
WebSphere Data Interchange

Programmer’s Reference

SC34-6127-00

���

Note!
Before using this information and the product it supports, be sure to read the general information under Appendix F, “Notices”
on page 711.

First edition, October 2002

This edition applies to the following products and to all subsequent releases and modifications until otherwise
indicated in new editions:

IBM WebSphere Data Interchange for Multiplatforms Version 3.2.
IBM WebSphere Data Interchange for z/OS Version 3.2.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . xix

Tables . xxi

About this book . xxvii
Who should read this book . xxvii
Terms used in this book . xxvii
Syntax conventions used in this book xxvii
Related books . xxviii

Chapter 1. Using The Utility . 1
Any-to-any data translation . 1
Outbound processing using send maps 2

Fixed-to-fixed translation using send maps 2
Sending with fixed-to-fixed translation 3

Inbound processing using receive maps 3
Managing data . 4

Removing and archiving event log entries 5
Reporting and extracting data . 5

PRINT commands . 6
Producing management reports from the Transaction Store 7

Creating management reporting reports 7
Creating transaction data or transaction envelope reports. 8
Creating Transaction Store reports 8

Exporting and importing . 9
Profile maintenance . 9
Continuous receive . 9

Reporting continuous receive status 10
Persistent environment . 11
Using the WebSphere Data Interchange Utility in the z/OS environment 11

Optional JCL parameter example 13

Chapter 2. WebSphere Data Interchange commands and keywords 15
Command language syntax . 15

DATE, TIME, and HANDLE keywords 16
Command language validation 17

Error filtering. 17
Overriding utility condition codes 18
CLOSE MAILBOX command . 20

Syntax . 20
CLOSE MAILBOX command example 20

DEENVELOPE command . 21
Syntax . 21
DEENVELOPE command examples 21

DEENVELOPE AND TRANSLATE command 22
Syntax . 22
DEENVELOPE AND TRANSLATE command examples 23

DELETE PROFILE command 24
Syntax . 24
DELETE PROFILE command examples. 24

ENVELOPE command . 25
Syntax . 25
ENVELOPE command examples 25

© Copyright IBM Corp. 2002 iii

ENVELOPE AND SEND command 27
Syntax . 27
ENVELOPE AND SEND command examples. 28

ENVELOPE DATA EXTRACT command 29
Syntax . 29
ENVELOPE DATA EXTRACT command examples 30

EXPORT command . 32
Syntax . 32
EXPORT command example 32

GLB DUMP command . 33
Syntax . 33
GLB DUMP command examples 33

GLB TRACE command . 34
Syntax . 34
GLB TRACE command examples 34

HOLD command . 35
Syntax . 35
HOLD command example . 36

IMPORT command . 37
Syntax . 37
IMPORT command example 37

LOAD LOG ENTRIES command 38
Syntax . 38
Load log entries command example 38

NETWORK ACTIVITY DATA EXTRACT command 39
Syntax . 39
NETWORK ACTIVITY DATA EXTRACT command examples 39

PRINT ACKNOWLEDGMENT IMAGE command 41
Syntax . 41
PRINT ACKNOWLEDGMENT IMAGE command example 42

PRINT ACTIVITY SUMMARY command 43
Syntax . 43
PRINT ACTIVITY SUMMARY command example 43

PRINT EVENT LOG command 45
Syntax . 45
PRINT EVENT LOG command example 46

PRINT STATUS SUMMARY command 47
Syntax . 47
PRINT STATUS SUMMARY command example. 48

PRINT STATUS SUMMARY2 command. 49
Syntax . 49
PRINT STATUS SUMMARY2 command example 50

PRINT TRANSACTION DETAILS command 51
Syntax . 51
PRINT TRANSACTION DETAILS command example 51

PRINT TRANSACTION IMAGE command 53
Syntax . 53
PRINT TRANSACTION IMAGE command example 53

PROCESS command . 55
Syntax . 55
PROCESS command examples. 55

PROCESS NETWORK ACKS command 56
Syntax . 56
PROCESS NETWORK ACKS command example 56

PURGE command . 57
Syntax . 57

iv WebSphere Data Interchange Programmer’s Reference

PURGE command example 58
QUERY command. 59

Syntax . 59
QUERY command example 60

QUERY PROFILE command . 61
Syntax . 61
QUERY PROFILE command examples 61

RECEIVE command . 62
Syntax . 62
RECEIVE command examples 62

RECEIVE AND DEENVELOPE command 63
Syntax . 63
RECEIVE AND DEENVELOPE command examples 63

RECEIVE AND PROCESS command 64
Syntax . 64
RECEIVE AND PROCESS command example 64

RECEIVE AND SEND command 65
Syntax . 65
RECEIVE AND SEND command example 65

RECEIVE AND TRANSLATE command 66
Syntax . 66
RECEIVE AND TRANSLATE command examples 66

RECONSTRUCT command . 67
Syntax . 67
RECONSTRUCT command example 67

RECONSTRUCT AND SEND command 68
Syntax . 68
RECONSTRUCT AND SEND command example 68

RECVFILE command . 69
Syntax . 69
RECVFILE command example 69

RECVFILE AND SEND command 70
Syntax . 70
RECVFILE AND SEND command example 70

REENVELOPE command . 71
Syntax . 71
REENVELOPE command example 72

REENVELOPE AND SEND command 73
Syntax . 73
REENVELOPE AND SEND command example 74

RELEASE command. 75
Syntax . 75
RELEASE command example 76

REMOVE LOG ENTRIES command 77
Syntax . 77
REMOVE LOG ENTRIES command example 77

REMOVE STATISTICS command 78
Syntax . 78
REMOVE STATISTICS command example 78

REMOVE TRANSACTIONS command 79
Syntax . 79
REMOVE TRANSACTIONS command example 80

REPORT CONTINUOUS RECEIVE STATUS command 81
Syntax . 81
REPORT CONTINUOUS RECEIVE STATUS command examples 81

RESET STATISTICS command 82

Contents v

Syntax . 82
RESET STATISTICS command example 82

RESTART RECEIVE command 83
Syntax . 83
RESTART RECEIVE command example 83

RESTART SEND command . 84
Syntax . 84
RESTART SEND command example 84

RETRANSLATE TO APPLICATION command 85
Syntax . 85
RETRANSLATE TO APPLICATION command example 86

SAP STATUS EXTRACT command 87
Syntax . 87
SAP STATUS EXTRACT command example 87

SAP STATUS REMOVE command 88
Syntax . 88
SAP STATUS REMOVE command example 88

SEND command . 89
Syntax . 89
SEND command examples 89

SENDFILE command . 90
Syntax . 90
Mapping issues with RAWDATA keyword on SENDFILE 90
SENDFILE command examples. 90

START CONTINUOUS RECEIVE command 91
Syntax . 91
START CONTINUOUS RECEIVE command examples 91

STOP CONTINUOUS RECEIVE command 92
Syntax . 92
STOP CONTINUOUS RECEIVE command examples. 92

TRADING PARTNER CAPABILITY DATA EXTRACT command 93
Syntax . 93
TRADING PARTNER CAPABILITY DATA EXTRACT command examples 93

TRADING PARTNER PROFILE DATA EXTRACT command 95
Syntax . 95
TRADING PARTNER PROFILE DATA EXTRACT command examples . . . 96

TRANSACTION ACTIVITY DATA EXTRACT command 97
Syntax . 97
TRANSACTION ACTIVITY DATA EXTRACT command example 97

TRANSACTION DATA EXTRACT command 99
Syntax . 99
TRANSACTION DATA EXTRACT command examples 100

TRANSFORM command . 101
Syntax . 101
TRANSFORM command example 101

TRANSLATE AND ENVELOPE command 102
Syntax . 102
TRANSLATE AND ENVELOPE command examples. 102

TRANSLATE AND SEND command. 104
Syntax . 104
TRANSLATE AND SEND command examples 105

TRANSLATE TO APPLICATION command 106
Syntax . 106
TRANSLATE TO APPLICATION command examples 107

TRANSLATE TO STANDARD command 108
Syntax . 108

vi WebSphere Data Interchange Programmer’s Reference

TRANSLATE TO STANDARD command examples 108
UNLOAD LOG ENTRIES command. 109

Syntax . 109
UNLOAD LOG ENTRIES command example 109

UNPURGE command . 110
Syntax . 110
UNPURGE command example. 111

UPDATE STATISTICS command 112
Syntax . 112
UPDATE STATISTICS command example 112

UPDATE STATUS command 113
Syntax . 113
UPDATE STATUS command examples 113

Keyword descriptions . 114
ACCTID . 114
ACFIELD . 114
ACKFILE. 114
ACKTYPE . 115
ACTUSAGE . 115
ADDRLN1 . 115
ADDRLN2 . 115
APPFILE. 116
APPLICATION. 116
APPLID . 116
APPRECID . 117
APPSEC. 117
APPSNDID . 118
APPTYPE . 118
ARCHIVEFILE. 118
ARCHIVETYPE . 119
ASSERTLVL . 119
BATCH . 119
BATCHSET. 120
CCEXCEPTION . 120
CLEARFILE . 120
CLIENT . 121
CMMTLN1 . 121
CMMTLN2 . 121
CMPYNM . 121
CNTCTNM . 122
CNTCTPH . 122
CONCATENATE . 122
CTLFILE. 122
CTLTYPE . 122
DAYS . 123
DELFILE. 123
DICTIONARY . 123
DIERRFILTER. 123
DIR . 124
DLVDATE . 124
DLVTIME . 125
DOCUMENT . 125
DUPCHECK . 125
DUPENV . 126
DYNSQL . 126
EENVDATE . 126

Contents vii

EIFORMAT . 126
ENVDATE . 126
ENVPRBREAK . 127
ENVTIME . 127
ENVTYPE . 127
EPURDATE . 128
EXTENDC . 129
FADELAY . 129
FILEID . 129
FIXEDFILEID . 130
FORCETEST . 131
FORMAT . 131
FUNACKFILE . 131
FUNACKP . 132
FUNACKREQ . 132
GROUP . 132
GRPCTLNO . 133
HANDLE. 133
HOLDFILE . 134
HOLDTYPE . 134
IACCESS . 134
IAREA . 134
ID . 135
IEXIT . 135
IFCC . 135
IMAGE . 135
INFILE . 136
INMEMTRANS . 136
INTCTLNO . 136
INTERCHANGE . 137
INTID . 137
INTRECID . 137
INTSNDID . 137
INTYPE . 138
ITPBREAK . 138
ITYPE. 138
LASTTRXDATE . 139
LEVEL . 139
LOGAEID . 139
LOGDATE . 139
LOGFORM . 140
LOGTIME . 140
LOGUSER . 140
MAPID . 140
MAXRUNTIME . 140
MEMBER . 141
MERGED . 141
MRREQID . 141
MSGUCLASS . 141
MULTIDOCS . 141
NETACKP . 142
NETID . 142
NETNAME . 143
NETSTAT . 143
NEWAPPLID . 144
NOMSG . 144

viii WebSphere Data Interchange Programmer’s Reference

NUMDELS . 144
NUMUPDTS . 144
ONELOGICAPP . 145
ONEMSG . 145
OPTRECS . 145
OUTFILE . 146
OUTFORMAT . 146
OUTLEN. 146
OUTTYPE . 146
PAGE . 147
PRIORTO . 147
PURGINT . 147
RAWDATA . 148
RAWFMTID . 148
RAWTEST . 149
RAWUSAGE . 149
RECEIVEACKDATA . 150
RECEIVEACKIMAGE . 150
RECOVBAD . 150
RECOVERY . 150
REQID . 151
REQTP . 151
RESET . 151
SAPSTAT . 152
SAPUPDT . 152
SCRIPT . 152
SEGMENTED . 152
SENDACKDATA . 153
SENDACKIMAGE . 153
SEQNUM . 153
SERVICESEGVAL . 153
SETCC . 154
SNDDATE . 154
SNDTIME . 155
STANDALONE . 155
STDDESC . 155
STDID . 155
STDLV . 156
STDTRID . 156
STDVR . 156
STSTAT . 156
SYNTAX . 157
TESTMODE . 157
TPID . 157
TPNICKN . 158
TPNICKNESEND . 159
TRACELEVEL . 159
TRANSACTION . 160
TRERLVL . 160
TRKFILE . 161
TRXCTLNO . 161
TRXDATE . 161
TRXSTAT . 162
TRXTIME . 163
USERID . 164
USERPGM . 164

Contents ix

VERIFY . 164
WRTCTLNO . 165
XML . 165
XMLDICT . 165
XMLDTDS . 165
XMLEBCDIC . 166
XMLSEGINP . 166
XMLSTDID . 166
XMLVALIDATE . 166

Chapter 3. File formats and WebSphere Data Interchange Utility records 169
Dynamically allocated application files 169
Transaction Store input and output files 169

Command file (EDISYSIN or SYSIN) 169
WebSphere Data Interchange DB2 command file (EDITSIN). 170
Network commands file (NETOP) 171
Application file. 171
Envelope file . 172
Exception file (FFSEXCP) 173
Tracking file (FFSTRAK) . 173
Print file (PRTFILE) . 174
Report file (RPTFILE) . 175
Query file (EDIQUERY) . 175
Work file (FFSWORK) . 176
Pageable translation work file (EDIVAX) 177
Enveloping options file for functional acknowledgments (FAENV) 178

Export/Import utility function. 182
Export/Import control file (CTLFILE) 183

Export/Import control file label descriptions 183
Export/Import files . 185

Export/Import common control record (0C1/0C2) 187
Export/Import common end of group record (000). 187
Export/Import file data area 188

Exporting and importing trading partner profiles 188
Importing new definitions to WebSphere Data Interchange 189
Export/Import trading partner profile header record (7P1) 189
Export/Import trading partner profile record (7P2) 190
Trading partner contact definition (7P3) 201
Trading partner control numbers (7P4) 202
Comments definition (7A1) 202
Contact definition (7Z1) . 202

Export and importing EDI standard records 203
EDI standard dictionary record (1Y1) 204
EDI standard transaction header record (1Y2) 205
EDI standard transaction detail record (1Y3) 205
EDI standard segment header record (1Y4) 206
EDI standard segment detail record (1Y5) 206
EDI standard data element header record (1Y6) 206
EDI standard data element detail record (1Y7) 207
EDI standard segment notes record (1Y8) 207
EDI standard transaction notes record (1Y9) 208
EDI standard composite data element notes record (1YA) 208

Exporting and importing data formats 209
Data format dictionary record (2W1). 211
Data format record ID record (2W2) 211
Data format header record (2W3). 211

x WebSphere Data Interchange Programmer’s Reference

Data format loop record (2W4) 212
Data format record record (2W5) 213
Data format structure record (2W6) 213
Data format field record (2W7). 213
Data format header details record (2W8) 214
Data format loop details record (2W9) 214
Data format record details record (2WA) 214
Data format structure details record (2WB) 215

Exporting and importing maps 215
Map header record (3V1) 218
Map segment record (3V2) 218
Map element record (3V3) 219
Map application control record (3V9) 220
Map syntax record (3VA) . 220
Map local variables record (3VB) 222
Map reference record (3VC) 222
Map nodes record (3VD) . 222
Map commands record (3VE) 223
Global variables details record (BK2) 223
Send usage record (3T5). 223
Receive usage record (3T6) 224
Data transformation map rule record (3T7) 225

Exporting and importing table definitions 227
Export/Import table definition (B1) 227
Export/Import table entry (B2) 229

Exporting and importing XML records 230
XML dictionary record (AJ1) 231
XML DTD header record (AJ2) 231
XML DTD details record (AJ3) 231

Additional profile layouts . 232
Mailbox (requestor) profile (REQPROF-P2) 232
Network security profile (SECUPROF-P2) 233
Network profile (NETPROF-P2) 233
Network commands profile (NETOP-P2) 234
Activity log profile (ACTLOGS-P2) 235
Application defaults profile (APPDEFS-P2) 235
User exit profile (ADAMCTL-P2) 235
Language profile (LANGPROF-P2) 236
EDIFACT (E envelope) profile (E-P2) 237
ICS (I envelope) profile (I-P2) 238
UN/TDI (T envelope) profile (T-P2) 239
UCS (U envelope) profile (U-P2) 240
X12 (X envelope) profile (X-P2) 240
Continuous receive profile (CONTRECV-P2 for CICS only) 241
CICS performance profile (SYSPROF-P2 for CICS only) 242
MQSeries queue profile (MQSERIES-P2). 243

WebSphere Data Interchange Utility records format 243
Control (C) records . 243
Data (D) records . 252
End transaction and interchange (Z) records 254
Raw data records . 255
Optional records . 255

Management reporting . 260
Trading partner profile data extract 260
Trading partner capability data extract 261
Network activity data extract 262

Contents xi

Transaction activity data extract 262
Transaction Store data extract information categories 264

Transaction Store data extract common key 264
Transaction Store data extract record formats 265

Chapter 4. Exit routines . 273
Exit languages . 274

Exit linkage editor instructions 274
Any-to-any data transformation 275

Exit Function . 275
User written function prototype 276

Field exit routines . 276
Field exit routines shipped with WebSphere Data Interchange 277
Send parameters . 277
Receive parameters . 278
Field exit parameter language definitions 280

Transaction exit routines . 281
Pre-translation exit . 281
Post-translation exit. 282
Pre- and Post-translation exit parameters. 282
Translation exit language definitions. 283
Get/Put envelope exit and service 284

Security routines . 287
Enabling security during send 288
Enabling security during receive 289
Security parameters . 290
Encryption routine . 290
Authentication routine . 294
Compression routine . 297
Filtering routine . 297
Security support routines . 300

Independent programs . 302
Data extract exit . 303
Get/Put envelope program 303

Chapter 5. Using WebSphere Data Interchange in the CICS environment 305
Running the WebSphere Data Interchange Utility in the CICS environment 305

Invocation options . 305
Passing control information 306
Determining results . 306
WebSphere Data Interchange abend return codes 307
CICS storage mechanisms 307
CICS envelope queue alternatives 308
Pre- and Post-envelope programs 308
Processing multiple incoming TS queues 309
Ensuring serial processing of WebSphere Data Interchange Utility files 310
Units of work and recovery considerations 310
WebSphere Data Interchange Utility unit of work 311
Including WebSphere Data Interchange changes in your application's unit of

work . 314
Terminal-attached applications 315
Running the WebSphere Data Interchange Utility in a separate CICS region 315
DB2 setup considerations 316
CICS startup considerations 317

Running WebSphere Data Interchange in a HOT-DI environment 318
Initializing HOT-DI . 318

xii WebSphere Data Interchange Programmer’s Reference

Initializing WebSphere Data Interchange 319
Initializing multiple HOT-DI tasks 319
HOT-DI processing considerations 320
Call utility services . 321
WebSphere Data Interchange return code considerations 321
Terminating WebSphere Data Interchange 321
Terminating HOT-DI. 321
Outbound communications 322

WebSphere Data Interchange Utility control information 323
Format of WebSphere Data Interchange Utility control information 324
WebSphere Data Interchange Utility control information field descriptions 326

Continuous receive considerations 331
Continuous receive using MQSeries 331
Continuous receive selection criteria 332
WebSphere Data Interchange processing after data is received 333
Effects of defining the EDI1 TD queue 334
Sent to Network status . 334
Using continuous receive outside Expedite/CICS 335

Response applications . 335
Invoking your application . 335
Types of response applications 335

Persistent environment . 340
Running multiple z/OS subtasks 341
Sizing the z/OS data space 341
Enabling and disabling the persistent environment 342
Using multiple regions . 342

Reserved TS and TD queues 342
TS queues that might require additional processing 342
Queues used by export and import 343
TD queues EDI2 and EDI3 344

Interface between WebSphere Data Interchange, Expedite/CICS, and
Information Exchange . 345
Information Exchange sessions 345
Information Exchange session cleanup 347
Continuous receive sessions 348
Starting and stopping continuous receive sessions 348
Continuous receive session cleanup 350

WebSphere Data Interchange supplied transactions 353
Performance monitor user exit 355

Format of performance monitor commarea 355
Using EDIW to invoke the WebSphere Data Interchange Utility. 356

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 359
Using sample JCL . 359

WebSphere Data Interchange Utility (EDIUTIL) JCL 359
Required utility data sets . 371
Archive DB2 event log entries (EDIELARD) 372

Application Program Interfaces (API’s) 373
API languages . 375

API link edit . 375
WebSphere Data Interchange and DB2 attachment 377

EDITSIN examples . 377
WebSphere Data Interchange abend return codes 378
COBOL calls . 378
PL/I calls . 379
C calls . 380

Contents xiii

Assembler calls . 382
API business tasks . 384

Environmental services . 386
Initializing the environmental API 386
Utility service API . 388
Terminating the API . 388

Translation services . 390
Translation service functions 392
Translate-to-standard API 393
Translate, envelope, and send process 395
Test translate-to-standard 396
Translation special considerations 397
Pageable translation . 417
Translate-to-application API 418
Test Translate-to-application 420
Translate-to-application API 421
Translate specific API . 421
Translate-file-to-application API 429
Translate-to-application processing considerations (TA) 441

Enveloping services . 442
Interchange layer . 443
Group layer. 443
Transaction layer. 444
Enveloping service . 444
Envelope API . 444
Envelope processing considerations (EV). 454
Close and queue interchange API 456
End translation/enveloping API 458
Deenvelope API . 459
Envelope processing and profile location considerations (E) 468
Deenvelope processing and profile location considerations (DE) 470
Issue commit API . 471
Retrieve interchange header API 472
Retrieve group header API 472
Retrieve transaction header API 473

Data extraction services . 474
Initialization for data extraction. 474
Retrieve detailed data API 475
Retrieve transaction image API 477
Retrieve transaction acknowledgment image API 477
Retrieve functional acknowledgment image API 478

Communication services . 479
Communications service functions 480
Trading partner profile data block (TPPDB) 480
Common CMCB output fields 482
Return codes from communications 483
Send transactions and restart send transactions API 483
Send files API . 488
Receive and restart receive API 490
Cancel API . 493
Return filename API . 495
Internal calls . 496

Update status services . 498
Update status service overview 498
Update status API . 499
Full envelope key . 500

xiv WebSphere Data Interchange Programmer’s Reference

Alternate keys. 502
SYNCPOINT services . 505

DB2 TIMEOUT/DEADLOCK processing 506
Initialize SYNC function . 507
COMMIT work function . 508
ROLLBACK work . 508

Get envelope service . 510
Put envelope service . 511

Chapter 7. Using WebSphere Data Interchange in the AIX and Windows
environment . 513

Running from the command line 513
Triggering from an MQSeries queue 514

Adapter user exits . 515
Calling from a C++ program 517

Elements of the C++ API . 517
WebSphere Data Interchange API example 522

Chapter 8. Interfacing to other networks and applications 525
Generalized networks . 526

Application-to-network flow diagram 528
Point-to-point networks . 531

Activating point-to-point connections 531
Parameters passed to the communications routine 532
Building network commands 532

Network commands profile 532
Network command example. 534

Message handler . 536
Special communications routine for CICS. 537

Network profile definition for CICS 537
Network program control information for CICS 538
Message handler control information 540

Continuous receive interface (CICS only) 541
Invoking the continuous receive interface 542

Interfacing with SAP . 543
Outbound processing and SAP status 544
Inbound processing and SAP status. 544
SAP status codes supported by WebSphere Data Interchange 545
Extracting SAP status records 545
Removing SAP status records 545

Interfacing with MQSeries . 545
Additional information added to MQRFH2. 548

XML special considerations . 548
XML DTD resolution . 548
Additional DTD resolution for z/OS 549
XML encoding considerations for z/OS. 550

Appendix A. WebSphere Data Interchange control blocks 553
Service Name Block (SNB) . 554

SNB field descriptions . 555
Common Control Block (CCB) 557

CCB field descriptions . 558
Function control block (FCB) 560

FCB field descriptions . 560
Translator Control Block (TRCB) 562

TRCB field descriptions . 566

Contents xv

Translator Error Codes . 587
Translator Input Data Block (TRIDB) 589

TRIDB field descriptions . 590
Translator Output Data Block (TRODB) 591

TRODB field descriptions 592
Communication Control Block (CMCB). 593

CMCB field descriptions . 594
Trading Partner Profile Block (TPPDB). 603

TPPDB field descriptions . 605
Communication Data Block (DATABLK) 614

Data blocks up to 32-K bytes 614
Data blocks more than 32-K bytes 614
DATABLK field descriptions 614

Network Profile Block (NPDB) 615
NPDB field descriptions . 616

Mailbox (Requestor) Profile Block (REQDB) 619
REQDB field descriptions 620

Appendix B. Sample programs 625
Creating tagged import files from fixed format files 625
Initializing and terminating WebSphere Data Interchange 625

COBOL initialization/termination example 625
PL/I initialization/termination example 625
C initialization/termination example 625

Querying the Transaction Store 628
Querying the Transaction Store using COBOL 628
Querying the Transaction Store using PL/I 628

Translating and queueing for send using C 629
Sending queued data using C 631
Ending translation using C . 633
Receiving data from a network using C 634
Translating received data using C 636
Generating reports . 639

Generating a data extract report 639
Generating a network activity report 639

Initializing, invoking, and terminating HOT-DI 639
COBOL HOT-DI initialization example 639
COBOL HOT-DI invocation example 639
COBOL HOT-DI termination example 640

Invoking response programs 640
COBOL response program example. 640

Field exit programs . 640
Sample 1 . 640
Sample 2 . 640
Sample 3 . 640

Test for filter type . 640
Filtration exit examples . 640

Hexadecimal filter example 640
ASCII filter example . 641
ASCII/BAUDOT filter example 641

Authentication examples . 641
Sample 1 . 641
Sample 2 . 641

Encryption examples . 645
Sample 1 . 645
Sample 2 . 645

xvi WebSphere Data Interchange Programmer’s Reference

Get Envelope service example 654
Put Envelope service example. 654
Inbound envelope program example 654
Outbound envelope program example 655
VANICICS network program example 655

Appendix C. Space calculation examples 657
Space requirements for tables and files 657

Transaction Store tables . 673
Management Reporting Tables 675

Allocation tables . 681
Supplied DB2 database allocation 681
Supplied database allocation for VSAM 687

Space calculation scenario . 687
DB2 database allocation required for space calculation scenario 688
VSAM database allocation required for space calculation scenario 693

Space calculation worksheets 694

Appendix D. Performance considerations 701
General optimization techniques 701
WebSphere Data Interchange/z/OS considerations 702
WebSphere Data Interchange CICS considerations 703
File maintenance techniques 704
Transaction Store query techniques 704
VS COBOL II field exit considerations 706

Appendix E. Mapping the MQRFH2 header to the JMS API 709

Appendix F. Notices . 711
Trademarks. 713

Glossary of terms and abbreviations 715

Bibliography . 723
WebSphere Data Interchange publications 723
Softcopy books . 723

Portable Document Format (PDF) 723
WebSphere Data Interchange information available on the Internet 723

Index . 725

Sending your comments to IBM 745

Contents xvii

xviii WebSphere Data Interchange Programmer’s Reference

Figures

1. Example of a customized report produced by the ENVELOPE DATA EXTRACT command 31
2. Example of a network traffic activity report . 40
3. Example of a Financial Acknowledgement Image report 42
4. Example of an Activity Summary Report . 44
5. Example of an Events Logging Report . 46
6. Example of the Status Summary Report for Outbound Transactions 48
7. Example of the Status Summary Report for Inbound Transactions 48
8. Example of the Selection Criteria for Status Summary Report 50
9. Example of the Transaction Details report. 52

10. Example of the Transaction Image report . 54
11. Example of a trading partner capability report . 94
12. Example of a trading partner profile report . 96
13. Example of a formatted transaction activity report 98
14. Sample PRTFILE . 175
15. Example of records written to EDIEIPROF by export 186
16. Example of multiple trading partner profiles. 189
17. Example of exporting trading partner profiles . 192
18. HOT-DI initialization diagram . 319
19. HOT-DI non-Expedite/CICS - inbound diagram 320
20. HOT-DI termination diagram . 322
21. HOT DI non-Expedite/CICS - outbound diagram 323
22. Load Module Relationships . 376
23. Translate, envelope, and send process . 395
24. Receive, deenvelope, and translate process . 419
25. Application-to-network flow diagram . 528

© Copyright IBM Corp. 2002 xix

xx WebSphere Data Interchange Programmer’s Reference

Tables

1. Removing and archiving event log entries . 5
2. Interpretation of wildcard characters . 7
3. Continuous receive status codes . 10
4. Continuous receive status report record format . 11
5. Transaction handle format . 59
6. EDIQUERY file layout for commands . 176
7. Fields in the Enveloping Options File for Functional Acknowledgments 180
8. Interchange example . 181
9. Envelopes for FA interchange. 181

10. Interchange example acknowledgements . 182
11. Export/Import control file labels . 183
12. Export/Import file logical names . 185
13. Export/Import Common Control Record (0C1/0C2) fields 187
14. Export/Import Common End of Group Record (000) Fields 187
15. Trading partner record types . 188
16. Trading partner profile header record 7P1 . 189
17. Trading partner profile members. 190
18. Trading partner contacts definition . 202
19. Trading partner control numbers. 202
20. Comments definition . 202
21. Contacts definition . 202
22. Exporting all data elements in a particular segment. 204
23. EDI standard dictionary record . 204
24. EDI standard transaction header record . 205
25. EDI standard transaction detail record . 205
26. EDI standard segment header record . 206
27. EDI standard segment detail record . 206
28. EDI standard data element header record . 206
29. EDI standard data element detail record . 207
30. EDI standard segment notes record . 207
31. EDI standard transaction notes record . 208
32. EDI standard composite data element notes record. 209
33. Data format dictionary record . 211
34. Data format record ID record . 211
35. Data format header record . 211
36. Data format loop record . 212
37. Data format record record . 213
38. Data format structure record . 213
39. Data format field record . 213
40. Data format header details record . 214
41. Data format loop details record . 214
42. Data format record details record . 215
43. Data format structure details record . 215
44. Map header record . 218
45. Map segment record . 218
46. Map element record . 219
47. Map application control record . 220
48. Map syntax record . 220
49. Map local variables record . 222
50. Map reference record. 222
51. Map nodes record . 222
52. Map commands record . 223
53. Global variables details record . 223

© Copyright IBM Corp. 2002 xxi

54. Trading partner send usage record . 224
55. Trading partner receive usage record . 225
56. Data transformation map rule record . 226
57. Table definition fields for export and import . 227
58. Table entry export import tags and lengths . 229
59. XML dictionary record . 231
60. XML DTD header record . 231
61. XML DTD details record. 231
62. Mailbox (requestor) profile . 232
63. Network security profile . 233
64. Network profile . 233
65. Network operations profile . 234
66. Activity log profile . 235
67. Application defaults profile . 235
68. User exit profile . 236
69. Language profile . 236
70. EDIFACT (E envelope) profile . 237
71. ICS (I envelope) profile . 238
72. UN/TDI (T envelope) profile . 239
73. UCS (U envelope) profile . 240
74. X12 (X envelope) profile. 240
75. Continuous receive profile . 242
76. CICS performance profile . 242
77. MQSeries queue profile . 243
78. Control (C) record for translating to standard format 243
79. Data record format: single structure . 253
80. Raw data record format . 255
81. Optional records supported by command . 256
82. Information record format . 256
83. Interchange header (E) record format . 258
84. Group header (G) record format . 258
85. Transaction set header (T) record format . 258
86. Queueing totals (Q) record format . 259
87. File (F) record layout . 259
88. Trading partner profile data extract fields . 260
89. Trading partner capability data extract fields . 261
90. Network activity data extract fields . 262
91. Transaction activity data extract fields. 262
92. Transaction Store information categories . 264
93. Transaction Store common key format . 265
94. Interchange data extract record layout . 266
95. Group data extract record layout . 267
96. Transaction data extract record layout . 268
97. Application data extract record layout . 271
98. Transaction/Acknowledgement image data extract record layout 271
99. Parameters for the interface to the get or put envelope exit 286

100. Parameters for the interface to the get or put service 286
101. Parameters for the get data routine . 300
102. Parameters for the Put data routine . 301
103. Parameters for the Call exit routine . 302
104. Data extract exit control block . 303
105. Format of the multiple TSQ control block . 309
106. Unit of work for each datainterchange utility command 312
107. Format of WebSphere Data Interchange utility control information 324
108. Continuous receive selection criteria . 333
109. Continuous receive selection criteria . 333

xxii WebSphere Data Interchange Programmer’s Reference

110. Identifying unrecoverable continuous receive sessions 350
111. WebSphere Data Interchange supplied CICS transactions 353
112. Format of the performance monitor commarea 355
113. Required utility data sets . 371
114. Environmental services functions . 386
115. Parameters for the initialization of Environmental services 387
116. Environmental services initialization return codes 387
117. Environmental services utility service parameters 388
118. Environmental services termination parameters 389
119. Environmental services termination return codes. 389
120. Translation services DB2 tables . 391
121. Transaction services translate-to-standard parameters 398
122. Service name block (SNB) initialization for translate-to-standard 399
123. Function code block (FCB) initialization for translate-to-standard 399
124. Translator control block (TRCB) initialization for translate-to-standard 399
125. Translator output data block (TRODB) initialization for translate-to-standard 401
126. Trading partner send usage/rule fields . 402
127. TRCB fields that you must set on the first call for translation 402
128. TRCB fields that provide overrides . 404
129. TRIDB Initialization - First Call for Transaction 405
130. TRCB fields that provide transaction and translator status 405
131. Fields in TRCB returned on first call for a transaction 406
132. Fields in TRCB returned when an interchange is written 406
133. Fields in TRCB updated during translation . 408
134. Fields in TRCB related to the interchange header and trailer 409
135. Fields in TRCB related to group header and trailer 410
136. Fields in the translator control block (TRCB) related to transaction header and trailer 410
137. TRCB fields defining the status of the transaction 412
138. Translate specific API request parameters . 421
139. Transaction attribute fields in the translator control block (TRCB). 425
140. Application related fields in the translator control block (TRCB) 425
141. Interchange header/trailer fields in the translator control block (TRCB). 427
142. TRCB fields providing information on basic transaction attributes. 434
143. Application related fields in TRCB . 435
144. Interchange header/trailer fields in TRCB . 437
145. Group header/trailer fields in the TRCB . 438
146. Transaction header/trailer fields in the TRCB . 439
147. Envelope API parameters . 446
148. TRCB initialization for enveloping function . 446
149. Transaction attribute fields in TRCB . 449
150. Application related TRCB fields . 450
151. Fields in TRCB related to the interchange header or trailer 450
152. Fields in TRCB related to group header or trailer 452
153. TRCB fields related to transaction header or trailer 452
154. TRCB fields returned when an interchange is written 453
155. Parameters for the Close and queue interchange API 457
156. TRCB fields returned when an interchange is written 457
157. Parameters for the End translation/enveloping API 458
158. Parameters for the deenveloping API . 459
159. TRCB initialization for deenveloping . 460
160. TRCB fields related to the transaction. 464
161. Application-related fields in TRCB . 465
162. Fields related to functional acknowledgements 465
163. Interchange header/trailer fields in TRCB . 465
164. TRCB fields updated to indicate interchange processing 467
165. Group header/trailer fields in the TRCB . 467

Tables xxiii

166. Transaction header/trailer fields in the TRCB . 468
167. Fields in TRCB associated with the transaction header and trailer 468
168. Search sequence to locate trading partner profile for the sender 469
169. Search sequence to locate trading partner profile for the receiver 469
170. Parameters for the Issue commit API . 472
171. Parameters for the Retrieve interchange header API 472
172. Parametres for the Retrieve group header API 473
173. Parameters for the Retrieve transaction header API 473
174. Parameters for the Data extraction API . 474
175. TRCB fields required to initialize transactions . 475
176. Returned information on extract request . 476
177. Overview of functiondsprovided by Communication services 480
178. Trading partner fields used by communications 481
179. Common CMCB output fields . 482
180. Parameters for the send transactions of restart send transactions API 484
181. CMCB fields required for sending transaction data 484
182. CMCB fields returned on a request to send transactions 486
183. CMCB initialization requirements for the send files API 488
184. CMCB fields returned on a send file API request. 489
185. Initialization for send transaction data . 491
186. CMCB fields returned on the receive data API 492
187. Initialization for cancel . 494
188. CMCB fields returned from a Cancel request . 495
189. Initialization for query filename . 495
190. CMCB fields returned by the Return filename API 496
191. CMCB field initialization requirements for Process network acknowledgements API 497
192. Parameters for the Update status API. 499
193. Update status API return codes . 500
194. Full key using trading partner nicknames . 500
195. Full key format using an interchange qualifier and ID 501
196. Full key format using an account number and user ID. 501
197. Transaction handle . 502
198. Alternate key format using account number and user ID 502
199. Alternate key format using interchange qualifier and user ID 503
200. Interchange fields established during status update. 503
201. Syncpoint services functions . 505
202. DB2 recovery conditions and actions . 506
203. Parameters for Initialize SYNC request . 507
204. Parameters for the COMMIT work function request 508
205. Parameters for the ROLLBACK work function request 508
206. Parameters for the Get envelope API request . 510
207. Parameters for the Put envelope API request . 511
208. Definition of the network operation profile . 533
209. Network command example . 534
210. FSUPPORT byte values. 535
211. Format of COMMAREA received by the network program 538
212. Format of the overwritten COMMAREA . 539
213. COMMAREA received by the message handler 540
214. COMMAREA set by the message handler . 540
215. COMMAREA format for continuous receive (CICS) 542
216. Distribution libraries member descriptions . 553
217. SNB definition. Layout of the SNB and descriptions of fields 555
218. CCB definition. Layout of the CCB and descriptions of fields 557
219. FCB definition. Layout of the FCB and descriptions of fields 560
220. TRCB definition. Layout of the translator control block (TRCB) and descriptions of fields 562
221. Translator warnings . 587

xxiv WebSphere Data Interchange Programmer’s Reference

222. Field-level translator errors. 587
223. Segment-level translator errors . 587
224. Transaction-level translator errors . 587
225. Group-level translator errors . 588
226. Interchange-level translator errors . 588
227. TRIDB functions and initialization requirements 589
228. Defining the TRIDB with 4 byte lengths . 590
229. TRODB functions and initialization requirements 591
230. Defining the TRODB with 4 byte lengths . 592
231. Definition of communication interface control block 593
232. Definition of the Trading Partner Profile Block . 603
233. Data blocks up to 32–K bytes. 614
234. Data blocks greater than 32–K bytes . 614
235. Definition of the Network Profile Block . 615
236. Definition of the Requestor Profile Block . 619
237. Database records (general) . 657
238. Standards database records . 659
239. Maps database records . 662
240. Data formats database records . 666
241. Trading Partner database records . 669
242. Set up database records . 670
243. Transaction Store tables . 674
244. Management reporting tables . 676
245. DB2 database allocation . 681
246. VSAM database allocation . 687
247. DB2 allocation required for the space calculation scenario 689
248. VSAM allocation required for the space calculation scenario 694
249. DB2 database allocation worksheet . 694

Tables xxv

xxvi WebSphere Data Interchange Programmer’s Reference

About this book

This book describes general-use programming and provides reference information
for developing application programs that use IBM® WebSphere® Data Interchange.

If you are familiar with previous versions of WebSphere Data Interchange and IBM
DataInterchange, note the following changes in the content of this book:
v This book provides information for the application programmers working with

WebSphere Data Interchange for Multiplatforms Version 3.2 and WebSphere
Data Interchange for z/OS™

v Using WebSphere Data Interchange is now explained in 3 separate chapters
where each of these chapters represents a different platform

v The following information has been moved from WebSphere Data Interchange
User’s Guide into this book:
– Using WebSphere Data Interchange in the AIX® and Microsoft® Windows®

Environment
– C++ and Java™ API return codes
– Mapping the MQRFH2 header to the JMS API

v Using sample JCL has been incorporated into Chapter 6 (Using WebSphere Data
Interchange in the z/OS environment)

Who should read this book
This book is intended for the electronic data interchange (EDI) programmer who
implements a computer system for electronic exchange of business information.
The programmer should be familiar with or have a working knowledge of:
v z/OS
v Customer Information Control System (CICS®)
v IBM DataInterchange Version 3.1 and Version 3.2
v A programming language such as Assembler, C, or COBOL
v An IBM relational database management system, for example DB2 Universal

Database™

Terms used in this book
All references in this book to z/OS are also applicable to supported releases of
OS/390® unless otherwise stated. Customization and configuration differences
between the z/OS and OS/390 are transparent to the user.

Syntax conventions used in this book
The following syntax conventions are used throughout this book:

v Bold letters represent values that you must type without change. Unless noted in
the text, these values are not case-sensitive. For example:
EDI PRINT(FILE)

v Bold letters also represent field names from panels. For example:
Trans data queue

v Lowercase italicized letters represent variable parameters for which you supply
the values. For example:
SYSID(system-name)

© Copyright IBM Corp. 2002 xxvii

Related books
The following books complete the WebSphere Data Interchange for Multiplatforms
Version 3.2 library and contain information related to the topics covered in this
book. You can view these documents, and download them, from the library page of
the WebSphere Data Interchange for Multiplatforms Web site:
http://www.ibm.com/websphere/datainterchange

v WebSphere Data Interchange for z/OS Administration Guide, SC34-6214

This book provides information for the electronic data interchange (EDI)
administrator about entering, sending, and receiving EDI transactions and other
documents interactively.

v WebSphere Data Interchange User’s Guide, SC34-6215

This book provides information on the WebSphere Data Interchange
Client/Server user interface.

v WebSphere Data Interchange Messages and Codes, SC34-6216

This book provides information to assist you in diagnosing errors.

You might also find the following publications useful:

v WebSphere Data Interchange for z/OS Installation Guide, SC34-6999

This book provides information about installing WebSphere Data Interchange on
z/OS and CICS systems.

v Expedite Base/MVS Programming Guide, GC34-2204

This book provides a description of the Expedite Base/MVS™ communications
program IEBASE.

v Expedite/CICS Display Application User’s Guide, GC34-3303

This book provides information about the Expedite/CICS Display Application.

v Customizing and Developing Applications with Expedite/CICS, GC34-3304

This book provides a description of the CICS (interactive) interface.

v Information Exchange Administration Services User’s Guide, GC34-2221

This book explains the major administrative tasks and describes how to use
them.

v Information Exchange Interface Programming Guide, GC34-2222

This book provides information about programming for the Information Exchange
interface.

v VS COBOL II Application Programming Guide, SC26-4045

This book provides information on run-time parameters for improving
performance.

v Using EDI VAN Interconnect, GC34-2263

This book provides information about using EDI VAN Interconnect to connect to
multiple networks.

About this book

xxviii WebSphere Data Interchange Programmer’s Reference

Chapter 1. Using The Utility

The WebSphere Data Interchange Utility provides command-level access to
WebSphere Data Interchange services. These services can be divided into the
following categories:

v Performing general data translation
– Translating data from any EDI, XML, or data format to any other EDI, XML, or

data format using a data transformation map

v Processing outbound documents
– Translating to EDI standard format using a send map
– Enveloping
– Sending

v Processing inbound EDI documents
– Receiving
– Deenveloping
– Translating to data format using a receive map

v Managing data
– Updating records
– Removing records
– Controlling record status

v Reporting and extracting data
– Formatting and printing reports
– Printing application data
– Extracting data

v Customizing
– Exporting and importing administrative data

v Managing mailboxes (CICS only)
– Closing mailboxes

Any-to-any data translation
Any-to-any translation is a WebSphere Data Interchange feature that allows you to
translate data from any supported source document type to any supported target
document type. Supported document types include data formats, EDI standards,
and XML data.

This feature expands the flexibility of WebSphere Data Interchange processing by
allowing you to process a greater variety of formats. Any-to-any translation uses a
new type of map called a data transformation map. A data transformation map is a
set of mapping instructions that describes how to translate data from a source
document into a target document. Both the source and target documents can be
any one of several supported document types (application data to EDI standard
format, EDI standard format to application data, XML data to EDI standard format,
and so on).

Data transformation maps use the TRANSFORM command to do any-to-any
translation. You should use any-to-any translation with any maps that you create.
This is now the recommended method for translating documents.

Data transformation maps are created using WebSphere Data Interchange client.
For more information about the mapping features in WebSphere Data Interchange
client, refer to the WebSphere Data Interchange User’s Guide.

© Copyright IBM Corp. 2002 1

Outbound processing using send maps
Outbound processing using send maps includes the following functions:

v Translating application data into an EDI standard format and placing it in the
Transaction Store

v Enveloping standard transactions or messages so they are ready to be sent

v Sending enveloped data to trading partners

Commands are supplied to do each of these three steps independently or in
combination. In some cases, using the combination commands can improve
performance. The following commands are used for outbound processing:
v ENVELOPE
v ENVELOPE AND SEND
v RECVFILE AND SEND
v REENVELOPE
v REENVELOPE AND SEND
v RESTART SEND
v SEND
v SENDFILE
v TRANSLATE AND ENVELOPE
v TRANSLATE AND SEND
v TRANSLATE TO STANDARD

For more information on command syntax and command examples, see Chapter 2,
“WebSphere Data Interchange commands and keywords” on page 15.

WebSphere Data Interchange allows you to designate several types of files (print,
exception, application, and so on) as MQSeries® Queues.

Fixed-to-fixed translation using send maps
The same outbound processes used for EDI standard translations are also used for
fixed-to-fixed translation and enveloping. Fixed-to-fixed translation remains available
for use with existing maps in WebSphere Data Interchange for Multiplatforms
Version 3.2, but all new maps should be translated using any-to-any translation.

When translating to an EDI standard data format, fixed-to-fixed translation is only
done when the standard has an envelope type of F. The application data being
translated can include a mixture of fixed-to-fixed and EDI standard data types. The
results of the translation and an image of the data translated are saved to the
Transaction Store in C and D record format and are eligible for enveloping. For
more information on the command syntax and command examples, see
“TRANSLATE TO STANDARD command” on page 108.

For fixed-to-fixed translation, enveloping and reenveloping transactions from the
Transaction Store includes sorting the transactions to obtain the fewest
interchanges and groups, and then writing them to the appropriate file.

The appropriate files to use for EDI standard translated data in order of precedence
are the file identified by the FILEID keyword, the file specified in the Trans data
queue name field of the network profile member (with E or U suffix), or by default,
QDATA (with E or U suffix).

The appropriate files to use for EDI standard fixed-to-fixed translated data in order
of precedence are the file identified by the FIXEDFILEID keyword or the ddname

Outbound processing using send maps

2 WebSphere Data Interchange Programmer’s Reference

formed by the concatenation of the standard ID (the Application file name in the
data format that created the standard) with the File suffix.

Fixed-to-fixed translated data can either be written to the file in a C and D record
format or in raw data format. The D record format is always used when multiple
D records are found during translation. This format consists of the Record ID with a
value of D, followed by the 16-byte name of the structure, followed by the
structure’s data. If the fixed translated data does not have an associated data
format, the Segment ID from the EDI standard is used as the structure name. For
more information on the command syntax and command examples, see Chapter 2,
“WebSphere Data Interchange commands and keywords” on page 15.

Sending with fixed-to-fixed translation
When the SEND command is performed in a composite command such as
ENVELOPE and SEND, WebSphere Data Interchange remembers all the files
created during an envelope and sends each file using the appropriate request to the
network for sending the data. Standard data is sent using a SEND or SENDFILE
command (based on the envelope type used). Fixed translated data with an
interchange layer is sent the same way. Fixed translated data without an
interchange layer (such as ISA, UNB, and so on) is sent as a file using the
SENDFILE command.

You can also use the composite commands such as the TRANSLATE AND
ENVELOPE command or ENVELOPE AND SEND command to control the
processing of the data you send.

For more information on the command syntax and command examples, see
Chapter 2, “WebSphere Data Interchange commands and keywords” on page 15.

Inbound processing using receive maps
Inbound processing using receive maps includes the following functions:

v Receiving data from trading partners

v Deenveloping interchanges and placing the EDI standard transactions or
messages into the Transaction Store

v Translating EDI standard transactions or messages into application formats

Commands are supplied to do each of these three steps independently or in
combination. In some cases, using the combination commands can improve
performance. The following commands are used for inbound processing:
v DEENVELOPE
v DEENVELOPE AND TRANSLATE
v RECEIVE
v RECEIVE AND DEENVELOPE
v RECEIVE AND SEND
v RECEIVE AND TRANSLATE
v RECVFILE
v RESTART RECEIVE
v RETRANSLATE TO APPLICATION
v TRANSLATE TO APPLICATION

For more information on command syntax and command examples, see Chapter 2,
“WebSphere Data Interchange commands and keywords” on page 15.

Outbound processing using send maps

Chapter 1. Using The Utility 3

In CICS, you can not use the combination RECEIVE commands when Management
Reporting is turned on and SYNCVAL is -1. For more information on SYNCVAL, see
“WebSphere Data Interchange Utility control information” on page 323.

WebSphere Data Interchange allows you to designate several types of files (print,
exception, application, and so on) as MQSeries Queues.

Managing data
Data management includes the following functions:
v Rebuilding interchanges from transactions in the Transaction Store
v Updating status of transactions in the Transaction Store
v Removing transactions from the Transaction Store
v Updating management reporting statistics
v Removing management reporting statistics

The following commands are used for managing data:
v HOLD
v LOAD LOG ENTRIES
v PROCESS NETWORK ACKS
v PURGE
v QUERY
v RECONSTRUCT
v RECONSTRUCT AND SEND
v RELEASE
v REMOVE LOG ENTRIES
v REMOVE STATISTICS
v REMOVE TRANSACTIONS
v RESET STATISTICS
v UNLOAD LOG ENTRIES
v UNPURGE
v UPDATE STATISTICS
v UPDATE STATUS

For more information on command syntax and command examples, see Chapter 2,
“WebSphere Data Interchange commands and keywords” on page 15.

Inbound processing using receive maps

4 WebSphere Data Interchange Programmer’s Reference

Removing and archiving event log entries
You can remove event log entries and archive them. Typically, this is a multi-step
process because, while event log entries are removed real-time, reclaiming and
reorganizing the table space requires an additional step as described in Table 1.

Table 1. Removing and archiving event log entries

Remove DB2® log
entries:

Run WebSphere Data Interchange
PERFORM command:

Run DBS Utility:

Without archive
Without DB2 reorg

REMOVE LOG ENTRIES WHERE
APPLID (value)

N/A

With archive
Without DB2 reorg

UNLOAD LOG ENTRIES WHERE
APPLID (value) ARCHIVEFILE (value)
HOLDFILE (value)

N/A

Without archive
With DB2 reorg

REMOVE LOG ENTRIES WHERE
APPLID (value)

REORG TABLESPACE
EDIELOG

With archive
With DB2 reorg

UNLOAD LOG ENTRIES WHERE
APPLID (value) ARCHIVEFILE (value)
HOLDFILE (value)

REORG TABLESPACE
EDIELOG

Reporting and extracting data
Data reporting and extraction includes the following functions:

v Generating formatted reports containing data from the Transaction Store

v Formatting application data into conventional business documents

v Extracting data from the Transaction Store for further processing outside
WebSphere Data Interchange

v Extracting data from the management reporting statistics tables for further
processing outside WebSphere Data Interchange

WebSphere Data Interchange provides two mechanisms for producing reports:
v Management Reporting data extracts
v Transaction Store data extracts

Both mechanisms collect, update, and extract WebSphere Data Interchange trading
partner data and transaction information. Both are invoked with PERFORM
commands to extract the data, and both require user-written programs to sort,
format, and print data.

The Management Reporting and Transaction Store Data Extracts differ in the type
of information they provide. Management Reporting Data Extracts pull information
from the statistics tables, while Transaction Store Data Extracts pull information
from the Transaction Store.

WebSphere Data Interchange collects information in four management reporting
categories and two Transaction Store reporting categories, as follows:

v Management Reporting Categories

– Trading Partner Profile - provides general trading partner information
alphabetically, by trading partner. Reported information includes company
name, address, point of contact, telephone numbers, account ID, and
user ID.

– Trading Partner Capability - relates trading partner names used. For example,
this report allows you to determine which maps are installed in test and

Managing data

Chapter 1. Using The Utility 5

production, which trading partners are using which translation usages/rules,
direction of the translation, EDI standards used, transaction ID, total number
of transactions processed, and number of transactions that had errors.

– Transaction Activity - provides information relating transaction volumes to
trading partner names. For example, this report can calculate the total number
of transactions sent to a trading partner (by date and by map ID) or the total
transactions errors by trading partner (and by date or map ID). This
information is often used to gauge a trading partner's activity or to reconcile
documents sent or received.

– Network Activity - provides information such as network ID, name and account
number, user ID, direction, charge code, and total number of bytes sent or
received. This information is typically used to determine network charges, by
trading partner or application.

v Transaction Store Reporting Categories

– Transaction Data Extract - extracts detailed technical information from the
Transaction Store. It provides data such as trading partner nickname, direction
(S/R), transaction image, send acknowledgment data and image, receive
acknowledgment data and image, and transaction handle. This information is
commonly used for creating daily reports, such as overdue functional
acknowledgments.

– Envelope Data Extract - extracts detailed technical information from the
Transaction Store. It provides the same types of information as the transaction
data extract except envelope data extract only reports on transactions that
have been enveloped, and it sorts the data differently. This information is
commonly used for creating daily reports.

PRINT commands
You can use the PRINT commands with selection criteria to extract information from
the Transaction Store and write formatted reports to ddname RPTFILE. To obtain
the same type of information without formatting, use the ENVELOPE and
TRANSACTION DATA EXTRACT commands. You can print the information using
your system facilities. The cover page for each report lists the selection criteria you
entered. You can view most of the information in these reports using the
Transaction Store Facility. Samples of the different formats are listed in Chapter 2
with the commands that generate them. For more information, “Producing
management reports from the Transaction Store” on page 7.

The following commands are used for printing reports:
v PRINT
v PRINT ACKNOWLEDGEMENT IMAGE
v PRINT ACTIVITY SUMMARY
v PRINT EVENT LOG
v PRINT STATUS SUMMARY
v PRINT STATUS SUMMARY2
v PRINT TRANSACTION DETAILS
v PRINT TRANSACTION IMAGE

For more information on command syntax and command examples, see Chapter 2,
“WebSphere Data Interchange commands and keywords” on page 15.

Reporting and extracting data

6 WebSphere Data Interchange Programmer’s Reference

Producing management reports from the Transaction Store
The following commands are used for extracting data from the Transaction Store:
v ENVELOPE DATA EXTRACT
v NETWORK ACTIVITY DATA EXTRACT
v TRADING PARTNER PROFILE DATA EXTRACT
v TRADING PARTNER CAPABILITY DATA EXTRACT
v TRANSACTION ACTIVITY DATA EXTRACT
v TRANSACTION DATA EXTRACT

For more information on command syntax and command examples, see Chapter 2,
“WebSphere Data Interchange commands and keywords” on page 15.

Creating management reporting reports
To create management reports, do the following:

1. Set the Management Reporting Active? field to Y in the Application Defaults
profile member. The default is Y.

For any trading partner profiles that you want reported, include selection
information in the profile fields, such as a department name in a comment field.
For more information on management reporting, “TRADING PARTNER
PROFILE DATA EXTRACT command examples” on page 96.

2. Execute the UPDATE STATISTICS command to move the pending information
to the statistics tables. You must perform this step prior to data extraction. For
more information, “UPDATE STATISTICS command” on page 112.
PERFORM UPDATE STATISTICS

3. Execute the DATA EXTRACT command.
PERFORM DATA EXTRACT

Together, these two PERFORM commands collect the requested data and place
it in a QSAM file named EDIQUERY. You can use wild cards on DATA
EXTRACT commands, as follows:

Table 2. Interpretation of wildcard characters

Wild Card Matches

(any character) The specified character

? Any single character

* Any sequence of one or more characters

For more information, see the report examples included with the data extract
commands in Chapter 2, “WebSphere Data Interchange commands and
keywords” on page 15.

4. Process the data extract file into reports by:

v Verifying that you successfully created a QSAM data extract file (EDIQUERY)
containing a sequential set of independent records with a record length
of 1024. For more information, see “Management reporting” on page 260.

v Sorting the data according to your requirements through a sort utility.

v Formatting the data using a report-writing utility or a user-written program.

5. Remove previously collected daily statistics by executing the REMOVE
STATISTICS command:
PERFORM REMOVE STATISTICS

Producing management reports from the Transaction Store

Chapter 1. Using The Utility 7

Because statistics are not dependent on the Transaction Store, running the
REMOVE TRANSACTIONS command does not affect them. For more information,
see “PRINT commands” on page 6.

Note: You can use the USERPGM parameter to pass the report records to a program
prior to writing them to the EDIQUERY QSAM file. When using this
parameter, your program should return a code indicating whether the record
is written to the EDIQUERY file or is discarded. If a program is not supplied,
WebSphere Data Interchange writes the record to the EDIQUERY file.

Creating transaction data or transaction envelope reports
Using the TRANSACTION DATA EXTRACT and ENVELOPE DATA EXTRACT
commands, you can extract detailed information about transaction data and
envelopes from the Transaction Store, such as:

v Reporting the number of purchase orders sent in a given period of time.

v Reporting the total number of bytes sent in a given period of time. (This can be
useful for charging back costs to other departments based on their EDI usage.)

v Creating a customized functional acknowledgment tracking report, selected by
application or by department. For example, you could create an Exception Report
on Purchase Orders sent more than 2 days ago that have not been
acknowledged.

v Creating an exception report flagging missing control numbers for inbound
envelopes.

v Creating statistical reports identifying the most frequently used transactions, EDI
standards, version sizes, or delimiters.

You can also use the ENVELOPE DATA EXTRACT and TRANSACTION DATA
EXTRACT commands for functions other than reporting, such as:

v Archiving Transaction Store data.

v Loading status data directly into the application by application key; for example,
the status for each invoice sent could be loaded into the billing system by invoice
number.

The TRANSACTION DATA EXTRACT provides data such as trading partner
nickname, direction (Send or Receive), transaction image, send acknowledgment
data and image, receive acknowledgment data and image, and transaction handle.

The ENVELOPE DATA EXTRACT provides the same types of information as the
transaction data extract command except envelope data extracts include only
enveloped transactions, sorted by the requested envelope key such as trading
partner nickname, direction, interchange control number, receiver ID. Transaction
data extracts include all transactions sorted by transaction handle.

For more information on report record layouts, see “Transaction data extract record
layout” on page 268.

Creating Transaction Store reports
To create Transaction Store reports, do the following:

1. Select the type of information to collect in the Transaction Store:

a. To collect information, set the Trx. store active? field in the Application
Defaults profile to a value other than N.

Producing management reports from the Transaction Store

8 WebSphere Data Interchange Programmer’s Reference

b. To collect transaction images, set the Trx. image wanted? field in the
Application Defaults profile to a value other than N.

c. To collect functional acknowledgment images, set the FA image wanted? field
to a value other than N.

2. Perform the usual translations and communications.

3. To extract the information for the reports, execute the appropriate DATA
EXTRACT command using one of the following commands:
PERFORM TRANSACTION DATA EXTRACT

or
PERFORM ENVELOPE DATA EXTRACT

4. Create a user-written program to format the data extract file output (EDIQUERY)
into reports.

5. Remove transactions periodically using the following command:
PERFORM REMOVE TRANSACTIONS

For more information on these commands, see “Reporting and extracting data” on
page 5.

Exporting and importing
The EXPORT and IMPORT commands allow you to export or import the following:
v Maps (without reworking the entire map)
v Trading partner setup information (such as profile members)
v Administrative data

You tell WebSphere Data Interchange specifically which setup information you want
to exchange using a control file.

The following commands are used for exporting and importing:
v CLOSE MAILBOX
v EXPORT
v IMPORT

For more information on command syntax and command examples, see Chapter 2,
“WebSphere Data Interchange commands and keywords” on page 15.

Profile maintenance
You can query for specific profiles to review them and you can delete obsolete
profiles. The following commands are used for exporting and importing:
v DELETE PROFILE
v QUERY PROFILE

For more information on command syntax and command examples, see Chapter 2,
“WebSphere Data Interchange commands and keywords” on page 15.

Continuous receive
WebSphere Data Interchange can take advantage of the continuous receive
capabilities provided by Expedite/CICS. This allows WebSphere Data Interchange to
receive data immediately after it is put in the VAN mailbox. The continuous receive
function is only available on CICS.

Producing management reports from the Transaction Store

Chapter 1. Using The Utility 9

When a continuous receive is started through WebSphere Data Interchange,
WebSphere Data Interchange and Expedite/CICS each keep a control record about
the continuous receive. Although WebSphere Data Interchange and Expedite/CICS
can get out of sync when managing continuous receives, this is an exception to
normal processing. For more information about out of sync situations, “Continuous
receive session cleanup” on page 350.

The following commands are used for continuous receive:
v REPORT CONTINUOUS RECEIVE STATUS
v START CONTINUOUS RECEIVE
v STOP CONTINUOUS RECEIVE

For more information on command syntax and command examples, see Chapter 2,
“WebSphere Data Interchange commands and keywords” on page 15.

Reporting continuous receive status
A continuous receive status report includes the status of either a single continuous
receive member or all continuous receives known to WebSphere Data Interchange
and Expedite/CICS. The output goes to the report file specified for the report file
name and type in the Utility Control Information Block. The default is RPTFILE
(type TS in CICS). If an error is encountered while generating the report, the
processing program immediately terminates and does not report on subsequent
continuous receives.

Note: Continuous receive report statuses may be good or bad depending on the
result you expected. For example, a status of EXP STARTED N/P may be an
acceptable response that perfectly describes the state of that particular
continuous receive. On the other hand, a status of EXP STARTED might be
a problem and indicate an out-of-sync situation between WebSphere Data
Interchange and Expedite/CICS.

Table 3. Continuous receive status codes

If report status is: This continuous receive is:

STARTED Considered to be running by both WebSphere Data Interchange
and Expedite/CICS. A continuous receive profile member exists.

DI STARTED Considered to be running by WebSphere Data Interchange, but not
by Expedite/CICS. A continuous receive profile member exists.

EXP STARTED Considered to be running by Expedite/CICS, but not by WebSphere
Data Interchange. A continuous receive profile member exists.

STARTED N/P Considered to be running by both WebSphere Data Interchange
and Expedite/CICS. However, a continuous receive profile member
does not exist.

DI STARTED N/P Considered to be running by WebSphere Data Interchange, but not
by Expedite/CICS. A continuous receive profile member does not
exist.

EXP STARTED N/P Considered to be running by Expedite/CICS, but not by WebSphere
Data Interchange. A continuous receive profile member does not
exist.

NOT STARTED Not considered to be running by either WebSphere Data
Interchange or Expedite/CICS. However, a continuous receive
profile member does exist and it is eligible to be started.

NOT STARTED N/A Not considered to be running by either WebSphere Data
Interchange or Expedite/CICS. A continuous receive profile member
does exist, but it is not eligible to be started.

Continuous receive

10 WebSphere Data Interchange Programmer’s Reference

Table 4. Continuous receive status report record format

Name Offset Length Type Description

CRSTATUS 0 16 Char Report status

CDPROFID 16 16 Char WebSphere Data Interchange
continuous receive profile member

CDREQACT 32 08 Char WebSphere Data Interchange
requestor's account

CDREQUSE 40 08 Char WebSphere Data Interchange
requestor's user ID

CDUNIQUE 48 08 Char WebSphere Data Interchange
continuous receive unique ID

CDMSGUC 56 08 Char WebSphere Data Interchange message
user class

CDTPACCT 64 08 Char WebSphere Data Interchange trading
partner's account

CDTPUSER 72 08 Char WebSphere Data Interchange trading
partner's user ID

CEREQACT 80 08 Char Expedite/CICS account

CEREQUSE 88 08 Char Expedite/CICS user ID

CEUNIQUE 96 08 Char Expedite/CICS continuous receive
unique ID

CEMSGUCL 104 08 Char Expedite/CICS message user class

CETPACCT 112 08 Char Expedite/CICS trading partner's account

CETPUSER 120 08 Char Expo/CICS trading partner's user ID

RESERVED 128 04 Char Blanks

Persistent environment
The persistent environment is an optional WebSphere Data Interchange feature
available with CICS/ESA. This command is available only in the CICS environment
and is not required for normal processing. This command is used to gather
information required by WebSphere Data Interchange support personnel when
debugging problems related to the Persistent Environment. The resulting dump is
written to EDIGDMP1 in the CICS startup JCL.

The following commands are used for debugging the persistent environment:
v GLB DUMP
v GLB TRACE

For more information on command syntax and command examples, see Chapter 2,
“WebSphere Data Interchange commands and keywords” on page 15.

Using the WebSphere Data Interchange Utility in the z/OS environment
WebSphere Data Interchange provides sample JCL statements for running the
DataInterchange Utility in z/OS. You can copy and customize these statements as
necessary. The following is an explanation of the parameters your application can
pass in the JCL. Sample JCL files are shipped with the DataInterchange Host

Continuous receive

Chapter 1. Using The Utility 11

product. All the parameters are DataInterchange keywords and optional (except
PLAN and SYSTEM, which may be required under certain conditions).

APPLID=aaaaaaaa

Specifies the application ID to run the DataInterchange Utility. This
parameter also identifies the log file specified in the Activity Log
(APPDEFS) profile. Replace aaaaaaaa with the ID of the application that
initialized DataInterchange. If you specify this parameter, the activity log
profile must contain a matching entry to define which log file is used for
recording errors and events pertaining to the application. The two APPLID
values shipped with DataInterchange are:
v EDIFFS (default). Associated with the LOGFFS ddname. The default

APPLID and log when using the utilities
v EDIMP. Associated with the LOGEDI ddname. The APPLID and log used

during online DataInterchange processing

SYSID=bbbbbbbb

Identifies the installation-defined WebSphere Data Interchange system used
to run the EDIUTIL utility. Specifying this parameter controls access to
various components of DataInterchange. The SYSID is part of the resource
name defined using RACF or some other resource control product. Replace
bbbbbbbb with the ID used to protect DataInterchange services (for
example, RACF). The default ID is DIENU.

LANGID=ccc

Identifies the language ID used to run the EDIUTIL utility. The value
supplied must match an entry in the language(LANGPROF) profile. The
language ID is used to establish values such as date formats and decimal
notation. Replace ccc with the following value for the language version:

ENU. English

DLM=d

Specifies the delimiter used in place of left and right parentheses to enclose
values in the EDIUTIL utility command language. Replace d with the
delimiter you want to use in place of the left and right parentheses to
enclose values in the DataInterchange Utility command language. You must
supply this parameter if a keyword value contains either a left or right
parenthesis.

MQSYSIN=eeeeeeee

Replace eeeeeeee with the DataInterchange MQSeries Queue profile
member you want to use instead of a sequential file allocated to either
ddname SYSNAME or ddname EDISYSIN.

MQPRT=ffffffff

Replace ffffffff with the DataInterchange MQSeries Queue profile member
you want to use instead of a sequential file allocated to ddname PRTFILE.

MQRPT=gggggggg

Replace gggggggg with the DataInterchange MQSeries Queue profile
member you want to use instead of a sequential file allocated to ddname
RPTFILE.

MQEXCP=hhhhhhhh

Using the WebSphere Data Interchange Utility in the z/OS environment

12 WebSphere Data Interchange Programmer’s Reference

Replace hhhhhhhh with the DataInterchange MQSeries Queue profile
member you want to use instead of a sequential file allocated to ddname
FFSEXCP.

MQTRAK=iiiiiiii

Replace iiiiiiii with the DataInterchange MQSeries Queue profile member
you want to use instead of a sequential file allocated to ddname FFSTRAK.

MQQUERY=jjjjjjjj

Replace jjjjjjjj with the DataInterchange MQSeries Queue profile member
you want to use instead of a sequential file allocated to ddname
EDIQUERY.

PLAN=kkkkkkkk

In a DB2 environment, if the utility is invoked by way of IKJEFT01 and there
is no EDITSIN data set allocated, then this parameter is required. For more
information, see “WebSphere Data Interchange DB2 command file
(EDITSIN)” on page 170 Replace kkkkkkkk with the DB2 plan name.

SYSTEM=llll

In a DB2 environment, if the utility is invoked by way of IKJEFT01 and there
is no EDITSIN data set allocated, then this parameter is required. For more
information, see “WebSphere Data Interchange DB2 command file
(EDITSIN)” on page 170 Replace llll with the name of the DB2 subsystem
(or group, if Data Sharing).

Optional JCL parameter example
PARM(’SYSID=TEST LANGID=ENU SYSTEM=DB93 PLAN=EDIENU32’)

Using the WebSphere Data Interchange Utility in the z/OS environment

Chapter 1. Using The Utility 13

Using the WebSphere Data Interchange Utility in the z/OS environment

14 WebSphere Data Interchange Programmer’s Reference

Chapter 2. WebSphere Data Interchange commands and
keywords

This chapter explains how to use the WebSphere Data Interchange Utility command
language. For additional information about invoking the WebSphere Data
Interchange Utility in an z/OS environment, see “Using the WebSphere Data
Interchange Utility in the z/OS environment” on page 11. For additional information
about invoking the WebSphere Data Interchange Utility in a z/OS-CICS
environment, see “Running the WebSphere Data Interchange Utility in the CICS
environment” on page 305. For additional information about invoking the
WebSphere Data Interchange Utility in an AIX and Windows environment, see
Chapter 7, “Using WebSphere Data Interchange in the AIX and Windows
environment” on page 513.

Command language syntax
The WebSphere Data Interchange Utility command language consists of PERFORM
statements, WHERE clauses, and SELECTING clauses. It is represented in the text
as follows:
PERFORM SAMPLE-COMMAND
SELECTING SAMPLE-KEYWORD(value)
WHERE SAMPLE-KEYWORD(value)

A PERFORM statement defines the action WebSphere Data Interchange takes. The
following statement consists of the word PERFORM followed by the TRANSLATE
TO APPLICATION command as follows:
PERFORM TRANSLATE TO APPLICATION

While your input can include more than one PERFORM statement, the WebSphere
Data Interchange Utility handles each statement separately. It verifies the syntax of
each statement and processes it before verifying and processing the next
statement. If a nonzero (error) return code is generated for a statement, processing
stops with the incorrect statement.

A WHERE clause supplies selection criteria and other information that WebSphere
Data Interchange requires to process your requests. A WHERE clause consists of
the word WHERE, followed by one or more keywords and their associated values.
You must enclose the associated values in parentheses. For example, see the
keyword value PISCES in the WHERE clause below:
WHERE TPNICKN(PISCES)

Note: In z/OS, you can redefine the parentheses delimiter with the DLM parameter.
For more information, see “Using the WebSphere Data Interchange Utility in
the z/OS environment” on page 11.

A PERFORM statement can include more than one WHERE clause. Each WHERE
clause can contain more than one keyword, but each keyword can be used only
once within a WHERE clause. You can use a keyword again on the same
PERFORM statement in a different WHERE clause. The following example shows a
command statement that uses a WHERE clause:
PERFORM TRANSLATE TO APPLICATION
WHERE TPNICKN(PISCES) TRXDATE(12/12/01)
WHERE TPNICKN(PISCES) TRXDATE(12/14/01)

© Copyright IBM Corp. 2002 15

The previous statement tells WebSphere Data Interchange to translate to
application format all EDI documents that were received from a trading partner
whose name is PISCES, and whose documents were placed in the Transaction
Store on December 14, 2001. WebSphere Data Interchange processes only those
documents that meet both of the conditions specified in the WHERE clause. When
you specify all of your conditions in one WHERE clause, WebSphere Data
Interchange limits processing to only those transactions that satisfy all the specified
conditions.

If you want WebSphere Data Interchange to process EDI documents with either
condition, use two separate WHERE clauses. For example, the following statement
will translate all records for trading partner PISCES as well as all records with a
transaction date of December 14, 2001:
PERFORM TRANSLATE TO APPLICATION
WHERE TPNICKN(PISCES)
WHERE TRXDATE(12/10/01)

Some statements use a SELECTING clause. Like WHERE clauses, SELECTING
clauses provide selection criteria. However, you can only include one SELECTING
clause in each PERFORM statement. The following example shows a command
statement that uses a SELECTING clause:
PERFORM ENVELOPE DATA EXTRACT
SELECTING INTERCHANGE(Y) GROUP(Y) TRANSACTION(Y)
WHERE TPNICKN(PISCES) INTCTLNO(000008888) DIR(S)

The command language format is free-form. You can insert blanks between
keywords to improve readability, but do not insert blanks between a keyword and its
associated value. Characters can be in upper, lower, or mixed case. Most fields are
not case sensitive. To determine if a field is case sensitive, see the field’s definition
in “Keyword descriptions” on page 114.

To select a range of values, you can follow some keywords with a pair of values
separated by the keyword TO. The first value indicates the low end of the range.
The second value indicates the high end of the range. Only transactions with values
falling between these two values will be selected.

To insert comments between commands, place an asterisk (*) in column one and
type the text on the same line. Each line of a comment must begin with an asterisk
or the system will attempt to process the information as commands. For example:
//SYSIN DD *
*
*This command translates my data into standard format
*
PERFORM TRANSLATE TO STANDARD
WHERE APPFILE(APDATA01)
/*

DATE, TIME, and HANDLE keywords
Several keywords are used to identify date or time. The format of the date and time
values you submit must conform to the Date mask and Time mask fields in the
language profile used. You can request the current date by using an asterisk (*), or
you can request a previous date by using *-n, where n is the number of days before
today's date. You can also use an asterisk to request the current time.

The HANDLE keyword is used to select a specific transaction or transaction group
for processing or reporting. This keyword specifies the date, time, and transaction
ID in format YYYYMMDDHHMMSSnnnnnn.

Command language syntax

16 WebSphere Data Interchange Programmer’s Reference

Command language validation
WebSphere Data Interchange performs basic validation on the command language
input, as follows:

v Each PERFORM command (such as TRANSLATE TO STANDARD) is validated.
WebSphere Data Interchange generates an error if the command is not valid.

v All keywords are validated. WebSphere Data Interchange generates an error if a
keyword is not valid.

v If a keyword is specified, an associated value must also be specified.
WebSphere Data Interchange generates an error if you do not specify a keyword
value.

v You must enclose each keyword value with beginning and ending delimiters. The
default delimiters are opening and closing parentheses. WebSphere Data
Interchange generates an error if you do not enclose a keyword value with
delimiters.

v The length of each keyword value is validated against the maximum allowable
length for that keyword. WebSphere Data Interchange generates an error if the
length of the value you supply is greater than the maximum allowable length for
the keyword.

v Keywords cannot be used more than once in a WHERE clause. However, you
can specify multiple WHERE clauses. WebSphere Data Interchange generates
an error if you specify a keyword more than once in the same WHERE clause.

v Date and time fields are validated. WebSphere Data Interchange generates an
error if the date or time values you specify are not valid.

v When a keyword has an associated default value, keyword values that are not
valid are ignored, and defaults are used. An example of a keyword value that is
not valid is RAWTEST(X). In this situation, WebSphere Data Interchange ignores
the value of X and does not generate an error. For specific default values, see
“Keyword descriptions” on page 114.

v If a keyword is used as part of selection criteria against the Transaction Store,
the associated value is accepted. If the associated value is not valid, WebSphere
Data Interchange uses the value as part of the selection criteria, and does not
find a transaction match. Verify the associated values for each keyword used for
Transaction Store selection criteria.

Error filtering
You can use a special named variable called DIERRFILTER to tell the translator to
ignore certain error conditions. DIERRFILTER may also be used as a keyword on
PERFORM commands to indicate which errors should be ignored during the
translation process.

When the DIERRFILTER variable is specified as SET or SAVED, the translator
parses the value of the variable as an indicator of the errors to ignore. The
DIERRFILTER variable value should consist of a list of the error codes to be
ignored. These values are documented in “Translator Error Codes” on page 587.

When an error is filtered, it does not mean the error did not occur. Eliminating the
message and its corresponding condition code does not eliminate the error. For
example, a TR0004 error message can be issued if a validation edit fails. This error
can be filtered so as not to produce the TR0004 message, but doing so does not
alter the fact that the edit failed. Filtering only serves to suppress the error message
and its condition code but does not otherwise affect translation processing.

Command language syntax

Chapter 2. WebSphere Data Interchange commands and keywords 17

Note: If you filter an error that would normally generate a functional
acknowledgment, filtering the error eliminates the functional acknowledgment
as well. If the error is not reported because of filtering, it is not reported in a
functional acknowledgment either.

For example, if you are not interested in the “mandatory data element missing” error
(TR0001-101), or the “data element is too short” error (TR0003-103), you can filter
them out by specifying:
&SET DIERRFILTER 101,103

You can filter many errors without typing a code for each one by specifying a range
of values in the variable. For example, you would eliminate errors 101, 103 and all
warning messages by specifying:
&SET DIERRFILTER 101,103,1-99

Because DIERRFILTER is a named variable, you can use a statement like the
following to eliminate validation errors, along with those errors previously set:
&SET DIERRFILTER &E(DIERRFILTER + ',116')

Certain errors occur before translation is performed, even before a map has been
determined. Most of these errors fall into the warning category. You can use the
following PERFORM command to eliminate all the warning errors before translation
is performed:
PERFORM TRANSLATE TO STANDARD
WHERE DIERRFILTER(1-99)

The DIERRFILTER variable has a transaction scope and, therefore, the value set
on one transaction does not propagate to the next transaction. The translator sets
the DIERRFILTER variable to the value specified in the PERFORM command at the
start and end of each transaction.

There are certain errors that you cannot turn off. For example, you cannot filter
error TR0053 (maximum number of structures exceeded) because the message is
too important, as it indicates data is being ignored. If you attempt to filter an error
that is not filterable, the request is ignored (no error message is generated).

Errors TR0101, TR0103, TR0151, TR0153, TR0203 and TR0205 indicate that the
ISA/IEA, GS/GE, or ST/SE segment pairs are inconsistent with respect to control
numbers or control counts. If these errors are filtered, WebSphere Data Interchange
will process the interchange, group, or message in spite of the inconsistency.

In the case where a map contain a complex set of DIERRFILTER values, and
something is not working correctly, you may need to see all error messages. Rather
than changing the map, you can use the DIERRFILTER keyword with a value of
IGNORE to tell WebSphere Data Interchange that all errors should be reported
regardless of the instructions in the map, as follows:
PERFORM TRANSLATE TO STANDARD
WHERE DIERRFILTER(IGNORE)

Overriding utility condition codes
The WebSphere Data Interchange Utility returns a condition code to z/OS that can
be tested in the JCL. In cases where you want to ignore certain condition codes,
you can use the keywords IFCC and SETCC on any PERFORM statement to
override up to 10 different condition codes.

Error filtering

18 WebSphere Data Interchange Programmer’s Reference

Note: When overriding condition codes, do not ignore important error conditions.

These keywords are entered as follows:

v IFCC(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10)

The values c1-c10 represent the utility condition codes to be checked.

v SETCC(n1,n2,n3,n4,n5,n6,n7,n8,n9,n10)

The values n1-n10 will be used to override the IFCC condition codes c1-c10,
respectively.

If SETCC keyword is not specified, all codes specified in the IFCC keyword are
overridden to zero (0).

The following is an example of an override of an empty application file condition on
TRANSLATE TO STANDARD:
PERFORM TRANSLATE TO STANDARD
WHERE APPFILE(APDATA01) IFCC(6) SETCC(0)

Note: Since zero (0) is the default override code, you can omit the SETCC keyword
and get the same results as entering a value of zero.

Overriding utility condition codes

Chapter 2. WebSphere Data Interchange commands and keywords 19

CLOSE MAILBOX command
WebSphere Data Interchange does not wait for send requests to complete when
using Expedite/CICS and Information Exchange. When any type of access to
Information Exchange is accomplished (send, receive, continuous receive, network
status update), the mailbox opens and remains open until you close it. Closing your
mailbox is only necessary when the same mailbox will be used in the z/OS
environment. To close the mailbox, you must use this command to end the session.
This command is only available in the CICS environment and is not required for
general processing.

Syntax
CLOSE MAILBOX
REQID(requestor ID)

CLOSE MAILBOX command example
Close the mailbox for requestor DEPTA7F.
PERFORM CLOSE MAILBOX
WHERE REQID(DEPTA7F)

CLOSE MAILBOX

20 WebSphere Data Interchange Programmer’s Reference

DEENVELOPE command
This command takes EDI transactions from the envelope file, removes the envelope
segments, and places the results in the Transaction Store. The envelope file is
either the receive file specified in the mailbox (requestor) profile or the file specified
in the command.

Syntax
DEENVELOPE
DIERRFILTER(initial error filter set)
DUPENV(process duplicate envelopes)
EXTENDC(translate with extended C record format)
FADELAY(delay queuing functional acknowledgment)
FILEID(processing file ddname)
FORCETEST(force test usage)
FUNACKFILE(functional acknowledgment ddname)
FUNACKREQ(require functional acknowledgment envelope file)
IAREA(IEXIT information)
IEXIT(interchange control program)
IFCC(override condition codes)
INMEMTRANS(transactions in memory)
MRREQID(management reporting requestor ID)
MULTIDOCS(multiple-document file)
OPTRECS(optional record type)
PAGE(pageable translation)
PURGINT(purge interval)
RECOVERY(recovery unit of work)
REQID(requestor ID)
SAPUPDT(track SAP status)
SERVICESEGVAL(service segment validation level)
SETCC(condition codes)
XML(XML required)
XMLDICT(XML dictionary address)
XMLDTDS(XML DTD path)
XMLEBCDIC(EBDCDIC indicator)
XMLSEGINP(line break indicator)
XMLSTDID(destination EDI standard ID)
XMLVALIDATE(XML validation indicator)

DEENVELOPE command examples

Example 1:
Deenvelope the transactions previously received for requestor ID DEPTA7F. Place
the results in the Transaction Store. Mark these transactions for purging after 10
days in the store.
PERFORM DEENVELOPE
WHERE REQID(DEPTA7F) PURGINT(10)

Example 2:
Deenvelope the transactions in ddname A7FIN. Place the results in the Transaction
Store. Do not allow duplicate interchanges to be processed.
PERFORM DEENVELOPE
WHERE FILEID(A7FIN) DUPENV(N)

DEENVELOPE

Chapter 2. WebSphere Data Interchange commands and keywords 21

DEENVELOPE AND TRANSLATE command
This command combines the functions of the DEENVELOPE and TRANSLATE TO
APPLICATION commands. It takes EDI documents from the receive file defined in
the mailbox (requestor) profile member or from the override file specified in the
command, removes the envelope segments, and places the results in the
Transaction Store. It then translates the documents to the defined application format
and places the results in the application file specified by the data format or in the
file specified by the trading partner usage/rule. This composite command performs
faster than the separate commands.

Note: In CICS, you can also deliver the data to a program of CICS transaction, as
specified in the Application file name and Application file type fields of
the data format.

Syntax
DEENVELOPE AND TRANSLATE
ASSERTLVL(session assertion level)
BATCHSET(set transaction batch ID)
CCEXCEPTION(job-step condition code)
DIERRFILTER(initial error filter set)
DUPENV(process duplicate envelopes)
EXTENDC(translate with extended C record format)
FADELAY(delay queuing functional acknowledgment)
FILEID(processing file ddname)
FORCETEST(force test usage)
FUNACKFILE(functional acknowledgment ddname)
FUNACKREQ(require functional acknowledgment envelope file)
IAREA(IEXIT information)
IEXIT(interchange control program)
IFCC(override condition codes)
INMEMTRANS(transactions in memory)
MRREQID(management reporting requestor ID)
MULTIDOCS(multiple-document file)
OPTRECS(optional record type)
PAGE(pageable translation)
PURGINT(purge interval)
RAWDATA(translate to raw data format)
RECOVERY(recovery unit of work)
REQID(requestor ID)
SAPUPDT(track SAP status)
SERVICESEGVAL(service segment validation level)
SETCC(condition codes)
XML(XML required)
XMLDICT(XML dictionary address)
XMLDTDS(XML DTD path)
XMLEBCDIC(EBDCDIC indicator)
XMLSEGINP(line break indicator)
XMLSTDID(destination EDI standard ID)
XMLVALIDATE(XML validation indicator)

DEENVELOPE AND TRANSLATE

22 WebSphere Data Interchange Programmer’s Reference

DEENVELOPE AND TRANSLATE command examples

Example 1:
Deenvelope and translate the EDI documents in the receive file specified by
requestor ID DEPTA7F.
PERFORM DEENVELOPE AND TRANSLATE
WHERE REQID(DEPTA7F)

Example 2:
Deenvelope and translate the EDI documents in the receive file specified by
requestor ID DEPTA7F into raw data format. Return the information records to the
exception file.
PERFORM DEENVELOPE AND TRANSLATE
WHERE REQID(DEPTA7F) RAWDATA(Y) OPTRECS(I)

DEENVELOPE AND TRANSLATE

Chapter 2. WebSphere Data Interchange commands and keywords 23

DELETE PROFILE command
This command deletes profile members. However, you can not delete a trading
partner profile member while it is still associated with a translation usage/rule.

Syntax
DELETE PROFILE
ID(DataInterchange profile name)
MEMBER(member profile name)

DELETE PROFILE command examples

Example 1:
Delete trading partner profile member TPMEM.
PERFORM DELETE PROFILE
WHERE ID(TPPROF) MEMBER(TPMEM)

Example 2:
Delete mailbox (requestor) profile member REQMEM.
PERFORM DELETE PROFILE
WHERE ID(REQPROF) MEMBER(REQMEM)

DELETE PROFILE

24 WebSphere Data Interchange Programmer’s Reference

ENVELOPE command
This command takes the EDI transactions from the Transaction Store that are
available for enveloping, envelopes them, and places the results in an envelope file.
The envelope file is the TD queue specified in the network profile member or a file
specified in the command. Your selection criteria determine which transactions go
into the interchange envelope. The enveloper sorts the transactions to create the
fewest number of functional groups and interchange envelopes. For more
information about envelope processing, see “Enveloping services” on page 442.

