to
metadata operations using either the request or metadata parameters:

object This operand contains the metadata objects being acted upon. The
format used to represent metadata objects is described in “Metadata
object format” on page 102.

currentRef
This operand is used during a metadata object renaming operation,
and it contains the components of a metadata object reference. These
components are the object’s schema and name.

newRef
Similar to the currentRef operand, this operand is used during a
metadata object renaming operation, and it contains the components
of a metadata object reference. These components are the object’s
schema and name.

100 IBM DB2 Cube Views: Setup and User’s Guide

Message structure
The following table describes the components of a DB2 Cube Views message:

Table 37. Message components

Mode Description

id Unique integer identifier for the message.

type A message can be one of three types:

v informational

v warning

v error

text The character string representing the text of the message.

tokens The values substituted into the text string for the message. A message
can have any number of tokens. The following XML elements can
appear as tokens in a message:

v attributeRef

v joinRef

v attributeRelationshipRef

v hierarchyRef

v cubeHierarchyRef

v dimensionRef

v cubeDimensionRef

v measureRef

v factsRef

v cubeFactsRef

v cubeModelRef

v cubeRef

v column

v text

Here is an example of a message with no tokens:
<status id="0" text="Operation completed successfully."type="informational"/>

Here is an example of a message with tokens:
<status id="6331" text="The left attribute for
the "MDOBJ_ID_ATTRIBUTERELATIONSHIP.MDSAMPLE.State_PopGroup"
attribute relationship is not a part of the
"MDOBJ_HIERARCHY.MDSAMPLE.RegionState" hierarchy."
type="error">
<tokens>

Appendix A. API Reference 101

<attributeRelationshipRef name="State_PopGroup" schema="MDSAMPLE"/>
<text value="MDOBJ_HIERARCHY.MDSAMPLE.RegionState"/>
</tokens>
</status><

Metadata object retrieval results
These results contain the metadata objects requested as part of a retrieval
operation. Depending on the operation performed, metadata objects are
returned in either the response parameter or the metadata parameter. The
format used to represent retrieved metadata objects is described in “Metadata
object format”.

Sequencing the operation steps
Of the arguments outlined in “Operation arguments” on page 96, only three
determine the scope of an operation. The three arguments are listed here in
the order they are applied to an operation:
1. objectType
2. restriction
3. recurse

The following example shows how you might have objects returned that
apparently do not match the restriction you intended, but were returned as
part of the ″recurse″ phase of the operation.

Example: Recursively describe the cubes belonging to the schema myschema:

Operation Arguments:
objectType = "cube"
restriction = <restriction>

<predicate property="schema" operator="=" value="myschema"/>
</restriction>

recurse = "yes"

The describe operation begins by first limiting its scope to cube objects. Of
these cube objects, only the ones that belong to the myschema schema are
selected. For each of these selected cube objects, the objects they refer to are
selected, and the objects are of different types and potentially different
schemas. All the selected objects are then returned as part of a response to the
cube request.

Metadata object format

The DB2 Cube Views XML Schema defines the base XML elements that map
directly to the objects in the DB2 Cube Views metadata object model.
Complex metadata structures are then represented as sequences of these base
elements. Associations between objects within complex metadata structures

102 IBM DB2 Cube Views: Setup and User’s Guide

are captured through name references between base elements. An example of
a name reference is the way in which a cube element can contain a reference
to a dimension element.

An example of the type of data provided for a cube object as defined by the
XML Schema follows. In the following example, only text descriptions are
shown; in application, XML representations of information are used.
cube
->cube model reference
->cube dimension references
->cube facts reference
->view

In the case of a cube object, the references to the other types of objects are all
contained within the base element representing the cube. With non-recursive
retrieval operations, sequences of cube objects (and only cube objects) are
presented. With recursive retrieval operations, not only is information on cube
objects presented, but information on any other object (of different type)
referenced by the identified cubes is also presented.

The ordering of objects is defined by the DB2 Cube Views XML Schema.
Within the scope of a single operation, objects of the same type (e.g., cube
objects) are grouped together. Within these groups, the order of elements is
influenced by the references between objects of the same type. Referenced
objects must appear before referencing objects. The ordering between these
groups is as follows:
1. attribute
2. join
3. attributeRelationship
4. hierarchy
5. cubeHierarchy
6. dimension
7. cubeDimension
8. measure
9. facts

10. cubeFacts
11. cubeModel
12. cube

Example: The following is the type and order of information that would be
returned from a recursive retrieval of a sample cube named LocationProduct.

Appendix A. API Reference 103

For readability, object schema names have not been included as part of object
references, and relational table column names have not been included as part
of attribute objects.
attribute ("LocationID")
attribute ("LocationID_Facts")
attribute ("Country")
attribute ("State")
attribute ("City")
attribute ("ProductID")
attribute ("ProductID_Facts")
attribute ("GroupName")
attribute ("ProdName")
join ("LocFactsJoin")

->attribute references: LocationID, LocationID_Facts
join ("ProdFactsJoin")

->attribute references: ProductID, ProductID_Facts
hierarchy ("LocDetail")

->attribute references: Country, State, City
hierarchy ("Product")

->attribute references: GroupName, ProdName
cubeHierarchy ("LocDetailCH")

->attribute references: Country, State
->hierarchy reference: LocDetail

cubeHierarchy ("ProductCH")
->attribute references: GroupName, ProdName
->hierarchy reference: Product

dimension ("Location")
->attribute references: LocationID, Country, State, City
->join references: ""
->function dependency references: ""
->hierarchy references: LocDetail

dimension ("Product")
->attribute references: ProductID, GroupName, ProdName
->join references: ""
->function dependency references: ""
->hierarchy references: Product

cubeDimension ("LocationCD")
->attribute references: LocationID, Country, State, City
->dimension reference: Location
->cube hierarchy reference: LocDetailCube

cubeDimension ("ProductCD")
->attribute references: ProductID, GroupName, ProdName
->dimension reference: Product
->cube hierarchy reference: ProductCube

measure ("Revenue")
measure ("Profit")

->measure references: Revenue
facts ("Facts")

->measure references: Revenue, Profit
->attribute references: LocationID_Facts, ProductID_Facts
->join references: ""

cubeFacts ("FactsCF")
->measure references: Revenue, Profit
->facts reference: Facts

104 IBM DB2 Cube Views: Setup and User’s Guide

cubeModel("LocationProductModel")
->facts references: Facts
->dimensionInfo:Location

->dimension reference:Location, Product
->join reference: LocFactsJoin, ProdFactsJoin

->dimensionInfo:Product
->dimension reference:Product
->join reference:ProdFactsJoin

cube ("LocationProduct")
->cube model reference: LocationProductModel
->cube facts reference: FactsCF
->cube dimension references: LocationCD, ProductCD
->view: CubeView

The order of the object-type groups is independent of the associations
between objects. The attribute named City is included in the LocDetail
hierarchy, but it is not included in the LocDetailCH cube hierarchy.

The fact that attributes and joins play different roles when associated with
different object types does not affect their order within the Association format.

Application programming notes

Most API programming issues are either DB2 stored procedure issues or XML
parsing issues. For details on programming with DB2 stored procedures, refer
to the DB2 Application Development Guide. The following issues should be
noted:

Transaction:

Transactional, multi-user metadata access is supported through the use of
DB2’s traditional transaction mechanisms (Refer to the DB2 Application
Development Guide for more details). All database actions performed within the
API belong to the calling application’s database transaction. It is therefore
possible for an application using the API to execute COMMIT or ROLLBACK
after calling the md_message stored procedure as appropriate to create the
desired units of database work.

Memory management:

Parameters are exchanged between applications and the md_message stored
procedure in the form of CLOB structures. Applications calling the md_message
procedure must preallocate CLOB parameter structures that are the same size
as those used to catalog the stored procedure. The API supports the DB2
maximum size for a CLOB, which is 2 GB.

System configuration:

Appendix A. API Reference 105

To support the exchange of large parameters, you might have to change the
following DB2 settings:
v The database client application that calls md_message might have to be

linked using larger heap and stack sizes.
v The DB2 query heap size for the database might have to be increased using

the query_heap_sz setting.

XML parsing:

It is the responsibility of the applications using the API to parse the output
parameter returned by the md_message stored procedure. A variety of XML
parsers are available to developers wanting to use the API. To find IBM Web
sites offering XML resources, search for xml on www.ibm.com.

Error handling:

Error information is generated in three forms by the API:
1. SQLCODE and SQLSTATE information returned by the stored procedure

to the calling application.
2. XML structures delivered to calling applications via the response API

parameter.
3. Error and run-time log files located on the database server running the

API.

If an error occurs due to XML validation, parsing, or tagging, then the response
parameter will be returned to the calling application with an <error> tag in
place of an operation tag. This <error> XML element will contain a return
code and return message describing the problem encountered by the API.

If an error occurs within the API unrelated to XML processing, but related still
to the execution of a metadata operation, then the contents of the response
parameter are returned.

The following example shows the type of information in an <error> tag. Note
that within this example, descriptions of the parameter structures use XML
tags in a limited fashion. In application, parameters will have more XML tags
than are shown here, and parameter contents will be validated using the XML
Schema.
<olap:response xmlns:olap="http://www.ibm.com/olap"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" version="8.1.2.1.0">

<error>
<status id="3100" text="The system failed to parse XML for

"INPUT PARAMETER" (line:"3",

106 IBM DB2 Cube Views: Setup and User’s Guide

char:"26", message:"Unknown element
’dropa’"). " type="error"/>

</error>
</olap:response>

When the DB2 Cube Views stored procedure is called, regardless of whether
the stored procedure was actually executed, DB2 returns a SQLCODE and a
SQLSTATE to the calling application. If the DB2 Cube Views stored procedure
was able to execute, the stored procedure returns a status message as part of
the XML data sent to the calling application.

Configuration file

The API can be configured at the level of a DB2 instance. You can change the
parameters of a configuration file that is called db2md_config.xml. Every
installation of DB2 Cube Views has a default configuration file in the <db2
installation path>/cfg directory. For example, on Windows, the default
configuration file might be in the c:\sqllib\cfg directory, and on AIX, the
default configuration file might be in the /usr/opt/db2_08_01/cfg directory.

Every DB2 instance that runs DB2 Cube Views has a physical copy of the
db2md_config.xml file in the <db2 instance path> directory. For example, on
Windows, the physical copy might be in the c:\sqllib\<my inst> directory,
and on AIX, the physical copy might be in the - ~<my inst>/sqllib directory.

The db2icrt utility copies the default configuration file to the <db2 instance
path> directory and it creates a new instance. For DB2 instances that were
created before DB2 Cube Views was installed, you can manually copy the
configuration file into the instance directory if the installation program did
not successfully copy the file. If the API cannot find the configuration file in
the instance directory, the API will try to copy the default configuration file to
the instance directory.

A configuration file, db2md_config.xml, is used to set error logging and
run-time tracing. By modifying the contents of the configuration file, an
administrator can specify the level of tracing, the severity of errors to log, the
buffer size (in bytes) to use when logging.

The content structure of the db2md_config.xml configuration file is defined by
the db2md_config.xsd XML schema file. The following example shows the
contents of the configuration file.
<olap:config xmlns:olap=“http://www.ibm.com/olap”

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xsi:schemaLocation=“http://www.ibm.com/olap db2md_config.xsd”>
<log>

Appendix A. API Reference 107

<trace level=“none” logFile=“mdtrace.log” bufferSize=“0”/>
<error level=“medium” logFile=“mderror.log” bufferSize=“0”/>

</log>
</olap:config>

Run-time tracing
Typically there is no need to run tracing. Tracing might be required if an error
occurs within the API and IBM support asks you to provide a trace file.

The API supports three priorities of tracing. Using the configuration file, an
administrator can set the level of tracing to log to file. Run-time tracing is
turned off by default, and the default trace file name is mdtrace.log.

The following table describes the various tracing levels.

Level Description Examples

none v Tracing is off n/a

high v Tracks only external and internal API
entry and exit points

v Tracks inter-component flow

v Begin and end parsing

v Begin and end create,
describe, drop, etc.

v Can include function
arguments

medium v Tracks the flow of control between
complex functions within the external and
internal API

v Tracks the flow between components

v Includes high level trace points

v Shows complex function
calls made by the create
operation

low v Tracks simple/atomic functions within the
internal API

v Includes high and medium level trace
points

v Most trace points have this level

v Shows calls to the get/set
methods for the metadata
objects

When tracing is turned on, with the level set to a value other than none, errors
that occur in the API might be recorded in both the error log and the trace
log, depending on the level and severity setting for these logs.

Log files

The API log files are generated at a DB2 instance level. The name of the error
log file is db2mderror.log, and the name of the trace log file is
db2mdtrace.log.

108 IBM DB2 Cube Views: Setup and User’s Guide

For a given DB2 instance running the DB2 Cube Views API, the log files for
the API will be generated in the <db2 diagnostic data directory path>, also
know as the DB2DIAG path which is:

On Windows
<db2 instance path> directory, such as c:\sqllib\<myinst>

On AIX
<db2 instance path>/db2dump, such as ~<my inst>/sqllib/db2dump

You can change the default DB2DIAG path by using the DB2DIAG db2 dbm cfg
setting.

The db2idrop utility cleans up the log files associated with a DB2 instance. If
the default for DB2DIAG is not used, then the db2idrop utility cannot clean
up the log files for the DB2 Cube Views API. The log files that cannot be
cleaned up by the db2idrop utility must be manually cleaned up. Errors
related to the DB2 Cube Views API loading the configuration file are logged
in the db2mdapi.log file. The db2mdapi.log file is located in the DB2DIAG
path similar to the other API logs.

Error logging
The API distinguishes between three severities of errors. The default severity
setting is medium, and the default error log file name is mderror.log. When
an error occurs while reading the configuration file, this error is logged in a
file named mdapi.log.

The following table describes the error severity levels.

Table 38. Error severity levels

Severity Description Examples

none v Ignore all errors and warnings n/a

high v Records only critical, unrecoverable
errors

v Results in a callstack being dumped to
log

v Most errors have this severity

v Internal coding error

medium v Records user-recoverable errors

v Results in high severity errors being
logged also

v Results in a callstack being dumped to
log

v End-user mistakes, such as
attempts to create a duplicate
object

v Metadata validation errors

v Out of memory. You can
increase memory or reduce
usage.

Appendix A. API Reference 109

Table 38. Error severity levels (continued)

Severity Description Examples

low v Records warning situations

v Results in high and medium severity
errors being logged also

v Low severity errors do NOT result in a
callstack being dumped

v A callstack is dumped for only medium
and high severity errors

v Warns of internal error

v Informational messages

When the API is configured to high or medium error logging, and a high or
medium error occurs, the API generates a callstack beginning at the point
where the error occurs in the API. This callstack is similar to a medium-level
trace, but the data is sent to the error log instead of the trace log.

Examples
Scenario 1 (error severity: high; trace level: medium): When a high-severity
error occurs, it appears in both the error and the trace logs.

Scenario 2 (error severity: low; trace level: medium): When a low-severity
error occurs, it appears in only the error log because the trace log only allows
entries of level medium or high.

Errors related to missing environment variables or to failures accessing log
files are returned via the SQLSTATE of the stored procedure call to the
database client application. When an error occurs processing the configuration
file, this error is logged in the db2mdapi.log file. If an error occurs opening
any of the user-specified log files, no error is captured.

110 IBM DB2 Cube Views: Setup and User’s Guide

Appendix B. Code page support

DB2 Cube Views uses two code pages: the DB2 client code page (application
code page) and the DB2 database code page. See the DB2 Application
Development Guide: Programming Client Applications, ″National Language
Support″ for information about how to determine the DB2 client code page.
The DB2 Cube Views API stored procedure runs in the DB2 database code
page. The DB2 database code page is set when the database is created. The
DB2 client code page and DB2 database code page can be different. CLI will
convert the stored procedure character large object (CLOB) parameters from
client code page to database code page for the stored procedure.

The following illustration shows how the client communicates with the server
through a call-level interface (CLI). The CLI converts client code pages to the
database code page.

© Copyright IBM Corp. 2003 111

CLI manages the conversion between application code page and database
code page. Data that is sent from the DB2 Cube Views client to the API is
considered input. Data that is sent from the API to the DB2 Cube Views client
is considered output. Input and output data is encoded in the DB2 client code
page.

The components of DB2 Cube Views have the following code page
specifications. The OLAP Center:
v Accepts and generates only DB2 Cube Views XML files that are encoded in

UTF-8

CLI

Third-party
application

JDBC

Client

OLAP
Center

DB2 OLAP
metadata
XML
file
(UTF-8)

XML
schema
files
(UTF-8)

Log files
(UTF-8)

Database

Database code page

Stored procedure

Server

Configuration
file
(UTF-8)

DB2 OLAP
metadata
XML
file
(client code page)

db2mdapiclient
utility

Figure 31. How data flows from different clients that use code pages or UTF-8 format through the
DB2 CLI then to the database server

112 IBM DB2 Cube Views: Setup and User’s Guide

v Returns an error if an input DB2 Cube Views XML file specifies an
encoding other than UTF-8

v Interprets the lack of an encoding specification in a file as meaning that the
file is encoded in UTF-8

v With the Export function creates DB2 Cube Views XML files with an
explicit encoding specification of UTF-8

The db2mdapiclient:
v Interprets input DB2 Cube Views XML files as being encoded in the DB2

client code page, and therefore ignores explicit encoding specifications
listed within the files.

v Generates DB2 Cube Views XML files encoded in the DB2 client code page,
and does not include explicit encoding specifications within these files.

The stored procedure API:
v Interprets CLOB parameters as being encoded in the DB2 client code page
v Ignores explicit encoding specifications in input DB2 Cube Views XML files
v Generates DB2 Cube Views XML files with no explicit encoding

specifications
v Processes input and output XML files using the DB2 database code page
v Generates API log files that are encoded by using UTF-8 including any

embedded DB2 messages. See “Reading UTF-8 encoded files” for more
information on how to convert files between code pages.

v Does not create XML log files
v Does not create log files explicitly stating an encoding of UTF-8
v Encodes in UTF-8 the XML schema files that are used by the API
v Encodes in UTF-8 the XML API configuration file

For third-party applications, other applications that directly call the DB2 Cube
Views API will have to pass and accept as parameters XML files that are
encoded in the DB2 client code page.

Reading UTF-8 encoded files

Depending on your operating system, you can directly open a UTF-8 encoded
file, or use a utility to convert it to your local code page.

Procedure:

To read a UTF-8 encoded file on Windows, open the file using Notepad.

To read a UTF-8 encoded file on Unix:

Appendix B. Code page support 113

1. Use the iconv utility to convert the file to your local code page.
2. Use a text editor to open the converted file.

Code page restrictions

With user definable characters (UDC), you can define new characters and map
them to one of the reserved code points.

In the OLAP Center, UDCs might not appear correctly even though importing
XML files with UDCs is successful.

Language shortcuts are not removed when DB2 Cube Views is removed. On
Windows, when you install DB2 Cube Views in one language and then
remove it, the shortcut for the language is not removed. If you install DB2
Cube Views again in another language, the shortcut for the first lanuage
remains, and it must be removed manually.

114 IBM DB2 Cube Views: Setup and User’s Guide

Appendix C. Sample files

This section describes the sample database and application files provided with
DB2 Cube Views.

Sample database files

All of the following files, that are related to the MDSAMPLE database, are
located in the \SQLLIB\olap\mdsample\ directory.

create.xml
An XML file with the CREATE operation. Use this file to load the
sample with the db2mdapiclient utility.

MDSampleMetadata.xml
An XML file that contains the MDSAMPLE metadata. Use this file to
import the MDSAMPLE metadata with the OLAP Center and the
db2mdapiclient utility.

MDSampleTables.sql
An SQL script that you use to populate the MDSAMPLE tables.

FAMILY.txt, MARKET.txt, POPULATION.txt, PRODUCT.txt, REGION.txt,
SALESFACT.txt, TIME.txt

A set of text files that contain the MDSAMPLE table data.

MDSampleExplain.sql
An SQL script that you can use to determine if DB2 is rerouting a
query to a summary table.

Sample application files

Sample application files for the MDSAMPLE database that are provided with
DB2 Cube Views. You can use the sample application files to perform sample
scenarios. You pass the contents of the sample application files listed for each
scenario as parameters to the MD_MESSAGE() stored procedure. Sometimes,
you use an empty string, that is noted in the following scenarios as <empty>,
for a stored procedure parameter. For more information about using the
MD_MESSAGE() stored procedure with the db2mdapiclient utility, see “The
db2mdapiclient utility for importing, exporting, and optimizing metadata” on
page 7. For more information on using the MD_MESSAGE() stored procedure
by itself, see “DB2 Cube Views stored procedure” on page 82. All of the
sample application files are located in the \SQLLIB\samples\olap\xml\
directory. You can use the sample application files to perform the following
sample scenarios:

© Copyright IBM Corp. 2003 115

DROP Use these files to drop all of the metadata objects in the metadata
catalog. This sample assumes that the metadata catalog is not empty.
If the metadata catalogs are empty, you receive a warning message
that no objects are found for the operation.

Files that contain input parameter structures:

v Request: input\drop.xml

v Metadata: <empty>

Files that contain output parameter structures:

v Response: output\drop.xml

v Metadata: <empty>

CREATE
Use these files to create metadata objects in the metadata catalog. This
sample assumes that the metadata catalog is empty.

Files that contain input parameter structures:

v Request: input\create.xml

v Metadata: input\MDSampleMetadata.xml

Files that contain output parameter structures:

v Response: output\create.xml

v Metadata: <empty>

DESCRIBE
Use these files to describe all of the metadata objects in the metadata
catalog. This sample assumes that you have already completed the
CREATE scenario and that the metadata catalog contains all of the
objects created by the CREATE scenario.

Files that contain input parameter structures:

v Request: input\describe.xml

v Metadata: <empty>

Files that contain output parameter structures:

v Response: output\describe.xml

v Metadata: output\MDSampleDescribe.xml

DESCRIBE (Restricted)
Use these files to recursively describe the MDSAMPLE.Sales cube.
This sample assumes that you have already completed the CREATE
scenario and that the metadata catalog contains all of the objects
created by the CREATE scenario.

Files that contain input parameter structures:

116 IBM DB2 Cube Views: Setup and User’s Guide

v Request: input\MDSampleDescribe_restricted.xml

v Metadata: <empty>

Files that contain output parameter structures:

v Response: output\MDSampleDescribe_restricted.xml

v Metadata: output\MDSampleDescribe.xml

ALTER
Use these files to alter metadata objects in the metadata catalog. This
sample assumes that you have already completed the CREATE
scenario and that the metadata catalog contains all of the objects
created by the CREATE scenario.