Syntax
ENVELOPE
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
BATCH(translated transaction batch ID)
ENVPRBREAK(start new envelope)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FILEID(processing file ddname)
FIXEDFILEID(fixed-to-fixed output ddname)
FORMAT(data format ID)
HANDLE(starting transaction ID) TO(ending transaction ID)
IACCESS(IEXIT access)
IAREA(IEXIT information)
IEXIT(interchange control program)
IFCC(override condition codes)
INMEMTRANS(transactions in memory)
ITPBREAK(new interchange envelope)
ITYPE(IEXIT program type)
NETID(network ID)
OPTRECS(optional record type)
PAGE(pageable translation)
RAWDATA(translate to raw data format)
RECOVERY(recovery unit of work)
SAPUPDT(track SAP status)
SERVICESEGVAL(service segment validation level)
SETCC(condition codes)
STDTRID(EDI standard transaction set ID)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRERLVL(maximum translation error level)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)
VERIFY(verify transaction status)
XML(XML required)
XMLDICT(XML dictionary address)
XMLDTDS(XML DTD path)

ENVELOPE command examples

Example 1:
Envelope all the EDI documents in the Transaction Store that are associated with
data format ID PO850 or CORP861, and with network IINR41. The NETID keyword

ENVELOPE

Chapter 2. WebSphere Data Interchange commands and keywords 25

is included in both WHERE clauses to make sure that only IINR41 transactions are
selected. (Each WHERE clause is a separate set of selection criteria.
PERFORM ENVELOPE
WHERE FORMAT(PO850) NETID(IINR41)
WHERE FORMAT(CORP861) NETID(IINR41)

Example 2:
Envelope all the EDI documents in the Transaction Store that are associated with
data format ID PO850 or CORP861, and with network IINR41. Place the results in
file NETQUEUE. The NETID keyword is included in both WHERE clauses to make
sure that only IINR41 transactions are selected. (Each WHERE clause is a separate
set of selection criteria.)
PERFORM ENVELOPE
WHERE FORMAT(PO850) NETID(IINR41) FILEID(NETQUEUE)
WHERE FORMAT(CORP861) NETID(IINR41)

ENVELOPE

26 WebSphere Data Interchange Programmer’s Reference

ENVELOPE AND SEND command
This command combines the functions of the ENVELOPE and SEND commands, It
takes EDI transactions from the Transaction Store, envelopes them, and places the
results in a ddname file specified in the Transaction data queue field of the
network profile member or in a file specified by the command. Selection criteria
determine which transactions go into the interchange envelope. The enveloper sorts
the transactions to create the fewest possible number of functional groups and
interchange envelopes. WebSphere Data Interchange then sends the enveloped
transactions to the network. This composite command performs faster than the
separate commands

For more information on determining the number of groups and envelopes needed,
see “Enveloping services” on page 442.

Syntax
ENVELOPE AND SEND
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
BATCH(translated transaction batch ID)
ENVPRBREAK(start new envelope)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FILEID(processing file ddname)
FIXEDFILEID(fixed-to-fixed output ddname)
FORMAT(data format ID)
HANDLE(starting transaction ID) TO(ending transaction ID)
IACCESS(IEXIT access)
IAREA(IEXIT information)
IEXIT(interchange control program)
IFCC(override condition codes)
INMEMTRANS(transactions in memory)
ITPBREAK(new interchange envelope)
ITYPE(IEXIT program type)
NETID(network ID)
OPTRECS(optional record type)
PAGE(pageable translation)
RAWDATA(translate to raw data format)
RECOVERY(recovery unit of work)
SAPUPDT(track SAP status)
SERVICESEGVAL(service segment validation level)
SEQNUM(increment network profile member numbers)
SETCC(condition codes)
STDTRID(EDI standard transaction set ID)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRERLVL(maximum translation error level)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)
VERIFY(verify transaction status)

ENVELOPE AND SEND

Chapter 2. WebSphere Data Interchange commands and keywords 27

ENVELOPE AND SEND command examples

Example 1:
Envelope and send all documents in the Transaction Store that have a destination
of trading partner PISCES.
PERFORM ENVELOPE AND SEND
WHERE REQID(IINREQ) TPNICKN(PISCES)

Example 2:
Envelope and send all documents in the Transaction Store with batch ID 121401.
PERFORM ENVELOPE AND SEND
WHERE REQID(IINREQ) BATCH(121401)

Example 3:
Envelope and send all documents in the Transaction Store with batch IDs
INB11214 or GEIS1214.
PERFORM ENVELOPE AND SEND
WHERE REQID(INB1REQ) BATCH(INB11214)
WHERE REQID(GEISREQ) BATCH(GEIS1214)

Note: These transactions will be sent using different networks.

ENVELOPE AND SEND

28 WebSphere Data Interchange Programmer’s Reference

ENVELOPE DATA EXTRACT command
This command extracts detailed information about enveloped transactions, sorted
by trading partner nickname, direction, interchange control number, or receiver ID.

You can use this command to create report data to:

v Report on the number of purchase orders sent in a given period of time

v Report on the total number of bytes sent in a given period of time (this can be
useful for charging back costs to other departments based on their EDI usage)

v Create a customized functional acknowledgment tracking report by application or
by department; for example, an exception report on purchase orders sent more
than 2 days ago that have not been acknowledged

v Create an exception report flagging missing control numbers for inbound
envelopes

This command can also be used for functions other than reporting, such as:

v Archiving Transaction Store data

v Loading status data directly into the application by application key; for example,
the status for each invoice sent could be loaded into the billing system by invoice
number

To extract detailed information about transactions, use the TRANSACTION DATA
EXTRACT command (see 99).

For information about wildcard usage, see Table 2 on page 7.

Syntax
ENVELOPE DATA EXTRACT
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLICATION(write application data record)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
CONCATENATE(concatenate extract data)
DIR(processing direction)
DLVDATE(starting delivery date) TO(ending delivery date)
DLVTIME(starting delivery time) TO(ending delivery time)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVTIME(starting transaction envelope time)

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GROUP(write group data record)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
IMAGE(write image data record)

ENVELOPE DATA EXTRACT

Chapter 2. WebSphere Data Interchange commands and keywords 29

INTCTLNO(starting sender’s interchange control nbr)
TO(ending sender’s interchange control nbr)

INTERCHANGE(write interchange data record)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
RECEIVEACKDATA(write detailed acknowledgment data)
RECEIVEACKIMAGE(write receive acknowledgment record)
SENDACKDATA(write detailed acknowledgment data)
SENDACKIMAGE(write acknowledgment record)
SETCC(condition codes)
SNDDATE(starting request sent date) TO(ending request sent date)
SNDTIME(starting request sent time) TO(ending request sent time)
STDTRID(EDI standard transaction set ID)
STSTAT(transaction status)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRANSACTION(write transaction data record)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)
USERPGM(user program)

ENVELOPE DATA EXTRACT command examples

Example 1:
The EDI users in Company XYZ want to view the status of their EDI documents for
the last month. Specifically, the Purchasing department would like to look up
purchase orders, by purchase order number, to determine the daily status. The
report must contain:
v Document type (purchase order, invoice, and so on)
v Control numbers
v Date and time
v Trading partner nickname
v Reference number (purchase order number, invoice number, and so on)
v Transaction status

The programmers at Company XYZ have decided to use a ENVELOPE DATA
EXTRACT command to collect the necessary information from WebSphere Data
Interchange. They have written a COBOL program, which they run daily, that will
format the records into a customized report. Users will read this customized report,
searching on the reference numbers to easily find the status they are interested in.
PERFORM ENVELOPE DATA EXTRACT
SELECTING CONCATENATE(Y) INTERCHANGE(Y) GROUP(Y) TRANSACTION(Y)
WHERE HANDLE(20010201) TO(20010328)

Figure 1 on page 31 shows an example of a customized report.

ENVELOPE DATA EXTRACT

30 WebSphere Data Interchange Programmer’s Reference

Example 2:
Retrieve the interchange, group, and transaction information for all transactions in a
particular envelope with trading partner name PISCES and interchange control
number 000008888. Place the results in the EDIQUERY file.
PERFORM ENVELOPE DATA EXTRACT
SELECTING INTERCHANGE(Y) GROUP(Y) TRANSACTION(Y)
WHERE TPNICKN(PISCES) INTCTLNO(000008888) DIR(S)

Example 3:
Retrieve the interchange, group, and transaction information for all envelopes with
an application sender ID of SERVO. Include application and image information.
PERFORM ENVELOPE DATA EXTRACT
SELECTING INTERCHANGE(Y) GROUP(Y) TRANSACTION(Y) APPLICATION(Y)
IMAGE(Y)
WHERE APPSNDID(SERVO) DIR(S)

XYZ COMPANY

CONTROL SET TRADING PO # or
TYPE NUMBER NUMBER DATE TIME NICKNAME INVOICE # STATUS
---- ----------- ----------- -------- -------- --------- ----------- ---------
PO 00000000375 00000003386 03/02/01 06:02:93 BOBS PO100332201 ENVELOPED
PO 00000000383 00000003394 03/01/01 11:12:53 BOBS4790 PO100222210 ENVELOPED
PO 00000000388 00000003399 03/02/01 11:33:06 BOBS4790 PO100232115 ENVELOPED
PO 00000000389 00000003400 03/01/01 06:52:23 BOBS4790 ENVELOPED
PO 00000000377 00000003388 03/01/01 11:41:23 BOBS PO100123130 ENVELOPED
PO 00000000381 00000003392 03/01/01 06:22:56 BOBS4790 PO121312322 ENVELOPED
IN 00000000145 00000000383 03/02/01 12:53:42 DLGLEVEL IN94410 RECEIVED
IN 00000000144 00000000382 03/02/01 09:12:15 DLGLEVEL IN95443 RECEIVED
PO 00010000130 00000004853 03/02/01 09:43:02 DLGOCCUR IN76445 ENVELOPED
PO 00010000130 00000004854 03/01/01 07:25:16 DLGOCCUR IN76835 ENVELOPED
PO 00010000130 00000004855 03/01/01 11:51:06 DLGOCCUR IN76337 ENVELOPED
PO 00010000130 00000004856 03/02/01 06:34:29 DLGOCCUR IN76838 ENVELOPED

Figure 1. Example of a customized report produced by the ENVELOPE DATA EXTRACT command

ENVELOPE DATA EXTRACT

Chapter 2. WebSphere Data Interchange commands and keywords 31

EXPORT command
This command uses the control file to extract setup information from WebSphere
Data Interchange and write records to one or more files. (“Export/Import control file
(CTLFILE)” on page 183 for ddnames.) You can request a particular file record
format with the EIFORMAT keyword. If the Export/Import file is empty, the requested
format is used. If the Export/Import file is not empty, the format of the data already
in the file is used.

Syntax
EXPORT
CTLFILE(control file ddname)
CTLTYPE(control file type)
EIFORMAT(requested export file record format)
IFCC(override condition codes)
NOMSG(print extraneous messages)
SETCC(condition codes)

EXPORT command example
Export the information in fixed format using a control file named EXOUT.
PERFORM EXPORT
WHERE CTLFILE(EXOUT) EIFORMAT(FIXED)

EXPORT

32 WebSphere Data Interchange Programmer’s Reference

GLB DUMP command
This command is available only in the CICS environment, and is not required for
normal processing. However, this command can be used to gather information
required by WebSphere Data Interchange support personnel when debugging
problems related to the persistent environment. The dump is written to the file
associated with ddname EDIGDMP1 in the CICS startup JCL.

Syntax
GLB DUMP
IFCC(override condition codes)
LEVEL(dump or trace level)
RESET(reset output file)
SETCC(condition codes)

GLB DUMP command examples

Example 1:
Open EDIGDMP1 for output and generate a complete persistent environment dump.
PERFORM GLB DUMP
WHERE LEVEL(1) RESET(Y)

Example 2:
Open EDIGDMP1 for append and generate a persistent environment dump of just
the data area.
PERFORM GLB DUMP
WHERE LEVEL(12)

GLB DUMP

Chapter 2. WebSphere Data Interchange commands and keywords 33

GLB TRACE command
This command is available only in the CICS environment and is not required for
normal processing. However, you can use this command to gather information
required by WebSphere Data Interchange support personnel when debugging
problems related to the persistent environment. The trace is written to the file
associated with ddname EDIGTRC1 in the CICS startup JCL.

Syntax
GLB TRACE
IFCC(override condition codes)
LEVEL(dump or trace level)
RESET(reset output file)
SETCC(condition codes)

GLB TRACE command examples

Example 1:
Open EDIGTRC1 for output and start a persistent environment trace for as much
detail as possible.
PERFORM GLB TRACE
WHERE LEVEL(3) RESET(Y)

Example 2:
End the persistent environment trace.
PERFORM GLB TRACE
WHERE LEVEL(0)

GLB TRACE

34 WebSphere Data Interchange Programmer’s Reference

HOLD command
This command puts a transaction into held status. While in held status, no actions
are permitted against the transaction that would change the status of the
transaction. Nor is it purged automatically when its storage time expires. If the
transaction is one of a related group, all transactions in the group are placed in held
status. The RELEASE command restores held transactions to their former status or,
if their storage time expired during the hold period, changes them to
STORE-TIME-EXPIRED status.

The HOLD, PURGE, RELEASE, and UNPURGE commands share a common
syntax.

Syntax
HOLD
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
DIR(processing direction)
DLVDATE(starting delivery date) TO(ending delivery date)
DLVTIME(starting delivery time) TO(ending delivery time)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVTIME(starting transaction envelope time)

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
SETCC(condition codes)
SNDDATE(starting request sent 3 0 TD
())Tj
-16.84(87m0ng)-555.7(request)-555.7(se0DDA)73.8(TE()]TJ
/F7 1 Tf
5.0372 0 TD
[(start17(t7(transaction)-53.7(87ntrol)-555.codte)]TJ
/F3 1 Tf
15.568 0 TD
())Tj
-14.0596 -1.2 DDA)73.8(TE()]TJ
/F7 1 Tf

0 Tc
[(ending)-555255.0555.7(request)-555.7(sent)-555.7(3 0 TD
())Tj
-16.84(87m0ng)-555.7(request)-555.7(se0DDA)73.8(TE()]TJ
/F7 1 Tf

0 Tc
[(ending)-555j
-87(transaction)-53.72695trol)-555.cTDTRnt Nndard TD
())Tj
-8.3899 -1.2 TD
[eRMAT(

TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)

HOLD command example
Place in hold status all EDI documents destined for trading partner PISCES that
were translated on December 14, 2001.
PERFORM HOLD
WHERE TPNICKN(PISCES) TRXDATE(01/12/14) DIR(S)

HOLD

36 WebSphere Data Interchange Programmer’s Reference

IMPORT command
This command uses the control file to read a file or group of files for importing
setup information.

Syntax
IMPORT
ACTUSAGE(activate imported usage)
CTLFILE(control file ddname)
CTLTYPE(control file type)
DUPCHECK(perform duplicate checks)
IFCC(override condition codes)
NOMSG(print extraneous messages)
SETCC(condition codes)
WRTCTLNO(import trading partner control number)

IMPORT command example
Import all records specified by the batch control file in TS queue INCTL.
PERFORM IMPORT
WHERE CTLFILE(INCTL) CTLTYPE(TS)

IMPORT

Chapter 2. WebSphere Data Interchange commands and keywords 37

LOAD LOG ENTRIES command
This command copies the selected HOLDFILE records back into the event log
table. In a DB2 environment, you can restore deleted records to the event log by
specifying the ARCHIVEFILE value from the UNLOAD LOG ENTRIES command as
the value for the HOLDFILE keyword on this command.

Syntax
LOAD LOG ENTRIES
APPLID(application ID)
HOLDFILE(event log hold file name)
HOLDTYPE(event log hold file type)
IFCC(override condition codes)
LOGAEID(starting event log associated entry ID)

TO(ending event log associated entry ID)
LOGDATE(starting event log date) TO(ending event log date)
LOGFORM(starting event log format ID) TO(ending event log format ID)
LOGTIME(starting event log time) TO(ending event log time)
LOGUSER(starting event log user ID) TO(ending event log user ID)
NEWAPPLID(new application ID)
SETCC(condition codes)

Load log entries command example
Copy the held records for EDIFFS with a log date of 12/14/01 back into the event
log table.
PERFORM LOAD LOG ENTRIES
WHERE APPLID(EDIFFS) LOGDATE(12/14/01)

LOAD LOG ENTRIES

38 WebSphere Data Interchange Programmer’s Reference

NETWORK ACTIVITY DATA EXTRACT command
This command collects data about the network activity of the requestors defined in
the mailbox (requestor) profile and generates reports based on your criteria. The
information collected includes the total number of envelopes or characters sent by
each requestor for any given day or range of days.

You can use this command to create reports to:
v Reconcile network charges
v List network usage by user ID
v List heaviest network users
v List inactive requestors

For information about using wild cards, see Table 2 on page 7.

Syntax
NETWORK ACTIVITY DATA EXTRACT
ACCTID(network account ID)
DAYS(starting date) TO(ending date)
DYNSQL(use dynamic SQL)
IFCC(override condition codes)
NETID(network ID)
NETNAME(network name)
REQID(requestor ID)
SETCC(condition codes)
USERID(network user ID)
USERPGM(user program)

NETWORK ACTIVITY DATA EXTRACT command examples

Example 1:
Your network charges jumped significantly last month and you want to understand
which of your applications has increased its network usage. To do this, you need a
report that shows the:

v Account ID

v User ID

v Number of envelopes exchanged, both sent and received

v Number of characters exchanged, both sent and received
PERFORM NETWORK ACTIVITY DATA EXTRACT
WHERE DAYS(01/08/01) TO(01/08/31)

The data resulting from this command was written to file EDIQUERY, sorted by a
local sort utility, and used as input to a user-written program that created the report
shown in Figure 2 on page 40.

NETWORK ACTIVITY DATA EXTRACT

Chapter 2. WebSphere Data Interchange commands and keywords 39

Example 2:
Extract information to reconcile your EDI traffic through a particular account (CMPY)
and user ID (USER21) on the network for the month of May during 2001. Include a
list of the requestors that use that account/user ID on the network, and the number
of messages sent and received by each requestor (only the traffic through
WebSphere Data Interchange for this account and user ID).
PERFORM NETWORK ACTIVITY DATA EXTRACT
WHERE ACCTID(CMPY) USERID(USER21) DAYS(01/05/01) TO(01/05/31)

Network Traffic Activity Report Date: 01/09/20
Time: 12:31:02

Interchange Total
Month Network Name Net ID Account ID User ID S/R Envelopes Characters
----- ------------ ------- ---------- -------- --- ----------- ----------
08/01 AT&T Global IINR41 XTEV PURCHASE S 7776 9998376

Network R 4356 2333157
ACCTPAYB S 1526 8867837

R 662 333457
---------- ----------

14320 21532827
XTEW RECEIVNG S 856 82251

R 2856 434457
TRAFFIC R 770 66615

--------- ----------
4482 583323

IINCICS XTEX PURCHASE S 4476 2648376
R 756 453457

PRODPO S 6625 783890
R 559 467457

---------- ----------
12416 11408192

Figure 2. Example of a network traffic activity report

NETWORK ACTIVITY DATA EXTRACT

40 WebSphere Data Interchange Programmer’s Reference

PRINT ACKNOWLEDGMENT IMAGE command
This command writes an image to RPTFILE of the functional acknowledgments for
the transactions that match your selection criteria. The image does not include the
envelope segments.

Syntax
PRINT ACKNOWLEDGMENT IMAGE
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
DIR(processing direction)
DLVDATE(starting delivery date) TO(ending delivery date)
DLVTIME(starting delivery time) TO(ending delivery time)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVTIME(starting transaction envelope time)

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
MERGED(merge transaction image with functional acknowledgment)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
SEGMENTED(print segment on new line)
SETCC(condition codes)
SNDDATE(starting request sent date) TO(ending request sent date)
SNDTIME(starting request sent time) TO(ending request sent time)
STDTRID(EDI standard transaction set ID)
STSTAT(transaction status)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)

PRINT ACKNOWLEDGMENT IMAGE

Chapter 2. WebSphere Data Interchange commands and keywords 41

PRINT ACKNOWLEDGMENT IMAGE command example
Print functional acknowledgment images for all EDI documents with
batch ID 121401.
PERFORM PRINT ACKNOWLEDGMENT IMAGE
WHERE BATCH(121401)

Figure 3 shows an example of the Functional Acknowledgment Image report.

TF13 Functional Acknowledgment Image Date: 01/12/14
Time: 12:12:12

Trading partner nickname: PISCES
Transaction handle . . : 20011214101533000001
Transaction status . . : Transaction accepted

AK1*IN*40088!AK2*810*000048118!AK5*A!AK9*A*1*1*1!

Figure 3. Example of a Financial Acknowledgement Image report

PRINT ACKNOWLEDGMENT IMAGE

42 WebSphere Data Interchange Programmer’s Reference

PRINT ACTIVITY SUMMARY command
This command creates a summary of activity for the inbound and outbound
transactions that match your selection criteria. The summary is written to RPTFILE.

Syntax
PRINT ACTIVITY SUMMARY
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
DIR(processing direction)
DLVDATE(starting delivery date) TO(ending delivery date)
DLVTIME(starting delivery time) TO(ending delivery time)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVTIME(starting transaction envelope time)

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
MERGED(merge transaction image with functional acknowledgment)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
SEGMENTED(print segment on new line)
SETCC(condition codes)
SNDDATE(starting request sent date) TO(ending request sent date)
SNDTIME(starting request sent time) TO(ending request sent time)
STDTRID(EDI standard transaction set ID)
STSTAT(transaction status)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)

PRINT ACTIVITY SUMMARY command example
Print the transaction Activity Summary Report for all EDI documents entering the
Transaction Store between November 29 and November 30, 2001.

PRINT ACTIVITY SUMMARY

Chapter 2. WebSphere Data Interchange commands and keywords 43

PERFORM PRINT ACTIVITY SUMMARY
WHERE TRXDATE(01/11/29) TO(01/11/30)

Note: This example is only valid when the date mask in the language profile
(LANGPROF) is &Y/&M/&D.

Figure 4 shows an example of the Activity Summary Report.

TF11 Activity Summary Report Date: 01/12/14
Time: 12:12:12

Outbound Transactions Count
Selected transactions : 1940
Translation : 1940

Acceptably translated . . : 1930
Unacceptably translated . : 10

Enveloping : 1000
Enveloped : 900
Enveloping errors : 100

Send requests : 900
Sent : 800

Pending functional ack : 10
Pending network ack . . : 10

Not sent : 100
Error on request to send: 73
Network error : 27

Detached : 0

Inbound Transactions Count

Selected transactions : 1000
Acceptably translated . . . : 800
Unacceptably translated . . : 10
Not yet translated : 190
Detached : 0

Figure 4. Example of an Activity Summary Report

PRINT ACTIVITY SUMMARY

44 WebSphere Data Interchange Programmer’s Reference

PRINT EVENT LOG command
This command writes an image of event log entries to RPTFILE for the transactions
that match your selection criteria.

Syntax
PRINT EVENT LOG
ACFIELD(application control field data)
APPLICATION(write application data record)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
CONCATENATE(concatenate extract data)
DIR(processing direction)
DLVDATE(starting delivery date) TO(ending delivery date)
DLVTIME(starting delivery time) TO(ending delivery time)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVTIME(starting transaction envelope time)

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date) TO(ending transaction purge date)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GROUP(write group data record)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
IMAGE(write image data record)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTERCHANGE(write interchange data record)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
RECEIVEACKDATA(write detailed acknowledgment data)
RECEIVEACKIMAGE(write receive acknowledgment record)
SENDACKDATA(write detailed acknowledgment data)
SENDACKIMAGE(write acknowledgment record)
SETCC(condition codes)
SNDDATE(starting request sent date) TO(ending request sent date)
SNDTIME(starting request sent time) TO(ending request sent time)
STDTRID(EDI standard transaction set ID)
STSTAT(transaction status)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRANSACTION(write transaction data record)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)

PRINT EVENT LOG

Chapter 2. WebSphere Data Interchange commands and keywords 45

TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)
USERPGM(user program)

PRINT EVENT LOG command example
Print log entries for all EDI documents that encountered errors during send
processing on December 12, 2001 for trading partner ABMETAL1.
PERFORM PRINT EVENT LOG
WHERE TRXSTAT(42) TRXDATE(01/12/14) TPID(ABMETAL1)
WHERE TRXSTAT(43) TRXDATE(01/12/14) TPID(ABMETAL1)

Figure 5 shows an example of the Events Logging Report.

EVENTS LOGGING REPORT

REQUESTOR : USER21

DATE : 01/12/14

TIME : 08:37:36

Selection Criteria for Log Report

Application ID : EDIFFS
Date : 01/07/21 To 01/07/28
Time :
User ID :
Format ID :
Associated Entry ID . : 20010721164325210000

EVENTS LOGGING REPORT DATE: 01/12/14 TIME: 08:37:36 Page 1

Date : 01/07/21
Time : 16:43:26
Entry ID : E0000000000000000000000000000020010721164326213000000
Associated Entry ID . : 20010721164325210000
User ID : USER21
Job ID : EDITR
Application ID : EDIFFS
Format ID : $$STD-'++:.?
Data : UNB+UNOA:1+GBLLD.LLD324+GBLLD.LLD053:ZZ+930602:1646+
40000092++PLACIN++1++1'UNH+40000200+LIMUWM:1:2:LI'RFF+UMR+B9999LIMUWMUMR1'RFF+TR+B
9999LIMUWMTR1'RFF+BQR+B9999LIMUWMBQR1' NAD+BK+9999'NAD+BU+LL'NAD+CS+10
AEC'GIS+02:04'NAD+IV+ LINE 1:LL'GIS+01:26'GIS+01:15'GIS+Y:16'
RFF+LIR+0001'RFF+CS1+COSLINE 1'RFF+CS1+COSLINE
1'RFF+LIN+001'PCD+001:1.0000001'PCD+002:2.0000002'
PCD+003:3.0000003'PCD+004:4.0000004' PCD+005:5.0000005'L01+034+UNDERWRITER MESSAGE
LINE 1 TE'L02+1::LINE ONE OF THE INVITEDITER LINE 1 TEXT+3::LINE TWO OF THE
INVITEDITER LINE 1 TEXT+::LINE THREE THE INVITEDITER LINE 1 TEXT'NAD+IV+
LINE2:LL'GIS+02:26'GIS+01:15'GIS+Y:16'RFF+LIR+0002'FF+CS1+COSLINE
2'RFF+CS1+COSLINE 2'RFF+LIN+002'PCD+001:1.0000001'PCD+002:2.0000002'
PCD+003:3.0000003' PCD+004:4.0000004'PCD+005:5.0000005'L01+034+UNDERWRITER MESSAGE
LINE 2 TE' L02+1::LINE ONE OF THE INVITEDITER LINE 2 TEXT+3::LINE TWO OF THE
INVITEDITER LINE 2 TEXT+::LINE THREE THE INVITEDITER LINE 2
TEXT'UNT+39+40000200'UNZ+1+40000092'
The number of records printed from the input file was 2
Printing has terminated. Return code is 0; extended return code is 0.

Figure 5. Example of an Events Logging Report

PRINT EVENT LOG

46 WebSphere Data Interchange Programmer’s Reference

PRINT STATUS SUMMARY command
This command extracts status information about the transactions that match your
selection criteria and writes the information to RPTFILE. This report shows
transaction status (translated, enveloped), network status (delivered, purged), and
store status (active, held, marked for purging). An R (related) after the transaction
handle indicates the transaction is a part of a bundle.

Status summaries are not available for online viewing.

Syntax
PRINT STATUS SUMMARY
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
DIR(processing direction)
DLVDATE(starting delivery date) TO(ending delivery date)
DLVTIME(starting delivery time) TO(ending delivery time)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVTIME(starting transaction envelope time)

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
MERGED(merge transaction image with functional acknowledgment)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
SEGMENTED(print segment on new line)
SETCC(condition codes)
SNDDATE(starting request sent date) TO(ending request sent date)
SNDTIME(starting request sent time) TO(ending request sent time)
STDTRID(EDI standard transaction set ID)
STSTAT(transaction status)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number) TO(ending
transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)

PRINT STATUS SUMMARY

Chapter 2. WebSphere Data Interchange commands and keywords 47

TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)

PRINT STATUS SUMMARY command example
Print the status summary for all EDI documents that were translated on December
14, 2001.
PERFORM PRINT STATUS SUMMARY
WHERE TRXDATE(01/12/14)

Figure 6 shows an example of the Status Summary Report for Outbound
Transactions. For more information on the fields included in this report, refer to the
WebSphere Data Interchange for z/OS Administration Guide.

The same report format is used for Status Summary reports for Inbound
Transactions, shown in Figure 7.

TF80 Status Summary Report for Date: 01/12/14
Outbound Transactions Time: 12:12:12

Transaction Handle Trading Partner Nickname Data Format ID Transaction Status Store Status
Date Enveloped Interchange Cntrl No Network Status Group Control No Func Ack Status

200112140930120000 Partner111111111 Format1111111111 Transaction accepted Purge Requested
01/12/14 12121212121212 Accepted by network 11111111111111 Received

200112121045330001 Partner111111111 Format3333333333 Send translate error Active

200112141033110000 Partner222222222 Format2222222222 Transaction accepted Active
01/12/14 22222222222222 Accepted by network 11111111111111 Received

200112141033110004 R Partner222222222 Format3333333333 Transaction accepted Active
01/12/14 22222222222222 Accepted by network 22222222222222 Received

200112141033110003 Partner333333333 Format1111111111 Transaction accepted Purge Requested
01/12/14 33333333333333 Recall request error 11111111111111 Received
01/12/14 33333333333333 Not sent - net error 22222222222222

Figure 6. Example of the Status Summary Report for Outbound Transactions

TF80 Status Summary Report for Date: 01/12/14
Inbound Transactions Time: 12:12:12

Transaction Handle Trading Partner Nickname Standard Trans ID Transaction Status Store Status
Date Translated Data Format ID Translation Status

200112141344270000 Partner222222222 12121212 Receive translated Active
01/12/14 Format1212121212 Acceptable

200112141010100001 Partner222222222 12345678 Receive translated Active
01/12/14 Format3333333333 Acceptable
01/12/14 Format3333333333 Unacceptable

Figure 7. Example of the Status Summary Report for Inbound Transactions

PRINT STATUS SUMMARY

48 WebSphere Data Interchange Programmer’s Reference

PRINT STATUS SUMMARY2 command
This command extracts the same information as the PRINT STATUS SUMMARY
command but adds a line containing the application control number and the internal
trading partner ID for each transaction. An R (related) after the transaction handle
indicates the transaction is part of a bundle.

Status summaries are not available for online viewing.

Syntax
PRINT STATUS SUMMARY2
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
DIR(processing direction)
DLVDATE(starting delivery date) TO(ending delivery date)
DLVTIME(starting delivery time) TO(ending delivery time)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVTIME(starting transaction envelope time)

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
MERGED(merge transaction image with functional acknowledgment)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
SEGMENTED(print segment on new line)
SETCC(condition codes)
SNDDATE(starting request sent date) TO(ending request sent date)
SNDTIME(starting request sent time) TO(ending request sent time)
STDTRID(EDI standard transaction set ID)
STSTAT(transaction status)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)

PRINT STATUS SUMMARY2

Chapter 2. WebSphere Data Interchange commands and keywords 49

PRINT STATUS SUMMARY2 command example
Print transaction images for all EDI documents with receive translation errors.
PERFORM PRINT STATUS SUMMARY2
WHERE TRXSTAT(73)

Figure 8 shows an example of the Selection Criteria for Status Summary Report.

1 Selection Criteria for Date: 01/12/14
Status Summary Report Time: 14:25:44

SELECTION CRITERIA 1

Transaction handle. : 20010323000000000000 TO 20010323240000000000
1TF80 Status Summary Report for Date: 01/12/14

Outbound Transactions Time: 14:25:44

Transaction Handle Trading Partner Nickname Data Format ID Transaction Status Store Status
Application Control Number Internal Trading Partner ID

Date Enveloped Interchange Cntrl No Network Status Group Control No Func Ack Status

200103230921579000 BOBS BOBS8004833 ENVELOPED ACTIVE
1111122222

01/12/14 00000000000418 ENVELOPED 00000000000399 PENDING

20011214116562000 BOBS BOBSPORDER ENVELOPED ACTIVE
BOBS 12345678 BOBS

01/12/14 00000000000419 ENVELOPED 00000000000400 NOT REQUESTED

Figure 8. Example of the Selection Criteria for Status Summary Report

PRINT STATUS SUMMARY2

50 WebSphere Data Interchange Programmer’s Reference

PRINT TRANSACTION DETAILS command
This command extracts detailed information about the transactions that match your
selection criteria and writes the information to RPTFILE.

Syntax
PRINT TRANSACTION DETAILS
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
DIR(processing direction)
DLVDATE(starting delivery date) TO(ending delivery date)
DLVTIME(starting delivery time) TO(ending delivery time)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVTIME(starting transaction envelope time)

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
MERGED(merge transaction image with functional acknowledgment)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
SEGMENTED(print segment on new line)
SETCC(condition codes)
SNDDATE(starting request sent date) TO(ending request sent date)
SNDTIME(starting request sent time) TO(ending request sent time)
STDTRID(EDI standard transaction set ID)
STSTAT(transaction status)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)

PRINT TRANSACTION DETAILS command example
Print transaction details for all EDI documents that were placed in the Transaction
Store on December 14, 2001.

PRINT TRANSACTION DETAILS

Chapter 2. WebSphere Data Interchange commands and keywords 51

PERFORM PRINT TRANSACTION DETAILS
WHERE TRXDATE(01/12/14)

Figure 9 shows an example of the Transaction Details report. For more information
on the fields included in this report, refer to the WebSphere Data Interchange for
z/OS Administration Guide.

TF73 Transaction Details Date: 01/12/14
Time: 12:12:12

Transaction handle : 20011214101533000001
Trading partner nickname : PISCES
Internal trading partner ID : 2345678901234567890123456789012345
Direction : SEND
Data format ID : POSEND
Application control number : 12345678901234567890123456789012345
Interchange control number : 12345678901234
Group control number : 12345678901234
Transaction control number : 12345678901234
Transaction status : Translated
Added to store : 01/12/14-10:29:48
Store status : Active
Delivered to application :
Translation error level : 1
Translation: Acceptable
Network acknowledgment requested . . . : D
Network status :
Functional acknowledgment :
Functional ack date :
Application ID : EDIMP
Batch ID : BATCH123
Earliest purge date : 01/12/14
Earliest envelope date : 01/12/14
Enveloped/deenveloped :
Sent :
Envelope profile member : X12V2R2
Standard ID : X12V2R2
Standard version : V2
Standard level : R2
Standard transaction ID : 850
Network ID : IN
Usage indicator : P
Total segment count : 22
Transaction size (bytes) : 742

Figure 9. Example of the Transaction Details report

PRINT TRANSACTION DETAILS

52 WebSphere Data Interchange Programmer’s Reference

PRINT TRANSACTION IMAGE command
This command writes an image of the transactions that match your selection criteria
to RPTFILE. The images do not include envelope or security segments.

Syntax
PRINT TRANSACTION IMAGE
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
DIR(processing direction)
DLVDATE(starting delivery date) TO(ending delivery date)
DLVTIME(starting delivery time) TO(ending delivery time)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVTIME(starting transaction envelope time)

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
MERGED(merge transaction image with functional acknowledgment)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
SEGMENTED(print segment on new line)
SETCC(condition codes)
SNDDATE(starting request sent date) TO(ending request sent date)
SNDTIME(starting request sent time) TO(ending request sent time)
STDTRID(EDI standard transaction set ID)
STSTAT(transaction status)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)

PRINT TRANSACTION IMAGE command example
Print transaction images for all EDI documents with receive translation errors.

PRINT TRANSACTION IMAGE

Chapter 2. WebSphere Data Interchange commands and keywords 53

PERFORM PRINT TRANSACTION IMAGE
WHERE TRXSTAT(73)

Figure 10 shows an example of the Transaction Image report.

TF75 Transaction Image Date: 01/12/14
Time: 12:12:12

Trading partner nickname: PISCES
Transaction handle . . : 20011214101533000001
Transaction status . . : Receive trans error

SEG1*dATA:dATAN**dANTA:dANTAN:-99:-99!SEG2*123456:-1.00:-100*12.3456:-
1.00:010920:123000:-10000!SEG3*123.456:99:001128:083
0:990*1234.56:-1:010920:1259:-1*1234.56:-1.0000:010920:125900:-
100!SEG4*15:1.00:001128:1259:1000*15:-1.0:001128:1259:99*C1

C2:D1D2D3D4D5:1.001128:1259:1000!SEG5*001128*1259!TOTALS*210.000000*96.000000*3
28.000000*196.000000*32.000000*8.000000!

Figure 10. Example of the Transaction Image report

PRINT TRANSACTION IMAGE

54 WebSphere Data Interchange Programmer’s Reference

PROCESS command
This is a generic command that tells WebSphere Data Interchange to execute the
commands in a service profile. It allows you to author and maintain your commands
(along with their data sources and targets) in the client tool, rather than in the
programs that invoke WebSphere Data Interchange. You name and specify the
services you want WebSphere Data Interchange to provide to your applications by
creating service profiles. You then have your applications call WebSphere Data
Interchange and submit a PROCESS command naming the services you created. If
you decide to change the command a service invokes, or specifiy different options
for the command, you simply update the service profile. You do not have to update
or recompile your application programs. Complex services may require multiples
commands and in addition, different input messages may require different
processing. The PROCESS command invokes the ″command chaining″ feature of
WebSphere Data Interchange that will chain together multiple service profiles based
upon the destination of the output data from the previous command in the chain.
The PROCESS and RECEIVE AND PROCESS commands are the only commands
that invoke the command chaining feature in WebSphere Data Interchange.

Syntax
PROCESS
FILEID(logical name of the source data)

PROCESS command examples

Example 1:
XML purchase orders are sent from the purchasing system to WebSphere Data
Interchange to be transformed into EDI and sent to the trading partner. A service
profile called XML_IN is created in the WebSphere Data Interchange client tool.
Each XML purchase order is written to a file whose logical name is set to XML_IN
and then WebSphere Data Interchange is invoked with the following command:
PERFORM PROCESS

WHERE FILEID(XML_IN)

Example 2:
Vendor catalogs in EDI format are received from trading partners using FTP. The
catalogs must be translated into the internal proprietary XML format and loaded into
the internal application. A service profile called EDI_IN is created in the WebSphere
Data Interchange client tool and each time a catalog is received, the logical name
of the file received is set to EDI_IN and then WebSphere Data Interchange is
invoked with the following command:
PERFORM PROCESS

WHERE FILEID(EDI_IN)

PROCESS

Chapter 2. WebSphere Data Interchange commands and keywords 55

PROCESS NETWORK ACKS command
This command processes acknowledgments that have already been received into a
file. It is used internally by WebSphere Data Interchange when network
acknowledgments are processed on a continuous receive basis. This command can
also be used if network acknowledgments are received outside WebSphere Data
Interchange control, but must still be applied to the Transaction Store.

Syntax
PROCESS NETWORK ACKS
ACKFILE(network acknowledgment ddname)
ACKTYPE(acknowledgment file type)

PROCESS NETWORK ACKS command example
Process a file allocated to ddname PROCACKS containing network
acknowledgments associated with requestor ID IINB41REQ.
PERFORM PROCESS NETWORK ACKS
WHERE REQID(IINB41REQ) ACKFILE(PROCACKS)

PROCESS NETWORK ACKS

56 WebSphere Data Interchange Programmer’s Reference

PURGE command
This command marks a transaction for purging from the Transaction Store but does
not remove it. Transactions are marked for purging when old outbound transactions
are still pending functional reconciliation. Transactions marked for purge are deleted
from the store when you execute the REMOVE TRANSACTIONS command. For
more information, see “REMOVE TRANSACTIONS command” on page 79. If the
transaction is one of a related group, all transactions in the group are marked for
purging. Only transactions with status of PURGE-USER REQUEST or
PURGE-DATE EXPIRED are eligible for purging. Reconciled transactions are
automatically marked PURGE-DATE EXPIRED after the purge internal has expired.

The default expiration date is 30 days from translation. You can change the default
by specifying a PURGINT value on PERFORM statements that add transactions to
the Transaction Store (for example, TRANSLATE AND ENVELOPE). See
“PURGINT” on page 147 for applicable PERFORM commands.

The HOLD, PURGE, RELEASE, and UNPURGE commands share a common
syntax.

Syntax
PURGE
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
DIR(processing direction)
DLVDATE(starting delivery date) TO(ending delivery date)
DLVTIME(starting delivery time) TO(ending delivery time)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVTIME(starting transaction envelope time)

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
SETCC(condition codes)
SNDDATE(starting request sent date) TO(ending request sent date)
SNDTIME(starting request sent time) TO(ending request sent time)
STDTRID(EDI standard transaction set ID)

PURGE

Chapter 2. WebSphere Data Interchange commands and keywords 57

STSTAT(transaction status)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)

PURGE command example
Mark for purging all EDI documents that have been delivered to trading partner
PISCES and accepted.
PERFORM PURGE
WHERE TPNICKN(PISCES) TRXSTAT(61)

PURGE

58 WebSphere Data Interchange Programmer’s Reference

QUERY command
This command generates a list of transactions that meet the selection criteria you
specify in the keywords. In the returned list, transactions are identified by their
transaction handle (Transaction Store ID). WebSphere Data Interchange writes
the list of handles to the specified file (ddname EDIQUERY for z/OS). Each item in
the list is 30 bytes long and has the format shown in Table 5:

Table 5. Transaction handle format

Bytes Handle format

1-10 Packed decimal

11-30 EBCDIC character

You can use the QUERY command to provide input for a user-written reporting
program.

Note: In CICS, you can pass the file name and type to WebSphere Data
Interchange as parameters.

Syntax
QUERY
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
DIR(processing direction)
DLVDATE(starting delivery date) TO(ending delivery date)
DLVTIME(starting delivery time) TO(ending delivery time)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVTIME(starting transaction envelope time)

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
SETCC(condition codes)
SNDDATE(starting request sent date) TO(ending request sent date)
SNDTIME(starting request sent time) TO(ending request sent time)
STDTRID(EDI standard transaction set ID)

QUERY

Chapter 2. WebSphere Data Interchange commands and keywords 59

STSTAT(transaction status)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)

QUERY command example
Return a list of transactions with batch ID 121401 and translation error level 2
(data element and segment errors).
PERFORM QUERY
WHERE BATCH(121401) TRERLVL(2)

QUERY

60 WebSphere Data Interchange Programmer’s Reference

QUERY PROFILE command
You can query for information about defined profiles. The results are written in
tagged, fixed, or native format to the file specified in the command. The default
format is FIXED. The default output file name is EDIQUERY, and the default output
file type in CICS is TS. If no member is specified in the command, the entire profile
is queried for the requested information.

Syntax
QUERY PROFILE
ID(DataInterchange profile name)
IFCC(override condition codes)
MEMBER(member profile name)
OUTFILE(output file name)
OUTFORMAT(output format)
OUTTYPE(output file type)
SETCC(condition codes)

QUERY PROFILE command examples

Example 1:
Query all trading partner profile members and write results to MYFILE in fixed
format.
PERFORM QUERY PROFILE
WHERE ID(TPPROF) OUTFILE(MYFILE)

Example 2:
Query mailbox (requestor) profile member REQMEM and write results to MYFILE in
the original format.
PERFORM QUERY PROFILE
WHERE ID(REQPROF) MEMBER(REQMEM) OUTFILE(MYFILE) OUTFORMAT(N)

QUERY PROFILE

Chapter 2. WebSphere Data Interchange commands and keywords 61

RECEIVE command
This command receives EDI data from the network identified in the mailbox
(requestor) profile member. It places the data in the receive file specified in the
mailbox (requestor) profile or in the file specified in the command.

Syntax
RECEIVE
CLEARFILE(clear specified file contents)
ENVTYPE(transaction envelope type)
FILEID(processing file ddname)
IFCC(override condition codes)
MSGUCLASS(override message user class)
ONEMSG(read only one MQ message)
REQID(requestor ID)
SETCC(condition codes)
TPNICKN(trading partner nickname)

RECEIVE command examples

Example 1:
Receive data for requestors defined in mailbox (requestor) profile members
DEPTA7F and DEPTB8R. Place the data into the receive files specified by the
profile members. Clear both files before the data is received. The data is in X12
format.
PERFORM RECEIVE
WHERE REQID(DEPTA7F) CLEARFILE(Y)
WHERE REQID(DEPTB8R) CLEARFILE(Y)

Example 2:
In CICS, receive data for the requestor defined by mailbox (requestor) profile
member DEPTA7F. Place the data in CICS temporary storage queue RECVPO.
The data is in EDIFACT format.
PERFORM RECEIVE
WHERE REQID(DEPTA7F) FILEID(RECVPO) ENVTYPE(E)

RECEIVE

62 WebSphere Data Interchange Programmer’s Reference

RECEIVE AND DEENVELOPE command
This command combines the functions of the RECEIVE and DEENVELOPE
commands. It receives EDI data from the network indicated in the mailbox
(requestor) profile member and places the data in the receive file specified by the
mailbox (requestor) profile member or in the file specified in the command. It then
removes the envelope segments and places the results in the Transaction Store.
This composite command performs faster than the separate commands.

Syntax
RECEIVE AND DEENVELOPE
CLEARFILE(clear specified file contents)
DIERRFILTER(initial error filter set)
DUPENV(process duplicate envelopes)
ENVTYPE(transaction envelope type)
EXTENDC(translate with extended C record format)
FADELAY(delay queuing functional acknowledgment)
FILEID(processing file ddname)
FORCETEST(force test usage)
FUNACKFILE(functional acknowledgment ddname)
FUNACKREQ(require functional acknowledgment envelope file)
IAREA(IEXIT information)
IEXIT(interchange control program)
IFCC(override condition codes)
INMEMTRANS(transactions in memory)
MRREQID(management reporting requestor ID)
MSGUCLASS(override message user class)
ONEMSG(read only one MQ message)
OPTRECS(optional record type)
PAGE(pageable translation)
PURGINT(purge interval)
RECOVERY(recovery unit of work)
REQID(requestor ID)
SAPUPDT(track SAP status)
SERVICESEGVAL(service segment validation level)
SETCC(condition codes)
TPNICKN(trading partner nickname)

RECEIVE AND DEENVELOPE command examples

Example 1:
Receive all EDI documents for requestor DEPTA7F and deenvelope them. Place
them in the Transaction Store. The documents are in X12 format.
PERFORM RECEIVE AND DEENVELOPE
WHERE REQID(DEPTA7F)

Example 2:
Receive all EDI documents for requestor DEPTA7F, deenvelope them. Place them
in the Transaction Store. Set the purge interval for these documents at 20 days.
The documents are in EDIFACT format.
PERFORM RECEIVE AND DEENVELOPE
WHERE REQID(DEPTA7F) PURGINT(20) ENVTYPE(E)

RECEIVE AND DEENVELOPE

Chapter 2. WebSphere Data Interchange commands and keywords 63

RECEIVE AND PROCESS command
This is a combined command that tells WebSphere Data Interchange to do a
PERFORM RECEIVE followed by a PERFORM PROCESS. (See “RECEIVE
command” on page 62and “PROCESS command” on page 55 for more information).

The RECEIVE AND PROCESS command is most commonly used in trigger
programs. For example, when a message arrives on a WebSphere MQ queue, the
WebSphere Data Interchange Adapter for WebSphere MQ (a trigger program)
invokes WebSphere Data Interchange and passes it a RECEIVE AND PROCESS
command which causes WebSphere Data Interchange to receive the message off
of the queue and process it as specified in the associated Service Profile. The valid
keywords on this command are the keywords that are valid for a PERFORM
RECEIVE command. (see “Syntax” on page 62 for more information).

Syntax
RECEIVE AND PROCESS
CLEARFILE(clear specified file contents)
ENVTYPE(transaction envelope type)
FILEID(logical name of the source data)
IFCC(override condition codes)
MSGUCLASS(override message user class)
ONEMSG(read only one MQ message)
REQID(requestor ID)
SETCC(condition codes)
TPNICKN(trading partner nickname)

RECEIVE AND PROCESS command example
XML purchase orders are routed from the purchasing system to WebSphere Data
Interchange by WebSphere MQ Integrator on a WebSphere MQ queue named
XML_IN. WebSphere Data Interchange job is to transform them into EDI and send
to the appropriate trading partner. The customer has elected to write their own
trigger program instead of using the WebSphere Data Interchange Adapter for
WebSphere MQ since they want more control over the triggering process. A service
profile called SNDXMLPO is created in the WebSphere Data Interchange client tool.
Whenever a message arrives on the XML_IN queue, the trigger program invokes
WebSphere Data Interchange with the following command:
PERFORM RECEIVE AND PROCESS

WHERE REQID(XML_IN) FILEID(SNDXMLPO) CLEARFILE(Y)

RECEIVE AND PROCESS

64 WebSphere Data Interchange Programmer’s Reference

RECEIVE AND SEND command
This command is valid only with MQSeries queues and combines the functions of
the RECEIVE and SEND commands. Data can be received from an MQSeries
queue, the data translated, and the translated output placed in a destination
MQSeries queue.

Syntax
RECEIVE AND SEND
APPFILE(application data file name)
CLEARFILE(clear specified file contents)
ENVTYPE(transaction envelope type)
FILEID(processing file ddname)
IFCC(override condition codes)
MSGUCLASS(override message user class)
RAWDATA(translate to raw data format)
REQID(requestor ID)
SAPUPDT(track SAP status)
SCRIPT(script ID)
SEQNUM(increment network profile member numbers)
SETCC(condition codes)
TPNICKN(trading partner nickname)

RECEIVE AND SEND command example
Receive raw data from MQSeries queue MQTESTREQ1. Place the data into the
receive file MQSM.
PERFORM RECEIVE AND SEND
WHERE REQID(MQTESTREQ1) RAWDATA(Y) APPFILE(MQSM)

RECEIVE AND SEND

Chapter 2. WebSphere Data Interchange commands and keywords 65

RECEIVE AND TRANSLATE command
This command combines the functions of the RECEIVE, DEENVELOPE, and
TRANSLATE TO APPLICATION commands. This composite command performs
faster than the separate commands.

Note: In CICS, you can also deliver the data to a program or CICS transaction, as
specified in the Application file name and Application file type fields of
the data format.

Syntax
RECEIVE AND TRANSLATE
ASSERTLVL(session assertion level)
BATCHSET(set transaction batch ID)
CCEXCEPTION(job-step condition code)
CLEARFILE(clear specified file contents)
DIERRFILTER(initial error filter set)
DUPENV(process duplicate envelopes)
ENVTYPE(transaction envelope type)
EXTENDC(translate with extended C record format)
FADELAY(delay queuing functional acknowledgment)
FILEID(processing file ddname)
FORCETEST(force test usage)
FUNACKFILE(functional acknowledgment ddname)
FUNACKREQ(require functional acknowledgment envelope file)
IAREA(IEXIT information)
IEXIT(interchange control program)
IFCC(override condition codes)
MSGUCLASS(override message user class)
ONEMSG(read only one MQ message)
OPTRECS(optional record type)
PAGE(pageable translation)
PURGINT(purge interval)
RAWDATA(translate to raw data format)
REQID(requestor ID)
SAPUPDT(track SAP status)
SERVICESEGVAL(service segment validation level)
SETCC(condition codes)
TPNICKN(trading partner nickname)

RECEIVE AND TRANSLATE command examples

Example 1:
Receive and translate all EDI documents for requestor DEPTA7F. Along with the
transaction data, return all optional records produced during deenveloping and
translation. The documents are in X12 format.
PERFORM RECEIVE AND TRANSLATE
WHERE REQID(DEPTA7F) OPTRECS(IEGTQ)

Example 2:
Receive and translate all EDI documents for requestor DEPTA7F. Return the
transaction data in raw data format. The documents are in EDIFACT format.
PERFORM RECEIVE AND TRANSLATE
WHERE REQID(DEPTA7F) RAWDATA(Y) ENVTYPE(E)

RECEIVE AND TRANSLATE

66 WebSphere Data Interchange Programmer’s Reference

RECONSTRUCT command
This command takes information that has been saved in the Transaction Store and
rebuilds an interchange just as it was sent or received (using the same control
numbers). This command can be used if your trading partner lost an interchange
you sent, and you must send the same interchange again. It can also be used to
rebuild interchanges sent to you.

Syntax
RECONSTRUCT
DIR(processing direction)
FILEID(processing file ddname)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)
TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
PAGE(pageable translation)
RAWDATA(translate to raw data format)
SETCC(condition codes)
TPNICKN(trading partner nickname)

RECONSTRUCT command example
You received and processed interchange control number 5 from your trading
partner MYTP, but have since destroyed the sequential file containing the
interchange. You would like to reconstruct this file so you can save it for the
auditors. The command statement will reconstruct the interchange for trading
partner MYTP with interchange receiver ID 123456789, interchange control number
5, and file name AUDITOR.
PERFORM RECONSTRUCT
WHERE TPNICKN(MYTP) INTRECID(123456789) INTCTLNO(5) DIR(R)
FILEID(AUDITOR)

RECONSTRUCT

Chapter 2. WebSphere Data Interchange commands and keywords 67

RECONSTRUCT AND SEND command
This command combines the functions of the RECONSTRUCT and SEND
commands. It rebuilds interchanges from data in the Transaction Store, and then
sends those interchanges to the network. This composite command performs faster
than the separate commands.

Syntax
RECONSTRUCT AND SEND
CLEARFILE(clear specified file contents)
DIR(processing direction)
ENVTYPE(transaction envelope type)
FILEID(processing file ddname)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)
TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
MSGUCLASS(override message user class)
PAGE(pageable translation)
RAWDATA(translate to raw data format)
REQID(requestor ID)
SETCC(condition codes)
TPNICKN(trading partner nickname)

RECONSTRUCT AND SEND command example
Your trading partner MYTP called and indicated that interchange control number 5
is missing, and that they would like you to resend that interchange. The trading
partner’s DUNS number 123456789is used as the interchange receiver ID value.
The command statement will reconstruct the interchange for trading partner MYTP
with interchange receiver ID 123456789 and interchange control number 5.
PERFORM RECONSTRUCT AND SEND
WHERE TPNICKN(MYTP) INTRECID(123456789) INTCTLNO(5) DIR(S)
REQID(MYREQ)

RECONSTRUCT AND SEND

68 WebSphere Data Interchange Programmer’s Reference

RECVFILE command
This command receives application data files that do not need an interchange
header or that do not contain EDI data. The data is not necessarily in any EDI
standard format.

Syntax
RECVFILE
CLEARFILE(clear specified file contents)
FILEID(processing file ddname)
IFCC(override condition codes)
MSGUCLASS(override message user class)
REQID(requestor ID)
SETCC(condition codes)
TPNICKN(trading partner nickname)

RECVFILE command example
Receive data for requestors defined in mailbox (requestor) profile member
DEPTA7F. Place the data into file RCVFILE. Clear RCVFILE before the data is
received.
PERFORM RECVFILE
WHERE REQID(DEPTA7F) FILEID(RCVFILE) CLEARFILE(Y)

RECVFILE

Chapter 2. WebSphere Data Interchange commands and keywords 69

RECVFILE AND SEND command
This command is valid only with MQSeries queues and combines the functions of
the RECVFILE and SEND commands. Application data can be received from an
MQSeries queue, the data translated, and the translated output placed in a
destination MQSeries queue. The data is not necessarily in any EDI standard
format.

Syntax
RECVFILE AND SEND
CLEARFILE(clear specified file contents)
ENVTYPE(transaction envelope type)
FILEID(processing file ddname)
IFCC(override condition codes)
MSGUCLASS(override message user class)
REQID(requestor ID)
SAPUPDT(track SAP status)
SCRIPT(script ID)
SETCC(condition codes)
TPNICKN(trading partner nickname)

RECVFILE AND SEND command example
Receive raw data from MQSeries queue MQTESTREQ1. Place the data into the
receive file QDATA.
PERFORM RECVFILE AND SEND
WHERE REQID(MQTESTREQ1) FILEID(QDATA) RAWDATA(Y)

RECVFILE AND SEND

70 WebSphere Data Interchange Programmer’s Reference

REENVELOPE command
This command takes the EDI transactions from the Transaction Store that were
previously enveloped, envelopes them again, and places the results in an envelope
file. The envelope file is either the TD queue specified in the network profile
member or a file specified in the command. Selection criteria determine which
transactions go into the interchange envelope. The enveloper sorts the transactions
to create the fewest number of functional groups and interchange envelopes. For
more information about envelope processing, see “Enveloping services” on
page 442.

Syntax
REENVELOPE
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
DIERRFILTER(initial error filter set)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVPRBREAK(start new envelope)
ENVTIME(starting transaction envelope time)

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FILEID(processing file ddname)
FIXEDFILEID(fixed-to-fixed output ddname)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IACCESS(IEXIT access)
IAREA(IEXIT information)
IEXIT(interchange control program)
IFCC(override condition codes)
INMEMTRANS(transactions in memory)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
ITPBREAK(new interchange envelope)
ITYPE(IEXIT program type)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
OPTRECS(optional record type)
PAGE(pageable translation)
RAWDATA(translate to raw data format)
RECOVERY(recovery unit of work)
SAPUPDT(track SAP status)
SNDDATE(starting request sent date) TO(ending request sent date)

REENVELOPE

Chapter 2. WebSphere Data Interchange commands and keywords 71

SNDTIME(starting request sent time) TO(ending request sent time)
SERVICESEGVAL(service segment validation level)
SETCC(condition codes)
STDTRID(EDI standard transaction set ID)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)
VERIFY(verify transaction status)

REENVELOPE command example
Reenvelope the EDI document with the Transaction Store handle
20011214101533000001 and a status of 31. Place the results in the network TD
queue.
PERFORM REENVELOPE
WHERE HANDLE(20011214101533000001) TRXSTAT(31)

REENVELOPE

72 WebSphere Data Interchange Programmer’s Reference

REENVELOPE AND SEND command
This command provides the same functions as the ENVELOPE AND SEND
command but for EDI data that was previously enveloped. You must supply the
requestor ID of each network for which data is reenveloped. This composite
command performs faster than the separate commands.

Syntax
REENVELOPE AND SEND
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
CLEARFILE(clear specified file contents)
DIERRFILTER(initial error filter set)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVPRBREAK(start new envelope)
ENVTIME(starting transaction envelope time)

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FILEID(processing file ddname)
FIXEDFILEID(fixed-to-fixed output ddname)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IACCESS(IEXIT access)
IAREA(IEXIT information)
IEXIT(interchange control program)
IFCC(override condition codes)
INMEMTRANS(transactions in memory)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
ITPBREAK(new interchange envelope)
ITYPE(IEXIT program type)
MSGUCLASS(override message user class)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
OPTRECS(optional record type)
PAGE(pageable translation)
RAWDATA(translate to raw data format)
RECOVERY(recovery unit of work)
REQID(requestor ID)
SAPUPDT(track SAP status)
SCRIPT(script ID)
SNDDATE(starting request sent date) TO(ending request sent date)

REENVELOPE AND SEND

Chapter 2. WebSphere Data Interchange commands and keywords 73

SNDTIME(starting request sent time) TO(ending request sent time)
SERVICESEGVAL(service segment validation level)
SETCC(condition codes)
STDTRID(EDI standard transaction set ID)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TPNICKNESEND(trading partner profile member)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)
VERIFY(verify transaction status)

REENVELOPE AND SEND command example
Reenvelope the EDI document with transaction handle 20011212101533000001
and a status of 31. Place the results in the network queue and send the data.
PERFORM REENVELOPE AND SEND
WHERE HANDLE(20011212101533000001) TRXSTAT(31) REQID(MYREQ)

REENVELOPE AND SEND

74 WebSphere Data Interchange Programmer’s Reference

RELEASE command
This command restores a transaction in held status to its former status (or to
PURGE-PENDING status if its store time expired during the hold period). If the
transaction is one of a related group, all transactions in the group are released.
WebSphere Data Interchange never automatically sets a transaction's store status
to HELD; you must use the HOLD command.

The HOLD, PURGE, RELEASE, and UNPURGE commands share a common
syntax.

Syntax
RELEASE
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
DIR(processing direction)
DLVDATE(starting delivery date) TO(ending delivery date)
DLVTIME(starting delivery time) TO(ending delivery time)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVTIME(starting transaction envelope time)

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
SETCC(condition codes)
SNDDATE(starting request sent date) TO(ending request sent date)
SNDTIME(starting request sent time) TO(ending request sent time)
STDTRID(EDI standard transaction set ID)
STSTAT(transaction status)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)

RELEASE

Chapter 2. WebSphere Data Interchange commands and keywords 75

RELEASE command example
Release all EDI documents destined for trading partner PISCES that are in
HELD status.
PERFORM RELEASE
WHERE TPNICKN(PISCES) DIR(S) STSTAT(1)

RELEASE

76 WebSphere Data Interchange Programmer’s Reference

REMOVE LOG ENTRIES command
This command is valid only for DB2 event logs and can be a very quick way to
remove entries. You may run this command as the first step of a multi-step
maintenance process.

If the Archivefile keyword is used, this command will work the same as the
UNLOAD LOG ENTRIES command by copying selected entries to the archive file.

If the Numdels keyword is used, rows are deleted sequentially with COMMITs
performed each time the number of rows specified in Numdels is reached. If the
Numdels keyword is omitted, a single fully-qualified SQL DELETE statement is
issued. (This can be very efficient, but can also quickly exhaust DB2 resources.
Omit Numdels with caution.) To ensure concurrency, set the NUMDELS keyword to a
relatively low value.

Syntax
REMOVE LOG ENTRIES
APPLID(application ID)
ARCHIVEFILE(event log archive file name)
ARCHIVETYPE(event log archive file type)
HOLDFILE(event log hold file name)
HOLDTYPE(event log hold file type)
IFCC(override condition codes)
LOGAEID(starting event log associated entry ID)

TO(ending event log associated entry ID)
LOGDATE(starting event log date) TO(ending event log date)
LOGFORM(starting event log format ID) TO(ending event log format ID)
LOGTIME(starting event log time) TO(ending event log time)
LOGUSER(starting event log user ID) TO(ending event log user ID)
NUMDELS(number of database deletes before commit)
SETCC(condition codes)

REMOVE LOG ENTRIES command example
Remove log entries from application log file for application EDIFFS dated December
14, 2001.
PERFORM REMOVE LOG ENTRIES
WHERE APPLID(EDIFFS) LOGDATE(12/14/01)

REMOVE LOG ENTRIES

Chapter 2. WebSphere Data Interchange commands and keywords 77

REMOVE STATISTICS command
This command deletes outdated management reporting statistics. If you do not
specify a date, tomorrow’s date is used as the selection criteria. To reset the
cumulative records to zero, use the RESET STATISTICS command.

Syntax
REMOVE STATISTICS
IFCC(override condition codes)
NUMDELS(number of database deletes before commit)
PRIORTO(deletion end date)
SETCC(condition codes)

REMOVE STATISTICS command example
Remove any statistics over six months old. In addition, suppose you use the DB2
version of WebSphere Data Interchange and previously exceeded the maximum
number of page locks when issuing a REMOVE STATISTICS command. To get rid
of statistics over six months old, use the PRIORTO keyword with a date of six months
ago. To reduce the accumulation of page locks by the REMOVE STATISTICS
process, you can set the Numdels parameter to a low number, such as 25. This
causes the REMOVE STATISTICS command to commit work and release page
locks after every 25 deletes.
PERFORM REMOVE STATISTICS
WHERE PRIORTO(*-180) NUMDELS(25)

Notes:

1. Running this command does not remove cumulative records.

2. To reset the Management Reporting cumulative statistics counts to zero, use the
RESET STATISTICS command.

REMOVE STATISTICS

78 WebSphere Data Interchange Programmer’s Reference

REMOVE TRANSACTIONS command
This command deletes transactions from the Transaction Store that have a status of
either:
v PURGE-STORE TIME EXPIRED
v PURGE-USER REQUEST

You can protect transactions you want to keep with the HOLD or UNPURGE
command. UNPURGE, however, protects only transactions with a status of
PURGE-USER REQUEST. It does not protect those with a status of
PURGE-STORE TIME EXPIRED. Once deleted, transactions are not recoverable.

The default expiration date is 30 days from translation. You can change the default
by specifying a PURGINT value on PERFORM statements which add transactions
to the Transaction Store (for example, TRANSLATE AND ENVELOPE). See
“PURGINT” on page 147 for applicable PERFORM commands.

Note: Running the REMOVE TRANSACTIONS command with selection criteria
specified in the WHERE clause may remove other entries from the
EDIVTSTH table that do not match the selection criteria. These additional
entries reported as being removed in the audit trail. These entries are
removed because they have no direction assigned to them and are over
10 days old. “Orphan” entries like these are created when the first
transaction of a translation process does not complete normally. These
entries cannot be accessed in any way and are only shown when removed.
They are removed whenever the REMOVE TRANSACTIONS command is
executed.

The WHERE clause is optional for this command. If you do not specify a WHERE
clause, all eligible transactions are removed from the Transaction Store.

After purging documents from the Transaction Store, you can use the Archive action
to remove the event logs associated with these transactions. For more information,
refer to the WebSphere Data Interchange for z/OS Administration Guide.

This command does not delete ACTIVE or HELD transactions.

v To make ACTIVE transactions eligible for removal, they must first be marked for
purge.

v To make HELD transactions eligible for removal, they must first be released from
held status.

Syntax
REMOVE TRANSACTIONS
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
DIR(processing direction)
DLVDATE(starting delivery date) TO(ending delivery date)
DLVTIME(starting delivery time) TO(ending delivery time)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVTIME(starting transaction envelope time)

REMOVE TRANSACTIONS

Chapter 2. WebSphere Data Interchange commands and keywords 79

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
MAXRUNTIME(maximum remove runtime minutes)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
NUMDELS(number of database deletes before commit)
SETCC(condition codes)
SNDDATE(starting request sent date) TO(ending request sent date)
SNDTIME(starting request sent time) TO(ending request sent time)
STANDALONE(operate DataInterchange only)
STDTRID(EDI standard transaction set ID)
STSTAT(transaction status)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)

REMOVE TRANSACTIONS command example
Delete all eligible transactions that are more than 30 days old. Only transactions
that have a status of PURGE-USER REQUEST or PURGE-DATE EXPIRED are
eligible.
PERFORM REMOVE TRANSACTIONS
WHERE HANDLE(*-999) TO(*-30)

REMOVE TRANSACTIONS

80 WebSphere Data Interchange Programmer’s Reference

REPORT CONTINUOUS RECEIVE STATUS command
This command generates a continuous receive status report about the status of
either a single continuous receive member or all continuous receives known to
WebSphere Data Interchange and Expedite/CICS. The output goes to the report
file. The report file name and type can be specified in the Utility Control Information
block. The default file name is RPTFILE and the default file type in CICS is TS.

Syntax
REPORT CONTINUOUS RECEIVE STATUS
IFCC(override condition codes)
MEMBER(member profile name)
SETCC(condition codes)

REPORT CONTINUOUS RECEIVE STATUS command examples

Example 1:
Report all continuous receives.
PERFORM REPORT CONTINUOUS RECEIVE STATUS

Example 2:
Report the status of continuous receive profile member CRMEM.
PERFORM REPORT CONTINUOUS RECEIVE STATUS

WHERE MEMBER(CRMEM)

REPORT CONTINUOUS RECEIVE STATUS

Chapter 2. WebSphere Data Interchange commands and keywords 81

RESET STATISTICS command
This command resets the cumulative records to zero. Run this command after
running the REMOVE STATISTICS command to restart the statistical history.

Syntax
RESET STATISTICS
IFCC(override condition codes)
NUMDELS(number of database deletes before commit)
PRIORTO(deletion end date)
SETCC(condition codes)

RESET STATISTICS command example
Reset the cumulative record values recorded for the last 180 days to zero.
PERFORM RESET STATISTICS
WHERE PRIORTO(*-180)

RESET STATISTICS

82 WebSphere Data Interchange Programmer’s Reference

RESTART RECEIVE command
This command is used when receiving EDI data, and is valid only when both the
following are true:

v The network supports restart

v You specify checkpoint-level recovery when initially receiving the data

If an error causes network processing to enter a restart situation while processing
EDI data, this command can be used to restart and complete the receive. For more
information on checkpoint recovery, refer to the Expedite Base/MVS Programming
Guide.

Notes:

1. The requestor ID must be the same value specified on the initial receive.

2. This command is not supported in the CICS environment.

Syntax
RESTART RECEIVE
REQID(requestor ID)

RESTART RECEIVE command example
Restart the receive of data from the network defined in mailbox (requestor) profile
DEPTA7F.
PERFORM RESTART RECEIVE
WHERE REQID(DEPTA7F)

RESTART RECEIVE

Chapter 2. WebSphere Data Interchange commands and keywords 83

RESTART SEND command
This command is used when sending EDI data, and is valid only when both the
following are true:

v The network supports restart

v You specified checkpoint-level recovery when initially sending the data

If an error causes network processing to enter a restart situation while processing
EDI data, this command can be used to restart and complete the send. For more
information on checkpoint recovery, refer to the Expedite Base/MVS Programming
Guide.

Notes:

1. The envelope file and the requestor ID must be the same values specified on
the initial send.

2. This command is not supported in the CICS environment.

Syntax
RESTART SEND
CLEARFILE(clear specified file contents)
ENVTYPE(transaction envelope type)
FILEID(processing file ddname)
IFCC(override condition codes)
MSGUCLASS(override message user class)
REQID(requestor ID)
SAPUPDT(track SAP status)
SCRIPT(script ID)
SEQNUM(increment network profile member numbers)
SETCC(condition codes)
TPNICKN(trading partner nickname)

RESTART SEND command example
Restart the send of data from file NETQUEUE to the network defined in mailbox
(requestor) profile IINREQ.
PERFORM RESTART SEND
WHERE REQID(IINREQ) FILEID(NETQUEUE)

RESTART SEND

84 WebSphere Data Interchange Programmer’s Reference

RETRANSLATE TO APPLICATION command
This command provides the same functions as the TRANSLATE TO APPLICATION
command for transactions that were previously translated. It takes EDI documents
from the Transaction Store, translates them to application format, and places the
results in the file specified by the data format or in the override file specified by the
trading partner usage/rule for translating the transaction. The data can be formatted
as C and D records or as raw data.

Syntax
RETRANSLATE TO APPLICATION
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
ASSERTLVL(session assertion level)
BATCH(translated transaction batch ID)
BATCHSET(set transaction batch ID)
CCEXCEPTION(job-step condition code)
DIERRFILTER(initial error filter set)
DLVDATE(starting delivery date) TO(ending delivery date)
DLVTIME(starting delivery time) TO(ending delivery time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
EXTENDC(translate with extended C record format)
FORCETEST(force test usage)
FORMAT(data format ID)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
NETID(network ID)
OPTRECS(optional record type)
PAGE(pageable translation)
RAWDATA(translate to raw data format)
SETCC(condition codes)
STDTRID(EDI standard transaction set ID)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)

RETRANSLATE TO APPLICATION

Chapter 2. WebSphere Data Interchange commands and keywords 85

RETRANSLATE TO APPLICATION command example
Re-translate all EDI documents in the Transaction Store that were received on
December 14, 2001 from trading partner PISCES. Place the data in the application
file specified by the data format or in the override file specified in the receive
usage/rule for the trading partner.
PERFORM RETRANSLATE TO APPLICATION
WHERE TRXDATE(01/12/14) TPNICKN(PISCES)

RETRANSLATE TO APPLICATION

86 WebSphere Data Interchange Programmer’s Reference

SAP STATUS EXTRACT command
This command allows you to extract SAP status information from the Transaction
Store.

Syntax
SAP STATUS EXTRACT
OUTFILE(output file name)
OUTTYPE(output file type)
CLIENT(SAP client ID)
SAPSTAT(SAP status starting value) TO(SAP status ending value)
DAYS(record starting date) TO(record ending date)

SAP STATUS EXTRACT command example
Extract SAP status records from the WebSphere Data Interchange database and
write them to the file specified in the keywords OUTFILE and OUTTYPE.
PERFORM SAP STATUS EXTRACT
WHERE OUTFILE() OUTTYPE() CLIENT() SAPSTAT() TO() DAYS() TO()

SAP STATUS EXTRACT

Chapter 2. WebSphere Data Interchange commands and keywords 87

SEND command
This command sends EDI transactions from an envelope file to the network. The
envelope file is either the TD queue specified in the network profile member or a file
specified in the command.

Syntax
SEND
CLEARFILE(clear specified file contents)
ENVTYPE(transaction envelope type)
FILEID(processing file ddname)
IFCC(override condition codes)
MSGUCLASS(override message user class)
REQID(requestor ID)
SAPUPDT(track SAP status)
SCRIPT(script ID)
SEQNUM(increment network profile member numbers)
SETCC(condition codes)
TPNICKN(trading partner nickname)

SEND command examples

Example 1:
Send the transactions in the TD queue. Use the network specified by mailbox
(requestor) profile member IINREQ.
PERFORM SEND
WHERE REQID(IINREQ)

Example 2:
Send the EDIFACT transactions in the file NETQUEUE. Use the network specified
by mailbox (requestor) profile member IINREQ.
PERFORM SEND
WHERE REQID(IINREQ) FILEID(NETQUEUE) ENVTYPE(E)

SEND

Chapter 2. WebSphere Data Interchange commands and keywords 89

SENDFILE command
This command sends application data files that do not need an interchange header
or that do not contain EDI data.

Syntax
SENDFILE
CLEARFILE(clear specified file contents)
FILEID(processing file ddname)
IFCC(override condition codes)
MSGUCLASS(override message user class)
RAWDATA(translate to raw data format)
REQID(requestor ID)
SCRIPT(script ID)
SEQNUM(increment network profile member numbers)
SETCC(condition codes)
TPNICKN(trading partner nickname)

Mapping issues with RAWDATA keyword on SENDFILE
The use of the RAWDATA keyword on the SENDFILE command will cause
WebSphere Data Interchange to strip C and D records from an existing DF file
generated in a previous step. When WebSphere Data Interchange generates an DF
file in raw-data format the structure ID is placed in the first column of the data. This
is not done with C and D record data. You must map the structure ID as the first
element in the data if you wish to see the structure name. This can be done using
the mapping tool in the WebSphere Data Interchange client and allows you to place
the structure ID anywhere in the data.

SENDFILE command examples

Example 1:
Send the data in the file named FLATFILE to trading partner MYTP.
PERFORM SENDFILE
WHERE REQID(ME) FILEID(FLATFILE) TPNICKN(MYTP)

Example 2:
Send the data in the file named BULK to trading partner YOURTP with a network
message user class of SPECIAL.
PERFORM SENDFILE
WHERE REQID(ME) FILEID(BULK) TPNICKN(YOURTP) MSGUCLASS(SPECIAL)

SENDFILE

90 WebSphere Data Interchange Programmer’s Reference

START CONTINUOUS RECEIVE command
This command is available only in the CICS environment. Like the CICS transaction
EDIR, this command can be used to start a single continuous receive or start all
eligible continuous receives. A continuous receive can be started if:

v A valid requestor ID is specified in the continuous receive profile member.

v The continuous receive profile member is marked ACTIVE.

v The network ID in the associated mailbox (requestor) profile member is IINCICS.

Syntax
START CONTINUOUS RECEIVE
IFCC(override condition codes)
MEMBER(member profile name)
SETCC(condition codes)

START CONTINUOUS RECEIVE command examples

Example 1:
Start all eligible continuous receives.
PERFORM START CONTINUOUS RECEIVE

Example 2:
Start a continuous receive for profile member CRMEM.
PERFORM START CONTINUOUS RECEIVE

WHERE MEMBER(CRMEM)

START CONTINUOUS RECEIVE

Chapter 2. WebSphere Data Interchange commands and keywords 91

STOP CONTINUOUS RECEIVE command
This command is available only in the CICS environment. Like the CICS transaction
EDIS, this command can be used to stop a single continuous receive or stop all
eligible continuous receives. A continuous receive can be stopped if:

v A valid requestor ID is specified in the continuous receive profile member;

v The continuous receive profile member is marked ACTIVE; and

v The network ID in the associated mailbox (requestor) profile member is IINCICS.

Syntax
STOP CONTINUOUS RECEIVE
IFCC(override condition codes)
MEMBER(member profile name)
SETCC(condition codes)

STOP CONTINUOUS RECEIVE command examples

Example 1:
Stop all active continuous receives.
PERFORM STOP CONTINUOUS RECEIVE

Example 2:
Stop the continuous receive for profile member CRMEM.
PERFORM STOP CONTINUOUS RECEIVE

WHERE MEMBER(CRMEM)

STOP CONTINUOUS RECEIVE

92 WebSphere Data Interchange Programmer’s Reference

TRADING PARTNER CAPABILITY DATA EXTRACT command
This command gathers data about the transaction capabilities of trading partners
including:

v Which transactions have maps, sorted by trading partner

v The total number of transactions translated against these maps

v The total number of transactions with unacceptable error levels translated against
these maps

With a report writer or custom program, you can use this command to create
reports such as:

v Pre-Migration Status

v Trading Partner Implementation Status

v Trading Partner Testing Status

v Cumulative Transaction Activity by Trading Partner

v Where Used Maps by Trading Partner

v Trading Partners by Maps Used

Note: If your customer tables are not in the same database as your runtime
tables, all data fields may not be included in this report.

Syntax
TRADING PARTNER CAPABILITY DATA EXTRACT
ADDRLN1(trading partner address line 1)
ADDRLN2(trading partner address line 2)
CMMTLN1(trading partner comment line 1)
CMMTLN2(trading partner comment line 2)
CMPYNM(trading partner company name)
DAYS(starting date) TO(ending date)
DIR(processing direction)
DYNSQL(use dynamic SQL)
IFCC(override condition codes)
MAPID(map name)
SETCC(condition codes)
STDDESC(EDI standard description)
STDID(EDI standard ID)
STDLV(EDI standard release level)
STDTRID(EDI standard transaction set ID)
STDVR(EDI standard version)
TESTMODE(test transaction mode)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
USERPGM(user program)

TRADING PARTNER CAPABILITY DATA EXTRACT command examples

Example 1:
Company X is implementing EDI with all suppliers to their Atlanta assembly plant.
They have set a target date of 12/31 to have 100% EDI on several transactions.
Suppliers start out in test mode for each new transaction and, after 100 successful
test transactions, are eligible to move into production. The EDI steering committee
meets monthly to review progress and needs a report that shows information for
each supplier, such as:

TRADING PARTNER CAPABILITY DATA EXTRACT

Chapter 2. WebSphere Data Interchange commands and keywords 93

v All transactions sent and received

v When the supplier went into test for each transaction type

v Total number of transactions sent or received in test mode

v When the supplier went into production for each transaction type

v Total number of transactions sent or received in production mode
PERFORM TRADING PARTNER CAPABILITY DATA EXTRACT
WHERE CMMTLN1(Atlanta) CMMTLN2(Supplier)

Figure 11 shows an example of a trading partner capability report.

Example 2:
You want to extract information associated with migrating the purchase order
transaction from X12V2R1 to X12V3R1. Create a list of all the trading partners and
usages or rules you must migrate to the new EDI standard.
PERFORM TRADING PARTNER CAPABILITY DATA EXTRACT
WHERE STDID(X12V2R1) STDTRID(850)

Trading Partner Capability Report Data

Company Location Int ID Trx Std. ID Dir ID Started Test Started Product
NameID Testing Trx's Productn Trx's
---------- ----------- ------ --- ------- --- ---------------- -------- ------ -------- -------
Global Tampa, FL 233119 850 X12V2R1 S NONPRODX12V2R1PO 07/03/01 101 08/15/01 262
Services

Only1 Co. Lima, OH 399129 850 X12V2R3 S PRODSUPX12V2R3PO 08/15/01 71 *NODATE* 0

Pulse Armonk, NY 997223 850 X12V2R3 S PRODSUPX12V2R3PO *NODATE* 0 *NODATE* 0
Services

Handlebars Raleigh, NC 877519 850 X12V2R3 S PRODSUPX12V2R3PO 05/07/01 115 07/02/01 554
Etc. 855 X12V2R3 R PRODSUPX12V2R3PA 05/22/01 109 07/26/01 445

856 X12V2R3 R PRODSUPX12V2R3SN 06/13/01 187 07/22/01 1878
861 X12V2R3 S PRODSUPX12V2R3RA 08/08/01 242 *NODATE* 0

IBM Dallas, TX 660599 850 X12V2R3 S PRODSUPX12V2R3PO 01/08/01 126 03/14/01 927
855 X12V2R3 R PRODSUPX12V2R3PA 08/22/01 054 *NODATE* 0
856 X12V2R3 R PRODSUPX12V2R3SN 04/06/01 378 *NODATE* 0

Pen&Paper Carson, CA 523567 850 X12V2R3 S PRODSUPX12V2R3PO 02/02/01 113 03/02/01 856
855 X12V2R3 R PRODSUPX12V2R3PA 03/26/01 104 03/12/01 535
856 X12V2R3 R PRODSUPX12V2R3SN 03/13/01 127 11/23/01 278
861 X12V2R3 S PRODSUPX12V2R3RA 04/08/01 102 06/08/01 322

Figure 11. Example of a trading partner capability report

TRADING PARTNER CAPABILITY DATA EXTRACT

94 WebSphere Data Interchange Programmer’s Reference

TRADING PARTNER PROFILE DATA EXTRACT command
This command provides detailed information about your trading partners including:
v Company name
v Address
v Contacts
v Telephone number
v Nickname
v Network name
v Interchange ID
v Account ID
v User ID
v Latest data transmission date, sorted by trading partner

Before running this command, you must run the UPDATE STATISTICS command to
gather the data.

With a report writer or custom program, you can use this command to create
reports such as:
v Simple trading partner lists
v Comprehensive trading partner lists
v Trading partners sorted by division
v Inactive trading partners (no activity for x period of time)

Syntax
TRADING PARTNER PROFILE DATA EXTRACT
ACCTID(network account ID)
ADDRLN1(trading partner address line 1)
ADDRLN2(trading partner address line 2)
CMMTLN1(trading partner comment line 1)
CMMTLN2(trading partner comment line 2)
CMPYNM(trading partner company name)
CNTCTNM(trading partner contact name)
CNTCTPH(trading partner contact phone number)
DYNSQL(use dynamic SQL)
GRPCTLNO(starting sender’s group control nbr.)

TO(ending sender’s group control nbr.)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTID(trading partner interchange ID)
LASTTRXDATE(starting latest transaction date)

TO(ending latest transaction date)
NETID(network ID)
SETCC(condition codes)
TPNICKN(trading partner nickname)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
USERID(network user ID)
USERPGM(user program)

TRADING PARTNER PROFILE DATA EXTRACT

Chapter 2. WebSphere Data Interchange commands and keywords 95

TRADING PARTNER PROFILE DATA EXTRACT command examples

Example 1:
Your EDI Administrator has requested that you provide a hard copy report every
Monday morning that shows the trading partners who have sent data within the last
six months to the Metal Finishing and Metal Shipping Divisions. This report is used
to interface with the various departments and to contact the trading partner in case
of trouble. The report contains:

v Company name and location

v Supplier/customer Dun and Bradstreet (DUNS) number

v EDI contact's name and phone number

v Date of the last transaction sent to them

v Control numbers of the last transaction sent to them
PERFORM TRADING PARTNER PROFILE DATA EXTRACT
WHERE CMMTLN2(Metal Finishing) LASTTRXDATE(*-180) TO(*)
WHERE CMMTLN2(Metal Shipping) LASTTRXDATE(*-180) TO(*)

Or, if these are the only two divisions beginning with the word Metal, you can use
this command:
PERFORM TRADING PARTNER PROFILE DATA EXTRACT
WHERE CMMTLN2(Metal*) LASTTRXDATE(*-180) TO(*)

Figure 12shows an example of a trading partner profile report.

Example 2:
Generate a data extract of all the trading partners for your ABC and DEF divisions
with whom you have not exchanged any transactions within the last six months.
Print only information about trading partners on the network. Next, put the division
in the Comment Line 2 field of the trading partner profile.
PERFORM TRADING PARTNER PROFILE DATA EXTRACT
WHERE CMMTLN2(ABC) LASTTRXDATE(*-999) TO(*-180) NETID(IN*)
WHERE CMMTLN2(DEF) LASTTRXDATE(*-999) TO(*-180) NETID(IN*)

Trading Partner Information Report Data

Company Location IntID Net Accnt UserID Contact Contact LastTrx Ctrl No.
Name Name Phone Date

A0 Corp Morris,MN 333219 NETA MMIDOO 55532214 Sam Heusen 813-555-5668 08/01/01 00000171
IBM Tampa, FL 200762 NETA ADV001 99665593 Deb Garrie 762-555-2328 08/15/01 00990171
Alloy Chicago,IL 543189 NETA ALUM00 18654771 Lou Green 619-555-7784 08/15/00 00044573
Inc.
DeKant Queens, NY 337690 IIN DECANT USER01 Bob Kling 252-555-9006 11/06/01 00670170
Systems London, UK 856690 IIN DECAHH USER02 Joe Miller 413-555-5555 03/17/01 00006392

London, UK 009210 IIN DECA00 USER03 Heather Liu 413-555-2256 03/27/01 00066392

IBM Paris FR 665767 IIN IBMIM 01NYC Mary Lockler 919-555-8585 02/22/01 00601054
Raleigh,NC 976554 IIN IB SANJOSE Jane Hart 878-555-2876 02/06/01 00070378

MMM Edison, NJ 332323 NETA MMM01 MMADMIN Jon Murphy 828-555-9058 03/18/01 05567836
Motors Miami, FL 003292 IIN MMM02 MMTECH Pauline Gold 813-555-8421 01/22/01 00650054

Figure 12. Example of a trading partner profile report

TRADING PARTNER PROFILE DATA EXTRACT

96 WebSphere Data Interchange Programmer’s Reference

TRANSACTION ACTIVITY DATA EXTRACT command
This command collects data about the daily transaction activity of trading partners
including:

v Total number of transactions sent or received on any day or range of days,
sorted by ID

v Total number of transactions with errors that were sent or received on any day or
range of days, sorted by ID

You can use this command to create reports such as:
v Outbound Document Audit Summary (overview)
v Inbound Document Audit Summary (detailed
v Transaction Activity by Transaction
v Transaction Activity by Trading Partner
v Outbound/Inbound Errors
v Activity Summary by Trading Partner or by Transaction

Syntax
TRANSACTION ACTIVITY DATA EXTRACT
ADDRLN1(trading partner address line 1)
ADDRLN2(trading partner address line 2)
CMMTLN1(trading partner comment line 1)
CMMTLN2(trading partner comment line 2)
CMPYNM(trading partner company name)
DAYS(starting date) TO(ending date)
DIR(processing direction)
DYNSQL(use dynamic SQL)
IFCC(override condition codes)
MAPID(map name)
SETCC(condition codes)
STDDESC(EDI standard description)
STDID(EDI standard ID)
STDLV(EDI standard release level)
STDTRID(EDI standard transaction set ID)
STDVR(EDI standard version)
TESTMODE(test transaction mode)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
USERPGM(user program)

TRANSACTION ACTIVITY DATA EXTRACT command example
Extract a list of all your trading partners and the number of invoices they sent you
through EDI in the first six months of 2001. This report can be used to spot-check
the accounts receivable system to verify that the invoice receipt process is in
control. You receive both EDIFACT and X12 invoices. The transaction activity report
provides the necessary data listed by trading partner.
PERFORM TRANSACTION ACTIVITY DATA EXTRACT
WHERE STDTRID(INVOIC) DAYS(01/01/01) TO(01/06/30) DIR(R)
WHERE STDTRID(810) DAYS(01/01/01) TO(01/06/30) DIR(R)

Figure 13 on page 98 shows an example of a transaction activity data extract report,
after the data has been sorted and formatted.

TRANSACTION ACTIVITY DATA EXTRACT

Chapter 2. WebSphere Data Interchange commands and keywords 97

EDI Invoice Activity Summary for 1H01

Compamy Trx Errors Trx Errors
Name Location Int ID Trx ID Std. ID Dir MTD MTD YTD YTD
--------- ---------- ------ ------ -------- --- --- --- --- ------
IBM Global Tampa, FL 933489 810 X12V2R1 R 14 1 136 9
Services

CULATER Dallas, TX 322217 810 X12V2R3 R 49 5 450 8
810 X12V2R3 R 10 5 90 14
810 X12V2R3 R 250 23 2200 28
INVOIC EDIL921 R 24 0 224 0

Definite Paris, FR 005901 810 X12V2R3 R 456 0 4104 0
Inc. 810 X12V2R3 R 45 0 405 0

INVOIC X12V2R3 R 789 0 7101 0

Jay's Perry, NC 555489 810 X12V2R3 R 102 2 918 7
Turbo 810 X12V2R3 R 83 3 747 12

810 X12V2R3 R 89 0 789 0
810 X12V2R3 R 105 0 945 0

Cool Pool Carmel, CA 748723 810 X12V2R3 R 234 0 1245 2
Service 810 X12V2R3 R 216 0 1245 4

Figure 13. Example of a formatted transaction activity report

TRANSACTION ACTIVITY DATA EXTRACT

98 WebSphere Data Interchange Programmer’s Reference

TRANSACTION DATA EXTRACT command
This command extracts detailed information about transactions, sorted by
transaction handle. You can use this command to create report data to:

v Report on the number of purchase orders sent in a given period of time

v Report on the total number of bytes sent in a given period of time (this can be
useful for charging back costs to other departments based on their EDI usage)

v Create a customized functional acknowledgment tracking report by application or
by department; for example, an exception report on purchase orders sent more
than 2 days ago that have not been acknowledged

v Create an exception report flagging missing control numbers for inbound
envelopes

You can also use this command for functions other than reporting, such as:

v Archiving Transaction Store data

v Loading status data directly into the application by application key; for example,
the status for each invoice sent could be loaded into the billing system by invoice
number

To extract detailed information about enveloped transactions, use the ENVELOPE
DATA EXTRACT command (see 29).

Syntax
TRANSACTION DATA EXTRACT
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLICATION(write application data record)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
CONCATENATE(concatenate extract data)
DIR(processing direction)
DLVDATE(starting delivery date) TO(ending delivery date)
DLVTIME(starting delivery time) TO(ending delivery time)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVTIME(starting transaction envelope time)

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GROUP(write group data record)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
IMAGE(write image data record)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTERCHANGE(write interchange data record)
INTRECID(interchange receiver ID)

TRANSACTION DATA EXTRACT

Chapter 2. WebSphere Data Interchange commands and keywords 99

INTSNDID(interchange sender ID)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
RECEIVEACKDATA(write detailed acknowledgment data)
RECEIVEACKIMAGE(write receive acknowledgment record)
SENDACKDATA(write detailed acknowledgment data)
SENDACKIMAGE(write acknowledgment record)
SETCC(condition codes)
SNDDATE(starting request sent date) TO(ending request sent date)
SNDTIME(starting request sent time) TO(ending request sent time)
STDTRID(EDI standard transaction set ID)
STSTAT(transaction status)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRANSACTION(write transaction data record)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)
USERPGM(user program)

TRANSACTION DATA EXTRACT command examples

Example 1:
Retrieve the interchange, group, and transaction information for all transactions with
trading partner name PISCES and interchange control number 000008888. Place
the results in the EDIQUERY file.
PERFORM TRANSACTION DATA EXTRACT
SELECTING INTERCHANGE(Y) GROUP(Y) TRANSACTION(Y)
WHERE TPNICKN(PISCES) INTCTLNO(000008888) DIR(S)

Example 2:
Retrieve the interchange, group, and transaction information for all transactions with
application sender ID SERVO. Include application and image information.
PERFORM TRANSACTION DATA EXTRACT
SELECTING INTERCHANGE(Y) GROUP(Y) TRANSACTION(Y) APPLICATION(Y) IMAGE(Y)
WHERE APPSNDID(SERVO) DIR(S)

TRANSACTION DATA EXTRACT

100 WebSphere Data Interchange Programmer’s Reference

TRANSFORM command
You can use this command to translate data in any format to any other format
defined in your WebSphere Data Interchange system. This command uses data
transformation maps to translate the data.

Syntax
TRANSFORM
CLEARFILE(clear specified file contents)
DICTIONARY(input dictionary name)
DOCUMENT(input data document name)
IFCC(override condition codes)
INFILE(input data file name)
INTYPE(input data file type)
MAPID(map name)
OUTFILE(output data file name)
OUTLEN(maximum output record length)
OUTTYPE(output data file type)
SETCC(condition codes)
SYNTAX(input data syntax type)
TRACELEVEL(trace level)
XMLEBCDIC(EBDCDIC indicator)
XMLVALIDATE(XML validation indicator)
XMLDTDS(XML DTD path)

TRANSFORM command example
Transform the MQSeries queue file PURCH1 and output the results in file
PURCHTRN.
PERFORM TRANSFORM
WHERE INFILE(PURCH1) INTYPE(MQ) SYNTAX(X) OUTFILE(PURCHTRN)

TRANSFORM

Chapter 2. WebSphere Data Interchange commands and keywords 101

TRANSLATE AND ENVELOPE command
This command combines the functions of the TRANSLATE TO STANDARD and
ENVELOPE commands. This command takes EDI transactions from an application
file, translates them to EDI format, places the results in the Transaction Store, and
creates envelopes for the transactions. Then, the enveloped transactions are placed
in the TD queue or in a file specified in the command. Processing is quicker than
using the separate commands, but optimum enveloping is best achieved with the
separate commands.

Syntax
TRANSLATE AND ENVELOPE
APPFILE(application data file name)
APPSEC(application file security level)
APPTYPE(application file type)
BATCHSET(set transaction batch ID)
DELFILE(delete application file associated with logical filename))
DIERRFILTER(initial error filter set)
ENVPRBREAK(start new envelope)
EXTENDC(translate with extended C record format)
FIXEDFILEID(fixed-to-fixed output ddname)
IACCESS(IEXIT access)
IAREA(IEXIT information)
IEXIT(interchange control program)
IFCC(override condition codes)
INMEMTRANS(transactions in memory)
ITPBREAK(new interchange envelope)
ITYPE(IEXIT program type)
ONELOGICAPP(single logical file)
ONEMSG(read only one MQ message)
OPTRECS(optional record type)
PAGE(pageable translation)
PURGINT(purge interval)
RAWDATA(translate to raw data format)
RAWFMTID(raw data format ID)
RAWUSAGE(raw data transaction type)
RECOVERY(recovery unit of work)
SAPUPDT(track SAP status)
SERVICESEGVAL(service segment validation level)
SETCC(condition codes)
TPID(trading partner ID)
XML(XML required)
XMLDICT(XML dictionary address)
XMLDTDS(XML DTD path)

TRANSLATE AND ENVELOPE command examples

Example 1:
Translate and envelope the transactions in ddname APPDATA. Place the
enveloped transactions in the TD queue specified by the network profile. Return the
information record created during translation.
PERFORM TRANSLATE AND ENVELOPE
WHERE APPFILE(APPDATA) OPTRECS(I)

TRANSLATE AND ENVELOPE

102 WebSphere Data Interchange Programmer’s Reference

Example 2:
In CICS, translate and envelope the transactions in TD queue AP01. Place the
enveloped transactions in TS queue named ENVDATA. Return the information
record and envelope headers created during translation.
PERFORM TRANSLATE AND ENVELOPE
WHERE APPFILE(AP01) APPTYPE(TD) FILEID(ENVDATA) OPTRECS(IE)

TRANSLATE AND ENVELOPE

Chapter 2. WebSphere Data Interchange commands and keywords 103

TRANSLATE AND SEND command
This command combines the functions of the TRANSLATE TO STANDARD,
ENVELOPE, and SEND commands into one step. Processing is quicker than using
the separate commands, but optimum enveloping is best achieved by using the
separate commands.

Note: This command will not work properly with direct connection networks such as
point-to-point if the application data file contains transactions for more than
one trading partner.

Syntax
TRANSLATE AND SEND
APPFILE(application data file name)
APPSEC(application file security level)
APPTYPE(application file type)
ASSERTLVL(session assertion level)
BATCHSET(set transaction batch ID)
CLEARFILE(clear specified file contents)
DELFILE(delete application file associated with logical filename))
DIERRFILTER(initial error filter set)
ENVPRBREAK(start new envelope)
EXTENDC(translate with extended C record format)
FILEID(processing file ddname)
FIXEDFILEID(fixed-to-fixed output ddname)
IACCESS(IEXIT access)
IAREA(IEXIT information)
IEXIT(interchange control program)
IFCC(override condition codes)
INMEMTRANS(transactions in memory)
ITPBREAK(new interchange envelope)
ITYPE(IEXIT program type)
MSGUCLASS(override message user class)
ONELOGICAPP(single logical file)
ONEMSG(read only one MQ message)
OPTRECS(optional record type)
PAGE(pageable translation)
PURGINT(purge interval)
RAWFMTID(raw data format ID)
RAWTEST(raw test data)
RAWUSAGE(raw data transaction type)
RECOVERY(recovery unit of work)
REQID(requestor ID)
SAPUPDT(track SAP status)
SCRIPT(script ID)
SEQNUM(increment network profile member numbers)
SERVICESEGVAL(service segment validation level)
SETCC(condition codes)
TPID(trading partner ID)
TPNICKN(trading partner nickname)

TRANSLATE AND SEND

104 WebSphere Data Interchange Programmer’s Reference

TRANSLATE AND SEND command examples

Example 1:
Translate and send the transactions in file APPDATA. Assign batch number 121401
to these transactions.
PERFORM TRANSLATE AND SEND
WHERE APPFILE(APPDATA) REQID(IINREQ) BATCHSET(121401)

Example 2:
Translate and send the transactions in file RAWFILE. Data format POSEND
describes these transactions, which are in raw data format.
PERFORM TRANSLATE AND SEND
WHERE APPFILE(RAWFILE) REQID(IINREQ) RAWFMTID(POSEND)

TRANSLATE AND SEND

Chapter 2. WebSphere Data Interchange commands and keywords 105

TRANSLATE TO APPLICATION command
This command takes EDI documents from the Transaction Store, translates them to
application format, and places the results in the file specified by the data format or
in the override file specified by the trading partner usage/rule for translating the
transaction. The data can be formatted as C and D records or as raw data.

Note: In CICS, you can also deliver the data to a program or CICS transaction, as
specified in the Application file name and Application file type fields of
the data format.

Syntax
TRANSLATE TO APPLICATION
ACFIELD(starting application control field data)

TO(ending application control field data)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
ASSERTLVL(session assertion level)
BATCHSET(set transaction batch ID)
CCEXCEPTION(job-step condition code)
DIERRFILTER(initial error filter set)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
EXTENDC(translate with extended C record format)
FORCETEST(force test usage)
FORMAT(data format ID)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
MULTIDOCS(multiple-document file)
NETID(network ID)
OPTRECS(optional record type)
PAGE(pageable translation)
RAWDATA(translate to raw data format)
SETCC(condition codes)
STDTRID(EDI standard transaction set ID)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRXCTLNO(starting transaction set control number)

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)
XML(XML required)
XMLDICT(XML dictionary address)
XMLDTDS(XML DTD path)
XMLEBCDIC(EBDCDIC indicator)

TRANSLATE TO APPLICATION

106 WebSphere Data Interchange Programmer’s Reference

XMLSEGINP(line break indicator)
XMLSTDID(destination EDI standard ID)
XMLVALIDATE(XML validation indicator)

TRANSLATE TO APPLICATION command examples

Example 1:
Translate all EDI documents in the Transaction Store that were received on
December 14, 2001 with network ID IINR41. Place the data in the application file
specified by the data format or in the override file specified in the receive usage/rule
for the trading partner.
PERFORM TRANSLATE TO APPLICATION
WHERE TRXDATE(01/12/14) NETID(IINR41)

Example 2:
Translate all EDI documents in the Transaction Store that were received between
December 14, 2001 and today's date. Place the data in the application file
specified by the data format or in the override file specified in the receive usage/rule
for the trading partner.
PERFORM TRANSLATE TO APPLICATION
WHERE TRXDATE(01/12/14) TO(*)

Example 3:
Translate all EDI documents in the Transaction Store that were received on
December 14, 2001 with network ID IINR41. Also translate all EDI data received
on December 14, 2001 from trading partner PISCES. Place the data in the
application file specified by the data format or in the override file specified in the
receive usage/rule for the trading partner.
PERFORM TRANSLATE TO APPLICATION
WHERE TRXDATE(01/12/14) NETID(IINR41)
WHERE TRXDATE(01/12/14) TPNICKN(PISCES)

TRANSLATE TO APPLICATION

Chapter 2. WebSphere Data Interchange commands and keywords 107

TRANSLATE TO STANDARD command
This command translates application data to an EDI standard format and places the
results in the Transaction Store. The application data can be in C and D record
format or in raw data format.

Syntax
TRANSLATE TO STANDARD
APPFILE(application data file name)
APPSEC(application file security level)
APPTYPE(application file type)
ASSERTLVL(session assertion level)
BATCHSET(set transaction batch ID)
DELFILE(delete application file associated with logical filename))
DIERRFILTER(initial error filter set)
EENVDATE(earliest transaction enveloping date)
EXTENDC(translate with extended C record format)
FIXEDFILEID(fixed-to-fixed output ddname)
IFCC(override condition codes)
ONEMSG(read only one MQ message)
OPTRECS(optional record type)
PAGE(pageable translation)
PURGINT(purge interval)
RAWDATA(translate to raw data format)
RAWFMTID(raw data format ID)
RAWUSAGE(raw data transaction type)
SAPUPDT(track SAP status)
SETCC(condition codes)
TPID(trading partner ID)
XML(XML required)
XMLDICT(XML dictionary address)
XMLDTDS(XML DTD path)

TRANSLATE TO STANDARD command examples

Example 1:
Translate the transactions in file INVOICES from a raw data format to an EDI
standard format and place the results in the Transaction Store. The data format
SENDINVOICES describes the raw data.
PERFORM TRANSLATE TO STANDARD
WHERE APPFILE(INVOICES) RAWFMTID(SENDINVOICES)

Example 2:
Translate the transactions in two application files from C and D record format to
EDI standard format and place the results in the Transaction Store. Assign batch
ID 121401 to these transactions.
PERFORM TRANSLATE TO STANDARD
WHERE APPFILE(APDATA01) BATCHSET(121401)
WHERE APPFILE(APDATA02) BATCHSET(121401)

TRANSLATE TO STANDARD

108 WebSphere Data Interchange Programmer’s Reference

UNLOAD LOG ENTRIES command
This command reads all the entries in the event log associated with the
Application ID. The entries selected for removal are copied to the archive file, and
all other entries associated with the Application ID are copied to the hold file.

Event log entries that are associated with active or held transactions in the
Transaction Store are not eligible for archive and are not selected for removal. The
entries selected for removal are copied to the archive file and immediately deleted.

To ensure concurrency, set the number of deletes (Numdels) performed before a
COMMIT is issued to a relatively low value. This command may be run as the first
step of a multi-step process. (See the table on 5.)

Syntax
UNLOAD LOG ENTRIES
APPLID(application ID)
ARCHIVEFILE(event log archive file name)
ARCHIVETYPE(event log archive file type)
HOLDFILE(event log hold file name)
HOLDTYPE(event log hold file type)
IFCC(override condition codes)
LOGAEID(starting event log associated entry ID) TO(ending
event log associated entry ID)
LOGDATE(starting event log date) TO(ending event log date)
LOGFORM(starting event log format ID) TO(ending event log format ID)
LOGTIME(starting event log time) TO(ending event log time)
LOGUSER(starting event log user ID) TO(ending event log user ID)
NUMDELS(number of database deletes before commit)
SETCC(condition codes)

UNLOAD LOG ENTRIES command example
Unload log entries from the application log file for application EDIFFS dated
December 14, 2001.
PERFORM UNLOAD LOG ENTRIES
WHERE APPLID(EDIFFS) LOGDATE(12/14/01)ARCHIVEFILE(ARCHTRAN)

HOLDFILE (HOLDTRAN)

UNLOAD LOG ENTRIES

Chapter 2. WebSphere Data Interchange commands and keywords 109

UNPURGE command
This command restores a transaction to the status it had before it was marked for
purging unless the transaction’s storage time has expired. You can restore
transactions marked for purging by the PURGE command until you execute the
REMOVE TRANSACTIONS command. Once the REMOVE TRANSACTIONS
command runs, you cannot restore the transactions. If a transaction is one of a
related group, all transactions in the group are restored to their former status. If a
transaction's storage time has expired, it can still be eligible for purging. Running
the UNPURGE command does not change the purge status of transactions whose
storage time has expired.

The HOLD, PURGE, RELEASE, and UNPURGE commands share a common
syntax.

Syntax
UNPURGE
ACFIELD(starting application control field data)

TO(ending application control field data)
APPLID(application ID)
APPRECID(application receiver department ID)
APPSNDID(sender’s department ID)
BATCH(translated transaction batch ID)
DIR(processing direction)
DLVDATE(starting delivery date) TO(ending delivery date)
DLVTIME(starting delivery time) TO(ending delivery time)
ENVDATE(starting transaction envelope date)

TO(ending transaction envelope date)
ENVTIME(starting transaction envelope time)

TO(ending transaction envelope time)
ENVTYPE(transaction envelope type)
EPURDATE(starting transaction purge date)

TO(ending transaction purge date)
FORMAT(data format ID)
FUNACKP(pending functional acknowledgment)
GRPCTLNO(starting sender’s group control number)

TO(ending sender’s group control number)
HANDLE(starting transaction ID) TO(ending transaction ID)
IFCC(override condition codes)
INTCTLNO(starting sender’s interchange control nbr)

TO(ending sender’s interchange control nbr)
INTRECID(interchange receiver ID)
INTSNDID(interchange sender ID)
NETACKP(pending network acknowledgment)
NETID(network ID)
NETSTAT(network transaction status)
SETCC(condition codes)
SNDDATE(starting request sent date) TO(ending request sent date)
SNDTIME(starting request sent time) TO(ending request sent time)
STDTRID(EDI standard transaction set ID)
STSTAT(transaction status)
TPID(trading partner ID)
TPNICKN(trading partner nickname)
TRERLVL(maximum translation error level)
TRXCTLNO(starting transaction set control number)

UNPURGE

110 WebSphere Data Interchange Programmer’s Reference

TO(ending transaction set control number)
TRXDATE(starting transaction date) TO(ending transaction date)
TRXSTAT(transaction processing status)
TRXTIME(starting transaction time) TO(ending transaction time)

UNPURGE command example
Restore all EDI documents with application control numbers PO112233 through
PO112244 that are marked for purging by user request.
PERFORM UNPURGE
WHERE ACFIELD(PO112233) TO(PO112244) STSTAT(4)

UNPURGE

Chapter 2. WebSphere Data Interchange commands and keywords 111

UPDATE STATISTICS command
The UPDATE STATISTICS command is used to update the management reporting
statistics from the pending statistics table to the reporting tables. You can use the
NUMUPDTS keyword to limit the number of updates performed at one time.

Note: You must run this command before running management reports.

Syntax
UPDATE STATISTICS
NUMUPDTS(number of database updates before commit)

UPDATE STATISTICS command example
Update the statistics tables before you run a management reporting data extract.
Suppose you use the DB2 version of WebSphere Data Interchange. Because of
application requirements, the system is running multiple simultaneous translation
jobs and it is heavily loaded. Also, the database administrator has set the DB2
timeout value rather low. As a result, you are encountering DB2 timeouts. To reduce
the amount of time that the UPDATE STATISTICS process holds table locks, set the
NUMUPDTS value to a low number such as 25. This causes the UPDATE
STATISTICS job to commit work and release all locks after every 25 DB2 updates.
PERFORM UPDATE STATISTICS
WHERE NUMUPDTS(25)

UPDATE STATISTICS

112 WebSphere Data Interchange Programmer’s Reference

UPDATE STATUS command
This command retrieves network acknowledgments for all mailbox (requestor)
profile members, specified members, or specified network profile members. It
processes all network acknowledgments that resulted from previous SEND
commands, pairs the acknowledgments with the transactions originally sent, and
updates transaction status.

The WHERE clause is optional for this command. If you do not specify a WHERE
clause, all network profile members are processed.

You can request network acknowledgments in the Net acknowledgment field of the
trading partner or mailbox (requestor) profile.

Syntax
UPDATE STATUS
IFCC(override condition codes)
NETID(network ID)
REQID(requestor ID)
SETCC(condition codes)

UPDATE STATUS command examples

Example 1:
Receive and process all network acknowledgments for all mailbox (requestor)
profile members.
PERFORM UPDATE STATUS

Example 2:
Receive and process network acknowledgments for all mailbox (requestor) profile
members with network profile IINB41.
PERFORM UPDATE STATUS
WHERE NETID(IINB41)

Example 3:
Receive and process all network acknowledgments for mailbox (requestor) profile
members, ROBOX and KANBOX.
PERFORM UPDATE STATUS
WHERE REQID(ROBOX)
WHERE REQID(KANBOX)

UPDATE STATUS

Chapter 2. WebSphere Data Interchange commands and keywords 113

Keyword descriptions
This section describes the keywords used with the WebSphere Data Interchange
Utility commands.

ACCTID
The Network Account ID of the trading partner as entered in the Account Number
field of the trading partner profile. The maximum length is 32.

This keyword is used with the following commands:
NETWORK ACTIVITY DATA EXTRACT
TRADING PARTNER PROFILE DATA EXTRACT

ACFIELD
The application control field or fields. Consists of either the AC field in the data
format or the concatenation of data in the fields specified during transaction
translation. For more information about the application control field, refer to the
WebSphere Data Interchange User’s Guide. Concatenated field data is used if any
application control field names are specified in transaction translation. This field
contains control numbers such as purchase order numbers and is case sensitive.
The maximum length is 35.

This keyword is used with the following commands:
ENVELOPE
ENVELOPE AND SEND
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRANSACTION DATA EXTRACT
TRANSLATION TO APPLICATION
UNPURGE

ACKFILE
The ddname of a file containing network acknowledgments. If you do not specify
this keyword, the value of the Net output file field in the associated network
profile member is used.

This keyword is used only with the PROCESS NETWORK ACKS command.

Note: In CICS, WebSphere Data Interchange does not change the ACKFILE value
to uppercase.

UPDATE STATUS

114 WebSphere Data Interchange Programmer’s Reference

ACKTYPE
The acknowledgments file type used only for CICS and MQ (which is supported in
both z/OS and CICS). Valid values are:

MQ WebSphere Data Interchange MQSeries queue profile member name

TD Transient data queue

TM Temporary storage queue - main storage

TS Temporary storage queue - auxiliary storage (default for CICS)

VS VSAM entry sequenced data set

This keyword is used only with the PROCESS NETWORK ACKS command.

If you do not specify this keyword for z/OS, this field is ignored and the
corresponding file name (the ddname of a sequential file) in the network profile
member is used.

ACTUSAGE
Indicates how WebSphere Data Interchange should handle the activation of
imported usages and rules. Valid values are:

NOREPL

An active imported usage/rule replaces an existing active usage/rule in the
database (default). If an active usage/rule that matches the key for the
imported usage/rule already exists, the imported usage/rule is made
inactive.

REPL An active imported usage/rule replaces an existing active usage/rule in the
database. In this case, the existing usage/rule is made inactive and the
imported usage/rule becomes the active usage.

FORCE
All imported usages/rules are forced to be active regardless of their current
status, or the existence of another active usage/rule in the database. If an
active usage/rule that matches the key for the imported usage/rule exists in
the database, it is made inactive and the imported usage/rule becomes the
active.

This keyword is used only with the IMPORT command.

ADDRLN1
The first line of the address as entered in the Address line 1 field of the trading
partner profile. This field is case sensitive. The maximum length is 40.

This keyword is used with the following commands:
TRADING PARTNER CAPABILITY DATA EXTRACT
TRADING PARTNER PROFILE DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT

ADDRLN2
The second line of the address as entered in the Address line 2 field of the trading
partner profile. This field is case sensitive. The maximum length is 40.

This keyword is used with the following commands:

ACKTYPE

Chapter 2. WebSphere Data Interchange commands and keywords 115

TRADING PARTNER CAPABILITY DATA EXTRACT
TRADING PARTNER PROFILE DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT

APPFILE
When used with EDI processing commands, this keyword specifies the ddname of
the file containing the application data. The data can be C and D records or raw
data records. For the format of these records, “Application file” on page 171. The
maximum length is eight.

This keyword is used with the following commands:
DEENVELOPE AND TRANSLATE
RECEIVE AND SEND
RECEIVE AND TRANSLATE
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND
TRANSLATE TO APPLICATION
TRANSLATE TO STANDARD

Note: In CICS, WebSphere Data Interchange does not change the APPFILE value
to uppercase.

APPLICATION
Indicates whether an application data record is written to the EDIQUERY file. Valid
values are:

Y Writes application data records

N Discards application data records (default)

Received transactions can be translated multiple times and will have an application
record for each attempt. Send transactions only have one application record. For
the format of these records, “Application data extract record layout” on page 270.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
TRANSACTION DATA EXTRACT

APPLID
The application ID. When used as a selection criteria, this field specifies the
application ID that was used to create the records being examined. (These records
may be transactions in the Transaction Store or entries in the event log.) Valid
values are:

EDIFFS
WebSphere Data Interchange Utility

EDIMP
WebSphere Data Interchange Facility

(user-defined)
Your application APPLID

You can switch to another application ID by using WebSphere Data Interchange’s
API function codes. The maximum length is eight.

This keyword is used with the following commands:

ADDRLN2

116 WebSphere Data Interchange Programmer’s Reference

ENVELOPE
ENVELOPE AND SEND
ENVELOPE DATA EXTRACT
HOLD
LOAD LOG ENTRIES
NETWORK ACTIVITY DATA EXTRACT
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE LOG ENTRIES
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRANSACTION DATA EXTRACT
UNLOAD LOG ENTRIES
UNPURGE

APPRECID
The application receiver ID. Identifies the specific department or business area in
the receiver’s company. The translator uses this ID first to attempt to locate the
trading partner usage/rule for receive transactions. The maximum length is 35.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRANSACTION DATA EXTRACT
UNPURGE

APPSEC
The security level of the application file. Indicates whether the application files
specified with the APPFILE keyword are read only or read and write. Valid values
are:

U Opens the application files for both read and write. The files can be opened
for extend, and then closed (default). This process ensures that each file
has been properly initialized and that WebSphere Data Interchange does
not process data that is not valid.

R Opens the application files in read only mode. If this option is chosen, you
must make sure the application files are properly initialized.

APPLID

Chapter 2. WebSphere Data Interchange commands and keywords 117

This keyword is used with the following commands:
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND
TRANSLATE TO STANDARD

APPSNDID
A specific department or business area in the sender’s company. The maximum
length is 35.

This keyword is used with the following commands:
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRANSLATE TO APPLICATIONS
UNPURGE

APPTYPE
Indicates the application file type. Used only for CICS and MQ (which is supported
in both z/OS and CICS). You can use this keyword to override the Receive
application file name specified in the data format or specified on the Receive
Transaction Usage Override panel. Valid values are:

MQ WebSphere Data Interchange MQSeries queue profile member name

PG Response program (inbound processing only)

TD Transient data queue

TM Temporary storage queue - main storage

TS Temporary storage queue - auxiliary storage (default for CICS)

TX Response transaction (inbound processing only)

This keyword is used with the following commands:
DEENVELOPE AND TRANSLATE
RECEIVE AND TRANSLATE
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND
TRANSLATE TO APPLICATION
TRANSLATE TO STANDARD

If you do not specify this keyword for z/OS, this field is ignored and the
corresponding file keyword (the ddname of a sequential file) is used.

ARCHIVEFILE
The event log archive file name. Event log entries selected for removal are written
to this file. The maximum length is eight.

APPSEC

118 WebSphere Data Interchange Programmer’s Reference

This keyword is used with the following commands:
REMOVE LOG ENTRIES
UNLOAD LOG ENTRIES

ARCHIVETYPE
Indicates the event log archive file type used only for CICS and MQ (which is
supported in both z/OS and CICS). Valid values are:

MQ WebSphere Data Interchange MQSeries queue profile member name

TD Transient data queue

TM Temporary storage queue - main storage

TS Temporary storage queue - auxiliary storage (default for CICS)

This keyword is used with the following commands:
REMOVE LOG ENTRIES
UNLOAD LOG ENTRIES

If you do not specify this keyword for z/OS, this field is ignored and the
corresponding file keyword (the ddname of a sequential file) is used.

ASSERTLVL
Specifies the level of assertions that are active for this translation session.
Assertions are established during the translation process using the &ASSERTn
special literals. The n can be a value from 0 to 9, which establishes 10 assertion
levels. Only &ASSERT requests with an n value greater than or equal to the
ASSERTLVL value will be evaluated. For example, when ASSERTLVL(5) is specified,
only the literals &ASSERT5, &ASSERT6, &ASSERT7, &ASSERT8, and &ASSERT9
will be evaluated. Level 9 assertions (&ASSERT9) are always active.

This keyword is used with the following commands:
DEENVELOPE AND TRANSLATE
RECEIVE AND TRANSLATE
RETRANSLATE TO APPLICATION
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND
TRANSLATE TO APPLICATION
TRANSLATE TO STANDARD

BATCH
Specifies the batch ID assigned to a transaction when it was translated. You can
use this keyword to select only transactions with a particular batch ID. The
maximum length is eight.

This keyword is used with the following commands:
ENVELOPE
ENVELOPE AND SEND
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE

ARCHIVEFILE

Chapter 2. WebSphere Data Interchange commands and keywords 119

QUERY
RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRANSACTION DATA EXTRACT
UNPURGE

BATCHSET
Specifies that a user-defined ID be assigned to the transaction when it is
translated. You can use this keyword to identify transactions you want to retrieve as
a group. The transactions remain independent. An action performed on one
transaction does not affect other transactions with the same batch ID. The
maximum length is eight. The default batch ID is a date and time stamp in the
format ddhhmmss.

This keyword is used with the following commands:
DEENVELOPE AND TRANSLATE
RECEIVE AND TRANSLATE
RETRANSLATE TO APPLICATION
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND
TRANSLATE TO APPLICATION
TRANSLATE TO STANDARD

CCEXCEPTION
Indicates whether job-step condition code 0003 or 0000 is returned when
application data is written to the exception file. Valid values are:

Y Generates a minimum job step condition code of 0003 if application data is
written to the exception file.

N Generates a job-step condition code of 0000 if translation completes
successfully and the application data was written to the exception file
(default). Does not report application data written to the exception file as an
error.

X Generates a job-step condition code of 903 to distinguish this from other
errors that result in a 0003 condition code.

This keyword is used with the following commands:
DEENVELOPE AND TRANSLATE
RECEIVE AND TRANSLATE
RETRANSLATE TO APPLICATION
TRANSLATE TO APPLICATION

CLEARFILE
Indicates whether the specified file is cleared before it is used for further
processing.

For the TRANSFORM command, this keyword indicates whether the output file or
queue is cleared before writing the translated output. Valid values are:

Y Clears the file before writing the translated output

N Does not clear the file before writing the translated output (default)

BATCH

120 WebSphere Data Interchange Programmer’s Reference

For the following commands, this keyword indicates whether the receive file is
cleared after a send is completed or before a receive is issued. Valid values are:

Y Clears the file after a send is completed or before a receive is issued

N Does not clear the file after a send is completed or before a receive is
issued (default)

ENVELOPE AND SEND
RECEIVE
RECEIVE AND DEENVELOPE
RECEIVE AND SEND
RECEIVE AND TRANSLATE
RECVFILE AND SEND
REENVELOPE AND SEND
SEND
TRANSLATE AND SEND

Note: This keyword is ignored for batch receive processes. The file allocation
disposition in the batch JCL will determine if the TD queue file is cleared.

CLIENT
Indicates which SAP status records are extracted or removed using the SAP
client ID. The default is ALL.

This keyword is used with the following commands:
SAP STATUS EXTRACT
SAP STATUS REMOVE

CMMTLN1
The first comment line as entered in the Comment line 1 field of the trading partner
profile. This field is case sensitive. The maximum length is 40.

This keyword is used with the following commands:
TRADING PARTNER CAPABILITY DATA EXTRACT
TRADING PARTNER PROFILE DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT

CMMTLN2
The second comment line as entered in the Comment line 2 field of the trading
partner profile. This field is case sensitive. The maximum length is 40.

This keyword is used with the following commands:
TRADING PARTNER CAPABILITY DATA EXTRACT
TRADING PARTNER PROFILE DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT

CMPYNM
The company name as entered in the Company name field of the trading partner
profile. This field is case sensitive. The maximum length is 40.

This keyword is used with the following commands:
TRADING PARTNER CAPABILITY DATA EXTRACT
TRADING PARTNER PROFILE DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT

CLEARFILE

Chapter 2. WebSphere Data Interchange commands and keywords 121

CNTCTNM
The contact name as entered in the Contact name field of the trading partner profile.
This field is case sensitive. The maximum length is 30.

This keyword is used only with the TRADING PARTNER PROFILE DATA EXTRACT
command.

CNTCTPH
The contact phone number as entered in the Contact phone number field of the
trading partner profile. The maximum length is 25.

This keyword is used only with the TRADING PARTNER PROFILE DATA EXTRACT
command.

CONCATENATE
Indicates whether requested data extract information is written as separate records,
or concatenated and written as a single record. Valid values are:

Y Concatenates categories and writes them as a single record

N Writes information as separate records (default)

If concatenation is requested, the following hierarchy is used:
1. Interchange
2. Group
3. Transaction
4. Application

Each application entry written for a transaction is included with duplicate
interchange, group, and transaction information.

Note: Concatenation does not apply to image records. Transaction and
acknowledgment images are always written as separate records. Detailed
acknowledgment data is always concatenated.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
TRANSACTION DATA EXTRACT

CTLFILE
The ddname of an import or export control file that describes what data is to be
imported or exported. For information about the control file format, see the table on
183.

This keyword is used with the following commands:
EXPORT
IMPORT

CTLTYPE
Indicates the import or export control file type. Used only for CICS and MQ (which
is supported in both z/OS and CICS). Valid values are:

MQ WebSphere Data Interchange MQSeries queue profile member name

TD Transient data queue

CNTCTNM

122 WebSphere Data Interchange Programmer’s Reference

TM Temporary storage queue - main storage

TS Temporary storage queue - auxiliary storage (default for CICS)

This keyword is used with the following commands:
EXPORT
IMPORT

If you do not specify this keyword for z/OS, this field is ignored and the default for
the corresponding file keyword is the ddname of a sequential file.

DAYS
A single date, or the start date of a date range. If the start date of a date range, this
keyword must be followed by the TO keyword with an ending value.

This keyword is used with the following commands:
NETWORK ACTIVITY DATA EXTRACT
SAP STATUS EXTRACT
TRADING PARTNER CAPABILITY DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT

DELFILE
If DELFILE is specified on a PERFORM TRANSLATE TO STANDARD, PERFORM
TRANSLATE AND ENVELOPE or a PERFORM TRANSLATE AND SEND
command, the application file associated with the logical filename will be deleted
once a successful translation is complete.

If an error occurs and the DF could not be translated then the file will not be
deleted.

Note: DELFILE will delete the file on AIX and Windows but on z/OS the file will be
emptied of its contents rather than being deleted.

DICTIONARY
Specifies the dictionary name for the input data. For application data, this field is
required. For EDI and XML data, this field will override values extracted from the
data. For EDI data, if you do not specify this keyword, the values in GS08 (X12)
and UNH02 (EDIFACT) will be used to determine the value for this field in the
EDI2DICT translation table shipped with WebSphere Data Interchange. For XML
data, if you do not specify this keyword, the root element will be used to determine
the dictionary name.

This keyword is used only with the TRANSFORM command.

DIERRFILTER
Specifies the initial set of errors to filter for this translation session. To override the
filters defined in a usage/rule, you can use the DIERRFILTER keyword with a value
of IGNORE to tell WebSphere Data Interchange to ignore all reported errors. This
allows you to view all errors for a particular session without changing the map
generally used. For more information on error filtering, see “Error filtering” on
page 17 or the field definition for ERRFILTER on page 401.

This keyword is used with the following commands:

CTLTYPE

Chapter 2. WebSphere Data Interchange commands and keywords 123

DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE
ENVELOPE AND SEND
RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE
REENVELOPE
REENVELOPE AND SEND
RETRANSLATE TO APPLICATION
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND
TRANSLATE TO APPLICATION
TRANSLATE TO STANDARD

DIR
Indicates the direction of the transmission. Valid values are:

R Receiving

S Sending

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
RECONSTRUCT
RECONSTRUCT AND SEND
RELEASE
REMOVE TRANSACTIONS
TRADING PARTNER CAPABILITY DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT
TRANSACTION DATA EXTRACT
UNPURGE

DLVDATE
Specifies the date, or a range of dates, when the transactions you want to work
with were delivered to the application. If this is the start date of a date range, it
must be followed by the TO keyword with an ending value.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
RELEASE

DIERRFILTER

124 WebSphere Data Interchange Programmer’s Reference

REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRANSACTION DATA EXTRACT
UNPURGE

DLVTIME
Specifies the time, or a period of time, when the transactions you want to work with
were delivered to the application. If this is the start time of a time range, it must be
followed by the TO keyword with an ending value.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRANSACTION DATA EXTRACT
UNPURGE

DOCUMENT
Specifies the document name for the input data. For application data, this field is
required. For EDI and XML data, this field will override values extracted from the
data. For EDI data, if you do not specify this keyword, the values in ST01 (X12) and
UNH02 (EDIFACT) will be used to determine the value for this field. For XML data,
if you do not specify this keyword, the root element will be used to determine the
document name.

This keyword is used only with the TRANSFORM command.

DUPCHECK
Indicates whether duplicate account/user ID and duplicate interchange ID/qualifier
checks are performed when importing TPPROF members. This keyword is optional.
Valid values are:

Y (or other)
Checks for duplicate IDs and ID qualifiers on TPPROF import (default)

N Bypasses the duplicate checks on TPPROF import

Note: The import program checks the incoming TPPROF members to ensure that
no duplicate accounts/user IDs or duplicate interchange ID qualifiers are
imported. This is a time-consuming task and if you are confident that there
are no duplicates in the import file, this keyword can be specified with a
value of N to improve import performance. If duplicates are imported into the
TPPROF and are referenced during translation, unpredictable results can
occur.

This keyword is used only with the IMPORT command.

DLVDATE

Chapter 2. WebSphere Data Interchange commands and keywords 125

DUPENV
Indicates whether duplicate envelopes should be processed. Valid values are:

Y Processes duplicate envelopes (default).

N Does not process duplicate envelopes. A condition code of 0005 is returned
if you attempt to process a duplicate envelope.

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE

DYNSQL
Indicates whether dynamic SQL should be used for extracting the management
report data. Dynamic SQL provides significant performance improvements if you
maintain a lot of statistics. It allows DB2 to create an optimized plan specifically for
your query. To use dynamic SQL, you must be authorized by your database
administrator to access the appropriate views. Valid values are:

Y Uses dynamic SQL

N Uses static SQL (default)

This keyword is used with the following commands:
NETWORK ACTIVITY DATA EXTRACT
TRADING PARTNER CAPABILITY DATA EXTRACT
TRADING PARTNER PROFILE DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT

EENVDATE
Specifies the earliest date that transactions created during this run can be
enveloped. The Date mask field in the language profile determines the format of the
date code.

This keyword is used only with the TRANSLATE TO STANDARD command.

EIFORMAT
Indicates the requested export file record format. Valid values are:

TAGGED
Exports in tagged record format (default)

FIXED Exports in fixed record format

This keyword is used only with the EXPORT command.

ENVDATE
Specifies the date on which the transaction was enveloped. The maximum length
is 10.

This keyword is used with the following commands:
ENVELOPE AND SEND
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY

DUPENV

126 WebSphere Data Interchange Programmer’s Reference

PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
TRANSACTION DATA EXTRACT
TRANSLATE TO STANDARD
UNPURGE

ENVPRBREAK
Indicates whether a new interchange envelope or a new group envelope is started
when the EDI standard envelope profile member name changes. Usually, the
envelope profile provides the group envelope information. Use this keyword if your
envelope profile provides interchange envelope information. Valid values are:

Y Starts a new interchange envelope

N Starts a new group envelope (default)

This keyword is used with the following commands:
ENVELOPE
ENVELOPE AND SEND
REENVELOPE
REENVELOPE AND SEND
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND

ENVTIME
The time at which the transaction was enveloped. The maximum length is eight.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
REMOVE TRANSACTIONS
TRANSACTION DATA EXTRACT
UNPURGE

ENVTYPE
For selecting transactions, indIcates the type of envelope used. Valid values are:

E UNB/UNZ

I ICS

T STX/END

ENVDATE

Chapter 2. WebSphere Data Interchange commands and keywords 127

U BG/EG

X ISA/IEA

0 Envelopes with no interchange header and trailer

For sending and receiving, indicates the type of receive issued. Valid values are:

E EDIFACT

I ICS or non-EDI file

T UN/TDI

U UCS

X X12 (default)

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
RECEIVE
RECEIVE AND DEENVELOPE
RECEIVE AND SEND
RECEIVE AND TRANSLATE
RECVFILE AND SEND
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
SEND
TRANSACTION DATA EXTRACT
TRANSLATE TO APPLICATION
UNPURGE

EPURDATE
The date on which the transaction will be purged from the Transaction Store. The
translator sets the default purge date when it adds the transaction to the
Transaction Store. You can override the default length of time that the transaction
can stay in the Transaction Store before being purged by using the PURGINT
keyword when translating the transaction. The maximum length is 10.

This keyword is used with the following commands:
ENVELOPE
ENVELOPE AND SEND
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE

ENVTYPE

128 WebSphere Data Interchange Programmer’s Reference

PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRANSACTION DATA EXTRACT
TRANSLATE TO APPLICATION
UNPURGE

EXTENDC
Indicates whether the extended C record format is used when translating to
application data with C and D records. Valid values are:

Y Uses the extended C record format

N Does not use the extended C record format (default)

This keyword is used with the following commands:
DEENVELOPE AND TRANSLATE
RECEIVE AND TRANSLATE
RETRANSLATE TO APPLICATION
TRANSLATE TO APPLICATION

FADELAY
Indicates whether functional acknowledgments are immediately enveloped and
queued for sending, or are placed in the Transaction Store for enveloping and
sending later. Valid values are:

Y Puts functional acknowledgments in the Transaction Store but does not
envelope them

N Puts functional acknowledgments in the Transaction Store and also
envelopes them to one of the following (default) files:
v The file specified by the FUNACKFILE keyword, if present
v The TD queue from the network profile
v QDATA, QDATAU, or QDATAE (depending on envelope type)

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE

FILEID
Specifies the ddname of a file used to:
v Write data during an ENVELOPE operation
v Read data during a DEENVELOPE operation
v Send data during a SEND operation
v Write data during a RECEIVE operation

For outbound processing, if you do not specify this keyword, the value from the
Transaction data queue field in the network profile is used as the ddname for the
envelope file.

For inbound processing, if you do not specify this keyword, the value from the
Receive file name field from the mailbox (requestor) profile is used as the ddname
for the envelope file.

EPURDATE

Chapter 2. WebSphere Data Interchange commands and keywords 129

The maximum length is eight.

Notes:

1. On ENVELOPE and DEENVELOPE commands, all transactions are placed in
this file. You should also specify the NETID keyword to make sure all
transactions you select are for the same network.

2. FILEID contains the name of a TS queue. You should include this keyword to
make sure that different applications running in the same CICS region do not
envelope transactions to the same TS queue.

3. In CICS, WebSphere Data Interchange does not change the FILEID value to
uppercase.

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND SEND
ENVELOPE
ENVELOPE AND SEND
RECEIVE
RECEIVE AND DEENVELOPE
RECEIVE AND SEND
RECEIVE AND TRANSLATE
RECONSTRUCT
RECONSTRUCT AND SEND
RECVFILE AND SEND
REENVELOPE
REENVELOPE AND SEND
SEND
SENDFILE
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND

FIXEDFILEID
Specifies the ddname of the file used for output during fixed-to-fixed translation
processing. Data is written to the file during an ENVELOPE operation for
fixed-to-fixed translation. The maximum length is eight.

If you do not specify this keyword, the ddname (based on the EDI standard ID) is
the same as the Application file name in the target DF definition. To create a
unique envelope file for each trading partner, specify the File Suffix field in the
trading partner profile.file for each trading partner, specify t-T2r8-333()]T.2 TD
[(unique)-fp7V1Tuerd ID) vthe

FORCETEST
Indicates whether the deenvelope or translate-to-application processes should be
forced to select a test usage/rule, regardless of the test indicator value in the
envelope. This keyword is most useful when receiving test envelopes that do not
have a test indicator (such as the UCS BG). In this case, you can use this keyword
to force the translator to consider the envelopes for testing and only look for test
usages/rules. Valid values are:

Y Forces the process to test mode and select only a test usage/rule if one is
defined. If a test usage/rule is not found, an error is generated and the
transaction is rejected.

If FORCETEST(Y) is used with the DEENVELOPE command, it must also be
used on the TRANSLATE TO APPLICATION or RETRANSLATE TO
APPLICATION commands to select the deenveloped transactions.

N Uses the test indicator from the envelope to determine which usage/rule to
select (default). An envelope without a test indicator is always considered a
production envelope.

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE
TRANSLATE TO APPLICATION
RETRANSLATE TO APPLICATION

FORMAT
The ID of the data format associated with the transaction or transactions you want
to select. The maximum length is 16.

This keyword is used with the following commands:
ENVELOPE
ENVELOPE AND SEND
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRANSACTION DATA EXTRACT
TRANSLATE TO APPLICATION
UNPURGE

FUNACKFILE
The ddname of the file that you want to use for returning functional
acknowledgments for the deenveloped transactions. You can use this keyword if
you do not want to use the TD queue specified in the network profile. The maximum
length is eight.

FORCETEST

Chapter 2. WebSphere Data Interchange commands and keywords 131

Note: In CICS, WebSphere Data Interchange does not change the FUNACKFILE
value to uppercase and FUNACKFILE contains the name of a TS queue.

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE

FUNACKP
Indicates whether transactions with functional acknowledgments pending should be
selected. Valid values are:

Y Selects transactions for which a functional acknowledgment was requested
but not received

N Selects transactions for which a functional acknowledgment was not
requested or has already been received

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
RECEIVE
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
TRANSACTION DATA EXTRACT
UNPURGE

FUNACKREQ
Indicates whether the functional acknowledgment envelope file is required.
WebSphere Data Interchange will produce an error if unable to open it. Valid
values are:

Y Requires the functional acknowledgment envelope file

N Does not require the functional acknowledgment envelope file (default)

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE

GROUP
Indicates whether group data records are written to the EDIQUERY file. Valid
values are:

Y Writes group data records

N Discards group data records (default)

FUNACKFILE

132 WebSphere Data Interchange Programmer’s Reference

For the format of these records, “Group data extract record layout” on page 267.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
TRANSACTION DATA EXTRACT

GRPCTLNO
Specifies the group control number assigned by the sender to identify the functional
group. The maximum length is 14.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRADING PARTNER PROFILE DATA EXTRACT
TRANSACTION DATA EXTRACT
UNPURGE

HANDLE
Specifies the ID assigned by the system to a transaction when it is placed in the
Transaction Store. To ensure uniqueness, the ID is a concatenation of the date,
time, and a sequence number in format: YYYYMMDDHHMMSSnnnnnn

You can use this keyword to envelope a specific EDI document or all the
documents whose time stamp falls within a given range. The system left-justifies
and pads your entries. The FROM value is padded with 0s and the TO value is
padded with 9s. To select transactions for the current date, use an asterisk (*).

This keyword is used with the following commands:
ENVELOPE
ENVELOPE AND SEND
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS

GROUP

Chapter 2. WebSphere Data Interchange commands and keywords 133

RETRANSLATE TO APPLICATION
TRANSACTION DATA EXTRACT
TRANSLATE TO APPLICATION
UNPURGE

HOLDFILE
The event log hold file name. The UNLOAD LOG ENTRIES command copies the
non-archived event log entries into this file. The LOAD LOG ENTRIES command
loads the records from this file into the event log. The maximum length is eight.

This keyword is used with the following commands:
LOAD LOG ENTRIES
REMOVE LOG ENTRIES
UNLOAD LOG ENTRIES

HOLDTYPE
Indicates the event log hold file type. Used only for CICS and MQ (which is
supported in both z/OS and CICS). Valid values are:

MQ WebSphere Data Interchange MQSeries queue profile member name

TD Transient data queue

TM Temporary storage queue - main storage

TS Temporary storage queue - auxiliary storage (default for CICS)

In z/OS, the default is the ddname of the sequential file.

This keyword is used with the following commands:
LOAD LOG ENTRIES
REMOVE LOG ENTRIES
UNLOAD LOG ENTRIES

IACCESS
Indicates how the interchange should be presented to the IEXIT program. Valid
values are:

F Gives the interchange to the exit in a file. The interchange is written to the
TD queue file, and then the IEXIT program is started.

M Gives the interchange to the exit in virtual storage. Applies only when ITYPE
is UE (user exit).

This keyword is used with the following commands:
ENVELOPE
ENVELOPE AND SEND
REENVELOPE
REENVELOPE AND SEND
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND

IAREA
Specifies up to 16 bytes of information, the address of which is provided to the
IEXIT program. Applies only to z/OS programs. In CICS, the address provided to
the IEXIT program is the address of the utility control block. The maximum
length is 16.

This keyword is used with the following commands:

HANDLE

134 WebSphere Data Interchange Programmer’s Reference

DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE
ENVELOPE AND SEND
RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE
REENVELOPE
REENVELOPE AND SEND
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND

ID
The name of a WebSphere Data Interchange profile such as Mailbox (REQPROF),
Trading Partner (TPPROF), or Network (NETPROF). This must be a valid
WebSphere Data Interchange profile ID. The maximum length is eight.

This keyword is used with the following commands:
QUERY PROFILE
DELETE PROFILE

IEXIT
The name of the program to receive control as each interchange is processed. See
the ITYPE field description on 138 for the types of program you can use.

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE
ENVELOPE AND SEND
RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE
REENVELOPE
REENVELOPE AND SEND
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND

IFCC
Specifies the condition codes that you want to override. You can specify up to 10
utility condition codes, separated by commas. The codes are checked by the
WebSphere Data Interchange Utility and overridden with values from the SETCC
keyword on a one-to-one basis. If you specify this keyword, you must specify the
SETCC keyword.

This keyword can be used with any utility PERFORM command.

IMAGE
Indicates whether image data records are written to the EDIQUERY file. Valid
values are:

Y Writes image data records

N Discards image data records (default)

Images are always written as separate records. For the format of these records,
“Transaction/Acknowledgment image data extract record layout” on page 271.

This keyword is used with the following commands:

IAREA

Chapter 2. WebSphere Data Interchange commands and keywords 135

ENVELOPE DATA EXTRACT
TRANSACTION DATA EXTRACT

INFILE
The input file containing the data. For z/OS, this is the ddname or MQSeries queue
name. For CICS this is TS or TD queue, MQSeries queue, or VSAM data set.

This keyword is used only with the TRANSFORM command.

INMEMTRANS
Specifies the number of transactions held in memory before the database updates
are attempted. This field is valid only if envelope level recovery (RECOVERY(E)) is in
effect. Keeping transactions in storage delays the time when the database lock is
obtained and reduces the length of time that the database lock is held. The more
transactions kept in storage, the higher concurrency rate WebSphere Data
Interchange can achieve. The amount of storage used for each transaction is
approximately 2K. Valid values are 1 to 65535. The default is 100.

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE
ENVELOPE AND SEND
RECEIVE AND DEENVELOPE
REENVELOPE
REENVELOPE AND SEND
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND

INTCTLNO
Specifies the interchange control number assigned by the sender to identify the
interchange data. The maximum length is 14.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
RECONSTRUCT
RECONSTRUCT AND SEND
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRADING PARTNER PROFILE DATA EXTRACT
TRANSACTION DATA EXTRACT
TRANSLATE TO APPLICATION
UNPURGE

IMAGE

136 WebSphere Data Interchange Programmer’s Reference

INTERCHANGE
Indicates whether the interchange data record is written to the EDIQUERY file. Valid
values are:

Y Writes interchange data records

N Discards interchange data records (default)

For the format of these records, “Interchange data extract record layout” on
page 265.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
TRANSACTION DATA EXTRACT

INTID
The interchange sender/receiver ID of the trading partner as entered in the
Interchange ID field of the trading partner profile.

This keyword is used only with the TRADING PARTNER PROFILE DATA EXTRACT
command.

INTRECID
The interchange receiver ID (assigned by the receiver) that identifies the receiver to
the sender. The maximum length is 35.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
RECONSTRUCT
RECONSTRUCT AND SEND
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRANSACTION DATA EXTRACT
TRANSLATE TO APPLICATION
UNPURGE

INTSNDID
The interchange sender ID (assigned by the sender) that identifies the sender to
the receiver. The maximum length is 35.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG

INTERCHANGE

Chapter 2. WebSphere Data Interchange commands and keywords 137

PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRANSACTION DATA EXTRACT
TRANSLATE TO APPLICATION
UNPURGE

INTYPE
Indicates the type of file specified with the INFILE keyword. Used only for CICS and
MQ (which is supported in both z/OS and CICS). For CICS, when you specify the
INFILE keyword, you must also specify this keyword. Valid values are:

MQ WebSphere Data Interchange MQSeries queue profile member name

TD Transient data queue

TM Temporary storage queue - main storage

TS Temporary storage queue - auxiliary storage (default for CICS)

VS VSAM data base

This keyword is used only with the TRANSFORM command.

ITPBREAK
Indicates whether a new interchange envelope starts when the internal trading
partner ID changes. Valid values are:

Y Always starts new interchange envelope (default)

N Does not necessarily start a new interchange envelope

This keyword is used with the following commands:
ENVELOPE
ENVELOPE AND SEND
REENVELOPE
REENVELOPE AND SEND
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND

ITYPE
Indicates the type of program specified in IEXIT. If you specify this keyword, you
must also specify the IEXIT keyword. Valid values are:

PG A program that should be linked to using the EXEC CICS LINK command in
CICS

UE A WebSphere Data Interchange user exit program defined in the User Exits
profile

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE

INTSNDID

138 WebSphere Data Interchange Programmer’s Reference

ENVELOPE AND SEND
RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE
REENVELOPE
REENVELOPE AND SEND
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND

LASTTRXDATE
The date of the last transaction sent to or received from the trading partner.

This keyword is used only with the TRADING PARTNER PROFILE DATA EXTRACT
command.

LEVEL
Specifies what information is dumped or how much detail is traced during
processing.

This keyword is used with the following commands
GLB DUMP
GLB TRACE

For the GLB DUMP command, valid values are:

1 Dumps everything (default)

2 Dumps working storage

3 Dumps entire dataspace

10 Dumps common area

11 Dumps record index area

12 Dumps data area

For the GLB TRACE command, valid values are:

0 Ends trace (the default)

1 Starts trace functions only

2 Starts trace functions and subroutines

3 Starts trace functions, subroutines, and subroutine keypoints

LOGAEID
The associated entry ID in the event log. This keyword can be used with the TO
keyword to specify a range of associated entry IDs for selecting event log entries.
The maximum length is 40.

This keyword is used with the following commands:
LOAD LOG ENTRIES
REMOVE LOG ENTRIES
UNLOAD LOG ENTRIES

LOGDATE
The event log date. This keyword can be used with the TO keyword to specify a
range of dates for selecting event log entries. The maximum length is eight.

ITYPE

Chapter 2. WebSphere Data Interchange commands and keywords 139

This keyword is used with the following commands:
LOAD LOG ENTRIES
REMOVE LOG ENTRIES
UNLOAD LOG ENTRIES

LOGFORM
The event log format ID. This keyword can be used with the TO keyword to specify
a range of format IDs for selecting event log entries. The maximum length is 16.

This keyword is used with the following commands:
LOAD LOG ENTRIES
REMOVE LOG ENTRIES
UNLOAD LOG ENTRIES

LOGTIME
The event log time. This keyword can be used with the TO keyword to specify a
range of times for selecting event log entries. The length is six.

This keyword is used with the following commands:
LOAD LOG ENTRIES
REMOVE LOG ENTRIES
UNLOAD LOG ENTRIES

LOGUSER
The event log user ID. This keyword can be used with the TO keyword to specify a
range of user IDs for selecting event log entries. The maximum length is eight.

This keyword is used with the following commands:
LOAD LOG ENTRIES
REMOVE LOG ENTRIES
UNLOAD LOG ENTRIES

MAPID
The map name. For the TRANSFORM command, the value in this field overrides
the map name specified in data transformation rules.

This keyword is used with the following commands:
TRADING PARTNER CAPABILITY DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT
TRANSFORM

MAXRUNTIME
The maximum time in minutes that the REMOVE TRANSACTIONS process is
allowed to run. Once the specified time is reached, the REMOVE TRANSACTIONS
process stops even if it has not completed. When the REMOVE TRANSACTIONS
process is running, other WebSphere Data Interchange processes are prevented
from running. Setting this keyword and value is useful when the REMOVE
TRANSACTION process is to run standalone for a limited time. The default value
is 0 (no maximum run time).

This keyword is used only with the REMOVE TRANSACTIONS command.

LOGDATE

140 WebSphere Data Interchange Programmer’s Reference

MEMBER
The name of a WebSphere Data Interchange profile member. The maximum length
is dependent upon the type of profile but cannot exceed 35.

This keyword is used with the following commands:
DELETE PROFILE
QUERY PROFILE
REPORT CONTINUOUS RECEIVE STATUS
START CONTINUOUS RECEIVE
STOP CONTINUOUS RECEIVE

MERGED
Indicates whether the transaction image is printed with a new line for each
segment, and merged with the functional acknowledgment image. Valid values are:

Y Prints each segment on a new line

N Does not print each segment on a new line

This keyword is used only with the PRINT TRANSACTION IMAGE command.

MRREQID
A requestor ID used to associate management reporting statistics with
DEENVELOPE processing instead of RECEIVE processing. You can use this
keyword if you receive interchanges without using WebSphere Data Interchange,
and you want to keep management reporting receive statistics on those
interchanges. Do not use this keyword if management reporting statistics were
created when the interchange was received (default). Use this keyword only in
exceptional situations.

This keyword is used with the following commands§
DEENVELOPE
DEENVELOPE AND TRANSLATE
RECEIVE AND DEENVELOPE

MSGUCLASS
An override message user class for a send or receive type command. If you specify
this keyword, its value overrides the value specified in the mailbox (requestor)
profile member identified by the REQID keyword. The maximum length is eight.

This keyword is used with the following commands:
ENVELOPE AND SEND
RECEIVE
RECEIVE AND DEENVELOPE
RECEIVE AND SEND
RECEIVE AND TRANSLATE
RECONSTRUCT AND SEND
RECVFILE AND SEND
REENVELOPE AND SEND
SEND
SENDFILE
TRANSLATE AND SEND

MULTIDOCS
Indicates whether the XML input file contains multiple documents. Valid values are:

MEMBER

Chapter 2. WebSphere Data Interchange commands and keywords 141

Y Multiple documents. The input message must be in EBCDIC format and
each document must begin with an XML declaration (<?xml...).

N One document (default)

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE

NETACKP
Indicates whether to select transactions for which network acknowledgments are
pending. Valid values are:

Y Selects transactions for which a network acknowledgment was requested
but not received

N Selects transactions for which a network acknowledgment is not pending or
was not requested

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
TRANSACTION DATA EXTRACT
UNPURGE

NETID
The network ID as entered in the network profile. The maximum length is eight.

This keyword is used with the following commands:
ENVELOPE
ENVELOPE AND SEND
ENVELOPE DATA EXTRACT
HOLD
NETWORK ACTIVITY DATA EXTRACT
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRADING PARTNER PROFILE DATA EXTRACT

MULTIDOCS

142 WebSphere Data Interchange Programmer’s Reference

TRANSACTION DATA EXTRACT
TRANSLATE TO APPLICATION
UNPURGE
UPDATE STATUS

NETNAME
The name of the network as entered in the Network name field of the network profile.
This field is case sensitive. The maximum length is 30.

This keyword is used only with the NETWORK ACTIVITY DATA EXTRACT
command.

NETSTAT
Indicates the network status of a transaction for which a send has been requested.
Valid values are:

30 Enveloped

31 Envelope error

41 Sent with errors

42 Send request error

43 Not sent net error

46 Send started

48 Send requested

49 Sent to network

50 Accepted by network

51 Delivered by network

52 Purged by network

53 Recall requested

54 Recall request error

55 Recalled

For complete status information, refer to the WebSphere Data Interchange for z/OS
Administration Guide.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
TRANSACTION DATA EXTRACT
UNPURGE

NETID

Chapter 2. WebSphere Data Interchange commands and keywords 143

NEWAPPLID
The application ID used to change to another application when loading event log
entries into an event log. The maximum length is eight.

This keyword is used only with the LOAD LOG ENTRIES command.

NOMSG
Indicates whether extraneous messages should appear in the print file.Applies only
to EXPORT and IMPORT commands, and is normally used when large numbers of
records are being exported or imported. For example, it may be used with export-all
(exporting after building a control file using program EDIXPEA) or import-all (using a
control file with category 9).

Y Suppresses the following messages from appearing in the print file:
EI0048, EI0049, EI0062, FF0512, FF0514

Also suppresses certain error conditions. For example, if in your command
file you specify that you want to export CONTRECV members, and no
Continuous Receive (CONTRECV) profile exists on your system, this error
is ignored. Also, if you specify certain associated objects that do not exist,
this error is also ignored.

N Does not suppress error messages or conditions (default).

This keyword is used with the following commands:
EXPORT
IMPORT

NUMDELS
Specifies the number of database deletions performed before WebSphere Data
Interchange issues a database commit. DB2 includes a site-dependent value (in
NUMLKUS) that controls the maximum number of page locks that a single REMOVE
TRANSACTIONS process can apply. When the REMOVE TRANSACTIONS
process is not running standalone, page locks are obtained against the database. If
the NUMDELS value is too high, DB2 may stop the REMOVE TRANSACTIONS
process because the value in NUMLKUS has been exceeded. If this happens, use a
smaller number in NUMDELS so that WebSphere Data Interchange issues database
commits more frequently, which will release page locks more quickly. The default
is 100 and the maximum is 1000. If a value greater than 1000 is entered, the
default of 100 is used.

This keyword is used with the following commands:
REMOVE LOG ENTRIES
REMOVE STATISTICS
REMOVE RANSACTIONS
RESET STATISTICS
UNLOAD LOG ENTRIES

NUMUPDTS
Specifies the number of database updates performed before WebSphere Data
Interchange issues a database commit. If you are experiencing timeouts using a
command that includes this parameter, you can reduce the amount of time that the
command holds page locks by forcing more frequent COMMITs. The default for
NUMUPDTS is 50. If you want more frequent COMMITS performed, specify a
number smaller than 50.

NEWAPPLID

144 WebSphere Data Interchange Programmer’s Reference

If you are trying to improve the performance of a command that includes this
parameter, you can specify a value larger than 50. This forces WebSphere Data
Interchange to COMMIT less frequently and should speed up processing.

This keyword is used only with the UPDATE STATISTICS command.

ONELOGICAPP
Indicates whether the APPFILE in the current WHERE clause and all APPFILEs in
proceeding WHERE clauses are considered one logical file. When chosen,
envelope breaks are avoided between APPFILE processing. You can use this
keyword to avoid APPFILE switching that causes envelope breaks when processing
multiple raw data files by placing multiple raw data files in the same envelope
without delaying enveloping. If the FILEID keyword is specified in combination with
this keyword in multiple WHERE clauses, the value in the first FILEID found is used
to envelope the data. You can also use this option with C and D record formats.
Valid values are:

Y Treats multiple application files as one logical file

N Processes each file independently; envelope breaks occur at the end of
each application file (default)

This keyword is used with the following commands:
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND

ONEMSG
Indicates whether all MQSeries messages are read from an MQSeries queue or
only one message is read from the queue. The queue can be either a receive file or
an application send file. Applies only to MQ. An MQSeries message is defined as a
logical set of MQ records with the same MSGID. This keyword also controls MQ
message descriptor propagation when you can set it on the TRANSLATE AND
SEND and RECEIVE AND TRANSLATE commands where the application file and
the send or receive file are both MQ queues. If you want MQ message descriptors
to propagate during processing, set this keyword to Y. Valid values are:

Y Reads one MQSeries message (one MSGID value) from an MQSeries
queue

N Reads all MQSeries messages from an MQSeries queue (default)

This keyword is used with the following commands:
RECEIVE
RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND
TRANSLATE TO STANDARD

OPTRECS
Indicates which optional records are created during translation. I is valid only for the
TRANSLATE TO STANDARD command (delayed enveloping). Q is not valid for the
TRANSLATE or RETRANSLATE TO APPLICATION commands. The maximum
length is 5. Valid values are:

E Envelope header

G Group header

NUMUPDTS

Chapter 2. WebSphere Data Interchange commands and keywords 145

I Information

Q Queuing

T Transaction header

For more information on these records, “Optional records” on page 255.

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE
ENVELOPE AND SEND
RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE
REENVELOPE
REENVELOPE AND SEND
RETRANSLATE TO APPLICATION
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND
TRANSLATE TO APPLICATION
TRANSLATE TO STANDARD

OUTFILE
The ddname of an output file (or the name of a TS queue or TD queue). For CICS,
when you specify this keyword, you must also specify the OUTTYPE keyword. For the
TRANSFORM command, the value in this field overrides any output file names
generated during processing, such as the filename from the trading partner profile.
The maximum length is eight.

This keyword is used with the following commands:
QUERY PROFILE
SAP STATUS EXTRACT
TRANSFORM

OUTFORMAT
Indicates the format in which the output is written. Valid values are:

F Fixed

N Native

T Tagged

This keyword is used only with the QUERY PROFILE command.

OUTLEN
Specifies the maximum record length for the output data.

This keyword is used only with the TRANSFORM command.

OUTTYPE
Indicates the file type of OUTFILE. Applies only for CICS and MQ (which is supported
in both CICS and z/OS). For CICS, when you specify the OUTFILE keyword, you
must specify this keyword. Valid values are:

MQ WebSphere Data Interchange MQSeries queue profile member name

TD Transient data queue

OPTRECS

146 WebSphere Data Interchange Programmer’s Reference

TM Temporary storage queue - main storage

TS Temporary storage queue - auxiliary storage (default for CICS)

VS VSAM data set

This keyword is used with the following commands:
QUERY PROFILE
SAP STATUS EXTRACT
TRANSFORM

For z/OS, if you do not specify this keyword, this field is ignored and the ddname of
a sequential file is used. For CICS, the default is TS.

PAGE
Indicates whether pageable translation should be enabled. For more information
about pageable translation, see “Pageable translation work file (EDIVAX)” on
page 177, and “Pageable translation” on page 417.

Valid values for Pageable Translation are:

Y Enables Pageable Translation

N Disables Pageable Translation

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE
ENVELOPE AND SEND
RECEIVE
RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE
RECONSTRUCT AND SEND
REENVELOPE
REENVELOPE AND SEND
RETRANSLATE TO APPLICATION
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND
TRANSLATE TO APPLICATION
TRANSLATE TO STANDARD

PRIORTO
Specifies the date before which all statistics will be deleted.

This keyword is used with the following commands:
REMOVE STATISTICS
RESET STATISTICS
SAP STATUS REMOVE

PURGINT
Specifies the number of days that a transaction remains in the Transaction Store
before being marked for purging. If you do not specify this keyword and value, or if
you specify a value of 0, the WebSphere Data Interchange Utility uses 30 days as
the default. The maximum value is 9999. You can use a negative value to indicate
that a transaction’s store time expired on a date in the past. For example, if you
specify PURGINT with a value of -2, the purge date is set at two days ago. The

OUTTYPE

Chapter 2. WebSphere Data Interchange commands and keywords 147

minimum value is -999. If a functional or network acknowledgment is pending when
the store time expires, the transaction retains its current store status until the
acknowledgment is no longer pending.

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE
RETRANSLATE TO APPLICATION
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND
TRANSLATE TO APPLICATION
TRANSLATE TO STANDARD

RAWDATA
Indicates whether you want the data translated from EDI standard format to raw
format, or to C and D records. Valid values are:

Y Raw data format

N C and D record format

For details about these record formats, “Application file” on page 171. For an
explanation of the file to which data will be written, “Envelope file” on page 172.

This keyword has this meaning when used with the following commands:
DEENVELOPE AND TRANSLATE
RECEIVE AND TRANSLATE
RETRANSLATE TO APPLICATION
SENDFILE
TRANSLATE TO APPLICATION

For Fixed-to-Fixed translation, this keyword indicates whether the output data
should be written in raw data format or in the C and D record format. For a
description of C and D records, “WebSphere Data Interchange Utility records
format” on page 243

This keyword has this meaning when used with the following commands:
ENVELOPE
ENVELOPE AND SEND
RECEIVE AND SEND
RECONSTRUCT
RECONSTRUCT AND SEND
REENVELOPE
REENVELOPE AND SEND
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND
TRANSLATE TO STANDARD

RAWFMTID
Applies only for raw data. Specifies the format ID of the application data file. The
maximum length is 16.

This keyword is used with the following commands:
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND
TRANSLATE TO STANDARD

PURGINT

148 WebSphere Data Interchange Programmer’s Reference

RAWTEST
Applies only to raw data. Indicates to the receiver whether the transaction is for
testing. Valid values are:

Y Test transactions. All the transactions are test transactions, and a test
usage/rule should be used, if it exists. If a test usage/rule does not exist,
the production usage/rule should be used. Same as RAWUSAGE(T).

N Production transactions (default). All the transactions are production
transactions and only the production usage/rule should be used. Same as
RAWUSAGE(P).

U Either test or production transactions. WebSphere Data Interchange
determines the status of the transaction based on the presence of an active
test usage/rule. If an active test usage/rule exists, the transaction is
considered a test transaction. If an active test usage/rule does not exist, the
transaction is considered a production transaction. Same as RAWUSAGE(U).

Note: This keyword is being replaced by RAWUSAGE. The RAWUSAGE value overrides
RAWTEST if both values are specified. RAWTEST is provided for transitional
purposes only, and will be removed in a future release.

The translator uses this value to set the test indicator in the interchange header
(0035 for EDIFACT, I14 for X12). For C and D records, the TESTIND field of the
control record serves the same purpose as this keyword.

This keyword is used with the following commands:
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND
TRANSLATE TO STANDARD

RAWUSAGE
Applies only for raw data. Indicates to the receiver whether the transaction is for
production, testing, or information. Valid values are:

P Production transactions (default). All of the transactions are production
transactions and only the production usage/rule should be used.

T Test transactions. All of the transactions are test transactions, and a test
usage/rule should be used. If a test usage/rule does not exist, the
production usage/rule should be used.

I Information transaction. An information usage/rule is used if one exists. If
one does not exist, a production usage/rule should be used. If a production
usage/rule does not exist, an error occurs.

U Either test or production transactions. WebSphere Data Interchange
determines the status of the transaction based on the presence of an active
test usage/rule. If an active test usage/rule exists, the transaction is
considered a test transaction. If an active test usage/rule does not exist, the
transaction is considered a production transaction.

The translator uses this value to set the test indicator in the interchange header
(0035 for EDIFACT, I14 for X12). For C and D records, the TESTIND field of the
control record serves the same purpose as this keyword.

This keyword is used with the following commands:

RAWTEST

Chapter 2. WebSphere Data Interchange commands and keywords 149

TRANSLATE AND ENVELOPE
TRANSLATE AND SEND
TRANSLATE TO STANDARD

RECEIVEACKDATA
Indicates whether detailed receive acknowledgment data is written to the
EDIQUERY file. Valid values are:

Y Writes detailed acknowledgment data

N Discards detailed acknowledgment data (default)

Detailed acknowledgment data includes interchange, group, and transaction data for
each acknowledgment transaction. This information is concatenated with the group
and transaction records to which it applies. For the format of these records,
“Transaction/Acknowledgment image data extract record layout” on page 271.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
TRANSACTION DATA EXTRACT

RECEIVEACKIMAGE
Indicates whether the receive acknowledgment image is written to the EDIQUERY
file. Valid values are:

Y Writes receive acknowledgments

N Discards receive acknowledgments (default)

Images are always written as separate records. For the format of these records,
“Transaction/Acknowledgment image data extract record layout” on page 271.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
TRANSACTION DATA EXTRACT

RECOVBAD
Indicates whether the translation process will try to recover from a bad EDI
standard data flag. Valid values are:

Y The translation process tries to recover from bad EDI standard data. The
translator checks for the standard interchange headers when a segment
terminator is missing from a particular standard segment. The translator
attempts to reset the delimiters and check the current segment/record for
the segment terminator.

N The translation process does not try to recover (default).

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE

RECOVERY
Indicates the unit of work. The default is environmentally dependent. Valid
values are:

RAWUSAGE

150 WebSphere Data Interchange Programmer’s Reference

E Issues a database commit after each envelope (default for CICS)

T Issues a database commit after each transaction (default for z/OS)

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE
ENVELOPE AND SEND
RECEIVE AND DEENVELOPE
REENVELOPE
REENVELOPE AND SEND
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND

REQID
The requestor ID as entered in the mailbox (requestor) profile. Since each WHERE
clause can contain only one requestor ID, you must add a WHERE clause for each
requestor ID. A send is issued for each requestor ID for which data was queued.
The maximum length is 16.

This keyword is used with the following commands:
CLOSE MAILBOX
DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE AND SEND
NETWORK ACTIVITY DATA EXTRACT
PROCESS NETWORK ACKS
RECEIVE
RECEIVE AND DEENVELOPE
RECEIVE AND SEND
RECEIVE AND TRANSLATE
RECVFILE AND SEND
REENVELOPE AND SEND
SEND
SENDFILE
TRANSLATE AND SEND
UPDATE STATUS

REQTP
The trading partner associated with a given requestor ID for use with direct
connection networks such as point-to-point. This keyword is used to eliminate the
need to specify a separate requestor ID for each trading partner.

This keyword is used only with the ENVELOPE AND SEND command.

RESET
Indicates whether the output file is reset to receive new data or the new data is
appended to the data already in the output file. Valid values are:

Y Resets the output file

N Appends data to the output file

This keyword is used with the following commands
GLB DUMP
GLB TRACE

RECOVERY

Chapter 2. WebSphere Data Interchange commands and keywords 151

SAPSTAT
Specifies the SAP status value to extract or, when used with the TO keyword, the
range of values to extract. Valid values are all or 04-22. The default is all.

This keyword is used with the following commands:
RECEIVE AND SEND
SAP STATUS EXTRACT
SAP STATUS REMOVE

SAPUPDT
Indicates whether SAP status tracking is desired. Valid values are:

Y Tracks SAP status and writes status records

N Does not track SAP status or write status records (default)

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE
ENVELOPE AND SEND
RECEIVE AND SEND
RECVFILE AND SEND
REENVELOPE
REENVELOPE AND SEND
SEND
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND
TRANSLATE TO STANDARD

SCRIPT
Specifies the value that can be used by communication software to identify a set of
instructions to follow when processing requests for services. This set of instructions
would be part of the communication software package and not part of WebSphere
Data Interchange. The maximum length is eight.

This keyword is used with the following commands:
ENVELOPE AND SEND
RECEIVE AND SEND
RECONSTRUCT AND SEND
RECVFILE AND SEND
REENVELOPE AND SEND
RESTART SEND
SEND
SENDFILE
TRANSLATE AND SEND

SEGMENTED
Indicates whether the image is printed with each segment starting on a new line.
Valid values are:

Y Starts a new line for each segment

N Does not start a new line for each segment

This keyword is used with the following commands:
PRINT ACKNOWLEDGMENT IMAGE
PRINT TRANSACTION IMAGE

SAPSTAT

152 WebSphere Data Interchange Programmer’s Reference

SENDACKDATA
Indicates whether detailed send acknowledgment data is written to the EDIQUERY
file. Valid values are:

Y Writes detailed acknowledgment data

N Discards detailed acknowledgment data (default)

Detailed acknowledgment data includes interchange, group, and transaction data for
each acknowledgment transaction. This information is concatenated with the group
and transaction record to which it applies. This keyword is ignored unless GROUP or
TRANSACTION is set to Y. For the format of these records, see
“Transaction/Acknowledgment image data extract record layout” on page 271.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
TRANSACTION DATA EXTRACT

SENDACKIMAGE
Indicates whether the send acknowledgment image is written to the EDIQUERY file.
Valid values are:

Y Writes the generated acknowledgment record

N Discards the generated acknowledgment record (default)

Images are always written as separate records. For the format of these records,
see “Transaction/Acknowledgment image data extract record layout” on page 271.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
TRANSACTION DATA EXTRACT

SEQNUM
Indicates whether network profile member sequence numbers should be
incremented during send processing. This is an optional keyword. Specifying a
value of N turns off network sequence numbers and saves associated overhead.
Valid values are:

Y Increments network profile member sequence numbers (default)

N Does not increment network profile member sequence numbers.

This keyword is used with the following commands:
ENVELOPE AND SEND
REENVELOPE AND SEND
RESTART SEND
SEND
SENDFILE
TRANSLATE AND SEND

SERVICESEGVAL
Indicates at which level the service segments should be validated. The service
segments are the segments used when a transaction is enveloped (ISA, GS, ST,
UNB, UNH, UNT, and so on). If you do not specify this keyword, no validation
occurs. Valid values are:

SENDACKDATA

Chapter 2. WebSphere Data Interchange commands and keywords 153

1 Validates the service segments for syntax only. This includes checking for
mandatory data that is missing, as well as data elements that are too large
or too small.

2 In addition to level 1 checking, validates the service segment date and time
data elements according to their types, and if a validation table has been
specified, also checks the value of the data element.

Validation errors that occur during send processing will terminate processing.
Validation errors that occur during receive processing cause the
interchange/group/transaction with the error to be skipped (not processed) but
processing continues.

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE
ENVELOPE AND SEND
RECEIVE AND DEENVELOPE
REENVELOPE AND TRANSLATE
REENVELOPE
REENVELOPE AND SEND
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND

SETCC
Specifies the condition codes used by the WebSphere Data Interchange Utility to
override the utility condition codes specified in the IFCC keyword. You can have up
to 10 override condition codes separated by commas. If you specify the IFCC
keyword, you must specify this keyword. If this keyword is omitted, all condition
codes specified on the IFCC keyword are overridden to zero (0). If a particular code
is omitted in the SETCC keyword, the related condition code in the IFCC keyword is
overridden to zero (0). For more information, see “Overriding utility condition codes”
on page 18.

This keyword can be used with any utility PERFORM command.

SNDDATE
The date of the previous send request for the transaction. The maximum
length is 10.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
TRANSACTION DATA EXTRACT
UNPURGE

SERVICESEGVAL

154 WebSphere Data Interchange Programmer’s Reference

SNDTIME
The time of the previous send request for the transaction. The maximum
length is eight.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
TRANSACTION DATA EXTRACT
UNPURGE

STANDALONE
Indicates whether the Remove Transactions process should operate in contention
with other WebSphere Data Interchange processes. In the DB2 environment, this
allows WebSphere Data Interchange to obtain exclusive high-level table locks which
improves performance of the Remove Transactions process since WebSphere Data
Interchange does not have to obtain lower-level page locks. Valid values are:

Y The Remove Transactions process runs alone. Does not contend with any
other WebSphere Data Interchange process.Run the Remove Transaction
process in this mode if possible.

N The Remove Transactions process does not run alone. Contends with other
WebSphere Data Interchange processes. High-level table locks are not
obtained (default).

This keyword is used only with the REMOVE TRANSACTIONS command.

STDDESC
The description of the EDI standard as entered in the standards database. This field
is case sensitive.

This keyword is used with the following commands:
TRADING PARTNER CAPABILITY DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT

STDID
The EDI standard ID as entered in the standards database.

This keyword is used with the following commands:
TRADING PARTNER CAPABILITY DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT

SNDTIME

Chapter 2. WebSphere Data Interchange commands and keywords 155

STDLV
The level of the EDI standard, for example, R1 for release 1.

This keyword is used with the following commands:
TRADING PARTNER CAPABILITY DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT

STDTRID
The transaction ID of the EDI standard as specified by the standard, such as 850
for an X12 purchase order. The maximum length is eight.

This keyword is used with the following commands:
ENVELOPE
ENVELOPE AND SEND
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRADING PARTNER CAPABILITY DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT
TRANSACTION DATA EXTRACT
TRANSLATE TO APPLICATION
UNPURGE

STDVR
The version of the EDI standard, for example, V3 for version 3.

This keyword is used with the following commands
TRADING PARTNER CAPABILITY DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT

STSTAT
Indicates the status of the transaction in the Transaction Store. Valid values are:

0 Active

1 Held

3 Purge-date expired

4 Purge-user request

For additional status information, refer to the WebSphere Data Interchange for z/OS
Administration Guide.

This keyword is used with the following commands:

STDLV

156 WebSphere Data Interchange Programmer’s Reference

ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
RELEASE
REMOVE TRANSACTIONS
TRANSACTION DATA EXTRACT
UNPURGE

SYNTAX
Specifies the syntax type for the input data. This is a required field. Valid values
are:

D Application data

E EDI data

X XML data

This keyword is used only with the TRANSFORM command.

TESTMODE
Indicates whether the transactions are test, information, or production transactions.
Valid values are:

Y Test or information transactions

N Production transactions

This keyword is used with the following commands:
TRADING PARTNER CAPABILITY DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT

TPID
The internal trading partner ID used by an application as entered in the trading
partner send usage/rule. The maximum length is 35.

This keyword has this meaning with the following commands:
ENVELOPE
ENVELOPE AND SEND
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION

STSTAT

Chapter 2. WebSphere Data Interchange commands and keywords 157

TRADING PARTNER CAPABILITY DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT
TRANSLATE TO APPLICATION
UNPURGE

This keyword provides the default internal trading partner ID value, if the data
format does not define a field that contains this value, or if a field is defined but
contains all blanks. This also becomes the default ID value if the internal trading
partner ID is blank in the C record.