Files that contain input parameter structures:

v Request: input\alter.xml

v Metadata: input\MDSampleAlter.xml

Files that contain output parameter structures:

v Response: output\alter.xml

v Metadata: <empty>

RENAME
Use these files to rename the MDSAMPLE.SalesModel cube model.
The cube model is renamed to MDSAMPLE.SalesModel(2003). This
sample assumes that you have already completed the CREATE
scenario and that the metadata catalog contains all of the objects
created by the CREATE scenario.

Files that contain input parameter structures:

v Request: input\MDSampleRename.xml

v Metadata: <empty>

Files that contain output parameter structures:

v Response: output\MDSampleRename.xml

v Metadata: <empty>

VALIDATE
Use these files to validate all of the metadata objects in the metadata
catalog using an optimization validation mode. This sample assumes
that you have already completed the CREATE scenario and that the
metadata catalog contains all of the objects created by the CREATE
scenario.

Files that contain input parameter structures:

v Request: input\validate.xml

v Metadata: <empty>

Appendix C. Sample files 117

Files that contain output parameter structures:

v Response: output\validate.xml

v Metadata: <empty>

VALIDATE (Restricted)
Use these files to validate the MDSAMPLE.Sales cube using an
optimization validation mode. This sample assumes that you have
already completed the CREATE scenario and that the metadata
catalog contains all of the objects created by the CREATE scenario.

Files that contain input parameter structures:

v Request: input\MDSampleValidate_restricted.xml

v Metadata: <empty>

Files that contain output parameter structures:

v Response: output\MDSampleValidate_restricted.xml

v Metadata: <empty>

IMPORT with the create new - ignore collisions mode
Use these files to import metadata objects into the metadata catalog
using the create new - ignore collisions import mode. This sample
assumes that the metadata catalog is empty.

Files that contain input parameter structures:

v Request: input\import_mode1.xml

v Metadata: MDSampleMetadata

Files that contain output parameter structures:

v Response: output\import_mode1.xml

v Metadata: <empty>

IMPORT with the create new - replace collisions mode
Use these files to import metadata objects into the metadata catalog
using the create new - replace collisions import mode. This sample
assumes that you have already completed the IMPORT with the create
new - ignore collisions mode scenario.

Files that contain input parameter structures:

v Request: input\import_mode2.xml

v Metadata: MDSampleMetadata2

Files that contain output parameter structures:

v Response: output\import_mode2.xml

v Metadata: <empty>

118 IBM DB2 Cube Views: Setup and User’s Guide

IMPORT with the create new - abort on collision mode
Use these files to import metadata objects into the metadata catalog
using the create new - abort on collision import mode. This sample
assumes that you have already completed the IMPORT with the create
new - replace collisions mode scenario.

Files that contain input parameter structures:

v Request: input\import_mode3.xml

v Metadata: MDSampleMetadata3

Files that contain output parameter structures:

v Response: output\import_mode3.xml

v Metadata: <empty>

IMPORT with the create new - report collisions mode
Use these files to import metadata objects into the metadata catalog
using the create new - report collisions import mode. This sample
assumes that you have already completed the IMPORT with the create
new - abort on collision mode scenario.

Files that contain input parameter structures:

v Request: input\import_mode4.xml

v Metadata: MDSampleMetadata4

Files that contain output parameter structures:

v Response: output\import_mode4.xml

v Metadata: <empty>

Appendix C. Sample files 119

120 IBM DB2 Cube Views: Setup and User’s Guide

Appendix D. Messages

The following messages are from the server, API, and OLAP Center of DB2
Cube Views.

Socket error: Opening and closing a database connection multiple times can
cause a socket error. In rare circumstances, a socket error can
occur when you run DB2 Cube Views with DB2 Universal
Database Enterprise Server Edition, Version 8.1.2 in a
partitioned environment on Windows 2000 Advanced Server.
The error might occur if you repeat the following steps more
than 10 000 times quickly within a single Windows session:
1. Open a connnection to a DB2 database.
2. Call the DB2 Cube Views stored procedure to perform a

metadata operation.
3. Close the database connection.

The workaround is to restart the Windows workstation to
reactivate the socket.

SQLSTATE, API, and other server messages

01HQ1 See output XML and server logs.

Explanation: The call to the stored procedure
completed, but errors were detected during the
execution of one of the requested metadata
operations.

User Response: Check the contents of the
output parameters of the stored procedure for
information. You can also check the entries in the
server logs for more information.

38Q00 See server logs for more
information.

Explanation: The call to the stored procedure
failed. The requested metadata operation or
operations were not executed. No information
was returned from the stored procedure through
the output parameters.

User Response: Check the entries in the server

logs for more information.

38Q01 Installation path is unknown.

Explanation: The call to the stored procedure
failed because the DB2 installation directory
cannot be determined by the stored procedure
process. The requested metadata operation or
operations were not executed. No information
was returned from the stored procedure through
the output parameters.

User Response: If you use a Windows
operating system, ensure that the DB2PATH
environment variable is set to the correct value
either by default or by user action. Restart the
database manager and then reissue the call to the
stored procedure. Contact IBM Customer
Support for further assistance. Provide the status
ID and text for the metadata operation
attempted. If possible, also provide the stored
procedure log files from the database server.

© Copyright IBM Corp. 2003 121

38Q02 Cannot open the server log file.

Explanation: The call to the stored procedure
failed because at least one of the log files that is
used by the stored procedure could not be
opened for writing by the stored procedure
process. The requested metadata operation or
operations were not executed. No information
was returned from the stored procedure through
the output parameters.

User Response: Ensure that the log files
specified in the stored procedure configuration
file (for example, olap_config.xml) can be created
or opened for reading and writing on the
appropriate file system. If the log files do not
already exist, the stored procedure attempts to
create these files. On AIX, ensure that the log
files can be read and written to by the fenced
database user ID.

38Q03 Metadata input parameter
missing.

Explanation: The call to the stored procedure
failed because the requested metadata operation
requires that metadata be passed as input to the
stored procedure, but no metadata was provided
through the input metadata parameter. No
information was returned from the stored
procedure through the output parameters.

User Response: Provide the metadata necessary
using the input metadata stored procedure
parameter for the requested metadata operation
the next time you make a call to the stored
procedure.

38Q04 ″[error_type] ERROR: Response
output buffer too small.

Explanation: The call to the stored procedure
failed because the output parameter buffer for
the operation response is too small to
accomodate the CLOB structure being returned.
No information was returned from the stored
procedure through the output parameters.

User Response: Recatalog the stored procedure
by using a larger size for the output response
parameter.

0 Operation completed successfully.
No errors were encountered.

Explanation: The requested metadata operation
completed successfully. No errors were
encountered during execution of the operation.

User Response: This information is for your
information only. No action is required.

1 Operation completed. Additional
information was returned.

Explanation: The requested metadata operation
completed. The operation has returned additional
information that may describe warning or error
situations.

User Response: Check the INFO element for the
additional information returned.

2 Operation completed. No changes
were made to the metadata.

Explanation: The requested metadata operation
completed. The operation resulted in no changes
being made to the metadata in the database
catalog.

User Response: Reissue the metadata operation
request by using a different mode if you want
changes to be made to the metadata in the
database catalog.

100 Failed to allocate memory for
operation. Make sure that memory
is available.

Explanation: During execution of the requested
metadata operation, the stored procedure failed
to allocate required memory segments.

User Response: Increase the memory that is
available to the fenced stored procedure process.

101 An internal error occurred while
processing the object nameobject.

Explanation: During execution of the requested
metadata operation, an unexpected internal error
was encountered.

122 IBM DB2 Cube Views: Setup and User’s Guide

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

102 The output buffer of size
buffer_size is too small. Change the
buffer size to at least size.

Explanation: The output parameter buffer
available to the stored procedure is too small to
accommodate the CLOB structure that is
generated by the stored procedure.

User Response: If possible recatalog the stored
procedure using larger sizes for the OUT and
INOUT parameters. Otherwise, you must restrict
your query so that less information is returned
by the stored procedure.

103 A valid license for this product
does not exist.

Explanation: No metadata operations can be
performed because a valid product license does
not exist for this installation of the product.

User Response: Install a valid product license
on the system, or contact IBM Customer Support
or IBM Software Sales to purchase a new product
license.

104 An internal error occurred. The
following tokens were returned:
token0, token1, token2, token3.

Explanation: During execution of the requested
metadata operation, an unexpected internal error
was encountered.

User Response: Contact IBM Software Support
for further assistance. Provide the status ID and
text for the metadata operation that was
attempted. If possible, also provide the stored
procedure log files from the database server.

599 The operation was not executed.

Explanation: An error was encountered prior to
executing this operation. As a result, this

operation was not executed.

User Response: Check the results of previous
metadata operations that were executed during
the same stored procedure call. You can also
check the entries in the server logs for more
information. After you correct the problems that
caused the earlier operation to fail, call the stored
procedure again and request the same metadata
operations.

600 The input parameter_name
parameter is invalid with this
message: message. Check the
parameter and try again.

Explanation: One of the parameters that was
passed as input to a method internal to the
stored procedure is invalid.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

601 The input parameter_name
parameter is NULL.

Explanation: One of the parameters that was
passed as input to a method internal to the
stored procedure has an invalid value of NULL.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

602 The parameter_name parameter
with value value is not in the valid
range of range_value1, range_value2.

Explanation: One of the parameters that was
passed as input to a method internal to the
stored procedure has a value outside of the valid
range.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log

Appendix D. Messages 123

files from the database server.

603 The Unicode String string is either
bogus or invalid. There might be
a memory problem.

Explanation: A Unicode string in the stored
procedure is either incorrect or invalid. This
might indicate a memory problem on the system
or in the stored procedure. This might also be
the result of the wrong version of the ICU
libraries being loaded by the stored procedure.

User Response: Ensure that there is adequate
memory available to accommodate the volume of
data being processed by the stored procedure.
Ensure that the version of the ICU libraries that
you intend to use with the current version of the
stored procedure are being loaded. You might
need to check the run-time library search path
set in the environment to determine correct
setup.

Contact IBM Customer Support for further
assistance. Provide the status ID and text for the
metadata operation attempted. If possible, also
provide the stored procedure log files from the
database server.

604 Failed to convert the contents of
the string string from Unicode to
the active code page of code_page.

Explanation: Conversion of a Unicode string
object to a string using another encoding failed.
This might indicate a memory problem on the
system or in the stored procedure. This might
also indicate a code page conversion problem on
the system, or the wrong version of the ICU
libraries was loaded by the stored procedure.

User Response: Ensure that the necessary ICU
code page conversion files are installed on the
database server system. Ensure that there is
adequate memory available to accommodate the
volume of data being processed by the stored
procedure. Ensure that the version of the ICU
libraries intended for use with the current
version of the stored procedure are being loaded.
You might need to check the run-time library

search path set in the environment to determine
correct setup.

Contact IBM Customer Support for further
assistance. Provide the status ID and text for the
metadata operation attempted. If possible, also
provide the stored procedure log files from the
database server.

605 The allocated memory at
memory_buffer needs to be freed.

Explanation: A method internal to the stored
procedure has returned a memory buffer that
needs to be freed by another internal method.

User Response: A method internal to the stored
procedure should free the returned memory
buffer. Contact IBM Customer Support for
further assistance. Provide the status ID and text
for the metadata operation attempted. If possible,
also provide the stored procedure log files from
the database server.

606 Conversion of XMLCh to UChar
for UChar failed.

Explanation: Conversion between an XMLCh
character and a UChar character failed.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

607 The input buffer size of size is too
small. Change the buffer size to at
least new_size.

Explanation: A memory buffer internal to the
stored procedure is too small to accommodate
the text for a required message.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

124 IBM DB2 Cube Views: Setup and User’s Guide

608 The type of stored_procedure_name
is not valid in the current context.

Explanation: An unexpected type was
encountered during stored procedure processing.

User Response: Contact IBM Software Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

1000 Failed to clone object object_name.

Explanation: An error occurred while cloning a
class object internal to the stored procedure.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

1001 The list of attributes cannot
exceed two elements.

Explanation: A list of attributes internal to the
stored procedure unexpectedly has more than
two elements.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

1002 The called function function_name
is not supported.

Explanation: A virtual method internal to the
stored procedure was not implemented for one
of the stored procedure’s classes.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

1003 The container is unexpectedly
empty.

Explanation: A container structure internal to
the stored procedure is unexpectedly empty.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

1004 The object_name object cannot be
found in the container.

Explanation: An object that was searched for in
one of the stored procedure’s internal container
structures is unexpectedly missing.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

1005 A duplicate of the element_name
element already exists in the
container.

Explanation: An object that should not already
exist in one of the stored procedure’s internal
container structures already exists.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

1006 An exception occurred during a
list operation.

Explanation: An unexpected exception occurred
while executing an operation on one of the
stored procedure’s internal list structures.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

Appendix D. Messages 125

1007 An internal error occurred in the
container with error code error and
number and msg message.

Explanation: An error occurred while executing
an operation on one of the stored procedure’s
internal container structures.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

1008 The copy operation did not copy
all properties completely. The
copy operation failed for the
property_name property with value
value.

Explanation: An error occurred while executing
a copy operation on one of the stored
procedure’s internal objects. One of the internal
object’s properties failed to be copied.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

1009 The object type of type1 is not
valid. Type2 expected.

Explanation: An unexpected object type was
encountered during stored procedure processing.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

1010 The parameter_name parameter
does not have a complete ID.

Explanation: One of the parameters that was
passed as input to a method internal to the
stored procedure is a metadata object ID that is
incomplete.

User Response: Contact IBM Customer Support

for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

1011 The object_name object does not
have a complete ID.

Explanation: A metadata object ID is
unexpectedly incomplete in the stored procedure.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

1012 The parameter_name parameter is
the same as the object.

Explanation: One of the parameters passed as
input to an object method internal to the stored
procedure is an object that is unexpectedly equal
to the object owning the method.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

1013 An unexpected NULL pointer was
encountered.

Explanation: An unexpected NULL pointer was
encountered during stored procedure processing.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

1014 The container cursor reached the
end of the container.

Explanation: A cursor on one of the container
structures internal to the stored procedure has
unexpectedly reached the end of the container.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and

126 IBM DB2 Cube Views: Setup and User’s Guide

text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

1015 The object_name object is invalid.
Reason: ID=ID, Message=message

Explanation: A metadata object internal to the
stored procedure is invalid.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

2000 The operation failed for the
object_name object with error code
code_number and message message.

Explanation: An error occurred while executing
the requested metadata operation. All changes
made to the metadata in the catalog during this
call to the stored procedure have been undone.

User Response: Fix the problems outlined in
the error message and call the stored procedure
again.

2001 The generated query query does
not contain the required column
objectType.

Explanation: An SQL query generated by the
stored procedure is missing a required column.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

3000 An error occurred in the parser
with error code code and number
and msg message.

Explanation: An error occurred in the stored
procedure while parsing the XML passed to the
stored procedure.

User Response: Ensure that the XML passed to
the stored procedure is well formed and that it is

valid for the XML schema that is published for
this product. Contact IBM Customer Support for
further assistance. Provide the status ID and text
for the metadata operation attempted. If possible,
also provide the stored procedure log files from
the database server.

3001 An XML exception was
encountered by the parser during
operation with message message.

Explanation: An unexpected exception was
encountered in the stored procedure while
parsing the XML passed to the stored procedure.

User Response: Ensure that the XML passed to
the stored procedure is well formed and that it is
valid for the XML schema that is published for
this product. Contact IBM Customer Support for
further assistance. Provide the status ID and text
for the metadata operation attempted. If possible,
also provide the stored procedure log files from
the database server.

3002 An unexpected parser exception
was encountered in operation.

Explanation: An unexpected exception was
encountered in the stored procedure while
parsing the XML passed to the stored procedure.

User Response: Ensure that the XML passed to
the stored procedure is well formed and that it is
valid for the XML schema that is published for
this product. Contact IBM Customer Support for
further assistance. Provide the status ID and text
for the metadata operation attempted. If possible,
also provide the stored procedure log files from
the database server.

3003 SAXParseException encountered
by parser during operation with
message message.

Explanation: An unexpected exception was
encountered in the stored procedure while
parsing the XML passed to the stored procedure.

User Response: Ensure that the XML passed to
the stored procedure is well formed and that it is
valid for the XML schema that is published for

Appendix D. Messages 127

this product. Contact IBM Customer Support for
further assistance. Provide the status ID and text
for the metadata operation attempted. If possible,
also provide the stored procedure log files from
the database server.

3004 The system failed to get parser
error message for operation.

Explanation: An unexpected error occurred in
the stored procedure while parsing the XML
passed to the stored procedure. An error message
from the XML parser could not be retrieved.

User Response: Ensure that the XML passed to
the stored procedure is well formed and that it is
valid for the XML schema that is published for
this product. Contact IBM Customer Support for
further assistance. Provide the status ID and text
for the metadata operation attempted. If possible,
also provide the stored procedure log files from
the database server.

3100 The system failed to parse XML
for parameter type (line: line,
char:character, message: message).

Explanation: The stored procedure could not
parse the input XML. The input XML might not
be well formed or it might be invalid for the
XML schema that was published for this product.

User Response: Ensure that the XML passed to
the stored procedure is well formed and that it is
valid for the XML schema that is published for
this product.

3101 An unknown metadata object was
encountered. parser_message

Explanation: An unknown type of metadata
object exists in the XML passed to the stored
procedure. This input XML cannot be processed
by the stored procedure.

User Response: Ensure that the XML passed to
the stored procedure is well formed and that it is
valid for the XML schema that is published for
this product.

3102 An unknown XML attribute was
encountered. attribute_name,
attribute_value.

Explanation: An unknown type of XML
attribute exists in the XML passed to the stored
procedure. This input XML cannot be processed
by the stored procedure.

User Response: Ensure that the XML passed to
the stored procedure is well formed and that it is
valid against the XML schema that is published
for this product.

3103 An invalid enumeration value was
encountered by the handler for
the attribute with name name and
value value.

Explanation: An invalid enumeration value
exists in the XML passed to the stored procedure.
This input XML cannot be processed by the
stored procedure.

User Response: Ensure that the XML passed to
the stored procedure is well formed and that it is
valid against the XML schema that is published
for this product.

3104 There was an unknown object
reference with name name.

Explanation: The input XML contains a
reference to a metadata object that does not exist
in the metadata catalog.

User Response: Metadata objects must be
created in the metadata catalog before they can
be referenced by subsequent metadata operations
or by other metadata objects.

3500 Data is required for the attribute
or element name name.

Explanation: The stored procedure failed to set
the value for the indicated XML attribute or
element in the XML that is to be returned by the
stored procedure.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If

128 IBM DB2 Cube Views: Setup and User’s Guide

possible, also provide the stored procedure log
files from the database server.

3501 Data is required for the attributes
attribute_name1 and attribute_name2.

Explanation: The stored procedure failed to set
the value for the indicated XML attribute or
element in the XML that is to be returned by the
stored procedure.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

3502 An invalid enumeration value was
encountered by the formatter for
the attribute with name name and
value value.

Explanation: An invalid enumeration value was
encountered in the stored procedure while
formatting the XML that was to be returned by
the stored procedure.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

4000 The database connection failed.
Database name database_name,
User name user_name.

Explanation: The stored procedure failed to
establish its own connection to the database.

User Response: Ensure that the user ID that the
stored procedure uses has the appropriate
privileges to connect to the database.

4001 The database connection was not
issued because a connection
already exists.

Explanation: The stored procedure did not
connect to the database because a connection

already exists between the stored procedure and
the database.

User Response: This information is for your
information only. No action is required.

4002 The database operation failed.

Explanation: An error occurred while executing
an SQL statement issued by the stored procedure
to the database.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

4003 Execution of the CLI call call_name
failed.

Explanation: An error occurred while executing
the indicated CLI call.

User Response: Check the database manager
log files on the client and on the server. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

4004 The returned data is truncated.

Explanation: Diagnostic information that was
returned during the failed database operation
was truncated.

User Response: Check the database manager
log files on the client and on the server. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

Appendix D. Messages 129

4005 A warning was received from the
database. SQLSTATE=code,
Message=message.

Explanation: Warning information was returned
by a CLI call that was issued by the stored
procedure.

User Response: Check the database manager
log files on the client and on the server.

4008 An unknown DB2 data type was
encountered.

Explanation: An unknown data type was
encountered by the stored procedure while
executing a database request.

User Response: Check the database manager
log files on the client and on the server. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

4009 No valid savepoint name was
generated.

Explanation: The stored procedure was unable
to generate a valid database transaction
savepoint name. The stored procedure uses its
database application ID to form the savepoint
name.

User Response: Reissue the call to the stored
procedure. Reissuing the call might generate a
new database application ID for the stored
procedure, and it might therefore allow for the
generation of a valid savepoint name. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

4010 The attempt to set a DB2
savepoint failed.

Explanation: The stored procedure was unable
to set a database transaction savepoint. A

savepoint with the same name as the one used
by this instance of the stored procedure may
already exist in the current transaction.

User Response: If possible, release the
savepoints for the current transaction before
reissuing the call to the stored procedure. You
can also reissue the call to the stored procedure
by using a new transaction.

Contact IBM Customer Support for further
assistance. Provide the status ID and text for the
metadata operation attempted. If possible, also
provide the stored procedure log files from the
database server.

4011 A savepoint was not set prior to
this point of execution.

Explanation: A transaction savepoint is
unexpectedly missing at a point in the stored
procedure. The missing savepoint was possibly
not set by the stored procedure, or the savepoint
might was released through database actions that
were done outside of the stored procedure.

User Response: Reissue the call to the stored
procedure. Contact IBM Customer Support for
further assistance. Provide the status ID and text
for the metadata operation attempted. If possible,
also provide the stored procedure log files from
the database server.

4012 There was an invalid savepoint
string storage.

Explanation: The database transaction savepoint
name was not stored correctly in a data structure
internal to the stored procedure possibly because
not enough memory is available to the stored
procedure process.

User Response: Reissue the call to the stored
procedure. If the problem persists, then increase
the memory available to the fenced stored
procedure process. Contact IBM Customer
Support for further assistance. Provide the status
ID and text for the metadata operation
attempted. If possible, also provide the stored
procedure log files from the database server.

130 IBM DB2 Cube Views: Setup and User’s Guide

4013 The savepoint failed to clear.

Explanation: The stored procedure was unable
to clear a database transaction savepoint. The
stored procedure possibly did not set the missing
savepoint, or the savepoint was possibly released
through database actions that were done outside
of the stored procedure.