This keyword has this meaning with the following commands:
TRANSLATE TO STANDARD
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND

TPNICKN
The trading partner nickname for a trading partner profile member. The maximum
length is 16. TPNICKN has two distinct uses:

v This keyword specifies a trading partner to receive data from, or a trading partner
nickname to use when selecting Transaction Store or management reporting
data.

v For the SEND and TRANSLATE AND SEND commands, this keyword is used
the same as the keyword TPNICKNESEND. This means that the fields in the
specified trading partner profile member are used for network override options
(such as network charges), and will override the same fields in the mailbox
(requestor) profile.

Note: When this keyword is used with the SEND and TRANSLATE AND SEND
commands to send EDI data, the receiver’s mailbox is not specified
because that information is contained within the data being sent.

This keyword is used with the following commands:
ENVELOPE
ENVELOPE AND SEND
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
RECEIVE
RECEIVE AND DEENVELOPE
RECEIVE AND SEND
RECONSTRUCT
RECONSTRUCT AND SEND
RECVFILE AND SEND
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
SEND
SENDFILE
TRADING PARTNER CAPABILITY DATA EXTRACT

TPID

158 WebSphere Data Interchange Programmer’s Reference

TRANSACTION ACTIVITY DATA EXTRACT
TRANSACTION DATA EXTRACT
TRANSLATE TO APPLICATION
UNPURGE

TPNICKNESEND
Specifies a trading partner profile member to use for network override options (such
as network charges), that will override the same fields in the mailbox (requestor)
profile.

Note: When this keyword is used with the SEND and TRANSLATE AND SEND
commands to send EDI data, the receiver’s mailbox is not specified because
that information is contained within the data being sent.

This keyword is used with the following commands:
ENVELOPE AND SEND
REENVELOPE AND SEND

TRACELEVEL
Indicates the level of tracing done during the transform process. For z/OS, trace
data will be written to ddname EDIDTTRC. For CICS, trace data will be written to
the TD queue defined for EDI standard output. If required you can change the TD
queue to a TS queue. For AIX and Windows platforms the trace data will be written
to the file defined by the environment variable EDIDTTRC. You can set this using
export command on AIX platforms or the set command on Windows platforms. For
example:
export EDIDTTRC=trace.out

or
set EDIDTTRC=trace.out

The value consists of a series of Cn values which represent the component and
trace level for the component. The valid values for the component ID are:

A All nodes

D Deenveloper node

E Enveloper node

M Message broker

P Parsers

R Rules node

T Transformation node

V Validation node

The valid values for the component tracing level are:

0 All trace messages are ignored.

1 Normal tracing. Only the first 256 byes of data in the buffer are written to
the trace file.

2 Extended tracing. The entire contents of the buffer is written to the trace
file.

TPNICKN

3 Utility function tracing. Includes all the tracing done at level 2 plus additional
tracing for some frequently called internal utility functions.

For example, a value of D1 V2 R2 would mean the deenveloper node (D) is set for
normal tracing (1), the validation (V) and rules (R) nodes are set for extended
tracing (2). Tracing is normally turned off except during problem determination.
Activating tracing may negatively impact performance.

This keyword is used only with the TRANSFORM command.

TRANSACTION
Indicates whether the transaction data record is written to the EDIQUERY file. Valid
values are:

Y Writes transaction data records

N Discards transaction data records (default)

For the format of these records, see “Transaction/Acknowledgment image data
extract record layout” on page 271.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
TRANSACTION DATA EXTRACT

TRERLVL
Indicates the maximum translation error level for the transactions you want to
select. You can use this keyword to envelope only EDI documents that are
error-free. Valid values are:

0 No errors

1 Data element errors

2 Data element and segment errors

3 Severe errors

This keyword is used with the following commands:
ENVELOPE
ENVELOPE AND SEND
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRANSACTION DATA EXTRACT
UNPURGE

TRACELEVEL

160 WebSphere Data Interchange Programmer’s Reference

TRKFILE
Allows a tracking file to be used. If you specify TRKFILE(Y) and specify a tracking
file in your command file your optional records will go into that tracking file instead
of the application file.

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND SEND

TRXCTLNO
The transaction set control number assigned by the sender to identify the
transaction set to the sender. When combined with the sender ID, it identifies the
transaction set to the receiver. The maximum length is 14.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRADING PARTNER PROFILE DATA EXTRACT
TRANSACTION DATA EXTRACT
TRANSLATE TO APPLICATION
UNPURGE

TRXDATE
The date the transaction was added to the Transaction Store. This is also the date
on which the transaction was translated to EDI standard format. The maximum
length is 10.

This keyword is used with the following commands:
ENVELOPE
ENVELOPE AND SEND
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS

TRKFILE

Chapter 2. WebSphere Data Interchange commands and keywords 161

RETRANSLATE TO APPLICATION
TRANSACTION DATA EXTRACT
TRANSLATE TO APPLICATION
UNPURGE

TRXSTAT
Indicates the processing status of the transaction.

For ENVELOPE AND SEND, the default value is 21. Valid value is:

21 Send translated

For REENVELOPE, the default values are 31, 41, 42, and 43. Valid values are:

29 Transaction detached -- send

30 Enveloped

31 Envelope error

41 Sent with errors

42 Send request error

43 Not sent network error

46 Send started status

48 Send requested

49 Sent to network

50 Accepted by network

51 Delivered by network

52 Purged by network

53 Recall requested

54 Recall request error

55 Recalled

61 Transaction accepted

62 Transaction rejected

63 Transaction accepted with errors

For TRANSLATE, the default value is 70. For RETRANSLATE TO APPLICATION,
the default value is 73. Valid values for both are:

70 Received

72 Receive translated (RETRANSLATE TO APPLICATION only)

73 Receive translate error (RETRANSLATE TO APPLICATION only)

For UNPURGE TRANSACTIONS and REMOVE TRANSACTIONS, if no value is
specified, all values are included in the selection criteria. Valid values are:

20 Send translate error

21 Send translated

29 Transaction detached -- send

30 Enveloped

TRXDATE

162 WebSphere Data Interchange Programmer’s Reference

31 Envelope error

41 Sent with errors

42 Send request error

43 Not sent network error

46 Send started status

48 Send requested

49 Sent to network

50 Accepted by network

51 Delivered by network

52 Purged by network

53 Recall requested

54 Recall request error

55 Recalled

61 Transaction accepted

62 Transaction rejected

63 Transaction accepted with errors

70 Received

71 Receive syntax error

72 Receive translated

73 Receive transaction error

74 Transaction detached -- recv

This keyword is used with the following commands:
ENVELOPE
ENVELOPE AND SEND
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRANSACTION DATA EXTRACT
TRANSLATE TO APPLICATION
UNPURGE

TRXTIME
The time the transaction was added to the Transaction Store. This is also the time
at which the transaction was translated to EDI standard format. The maximum
length is eight.

TRXSTAT

Chapter 2. WebSphere Data Interchange commands and keywords 163

This keyword is used with the following commands:
ENVELOPE
ENVELOPE AND SEND
ENVELOPE DATA EXTRACT
HOLD
PRINT ACKNOWLEDGMENT IMAGE
PRINT ACTIVITY SUMMARY
PRINT EVENT LOG
PRINT STATUS SUMMARY
PRINT STATUS SUMMARY2
PRINT TRANSACTION DETAILS
PRINT TRANSACTION IMAGE
PURGE
QUERY
REENVELOPE
REENVELOPE AND SEND
RELEASE
REMOVE TRANSACTIONS
RETRANSLATE TO APPLICATION
TRANSACTION DATA EXTRACT
TRANSLATE TO APPLICATION
UNPURGE

USERID
The network user ID of the trading partner as entered in the User ID field of the
trading partner profile. The maximum length is 32.

This keyword is used with the following commands:
NETWORK ACTIVITY DATA EXTRACT
TRADING PARTNER PROFILE DATA EXTRACT

USERPGM
Specifies the program that WebSphere Data Interchange links to just before writing
a record during data extract processing. Your program should return a code to
WebSphere Data Interchange indicating whether the record is written to the
EDIQUERY file or discarded. If you do not specify this keyword, WebSphere Data
Interchange writes the requested records to the EDIQUERY file. For more
information, see Chapter 1, “Using The Utility” on page 1 The maximum
length is eight.

This keyword is used with the following commands:
ENVELOPE DATA EXTRACT
NETWORK ACTIVITY DATA EXTRACT
TRANSACTION DATA EXTRACT
TRADING PARTNER CAPABILITY DATA EXTRACT
TRADING PARTNER PROFILE DATA EXTRACT
TRANSACTION ACTIVITY DATA EXTRACT

VERIFY
Indicates whether the status of a transaction is verified before the transaction is put
into an envelope. Valid values are:

Y Checks for correct status before an ENVELOPE or REENVELOPE
operation

(other)

Does not check status (default)

This keyword is used with the following commands:

TRXTIME

164 WebSphere Data Interchange Programmer’s Reference

ENVELOPE
ENVELOPE AND SEND
REENVELOPE
REENVELOPE AND SEND

WRTCTLNO
Indicates whether trading partner control numbers are included when importing a
trading partner profile member. Valid values are:

Y Imports control numbers with the trading partner (default).

N Does not import control numbers. If this is a new trading partner, the control
number defaults to zeros. If this trading partner already exists, the existing
control numbers are not overwritten by the control numbers in the import
file.

This keyword is used only with the IMPORT command.

XML
Indicates whether XML processing is required for the input data. Valid values are:

Y Requires XML processing

N Does not require XML processing (default)

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE
TRANSLATE AND ENVELOPE
TRANSLATE TO APPLICATION
TRANSLATE TO STANDARD

XMLDICT
Identifies the PDS or HFS path for the XML dictionary files generated by the DTD
conversion utility. This field is required for XML processing. The maximum length is
64.

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE
TRANSLATE AND ENVELOPE
TRANSLATE TO APPLICATION
TRANSLATE TO STANDARD

XMLDTDS
Identifies the PDS or HFS path for the XML DTD members. Applies only to z/OS.
This field is required for XML DTD processing. The maximum length is 64.

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE
TRANSFORM
TRANSLATE AND ENVELOPE
TRANSLATE TO APPLICATION
TRANSLATE TO STANDARD

VERIFY

Chapter 2. WebSphere Data Interchange commands and keywords 165

For more information about XML DTD resolution, see “XML special considerations”
on page 548.

XMLEBCDIC
Indicates whether the incoming XML data should be interpreted as EBCDIC data.
Valid values are:

Y Interprets incoming XML data as EBCDIC data, regardless of the encoding
on the XML declaration

N Uses the encoding on the XML declaration

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
TRANSLATE TO APPLICATION
TRANSFORM

XMLSEGINP
Indicates whether record boundaries in the input file should be treated as line
breaks. This keyword is ignored when XMLEBCDIC equals N.

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE
TRANSLATE AND ENVELOPE
TRANSLATE TO APPLICATION
TRANSLATE TO STANDARD

XMLSTDID
The EDI standard ID created with the DTD conversion utility. If you specify this
keyword, this standard ID is used to convert each XML document to a
corresponding EDI standard envelope and transaction. If you specify this keyword,
the first eight alphanumeric characters of the root element name are used as the
standard ID for each XML document. The maximum length is eight.

This keyword is used with the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE
TRANSLATE AND ENVELOPE
TRANSLATE TO APPLICATION
TRANSLATE TO STANDARD

XMLVALIDATE
Indicates the level of validation applied to the incoming XML data. Valid values are:

0 Ignores external DTD references

1 Uses the declared DTD for processing default attributes, entity references,
and so on, but does not validate the data against the DTD (default)

2 Fully validates the data against the DTD

This keyword is used with the following commands:

XMLDICT

166 WebSphere Data Interchange Programmer’s Reference

DEENVELOPE
DEENVELOPE AND TRANSLATE
TRANSLATE TO APPLICATION
TRANSFORM

XMLVALIDATE

Chapter 2. WebSphere Data Interchange commands and keywords 167

XMLVALIDATE

168 WebSphere Data Interchange Programmer’s Reference

Chapter 3. File formats and WebSphere Data Interchange
Utility records

This chapter describes the files used by the WebSphere Data Interchange Utility
and the format of data within each file. “Using sample JCL” on page 359 also
contains information about the WebSphere Data Interchange Utility files, and
“Required utility data sets” on page 371 shows the required files for each
PERFORM command.

Dynamically allocated application files
If no application file is specified within a command file, WebSphere Data
Interchange will select a unique file name for the application file and assign this
unique physical name to the logical file name specified on the PERFORM
command. The new file will be located in the default temporary directory (/tmp for
AIX and a user specified directory on Windows) unless the TMPDIR environment is
set to a valid directory.

Transaction Store input and output files
This section describes the input and output files used by the WebSphere Data
Interchange Utility. To indicate to WebSphere Data Interchange that a record is a
comment, place an asterisk (*) in column one of a record.

Command file (EDISYSIN or SYSIN)
The command file contains the input WebSphere Data Interchange Utility
commands that you want executed. The command language syntax is fairly
free-form and, except for values associated with the following keywords, is not case
sensitive:
v ACFIELD
v ADDRLN1
v ADDRLN2
v CMMTLN1
v CMMTLN2
v CMPYNM
v CNCTNM
v CNCTPH
v NETNAME
v STDDESC

For information about PERFORM commands, see Chapter 2, “WebSphere Data
Interchange commands and keywords” on page 15.

The WebSphere Data Interchange Utility first verifies that EDISYSIN is allocated. If
so, logical name EDISYSIN is used. If EDISYSIN does not exist, logical name
SYSIN is used. Prior to Release 4 of WebSphere Data Interchange, the command
file was always allocated to logical name SYSIN. The command file is opened for
read processing only, so it can be allocated as an inline data set in your
WebSphere Data Interchange Utility JCL. File specifications are:

Use Input file containing WebSphere Data Interchange Utility PERFORM
commands.

Specified
Does not apply.

© Copyright IBM Corp. 2002 169

logical name
EDISYSIN or SYSIN. EDISYSIN takes precedence and is used if allocated.
You can override these logical names by specifying a WebSphere Data
Interchange MQSeries queue profile member to use with the MQSYSIN
parameter.

In CICS, the command file name and type are specified in the WebSphere
Data Interchange Utility control information. For detailed information, see
“WebSphere Data Interchange Utility control information” on page 323.

Suggested format
Record format: Fixed or variable. Record length: 80 bytes, but any length is
acceptable.

Remarks
The processing of this file adjusts to the file attributes. You can define this
file to best fit your requirements.

WebSphere Data Interchange DB2 command file (EDITSIN)
This optional file is used to contain keywords that determine whether WebSphere
Data Interchange should attach and/or detach DB2. For more information, see
“WebSphere Data Interchange and DB2 attachment” on page 377. This file applies
only to z/OS DB2 installations; it does not apply to CICS installations. File
specifications are:

Use Input file containing information that tells the WebSphere Data Interchange
Utility whether or not to attach and/or detach DB2.

Specified
Does not apply.

logical name
EDITSIN.

Suggested format
Record format: Fixed or variable. Record length: 80 bytes

Remarks
Typically, this is an in-stream JCL file that you can define to best meet your
requirements.You can invoke the WebSphere Data Interchange Utility using
EXEC PGM=EDIFFUT or EXEC PGM=IKJEFT01. For the most part, if
EXEC PGM=EDIFFUT is used, EDITSIN will contain the DB2 control
information. If EXEC PGM=IKJEFT01 is used, SYSTSIN will contain the
DB2 control information.

Example 1
The following example uses DB2 command file EXEC PGM=EDIFFUT.
//RUNDI EXEC PGM=EDIFFUT,DYNAMNBR=20,REGION=6144K
// PARM=’SYSID=DIENU APPLID=EDIFFS LANGID=ENU’
//EDITSIN DD *
SYSTEM(DB93) PLAN(EDIENU32) OPEN(Y) CLOSE(Y) CAF(Y)

Example 2
The following example uses DB2 command file EXEC PGM=IKJEFT01.
//RUNDI EXEC PGM=IKJEFT01,DYNAMNBR=20,REGION=6144K
//SYSTSIN DD *
DSN SYSTEM(DB93) RUN PROG(EDIFFUT) PARM(’SYSID=DIENU APPLID=EDIFFS
LANGID=ENU SYSTEM=DB93 PLAN=EDIENU32’) PLAN(EDIENU32) END
/*

Transaction Store files

170 WebSphere Data Interchange Programmer’s Reference

Network commands file (NETOP)
The network commands file contains the commands that you want WebSphere
Data Interchange to pass to the network. WebSphere Data Interchange reads the
commands from a member of this partitioned data set (PDS) and writes the
commands to the Network input file specified in the network profile member. This
interface to networks can be used instead of using various Network Commands
(NETOP) profile member commands; however, not all networks are supported
through this interface. File specifications are:

Use Holds the network commands that the user wants WebSphere Data
Interchange to pass to the network.

Specified
Specific members are specified in the Network cmds file field of the
trading partner or mailbox (requestor) profiles.

logical name
EDINTCMD.

Suggested format
Record format: Fixed or variable. Record length: 80 bytes.

Remarks
Network commands can contain variables that are resolved by WebSphere
Data Interchange before the commands are passed to the network. If the
records exceed the file record length, they will be truncated.

Application file
The application file contains the input records that WebSphere Data Interchange
uses to translate application data into an EDI standard format during the send
process, and the output records WebSphere Data Interchange creates when
translating data from an EDI standard format to an application format during the
receive process. For translating to an application format, this file must be able to
handle the largest data record you expect to receive and the largest information
record the WebSphere Data Interchange Utility might return. If you request raw data
records, the WebSphere Data Interchange Utility writes the information and other
optional records to the exception file (FFSEXCP). The WebSphere Data
Interchange Utility opens the file for output when processing the first received
transaction and opens the file again to append the data (EXTEND). Use the JCL
DISP options to control whether the file is cleared or appended to during the first
use.

When translating to an EDI standard format, the value of the RAWFMTID keyword
indicates if the file contains raw data records. If RAWFMTID is omitted, the file is
expected to contain C and D records. When translating to an application format,
both the data format and the value of the RAWDATA keyword indicate whether the file
is written in C and D record format or raw data record format. If the RAWDATA
keyword is set to Y and the data format does not have a record ID position
specified, C and D records are written. File specifications are:

Use Input file for translating to an EDI standard; output file for translating to
application.

Specified
Sending: APPFILE keyword.

Receiving: Data format setting on the Transaction Usage Override panel.

Transaction Store files

Chapter 3. File formats and WebSphere Data Interchange Utility records 171

logical name
User-defined.

Suggested format
Record format: Fixed or variable. Record length:

v For raw data, use maximum structure size.

v For C and D records, use maximum structure size plus 17 bytes, or
1024 bytes, whichever is greater.

v For I records, use 483 bytes.

Remarks
Records are truncated if record length is not large enough.

Envelope file
For outbound documents, the envelope file is either the file specified as the Trans
data queue in the network profile member, or an override file specified in a
command that requests enveloping. For inbound documents, this is either the
Receive file name specified in the mailbox (requestor) profile member, or an
override file specified in a command that requests receiving. File specifications are:

Use Sending: holds complete envelopes when enveloping takes place.

Receiving: contains envelopes to be deenveloped and/or translated.

Specified
Sending: TD queue in network profile or overridden by the FILEID specified
on the command.

Receiving: receive file in mailbox (req7uestor) profile or overridden by the
FILEID specified on the command.

logical name
User-defined. Default value of QDATA, QDATAE, or QDATAU during
enveloping.

Suggested format
Record format: fixed or variable. Record length: 80 bytes or greater.

Remarks
For enveloping on point-to-point networks, the envelope file is dynamically
allocated with the DS name constructed of the current user ID and trading
partner nickname.

Which envelope file is used for fixed-to-fixed translations is based on the
value in the Standard ID field. For fixed-to-fixed translations with a target
data format, the standard ID is the same as the Application file name in
the data format. The File suffix field in the trading partner profile
(TPPROF) member is used as a suffix to the standard ID to create a
unique envelope file for each trading partner. Data can be written to these
files in either C and D record format or a raw data format based on the
RAWDATA keyword setting used in the PERFORM command. “WebSphere
Data Interchange Utility records format” on page 243 for a description of C
and D records and the RAWDATA format.

Note: You can override the envelope file name created by the above
concatenation by specifying the FIXEDFILEID

Exception file (FFSEXCP)
When translating to application format, WebSphere Data Interchange will write
translated transactions to the exception file if it cannot open the file intended to
receive them, or if a file name is not provided. When translating to EDI standard
format, WebSphere Data Interchange will write the transactions to this file that were
not translated successfully. Optional records are also written to this file if the
tracking file (FFSTRAK) does not exist.

This file must be large enough to contain the largest data record you are sending or
receiving, and the largest information record the translator might return. WebSphere
Data Interchange opens the file for output when processing the first transaction and
then opens the file for EXTEND. Use the JCL DISP options to control whether the
file is cleared or appended to during the first use. File specifications are:

Use Sending: Holds transactions that were not translated successfully and the
unidentified and optional records. For more information, see “Tracking file
(FFSTRAK)”

Receiving: Holds transactions that could not be written to the application
file, and optional records if the application file contains raw data. For more
information, see “Optional records” on page 255

Specified
Does not apply.

logical name
FFSEXCP. FFSEXCP takes precedence and is used if allocated. You can
override this logical name and use an MQSeries queue instead. You can
use the MQEXCP parameter to specify a WebSphere Data Interchange
MQSeries queue profile member to use instead of a sequential file.

In CICS, the exception file name and type are specified in the WebSphere
Data Interchange Utility control information. For more information, see
“WebSphere Data Interchange Utility control information field descriptions”
on page 326

Suggested format
Record format: Fixed or variable. Record length:

v For raw data, use maximum structure size

v For C and D records, use maximum structure size plus 17 bytes, or
1024 bytes, whichever is greater

v For I records, use 483 bytes

Remarks
Records are truncated if record length is not large enough.

Tracking file (FFSTRAK)
When translating to EDI standard format, WebSphere Data Interchange writes the
optional records to the tracking file if it exists. This file must be large enough to
contain the largest information record that WebSphere Data Interchange might
return. File specifications are:

Use Sending: Holds optional records. For more information, see “Optional
records” on page 255

Receiving: Does not apply.

Specified
Does not apply.

Transaction Store files

Chapter 3. File formats and WebSphere Data Interchange Utility records 173

logical name
FFSTRAK (optional). FFSTRAK takes precedence and is used if allocated.
You can override this logical name and use an MQSeries queue instead.
You can specify a WebSphere Data Interchange MQSeries queue profile
member to use instead of a sequential file with the MQTRAK parameter.

In CICS, the tracking file name and type are specified in the WebSphere
Data Interchange Utility control information. “WebSphere Data Interchange
Utility records format” on page 243.

Suggested format
Record format: Fixed or variable. Record length:
v For C and D records, use 1024 bytes.
v For I records, use 483 bytes.

Remarks
Records are truncated if the record length is not large enough. If this file is
not supplied and your application is using C and D records, WebSphere
Data Interchange writes the optional records to the exception file
(FFSEXCP). You cannot mix optional records with raw data in the exception
file, so if this file is not supplied and your application uses raw data,
WebSphere Data Interchange does not write the optional records.

Print file (PRTFILE)
The print file must allow for a minimum record size of 132 bytes. WebSphere Data
Interchange opens this file for output. Use the JCL DISP options to control whether
the file is cleared or appended to. File specifications are:

Use Contains an audit report from the WebSphere Data Interchange Utility
showing the results of processing.

Specified
Does not apply.

logical name
PRTFILE. PRTFILE takes precedence and is used if allocated. You can
override this logical name and use an MQSeries queue instead. You can
specify a WebSphere Data Interchange MQSeries queue profile member to
use instead of a sequential file with the MQPRT parameter.

In CICS, the print file name and type are specified in the WebSphere Data
Interchange Utility control information. For more information, see
“WebSphere Data Interchange Utility records format” on page 243.

Suggested format
Record format: FBA or VBA. Record length: 132 bytes.

Remarks

Status of processing and any errors WebSphere Data Interchange
encounters are written to this file during WebSphere Data Interchange Utility
processing.

Figure 14 on page 175 shows a sample PRTFILE.

Transaction Store files

174 WebSphere Data Interchange Programmer’s Reference

Report file (RPTFILE)
WebSphere Data Interchange opens the report file for output for the first report and
as EXTEND for successive reports. Use the JCL DISP options to control whether
the file is cleared or appended to during the first use. File specifications are:

Use Contains reports requested during Transaction Store processing.

Specified
Does not apply.

logical name
RPTFILE. RPTFILE takes precedence and is used if allocated. You can
override this logical name and use an MQSeries queue instead. You can
specify a WebSphere Data Interchange MQSeries queue profile member to
use instead of a sequential file with the MQRPT parameter.

In CICS, the report file name and type are specified in the WebSphere Data
Interchange Utility control information. For more information, see
“WebSphere Data Interchange Utility records format” on page 243.

Suggested format
Record format: FBA or VBA. Record length: 132 bytes.

Remarks
Reports requested from the Transaction Store Facility or WebSphere Data
Interchange Utility are written to this file.

Query file (EDIQUERY)
The query file is opened for output for the first PERFORM command executed and
opened for extend for all PERFORM commands issued thereafter during a single
execution of the WebSphere Data Interchange Utility. Use the JCL DISP options to
control whether the file is cleared or appended to during the first use. The query file
is the output file for the commands shown in Table 6 on page 176.

Audit Trail Report -WebSphere Data Interchange Utility- Date: 01/10/13 Time: 11:10:22 Page: 0001
Interchange Control Number = 00000000000057
FF0010 Transaction number 1 to 1 translated successfully
FF0013 Transactions with Interchange Control Number 00000000000057 were successfully queued
Message: TR0004 Severity: 04
Code in ID type field not found in validation table.
Internal Trading Partner ID and Application Format = DLGTYPES - DLGTYPES.
Transaction handle, code, mode, and function = 20011013111038000000 - DL1 - PRODUCTION - SEND.
Interchange, group, and transaction control numbers = 000000056 - 56 - 0155.
Current Loop-ID and repetitions = 110000 - 1 - 1.
Standard segment and field ID = SEG3(003) - 3 - 1 - 11. Application field ID = SEG3 - 61.
Data type and value = Z -123456. Validation table name = DLGP2V.
Interchange Control Number = 00000000000056
FF0011 Transaction number 2 translated with errors
Message: TR0004 Severity: 04
Code in ID type field not found in validation table. Internal
Trading Partner ID and Application Format = DLGTYPES - DLGTYPES.
Transaction handle, code, mode, and function = 20011013111039000000 - DL1 - PRODUCTION - SEND.
Interchange, group, and transaction control numbers = 000000056 - 56 - 0156.
Current Loop-ID and repetitions = 110000 - 1 - 1.
Standard segment and field ID = SEG3(003) - 3 - 1 - 11. Application field ID = SEG3 - 61.
Data type and value = Z -123456. Validation table name = DLGP2V.

Figure 14. Sample PRTFILE

Transaction Store files

Chapter 3. File formats and WebSphere Data Interchange Utility records 175

Table 6. EDIQUERY file layout for commands

PERFORM command Record layout on page:

QUERY 59

ENVELOPE DATA EXTRACT 265

NETWORK ACTIVITY DATA EXTRACT 260

TRADING PARTNER CAPABILITY DATA EXTRACT 260

TRADING PARTNER PROFILE DATA EXTRACT 260

TRANSACTION ACTIVITY DATA EXTRACT 260

TRANSACTION DATA EXTRACT 265

File specifications are:

Use Output file for the QUERY command and the data extract commands listed
above.

Specified
Does not apply.

logical name
EDIQUERY (required for commands that generate output). You can override
this logical name and use an MQSeries queue instead. You can use the
MQQUERY parameter specify a WebSphere Data Interchange MQSeries
queue profile member to be used instead of a sequential file.

In CICS, the query file name and type are specified in the WebSphere Data
Interchange Utility control information. For more information, see
“WebSphere Data Interchange Utility records format” on page 243.

Suggested format
Record format: Fixed or variable. Record length: 32756 to ensure the
largest expected record is not truncated.

Remarks
This file is used for the output of many different types of records. Therefore,
you should allocate the file as variable length record format with a
maximum record length of 32756. If you use this file for a specific set of
records that do not require this maximum record length, you can allocate
the file to meet your requirements. Records are truncated if the record
length supplied is not large enough.

Work file (FFSWORK)
The work file is an internal work file used by WebSphere Data Interchange during
send and translation processing. WebSphere Data Interchange opens this file for
output only, and it should always be empty.

Note: In the CICS environment, this file is handled internally by WebSphere Data
Interchange.

File specifications are:

Use Sending: Holds the current transaction for transfer to the exception file if
translation is not successful.

Receiving: Does not apply.

Transaction Store files

176 WebSphere Data Interchange Programmer’s Reference

Specified
Does not apply.

logical name
FFSWORK (required).

External specification is not made in CICS. WebSphere Data Interchange
takes care of this file internally.

Suggested format
Record format: Variable blocked (VB). Record length: 32756 bytes.

Remarks
A temporary file used only during send and translation processing. This file
is used extensively as a temporary file during translate-to-EDI-standard
operations and is a prime candidate for a virtual input/output data set.

Pageable translation work file (EDIVAX)
The pageable translation work file is a temporary work file used by WebSphere
Data Interchange when pageable translation is enabled and virtual storage usage
for EDI or application data reaches 28 MB. Pageable translation is enabled by
using the PAGE keyword on Utility PERFORM commands and, for API applications,
by setting the VAXFLAG field in the TRCB to X. Enabling pageable translation will
ensure that the virtual storage used for EDI and application data does not exceed
28 MB by paging any excess data to the EDIVAX file.

The amount of space allocated to this file depends on the maximum amount of data
to be translated. You can calculate the amount of needed space by adding the
following four values together:
1. Number of bytes in largest interchange
2. Number of bytes in largest application transaction image
3. 4 MB overhead
4. Number of structures in largest interchange multiplied by 120 bytes

The number of structures in the largest interchange includes structures that are
passed separately (records) and substructures that are not passed separately but
which contain data during translation. Pageable translation deals with the first two
components, and ensures that the amount of virtual storage required for them does
not exceed 28 MB. The other components are not addressed by pageable
translation. The maximum amount of data that WebSphere Data Interchange can
page with pageable translation is approximately five gigabytes (specifically, 150,000
multiplied by 28,632 bytes). File specifications are:

Use Holds the paged EDI or application data when the virtual storage used to
hold this data reaches 28 MB.

Specified
Does not apply.

logical name
EDIVAX (required for pageable translation).

Suggested format
DCB statement should not be specified. (This is under WebSphere Data
Interchange control.)

Remarks
Omit the data set name to allow z/OS to assign a temporary data set name.

Transaction Store files

Chapter 3. File formats and WebSphere Data Interchange Utility records 177

Enveloping options file for functional acknowledgments (FAENV)
The enveloping options file is an optional QSAM file that you can use if you need
more flexibility in the enveloping of functional acknowledgments.

Note: For this file, a functional acknowledgment is an ANSI X12 997 transaction, a
UCS 999 transaction, or an EDIFACT CONTRL message.

With this file you can specify:

v Interchange and group envelope overrides for functional acknowledgments

v A standard profile member to fill envelope data elements other than the sender
and receiver IDs

To use the file, specify logical name FAENV in the JCL for any request that includes
the DEENVELOPE, RECEIVE AND DEENVELOPE, or RECEIVE AND TRANSLATE
commands.

File specifications are:

Use Sending: Does not apply.

Receiving: Provides flexibility in determining the data used in the enveloping
segments when functional acknowledgments are generated.

Specified
Does not apply.

logical name
FAENV (optional) for z/OS. EDIFAENV (optional) for CICS.

Suggested format
Record format: Fixed or variable. Record length: As large as the longest
record in the file.

Remarks
An optional file used only during deenveloping to control the data used to
build the enveloping (service) segments, such as ISA and GS segments, for
the functional acknowledgment being returned to your trading partner.

The search key for an entry is ISID, IRID, GSID, and GRID, corresponding to the
inbound envelope that is being received or deenveloped. The remaining fields of the

FAENV field descriptions
The fields listed in Table 7 on page 180 are optional.

Transaction Store files

Chapter 3. File formats and WebSphere Data Interchange Utility records 179

Table 7. Fields in the Enveloping Options File for Functional Acknowledgments

Field Maximum
length

Description

ISID 35 Interchange sender ID from the inbound envelope

IRID 35 Interchange receiver ID from the inbound envelope

GSID 35 Group sender ID from the inbound envelope

GRID 35 Group receiver ID from the inbound envelope

ISIDFA 35 Interchange sender ID override for outbound functional
acknowledgment envelope

IRIDFA 35 Interchange receiver ID override for outbound functional
acknowledgment envelope

GSIDFA 35 Group sender ID override for outbound functional
acknowledgment envelope

GRIDFA 35 Group receiver ID override for outbound functional
acknowledgment envelope

EPM 8 Standard envelope profile member name

FAENV file format
The following is the format of an entry in the FAENV file:
ISID,IRID,GSID,GRID = ISIDFA,IRIDFA,GSIDFA,GRIDFA>EPM

Where:

This character:
Separates:

, (comma)

Envelope fields and indicates that a value is not listed

= (equals)
Key fields from override fields

> (greater than)
Override fields from an envelope profile name

Sample entries
Each of the following is a valid entry in FAENV:
ISID1,IRID1,=ISID1X,IRID1X,GSID1X,GRID1X

ISID2,,GSID2=ISID2X>EPM2

,IRID3,GSID3,GRID3=,,,GRID3X>EPM3

ISID4,IRID4,,GRID4=ISID4X,,,GRID4X>EPM4

ISID5,IRID5,GSID5=ISID5X,IRID5X,,GRID5X>EPM5

ISID6,IRID6=ISID6,IRID6X,GSID6X>PM6

ISID7=>PM7

A practical example
Two inbound X12 interchanges and one EDIFACT interchange contain transactions:
these are defined in Table 8 on page 181.

Transaction Store files

180 WebSphere Data Interchange Programmer’s Reference

Table 8. Interchange example

Interchange Transaction and Value

Interchange 1 (X12): ISA06 (ISID) TPDUNS#
ISA08 (IRID) MYDUNS#DIV1
GS02 (GSID) PDUNS#
GS03 (GRID) MYDUNS#DIV1

Interchange 2 (X12): ISA06 (ISID) TPDUNS#
ISA08 (IRID) MYDUNS#DIV2
GS02 (GSID) TPDUNS#
GS03 (GRID) YDUNS#DIV2

Interchange 3 (EDIFACT): UNB03 (ISID) ACCX ACCX01
UNB06 (IRID) ACCY ACCY03
UNG02 (GSID) ACCOUNTING
UNG04 (GRID) BOOKING

Without the FAENV file, the interchange and group envelopes created for the
functional acknowledgments would be the same for Interchange 1 as for
Interchange 2. In addition, if they are deenveloped one after the other, both
functional acknowledgments are placed in the same outbound group and
interchange envelopes. This happens because there is no distinction made between
the different inbound interchange receiver IDs. The envelopes for the outbound
acknowledgments are produced using the FA interchange values defined in Table 9.

Table 9. Envelopes for FA interchange

Envelope Description

ISA06 or UNB03 First envelope profile member value

ISA08 or UNB06 Account number and user ID from trading partner profile
member value

GS02 or UNG02 First envelope profile member value

GS03 or UNG04 First envelope profile member value

The first envelope profile member is obtained from the receive usage/rule of the first
transaction set in the interchange. If both inbound interchanges are processed one
after the other, the first envelope profile member is the one obtained for the first
transaction set for the first interchange.

To distinguish between sender IDs for outbound functional acknowledgments,
change the FAENV file to modify the normal procedure.

For the previous examples, the following entries must be present in FAENV:
TPDUNS#,MYDUNS#DIV1=MYDUNS#DIV1,TPDUNS#,MYDUNS#DIV1,TPDUNS#
TPDUNS#,MYDUNS#DIV2=MYDUNS#DIV2,TPDUNS#,MYDUNS#DIV2,TPDUNS#
ACCX ACCX01,ACCY ACCY03,ACCOUNTING=ACCY ACCY03,ACCX ACCX01,BOOKING,ACCOUNTING

The key specifies only the ISID and IRID. A key value is not required. Therefore,
any GSID and GRID values meet the conditions, and the overrides are used. As a
result, the functional acknowledgments that are produced have the separate
envelopes shown in Table 10 on page 182

Transaction Store files

Chapter 3. File formats and WebSphere Data Interchange Utility records 181

Table 10. Interchange example acknowledgements

Interchange Transaction and Value

Interchange 1 (X12): ISA06 (ISID) MYDUNS#DIV1
ISA08 (IRID) TPDUNS#
GS02 (GSID) MYDUNS#DIV1
GS03 (GRID) TPDUNS#

Interchange 2 (X12): ISA06 (ISID) MYDUNS#DIV2
ISA08 (IRID) TPDUNS#
GS02 (GSID) MYDUNS#DIV2
GS03 (GRID) TPDUNS#

Interchange 3 (EDIFACT): UNB03 (ISID) ACCY ACCY03
UNB06 (IRID) ACCX ACCX01
UNG02 (GSID) BOOKING
UNG04 (GRID) ACCOUNTING

Using the FAENV file allows you to separate the functional acknowledgments into
interchange and group envelopes with the values you specify.

Export/Import utility function
WebSphere Data Interchange provides an Export/Import utility function for updating
WebSphere Data Interchange’s databases in a batch environment. The
Export/Import batch function uses three files:

1. Batch Control File (CTLFILE) containing the control information that describes
the data being exported or imported.

2. Export/Import Files (E/I File) containing the data that is being imported or
exported (in tagged or fixed format).

3. Print File (PRTFILE) containing a report on Export/Import activity.

The Export/Import utility allows you to choose one, any combination of, or all the
following categories of WebSphere Data Interchange data for extracting (exporting)
or loading (importing) EDI data:
1. EDI standards/standard transactions
2. Data formats
3. Maps
4. Control strings
5. Profiles
6. Tables

Each category is a complete set with or without the associated objects, depending
on your choice. For example, for export/import of an EDI standard, the complete set
includes:
v Standard definition
v Transaction definitions
v Transaction details
v Segment definitions
v Segment details
v Data element definitions

The associated objects are:
v Envelope standards
v Validation tables (if validation is required)

The categories and their associated objects are described on the following pages.

Transaction Store files

182 WebSphere Data Interchange Programmer’s Reference

Sample programs included in the WebSphere Data Interchange product enable you
to convert a fixed format (flat) file into a tagged import file for importing trading
partner profile (TPPROF) members, send transaction usages/rules, and receive
transaction usages/rules.

These sample programs and JCL include extensive documentation that describes
how they work and how they can be used. These programs are:

v A COBOL program named EDIXF2T that is the main program executed.

v An Assembler program named EDIXTAGF, that is link edited with EDIXTAGF, and
is a formatting service to create the tags.

v Sample JCL named EDIXF2T used to define the fixed flat file and to execute the
conversion program EDIXF2T.

These programs and JCL are provided as source and can be modified, compiled,
and link edited to suit your individual needs.

Export/Import control file (CTLFILE)
The export/import control file describes what data is being exported or imported.
The control file can process multiple export or import requests.

For example, to export seven different data formats would require seven records in
the control file.

The control file is specified with the CTLFILE keyword and is used with EXPORT and
IMPORT commands. The suggested record format can be fixed or variable, but the
record length should not exceed 120 bytes. You can use the CTLTYPE keyword to
specify the type of control file. The following table describes the labels in the
export/import control file.

Table 11. Export/Import control file labels

Label Position Length Type Description

CATEGORY 1 1 Char Transaction category

REPLACE 2 1 Char Replace named object

KEYID 3-32 30 Char Object ID

ASSOBJ 33-54 22 Char Associated objects

USAGETID 55-72 16 Char Map name for usage import

MBRNAME 87-126 30 Char Member name for profile import, or
data format name for data format
import

Export/Import control file label descriptions

CATEGORY
Specifies the category of the transaction and is required for both export and import.
Valid values are:
1 EDI standards/transaction sets
2 Data format dictionaries/data formats
3 Maps
4 Control strings
7 Profiles
8 Tables

Export/Import utility function

Chapter 3. File formats and WebSphere Data Interchange Utility records 183

9 All categories (import only)
A XML dictionaries/DTDs
B Global variables

REPLACE
For import only. Indicates whether to replace the same named object in the
database. This field does not apply to usages/rules or to profile members. It does
apply to the parent categories of entire maps and profiles. This field applies only to
the primary object identified by the category code. All associated objects that are
imported will overwrite duplicate entries currently in WebSphere Data Interchange
without issuing a warning message. Valid values are:

1 Replaces the named object

(other)
Does not replace the named object (default)

KEYID
Specifies the ID of the object to be exported or imported. The value must be
left-justified. For exporting EDI standard transactions, the standard dictionary name
is left-justified in the first 8 bytes. For importing specific EDI standard transaction
sets, the import file must contain an EDI complete standard with all transaction sets
included. If no key value is present for data format dictionaries, maps, or standards,
all records are exported for the specified category.

This keyword is required for importing usages/rules. For importing other items, if
you do not specify this keyword, all records for the category (specified in position 1)
are processed.

ASSOBJ
For export only. Identifies an array specifying the associated objects. The array
must contain either 1 (Yes) or any other value (No) for each associated object in
the following order:

For EDI standards:
1. Validation tables
2. Envelope profiles
3. Envelope standards

For maps and control strings:
1. Usages/Rules
2. Control strings
3. Standard transactions (for DT maps source document definition)
4. Data formats (for DT maps target document definition)
5. Validation tables
6. Translation tables
7. User exit routines
8. Trading partner profiles
9. Translation exit routines

10. Network security profiles
11. Network profiles
12. Network command profiles
13. Envelope profiles
14. Envelope standards
15. Maps
16. Conversion of prior-release objects
17. Global variables
18. Validation maps

Export/Import control file

184 WebSphere Data Interchange Programmer’s Reference

19. FA maps
20. Embedded maps

Note: There are no associated objects for XML DTDs or mapping global
variables.

To export a usage/rule without its map, specify 1 for usages/rules (item 1) and 0
for maps (item 15).

To export validation maps and functional acknowledgment maps, specify 1 for
usage/rules (item 1) and 1 for validation maps (item 18) and 1 for functional
acknowledgment maps (item 19).

For import only. The array must contain a 1 (Yes) and any other value (No) for
each associated object in the following order:

For maps:

1. Usages/Rules only (the KEYID value must not be blank.)
16. Conversion of prior-release objects

For data formats:

16. Conversion of prior-release objects

For EDI standards:

16. Conversion of prior-release objects

USAGETID
For import only. Specifies the map name under which to import the usages/rules. If
blank, the imported map name is used.

MBRNAME
Specifies the profile member name to export or import, or a transaction ID when
exporting a specific EDI standard transaction. For data format dictionaries, specifies
the dictionary name to be used.

Export/Import files
The export/import files are used for output when you export WebSphere Data
Interchange data, or are used for input when you import WebSphere Data
Interchange data. Export/Import files are sequential, contain variable length records,
and must be allocated with a record format of V, LRECL=8152, and BLKSIZE=8156.
There are several export/import files, each associated with the category of data they
hold. The logical names are listed in Table 12.

Table 12. Export/Import file logical names

logical name Category

EDIEISTD EDI standards and standard transactions

EDIEIADF Data formats

EDIEITBL Tables

EDIEITPT Maps

EDIEICST Control strings

Export/Import control file

Chapter 3. File formats and WebSphere Data Interchange Utility records 185

Table 12. Export/Import file logical names (continued)

logical name Category

EDIEIPRF Profiles

You can maintain export files and the data in those files by using the following
z/OS/TSO ISPF utility functions:

DATASET

Allocate, rename, delete, and display export data set information

COPY

Copy export data set

DSLIST

Print, rename, delete, browse, and display export data set information

Note: In CICS, if you want to maintain the export files, define them as QSAM
extrapartitioned TD queues at WebSphere Data Interchange system
generation. To perform maintenance, close the queues in CICS, and use the
ISPF utility functions in the z/OS/TSO environment. Then run batch JCL to
execute the utility functions in the z/OS/TSO environment. CICS has the
export/import files allocated and the data set names cannot be shared with
ISPF utilities. When export queue maintenance is complete, open the
queues in CICS. If the logical name associated with the queue specifies
DISP=OLD, the queue is cleared when opened. If the logical name
associated with the queue specifies DISP=MOD, the queue is not cleared
when opened, and new export data is appended to the end of the queue.

WebSphere Data Interchange requires that the records contained in each
Export/Import file follow a certain sequence:

v The first record of the Export/Import file must be the Common Control Record
(0C1 or 0C2). This record contains information such as the date, time and
system release level.

v The last record of each group must be the Common End of Group Record (000).

v The data records are placed between the 0C1/0C2 record and the first
000 record, and also between each 000 record and any subsequent
000 records. These records vary in purpose and length, and they must be
written in the format described in the tables on 187 and 187.

Figure 15 shows the set of records written to the EDIEIPRF logical name by this
export.

Export/Import common control record 0C1
First trading partner profile header record 7P1
First trading partner profile detail record 7P2
Second trading partner profile detail record 7P2
Third trading partner profile detail record 7P2
Fourth trading partner profile detail record 7P2
Fifth trading partner profile detail record 7P2
Sixth trading partner profile detail record 7P2
Last trading partner profile detail record 7P2
Export/Import common end of group record 000

Figure 15. Example of records written to EDIEIPROF by export

Export/Import files

186 WebSphere Data Interchange Programmer’s Reference

The user exported seven trading partner profiles in tagged format. This resulted in
WebSphere Data Interchange writing out the Common Control Record (0C1), and a
Trading Partner Profile Header Record (7P1) that specifies that the following
records are part of a trading partner profile export. This is followed by seven
Trading Partner Profile Detail Records (7P2), one for each trading partner. The file
ends with a Common End of Group Record (000).

Export/Import common control record (0C1/0C2)
The Common Control Record defines the format of the records (tagged or fixed),
the user ID, date, time, and WebSphere Data Interchange version/release number.
This record is required and it must be the first record in the Export/Import record
data set.

Note: The first 3 bytes of this record are 0C1 or 0C2, starting in column 1. The
0C1/0C2 record occurs only once in an export/import data set and is always
the first record.

Table 13. Export/Import Common Control Record (0C1/0C2) fields

Field Name Position Length Type Field Description

Category 1-1 1 Char Export/Import record category = 0

Rectype 2-3 2 Char Export/Import record type code
Record type = C1 (tagged format)
Record type = C2 (fixed format)

User ID 4-11 8 Char User ID of person creating the
export/import record data set

Date 12-17 6 Char Creation date of export/import data
set (YYMMDD)

Time 18-23 6 Char Creation time of export/import data
set (HHMMSS)

Language 24-26 3 Char WebSphere Data Interchange
language English (United States) =
ENU

DIVersRel 27-38 12 Char WebSphere Data Interchange
version and release Vers 3 Rel 1 =
010301000000 Vers 4 Rel 1 =
010401000000

The following example of a completed 0C1 record depicts the user ID as SMITH, a
creation date of 010419, a creation time of 161616, English as the language, and
Version 4 Release 1 (010401000000) as the WebSphere Data Interchange version
and release.
0C1 SMITH 010419161616ENU010401000000

Export/Import common end of group record (000)
The Common End of Group Record indicates the end of an export/import group of
records. This record is required and must be the last record of an export/import
group. Table 14 describes the fields of the common end of group record.

Table 14. Export/Import Common End of Group Record (000) Fields

Field Name Position Length Type Field Description

Category 1-1 1 Char Export/Import record category = 0

Export/Import files

Chapter 3. File formats and WebSphere Data Interchange Utility records 187

Table 14. Export/Import Common End of Group Record (000) Fields (continued)

Field Name Position Length Type Field Description

Rectype 2-3 2 Char Export/Import record type = 00

The Common End of Group Record contains only 000, starting in column 1.

Export/Import file data area
The content data area varies depending upon which category of data you are
importing or exporting. The following categories are supported:
v EDI standards and standard transactions
v Data formats
v Maps
v Control strings
v Profiles
v Tables

Regardless of the category chosen, the data portion (tagged or fixed) of an
export/import file starts in column 4 of the record. Columns 1-3 are reserved for
the Export/Import record ID (RECID). As discussed earlier, the Common Control
Record (0C1/0C2) and Common End of Group Record (000) are fixed records. All
records contained in the export/import file data area might be tagged or fixed format
records, except for the control string (G1) and document layout (L1), which are
native database format.

Note: When fixed format record layouts are changed due to design changes in
WebSphere Data Interchange, new fields are added to the end of the
records.

The following tables define the order in which the fields are exported (position of
fixed format fields), the length of fixed format fields (maximum length for tagged
fields), and the type of data. Data with type Char can have any valid characters.
Data with type DEC must have only decimal characters (0-9). When exported, data
with type HEX is expanded to two hex representation characters (0-9, A-F) for each
hex byte.

Exporting and importing trading partner profiles
The trading partner profile contains information about the companies that exchange
business transactions with you. There must be one record for each trading partner
that you wish to define.

The Export/Import format for defining trading partners includes the record types
defined in Table 15.

Table 15. Trading partner record types

Record type Description

7P1 One trading partner profile header record

7P2 One or more trading partner profile records

7Z1 Zero or more contact records

7P3 Zero or more trading partner contact records

7P4 One or more trading partner control number records

Export/Import files

188 WebSphere Data Interchange Programmer’s Reference

Table 15. Trading partner record types (continued)

Record type Description

7A1 At most, one trading partner comment record

The trading partner profile record group must be followed by the Export/Import
Common End of Group Record (000). Figure 16 illustrates a valid sequence of
records written to logical name EDIEIPRF when exporting multiple trading partner
profiles.

Importing new definitions to WebSphere Data Interchange
After the Export/Import file data set has been updated, you can submit the updates
using the batch utility or with the WebSphere Data Interchange Import function.

Export/Import trading partner profile header record (7P1)
The trading partner profile header record is required and must be the first record of
a trading partner profile record group. A trading partner profile group is defined as
one trading partner profile header record (7P1) followed by one or more trading
partner profile records (7P2).

The trading partner profile header record contains the trading partner profile
indicator and profile description. It is described in Table 16.

Table 16. Trading partner profile header record 7P1

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID =TPPROF

PROFDESC 12-46 35 Char Profile/table description

0C1 Export/Import common control record
7P1 Trading partner header record
7P2 Trading partner profile record
7P4 Trading partner control number record
7A1 Trading partner comment record
7P2 Trading partner profile record
7Z1 Contact record
7Z1 Contact record
7P3 Trading partner contact record
7P3 Trading partner contact record
7P3 Trading partner contact record
7P4 Trading partner control number record
7A1 Trading partner comment record
7P2 Trading partner profile record
7Z1 Contact record
7P3 Trading partner contact record
7P4 Trading partner control number record
7P2 Trading partner profile record
7P4 Trading partner control number record
7P2 Trading partner profile record
7P4 Trading partner control number record
000 Export/Import common end of group record

Figure 16. Example of multiple trading partner profiles

Exporting and importing trading partner profiles

Chapter 3. File formats and WebSphere Data Interchange Utility records 189

Export/Import trading partner profile record (7P2)
The trading partner profile record defines the descriptive and control data that
identify an individual trading partner and its processing options. Multiple
7P2 records can be created (one record per trading partner) to support the creation
of multiple trading partner profiles.

For fixed format records, the fields must be in the position specified and for the
length specified in the table.

For tagged files, the tags for the trading partner profile record (7P2) can be placed
in any column or any order you choose. When importing data, all incoming
variables must be delimited by parentheses. When exporting, outgoing variable data
is placed between parentheses. Profile member tags and their associated maximum
record lengths are listed in Table 17.

Table 17. Trading partner profile members

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID

TPNICKN 12-27 16 Char Trading partner nickname

NETID 28-35 8 Char Network ID

SYSQUAL 36-36 1 Char System qualifier

SYSID 37-44 8 Char System ID

ACCTID 45-76 32 Char Account number

USERID 77-108 32 Char User ID

INTQUAL 109-112 4 Char Interchange ID qualifier

INTID 113-147 35 Char Interchange ID

CONAME 148-187 40 Char Company name

ADDR1 188-227 40 Char Company address line 1

ADDR2 228-267 40 Char Company address line 2

PHONE 268-292 25 Char Contact phone

CONTACT 293-322 30 Char Contact name

SNDPASS 323-336 14 Char Interchange send password

RCVPASS 337-350 14 Char Interchange receive password

SECPROF 351-358 8 Char Network security profile ID

NETCLS 359-359 1 Char Network message class

NETCHG 360-360 1 Char Network charges code

NETACK 361-361 1 Char Network acknowledgment

NETVCHK 362-362 1 Char Destination verification code

NETRETN 363-365 3 Char Retention period

NETEDIO 366-366 1 Char EDI receive option

NETEDIP 367-367 1 Char EDI processing override

STGFMTOV 368-368 1 Char Storage format override

MACHTYPE 369-369 1 Char Machine type

STGFMT 370-370 1 Char Storage format

EOTID 371-371 1 Char End of text/message delimiter

Exporting and importing trading partner profiles

190 WebSphere Data Interchange Programmer’s Reference

Table 17. Trading partner profile members (continued)

Tag Position Length Type Description

LOGENV 372-372 1 Char Log standard data

FNCGRP 373-373 1 Char Functional group code

SEDLM 374-375 2 Char Subelement delimiter

DEDLM 376-377 2 Char Data element delimiter

SEGDLM 378-379 2 Char Segment delimiter

SEGSEP 380-381 2 Char Segment ID separator

DECNOT 382-382 1 Char Decimal notation

RLSCHAR 383-384 2 Char Release character

INTCTLNO 385-393 9 Char Interchange mask

GRPCTLNO 394-402 9 Char Group mask

TRXCTLNO 403-411 9 Char Transaction mask

COMMENT1 412-451 40 Char Comment line 1

COMMENT2 452-491 40 Char Comment line 2

NETCMDS 492-499 8 Char Network commands file

TPDATALINE 500-531 32 Char Trading partner data phone
number

TIMEOUT 532-535 4 Dec Data line communication timeout

SEGMENTED 536-536 1 Char Segmented output option

SUFFIX 537-538 2 Char File suffix

TPENVSUF 539-540 2 Char Envelope profile suffix

TPGENRCV 541-541 1 Char Allow generic receive

TPCMPRES 542-542 1 Char Compression

TPSUPAD3 543-582 40 Char Address line 3

TPSUPCTY 583-612 30 Char City name

TPSUPST 613-614 2 Char State code

TPSUPPST 615-629 15 Char Postal code

TPSUPCON 630-659 30 Char Country

TPSUPFAX 660-684 25 Char Fax number

TPSUPU3 685-724 40 Char Comment line 3

TPSUPU4 725-764 40 Char Comment line 4

TPSUPU5 765-804 40 Char Comment line 5

TPSUPU6 805-844 40 Char Comment line 6

TPSUPU7 845-884 40 Char Comment line 7

TPSUPU8 885-924 40 Char Comment line 8

TPSUPU9 925-964 40 Char Comment line 9

TPSUPU10 965-1004 40 Char Comment line 10

DESCRIPT 1005-1034 30 Char Description

TPTYPE 1035-1035 1 Char Trading partner type

PRIORITY 1036-1036 1 Char Expedite priority

PROCESS 1037-1076 40 Char Process ID

Exporting and importing trading partner profiles

Chapter 3. File formats and WebSphere Data Interchange Utility records 191

Table 17. Trading partner profile members (continued)

Tag Position Length Type Description

DESEP 1077-1078 2 Char Repeating data element separator

The following example shows part of an export/import file that contains records for
exporting/importing three trading partner profiles.

Figure 17 shows how the 0C1 record is the first record in the Export/Import file,
followed by profile data records with a 000 record as the last record. The 7P1 and
7P2 fields are the record IDs (RECIDs). They must be the first 3 bytes of the data
record. In this example, the 7 indicates the category code, the P indicates the
object being exported/imported (in this case, Profile), and the 1, 2, and 4 are
internal WebSphere Data Interchange indicators.

Trading partner profile member field descriptions

Category code: Must contain 7.

Record type: Must contain P2.

Profile ID (PROFID): Must contain TPPROF.

Trading partner nickname (TPNICKN): The name you use to refer to this trading
partner. Use the same name throughout WebSphere Data Interchange to refer to
this trading partner by nickname.

Network ID (NETID): The name that identifies the network used to communicate
with this trading partner. It must match the name of a member in the network
profile.

System qualifier (SYSQUAL): For AT&T Global Network users, enter an I if
intersystem addressing is required for this trading partner (Network reference:
DTBLTYP). Enter the ID of the other system in the next field.

System ID (SYSID): For intersystem addressing, the ID of the system responsible
for the receiver’s account. For AT&T Global Network users, the ID is limited to
three characters (Network reference: DTBLID).

Account number (ACCTID): The account number assigned to your trading
partner by the network. The entry must be left-justified. For sending and receiving
EDI in ISA/IEA envelopes, the last position must be blank. The combination of this
field and the User ID field must be unique for all members in the profile.

0C1SMITH 0140419161616ENU010103000000

7P1PROFID(TPPROF) PROFDESC(Trading partner profile)
7P2PROFID(TPPROF) TPNICKN(IBM) NETID(IINR4) SYSQUAL(4) NETACK(N)PASSWORD(N WPASS)
7P4TPNICKN(IBM) APPRECID(JONES) APPRECQ(01) INTCTLNO(000010000)

GRPCTLNO(000015000) TRXCTLNO(000020000)
7P2PROFID(TPPROF) TPNICKN(TPT40) NETACK(Y) SYSQUAL(4) NETID(IINR5) PHONE(555-1234)
7P2PROFID(TPPROF) TPNICKN(VAN04PR) CONTACT(John Doe) SNDPASS(Y) RCVPASS(Y)
7P4TPNICKN(VAN04PR) APPRECID(SMITH) APPRECQ(02) APPDOCID(850) INTCTLNO(000030001)
GRPCTLNO(000040000) TRXCTLNO(000045000)
000

Figure 17. Example of exporting trading partner profiles

If the interchange ID is blank, the account number and user ID make up the
receiver ID in the interchange envelope. UCS (BG/EG) envelopes are an exception,
where the phone number field contains the receiver ID.

User ID (USERID): The user ID assigned to your trading partner by the network.
The entry must be left-justified. The combination of this field and the account
number field must be unique for all members in the profile.

If the interchange ID field is blank, the account number and user ID make up the
receiver ID in the interchange envelope. UCS (BG/EG) envelopes are an exception,
where the phone number field contains the receiver ID.

Interchange ID qualifier (INTQUAL): The type of interchange ID entered in the
interchange ID field such as a Dun and Bradstreet number (DUNS). The EDI
standard defines these codes. If the interchange ID is blank, the enveloper takes
the qualifier from the envelope profile member. The combination of this field and the
interchange ID field must be unique for each member unless the fields are left
blank.

Interchange ID (INTID): The ID used as the interchange receiver ID (recipient)
when you send to this partner and as the interchange sender ID when you receive
from this partner. If this field is blank, the enveloper uses the account number and
user ID (or phone number for BG/EG interchanges). The combination of this field
and the interchange ID qualifier field must be unique for each member unless the
fields are left blank.

Company name (CONAME): The name of the trading partner’s company.

Company address line 1 (ADDR1): The first line of the trading partner’s address.

Company address line 2 (ADDR2): The second line of the trading partner’s
address.

Contact phone (PHONE): The trading partner’s phone number (free-form). For
UCS (BG/EG) enveloping, if the interchange ID is blank, the enveloper uses the
phone number as the interchange ID.

Contact name (CONTACT): The name of the person you communicate with when
dealing with this trading partner.

Interchange send password (SNDPASS): The password agreed upon by you
and your trading partner for sending to this trading partner. This value maps to the
password data type in the interchange envelope.

Interchange receive password (RCVPASS): The password agreed upon by you
and your trading partner for receiving from this trading partner. If this value matches
the interchange password (password data type) that was received, translation
occurs.

Network security profile ID (SECPROF): The ID of the default network security
profile member that specifies the encryption and authentication processes that apply
to EDI data for this trading partner. This profile member is always used when
receiving from this partner. It is used by default when sending to this partner unless
the send usage/rule for the map specifies a different member in the Group security
profile name field or the Trans security profile name field.

Exporting and importing trading partner profiles

Chapter 3. File formats and WebSphere Data Interchange Utility records 193

Network message class (NETCLS): Applies only to sending. Indicates any
special status (for example, test) of the data being sent. For AT&T Global Network
users (Network reference: MSGNCLS), T indicates test status, and a blank
indicates normal status.

If your request does not specify a trading partner, this information is taken from the
mailbox (requestor) profile.

Network charges code (NETCHG): Indicates how charges are shared between
sender and receiver. For AT&T Global Network users (Network reference:
MSGCHRG), valid values are:

1 Receiver pays all charges.

2 Receiver pays all charges if agreed to; otherwise, charges are split between
sender and receiver.

3 Receiver pays all charges if agreed to; if receiver does not agree to pay all
charges, charges are split between sender and receiver if agreed to;
otherwise, the sender pays all charges.

4 Charges are split between sender and receiver if agreed to; otherwise, the
sender pays all charges.

5 Charges are split between sender and receiver.

6 Sender pays all charges.

If your request does not specify a trading partner, this information is taken from the
mailbox (requestor) profile.

Network acknowledgment (NETACK): Indicates which network acknowledgments
(receipt, delivery, purge) you want to receive when sending to this partner. For
AT&T Global Network users (Network reference: MSGRCPT), valid values are:

(blank)
No acknowledgments

R Receipt only

D Delivery only

B Both receipt and delivery

A Purge only

C Both receipt and purge

E Either purge or delivery

F Receipt and either delivery or purge

If your request does not specify a trading partner, this information is taken from the
mailbox (requestor) profile.

Destination verification code (NETVCHK): Indicates whether the destination is
verified before the data is sent. For AT&T Global Network users (Network reference:
MSGVCHK), valid values are:

N Does not request verification (default)

Y Requires verification

F Requests verification, but sends even if the destination is not verified
(useful for intersystem addressing)

Exporting and importing trading partner profiles

194 WebSphere Data Interchange Programmer’s Reference

If your request does not specify a trading partner, this information is taken from the
mailbox (requestor) profile.

Retention period (NETRETN): The number of days that the data is kept in the
network mailbox before being purged, if it is not received.

If you are using more than one network, contact a representative from the network
you are using or refer to an appropriate manual to determine the correct values to
use for this field. The following pertains to the AT&T Global Network and to
Expedite Base 4.2 and higher.

Valid values are 0 through 180. For installations in the U.S., the default retention
period is 30 days. For installations outside the U.S., contact your marketing
representative for your default value.

If you specify 0 or blank, Information Exchange retains the data for the default
period. In addition, if you specify a value larger than the maximum for your system,
Information Exchange retains the data for the default period.

If your request does not specify a trading partner, this information is taken from the
mailbox (requestor) profile.

Note: The size of this field for Expedite/CICS is two digits, meaning the valid
values for Expedite/CICS are 0-99. The two left-most digits entered in this
field are used by Expedite/CICS as the retention period. For example: if you
enter 180, the retention period value sent to Expedite/CICS will be 18.

EDI receive option (NETEDIO): Indicates whether you want EDI segments stored
in the file as separate records. For AT&T Global Network users (Network reference:
EDIOPT), valid values are:

Y Ends records at the segment delimiter (default)

N Does not end records at the segment delimiter

EDI processing override (NETEDIP): Indicates whether you want the EDI data
you receive to have special EDI processing, which breaks records by the segment
delimiter. For AT&T Global Network users (Network reference: EDIPROC), valid
values are:

Y Performs EDI processing if the common data header indicates that the data
is in EDI standard format (default)

N Does not perform EDI processing, regardless of the values in the common
data header

If your request does not specify a trading partner, this information is taken from the
mailbox (requestor) profile.

Storage format override (STGFMTOV): If you are using more than one network,
contact a representative from the network you are using to determine the available
options.

Information Exchange uses common data header control information that allows
users to send or receive information electronically. The control header contains
information such as the type of record, original record format, sending system type,
type of data being sent, whether the data is in an EDI format, and a unique record
number for tracking.

Exporting and importing trading partner profiles

Chapter 3. File formats and WebSphere Data Interchange Utility records 195

If you are using IBM Expedite Base/MVS (IEBASE), refer to the DLMOVERRIDE
command option keyword for an up-to-date list of acceptable values. Valid
values are:

Y Formats the data according to the DELIMITED parameter, even if the
common data header (CDH) indicates a delimiter type

N Ignores the value in the DELIMITED parameter, and formats the data
according to the record type (if any) in the CDH (default)

If there is no common data header, the format indicated in the Storage format field
is used. If your request does not specify a trading partner, the information is taken
from the mailbox (requestor) profile.

Machine type (MACHTYPE): This field is not currently supported.

Storage format (STGFMT): Indicates to the network how data is stored for
free-form messages and files. When determining what option to select, you should
consider the type of data you want to send and how the file will be received. If you
are using more than one network, contact a representative from the network you
are using to determine the available options. Valid values are:

C Stores each record with a carriage return and line-feed character (CRLF)
and uses the end of file (EOF) character to mark the end of file. These
characters are represented and stored as hex values 0D0A and 1A
respectively. This option is generally used to send files containing program
source code with variable length records. Output records will include data
up to the carriage return and line feed characters (CRLF).

L Precedes each record with a 2-byte hexadecimal record length. Select this
option for sending data in fixed format or for sending binary data. The
output record length is determined by the value in the 2 bytes containing
the record length.

N Stores the data as it is received (default). Output records are built based on
the record length of the data set allocated to receive the data.

If you are using Expedite/CICS, refer to the DTYPE field for an up-to-date list of
valid values:

A Stores each record with a carriage return and line-feed character (CRLF)
and uses the end of file (EOF) character to mark the end of file. These
characters are represented and stored as hex values 0D0A and 1A
respectively. This option is generally used to send files containing program
source code with variable length records. Output records will include data
up to the carriage return and line feed characters (CRLF).

B Precedes each record with a 2-byte hexadecimal record length. Select this
option for sending data in fixed format or for sending binary data. The
output record length is determined by the value in the 2 bytes containing
the record length.

E Stores each record based on the delimiters found in the EDI standard data.

O Stores data as it is received (free-form).

If your request does not specify a trading partner, this information is taken from the
mailbox (requestor) profile.

Exporting and importing trading partner profiles

196 WebSphere Data Interchange Programmer’s Reference

End of text or message delimiter (EOTID): The character that signifies to the
network the end of the data. It applies to free-form messages and data files, not to
EDI standard transactions. (Network reference: EORCHAR, EOMIND).

Log standard data (LOGENV): Indicates whether the translator should include
EDI standard (untranslated) data when logging an image of a transaction. For EDI
data with errors, the EDI standard data is logged even if you enter N.

This field can be overridden by the Log standard data field of the Application
Defaults (APPDEFS) profile. Valid values are:

Y Includes EDI standard (untranslated) data when logging transaction image

N Does not include EDI standard (untranslated) data when logging transaction
image

Functional group code (FNCGRP): Indicates whether the enveloper should
create functional groups for transactions with type E envelopes. (Functional groups
are always created for types I, U, and X; they are never created for type T). If you I, U, and

If entered, this character must be different from the characters specified for the
subelement delimiter, data element delimiter, segment delimiter, decimal notation,
and release character fields.

Decimal notation (DECNOT): The character that represents the decimal point in
a transaction set. For type E envelopes, an entry here overrides the character
specified by the EDI standard. For all other types, a period represents the decimal
point.

If entered, this character must be different from the characters specified for the
subelement delimiter, data element delimiter, segment delimiter, segment ID
separator, and release character fields.

Release character (RLSCHAR): For type E and T envelopes, the character (in
hex notation) that is used to indicate where a delimiter is being used as part of the
data. An entry here (other than 00 or 40) overrides the character specified by the
EDI standard.

If entered, this character must be different from the characters specified for the
subelement delimiter, data element delimiter, segment delimiter, segment ID
separator, and decimal notation fields.

Interchange mask (INTCTLNO): The initial reference number that the enveloper
places in the CN data type of the interchange header and trailer. This value is
used as the base value for each trading partner/receiver ID combination. This field
does not represent the current control number for this trading partner. Use the
Control Number option on the Member List panel to request control number
information.

Group mask (GRPCTLNO): The initial reference number or special codes that the
enveloper places in the CN data type of the functional group header and trailer.
This value is used as the base value for each trading partner/receiver ID
combination. Use caution when updating this field. This field does not represent the
current control number for this trading partner. Use the Control Number option on
the Member List panel to request control number information.

Transaction mask (TRXCTLNO): The initial reference number or special codes
that the enveloper places in the CN data type of the transaction set header and
trailer. This value is used as the base value for each trading partner/receiver ID
combination. Use caution when updating this field. This field does not represent the
current control number for this trading partner. Use the Control Number option on
the Member List panel to request control number information.

Comment line 1 (COMMENT1): Free-form notes about the trading partner.

Comment line 2 (COMMENT2): Free-form notes about the trading partner.

Network commands file (NETCMDS): The name of a PDS member to be
allocated the z/OS logical name EDINTCMD. This member will contain the
commands that you want to pass to the network.

WebSphere Data Interchange reads the commands from the PDS member and
writes the commands to the network input file specified in the network profile
member after all substitutable variable tags are resolved by WebSphere Data
Interchange.

Exporting and importing trading partner profiles

198 WebSphere Data Interchange Programmer’s Reference

TP data phone number (TPDATALINE): The phone number to dial to connect to
your trading partner directly. This is the number used by your computer to talk
directly to your trading partner’s computer. The Contact phone field contains the
voice phone number to call a human (not a computer) at your trading partner’s site.

Data line communication timeout (TIMEOUT): Specifies the maximum allowable
time that the communications line can be idle without dropping the connection. If
the data line is idle for a time greater than the value entered, the line is dropped. If
you specify a trading partner when requesting network activity, the value for this
field is taken from the trading partner profile. Otherwise, the value for this field is
taken from the mailbox (requestor) profile.

Segmented output option (SEGMENTED): Indicates whether you want EDI
segments stored in the output file as separate records. Valid values are:

Y Ends records at the segment delimiter

N Does not end records at the segment delimiter (default)

File suffix (SUFFIX): A 2-character suffix for the logical name used to store the
results of a fixed-to-fixed translation. The logical name is taken from the
Application file name field of the target data format.

This 2-character suffix is appended to the Application file name or, if the file
name is longer than 6 characters, overwrites the last two characters of the
Application file name. Use this suffix to separate the results of a fixed-to-fixed
translation by trading partner. If you do not want to separate results by trading
partner, either leave the suffix blank or assign all the logical names to the same
physical file.

For CICS, you can use the suffix to identify a unique TS queue for each trading
partner.

Envelope profile suffix (TPENVSUF): A 2-character suffix for a generic envelope
profile member name. A generic envelope profile name has an ampersand (&) as
the first character of the name followed by a 1 to 6-character common name.

This 2-character suffix is used to generate the envelope profile member name for
enveloping transactions. Use this suffix to use different envelope profile members
for different trading partners. To use the same envelope profile member for several
trading partners, enter the same suffix in each of the trading partner profiles, or
leave the suffix blank to use a common envelope profile member (with the same
name as the common name in the usage/rule). You must define an envelope profile
member for each combination of common name/suffix value specified in a trading
partner profile.

The envelope profile member name is specified on the Send and Receive Trading
Partner Usage panels. The generic form of the name is most useful for generic
usages/rules but can be used for any usage/rule.

Allow generic receive (TPGENRCV): Indicates whether transactions received
from this trading partner can be translated using generic receive trading partner
usages/rules. Valid values are:

Y Allows translation via generic receive trading partner usages/rules

N Does not allow translation via generic usages/rules (default)

Exporting and importing trading partner profiles

Chapter 3. File formats and WebSphere Data Interchange Utility records 199

Compression (TPCMPRES): Indicates whether Expedite Base/MVS or
Expedite/CICS should compress your data prior to transmission. Valid values are:

N Does not compress data (default).

Y Compresses data prior to transmission. If the file sent contains multiple EDI
envelopes, all envelopes are sent compressed.

T Conditionally compresses data prior to transmission. For Expedite
Base/MVS, compression will occur if the SENDER, RECEIVER, and COMPRESS
parameters are listed in the CPLOOKUP EXPFILE file. This file defines a
series of paired receivers and senders, and for each pair, indicates whether
compression should be performed. For Expedite/CICS, compression will
occur if the sender/receiver pair is found in the lookup table and COMPRESS
equals Y in the lookup table.

For more information, refer to the Expedite Base/MVS Programming Guide or to
Customizing and Developing Applications with Expedite/CICS.

If a trading partner profile member is specified on the send request, the
compression value is taken from the trading partner profile. Otherwise, this
information is taken from the mailbox (requestor) profile.

Address line 3 (TPSUPAD3): The third line of the trading partner’s address.

City name (TPSUPCTY): The trading partner’s city.

State code (TPSUPST): The trading partner’s state.

Postal code (TPSUPPST): The trading partner’s zip code.

Country (TPSUPCON): The trading partner’s country.

Fax number (TPSUPFAX): The trading partner’s fax number.

Comment line 3 (TPSUPU3): Free-form remarks.

Comment line 4 (TPSUPU4): Free-form remarks.

Comment line 5 (TPSUPU5): Free-form remarks.

Comment line 6 (TPSUPU6): Free-form remarks.

Comment line 7 (TPSUPU7): Free-form remarks.

Comment line 8 (TPSUPU8): Free-form remarks.

Comment line 9 (TPSUPU9): Free-form remarks.

Comment line 10 (TPSUPU10): Free-form remarks.

Description (DESCRIPT): A free-form description of the member.

Trading partner type (TPTYPE): Indicates the type of trading partner this
definition represents. Valid values are:

E EDI trading partner (default). Considered to be external to your business
organization. The interchange control numbers are generated using the EDI
trading partner ID.

Exporting and importing trading partner profiles

200 WebSphere Data Interchange Programmer’s Reference

A Application trading partner. Considered to be internal to your business
organization. For example, divisions or departments might be internal
trading partners. Use this setting when no specific EDI trading partner is
defined, or in combination with an EDI trading partner. Interchange control
numbers are generated using the application and EDI trading partner
combination. Use this trading partner type with centralized EDI when
multiple application trading partners do business with the same EDI trading
partner.

B Both EDI trading partner and application trading partner. Considered to be
both external (EDI) and internal (application). Use this setting when your
organization provides EDI translation services to customers who are trading
partners. The value in this field is directly related to the usage/rule setup.

For more information, refer to the WebSphere Data Interchange User’s Guide.

Priority (PRIORITY): Indicates whether messages are sent through Expedite
Base/MVS or Expedite/CICS with normal delivery or priority delivery. Valid
values are:

(blank)
Normal delivery

P High priority

For more information, refer to the SEND commands in the Expedite Base/MVS
Programming Guide or to Customizing and Developing Applications with
Expedite/CICS.

If a trading partner profile member is specified on the send request, this value is
taken from the trading partner profile. Otherwise, this information is taken from the
mailbox (requestor) profile.

Process: The process name used with data transformation to associate with this
trading partner, such as PRODUCTION_PURCHSG_V1R1. You can create data
transformation rules for a group of maps (creating a process) and then associate
trading partners with the process. If you change the map rules for the process, all
trading partners associated with the process use the changed maps automatically.

In the same manner, you can use the process name to create classes of trading
partners such as production, non-production, financial institutions, XML trading
partners, or EDI trading partners. You can create data transformation map rules to
associate with each trading partner class.

Repeating data element separator (DESEP): The hex character separator
placed between repeating data elements for all transactions sent to this trading
partner. A value in this field (other than 00 or 40) overrides the separator character
defined in the EDI standard. This character must be different from the characters
specified for the subelement delimiter, data element delimiter, segment delimiter,
segment ID separator, decimal notation, and release characters. This hex character
should not be found within the EDI standard data.

Trading partner contact definition (7P3)
Trading partner contact information is exported or imported automatically when a
trading partner record is exported or imported. Each trading partner contact record
specifies a contact that is related to a trading partner. The fields are described in
Table 18 on page 202..

Exporting and importing trading partner profiles

Chapter 3. File formats and WebSphere Data Interchange Utility records 201

Table 18. Trading partner contacts definition

Tag Position Length Type Description

TPNICKN 4-19 16 Char Trading partner nickname

TPCONNM 20-59 40 Char Trading partner contact name

Trading partner control numbers (7P4)

Trading partner control numbers are exported or imported automatically when a
trading partner is exported or imported. Each trading partner control number
specifies a control number that is related to a trading partner. The fields are
described in Table 19.

Table 19. Trading partner control numbers

Tag Position Length Type Description

TPNICKN 4-19 16 Char Trading partner nickname

APPRECID 20-54 35 Char Receiver ID

APPRECQ 55-58 4 Char Receiver qualifier

APPDOCID 59-66 8 Char Transaction ID, message ID, or
document definition name

INTCTLNO 67-75 9 Char Interchange control number

GRPCTLNO 76-84 9 Char Group control number

TRXCTLNO 85-93 9 Char Transaction control number

Comments definition (7A1)

Comments are exported or imported automatically when a trading partner is
exported or imported. The comment record specifies textual data about a trading
partner. The fields are described in Table 20.

Table 20. Comments definition

Tag Position Length Type Description

CMTTYPE 4-11 8 Char Comments entity type

CMTKEY 12-46 35 Char Comments entity type key

CMTTEXT 47-2094 2048 Char Trading partner contact comments

Contact definition (7Z1)

Contact information is exported or imported automatically when a trading partner
record is exported or imported. The contact record specifies data about a contact.
The fields are described in Table 21.

Table 21. Contacts definition

Tag Position Length Type Description

TPCONNM 4-43 40 Char Trading partner contact name

TPCONTLE 44-83 40 Char Trading partner contact job title

TPCONAD1 84-123 40 Char Trading partner contact address
line 1

Exporting and importing trading partner profiles

202 WebSphere Data Interchange Programmer’s Reference

Table 21. Contacts definition (continued)

Tag Position Length Type Description

TPCONAD2 124-163 40 Char Trading partner contact address
line 2

TPCONAD3 164-203 40 Char Trading partner contact address
line 3

TPCONCTY 204-233 30 Char Trading partner contact city

TPCONST 234-235 2 Char Trading partner contact state

TPCONPST 236-250 15 Char Trading partner contact postal code

TPCONCON 251-280 30 Char Trading partner contact country

TPCONPHN 281-305 25 Char Trading partner contact phone

TPCONFAX 306-330 25 Char Trading partner contact fax number

TPCONOTH 331-355 25 Char Trading partner contact other phone

TPCONEML 356-395 40 Char Trading partner contact e-mail
address

CMTTEXT 396-2443 2048 Char Trading partner contact comments

Export and importing EDI standard records

EDI standards can be exported/imported using tagged or fixed format files. The EDI
standard/transaction set includes:

1Y1 Dictionary record

1Y2 Transaction header record

1Y3 Transaction detail record

1Y4 Segment header record

1Y5 Segment detail record

1Y6 Data element header record

1Y7 Data element detail record

1Y8 Segment notes record

1Y9 Transaction notes record

1YA Composite data element notes record

1YB Envelope detail record

Three types of associated objects can be exported using tags:
1. Validation tables
2. Envelope profile
3. Envelope standard

In Table 22 on page 204, you can export all of the data elements in a particular
segment. Since a segment is made up of many data element usages/rules and
definitions, multiple Y6 and Y7 records are shown here.

Exporting and importing trading partner profiles

Chapter 3. File formats and WebSphere Data Interchange Utility records 203

Table 22. Exporting all data elements in a particular segment

Record Type Record Name

0C1 Export/Import common control record

1Y1 EDI standard dictionary record

1Y2 EDI standard transaction header record

1Y3 EDI standard transaction detail record

1Y4 EDI standard segment header record

1Y5 EDI standard segment detail record

1Y6 EDI standard data element header record

1Y7 EDI standard data element detail record

1Y6 EDI standard data element header record

1Y7 EDI standard data element detail record

1Y8 EDI standard segment notes record

1Y9 EDI standard transaction notes record

1YA EDI standard composite data element notes record

1YB EDI standard envelope details record

000 Export/Import common end of group record

The following example shows part of an export/import file data set that contains
records for exporting/importing one transaction of an EDI standard. The transaction
has one segment with three data elements.

0C1ADMIN 011116151224ENU010401000000

1Y1 STDID(AARV4R4) AGENCY(X) VERSION(40) RELEASE(40) INDUSTRY(RAIL) DICTENVFLAG(D)
INTENV(X) STDDESC(Rail Carrier 4040) ALLTRXS(N)

1Y2 STDID(AARV4R4) STDTRID(426) FNGRPID(SR) STDDESC(Rail Revenue Waybill) STDPURP(Purpose)
1Y3 STDID(AARV4R4) STDTRID(426) TABLENO(1) POSNO(20) SEGID(ZR) SEGREQ(M) SEGMAX(1) UNLIMMAX(0) UNLPREP(0)
1Y4 STDID(AARV4R4) SEGID(ZR) STDDESC(Waybill Reference Identification) STDPURP(To transmit identity

and reference information of the waybill)
1Y5 STDID(AARV4R4) SEGID(ZR) POSNO(1) DEID(762) DEREQ(M)
1Y6 STDID(AARV4R4) DEID(762) DETYPE(ID) DEMIN(1) DEMAX(1) CODELIST(762R440) STDDESC(Waybill Response Code)

STDPURP(Code indicating a waybill response)
1Y9 STDID(AARV4R4) STDTRID(426) TABLENO(1) POSNO(241) NOTETYPE(N) NOTEPARA(1) RELATION(CM)

STDNOTE(One R2B segment is needed for each line haul carrier)
1Y8 STDID(AARV4R4) SEGID(ZR) POSNO(4) NOTETYPE(N) NOTEPARA(1) RELATION(P) REL1(4) REL2(5)
000

EDI standard dictionary record (1Y1)
This record defines the EDI standard being used. The fields are described in
Table 23.

Table 23. EDI standard dictionary record

Tag Position Length Type Description

STDID 4-33 30 Char EDI standard dictionary name

AGENCY 34-41 8 Char Agency issuing the standard

VERSION 42-49 8 Char Version of the standard

RELEASE 50-57 8 Char Release level of the standard

INDUSTRY 58-65 8 Char Industry code of the standard

Exporting and importing trading partner profiles

204 WebSphere Data Interchange Programmer’s Reference

Table 23. EDI standard dictionary record (continued)

Tag Position Length Type Description

DICTENVFLAG 66-66 1 Char Standard type flag (dictionary or
envelope)

INTENV 67-96 30 Char Interchange envelope name

STDDESC 97-176 80 Char Description of the standard

STDPURP 177-688 512 Char Purpose of the standard

CMTTEXT 689-2736 2048 Char Comments

ALLTRXS 2737-2737 1 Char All transactions flag

EDI standard transaction header record (1Y2)
This record defines the transaction header fields being used. The fields are
described in Table 24.

Table 24. EDI standard transaction header record

Tag Position Length Type Description

STDID 4-33 30 Char EDI standard dictionary name

STDTRID 34-41 8 Char Transaction ID

FNGRPID 42-49 8 Char Function group ID

STDDESC 50-129 80 Char Description of the standard

STDPURP 130-2177 2048 Char Purpose of the standard

CMTTEXT 2178-3977 1800 Char Comments

EDI standard transaction detail record (1Y3)

This record defines the detail fields being used. If you are importing a transaction
set, you can define multiple transaction detail records. The fields are described in
Table 25.

Table 25. EDI standard transaction detail record

Tag Position Length Type Description

STDID 4-33 30 Char EDI standard dictionary name

STDTRID 34-41 8 Char Transaction ID

TABLENO 42-47 6 Char Table ID

POSNO 48-53 6 Char Position number

SEGID 54-61 8 Char Segment ID

SEGREQ 62-62 1 Char Segment required flag

SEGMAX 63-73 11 Char Number of times segment can be
repeated

UNLIMMAX 74-79 6 Char No limit on the number of times
segment can be repeated

NLOOPID 80-85 6 Char Loop ID

LPREP 86-96 11 Char Number of times loop can be
repeated

Exporting and importing trading partner profiles

Chapter 3. File formats and WebSphere Data Interchange Utility records 205

Table 25. EDI standard transaction detail record (continued)

Tag Position Length Type Description

UNLPREP 97-102 6 Char No limit on the number of times loop
can be repeated

LPLEV 103-108 6 Char Loop level

EDI standard segment header record (1Y4)

This record defines the segment header fields being used. The fields are described
in Table 26.

Table 26. EDI standard segment header record

Tag Position Length Type Description

STDID 4-33 30 Char EDI standard dictionary name

SEGID 34-41 8 Char Segment ID

STDDESC 42-121 80 Char Description of the standard

STDPURP 122-2169 2048 Char Purpose of the standard

CMTTEXT 2170-3969 1800 Char Comments

EDI standard segment detail record (1Y5)

This record defines the segment detail fields being used. The fields are described in
Table 27.

Table 27. EDI standard segment detail record

Tag Position Length Type Description

STDID 4-33 30 Char EDI standard dictionary name

SEGID 34-41 8 Char Segment ID

POSNO 42-47 6 Char Position number

DEID 48-55 8 Char Data element ID

DEREQ 56-56 1 Char Data element required flag

SEGMAX 57-67 11 Char Number of times segment can be
repeated

EDI standard data element header record (1Y6)

This record defines the data element header fields being used. The fields are
described in Table 28.