User Response: Reissue the call to the stored
procedure. Contact IBM Customer Support for
further assistance. Provide the status ID and text
for the metadata operation attempted. If possible,
also provide the stored procedure log files from
the database server.

4014 Attempting to determine the DB2
AUTOCOMMIT setting failed.

Explanation: An attempt by the stored
procedure to determine whether the DB2
AUTOCOMMIT feature is enabled or disabled
failed.

User Response: Check the database manager
log files on the client and on the server. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

4015 Attempting to set DB2
AUTOCOMMIT OFF failed.

Explanation: An attempt by the stored
procedure to disable the DB2 AUTOCOMMIT
feature failed.

User Response: Check the database manager
log files on the client and on the server. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

4016 No data was returned from the
CLI call SQLFetch().

Explanation: No data was returned to the
stored procedure by the CLI function SQLFetch().
This might be acceptable, but the stored
procedure should not have allowed this error to
propagate through the stored procedure
unchanged.

User Response: Check the database manager
log files on the client and on the server. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

4017 Object_name object was not
properly constructed.

Explanation: An database object internal to the
stored procedure was not initialized properly.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

4018 The database disconnect failed.

Explanation: The stored procedure failed to
disconnect from the database.

User Response: Check the database manager
log files on the client and on the server. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

4019 DB2 SQL error - SQLCODE
sqlcode, SQLSTATE sqlstate,
SQLMESG sqlmesg.

Explanation: An error occurred while executing
an SQL statement that was issued by the stored
procedure to the database.

User Response: Check the database manager

Appendix D. Messages 131

log files on the client and on the server. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

4020 DB2 SQL error - No details are
available.

Explanation: Diagnostic information is not
available for an error that occurred while
executing an SQL statement that was issued by
the stored procedure to the database.

User Response: Check the database manager
log files on the client and on the server. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

4021 DB2 SQL error - No details are
available.

Explanation: An error occurred while trying to
gather diagnostic information for another error
that occurred while executing an SQL statement
that was issued by the stored procedure to the
database.

User Response: Check the database manager
log files on the client and on the server. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

4022 The allocation of DB2 handle_name
handle failed.

Explanation: An error occurred while trying to
allocate a DB2 handle in the stored procedure.

User Response: Check the database manager
log files on the client and on the server. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the

stored procedure log files from the database
server.

4023 Freeing the DB2 handle_name
handle failed.

Explanation: An error occurred while trying to
free a DB2 handle in the stored procedure.

User Response: Check the database manager
log files on the client and on the server. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

4028 The transaction was not stopped.

Explanation: An error occurred while trying to
end the transaction of the stored procedure.

User Response: Check the database manager
log files on the client and on the server. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

4029 Duplicate rows found sharing the
same name and schema in a main
object table.

Explanation: Duplicate rows sharing the same
name and schema were unexpectedly found in
one of the metadata catalog tables. This sharing
is indicative of an internal error in the stored
procedure.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

132 IBM DB2 Cube Views: Setup and User’s Guide

4030 The DBINFO structure was not
initialized. Make sure that the
stored procedure was created in
the database by using the
DBINFO option.

Explanation: A DBINFO structure was not
received by the stored procedure from the
database client.

User Response: Ensure that the stored
procedure is cataloged in the appropriate
database by using the DBINFO option.

4031 Setting the schema as DB2INFO
failed.

Explanation: The stored procedure failed to set
DB2INFO as the current schema.

User Response: Check the database manager
log files on the client and on the server. Reissue
the call to the stored procedure.

4032 The operation failed due to a
collision between an object in the
main object table and the object
being inserted.

Explanation: An SQL INSERT statement failed
in the stored procedure because it will result in a
duplicate metadata object entry in one of the
metadata catalog tables.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

4033 The operand of the column
function includes a column
function.

Explanation: A column function nested in
another column function was detected in one of
the SQL statements issued by the stored
procedure. Column functions cannot be nested in
SQL statements.

User Response: Modify the SQL expression
template for the input attribute or measure object

so that nested column functions are no longer
present in the SQL statements generated by the
stored procedure.

4034 The DB2 ISOLATION LEVEL
setting was not determined.

Explanation: An attempt by the stored
procedure to determine the database transaction
isolation level failed. The isolation level could
not be determined.

User Response: Check the database manager
log files on the client and on the server. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

4035 Setting the DB2 ISOLATION
LEVEL to READ STABILITY
failed.

Explanation: An attempt by the stored
procedure to set the database transaction
isolation level failed. The stored procedures
requires an isolation level of READ STABILITY.

User Response: Check the database manager
log files on the client and on the server. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

4036 The DB2 VERSION LEVEL was
not found.

Explanation: An attempt by the stored
procedure to determine the version level of the
database manager failed.

User Response: Check the database manager
log files on the client and on the server. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

Appendix D. Messages 133

4037 The DB2 VERSION LEVEL is not
compatible with this release.

Explanation: The version level of the database
manager is not compatible with the version of
the stored procedure that was called.

User Response: See the installation and setup
documentation for information on database
manager and stored procedure compatibility.
Ensure that compatible versions of the database
manager and the stored procedure are installed
on the same server computer.

Contact IBM Customer Support for further
assistance. Provide the status ID and text for the
metadata operation attempted. If possible, also
provide the stored procedure log files from the
database server.

4038 A SQL statement could not be
processed because it is too long or
too complex.

Explanation: A statement was issued by the
stored procedure that could not be processed
because it exceeds a system limit for either
length or complexity, or because too many
constraints or triggers are involved.

User Response: If possible, increase the size of
the statement heap (stmtheap) in the database
configuration file. Contact IBM Software Support
for further assistance. Provide the status ID and
text for the metadata operation that was
attempted. If possible, also provide the stored
procedure log files from the database server.

5000 The utility failed to parse string
string.

Explanation: A method internal to the stored
procedure encountered an error while parsing an
internal string value.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

5001 The utility number format did not
initialize successfully. Make sure
that enough memory is available.

Explanation: The ICU number formatter was
not initialized properly in the stored procedure.
This might be the result of inadequate memory
resources available to the stored procedure
process. This might also be the result of the
wrong version of the ICU libraries being loaded
by the stored procedure.

User Response: Increase the memory available
to the fenced stored procedure process, and
reissue the call to the stored procedure. Ensure
that the version of the ICU libraries intended for
use with the current version of the stored
procedure are being loaded. You might need to
check the run-time library search path set in the
environment to determine correct setup.

Contact IBM Customer Support for further
assistance. Provide the status ID and text for the
metadata operation attempted. If possible, also
provide the stored procedure log files from the
database server.

5002 The utility resource bundle did
not initialize successfully. Error
code=code. Make sure the bundle
exists and it is in the path
path_name.

Explanation: An ICU resource bundle was not
initialized properly in the stored procedure. The
improper initialization might be the result of the
following problems: adequate memory resources
are not available to the stored procedure process;
the wrong version of the ICU libraries were
loaded by the stored procedure; or the wrong
resource bundle was loaded for the stored
procedure.

User Response: Increase the memory available
to the fenced stored procedure process, and
reissue the call to the stored procedure. Ensure
that the version of the ICU libraries intended for
use with the current version of the stored
procedure are being loaded. You might need to
check the run-time library search path set in the
environment to determine correct setup. Ensure

134 IBM DB2 Cube Views: Setup and User’s Guide

that the correct version of the stored procedure’s
resource bundle was installed on the database
server system.

Contact IBM Customer Support for further
assistance. Provide the status ID and text for the
metadata operation attempted. If possible, also
provide the stored procedure log files from the
database server.

5003 The data path from the
environment variable
variable_name was not found.
Check that the environment
variable is set properly.

Explanation: A DB2 environment variable that
is used by the stored procedure is not set.

User Response: Ensure that DB2 was installed
correctly on the system. Contact IBM Customer
Support for further assistance. Provide the status
ID and text for the metadata operation
attempted. If possible, also provide the stored
procedure log files from the database server.

5004 The target stream is closed.

Explanation: A data stream that is used
internally by the stored procedure is
unexpectedly closed. There might not be enough
filehandles available on the database system.

User Response: Ensure that enough filehandles
are available from the operating system. Contact
IBM Customer Support for further assistance.
Provide the status ID and text for the metadata
operation attempted. If possible, also provide the
stored procedure log files from the database
server.

5005 The target is writing the
characters by using the default
encoding.

Explanation: The default encoding that is
documented for the stored procedure is being
used by the stored procedure to write data to
files on the database server file system.

User Response: Applications that read the files
that are written to by the stored procedure must

be able to interpret data encoded in the default
encoding of the stored procedure.

5006 The input log string of string is
not written. The level of the
string is string_level and the level
of log is log_level.

Explanation: The current logging level does not
allow the indicated message to be written to one
of the log files set for the stored procedure.

User Response: Modify the logging level if the
indicated message needs to be written to one of
the log files of the stored procedure.

5007 The message text for the error
code code was not found.

Explanation: The text for the indicated error
code was not found in the resource bundle file of
the stored procedure. The wrong version of the
resource bundle file might be in use.

User Response: Ensure that the correct version
of the resource bundle file of the stored
procedure was installed on the database server
system. Contact IBM Customer Support for
further assistance. Provide the status ID and text
for the metadata operation attempted. If possible,
also provide the stored procedure log files from
the database server.

5008 There was a failure while
accessing operation for the global
static MsgBase object.

Explanation: An error occurred in the stored
procedure while trying to access an internal
message object.

User Response: Contact IBM Customer Support
for further assistance. Provide the status ID and
text for the metadata operation attempted. If
possible, also provide the stored procedure log
files from the database server.

Appendix D. Messages 135

6000 OLAPMSG() failed with error
code code.

Explanation: The stored procedure failed during
execution.

User Response: Based on the return code, either
fix the problem and reissue the call to the stored
procedure, or contact IBM Customer Support for
further assistance. If contacting IBM Customer
Support, provide the status ID and text for the
metadata operation attempted. If possible, also
provide the stored procedure log files from the
database server.

6001 The instantiated SQL template(s)
for the object_name object is
invalid with a value of value.
Reason ID=ID, Message message.

Explanation: The instantiated SQL template is
the SQL statement fragment that can be formed
by combining the SQL expression templates for
all of the attributes and measures involved in a
composite attribute or composite measure. A
problem was found with the instantiated SQL
template for the specified object.

User Response: See the reason ID and message
specified. Reissue the call to the stored procedure
after you make any changes that was suggested
by the reason message.

6002 The object1 object references
object2 object, but the object2 object
does not exist in the database.

Explanation: Database objects can reference
other objects only if those other objects exist in
the database.

User Response: Create the object to be
referenced in the database, and then reissue the
metadata operation request. Or remove the
reference to the missing object, and then reissue
the metadata operation request.

6003 The log_name log within the
specified path could not be
opened. Make sure that the
specified path exists and that the
file has write access.

Explanation: At least one of the log files that
was used by the stored procedure could not be
opened.

User Response: Ensure that the path specified
in the stored procedure configuration file exists.
Ensure that user ID running the stored procedure
on the database server has the authority to
create, read, and write the required log files.

6004 A measure was encountered with
template_names SQL expression
templates and no aggregations.

Explanation: A metadata object rule was
violated by the identified measure object. A
measure with multiple SQL expression templates
must define at least one step in its aggregation
script.

User Response: Change the identified measure
so that its aggregation script has at least one
step. You can also remove one of the measure’s
SQL expression templates provided the
remaining SQL expression template refers to only
other measures. See the Setup and User’s Guide for
more information about metadata rules.

6005 The input metadata parameter is
unexpectedly empty for this
operation. The missing metadata
parameter is required for this
operation.

Explanation: The requested metadata operation
requires that metadata be provided as input. The
stored procedure parameter for exchanging
metadata is unexpectedly empty.

User Response: Reissue the metadata operation
request with the required metadata.

136 IBM DB2 Cube Views: Setup and User’s Guide

6006 No objects were found matching
search criteria: search_criteria

Explanation: The metadata operation found no
metadata objects that match the specified search
criteria. No changes were made to the contents
of the metadata catalog.

User Response: Reissue the metadata operation
with new search criteria if you want to change
the contents of the metadata catalog.

6007 Collision(s) between object(s) in
the catalog and object(s) being
imported were encountered. No
changes were made to the
metadata.

Explanation: Collisions were detected between
the objects being imported and the objects that
already exist in the metadata catalog. Due to the
import mode that you specified, no changes were
made to the objects in the metadata catalog.

User Response: Reissue the metadata operation
by using a different import mode if you want to
change the contents of the metadata catalog.

6008 A duplicate object exists within
metadata_input with identity ID.

Explanation: Duplicate metadata objects were
detected in the metadata input for this metadata
operation. Duplicate objects are not allowed as
input for metadata operations.

User Response: Remove the duplicate metadata
object from the input metadata, and reissue the
metadata operation.

6009 An object sharing the same
identity as the input object_name
object already exists in the
metadata catalog.

Explanation: The metadata operation could not
be performed because a metadata object with the
same identity already exists in the metadata
catalog.

User Response: Drop the object from the
metadata catalog that shares the same identity as

the object being created before reissuing the
failed metadata operation. You can also change
the existing object to match the properties of the
new object being created. Otherwise, you must
exclude the new object that is causing this error
from the metadata operation being performed.

6010 The reference to the object_name
object already exists for the input
object_name object.

Explanation: A reference between the specified
objects is already defined in the metadata
catalog. Duplicate references are not allowed.

User Response: Remove one of the duplicate
references from the metadata operation request.

6011 The object_name object’s schema
cannot be changed using the
rename operation.

Explanation: The rename operation cannot be
used to change the schema of a metadata object.

User Response: Ensure that the schema that is
specified for the object being renamed remains
constant, or use the alter operation.

6012 The SQL template template_name is
missing tokentoken_name.

Explanation: A metadata object rule was
violated by the identified measure object. In the
SQL expression template for the measure, token
indicators must begin numbering with 1 and
must be consecutively numbered.

User Response: Change the identified measure
so that the token indicators for its SQL
expression templates are consecutively numbered
starting with 1. See the Setup and User’s Guide for
more information about metadata rules.

Appendix D. Messages 137

6013 The version version1 of the XML
schema used by the client is not
supported by the API on the
server. The API on the server
supports version version2 of the
XML schema.

Explanation: The version of the XML schema
that is used by the client and embedded in the
input parameter strings is not supported by the
version of the stored procedure on the server.

User Response: Ensure that the client
application and the stored procedure use the
same version of the XML schema published with
this product.

6014 The SQL template(s) for the
object_name object cannot be
formulated. Reason ID ID,
Message message.

Explanation: The stored procedure formulates
the SQL templates for attributes and measures by
combining the SQL expression templates for all
of the attributes and measures involved in a
composite attribute or composite measure. A
problem was encountered in the stored
procedure during the formulation of a SQL
template.

User Response: See the reason ID and message
specified. Reissue the call to the stored procedure
after you make any changes suggested by the
reason message.

6015 The database user ID does not
have the authority to create a
database schema in the active
database.

Explanation: The user ID that owns the stored
procedure process on the database server does
not have the authority to create a database
schema in the active database. A database
schema is created for each unique metadata
object schema.

User Response: Check the database manager
log files on the client and on the server. Grant
the authority to create a schema in the active

database to the user ID that owns the stored
procedure process. Reissue the call to the stored
procedure.

6016 The database user ID does not
have the authority to perform a
required action in the active
database. The following error
message was returned from the
database server: message.

Explanation: The user ID that owns the stored
procedure process on the database server does
not have the authority to perform a required
action in the active database.

User Response: Check the database manager
log files on the client and on the server. Grant
the required authority to the user ID that owns
the stored procedure process. Reissue the call to
the stored procedure.

6017 The object_name object does not
exist in the metadata catalog.

Explanation: The requested operation requires
that the indicated object exist in the metadata
catalog.

User Response: Create the indicated object in
the metadata catalog before reissuing the
metadata operation request.

6018 A required table does not exist in
the database. The following error
message was returned from the
database server: message.

Explanation: A table that was required by the
requested operation does not exist in the
database.

User Response: If the missing table is a user
table, then create the table and reissue the
metadata operation request. If the missing table
is a metadata catalog table or a database system
table, then contact IBM Customer Support for
further assistance. Provide the status ID and text
for the metadata operation that was attempted. If
possible, also provide the stored procedure log
files from the database server.

138 IBM DB2 Cube Views: Setup and User’s Guide

6200 The object_name object is not
complete. Make sure that the
required properties are set.

Explanation: The specified input object does not
have all of its required properties set.

User Response: Set the required properties for
the object and reissue the metadata operation
request.

6201 The hierarchy_name hierarchy is
invalid because it is of type
recursive, but is does not have
exactly two attributes.

Explanation: A recursive hierarchy must
reference exactly two attributes. The identified
hierarchy violates this rule.

User Response: Modify the identified hierarchy
to reference exactly two attributes. See the Setup
and User’s Guide for more information about
metadata rules.

6202 The object_name object must have
at least one SQL template.

Explanation: Based on the metadata object
definitions that is provided in the product
documentation, the identified measure must have
at least one SQL template defined for it.

User Response: Modify the identified measure
so that it has at least one SQL template defined.
See the Setup and User’s Guide for more
information about metadata rules.

6203 The measure has no aggregation,
but it contains attr or col ref or no
ref at all.

Explanation: A metadata object rule was
violated by the identified measure object. An
aggregation is not required for a measure if that
measure references at least one other measure
and only references measures.

User Response: Change the identified measure
by adding an aggregation or ensuring that the
identified measure references at least one other
measure and references only measures. See the

Setup and User’s Guide for more information
about metadata rules.

6204 The measure has a measure ref
with multiple SQL templates, and
the measure has an aggregation
script (multiple SQL templates or
at least one aggregation).

Explanation: A metadata object rule was
violated by the identified measure object. If a
measure A refers to a measure B, which defines
multiple SQL templates, then measure A must
not have an aggregation script. This rule applies
for all levels in a measure reference tree.

User Response: Remove the aggregation script
from the measure that is causing the problem, or
remove one of the SQL expression templates
from the measure referenced. See the Setup and
User’s Guide for more information about
metadata rules.

6205 There are two or more
aggregations with an empty
dimension list.

Explanation: A metadata object rule was
violated by the identified measure object. When a
measure defines one or more aggregations, one
aggregation must have an empty list of
dimensions.

User Response: Change the identified measure
so that it has one empty list of dimensions, or
change the identified measure so that it defines
no aggregations. See the Setup and User’s Guide
for more information about metadata rules.

6206 The attribute_name attribute should
have only one SQL template.

Explanation: Based on the metadata object
definitions that are provided in the product
documentation, the identified measure must have
only one SQL template defined for it.

User Response: Modify the identified measure
so that it has only one SQL template defined. See
the Setup and User’s Guide for more information
about metadata rules.

Appendix D. Messages 139

6207 The attribute_name attribute is part
of a join but has no column
reference.

Explanation: The identified attribute object
must refer to a database column for it to be
validly referenced by a metadata join object.

User Response: Modify the identified attribute
object so that it refers to a database column, or
modify the related join object so that it refers to a
different attribute object where the different
attribute object refers to a database column. See
the Setup and User’s Guide for more information
about metadata rules.

6208 The attribute_name attribute is part
of a join and it must point to the
same table as table_name.

Explanation: The first identified attribute object
must refer to the same database table as the
other object identified.

User Response: Modify the first identified
attribute so that it refers to the same database
table as the other object identified, or modify the
related join object so that it refers to a different
attribute object where the different attribute
object refers to the same database table as the
other object identified. See the Setup and User’s
Guide for more information about metadata rules.

6209 The schema of object_name object
exceeds the maximum length.

Explanation: The schema of the identified object
exceeds the maximum length.

User Response: Shorten the schema for the
identified object. See the Setup and User’s Guide
for more information about metadata rules.

6210 The name of object_name object
exceeds the maximum length.

Explanation: The name of the identified object
exceeds the maximum length.

User Response: Shorten the name of the
identified object. See the Setup and User’s Guide
for more information about metadata rules.

6211 The table name of object_name
object exceeds the maximum
length.

Explanation: The table name of the identified
object exceeds the maximum length.

User Response: Shorten the name of the table.
See the Setup and User’s Guide for more
information about metadata rules.

6212 The business name of object_name
object exceeds the maximum
length.

Explanation: The business name of the
identified object exceeds the maximum length.

User Response: Shorten the business name. See
the Setup and User’s Guide for more information
about metadata rules.

6213 The comments of object_name
object exceeds the maximum
length.

Explanation: The comments of the identified
object exceeds the maximum length.

User Response: Shorten the comments of the
identified objects. See the Setup and User’s Guide
for more information about metadata rules.

6214 The schema of object_name object
cannot start with SYS.

Explanation: The schema for metadata objects
cannot begin with the string SYS.

User Response: Use a schema that does not
begin with SYS for metadata objects. See the
Setup and User’s Guide for more information
about metadata rules.

6215 The schema of object_name object
cannot be SESSION.

Explanation: The schema for metadata objects
cannot be the string SESSION.

User Response: Use a schema that is not the
string SESSION for metadata objects. See the

140 IBM DB2 Cube Views: Setup and User’s Guide

Setup and User’s Guide for more information
about metadata rules.

6216 The name and schema of the
object_name object are not
complete. Reason ID=ID,
Message=message.

Explanation: The name or the schema or both
of the identified object is missing or invalid.

User Response: Provide valid strings for both
the name and the schema of the identified object.
See the Setup and User’s Guide for more
information about metadata rules.

6217 The cube_hierarchy_name cube
hierarchy is invalid because the
hierarchy_name hierarchy’s attribute
list is empty, but the cube
hierarchy is not.

Explanation: The identified cube hierarchy
refers to attributes that the identified hierarchy
does not refer to. These references are invalid.

User Response: Change the identified cube
hierarchy to no longer refer to any attributes. Or
change the identified hierarchy to refer to the
same attributes that the identified cube hierarchy
refers to. See the Setup and User’s Guide for more
information about metadata rules.

6299 At least one database view was
found during validation.
Constraint-related validation
checks were not performed for the
joins that involve columns of
views. All other validation checks
were performed.

Explanation: Constraint-related validation
checks were not performed for those joins that
were found to involve columns of views.
Constraint-related validation checks were
performed on all other joins requested, and all
remaining validation checks were performed on
all requested objects.

User Response: See the Setup and User’s Guide
for more information about metadata rules,

metadata validation, and query optimization.

6300 The model_name cube model does
not refer to one or more facts.

Explanation: A metadata object rule was
violated by the identified cube model object. A
cube model must refer to one or more facts.

User Response: Change the identified cube
model so that it refers to one or more facts. See
the Setup and User’s Guide for more information
about metadata rules.