Table 28. EDI standard data element header record

Tag Position Length Type Description

STDID 4-33 30 Char EDI standard dictionary name

DEID 34-41 8 Char Data element ID

DETYPE 42-43 2 Char Type of data element

DEMIN 44-54 11 Char Minimum length of data element

DEMAX 55-65 11 Char Maximum length of data element

Exporting and importing trading partner profiles

206 WebSphere Data Interchange Programmer’s Reference

Table 28. EDI standard data element header record (continued)

Tag Position Length Type Description

CODELIST 66-73 8 Char Code list name

STDDESC 74-123 80 Char Description of the standard

STDPURP 124-2171 2048 Char Purpose of the standard

CMTTEXT 2172-3971 1800 Char Comments

EDI standard data element detail record (1Y7)

This record defines the data element detail fields being used. The fields are
described in Table 29.

Table 29. EDI standard data element detail record

Tag Position Length Type Description

STDID 4-33 30 Char EDI standard dictionary name

COMPID 34-41 8 Char Composite data element ID

POSNO 42-47 6 Char Position number

DEID 48-55 8 Char Data element ID

DEREQ 56-56 1 Char Data element required flag

SEGMAX 57-67 11 Char Number of times segment can be
repeated

EDI standard segment notes record (1Y8)

This record defines the segment note fields being used. The fields are described in
Table 30.

Table 30. EDI standard segment notes record

Tag Position Length Type Description

STDID 4-33 30 Char EDI standard dictionary name

SEGID 34-41 8 Char Segment ID

POSNO 42-47 6 Char Position number

NOTETYPE 48-48 1 Char Type of note

NOTEPARA 49-54 6 Char Paragraph number

RELATION 55-56 2 Char Relationship of one data element to
another

REL1 57-62 6 Char Related data element reference
number

REL2 63-68 6 Char Related data element reference
number

REL3 69-74 6 Char Related data element reference
number

REL4 75-80 6 Char Related data element reference
number

REL5 81-86 6 Char Related data element reference
number

Exporting and importing trading partner profiles

Chapter 3. File formats and WebSphere Data Interchange Utility records 207

Table 30. EDI standard segment notes record (continued)

Tag Position Length Type Description

REL6 87-92 6 Char Related data element reference
number

REL7 92-98 6 Char Related data element reference
number

REL8 99-104 6 Char Related data element reference
number

REL9 105-110 6 Char Related data element reference
number

REL10 111-116 6 Char Related data element reference
number

STDNOTE 117-1140 1024 Char Text of the note

EDI standard transaction notes record (1Y9)

This record defines the transaction note fields being used. The fields are described
in Table 31.

Table 31. EDI standard transaction notes record

Tag Position Length Type Description

STDID 4-33 30 Char EDI standard dictionary name

STDTRID 34-41 8 Char Transaction ID

TABLENO 42-47 6 Char Table number

POSNO 48-53 6 Char Position number

NOTETYPE 54-54 1 Char Type of note

NOTEPARA 55-60 6 Char Paragraph number

RELATION 61-62 2 Char Relationship of one data element to
another

REL1 63-68 6 Char Related data element reference
number

REL2 69-74 6 Char Related data element reference
number

REL3 75-80 6 Char Related data element reference
number

REL4 81-86 6 Char Related data element reference
number

REL5 87-92 6 Char Related data element reference
number

STDNOTE 93-1116 1024 Char Text of the note

EDI standard composite data element notes record (1YA)

This record defines the composite data element note fields being used. The fields
are described in Table 32 on page 209.

Exporting and importing trading partner profiles

208 WebSphere Data Interchange Programmer’s Reference

Table 32. EDI standard composite data element notes record

Tag Position Length Type Description

STDID 4-33 30 Char EDI standard dictionary name

COMPID 34-41 8 Char Composite data element ID

POSNO 42-47 6 Char Position number

NOTETYPE 48-48 1 Char Type of note

NOTEPARA 49-54 6 Char Paragraph number

RELATION 55-56 2 Char Relationship of one data element to
another

REL1 57-62 6 Char Related data element reference
number

REL2 63-68 6 Char Related data element reference
number

REL3 69-74 6 Char Related data element reference
number

REL4 75-80 6 Char Related data element reference
number

REL5 81-86 6 Char Related data element reference
number

STDNOTE 87-1110 1024 Char Text of the note

Exporting and importing data formats

Data formats can be exported/imported using either tagged or fixed format files. The
data format set includes:

2W1 Data format dictionary

2W2 Data format record ID information

2W3 Data format leader record

2W4 Data format loop record

2W5 Data format record record

2W6 Data format structure record

2W7 Data format field record

2W8 Data format header details record

2W9 Data format loop details record

2WA Data format record details record

2WB Data format structure details record

There are no associated objects for data formats.

The following example shows part of an export/import file data set that contains
records for exporting/importing one data format.

0C1DD5TST1 011025134023ENU010401000000

2W1 DICTIONARYNAME(MMTHL1_DICTIONARY) DESC(MAUI MAP TEST - HL1 - SUW) ALLADFS(N)

Exporting and importing trading partner profiles

Chapter 3. File formats and WebSphere Data Interchange Utility records 209

2W2 RECORDIDINFONAME(MMTHL1_RECORDID) DESC(MAUI MAP TEST - HL1 - SUW) ADFTYPE(0)
RIDPOS(1) RIDLENG(3) RIDTYPE(AN)

2W3 DICTIONARYNAME(MMTHL1_DICTIONARY) RECORDIDINFONAME(MMTHL1_RECORDID) FORMAT(MMTHL1)
DESC(MAUI MAP TEST - HL1 - SUW) ADFTPIDFLD(TRADINGPART) ADFBEGINRECID(MMTHL1REC)

2W5 DICTIONARYNAME(MMTHL1_DICTIONARY) RECORDIDINFONAME(MMTHL1_RECORDID) ADFRECORDNAME(MMTHL1REC)
DESC(MAUI MAP TEST - HL1 - SUW) ADFRECORDID(001)

2W7 DICTIONARYNAME(MMTHL1_DICTIONARY) ADFFIELDNAME(MMTHL1RECID) DESC(MAUI MAP TEST - HL1 - SUW)
DATATYPE(AN) FLDLEN(3) ADFSENDMAP(0) ADFRECEIVEMAP(0)

2WA DICTIONARYNAME(MMTHL1_DICTIONARY) ADF_RMEM_RECORDNAME(MMTHL1REC) ADF_RMEM_SEQNUM(1)
ADF_RMEM_MEMBERNAME(MMTHL1RECID) ADF_RMEM_MEMBERTYPE(FIELD) ADF_RMEM_MAXUSE(1)

2W7 DICTIONARYNAME(MMTHL1_DICTIONARY) ADFFIELDNAME(TRADINGPART) DESC(MAUI MAP TEST - HL1 - SUW)
DATATYPE(AN) FLDLEN(18) ADFSENDMAP(0) ADFRECEIVEMAP(0)

2WA DICTIONARYNAME(MMTHL1_DICTIONARY) ADF_RMEM_RECORDNAME(MMTHL1REC) ADF_RMEM_SEQNUM(2)
ADF_RMEM_MEMBERNAME(TRADINGPART) ADF_RMEM_MEMBERTYPE(FIELD) ADF_RMEM_MAXUSE(1)

2W7 DICTIONARYNAME(MMTHL1_DICTIONARY) ADFFIELDNAME(ACFIELD) DESC(MAUI MAP TEST - HL1 - SUW)
DATATYPE(AC) FLDLEN(6) ADFSENDMAP(0) ADFRECEIVEMAP(0)

2WA DICTIONARYNAME(MMTHL1_DICTIONARY) ADF_RMEM_RECORDNAME(MMTHL1REC) ADF_RMEM_SEQNUM(3)
ADF_RMEM_MEMBERNAME(ACFIELD) ADF_RMEM_MEMBERTYPE(FIELD) ADF_RMEM_MAXUSE(1)

2W7 DICTIONARYNAME(MMTHL1_DICTIONARY) ADFFIELDNAME(FILLER) DESC(MAUI MAP TEST - HL1 - SUW)
DATATYPE(AN) FLDLEN(1) ADFSENDMAP(0) ADFRECEIVEMAP(0)

2WA DICTIONARYNAME(MMTHL1_DICTIONARY) ADF_RMEM_RECORDNAME(MMTHL1REC) ADF_RMEM_SEQNUM(4)
ADF_RMEM_MEMBERNAME(FILLER) ADF_RMEM_MEMBERTYPE(FIELD) ADF_RMEM_MAXUSE(1)

2W7 DICTIONARYNAME(MMTHL1_DICTIONARY) ADFFIELDNAME(ELIGBEGDATE) DESC(MAUI MAP TEST - HL1 - SUW)
DATATYPE(AN) FLDLEN(8) ADFSENDMAP(0) ADFRECEIVEMAP(0)

2WA DICTIONARYNAME(MMTHL1_DICTIONARY) ADF_RMEM_RECORDNAME(MMTHL1REC) ADF_RMEM_SEQNUM(5)
ADF_RMEM_MEMBERNAME(ELIGBEGDATE) ADF_RMEM_MEMBERTYPE(FIELD) ADF_RMEM_MAXUSE(1)

2W7 DICTIONARYNAME(MMTHL1_DICTIONARY) ADFFIELDNAME(ELIGENDDATE) DESC(MAUI MAP TEST - HL1 - SUW)
DATATYPE(AN) FLDLEN(8) ADFSENDMAP(0) ADFRECEIVEMAP(0)

2WA DICTIONARYNAME(MMTHL1_DICTIONARY) ADF_RMEM_RECORDNAME(MMTHL1REC) ADF_RMEM_SEQNUM(6)
ADF_RMEM_MEMBERNAME(ELIGENDDATE) ADF_RMEM_MEMBERTYPE(FIELD) ADF_RMEM_MAXUSE(1)

2W7 DICTIONARYNAME(MMTHL1_DICTIONARY) ADFFIELDNAME(SUBSCRIBER) DESC(MAUI MAP TEST - HL1 - SUW)
DATATYPE(AN) FLDLEN(18) ADFSENDMAP(0) ADFRECEIVEMAP(0)

2WA DICTIONARYNAME(MMTHL1_DICTIONARY) ADF_RMEM_RECORDNAME(MMTHL1REC) ADF_RMEM_SEQNUM(7)
ADF_RMEM_MEMBERNAME(SUBSCRIBER) ADF_RMEM_MEMBERTYPE(FIELD) ADF_RMEM_MAXUSE(1)

2W6 DICTIONARYNAME(MMTHL1_DICTIONARY) ADFSTRUCTNAME(FAMILY) DESC(MAUI MAP TEST - HL1 - SUW)

2W7 DICTIONARYNAME(MMTHL1_DICTIONARY) ADFFIELDNAME(DEPFIRSTNAME) DESC(MAUI MAP TEST - HL1 - SUW)
DATATYPE(AN) FLDLEN(9) ADFSENDMAP(0) ADFRECEIVEMAP(0)

2WB DICTIONARYNAME(MMTHL1_DICTIONARY) ADF_SMEM_STRUCTNAME(FAMILY) ADF_SMEM_SEQNUM(1)
ADF_SMEM_MEMBERNAME(DEPFIRSTNAME) ADF_SMEM_MEMBERTYPE(FIELD) ADF_SMEM_MAXUSE(1)

2W7 DICTIONARYNAME(MMTHL1_DICTIONARY) ADFFIELDNAME(DEPLASTNAME) DESC(MAUI MAP TEST - HL1 - SUW)
DATATYPE(AN) FLDLEN(9) ADFSENDMAP(0) ADFRECEIVEMAP(0)

2WB DICTIONARYNAME(MMTHL1_DICTIONARY) ADF_SMEM_STRUCTNAME(FAMILY) ADF_SMEM_SEQNUM(2
ADF_SMEM_MEMBERNAME(DEPLASTNAME) ADF_SMEM_MEMBERTYPE(FIELD) ADF_SMEM_MAXUSE(1)

2W7 DICTIONARYNAME(MMTHL1_DICTIONARY) ADFFIELDNAME(DEPDOB) DESC(MAUI MAP TEST - HL1 - SUW)
DATATYPE(AN) FLDLEN(8) ADFSENDMAP(0) ADFRECEIVEMAP(0)

Exporting and importing data formats

210 WebSphere Data Interchange Programmer’s Reference

2WB DICTIONARYNAME(MMTHL1_DICTIONARY) ADF_SMEM_STRUCTNAME(FAMILY) ADF_SMEM_SEQNUM(3)
ADF_SMEM_MEMBERNAME(DEPDOB) ADF_SMEM_MEMBERTYPE(FIELD) ADF_SMEM_MAXUSE(1)

2WA DICTIONARYNAME(MMTHL1_DICTIONARY) ADF_RMEM_RECORDNAME(MMTHL1REC) ADF_RMEM_SEQNUM(8)
ADF_RMEM_MEMBERNAME(FAMILY) ADF_RMEM_MEMBERTYPE(STRUCT) ADF_RMEM_MAXUSE(15)

2W8 DICTIONARYNAME(MMTHL1_DICTIONARY) ADF_HMEM_ADFNAME(MMTHL1) ADF_HMEM_SEQNUM(1)
ADF_HMEM_MEMBERNAME(MMTHL1REC) ADF_HMEM_MEMBERTYPE(REC) ADF_HMEM_AREA(Detail)
ADF_HMEM_MAXUSE(1) ADF_HMEM_INFLOOP(0)

000

Data format dictionary record (2W1)

This record defines the data format dictionary being used. The fields are described
in Table 33.

Table 33. Data format dictionary record

Tag Position Length Type Description

DICTIONARYNAME 4-33 30 Char Dictionary name

DESC 34-83 50 Char Description

CMTTEXT 84-2131 2048 Char Comments

ALLADFS 2132-2132 1 Char Include all ADFs

Data format record ID record (2W2)

This record defines the data format record being used. The fields are described in
Table 34.

Table 34. Data format record ID record

Tag Position Length Type Description

RECORDIDINFONAME 4-33 30 Char Record ID
information name

DESC 34-83 50 Char Description

ADFTYPE 84-84 1 Char Data format type

RIDPOS 85-90 6 Char Record ID position

RIDLENG 91-101 11 Char Record ID length

RIDTYPE 102-103 2 Char Record ID type

CMTTEXT 104-2151 2048 Char Comments

Data format header record (2W3)

This record defines the data format header being used. The fields are described in
Table 35.

Table 35. Data format header record

Tag Position Length Type Description

DICTIONARYNAME 4-33 30 Char Dictionary name

RECORDIDINFONAME 34-63 30 Char Record ID information
name

Exporting and importing data formats

Chapter 3. File formats and WebSphere Data Interchange Utility records 211

Table 35. Data format header record (continued)

Tag Position Length Type Description

FORMAT 64-79 16 Char Data format name

DESC 80-129 50 Char Description

FILEID 130-137 8 Char logical name

FILETYPE 138-139 2 Char File type

ADFTPIDFLD 140-169 30 Char Field containing trading
partner ID

ADFBEGINRECID 170-199 30 Char Field containing
beginning record ID

ADFENDRECID 200-229 30 Char Field containing ending
record ID

ADFGENRTCDE 230-259 30 Char Field containing generic
routing code

CMTTEXT 260-2307 2048 Char Comments

INTSNDQUALFLD 2308-2337 30 Char Field containing
interchange sender ID
qualifier

INTSNDIDFLD 2338-2367 30 Char Field containing
interchange sender ID

INTRCVQUALFLD 2368-2397 30 Char Field containing
interchange receiver ID
qualifier

INTRCVFLD 2398-2427 30 Char Field containing
interchange receiver ID

APPLTPIDFLD 2428-2457 30 Char Field containing
application trading
partner nickname

EDITPIDFLD 2458-2487 30 Char Field containing EDI
trading partner
nickname

ADFCMDELIM 2488-2488 1 Char Comma-separated
value delimiter

ADFRECDELIM 2489-2490 2 Char Record delimiter

ADFUNICODE 2491-2506 16 Char Code page

ADFTXTDELIM 2507-2508 2 Char Reserved for future use

ADFTXTQUAL 2509-2538 30 Char Reserved for future use

Data format loop record (2W4)

This record defines the data format loop being used. The fields are described in
Table 36.

Table 36. Data format loop record

Tag Position Length Type Description

DICTIONARYNAME 4-33 30 Char Dictionary name

RECORDIDINFONAME 34-63 30 Char Record ID information
name

Exporting and importing data formats

212 WebSphere Data Interchange Programmer’s Reference

Table 36. Data format loop record (continued)

Tag Position Length Type Description

ADFLOOPNAME 64-93 30 Char Loop name

DESC 94-143 50 Char Description

CMTTEXT 144-2191 2048 Char Comments

Data format record record (2W5)

This record defines the data format record being used. The fields are described in
Table 37.

Table 37. Data format record record

Tag Position Length Type Description

DICTIONARYNAME 4-33 30 Char Dictionary name

RECORDIDINFONAME 34-63 30 Char Record ID information
name

ADFRECORDNAME 64-93 30 Char Record name

DESC 94-143 50 Char Description

ADFRECORDID 144-159 16 Char Record ID

CMTTEXT 160-2207 2048 Char Comments

Data format structure record (2W6)

This record defines the data format structure being used. The fields are described
in Table 38.

Table 38. Data format structure record

Tag Position Length Type Description

DICTIONARYNAME 4-33 30 Char Dictionary name

ADSTRUCTNAME 34-63 30 Char Structure name

DESC 64-113 50 Char Description

CMTTEXT 114-2161 2048 Char Comments

Data format field record (2W7)

This record defines the data format fields being used. The fields are described in
Table 39.

Table 39. Data format field record

Tag Position Length Type Description

DICTIONARYNAME 4-33 30 Char Dictionary name

ADFFIELDNAME 34-63 30 Char Field name

DESC 64-113 50 Char Description

DATATYPE 114-115 2 Char Data type

FLDLEN 116-121 6 Char Field length

ADFMAPCOMMANDS 122-201 80 Char Mapping command line

Exporting and importing data formats

Chapter 3. File formats and WebSphere Data Interchange Utility records 213

Table 39. Data format field record (continued)

Tag Position Length Type Description

ADFSENDMAP 202-202 1 Char Send map

ADFRECEIVEMAP 203-203 1 Char Receive map

ADFVALTBLNAME 204-211 8 Char Code list name

CMTTEXT 212-2259 2048 Char Comments

Data format header details record (2W8)

This record defines the data format header details being used. The fields are
described in Table 40.

Table 40. Data format header details record

Tag Position Length Type Description

DICTIONARYNAME 4-33 30 Char Dictionary name

ADF_HMEM_ADFNAME 34-49 16 Char Data format name

ADF_HMEM_SEQNUM 50-59 10 Char Sequence number

ADF_HMEM_MEMBERNAME 60-89 30 Char Member name

ADF_HMEM_MEMBERTYPE 90-97 8 Char Member type

ADF_HMEM_AREA 98-113 16 Char Area value

ADF_HMEM_MAXUSE 114-118 5 Char Maximum number of
occurrences

ADF_HMEM_INFLOOP 119-119 1 Char Infinite loop flag

Data format loop details record (2W9)

This record defines the data format loop details being used. The fields are
described in Table 41.

Table 41. Data format loop details record

Tag Position Length Type Description

DICTIONARYNAME 4-33 30 Char Dictionary name

ADF_LMEM_LOOPNAME 34-63 30 Char Loop name

ADF_LMEM_SEQNUM 64-73 10 Char Sequence number

ADF_LMEM_MEMBERNAME 74-103 30 Char Member name

ADF_LMEM_MEMBERTYPE 104-111 8 Char Member type

ADF_LMEM_MAXUSE 112-116 5 Char Maximum number of
occurrences

ADF_LMEM_INFLOOP 117-117 1 Char Infinite loop flag

Data format record details record (2WA)

This record defines the data format record details being used. The fields are
described in Table 42 on page 215.

Exporting and importing data formats

214 WebSphere Data Interchange Programmer’s Reference

Table 42. Data format record details record

Tag Position Length Type Description

DICTIONARYNAME 4-33 30 Char Dictionary name

ADF_RMEM_RECORDNAME 34-63 30 Char Record name

ADF_RMEM_SEQNUM 64-73 10 Char Sequence number

ADF_RMEM_MEMBERNAME 74-103 30 Char Member name

ADF_RMEM_MEMBERTYPE 104-111 8 Char Member type

ADF_RMEM_MAXUSE 112-116 5 Char Maximum number of
occurrences

ADF_RMEM_OCCURSDEPNAME117-146 30 Char The field that
determines whether
this structure should
occur

Data format structure details record (2WB)

This record defines the data format structure details being used. The fields are
described in Table 43.

Table 43. Data format structure details record

Tag Position Length Type Description

DICTIONARYNAME 4-33 30 Char Dictionary name

ADF_SMEM_STRUCTNAME 34-63 30 Char Structure name

ADF_SMEM_SEQNUM 64-73 10 Char Sequence number

ADF_SMEM_MEMBERNAME 74-103 30 Char Member name

ADF_SMEM_MEMBERTYPE 104-111 8 Char Member type

ADF_SMEM_MAXUSE 112-116 5 Char Maximum number of
occurrences

ADF_SMEM_OCCURSDEPNAME117-146 30 Char The field that
determines whether
this structure should
occur

Exporting and importing maps

Maps can be exported/imported using tagged or fixed format files. The map set
includes:

3T4 Trading partner

3T5 Trading partner send usages/rules

3T6 Trading partner receive usages/rules

3T7 Data transformation map usage/rule

3V1 Map header record

3V2 Map segment record

3V3 Map element record

3V9 Map application control record

Exporting and importing data formats

Chapter 3. File formats and WebSphere Data Interchange Utility records 215

3VA Map syntax record

3VB Map local variables record

3VC Map reference record

3VD Map nodes record

3VE Map comments record

BK2 Global variables

The twenty associated objects for exporting maps are listed below. Either maps or
usages/rules must be selected:
1. Transaction usages/rules
2. Control string
3. Standard transactions (for DT maps source document definition)
4. Data formats (for DT maps target document definition)umm in
5. Validation tables
6. Translation tables
7. User exit routines
8. Trading partner profile
9. Translation exit routines

10. Network security profile
11. Network profile
12. Network commands profile
13. Envelope profile
14. Envelope standard
15. Maps
16. Conversion of prior-release objects
17. Global variables
18. Validation maps
19. FA maps
20. Embedded maps

Note: In trading partner-to-trading partner translations, WebSphere Data
Interchange stores control numbers by ISA Sender Qualifier, ISA Receiver
Qualifier, and ISA Receiver, ensuring that the receiver gets a contiguous set
of control numbers from every sender.

The following example shows an export/import file that contains tags for a send
map and the associated send usage/rule.
0C1DD5TST1 011025135724ENU010401000000
3V1 TPTID(MMTHL1) STDID(X12V3R7) STDTRID(271) FORMAT(MMTHL1) DIR(S) GENREQD(N)

DESC(MAUI MAP TEST - HL1 - SUW Outbound) DICTIONARYNAME(MMTHL1_DICTIONARY)
CMPCHK(N) BASE(T)

3V2 TPTID(MMTHL1) TABLE(1) POS(20) OCCUR(1) GENFLAG(N)
3V2 TPTID(MMTHL1) TABLE(2) POS(10) OCCUR(1) DEPTHSEQ(1) PATH(MMTHL1REC)
HLNODE(1) HLPARNODE(1) HL03(20) GENFLAG(N)
3V2 TPTID(MMTHL1) TABLE(2) POS(10) OCCUR(2) DEPTHSEQ(3) HLNODE(2)
HLPARNODE(1) HL03(21) PARHL03(20) GENFLAG(N)
3V2 TPTID(MMTHL1) TABLE(2) POS(10) OCCUR(3) DEPTHSEQ(5) HLNODE(3)
HLPARNODE(1) HL03(22) PARHL03(21) GENFLAG(N)
3V2 TPTID(MMTHL1) TABLE(2) POS(10) OCCUR(4) DEPTHSEQ(6)
PATH(MMTHL1RECFAMILY) HLNODE(4) HLPARNODE(1) HL03(23) PARHL03(22)
GENFLAG(N)3V2 TPTID(MMTHL1) TABLE(2) POS(20) OCCUR(1) PARTABLE(2) PARPOS(10)
PAROCCUR(2) DEPTHSEQ(4) QUALOCCUR(1) GENFLAG(N)
3V2 TPTID(MMTHL1) TABLE(2) POS(30) OCCUR(1) PARTABLE(2) PARPOS(10)
PAROCCUR(4) DEPTHSEQ(7) QUALOCCUR(1) GENFLAG(N)
3V2 TPTID(MMTHL1) TABLE(2) POS(30) OCCUR(2) PARTABLE(2) PARPOS(10)
PAROCCUR(1) DEPTHSEQ(2) QUALOCCUR(1) GENFLAG(N)

Exporting and importing maps

216 WebSphere Data Interchange Programmer’s Reference

3V3 TPTID(MMTHL1) TABLE(1) POS(20) OCCUR(1) ELEPOS(1) ELEOCCUR(1)

DATEEDIT(-4096) LITVAL(S)
3V3 TPTID(MMTHL1) TABLE(2) POS(30) OCCUR(2) ELEPOS(3) ELEOCCUR(1)
PATH(MMTHL1REC) ADFFIELDNAME(SUBSCRIBER) DATEEDIT(-4096)
000

The following tables define the fields for exporting/importing maps.

Map header record (3V1)
This record defines the map header being used. The fields are described in
Table 44.

Table 44. Map header record

Tag Position Length Type Description

TPTID 4-19 16 Char Map name

STDID 20-49 30 Char EDI standard dictionary name

STDTRID 50-57 8 Char EDI standard transaction ID

FORMAT 58-73 16 Char Data format ID

DIR 74-74 1 Char Map type (send/receive/data
transformation) flag

GENREQD 75-75 1 Char Compile required

DESC 76-125 50 Char Description

DICTIONARYNAME 126-155 30 Char Data format dictionary name

CMPCHK 156-156 1 Char Compliance check flag

BASE 157-157 1 Char Future use

Map segment record (3V2)

This record defines the map segment being used. The fields are described in
Table 45.

Table 45. Map segment record

Tag Position Length Type Description

TPTID 4-19 16 Char Map name

TABLE 20-20 1 Char Table

POS 21-25 5 Char Position in table

OCCUR 26-30 5 Char Occurrence

PARTABLE 31-31 1 Char Parent table

PARPOS 32-36 5 Char Parent position

PAROCCUR 37-41 5 Char Parent occurrence

DEPTHSEQ 42-46 5 Char Depth sequence number

QUALOCCUR 47-52 6 Char Qualification occurrence
number

QUALELEPOS 53-56 4 Char Qualified element position

QUALELEREPEATNO 57-61 5 Char Qualified element repeat
number

QUALSUBELEPOS 62-65 4 Char Qualified sub-element position

PATH 66-320 255 Char Qualified path

Exporting and importing maps

218 WebSphere Data Interchange Programmer’s Reference

Table 45. Map segment record (continued)

Tag Position Length Type Description

QUALTEXT 321-365 45 Char Element loop value

HLNODE 366-370 5 Char Hierarchical loop node number

HLPARNODE 371-375 5 Char Hierarchical loop parent node
number

HL03 376-377 2 Char HL03 value

PARHL03 378-379 2 Char HL03 parent value

FLDHL03 380-409 30 Char HL03 field value

PARFLDHL03 410-439 30 Char HL03 field parent value

GENFLAG 440-440 1 Char Generate segment

DOSNIPET 441-441 1 Char Snipet text

BSNIPET 442-521 80 Char Before snipet flag

ASNIPET 522-601 80 Char After snipet flag

CMTTEXT 602-2649 2048 Char Segment mapping comments

Map element record (3V3)

This record defines the map element being used. The fields are described in
Table 46.

Table 46. Map element record

Tag Position Length Type Description

TPTID 4-19 16 Char Map name

TABLE 20-20 1 Char Table ID

POS 21-25 5 Char Position in table

OCCUR 26-30 5 Char Table occurrence number

ELEPOS 31-35 5 Char Element position number

SUBELEPOS 36-40 5 Char Sub-element position number

ELEOCCUR 41-45 5 Char Element occurrence number

PATH 46-300 255 Char Path name

ADFFIELDNAME 301-330 30 Char Data format field name

ELEQUALPOS 331-335 5 Char Qualifying element's position
number

SUBELEQUALPOS 336-340 5 Char Qualifying sub-element's
position number

ELEQUALOCCUR 341-345 5 Char Qualifying element's
occurrence number

QUALTEXT 346-386 45 Char Element qualifier

TRNTAB 391-398 8 Char Translation table

USEREXIT 699-406 8 Char User exit ID

VALTAB 407-414 8 Char Code list ID

DATEEDIT 415-416 2 Char Date edit field

Exporting and importing maps

Chapter 3. File formats and WebSphere Data Interchange Utility records 219

Table 46. Map element record (continued)

Tag Position Length Type Description

SUBPOS 417-422 6 Char Substring or concatenation
position

SUBLEN 423-428 6 Char Substring or concatenation
length

ACCUM1 429-430 2 Char Accumlator1

ACTION1 431-432 2 Char Accumlator1 action

ACCUM2 433-434 2 Char Accumlator2

ACTION2 435-436 2 Char Accumlator2 action

ACCUM3 437-438 2 Char Accumlator3

ACTION3 439-440 2 Char Accumlator3 action

ACCUM4 441-442 2 Char Accumlator4

ACTION4 443-444 2 Char Accumlator4 action

LITVAL 445-524 80 Char Code Snipet

CMTTEXT 525-2572 2048 Char Element comments

ELEREPEATNO 2573-2577 5 Char Element repeat occurrence
number

QUALPATH 2578-2832 255 Char Qualifying path

UNIQUEID 2833-2838 6 Char Mapping unique ID

Map application control record (3V9)

This record defines the map application control being used. The fields are described
in Table 47.

Table 47. Map application control record

Tag Position Length Type Description

TPTID 4-19 16 Char Map name

UNIQUEID 20-20 1 Char Unique ID

SEQUENCE 21-21 1 Char Sequence

PATH 22-276 255 Char Path name

ADFFIELDNAME 277-306 30 Char Data format field name

LENGTH 307-311 5 Char Field length

Map syntax record (3VA)

This record defines the map syntax being used. The fields are described in
Table 48.

Table 48. Map syntax record

Tag Position Length Type Description

TPTID 4-19 16 Char Map name

UNIQUEID 20-24 5 Char Unique ID

BASE 25-25 1 Char Future use

Exporting and importing maps

220 WebSphere Data Interchange Programmer’s Reference

Table 48. Map syntax record (continued)

Tag Position Length Type Description

SEQNO 26-30 6 Char Sequence number

SYNTAX 31-31 1 Char Syntax type

DICTIONARYNAME 32-61 30 Char Dictionary name

DOCNAME 62-91 30 Char Document definition name

Exporting and importing maps

Chapter 3. File formats and WebSphere Data Interchange Utility records 221

Map local variables record (3VB)

This record defines the map local variables being used. The fields are described in
Table 49.

Table 49. Map local variables record

Tag Position Length Type Description

TPTID 4-19 16 Char Map name

VARNAME 20-49 30 Char Variable name

DISPNAME 50-79 30 Char Displayed variable name

DESC 80-129 50 Char Description

DATATYPE 130-130 1 Char Data type

SCOPE 131-131 1 Char Scope

DEMAX 132-136 5 Char Maximum length

INITVAL 137-168 32 Char Initial value

Map reference record (3VC)

This record defines the map reference being used. The fields are described in
Table 50.

Table 50. Map reference record

Tag Position Length Type Description

TPTID 4-19 16 Char Map name

UNIQUEID 20-25 6 Char Unique ID

TYPE 26-26 1 Char Type

PARENTID 27-37 11 Char Syntax ID

SYNTAX 38-38 1 Char Syntax type

DICTIONARYNAME 39-68 30 Char Dictionary name

FORMAT 69-98 30 Char Document definition name

PATH 99-353 255 Char Path

Map nodes record (3VD)

This record defines the map nodes being used. The fields are described in
Table 51.

Table 51. Map nodes record

Tag Position Length Type Description

TPTID 4-19 16 Char Map name

UNIQUEID 20-25 6 Char Unique ID

PARENTID 26-36 11 Char Parent’s unique ID

SEQNO 37-47 11 Char Sequence

TYPE 48-48 1 Char Map type

SUBTYPE 49-49 1 Char Map sub type

Exporting and importing maps

222 WebSphere Data Interchange Programmer’s Reference

Table 51. Map nodes record (continued)

Tag Position Length Type Description

ASSOCFWD 50-55 6 Char Associated forward

ASSOCBKD 56-61 6 Char Associated backward

POSNO 62-70 9 Char Position number

EDIT 71-71 1 Char Map edit

REFID 72-77 6 Char Map reference ID

REPEATS 78-78 1 Char Node repeats

QUALIFIED 79-79 1 Char Qualified flag

CMTTEXT 80-2128 2048 Char Comment

Map commands record (3VE)

This record defines the map commands being used. The fields are described in
Table 52.

Table 52. Map commands record

Tag Position Length Type Description

TPTID 4-19 16 Char Map name

UNIQUEID 20-25 6 Char Unique ID

PARENTID 26-36 11 Char Node’s unique ID

SEQNO 37-47 11 Char Sequence

VERSION 48-53 6 Char Version

COMMAND 54-2101 2048 Char Map command

Global variables details record (BK2)

This record defines the global variables being used. The fields are described in
Table 53.

Table 53. Global variables details record

Tag Position Length Type Description

VARNAME 4-33 30 Char Variable name

DISPNAME 34-63 30 Char Displayed variable name

DESC 64-113 50 Char Description

DATATYPE 114-114 1 Char Data type

SCOPE 115-115 1 Char Scope

DEMAX 116-120 5 Char Maximum length

INITVAL 121-152 32 Char Initial value

Send usage record (3T5)

This record defines the send usage/rule being used. The fields are described in
Table 54 on page 224.

Exporting and importing maps

Chapter 3. File formats and WebSphere Data Interchange Utility records 223

Table 54. Trading partner send usage record

Tag Position Length Type Description

INTPID 4-38 35 Char Internal trading partner ID

FORMAT 39-54 16 Char Data format ID

TPTID 55-70 16 Char Trading partner mapping
transaction ID

TPNICKN 71-86 16 Char Trading partner nickname

ENVTYPE 87-87 1 Char EDI standard envelope type

STDPROF 88-95 8 Char EDI standard profile name

APPSNDID 96-130 35 Char Application sender ID

APPRECID 131-165 35 Char Application receiver ID

APPASSWD 166-179 14 Char Application password

PSTTRXIT 180-187 8 Char Post-translation exit routine
name

ACTIVE 188-188 1 Char Active usage for this
INTPID/FORMAT combination

ACKREQ 189-189 1 Char Acknowledgment expected flag

TESTIND 190-190 1 Char Test indicator

LOGAPP 191-191 1 Char Log application data

ENFORCEHIER 192-192 1 Char Enforce structure hierarchy

STRUCTDATACHK 193-193 1 Char Structure must produce data

TRVALVL 194-194 1 Char Validation level

TRERLVL 195-195 1 Char Acceptable error level

GRPSECPR 196-203 8 Char Group network security profile
name

GRPENCKY 204-219 16 Char Group encryption key name

GRPAUTKY 220-235 16 Char Group authentication key
name

TRNSECPR 236-243 8 Char Trans network security profile
name

TRNENCKY 244-259 16 Char Trans encryption key name

TRNAUTKY 260-275 16 Char Trans authentication key name

APPLTPID 276-291 16 Char Application trading partner
nickname

ALPHANUM 292-299 8 Char Alternate table for ALPHANUM

CHARSET 300-307 8 Char Alternate table for CHARSET

CNTRX 308-308 1 Char Control numbers utilization flag

Receive usage record (3T6)

This record defines the receive usage/rule being used. The fields are described in
Table 55 on page 225.

Exporting and importing maps

224 WebSphere Data Interchange Programmer’s Reference

Table 55. Trading partner receive usage record

Tag Position Length Type Description

TPNICKN 4-19 16 Char Trading partner nickname

STDTRID 20-27 8 Char EDI standard transaction ID

TPTID 28-43 16 Char Map name

APSNDRCV 44-78 35 Char Application sender/receiver ID

AGENCY 79-86 8 Char Responsible agency code

VER 87-94 8 Char Version

REL 95-102 8 Char Release

SNDRCVFL 103-103 1 Char Sender or receiver flag

INTPID 104-138 35 Char Internal trading partner ID

STDPROF 139-146 8 Char Standard profile name

APPASSWD 147-160 14 Char Application password

PRETRXIT 161-168 8 Char Pre-translation exit routine

FILEID 169-176 8 Char Logical receiving data set
name

FILETYPE 177-178 2 Char Type of receive file

ACTIVE 179-179 1 Char Active usage flag for this
trading partner

ACKTRN 180-187 8 Char Acknowledgment transaction
ID

TESTIND 188-188 1 Char Test indicator

LOGAPP 189-189 1 Char Log application data

OVERLAYCHK 190-190 1 Char Consider data overlay an error

UNEXPFLDCHK 191-191 1 Char Consider unexpected field an
error

UNEXPSEGCHK 192-192 1 Char Consider unexpected segment
an error

SWITCHROUTING 193-193 1 Char Switch application routing IDs
on functional acknowledgment

TRVALVL 194-194 1 Char Validation level

TRERLVL 195-195 1 Char Acceptable error level

INTFA 196-196 1 Char Internal functional
acknowledgment switch

APPLTPID 197-212 16 Char Application trading partner
nickname

ALPHANUM 213-220 8 Char Alternate table for ALPHANUM

CHARSET 221-228 8 Char Alternate table for CHARSET

CNTRX 229-229 1 Char Control numbers utilization flag

Data transformation map rule record (3T7)

This record defines the data transformation map being used. The fields are
described in Table 56 on page 226.

Exporting and importing maps

Chapter 3. File formats and WebSphere Data Interchange Utility records 225

Table 56. Data transformation map rule record

Tag Position Length Type Description

MAPID 4-20 16 Char Map name

DOCID 21-49 30 Char Document definition name

DICTIONARYNAME 50-79 30 Char Dictionary name

DESCRIPT 80-109 30 Char Description

PROCESS 110-149 40 Char Process ID

SENDTPID 150-165 16 Char Sending trading partner
nickname

RECVTPID 166-181 16 Char Receiving trading partner
nicknamme

TESTIND 182-182 1 Char Test indicator

ENVTYPE 183-183 1 Char EDI standard envelope type

STDPROF 184-191 8 Char EDI standard profile name

APPSNDID 192-226 35 Char Application sender ID

APPRECID 227-261 35 Char Application receiver ID

APPASSWD 262-275 14 Char Application password

SYNTAX 276-278 3 Char Syntax type

ACTIVE 279-279 1 Char Active usage for this
INTPID/FORMAT combination

ACKREQ 280-280 1 Char Acknowledgment expected flag

INBVALLVL 281-281 1 Char Inbound validation level

OUTBVALLVL 282-282 1 Char Outbound validation level

FAENVTYPE 283-283 1 Char Functional acknowledgment
envelope type

FAENVPROF 284-291 8 Char Functional acknowledgment
envelope profile name

GRPLVLFA 292-292 1 Char Group level functional
acknowledgment

TRERLVL 293-293 1 Char Acceptable error level

INBALPHANUM 294-301 8 Char Inbound alternate table for
ALPHANUM

INBCHARSET 302-309 8 Char Inbound alternate table for
CHARSET

OUTBALPHANUM 310-317 8 Char Outbound alternate table for
ALPHANUM

OUTBCHARSET 318-325 8 Char Outbound alternate table for
CHARSET

CNTRX 326-326 1 Char Control numbers utilization flag

FILEID 327-334 8 Char Logical application data set
name

FILETYPE 335-336 2 Char Type of application file

ACKDOCID 337-366 30 Char Acknowledgment document ID

INBVALMAP 367-396 30 Char Inbound validation map ID

OUTBVALMAP 397-426 30 Char Outbound validation map ID

Exporting and importing maps

226 WebSphere Data Interchange Programmer’s Reference

Exporting and importing table definitions

Table definitions can be exported/imported using either tagged or fixed format files.
The table definitions set includes:

B1 Table definitions

B2 Table entry

The following example shows an export/import file that contains tags for table
definitions.
0C1SMITH 940419161616ENU010103000000

8B1TBLID(AAAAA) DATECRT(940325) TBLDSC(dd) PUBAUTH(ALL) FLAGS(00)

8B2TBLID(AAAAA) VAR1(A)

000

The following tables define the fields for exporting/importing tables.

Export/Import table definition (B1)

Table 57 defines the fields for exporting and importing table definitions.

Table 57. Table definition fields for export and import

Tag Position Length Type Description

TBLID 4-11 8 Char Table ID

DATECRT 12-17 6 Char Date created

TBLDSC 18-52 35 Char Table description

PUBAUTH 53-58 6 Char Authority

OWNER 59-66 8 Char Owner

FLAGS 67-68 2 Char Flags (always 00)

KEYID 69-86 18 Char Key field ID

KEYLN 87-92 6 Char Key field length

RECLN 93-98 6 Char Record length

NUMFLDS 99-104 6 Char Number of fields in a table row

TBLTYPE 105-105 1 Char Table type

FLD1ID 106-123 18 Char Field 1 ID

FLD1OFF 124-129 6 Char Field 1 offset

FLD1LEN 130-132 3 Char Field 1 length

FLD1TYPE 133-134 2 Char Field 1 data type

FLD1DSC 135-169 35 Char Field 1 description

FLD2ID 170-187 18 Char Field 2 ID

FLD2OFF 188-193 6 Char Field 2 offset

FLD2LEN 194-196 3 Char Field 2 length

FLD2TYPE 197-198 2 Char Field 2 data type

FLD2DSC 199-233 35 Char Field 2 description

TAG 234-241 8 Char Future index tag

Exporting and importing table definitions

Chapter 3. File formats and WebSphere Data Interchange Utility records 227

Export/Import table definition (B1) field descriptions

Table ID (TBLID): A name for referring to the table.

Date created (DATECRT): The date this table was created.

Table description (TBLDSC): A brief description of this table.

Authority (PUBAUTH): For WebSphere Data Interchange use only.

Owner (OWNER): The user ID of the owner of this table.

Flags (FLAGS): Always set to 00.

Key ID (KEYID): The ID of the field used as the key for performing lookups.
Validation and type T translation tables use the first (or only) field as the key field.
Type R translation tables use the second field.

Key field length (KEYLN): The length of the key field.

Record length (RECLN): The length of a row in this table.

Number of fields (NUMFLDS): The total number of fields in a row in this table.
Validation tables have one field. Translation tables have two.

Table type (TBLTYPE): The type of table. Valid values are:

T Translation table. Contains pairs of values: the value to be translated and
the value to be substituted for it. For example, you can translate a
purchaser’s part number to a supplier’s part number before sending a
purchase order. The table is organized with the application value as the key
value and the EDI standard or trading partner value as data. With this type
of table, multiple application values can translate to the same EDI standard
value, but each EDI standard value will translate to one and only one
application value. This table gives the best performance when translating
from an application to an EDI standard.

R Translation table. Serves the same purpose as the type T table but is
organized with the EDI standard value as the key value and the application
value as data. With this type of table, multiple EDI standard values can
translate to the same application value, but each application value will
translate to one and only one EDI standard value. This table gives the best
performance when translating from an EDI standard to an application.

V Validation table. This table contains a list of acceptable values for a field. It
can contain several values or only one value.

Field 1 ID (FLD1ID): The ID of the first column in a row of this table.

Field 1 offset (FLD1OFF): The offset into a row of this table where the first field
begins.

Field 1 length (FLD1LEN): The maximum number of characters one entry in this
column will contain. The maximum is 35. For translation tables (data type T) the
maximum length for Field 1 and FIeld 2 combined is 68 characters. Include decimal
points and integer signs as part of the data length. For example, the value -12.34
requires a length of 6.

Exporting and importing table definitions

228 WebSphere Data Interchange Programmer’s Reference

Field 1 data type (FLD1TYPE): The data type for entries in this column. Valid
values are:

CH Character. Any combination of characters.

R Real. A numeric field that requires a decimal point for fractional values. The
decimal point is optional for integers. A sign (+ or -) is optional.

Field 1 description (FLD1DSC): A brief description of this field.

Field 2 ID (FLD2ID): The ID of the second column in a row of this table (if there
is one).

Field 2 offset (FLD2OFF): The offset into a row of this table where the second
field begins.

Field 2 length (FLD2LEN): The maximum number of characters one entry in this
column will contain. The maximum is 35. For translation tables (data type T) the
maximum length for Field 1 and FIeld 2 combined is 68 characters. Include decimal
points and integer signs as part of the data length. For example, the value -12.34
requires a length of 6.

Field 2 data type (FLD2TYPE): The data type for entries in this column. Valid
values are:

CH Character. Any combination of characters.

R Real. A numeric field that requires a decimal point for fractional values. The
decimal point is optional for integers. A sign (+ or -) is optional.

Field 2 description (FLD2DSC): A brief description of this field.

Tag (TAG): Reserved for future use.

Export/Import table entry (B2)

Table 58 defines the tags and lengths for exporting/importing table entries.

Table 58. Table entry export import tags and lengths

Tag Position Length Type Description

TBLID 4-11 8 Char Table ID

VAR1 12-Variable Variable Char Translate FROM field value

VAR2 Variable Variable Char Translate TO field value

Table entry (B2) field descriptions

Table ID (TBLID): A name for referring to the table.

VAR1: For validation tables, the valid value to be entered into the table. For
translation tables, the application value (user-defined) to be associated with a value
from the EDI standard.

VAR2: Applies only for translation tables. The EDI standard value to be associated
with an application value (user-defined).

Exporting and importing table definitions

Chapter 3. File formats and WebSphere Data Interchange Utility records 229

Exporting and importing XML records
XML data definitions can be exported/imported using either tagged or fixed format
files. The XML definitions set includes:

AJ1 XML dictionary record

AJ2 XML DTD header record

AJ3 XML DTD detail record

The following example shows an export/import file that contains tags for XML
definitions.

0C1DD5TST1 011025135847ENU010401000000
AJ1 DICTIONARYNAME(TESTS) DESC(Test DTDs) ALLDTDS(Y)
AJ2 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR)

DESC(Order with Sender/Receiver)
DTDROOTELEM(OrderSR) DTDSENDQUALELEM(OrderSRHeaderSenderQualifier)
DTDSENDIDELEM(OrderSRHeaderSenderId)
DTDRECVQUALELEM(OrderSRHeaderReceiverQualifier)
DTDRECVIDELEM(OrderSRHeaderReceiverId)

AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(1) DTDDATA(<??xml
version=”1.0” encoding=”ISO-8859-1”??>)

AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(2)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(3) DTDDATA(<!-- @version: -->)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(4)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(5) DTDDATA(<!ELEMENT

OrderSR (Header, DetailLoop*, Trailer?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(6)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(7) DTDDATA(<!ELEMENT Header

(PONum, PODate, Sender, Receiver?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(8) DTDDATA(<!ATTLIST Header typecode CDATA #REQUIRED>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(9)

AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(10) DTDDATA(<!ELEMENT PONum (#PCDATA?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(11) DTDDATA(<!ELEMENT PODate (#PCDATA?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(12)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(13) DTDDATA(<!ELEMENT Sender (Id, Qualifier?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(14) DTDDATA(<!ELEMENT Receiver (Id, Qualifier?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(15)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(16) DTDDATA(<!ELEMENT Id (#PCDATA?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(17) DTDDATA(<!ELEMENT Qualifier (#PCDATA?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(18)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(19) DTDDATA(<!ELEMENT

DetailLoop (ItemNumber, SubDetail+?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(20)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(21) DTDDATA(<!ELEMENT ItemNumber (#PCDATA?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(22)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(23) DTDDATA(<!ELEMENT SubDetail

(Description, Quantity, UnitPrice?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(24)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(25) DTDDATA(<!ELEMENT Description (#PCDATA?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(26) DTDDATA(<!ELEMENT Quantity (#PCDATA?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(27) DTDDATA(<!ELEMENT UnitPrice (#PCDATA?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(28)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(29) DTDDATA(<!ELEMENT

Trailer (ItemCount, TotalBucks?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(30)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(31) DTDDATA(<!ELEMENT ItemCount (#PCDATA?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(32) DTDDATA(<!ELEMENT TotalBucks (#PCDATA?)>)
AJ3 DICTIONARYNAME(TESTS) DOCNAME(POXML5SR) SEQNO(33)
000

The following tables define the fields for exporting/importing XML definitions.

Exporting and importing XML records

230 WebSphere Data Interchange Programmer’s Reference

XML dictionary record (AJ1)
This record defines the XML dictionary being used. The fields are described in
Table 59.

Table 59. XML dictionary record

Tag Position Length Type Description

DICTIONARYNAME 4-33 30 Char XML dictionary name

DESC 34-83 50 Char Description

ALLDTDS 84-84 1 Char All XML DTDs flag

XML DTD header record (AJ2)
This record defines the XML DTD header being used. The fields are described in
Table 60.

Table 60. XML DTD header record

Tag Position Length Type Description

DICTIONARYNAME 4-33 30 Char XML dictionary name

DOCNAME 34-63 30 Char XML DTD Name

DESC 64-113 50 Char Description

DTDROOTELEM 114-177 64 Char Root element

DTDSENDQUALELEM 178-432 255 Char Element containing sender
qualifier

DTDSENDIDELEM 433-687 255 Char Element containing sender ID

DTDSENDALIASTBL 688-695 8 Char Sender alias table

DTDRECVQUALELEM 696-950 255 Char Element containing receiver
qualifier

DTDRECVIDELEM 951-1205 255 Char Element containing receiver ID

DTDRECVALIASTBL 1206-1213 8 Char Receiver alias table

DTDLOC 1214-1363 150 Char Source location of DTD

XML DTD details record (AJ3)
This record defines the XML DTD details being used. The fields are described in
Table 61.

Table 61. XML DTD details record

Tag Position Length Type Description

DICTIONARYNAME 4-33 30 Char XML dictionary name

DOCNAME 34-63 30 Char XML DTD Name

SEQNO 64-74 11 Char Data sequence number

DTDCONT 75-75 1 Char Continuation flag

DTDDATA 76-330 255 Char DTD data

Exporting and importing XML records

Chapter 3. File formats and WebSphere Data Interchange Utility records 231

Additional profile layouts
The sixteen additional profile layouts defined in the following tables can be exported
or imported using either tagged or fixed format files. These profile layouts are:
v “Mailbox (requestor) profile (REQPROF-P2)”
v “Network security profile (SECUPROF-P2)” on page 233
v “Network profile (NETPROF-P2)” on page 233
v “Network commands profile (NETOP-P2)” on page 234
v “Activity log profile (ACTLOGS-P2)” on page 235
v “Application defaults profile (APPDEFS-P2)” on page 235
v “User exit profile (ADAMCTL-P2)” on page 235
v “Language profile (LANGPROF-P2)” on page 236
v “EDIFACT (E envelope) profile (E-P2)” on page 237
v “ICS (I envelope) profile (I-P2)” on page 238
v “UN/TDI (T envelope) profile (T-P2)” on page 239
v “UCS (U envelope) profile (U-P2)” on page 240
v “X12 (X envelope) profile (X-P2)” on page 240
v “Continuous receive profile (CONTRECV-P2 for CICS only)” on page 241
v “CICS performance profile (SYSPROF-P2 for CICS only)” on page 242
v “MQSeries queue profile (MQSERIES-P2)” on page 243

Mailbox (requestor) profile (REQPROF-P2)
This record defines the mailbox (requestor) settings being used. The fields are
described in Table 62.

Table 62. Mailbox (requestor) profile

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID = REQPROF

REQID 12-27 16 Char Mailbox (requestor) ID

NETID 28-35 8 Char Network ID

ACCTID 36-67 32 Char Network account number

USERID 68-99 32 Char Network user ID

NETPASS 100-115 16 Char Network password

MSGCLS 116-123 8 Char Network message user class

FILEID 124-131 8 Char Transaction receive logical name

NETCLS 132-132 1 Char Network classification

NETCHG 133-133 1 Char Network charges code

NETACK 134-134 1 Char Network acknowledgment code

NETVCHK 135-135 1 Char Validate destination

NETRETN 136-138 3 Char Message retention

NETEDIO 139-139 1 Char EDI processing option

NETEDIP 140-140 1 Char EDI processing override

STGFMTOV 141-141 1 Char Storage format override

STGFMT 142-142 1 Char Storage format

NETCMDS 143-150 8 Char Member name of network
commands file

TIMEOUT 151-154 4 Dec Command line timeout value

Additional profile layouts

232 WebSphere Data Interchange Programmer’s Reference

Table 62. Mailbox (requestor) profile (continued)

Tag Position Length Type Description

NETACKPG 155-162 8 Char Program to handle network
acknowledgments from remote
network

ALTNETPH 163-194 32 Char Alternate dial connection phone
number

COMPRESS 195-195 1 Char Compression

PRIORITY 196-196 1 Char Delivery priority

DESCRIPT 197-226 30 Char Member description

Network security profile (SECUPROF-P2)

This record defines the network security settings being used. The fields are
described in Table 63.

Table 63. Network security profile

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID = SECUPROF

SECID 12-19 8 Char Security ID

SECORIGN 20-35 16 Char Security originator

SECRECIP 36-51 16 Char Security recipient

AUTTYPE 52-52 1 Char Authorization type

AUTCODE 53-53 1 Char Authorization code

ENCTYPE 54-54 1 Char Encryption code

FILTYPE 55-55 1 Char Filtering type

ENCPROG 56-63 8 Char Encryption program

AUTPROG 64-71 8 Char Authentication program

COMPROG 72-79 8 Char Compression program

FILPROG 80-87 8 Char Filtering program

BUFSIZE 88-92 5 Dec Buffer size

DESCRIPT 93-122 30 Char Description

Network profile (NETPROF-P2)

This record defines the network settings being used. The fields are described in
Table 64.

Table 64. Network profile

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID = NETPROF

NETID 12-19 8 Char Network ID

NETNAME 20-49 30 Char Network name

COMMRTN 50-57 8 Char Communication routine name

Additional profile layouts

Chapter 3. File formats and WebSphere Data Interchange Utility records 233

Table 64. Network profile (continued)

Tag Position Length Type Description

NETPROG 58-65 8 Char Network send/receive program
name

NETPARM 66-122 57 Char Network program parameters

CMDINDD 123-130 8 Char Network program command input
file name

CMDRECLN 131-134 4 Dec Network command record length

QFILEDD 135-142 8 Char TD queue file name

QRECLEN 143-146 4 Dec Transaction data record length

TIMEZONE 147-151 5 Char Time zone

SYSTYPE 152-159 8 Char System type

SYSLVL 160-163 4 Char System level

MSGTXTH 164-164 1 Char Message text header character

CMDOUTDD 165-172 8 Char Network program command output
file name

MSGHNDLR 173-180 8 Char Program to process messages

NETSEQ 181-185 5 Char Sequence number for network

NETAKFILE 186-193 8 Char File for network acknowledgements

NETPHONE 194-225 32 Char Dial connection phone number

SCRIPT 226-233 8 Char Communication script name

DESCRIPT 234-263 30 Char Description

Network commands profile (NETOP-P2)

This record defines the network commands being used. The fields are described in
Table 65.

Table 65. Network operations profile

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID = NETOP

NETID 12-19 8 Char Network ID

NETOP 20-27 8 Char Network command

NETFS 28-35 8 Char Operation sequence number

BLKNM 36-43 8 Char Block name

BLKPOS 44-47 4 Dec Block position

CMDSEQ 48-51 4 Dec Command line sequence number

CMDPOS 52-55 4 Dec Command field position

CMDLEN 56-59 4 Dec Command field length

CMDVAL 60-117 58 Char Command field value

DESCRIPT 118-147 30 Char Description

Additional profile layouts

234 WebSphere Data Interchange Programmer’s Reference

Activity log profile (ACTLOGS-P2)
This record defines the activity log settings being used. The fields are described in
Table 66.

Table 66. Activity log profile

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID = ACTLOGS

APPLID 12-19 8 Char Application ID

LOGFLNM 20-27 8 Char Logical name of file

PRGNAME 28-35 8 Char File handler program name
(EDIELAD)

LANG 36-36 1 Char Language type of log handler
(always C)

LOGFLAG 37-38 2 Char Log profile activity

DESCRIPT 39-68 30 Char Description

Application defaults profile (APPDEFS-P2)

This record defines the application default settings being used. The fields are
described in Table 67.

Table 67. Application defaults profile

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID = APPDEFS

APPLICID 12-19 8 Char Application ID

MEMBER 20-27 8 Char ACTLOGS profile name

MRFLAG 28-28 1 Char Management reporting active

TSFLAG 29-29 1 Char Transaction Store active

TIFLAG 30-30 1 Char Transaction image wanted

MONITOR 31-38 8 Char CICS performance monitor exit
name

USFLAG 39-39 1 Char Test transaction with production
usage

LOGENV 40-40 1 Char Log EDI standard data

FAIFLAG 41-41 1 Char Functional acknowledgment image

ELFLAG 42-42 1 Char Envelope log active

DESCRIPT 43-72 30 Char Description

ALPHANUM 73-80 8 Char Name of override ALPHANUM table

CHARSET 81-88 8 Char Name of override CHARSET table

CTRLYY 89-90 2 Char Century control year

User exit profile (ADAMCTL-P2)
This record defines the user exits being used. The fields are described in Table 68
on page 236.

Additional profile layouts

Chapter 3. File formats and WebSphere Data Interchange Utility records 235

Table 68. User exit profile

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID = ADAMCTL

LOGPGNM 12-19 8 Char Logical name of program

LOADMOD 20-27 8 Char Load module name

LANG 28-28 1 Char Language used in user program

ADUEFLD 29-29 1 Char Field exit type

ADUEPST 30-30 1 Char Post-translate exit type

ADUEPRE 31-31 1 Char Pre-translate exit type

ADUEENC 32-32 1 Char Encryption exit type

ADUEAUT 33-33 1 Char Authentication exit type

ADUECMP 34-34 1 Char Compression exit type

ADUEFLT 35-35 1 Char Filtering exit type

ADUEMNT 36-36 1 Char Monitor exit type

ADUECOM 37-37 1 Char Communication exit type

ADUEMSG 38-38 1 Char Message process exit type

ADUEPTP 39-39 1 Char Point-to-point exit type

ADUEENV 40-40 1 Char Envelope exit type

DESCRIPT 41-70 30 Char Description

Language profile (LANGPROF-P2)
This record defines the language settings being used. The fields are described in
Table 69.

Table 69. Language profile

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID = LANGPROF

LANGID 12-17 6 Char Language ID

CPAGE 18-22 5 Char Code page ID

DMASK 23-32 10 Char Date edit/display mask

TMASK 33-40 8 Char Time edit/display mask

DECNOT 41-41 1 Char Edit/display decimal notation

SIGN 42-43 2 Char Preferred negative sign (display)

FOLD 44-44 1 Char Substitute for non-displayed
character

DESCRIPT 45-74 30 Char Description

Additional profile layouts

236 WebSphere Data Interchange Programmer’s Reference

EDIFACT (E envelope) profile (E-P2)
This record defines the EDIFACT envelope settings being used. The fields are
described in Table 70.

Table 70. EDIFACT (E envelope) profile

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID = E

EDIFKEY 12-19 8 Char Profile name

UNB01 20-23 4 Char Syntax identifier

UNB02 24-24 1 Char Syntax version number

UNB03 25-59 35 Char Sender ID

UNB04 60-63 4 Char Sender ID qualifier

UNB05 64-77 14 Char Reverse routing address

UNB06 78-112 35 Char Recipient ID

UNB07 113-116 4 Char Recipient ID qualifier

UNB08 117-130 14 Char Routing address

UNB09 131-136 6 Char Interchange date

UNB10 137-140 4 Char Interchange time

UNB11 141-154 14 Char Interchange control reference

UNB12 155-168 14 Char Password

UNB13 169-170 2 Char Password qualifier

UNB14 171-184 14 Char Application reference

UNB15 185-185 1 Char Processing priority

UNB16 186-186 1 Char Acknowledgment request

UNB17 187-221 35 Char Communications agreement ID

UNB18 222-222 1 Char Test indicator

UNZ01 223-228 6 Char Interchange control count

UNZ02 229-242 14 Char Interchange control reference

UNG01 243-248 6 Char Functional group ID

UNG02 249-283 35 Char Sender ID

UNG03 284-287 4 Char Sender ID qualifier

UNG04 288-322 35 Char Recipient ID

UNG05 323-326 4 Char Recipient ID qualifier

UNG06 327-332 6 Char Functional group date

UNG07 333-336 4 Char Functional group time

UNG08 337-350 14 Char Functional group reference number

UNG09 351-352 2 Char Controlling agency

UNG10 353-355 3 Char Message version

UNG11 356-358 3 Char Message release

UNG12 359-364 6 Char Association assigned

UNG13 365-378 14 Char Application password

UNE01 379-384 6 Char Number of messages

UNE02 385-398 14 Char Functional group reference number

Additional profile layouts

Chapter 3. File formats and WebSphere Data Interchange Utility records 237

Table 70. EDIFACT (E envelope) profile (continued)

Tag Position Length Type Description

UNH01 399-412 14 Char Message reference number

UNH02 413-418 6 Char Message type

UNH03 419-421 3 Char Message version number

UNH04 422-424 3 Char Message release number

UNH05 425-426 2 Char Controlling agency

UNH06 427-432 6 Char Association assigned

UNH07 433-467 35 Char Common access reference

UNH08 468-469 2 Char Sequence of transfer

UNH09 470-470 1 Char First and last message in sequence

UNT01 471-476 6 Char Number of segments in message

UNT02 477-490 14 Char Message reference number

DESCRIPT 491-520 30 Char Description

ICS (I envelope) profile (I-P2)
This record defines the ICS envelope settings being used. The fields are described
in Table 71.

Table 71. ICS (I envelope) profile

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID = I

ICSKEY 12-19 8 Char Profile name

ICS01 20-21 2 Char Subelement separator

ICS02 22-25 4 Char Control standards ID

ICS03 26-30 5 Char Control version number

ICS04 31-32 2 Char Sender ID qualifier

ICS05 33-47 15 Char Information sender ID

ICS06 48-49 2 Char Receiver ID qualifier

ICS07 50-64 15 Char Information receiver ID

ICS08 65-70 6 Char Interchange date

ICS09 71-74 4 Char Interchange time

ICS10 75-83 9 Char Interchange control number

ICE01 84-89 6 Char Number of groups

ICE02 90-98 9 Char Interchange control number

GS01 99-100 2 Char Functional group ID

GS02 101-115 15 Char Application sender code

GS03 116-130 15 Char Application receiver code

GS04 131-136 6 Char Functional group date

GS05 137-144 8 Char Functional group time

GS06 145-153 9 Char Functional group control number

GS07 154-155 2 Char Responsible agency code

GS08 156-167 12 Char Version/release/industry ID

Additional profile layouts

238 WebSphere Data Interchange Programmer’s Reference

Table 71. ICS (I envelope) profile (continued)

Tag Position Length Type Description

GE01 168-173 6 Char Number of included sets

GE02 174-182 9 Char Functional group control number

ST01 183-185 3 Char Transaction set ID

ST02 186-194 9 Char Transaction set control number

SE01 195-204 10 Char Number of included segments

SE02 205-213 9 Char Transaction set control number

DESCRIPT 214-243 30 Char Description

UN/TDI (T envelope) profile (T-P2)
This record defines the UN/TDI envelope settings being used. The fields are
described in Table 72.

Table 72. UN/TDI (T envelope) profile

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID = T

TDIKEY 12-19 8 Char Profile name

STX01 20-23 4 Char Syntax identifier

STX02 24-24 1 Char Syntax version number

STX03 25-38 14 Char Sender code

STX04 39-73 35 Char Sender name

STX05 74-87 14 Char Recipient code

STX06 88-122 35 Char Recipient name

STX07 123-128 6 Char Interchange date

STX08 129-134 6 Char Interchange time

STX09 135-148 14 Char Interchange control reference

STX10 149-162 14 Char Recipient’s reference/password

STX11 163-176 14 Char Application reference

STX12 177-177 1 Char Transmission priority code

END01 178-182 5 Char Total number of messages

MHD01 183-194 12 Char Message reference

MHD02 195-200 6 Char Message type

MHD03 201-201 1 Char Message version

MHD04 202-236 35 Char Common access reference

MHD05 237-238 2 Char Sequence of transfers

MHD06 239-239 1 Char First and last transfers

MTR01 240-243 4 Char Number of segments in message

DESCRIPT 244-273 30 Char Description

Additional profile layouts

Chapter 3. File formats and WebSphere Data Interchange Utility records 239

UCS (U envelope) profile (U-P2)
This record defines the UCS envelope settings being used. The fields are described
in Table 73.

Table 73. UCS (U envelope) profile

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID = U

UCSKEY 12-19 8 Char Profile name

BG01 20-29 10 Char Communication ID

BG02 30-39 10 Char Communication password

BG03 40-54 15 Char Application sender ID

BG04 55-69 15 Char Application receiver ID

BG05 70-75 6 Char Interchange date

BG06 76-81 6 Char Interchange time

BG07 82-86 5 Char Transmission control number

EG01 87-91 5 Char Transmission control number

EG02 92-96 5 Char Number of included groups

EG03 97-102 6 Char Number of included transaction
sets

EG04 103-112 10 Char Number of included segments

GS01 113-114 2 Char Functional group ID

GS02 115-129 15 Char Application sender’s code

GS03 130-144 15 Char Application receiver’s code

GS04 145-150 6 Char Functional group date

GS05 151-158 8 Char Functional group time

GS06 159-167 9 Char Functional group control number

GS07 168-169 2 Char Responsible agency code

GS08 170-181 12 Char Version/release/industry ID

GE01 182-187 6 Char Number of included sets

GE02 188-196 9 Char Functional group control number

ST01 197-199 3 Char Transaction set ID

ST02 200-208 9 Char Transaction set control number

SE01 209-218 10 Char Number of included segments

SE02 219-227 9 Char Transaction set control number

DESCRIPT 228-257 30 Char Description

X12 (X envelope) profile (X-P2)
This record defines the X12 envelope settings being used. The fields are described
in Table 74.

Table 74. X12 (X envelope) profile

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID = X

X12KEY 12-19 8 Char Profile name

Additional profile layouts

240 WebSphere Data Interchange Programmer’s Reference

Table 74. X12 (X envelope) profile (continued)

Tag Position Length Type Description

ISA01 20-21 2 Char Authorization information qualifier

ISA02 22-31 10 Char Authorization information

ISA03 32-33 2 Char Security information qualifier

ISA04 34-43 10 Char Security information

ISA05 44-45 2 Char Interchange sender ID qualifier

ISA06 46-60 15 Char Interchange sender ID

ISA07 61-62 2 Char Interchange receiver ID qualifier

ISA08 63-77 15 Char Interchange receiver ID

ISA09 78-83 6 Char Interchange date

ISA10 84-87 4 Char Interchange time

ISA11 88-98 1 Char Interchange standard ID

ISA12 89-93 5 Char Interchange version ID

ISA13 94-102 9 Char Interchange control number

ISA14 103-103 1 Char Acknowledgment requested

ISA15 104-104 1 Char Test indicator

ISA16 105-106 2 Char Subelement separator

IEA01 107-111 5 Char Number of included groups

IEA02 112-120 9 Char Interchange control number

GS01 121-122 2 Char Functional group ID

GS02 123-137 15 Char Application sender’s code

GS03 138-152 15 Char Application receiver’s code

GS04 153-158 6 Char Group date

GS05 159-166 8 Char Group time

GS06 167-175 9 Char Functional group control number

GS07 176-177 2 Char Responsible agency code

GS08 178-189 12 Char Version/release/industry ID

GE01 190-195 6 Char Number of included transaction
sets

GE02 196-204 9 Char Functional group control number

ST01 205-207 3 Char Transaction set ID

ST02 208-216 9 Char Transaction set control number

SE01 217-226 10 Char Number of included segments

SE02 227-235 9 Char Transaction set control number

DESCRIPT 236-265 30 Char Description

Continuous receive profile (CONTRECV-P2 for CICS only)

This record defines the continuous receive settings being used. The fields are
described in Table 75 on page 242.

Additional profile layouts

Chapter 3. File formats and WebSphere Data Interchange Utility records 241

Table 75. Continuous receive profile

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID = CONTRECV

CONTRCV 12-27 16 Char Profile name

ACTIVE 28-28 1 Char Profile active

REQID 29-44 16 Char Mailbox (requestor) ID

TPNICKN 45-60 16 Char Trading Partner nickname

MSGCLS 61-68 8 Char Network message user class

TRANSLATE 69-69 1 Char Deenvelope and translate

RAWDATA 70-70 1 Char Generate raw data

PRINTNM 71-78 8 Char Print file name

PRINTTYP 79-80 2 Char Print file type

EXCPNM 81-88 8 Char Exception file name

EXCPTP 89-90 2 Char Exception file type

ADDLRECS 91-95 5 Char Additional records

DENVONLY 96-96 1 Char Deenvelope only

DELAYFA 97-97 1 Char Delay functional acknowledgment
enveloping

FATSQ 98-105 8 Char Enveloped functional
acknowledgment TS queue name

RESPNM 106-113 8 Char Name of response application TD
queue

RESPTP 114-115 2 Char Type of response

USERFLD 116-131 16 Char User field passed to response

APPLID 132-139 8 Char Application ID

NLSID 140-145 6 Char National language ID

SYNCPTS 146-146 1 Char Allow syncpoints

DUPENVL 147-147 1 Char Allow duplicate envelopes

NETAKONLY 148-148 1 Char Process network acknowledgments

PURGEINT 149-152 4 Dec Transaction purge interval

DESCRIPT 153-182 30 Char Description

SAPUPDT 183-183 1 Char SAP update

PAGE 184-184 1 Char Pageable translation active flag

CICS performance profile (SYSPROF-P2 for CICS only)

This record defines the CICS performance settings being used. The fields are
described in Table 76.

Table 76. CICS performance profile

Tag Position Length Type Description

PROFID 4-11 8 Char Profile ID = SYSPROF

SYSID 12-19 8 Char System ID

PERSACTV 20-20 1 Char Persistent environment active

Additional profile layouts

242 WebSphere Data Interchange Programmer’s Reference

Table 76. CICS performance profile (continued)

Tag Position Length Type Description

PERSIZE 21-24 4 Dec Persistent environment size

PERSTHDS 25-26 2 Dec Number persistent environment
threads

DESCRIPT 27-56 30 Char Description

MQSeries queue profile (MQSERIES-P2)

This record defines the MQSeries queue settings being used. The fields are
described in Table 77.

Table 77. MQSeries queue profile

Tag Position Length Type Description

PROFID 4-011 8 Char Profile ID = MQSERIES

QUEUEID 012-019 8 Char Logical name associated with the
queue name

REALNAME 20-67 48 Char Actual MQSeries queue name

MGRNAME 68-115 48 Char Override queue manager name

READFLAG 116-116 1 Char Destructive read flag indicator

MQSYNCFLAG 117-117 1 Char Syncpoint control

MAXMSGLN 118-125 8 Char Maximum message length

DESCRIPT 126-155 30 Char Description

WebSphere Data Interchange Utility records format

This section describes the format of the WebSphere Data Interchange Utility
records, which are:
v “Control (C) records”
v “Data (D) records” on page 252
v “End transaction and interchange (Z) records” on page 254
v “Raw data records” on page 255
v “Optional records” on page 255

Control (C) records

The C record format is used for both send and receive transactions. All fields are
left-justified and case-sensitive. The expanded fields (position 67 and greater) are
optional. Use these fields to provide the override values you want the translator or
enveloper to use. Table 78 describes the record layout for translating C record data
to EDI standard format.

Table 78. Control (C) record for translating to standard format

Label Position Length Type Description

RECID 1-1 1 Char Record ID = C

INTPID 2-36 35 Char Internal trading partner ID

FORMATID 37-52 16 Char Data format ID

Additional profile layouts

Chapter 3. File formats and WebSphere Data Interchange Utility records 243

Table 78. Control (C) record for translating to standard format (continued)

Label Position Length Type Description

TRANRC 53-56 4 Integer Translator return code

TRANXRC 57-60 4 Integer Translator extended return code

UTILRC 61-64 4 Integer WebSphere Data Interchange
Utility return code

TESTIND 65-65 1 Char Usage indicator

MUWIND 66-66 1 Char Multiple D records indicator

XPANDED 67-67 1 Char For send only. Expanded control
block indicator

ITYPE 68-68 1 Char For send only. Return information
record indicator

ETYPE 69-69 1 Char For send only. Return envelope
header record indicator

GTYPE 70-70 1 Char For send only. Return group
header record indicator

TTYPE 71-71 1 Char For send only. Return transaction
set header record indicator

QTYPE 72-72 1 Char For send only. Return queuing
totals record indicator

ISID 73-107 35 Char Interchange sender ID

IRID 108-142 35 Char Interchange receiver ID

IVERREL 143-147 5 Char Interchange version and release
number

ISPW 148-161 14 Char Interchange password

IAPREF 162-175 14 Char Interchange application reference

GSID 176-210 35 Char Group application sender ID

GRID 211-245 35 Char Group application receiver ID

GVER 246-257 12 Char Group version

GREL 258-269 12 Char Group release number

GAPW 270-283 14 Char Group password

TVER 284-289 6 Char Transaction version

TREL 290-295 6 Char Transaction release number

HOLDFLAG 296-296 1 Char Held status indicator

BNDLFLAG 297-297 1 Char Bundle indicator

ROUTCODE 298-300 3 Char Generic routing code

ISYNTAXID 301-304 4 Char Interchange syntax ID for E and
T envelopes

ISYNTAXVER 305-305 1 Char Interchange syntax version for E
and T envelopes

ISIDQUAL 306-309 4 Char Interchange sender ID qualifier

ISENDNAME 310-323 14 Char Interchange sender name for T
envelope) Application sender code
for U envelope

IREVROUT 324-337 14 Char Interchange reverse routing for
E envelope

Utility records format

244 WebSphere Data Interchange Programmer’s Reference

Table 78. Control (C) record for translating to standard format (continued)

Label Position Length Type Description

IRIDQUAL 338-341 4 Char Interchange receiver ID qualifier

IRECVNAME 342-355 14 Char Interchange receiver name for
T envelope) Application receiver
code for U envelope

IROUTEADDR 356-369 14 Char Interchange routing address for
E envelope

ISTDID 370-373 4 Char Interchange standard ID for I and
X envelopes

IPRIOR 374-374 1 Char Interchange priority for E and
T envelopes

ICOMMAGREE 375-409 35 Char Interchange communication
agreement for E envelope

GSIDQ 410-413 4 Char Group application sender ID
qualifier

GRIDQ 414-417 4 Char Group application receiver ID
qualifier

GRESPAG 418-419 2 Char Group responsible agency code

DUPTRANS 420-420 1 Char For receive only. Duplicate
transaction indicator

FORCEC 421-421 1 Char For send only. Force C record
format on send translation

APPLTPID 422-437 16 Char Application trading partner

EDITPID 438-453 16 Char EDI trading partner

RSRVD1 454-512 59 Char Reserved

CUSERDATA 513-768 256 Char User data area

RSRVD2 769-1024 256 Char Reserved

UCB 1025 1 Char C Flag F (failed) or Y (successful)

Control record label descriptions

RECID: The transaction set control record with a value of C.

INTPID: The internal trading partner ID used to define the map.

FORMATID: The data format ID used to describe the application data.

TRANRC: The translation status of the transaction. The code is in binary format.

TRANXRC: Defines the translation status of the transaction. The code is in binary
format.

UTILRC: For send translation, indicates whether a transaction is written to the
exception file in the UTILRC field. The WebSphere Data Interchange Utility returns
the binary value 8 in UTILRC if it writes the transaction to the exception file.

For receive translation, UTILRC is always a binary 0.

Utility records format

Chapter 3. File formats and WebSphere Data Interchange Utility records 245

TESTIND: Indicates the usage/rule used for the transaction. Valid values are:

I Information transaction. Use an information usage/rule. If an information usage/rule
is not found, use a production usage/rule. Even when a production usage/rule is
used, the transaction is flagged as an information transaction.

P Production transaction. Use only a production usage/rule (default).

T Test transaction. Use a test usage/rule. If a test usage/rule is not found, use a
production usage/rule. Even when a production usage/rule is used, the transaction
is flagged as a test transaction.

U The translator should determine if the transaction is test, information, or production
based on the usage/rule found. If a test usage/rule is found, the transaction is a
test transaction, and value of T is returned. If an information usage/rule is found,
the transaction is an information transaction, and a value of I is returned. If only a
production usage/rule is found, the transaction is a production transaction, and a
value of P is returned.

MUWIND: Indicates whether the transaction contains a single D record or multiple
D records are involved in the transaction. Valid values are:

Y Multiple D records are involved in the transaction.

N A single D record is involved in the translation.

XPANDED: For send translation only. Indicates the version of the C record format
being used (which fields are contained in the record). Receive translation always
writes all fields through column 1024. Valid values are:

This
value:

Specifies the C record contains fields through:

Y Column 297

N Column 67

1 Column 432

2 Column 1024

ITYPE: Indicates whether an information record is written to the exception/tracking
file. Generally used for send translation. On receive translation, the field will contain
the same values as shown in the discussion of “DUPTRANS” on page 252. Valid
values are:

Y Writes an information record to the exception/tracking file for each translated
transaction. For more information, see “Information (I) records” on page 256.

N Does not write an information record.

ETYPE: For send translation only. Indicates whether an interchange header image
is written to the exception/tracking file. Valid values are:

Y Writes an image of the interchange header segment to the exception/tracking file
for each interchange processed. For more information, see “Interchange header
(E) records” on page 258.

N Does not write an image of the interchange header segment.

Utility records format

246 WebSphere Data Interchange Programmer’s Reference

GTYPE: For send translation only. Indicates whether a group header image is
written to the exception/tracking file. Valid values are:

Y Writes an image of the group header segment to the exception/tracking file for
each group processed. For more information, see “Group header (G) records” on
page 258.

N Does not write an image of the group header segment.

TTYPE: For send translation only. Indicates whether a transaction header image is
written to the exception/tracking file. Valid values are:

Y Writes an image of the transaction header segment to the exception/tracking file
for each transaction processed. For more information, see “Transaction set header
(T) records” on page 258.

N Does not write an image of the transaction header segment.

QTYPE: For send translation only. Indicates whether a record containing totals
relative to an interchange is written to the exception/tracking file. Valid values are:

Y Writes information relative to totals in an interchange to the exception/tracking file
for each interchange processed. For more information see “Queuing totals (Q)
records” on page 259.

N Does not write interchange totals information.

ISID: Overrides the ID provided in the envelope profile member or the trading
partner profile member. It maps to a type IS standard data element. WebSphere
Data Interchange provides the equivalent data on receive translation. Valid values
are:

This value: Overrides this envelope type:

UNB03 E

ICS05 I

STX03 or STX04 T

BG03 U

ISA06 X

IRID: Overrides the ID provided in the trading partner profile or envelope profile
member. It maps to a type IR standard data element. WebSphere Data Interchange
provides the equivalent data on receive translation. Valid values are:

This value: Overrides this envelope type:

UNB06 E

ICS07 I

STX05 or STX06 T

BG04 U

ISA08 X

Utility records format

Chapter 3. File formats and WebSphere Data Interchange Utility records 247

IVERREL: Overrides the version and release provided in the envelope profile
member. It maps to types VR and LV standard data elements. WebSphere Data
Interchange provides the equivalent data on receive translation.

ISPW: Overrides the password that the trading partner profile member provides. It
maps to a type PW standard data element. WebSphere Data Interchange provides
the equivalent data on receive translation. Valid values are:

This value: Overrides this envelope type:

UNB12 E

STX10 T

ISA04 X

IAPREF: Overrides the application reference ID provided in the envelope profile
member. WebSphere Data Interchange uses this reference as the message user
class for EDIFACT and UN/TDI. This reference points to a type AP standard data
element. As distributed by WebSphere Data Interchange, no fields contain the AP
data type. However, the following fields are frequently customized to have a data
type of AP. WebSphere Data Interchange provides the equivalent data on receive
translation. Valid values are:

This value: Overrides this envelope type:

UNB14 E

STX11 T

GSID: Overrides the data format ID provided in the map. If the map provides the
name of an envelope profile member, this entry overrides the sender ID that the
envelope profile member provides. The group application sender ID maps to a type
AS standard data element. WebSphere Data Interchange provides the equivalent
data on receive translation. Valid values are:

This value: Overrides this envelope type:

UNG02 E

GS02 X

GS02 I

GS02 U

GRID: Overrides the trading partner application name provided in the map. If the
map provides the name of an envelope profile member, this entry overrides the
receiver ID that the envelope profile member provides. The group application ID
maps to a type AR standard data element. WebSphere Data Interchange provides
the equivalent data on receive translation. Valid values are:

This value: Overrides this envelope type:

UNG04 E

GS03 X

GS03 I

GS03 U

Utility records format

248 WebSphere Data Interchange Programmer’s Reference

GVER: Overrides the group version provided in the envelope profile member. The
value in the group version maps to a type VR standard data element. WebSphere
Data Interchange provides the equivalent data on receive translation.

GREL: Overrides the group release number provided in the envelope profile
member. The group release number maps to type LV standard data element.
WebSphere Data Interchange provides the equivalent data on receive translation.

GAPW: Overrides the group password provided in the trading partner
usages/rules. This usage/rule overrides the password in the envelope profile
member. The group password maps to a type PW standard data element.
WebSphere Data Interchange provides the equivalent data on receive translation.
Valid value is:

This value: Overrides this envelope type:

UNG13 E

TVER: Overrides the transaction version provided in the envelope profile member.
The transaction version maps to a type VR standard data element. WebSphere
Data Interchange provides the equivalent data on receive translation.

TREL: Overrides the transaction release number provided in the envelope profile
member. The transaction release number maps to a type LV standard data
element. WebSphere Data Interchange provides the equivalent data on receive
translation.

HOLDFLAG: Specifies if the transaction is in hold status. WebSphere Data
Interchange provides the equivalent data on receive translation. Valid values are:

Y Places the transaction in held status.

N Does not hold the transaction. Transactions that are not on hold and do not
have a date specified for enveloping are available immediately for enveloping
and sending.

BNDLFLAG: Specifies if the transaction starts a bundle. WebSphere Data
Interchange provides the equivalent data on receive translation. Valid values are:

Y Starts a group of related transactions (a bundle). All transactions that follow
are part of the bundle until the translator encounters another transaction with
this field set to Y or N.

N Ends the bundle without starting a new one.

(blank) Continues processing as usual. The translator ends a bundle automatically if
the data forces the start of a new group or interchange envelope. Any action
that changes the transaction or store status of one member of the bundle
(such as envelope, send, or hold) is applied to all members of the bundle.

Note: If the current trading partner is not using functional groups (value of N in the
Functional group field of the trading partner profile), WebSphere Data
Interchange ignores the changes in the data. A new group is created but
does not end the bundle.

ROUTCODE: For send translation only. A three-character generic routing code
provided by the application and used by WebSphere Data Interchange to select a

Utility records format

Chapter 3. File formats and WebSphere Data Interchange Utility records 249

generic send usage/rule. A blank specifies a default generic send usage/rule.
WebSphere Data Interchange provides the equivalent data on receive translation.

ISYNTAXID: Overrides the interchange syntax ID provided in the envelope profile
member. WebSphere Data Interchange provides the equivalent data on receive
translation. Valid values are:

This value: Overrides this envelope type:

UNB01 E

STX01 T

ISYNTAXVER: Overrides the interchange syntax version provided in the envelope
profile member. Valid values are:

This value: Overrides this envelope type:

UNB02 E

STX02 T

ISIDQ: Overrides the interchange sender ID qualifier provided in the envelope
profile member or trading partner profile member. WebSphere Data Interchange
provides the equivalent data on receive translation. Valid values are:

This value: Overrides this envelope type:

UNB04 E

ICS04 I

ISA05 X

ISENDNAME: Overrides the interchange sender name provided in the envelope
profile member. WebSphere Data Interchange provides the equivalent data on
receive translation. Valid values are:

This value: Overrides this envelope type:

STX04 T

UCS03 U (If not IS data type)

IREVROUT: Overrides the interchange reverse routing provided in the envelope
profile member. WebSphere Data Interchange provides the equivalent data on
receive translation. This entry must be left-justified. Valid values are:

This value: Overrides this envelope type:

UNB05 E

IRIDQ: Overrides the interchange receiver ID qualifier provided in the trading
partner profile or envelope profile member. Valid values are:

This value: Overrides this envelope type:

UNB06 E

ICS06 I

ISA07 X

Utility records format

250 WebSphere Data Interchange Programmer’s Reference

IRECVNAME: Overrides the interchange receiver name provided in the envelope
profile member. This entry must be left-justified. Valid values are:

This value: Overrides this envelope type:

STX06 T

UCS04 U (If not IR data type)

IROUTADDR: Overrides the interchange routing address provided in the envelope
profile member. This entry must be left-justified. Valid value is:

This value: Overrides this envelope type:

UNB08 E

ISTDID: Overrides the interchange standard ID provided in the envelope profile
member. This entry must be left-justified. Valid values are:

This value: Overrides this envelope type:

ICS02 I

ISA11 X

IPRIOR: Overrides the interchange processing priority defined in the envelope
profile member. WebSphere Data Interchange provides the equivalent data on
receive translation. Valid values are:

This value: Overrides this envelope type:

UNB15 E

STX12 T

ICOMMAGREE: Overrides the interchange communication agreement provided in
the envelope profile member. WebSphere Data Interchange provides the equivalent
data on receive translation. Valid values are:

This value: Overrides this envelope type:

UNB17 E

GSIDQ: Overrides the group sender ID qualifier provided in the envelope profile
member. WebSphere Data Interchange provides the equivalent data on receive
translation. This entry must be left-justified. Valid values are:

This value: Overrides this envelope type:

UNG03 E

GRIDQ: Overrides the group receiver ID qualifier provided in the envelope profile
member. This entry must be left-justified. Valid values are:

This value: Overrides this envelope type:

UNG05 E

Utility records format

Chapter 3. File formats and WebSphere Data Interchange Utility records 251

GRESPAG: Overrides the group responsible agency code and controlling agency
provided in the envelope profile member. WebSphere Data Interchange provides
the equivalent data on receive translation. Valid values are:

This value: Overrides this envelope type:

UNG09 E

GS07 I

GS07 U

GS07 X

DUPTRANS: For receive translation only. Specifies if a transaction is part of a
duplicate envelope. Valid values are:

Y Part of a duplicate envelope

N Not part of a duplicate envelope

FORCEC: For send translation only. Forces a C record to be written. Valid values
are:

Y Always writes a C record

N or
(blank)

Only writes a C record when an error occurs (default)

APPLTPID: The trading partner nickname of the application trading partner as
defined in the trading partner profile.