6301 The model_namecube model does
not refer to zero or more
dimension(s).

Explanation: A metadata object rule was
violated by the identified cube model object. A
cube model must refer to zero or more
dimensions.

User Response: Change the identified cube
model so that it refers to zero or more
dimensions. See the Setup and User’s Guide for
more information about metadata rules.

6302 The model_namecube model is
missing a dimension or join or
both for one of its dimension-join
pairs.

Explanation: A metadata object rule was
violated by the identified cube model object. A
dimension-join pair for a cube model must refer
to both a dimension and a join.

User Response: Change the identified cube
model so that all of its dimension-join pairs refer
both a dimension and a join. See the Setup and
User’s Guide for more information about
metadata rules.

Appendix D. Messages 141

6303 Thejoin_name join referenced by
the model_namecube model is not
valid. All the attributes on one of
its sides must be referenced by
the facts_namefacts, and all of the
attributes on the other side must
be referenced by one of the cube
model’s dimensions.

Explanation: A metadata object rule was
violated by the identified cube model object. The
joins of a cube model must each refer to the
attributes of the cube model’s facts on one side,
and to the attributes of one of the cube model’s
dimensions on the other side.

User Response: Change the invalid join for the
identified cube model so that all of the attributes
on one side of the join come from the cube
model’s facts, and all of the attributes on the
other side of the join come from one of the cube
model’s dimensions. See the Setup and User’s
Guide for more information about metadata rules.

6304 One of the aggregations in the
measure_namemeasure directly
references the dimension_name
dimension, which is not directly
referenced by the model_name cube
model.

Explanation: A metadata object rule was
violated by the identified cube model object. The
aggregations in a measure that are used by a
cube model must refer only to those dimensions
that are used by the same cube model.

User Response: Change the aggregation for the
identified measure so that it refers only to those
dimensions used by the identified cube model.
See the Setup and User’s Guide for more
information about metadata rules.

6305 The empty-dimension-list
aggregation in the measure_name
measure does not match to at least
one previously unmatched
dimension from the model_name
cube model.

Explanation: A metadata object rule was
violated by the identified cube model object.
Empty-dimension-list aggregations in the
measures that are used by cube models must
match to at least one dimension unmatched
otherwise in each cube model.

User Response: Change the aggregation for the
identified measure so that its
empty-dimension-list matches to at least one
previously unmatched dimension in the
identified cube model. See the Setup and User’s
Guide for more information about metadata rules.

6306 The measure_name measure must
contain only the
empty-dimension-list aggregation
since the model_name cube model
does not refer to any dimension
objects.

Explanation: A metadata object rule was
violated by the identified cube model object.
When a cube model does not refer to any
dimensions, the cube model’s measure must only
contain the empty-dimension-list aggregation.

User Response: Change the identified measure
so is contains only the empty-dimension-list
aggregation. See the Setup and User’s Guide for
more information about metadata rules.

6307 The cube_name cube does not refer
to one cube facts object.

Explanation: A metadata object rule was
violated by the identified cube object. A cube
must refer to one cube facts object.

User Response: Change the identified cube so
that it refers to one cube facts object. See the
Setup and User’s Guide for more information
about metadata rules.

142 IBM DB2 Cube Views: Setup and User’s Guide

6308 The cube_name cube does not refer
to at least one cube dimension
object.

Explanation: A metadata object rule was
violated by the identified cube object. A cube
must refer to at least one cube dimension object.

User Response: Change the identified cube so
that it refers to at least one cube dimension
object. See the Setup and User’s Guide for more
information about metadata rules.

6309 The cube_facts_name cube facts
referenced by the cube_name cube
is not derived from the facts
object referenced by the
model_name cube model.

Explanation: A metadata object rule was
violated by the identified cube object. The cube
facts that is used by the identified cube must be
derived from the facts that is used by the
identified cube model.

User Response: Change one or more of the
identified objects so that the specified rule is no
longer violated. See the Setup and User’s Guide for
more information about metadata rules.

6310 The cube_dimension_name cube
dimension referenced by the
cube_name cube is not derived
from one of the dimension objects
referenced by the model_name cube
model.

Explanation: A metadata object rule was
violated by the identified cube object. A cube
dimension that is used by the identified cube
must be derived from one of the dimensions that
is used by the identified cube model.

User Response: Change one or more of the
identified objects so that the specified rule is no
longer violated. See the Setup and User’s Guide for
more information about metadata rules.

6311 The facts_name facts object does
not refer to any measures.

Explanation: A metadata object rule was
violated by the identified facts object. A facts
object must refer to at least one measure.

User Response: Change the identified facts so
that it refers to at least one measure. See the
Setup and User’s Guide for more information
about metadata rules.

6312 Some of the attributes and
measures that are referenced by
the facts object facts_name cannot
be joined using facts object joins.

Explanation: A metadata object rule was
violated by the identified facts object. The
attributes and measures of a facts object must all
be joinable using the join objects of the facts.

User Response: Make all the attributes and
measures referenced by the identified facts object
joinable by referencing more join objects from the
facts object. Or remove those attributes from the
facts object or measures that are not joinable by
the facts’ current joins. See the Setup and User’s
Guide for more information about metadata rules.

6313 The facts_name facts object has
multiple joins between two
tables.

Explanation: A metadata object rule was
violated by the identified facts object. A facts
object must not have multiple joins between the
same two tables.

User Response: Change the identified facts
object so that it has only one join between any
two given tables. See the Setup and User’s Guide
for more information about metadata rules.

6314 The facts_name facts object
contains a join loop.

Explanation: A metadata object rule was
violated by the identified facts object. The joins
for the identified facts object form a path loop.
This is not allowed.

Appendix D. Messages 143

User Response: Remove one of the joins that is
causing the loop from the identified facts object,
or change one of the joins that is causing the
loop so that a loop no longer exists. See the Setup
and User’s Guide for more information about
metadata rules.

6315 The join_name join does not refer
to only those attributes in the
facts_name facts object.

Explanation: A metadata object rule was
violated by the identified facts object. The joins
of a facts object must refer only to the attributes
of the that facts object.

User Response: Change the identified join so
that it refers only to the attributes of the
identified facts object, or add to the facts object
the missing attributes that the identified join
object refers to. See the Setup and User’s Guide for
more information about metadata rules.

6316 The cube_facts_name cube facts
object does not refer to a fact
object or refers to more than one
fact object.

Explanation: A metadata object rule was
violated by the identified cube facts object. A
cube facts object must refer to one facts object.

User Response: Change the identified cube facts
object so that it refers to one facts object. See the
Setup and User’s Guide for more information
about metadata rules.

6317 The cube_facts_name cube facts
object does not refer to any
measures.

Explanation: A metadata object rule was
violated by the identified cube facts object. A
cube facts object must refer to at least one
measure.

User Response: Change the identified cube facts
object so that it refers at least one measure. See
the Setup and User’s Guide for more information
about metadata rules.

6318 The measure_name measure that is
referenced by the cube_facts_name
cube facts object is not a part of
the facts_name facts object.

Explanation: A metadata object rule was
violated by the identified cube facts object. A
cube facts object must refer to measures that are
referred to by the facts object from which the
cube facts object was derived.

User Response: Add the identified measure to
the identified facts object, or remove the
identified measure from the identified cube facts
object. See the Setup and User’s Guide for more
information about metadata rules.

6319 The dimension_name dimension
does not refer any attributes. A
dimension must refer to at least
one attribute.

Explanation: A metadata object rule was
violated by the identified dimension object. A
dimension object must refer to at least one
attribute.

User Response: Change the identified
dimension object so that it refers to at least one
attribute. See the Setup and User’s Guide for more
information about metadata rules.

6320 Some of the attributes referenced
by the dimension_name dimension
cannot be joined using dimension
joins.

Explanation: A metadata object rule was
violated by the identified dimension object. The
attributes of a dimension object must all be
joinable by using the join objects of the
dimension.

User Response: Make all the attributes
referenced by the identified dimension object
joinable by referencing more join objects from the
dimension object. Or remove from the dimension
object those attributes that are not joinable by the
dimension’s current joins. See the Setup and
User’s Guide for more information about
metadata rules.

144 IBM DB2 Cube Views: Setup and User’s Guide

6321 The dimension_name dimension
contains a join loop.

Explanation: A metadata object rule was
violated by the identified dimension object. The
joins for the identified dimension object form a
path loop. This is not allowed.

User Response: Remove one of the joins that is
causing the loop from the identified dimension
object, or change one of the joins that is causing
the loop so that a loop no longer exists. See the
Setup and User’s Guide for more information
about metadata rules.

6322 The dimension_name dimension has
multiple joins between two
tables.

Explanation: A metadata object rule was
violated by the identified dimension object. A
dimension object must not have multiple joins
between the same two tables.

User Response: Change the identified
dimension object so that it has only one join
between any two tables. See the Setup and User’s
Guide for more information about metadata rules.

6323 The hierarchy_name hierarchy that
is referenced by the
dimension_namedimension
references attributes that are not
also referenced by the same
dimension.

Explanation: A metadata object rule was
violated by the identified dimension object. The
hierarchies of a dimension object must only refer
to the attributes of that dimension object.

User Response: Change the identified hierarchy
so that it only refers to the attributes of the
identified dimension object, or add to the
dimension object the missing attributes that the
identified hierarchy object refers to. See the Setup
and User’s Guide for more information about
metadata rules.

6324 The relationship_name attribute
relationship, used by the
hierarchy_name hierarchy,
references attributes that are not
also referenced by the
dimension_name dimension.

Explanation: A metadata object rule was
violated by the identified dimension object. The
attribute relationship of a dimension object must
refer only to the attributes of that dimension
object.

User Response: Change the identified attribute
relationship so that it only refers to the attributes
of the identified dimension object, or add to the
dimension object the missing attributes that the
identified attribute relationship object refers to.
See the Setup and User’s Guide for more
information about metadata rules.

6325 The join_name join does not refer
to only those attributes in the
dimension_name dimension.

Explanation: A metadata object rule was
violated by the identified dimension object. The
join of a dimension object must only refer to the
attributes of that dimension object.

User Response: Change the identified join so
that it only refers to the attributes of the
identified dimension object, or add to the
dimension object the missing attributes that the
identified join object refers to. See the Setup and
User’s Guide for more information about
metadata rules.

6326 The cube_dimension_name cube
dimension does not refer to a
dimension.

Explanation: A metadata object rule was
violated by the identified cube dimension object.
A cube dimension object must refer to a
dimension.

User Response: Change the identified cube
dimension object so that it refers to a dimension.
See the Setup and User’s Guide for more
information about metadata rules.

Appendix D. Messages 145

6327 The cube_dimension_name cube
dimension does not refer to a
cube hierarchy.

Explanation: A metadata object rule was
violated by the identified cube dimension object.
A cube dimension object must refer to a cube
hierarchy.

User Response: Change the identified cube
dimension object so that it refers to a cube
hierarchy. See the Setup and User’s Guide for more
information about metadata rules.

6328 The cube_hierarchy_name cube
hierarchy that is referenced by the
cube_dimension_name cube
dimension is not derived from
any of the hierarchies that are
referenced by the dimension_name
dimension.

Explanation: A metadata object rule was
violated by the identified cube dimension object.
The cube hierarchy used by the identified cube
dimension must be derived from one of the
hierarchies that is used by the identified
dimension.

User Response: Change one or more of the
identified objects so that the specified rule is no
longer violated. See the Setup and User’s Guide for
more information about metadata rules.

6329 The hierarchy_name hierarchy does
not refer to any attributes.

Explanation: A metadata object rule was
violated by the identified hierarchy object. A
hierarchy object must refer to at least one
attribute.

User Response: Change the identified hierarchy
object so that it refers to at least one attribute.
See the Setup and User’s Guide for more
information about metadata rules.

6330 The hierarchy_name hierarchy,
which uses a recursive
deployment, does not reference
exactly two attributes.

Explanation: A metadata object rule was
violated by the identified hierarchy object. A
hierarchy object that uses recursive deployment
must reference two attributes.

User Response: Change the identified hierarchy
object so that it refers to two attributes. See the
Setup and User’s Guide for more information
about metadata rules.

6331 The left attribute for the
relationship_name attribute
relationship is not a part of the
hierarchy_name hierarchy.

Explanation: A metadata object rule was
violated by the identified hierarchy object. When
an attribute relationship is referenced by a
hierarchy, the left attribute of that attribute
relationship must be a part of the referencing
hierarchy.

User Response: Change the identified attribute
relationship object so that its left attribute is a
part of the identified hierarchy. See the Setup and
User’s Guide for more information about
metadata rules.

6332 The type of the hierarchy_name
hierarchy is not compatible with
its deployment.

Explanation: A metadata object rule was
violated by the identified hierarchy object.
Compatibility of hierarchy types and deployment
are described in the Setup and User’s Guide.

User Response: Change the identified hierarchy
so that its type is compatible with its
deployment. See the Setup and User’s Guide for
more information about metadata rules.

146 IBM DB2 Cube Views: Setup and User’s Guide

6333 The relationship_name attribute
relationship, which is referenced
by the hierarchy_name hierarchy,
does not have a cardinality of
either 1:1 or N:1.

Explanation: A metadata object rule was
violated by the identified hierarchy object. When
an attribute relationship is referenced by a
hierarchy, then the cardinality of the attribute
relationship must be either 1:1 or N:1.

User Response: Change the identified attribute
relationship so that its cardinality is either 1:1 or
N:1, or remove the identified attribute
relationship from the identified hierarchy. See the
Setup and User’s Guide for more information
about metadata rules.

6334 The cube_hierarchy_name cube
hierarchy does not refer to just
one hierarchy.

Explanation: A metadata object rule was
violated by the identified cube hierarchy object.
A cube hierarchy object must refer to one
hierarchy.

User Response: Change the identified cube
hierarchy object so that it refers to one hierarchy.
See the Setup and User’s Guide for more
information about metadata rules.

6335 The cube_hierarchy_name cube
hierarchy does not refer to at least
one attribute.

Explanation: A metadata object rule was
violated by the identified cube hierarchy object.
A cube hierarchy object must refer to at least one
attribute.

User Response: Change the identified cube
hierarchy object so that it refers to at least one
attribute. See the Setup and User’s Guide for more
information about metadata rules.

6336 The attribute_name attribute, which
is referenced by the
cube_hierarchy_name cube hierarchy,
is not also referenced by the
hierarchy_name hierarchy.

Explanation: A metadata object rule was
violated by the identified cube hierarchy object.
A cube hierarchy object must refer to attributes
that are referred to by the hierarchy object from
which the cube hierarchy object was derived.

User Response: Add the identified attribute to
the identified hierarchy object, or remove the
identified attribute from the identified cube
hierarchy object. See the Setup and User’s Guide
for more information about metadata rules.

6337 The order of the attributes in the
cube_hierarchy_name cube hierarchy
does not match the order of the
same attributes in the
hierarchy_name hierarchy.

Explanation: A metadata object rule was
violated by the identified cube hierarchy object.
The relative ordering of the attributes in a cube
hierarchy must be the same as the relative
ordering of the same attributes in the hierarchy
from which the cube hierarchy was derived.

User Response: Change one of the identified
objects so that the relative ordering of the
attributes in both identified objects is consistent.
See the Setup and User’s Guide for more
information about metadata rules.

6338 The left attribute for
relationship_name attribute
relationship is not a part of
cube_hierarchy_name cube hierarchy.

Explanation: A metadata object rule was
violated by the identified cube hierarchy object.
When an attribute relationship is referenced by a
cube hierarchy, the left attribute of that attribute
relationship must be a part of the referencing
cube hierarchy.

User Response: Change the identified attribute
relationship object so that its left attribute is a

Appendix D. Messages 147

part of the identified cube hierarchy. See the
Setup and User’s Guide for more information
about metadata rules.

6339 The relationship_name attribute
relationship, which is referenced
by the cube_hierarchy_name cube
hierarchy, is not also referenced
by the hierarchy_name hierarchy.

Explanation: A metadata object rule was
violated by the identified cube hierarchy object.
A cube hierarchy object must refer to attribute
relationship object that are referred to by the
hierarchy object from which the cube hierarchy
object was derived.

User Response: Add the identified attribute
relationship object to the identified hierarchy
object, or remove the identified attribute
relationship object from the identified cube
hierarchy object. See the Setup and User’s Guide
for more information about metadata rules.

6340 One of the SQL expression
templates for the measure_name
measure uses a parameter that is
not an attribute, measure, or
column.

Explanation: A metadata object rule was
violated by the identified measure object. The
SQL expression templates for measure objects
must use parameters that are attributes,
measures, or columns.

User Response: Change the identified measure
so that its SQL expression templates use
attributes, measures, or columns as parameters.
See the Setup and User’s Guide for more
information about metadata rules.

6341 A dependency loop exists among
the attributes or measures used as
parameters in the SQL expression
template for the measure_name
measure.

Explanation: A metadata object rule was
violated by the identified measure object. The
attributes and measures that are used as

parameters for the SQL expression template of a
measure must not form a dependency loop.

User Response: Change the identified measure
so that its SQL expression templates do not
contain dependency loops that involve their
parameters. See the Setup and User’s Guide for
more information about metadata rules.

6342 The measure_name measure has an
empty string defined for one of
its SQL expression templates.

Explanation: A metadata object rule was
violated by the identified measure object. The
SQL expression template for a measure cannot be
an empty string.

User Response: Change the identified measure
so that its SQL expression template is no longer
an empty string. See the Setup and User’s Guide
for more information about metadata rules.

6343 The SQL expression template for
the measure_name measure contains
an aggregation function.

Explanation: A metadata object rule was
violated by the identified measure object. The
SQL expression template for a measure cannot
contain an aggregation function.

User Response: Change the identified measure
so that its SQL expression template no longer
contains an aggregation function. See the Setup
and User’s Guide for more information about
metadata rules.

6344 The measure_name measure is
missing an aggregation or is
incorrectly referencing objects
other than measures.

Explanation: A metadata object rule was
violated by the identified measure object. An
aggregation is not required for a measure if that
measure references at least one other measure
and references only measures.

User Response: Change the identified measure
by adding an aggregation or ensuring that the
identified measure references at least one other

148 IBM DB2 Cube Views: Setup and User’s Guide

measure and references only measures. See the
Setup and User’s Guide for more information
about metadata rules.

6345 The number of SQL expression
templates in the measure_name
measure does not match the
number of parameters used with
the first aggregation function.

Explanation: A metadata object rule was
violated by the identified measure object. The
number of SQL templates in a measure must
match the number of parameters for the first
aggregation function of that measure if an
aggregation is present.

User Response: Change the identified measure
so that the number of parameters for its first
aggregation function matches the number of SQL
expression templates in the measure. See the
Setup and User’s Guide for more information
about metadata rules.

6346 The measure_name measure, which
has multiple SQL expression
templates, does not define at least
one step in the aggregation script.

Explanation: A metadata object rule was
violated by the identified measure object. A
measure with multiple SQL expression templates
must define at least one step in its aggregation
script.

User Response: Change the identified measure
so that its aggregation script has at least one
step. Or remove one of the measure’s SQL
expression templates provided the remaining
SQL expression template refers to only other
measures. See the Setup and User’s Guide for more
information about metadata rules.

6347 The measure_name1 measure has an
aggregation script defined.
However, it should not have any
aggregation scripts defined
because the referenced measure,
measure_name2, defines multiple
templates for SQL expressions.

Explanation: A metadata object rule was
violated by the identified measure object. If
measure A refers to measure B, which defines
multiple SQL templates, then measure A must
not have an aggregation script. This rule applies
for all levels in a measure reference tree.

User Response: Remove the aggregation script
from the measure causing the problem, or
remove one of the SQL expression templates
from the measure referenced. See the Setup and
User’s Guide for more information about
metadata rules.

6348 The measure_name measure
contains a multi-parameter
aggregation function that is not
used as the first aggregation.

Explanation: A metadata object rule was
violated by the identified measure object. A
multi-parameter aggregation function can only
be used as the first aggregation for a measure.

User Response: Make the multi-parameter
aggregation function the first aggregation that is
used by the identified measure, or remove the
multi-parameter aggregation function from the
identified measure. See the Setup and User’s Guide
for more information about metadata rules.

6349 The measure_name measure does
not have exactly one
empty-dimension-list aggregation.

Explanation: A metadata object rule was
violated by the identified measure object. When a
measure defines one or more aggregations, one
aggregation must have an empty list of
dimensions.

User Response: Change the identified measure
so that it has one empty list of dimensions, or

Appendix D. Messages 149

change the identified measure so that it defines
no aggregations. See the Setup and User’s Guide
for more information about metadata rules.

6350 The dimension_name dimension is
referenced multiple times in the
measure_name measure.

Explanation: A metadata object rule was
violated by the identified measure object. In a
measure, a dimension cannot be referenced more
than once either in an aggregation or across
aggregations.

User Response: Change the identified measure
so that it references the identified dimension only
once. See the Setup and User’s Guide for more
information about metadata rules.

6351 The SQL expression template for
the object_name object is missing a
token indicator with the number
number. Token indicators must be
consecutively numbered starting
with the number 1.

Explanation: A metadata object rule was
violated by the identified measure object. In a
measure’s SQL expression template, token
indicators must begin with 1 and must be
consecutively numbered.

User Response: Change the identified measure
so that the token indicators for its SQL
expression templates are consecutively numbered
starting with 1. See the Setup and User’s Guide for
more information about metadata rules.

6352 Themeasure_name measure contains
an SQL expression template that
does not use the provided
reference, reference.

Explanation: A metadata object rule was
violated by the identified measure object. The
SQL expression template for a measure must
make use of every column, attribute, and
measure reference that is provided. Each
reference can be used more than once.

User Response: Change the SQL expression

template for the identified measure so that it
makes use of every column, attribute, and
measure reference that was provided. Or remove
the column, attribute, and measure references
that are not used by the identified measure’s
SQL expression templates. See the Setup and
User’s Guide for more information about
metadata rules.

6353 One of the SQL expression
templates for the attribute_name
attribute uses a parameter that is
not an attribute or column.

Explanation: A metadata object rule was
violated by the identified attribute object. The
SQL expression templates for attribute objects
must use parameters that are attributes or
columns.

User Response: Change the identified attribute
so that its SQL expression templates use
attributes or columns as parameters. See the
Setup and User’s Guide for more information
about metadata rules.

6354 A dependency loop exists among
the attributes used as parameters
in the SQL expression template
for the attribute_name attribute.

Explanation: A metadata object rule was
violated by the identified attribute object. The
attributes used as parameters for the SQL
expression template of an attribute must not
form a dependency loop.