EDITPID: The trading partner nickname of the EDI trading partner as defined in
the trading partner profile.

RSVD1: Reserved for WebSphere Data Interchange.

CUSERDATA: The value in this field is copied to the TRCB where it can be
modified by user exits. Before any C record is output by WebSphere Data
Interchange, the value in this field is copied from the equivalent field in the TCRB.
On receive translation, the value in the TRCB can be set using the WebSphere
Data Interchange reserved variable DICUSERDATA. WebSphere Data Interchange
does not use this field.

RSVD2: Reserved for WebSphere Data Interchange.

Data (D) records

There are two formats for data (D) records. One format is used when all the data
for a transaction is provided by a single structure. The other format is used when
data for a transaction is provided by multiple structures. The format of D records is
described in the following tables.

For Fixed-to-Fixed mapping, when there is no target data format, the
STRUCTNAME is the segment ID value from the EDI standard transaction
definition, and D records are always output in the format described for single
structures on 253.

Utility records format

252 WebSphere Data Interchange Programmer’s Reference

When translating D records, use the name in the ID field, and populate ISA and
GS segments with the values passed in the C record.

Note: The largest record your application or the translator can handle is
32000 bytes, which is the largest LRECL allowed for QSAM files. During
translate-to-application processing, WebSphere Data Interchange divides any
records that are larger than 32000 bytes into one or more X records, and
uses a D record as the last record of the structure. For example, a structure
that is 80000 bytes in length requires two X records (64000 bytes) followed
by one D record (16000 bytes). During translate-to-EDI-standard processing,
the program that creates the application file must create X and D records
for structures exceeding 32000 bytes in length. Define the application file as
variable-blocked (VB) if the application file will contain X records.

Data record format - single structure
Table 79. Data record format: single structure

Label Position Length Type Description

RECID 1-1 1 Char Record identifier

DATARCD 2-32750 32749 Char Application transaction data

Data record label descriptions (single structure)

The following are descriptions of the labels for the data record when data structures
are passed together.

RECID: Specifies if a transaction exceeds 32000 bytes. Valid values are:

D

An entire transaction, or the last record of a transaction that exceeds
32000 bytes

X

The first and middle records of a transaction that exceed 32000 bytes

DATARCD: Specifies application transaction data.

Data record format (multiple structures)

Label Position Length Type Description

RECID 1-1 1 Char Record identifier

STRUCNAM 2-17 16 Char Structure name

DATARCD 18-32750 32733 Char Application transaction data

Data record label descriptions (multiple structures)

The following are descriptions of the labels for the data record when data structures
are passed separately.

RECID: Specifies if a transaction exceeds 32000 bytes. Valid values are:

D

An entire transaction, or the last record of a transaction that exceeds
32000 bytes

Utility records format

Chapter 3. File formats and WebSphere Data Interchange Utility records 253

X

The first and middle records of a transaction that exceed 32000 bytes

STRUCNAME: The structure name defined in the data format for this transaction.

DATARCD: Specifies application transaction data.

End transaction and interchange (Z) records
The Z record is optional and is used in the z/OS environment when the size of an
interchange is being controlled by the application, or in the CICS environment when
recoverable resources are being used. The Z record marks the end of:

v The application data for a transaction. If a Z record is not present, WebSphere
Data Interchange can only detect the end of a transaction from reading the next
transaction’s C record.

If your input data is in recoverable intrapartition TD queues, using the Z record
keeps the reading of the C record for the next transaction from being part of the
syncpoint interval for the current transaction. The Z record provides a formal end
for a transaction rather than the implied transaction end achieved when the next
C record is read.

v The application data for a transaction and indicates that the current transaction is
the last transaction for an interchange when a Z record with the ENDINTERCH
field set to 1 (Z1) is present. If a Z1 record is not present, WebSphere Data
Interchange can only detect the end of an interchange from reading the next
transaction’s C record.

If your input data is in recoverable intrapartition TD queues, using a Z1 record
keeps the reading of the C record for the next transaction from being part of the
syncpoint interval for the current interchange. The Z1 record provides a formal
end for an interchange rather than the implied end achieved when the next
C record is read. The Z1 record can be used to artificially limit the size of an
interchange. A Z1 record causes the current interchange to be completed. A
new interchange starts with the next transaction.

Z and Z1 records are only necessary when using the C and D record format, and
when the conditions mentioned below are true. Otherwise, using Z and Z1 records
is optional. The conditions for use are:

v The WebSphere Data Interchange Utility is being executed in the CICS
environment.

v Application data is given to the WebSphere Data Interchange Utility in
recoverable intrapartition TD queues.

v WebSphere Data Interchange is allowed to issue CICS SYNCPOINT commands.

Z record format

Label Position Length Type Description

RECID 1 1 Char Record ID = Z

ENDINTERCH 2 1 Char End of interchange indicator

Z record label descriptions

RECID: A value of Z identifies this record as a transaction or interchange
terminator.

Utility records format

254 WebSphere Data Interchange Programmer’s Reference

ENDINTERCH: A value of 1 indicates the preceding transaction is the last in the
current interchange. The next C record begins a new transaction and new
interchange.

Raw data records

Table 80 describes the format of raw data records. The data format must indicate
the position, length, and type of record ID field within the data. The data format can
also provide the field in the application data that contains the internal trading
partner ID value. For TRANSLATE TO STANDARD processing, the data format ID
is provided by the RAWFMTID keyword on the PERFORM command. During
TRANSLATE TO APPLICATION processing, the translator automatically supplies
the record ID values. The internal trading partner ID value is taken from the trading
partner receive usage/rule when raw data is requested.

WebSphere Data Interchange can create raw data output during TRANSLATE TO
STANDARD processing with Fixed-to-Fixed mapping. Record ID values and the
internal trading partner ID default values are used but might be overridden during
mapping.

Raw data record format
Table 80. Raw data record format

Label Position Length Type Description

DATARCD 1-32750 32750 Char Application transaction data

Optional records
The following optional record types are available:
v “Information (I) records” on page 256
v “Interchange header (E) records” on page 258
v “Group header (G) records” on page 258
v “Transaction set header (T) records” on page 258
v “Queuing totals (Q) records” on page 259
v “File (F) records” on page 259

You can request optional records using the TYPE fields in the control record (“Control
(C) records” on page 243), on the Additional Records panel, or by using the
OPTRECS keyword (“OPTRECS” on page 145) in one of the following commands:
DEENVELOPE
DEENVELOPE AND TRANSLATE
ENVELOPE
ENVELOPE AND SEND
RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE
REENVELOPE
REENVELOPE AND SEND
RETRANSLATE TO APPLICATION
TRANSLATE AND ENVELOPE
TRANSLATE AND SEND
TRANSLATE TO APPLICATION
TRANSLATE TO STANDARD

Different optional records are available for different commands. The commands and
the record types they support are defined in Table 81 on page 256.

Utility records format

Chapter 3. File formats and WebSphere Data Interchange Utility records 255

Table 81. Optional records supported by command

Record type

Command E F G I Q T

DEENVELOPE
DEENVELOPE AND SEND

X X X X X X

ENVELOPE
ENVELOPE AND SEND

X X X X X

RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE

X X X X X

REENVELOPE
REENVELOPE AND SEND

X X X X X

RETRANSLATE TO
APPLICATION

TRANSLATE AND ENVELOPE X X X X X

TRANSLATE AND SEND X X X X X

TRANSLATE TO APPLICATION X X

TRANSLATE TO STANDARD X

For TRANSLATE TO STANDARD operations, the WebSphere Data Interchange
Utility writes the optional records to a file as described below:

v Writes the records to FFSTRAK if it exists.

v Writes the records to FFSEXCP if FFSTRAK does not exist.

v Writes no records if FFSTRAK does not exist and raw data (RAWFMTID
keyword) is requested.

For TRANSLATE TO APPLICATION operations, the WebSphere Data Interchange
Utility writes the optional records to a file as described below:

v Writes the records to the application output file if C and D records are
requested.

v Writes the records to FFSEXCP if the raw data records are requested
(RAWDATA keyword).

For DEENVELOPE operations, the WebSphere Data Interchange Utility writes the
optional records to the FFSEXCP file.

Information (I) records

Table 82 describes the format and contents of the information (I) record. You can
request an information record on the Optional Record Options panel, in the ITYPE
field in the control record, or by using the OPTRECS keyword in a command.
WebSphere Data Interchange returns one record for each transaction with the
values that were present at the time the transaction was translated.

Table 82. Information record format

Label Position Length Type Description

RECID 1-1 1 Char Record ID = I

IHXCTL 2-15 14 Char Interchange header control number

ISID 16-50 35 Char Interchange sender ID

IRID 51-85 35 Char Interchange receiver ID

Utility records format

256 WebSphere Data Interchange Programmer’s Reference

Table 82. Information record format (continued)

Label Position Length Type Description

IDATE 86-91 6 Char Interchange date

ITIME 92-97 6 Char Interchange time

IVERREL 98-102 5 Char Interchange version/release

IGT 103-108 6 Char For sending, the total number of
groups in the interchange at the
current time

For receiving, the total number of
groups processed so far in the
interchange

ITT 109-114 6 Char For sending, the total number of
transactions in the interchange at
the current time

For receiving, the total number of
transactions processed so far in the
interchange

IST 115-124 10 Char For sending, the total number of
segments in the interchange at the
current time

For receiving, the total number of
segments processed so far in the
interchange

IBT 125-132 8 Char For sending, the total number of
bytes in the interchange at the
current time

For receiving, the total number of
bytes processed so far in the
interchange

ISPW 133-146 14 Char Interchange password

IAPREF 147-160 14 Char Interchange application reference

GHXCTL 161-174 14 Char Control number of group header

GFGID 175-180 6 Char Group functional group ID

GSID 181-215 35 Char Group application sender ID

GRID 216-250 35 Char Group application receiver ID

GDATE 251-256 6 Char Group date

GTIME 257-262 6 Char Group time

GVER 263-274 12 Char Group version

GREL 275-286 12 Char Group release

GTT 287-292 6 Char For sending, current group
transaction total

For receiving, total transactions in
group

GAPW 293-306 14 Char Group password

THXCTL 307-320 14 Char Control number of transaction set
header

Utility records format

Chapter 3. File formats and WebSphere Data Interchange Utility records 257

Table 82. Information record format (continued)

Label Position Length Type Description

TTC 321-326 6 Char Transaction code

TVER 327-332 6 Char Transaction version

TREL 333-338 6 Char Transaction release

TST 339-348 10 Char Transaction segment total

AC 349-383 35 Char Application control field value

THANDLE 384-403 20 Char Expanded value of the handle
assigned to this transaction in the
Transaction Store

TPNICKN 404-419 16 Char Trading partner nickname

GDATE2 420-427 8 Char Group date with century

RESERVED 428-483 56 Char Reserved for future use

Interchange header (E) records
Table 83 shows the format and contents of the interchange (E) header record. You
can request an interchange header record using the ETYPE field in the control record
or the OPTRECS keyword in a command. WebSphere Data Interchange returns one
record for each interchange that is created or received.

Table 83. Interchange header (E) record format

Label Position Length Type Description

RECID 1 1 Char Record ID = E

EDATA 2-256 255 Char Standard interchange header image

Group header (G) records

Table 84 shows the format and contents of the group header (G) record. You can
request a group header record using the GTYPE field in the control record or the
OPTRECS keyword in a command. WebSphere Data Interchange returns one record
for each group created or received.

Table 84. Group header (G) record format

Label Position Length Type Description

RECID 1 1 Char Record ID = G

GDATA 2-256 255 Char Functional group header image

Transaction set header (T) records

Table 85 shows the format and contents of the transaction set header (T) record.
You can request a transaction header record using the TTYPE field in the control
record or the OPTRECS keyword in a command. WebSphere Data Interchange returns
one record for each transaction created or received.

Table 85. Transaction set header (T) record format

Label Position Length Type Description

RECID 1 1 Char Record ID = T

TDATA 2-256 255 Char Transaction set header image

Utility records format

258 WebSphere Data Interchange Programmer’s Reference

Queuing totals (Q) records
Table 86 shows the format and contents of the queuing totals record. You can
request a queuing totals record using the QTYPE field in the control record or the
OPTRECS keyword in a command. WebSphere Data Interchange returns one record
to the exception file each time an interchange is queued or deenveloped.

Table 86. Queueing totals (Q) record format

Label Position Length Type Description

RECID 1 1 Char Record ID = Q.

QBT 2-9 8 Char Number of bytes queued for the
envelope.

QST 10-19 10 Char Number of segments in the
envelope.

QTT 20-25 6 Char Number of transactions in the
envelope.

QGT 26-31 6 Char Number of groups in the envelope.

QDSNAME 32-87 56 Char Physical data set name from which
transactions were read or to which
transactions were written. The
name is terminated with a NULL
character (X’00’).

File (F) records
Table 87 shows the format and contents of the file (F) record. This allows the real
file of the applications file to be found.

Table 87. File (F) record layout

Label Length Type Description

RECID 1 Char Record ID = F.

FTYPE 1 Char Type of data written.
E=EDI
D=ADF
X=XML
C=CSV

FLNAME 8 Char Logical filename from PERFORM
command

FPNAME AIX/Windows -
272

z/OS - 56

Char Physical file name

FRCVID 35 Char Receiver ID from EDI header

FRCVQUAL 4 Char Receiver qualifier from EDI header

FSNDID 35 Char Sender ID from EDI header

FSNDQUAL 4 Char Sender qualifier from EDI header

FNICKNAME 16 Char Trading partner nickname from trading
partner profile

FRECCNT 15 Char Record count

Utility records format

Chapter 3. File formats and WebSphere Data Interchange Utility records 259

Management reporting
The management reporting data extracts are formatted as sequential files
containing fixed-length (1024 bytes) records. All data extracts are written to the
EDIQUERY file. Since other commands use the EDIQUERY file, you should define
the EDIQUERY file as variable block 32756 rather than fixed block 1024 to
accommodate commands that output larger records, such as the image records
created by the ENVELOPE DATA EXTRACT and TRANSACTION DATA EXTRACT
commands.

The output is tabular with columns representing categories of information and rows
containing the actual data entries. The formats of the data extracts are described in
the following tables.

Trading partner profile data extract

This record defines the trading partner profile settings being used to extract data.
The fields are described in Table 88.

Table 88. Trading partner profile data extract fields (continued)

Label Position Length Type Description

Interchange control
number

391-404 14 Char Interchange control number of last
transmission to this trading
partner

Group control
number

405-418 14 Char Group control number of the last
transmission to this trading
partner

Transaction control
number

419-432 14 Char Transaction control number of the
last transaction to this trading
partner

Filler 433-1024 592 Char Filler for expansion

Trading partner capability data extract

This record defines the trading partner capability settings being used to extract
data. The fields are described in Table 89.

Table 89. Trading partner capability data extract fields

Label Position Length Type Description

Record ID 1-3 3 Char Record ID = TPC

Trading Partner
Nickname

4-19 16 Char Trading partner ID in WebSphere
Data Interchange

Internal Trading
Partner ID

20-54 35 Char ID used for this trading partner
internally (customer number,
supplier number)

Company Name 55-94 40 Char Company name of the trading
partner

Address line 1 95-134 40 Char First line of the company’s
address

Address line 2 135-174 40 Char Second line of the company’s
address

Comment line 1 175-214 40 Char Can be used to further classify the
trading partner (customer,
supplier, division, subsidiary)

Comment line 2 215-254 40 Char Can be used to further classify the
trading partner (customer,
supplier, division, subsidiary)

Direction 255-255 1 Char Direction of the (inbound or
outbound)

Standard ID 256-263 8 Char ID of the EDI standard (X12,
EDIFACT)

Version ID 264-265 2 Char Version of the EDI standard

Release ID 266-267 2 Char Release of the EDI standard

Description 268-317 50 Char Description of the EDI
standard/version/release

Transaction ID 318-325 8 Char Transaction ID (such as
ORDERS, DISPATCH, 850, 860)

Map ID 326-341 16 Char Trading partner map name

Management reporting

Chapter 3. File formats and WebSphere Data Interchange Utility records 261

Table 89. Trading partner capability data extract fields (continued)

Label Position Length Type Description

Measurement date 342-349 8 Char Date testing or production started
with this map/trading partner
combination

Measurement ID 350-353 4 Char Type of statistic

Total number of
transactions

354-368 15 Char Total number of test or production
transactions exchanged with this
map/trading partner combination

Total errors 369-383 15 Char Total number of test or production
transactions exchanged with this
map/trading partner combination
that had errors

Appl Trading
Partner

384-399 16 Char Application trading partner ID

Filler 400-1024 625 Char Filler for expansion

Network activity data extract

This record defines the network activity settings being used to extract data. The
fields are described in Table 90.

Table 90. Network activity data extract fields

Label Position Length Type Description

Record ID 1-3 3 Char Record ID = NTA

Requestor ID 4-19 16 Char Requestor ID

Network ID 20-27 8 Char Network ID

Network name 28-57 30 Char Network descriptive name

Account number 58-89 32 Char Network account number

User ID 90-121 32 Char Network user ID

Direction 122-122 1 Char Direction of the transmission

Charge code 123-123 1 Char Network charge code

Measurement ID 124-127 4 Char Type of statistic

Day 128-135 8 Char Measurement date

Interchange
envelopes

136-150 15 Char Total number of interchange
envelopes

Total characters 151-165 15 Char Total number of characters sent

Filler 166-1024 859 Char Filler for expansion

Transaction activity data extract

This record defines the transaction activity settings being used to extract data. The
fields are described in Table 91.

Table 91. Transaction activity data extract fields

Label Position Length Type Description

Record ID 1-3 3 Char Record ID = TPA

Management reporting

262 WebSphere Data Interchange Programmer’s Reference

Table 91. Transaction activity data extract fields (continued)

Label Position Length Type Description

Trading Partner
Nickname

4-19 16 Char Trading partner ID in WebSphere
Data Interchange

Internal Trading
Partner ID

20-54 35 Char ID used for this trading partner
internally (such as customer
number, supplier number)

Company Name 55-94 40 Char Company name of the trading
partner

Address line 1 95-134 40 Char First line of the company’s
address

Address line 2 135-174 40 Char Second line of the company’s
address

Comment line 1 175-214 40 Char Can be used to further classify the
trading partner (customer,
supplier, division, subsidiary)

Comment line 2 215-254 40 Char Can be used to further classify the
trading partner

Direction 255-255 1 Char Direction of the transmission

Standard ID 256-263 8 Char ID of the EDI standard

Version ID 264-265 2 Char Version of the EDI standard

Release ID 266-267 2 Char Release of the EDI standard

Description 268-317 50 Char Description of the EDI
standard/version/release

Transaction ID 318-325 8 Char Transaction ID

TPT ID 326-341 16 Char Trading partner transaction ID

Data format ID 342-357 16 Char Name of the data format

Measurement ID 358-361 4 Char Type of statistic

Measurement Date 362-369 8 Char Date of this statistic

Total transactions 370-384 15 Char Total transactions for the indicated
date

Total errors 385-399 15 Char Total transactions in error for the
indicated date

Appl Trading
Partner

400-415 16 Char Application trading partner ID

Filler 416-1024 609 Char Filler for expansion

Management reporting

Chapter 3. File formats and WebSphere Data Interchange Utility records 263

Transaction Store data extract information categories

You can extract information from the WebSphere Data Interchange Transaction
Store databases using the ENVELOPE DATA EXTRACT and the TRANSACTION
DATA EXTRACT commands. Refer to “Producing management reports from the
Transaction Store” on page 7 for a description of these PERFORM commands. The
categories of information that can be requested are described in Table 92.

Table 92. Transaction Store information categories

This value: Requests: Using this keyword:

E Interchange data INTERCHANGE(Y)

G Group data GROUP(Y)

T Transaction data TRANSACTION(Y)

A Application data APPLICATION(Y)

R Transaction image IMAGE(Y)

E, G, T Send acknowledgment data SENDACKDATA(Y)

E, G, T Receive acknowledgment data RECEIVEACKDATA(Y)

F, K Send acknowledgment image SENDACKIMAGE(Y)

F, K Receive acknowledgment image RECEIVEACKIMAGE(Y)

All data extracted from the Transaction Store is written to the EDIQUERY file. The
information categories are either written as separate records by setting
CONCATENATE to N, or combined and written as a single record by setting
CONCATENATE to Y.

The following rules apply when requesting information categories:

1. Images (R, F, and K) are not produced unless you also request the transaction.

2. Images (R, F, and K) are always written as separate records even when
concatenation has been requested.

3. Send acknowledgment data (E, G, and T) is not produced unless you also
request the group record. If you want transaction acknowledgment data, you
must also request the transaction record.

4. Send acknowledgment data (E, G, and T) is always concatenated to the
corresponding group or transaction record even when concatenation has not
been requested.

5. Receive acknowledgment data (E, G, and T) is not produced unless you also
request the group or transaction record.

6. Receive acknowledgment data (E, G, and T) is always concatenated to the
corresponding group or transaction record even when concatenation has not
been requested.

Transaction Store data extract common key
All records created by Transaction Store Data Extract command have a common
141-byte key field that begins with a 3-character record ID. Portions of the key that
do not apply to a particular record are initialized with blanks. Table 93 on page 265
defines the common key format used to extract data, and shows which fields are
used for which record types.

Transaction Store data extraction information categories

264 WebSphere Data Interchange Programmer’s Reference

Table 93. Transaction Store common key format

Label Position Length Type Description

Record ID 1 3 Char Record ID = TX

Used for record types: A, E, G, K, R,
T

Nickname 4 16 Char Trading partner nickname

Used for record types: A, E, G, K, R,
T

Direction 20 1 Char Direction of the transaction

Used for record types: A, E, G, K, R,
T

Control Number 21 14 Char Interchange control number

Used for record types: A, E, G, K, R,
T

Receiver ID 35 35 Char Interchange receiver ID

Used for record types: A, E, G, K, R,
T

Control Number 70 14 Char Group control number

Used for record types: A, G, K, R, T

Control Number 84 14 Char Transaction control number

Used for record types: A, K, R, T

Controlling handle 98 20 Char Handle value of controlling
transaction (YYYYMMDDHHMMSSnnnnnn)

Used for record types: A, K, R, T

Transaction
handle

118 20 Char Handle value of transaction
(YYYYMMDDHHMMSSnnnnnn)

Used for record types: A, K, R, T

Sequence Number 138 4 Char Sequence number

Used only for record type A

Transaction Store data extract record formats

The following tables show the formats for the records created by the
TRANSACTION STORE DATA EXTRACT command. All tables, except images, are
padded to a length of 1024 bytes to leave room for expansion. If concatenation is
requested in the WebSphere Data Interchange Utility control statements, the full
records as described are concatenated into a single record. Images are written
separately and use the full logical record length of the EDIQUERY data set.

Interchange data extract record layout

This record defines the interchange settings being used to extract data. The fields
are described in Table 94 on page 266.

Transaction Store data extraction information categories

Chapter 3. File formats and WebSphere Data Interchange Utility records 265

Table 94. Interchange data extract record layout

Label Position Length Type Description

Record ID 1-3 3 Char Record ID = E.

E1 = Functional
acknowledgment E2 =
Transaction acknowledgment

Nickname 4-19 16 Char Trading partner nickname.

Direction 20-20 1 Char Direction of the interchange.

Control Number 21-34 14 Char Interchange control number.

Receiver ID 35-69 35 Char Interchange receiver ID.

Filler 70-141 72 Char Blanks.

Sender ID 142-176 35 Char Interchange sender ID.

Fake flag 177-177 1 Char No interchange header.

Sequence error flag 178-178 1 Char Interchange out of sequence
(ENVELOPE DATA EXTRACT
only).

Usage indicator 179-179 1 Char Type of usage.

Duplicate
interchange flag

180-180 1 Char Duplicate interchange received.

Envelope date 181-194 14 Char Date/time envelope created
(YYYYMMDDHHMMSS).

Send date 195-208 14 Char Date/time envelope sent
(YYYYMMDDHHMMSS).

TA1
acknowledgment

209-209 1 Char TA1 acknowledgment received.

TA1 date 210-223 14 Char Date/time TA1 received
(YYYYMMDDHHMMSS).

Network status
code

224-225 2 Char Network status.

Network status text 226-245 20 Char Network status code in text
format.

Acknowledgment
expected

246-246 1 Char Network acknowledgment
expected.

Acknowledgment
received

247-247 1 Char Network acknowledgment
received.

Acknowledged date 248-261 14 Char Date/time envelope of network
acknowledgment
(YYYYMMDDHHMMSS).

Message user class 262-269 8 Char Message user class assigned
when sent.

Message name 270-277 8 Char Message name assigned when
sent.

Sequence number 278-282 5 Char Sequence number assigned
when sent.

Message ID 283-290 8 Char Message ID assigned when
sent.

Physical data set
name

291-346 56 Char Physical data set name to
which data was queued.

Transaction Store data extraction information categories

266 WebSphere Data Interchange Programmer’s Reference

Table 94. Interchange data extract record layout (continued)

Label Position Length Type Description

Group count 347-357 11 Char Number of groups in
interchange.

Transaction count 358-368 11 Char Number of transactions in
interchange.

Segment count 369-379 11 Char Number of segments in
interchange.

Interchange size 380-390 11 Char Number of bytes in
interchange.

Interchange header 391-640 250 Char Interchange header image.

Interchange trailer 641-670 30 Char Interchange trailer image.

Filler 671-1024 354 Char Reserved for expansion.

Group data extract record layout

This record defines the group settings being used to extract data. The fields are
described in Table 95.

Table 95. Group data extract record layout

Label Position Length Type Description

Record ID 1-3 3 Char Record ID = G.

G1 = Functional
acknowledgment G2 =
Transaction acknowledgment

Nickname 4-19 16 Char Trading partner nickname.

Direction 20-20 1 Char Direction of the group.

Control Number 21-34 14 Char Interchange control number.

Receiver ID 35-69 35 Char Interchange receiver ID.

Control Number 70-83 14 Char Group control number.

Filler 84-141 58 Char Blanks.

Fake flag 142-142 1 Char Interchange did not have
groups.

Sender ID 143-177 35 Char Application sender ID.

Receiver ID 178-212 35 Char Application receiver ID.

Acknowledgment
expected

213-213 1 Char Functional acknowledgment
expected.

Acknowledgment
received

214-214 1 Char Functional acknowledgment
received.
Note: If an acknowledgment
is not expected, this field is
blank.

Acknowledgment
date

215-228 14 Char Date/time group
acknowledgment received
(YYYYMMDDHHMMSS).

Acknowledgment
handle

229-248 20 Char Handle value for the functional
acknowledgment transaction
(YYYYMMDDHHMMSSnnnnnn).

Transaction Store data extraction information categories

Chapter 3. File formats and WebSphere Data Interchange Utility records 267

Table 95. Group data extract record layout (continued)

Label Position Length Type Description

Transaction count 249-259 11 Char Number of transactions in
group.

Segment count 260-270 11 Char Number of segments in group.

Group size 271-281 11 Char Number of bytes in group.

Group header 282-434 153 Char Image of the group header.

Group trailer 435-460 26 Char Image of the group trailer.

Filler 461-1024 564 Char Filler for expansion.

Transaction data extract record layout

This record defines the transaction settings being used to extract data. The fields
are described in Table 96.

Table 96. Transaction data extract record layout

Label Position Length Type Description

Record ID 1-3 3 Char Record ID = T.

T1 = Functional acknowledgment
T2 = Transaction acknowledgment

Nickname 4-19 16 Char Trading partner nickname.

Direction 20-20 1 Char Direction.

Control Number 21-34 14 Char Interchange control number.

Receiver ID 35-69 35 Char Interchange receiver ID.

Control Number 70-83 14 Char Group control number.

Control Number 84-97 14 Char Transaction control number.

Controlling
handle

98-117 20 Char Handle value of the controlling
transaction
(YYYYMMDDHHMMSSnnnnnn).

Transaction
handle

118-137 20 Char Handle value of the transaction
(YYYYMMDDHHMMSSnnnnnn).

Filler 138-141 4 Char Blanks.

Enveloped date 142-155 14 Char Date/time transaction was
enveloped (YYYYMMDDHHMMSS).

Creation date 156-169 14 Char Date/time transaction put into the
store.

Transaction
status code

170-171 2 Char Current transaction status.

Transaction
status text

172-191 20 Char Transaction status in a text
format.

Acknowledgment
received

192-192 1 Char Group acknowledgment received.

Acknowledgment
received text

193-212 20 Char Group acknowledgment received
in a text format.

Acknowledgment
date

213-226 14 Char Date/time group acknowledgment
was received (YYYYMMDDHHMMSS).

Transaction Store data extraction information categories

268 WebSphere Data Interchange Programmer’s Reference

Table 96. Transaction data extract record layout (continued)

Label Position Length Type Description

Trx
Acknowledgment
expected

227-227 1 Char Transaction acknowledgment
expected.

Trx
Acknowledgment
received

228-228 1 Char Transaction acknowledgment
received.

Trx
Acknowledgment
received text

229-248 20 Char Transaction acknowledgment
received in a text format.

Trx
Acknowledgment
date

249-262 14 Char Date/time transaction
acknowledgment was received
(YYYYMMDDHHMMSS).

Acknowledgment
handle

263-282 20 Char Handle value of the transaction
acknowledgment transaction
(YYYYMMDDHHMMSSnnnnnn).

Segment count 283-293 11 Char Number of segments in
transaction.

Transaction size 294-304 11 Char Number of bytes in transaction.

Enveloped
segment count

305-315 11 Char Number of segments in
transaction when enveloped.

Enveloped
transaction size

316-326 11 Char Number of bytes in transaction
when enveloped.

Format ID 327-342 16 Char Last data format ID.

Transaction ID 343-350 8 Char Standard transaction.

Group ID 351-356 6 Char Function Group ID associated with
the transaction.

Envelope
member

357-364 8 Char Member name used for
enveloping.

Envelope type 365-365 1 Char Type of envelope associated with
transaction.

Network ID 366-373 8 Char Network associated with trading
partner.

Standard ID 374-381 8 Char EDI standard ID of the
transaction.

Standard Version 382-383 2 Char EDI standard version.

Standard Level 384-385 2 Char EDI standard release level.

Internal Trading
Partner ID

386-420 35 Char Last internal trading partner ID.

Application
control field

421-455 35 Char Last application control field.

Delivery date 456-469 14 Char Last date given/gotten from
application (YYYYMMDDHHMMSS).

Earliest envelope
date

470-477 8 Char Earliest date that transaction will
be enveloped (YYYYMMDD).

Earliest purge
date

478-485 8 Char Earliest date that transaction will
be automatically purged
(YYYYMMDD).

Transaction Store data extraction information categories

Chapter 3. File formats and WebSphere Data Interchange Utility records 269

Table 96. Transaction data extract record layout (continued)

Label Position Length Type Description

Error level 486-486 1 Char Translation error level.

Store status 487-488 2 Char Store status of the transaction.

Store status text 489-508 20 Char Store status in a text format.

Override flag 509-509 1 Char Envelope overrides provided for
transaction.

Held flag 510-510 1 Char Transaction held.

Test flag 511-511 1 Char Test transaction.

Duplicate flag 512-512 1 Char Transaction part of duplicate
envelope.

Purge flag 513-513 1 Char Purge transaction.

Translate flag 514-514 1 Char Translated.

Detached flag 515-515 1 Char Transaction detached.

Override handle 516-535 20 Char Handle for enveloping overrides
(YYYYMMDDHHMMSSnnnnnn).

Network security
profile name

536-543 8 Char Network security profile name for
group level encryption.

Encryption key 544-559 16 Char Encryption key name for group
level encryption.

Authentication
key

560-575 16 Char Authentication key name for group
level encryption.

Application
assigned control
number

576-589 14 Char Transaction control number if
assigned by the application.

Data element
delimiter

590-590 1 Char Data element delimiter used when
transaction was translated.

Sub
element-delimiter

591-591 1 Char Subelement delimiter used when
transaction was translated.

Segment
terminator

592-592 1 Char Segment terminator used when
transaction was translated.

Decimal notation 593-593 1 Char Decimal notation used when
transaction was translated.

Release
character

594-594 1 Char Release character used when
transaction was translated.

Segment ID
separator

595-595 1 Char Segment ID separator used when
transaction was translated.

Transaction
header

596-680 85 Char Image of the transaction header.

Transaction
trailer

681-706 26 Char Image of the transaction trailer.

Last ID 707-722 16 Char Last used.

Filler 723-1024 302 Char Reserved for expansion.

Application data extract record layout

This record defines the application settings being used to extract data. The fields
are described in Table 97 on page 271.

Transaction Store data extraction information categories

270 WebSphere Data Interchange Programmer’s Reference

Table 97. Application data extract record layout

Label Position Length Type Description

Record ID 1-3 3 Char Record ID = A

Nickname 4-19 16 Char Trading partner nickname

Direction 20-20 1 Char Direction of format

Control Number 21-34 14 Char Interchange control number

Receiver ID 35-69 35 Char Interchange receiver ID

Control Number 70-83 14 Char Group control number

Control Number 84-97 14 Char Transaction control number

Controlling
handle

98-117 20 Char Handle value of controlling
transaction
(YYYYMMDDHHMMSSnnnnnn)

Transaction
handle

118-137 20 Char Handle value of transaction
(YYYYMMDDHHMMSSnnnnnn)

Sequence
Number

138-141 4 Char Sequence number

Format ID 142-157 16 Char Data format ID

Application ID 158-165 8 Char Application ID

BATCH ID 166-173 8 Char Batch ID

Delivery Date 174-187 14 Char Date/time delivered to application
(YYYYMMDDHHMMSS)

Error level 188-188 1 Char Translation error level

Acceptable error
level

189-189 1 Char Acceptable error level

Error count 190-200 11 Char Number of errors found

Filler 201-1024 824 Char Reserved for expansion

Transaction/Acknowledgment image data extract record layout
This record defines the transaction and acknowledgment image settings being used
to extract data. The fields are described in Table 98.

Table 98. Transaction/Acknowledgement image data extract record layout

Label Position Length Type Description

Record ID 1-3 3 Char Record ID. Valid values are:

RX = Transaction image
continued RZ = Final transaction
image record FX = Functional
acknowledgment image continued
FZ = Final functional
acknowledgment image record KX
= Transaction acknowledgment
image continued KZ = Final
transaction acknowledgment
image record

Nickname 4-19 16 Char Trading partner nickname.

Direction 20-20 1 Char Direction of image data.

Control Number 21-34 14 Char Interchange control number.

Receiver ID 35-69 35 Char Interchange receiver ID.

Transaction Store data extraction information categories

Chapter 3. File formats and WebSphere Data Interchange Utility records 271

Table 98. Transaction/Acknowledgement image data extract record layout (continued)

Label Position Length Type Description

Control Number 70-83 14 Char Group control number.

Control Number 84-97 14 Char Transaction control number.

Controlling
handle

98-117 20 Char Handle value of controlling
transaction
(YYYYMMDDHHMMSSnnnnnn).

Transaction
handle

118-137 20 Char Handle value of transaction
(YYYYMMDDHHMMSSnnnnnn).

Filler 138-141 4 Char Blanks.

Total size 142-152 11 Char Total size of the image.

Record size 153-163 11 Char Size of image data in this record.

Image 164-end Variable Char Transaction or acknowledgment
image.

Transaction Store data extraction information categories

272 WebSphere Data Interchange Programmer’s Reference

Chapter 4. Exit routines

An exit routine is a program that you provide to perform some service for your
application or data. WebSphere Data Interchange calls the exit routine at an
appropriate time, and passes it the information needed to accomplish the task.
When the task is completed, the exit routine returns the results to WebSphere Data
Interchange. For example, WebSphere Data Interchange might pass encrypted data
to the exit routine and receive back the data in decrypted form. The information
passed to each type of exit routine (its parameters) is described in detail.

There are two types of exit routines. One type of exit routine is a user extension to
WebSphere Data Interchange and can interact directly in the current WebSphere
Data Interchange session. The other type is an independent program and has no
knowledge of the current session. The user extension exits are described first,
followed by descriptions of the independent program exits.

There are six user exits that your application programs can use to extend or
enhance the capabilities of WebSphere Data Interchange:

v Any-to-any data transformation exit routines will allow users to specify in their
data transformation maps that a user-written program should be called

v Field exit routines provide additional processing for application data
(translate-to-standard) and EDI standard data (translate-to-application) during
translation.

v Transaction exit routines (pre-translation and post-translation) provide additional
processing for an entire transaction after translate-to-standard or before
translate-to-application.

v Security exit routines protect transaction data through encryption and
authentication. Filtering and compression exits are also defined as part of this
process.

v Point-to-point network program exit routines get invoked on communication
requests for a point-to-point network.

v Message handling exit routines are invoked to process responses from the
networks that are not directly supported by WebSphere Data Interchange.

The first four instances are described in the following sections. Point-to-point
network programs and message handlers are discussed in Chapter 8, “Interfacing to
other networks and applications” on page 525.

The architecture for user extensions to WebSphere Data Interchange is very similar
to the architecture used when calling services using the WebSphere Data
Interchange API. Services are given logical names (for example, TRANPROC for
translation services) and the association between a logical name and a physical
load module is accomplished at execution time. User extensions use this same
architecture in that exits are identified with a logical name. A logical name for an
exit is specified at various points in the customization process, as follows:

1. The logical name for a field exit routine is specified in the User exit routine
name field on the Special Handling panels during the mapping process.

2. The logical name for a pre-translation routine is specified in the
Pre-translation exit routine field on the Add Trading Partner Usage for
Receiving panel. The logical name for a post-translation routine is specified in
the Post-translation exit routine field on the Add Trading Partner Usage for
Sending panel.

© Copyright IBM Corp. 2002 273

3. The logical names for security exit routines are specified in the network security
profile (SECUPROF), as follows:
v For a compression routine in the Comp. program field
v For a filtering routine in the Filtering program field
v For an encryption/decryption routine in the Encr. program field
v For an authentication routine in the Auth. program field

Before using the logical name of a service in one of the fields mentioned above,
you must define the exit routine to WebSphere Data Interchange in the user
program information profile User Exits. To define an exit routine, you must associate
a logical exit name with a physical load module name and with the programming
language used to write the exit routine. For a complete description of this profile,
refer to the WebSphere Data Interchange User’s Guide.

Exit languages
User exits for Windows and AIX can be written in C or C++ (C++ exits must use
extern ’C’ linkage and are treated as C programs). User exits for z/OS and CICS
can be written in Assembler, C, or COBOL. You must specify the implementation
language for a user exit in the user program information profile in the Program
language field of the profile entry. Valid values are:

A Assembler programs.

C C language programs. WebSphere Data Interchange supports Microsoft
Visual C++ 6.0 complier for Windows, IBM VisualAge® C++ 5.0 compiler for
AIX and System Application Architecture (SAA®) C/370 compiler for z/OS
and CICS.

J COBOL programs written using a COBOL compiler other than IBM
COBOL II.

K COBOL II programs. WebSphere Data Interchange fully supports the IBM
COBOL II compiler.

Note: References to COBOL in this book refer to both IBM COBOL II programs
and non-IBM COBOL II programs. However, non-IBM COBOL II support is
limited to field exit routines, pre-translation exit routines, and post-translation
exit routines, unless specified otherwise.

Exit linkage editor instructions
When WebSphere Data Interchange determines that a user exit should be called,
the logical name of the user exit is used to read the User Exits profile entry to
determine the physical load module name (module name) and the implementation
language (Program language). WebSphere Data Interchange issues an operating
system load for the load module and then passes control to the exit routine.
Information about the exit is retained by WebSphere Data Interchange so if the exit

The Load module name field in the User Exits profile must match the name given to
the load module in the linkage editor control statements. This is the name that
WebSphere Data Interchange attempts to load and if a load module by this name is
not found in any load library (STEPLIB/JOBLIB/LINKLIB), the result is a system
806 ABEND.

Note: In CICS, a PPT entry must exist for the program or a CICS load failure
results.

The entry point for a program written in Assembler or COBOL should be the same
as the physical load module name. Programs written in C have the following
requirements:

v The function name for the C routine must be MAIN.

v The linkage editor control statements should have an INCLUDE for the
FXXZCITF load module which is in the WebSphere Data Interchange load
module data set (EDI.V2R1M0.SEDILMD1).

v FXXZCITF should be made the entry point for the load module. The FXXZCITF
program establishes the C environment and then transfers control to the main
function in the program.

Any-to-any data transformation
Any-to-any data transformation is enhanced to include the capability to call user
written programs. These programs can be written in C or C++. C and C++ functions
are called by WebSphere Data Interchange using the DLL calling convention.
WebSphere Data Interchange does not support the function name mangling which
occurs in C++. These functions have to be extern C blocked. User-written functions
can accept up to four optional input string arguments, and will return a string as
output. These strings can be character strings or UCS2 unicode strings.

For information regarding the User Exits Profile see WebSphere Data Interchange
User’s Guide

Exit Function
The any-to-any mapping function is is called Exit. Exit can be used within
transformation maps to invoke a field exit and will return a string value. The DLL to
be loaded and the function within the DLL to be executed are specified in the User
Exits profile. The function has up to five parameters (the exit routine profile name
and four optional strings). Results that are returned can be used to update a
variable or target a simple element in an assignment statement. The Exit function
uses the following format:

result Exit(exitname[, parameter[, parameter[, ...]]])

Where:

result A string returned by the user exit

exitname A string expression that results in the User Exits profile member
name that contains the function information to be executed.

parameter Evaluates to a string that wil be passed to the field exit. Parameter
can not evaluate to a simple element in the target data. Up to 4
parameters can be passed to the Exit function.

Exit languages

Chapter 4. Exit routines 275

You must define field exits in the User Exits profile (See WebSphere Data
Interchange User’s Guide.) If the exit is not properly defined, an error is issued.
Zero to four parameters can be passed to the exit and it is the job of the field exit to
determine how many parameters to expect.

User written function prototype
int func(

char* pOutPut, /* Pointer to output buffer */
long lOutLeng, /* Maximum number of output characters */
void** ppUEContext, /* Pointer to user exit context pointer */
char* pOption1, /* Pointer to first optional string */
char* pOption2, /* Pointer to second optional string */
char* pOption3, /* Pointer to third optional string */
char* pOption4); /* Pointer to forth optional string */

Note: If the User Exits profile indicates that Unicode strings are involved, then the
char* fields above would be wchar_t* fields.

The user-written function should return a zero to indicate a successful execution
and a non-zero to indicate otherwise. A non-zero return code from a user-written
function will cause data transformation to stop and an error to be logged. The
logged message will include the DLL name, the function name, and the return code
value. LOutLeng contains the maximum number of output characters specified in the
User Exits profile. The actual output buffer size is the maximum number of output
characters plus a NULL terminator. The output buffer will be initialized to all binary
zeroes prior to user-written function invocation. Upon return to WebSphere Data
Interchange, WebSphere Data Interchange knows the actual number of output
characters because the output is a NULL terminated character string. The
ppUEContext field is a four-byte place holder. The user-written function may allocate
storage for its own use. A pointer to this storage can then be stored in ppUEContext
and would be available to the user written function across multiple invocations. It is
up to the user-written function to eventually free any storage it acquired.

Field exit routines
Field exit routines provide additional processing for application data
(translate-to-standard) and EDI standard data (translate-to-application) during
translation.

The logical name for a field exit routine is specified in the User exit routine name
field on the Special Handling panels during the mapping process. The physical
characteristics of the exit are defined in the User Exits (ADAMCTL) profile.

During translate-to-standard operations, the translator calls a field exit routine
before taking any action with the Application data field.

During translate-to-application operations, the translator calls a field exit routine
before taking any action with an EDI standard data element.

In either case, the exit routine can inspect the data and do any of the following:

v Verify the data against a predefined set of rules. The exit can tell WebSphere
Data Interchange to ignore the data or to ignore the rules through return code
settings. For more information, see “Send parameters” on page 277, and
“Receive parameters” on page 278.

v Change the value of the data and tell WebSphere Data Interchange to use the
new value.

v Save the value of the data for use by other field exit routines.

Field exit routines shipped with WebSphere Data Interchange
Field exit routines allow you to decide whether to use the value of an application
field based on the data in another application field. Field exit routines must always
be paired. EDICHKI or EDICHKU must always be followed by EDIQQF. These field
exit routines are designed to work with send translation only.

The following field exit routines are shipped with WebSphere Data Interchange:

v EDICHKI checks the value of a field and ignores the application data. This exit
sets a flag indicating whether the field contained all blanks.

v EDICHKU checks the value of a field and still uses the application data in the
field. This exit sets a flag indicating whether the field contained all blanks.

v EDIQQF uses the flag set by either EDICHKI or EDICHKU to determine whether
the field contained non-blank data. If the field contained blanks, this exit returns
to the translator and tells it to ignore the data. If a literal is associated with this
field, the literal is also ignored if the flag indicates an all-blank field.

For example, if you have application field A mapped to EDI standard field X, and
application field B mapped to EDI standard field Y, but you only want EDI standard
field X to appear if application field B contains data, you could:

1. Map application field B to EDI standard field Y and to field exit EDICHKI.

2. Map application field A to EDI standard field X and to field exit EDIQQF.

If you have the above case, but you want both EDI standard fields X and Y created
only if application field B contains data, you could:

1. Map application field B to EDI standard field Y and to field exit EDICHKU.

2. Map application field A to EDI standard field X and to field exit EDIQQF.

Send parameters
The list below describes the parameters that are passed to a field exit routine
during translate-to-standard operations. At this point, the exit routine can inspect the
application data and determine how to process the data in creating EDI standard
data element values.

See “Field exit parameter language definitions” on page 280 for examples on how to
declare the parameters in Assembler, COBOL, and C programs.

The parameter list for field exit routines during translate-to-standard operations
consists of the following pointers:

Service name block (SNB)
See “Service Name Block (SNB)” on page 554 for a detailed description of this
block. The ZSNBNAME field contains the logical name for the exit specified in the User
exit routine name field on the Send Special Handling panel. You can combine
many field exit routines into a single physical load module and use the value in
ZSNBNAME to determine the reason the exit is being called.

Common control block (CCB)
See “Common Control Block (CCB)” on page 557 for a detailed description of this
block. The ZCCBRC field is used to tell WebSphere Data Interchange what further
actions should be taken against the current application data. Valid values are:

Field exit routines

Chapter 4. Exit routines 277

0 Continues normal processing for the application field. If the return field
length is not zero, check to see if the temporary work area contains a new
value for the field.

1 Ignores the application field but any default literal processing still applies.

2 Ignores both the application field and the default literal.

3 – 20 Reserved.

21 and higher
An error was detected by the user exit. WebSphere Data Interchange
creates a log record (message TR0006) indicating a user exit error
occurred, which is treated as a level 1 (data element) error, and does not
process the field any further (same as a return code of 1).

Field value
The actual application field from the data format structure. You can change the
field's value directly in this buffer if you do not increase the length. If the value is
changed directly in the buffer, however, and the field is mapped more than once,
subsequent mappings and exits might see the changed value rather than the
original value. To avoid this, use the temporary work area and the return field length
to provide the changed value to WebSphere Data Interchange.

Field offset (4 byte binary value)
You can use this value to determine which field you are processing. However,
WebSphere Data Interchange does not pass the entire structure to the field exit
routine. It passes only the field specified by the translation usage/rule. You cannot
use this field to access the entire structure.

Field length (4 byte binary value)
Your exit routine can change the value in this field to a smaller value if the field
should be shortened. If you need to increase the size of this field, you must use the
temporary work area and the new length field.

Permanent work area (4096 byte buffer)
Your exit routine can use this work area for its processing. WebSphere Data
Interchange initializes the work area to binary zeros at the start of translation. After
initialization, your exit routine determines the content and format of the work area.
The same work area is passed to all exit routines during the translation session.

Temporary work area (1024 byte buffer)
Your field exit routine can use this work area to store a modified version of the input
data. WebSphere Data Interchange initializes this work area with blanks before
calling the exit routine.

Return field length (4 byte binary value)
This field has a value of zero on entry to the exit routine. A nonzero value in this
field, when the exit routine returns to WebSphere Data Interchange, indicates that
the data in the temporary work area should be used.

Receive parameters
The list below describes the parameters that are passed to a field exit routine
during translate-to-application operations. At this point, the exit routine can inspect
EDI standard data elements and determine how to process the data in creating
application field values.

See “Field exit parameter language definitions” on page 280 for examples on how to
declare the parameters in Assembler, COBOL, and C programs.

Send parameters

278 WebSphere Data Interchange Programmer’s Reference

The parameter list for field exit routines during translate-to-application operations
consists of the following pointers.

Service name block (SNB)
See “Service Name Block (SNB)” on page 554 for a detailed description of this
block. The ZSNBNAME field contains the logical name for the exit specified in the User
exit routine name field on the Receive Special Handling panel. You can combine
many field exit routines into a single physical load module and use the value in
ZSNBNAME to determine the reason the exit is being called.

Common control block (CCB)
See “Common Control Block (CCB)” on page 557 for a detailed description of this
block. The ZCCBRC field is used to tell WebSphere Data Interchange what further
actions should be taken against the current application data. Valid values are:

0 Continues normal processing for the EDI standard data element. If the
return field’s length is not zero, check to see if the temporary work contains
a new value for the data element.

1 Ignores the data element, but any default literal processing still applies.

2 Ignores the data element and the default literal.

3 – 20 Reserved.

21 and higher
An error was detected by the user exit. WebSphere Data Interchange
creates a log record (message TR0006) indicating a user exit error
occurred, which is treated as a level 1 (data element) error, and does not
process the data element any further (same as a return code of 1). To set
the functional acknowledgment code, see the temporary work area.

Data element value
The actual data element value from the segment. You can change the value directly
in this buffer if you do not increase the length. If the value is changed directly in the
buffer, however, and the data element is mapped more than once, subsequent
mappings and exits might use the changed value rather than the original value. To
avoid this, use the temporary work area and the return field length to provide the
changed value to WebSphere Data Interchange.

Field offset (4 byte binary value)
You can use this value to determine which data element you are processing.
However, WebSphere Data Interchange does not pass the entire segment to the
field exit routine. It passes only the data element specified by the translation
usage/rule. You cannot use this field to access the entire segment.

Field length (4 byte binary value)
Your exit routine can change the value in this field to a smaller value if the data
element should be shortened. If you need to increase the size of this field, you must
use the temporary work area and the new length field.

Permanent work area (4096 byte buffer)
Your exit routine can use this work area for its processing. WebSphere Data
Interchange initializes the work area to binary zeros at the start of translation. After
initialization, your exit routine determines the content and format of the work area.
The same work area is passed to all exit routines during the translation session.

Temporary work area (1024 byte buffer)
Your field exit routine can use this work area to store a modified version of the input
data. WebSphere Data Interchange initializes this work area with blanks before

Receive parameters

Chapter 4. Exit routines 279

calling the exit routine. If the user exit found an error in the data and rejects the
data by setting the CCB return code to a value greater than 20, you can use the
first byte of this work area to set the functional acknowledgment error code for the
AK4 segment. The return value must be numeric, or it is ignored. Other than that,
the return value is neither edited or validated. If 999 or CONTRL functional
acknowledgments are being created, WebSphere Data Interchange converts the
997 AK4 value to the appropriate 999 or CONTRL value.

Return field length (4 byte binary value)
This field has a value of zero on entry to the exit routine. A non-zero value in this
field, when the exit routine returns to WebSphere Data Interchange, identifies that
the data in the temporary work area should be used.

Field exit parameter language definitions
The following sections show how to define the parameters provided to field exit
routines in Assembler, C, and COBOL.

Assembler definition
The Assembler definitions for parameters are shown below.
*
* DSECT describing parameters to this routine
* The address of this parameter list is contained in Register 1
* at entry to the program.
*
PARMS DSECT
SNBDATA DS A Address of the SNB
CCBDATA DS A Address of the CCB
FLDDATA DS A Address of data
FLDOFF DS A Address of 4 bytes containing offset
FLDLEN DS A Address of 4 bytes containing length
PERMAREA DS A Address of 4096 work area
TEMPAREA DS A Address of 1024 temporary area
TEMPLEN DS A Address of 4 bytes to return length value
*
USREXIT CSECT
USING PARMS,R1

C definition
The C definitions for parameters are shown below.
typedef struct WORKAREA
worka;
struct WORKAREA {
char working[4096];
};

main(snbdata,
ccbdata,
flddata,
fldoffset,
fldlength,
permarea,
temparea,
templength)
snb *snbdata; /* Service name block pointer set up by DI */
ccb *ccbdata; /* Common block pointer used by DI */
char *flddata; /* Pointer to the data */
long *fldoffset; /* Address of offset of field */
long *fldlength; /* Length of the data */
worka *permarea; /* Address of a work area */
char *temparea; /* Area when I can move result data */
long *templength; /* Length of data moved to result area */

Receive parameters

280 WebSphere Data Interchange Programmer’s Reference

COBOL definition
The COBOL definitions for parameters are shown below.
LINKAGE SECTION.

* DF - DATA FORMAT FIELD DATA *

01 FLD-DATA PIC X(100).

* OFFSET OF DF FIELD DATA WITHIN STRUCTURE *

01 FLD-OFFSET PIC 9(09) COMP.

* LENGTH OF THE FIELD BEING PASSED TO THE EXIT ROUTINE *

01 FLD-LENGTH PIC 9(09) COMP.

* THE 4096 BYTE PERMANENT WORK AREA *

01 PERM-AREA PIC X(4096).

* THE 1024 BYTE TEMPORARY WORK AREA *

01 TEMP-AREA PIC X(1024).

* LENGTH OF DATA IN THE TEMPORARY WORK AREA *

01 TEMP-LENGTH PIC 9(09) COMP.
PROCEDURE DIVISION USING SNB-DATA

CCB-DATA
FLD-DATA
FLD-OFFSET
FLD-LENGTH
PERM-AREA
TEMP-AREA
TEMP-LENGTH.

Transaction exit routines
Pre-translation and post-translation exit routines provide additional processing for an
entire transaction after translate-to-standard or before translate-to-application.

The logical name for a pre-translation routine is specified in the Pre-translation
exit routine field on the Add Trading Partner Usage for Receiving panel. The
logical name for a post-translation routine is specified in the Post-translation exit
routine field on the Add Trading Partner Usage for Sending panel. The physical
characteristics of the exit are defined in the User Exits (ADAMCTL) profile.

Pre-translation exit
During translate-to-application operations, the translator calls a pre-translation
routine before any translation takes place. The exit has access to the entire
transaction (all data between but not including the transaction set header and
transaction set trailer). The pre-translation exit routine can perform any operation on
this data. Any modifications made by the exit routine become part of the transaction
image. When modifying the data, observe the following restrictions:
v Do not change the length of the data.

Field exit parameter language definitions

Chapter 4. Exit routines 281

v Do not change any character to make it look like a segment delimiter.

Post-translation exit
During translate-to-standard operations, the translator calls a post-translation routine
after the translation is complete and before the transaction image is written to the
Transaction Store. The exit program has access to the entire transaction (all the
data between but not including the transaction set header and transaction set
trailer). The post-translation exit routine can perform various modifications on this
transaction. In modifying the data, observe the following restrictions:

v Do not change the length of the data.

v Do not change any segment delimiters.

v Do not change any non-segment delimiter character to a segment delimiter
character. This restriction ensures that the receiving translator can verify that it is
receiving the correct number of segments, specified by the transaction set trailer.

v Do not change the data to appear as though it is a transaction set trailer, group
trailer, or interchange trailer.

Pre- and Post-translation exit parameters
The parameter list for pre-translation and post-translation exit routines consists of
the following pointers.

Service name block (SNB)
See “Service Name Block (SNB)” on page 554 for a detailed description of this
block. The ZSNBNAME field contains the logical name for the exit specified in the
Post-translation exit routine field on the Add Trading Partner Usage for
Sending panel or in the Pre-translation exit routine field on the Add Trading
Partner Usage for Receiving panel. You can combine many field exit routines into a
single physical load module and use the value in ZSNBNAME to determine the reason
the exit is being called.

Common control block (CCB)
See “Common Control Block (CCB)” on page 557 for a detailed description of this
block. The ZCCBRC field is used to tell WebSphere Data Interchange what further
actions should be taken against the current application data. Valid values are:

0 The modified data returned by the exit routine becomes the transaction
image.

1 – 20 Reserved.

21 and higher
The original data is used as the transaction image. WebSphere Data
Interchange creates a log record (message TR0006) indicating a user exit
error occurred, which is treated as a level 1 (data element) error.

Transaction image
The complete transaction image between the transaction set header and transaction
set trailer (not including the header or trailer).

Compatibility parameter (4 byte binary value containing 0)
Used only to maintain compatibility between the user exit parameter list and the
pre-translation and post-translation parameter list.

Image length (4 byte binary value)
The length of the transaction image. The exit routine must not change this value.
Unpredictable results occur if this value changes.

Transaction exit routines

282 WebSphere Data Interchange Programmer’s Reference

Permanent work area (4096 byte buffer)
Your exit routine can use this work area for its processing. WebSphere Data
Interchange initializes this work area to binary zeros at the start of translation. After
initialization, your exit routine determines the content and format of the work area.
The same work area is passed to all exit routines during the translation session.

Temporary work area (1024 byte buffer)
Your exit routine can use this work area as necessary. WebSphere Data
Interchange initializes this work area with blanks before calling the exit routine.

Compatibility field (4 byte binary value containing 0)
Used only to maintain compatibility between the user exit parameter list and the
pre-translation and post-translation parameter list.

Translation exit language definitions
The following sections show how to define the parameters provided to the
pre-translation and post-translation exit routines in Assembler, C and COBOL.

COBOL definition
The COBOL definitions for parameters are shown below.
LINKAGE SECTION.

* TRANSACTION IMAGE BETWEEN HEADER AND TRAILER *

01 TRX-DATA PIC X(32768).

* COMPATIBILITY FIELD *

01 FLD-COMPAT PIC 9(09) COMP.

* LENGTH OF THE TRANSACTION IMAGE *

01 TRX-LENGTH PIC 9(09) COMP.

* THE 4096 BYTE PERMANENT WORK AREA *

01 PERM-AREA PIC X(4096).

* THE 1024 BYTE TEMPORARY WORK AREA *

01 TEMP-AREA PIC X(1024).

* COMPATIBILITY FIELD *

01 FLD-COMPAT1 PIC 9(09) COMP.

PROCEDURE DIVISION USING SNB-DATA
CCB-DATA
TRX-DATA
FLD-COMPAT

Transaction exit routines

Chapter 4. Exit routines 283

FLD-LENGTH
PERM-AREA
TEMP-AREA
FLD-COMPAT1.

C definition
The C definitions for parameters are shown below.
typedef struct WORKAREA worka;
struct WORKAREA {

char working-4096-;
};

main(snbdata,
ccbdata,
trxdata,
fldcomp,
trxength,
permarea,
temparea,
fldcompat1)
snb *snbdata; /* Service name block pointer set up by DI */
ccb *ccbdata; /* Common block pointer used by DI */
char *trxdata; /* Pointer to the transaction image */
long *fldcompat; /* Compatibility field */
long *trxlength; /* Length of the transaction image */
worka *permarea; /* Address of a work area */
char *temparea; /* Area when I can move result data */
long *fldcopat1; /* Compatibility field */

Assembler definition
The Assembler definitions for parameters are shown below.
*
* DSECT describing parameters to this routine
* The address of this parameter list is contained in Register 1
* at entry to the program.
*
PARMS DSECT
SNBDATA DS A Address of the SNB
CCBDATA DS A Address of the CCB
TRXDATA DS A Address of transaction image
COMPAT DS A Compatibility field
TRXLEN DS A Address of 4 bytes containing length of trx.
PERMAREA DS A Address of 4096 work area
TEMPAREA DS A Address of 1024 temporary area
COMPAT1 DS A Compatibility field
*
USREXIT CSECT
USING PARMS,R1

Get/Put envelope exit and service
WebSphere Data Interchange allows you to retrieve an envelope from storage after
an enveloping operation (bypassing the write of the output file), and to provide an
envelope to storage before the deenveloping operation (bypassing the read of an
input file). For more information, see “Get envelope service” on page 510 and “Put
envelope service” on page 511.

The following section describes the Get/Put Envelope exit processing and service
when the exit program is defined as a user exit rather than a program. An exit
program is specified in the utility control statements (IEXIT, ITYPE, IAREA and
IACCESS) or in the TRCB fields (IUSEREXIT, IUSERTYPE, IUSERAREA, IUSERACCESS). A
user exit type is defined with an ITYPE value of UE. See “Get/Put envelope

Transaction exit routines

284 WebSphere Data Interchange Programmer’s Reference

program” on page 303 for a description of the parameters when the exit is an
independent program rather than a user exit.

Get envelope call
The retrieval of envelope data (GET) is initiated by an API envelope call to
WebSphere Data Interchange from a user-written API program. WebSphere Data
Interchange envelopes the data into internal storage and then checks for a user exit
in the IUSEREXIT field of the TRCB. If an exit is found, instead of writing the
envelope to a file, WebSphere Data Interchange calls the user exit. A pointer field
(IUSERAREA) is provided in the TRCB to allow the user's API program to pass a
user-defined area to the user exit. This user-defined area can be used by the API
program to provide parameters for the exit program.

The user exit then calls the Get service to retrieve the envelope from the
WebSphere Data Interchange internal storage into a user-specified buffer and
transfers it to its ultimate destination. Repeated calls must be made to retrieve
subsequent pieces of the envelope until a return code of 8 with extended return
code of 3 is detected (indicating no more data). No data is returned with this
return code.

On successful return from the user exit (CCB return code is zero), WebSphere Data
Interchange continues processing. On any unsuccessful return (CCB return code is
not zero), a message (TR1255 or TR1256) is logged with the return code,
processing terminates, and the return code is returned to the API program.

Put envelope call
The providing of envelope data (PUT) is initiated by an API deenvelope call to
WebSphere Data Interchange from a user-written API program. WebSphere Data
Interchange checks for a user exit in the IUSEREXIT field of the TRCB. If an exit is
found, instead of reading the envelope from a file, WebSphere Data Interchange
calls the user exit. A pointer field (IUSERAREA) is provided in the TRCB to allow the
user's API program to pass a user-defined area to the user exit. This user-defined
area can be used by the API program to provide parameters for the exit program.

The user exit then retrieves the envelope from its origin and calls the Put service to
store the envelope data into the WebSphere Data Interchange internal storage from
a user-specified buffer. If the API program does not want to pass all of the envelope
data into a single buffer, multiple calls can be made to the Put service to store
subsequent pieces of the envelope.

On successful return from the user exit (CCB return code is zero), WebSphere Data
Interchange deenvelopes the data that was stored by the user exit. On any
unsuccessful return (CCB return code not zero), a message (TR1255 or TR1256) is
logged with the return code, processing terminates, and the return code is returned
to the API program.

FXXZccc stub program
When WebSphere Data Interchange calls a Get Envelope or Put Envelope exit, it
passes two parameters in addition to the normal SNB, CCB, and FCB parameters.
One is a Get/Put control block that is used as the first parameter to call the Get/Put
service. The other is the user-defined area pointed to by TRCB field, IUSERAREA.

Get or Put envelope exit: The interface to the Get or Put Envelope exit is the
WebSphere Data Interchange language-dependent stub (FXXZccc). The format of
the stub is:
FXXZccc(SNB,CCB,FCB,GPCB,USERAREA)

Get/Put envelope exit and services

Chapter 4. Exit routines 285

The parameters for the FXXZccc stub are defined in Table 99.

Table 99. Parameters for the interface to the get or put envelope exit

Parameter Description

SNB The service name block that WebSphere Data Interchange passes as input
to the exit routine.

CCB The common control block that WebSphere Data Interchange passes as
input to the exit routine.

FCB The function control block that WebSphere Data Interchange passes as input
to the exit routine. This block is initialized by WebSphere Data Interchange
with a function code of 1 on an enveloping operation (to allow its use in
calling the Get service), and a function code of 2 on a deenveloping
operation (to allow its use in calling the Put service).

GPCB The Get/Put control block that WebSphere Data Interchange passes as input
to the exit. This block was initialized by WebSphere Data Interchange with
values necessary to call the Get or Put service. It must be passed as the
first parameter to the service.

USERAREA The address of the user-defined area. WebSphere Data Interchange uses
the value from the IUSERAREA field in the TRCB for this address.

Get/Put envelope service: The interface to the Get or Put service (called by the
exit) is the WebSphere Data Interchange language-dependent stub (FXXZccc) and
is dependent on the language in which the exit was written. The format of the
stub is:
FXXZccc(GPCB,CCB,FCB,buffer,length)

The parameters for the FXXZccc stub are defined in Table 100.

Table 100. Parameters for the interface to the get or put service

Parameter Description

GPCB The Get/Put control block that WebSphere Data Interchange passed to the
exit. This block was initialized by WebSphere Data Interchange with values
necessary to call the Get or Put service.

CCB The common control block that WebSphere Data Interchange passed to the
exit routine.

FCB The function control block that WebSphere Data Interchange passed to the
exit routine. This block was initialized by WebSphere Data Interchange with a
function code of 1 on an enveloping operation (to allow its use in calling the
Get service), and a function code of 2 on a deenveloping operation (to allow
its use in calling the Put service).

BUFFER The address where WebSphere Data Interchange should place the envelope
on a Get function or the address from which WebSphere Data Interchange
should move the envelope on a Put function.

LENGTH The address of a 4-byte field. On a Get function call, the field contains the
size of the buffer and the actual number of bytes retrieved is returned here.
On a Put function call, the field contains the actual number of bytes in the
buffer.

Get envelope service return codes: The Get Envelope Service indicates in the
CCB whether the Get process was successful. The CCB contains the following
return codes (RC) and extended return codes (ERC).

Get/Put envelope exit and services

286 WebSphere Data Interchange Programmer’s Reference

RC = 8, ERC = 1
The function code in the FCB is invalid.

RC = 8, ERC = 3
The end of the data (no data is returned with this code).

RC = 8, ERC = 4
The buffer is too small for minimum data. No data is returned but the
minimum size required for the call is returned in the length field.

RC = 0, ERC = 0
The envelope data was returned.

Put envelope service return codes: The Put Envelope Service indicates in the
CCB whether the Put process was successful. The CCB contains the following
return codes (RC) and extended return codes (ERC).

RC = 8, ERC = 1
The function code in the FCB is invalid.

RC = 12, ERC = 2
A virtual storage failure occurred during the Put function.

RC = 0, ERC = 0
The envelope data was stored.

Security routines
Security exit routines protect transaction data through encryption and authentication.
Encryption protects data against unauthorized viewing. Authentication protects data
against unauthorized changes.

Filtering and compression are also defined as part of the encryption and
authentication architecture. Filtering ensures that data does not contain characters
that could conflict with the control characters used in transmitting an interchange.
Filtering is only necessary if the network used to send the data has restrictions on
the characters that can be transmitted. Compression can be used to decrease the
amount of data that is being transmitted, which results in more efficient transmission
and storage of the interchange. If a network is sensitive to the data that is
transmitted, a filtering routine must be used to ensure there are no conflicting
characters.

You need a way to communicate with your trading partner that data you are sending
requires security processing, and a way for your trading partner to tell you that data
being sent to you requires security processing. ANSI has defined how this
communication takes place by defining security segments that are placed within the
interchange to signal that security processing is required and the exact nature of
that processing. The security segments consist of a security header to flag the start
of security processing and a security trailer segment to flag the end of security
processing. ANSI has also defined that security processing can only occur at
specific points within an interchange.

An entire functional group can require security processing and is identified by the
S1S security header segment and the S1E security trailer segment.

A transaction can require security processing and is identified by the S2S security
header segment and the S2E security trailer segment.

Get/Put envelope exit and services

Chapter 4. Exit routines 287

Note: It is possible for a transaction to be secured using the S2S and S2E
segments and to exist within a functional group that has been secured with
the S1S and S1E segments. Group and transaction security are
independent.

The order of security processing has also been standardized. When data is being
prepared for sending (ENVELOPE function), the order is:
1. Authentication
2. Compression
3. Encryption
4. Filtration

When data is being received that requires security processing (DEENVELOPE
function), the order is:
1. Filtration
2. Decryption
3. Decompression
4. Authentication

A transaction image is always stored in the Transaction Store in clear text. Security
processing takes place during the enveloping and deenveloping processes. During
the envelope process:

v A transaction image is retrieved from the Transaction Store.

v Security processing takes place against the image.

v The secured image within an interchange is written to the file associated to the
network and the interchange is delivered to the trading partner by the network.

During the deenvelope process:

v The secured interchange is read from the file.

v Security processing takes place against the image.

v The transaction image (now in clear text) is written to the Transaction Store and
future translations for the transaction do not require security processing.

The following section describes how security processing is enabled for both the
send and receive side, and is followed by detailed descriptions of the interface to
the user exit routines that provide the encryption, authentication, compression, and
filtration functions.

Note: WebSphere Data Interchange provides encryption, authentication, and
filtration routines that can be used if they suit your needs. Refer to the
network security profile (SECUPROF) description in the WebSphere Data
Interchange User’s Guide for definitions of the routines.

Enabling security during send
Enabling security for transactions that you create is a two-step process. The first
step signals that you want security processing and provides the key names to use.
The second step defines exactly what processing should take place and provides
the data necessary for automatically building the security header and trailer
segments (S1S and S1E, S2S and S2E). Proceed as follows:

1. Security is enabled using the following fields on the Add Trading Partner Usage
for Sending panel.

v Group encryption key name

v Group authentication key name

Security routines

288 WebSphere Data Interchange Programmer’s Reference

Note: If either of the above two fields is provided, during the enveloping
process, the group in which this transaction is placed has security
processing. S1S and S1E segments are built by WebSphere Data
Interchange and the group is encrypted and/or authenticated.

v Transaction encryption key name

v Transaction authentication key name

Note: If either of the above two fields is provided, during the enveloping
process, this transaction will have security processing. S2S and S2E
segments are built by WebSphere Data Interchange and the transaction
is encrypted and/or authenticated.

2. Security is defined by providing a member in the network security profile
(SECUPROF). There are two places where the network security profile
member ID can be specified. If you have unique security requirements for a
particular transaction, use the Group network security profile name or the
Trans network security profile name field on the Trading Partner Usage
Overrides for Sending panel. The Security ID field in the trading partner profile
(TPPROF) contains the default network security profile member ID that is used.
The network security profile member provides the following information:

v Fields to indicate if authentication and/or encryption should take place. If
authentication or encryption is asked for in the profile member but no key
name is provided on the Add Trading Partner Usage for Sending panel, no
authentication or encryption is done. If an authentication and/or encryption
key name is provided on Add Trading Partner Usage for Sending panel, but is
not requested for in the profile member, no authentication or encryption
is done.

v Fields to indicate what type of filtering, if any, should be done.

v Data that is used to build the S1S and/or S2S security segment.

v Names of the programs that provide the security support being requested.

If security has been enabled and defined, WebSphere Data Interchange invokes the
user exits defined in the profile during the enveloping process. The user exits
receive the data that must be encrypted, authenticated, compressed, or filtered, and
are expected to return the processed data. WebSphere Data Interchange
automatically builds the required S1S and S1E, or S2S and S2E, segments.

Enabling security during receive
On the receive side, security is self-enabled. The S1S and S2S segments in the
data being received define the security processing that must take place. During the
deenveloping process, WebSphere Data Interchange detects the security segments
and invokes the necessary security user exits based on the data received. The user
exits that get invoked are defined in the network security profile (SECUPROF). The
network security profile member used is provided in the Security ID field of the
trading partner profile member.

On the send side, you can have a different set of programs for each transaction
associated with a trading partner. However, on the receive side, only one set of
programs can be associated with a trading partner since the network security profile
member is identified in the trading partner profile member. For more information on
how an exit routine can disperse processing to other exit routines, see “Call exit
routine” on page 302.

Security routines

Chapter 4. Exit routines 289

Security parameters
The following sections define the parameters for the security routines of encryption,
authentication, compression, and filtration. There is a lot of similarity in the
parameters passed to these routines because, at a very high level, the functions
performed by each routine are very similar. A tremendous amount of data can be
passed to each routine. Each routine processes the data and returns the data to
WebSphere Data Interchange. The amount of data received by these routines is not
necessarily the same as the amount of data produced. A compression routine
should produce less than it receives, while a filtration routine generally produces
more than it receives. Although an encryption routine usually does not change the
length of the data, WebSphere Data Interchange does allow the length to change.

The amount of data processed by these routines can be quite large; sometimes
there is too much data to fit in the space available to process it. For this reason, the
interface to these routines provides a mechanism for processing data in pieces. The
size of the buffer used to pass data to these routines is controlled by the Buffer
size field specified in the network security profile member. If you do not specify a
buffer size, WebSphere Data Interchange obtains a buffer large enough to hold all
the data up to 32000 bytes. When one of the security routines is called, the
parameters indicate the size of the buffer being used, the amount of data in that
buffer, and the number of residual bytes remaining that would not fit in the buffer. If
the amount of data to be processed exceeds the value in the Buffer size field, a
Get data routine is provided to retrieve the residual data. Once the data is
processed, a Put data routine is provided so that the results can be returned to
WebSphere Data Interchange. For more information, see “Put data routine” on
page 301. The put data routine can be called multiple times if the amount of data
produced exceeds the value of the Buffer size field.

One of the parameters to all of the security routines is the network security profile
member data block, which is a copy of the data from the network security profile
member (SECUPROF) that caused the exit routine to be invoked.

Encryption routine
The Encr.program field in the network security profile (SECUPROF) specifies the
logical name of an encryption routine. This logical name must match an entry in the
User Exits (ADAMCTL) profile, which contains the physical name of the routine and
the implementation language.

The encryption routine receives the parameters described below, encrypts or
decrypts the data, and then return the results to WebSphere Data Interchange
using a Put data routine. For more information, see “Put data routine” on page 301.

As much data as possible is passed to the encryption routine in an input buffer. If
more data must be processed than can fit in the buffer, a Get data routine is
provided to obtain the residual data. For more information, see “Get data routine” on
page 300.

The encryption routine also has an output buffer for holding the output data. The
output buffer is the same size as the input buffer. A Put data routine is provided for
putting the results into the buffer. The exit routine must call the Put data routine
whenever the output buffer is full, and again at the end of the process to put any
data that remains in the output buffer.

A sample encryption routine is provided in “Encryption examples” on page 645.

Security routines

290 WebSphere Data Interchange Programmer’s Reference

Encryption parameters
The parameters described below are passed to an encryption or decryption exit
routine. For examples of how to declare the parameters in Assembler, C, or COBOL
programs, see “Assembler definition” on page 280, “C definition” on page 280, and
“COBOL definition” on page 281.

Service name block (SNB): See “Service Name Block (SNB)” on page 554 for a
detailed description of this block. The ZSNBNAME field contains the logical name for
the exit (value in the Encr. program field from the network security profile member).
You can combine many exit routines into a single physical load module and use the
value of ZSNBNAME to determine why the exit is being called.

Common control block (CCB): See “Common Control Block (CCB)” on page 557
for a detailed description of this block. The ZCCBRC and ZCCBERC fields are used to
report any errors found by the exit routine. If the return code (ZCCBRC) and extended
return code (ZCCBERC) are not zero, WebSphere Data Interchange assumes that
encryption or decryption failed and logs a message (TR0849) with the return code
and extended return code as part of the message. Valid values for ZCCBERC are:
0 The exit terminated without errors.
1 The ZFCBFUNC function code is not valid.
2 – 3 Reserved.
4 The service requested has not been defined in the User Exits (ADAMCTL)

profile.
5 – 10 Reserved.
11 The encryption key name is not known.
12 – 20

Reserved.
21 and higher

Errors were defined by the exit routine.

Function control block (FCB): See “Function control block (FCB)” on page 560
for a detailed description of this block. Valid values for the ZFCBFUNC field are:
1 Encrypting.
2 Decrypting.
3 Assigning an initialization vector.

Encryption handle: Used to get residual data (see “Get data routine” on
page 300) and to put results (“Put data routine” on page 301). A 4 byte binary value.

Key name: The key name to be used during encryption or decryption. A 16 byte
value.

Security data block (SECUDB): The network security profile member
(SECUPROF) that defined the exit being called.

Buffer size: The size of the input and output buffers. A 4 byte binary value.

Input buffer: Holds the data to be processed. The size of this file is determined by
the value set in the Buffer size field.

Output buffer: Holds the data that has been processed.The size of this file is
determined by the value set in the Buffer size field.

Input data length: The amount of data in the input buffer. A 4 byte binary value.

Residual length: The residual number of characters that must be processed but
could not be put into the input buffer because of size restrictions. If this value is not

Encryption routine

Chapter 4. Exit routines 291

zero, the exit routine, after processing all the data in the input buffer, can request
the residual data by calling a get data routine (“Get data routine” on page 300). A 4
byte binary value.

Initialization vector: If this is a request to obtain an initialization vector (ZFCBFUNC
value of 3), this is where the exit routine returns the value. If this is an encryption
request, the value returned in this field should be the encrypted initialization vector.
An 8 character value.

Encryption routine language definitions

COBOL definition: The COBOL definitions for the encryption parameters are
shown below.
LINKAGE SECTION.

* HANDLE - USED IN PUTDATA AND GETDATA ROUTINES *

01 HANDLE PIC 9(09) COMP.

* KEYNAME - KEY NAME USED FOR ENCRYPTION/DECRYPTION *

01 KEY-NAME PIC X(16).

* THE SIZE OF THE INPUT AND OUTPUT DATA BUFFERS *

01 BUFFER-SIZE PIC 9(09) COMP.

* BUFFER CONTAINING DATA TO ENCRYPT OR DECRYPT *

01 INPUT-DATA PIC X(4096).

* BUFFER CONTAINING THE ENCRYPTED/DECRYPTED DATA *

01 OUTPUT-DATA PIC X(4096).

* LENGTH OF DATA IN THE INPUT DATA BUFFER *

01 DATA-LENGTH PIC 9(09) COMP.

* AMOUNT OF DATA THAT REMAINS TO BE PROCESSED THAT WOULD *
* NOT FIT IN THE INPUT DATA BUFFER. CALLS TO THE GETDATA*
* ROUTINE SHOULD BE MADE UNTIL RESIDUAL-LENGTH IS ZERO *

01 RESIDUAL-LENGTH PIC 9(09) COMP.

* INITIALIZATION VECTOR AREA *

01 INITIALIZATION-VECTOR PIC X(08).

PROCEDURE DIVISION USING SNB-DATA

Encryption routine

292 WebSphere Data Interchange Programmer’s Reference

CCB-DATA
FCB-DATA
HANDLE
KEY-NAME
SECDB-DATA
BUFFER-SIZE
INPUT-DATA
OUTPUT-DATA
DATA-LENGTH
RESIDUAL-LENGTH
INITIALIZATION-VECTOR.

C definition: The C definitions for the encryption parameters are shown below.
main(snbdata,
ccbdata,
fcbdata,
handle,
keyname,
secdata,
bufsize,
inbuf,
outbuf,

datalen,
residual,
vector)

snb *snbdata; /* Service name block pointer set up by DI */
ccb *ccbdata; /* Common block pointer used by DI */
fcb *fcbdata; /* Function control block */
void *handle; /* Handle used in getdata and putdata */
char *keyname; /* Name of key for encryption/decryption */
secdb *secdata; /* Security profile data block */
long *bufsize; /* The size of inbuf and outbuf */
char *inbuf; /* Data to be encrypted or decryption */
char *outbuf; /* Work buffer to hold result data */
long *datalen; /* Amount of data in inbuf */
long *residual; /* Amount of data remaining */
char *vector; /* Area for the initialization vector */

Assembler definition: The Assembler definitions for the encryption parameters
are shown below.
*
* DSECT describing parameters to this routine
* The address of this parameter list is contained in Register 1
* at entry to the program.
*
PARMS DSECT
SNBDATA DS A Address of the SNB
CCBDATA DS A Address of the CCB
FCBDATA DS A Address of the FCB
HANDLE DS A Address of the handle for getdata/putdata
KEYNAME DS A Address of keyname for encryption/decryption
SECDATA DS A Address of the security data block
BUFSIZE DS A Address of size for INBUF and OUTBUF
INBUF DS A Address of data to be encrypted/decrypted
OUTBUF DS A Address for resultant data
DATALEN DS A Address of amount of data in INBUF
RESIDUAL DS A Address of amount of data not in INBUF
VECTOR DS A Address of initialization vector
*USREXIT CSECT
USING PARMS,R1

Encryption routine

Chapter 4. Exit routines 293

Authentication routine
The Auth program field in the network security profile (SECUPROF) specifies the
logical name of an authentication routine. This logical name must match an entry in
the User Exits (ADAMCTL) profile, which contains the physical name of the routine
and the implementation language.

The authentication routine is expected to return a Message Authentication Code
(MAC) value produced by the authentication process. A MAC is a cryptographically
computed value that is the result of passing text or numeric data through the
authentication algorithm using a specific key.

As much data as possible is passed to the authentication routine in an input buffer.
If more data must be processed than can fit in the buffer, a get data routine is
provided to obtain the residual data. For more information, see “Get data routine” on
page 300. A sample authentication routine is provided in “Authentication examples”
on page 641.

Authentication routine parameters
The list below describes the parameters that are passed to an authentication exit
routine. For examples of how to declare the parameters in Assembler, COBOL, and
C programs, see “Assembler definition” on page 280, “C definition” on page 280,
and “COBOL definition” on page 281. The parameter list consists of the following
pointers:

Service name block (SNB): See “Service Name Block (SNB)” on page 554 for a
detailed description of this block. The ZSNBNAME field contains the logical name for
the exit (value in the Auth. program field from the network security profile member).
You can combine many exit routines into a single physical load module and use the
value in ZSNBNAME to determine why the exit is being called.

Common control block (CCB): See “Common Control Block (CCB)” on page 557
for a detailed description of this block. The ZCCBRC and ZCCBERC fields are used to
report any errors found by the exit routine. If the return code (ZCCBRC) and extended
return code (ZCCBERC) are not zero, WebSphere Data Interchange assumes that
encryption or authentication failed and logs a message (TR0849) with the return
code and extended return code as part of the message. Valid values for the
ZCCBERC field are:
0 The exit terminated without errors.
1 The ZFCBFUNC function code is not valid.
2 – 3 Reserved.
4 The service requested has not been defined in the User Exits (ADAMCTL)

profile.
5 – 10 Reserved.
11 The authentication key name is not known.
12 – 20

Reserved.
21 and higher

Errors were defined by the exit routine.

Function control block (FCB): See “Function control block (FCB)” on page 560
for a detailed description of this block. The ZFCBFUNC field will have one of the
following values:
1 Sending
2 Receiving

Authentication routine

294 WebSphere Data Interchange Programmer’s Reference

Authentication handle: Used to get residual data (see “Get data routine” on
page 300). A 4-byte binary value.

Key name: The key name to be used during authentication. A 16 byte value.

Security data block (SPDB): The network security profile member (SECUPROF)
that defined the exit being called.

Buffer size: The size of the input buffer. A 4 byte binary value.

Input buffer: The data to process. The size of this file is determined by the value
set in the Buffer size field.

Input data length: The amount of data in the input buffer. A 4 byte binary value.

Residual length: The residual number of characters that must be processed but
could not be put into the input buffer because of size restrictions. If this value is not
zero, the exit routine, after processing all the data in the input buffer, can request
the residual data by calling a Get data routine (see “Get data routine” on page 300).
A 4-byte binary value.

MAC value: This is where the MAC value produced by the routine should be
returned. A 4 byte binary value.

Authentication exit language definitions

COBOL definition: The COBOL definitions for the authentication parameters are
shown below.
LINKAGE SECTION.

* HANDLE - USED IN PUTDATA AND GETDATA ROUTINES *

01 HANDLE PIC 9(09) COMP.

* KEYNAME - KEY NAME USED FOR AUTHENTICATION *

01 KEY-NAME PIC X(16).

* THE SIZE OF THE INPUT AND OUTPUT DATA BUFFERS *

01 BUFFER-SIZE PIC 9(09) COMP.

* BUFFER CONTAINING DATA TO AUTHENTICATE *

01 INPUT-DATA PIC X(4096).

* LENGTH OF DATA IN THE INPUT DATA BUFFER *

01 DATA-LENGTH PIC 9(09) COMP.

* AMOUNT OF DATA THAT REMAINS TO BE PROCESSED THAT WOULD *

Authentication routine

Chapter 4. Exit routines 295

* NOT FIT IN THE INPUT DATA BUFFER. CALLS TO THE GETDATA*
* ROUTINE SHOULD BE MADE UNTIL RESIDUAL-LENGTH IS ZERO *

01 RESIDUAL-LENGTH PIC 9(09) COMP.

* MAC VALUE RETURNED *

01 MAC-VALUE PIC 9(09) COMP.

PROCEDURE DIVISION USING SNB-DATA
CCB-DATA
FCB-DATA
HANDLE
KEY-NAME
SECDB-DATA
BUFFER-SIZE
INPUT-DATA
DATA-LENGTH
RESIDUAL-LENGTH
MAC-VALUE.

C definition: The C definitions for the authentication parameters are shown below.
main(snbdata,
ccbdata,
fcbdata,
handle,
keyname,
secdata,
bufsize,
inbuf,
datalen,
residual,
macvalue)

snb *snbdata; /* Service name block pointer set up by DI */
ccb *ccbdata; /* Common block pointer used by DI */
fcb *fcbdata; /* Function control block */
void *handle; /* Handle used in getdata and putdata */
char *keyname; /* Name of key for authentication */
secdb *secdata; /* Security profile data block */
long *bufsize; /* The size of inbuf and outbuf */
char *inbuf; /* Data to be authenticated */
long *datalen; /* Amount of data in inbuf */
long *residual; /* Amount of data remaining */
long *macvalue; /* Area for MAC value produced */

Assembler definition: The Assembler definitions for the authentication
parameters are shown below.
*
* DSECT describing parameters to this routine
* The address of this parameter list is contained in Register 1
* at entry to the program.
*
PARMS DSECT
SNBDATA DS A Address of the SNB
CCBDATA DS A Address of the CCB
FCBDATA DS A Address of the FCB
HANDLE DS A Address of the handle for getdata/putdata
KEYNAME DS A Address of keyname for authentication
SECDATA DS A Address of the security data block
BUFSIZE DS A Address of size for INBUF and OUTBUF
INBUF DS A Address of data to be authenticated
DATALEN DS A Address of amount of data in INBUF
RESIDUAL DS A Address of amount of data not in INBUF

Authentication routine

296 WebSphere Data Interchange Programmer’s Reference

MACVAL DS A Address of 4 byte MAC value
*
USREXIT CSECT
USING PARMS,R1

Compression routine
The Comp. program field in the network security profile (SECUPROF) specifies the
logical name of a compression routine. This logical name must match an entry in
the User Exits (ADAMCTL) profile, which contains the physical name of the routine
and the implementation language.

The compression routine is passed the parameters listed below, compresses or
decompresses the data, and then returns the results to WebSphere Data
Interchange using a Put data routine. For more information, see “Put data routine”
on page 301.

As much data as possible is passed to the compression routine in an input buffer. If
more data must be processed than can fit in the buffer, a Get data routine is
provided to obtain this residual data. For more information, see “Get data routine”
on page 300.

The compression routine also has an output buffer for holding the output data. The
output buffer is the same size as the input buffer. A Put data routine is provided for
putting the results into the buffer. The exit routine must call the Put data routine
whenever the output buffer is full, and at the end of the process to put any
remaining data into the output buffer.

Compression parameters
The parameters for compression exits are exactly the same as those for filtering
exits. See the description in the next section for the parameter description.

Filtering routine
The Filtering program field in the network security profile (SECUPROF) specifies
the logical name of a filtering routine. This logical name must match an entry in the
User Exits (ADAMCTL) profile, which contains the physical name of the routine and
the implementation language.

The filtering routine is passed the parameters described below, filters or defilters the
data and returns the results to WebSphere Data Interchange using a Put data
routine. For more information, see “Put data routine” on page 301.

As much data as possible is passed to the filtering routine in an input buffer. If more
data must be processed than can fit in the buffer, a Get data routine is provided to
obtain the residual data. For more information, see “Get data routine” on page 300.

The filtering routine also has an output buffer for holding the output data. The output
buffer is the same size as the input buffer. A Put data routine is provided for putting
the results into the buffer. The filter routine must call the Put data routine whenever
the output buffer is full, and at the end of the process to put any remaining data into
the output buffer.

Filtering parameters
The list below describes the parameters that are passed to a filtering exit routine.
For examples of how to declare the parameters in Assembler, COBOL, and C
programs, see “Assembler definition” on page 293, “C definition” on page 293, and
“COBOL definition” on page 292

Authentication routine

Chapter 4. Exit routines 297

Service name block (SNB): See “Service Name Block (SNB)” on page 554 for a
detailed description of this block. The ZSNBNAME field contains the logical name for
the exit (value of the Filtering program field from the network security profile
member). You can combine many exit routines into a single physical load module
and use the value in ZSNBNAME to determine why the exit is being called.

Common control block (CCB): See “Common Control Block (CCB)” on page 557
for a detailed description of this block. The ZCCBRC and ZCCBERC fields are used to
report any errors found by the filtering routine. If the return code (ZCCBRC) and
extended return code (ZCCBERC) are not zero, WebSphere Data Interchange
assumes the filtering or defiltering routine failed, and logs a message (TR0849) with
the return code and extended return code as part of the message. Valid values for
the ZCCBERC field are:
0 The exit terminated without errors.
1 The ZFCBFUNC function code is not valid.
2 – 3 Reserved.
4 The service requested has not been defined in the User Exits (ADAMCTL)

profile.
5 – 20 Reserved.
21 and higher

Errors were defined by the exit routine.

Function control block (FCB): See “Function control block (FCB)” on page 560
for a detailed description of this block. The ZFCBFUNC field will have one of the
following values:
1 Filtering or compression
2 Defiltering or decompression

Compression handle:: Used to get residual data (“Get data routine” on page 300)
and to put results (“Put data routine” on page 301). A 4 byte binary value.

Security data block (SECUDB): The network security profile member
(SECUPROF) that defined the exit being called.

Buffer size: The size of the input and output buffers. A 4 byte binary value.

Input buffer (buffer size): The data to process.

Output buffer (buffer size): A buffer that can be used to hold the processed data.
The Put data routine must be used to communicate the results back to WebSphere
Data Interchange.

Input data length: The amount of data in the input buffer. A 4 byte binary value.

Residual length: The residual number of characters that must be processed but
could not be put into the input buffer because of size restrictions. If this value is not
zero, the exit routine, after processing all the data in the input buffer, can request
the residual data by calling a Get data routine (“Get data routine” on page 300). A 4
byte binary value.

Filtering exit language definitions

COBOL definition: The COBOL definitions for the filtering parameters are shown
below.
LINKAGE SECTION.

Filtering routine

298 WebSphere Data Interchange Programmer’s Reference

* HANDLE - USED IN PUTDATA AND GETDATA ROUTINES *

01 HANDLE PIC 9(09) COMP.

* THE SIZE OF THE INPUT AND OUTPUT DATA BUFFERS *

01 BUFFER-SIZE PIC 9(09) COMP.

* BUFFER CONTAINING DATA TO FILTER/COMPRESS *

01 INPUT-DATA PIC X(4096).

* BUFFER CONTAINING THE FILTERED/COMPRESSED DATA *

01 OUTPUT-DATA PIC X(4096).

* LENGTH OF DATA IN THE INPUT DATA BUFFER *

01 DATA-LENGTH PIC 9(09) COMP.

* AMOUNT OF DATA THAT REMAINS TO BE PROCESSED THAT WOULD *
* NOT FIT IN THE INPUT DATA BUFFER. CALLS TO THE GETDATA*
* ROUTINE SHOULD BE MADE UNTIL RESIDUAL-LENGTH IS ZERO *

01 RESIDUAL-LENGTH PIC 9(09) COMP.

PROCEDURE DIVISION USING SNB-DATA
CCB-DATA
FCB-DATA
HANDLE
SECDB-DATA
BUFFER-SIZE
INPUT-DATA
OUTPUT-DATA
DATA-LENGTH
RESIDUAL-LENGTH.

C definition: The C definitions for filtering parameters are shown below.
main(snbdata,

ccbdata,
fcbdata,
handle,
secdata,
bufsize,
inbuf,
outbuf,
datalen,
residual)

snb *snbdata; /* Service name block pointer set up by DI */
ccb *ccbdata; /* Common block pointer used by DI */
fcb *fcbdata; /* Function control block */
void *handle; /* Handle used in getdata and putdata */
secdb *secdata; /* Security profile data block */
long *bufsize; /* The size of inbuf and outbuf */
char *inbuf; /* Data to be filtered or compressed */

Filtering routine

Chapter 4. Exit routines 299

char *outbuf; /* Work buffer to hold result data */
long *datalen; /* Amount of data in inbufq */

long *residual; /* Amount of data remainingq */

Assembler definition: The Assembler definitions for filtering parameters are
shown below.
*
* DSECT describing parameters to this routine
* The address of this parameter list is contained in Register 1
* at entry to the program.
*
PARMS DSECT
SNBDATA DS A Address of the SNB
CCBDATA DS A Address of the CCB
FCBDATA DS A Address of the FCB
HANDLE DS A Address of the handle for getdata/putdata
SECDATA DS A Address of the security data block
BUFSIZE DS A Address of size for INBUF and OUTBUF
INBUF DS A Address of data to be filtered/compressed
OUTBUF DS A Address for resultant data
DATALEN DS A Address of amount of data in INBUF
RESIDUAL DS A Address of amount of data not in INBUF
*
USREXIT CSECT
USING PARMS,R1

Security support routines
The following section describes security support routines.

Get data routine
Authentication, encryption, filtering, and compression can involve large amounts of
data. The size of the buffer that the interface uses to pass data to these routines is
controlled by the buffer size specified in the network security profile member. If the
WebSphere Data Interchange administrator does not specify a buffer size,
WebSphere Data Interchange obtains a buffer that is large enough to hold the data;
however, the buffer cannot exceed 32 K.

When WebSphere Data Interchange calls a security exit routine, the values that
WebSphere Data Interchange passes indicate the size of the buffer being used, the
amount of data in the buffer, and the number of residual bytes remaining that would
not fit in the buffer. Use the Get data routine to retrieve the residual data.

The interface to the Get data routine is the WebSphere Data Interchange
language-dependent stub (FXXZccc). The format of the stub is:
FXXZccc(handle,ccb,fcb,buffer,length)

The parameters of the FXXZccc stub are defined in Table 101.

Table 101. Parameters for the get data routine

Parameter Description

handle The authentication, encryption, compression, or filtering handle that
WebSphere Data Interchange passes as input to the calling routine.

ccb The common control block that WebSphere Data Interchange passes as input
to the calling routine.

fcb A function control block with a function value of 1 (get data request).

buffer The address where WebSphere Data Interchange should place the residual
data. This address can be the same address that WebSphere Data
Interchange passes to the calling routine.

Filtering routine

300 WebSphere Data Interchange Programmer’s Reference

Table 101. Parameters for the get data routine (continued)

length The address of a 4-byte field that contains the maximum number of bytes of
residual data that WebSphere Data Interchange should return.

Get data routine return codes: The Get data routine indicates in the CCB
whether the get process was successful. The CCB contains the following return
codes (RC) and extended return codes (ERC):
RC=8, ERC=1

The function code in the FCB is invalid.
RC=8, ERC=3

There is no data remaining to get.
RC=0, ERC=0

The Get data routine returned the data in the specified buffer.

Notes:

1. If the return codes are zero, the buffer contains the data, and the length
indicates the number of characters that the Get data routine returned in the
buffer.

2. The Get data routine decreases the number of residual bytes by the number of
bytes returned in this request.

Put data routine
The encryption, compression, and filtering routines process input data and create
output data that can have the same length as the input data. WebSphere Data
Interchange provides these routines with an output buffer that can be used as a
work area in creating the output data. Code your encryption, compression, and
filtering routines to return the output data to WebSphere Data Interchange by calling
the Put data routine. The size of the output buffer is the same size as the input
buffer.

The interface to the Put data routine is the WebSphere Data Interchange
language-dependent stub (FXXZccc). The format of the stub is:
FXXZccc(handle,ccb,fcb,buffer,length)

The parameters of the FXXZccc stub are defined in Table 102.

Table 102. Parameters for the Put data routine

Parameter Description

handle The encryption, compression, or filtering handle that WebSphere Data
Interchange passes as input to the calling routine.

ccb The common control block that WebSphere Data Interchange passes as input
to the calling routine.

fcb A function control block with a function value of 2 (put data request).

buffer The address where WebSphere Data Interchange should put the data. This
address can be the same address as the output buffer that WebSphere Data
Interchange passes as input to the calling routine.

length The address of a 4-byte field that specifies the maximum number of bytes that
WebSphere Data Interchange should put.

Put Data routine return codes: The Put data routine indicates in the CCB
whether the put process was successful. The CCB contains the following return
codes (RC) and extended return codes (ERC):

Security support routines

Chapter 4. Exit routines 301

RC=8, ERC=1
The function code in the FCB is invalid.

RC=8, ERC=2
A virtual storage failure occurred while the system put the data.

RC=0, ERC=0
The data is accepted.

Note: When the return codes are zero, the buffer continues to build additional
output data if necessary.

Call exit routine
During receive processing, you might want to have a routine that inspects control
blocks or data, and then calls a secondary exit routine based on the results of that
inspection. For example, an exit routine can inspect a service code and call another
routine that handles a certain type of filtering. The intermediary routine used to call
the secondary routine is a Call exit routine. The secondary routine that is called with
the call exit service receives the same parameters as the original routine.

The interface to the Call exit routine is the WebSphere Data Interchange
language-dependent stub (FXXZccc). The format of the stub is:
FXXZccc(handle,ccb,fcb,routname,0)

The parameters of the FXXZccc stub are defined in Table 103.

Table 103. Parameters for the Call exit routine

Parameter Description

handle The encryption, compression, or filtering handle that WebSphere Data
Interchange passes as input to the calling routine.

ccb The common control block that WebSphere Data Interchange passes as
input to the calling routine.

fcb A function control block with a function value of 3 (secondary routine call).

routname The name of the routine that is being called. This name must be
8 characters long, left-justified, and padded with blanks. This name must
also be the same as the name that the WebSphere Data Interchange
administrator specifies in the User Exits (ADAMCTL) profile.

Call exit routine return codes: The Call exit routine indicates in the CCB whether
the call process was successful. The CCB contains the following return codes (RC)
and extended return codes (ERC):
RC=12, ERC=4

The Call routine could not load or locate the secondary routine that
Routname specifies.

RC=nn, ERC=nn
The return code from the secondary routine that was called.

Independent programs
There are two basic types of independent programs that WebSphere Data
Interchange can invoke. There are response programs that only apply in the CICS
environment (see Chapter 5, “Using WebSphere Data Interchange in the CICS
environment” on page 305). There are programs that process data extraction
records during the DATA EXTRACTION and MANAGEMENT REPORT commands,
and the interface to these programs is described in the following sections.

Security support routines

302 WebSphere Data Interchange Programmer’s Reference

An independent program does not directly participate in the current WebSphere
Data Interchange session. The program is not accessed using the service and exit
architecture of WebSphere Data Interchange but is linked using an z/OS LINK
macro or the EXEC CICS LINK facility. This being the case, there are no language
restrictions imposed by WebSphere Data Interchange for the implementation
language of the program. However, in an z/OS environment, the parameters passed
to the routine can reside above the 16 MBb line and, therefore, the language must
be capable of supporting 31-bit addressing mode (AMODE 31).

Data extract exit
When performing any of the data extract commands described in “Producing
management reports from the Transaction Store” on page 7, you can use a program
that gets control before the extraction record is written. This program can modify the
data or indicate that the record should not be written at all. The name of the
program is provided in the USERPGM keyword on the PERFORM command. The
name provided is the load module name to which WebSphere Data Interchange will
link before writing an output record.

In z/OS, the parameters given to the program point to:

v A 4 byte binary value that is initialized with a zero. Setting the value of this field
to any nonzero value indicates that the extract record should not be written.

v The CCB. See “Common Control Block (CCB)” on page 557for a detailed
description of the CCB.

v A 4 byte binary value that contains the length of the extract record.

v The extract record.

In CICS, the program receives a COMMAREA containing the data extract exit
control block with the format described in Table 104.

Table 104. Data extract exit control block

Name Format Size Offset Description

Return Code Bin 4 0 Initialized with a zero. Setting the
value of this field to any nonzero
value indicates that the extract
record should not be written.

CCB Address Bin 4 4 The CCB used to initialize
WebSphere Data Interchange.

Record length Bin 4 8 The number of bytes in the
extraction data record (next field).

Data Char 1-32738 12 The extract record.

Get/Put envelope program
WebSphere Data Interchange allows you to invoke a program that will get control of
each interchange created. This program gets control after the interchange has been
written to the output file. An exit program is specified in the utility control statements
(IEXIT, ITYPE, IAREA and IACCESS) or in the TRCB fields (IUSEREXIT, IUSERTYPE,
IUSERAREA, IUSERACCESS). An independent program is defined with an ITYPE PG. For
more information on the parameters used when the exit is a user exit program
rather than an independent program, see “Get/Put envelope exit and service” on
page 284.

Independent programs

Chapter 4. Exit routines 303

This program is invoked through an z/OS LINK macro in the z/OS environment or
the EXEC CICS LINK command in the CICS environment. The control block passed
to the program contains the address of:

1. The user area. In z/OS, this is the address of the 16 bytes specified by the
IAREA keyword. In CICS, this is the address of the UTILCB.

2. The current TRCB.

3. The current TPPDB.

4. The WebSphere Data Interchange CCB.

In z/OS, Register 1 (shown below) contains the address of a pointer to the area in
storage that contains the four addresses above. In CICS, these four pointers define
the COMMAREA passed to the program.

R1 ---> control blk address ---> +0 user area address
+4 TRCB address
+8 TPPDB address
+C CCB address

Independent programs

304 WebSphere Data Interchange Programmer’s Reference

Chapter 5. Using WebSphere Data Interchange in the CICS
environment

Most functions of WebSphere Data Interchange operate similarly regardless of the
environment in which they are executed. However, before designing applications to
use WebSphere Data Interchange in the CICS environment, programmers should
be aware of the differences that do occur. This chapter describes how to interface
application programs with WebSphere Data Interchange in the CICS environment,
and discusses the issues to be considered. The reader is expected to have a
working knowledge of programming in a CICS environment. For information about
interfacing WebSphere Data Interchange with other networks and applications, see
Chapter 8, “Interfacing to other networks and applications” on page 525.

Running the WebSphere Data Interchange Utility in the CICS
environment

The WebSphere Data Interchange Utility is the central point of access to
WebSphere Data Interchange functions and the most commonly used interface. In
CICS, when you develop an application program to run the WebSphere Data
Interchange Utility, you can write the application in any programming language
supported by CICS.

The WebSphere Data Interchange Utility provides standard CICS interfaces and
can be instructed to use different CICS storage mechanisms. This section describes
the issues involved in application programming interaction with the WebSphere
Data Interchange Utility. For a description of the specific WebSphere Data
Interchange functions that can be accessed by the WebSphere Data Interchange
Utility, see Chapter 1, “Using The Utility” on page 1

Invocation options
The following methods can be used to invoke the WebSphere Data Interchange
Utility:

v CICS LINK command

Your application uses this command to link to the EDIFFUT program. This is the
simplest interface you can use. With this command, the WebSphere Data
Interchange Utility executes synchronously with your application. When the
WebSphere Data Interchange Utility finishes running, it issues a CICS RETURN
command to give control back to your application. If you use DB2, see “DB2
setup considerations” on page 316.

v CICS START command

Your application uses this command to start the CICS transaction EDIB. The
WebSphere Data Interchange Utility executes in a separate CICS transaction,
asynchronously with your application. If you use the CICS START command,
consider using response applications, because they are an essential element of
the entire process. For more information, see “Response applications” on
page 335.

v CICS Automatic Task Initiation (ATI)

To use this command, you must first add an intrapartition TD queue to the
Destination Control Table (DCT) and associate a trigger level and transaction
EDIB with the TD queue. As with the CICS START interface, the WebSphere
Data Interchange Utility executes in a separate CICS transaction, asynchronously

© Copyright IBM Corp. 2002 305

with your application. If you use ATI, consider using response applications. For
more information, see “Response applications” on page 335 for more details.

v EDIW CICS transaction

You can use this CICS transaction to enter ad hoc PERFORM commands which,
in turn, invoke the WebSphere Data Interchange Utility. This is an easy way to
test your utility commands before writing an application program.

Passing control information
You must supply control information to the WebSphere Data Interchange Utility to
process your request. See “WebSphere Data Interchange Utility control information”
on page 323 for the format of the control information.

The method used for passing the control information depends on the invocation
method you use. The methods are:

1. When you use the CICS LINK command, you can pass control information in
one of two ways:

v Through a communications area (COMMAREA), using the CICS LINK
command with the COMMAREA and LENGTH keywords.

v Through the Transaction Work Area (TWA). Your application should first move
the control information into the TWA, and then issue the CICS LINK
command with no COMMAREA or LENGTH specified. With this method, the
WebSphere Data Interchange Utility assumes that the control information
begins at offset zero of the TWA.

2. When you use the CICS START command, you pass the control information to
the WebSphere Data Interchange Utility with the FROM and LENGTH keywords.

3. When you use the CICS ATI command, you write the control information to the
associated TD queue by issuing a CICS WRITEQ TD command.

Determining results
The WebSphere Data Interchange Utility passes the results back to the invoking
application or forwards them to a response application. The format of the results is
the same as the incoming control information, except that additional results fields
are filled in. See “WebSphere Data Interchange Utility control information” on
page 323.

The results are passed as follows:

1. If you used the CICS LINK command and the control information was supplied
to the WebSphere Data Interchange Utility through the COMMAREA, the results
are returned to the same COMMAREA. If you used the TWA to pass control
information, the results are returned to the TWA on return to your application.

2. If you used the CICS START command or CICS ATI to initiate the WebSphere
Data Interchange Utility, you must provide a response application to process the
results. The response application can be one of the following:

v A program to which the WebSphere Data Interchange Utility will issue a CICS
LINK to give control to the program. When the CICS LINK command is
issued, the COMMAREA and LENGTH keywords are used to pass the results. Your
application then obtains the COMMAREA address and processes the results.

v A CICS transaction that the WebSphere Data Interchange Utility will CICS
START. When the CICS START command is issued, the FROM and LENGTH
keywords are used to pass the results. Your application then obtains the
results by issuing a CICS RETRIEVE.

Running WebSphere Data Interchange in the CICS environment

306 WebSphere Data Interchange Programmer’s Reference

See “Response applications” on page 335 for more details about response
applications.

WebSphere Data Interchange abend return codes
When a CICS abend is detected, WebSphere Data Interchange returns -8 in the
ZCCBRC field and the EBCDIC representation of the CICS abend code in the ZCCBERC
field. This return code combination is global and is not mentioned in upcoming
tables.

CICS storage mechanisms
The WebSphere Data Interchange Utility supports the use of MQSeries queues and
two different types of CICS storage mechanisms for most of the sequential files
it uses:

v Temporary Storage (TS) queues

TS queues are useful for files that are processed multiple times, or when
recovery is not an issue. When TS queues are used as an output destination,
such as a print file, exception file, and query file, they are cleared before they are
used. The following three WebSphere Data Interchange Utility files are the
exception. Records are appended, instead of cleared, when these TS queues are
used as output destinations:

– Envelope TS queues

If you want the TS queue cleared, use the CLEARFILE keyword. Using this
keyword clears the TS queue before a receive is processed and after a send
is processed. If you do not use the CLEARFILE keyword, the WebSphere Data
Interchange Utility appends the transmitted data to the TS queue.

CICS restricts the size of a TS queue to 32-K records. Generally, WebSphere
Data Interchange processes only one envelope TS queue (either inbound or
outbound) at a time. However, the WebSphere Data Interchange Utility can
process more than one inbound TS queue using the DEENVELOPE or the
DEENVELOPE AND TRANSLATE commands. When deenvelope only or
translate is specified in a continuous receive profile member, the Utility
automatically processes the multiple incoming TS queues associated with it.
For more information, see “Processing multiple incoming TS queues” on
page 309.

– Functional Acknowledgment TS queues

If you want the TS queue cleared, use the CLEARFILE keyword to clear the TS
queue before a receive is processed and after a send is processed. If you do
not use the CLEARFILE keyword, the WebSphere Data Interchange Utility
appends the transmitted data to the queue.

– Output application TS queues created because of a translate-to-application
type command.

v Transient Data (TD) queues

The two types of TD queues that you can use with the WebSphere Data
Interchange Utility are:

– Extrapartition TD queues

Extrapartition TD queues are z/OS sequential data sets. You can use them for
output when further processing is required in z/OS or use them to input data
generated in z/OS. Extrapartition TD queues are always appended by the
WebSphere Data Interchange Utility. These files are never cleared.

– Intrapartition TD queues

Running WebSphere Data Interchange in the CICS environment

Chapter 5. Using WebSphere Data Interchange in the CICS environment 307

If recovery is a high priority, recoverable intrapartition TD queues are the best
choice. If recovery is not a high priority, non-recoverable intrapartition TD
queues are a good choice.

The destructive read property of intrapartition TD queues is ideal in eliminating
the potential for reprocessed data. If the queues are recoverable, the input
queues being read are kept in synchronization with all modified resources.
This helps clearly define what resources are part of the unit of work. Restart
processing is much easier with recoverable TD queues because the queues
are always at a complete unit of work boundary. These files are never cleared.

v MQSeries queues

MQSeries queues are specified using WebSphere Data Interchange MQSeries
Queue profile member names and a File type of MQ. MQSeries queues are
very useful if your application receives data from, or passes data to, other
applications which are not in your CICS region. These other applications can be
z/OS batch applications or applications running on other operating systems such
as AIX. MQSeries allows cross-platform communications between applications. In
order to use WebSphere Data Interchange MQSeries support, you must have
MQSeries installed and running on your CICS region.

Attention: Be careful when selecting the storage mechanism for your application's
interface with WebSphere Data Interchange. Data can be inadvertently reprocessed
or lost if the wrong storage mechanism is used.

CICS envelope queue alternatives
Normally, envelope files created by WebSphere Data Interchange are TS queues.
Whether WebSphere Data Interchange envelopes data to be sent or is called to
deenvelope incoming data, the file containing the data is usually a TS queue.

You can override this TS queue convention with a user exit program that uses the
Get envelope service (outbound) and the Put envelope service (inbound). You must
define the User exit program name. When using the WebSphere Data Interchange
Utility, you invoke the exit by using the keywords and values listed below on
enveloping or deenveloping PERFORM commands.
IEXIT The user exit program name
IACCESS

M
ITYPE UE

When using the API, these keywords correspond to TRCB fields, and are filled in as
above. For simple examples on how to do this, and for more information, see “Get
Envelope service example” on page 654 and “Put Envelope service example” on
page 654.

Pre- and Post-envelope programs
You can invoke a user-written program directly after an envelope has been created
or deenveloped. To invoke this type of program, use an EXEC CICS LINK
command from WebSphere Data Interchange. The DFHCOMMAREA contains
pointers to the following control blocks: UCB, TRCB, TPPDB, and CCB. When using
the WebSphere Data Interchange Utility, you can invoke this type of program by
using the keywords and values listed below on enveloping or deenveloping
PERFORM commands.

IEXIT The program name

ITYPE PG

Running WebSphere Data Interchange in the CICS environment

308 WebSphere Data Interchange Programmer’s Reference

When using the API, these keywords correspond to TRCB fields, and are filled in as
above. For simple examples on how to do this, see “Inbound envelope program
example” on page 654 and “Outbound envelope program example” on page 655.

Processing multiple incoming TS queues
The WebSphere Data Interchange Utility can process up to six inbound TS queues
using the DEENVELOPE or the DEENVELOPE AND TRANSLATE commands. This
type of processing occurs automatically during continuous receive processing when
either DEENVELOPE or DEENVELOPE AND TRANSLATE is specified in the
continuous receive profile member. The format of a multiple TSQ control block is
described below.

Table 105. Format of the multiple TSQ control block

Name Offset Length Type Description

RESERVED 0 16 Char Reserved for WebSphere Data
Interchange

MTSQTSQ1 16 8 Char 1st TS queue name

MTSQTSQ2 24 8 Char 2nd TS queue name

MTSQTSQ3 32 8 Char 3rd TS queue name

MTSQTSQ4 40 8 Char 4th TS queue name

MTSQTSQ5 48 8 Char 5th TS queue name

MTSQTSQ6 56 8 Char 6th TS queue name

RESERVED 64 16 Char Reserved for WebSphere Data
Interchange

When WebSphere Data Interchange detects an active continuous receive that
involves more than one incoming TS queue, storage is acquired to hold the
multiple-TSQ control block and then loaded with the appropriate TSQ names. The
address of the multiple TSQ control block is then placed in the UCB and the
Multiple-TSQ field in the UCB is set to Y. Similarly, your application can invoke the
Utility with a DEENVELOPE or a DEENVELOPE AND TRANSLATE command and,
by following the same steps described above for continuous receive, take
advantage of multiple-TSQ processing. For more information, see FFMTFLG and
FFMTCBP in “WebSphere Data Interchange Utility control information” on page 323.

After invoking all necessary response programs, the WebSphere Data Interchange
Utility releases the storage it acquired to hold the multiple-TSQ control blocks. If a
continuous receive is not set up to deenvelope or translate (in other words, invokes
only a continuous receive response program), the response program must release
any storage it acquires to hold multiple-TSQ control blocks. Incoming S@#xxxxx TS
queues generated by Expedite/CICS are not deleted by WebSphere Data
Interchange or by Expedite/CICS. Your response program must delete these
queues. If there are multiple TS queues, there will be multiple S@#xxxxx queues.

When the WebSphere Data Interchange Utility processes multiple incoming
envelope TS queues, your application must acquire sufficient storage for a
multiple-TSQ control block, load it appropriately, and set the FFMTFLG and FFMTCBP
fields in the UCB.

If your application is to invoke the Utility in this manner, only one DEENVELOPE or
DEENVELOPE AND TRANSLATE command should be passed into the Utility per

Running WebSphere Data Interchange in the CICS environment

Chapter 5. Using WebSphere Data Interchange in the CICS environment 309

Utility invocation. Multiple incoming envelope TS queues can be processed using
HOT-DI, the UTILSRV API, or regular Utility invocation.

Ensuring serial processing of WebSphere Data Interchange Utility files
The WebSphere Data Interchange Utility must ensure serial access to all sequential
files it uses, such as the print file, envelope file, and tracking file. If two WebSphere
Data Interchange Utility transactions are executed concurrently, and both are
generating interchanges to the same TS queue, the interchange records in the
output file might be intermixed. To avoid this potential problem, the WebSphere
Data Interchange Utility uses the CICS ENQ and CICS DEQ commands to serialize
access to all sequential files whenever a file is logically opened. Application
programs you develop should also support this serialization.

The standard resource naming convention for WebSphere Data Interchange is:
$EDI.resfile.restype. The resource name must be 16 characters long. The file
name (resfile) must be 8 characters long, left-justified, and padded with blanks.
The file type (restype) must be 2 characters long. Valid values for restype are:

TM A temporary storage queue in main storage

TS A temporary storage queue in auxiliary storage

TD A transient data queue

For example, the resource name for an application file named AP01, which is
defined as a TD queue, would be constructed as follows:
$EDI.AP01 .TD

Using the CICS ENQ and CICS DEQ commands with the correct resource names
ensures that your application references complete information in the sequential files.

Using the previous example, suppose AP01 is an application output file generated
as a result of a translation-to-application type operation. If your application issues
the proper CICS ENQ command before reading the queue, WebSphere Data
Interchange guarantees that the TD queue contains only complete application data
transactions. After reading the TD queue, your application issues the appropriate
CICS DEQ command to allow other applications, such as another WebSphere Data
Interchange Utility transaction, to have access to the queue.

If the CICS ENQ and CICS DEQ commands are not used in this way, your
application must handle the possibility of incomplete work.

Units of work and recovery considerations
When developing a CICS application, it is important to understand what is
considered a unit of work by the application code you will be executing (in this
case, the WebSphere Data Interchange Utility). In general, a unit of work is defined
as the portion of work between two synchronization points. For CICS, the following
are synchronization points:

v CICS Transaction Initiation

Marks the beginning of the first unit of work in a single CICS transaction. This
unit of work might be the only unit of work in the transaction if the CICS
SYNCPOINT command is not issued.

v CICS SYNCPOINT Command

Marks the completion of the current unit of work and the start of the next unit
of work.

Running WebSphere Data Interchange in the CICS environment

310 WebSphere Data Interchange Programmer’s Reference

v CICS Transaction Termination

Marks the end of the last unit of work in a CICS transaction. At this point, an
implicit CICS SYNCPOINT occurs. If no CICS SYNCPOINT commands were
issued during transaction execution, transaction termination marks the completion
of the only unit of work in the transaction.

CICS also supplies the CICS SYNCPOINT ROLLBACK command backs out the
current unit of work as though it never existed. CICS also backs out in-process
transactions that were interrupted because of an extraneous event such as a power
outage or cancellation of the CICS job.

For CICS, a unit of work consists of updates to recoverable resources. If the unit of
work is synchronized, all modifications to recoverable resources are applied. If the
unit of work is not synchronized, all modifications are backed out. When a backout
occurs, none of the updates made to recoverable resources are applied. Whether
the backout occurs after one or multiple updates, all changes that occurred after the
last synchronization point are removed.

All updates made to recoverable resources within a unit of work are considered a
single group. Either the entire group of changes is applied or none are applied,
depending on whether the unit of work is synchronized or backed out.

Transaction Store DB2 tables are inherently recoverable. The following user
resources can be defined as recoverable and can be accessed by the WebSphere
Data Interchange Utility during execution:
v Print file
v Exception file
v Tracking file
v Report file
v Envelope TS queues
v Query file for data extract functions
v Application input files
v Application output files

The three recoverable resource options for these files are intrapartition TD queues,
recoverable TS queues, and MQSeries Queues. If you define these files as
recoverable, all changes made to them are synchronized when the unit of work is
completed successfully or backed out when the unit of work is not completed.

WebSphere Data Interchange bases its recovery scheme on CICS and DB2
recoverable resources and the synchronization or backout of these resources. If a
failure occurs and you are using recoverable resources, your application can
reinitiate the WebSphere Data Interchange Utility, passing the same control and
even the application information as it was given when the failure occurred.

Note: WebSphere Data Interchange recovery does not use any type of journaling
or checkpointing internally. WebSphere Data Interchange does not
automatically pick up where it left off but must be re-driven by your
application.

WebSphere Data Interchange Utility unit of work
The unit of work varies based on the function of the WebSphere Data Interchange
Utility being executed. If you want the WebSphere Data Interchange Utility to

Running WebSphere Data Interchange in the CICS environment

Chapter 5. Using WebSphere Data Interchange in the CICS environment 311

control the unit of work, set the Syncpoint interval field to 0 or 1. For more
information, see the SYNCVAL field in “WebSphere Data Interchange Utility control
information” on page 323.

Table 106 lists all WebSphere Data Interchange Utility commands and the point at
which a CICS SYNCPOINT command can be issued.

Table 106. Unit of work for each datainterchange utility command

For command: A syncpoint is issued:

TRANSLATE TO STANDARD
TRANSLATE TO APPLICATION
RETRANSLATE TO APPLICATION

After processing is completed for each transaction.

ENVELOPE
REENVELOPE
TRANSLATE AND ENVELOPE
DEENVELOPE
DEENVELOPE AND TRANSLATE

After processing is completed for each
interchange. You can override this setting by using
RECOVERY(T), forcing a syncpoint after processing is
completed for each transaction.

SEND Initially, before the communications program is
invoked to place transactions into SEND STARTED
status. This syncpoint is for all interchanges being
updated. The status of every record in the
WebSphere Data Interchange Utility that is part of
this send is updated, and a syncpoint is issued.

Again, after the communications program is
invoked to place transactions into SEND
REQUESTED or SEND REQUEST ERROR status.

This set of syncpoints is repeated for each file of
interchanges sent.

TRANSLATE AND SEND ENVELOPE
AND SEND REENVELOPE AND
SEND

Initially, after processing is completed for each
interchange. You can override this setting by using
RECOVERY(T), forcing a syncpoint after processing is
completed for each transaction.

Again, after all translation and enveloping are
completed, but before the communications
program is invoked to place transactions into
SEND STARTED status. This syncpoint is issued
for all interchanges being updated.

A third time, after the communications program is
invoked to place transactions into SEND
REQUESTED or SEND REQUEST ERROR status.

This set of syncpoints is repeated for each file of
interchanges sent.

RECEIVE AND DEENVELOPE
RECEIVE AND TRANSLATE

Initially, after the receive is completed and
management reporting statistics are recorded to
the database. This syncpoint occurs even if
management reporting is not active.

Again, after processing is completed for each
interchange. You can override this setting by using
RECOVERY(T), forcing a syncpoint after processing is
completed for every transaction.

Running WebSphere Data Interchange in the CICS environment

312 WebSphere Data Interchange Programmer’s Reference

Table 106. Unit of work for each datainterchange utility command (continued)

For command: A syncpoint is issued:

RECEIVE After the receive is completed and management
reporting statistics are recorded to the database.
This syncpoint occurs even if management
reporting is not active.

PURGE
UNPURGE
HOLD
RELEASE

For every transaction whose status is updated.
Bundled transactions are an exception. The
syncpoint is issued after the entire bundle is
updated.

REMOVE TRANSACTIONS After every 100 deletions or when the number of
deletions specified in the NUMDELS field is reached.
If STANDALONE(Y) is also specified, only one
syncpoint is issued at the end of the entire run.

IMPORT For each record that is added to the DB2
database. Applies only to the DB2 environment.

UPDATE STATUS
PROCESS NETWORK ACKS

For every interchange whose status is updated.

UPDATE STATISTICS After every 50 updates or when the number of
updates specified in the NUMUPDTS field is reached.

REMOVE STATISTICS After every 100 deletions or when the number of
deletions specified in the NUMDELS field is reached.

PRINT COMMANDS
DATA EXTRACT COMMANDS
EXPORT
CLOSE MAILBOX
QUERY

Not applicable.

Using the RECOVERY keyword
For WebSphere Data Interchange Utility commands that include some type of
interchange processing, the unit of work is controlled by the recovery level. The
following commands include interchange processing:
v DEENVELOPE
v DEENVELOPE AND TRANSLATE
v ENVELOPE
v ENVELOPE AND SEND
v RECEIVE AND DEENVELOPE
v RECEIVE AND TRANSLATE
v REENVELOPE
v REENVELOPE AND SEND
v TRANSLATE AND ENVELOPE
v TRANSLATE AND SEND

You can specify the recovery level by setting the RECOVERY keyword as described
below:

v Interchange level recovery (E)

All recoverable resources associated with an interchange are included in the unit
of work scope. This includes input data read from recoverable intrapartition TD
queues, Transaction Store DB2 files, records written to the tracking file,
and so on.

As discussed previously, when a CICS SYNCPOINT command is issued, the
updates are applied to all recoverable resources within the unit of work. If a

Running WebSphere Data Interchange in the CICS environment

Chapter 5. Using WebSphere Data Interchange in the CICS environment 313

backout occurs, all updates are removed from the system and all resources
return to the state they were in before the unit of work began (default in CICS).

v Transaction level recovery (T)

All recoverable resources associated with a transaction are included in the unit of
work scope. This poses a problem for clean recovery because interchange and
group records are added to the Transaction Store with the first transaction of
every interchange. A CICS SYNCPOINT is issued after each transaction.

If a backout occurs in the middle of an interchange, any transactions previously
translated would already be added to the Transaction Store. To avoid this
condition in the CICS environment, it is best to use interchange-level recovery.

Identifying the WebSphere Data Interchange unit of work
When you perform a TRANSLATE TO STANDARD operation, there are some
situations where the WebSphere Data Interchange Utility cannot determine the end
of a unit of work until it reads application data for the next transaction. In these
cases, the unit of work is not limited to one transaction but includes the current
transaction and part of the next transaction. Your application can assist WebSphere
Data Interchange in determining the end of the unit of work.

v When using C and D record formatted data, the WebSphere Data Interchange
Utility cannot detect the end of a transaction without reading the next
transaction's C record. When you supply a Z record after the last D record in
every transaction, the WebSphere Data Interchange Utility recognizes the Z
record as the signal to complete the transaction and end the unit of work, starting
a new interchange. WebSphere Data Interchange does not need to detect the
transaction’s end by reading the next transaction’s control record. This improves
both transaction level recovery and general processing speed.

v When using raw data, supplying the ending structure name in the data format
definition prevents the WebSphere Data Interchange Utility from reading the first
structure of the next transaction to determine the end of the current transaction.
Unfortunately, if the end structure repeats within the data, this is not possible. To
ensure interchange level recovery, do not include interchange breaks in the same
input file. By passing separate logical files for each interchange and supplying
the ending structure name, the WebSphere Data Interchange Utility does not
perform an extra read to determine the end of interchange condition. This
preserves interchange level recovery with the application file.

Including WebSphere Data Interchange changes in your application's
unit of work

This is an important issue if you want the changes made by the WebSphere Data
Interchange Utility to recoverable resources to be synchronized with the changes
made by your application to the same recoverable resources. The value you set in
the SYNCVAL field controls this synchronization. A value of -1 tells the WebSphere
Data Interchange Utility to suppress CICS SYNCPOINT commands. This puts the
application in charge of the unit of work, except when an error occurs while
accessing a recoverable resource such as a DB2 table. In this case, the
WebSphere Data Interchange Utility issues the CICS SYNCPOINT ROLLBACK
command regardless of the desired syncpoint interval. This ensures that all
changes in a unit of work can be backed out in case of error. For more information,
see the SYNCVAL field description in “WebSphere Data Interchange Utility control
information” on page 323.

The following guidelines are suggested if the WebSphere Data Interchange Utility is
to be part of your application's unit of work:

Running WebSphere Data Interchange in the CICS environment

314 WebSphere Data Interchange Programmer’s Reference

v Do not use the RECOVERY keyword. Use the default value of E). Even though your
application controls the unit of work, the WebSphere Data Interchange Utility is
sensitive to the recovery level. Using a recovery level of E causes WebSphere
Data Interchange to hold Transaction Store updates until all CPU-intensive work
has completed. This greatly increases the level of concurrency which can be
achieved with other CICS transactions performing WebSphere Data Interchange
Utility functions.

v Make all application changes to recoverable resources after the WebSphere Data
Interchange Utility has returned control to your application. The translation
process is CPU-intensive and WebSphere Data Interchange Utility processing
throughput is greater than an average CICS transaction. By holding updates to
recoverable resources until the end of processing, your application experiences
greater concurrency with other applications accessing the same recoverable
resources.

v To avoid potential deadlock, always access your recoverable resources in the
same order and handle the WebSphere Data Interchange Utility as a logical
recoverable resource.

v Do not set the syncpoint interval value to -1, and then issue a CICS SYNCPOINT
command from a transaction level response program. For more information, see
“Response applications” on page 335.

v Use the CICS SYNCPOINT command in continuous receive response programs
and utility termination response programs. For more information, see “Response
applications” on page 335.

Terminal-attached applications
The throughput time of the WebSphere Data Interchange Utility varies based on the
work it is requested to process. In general, throughput time is not sub-second. If
your application is associated with terminal users and a sub-second response time
is mandatory, you should execute the WebSphere Data Interchange Utility in a
separate CICS transaction. This can be accomplished by using the CICS START
command or ATI.

You can use response applications to determine whether the execution of the
WebSphere Data Interchange Utility was successful. Response transactions can be
initiated through the CICS START command with the TERMID option. This allows
your response application to send a message to the associated terminal, and
informs the terminal user of the status of the request made to the WebSphere Data
Interchange Utility. You can either:

v Use the RTERMID keyword on the CICS START command when starting
transaction EDIB.

v Specify the Response Terminal ID field in the WebSphere Data Interchange
Utility control information.

Running the WebSphere Data Interchange Utility in a separate CICS
region

You can execute the WebSphere Data Interchange Utility in a separate region from
the driving application. All three methods of invocation can be used to initiate the
WebSphere Data Interchange Utility. To use the LINK interface from a remote CICS
region, you must use the distributed LINK function provided in CICS/ESA 3.3 or
later. If the WebSphere Data Interchange Utility is to be executed through the CICS
START or ATI commands, then any version of CICS can be used.

Running WebSphere Data Interchange in the CICS environment

Chapter 5. Using WebSphere Data Interchange in the CICS environment 315

When splitting the WebSphere Data Interchange Utility into a separate region, you
must use remote resources, such as TD or TS queues, so your CICS systems
programmer must be involved if you choose this option. It is much simpler to
implement the WebSphere Data Interchange Utility in the same region as the
application, but the WebSphere Data Interchange Utility provides the flexibility to
allow the split, if necessary.

DB2 setup considerations
WebSphere Data Interchange is shipped with a sample Resource Control Table
(RCT). DB2 uses the RCT to determine, among other things, DB2 plan
authorization. All transactions supplied by WebSphere Data Interchange have
access to the WebSphere Data Interchange DB2 plan. If you are developing an
application that issues the CICS LINK command to program EDIFFUT to gain
access to WebSphere Data Interchange Utility services, your CICS systems
programmer must add your CICS transaction IDs to the RCT. The following
example RCT demonstrates the structure of a typical RCT.

The following assumptions are made in this example:

1. No more than five online users, EDIA entry, increase if more are required.

2. No more than tentranslations or other Expedite transactions allowed
concurrently, EDIB entry, increase if more are required and system resources
are available.

3. A maximum of 17 DB2 threads allowed in the pool, the sum of THRDM values
for all ENTRY statements in the pool.

4. A DB2 TCB limit of 20, three + the sum of THRDM values for all POOL
statements in the RCT.
DSNCRCT TYPE=INIT,SUBID=DB93, X
DPMODI=EQ,ERRDEST=(CSMT,*,*),ROLBI=YES,SNAP=X, X
STRTWT=YES,SHDDEST=CSSL,SUFFIX=00,THRDMAX=20, X
TRACEID=192,TWAITI=YES
DSNCRCT TYPE=POOL,AUTH=(TXID,*,*), X

DPMODE=EQ,PLAN=DEFAULT,ROLBE=YES,THRDM=17, X
THRDA=17,THRDS=0,TWAIT=YES,TXID=POOL

--
* A minimum of 2 threads is required for EDIE, EDIX *
--
DSNCRCT TYPE=ENTRY,AUTH=(SIGNID,*,*),THRDM=2,THRDA=2, X
TXID=(EDIE,EDIX),ROLBE=YES,TWAIT=POOL,PLAN=DIENU22C
DSNCRCT TYPE=ENTRY,AUTH=(SIGNID,*,*),THRDM=5,THRDA=5, X
TXID=(EDIA),ROLBE=YES,TWAIT=POOL,PLAN=DIENU22C

--
* WebSphere Data Interchange
* Customer written transactions which EXEC CICS LINK to program
* EDIFFUT should also be added to the EDIB macro entry. Note:
* LGO1, IMR1, and IST1 are Expedite/CICS transactions and can be
* removed if Expedite/CICS is not used.
--
DSNCRCT TYPE=ENTRY,AUTH=(SIGNID,*,*),THRDM=10,THRDA=10, X
TXID=(EDIB,EDID,EDIG,EDIM,EDIQ,EDIR, X
EDIS,EDIT,EDIV,EDIW,EDIZ,LGO1,IMR1,IST1), X
ROLBE=YES,TWAIT=POOL, X
PLAN=DIENU22C
DSNCRCT TYPE=FINAL

END

Running WebSphere Data Interchange in the CICS environment

316 WebSphere Data Interchange Programmer’s Reference

DB2 thread pool considerations
When setting up your DB2 thread pools, make sure to establish one DB2 thread
pool for EDIB (and other transactions), a second DB2 thread pool in the CICS RCT
for EDIX and EDIE, and a third DB2 thread pool for EDIA transactions.

The number of threads in the pool for EDIB (and other transactions) is determined
by the processing resources available to the system on which WebSphere Data
Interchange is running. The number of DB2 threads represents the number of EDIB
pool transactions that will be executed concurrently. The maximum number of
threads needed is the sum of all TRANCLASS values for the transactions in the
EDIB pool. The minimum is three, but five or more is typical. The pool transactions
include EDIB, EDID, EDIG, EDIQ, EDIR, EDIS, EDIV, EDIW, EDIZ, LGO1, IMR1,
and IST1. You can also include user transactions that initiate the WebSphere Data
Interchange Utility (EDIFFUT) or CICS START EDIB.

The EDIX/EDIE pool must have two or more threads available. EDIX is a long
running task and requires a thread for processing. As part of the syncpoint process,
EDIX gives up its thread between uses. Since EDIX communicates with the
translator (EDIB) using WAIT/POST logic, EDIB will WAIT until EDIX satisfies its
request. EDIX requires the WebSphere Data Interchange Transaction Store lock
(EDITSLT) to complete its processing. EDIE is a started task, triggered by CICS
when an entry is written to the EDI3 intrapartition TD queue, and requires a thread
for processing. More than one EDIE transaction can be started by CICS, but the
transactions will serialize so that two threads are sufficient. No more than 3 threads
are recommended for this pool.

The EDIA pool is for the long running task, EDIA. EDIA is the administrative tool for
WebSphere Data Interchange and is a user-operated, conversational transaction
that updates DB2 tables. Because an EDIA transaction must be running for each
user, a DB2 thread is required for each instance of EDIA. If the TRANCLASS for
EDIA is set at 10, 10 users can operate within the CICS EDIA facility concurrently.
Set the DB2 thread value at 10 to allow each concurrent access. Keeping EDIA in a
separate pool prevents the TRANCLASS instances of EDIA from allocating all the
DB2 threads available to transactions.

Make sure to establish TRANCLASS values for EDIB, EDIA, and EDIW and for any
transactions that CICS LINK to EDIFFUT. The values you set depend on the
available system resources. The sum of the TRANCLASS values for all such
transactions must be at least two less than CICS Max Task value. This will allow
EDIX and EDIE to start when all Facility/Utility/Translator transactions are running.

CICS processing can deadlock if EDIB is waiting for an EDIX or EDIE complete. A
CICS Max Task condition which does not allow EDIE or EDIX to start will cause a
deadlock in CICS. This will occur if all CICS Max Task entries are being used by
EDIB, EDIA, or other transactions and are waiting on service from EDIX or EDIE.

CICS startup considerations
WebSphere Data Interchange cannot run with Transaction Isolation set to On.
The CICS SIT parameter must be set to No.

The TS queue EDICSDA contains a pointer to the Service Director Global Area
(CSD). The CSD is shared between WebSphere Data Interchange transactions
EDIA and EDIT, or EDIB and EDIT.

Running WebSphere Data Interchange in the CICS environment

Chapter 5. Using WebSphere Data Interchange in the CICS environment 317

Running WebSphere Data Interchange in a HOT-DI environment
HOT-DI was developed to meet the ever-increasing need to improve performance
and is used to keep multiple DI tasks running, thus eliminating the performance
overhead required to start and end the translator for each individual transaction.
During normal translation processing, WebSphere Data Interchange needs
information to determine how to process data. The translator must get storage, read
translation and validation tables, read profiles, read the mapping instructions
generated in the control string, and so on. This is all part of WebSphere Data
Interchange's initialization routine. Each execution of the WebSphere Data
Interchange Utility, whether executed by PERFORM commands or through the API,
causes the translator to repeat all of these initialization steps.

With HOT-DI, repetitive initialization is eliminated by allowing a user-written
application to initialize WebSphere Data Interchange once, invoke WebSphere Data
Interchange's translation services multiple times, and terminate WebSphere Data
Interchange once. Initializing multiple HOT-DI sessions increases translation
concurrency and overall throughput. Any commands that can be issued with
PERFORM statements can be executed by HOT-DI. However, the intent of HOT-DI
is to perform translation at a very high rate. HOT-DI does this particularly well when
processing large volumes of small transactions being received or sent to many
different trading partners.

The HOT-DI concept requires that WebSphere Data Interchange objects, such as
usages/rules and profiles, be read only at initialization time. This means that object
updates performed while HOT-DI is executing are not picked up until the HOT-DI
tasks are terminated and re-initialized. This implementation involves using the
WebSphere Data Interchange API and the Utility, which requires user-written
applications or tasks. This can be achieved several ways. One scenario is
outlined below.

HOT-DI implementation requires WebSphere Data Interchange and can only be
used with Expedite/CICS when using the PERFORM commands to send data. It is
not currently supported by environments using WebSphere Data Interchange's
continuous receive mailbox function.

Initializing HOT-DI

Initialization syntax
DIINIT
FXXZccc(SNB,CCB1,FCB,applid,sysid)
FXXZccc(SNB,CCB2,FCB,applid,sysid)
FXXZccc(SNB,CCB3,FCB,applid,sysid)

Running WebSphere Data Interchange in a HOT-DI environment

318 WebSphere Data Interchange Programmer’s Reference

Initializing WebSphere Data Interchange
A user-written CICS task, such as DIINIT, is required to initialize WebSphere Data
Interchange but after initialization, this task should end. Field information and
pointers to storage areas required by WebSphere Data Interchange are kept in the
CCB. Part of the HOT-DI initialization process is to save this CCB so that the
translation requests submitted afterward can bypass the initialization phase.

For more information about the initialization request syntax and control block
parameters, see “Initializing the environmental API” on page 386.

Initialization syntax
FXXZccc(SNB,CCB,FCB,applid,sysid)

v Set the ZSNBNAME field in the SNB to ENVSERV.

v Set the ZFCBFUNC field in the FCB to 4. WebSphere Data Interchange will use the
shared storage option when acquiring main storage.

v The CCB must be different for each initialized WebSphere Data Interchange task
and must be used when requesting other WebSphere Data Interchange utility
services, such as translation. The CCB area obtained before initialization and
passed for all subsequent calls is obtained through a shared GETMAIN
command; for example:
EXEC CICS
GETMAIN SET (CCB-POINTER) LENGTH (608) SHARED
END-EXEC

Initializing multiple HOT-DI tasks
You can use a CICS task, such as DIINIT, to initialize HOT-DI as many times as
your system's storage allows (usually five or six tasks). A main storage area must
be acquired for each HOT-DI initialized. The size of the storage required is equal to
the size of a CCB. You can save the address of each CCB in a TSQ or TDQ known
to the CICS task. Placing the CCB address in a TSQ allows external access to an
initialized HOT-DI CCB to be achieved. You should associate a user flag with each
CCB to show the processing status (either AVAILABLE, indicating no current
translation is being performed or BUSY, indicating a translation or other WebSphere
Data Interchange service is in process).

- Write to TSQ

- DI INIT FCB=4
CCB=1

- DI INIT FCB=4
CCB=2

- DI INIT FCB=4
CCB=3

.

.

DITCOM
CICS task

WebSphere Data Interchange
termination

FXXZccc

API for
WebSphere Data Interchange

Environment
Services

CCB ID TSQ

DI CCB=1 AVAIL-Y/N
DI CCB=2 AVAIL-Y/N
DI CCB=3 AVAIL-Y/N

.

.

Figure 18. HOT-DI initialization diagram

Running WebSphere Data Interchange in a HOT-DI environment

Chapter 5. Using WebSphere Data Interchange in the CICS environment 319

HOT-DI processing considerations
A user-written CICS task (such as GETDI) controls when a WebSphere Data
Interchange service (such as translation) is started in one of the HOT-DI sessions.
To start the service, the CICS task must know the user service desired and the
name of an available HOT-DI session. To maintain synchronization when running
concurrent HOT-DI tasks, you must use separate files for print, exception, reporting,
tracking, and query. For more information, see “WebSphere Data Interchange CICS
considerations” on page 703.

The CICS task (GETDI):

v Loops until an event occurs that signals EDI translation or a desired service.

v Obtains an available HOT-DI session (querying the user flag associated with the
HOT-DI CCB address). This might involve reading a list of TS queue names of
started HOT-DIs.

v Sets the User flag to BUSY for the selected HOT-DI session.

v Starts a CICS task (such as DIPROC) for processing using the CCB identifier.
The user-written CICS task uses the CCB identifier to call the Utility Service for
processing.

v After processing is completed, sets the User flag for the HOT-DI session to
AVAILABLE.

Start here

Network

Concurrent processing

DIPROC
CICS task start
TRANSLATION

- DI TRANSLATE
FCB=2, CCB=1

- DEALLOCATE
WebSphere
Data
Interchange

DIPROC
CICS task start
TRANSLATION

- DI TRANSLATE
FCB=2, CCB=2

- DEALLOCATE
WebSphere
Data
Interchange

DIPROC
CICS task start
TRANSLATION

- DI TRANSLATE
FCB=2, CCB=3

- DEALLOCATE
WebSphere
Data
Interchange

TSQ

X12
data

Communication
program

GETDI
CICS task allocate

WebSphere
Data Interchange

- Allocate a
WebSphere
Data
Interchange

- START application

DI CCB=1 AVAIL=Y/N
DI CCB=1 AVAIL=Y/N
DI CCB=1 AVAIL=Y/N

CCB ID TSQ

.

.

TSQ
Application

data

Application
processing

FXXZccc

API for EDI
Utility Services

TSQ
Application

data

Application
processing

FXXZccc

API for EDI
Utility Services

TSQ
Application

data

Application
processing

FXXZccc

API for EDI
Utility Services

Figure 19. HOT-DI non-Expedite/CICS - inbound diagram

Running WebSphere Data Interchange in a HOT-DI environment

320 WebSphere Data Interchange Programmer’s Reference

Call utility services
For information about the Call utility service request syntax and control block
parameters, see “Utility service API” on page 388.

Processing function syntax
FXXZccc(SNB,CCB,FCB,UTILCB)

v Set the ZSNBNAME field in the SNB to UTILSRV.

v The CCB should be the CCB identifier passed from the allocate step.

v Set the ZFCBFUNC field in the FCB to 2. WebSphere Data Interchange will
process in HOT-DI mode.

v Set the BATFLG flag, indicating whether or not the utility is being invoked from the
API. When the API is used to call the UTILSRV service (as in the case of
HOT-DI), this field must be set to B.

v Initialize the UTILCB appropriately for the processing request. For information
about the format of this control block, see “WebSphere Data Interchange Utility
control information” on page 323.

WebSphere Data Interchange return code considerations
Your user-written program can interrogate WebSphere Data Interchange's API
return codes (ZCCBRC field) and extended return codes (ZCCBERC field) in the CCB.
For descriptions of these codes, see WebSphere Data Interchange Messages and
Codes, SC34-6216.

The mapping global accumulators are not reset between HOT-DI invocations. If a
global variable is used to conditionally execute a map switch with the WebSphere
Data Interchange variable DIMAPSWITCH, you must ensure that global variables
are handled appropriately in both translation usages/rules.

Terminating WebSphere Data Interchange
A user-written CICS task (such as DITERM) is needed to terminate each active
HOT-DI task. Termination involves making a WebSphere Data Interchange
termination request using the CCB, and then releasing the main storage area that
held the CCB. For more information about the Termination request syntax and
control block parameters, see “Terminating the API” on page 388.

If any CCB is busy for a specified number of attempts on each WebSphere Data
Interchange session, the termination step should loop until all tasks have been
terminated, or until the specified number of attempts to terminate has been
reached.

Termination function syntax
FXXZccc(SNB,CCB,FCB)

v Set the ZSNBNAME field in the SNB to ENVSERV.

v Set the ZFCBFUNC field in the FCB to 2. WebSphere Data Interchange will use
shared GETMAINs.

Terminating HOT-DI

Termination syntax
DITERM
FXXZccc(SNB,CCB1,FCB)
FXXZccc(SNB,CCB2,FCB)
FXXZccc(SNB,CCB3,FCB)

Running WebSphere Data Interchange in a HOT-DI environment

Chapter 5. Using WebSphere Data Interchange in the CICS environment 321

Outbound communications
Outbound communications can be requested using WebSphere Data Interchange's
API with Utility services or Communication services.

For information about the Utility service or Communication service function request
SYNTAX and control block parameters, see Chapter 1, “Using The Utility” on page 1
or “Communication services” on page 479.

DITCOM
CICS task

WebSphere Data Interchange
termination

- Read TSQ

- DI TERMINATE
CCB=1

- DI TERMINATE
CCB=2

- DI TERMINATE
CCB=3
.
.

CCB ID TSQ

FXXZccc

API for
WebSphere Data Interchange

Environment
Services

DI CCB=1 AVAIL-Y/N
DI CCB=2 AVAIL-Y/N
DI CCB=3 AVAIL-Y/N

.

.

Figure 20. HOT-DI termination diagram

Running WebSphere Data Interchange in a HOT-DI environment

322 WebSphere Data Interchange Programmer’s Reference

WebSphere Data Interchange Utility control information
When your application invokes the WebSphere Data Interchange Utility, control
information must be passed. The table below describes the format of the area given
to the WebSphere Data Interchange Utility and includes the resulting control
information given back to the invoking application or passed on to your response
application is included. All fields are given to your application, not just the fields set
by WebSphere Data Interchange.

Network

DI CCB=1 AVAIL=Y/N
DI CCB=1 AVAIL=Y/N
DI CCB=1 AVAIL=Y/N

CCB ID TSQ

.

.

Concurrent processingStart here

- DI TRANSLATE
FCB=2, CCB=1

- DEALLOCATE
WebSphere
Data
Interchange

- Allocate a
WebSphere
Data
Interchange

GETDI

DIPROC

- DI TRANSLATE
FCB=2, CCB=3

- DEALLOCATE
WebSphere
Data
Interchange

- Allocate a
WebSphere
Data
Interchange

GETDI

DIPROC

- DI TRANSLATE
FCB=2, CCB=2

- DEALLOCATE
WebSphere
Data
Interchange

- Allocate a
WebSphere
Data
Interchange

GETDI

DIPROC

Application X

TSQ

X12
data

Communication
program

TSQ

Application
data

FXXZccc

API for
WebSphere

Data
Interchange

Utility Services

Application X

TSQ

X12
data

Communication
program

TSQ

Application
data

FXXZccc

API for
WebSphere

Data
Interchange

Utility Services

Application X

TSQ

X12
data

Communication
program

TSQ

Application
data

FXXZccc

API for
WebSphere

Data
Interchange

Utility Services

Figure 21. HOT DI non-Expedite/CICS - outbound diagram

WebSphere Data Interchange Utility control information

Chapter 5. Using WebSphere Data Interchange in the CICS environment 323

The Result field indicates whether the field is used internally by WebSphere Data
Interchange or is set by WebSphere Data Interchange before control is returned to
the initiating application or passed on to a response application. The initiating
program or response programs should inspect these fields to determine if the
execution of the WebSphere Data Interchange Utility was successful. Some of
these fields also contain names of TS queues that must be processed further. Valid
values for the Result column are:

Y The field is set by WebSphere Data Interchange before control is returned
to the initiating application or passed on to a response application.

N The field is used internally by WebSphere Data Interchange. Initialize it with
blanks or binary zeros, and do not modify it after initialization.

blank The field is used by WebSphere Data Interchange but does not require
special consideration.

Format of WebSphere Data Interchange Utility control information
Table 107. Format of WebSphere Data Interchange utility control information

Name Type Offset Length Result Description

SYNCVAL Bin 0 4 Units of work before syncpoint

CMDP Bin 4 4 Command string address

CMDLEN Bin 8 4 Command string length

CMDNAME Char 12 8 Command file name

CMDTYPE Char 20 2 Command file type

DELIMITER Char 22 1 Command value delimiter

PRTNAME Char 23 8 Print file name

PRTTYPE Char 31 2 Print file type

RPTNAME Char 33 8 Report file name

RPTTYPE Char 41 2 Report file type

EXCPNAME Char 43 8 Exception file name

EXCPTYPE Char 51 2 Exception file type

TRAKNAME Char 53 8 Tracking file name

TRAKTYPE Char 61 2 Tracking file type

QRYNAME Char 63 8 Query file name

QRYTYPE Char 71 2 Query file type

APPLID Char 73 8 Override application ID

LANGID Char 81 6 Override language ID

RESPID Char 87 8 Response program or
transaction ID

RESPTYP Char 95 2 Response type

RTERMID Char 97 4 Response terminal ID

USRFLD Char 101 16 User field to pass data

SYSID Char 117 8 X CICS system ID override

RESPFLAG Char 125 1 Y Response indicator

FILETYP Char 126 2 Y Network acknowledgment file
type

WebSphere Data Interchange Utility control information

324 WebSphere Data Interchange Programmer’s Reference

Table 107. Format of WebSphere Data Interchange utility control information (continued)

Name Type Offset Length Result Description

ECBP Bin 128 4 ECB address

CCBRC Bin 132 4 Y Severity code (UTILSEV)

CCBERC Bin 136 4 Y Condition code (UTILCCODE)

FILEID Char 140 8 Y Envelope TSQ/Net
acknowledgment file

APPFILE Char 148 8 Y Translated data TS Queue

ABNDCODE Char 156 4 Y CICS abend code if one
occurred

THANDLE Char 160 20 Y Transaction handle

FFIEHDR Bin 180 4 Y Information Exchange long
header address

FARC Bin 184 4 Y Functional acknowledgment
return code

FAERC Bin 188 4 Y Functional acknowledgment
extended return code

FABUILT Char 192 1 Y Functional acknowledgment
built flag

FFMTFLG Char 193 1 EDI standard multi-TSQ flag

USERSYNC Char 194 1 User syncpoint flag

APMTFLG Char 195 1 Application multi-TSQ flag

USERCOND Bin 196 4 User condition code pointer

APMTCBP Bin 200 4 Application multi-TSQ pointer

RES1 Char 204 10 Reserved for future use

FFNOCNV Char 214 1 No return code conversion flag

FANAME Char 215 8 Functional acknowledgment file
name

RESPACTV Char 223 1 X Response program active flag

WORKNAME Char 224 8 X Name of workfile

BATFLG Char 232 1 Batch or UTILSRV API
(HOTDI) flag

NOEXCP Char 233 1 X No exception file

INVPARM Char 234 1 X Network program invalid
parameter

LOGACTV Char 235 1 X Logging CE0050 active

FFUSADDR Bin 236 4 X Pointer to this block

CCBP Bin 240 4 X Pointer to the CCB

FFMTCBP Bin 244 4 EDI standard multi-TSQ control
block pointer

WebSphere Data Interchange Utility control information

Chapter 5. Using WebSphere Data Interchange in the CICS environment 325

WebSphere Data Interchange Utility control information field
descriptions

SYNCVAL
The number of units of work completed before WebSphere Data Interchange issues
a CICS SYNCPOINT command. For a complete description of the unit of work for
each command, see “WebSphere Data Interchange Utility unit of work” on
page 311. 4 byte binary value. The IMPORT command ignores this value. Valid
values are:

0 or 1 WebSphere Data Interchange issues the syncpoints (default).

–1 Your application issues the syncpoints. WebSphere Data Interchange does
not issue any syncpoints.

other WebSphere Data Interchange issues the specified number of syncpoints.

CMDP
The command string address of the command language input in main storage. Set
this field only if the application remains active while WebSphere Data Interchange is
running. The storage is treated as read-only, so lowercase characters are not
changed to uppercase characters. For this reason, all keywords must be in
uppercase. Passing the commands in main storage improves the performance of
the WebSphere Data Interchange Utility.

CMDLEN
The length of the command language string in main storage. If the main storage
option is not used, you must set this field to 0, to indicate that values in the
command file name (CMDNAME) and command type (CMDTYPE) fields should be used
instead. 4-byte binary value.

CMDNAME
The file name of a TS queue or TD queue that contains the command language
input to be processed. Lowercase characters are changed to uppercase characters,
so the command language syntax is free-form. The default is SYSIN.

CMDTYPE
The file type of the command file. Valid values are MQ, TD, TM, and TS. The
default is TS.

DELIMITER
This command value delimiter can be used in instead of the left and right
parentheses to enclose values in the WebSphere Data Interchange Utility command
language. You must supply this value if a command includes the application control
field keyword (ACFIELD) with a value of a left or right parenthesis.

PRTNAME
The name of the print file. For a description of this file, see “Print file (PRTFILE)” on
page 174. The default is PRTFILE.

PRTTYPE
The type of print file. Valid values are MQ, TD, TM, and TS (default).

RPTNAME
The name of the report file. For a description of this file, see “Report file (RPTFILE)”
on page 175. The default is RPTFILE.

RPTTYPE
The type of report file. Valid values are MQ, TD, TM, and TS (default).

WebSphere Data Interchange Utility control information

326 WebSphere Data Interchange Programmer’s Reference

EXCPNAME
The name of the exception file. For a description of this file, see “Exception file
(FFSEXCP)” on page 173. The default is FFSEXCP.

EXCPTYPE
The type of exception file. Valid values are MQ, TD, TM, and TS (default).

TRAKNAME
The name of the tracking file. For a description of this file, see “Tracking file
(FFSTRAK)” on page 173. The default is FFSTRAK.

TRAKTYPE
The type of tracking file. Valid values are MQ, TD, TM, and TS (default).

QRYNAME
The name of the query file. For a description of this file, see “Query file
(EDIQUERY)” on page 175. The default is EDIQUERY.

QRYTYPE
The type of query file. Valid values are MQ, TD, TM, and TS (default).

APPLID
The ID of the override application that initialized WebSphere Data Interchange. The
activity log profile must contain a matching entry to define the log file used for
recording errors and events pertaining to the application. The default is EDIFFS.

LANGID
The override language ID identifies which language version is being used. Valid
value is:
ENU English (default)

RESPID
The ID of a response program or transaction that WebSphere Data Interchange
should invoke after it has finished processing. See “Response applications” on
page 335 for more details.

RESPTYP
The type of response name. Valid values are:
PG A program to be invoked
TX A transaction to be started

RTERMID
The response terminal ID is used with the keyword TERMID on the CICS START
command when the value in RESPID represents a transaction.

USRFLD
The area used to pass 16 bytes of user data for the specific use by the application.
This field is passed to each response application as it gains control. See “Response
applications” on page 335 for additional information.

SYSID
The CICS system ID override. For WebSphere Data Interchange use only.

RESPFLAG
The response indicator identifies which action caused the response program to be
invoked. Valid values are:

C The response program was invoked because a continuous receive
completed. The ENVFILE field contains the name of the TS queue holding
the interchange processed during this continuous receive. If the continuous

WebSphere Data Interchange Utility control information

Chapter 5. Using WebSphere Data Interchange in the CICS environment 327

receive was on behalf of a network acknowledgment, the ENVFILE field
contains the name of the TS queue holding the network acknowledgment.

T The response program was invoked because of a translation-to-application
function. The APPFILE field contains the name of a TS queue holding data in
the application format. The HANDLE field contains the transaction handle
associated with the transaction.

U The response program was invoked because the WebSphere Data
Interchange Utility completed.

FILETYP
The type of network acknowledgment file specified in the FILEID field if the
PROCESS NETWORK ACKS command was executed. Possible values are MQ,
TD, TM, and TS.

ECBP
The address of an ECB that WebSphere Data Interchange posts when it finishes
processing. This is useful if synchronous processing is desired, but the application
must control the syncpoint interval. Your application uses CICS START to start
transaction EDIB, and then issues a CICS WAIT EVENT on the ECB. If an ECB is
not used, this field must be set to 0.

CCBRC
The severity code. This field is equivalent to the UTILSEV field. Valid values are:

0 No errors were detected.

4 A low-severity warning was detected, but processing was not impaired.

8 An error was detected that prevented the request from completing
successfully.

12 A severe error was detected that prevented the request from completing
successfully.

–1 An abend occurred during WebSphere Data Interchange processing.

CCBERC
The WebSphere Data Interchange Utility condition code. This field is equivalent to
the UTILCCODE field. For more information, refer to WebSphere Data Interchange
Messages and Codes.

FILEID
The envelope file name of the TS queue holding the interchange that was received
with the continuous receive facility. Applies only when the response application is
invoked at the completion of a continuous receive. The response application must
delete this TS queue or process it further. If the continuous receive is set up for
network acknowledgments, this field contains the name of the TS queue that
contains the network acknowledgment processed. If the TS queue contains a
network acknowledgment, WebSphere Data Interchange deletes the TS queue upon
return from your continuous receive response application. If the PROCESS
NETWORK ACKS command is used, this field contains the name of the TS queue
or TD queue containing the network acknowledgment. The FILETYP field contains
the associated file type.

APPFILE
The application data TS queue holding the application data in C and D format or in
raw data format. Applies only when the response application is invoked because a
translation or retranslation request is being processed. This field tells the response

WebSphere Data Interchange Utility control information

328 WebSphere Data Interchange Programmer’s Reference

application that the TS queue contains one transaction in application format. The
response application must delete or process the TS queue further.

ABNDCODE
If an abend occurs during WebSphere Data Interchange processing, this field is set
to the CICS abend code, and the UTILSEV field is set to -1, indicating there is a
value in the ABENDCODE field. If an abend occurs, WebSphere Data Interchange also
issues the CICS DUMP command with an associated dump code of EDI1.

THANDLE
The character representation of the Transaction Store handle of the translated
transaction. Applies only when the response program is invoked because of a
translation-to-application type function. A handle is always given, even if no data is
generated from the translation. Data is not generated if the error level exceeds the
acceptable value for this transaction. This value is not supplied if the response
application is invoked because of continuous receive or WebSphere Data
Interchange Utility completion.

FFIEHDR
The address of the receive message long header given by Information Exchange to
Expedite/CICS during a continuous receive. This field is only passed when the utility
is invoked due to a continuous receive. Refer to the Information Exchange Interface
Programming Guide for the format of the Information Exchange receive message
header. This address is set only under the following conditions:

v If either the Translate or Deenvelope value is set to Y in the associated
continuous receive profile member, the EDI1 TD queue must be defined. If EDI1
is not defined, the address is not set.

v If both the Translate and Deenvelope values are set to N, the Response Type
value must be set to PG in the associated continuous receive profile member. In
other words, if only a response application is to be invoked due to a continuous
receive and no other WebSphere Data Interchange processing is requested, the
application must be a program and not a CICS transaction to receive this field.

FARC
The highest return code encountered during functional acknowledgment processing.

FAERC
The highest extended return code encountered during functional acknowledgment
processing.

FABUILT
Indicates whether functional acknowledgments were generated. This field works in
tandem with the FANAME field.

FFMTFLG
During continuous receives, indicates whether incoming EDI standard data spans
more than one TS queue. This field can also be set by a user application to identify
multiple envelope queues used with a DEENVELOPE or a DEENVELOPE AND
TRANSLATE command. This field works in tandem with the FFMTCBP field. See
“Processing multiple incoming TS queues” on page 309.

USERSYNC
Indicate to WebSphere Data Interchange that a commit has occurred.This field must
be set by response applications when the user application is controlling
syncpointing (SYNCVAL is -1) and the response application issues a syncpoint, a
commit, or a rollback.

WebSphere Data Interchange Utility control information

Chapter 5. Using WebSphere Data Interchange in the CICS environment 329

APMTFLG
During continuous receives, indicates whether incoming application data spans
more than one TS queue. This field can also be set by a user application to identify
multiple envelope queues used with a DEENVELOPE or a DEENVELOPE AND
TRANSLATE command. This field works in tandem with the APMTCBP field. See
“Processing multiple incoming TS queues” on page 309.

USERCOND
The user condition code pointer. For WebSphere Data Interchange use only.

APMTCBP
This field is set during continuous receive with the address of a multiple TS queue
control block, if the incoming application data spans more than one TS queue. A
user application can also set this field with the address of a multiple TSQ control
block used in association with a DEENVELOPE or a DEENVELOPE AND
TRANSLATE command. This field works in tandem with APMTFLG. The value in this
field must be a valid multiple TSQ control block address if APMTFLG is set to Y. For
more information, see “Processing multiple incoming TS queues” on page 309.

RES1
Reserved for WebSphere Data Interchange.

FFNOCONV
The return code conversion flag. For WebSphere Data Interchange use only.

FANAME
The name of the file where functional acknowledgments are written. This field works
in tandem with the FABUILT field.

RESPACTV
The response program active flag. For WebSphere Data Interchange use only.

WORKNAME
The name of the work file. For WebSphere Data Interchange use only.

BATFLG
Indicates whether the utility is being invoked from the API.

B Initializes the Syncpoint service and opens the print file for output (rather
than extend the batch as in the case of HOT-DI).

blank Invokes EDIFFUT or CICS EDIB.

NOEXCP
Indicates there is no exception file. For WebSphere Data Interchange use only.

INVPARM
Indicates whether an invalid parameter was passed to the network program. For
WebSphere Data Interchange use only.

LOGACTV
Indicates that logging CE0050 messages is active. For WebSphere Data
Interchange use only.

FFUSADDR
The pointer to this block. For WebSphere Data Interchange use only.

CCBP
The pointer to the CCB. For WebSphere Data Interchange use only.

WebSphere Data Interchange Utility control information

330 WebSphere Data Interchange Programmer’s Reference

FFMTCBP
This field is set during continuous receive with the address of a multiple TS queue
control block, if the incoming EDI standard data spans more than one TS queue. A
user application can also set this field with the address of a multiple TSQ control
block used in association with a DEENVELOPE or a DEENVELOPE AND
TRANSLATE command. This field works in tandem with FFMTFLG. The value in this
field must be a valid multiple TSQ control block address if FFMTFLG is set to Y. For
more information, see “Processing multiple incoming TS queues” on page 309.

Continuous receive considerations
The continuous receive Facility is a WebSphere Data Interchange service that
works in conjunction with Expedite/CICS and Information Exchange. It also can
used with MQSeries trigger queues. By defining the members of a continuous
receive profile, you can completely automate the receive process. For details on
each field contained within the continuous receive profile, see “Continuous receive
profile (CONTRECV-P2 for CICS only)” on page 241.

Using the continuous receive Facility, you can:

v Receive and deenvelope EDI standard data

v Translate the EDI standard data to application format

v Automatically initiate transaction-level response applications that process
application data placed in TS queues

v Automatically receive and process network acknowledgments

Because Information Exchange passes the data to the host system immediately
after the data enters the mailbox, WebSphere Data Interchange gains control
shortly after data is sent from the trading partner's system.

With EDI data and transaction level response programs, your application receives
control immediately after WebSphere Data Interchange generates the application
data. When using continuous receive for network acknowledgments, the status of
EDI transactions in your Transaction Store is kept up to date without initiating the
UPDATE STATUS command at different points during the session.

Continuous receive using MQSeries
You can use MQSeries to trigger continuous receive processing. Like sending to an
Information Exchange mailbox, you can have your trading partners deliver
envelopes to MQSeries queues. To use MQSeries for continuous receives, do the
following:

1. Your CICS and MQSeries administrators must enable the CICS region for
MQSeries support. As part of this process, they should define an MQSeries
trigger event queue, monitored by the MQSeries transaction CKTI in the region.
In this example, the name of this queue is CICS1.TRIGGER.

2. Using the DEFINE PROCESS command, your MQSeries administrator must
define one MQSeries process to provide MQSeries with information about the
WebSphere Data Interchange transaction EDIQ. An example of the DEFINE
PROCESS command follows:

DEFINE PROCESS(EDIPROCESS) APPLICID(EDIQ) APPLTYPE(CICS)

3. Using the DEFINE QLOCAL command, your MQSeries administrator must
define at least one MQSeries queue to receive envelopes. An example of the
DEFINE QLOCAL command follows:

WebSphere Data Interchange Utility control information

Chapter 5. Using WebSphere Data Interchange in the CICS environment 331

DEFINE QLOCAL(EDIRECEIVE) INITQ(CICS1.TRIGGER)
PROCESS(EDIPROCESS) TRIGGER TRIGTYPE(FIRST)
TRIGDATA('CRPROF=MQ1 MQPROF=RECV1')

The TRIGDATA field contains two mandatory keyword-value combinations. The
first, CRPROF, indicates the name of the WebSphere Data Interchange
continuous receive profile member to use when data is received. The second,
MQPROF, relates a WebSphere Data Interchange MQSeries profile member to
this specific MQSeries queue. The order in which you specify the two
keyword-value combinations is not important.

In this example, only one MQSeries queue is used for event-driven EDI but you
can define multiple queues. As long as the WebSphere Data Interchange and
MQSeries information is set up correctly, WebSphere Data Interchange will
process any number of queues.

4. In WebSphere Data Interchange, you must define an MQSeries queue profile
member. In this example, the name of the member is RECV1, and the Full
Queue Name field is set to EDIRECEIVE. Other fields are set accordingly.

5. In WebSphere Data Interchange, you must define a continuous receive profile
member. In this example, the name of the member is MQ1. Leave the
Requestor ID and other Selection fields blank, as they are ignored. Follow the
directions in “WebSphere Data Interchange processing after data is received” on
page 333 to tell WebSphere Data Interchange what processing is required once
data is received from MQSeries.

When the above steps have been completed successfully, WebSphere Data
Interchange automatically processes all data written to the MQSeries queue as
soon as MQSeries dispatches the trigger event messages.

Continuous receive selection criteria
You can send and receive data from a single mailbox and to process network
acknowledgments through continuous receive. By defining selection criteria, you
can set up continuous receive members to receive and process EDI data, and also
set up another member to receive and process network acknowledgments, all with
the same requestor ID.

Note: When using MQSeries trigger queues, there is no real selection criteria
available through the WebSphere Data Interchange continuous receive
facility. Rather, the continuous receive profile (CONTRECV) is used to tell
WebSphere Data Interchange how to handle data once an MQSeries trigger
event has occurred. So, if you are using MQSeries for continuous receive
processing, skip to the next section, “WebSphere Data Interchange
processing after data is received” on page 333.

You do not need to dedicate mailboxes for each direction. The same mailbox can
be used for both sending and receiving. Each active continuous receive profile
member is associated with unique continuous receive selection criteria. Setting the
ACTIVE flag to Y in Continuous Receive (CONTRECV) makes the profile member
active. Table 108 on page 333 defines the settings in the profile fields that combine
to make the selection criteria unique.

Continuous receive considerations

332 WebSphere Data Interchange Programmer’s Reference

Table 108. Continuous receive selection criteria

Profile field Description

REQUESTOR ID The mailbox (requestor) profile member from which you wish to
receive data and which contains the Information Exchange account,
user ID, and password information. You can have many continuous
receive profile members with the same requestor ID, but each
member must be unique. You can also have different requestor IDs
in each continuous receive profile member. This makes each member
unique without having to further qualify the continuous receive.

TP NICKNAME A trading partner from which you can receive data. If you complete
this field, you must also supply the account and user ID fields for the
associated trading partner profile member. If you use this field, only
incoming data for this specific trading partner is received and
processed.

MESSAGE USER
CLASS

A code that you and your trading partners agree to use. If you use
this field, only incoming data with a matching message user class is
received and processed.

NETWORK ACKS
ONLY

If you use this field, only network acknowledgments are received and
processed. WebSphere Data Interchange issues a continuous
receive with the sender account of *SYSTEM*, a user ID of
ERRMSG, and a data type of A. This tells Expedite/CICS that only
network acknowledgments (and no data) are to be received. The
default is N.

WebSphere Data Interchange processing after data is received
The previous section describes how to dictate the selection criteria for each
continuous receive. When the data has been received, WebSphere Data
Interchange must be told what processing to perform. This is controlled by the
profile fields listed in order of preference in Table 109.

Table 109. Continuous receive selection criteria

Profile field Description

NETWORK ACKS
ONLY

If the value of this field is Y, the data received is always a network
acknowledgment and is processed as such. The actual processing is
done with a CICS START command, and is issued for transaction
EDIB (WebSphere Data Interchange Utility). The PROCESS
NETWORK ACKS command is given to the WebSphere Data
Interchange Utility along with the acknowledgment. If a response
program is supplied in the continuous receive profile, it is given
control and the name of the TS queue containing the
acknowledgment is passed. Once control is returned to the
WebSphere Data Interchange Utility, the TS queue is deleted. A
value of Y in this field overrides a value of Y in the TRANSLATE field.

TRANSLATE If the value of this field is Y, the interchange received by
Expedite/CICS and given to WebSphere Data Interchange is
deenveloped and translated to the application format. This process
might also generate functional acknowledgments because they are
created during the deenvelope process. Processing is performed in a
separate CICS transaction (EDIB). The DEENVELOPE AND
TRANSLATE command and the TS queue holding the interchange
are passed. A value of Y in this field overrides a value of Y in the
DEENVELOPE ONLY field.

Continuous receive considerations

Chapter 5. Using WebSphere Data Interchange in the CICS environment 333

Table 109. Continuous receive selection criteria (continued)

Profile field Description

DEENVELOPE
ONLY

If the value of this field is Y, the interchange received by
Expedite/CICS and given to WebSphere Data Interchange are only
deenveloped. This process could also generate functional
acknowledgments because they are created during the deenvelope
process. The processing is performed in a separate transaction,
EDIB (the WebSphere Data Interchange Utility). The DEENVELOPE
command and the TS queue holding the interchange are passed.

If you leave these fields blank, or set them to N, WebSphere Data Interchange
invokes only the continuous receive response program. This processing executes in
the IMR1 transaction, and a separate EDIB transaction is not initiated.

Effects of defining the EDI1 TD queue
Using the EDI1 TD queue is highly recommended to ensure no data is lost during
continuous receive processing, but it is not mandatory. If the TD queue is defined
as an intrapartition TD queue, WebSphere Data Interchange uses this queue to
pass information from transaction IMR1 to transaction EDIB. When the queue is
defined, the IMR1 transaction waits for the EDIB transaction to complete. Having
IMR1 wait for EDIB to complete closes a recovery exposure and ensures all
interchanges received by Expedite/CICS are processed by WebSphere Data
Interchange. If EDI1 is not defined, there ia a short window when the interchange
image is not contained in a recoverable resource. In the event of a failure (such as
a power outage), interchanges could be lost. By defining EDI1 as non-recoverable,
you eliminate the possibility of lost interchanges, and Expedite/CICS and
WebSphere Data Interchange can recover appropriately. You must define EDI1 as
non-recoverable.