User Response: Change the identified attribute
so that its SQL expression templates do not
contain dependency loops involving their
parameters. See the Setup and User’s Guide for
more information about metadata rules.

6355 The attribute_name attribute has an
empty string defined in one of its
SQL expression templates.

Explanation: A metadata object rule was
violated by the identified attribute object. The
SQL expression template for an attribute cannot
be an empty string.

150 IBM DB2 Cube Views: Setup and User’s Guide

User Response: Change the identified attribute
so that its SQL expression template is no longer
an empty string. See the Setup and User’s Guide
for more information about metadata rules.

6356 The SQL expression template for
the attribute_name attribute
contains an aggregation function.

Explanation: A metadata object rule was
violated by the identified attribute object. The
SQL expression template for an attribute cannot
contain an aggregation function.

User Response: Change the identified attribute
so that its SQL expression template no longer
contains an aggregation function. See the Setup
and User’s Guide for more information about
metadata rules.

6357 The SQL expression template for
the object_name object is missing a
token indicator with a number
number. Token indicators must be
consecutively numbered starting
with the number 1.

Explanation: A metadata object rule was
violated by the identified attribute object. in an
attribute’s SQL expression template, token
indicators must begin numbering with 1 and
must be consecutively numbered.

User Response: Change the identified attribute
so that the token indicators for its SQL
expression templates are consecutively numbered
starting with 1. See the Setup and User’s Guide for
more information about metadata rules.

6358 The attribute_name attribute
contains an SQL expression
template that does not use the
provided reference, reference.

Explanation: A metadata object rule was
violated by the identified attribute object. The
SQL expression template for an attribute must
make use of every column and attribute
reference that is provided. Each reference can be
used more than once.

User Response: Change the SQL expression
template for the identified attribute so that it
makes use of every column and attribute
reference that is provided. Or remove the column
and attribute references that are not used by the
identified attribute’s SQL expression templates.
See the Setup and User’s Guide for more
information about metadata rules.

6359 Therelationship_name attribute
relationship does not refer to two
distinct attributes.

Explanation: A metadata object rule was
violated by the identified attribute relationship
object. An attribute relationship object must refer
to two distinct attributes.

User Response: Change the identified attribute
relationship object so that it refers to two distinct
attributes. See the Setup and User’s Guide for
more information about metadata rules.

6360 The relationship_name attribute
relationship is incorrectly defined.
The cardinality property is set to
N:N, but the functional
dependency property is set to
YES.

Explanation: A metadata object rule was
violated by the identified attribute relationship
object. When the functional dependency property
of an attribute relationship is set to YES, then the
cardinality property of the attribute relationship
cannot be set to N:N.

User Response: Change the identified attribute
relationship so that its cardinality is not set to
N:N, or its functional dependency property is set
to NO. See the Setup and User’s Guide for more
information about metadata rules.

6361 The join_name join does not refer
to at least one triplet. A triplet
contains a left attribute, a right
attribute, and an operator.

Explanation: A metadata object rule was
violated by the identified join object. A join
object must refer to at least one triplet that

Appendix D. Messages 151

contains a left attribute, a right attribute, and an
operator.

User Response: Change the identified join
object so that it refers to at least one triplet. See
the Setup and User’s Guide for more information
about metadata rules.

6362 The left attributes in the join_name
join do not all resolve into a
column or columns of a single
table.

Explanation: A metadata object rule was
violated by the identified join object. The left
attributes of a join must all resolve into a column
or the columns of a single database table.

User Response: Change the identified join
object so that its left attributes all resolve into a
column or the columns of a single table. Or
change the left attributes of the identified join
object so that they all comply with the metadata
rule stated. See the Setup and User’s Guide for
more information about metadata rules.

6363 The right attributes in the
join_name join do not all resolve
into a column or columns of a
single table.

Explanation: A metadata object rule was
violated by the identified join object. The right
attributes of a join must all resolve into a column
or the columns of a single database table.

User Response: Change the identified join
object so that its right attributes all resolve into a
column or the columns of a single table. Or
change the right attributes of the identified join
object so that they all comply with the metadata
rule stated. See the Setup and User’s Guide for
more information about metadata rules.

6364 At least one of the triplets for the
join_name join does not define a
valid operation. The data types of
the left and right attributes might
not be compatible with each
other, or they might not be
compatible with the operator.

Explanation: A metadata object rule was
violated by the identified join object. Each triplet
of a join object must define a valid operation.
The data types for the right and left attributes
must be compatible with each other taking into
account the operation specified.

User Response: Change the identified join
object so that each of its triplets define a valid
operation. See the Setup and User’s Guide for
more information about metadata rules.

6365 The model_name cube model does
not refer to one and only one facts
object.

Explanation: A metadata object rule was
violated by the identified cube model object. A
complete cube model must refer to one facts
object.

User Response: Change the identified cube
model object so that it refers to one facts object.
See the Setup and User’s Guide for more
information about metadata rules.

6366 The model_name cube model does
not refer to one or more
dimensions.

Explanation: A metadata object rule was
violated by the identified cube model object. A
complete cube model must refer to at least one
dimension object.

User Response: Change the identified cube
model object so that it refers to at least one
dimension object. Refer to the product
documentation for more information on
metadata rules.

152 IBM DB2 Cube Views: Setup and User’s Guide

6367 The cardinality of thejoin_name
facts-to-dimension join is not set
to either 1:1 or N:1.

Explanation: An optimization rule was violated
by the identified join object. The cube model will
not benefit from the Optimization Advisor
recommendations because the cardinality of the
facts-to-dimension join is not 1:1 or N:1.
Optimization will not be performed.

User Response: For the cube model to benefit
from the Optimization Advisor
recommendations, the cardinality for each of the
joins that go from the facts to a dimension object
must be set to either 1:1 or N:1. The cardinality
of the join on the facts attributes must be 1 or N,
and the cardinality of the dimension’s attributes
must be 1. See the Setup and User’s Guide for
more information about optimization rules.

6368 The join_name facts-to-dimension
join does not join the table for the
facts_name facts object to a
primary table for the
dimension_name dimension.

Explanation: An optimization rule was violated
by the identified join object. Considering the join
network formed by the dimension’s joins, you
must have at least one table (the primary table)
in which all joins radiating from this table have a
cardinality of N:1 or 1:1. In the cube model, the
joins from the facts to the dimension objects
must involve this primary table of a dimension.

User Response: In the cube model object, make
sure that all of the facts-to-dimension joins are
from the facts object to the primary table of each
dimension. See the Setup and User’s Guide for
more information about optimization rules.

6369 The dimension_name dimension
does not have a primary table, as
indicated by the join network
formed by the joins for the
dimension.

Explanation: An optimization rule was violated
by the identified dimension object. Considering
the join network formed by the dimension’s

joins, you must have at least one table in which
all joins radiating from this table have a
cardinality of N:1 or 1:1. Optimization will not be
performed if there is no such primary table for a
dimension.

User Response: Check the cardinalities of the
join objects used in the dimension. For
optimization to be performed the dimension
must have a primary table as described in the
optimization rules. See the Setup and User’s Guide
for more information about optimization rules.

6370 The join_name join involves
columns on which a referential
constraint is not defined.

Explanation: An optimization rule was violated
by the identified join object. You must define a
constraint on the columns that participate in the
join. If the join is a self-join, that is, the same set
of columns is used in both sides of the equality, a
primary key must be defined that matches the
set of columns. In all other cases, when the set of
columns of one side are different from the other
side of the join, a primary key must match the
columns of one side of the join, and a foreign
key must match the other set of columns and
reference the primary key. Optimization will not
be performed due to the missing constraint.

User Response: Create a constraint on the
columns that participate in the join. If you do not
want the standard constraint because of
performance implications, create informational
constraints, with query optimization enabled. See
the Setup and User’s Guide for more information
about optimization rules.

6371 A primary key is not defined
using the columns involved in the
join_name self-join.

Explanation: An optimization rule was violated
by the identified join object. You must define a
constraint on the columns that participate in the
join. If the join is a self-join, that is, the same set
of columns is used in both sides of the equality, a
primary key must be defined that matches the
set of columns. Optimization will not be
performed due to the missing constraint.

Appendix D. Messages 153

User Response: If the table has a primary key
defined, set the attributes of the self-join to
attributes representing the primary key columns
of the table. Otherwise, create a primary key on
the columns that participate in the self-join. See
the Setup and User’s Guide for more information
about optimization rules.

6372 A primary key is not defined
using the columns from one side
of the join_name join.

Explanation: An optimization rule was violated
by the identified join object. You must define a
constraint defined on the columns that
participate in the join. When the set of columns
of one side are different from the other side of
the join, a primary key must match the columns
of one side of the join, and a foreign key must
match the other set of columns and reference the
primary key. Optimization will not be performed
due to the missing constraint.

User Response: Create a primary key on the
columns of one side of the join. See the Setup and
User’s Guide for more information about
optimization rules.

6373 A foreign key is not defined
using the columns from one side
of the join_name join.

Explanation: An optimization rule was violated
by the identified join object. You must define a
constraint defined on the columns that
participate in the join. When the set of columns
of one side are different from the other side of
the join, a primary key must match the columns
of one side of the join, and a foreign key must
match the other set of columns and reference the
primary key. Optimization will not be performed
due to the missing constraint.

User Response: Create a foreign key constraint
between the primary key columns of the join and
the columns of the other side of the join. If you
do not want the standard constraint because of
performance implications, create informational
constraints with query optimization enabled. See
the Setup and User’s Guide for more information
about optimization rules.

6374 The foreign key using the
columns from one side of the
join_name join does not reference
the primary key using the
columns from the other side of
the join.

Explanation: An optimization rule was violated
by the identified join object. You must define a
constraint on the columns that participate in the
join. When the set of columns of one side is
different from the other side of the join, a
primary key must match the columns of one side
of the join, and a foreign key must match the
other set of columns and reference the primary
key. Optimization will not be performed due to
the missing constraint.

User Response: Create a foreign key constraint
between the primary key columns of the join and
the columns of the other side of the join. If you
do not want the standard constraint because of
performance implications, create informational
constraints with query optimization enabled. See
the Setup and User’s Guide for more information
about optimization rules.

6375 The cardinality of the join_name
join is not set to 1:1, N:1, or 1:N.

Explanation: An optimization rule was violated
by the identified join object. Optimization cannot
be performed if the join cardinality is M:N.

User Response: Set the join cardinality to 1:1,
1:N or N:1, depending on the constraints on
which the join is based. See the Setup and User’s
Guide for more information about optimization
rules.

6376 The cardinality of the join_name
self-join is not set to 1:1.

Explanation: An optimization rule was violated
by the identified join object. Optimization cannot
be performed if the join cardinality of a self-join
is not set to 1:1.

User Response: Set the cardinality of the
self-join to 1:1. See the Setup and User’s Guide for
more information about optimization rules.

154 IBM DB2 Cube Views: Setup and User’s Guide

6377 The cardinality of the join_name
join is not set to 1 for the side on
which the primary key is defined.

Explanation: An optimization rule was violated
by the identified join object. The join cardinality
must be 1 on the side in which a primary key is
defined and N on the side in which a foreign key
is defined. If the foreign key side has also a
primary key defined on it, a 1 must be used as
cardinality. Optimization cannot be performed if
this is not the case.

User Response: The join cardinality should be
set to 1 for the side on which the primary key is
defined. See the Setup and User’s Guide for more
information about optimization rules.

6378 The cardinality of the join_name
join is not set to N for the side on
which the foreign key is defined.

Explanation: An optimization rule was violated
by the identified join object. The join cardinality
must be 1 on the side which a primary key is
defined and N on the side which a foreign key is
defined. If the foreign key side has also a
primary key defined on it, a 1 must be used as
cardinality. Optimization cannot be performed if
this is not the case.

User Response: The join cardinality should be
set to N for the side on which the foreign key is
defined. See the Setup and User’s Guide for more
information about optimization rules.

6379 The cardinality of the join_name
join is not set to 1 for the side on
which both a primary key and a
foreign key are defined.

Explanation: An optimization rule was violated
by the identified join object. The join cardinality
must be 1 on the side which a primary key is
defined and 1 for the side on which both a
primary key and a foreign key are defined.
Optimization cannot be performed if this is not
the case.

User Response: The join cardinality should be
set to 1:1. See the Setup and User’s Guide for more

information about optimization rules.

6380 The attribute_name attribute, which
is referenced by the join_name
join, does not resolve to a
nonnullable SQL expression.

Explanation: An optimization rule was violated
by the identified join object. All attributes that
are used in the join must resolve to nonnullable
SQL expressions. Optimization cannot be
performed if a join references an attribute that
resolves to a nullable SQL expression.

User Response: Remove the reference to the
nullable attribute from the join. See the Setup and
User’s Guide for more information about
optimization rules.

6381 The join_name join does not have a
type of INNER JOIN.

Explanation: An optimization rule was violated
by the identified join object. The join type must
set to INNER JOIN. Optimization cannot be
performed.

User Response: Change the join to reference
only attributes that resolve to a single column.
See the Setup and User’s Guide for more
information about optimization rules.

6382 The attribute_name attribute
reference of join_name join does
not resolve to a single column
expression, which is a
requirement for it to participate in
a constraint.

Explanation: An optimization rule was violated
by the identified join object. DB2 constraints
must be applied on the attributes referenced by a
join. Constraints can only be applied on columns,
so the attributes referenced by a join must
resolve to single column in a table. Optimization
cannot be performed if this is not the case.

User Response: Change the join to reference
only attributes that resolve to a single column.
See the Setup and User’s Guide for more
information about optimization rules.

Appendix D. Messages 155

6383 The right attribute for the
relationship_name attribute
relationship is incorrectly a part
of the hierarchy_name hierarchy.

Explanation: A metadata object rule was
violated by the identified hierarchy object. When
an attribute relationship is referenced by a
hierarchy, the right attribute of that attribute
relationship cannot be a part of the referencing
hierarchy.

User Response: Alter the identified attribute
relationship or hierarchy object so that the right
attribute of the attribute relationship is no longer
a part of the identified hierarchy. See “General
metadata properties” on page 19 for more
information about metadata rules.

6384 The right attribute for the
relationship_name attribute
relationship is incorrectly a part
of the cubehierarchy_name cube
hierarchy.

Explanation: A metadata object rule was
violated by the identified cube hierarchy object.
When an attribute relationship is referenced by a
cube hierarchy, the right attribute of that
attribute relationship cannot be a part of the
referencing cube hierarchy.

User Response: Alter the identified attribute
relationship or cube hierarchy object so that the
right attribute of the attribute relationship is no
longer a part of the identified cube hierarchy. See
“General metadata properties” on page 19 for
more information about metadata rules.

6500 This operation cannot be
performed because the SQL
template for the attribute_name
attribute or measure still involves
references to other attributes,
measures, or columns. These
references must be dropped prior
to the execution of this operation.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in

the metadata catalog. The the SQL expression
template for the identified object involves
references to other attributes, measures, or
columns that must be removed from the
identified object prior to the execution of this
operation.

User Response: Before you drop the identified
object, change the identified object so that its
SQL expression template no longer references
attributes, measures, or columns. See the Setup
and User’s Guide for more information about
metadata rules and referential constraints
between metadata objects.

6501 The operation cannot be
performed because the
attribute_name attribute or measure
is referenced by another attribute
or measure.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified attribute or
measure is currently referenced by another
attribute or measure, so the identified attribute
or measure cannot be dropped.

User Response: Before you drop the identified
attribute or measure, change the referencing
objects so that they no longer reference the
identified attribute or measure. See the Setup and
User’s Guide for more information about
metadata rules and referential constraints
between metadata objects.

6502 The operation cannot be
performed because the
dimension_name dimension is
referenced by an aggregation that
is defined in a measure.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified dimension is
currently referenced by an aggregation of a
measure, so the identified dimension cannot be
dropped.

156 IBM DB2 Cube Views: Setup and User’s Guide

User Response: Before you drop the identified
dimension, change the referencing objects so that
they no longer reference the identified
dimension. See the Setup and User’s Guide for
more information about metadata rules and
referential constraints between metadata objects.

6503 The operation cannot be
performed for the object_name
object. A cube hierarchy must
reference attributes that are
already referenced by the
hierarchy that was used to derive
the cube hierarchy.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The problem occurred
because of one of the following situations:

v An attempt to remove an attribute from a
hierarchy was made where the attribute being
removed is still being used by a related cube
hierarchy.

v An attempt to add an attribute to a cube
hierarchy was made where the attribute being
added is not already being used by a related
hierarchy.

User Response: Perform one of the following
actions:

v Remove attributes from cube hierarchies before
removing the same attributes from related
hierarchies.

v Add attributes to hierarchies before adding the
same attributes to related cube hierarchies.

See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

6504 The operation cannot be
performed for the object_name
object. A cube hierarchy must
reference attribute relationships
that are already referenced by the
hierarchy that was used to derive
the cube hierarchy.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The problem occurred
because of one of the following situations:

v An attempt to remove an attribute relationship
from a hierarchy was made where the attribute
relationship being removed is still being used
by a related cube hierarchy.

v An attempt to add an attribute relationship to
a cube hierarchy was made where the attribute
relationship being added is not already being
used by a related hierarchy.

User Response: Perform one of the following
actions:

v Remove attribute relationships from cube
hierarchies before removing the same attribute
relationships from related hierarchies.

v Add attribute relationships to hierarchies
before adding the same attribute relationships
to related cube hierarchies.

See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

6505 The operation cannot be
performed because the
hierarchy_name hierarchy is
referenced by a cube hierarchy.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified hierarchy is
currently referenced by a cube hierarchy, so the
identified hierarchy cannot be dropped.

User Response: Before you drop the identified
hierarchy, change the referencing objects so that
they no longer reference the identified hierarchy.

Appendix D. Messages 157

See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

6506 The operation cannot be
performed for the object_name
object. A cube facts must
reference measures that are
already referenced by the facts
that was used to derive the cube
facts.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The problem occurred
because of one of the following situations:

v An attempt to remove a measure from a facts
was made, where the measure being removed
is still being used by a related cube facts.

v An attempt to add a measure to a cube facts
was made, where the measure being added is
not already being used by a related facts.

User Response: Perform one of the following
actions:

v Remove measures from cube facts before
removing the same measures from related
facts.

v Add measures to facts before adding the same
measures to related cube facts.

See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

6507 The operation cannot be
performed because the facts_name
facts object is referenced by a
cube facts object.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified facts is
currently referenced by a cube facts, so the
identified facts cannot be dropped.

User Response: Before you drop the identified
facts, change the referencing objects so that they

no longer reference the identified facts. See the
Setup and User’s Guide for more information
about metadata rules and referential constraints
between metadata objects.

6508 The operation cannot be
performed because the
hierarchy_name hierarchy is
referenced by a dimension.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified hierarchy is
currently referenced by a dimension, so the
identified hierarchy cannot be dropped.

User Response: Before you drop the identified
hierarchy, change the referencing objects so that
they no longer reference the identified hierarchy.
See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

6509 The operation cannot be
performed because the join_name
join is referenced by a facts
object.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified join is
currently referenced by a facts, so the identified
join cannot be dropped.

User Response: Before you drop the identified
join, change the referencing objects so that they
no longer reference the identified join. See the
Setup and User’s Guide for more information
about metadata rules and referential constraints
between metadata objects.

6510 The operation cannot be
performed because the
cube_dimension_namecube
dimension is referenced by a
cube.

Explanation: The requested operation cannot be
performed because it will violate a referential

158 IBM DB2 Cube Views: Setup and User’s Guide

constraint that exists between metadata objects in
the metadata catalog. The identified cube
dimension is currently referenced by a cube, so
the identified cube dimension cannot be
dropped.

User Response: Before you drop the identified
cube dimension, change the referencing objects
so that they no longer reference the identified
cube dimension. See the Setup and User’s Guide
for more information about metadata rules and
referential constraints between metadata objects.

6511 The operation cannot be
performed for the
object_nameobject. The cube
dimensions of a cube must be
derived from the dimensions
referenced by the cube model
from which the cube was derived.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The problem occurred
because of one of the following situations:

v An attempt to remove an dimension from a
cube model was made where the dimension
being removed is still being used by a related
cube’s cube dimension.

v An attempt to add a cube dimension to a cube
was made, where the dimension for the cube
dimension being added is not already being
used by a related cube model.

User Response: Perform one of the following
actions:

v Remove cube dimensions from cubes before
removing related dimensions from related
cube models.

v Add dimensions to cube models before adding
related cube dimensions to related cubes.

See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

6512 The operation cannot be
performed because the dimension
dimension_name is referenced by a
cube dimension.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified dimension is
currently referenced by a cube dimension, so the
identified dimension cannot be dropped.

User Response: Before you drop the identified
dimension, change the referencing objects so that
they no longer reference the identified
dimension. See the Setup and User’s Guide for
more information about metadata rules and
referential constraints between metadata objects.

6513 The operation cannot be
performed for the object_name
object. A cube dimension’s cube
hierarchy must be derived from
the hierarchy referenced by the
same dimension that was used to
derive the cube dimension.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The problem occurred
because of one of the following situations:

v An attempt to remove an hierarchy from a
dimension was made, where the hierarchy
being removed is still being used by a related
cube dimension’s cube hierarchy.

v An attempt to add a cube hierarchy to a cube
dimension was made, where the hierarchy for
the cube hierarchy being added is not already
being used by a related dimension.

User Response: Perform one of the following
actions:

v Remove cube hierarchies from cube
dimensions before removing related
hierarchies from related dimensions.

v Add hierarchies to dimensions before adding
related cube hierarchies to related cube
dimensions.

Appendix D. Messages 159

See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

6514 The operation cannot be
performed because the
cube_hierarchy_name cube hierarchy
is referenced by a cube
dimension.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified cube
hierarchy is currently referenced by a cube
dimension, so the identified cube hierarchy
cannot be dropped.

User Response: Before you drop the identified
cube hierarchy, change the referencing objects so
that they no longer reference the identified cube
hierarchy. See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

6515 The operation cannot be
performed for the object_name
object. A cube dimension’s cube
hierarchy must be derived from
the hierarchy referenced by the
same dimension that was used to
derive the cube dimension.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The problem occurred
because of one of the following situations:

v An attempt to remove an hierarchy from a
dimension was made, where the hierarchy
being removed is still being used by a related
cube dimension’s cube hierarchy.

v An attempt to add a cube hierarchy to a cube
dimension was made, where the hierarchy for
the cube hierarchy being added is not already
being used by a related dimension.

User Response: Perform one of the following
actions:

v Remove cube hierarchies from cube
dimensions before removing related
hierarchies from related dimensions.

v Add hierarchies to dimensions before adding
related cube hierarchies to related cube
dimensions.

See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

6516 The operation cannot be
performed because the join_name
join is referenced by a dimension.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified join is
currently referenced by a dimension, so the
identified join cannot be dropped.

User Response: Before You drop the identified
join, change the referencing objects so that they
no longer reference the identified join. See the
Setup and User’s Guide for more information
about metadata rules and referential constraints
between metadata objects.

6517 The operation cannot be
performed because the
attribute_name attribute is
referenced by a dimension.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified attribute is
currently referenced by a dimension, so the
identified attribute cannot be dropped.

User Response: Before you drop the identified
attribute, change the referencing objects so that
they no longer reference the identified attribute.
See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

160 IBM DB2 Cube Views: Setup and User’s Guide

6518 The operation cannot be
performed because the
attribute_name attribute is
referenced by a hierarchy.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified attribute is
currently referenced by a hierarchy, so the
identified attribute cannot be dropped.

User Response: Before you drop the identified
attribute, change the referencing objects so that
they no longer reference the identified attribute.
See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

6519 The operation cannot be
performed because the
relationship_name attribute
relationship is referenced by a
hierarchy.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified attribute
relationship is currently referenced by a
hierarchy, so the identified attribute relationship
cannot be dropped.

User Response: Before you drop the identified
attribute relationship, change the referencing
objects so that they no longer reference the
identified attribute relationship. See the Setup and
User’s Guide for more information about
metadata rules and referential constraints
between metadata objects.

6520 The operation cannot be
performed because the
dimension_name dimension is
referenced by a cube model.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified dimension is
currently referenced by a cube model, so the

identified dimension relationship cannot be
dropped.

User Response: Before you drop the identified
dimension, change the referencing objects so that
they no longer reference the identified
dimension. See the Setup and User’s Guide for
more information about metadata rules and
referential constraints between metadata objects.

6521 The operation cannot be
performed because the join_name
join is referenced by a cube
model.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified join is
currently referenced by a cube model, so the
identified join cannot be dropped.

User Response: Before you drop the identified
join, change the referencing objects so that they
no longer reference the identified join. See the
Setup and User’s Guide for more information
about metadata rules and referential constraints
between metadata objects.

6522 The operation cannot be
performed because object_name is
referenced by a facts object.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified object is
currently referenced by a facts, so the identified
object cannot be dropped.

User Response: Before you drop the identified
object, change the referencing objects so that they
no longer reference the identified object. See the
Setup and User’s Guide for more information
about metadata rules and referential constraints
between metadata objects.

Appendix D. Messages 161

6523 The operation cannot be
performed because the
attribute_name left attribute is
referenced by an attribute
relationship.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified attribute is
currently referenced by an attribute relationship,
so the identified attribute cannot be dropped.

User Response: Before you drop the identified
attribute, change the referencing objects so that
they no longer reference the identified attribute.
See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

6524 The operation cannot be
performed because the
attribute_name right attribute is
referenced by an attribute
relationship.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified attribute is
currently referenced by an attribute relationship,
so the identified attribute cannot be dropped.

User Response: Before you drop the identified
attribute, change the referencing objects so that
they no longer reference the identified attribute.
See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

6525 The operation cannot be
performed because the
attribute_name right attribute is
referenced by a join.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified attribute is
currently referenced by a join, so the identified
attribute cannot be dropped.

User Response: Before you drop the identified
attribute, change the referencing objects so that
they no longer reference the identified attribute.
See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

6526 The operation cannot be
performed because
theattribute_name left attribute is
referenced by a join.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified attribute is
currently referenced by a join, so the identified
attribute cannot be dropped.

User Response: Before you drop the identified
attribute, change the referencing objects so that
they no longer reference the identified attribute.
See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

6527 The operation cannot be
performed because the model_name
cube model is referenced by a
cube.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified cube model
is currently referenced by a cube, so the
identified cube model cannot be dropped.

User Response: Before you drop the identified
cube model, change the referencing objects so
that they no longer reference the identified cube
model. See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

162 IBM DB2 Cube Views: Setup and User’s Guide

6528 The operation cannot be
performed because the
cube_facts_name cube facts object is
referenced by a cube.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified cube facts is
currently referenced by a cube, so the identified
cube facts cannot be dropped.

User Response: Before you drop the identified
cube facts, change the referencing objects so that
they no longer reference the identified cube facts.
See the Setup and User’s Guide for more
information about metadata rules and referential
constraints between metadata objects.

6529 The operation cannot be
performed because the facts_name
facts object is referenced by a
cube model.

Explanation: The requested operation cannot be
performed because it will violate a referential
constraint that exists between metadata objects in
the metadata catalog. The identified facts is
currently referenced by a cube model, so the
identified facts cannot be dropped.

User Response: Before you drop the identified
facts, change the referencing objects so that they
no longer reference the identified facts. See the
Setup and User’s Guide for more information
about metadata rules and referential constraints
between metadata objects.

7001 There are no cubes defined for
the model_name cube model.

Explanation: There are no cubes defined for the
cube model.

User Response: If you want to optimize for
extract queries that read data from the cube
model into a MOLAP cube, you must define
cubes that represent your MOLAP cubes. You
cannot optimize for extract queries without
defining one or more cubes.

7002 The model_name cube model does
not exist.

Explanation: A cube model with the name that
you specified is not defined.

User Response: Verify that the correct cube
model and schema names are specified. Names
and schemas are case sensitive. Use the OLAP
Center to view the list of existing cube models.

7003 Table space table_space_name was
not found.

Explanation: A table space with this name is
not defined.

User Response: Verify that the correct
tablespace name is specified.

7004 The Optimization Advisor is
unable to determine
recommendations that fit in the
disk space limit.

Explanation: You specified a certain limit for
how much disk space can be used for optimizing
this cube model. The advisor could not produce
recommendations that use less or the same
specified amount of disk space.

User Response: Specify a larger disk space limit
and run the Optimization Advisor wizard again.

7005 Table space table_space_name
cannot be used to store the
summary tables.

Explanation: The table space does not have the
correct data storage type that is required to store
table data. The table space must be a REGULAR
type tablespace. LONG, USER TEMPORARY, and
SYSTEM TEMPORARY table spaces cannot be
used to store summary tables.

User Response: Specify a REGULAR table space
to store the summary tables.

Appendix D. Messages 163

7006 Table space table_space_name
cannot be used to store the
indexes.

Explanation: The tablespace specified does not
have the correct data storage type required to
store index data. The tablespace must be a
REGULAR or LONG type tablespace. USER
TEMPORARY and SYSTEM TEMPORARY table
spaces cannot be used to store the indexes.

User Response: Specify a REGULAR or LONG
tablespace to store the indexes.

7007 Optimization validation of the
model_name cube model failed.

Explanation: The cube model and associated
metadata objects violate one or more of the
metadata object rules required for optimization.
Optimization will not be performed.

User Response: Optimization cannot be
performed unless the cube model and associated
metadata objects conform to the metadata object
rules for optimization. See the Setup and User’s
Guide for more information about optimization
rules.

7008 The cube model does not have
any dimensions that have
optimizable hierarchies.

Explanation: Optimization will not be
performed because the Optimization Advisor
cannot find dimensions with hierarchies that can
be optimized.

User Response: Ensure that the cube model has
at least one dimension that has a nonrecursive
hierarchy.

7200 The recommended summary
tables will use deferred refresh
because the cube model contains
one or more nondistributive
measures.

Explanation: The refresh immediate option was
selected for the summary tables. However,
summary tables cannot be refreshed immediately

if there are nondistributive measures defined in
the cube model. Distributive measures use
simple aggregation functions such as SUM and
COUNT that can be aggregated from any
intermediate values. Nondistributive measures
use more complex aggregation functions, such as
STDDEV, and they must be aggregated from the
base tables.

User Response: If it is not necessary to
maintain the summary tables synchronously with
the base tables, no action is required. If the
summary tables must be maintained
synchronously with the base tables, you need to
change the metadata so that only distributive
measures are defined.

7201 The table_name recommended
summary table will use deferred
refresh because one or more
nullable attributes were found as
columns in the fullselect of this
recommended summary table.

Explanation: The refresh immediate option was
selected for the summary tables. However, the
recommended summary table contains one or
more attributes that are used as nullable columns
in the summary table’s fullselect. Using nullable
columns in a summary table’s fullselect can
cause slow immediate refresh performance. The
summary table was set to refresh deferred to avoid
this performance problem.

User Response: To change the nullability of an
attribute, you must change the attribute’s SQL
expression or change the nullability of the DB2
table columns used by the attribute or both.
These changes are not usually recommended
because they might be difficult to implement.

7202 The table_name table does not have
statistics.

Explanation: The Optimization Advisor cannot
find valid table statistics values for the specified
table.

User Response: Use the RUNSTATS command
to create statistics for the specified table. Then
run the Optimization Advisor wizard again.

164 IBM DB2 Cube Views: Setup and User’s Guide

7400 The summary tables are defined
using the ROLLUP operator
because the cube model contains
one or more nondistributive
measures.

Explanation: Measures are either distributive or
nondistributive. Distributive measures use simple
aggregation functions such as SUM and COUNT
that can be aggregated from any intermediate
values. Nondistributive measures use more
complex aggregation functions, such as STDDEV,
and they must be aggregated from the base
tables. To avoid the cost of aggregating
nondistributive measures from the base tables,
the summary tables are defined using the
ROLLUP operator, which pre-aggregates the
nondistributive measures.

User Response: No action is required.

7401 The table_name summary table is
recommended. It is estimated to
have rows rows, a n MB table size,
and a n MB index size.

Explanation: This message is a description of
the recommended summary table, including the
estimated row count, estimated disk space, and
estimated disk space that is used for indexes.

User Response: No action is required.

7402 There are n summary tables that
do not fit in the specified disk
space limit. They have a
cumulative estimated size of n
MB

Explanation: This message provides information
about the recommended summary tables that do
not fit in the disk space limit.

User Response: To view these summary tables
in the recommendations, run the Optimization
Advisor again with a larger specified disk space
limit.

7403 The recommendations include
optimizations for the cube_name
cube.

Explanation: Summary tables are recommended
for the specified cube. Some queries for this cube
will be optimized.

User Response: No action is required.

7404 The recommendations do not
include optimizations for the
cube_name cube.

Explanation: Summary tables are not
recommended specifically for this cube. Queries
specific to this cube are not likely to show
performance improvement.

User Response: If summary tables are not
included in the recommendations because of a
disk space limitation, run the Optimization
Advisor again with a larger specified disk space
limit. The recommendations might include one or
more summary tables to optimize queries for this
cube.

7405 The specified time limit ran out
while the Optimization Advisor
was determining the
recommendations.

Explanation: The Optimization Advisor made a
recommendation. If more time is allowed, the
Optimization Advisor might be able to make a
better recommendation because it can perform
additional analysis. Running the Optimization
Advisor longer does not guarantee better results.

User Response: You can run the Optimization
Advisor again with more time specified, or you
can create the recommended summary tables and
see if the performance is acceptable.

7406 The dimension_name dimension
does not have any hierarchies that
can be optimized by the
Optimization Advisor.

Explanation: The Optimization Advisor cannot
optimize for recursive hierarchies. The specified

Appendix D. Messages 165

dimension does not contain any hierarchies that
can be optimized so the Optimization Advisor
ignores this dimension. Queries that refer to
attributes from this dimension are not optimized.

User Response: No action is required. Queries
that use attributes from this dimension will not
have any performance improvement.

7407 The recommended summary
tables optimize for n percent of
the slices in the cube model.
Queries that run against the
optimized slices should have
improved performance.

Explanation: SQL queries access particular slices
in the cube model. One way to analyze
performance improvement is to consider what
portion of the slices that can be queried will be
improved. If the cube model uses distributive
measures, queries that access slices that are
logically above the summary table slice will have
improved performance.

For example, there are 30 possible slices in a
cube model that has a Time dimension with the
hierarchy [All-Year-Quarter-Month-Day] and a
Region dimension with the hierarchy
[All-Country-Region-State-City-Store]. You can
calculate the number of possible slices by
multiplying the number levels in the dimension
hierarchies together. If the recommended
summary table optimizes for the Month-City
slice, then all slices at or above that slice are
optimized. In this example, 20 of the 30 possible
slices, or 67% (20/30) of the slices are optimized.
There will never be 100% coverage because that
will require duplicating the base tables in the
summary tables. Typically, the lowest slices are
less beneficial to optimize for because they are
not very different from the base tables.

User Response: No action is required. If the
percentage is low, you can run the Optimization

Advisor wizard again with a larger specified disk
space limit.

7408 Reading cube model metadata
from the database.

Explanation: The Optimization Advisor is
reading the metadata that describes the cube
model. The metadata contains information that
significantly affects the optimization
recommendations.

User Response: No action is required.

7409 Selecting which aggregations to
include in the summary tables.

Explanation: The Optimization Advisor is
testing potential summary table configurations to
determine which configuration is optimal for the
specified criteria.

User Response: No action is required.

7410 Sampling data from cube model.

Explanation: The Optimization Advisor is
reading a subset of data from the fact and
dimension tables so that it can estimate the size
of the summary table. Sampling might occur
multiple times as the Optimization Advisor
considers potential summary tables.

User Response: No action is required.

7411 Defining indexes for
recommended summary tables.

Explanation: The Optimization Advisor
determined the recommended summary tables
and is selecting indexes to build for the summary
tables.

User Response: No action is required.

OLAP Center messages

166 IBM DB2 Cube Views: Setup and User’s Guide

10000 OLAP Center is unable to retrieve
any database names.

Explanation: An error occurred retrieving the
list of database names from DB2.

User Response: Check that OLAP Center is
installed correctly. If the problem persists, contact
IBM Software Support.

10001 Type a user name.

Explanation: The User name field is empty.

User Response: Type a user name in the User
name field.

10002 Type a password.

Explanation: The Password field is empty.

User Response: Type a password in the
Password field.

10003 The attribute attribute_name is
selected but the relationship type
is not specified. Click the current
relationship type value and select
a new relationship type.

Explanation: With the related attributes
window, you can specify which attributes will be
included in the levels of the hierarchy. Each
attribute that is selected must also have a
relationship to describe how the attribute relates
to the main hierarchy attribute. This relationship
type will be used to build an attribute
relationship in the database between the
hierarchy attribute and selected attribute.

User Response: Select one of the valid
relationship types for the attribute by clicking in
the Relationship type field next to the selected
attribute.

10004 Cannot parse the attribute entered
in the SQL expression.

Explanation: The SQL expression that was
entered refers to an attribute that is neither valid
in the given context nor present in the database.

User Response: Ensure that the SQL expression
refers to only those attributes that appear in the
Data section of the SQL Expression Builder.

10005 The object_name object was
successfully exported to the
file_name file.

Explanation: Export was successful.

User Response: No action is required.

10006 Enter the file name to export the
metadata objects to.

Explanation: The export utility writes the
exported metadata objects in to the file name
entered by the user.

User Response: Type a file name in the File
name field.

10007 Select a cube or a cube model to
export.

Explanation: The export window can export a
cube or a cube model.

User Response: Select an object to export.

10008 Enter a unique name for the
object that you are creating.

Explanation: In the SQL Expression Builder, the
Name field of the attribute or measure being
created is empty.

User Response: Type an object name in the
Name field. The object name must be unique in
the name space of the attributes and measures.

10009 Enter an SQL expression for the
object.

Explanation: The SQL expression field of the
object is empty.

User Response: Enter an SQL expression for the
object.

Appendix D. Messages 167

10010 The column_name column is not
qualified with a table name.

Explanation: The column name entered in the
SQL expression is not qualified with a table
name.

User Response: Ensure that the column name in
the SQL expression is qualified with a table
name using ’.’as a separator.

10011 The column_name column is not
qualified with a schema name.

Explanation: Column references in the SQL
expression must be qualified with both a table
name and a schema name separated by ’.’.

User Response: Ensure that the column name in
the SQL expression is qualified with both a table
name and a schema name separated by ’.’.

10012 The first element in an
aggregation script cannot be a
dimension.

Explanation: An aggregation script was created
with a dimension as the first element.

User Response: Use an aggregation function as
the first element in the aggregation script.

10013 Select an existing measure or
enter an SQL expression as the
second parameter for the
function_name multiparameter
function in the aggregation.

Explanation: When you use a multiparameter
function in the aggregation script, the first
parameter is defined as the measure that the
aggregation is associated with. For the second
parameter, select an existing measure or enter an
SQL expression.

User Response: Enter a measure or an SQL
expression as a second parameter.

10014 The function_name aggregation
function has no matching
dimensions.

Explanation: Each aggregation function in the
aggregation script must be applied to at least one
dimension.

User Response: Ensure that each aggregation
function in the aggregation script is applied to at
least one dimension.

10015 Closing parenthesis is missing for
the object_name object.

Explanation: In OLAP Center, attributes,
measures or columns specified in an expression
should be enclosed by @Attribute(), @Measure()
or @Column() respectively.

User Response: Enter a closing parenthesis for
the object.

10016 Referring to the object_name object
in the SQL expression creates an
invalid reference loop.

Explanation: The object refers to itself in its
SQL expression.

User Response: Ensure that the objects in the
SQL expression do not create reference loops.

10017 No errors were found. The SQL
expression is valid.

Explanation: The SQL expression is valid.

User Response: No action is required.

10018 No errors were found. The
aggregation script is valid.

Explanation: The set of aggregations in the
aggregation script is valid.

User Response: No action is required.

10020 Type a name.

Explanation: The Name field of the object is
empty.

168 IBM DB2 Cube Views: Setup and User’s Guide

User Response: Type an object name in the
Name field.

10021 Type a schema name.

Explanation: The Schema field is empty.

User Response: Type a schema name in the
Schema field.

10022 Type a business name.

Explanation: The Business name field is empty.

User Response: The business name can be
displayed in business intelligence applications to
identify the object to an end user. Type a
business name in the Business name field.

10023 Select at least one attribute for the
hierarchy.

Explanation: No attributes are specified for the
hierarchy.

User Response: Select at least one attribute for
the hierarchy.

10024 Select at least one measure for the
cube facts.

Explanation: No measures are specified for the
cube facts.

User Response: Select at least one measure for
the cube facts.

10025 Select at least one attribute to
include in the cube hierarchy.

Explanation: No attributes are specified in the
cube hierarchy.

User Response: Select at least one attribute to
include in the cube hierarchy.

10026 Select at least one dimension in
the cube.

Explanation: No dimensions were specified in
the cube.

User Response: Select at least one dimension
and then click the [...] button to specify details
for the cube dimension.

10027 One or more dimensions which
currently exist in the cube have
been cleared. Click Yes to delete
the cube dimensions. Click No to
return to the window, then click
Cancel to close the window
without saving the changes.

Explanation: One or more dimension selections
have been cleared. The corresponding cube
dimensions will be deleted from the cube.

User Response: Click Yes in the window to
remove the cube dimensions from the cube. Click
No to keep the cube dimensions and then click
Cancel to close the window without saving.

10028 An attribute relationship cannot
be defined with a many:many
cardinality if the functional
dependency check box is selected.

Explanation: An attribute relationship cannot be
defined with both cardinality many:many and
functional dependency selected.

User Response: Select a different cardinality for
the attribute relationship or clear the functional
dependency checkbox.

10029 Select a left attribute and a right
attribute for the attribute
relationship.

Explanation: An attribute relationship cannot be
defined if both left and right attributes are not
selected.

User Response: Select both left and right
attributes.

Appendix D. Messages 169

10030 The same attribute cannot be
selected for both the left and right
attribute in an attribute
relationship.

Explanation: An attribute relationship cannot be
defined if the left and right attributes are
identical.

User Response: Select different left and right
attributes.

10031 An object with the name and
schema specified already exists in
the database. Type a different
name.

Explanation: An object of the type being created
or modified already exists in the database with
the same name and schema specified.

User Response: Enter a unique name for the
object.

10032 Specify at least one attribute pair.

Explanation: A join must have at least one
attribute pair.

User Response: Specify at least one attribute
pair.

10033 Duplicate attribute pairs cannot
be created.

Explanation: An attribute pair already exists
that matches the new selections.

User Response: Select different left and right
attributes.

10034 Select at least one table.

Explanation: No tables have been selected.

User Response: Select at least one table in order
to proceed.

10035 Select or create new joins to join
all of your selected tables.

Explanation: No joins were selected.

User Response: Select or create new joins that
will join all of your selected tables.

10036 Select at least one attribute.

Explanation: No attributes were selected.

User Response: Select at least one attribute.

10037 Select a join to join the dimension
with the facts object.

Explanation: No joins were selected.

User Response: Select one join which will join
your dimension with the facts object.

10038 Specify only one join between
two given tables. The join_name1
join and the join_name2 join both
join the same two tables.

Explanation: More than one join was selected
for the same pair of tables.

User Response: Select only one join for each
pair of tables.

10039 All selected tables must be joined.
Select a join for the table_name
table.

Explanation: All selected tables must be joined.

User Response: Select a join for the specified
table.

10040 The number of selected tables
does not correspond to the
number of selected joins. Verify
that there are no join loops and
that all of the tables are joined.

Explanation: All selected tables must be joined.

User Response: Ensure that there are no join
loops and that all of the tables are joined.

170 IBM DB2 Cube Views: Setup and User’s Guide

10042 Select at least one measure.

Explanation: No measures were specified.

User Response: Select at least one measure.

10043 Select a table column.

Explanation: A table column was not specified.

User Response: Select a column.

10044 Select an SQL expression.

Explanation: An SQL expression was not
specified.

User Response: Click the Build Expression
button to build your expression.

10045 An aggregation script was not
specified.

Explanation: An aggregation script was not
specified.

User Response: Click the Build Script button to
build your aggregation script.

10046 Select a measure before opening
the expression builder.

Explanation: A measure was not selected.

User Response: Select a measure from the table.

10047 Select a measure before opening
the Aggregation Script Builder.

Explanation: A measure was not selected.

User Response: Select a measure.

10048 The Aggregation Script Builder
cannot be launched for the
measure_name measure because the
model_name cube model does not
have at least one dimension.

Explanation: An aggregation script cannot be
specified if the cube model does not have at least
one dimension.

User Response: Add dimensions to the cube
model before specifying an aggregation script.

10049 To edit the expression, specify an
attribute.

Explanation: An attribute is not selected.

User Response: Select an attribute.

10050 The metadata will be refreshed
from the database. Any changes
that were being made when the
error occurred will be lost.

Explanation: An error occurred calling the DB2
stored procedure.

User Response: Click OK to refresh the
metadata displayed byOLAP Center. Any
changes that were being made when the error
occurred will be lost. The objects displayed in
OLAP Center will be refreshed with the
corresponding objects in the database allowing
the user to continue working.

10051 The model_name cube model
cannot be validated for
optimization. DB2 returned the
following message:message.

Explanation: OLAP Center cannot start the
Optimization Advisor wizard for the selected
cube model because the selected cube model did
not pass the validation that was performed by
the stored procedure API.

User Response: Check the stored procedure API
documentation for the cube model validation
rule. Follow the instructions from the return
message from DB2.

Appendix D. Messages 171

10052 Some of the loaded attributes or
measures map to column_names
columns that no longer exist in
the database. Resolve the problem
either by restoring the tables to
which the columns belong or by
dropping the invalid attributes or
measures or both.

Explanation: This message appears when you
start OLAP Center or after you click View —>
Refresh. It appears because a table that the
loaded attributes or measures map to was
dropped or renamed.

User Response: Correct the problem in one of
the following ways:

v Restore the table that was deleted or renamed.

v Map the attributes/measures to a table that
does exist in the database.

v Drop the attribute/measures that map to the
columns that do not exist.

10053 The model_name cube model
optimization validation returned a
warning. DB2 returned the
following message:message

Explanation: OLAP Center attempted to
validate the cube model before starting the
Optimization Advisor and DB2 returned a
warning. The warning might indicate that you
have a cube model that cannot be optimized. For
example, your cube model might contain views
that reference tables that do not have constraints
defined between them.

User Response: Check the message returned by
DB2 and decide if you want to continue running
the Optimization Advisor wizard.

10060 The cube model is not complete.
Before a cube can be created, the
cube model must contain a facts
object, at least one dimension,
and at least one hierarchy for each
dimension.

Explanation: The cube model is not in a valid
state for a cube to be created.

User Response: Modify the cube model so that
it has a facts object and at least one dimension.
Ensure that each dimension has at least one
hierarchy.

10061 When a cube model is dropped,
its dimensions are removed and
its facts are dropped. The
removed dimensions will
continue to be available from the
All Dimensions folder. Are you
sure you want to drop the
model_name cube model?

Explanation: Drop confirmation message.

User Response: Ensure the selected object is the
one you want to drop and click Yes. If you do
not want to drop the selected object, click No.

10062 When a dimension is dropped, its
hierarchies and corresponding
cube dimensions are also
dropped. Are you sure you want
to drop the dimension_name
dimension?

Explanation: Drop confirmation message.

User Response: Ensure that the selected object
is the one you want to drop and click Yes. If you
do not want to drop the selected object, click No.

10063 When a cube is dropped, its cube
dimensions, cube hierarchies, and
cube facts are also dropped. Are
you sure you want to drop the
cube_name cube?

Explanation: Drop confirmation message.

User Response: Ensure the selected object is the
one you want to drop and click Yes. If you do
not want to drop the selected object, click No.

172 IBM DB2 Cube Views: Setup and User’s Guide

10064 When a cube dimension is
dropped, its cube hierarchies are
also dropped. Are you sure you
want to drop the
cube_dimension_name cube
dimension?

Explanation: Drop confirmation message.

User Response: Ensure the selected object is the
one you want to drop and click Yes. If you do
not want to drop the selected object, click No.

10065 Are you sure you want to drop
object_name?

Explanation: Drop confirmation message.

User Response: Ensure the selected object is the
one you want to drop and click Yes. If you do
not want to drop the selected object, click No.

10066 When a dimension is removed, all
of the corresponding cube
dimensions are removed from
their cubes. Are you sure you
want to remove the
dimension_name dimension from
object_name?

Explanation: Remove dimension confirmation
message.

User Response: Ensure that the selected object
is the one that you want to remove and click Yes.
If you do not want to remove the selected object,
click No.

10067 The file with the name file_name
already exists. Do you want to
overwrite its contents?

Explanation: Overwrite file confirmation
message.

User Response: Ensure that you want to
overwrite the contents of the file name that you
entered.

10068 Unable to determine the data type
for the object with the object_name
name and schema_name schema.
The database returned the
following information: message.

Explanation: For the specified object, OLAP
Center cannot determine the source data type or
aggregated data type.

User Response: Ensure that the SQL expression
for the specified object is correct. If you cannot
resolve the problem, contact IBM Software
Support.

10069 Unable to determine the source
data type for the measure with the
measure_name name and
schema_name schema.

Explanation: For the specified measure, OLAP
Center cannot determine the source data type
because the specified measure has an invalid
source expression. A measure can have an
invalid source expression when the None
aggregation setting is applied to it because the
measure is validated with aggregations of
referenced measures rather than as a
self-contained expression.

User Response: You can perform one of the
following actions:

v Alter the source expression of the specified
measure so that it validates correctly with the
None aggregation setting.

v Do not use the specified measure in your
expression.

10070 When a facts object is dropped,
its measures are also dropped. Are
you sure you want to drop the
facts_name facts?

Explanation: Drop confirmation message.

User Response: Ensure the selected object is the
one you want to drop and click Yes. If you do
not want to drop the selected object, click No.

Appendix D. Messages 173

10071 All the selected objects will be
dropped from the database. Do
you want to drop these objects?

Explanation: More than one object was selected
and the drop option was selected.

User Response: Ensure that the selected objects
are the ones that you want to drop and click Yes.
If you do not want to drop the selected objects,
click No.

10072 Some of the selected objects
cannot be dropped. These objects
remain in the database.

Explanation: OLAP Center cannot drop all of
the selected objects. This is probably because
some of the selected objects are referenced by
other objects in the database and dropping the
selected object makes the referencing object
invalid.

User Response: No action is required.

10080 Object of type type not found
during the second pass of XML.

Explanation: An object referenced in the XML
being read could not be located.

User Response: Ensure that the XML file being
imported is correctly formed. If this error occurs
while starting OLAP Center, contact IBM
Software Support.

10084 An object with the name
object_name in schema schema_name
already exists. The object cannot
be created. Type a unique name,
schema, or both for the new
object.

Explanation: OLAP Center attempted to create
a new object, but an object of this type with the
same name and schema already exists.

User Response: Enter a different name, schema,
or both for the object being created.

10085 An object of name object_name in
schema schema_name already
exists. The object cannot be
renamed. Type a unique name,
schema, or both for the object
being renamed.

Explanation: OLAP Center attempted to rename
an object, but an object of this type with the
same name and schema already exists.

User Response: Enter a different name, schema,
or both for the object being renamed.

10086 A database connection could not
be made. DB2 returned: message.

Explanation: OLAP Center could not connect to
the database. Some error information provided
by DB2 is included in the message.

User Response: Read the text returned by DB2
and correct the problem.

10087 The object_name1 metadata object
cannot be dropped because it is
referred to by the object_name2
object of type type.

Explanation: The selected metadata object
cannot be dropped because it is in use by at least
one other metadata object.

User Response: Remove the object from any
other metadata objects it is a part of, then try
dropping the object again.

10088 An error occurred registering the
DB2 driver with the JDBC Driver
Manager. A database connection
could not be established. The
following information was
returned: message.

Explanation: Before connecting to a DB2
database, OLAP Center has to register the JDBC
driver that it will use with the Driver Manager.
An error occurred during the JDBC driver
registration.

User Response: Check the DB2 installation to
make sure that the db2java.zip and db2jcc.jar

174 IBM DB2 Cube Views: Setup and User’s Guide

files are installed. Ensure that Java and any JDBC
components are installed correctly. Read the
information returned in the message to help
resolve the problem.

10089 An error occurred while accessing
the database. The database
returned the following
information: \n SQL State:
message\n SQL Error Code: code\n
SQL Message: SQL_message

Explanation: OLAP Center application called
DB2 using the API stored procedure. The execute
command threw an SQLException that could not
be handled by OLAP Center.

User Response: Use the additional error
information provided in the message to resolve
the problem. If you cannot resolve the problem,
contact IBM Software Support.

10090 Executing the DB2 stored
procedure caused a false return
code. No error information was
found in the returned XML
document. Contact IBM Software
Support.

Explanation: The OLAP Center application
called DB2 using the API stored procedure. The
execute command returned false, but there was
no error information in the XML document
returned by the stored procedure.

User Response: It is possible that the operation
completed successfully, but you should report
this problem to IBM Software Support.

10091 An error occurred while
processing a database API call.
The following information was
returned: \n SQL State:message\n
SQL Error Code: code\n
Operation:operation\n Status ID:
ID\n Status Text: text

Explanation: The OLAP Center stored
procedure API call had an error while executing
some OLAP Center changes.

User Response: See the information contained
in the message. If the problem cannot be
resolved, contact IBM Software Support.

10092 An error occurred while parsing
the XML returned by the database
API call. The following
information was returned: message.

Explanation: The OLAP Center stored
procedure API call returned XML that was
incomplete or badly formed. OLAP Center could
not read the returned XML.

User Response: Use the information that is
contained in the message to resolve the problem.
If the problem cannot be resolved, contact IBM
Software Support.

10093 The file_name file does not exist.

Explanation: The specified file does not exist.

User Response: Specify a file that exists.

10094 An I/O error occurred reading the
file_name file. The following
system information was returned:
message.

Explanation: An I/O error occurred while
reading from a file.

User Response: Check the system information
to try to resolve the problem or specify a
different file.

10095 An I/O error occurred writing to
the file_name file. The following
system information was returned:
message.

Explanation: An I/O error occurred while
writing to a file.

User Response: Check the system information
to try to resolve the problem or specify a
different file.

Appendix D. Messages 175

10096 A query to retrieve the database
schema failed. The database
returned the following
information: message.

Explanation: A query to retrieve the database
schema failed.

User Response: Check the database information
to resolve the problem.

10097 A query to retrieve a schema’s
tables failed. The database
returned the following
information: message.

Explanation: A query to retrieve a schema’s
tables failed.

User Response: Check the database information
to resolve the problem.

10098 A query to retrieve a table’s
columns failed. The database
returned the following
information: message.

Explanation: A query to retrieve a table’s
columns failed.

User Response: Check the database information
to resolve the problem.

10099 A commit of a DB2 connection
failed. The database returned the
following information: message.

Explanation: A commit of a DB2 connection
failed.

User Response: Check the database information
to resolve the problem.

10100 A rollback of a DB2 connection
failed. The database returned the
following information: message.

Explanation: A rollback of a DB2 connection
failed.

User Response: Check the database information
to resolve the problem.

10101 Object_name cannot be dropped
because it is the last cube
dimension in the cube_name cube.
A cube must have at least one
cube dimension to be valid.

Explanation: OLAP Center attempted to drop
the last cube dimension in a cube.

User Response: A cube must have at least one
cube dimension to be valid. Do not attempt to
drop the last cube dimension from a cube.

10102 Object object_name1 of type type1
refers to object object_name2 or
type type2 which could not be
found.

Explanation: An object within the XML file
being read refers to an object which cannot be
found. If the error occurs during import, the
object being referred to might not exist within
the file being imported.

User Response: If an import is being
performed, ensure the file contains all of the
objects needed for the import to succeed. If the
error occurs while starting OLAP Center, contact
IBM Software Support.

10200 The file being imported does not
have a UTF-8 encoding. Select a
file with UTF-8 encoding.

Explanation: OLAP Center can import files only
in the UTF-8 encoding.

User Response: Import a file with the
supported encoding.

10201 Enter a file name for the SQL
script used to refresh summary
tables.

Explanation: The Optimization Advisor wizard
creates an SQL script to refresh summary tables
when the Deferred update option is selected.
This script should be saved in a file and run to
refresh the summary tables.

User Response: Enter a file name to save the
SQL script to.

176 IBM DB2 Cube Views: Setup and User’s Guide

10202 Enter a file name for the SQL
script used to create summary
tables.

Explanation: The Optimization Advisor wizard
generates an SQL script to create summary
tables. This script should be saved in a file and
run to create the summary tables.

User Response: Enter a file name to save the
SQL script to.

10203 The selected measure cannot have
None as its aggregation setting.
Only calculated measures which
refer exclusively to other
measures in their expressions can
specify the None aggregation
setting.

Explanation: The None aggregation setting can
only be selected for measures that only use
expressions which refer exclusively to other
measures.

User Response: Select a different aggregation.

10204 No dimensions exist. Create a
new dimension to add to the cube
model.

Explanation: No dimensions exist. Create a new
dimension to add to the cube model.

User Response: Create a new dimension,
instead of adding a dimension.

10205 There are no dimensions to add
because all of the existing
dimensions are already included
in the cube model.

Explanation: All existing dimensions have been
added to the cube model.

User Response: No action is required.

10206 You have changed your selected
options. To see new
recommendations from the
Optimization Advisor wizard, you
must run the Optimization
Advisor wizard process again. If
you do not run the Optimization
Advisor wizard process again, you
will see the recommendations
created for the earlier options. Do
you want to run the Optimization
Advisor wizard process again?

Explanation: You have changed the selected
options after running the Optimization Advisor
wizard process. To view updated
recommendations for the summary tables, run
the Optimization Advisor wizard process again.
If you do not run the Optimization Advisor
wizard process again, you will see the
recommendations created for the earlier options.

User Response: Click Yes to run the
Optimization Advisor wizard process. Click No
if you do not want to run the Optimization
Advisor wizard process again.

10207 No dimension table has been
detected.

Explanation: No dimension table was detected.

User Response: Ensure that referential integrity
constraints are correctly set.

10208 Object_names objects that OLAP
Center cannot directly display
exist in the database. These
objects might cause future
problems with OLAP Center.
Click Yes to drop the objects or
click No to keep the objects in the
database.

Explanation: OLAP Center detected a number
of objects (such as hierarchies or facts) in the
database that it cannot display directly. These
objects might be preexisting or might be created
after importing metadata. These objects might
cause name clash and reference problems in
OLAP Center in the future. Unless you have a

Appendix D. Messages 177

good reason to keep these objects, it is
recommended that you choose to drop them.

User Response: Click Yes to drop the objects or
click No to keep the objects in the database.

10209 Unexpected error occurred during
the import operation. Check the
input XML file for errors.

Explanation: During import, the stored
procedure API returned a warning with nothing
in the output XML.

User Response: Ensure that the input XML
metadata complies with the format defined in
the OLAP metadata schema and the XML file
defines all the metadata objects referred in it.

10210 Import operation failed. The
stored procedure API returned the
following message: message.

Explanation: During import process, the stored
procedure API returned an error message.

User Response: Resolve the problem using the
information provided in the message. If the
problem cannot be resolved, contact IBM
Software Support.

10211 The nonnumeric measure
measure_name cannot use the
function_name aggregation function
because that function expects a
numeric argument.

Explanation: Measures with nonnumeric data
types cannot have numeric aggregation
functions. You can only only select MIN, MAX,
or COUNT as aggregation functions for
nonnumeric data.

User Response: Choose a different aggregation
function.

10212 Unable to read the objects from
the input XML file. Check the
input XML file for errors.

Explanation: OLAP Center failed to read the
objects from the input XML file.

User Response: Ensure that the input XML
metadata complies with the format defined in
the OLAP metadata schema and the XML file
defines all of the metadata objects referred in it.

10213 The file_name input XML file does
not exist in the specified directory.

Explanation: The input XML file does not exist
in the specified directory.

User Response: Ensure that the input XML file
exists in the specified directory.

10214 The object_name object contained
in the import file refers to the
column_name column that does not
exist in the database. Ensure that
the tables and columns referred to
by the metadata objects in the
import file exist before importing
the file.

Explanation: The import XML file contains
objects that refer to tables and columns that do
not exist in the database.

User Response: Ensure that the tables referred
to by the objects in the import XML file exist in
the database before importing the file.

10215 OLAP Center cannot run the SQL
script recommended by the
Optimization Advisor wizard. The
database returned the following
information: message.

Explanation: OLAP Center cannot execute the
SQL script recommended by the Optimization
Advisor wizard. You might not have sufficient
privileges to execute the SQL script.

User Response: Ensure that you have the
correct authorities to run the Optimization
Advisor recommendations. The required
authorities are described in the topic on
″Authorities and privileges″ in the OLAP Center
online help. See the DB2 Multidimensional
Metadata Management (DB2 Cube Views) Setup
and User’s Guide for information on optimizing a
cube model.

178 IBM DB2 Cube Views: Setup and User’s Guide

10216 The recommendations from the
Optimization Advisor were
successfully saved in the specified
file(s).

Explanation: The recommended create
summary tables SQL script and if applicable, the
refresh summary tables SQL script, were saved
into the specified files.

User Response: No action is required.

10217 The summary tables and their
indexes were created successfully.

Explanation: The summary tables and indexes
recommended by the Optimization Advisor were
successfully created in the database.

User Response: No action is required.

10218 You have selected a view. The
Optimization Advisor cannot
verify that referential constraints
exist for tables referenced by your
view.

Explanation: Optimization might not be
effective when you create summary tables for
cube models using views that reference tables
without constraints. The Optimization Advisor
cannot detect if constraints exist on the tables
referenced by the view.

User Response: If the tables referenced by your
view do not have constraints and you want to
run the Optimization Advisor you can either: 1.
Not use the view in your cube model. 2. Create
constraints for the tables before running the
Optimization Advisor.

10300 Failed to parse the measure_name
measure entered in the SQL
expression.

Explanation: The SQL expression specified
refers to a measure that is either invalid in the
given context or is not present in the database.

User Response: Ensure that the SQL expression
refers to only those measures that appear in the
Data list of the SQL Expression Builder.

10301 Failed to parse the column_name
column entered in the SQL
expression.

Explanation: The SQL expression specified
refers to a column that is either invalid in the
given context or is not present in the database.

User Response: Ensure that the SQL expression
refers to only those columns that appear in the
Data list of the SQL Expression Builder.

10302 The attribute_name attribute is not
qualified with a schema name.

Explanation: References to attributes in the SQL
expression must be qualified with a schema
name separated by a’.’.

User Response: Ensure that all of the references
to attributes in the SQL expression are qualified
with a schema name separated by ’.’.

10303 The measure_name measure is not
qualified with a schema name.

Explanation: References to measures in the SQL
expression must be qualified with a schema
name separated by a ’.’.

User Response: Ensure that all the references to
measures in the SQL expression are qualified
with a schema name separated by ’.’.

10304 Missing object name inside the
object_name object tag.

Explanation: The SQL expression specified has
an empty column tag @Column or an empty
attribute tag @Attribute or an empty measure tag
@Measure.

User Response: Ensure that the object type tags
@Column, @Measure and @Attribute have an
enclosing object name.

10305 The expression specified is
invalid. The database returned the
following information: message.

Explanation: There is a syntax error in the SQL
expression. This error is also displayed when the

Appendix D. Messages 179

SQL expression references columns, attributes, or
measures without enclosing tags. A reference to a
column, attribute or measure must be enclosed
inside @Column(), @Attribute() or @Measure()
tags respectively.

User Response: Correct the syntax error. Ensure
that each column, attribute and measure is
enclosed in the appropriate tag.

10306 The data type of the expression
that you have entered is
nonnumeric. Enter a numeric
expression as a second parameter.

Explanation: The data type of the second
parameter must be numeric.

User Response: Ensure that the data type of the
expression entered results in to a numeric data
type.

10307 The expression of the measure
measure_name results to a
nonnumeric data type. Select a
measure whose expression results
to a numeric data type.

Explanation: The data type of the second
parameter must be numeric.

User Response: Ensure that the data type of the
selected measure’s expression is a numeric.

10308 OLAP Center cannot communicate
with the specified database. This
might be because the database is
not correctly configured for
Multidimensional Metadata
Management. Configuring the
database might take some time.
Click Yes to configure the
specified database for
Multidimensional Metadata
Management. Click No if you do
not want to configure the
specified database now.

Explanation: OLAP Center can connect to the
database using the user name and password
supplied, but it cannot communicate with the

stored procedure API. This might be because the
Multidimensional Metadata Management (DB2
Cube Views) stored procedure API is not
registered for the specified database, or the DB2
catalog does not exist for the specified database.

User Response: Click Yes to configure the
database for Multidimensional Metadata
Management (DB2 Cube Views); otherwise, click
No.

10309 The database_name database was
successfully configured for
Multidimensional Metadata
Management.

Explanation: OLAP Center successfully created
the Multidimensional Metadata Management
(DB2 Cube Views) catalog and registered the
stored procedure API for the specified database.

User Response: No action is required.

10310 OLAP Center cannot configure the
database for DB2
Multidimensional Metadata
Management. The database
returned the following
information: message.

Explanation: OLAP Center cannot configure the
specified database for DB2 Multidimensional
Metadata Management (DB2 Cube Views). This
might be because OLAP Center cannot register
the DB2 Multidimensional Metadata
Management (DB2 Cube Views) stored procedure
API, or OLAP Center cannot create one or more
DB2 Multidimensional Metadata Management
(DB2 Cube Views) catalog tables.

User Response: Ensure that you have the
correct setup and install authorities that are
described in the topic on ″Authorities and
privileges″ in the OLAP Center online help. See
the DB2 Multidimensional Metadata
Management (DB2 Cube Views) Setup and User’s
Guide for information on configuring a database.

180 IBM DB2 Cube Views: Setup and User’s Guide

10311 The aggregation validation failed.
One or more specified aggregation
functions are not compatible with
the source SQL Expression.

Explanation: One or more specified aggregation
functions are not compatible with the source SQL
Expression. This might be because the specified
aggregation function expects a parameter with a
data type that is different from the source SQL
expression data type.

User Response: Ensure that the aggregation
function is valid for the specified measure’s
source data type.

10312 The measure’s source expression
is syntactically correct only with
the None aggregation setting. The
measure must use the None
aggregation setting.

Explanation: The measure expects the None
aggregation setting when:

v The SQL Expression is syntactically incorrect
when the aggregation functions are not
applied to its referred measures but it is
syntactically correct when those aggregation
functions are applied. For example, char + int
is syntactically incorrect but COUNT(char) +
SUM(int) is syntactically correct.

v The SQL Expression uses OLAP functions like
RANK(), DENSE_RANK() and
ROW_NUMBER().

User Response: Ensure that the measure has
None aggregation setting applied to it.

10401 The expression cannot include a
column function, a scalar
fullselect, or a subquery.

Explanation: The SQL expression cannot
include a column function, scalar fullselect or a
subquery.

User Response: Correct the use of the column
function to eliminate the invalid expression.

10501 The schema name cannot start
with prefix.

Explanation: The schema name cannot start
with ’SYS’ and ’SESSION’.

User Response: Type different schema name.

10502 The join properties are not valid
for cube model performance
optimization. Resolve this
problem then run the
Optimization Advisor wizard
again. The database returned the
following information: message.

Explanation: The join properties are invalid for
cube model performance optimization.

User Response: Specify correct settings for your
join by applying the optimization validation
rules.

10503 The hierarchy cannot be modified
because it has an associated cube
hierarchy.

Explanation: If a cube hierarchy exists for the
hierarchy, the hierarchy cannot be modified.

User Response: Ensure that no cube hierarchy
references the hierarchy being modified before
making changes to the hierarchy. You can also
create a different hierarchy with the required
modifications.

10504 This measure must use the None
aggregation setting because it
refers to the measure that uses a
multiparameter aggregation
function.

Explanation: Only measures that use the None
aggregation setting can refer to measures that
use a multiparameter function. You cannot
change the aggregation setting from None to
another function.

User Response: You can perform one of the
following actions:

v Do not alter the measure’s aggregation setting.

Appendix D. Messages 181

v Alter the specified measure so that it does not
use a multiparameter function.

10505 This measure cannot use a
multiparameter function because
the measure_name measure that
uses an aggregation setting other
than None, refers to this
measures.

Explanation: Only measures that use the None
aggregation setting can refer to measures that
use a multiparameter function. You cannot
change the aggregation script of the measure
being edited to include a multiparameter
function because the measure being edited is
referred to by a measure that does not use the
None aggregation setting.

User Response: You can perform one of the
following actions:

v Do not alter the measure’s aggregation script.

v Alter the specified measure so that it does not
refer to the measure being edited.

10506 The existing aggregation setting is
invalid with the specified SQL
expression. OLAP Center will
reset the aggregation setting to
setting.

Explanation: The existing aggregation setting is
invalid with the new SQL expression and was
reset to the default aggregation setting. This
might be because:

v The data type of the source SQL expression
changed.

v The current aggregation setting is expected to
be None. It must be None when:

– The SQL expression is syntactically incorrect
when the aggregation functions are not
applied to its referred measures, but it is
syntactically correct when those aggregation
functions are applied. For example, char +
int is syntactically incorrect, but
COUNT(char) + SUM(int) is syntactically
correct.

– The SQL Expression uses OLAP functions
like RANK(), DENSE_RANK() and
ROW_NUMBER().

User Response: No action is required.

10507 One or more dimensions in the
cube model do not have a
hierarchy. They will not be
available for inclusion in the
cube.

Explanation: For a cube dimension to be
created it must be based on a dimension that has
at least one hierarchy. You are attempting to
create or modify a cube that has one or more
dimensions that do not have a hierarchy. These
dimensions will be omitted from the selection list
used for defining cube dimensions.

User Response: Either create or modify your
cube without references to the omitted
dimensions or ensure that each dimension in the
cube model has a hierarchy.

182 IBM DB2 Cube Views: Setup and User’s Guide

Appendix E. Status messages from DB2 and DB2 Cube
Views

When the DB2 Cube Views stored procedure is called, regardless of whether
the stored procedure was executed, DB2 returns an SQLCODE and an
SQLSTATE to the calling application. If the DB2 Cube Views stored procedure
can execute, the stored procedure returns a status message as part of the XML
data that is sent to the calling application.

The following table shows the relationship between the status messages that
are returned by metadata operations and the SQLSTATE that is returned by
DB2 for the call to the stored procedure.

Table 39. Metadata operation IDs versus SQLSTATE codes

SQLCODE SQLSTATE Metadata
operation status
message IDs

Metadata
operation status
message types

Metadata operation
status messages
returned

0 0 0
2

Informational No

0 0 1 Informational Yes

0 0 599
6006
6299
7200
7201
7202

Warning No

462 01HQ1 0 – 7999
(excluding IDs listed in other rows)

Error No

443 38Q00 Not applicable Not applicable Not applicable

443 38Q01 Not applicable Not applicable Not applicable

443 38Q02 Not applicable Not applicable Not applicable

443 38Q03 Not applicable Not applicable Not applicable

© Copyright IBM Corp. 2003 183

184 IBM DB2 Cube Views: Setup and User’s Guide

Notices

This information was developed for products and services offered in the
U.S.A.

IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

© Copyright IBM Corp. 2003 185

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some

186 IBM DB2 Cube Views: Setup and User’s Guide

measurement may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

AIX
DB2
DB2 Connect
DB2 Universal Database
IBM
Office Connect
Redbooks

The following terms are trademarks or registered trademarks of other
companies:

Microsoft, Windows, Windows NT, Windows 2000, Windows XP, and
Microsoft Excel are trademarks or registered trademarks of Microsoft
Corporation.

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark in the United States, other countries, or both
and is licensed exclusively through X/Open Company Limited.

Linux is a registered trademark of Linus Torvalds. Red Hat and all Red
Hat-based trademarks and logos are trademarks or registered trademarks of
Red Hat, Inc. in the United States and other countries.

Notices 187

Other company, product, or service names may be trademarks or service
marks of others.

188 IBM DB2 Cube Views: Setup and User’s Guide

Glossary

This glossary defines terms that are used in
this book.

aggregation function. One of the DB2 SQL
aggregation functions such as SUM, AVG, MIN,
and MAX. The aggregation function is used to
control how rollups are performed on measures.

attribute. A DB2 object that maps to either a
single column in a table or an expression that is
a combination of a set of columns or other
attributes or bother. An attribute can perform a
number of roles. For example, it can be a
reference to data that is in the cube, or it can be
a reference to a column that is used by a join or
other attribute relationship.

attribute relationship. Describes relationships of
attribute objects in general. The relationships are
described by a left and a right attribute, a type, a
cardinality, and whether they determine a
functional dependency. The type describes what
the role of the right attribute is with respect to
the left attribute. There are two possible types:
Descriptive and Associated. The Descriptive type
specifies that the right attribute is a descriptor of
the left attribute.

balanced hierarchy. A hierarchy with
meaningful levels and branches that have a
consistent depth. The logical parent of each
attribute is in the level directly above it. See
network hierarchy, ragged hierarchy, and unbalanced
hierarchy.

calculated measure. Contains built-in
calculations that you create by using the
Expression Builder in the OLAP Center or with
SQL. A calculated measure has an SQL
expression that performs calculations and does
not map to a single column or attribute.

cube. A DB2 object that is derived from a cube
model. The cube facts and cube dimensions are
subsets of those that are referenced in the cube
model. model. Cubes are appropriate for tools

and applications that do not use multiple
hierarchies because cube dimensions allow only
one cube hierarchy per cube dimension.

cube dimension. A DB2 object that is part of a
cube and is derived from a dimension in the
cube model that corresponds to the cube. A cube
dimension references a subset of the attributes of
the dimension from which it is derived. It also
references a single cube hierarchy.

cube facts. A DB2 object that is part of a cube
and is derived from a dimension in the cube
model that corresponds to the cube. A cube facts
references a subset of the measures from the facts
object from which it is derived.

cube hierarchy. A DB2 object that is part of a
cube dimension and is derived from a hierarchy
in the dimension that corresponds to the cube
dimension. A cube hierarchy references a subset
of the attributes of the hierarchy from which it is
derived where the order of the attributes must be
in the same order as their order in the hierarchy.

cube model. A DB2 object that describes all
data related to a collection of measures. Typically,
the cube model relates to a star schema or
snowflake schema in the database. The cube
model references a single facts object and one or
more dimensions. Cube models can be optimized
to improve the performance of SQL queries
issued to the star schema or snowflake schema of
the cube model.

dimension. A DB2 object that references a
collection of related attributes that describe some
aspect of a set of measures. A dimension can
reference attributes from one or more dimension
tables. However, if attributes from multiple
dimension tables are used, the tables must have
joins between them and those joins must be
referenced by the dimension. A dimension also
references one or more hierarchies and can
reference relationships between its attributes.

© Copyright IBM Corp. 2003 189

dimension table. A table in a data warehouse
whose entries describe data in a fact table.
Dimension tables contain the data from which
dimensions are created.

facts object. A DB2 object that groups related
measures that are interesting to a specific
application. The facts object stores information
about the attributes that are used in fact to
dimension joins, and the attributes and joins that
are used to map the additional measures across
multiple database tables. Therefore, in addition
to a set of measures, a facts object stores a set of
attributes and a set of joins. A facts object is used
in a cube model as the center of a star schema.

fact table. A central table in a data warehouse
schema that contains numerical measures and
keys relating facts to dimension tables. Fact
tables contain data that describes specific events
within a business, such as bank transactions or
product sales.

hierarchy. A DB2 object that defines
relationships among a set of one or more
attributes within a specific dimension of a cube
model. DB2 Cube Views supports four types of
hierarchies: balanced, unbalanced, ragged, and
network. Hierarchies can be deployed as either
standard or recursive.

hybrid cube. Contains multidimensional data
and references relational data so that you can
query lower level data in your base tables.

join. Joins two relational tables. A join
references attributes that then reference columns
in the tables that are being joined. The simplest
form of a join references two attributes: one that
maps to a column in the first table and one that
maps to a column in the second table. The join
also includes an operator to indicate how the
columns are compared. A join object can also be
used to model composite joins where two or
more columns from the first table are joined to
the same number of columns in the second table.
A composite join uses pairs of attributes to map
corresponding columns. Each pair of attributes
has an operator that indicates how that pair of
columns are compared. A join also has a type
and cardinality. Joins can be used in dimensions

to join dimension tables together or in a cube
model to join the dimensions of the cube model
to its facts object or within a facts object to join
multiple fact tables.

materialized query table. A table whose
definition is based on the result of a query and
whose data is in the form of precomputed results
that are taken from one or more tables on which
the materialized query table definition is based.

measure. A DB2 object that defines a
measurement entity and is used in facts objects.
Measures become meaningful within the context
of a dimension. Common examples of measure
objects are Revenue, Cost, and Profit.

metadata. Information about the properties of
data, such as the type of data in a column
(numeric, text, and so on) or the length of a
column. It can also be information about the
structure of data or information that specifies the
design of objects such as cubes or dimensions.

MQT. See materialized query table.

network hierarchy. A hierarchy in which the
order of levels is not specified, but in which
levels do have semantic meaning. Because the
attribute levels do not have an inherent
parent-child relationship, the order of the levels
is not important. See balanced hierarchy, ragged
hierarchy, and unbalanced hierarchy.

outrigger table. Any dimension table in a
snowflake schema that is not the primary
dimension table in the dimension.

primary dimension table. In a snowflake
schema, the dimension table that joins to the fact
table.

ragged hierarchy. A hierarchy in which each
level has a consistent meaning but the branches
have inconsistent depths because at least one
member attribute in a branch level is
unpopulated. See balanced hierarchy, network
hierarchy, and unbalanced hierarchy.

recursive deployment. Uses the inherent
parent-child relationships between the attributes
of the hierarchy. An unbalanced hierarchy that

190 IBM DB2 Cube Views: Setup and User’s Guide

uses a recursive deployment is represented as
parent-child attribute pairs.

schema. In the SQL-92 standard, a collection of
database objects that are owned by a single user
and form a single namespace. A namespace is a
set of objects that cannot have duplicate names.
For example, two tables can have the same name
only if they are in separate schemas, no two
tables in the same schema can have the same
name.

snowflake schema. An extension of a star
schema such that one or more dimensions are
defined by multiple tables. In a snowflake
schema, only primary dimension tables are
joined to the fact table. Additional dimension
tables are joined to primary dimension tables.

standard deployment. Uses the level definitions
of the hierarchy where each attribute in the
hierarchy defines one level. For example, a
balanced hierarchy for a Time dimension is
usually organized by each defined level
including Year, Quarter, and Month. Standard
deployment can be used with all four hierarchy
types.

star join. A join between a fact table (typically a
large fact table) and at least two dimension
tables. The fact table is joined with each
dimension table on a dimension key.

star schema. A relational database structure in
which data is maintained in a single fact table at
the center of the schema with additional
dimension data stored in dimension tables. Each
dimension table is directly related to and usually
joined to the fact table by a key column. Star
schemas are used in data warehouses.

summary table. Contains aggregated data of the
base tables that are used by your cube model.
DB2 Cube Views uses DB2 summary tables to
improve the performance of queries that are
issued to cube models. A summary table is a
special type of a materialized query table (MQT)
that specifically includes summary data. Because
DB2 Cube Views always recommends MQTs that
have summarized data, the term summary table

is used in the DB2 Cube Views documentation to
describe the recommended MQTs. See
materialized query table.

slice. A region of multidimensional database or
cube.

unbalanced hierarchy. A hierarchy with levels
that have a consistent parent-child relationship
but have an inconsistent semantic meaning for
all members in a particular level. Also, the
hierarchy branches have inconsistent depths. See
balanced hierarchy, network hierarchy, and ragged
hierarchy.

Glossary 191

192 IBM DB2 Cube Views: Setup and User’s Guide

Index

A
alter 90
API

overview 81
parameters 84

application programming interface
data exchange 81
overview 81
stored procedure 82

arguments 96
attribute relationship types

associated 32
descriptive 32

attribute relationships
base rules 40
description 32
in summary tables 48
modeling for optimization 53

attributes
base rules 40
description 30
in summary tables 48
relational mapping 13, 16
sharing 75

B
balanced hierarchies 24
base rules 53

attribute relationships 40
attributes 40
cube dimensions 41
cube facts objects 41
cube hierarchies 41
cube models 38
cubes 40
dimensions 38
facts objects 38
hierarchies 39
joins 40
measures 39

bridges 1
browsing

cubes 6

C
cardinalities 32
code pages 111

restrictions 114

completeness rules
cube models 41

configuration file 107, 110
constraints

informational 43
constraints, informational 57
contraints

foreign key 53
informational 53

create 90
cube dimensions

base rules 41
description 36
relational mapping 18

cube facts
description 36
relational mapping 18

cube facts objects
base rules 41

cube hierarchies
base rules 41
description 37
relational mapping 18

cube model completeness rules 53
cube models

base rules 38
completeness rules 41
description 21
optimization rules 42
optimizing 57
properties 22
relational mapping 12

cubes
base rules 40
browsing 6
description 35
modeling for optimization 52
relational mapping 18

currentRef operand 100

D
database

populating 5
preparing for DB2 Cube

Views 4
DB2 EXPLAIN facility 46
DB2 Office Connect

installing 3
DB2 SQL Snapshot Monitor 69
db2batch Benchmark Tool 68

DB2EXPLAIN 69
db2mdapi.sql 4
db2mdapiclient utility 7
describe 88
dimensions 75

base rules 38
description 23
optimization rules 42
properties 23
relational mapping 13, 16, 17

drill-down queries 59
drill-through queries 62
drop 92

E
error handling 106
error logging 109
extract queries 61

F
facts objects

base rules 38
description 22
properties 22
relational mapping 12

facts-to-dimension joins 53
functional dependencies

description 32

H
hierarchies

base rules 39
deployments 26
description 23
properties 28
relational mapping 13, 17
types 24

I
import 93
import scenarios 75
informational constraints 43, 53, 57
installing

DB2 Office Connect 3
MDSAMPLE 5

J
joins

base rules 40
cardinalities 54

© Copyright IBM Corp. 2003 193

joins (continued)
description 34
facts-to-dimension 53
optimization rules 41
relational mapping 13, 14, 16
types 54

L
languages

restrictions 114
Linux 3
logging errors 109

M
materialized query tables 43
md_message 82
MD_MESSAGE() stored procedure

parameters 7
MDSAMPLE

installing 5
MDSAMPLE database 115
MDSampleMetadata.xml 5
measures

base rules 39
description 28
in summary tables 48
modeling for optimization 53
relational mapping 12

memory management 105
message structure in API 101
metadata

creating 5
metadata bridges 1
metadata objects 1

attribute relationships 32
attributes 30
base rules 38
cube dimensions 36
cube facts 36
cube hierarchies 37
cube models 21
cubes 35
dimensions 23
facts objects 22
format 102
general properties 19
hierarchies 23
import scenarios 75
joins 34
measures 28
modeling for optimization 52
naming conventions 20
overview 11

metadata operations 87
alter 90

metadata operations (continued)
create 90
describe 88
drop 92
import 93
rename 91
validate 94

mode (for validate) argument 100
mode argument 98

N
network hierarchies 26
newRef operand 100

O
object operand 100
objectType argument 96
OLAP Center

starting 6
operands 100
operation arguments 96
operation operands 100
operations

ALTER
validation error 75

CREATE
validation error 75

IMPORT
validation error 75

optimization
benchmarking 68
data sampling 64
disk space limits 63
performance benchmarking 50
process 48
rules 53
table spaces 65
time limits 64
with summary tables 43

Optimization Advisor wizard 43,
50, 52, 57, 58, 71

optimization rules
cube models 42
dimensions 42
joins 41

optimizing
cube models 57

outrigger tables 55
overview

metadata objects 11

P
prerequisites 3

Q
queries

benchmarking 68
capturing 69
drill-down 59
drill-through 62
extract 61
performance 68
report 60
rerouting 46

R
ragged hierarchies 25
recurse argument 96
recursive deployment 27
refresh-deferred

summary tables 72
refresh-deferred summary tables

expire 71
refresh-immediate summary

tables 71
relational tables 12
rename 91
report queries 60
required software 3
restriction argument 97
retrieval results, metadata

object 102
rules

base 53
cube model completeness 53
optimization 41, 53

S
sample

application files 115
dataase files 115

sample API parameters
administration operations 87
modification operations 86
retrieval operations 85

schemas
snowflake 12, 55
star 12

setting up DB2 Cube Views 3
slice 45
snowflake schemas 12, 55
software required 3
Solaris 3
standard deployment 26
star schemas 12, 16
stored procedure 82

MD_MESSAGE() 7
parameters 7

summary tables 43, 48, 57

194 IBM DB2 Cube Views: Setup and User’s Guide

summary tables (continued)
creating 51
dropping 52, 73
maintaining 51, 71
refresh-deferred 71, 72
refresh-immediate 71
SQL script to create 65

system configuration 105

T
tracing 108
transaction 105

U
unbalanced hierarchies 24
user defined characters 114
user interface

starting 6

V
validate 94

W
Windows 3

X
xml parsing 106

Index 195

196 IBM DB2 Cube Views: Setup and User’s Guide

Contacting IBM

If you have a technical problem, please review and carry out the actions
suggested by the product documentation before contacting DB2 Cube Views
Customer Support. This guide suggests information that you can gather to
help DB2 Cube Views Customer Support to serve you better.

For information or to order any of the DB2 Cube Views products, contact an
IBM representative at a local branch office or contact any authorized IBM
software remarketer.

If you live in the U.S.A., you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/db2/db2md/
Provides links to information about DB2 Cube Views.

http://www.ibm.com/software/data/db2/udb
The DB2 Universal Database Web pages provide current information
about news, product descriptions, education schedules, and more.

http://www.elink.ibmlink.ibm.com/
Click Publications to open the International Publications ordering Web
site that provides information about how to order books.

http://www.ibm.com/education/certify/
The Professional Certification Program from the IBM Web site
provides certification test information for a variety of IBM products.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.

© Copyright IBM Corp. 2003 197

Comments on the documentation

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 Cube Views
documentation. You can use any of the following methods to provide
comments:
v Send your comments using the online readers’ comment form at

www.ibm.com/software/data/rcf.
v Send your comments by electronic mail (e-mail) to comments@us.ibm.com.

Be sure to include the name of the product, the version number of the
product, and the name and part number of the book (if applicable). If you
are commenting on specific text, please include the location of the text (for
example, a title, a table number, or a page number).

198 IBM DB2 Cube Views: Setup and User’s Guide

����

Program Number: 5724-E15

Printed in U.S.A.

SC18-7298-00

Sp
in
e
in
fo
rm
at
io
n:

�
�

�
IB

M
D

B
2

Cu
be

Vi
ew

s
Se

tu
p

an
d

U
se

r’
s

G
ui

de
Ve

rs
io

n
8

	Contents
	About this book
	Who should read this book
	Online information

	Chapter 1. Getting started with DB2 Cube Views
	What is DB2 Cube Views
	Setting up DB2 Cube Views
	Installation requirements
	Installing DB2 Cube Views
	Setting up a database for DB2 Cube Views
	Setting up the MDSAMPLE sample database

	Starting the OLAP Center
	Browsing cubes by using DB2 Office Connect
	The db2mdapiclient utility for importing, exporting, and optimizing metadata
	Overview of the db2mdapiclient utility
	The db2mdapiclient command — manipulating metadata

	Chapter 2. Multidimensional metadata objects
	About DB2 Cube Views metadata
	Metadata objects that map to relational tables
	Example of a cube model that maps to relational tables

	General metadata properties
	Metadata object naming conventions

	Cube models
	Facts objects
	Dimensions
	Hierarchies
	Measures
	Attributes
	Attribute relationships
	Joins
	Cubes
	Cube facts
	Cube dimensions
	Cube hierarchies
	Metadata object rules
	Base rules
	Completeness rules
	Optimization rules

	Chapter 3. Cube model optimization
	Summary tables
	Overview of the optimization process
	Metadata design considerations for optimization
	Constraint definitions for optimization
	Optimizing a cube model
	Parameters for the Optimization Advisor
	Optimizing for particular query types
	Disk space limitations
	Data sampling
	Time limitations
	Specifying table spaces

	Example of an SQL script to create summary tables
	DROP TABLE statement
	CREATE TABLE statement
	CREATE INDEX statements
	RUNSTATS statement

	Testing query results
	Troubleshooting summary tables
	Summary table maintenance
	Dropping a summary table

	Chapter 4. Troubleshooting the IMPORT or the CREATE and ALTER operations
	Avoiding a validation error by using the IMPORT or the CREATE and ALTER operation order
	Shared attribute referenced by a dimension
	Shared attributes referenced by an altered join

	Appendix A. API Reference
	API overview
	DB2 Cube Views stored procedure
	Parameters
	Input and output parameters
	Sample parameters
	Retrieval operation
	Modification operations
	Administration operation

	Metadata operations
	Retrieval operation
	Describe

	Modification operations
	Create
	Alter
	Rename
	Drop
	Import

	Administration operation
	Validate

	Operation arguments
	objectType
	recurse
	restriction
	mode (for import)
	mode (for validate)

	Operation operands
	Message structure
	Metadata object retrieval results
	Sequencing the operation steps

	Metadata object format
	Application programming notes
	Configuration file
	Run-time tracing

	Log files
	Error logging
	Examples

	Appendix B. Code page support
	Reading UTF-8 encoded files
	Code page restrictions

	Appendix C. Sample files
	Sample database files
	Sample application files

	Appendix D. Messages
	SQLSTATE, API, and other server messages
	OLAP Center messages

	Appendix E. Status messages from DB2 and DB2 Cube Views
	Notices
	Trademarks

	Glossary
	Index
	Contacting IBM
	Product Information
	Comments on the documentation