The EDI1 TD queue can also be used with WebSphere Data Interchange's
non-Expedite/CICS continuous receive interface.

Sent to Network status
When Expedite/CICS Version 3.2 (or higher) is used and the IINCICS network
profile communication routine name is VANEXPV4, transaction status is updated
from Send requested to Sent to network once the transactions have successfully
been sent by Expedite/CICS. If, for some reason, a transaction is not sent
successfully, its status is changed from Send requested to Not sent - network
error. WebSphere Data Interchange and Expedite/CICS typically send interchanges
asynchronously. When WebSphere Data Interchange requests a send,
Expedite/CICS will acknowledge receipt of the request immediately but might not
perform the send at the same time. Once the message has actually been sent to
the network, Expedite/CICS (transaction IST1) will LINK back to WebSphere Data
Interchange to update the status of the transaction appropriately.

WebSphere Data Interchange and Expedite/CICS can send interchanges
synchronously. The Expedite/CICS facility (transaction LG01) is used to indicate
whether processing is done synchronously or asynchronously. The VANEXPV4
routine updates transaction status in either case. During the VANEXPV4 status
update process:

v WebSphere Data Interchange Transaction Store statuses are updated.

Continuous receive considerations

334 WebSphere Data Interchange Programmer’s Reference

v The unique ID assigned by the network is inserted into the WebSphere Data
Interchange database and used as an index for processing subsequent network
acknowledgments. This will improve performance for the network
acknowledgment processing.

Note: WebSphere Data Interchange supports compress and delivery priority for
Expedite/CICS.

Using continuous receive outside Expedite/CICS
Thus far, the continuous receive facility has been described as it works with
Expedite/CICS and Information Exchange only. You can also take advantage of the
continuous receive profile with your own communication routines by using a
WebSphere Data Interchange API to develop applications that interact with
WebSphere Data Interchange in a continuous receive mode. See “Continuous
receive interface (CICS only)” on page 541 for details.

You can process multiple incoming TS queues when continuous receive is used
without Expedite/CICS. For more information, see “Processing multiple incoming TS
queues” on page 309.

Response applications
Response applications are user-written CICS programs or transactions that
WebSphere Data Interchange invokes at certain points of processing. If you are
designing your application to run asynchronously with the WebSphere Data
Interchange Utility, or you are using the continuous receive facility, response
applications are an essential element to the entire processing structure.

Invoking your application
You can use the following methods to invoke your application:

v Specify a response type of PG to cause WebSphere Data Interchange to CICS
LINK to your program. When the CICS LINK command is issued, the
COMMAREA and LENGTH keywords are used to pass the results. Your
application then obtains the COMMAREA address and processes the results.

Note: Response programs of type PG should not handle abends. WebSphere
Data Interchange must handle all abends in order to release ENQs and
other resources. If WebSphere Data Interchange is not allowed to handle
abends, subsequent user tasks may hang.

v Specify a response type of TX to cause WebSphere Data Interchange to CICS
START your transaction. When the CICS START command is issued, the FROM
and LENGTH keywords are used to pass results. Your application then obtains the
results by issuing a CICS RETRIEVE.

See “WebSphere Data Interchange Utility control information” on page 323 for the
format of the results control information given to your application.

Types of response applications
WebSphere Data Interchange can invoke three types of response applications:
v WebSphere Data Interchange Utility (response indicator U)
v Continuous receive (response indicator C)
v Transaction level (response indicator T)

Continuous receive considerations

Chapter 5. Using WebSphere Data Interchange in the CICS environment 335

For more information on the response indicator field, see “RESPFLAG” on
page 327.

It is important to know at which the point your response application gains control. It
is also important to know when to enter the response program name and type
during product administration, because certain choices might allow you greater
flexibility. Response applications can be programs (Type PG) or CICS transactions
(Type TX).

WebSphere Data Interchange Utility response application (U)
The WebSphere Data Interchange Utility response application is only applicable
when your main program invokes the WebSphere Data Interchange Utility. For
example, you can CICS START transaction EDIB and pass control information as
specified in “WebSphere Data Interchange Utility control information” on page 323.
The response name and response type (PG or TX) passed in this control
information are used to identify this response application.

The response application gains control after the WebSphere Data Interchange
Utility completes the processing you requested when you started EDIB. This
WebSphere Data Interchange Utility response application does not gain control at
intermediate points during processing; it only gains control after all requested
processing is complete.

Using this response application might not be necessary, depending on how
WebSphere Data Interchange was originally invoked. In the previous example, your
application started transaction EDIB, and WebSphere Data Interchange processing
was asynchronous with your application. It is important that you know the outcome
of the function you requested. When you specify a WebSphere Data Interchange
Utility response application, the results that WebSphere Data Interchange passes to
it contain essential information that can be used for self-identification and to
determine the success or failure of the requested function. See “WebSphere Data
Interchange Utility control information” on page 323 for the format of the control
information passed to the response application.

WebSphere Data Interchange sets the value of the response indicator (RESPFLAG)
field to indicate the kind of response application being invoked. This information is
also useful in identifying why your application is being invoked. The user field
(USRFLD) can also be used to identify the application that originally invoked
WebSphere Data Interchange. The user field contains the same value that was
supplied when the WebSphere Data Interchange Utility was initiated, unless it has
been modified by translation response applications. For more information, see
“Transaction response application (T)” on page 338.

The WebSphere Data Interchange Utility response application responds to and
inspects the severity code (CCBRC) and condition code (CCBERC) fields to determine
success or failure. These fields reflect the highest value encountered by
WebSphere Data Interchange during the entire process. Based on the outcome,
your WebSphere Data Interchange Utility response application might execute
another internal program, or might execute WebSphere Data Interchange to perform
subsequent functions.

A WebSphere Data Interchange Utility response application can also manage your
resources. The response application can complete the unit of work and clear the
input file if the processing was successful. If the application you used to invoke the
WebSphere Data Interchange Utility performs a CICS START EDIB and tells the
WebSphere Data Interchange Utility not to issue a CICS SYNCPOINT (SYNCVAL of

Response applications

336 WebSphere Data Interchange Programmer’s Reference

-1), the response application can update your recoverable resources and issue the
CICS SYNCPOINT. This process includes all WebSphere Data Interchange Utility
and response application updates in the same unit of work, as long as your
response application is a program. This scenario removes the WebSphere Data
Interchange Utility from your initiating application's unit of work, but the response
application you develop is still in charge of the WebSphere Data Interchange Utility
unit of work.

Continuous receive response application (C)
EDI interchanges and network acknowledgments are dynamically received based
on the receive criteria on behalf of a specific continuous receive profile member.
The name and type (PG or TX) of your continuous receive response application is
specified in the continuous receive profile. For example, for EDI data, your
continuous receive response program can be associated with specific interchanges
that meet the criteria. Your continuous receive response application gains control
after WebSphere Data Interchange has completely processed the entire received
envelope TS queue, and WebSphere Data Interchange passes the entire envelope
TS queue. Normally, the received envelope TS queue contains only one
interchange. The response application receives the resulting information from the
WebSphere Data Interchange Utility control information. For a description of the
resulting information, see “WebSphere Data Interchange Utility control information”
on page 323.

The response indicator (RESPFLAG) and user area (USRFLD) fields are useful in
identifying why your application is being invoked. WebSphere Data Interchange sets
the value of the Response indicator field to indicate the kind of response
application being invoked. The User area field contains the value specified in the
USER field of the continuous receive profile member, unless it has been modified by
translation response applications. For more information, see “Transaction response
application (T)” on page 338.

The envelope TS queue name is passed in the control area. The application must
further process the envelope TS queue (delete the TS queue, archive, and so on).
You can inspect the severity code (CCBRC) and condition code (CCBERC) fields to
determine the success or failure of the overall continuous receive process. If a
transaction level response program is used, it may not be necessary to take action
in this continuous receive response application for data element or segment-level
translation errors. The errors can be handled in the transaction response
application. The continuous receive response application must detect higher
severity errors, such as communications errors, database errors, abends, and so
on.

For network acknowledgments processing (Process Network Acks=Y in the
continuous receive profile), your continuous receive response application gains
control after WebSphere Data Interchange has processed the network
acknowledgment and updated the status in the Transaction Store. The name of the
TS queue containing the acknowledgment is in the FILEID field. A continuous
receive response application is optional when receiving and processing network
acknowledgments. The only reason to use a continuous receive response
application is to save the network acknowledgment itself. The TS queue holding the
network acknowledgment is deleted before termination. If you have no reason to
save the network acknowledgment, you do not need to develop a continuous
receive response application.

If the continuous receive response application is a program (type=PG), this is a
good place to issue a CICS SYNCPOINT. Consider this option, especially if you set

Response applications

Chapter 5. Using WebSphere Data Interchange in the CICS environment 337

the Allow syncpoints field in the continuous receive profile to N. By doing this,
your continuous receive response program gains control and the unit of work is still
active. At this point, you can change your recoverable resources and issue the
CICS SYNCPOINT command. The unit of work would then include the updates
made to the WebSphere Data Interchange Utility and the changes made by your
application to recoverable resources.

If you want the syncpoints issued more frequently, especially where you need
control after each transaction is processed, see “Transaction response application
(T)” for more information. You can use transaction level response programs in
conjunction with continuous receive processing, assuming the Translate value is Y
in the continuous receive profile.

Transaction response application (T)
You can specify that control should pass to the transaction response application for
each individual transaction that is translated to the application format. Enter the
name of the response program in the Application file name field, and enter the
type (PG or TX) in the Application file type field (on the Trading Partner Usage
Override For Receiving panel, or on the Add Data Format, Copy Data Format, and
Update Data Format panels. Details about where to specify the transaction
response application are discussed later in this section.

Using this kind of response application is important if you are implementing an
event-driven EDI system. Control is passed to the response application when one of
the following occurs:

v The Translate field is set to Y in the continuous receive profile member, and a
translation to the application format has occurred.

v One of the following WebSphere Data Interchange Utility PEFORM commands is
invoked:
– RECEIVE AND TRANSLATE
– DEENVELOPE AND TRANSLATE
– TRANSLATE TO APPLICATION
– RETRANSLATE TO APPLICATION

v After the TRANSLATE RECEIVED TRANSACTIONS or RETRANSLATE
RECEIVED TRANSACTIONS options are invoked from the online CICS
Transaction Store facility.

The point at which transaction level response programs are invoked is based on the
recovery level (WebSphere Data Interchange Utility parameter RECOVERY). If the
recovery level is E (envelope), all transactions in the interchange are deenveloped
and translated before the first response application is invoked. Once the entire
interchange is deenveloped and translated, all corresponding response programs
are invoked, one after the other, for each transaction.

A syncpoint is taken by WebSphere Data Interchange after all response programs
are invoked. The entire interchange and response program invocation is considered
one unit of work. This is the default in CICS and occurs during continuous receive
processing. It is also the default when deenveloping is part of the translation
process.

Processing is different when transactions are translated separately from the
deenvelope process. In this case, the following processes are performed:
v A transaction is translated.
v The response program is invoked.
v A syncpoint is taken.

Response applications

338 WebSphere Data Interchange Programmer’s Reference

These steps are repeated for each transaction being translated.

The results are passed to the response application within the WebSphere Data
Interchange Utility control information. The name of a unique TS queue that holds
the translated application data and assigned by WebSphere Data Interchange is
passed within this control information. This is the name of the application data TS
queue (APPFILE). The name of the TS queue is eight characters long and begins
with EDI. For more information, see “WebSphere Data Interchange Utility control
information” on page 323.

The response indicator (RESPFLAG) and user area (USRFLD) fields are useful in
identifying why your application is being invoked. WebSphere Data Interchange sets
the value of the response indicator field to specify the kind of response application
being invoked. When the transaction response application is invoked, the user area
will contain:

v The value specified in the User field of the continuous receive profile member if
translation is occurring because of a continuous receive request.

v The original user area value provided by the application that originally invoked
the WebSphere Data Interchange Utility.

v Blanks if the WebSphere Data Interchange Utility is being invoked because a
TRANSLATE RECEIVED TRANSACTIONS or RETRANSLATE RECEIVED
TRANSACTIONS option was requested from the online CICS Transaction Store
facility.

v The user area modified by a previous invocation of a translation response
application. If a translation response application modifies the user area, the next
invocation of a response application will receive the updated user area value,
including utility response applications and continuous receive response
applications.

The modified value of the user area is reset whenever the WebSphere Data
Interchange Utility is invoked, and for each EDI interchange processed by a
continuous receive request.

The updated control information also contains the severity code (CCBRC) and
WebSphere Data Interchange Utility condition code (CCBERC) fields. You can inspect
these fields to determine the success or failure of the translation. For more
information, refer to WebSphere Data Interchange Messages and Codes. Your
transaction response application gains control any time the transaction is translated,
independent of the acceptable error level defined in the receive usage/rule.
However, if the error is unacceptable, the APPFILE field is filled in with a TS queue
name, but the queue is empty. If you attempt to issue a CICS READQ command
against this TS queue, you will receive a CICS QIDERR response. WebSphere
Data Interchange passes the transaction handle in the results.

If an unacceptable translation error occurs, this response application can specifically
identify the transaction in error. This can be saved for the next error-handling
processes. This handle is also passed by WebSphere Data Interchange if no errors
occur, and can be used as you choose.

Note: Transaction level response applications should not issue the CICS
SYNCPOINT command if the WebSphere Data Interchange Utility is running
with the SYNCVAL set to -1, because this increases the potential for deadlock.

Response applications

Chapter 5. Using WebSphere Data Interchange in the CICS environment 339

Specifying the transaction response application
The name of the transaction response program is entered in the Application file
name field, and its type (PG or TX) is entered in the Application file type field on
the Trading Partner Usage Override for Receiving panel or the Add Data Format,
Copy Data Format, and Update Data Format panels.

The Application file type field serves one of two purposes. If the Application
file type is MQ, TD, TM, or TS, then no transaction level response program is
invoked. Translation still takes place for each transaction, but rather than passing
control to a response program, the translated data is appended to the application
file. The transaction response application is only invoked for a transaction when the
Application file type identifies a program or transaction (PG or TX).

A transaction response program is assumed if the Application file type is PG or
TX. It is important to know whether the file name and type fields are taken from the
trading partner receive usage/rule or the data format. WebSphere Data Interchange
uses the trading partner receive usage/rule overrides first, if they are present, and
then uses the data format fields. Specifying a transaction response program in the
trading partner receive usage/rule allows you to identify different programs based
on the trading partner that sent them. If there is no need for this level of control, the
data format is sufficient to identify a transaction response application based on the
application that processes the data.

Whether your response program is invoked depends on the translator extended
return code returned. If the extended return code is:

2 or less
If the translation is acceptable, the Application file (APPFILE) field contains
the name of the TS queue containing the translated data and the THANDLE
field is filled in. Even if the translation is unacceptable, the THANDLE field
data is valid.

3

v If a usage/rule is found for this transaction, the THANDLE field is
filled in.

v If a usage/rule is not found for this transaction, your transaction level
response program is not invoked.

Greater than 3
Your transaction level response program is not invoked.

If your transaction level response program is not invoked, error handling for this
level of error must be managed in a higher-level response program, such as the
continuous receive or the WebSphere Data Interchange Utility termination response
program, whichever is applicable.

Persistent environment
The WebSphere Data Interchange persistent environment is an optional feature that
can be used with CICS/ESA systems to improve WebSphere Data Interchange
performance. It accomplishes this by reducing the amount of read operations
needed to perform translation and other functions. As data is read from the
WebSphere Data Interchange database, some of it is saved in an z/OS data space.
The next time the data is needed, it is obtained from the data space instead of the
database. The data space remains functional throughout a WebSphere Data
Interchange session. A WebSphere Data Interchange session starts when the first

Response applications

340 WebSphere Data Interchange Programmer’s Reference

WebSphere Data Interchange function is requested in a CICS region and ends
when WebSphere Data Interchange transaction EDIT is terminated.

This process allows many WebSphere Data Interchange transactions to run
concurrently and over a long period of time, obtaining the same piece of data
repeatedly with only one access to the WebSphere Data Interchange database.

The data saved into the data space includes control strings, receive usages/rules,
send usages/rules, and maps.

Running multiple z/OS subtasks
Although there is only one WebSphere Data Interchange data space per CICS
region, WebSphere Data Interchange will start up to sixteen z/OS subtasks to
manage the WebSphere Data Interchange data space. The more subtasks running,
the greater the throughput the data space can deliver. The value used to determine
how many subtasks will be started is obtained from the CICS Performance
(SYSPROF) profile for the CICS region. You can adjust the number of subtasks up
or down to fit your requirements. The number of subtasks defined in the CICS
Performance (SYSPROF) profile should not exceed the number of WebSphere Data
Interchange threads that can execute concurrently on the CICS region.

Sizing the z/OS data space
The size of the z/OS data space is determined by a couple of factors. First is the
maximum size specified in the CICS Performance (SYSPROF) profile for the CICS
region. The data space will not be made larger than the value specified in the
SYSPROF profile. The value in the profile cannot exceed the installation maximum.
Unless altered by the installation, this value will be the network default of 239
4000-byte blocks (less than 1 MB total). Your installation can use the installation
exit IEFUSI to change the IBM default.

Secondly, WebSphere Data Interchange learns based on past usage and can define
a data space smaller than the maximum size specified. The format of the data
space is adjusted automatically, based on past usage to provide the most efficient
data space structure. An effort is made to structure the data space at initialization
so that no restructuring will be needed during regular WebSphere Data Interchange
processing.

However, depending on installation usage and maximum size of the data space, all
or part of the data space might become full during processing. When this occurs,
WebSphere Data Interchange expands the data space (if defined smaller than the
maximum), and/or reorganizes the structure of the data space. If necessary, older
data in the data space is removed. Ideally, you do not want any of these situations
to occur since each adjustments momentarily delays WebSphere Data Interchange
processing. WebSphere Data Interchange will recognize these conditions and try to
adjust for them in the next session. If these conditions persist after a few sessions,
it might be desirable to increase the maximum data space size. You can monitor the
WebSphere Data Interchange log file for messages indicating that these scenarios
have occurred. All message identifiers relating to the persistent environment begin
with the qualifier GB.

Make sure that WebSphere Data Interchange sessions are ended normally when
using the persistent environment. A WebSphere Data Interchange session is
considered ended when transaction EDIT is removed from the system. For
information on removing transaction EDIT from the system, see transaction 354.

Persistent environment

Chapter 5. Using WebSphere Data Interchange in the CICS environment 341

Enabling and disabling the persistent environment
To enable the persistent environment, you must be running WebSphere Data
Interchange in a CICS/ESA region and the CICS Performance (SYSPROF) profile
member for the region must indicate that you want the persistent environment
established.

To disable the persistent environment, use the CICS Performance profile to indicate
that you want the persistent environment disabled.

For more information about the SYSPROF profile member, see “CICS performance
profile (SYSPROF-P2 for CICS only)” on page 242.

Using multiple regions
Certain installations might allocate a WebSphere Data Interchange database for use
by a single WebSphere Data Interchange region. In these cases, when online
updates are made to database records that are kept in the WebSphere Data
Interchange Persistent Environment, the old copy of the record is removed from the
data space.

Transaction EDIG addresses installations that have multiple WebSphere Data
Interchange regions/environments sharing a single WebSphere Data Interchange
database. Transaction EDIG starts automatically at set intervals to check if an
update has been made recently that might affect the persistent environment. If an
update has been made, then all records that match the updated record are
removed from the persistent environment; that is, if a control string is deleted, then
all matching control strings are removed from the persistent environment.

Note: In installations where multiple regions/environments share a single
WebSphere Data Interchange database, all online updates to the database
are made from the same region/environment.

Reserved TS and TD queues
By convention, WebSphere Data Interchange uses the three-character prefix EDI
for its TS and TD queues. Make sure that no other application running in the same
CICS region with WebSphere Data Interchange uses this TS and TD queue naming
convention.

TS queues that might require additional processing
The first time WebSphere Data Interchange initializes in a CICS region, it creates a
TS queue named EDITV00. This TS queue holds frequently used translation and
validation tables.

If you modify any of the following tables using the WebSphere Data Interchange
administrative functions, you must purge EDITV00 before the change can take
effect. The tables stored in EDITV00 are:
v Alphanum
v Charset
v Filename
v Foldchar
v Langprof
v Monocase
v Prgname
v Specnum

Persistent environment

342 WebSphere Data Interchange Programmer’s Reference

v Tfstatus
v Tptsnrc
v Transyn

For every EDI envelope standard defined to WebSphere Data Interchange, there is
a corresponding TS queue. For more information on EDI envelope standards, refer
to the WebSphere Data Interchange User’s Guide. The following TS queues are
used for envelope standards:
EDIFACT

EDI
ICS EDII
UCS EDIU
UN/TDI

EDIT
X12 EDIX

Each EDI envelope standard TS queue is created when the envelope standard is
first used. If you modify an EDI envelope standard, you must delete the
corresponding TS queue for the changes to become effective.

The next envelope request reads the changes into the TS queue. WebSphere Data
Interchange uses the revised EDI standard until CICS system shutdown or until you
repeat this process. This improves performance by cutting out the repeated reading
of the EDI envelope standards from DB2.

Queues used by export and import
Currently, WebSphere Data Interchange supports up to three TS queues of data per
type on import. This is approximately 96000 records (or 32000 by 96000 bytes of
data per type). Data to be imported must come into WebSphere Data Interchange
in TD queues. These TD queues can be defined as intra- or extra-partitioned. The
WebSphere Data Interchange import facility then copies the data from the TD
queues into their corresponding TS queues. It is the data in the TS queues that is
actually imported.

TS queues used for export and import
These TD queue names are currently reserved by WebSphere Data Interchange for
use with the export and import functions:
EDIA Data formats
EDIB Tables
EDIC Control strings
EDIP Profiles
EDIS EDI standards
EDIT Maps

For more information on export and import, refer to “Export/Import utility function” on
page 182.

TS queues used by import only
These TS queue names are currently reserved by WebSphere Data Interchange for
use with the import function.
EDIATSx

Data formats
EDIBTSx

Tables
EDICTSx

Control strings

Reserved TS and TD queues

Chapter 5. Using WebSphere Data Interchange in the CICS environment 343

EDIPTSx
Profiles

EDISTSx
EDI standards

EDITTSx
Maps

TD queues EDI2 and EDI3
WebSphere Data Interchange reserves TD queues with the names EDI1, EDI2, and
EDI3.

For a description of the use of EDI1, see “Effects of defining the EDI1 TD queue”
on page 334.

EDI2
If TD queue EDI2 is defined as an intrapartition TD queue, WebSphere Data
Interchange will use this queue as the Expedite/CICS administrative response file.
Expedite/CICS writes network acknowledgments to this file, and the file is used as
input by WebSphere Data Interchange for updating network status.

If EDI2 is not defined, a unique TS queue is used as the administrative response
file for each Information Exchange mailbox. These TS queues are always appended
to and never cleared.

If EDI2 is defined, both Expedite/CICS and WebSphere Data Interchange use it as
the administrative response file for all Information Exchange mailboxes. The
destructive read property of intrapartition TD queues causes the network
acknowledgments to be deleted once they are processed by WebSphere Data
Interchange. If network acknowledgments do not have to be archived, EDI2 should
be used so that network acknowledgments are not reprocessed. Network
acknowledgments are reprocessed when EDI2 is not defined and multiple update
status requests are executed in an active CICS region.

Note: If network acknowledgments are being received and processed continuously
through continuous receive, EDI2 is not used even if it is defined. In this
case, Expedite/CICS passes WebSphere Data Interchange one network
acknowledgment at a time in unique TS queues. On completion, WebSphere
Data Interchange deletes the TS queues holding the network
acknowledgments.

EDI3
In a DB2 environment, TD queue EDI3 must be defined as an intrapartition queue
with trigger level one and associated with EDIE. Transaction EDIE (program
EDIELAS) is responsible for all DB2 event log insertions, and is used to keep this
activity out of the main commit scope. Repository module EDIELOG writes event
log messages to EDI3, and EDIELAS picks them up from there and inserts them
into the database. If an error occurs in EDIELAS, a message is written to the
system console with message ID RS0002.

Reserved TS and TD queues

344 WebSphere Data Interchange Programmer’s Reference

Interface between WebSphere Data Interchange, Expedite/CICS, and
Information Exchange

WebSphere Data Interchange provides communication routines that interface to
Expedite/CICS. EDI interchanges can be sent to and received from the Information
Exchange network using this interface. Additional features include an event-driven
continuous receive process and network acknowledgment reconciliation. Trading
partner and mailbox (requestor) profiles should reference network profile IINCICS
for this environment.

The communication flow involves these components:
v WebSphere Data Interchange
v Expedite/CICS
v Information Exchange

All three components maintain control information to track activities, so it is
essential to keep them synchronized. Expedite/CICS and Information Exchange are
standalone products that can be operated independently from WebSphere Data
Interchange. Therefore, you can execute operational commands without the
participation of WebSphere Data Interchange, preventing WebSphere Data
Interchange from updating control information. Use these commands sparingly to
prevent out-of-sync conditions. The two fundamental programming layers (or
sessions) between the three components that must be kept in sync are: the low
level Information Exchange session through which all commands and data pass,
and the higher level continuous receive session which controls the environment and
connectivity.

Information Exchange sessions
The Information Exchange session is the fundamental session started between an
application program and a particular Information Exchange user ID (mailbox). All
commands and data sent out from, or received into, a mailbox must pass through
this session. You can have only one active Information Exchange session per
mailbox. For example, if you are using Expedite Base/MVS, this means that you
cannot have concurrent Information Exchange sessions for the same mailbox on
two different Expedite/CICS regions, or one on CICS and another in batch. You can
have any number of Information Exchange sessions from various environments if
each session pertains to a different mailbox.

Most of the processing that occurs during the Information Exchange session is
performed by Expedite/CICS and Information Exchange. WebSphere Data
Interchange is involved only at the application level, but it is still important that the
session be initiated and maintained by WebSphere Data Interchange to ensure
proper execution of all WebSphere Data Interchange network facilities. The first
time WebSphere Data Interchange receives a request from you to perform any
network function for a given mailbox, it automatically issues the appropriate session
start command to Expedite/CICS. Expedite/CICS then starts the session with
Information Exchange and an access key is assigned. All three components now
have a record of this particular Information Exchange session. After the Information
Exchange session is started, WebSphere Data Interchange performs the network
function you requested and returns control to you.

For efficiency reasons, WebSphere Data Interchange does not issue a session end
after the requested network function is complete. This means that the next time you
request a network function for the same mailbox, WebSphere Data Interchange
does not issue another session start because it knows that an Information

Interfaces with WebSphere Data Interchange

Chapter 5. Using WebSphere Data Interchange in the CICS environment 345

Exchange session is already active. There is no degradation in performance as a
result of leaving an Information Exchange session active.

Expedite/CICS provides the necessary post-initialization PLT program, EXPOSTRT,
that automatically reenables any Information Exchange sessions that were active
when the CICS region was brought down, even after an immediate shutdown. For
more information on PLT processing, see “Program list table considerations” on
page 352.

In theory, one Information Exchange session could be used indefinitely. However,
remember that you can only have one active Information Exchange session for a
given mailbox, and until this Information Exchange session is ended, no other
environment, not even a batch job using Expedite Base/MVS, should access this
mailbox. If you have multi-environment communication needs with a particular
Information Exchange mailbox, you must end the Information Exchange session
from CICS before executing communications in batch. WebSphere Data
Interchange will only request an Information Exchange session end when your
application issues a CLOSE MAILBOX request. To keep WebSphere Data
Interchange, Expedite and Information Exchange synchronized, use the WebSphere
Data Interchange CLOSE MAILBOX command to end your Information Exchange
sessions. If you are using the continuous receive function of WebSphere Data
Interchange, executing a CLOSE MAILBOX request will also end a continuous
receive session. It is good practice to first end the continuous receive session and
then issue the CLOSE MAILBOX request. See “Continuous receive sessions” on
page 348 for details.

Attention: Expedite/CICS provides a facility to start and end Information
Exchange sessions directly, but you should not use Expedite/CICS facilities to
manage Information Exchange sessions used by the WebSphere Data Interchange
application.

The following is for your information and to prevent inadvertent execution of certain
Expedite/CICS functions. The Expedite/CICS terminal transaction LG01 can be
used to start and end Information Exchange sessions. After you enter your mailbox
account and user ID, LG01 checks internal control information. If an Information
Exchange session is already active for the mailbox you identified, and the Force
User to log on option is set to No, the main menu displays and Expedite/CICS
does not issue a Session Start to Information Exchange. If there is no active
Information Exchange session, LG01 prompts you for an Information Exchange
password, and if entered, Expedite issues a Session Start to Information Exchange.
Once the session starts, the main menu is displayed.

Accessing the mailbox from LG01 is one way to determine if Expedite
acknowledges that there is an active Information Exchange session. You can also
determine if Expedite is acknowledging an active Information Exchange session by
attempting to end an Information Exchange session from LG01 (type X to logoff). A
confirmation panel is displayed that shows any active network functions that must
be completed before the Session End is issued. If one of the active functions is
Continuous Receive, it ends the session, causing an out-of-sync condition between
Expedite/CICS and WebSphere Data Interchange. If you confirm the request to end
the session, Expedite issues a Session End to Information Exchange. (Expedite is
unaware that WebSphere Data Interchange originally started the session.) For more
information, see “Continuous receive sessions” on page 348.

When Expedite/CICS ends the Information Exchange session, WebSphere Data
Interchange is prevented from updating its internal control information, which brings

Interfaces with WebSphere Data Interchange

346 WebSphere Data Interchange Programmer’s Reference

about an out-of-sync condition among the components. However, WebSphere Data
Interchange has built-in logic to re-issue a Session Start if Expedite returns the
message HI421: SESSION PROFILE DOES NOT EXIST. Therefore, ending an
Information Exchange session only has serious implications when a continuous
receive session is ended.

If you find that you inadvertently logged off and no Continuous Receives were
active, do not log back on to LG01 to restart the session, because WebSphere Data
Interchange must initiate Information Exchange sessions. WebSphere Data
Interchange will automatically restart a session when you perform your next network
function.

As a general rule, leave the session settings on LG01 alone. If you are prompted to
enter your password upon entry, log off when you leave. If you were not prompted
for a password, do not log off when you leave (use PF3 or type End). For more
information on using LG01, refer to the Expedite/CICS Display Application User’s
Guide.

You can sign on to Information Exchange directly through a terminal connection to
the Network. IE /SERV offers many useful tools and functions for managing your
network activity. For example, you can directly reset a mailbox's Information
Exchange session. However, you should not regularly use the IE/SERV facility to
reset Information Exchange sessions used by the WebSphere Data Interchange
application. It might be useful in recovery situations, but should be used carefully.
Resetting an Information Exchange session from IE/SERV ends the session from
the Information Exchange perspective only. Information Exchange is unaware that
the session was originally started by WebSphere Data Interchange through
Expedite/CICS. It causes an out-of-sync condition between the components. For
more information regarding Information Exchange Administrative Services, refer to
Using Information Exchange Administration Services.

Information Exchange session cleanup
An Information Exchange session problem might prohibit starting or ending an
Information Exchange session. The most common symptom of an Information
Exchange session error is the Expedite/CICS error SDIERR RESPONSE
CODE 00008. If the error is encountered by WebSphere Data Interchange, it is
embedded in a logged WebSphere Data Interchange error message.

Information Exchange session problems are most often caused by a user or
another program having reset the Information Exchange session. As discussed
earlier, you can end an Information Exchange session directly using IE/SERV.
Possibly another CICS region or another application in a different environment
started a session with the same mailbox. In any event, manual intervention is
required. A recovery procedure follows:

1. Sign on to IE/SERV. Choose Option 1, Profiles. Fill in the appropriate account
and user ID for the mailbox in question, and choose Option 7, Reset a user's
session. Does the message: USER ACCT.USER ID DOES NOT HAVE AN
ACTIVE SESSION appear at the bottom of the screen?

a. If this message appears, your Information Exchange session was previously
reset by another person or application. When the application reset your
session, it ended its own session. Cancel the reset request and go to
Step 2.

b. If this message does not appear, no Information Exchange session is active
for your mailbox. This might mean that whatever reset your session did not
end its own session. Enter Y to confirm the reset, go to Step 2.

Interfaces with WebSphere Data Interchange

Chapter 5. Using WebSphere Data Interchange in the CICS environment 347

Note: If you find you must perform this procedure frequently, you might want to
inspect the session trace available on IE/SERV to identify the LU name
that is resetting your session.

2. Use the Expedite/CICS IDLT CICS terminal transaction to delete the Information
Exchange session control information from the Expedite/CICS control file. The
format of the IDLT transaction follows:
IDLTacct user ID

The account number (acct) must be eight characters long, left-justified and
concatenated to the IDLT transaction ID. If your account is shorter than eight
characters, pad the remaining positions with spaces.

No validation is performed on your user ID, so it is important to enter your
user ID correctly.

3. If your Information Exchange session had any active continuous receive
sessions, try the failed network function again or go to the next section,
Continuous receive session. As discussed earlier, WebSphere Data Interchange
will automatically reissue an Information Exchange Session Start.

Continuous receive sessions
The continuous receive (CR) session is a high-level application programming layer
that is added on top of an Information Exchange session. A continuous receive
session cannot run without an Information Exchange session. An overview of the
continuous receive process follows.

When a CR session is active, EDI messages entering the mailbox that match the
continuous receive criteria are automatically received. Information Exchange
automatically starts Expedite/CICS and passes the EDI envelope. Expedite/CICS
then writes the envelope to a unique TS queue, linking to WebSphere Data
Interchange to pass the name of this TS queue. WebSphere Data Interchange
processes the envelope using the processing options specified in the applicable
continuous receive profile, after which WebSphere Data Interchange returns control
to Expedite/CICS. Expedite/CICS is then free to process the next envelope for this
continuous receive session.

Exactly when WebSphere Data Interchange returns control to Expedite/CICS
depends on whether the TD queue EDI1 is defined as intrapartitioned. If EDI1 is
defined, WebSphere Data Interchange and Expedite run synchronously. In other
words, Expedite/CICS will not process the next envelope until WebSphere Data
Interchange returns control. If the EDI1 TD queue is not defined, Expedite/CICS
and WebSphere Data Interchange run asynchronously where Expedite is free to
start processing the next envelope before WebSphere Data Interchange has
finished with the first. For more information, see “Effects of defining the EDI1 TD
queue” on page 334. Multiple continuous receive sessions with unique receive
criteria can be active for a single mailbox, in which case all sessions use the same
Information Exchange session. You can also run continuous receive sessions for
other mailboxes.

Starting and stopping continuous receive sessions
The continuous receive facility of WebSphere Data Interchange provides two CICS
terminal transactions: EDIR to start a continuous receive session, and EDIS to stop
a continuous receive session. These two CICS transactions are complemented by
the WebSphere Data Interchange Utility commands START CONTINUOUS
RECEIVE and STOP CONTINUOUS RECEIVE. Also, the WebSphere Data

Interfaces with WebSphere Data Interchange

348 WebSphere Data Interchange Programmer’s Reference

Interchange Utility provides the REPORT CONTINUOUS RECEIVE STATUS
command for reporting the statuses of your continuous receives. For more
information on these commands, see “Continuous receive” on page 9.

Note: This information applies only to continuous receive processing associated
with Expedite/CICS and Information Exchange. Continuous receive
processing driven by user-written applications is not started or stopped in
this manner. For detailed information, see “Continuous receive interface
(CICS only)” on page 541.

Both EDIR and EDIS can be issued against all continuous receive profile members
or selectively to a single member. The following shows the format for entering the
transaction at a terminal:
EDIR [membername]
EDIS [membername]

where membername identifies a member of the continuous receive profile. If a
member name is not specified, all continuous receive members are requested, and
a continuous receive start or stop occurs for each profile member.

During a continuous receive Session Start using EDIR, WebSphere Data
Interchange invokes Expedite/CICS, passing it the continuous receive selection
criteria. For criteria options, see “Continuous receive selection criteria” on page 332.
Expedite/CICS assigns a key to identify the continuous receive session, passes the
criteria and key to Information Exchange, and then returns control to WebSphere
Data Interchange. WebSphere Data Interchange sends a message back to the
issuing terminal indicating the success or failure of the continuous receive session
start. After a successful start, all three components (WebSphere Data Interchange,
Expedite/CICS, and Information Exchange) have saved the key assigned to the
continuous receive session for subsequent identification. If the start request is
unsuccessful, inspect the EDIFFS event log for information about the error.

During a continuous receive Session Stop using EDIS, WebSphere Data
Interchange invokes Expedite/CICS passing the key for the particular continuous
receive session. Expedite/CICS issues the end continuous receive request to
Information Exchange. The continuous receive cannot be stopped at this point. If a
receive is taking place. Expedite/CICS returns control to WebSphere Data
Interchange where WebSphere Data Interchange and Expedite/CICS can complete
asynchronously. However, WebSphere Data Interchange checks Expedite/CICS
control information until an indicator shows that the continuous receive session has
ended. At that point, WebSphere Data Interchange issues a message confirming a
successful end.

Although Expedite/CICS provides a facility to start and stop continuous receive
sessions directly, using these Expedite/CICS facilities regularly to manage your
WebSphere Data Interchange continuous receive sessions is not recommended.

The following is for your information and to prevent inadvertent execution of certain
functions in Expedite/CICS. The Expedite/CICS terminal transaction, LG01, can be
used to start and stop any active continuous receive sessions by using Option 1,
Work with Receive Data. WebSphere Data Interchange will not be aware of any
activities performed in LG01, so use this feature carefully.

Interfaces with WebSphere Data Interchange

Chapter 5. Using WebSphere Data Interchange in the CICS environment 349

Continuous receive session cleanup
Before attempting any cleanup, generate a continuous receive status report. For
more information, see “Reporting continuous receive status” on page 10. Based on
the reported status, you can initiate a reasonable cleanup.

WebSphere Data Interchange supplies a CICS terminal transaction, EDIZ, that can
be used to clean up an unrecoverable continuous receive session. This transaction
deletes the internal continuous receive session control records managed by
WebSphere Data Interchange. It does not affect the state of Expedite/CICS or
Information Exchange. Therefore, it is essential that Expedite/CICS (using LG01) be
used to terminate all continuous receive sessions before executing EDIZ. If
Expedite/CICS has not terminated the continuous receive and EDIZ is executed
inadvertently, EDI envelopes will be lost because WebSphere Data Interchange is
unaware of the receive requests for which Expedite/CICS is now passing data.

The format of the EDIZ command is:
EDIZ [membername]

if membername is not specified, all continuous receive members are requested.

Identifying unrecoverable continuous receive sessions
Table 110 describes some methods to help you to identify an unrecoverable
continuous receive session.

Table 110. Identifying unrecoverable continuous receive sessions

Problem Explanation

A continuous receive session that was
once working is no longer receiving data.

Most likely, the Information Exchange session
was lost after a continuous receive had already
been successfully started.

A continuous receive session is receiving
data from the mailbox, but WebSphere
Data Interchange is not processing the
data.

It appears that WebSphere Data Interchange is
never getting control. This is probably caused
by an inadvertent or premature use of EDIZ.

A VN1019 timeout error is logged. When EDIS is executed, WebSphere Data
Interchange will check the stop indicator for up
to 2 minutes. If more than 2 minutes elapse, a
timeout error is logged (VN1019) and a
message is issued to the terminal. This might
be caused by a delay in Expedite/CICS to end a
continuous receive session.

EDIR or EDIS fails, a negative response
is returned, and WebSphere Data
Interchange logs an error that an SDIERR
occurred.

EDIR or EDIS will fail immediately if
Expedite/CICS cannot communicate with
Information Exchange because of an
Information Exchange session problem.
WebSphere Data Interchange logs an error that
an SDIERR occurred and sends a message to
the terminal. This is an indication that you have
an Information Exchange session that requires
recovery.

Recovering continuous receives
If any of the above problems arise, use the following continuous receive recovery
procedure:

1. Sign on to the mailbox using LG01.

a. If you are not prompted to enter your password, go to Step 2.

Interfaces with WebSphere Data Interchange

350 WebSphere Data Interchange Programmer’s Reference

b. If you are prompted to enter your password, no Information Exchange
session is active for your ID. Enter your password to access the LG01 main
menu. Expedite/CICS will start a new Information Exchange session, which
might reactivate continuous receives that were not receiving data previously.
This is expected. Continue with Step 2.

2. Choose Option 1, Work with Receive Data, and then choose Option 3, Stop
Continuous Receive. If no entries are displayed, go to Step 6. If entries are
displayed, go to Step 3.

3. Issue a stop request by all continuous receive sessions. Use the Enter key to
refresh the screen.

a. If all sessions change status from STARTED to STOPPED, go to Step 6.

b. If all sessions do not change status from STARTED to STOPPED, go to
Step 4.

4. Sign on to IE/SERV. Choose Option 1, Work with Profiles. Fill in the appropriate
account and user ID for the mailbox in question and choose Option 8, Reset a
User's Session. Enter Y to confirm the reset and go to Step 5.

5. Use the Expedite/CICS IDLT CICS terminal transaction to delete the Information
Exchange session control information from the Expedite/CICS control file. The
format of the IDLT transaction is:

IDLTacct [user ID]

The account number (acct) must be 8 characters long, left-justified and
concatenated to the IDLT transaction ID. If your account is shorter than
8 characters, pad the remaining positions with spaces.

No validation is performed on your user ID, so it is important to enter your
user ID correctly.

6. You should still be in LG01 at this point. Type =X to log off. Confirm the session
end, and go to Step 7.

7. Execute the WebSphere Data Interchange Continuous receive cleanup
transaction, EDIZ, only for the continuous receive profile member(s) that are
experiencing a symptom, and go to Step 8.

8. Restart the continuous receive session using EDIR.

At this point, the continuous receive session should be recovered. If you
executed EDIZ inadvertently or prematurely, envelopes might have been lost.
You can use LG01 to determine which, if any, envelopes were not processed by
WebSphere Data Interchange.

Choose the Receive option from the main menu, and then Option 5, View List of
Completed Receives. Each EDI envelope received by Expedite/CICS will have
an entry. A status of RECEIVED is normal. A status of E-HI999 means that
WebSphere Data Interchange did not accept the envelope. WebSphere Data
Interchange returns the HI999 error when a continuous receive control record is
not found for a receive. Envelopes that encounter the HI999 error cannot be
reprocessed through the Release option on this LG01 panel, because
WebSphere Data Interchange and Expedite/CICS cannot be re-synchronized.
However, you can use the View option to obtain the interchange control number,
the interchange sender, and so on. If your mailbox has archiving turned on, you
can use IE/SERV to retrieve each lost envelope. An envelope retrieved from
archive is receivable just as if it had been sent.

Note: When an HI999 error is returned, WebSphere Data Interchange issues an
error message to the EXPLOG1 data set associated with your CICS region:

Interfaces with WebSphere Data Interchange

Chapter 5. Using WebSphere Data Interchange in the CICS environment 351

CR0120 WebSphere Data Interchange CONTROL RECORD MISSING FOR
RECEIVED DATA, WRITING DATA TO EXPDERR FILE.

Program list table considerations
There are two post-initialization PLT programs that affect continuous receive
processing. All customers should use the Expedite/CICS PLT program called
EXPOSTRT that re-establishes both Information Exchange and continuous receive
sessions automatically during CICS start-up, even after an immediate shutdown.
The second program is an optional WebSphere Data Interchange PLT program
called EDICRTS that issues the EDIR transaction to start all continuous receive
profile members with an Active flag set to Y. For most customers, using EDICRTS
is unnecessary because EXPOSTRT will reestablish continuous receive sessions
for you. EDICRTS starts entirely new sessions, which is redundant if your
continuous receive sessions were already active when the region was
brought down.

WebSphere Data Interchange also provides an optional pre-termination PLT
program named EDICRSP that issues an EDIS to stop all continuous receives, and
also issues a CLOSE MAILBOX request against all involved mailboxes. During a
normal shutdown, EDICRSP ends all continuous receive sessions and all
Information Exchange sessions. This releases all mailboxes using continuous
receive so that other communication applications requiring the same mailboxes can
execute while the CICS region is down. This will prevent the Information Exchange
session problems discussed earlier. However, if you have no other Information
Exchange communication applications, or if the other applications you run do not
use the same mailbox, you do not need to release the Information Exchange
session, and PLT program EDICRSP is not needed.

As you can see, the pre-termination program EDICRSP and post-initialization
program EDICRTS go hand in hand.If you use EDICRSP for pre-termination, then
you should use EDICRTS for post-initialization to start those continuous receive
sessions ended by EDICRSP. EXPOSTRT does not start these sessions, because
they will not be active after shutdown is complete.

The following are sample post-initialization and pre-termination PLTs.

* Sample post-initialization PLT including program EDICRTS, *
* the continuous receive start program, and the necessary *
* Expedite/CICS PLT program EXP0STRT. Also included is a *
* sample entry for the DB2 attachment facility, DSNCCOM1, in *
* case you are using DB2 for your repository. The order of *
* the following programs is important. *

PLTAA DFHPLT TYPE=INITIAL,SUFFIX=AA

DFHPLT TYPE=ENTRY,PROGRAM=DSNCCOM1
DFHPLT TYPE=ENTRY,PROGRAM=EXPOSTRT
DFHPLT TYPE=ENTRY,PROGRAM=EDICRTS
DFHPLT TYPE=FINAL
END

* Sample pre-termination PLT including program EDICRSP, the *
* continuous receive stop program. Program EDIXSOX, which *
* terminates the long running WebSphere Data Interchange transaction, EDIT, *
* is shown along with DB2 attachment program, DSNCCOM1, to *
* provide the proper order for the entires. *

PLTZZ DFHPLT TYPE=INITIAL,SUFFIX=ZZ

DFHPLT TYPE=ENTRY,PROGRAM=EDICRSP
DFHPLT TYPE=ENTRY,PROGRAM=EDIXSOX

Interfaces with WebSphere Data Interchange

352 WebSphere Data Interchange Programmer’s Reference

DFHPLT TYPE=ENTRY,PROGRAM=DSNCCOM1
DFHPLT TYPE=FINAL
END

Note: If you will be using the EDICRSP PLT program, it is necessary
to add an XLT entry for Expedite/CICS transaction ISC2. A sample
entry follows:

* WebSphere Data Interchange for CICS *
* *
* The following XLT (CICS Transaction List Table) entries are to be *
* applied to any CICS region where WebSphere Data Interchange will execute and *
* where program EDICRSP is included in the pre-termination PLT. *
* *

XLTAA DFHXLT TYPE=INITIAL,SUFFIX=AA

DFHXLT TYPE=ENTRY,TRANSID=ISC2
DFHXLT TYPE=FINAL
END

Processing program table considerations
In CICS/ESA environments, you should define the following programs in the
processing program table (PPT) with EXECKEY(CICS): EDICRIN, EDICRSP,
EDICRTS, and EDIXSOX.

WebSphere Data Interchange supplied transactions
WebSphere Data Interchange provides a set of CICS transactions to perform many
different functions. The following summary describes each transaction and its
associated function.

Table 111. WebSphere Data Interchange supplied CICS transactions

Transaction
Description

EDIA The online administrative transaction. Use this transaction to customize
in the CICS environment.
Note: To prevent processing from being halted while EDIX waits to
proceed, make sure to establish a DB2 thread pool that is used by only
EDIA.

EDIB The WebSphere Data Interchange Utility transaction. If you run the
WebSphere Data Interchange Utility asynchronously, use EXEC CICS
START to start this transaction. You can also start EDIB with
WebSphere Data Interchange as part of continuous receive processing.
Note: To prevent processing from being halted while EDIX waits to
proceed, make sure to establish at least three DB2 threads that is used
only by EDIB. The maximum number of threads needed for this
transaction is the sum of all TRANClass values for the transactions in
EDIB. A typical value is five threads.

EDID Used internally by WebSphere Data Interchange. A background
transaction used to update network status. EDID does not have a user
interface.

EDIE Used internally by WebSphere Data Interchange.A background
transaction used to insert DB2 event log entries into the database (see
TDQs EDI1, EDI2, and EDI3). EDIE keeps DB2 event log insertions out
of the main commit scope. EDIE does not have a user interface.
Note: To prevent processing from being halted while EDIX waits to
proceed, make sure to establish a DB2 thread pool that is used only
EDIX and EDIE. Two or more threads must be available for this pool.

Interfaces with WebSphere Data Interchange

Chapter 5. Using WebSphere Data Interchange in the CICS environment 353

Table 111. WebSphere Data Interchange supplied CICS transactions (continued)

Transaction
Description

EDIG A transaction automatically invoked periodically when using the
persistent environment.

EDIM A transaction that executes the WebSphere Data Interchange Message
Broker to transform data.

EDIQ The transaction that gains control from MQSeries transaction CKTI
when data is received into an MQSeries queue that has trigger
processing (continuous receive) associated with it.

EDIR The online or background transaction used to initiate continuous
receive requests.

EDIS The online or background transaction used to terminate continuous
receive requests.

EDIT A transaction that can be used to terminate the WebSphere Data
Interchange environment. The WebSphere Data Interchange
environment is usually terminated by placing EDIXSOX in the CICS
pre-termination PLT, but you can also terminate the WebSphere Data
Interchange environment by running EDIT. Certain pieces of information
are maintained from the start of the first WebSphere Data Interchange
activity within a CICS region, continuing throughout the session, until
the WebSphere Data Interchange environment is terminated. You can
use EDIT to reset this information. EDIT shuts down transactions EDIG
and EDIX, shuts down the persistent environment, releases CSD
storage, and deletes the EDICSDA and EDITV00 TS queues. Using
EDIT to perform these functions is not part of standard procedures.

EDIV The installation verification transaction. For more information on this
transaction, refer to the WebSphere Data Interchange for z/OS
Installation Guide.

EDIW The WebSphere Data Interchange Utility invocation transaction. For
more information, see “Using EDIW to invoke the WebSphere Data
Interchange Utility” on page 356.

EDIX A background transaction used to perform some Transaction Store
updates for other WebSphere Data Interchange transactions. This
transaction does the following acquires a transaction handle and
deletes an envelope for a DEENVELOPE command with the DUPENV(Y)
option.

You must define EDIX in the CICS Resource Control Table for DB2
installations. EDIX processes a request and remains idle in the system
for up to one minute. When the minute expires, and no other request
has been issued by a WebSphere Data Interchange transaction, EDIX
removes itself from the system. If another request is generated in the
one-minute wait period, the request is honored and the one-minute wait
is reset.

Eventually, as all WebSphere Data Interchange work is quiesced, EDIX
removes itself from the system. If need be, EDIX can be removed from
the system manually by typing EDIX. No parameters are necessary.
Note: To prevent processing from being halted while EDIX waits to
proceed, make sure to establish a DB2 thread pool that is used only
EDIX and EDIE. Two or more threads must be available for this pool.

EDIZ The online or background transaction used to clean up continuous
receive problems.

WebSphere Data Interchange supplied transactions

354 WebSphere Data Interchange Programmer’s Reference

Performance monitor user exit
WebSphere Data Interchange can invoke a user exit during enveloping and
deenveloping for performance monitoring. The exit is invoked when a user exit
program name is specified in the Application Defaults (APPDEFS) profile. This
function is applies only for WebSphere Data Interchange for CICS.

For performance monitoring to be meaningful, it should be done in tandem with
Expedite/CICS. Typically, WebSphere Data Interchange and Expedite/CICS work
asynchronously with one another (except for continuous receives). To understand
resource utilization involved in data translation/transmission, the WebSphere Data
Interchange and the Expedite/CICS components must be considered together. This
can be achieved by using the performance monitor user exit capabilities of both
products. The COMMAREA format passed to each is the same. “Format of
performance monitor commarea” describes which fields are filled in by WebSphere
Data Interchange and which fields are filled in by Expedite/CICS.

On the send side, WebSphere Data Interchange could invoke the user exit during
enveloping and, subsequently, Expedite/CICS could invoke it after sending. These
two disparate invocations could be associated using the interchange key fields:
v Sender ID
v Receiver ID
v Control number
v Direction

On the receive side, Expedite/CICS could invoke the user exit after receiving the
interchange and subsequently WebSphere Data Interchange could invoke it during
deenveloping. If more than one envelope is generated or deenveloped during a
single execution of WebSphere Data Interchange, the user exit would be invoked
for each envelope.

By using these user exit capabilities, calculations could be done on the collective
resources consumed by both products in handling an interchange. The user exit
would most commonly be used to stamp SMF records (through the EXEC CICS
MONITOR command) with the information passed to it. The SMF records could
then be analyzed to produce the desired performance statistics. This information
would be helpful for system tuning and for capacity planning.

Format of performance monitor commarea
Table 112. Format of the performance monitor commarea

Name Offset Length Type Owner Description

RESPCODE 0 5 Char Exp Response code

RESPTYPE 5 8 Char DI/Exp WebSphere Data Interchange -
ENVELOPE or DENVELOPE

DIRECT 13 1 Char DI/Exp Send or receive

SENDQUA 14 4 Char DI Interchange sender qualifier

SENDID 18 35 Char DI/Exp Interchange sender ID

RECVQUA 53 4 Char DI Interchange receiver qualifier

RECVID 57 35 Char DI/Exp Interchange receiver ID

CNTRLNO 92 14 Char DI/Exp Interchange control number

Performance monitor user exit

Chapter 5. Using WebSphere Data Interchange in the CICS environment 355

Table 112. Format of the performance monitor commarea (continued)

Name Offset Length Type Owner Description

SACCT 106 8 Char Exp Sender's Information Exchange
account

SUSERID 114 8 Char Exp Sender's Information Exchange
user ID

ALIASTYP 122 1 Char Exp Receiver's alias table type

ALIASID 123 3 Char Exp Receiver's alias table ID

RACCT 126 8 Char Exp Receiver's Information
Exchange account

RUSERID 134 8 Char Exp Receiver's Information
Exchange user ID

DESTTYPE 142 1 Char Exp Receiver's destination type

MSGUCLAS 143 8 Char DI Message user class

UNIQUEID 151 8 Char Exp DI status update unique ID

DATE 159 8 Char Exp Current date (YYYYMMDD)

TIME 167 6 Char Exp Current time (HHMMSS)

APPLID 173 8 Char Exp CICS application ID

TRANID 181 4 Char Exp CICS transaction ID

TASKNO 185 7 Char Exp CICS task number

ENVSIZE 192 11 Char DI Envelope size

NUMTRXS 203 11 Char DI Number of transactions in
envelope

MSGSIZE 214 11 Char Exp Information Exchange message
size

APPREF 225 14 Char DI Interchange application
reference

RESERVED 239 261 Char N/A Reserved for WebSphere Data
Interchange

Using EDIW to invoke the WebSphere Data Interchange Utility
YOu can use the WebSphere Data Interchange for CICS transaction EDIW to
invoke the WebSphere Data Interchange Utility. On entering transaction EDIW, a
panel is displayed where you can enter Utility Control Information and Utility
PERFORM commands. The fields on the EDIW panel generally relate to the fields
in the Utility Control Information structure. For more information, see “WebSphere
Data Interchange Utility control information” on page 323.

The EDIW transaction is useful in testing various versions of PERFORM commands
until final versions can be established. In this way, your Utility invocation programs
do not need to be recompiled or your command files changed to experiment with
various PERFORM commands.

To invoke the Utility, fill out the appropriate fields on the panel and press Enter.
EDIW allows the Utility to be invoked through an EXEC CICS LINK to program
EDIFFUT or through an EXEC CICS START of transaction EDIB. When the EXEC
CICS LINK method is selected, the Utility invocation results will be returned and
displayed on the panel in the form of the severity and condition codes. When the

Performance monitor user exit

356 WebSphere Data Interchange Programmer’s Reference

EXEC CICS START method is selected, the started EDIB task might run either
synchronously or asynchronously with EDIW. The actual PERFORM command to
be executed by the Utility can be specified directly on the EDIW panel or can be
referenced in a command file.
WebSphere Data Interchange for CICS Utility Invocation

--
Syncpoint Value......: Utility Response Prog:
Command File Name....: Utility Response Type:
Command File Type....: Terminal ID..........:
Command Delimiter....: Process Net Ack File.:
Print File Name......: Process Net Ack Type.:
Print File Type......: Multiple TSQ Mode....:
Report File Name.....: User Area.........:
Report File Type.....:
Exception File Name..:
Exception File Type..:
Tracking File Name...: Util Severity Code...:
Tracking File Type...: Util Condition Code..:
Query File Name......: Abend Code...........:
Query File Type......: Func Ack Built.......:
Application ID.......: Func Ack Ret Code....:
Language ID..........: Func Ack Ext Ret Code:
Command Statements...:

--
F3=End F4=Dlt F7=Bwd F8=Fwd
F9=Clr Link? Y Wait? N Caps? Y
__

Using EDIW to invoke WebSphere Data Interchange

Chapter 5. Using WebSphere Data Interchange in the CICS environment 357

Using EDIW to invoke WebSphere Data Interchange

358 WebSphere Data Interchange Programmer’s Reference

Chapter 6. Using WebSphere Data Interchange in the z/OS
environment

Using sample JCL

WebSphere Data Interchange Utility (EDIUTIL) JCL
This section describes the WebSphere Data Interchange Utility JCL. Sample Utility
JCLs are distributed in the JCL distribution library (EDI.V3R2M0.SEDIINS1). The
DB2 version is in member EDIUTILD. The JCL is divided into subsections based
primarily on function.

Note: Using the RLSE keyword to allocate certain output files might cause
processing problems (such as B37 abends), especially when switching
output files to separate processed data. The RLSE keyword releases
“unused” space. Specifying it for the following output files might cause the
file allocation to be changed to a size that is too small to accommodate the
data written to it during repetitive WebSphere Data Interchange processing.
If you decide to use the RLSE keyword with these files, make sure to delete
and reallocate these files before each execution of WebSphere Data
Interchange.

v EDIQUERY
v FFSEXCP
v FFSTRAK
v FFSWORK
v INVOICE
v PURCORD
v QDATA
v REQ1DD
v REQ2DD
v RPTFILE

Section 1 JCL modifications
The beginning of the JCL states that certain elements of the JCL must be modified
to run in your environment. This is usual and customary. The minimum region size
to execute the WebSphere Data Interchange Utility is 4096 K.
//EDIUTIL JOB (INSTALLATION DEPENDENCIES, REGION=4096K)

//*

//***
//* This sample JCL will invoke the WebSphere Data Interchange Utility. *
//***
//* 1. Change the JOB statement as necessary. *
//* 2. Revise ddnames and dataset names to meet your requirements.*
//* 3. If necessary, revise STEPLIB to match your libraries. *
//* 4. If a language other then English is installed, change all *
//* "EDIENU." to "EDI###.", where "###" represents the proper *
//* language identifier value shown in the program directory. *
//***

Section 2 WebSphere Data Interchange Utility parameters
When invoking the WebSphere Data Interchange Utility, certain parameters are
passed in. These parameters are keyword-oriented. The keywords should be
separated by at least one blank character. Valid keywords are:

APPLID
The application ID. The default is EDIFFS. This keyword also identifies the
log file as specified in the Activity Log (ACTLOGS) profile.

© Copyright IBM Corp. 2002 359

LANGID
The language ID. The default is ENU. The value supplied must match an
entry in the Language (LANGPROF) profile. This parameter is used to
control date formats, decimal notations, and other language-specific fields.

SYSID The installation-defined WebSphere Data Interchange system ID that
controls access to various components of WebSphere Data Interchange.
The default is DIENU. The value in this field is part of the resource name
defined using RACF or another resource control product.

DML The delimiter used in place of left and right parentheses to enclose
WebSphere Data Interchange Utility command values.

PLAN The DB2 plan name. For DB2 installations, this parameter is required if
there is no EDITSIN data set counterpart. If this parameter is specified here
and in EDITSIN, the value in EDITSIN overrides the value specified here.
There is no default.

SYSTEM

The DB2 subsystem ID. For DB2 installations, this parameter is required if
there is no EDITSIN data set counterpart. If SYSTEM is specified here and
in EDITSIN, the value in EDITSIN overrides the value specified here. There
is no default.

In a DB2 environment, the parameters can be specified in multiple places:

v If the EXEC statement specifies PGM=IKJEFT01, the parameters are passed in
with the PARM keyword in the RUN statement in the SYSTSIN data set.

v If the EXEC statement specifies PGM=EDIFFUT, the parameters are passed in
with the PARM keyword in the EXEC statement. However, the DB2 plan and
subsystem ID might come from the EDITSIN data set.

For more information, see “WebSphere Data Interchange and DB2 attachment” on
page 377.

In DB2, change the parameter PLAN=EDIENU32 to match your DB2 plan name
and change the parameter SYSTEM=DSN to match your DB2 subsystem ID.
//***
//* Change the PARMs as follows: *
//* 1. If necessary, change the "SYSID=DIENU" parm to match *
//* your WDI RACF installation. *
//* 2. If necessary, change the "APPLID=EDIFFS" parm to match *
//* the desired WDI application ID. *
//* 3. If necessary, change the "LANGID=ENU" parm to the *
//* proper language identifier. *
//***
//*

//XDIUTIL EXEC PGM=EDIFFUT,PARM='SYSID=DIENU
APPLID=EDIFFS LANGID=ENU'

//*

Section 3 STEPLIB requirements
STEPLIB accesses the WebSphere Data Interchange load modules. If you make
communication requests, STEPLIB must include the library where the
communication routines reside. STEPLIB is not required if you have provided
access to the necessary programs in other ways (such as adding the load libraries
to the LNKLST, or loading all necessary programs into the link pack area).

In DB2, STEPLIB must also include the DB2 load library.

WebSphere Data Interchange Utility (EDIUTIL) JCL

360 WebSphere Data Interchange Programmer’s Reference

//STEPLIB DD DSN=EDI.V3R2M0.SEDILMD1,DISP=SHR <--EDI LOAD LIBRARY

// DD DSN=SYS1.SNA.LOADLIB,DISP=SHR <--COMM. LOAD LIBRARY

Section 4 PRTFILE
PRTFILE is required for all WebSphere Data Interchange Utility functions. Error
messages generated during function processing and a summary report are written
to PRTFILE. This data set contains fixed block addressing (FBA) or variable block
addressing (VBA) records with a logical record length of 132.
//***
//* Specify the Audit print file. In this case the summary report *
//* generated by the utility will be returned to JES. You might want *
//* to allocate an external file, and print it for future reference. *
//***
//*

//PRTFILE DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=132)

//*

Section 5 TRANSLATE TO STANDARD files
The APDATA01 and APDATA02 ddnames are examples of files containing
application data that is to be translated into EDI standard format. The files can
contain C and D records, or they can contain data in raw data format. The actual
ddnames must match the names specified with the APPFILE keyword in the
PERFORM command. A file is expected to contain C and D records unless the
RAWFMTID keyword is provided. These data sets can contain fixed or variable
length records.
//***
//* If translating to standard formats: *
//* *
//* Allocate all input datasets that will be translated in this step.*
//* These ddnames should be referenced by the APPFILE keyword in *
//* the EDISYSIN input command language statements. *
//***
//*

//APDATA01 DD DSN=PHYSICAL.FILE1.NAME,DISP=OLD

//APDATA02 DD DSN=PHYSICAL.FILE2.NAME,DISP=OLD

//*

Section 6 Destination files
When translating to EDI standard format, the WebSphere Data Interchange Utility
writes transactions that were not translated successfully to FFSEXCP. When
translating to application format, the Utility writes translated transactions to
FFSEXCP if it can not write them to the intended file (This is usually because the
intended file could not be opened or is full). Optional records are also written to
FFSEXCP if the tracking file (FFSTRAK) does not exist and your application data is
in C and D format. FFSEXCP must be large enough to contain the largest data
record you are translating, and the largest information record the translator might
return. Use the JCL DISP option to control whether FFSEXCP is cleared or
appended to during the first use. After the first use, WebSphere Data Interchange
automatically appends to the file. FFSEXCP can contain fixed or variable length
records.
//***
//* If translating to standard or to application formats: *
//* *
//* Specify the exception file to hold transactions in error *
//* DCB= Allocated the same as application data files, since *
//* this file holds a copy of the untranslated transaction. *
//***
//*

WebSphere Data Interchange Utility (EDIUTIL) JCL

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 361

//FFSEXCP DD DSN=BAD.TRANSACTION.FILE,DISP=MOD

//*

Section 7 FFSTRAK file
FFSTRAK holds the optional information records if they are requested. If you are
using C and D records and if FFSTRAK is not provided, the optional records are
written to the exception file (FFSEXCP). If your application data is in raw data
format and FFSTRAK is not provided, no optional records are written even if they
are requested. FFSTRAK must be large enough to accommodate the largest
information record. FFSTRAK can contain fixed or variable length records.
//***
//* If translating to standard formats: *
//* *
//* Specify the tracking file to hold IEGTQ type records if *
//* they are to be separated from the exception file. This *
//* is recommended if your application input data is in a raw data *
//* format. Allocate the same as FFSEXCP. *
//***
//*

//FFSTRAK DD DSN=HOLD.TRAKING.FILE,DISP=MOD

//*

Section 8 FFSWORK file
FFSWORK is required only when translating from application format to EDI
standard format. FFSWORK holds the current transaction in case of translation
errors. If an error occurs, the current transaction is copied from the FFSWORK file
to the exception file (FFSEXCP). This data set can contain variable record format
with a logical record length of 32756. If your system guidelines allow, specifying
UNIT=VIO on this DD statement will drastically reduce import/export exceptions on
the data set. Allocating with a variable blocked (VB) record format will also reduce
the number of I/O EXCPs on the data set.
//***
//* If translating to standard or to application formats: *
//* *
//* Specify the work file (temporary hold file during translation) *
//***
//*

//FFSWORK DD DSN=&&FFSWORK,DISP=(NEW,DELETE),UNIT=SYSALLDA,

// DCB=(RECFM=V,BLKSIZE=32760),SPACE=(TRK,(1,1))

//*

Section 9 Envelope data file
If your Utility request involves enveloping and/or sending of transaction data, this is
the section of JCL that defines the EDI standard data file to envelope into and send
from. The ddname should match one of the following:

v The Trans data queue field value as specified in the Network Profile
(NETPROF). If a name has not been supplied in the Network Profile member, the
default is QDATA. The ddname specified holds transactions that have ISA, ICS,
or GS enveloping. The same file name with an E appended (such as QDATAE)
holds transactions that have either UNB or STX enveloping. The same file name
with a U appended (such as QDATAU) holds transactions that have BG
enveloping. There must be a ddname specified for each network that can be
accessed during the run.

v The value specified in the FILEID keyword on the PERFORM command. If this
keyword is specified, that file is used to hold all envelope types for all networks.

WebSphere Data Interchange Utility (EDIUTIL) JCL

362 WebSphere Data Interchange Programmer’s Reference

This data set can contain fixed-length or variable-length records with a logical
record length of 80 or greater.
//***
//* If this job step includes enveloping and/or sending data: *
//* *
//* Specify the network transaction files to hold queued transactions *
//* The ddnames MUST match the transaction data queue field *
//* in the network profile unless you will be using the FILEID *
//* keyword override in the EDISYSIN input command language *
//* statements. *
//* *
//* Use DISP=MOD to append data to the file *
//* DISP=OLD to replace the file *
//* *
//* Suggested: DCB=(RECFM=V,LRECL=80,BLKSIZE=23440). However, this */
/* might not satisfy YOUR network requirements, so it *
//* is suggested that you verify this allocation. *
//***
//*

//QDATA DD DSN=NETWORK.HOLDFILE.NAME,DISP=MOD

//*

Section 10 Network communications
This group of JCL statements is used when sending to or receiving from a network.
The JCL shown here is required for the AT&T Global Network. Each network has its
own JCL requirements.

Section 10a Communicating with Expedite Base/MVS using IEBASE: This
section contains JCL statements for using the Expedite Base/z/OS network program
IEBASE. The network profiles supplied by WebSphere Data Interchange are IINB41
(IEBASE Release 3.2) and IINB42 (IEBASE Release 4.2 and higher). The files
described here are required by Expedite Base/z/OS. INMSG is the network input file
and contains commands written by WebSphere Data Interchange for processing by
Expedite Base/z/OS. OUTMSG is the network output file and contains the
responses from Expedite Base/z/OS after processing. INB1STAT is used during
status updating to hold network acknowledgments. For more information about
these Expedite Base/z/OS files, refer to the Expedite Base/MVS Programming
Guide.
//***
//* Specify the IGN Expedite Base/MVS network program (IEBASE) *

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160),SPACE=(TRK,(1,1))

//INPRO DD DSN=EDI.V1R3M0.SEDISAM1(EDIINPRO),DISP=SHR

//OUTMSG DD DSN=NETWORK.OUTMSG,DISP=OLD

//OUTPRO DD DSN=NETWORK.OUTPRO,DISP=OLD

If destination tables are needed to resolve Information Exchange (IE) mailboxes, a
qualifier table (QUTTABLE) and one or more destination tables (TTABLExx) might
be necessary. The ddname of the destination table(s) can be specified in the data
of the qualifier table and can be any valid ddname. If the qualifier table
(QUTTABLE) is not used, the following default ddnames are used for the
destination table(s):

X12 TTABLExx - where xx is the two-character qualifier (ISA07 element of the
interchange envelope)

UCS TTABLE01

UN/TDI
TTABLE

EDIFACT

TTABLExx - where xx is the first two characters of the qualifier (UNTO:2
element of the interchange envelope)

//QUTTABLE DD DSN=USERFILE.IN.ANYNAME.SEQ.FILE,DISP=SHR

//TTABLExx DD DSN=USERFILE.IN.ANYNAME.SEQ.FILExx,DISP=SHR

//*

Section 10b Communicating with Expedite Base/z/OS using IEBASE and
Comm-Press: this section contains JCL statements for using the Expedite
Base/z/OS network program IEBASE with Comm-Press. In addition to the files
mentioned in above, these files are required if you are using Expedite Base/z/OS
with compression. For more information about these Expedite Base/z/OS files, refer
to the Expedite Base/MVS Programming Guide.
//***
//* If you are using Expedite Base/MVS with Comm-Press, then specify *
//* the following work files: *
//* *
//* DSNAME DESCRIPTION RECFM LRECL *
//* *
//* COMPPDS COMPRESSION PDS FILE FB 80 *
//* COMPWRK COMPRESSION WORK FILE FB 80 *
//* INMSGC MESSAGE COMMAND FILE FB 80 *
//* INMSGR MESSAGE RESPONSE FILE FB 80 *
//* OUTMSGC MESSAGE COMMAND FILE FB 80 *
//* OUTMSGR MESSAGE RESPONSE FILE FB 80 *
//* SYSUT1 TEMPORARY WORK FILE FOR COMPRESSION FB 80 *
//* *
//* COMPTRC COMPRESSION TRACE FILE *
//* CPLOOKUP COMPRESSION LOOKUP TABLE FB 80 *
//* *
//* NOTE: COMPTRC is required when BASE(Y) is used on the trace *
//* command. CPLOOKUP is required when using COMPRESS(T). *
//* *
//**
//*

//COMPPDS DD DSN=NETWORK.COMPPDS,DISP=(NEW,CATLG),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0,DSORG=PO),

// UNIT=SYSALLDA,SPACE=(CYL,(10,2,10))

//COMPWRK DD DSN=NETWORK.COMPWRK,DISP=(NEW,CATLG),

WebSphere Data Interchange Utility (EDIUTIL) JCL

364 WebSphere Data Interchange Programmer’s Reference

// DCB=(RECFM=V,LRECL=84,BLKSIZE=23440,DSORG=PS),

// UNIT=SYSALLDA,SPACE=(TRK,(10,1))

//INMSGC DD DSN=&&INMSGC,DISP=(NEW,DELETE),UNIT=SYSALLDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160),SPACE=(TRK,(1,1))

//INMSGR DD DSN=&&INMSGR,DISP=(NEW,DELETE),UNIT=SYSALLDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160),SPACE=(TRK,(1,1))

//OUTMSGC DD SYSOUT=*

//OUTMSGR DD DSN=NETWORK.OUTMSGR,DISP=(NEW,CATLG),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0),

// UNIT=SYSALLDA,SPACE=(TRK,(10,1))

//SYSUT1 DD DSN=&&SYSUT1,DISP=(NEW,DELETE,DELETE),

// UNIT=SYSDA,DCB=BLKSIZE=23476,SPACE=(CYL,(1,1))

//COMPTRC DD SYSOUT=*

//CPLOOKUP DD DSN=NETWORK.CPLOOKUP,DISP=(NEW,CATLG),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0),

// UNIT=SYSALLDA,SPACE=(TRK,(10,1))

//*

Section 11 EDI standards
For receiving and deenveloping transaction data, this section of JCL defines the EDI
standard data file to receive into and deenvelope from. The ddname should match
one of the following:

v The Receive file name field value as specified in the mailbox (requestor) profile
(REQPROF) associated with the REQID keyword in the PERFORM command.
There must be a ddname here for each requestor that can be processed during
the run.

v The value specified with the FILEID keyword in the PERFORM command. The
value specified here overrides the Receive file name value from the mailbox
(requestor) profile.

This data set can contain fixed-length or variable-length records with a logical
record length of 80 or greater.
//***
//* If this job step includes receiving and/or deenveloping of *
//* transaction data: *
//* *
//* Specify the Network Transaction files to receive into and/or *
//* deenvelope from. *
//* *

each data format that can be processed during the run. The name specified in the
data format can be overridden with a value in the Application file name field in
the receive usage/rule. If there is no applicable DD statement, the application data
is written to the exception file (FFSEXCP). In the example below, INVOICE
identifies a file that holds data in application format when translating from EDI
standard format.

This data set can contain fixed or variable length records. The logical record length
must be large enough to hold the largest application record.
//***
//* If translating to application formats: *
//* *
//* Specify the sequential application (output) files *
//* *
//* ddnames MUST be supplied for every Data Format *
//* that can be received in this job and they must match the *
//* ddname specified in defining the Data Format. *
//* Multiple job steps can be used if multiple network transaction *
//* files must be separated into unique application files. *
//* Transactions will either replace the file or are appended to *
//* the file based on the DISP parameter. *
//* Use DISP=MOD to append data to the file *
//* DISP=OLD to replace the file *
//* Allocation parameters should handle your largest data record *
//* plus any informational records you might request. *
//***
//*

//INVOICE DD DSN=INVOICE.DATA.FILE,DISP=MOD

//PURCORD DD DSN=PURCORD.DATA.FILE,DISP=MOD

//*

Section 13 Report file
This section defines the file that contains reports generated by the PRINT command
and by various other PERFORM commands.

This data set can contain fixed block addressing (FBA) or variable block addressing
(VBA) records with a logical record length of 132.
//***
//* *
//* PLEASE READ!!!! *
//* *
//* The following DD assignments (up to the EDISYSIN DD assignment) *
//* are used for specific commands which most likely will not be *
//* used too often. Please read the comments carefully to determine *
//* if the ddnames should be allocated or removed. *
//***
//*

//***
//* If using any of the PRINT commands: *
//* *
//* Specify the output file to write the reports out to. *
//* *
//* Use DISP=MOD to append to the existing file *
//* DISP=OLD to replace the file *
//* Allocation parameters should indicate a record length of 133. *
//***
//*

//RPTFILE DD DSN=REPORT.FILE,DISP=MOD

//*

WebSphere Data Interchange Utility (EDIUTIL) JCL

366 WebSphere Data Interchange Programmer’s Reference

Section 14 Output file
This section defines the file that contains output from command processing.
EDIQUERY identifies a file that contains output from QUERY commands and from
various other PERFORM commands.

This data set should contain variable length records with a block size of 32760.
//***
//* If using the following commands: *
//* TRADING PARTNER PROFILE DATA EXTRACT *
//* TRADING PARTNER CAPABILITY DATA EXTRACT *
//* TRANSACTION ACTIVITY DATA EXTRACT *
//* NETWORK ACTIVITY DATA EXTRACT *
//* TRANSACTION DATA EXTRACT *
//* ENVELOPE DATA EXTRACT *
//* QUERY *
//* *
//* Specify the output file to write the extracted data or matching *
//* handles to. *
//* *
//* Use DISP=MOD to append to the existing file *
//* DISP=OLD to replace the file *
//* *
//* Allocation parameters should indicate a variable record format *
//* with a block size of 32760. This will allow any type of data *
//* to be written to the query file without the possibility of *
//* records being truncated. *
//**
//*

//EDIQUERY DD DSN=QUERY.FILE,DISP=MOD

//*

Section 15 Export/Import statements
This section of JCL is required for exporting and importing.
//***
//* If using the EXPORT or IMPORT commands: *
//* *
//* 1) Allocate the export/import DI control file. *
//* *
//* 2) Allocate the export/import user supplied control file. *
//* This control file describes what data is to be exported or *
//* imported. An allocation of fixed format and record length 84 *
//* should be used. This file can also be allocated inline. *
//* Make sure to use the same ddname allocated with the *
//* CTLFILE keyword in the EDISYSIN input command language *
//* statements. In this sample CTLFILE(EXIMCTL) would be used. *
//* *
//* 3) Allocate the DD statements for the export/import files *
//* themselves. All the ddnames can point to a single file *
//* or they can each point to a separate file. This sample *
//* JCL shows the ddnames pointing to separate files. *
//* Allocation of the dataset(s) should have a record format *
//* of variable, a record length of 4089, and a block size of 4093.*
//* Use DISP=MOD to append to the existing file(s) *
//* DISP=OLD to replace the file(s) *
//**
//*

Section 15a Export/Import control statements: This section defines the control
statements describing what data should be exported or imported. This ddname
must match the value specified in the CTLFILE keyword on the PERFORM
command. The export and import control statements are described in “Export/Import
control file (CTLFILE)” on page 183.

WebSphere Data Interchange Utility (EDIUTIL) JCL

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 367

The record format should be fixed with a logical record length of 84.
//***
//* Step 1 - Allocate user supplied control file

//***
//*

//EXIMCTL DD DSN=EXPORT.IMPORT.CTLFILE,DISP=OLD

Section 15b Export/Import files: The remaining EDIEIxxx DD statements define
files to which data is exported, or from which data is imported. You can assign all
DD statements to a single physical file, or separate them as shown in this example.
These data sets contain variable length records with a logical record length of 4089.
//***
//* Step 2 - Allocate export/import files

//***
//*

//EDIEIADF DD DSN=EXPORT.IMPORT.ADF,DISP=MOD

//EDIEICST DD DSN=EXPORT.IMPORT.CST,DISP=MOD

//EDIEIPRF DD DSN=EXPORT.IMPORT.PRF,DISP=MOD

//EDIEISTD DD DSN=EXPORT.IMPORT.STD,DISP=MOD

//EDIEITBL DD DSN=EXPORT.IMPORT.TBL,DISP=MOD

//EDIEITPT DD DSN=EXPORT.IMPORT.TPT,DISP=MOD

//*

Section 16 Functional acknowledgment overrides
This section defines override data that the translator uses to generate functional
acknowledgments. FAENV is an optional file processed during deenvelope
functions. For detailed information about the format of this file, see “Enveloping
options file for functional acknowledgments (FAENV)” on page 178.

This data set can contain fixed or variable length records. The logical record length
must be as large as the largest record in the file.
//***
//* If deenveloping data: *
//* *
//* Specify the sequential file which contains overrides *
//* that you want used when functional acknowledgments are *
//* generated for the data that is being deenveloped. *
//* *
//* This file is optional and if not specified the envelope data *
//* for functional acknowledgments will be taken from the standard *
//* profile member specified for the transactions. *
//* *
//* Suggested: DCB=(RECFM=V,LRECL=255) *
//***
//*

//FAENV DD DSN=FA.OVERRIDES.FILE,DISP=SHR

//*

Section 17 Perform command file
This section defines the file from which the Utility PERFORM commands are read.
If EDISYSIN is not defined, the Utility checks SYSIN for the PERFORM commands.
For more information on these commands, see Chapter 2, “WebSphere Data
Interchange commands and keywords” on page 15.

This data set can contain fixed or variable length records with any logical record
length.

WebSphere Data Interchange Utility (EDIUTIL) JCL

368 WebSphere Data Interchange Programmer’s Reference

//***
//* VERY IMPORTANT: EDISYSIN DD ASSIGNMENT *
//* *
//* The EDISYSIN device contains all command language statements *
//* to be processed in this job step. In this sample JCL it *
//* has been allocated inline, but EDISYSIN can be allocated to any *
//* dataset containing command language input. If it is allocated *
//* to a dataset, any record length and format can be used. *
//* Make sure sequence numbers do not appear in cols 73-80; this will *
//* cause errors. *
//* *
//* Note: The WebSphere Data Interchange Utility will first look for PERFORM *
//* commands in EDISYSIN. If there is no EDISYSIN defined, *
//* the Utility will look in SYSIN. *
//***
//*

//EDISYSIN DD *

* An asterisk in column one denotes a comment line..

* --- *
* Here is a sample of command language input to translate and
* envelope transactions from application file APDATA01 and generate
* optional records.
* --- *
PERFORM TRANSLATE AND ENVELOPE

WHERE APPFILE(APDATA01) OPTRECS(IEGTQ)

* --- *
* Here is a sample of command language input to send queued
* transactions on behalf of requestor ID ROBOX
* --- *
PERFORM SEND WHERE REQID(ROBOX)

* --- *
* Here is a sample of command language input to receive transactions
* from requestor ID ROBOX
* --- *
PERFORM RECEIVE WHERE REQID(ROBOX)

* --- *
* Here is a sample of command language input to deenvelope and
* translate received transactions associated with requestor ID ROBOX
* --- *
PERFORM DEENVELOPE AND TRANSLATE

WHERE REQID(ROBOX)

/*

Section 18 Pageable translation work file
This section identifies the pageable translation work file, EDIVAX. EDIVAX should
be defined as a temporary data set. Space allocation is dependent on the amount
of data that is paged. Pageable translation is specified by using the PAGE keyword
available on all translate type commands, and on all envelope/deenvelope type
commands. For information regarding EDIVAX space allocation and pageable
translation in general, see the PAGE keyword description on 147.
//***
//* Specify the Pageable Translation work file. Uncomment the *
//* following DD statement if you use this feature. The space *
//* allocation is dependent on the amount of data to be paged. *
//***
//*

//*EDIVAX DD DISP=(NEW,DELETE,DELETE),UNIT=SYSDA,SPACE=(CYL,1500)

//*

WebSphere Data Interchange Utility (EDIUTIL) JCL

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 369

Section 19 DB2 parameters
This section is for DB2 only. It is typical in a DB2 environment that batch application
programs (such as the WebSphere Data Interchange Utility) run under the TSO
Terminal Monitor Program (TMP) in background mode. This is specified by naming
IKJEFT01 in the EXEC JCL statement as in the following example:
//XDIUTIL EXEC PGM=IKJEFT01,DYNAMNBR=50

The parameters passed to IKJEFT01 are specified in the SYSTSIN data set. These
parameters include the DB2 subsystem ID, the DB2 plan, the name of the
application program, and the application program parameter string. IKJEFT01
connects DB2 and opens the plan, runs the application program (EDIFFUT), and
then closes the plan and disconnects DB2. When EDIFFUT executes via IKJEFT01
the DB2 processing mode is called DSN. This processing mode assumes that data
set EDITSIN does not exist, and that the WebSphere Data Interchange Utility
parameters are specified in SYSTSIN. See “Section 2 WebSphere Data Interchange
Utility parameters” on page 359 for more information.
//***
//* Specify the parameters to DB2 to execute the utility *
//* *
//* *KEY* These are the statements which run the DB2 program. *
//* *
//* 1. If necessary, change "DSN" to your local DB2 subsystem ID. *
//* 2. If necessary, change the PLAN (EDIENU32) to match the *
//* the plan name you used when binding the plan during install. *
//* 3. If necessary, change the parm "LANGID=ENU" to match *
//* the national language you are using. *
//* 4. If necessary, change the parm "SYSID=DIENU" to match *
//* your WDI RACF installation. *
//* 5. If necessary, change the parm "APPLID=EDIFFS" to match *
//* the desired WDI application ID. *
//* 6. If necessary, change the parm "PLAN=EDIENU32" to match *
//* the plan name you used when binding the plan during install. *
//* 7. If necessary, change the parm "SYSTEM=DSN" to match *
//* your local DB2 subsystem ID. *
//***
//*

//SYSTSIN DD *

DSN SYSTEM (DSN)

RUN PROG (EDIFFUT) -

PLAN (EDIENU32) -

PARM('LANGID=ENU SYSID=DIENU APPLID=EDIFFS
PLAN=EDIENU32 SYSTEM=DSN')

END

/*

Section 20 XML parameters
This section is for XML processing. The EDI.XML parameters (in the last line of
code) should be edited as appropriate for your installation of XML Toolkit Version 1
Release 2, replacing SYS1 with the high level qualifier for your system.
//STEPLIB DD DSN=EDI.V3R2M0.SEDILMDI,DISP=SHR

DD DSN=EDI.V3R2M0.SEDILXML1,DISP=SHR

DD DSN=DB93.DSNEXIT,DISP=SHR

DD DSN=DB93.DSNLOAD,DISP=SHR

DD DSN=EDI.SNA131.LOADLIB,DISP=SHR

DD DSN=SYS.XML.SIXMMOD1,DISP=SHR

WebSphere Data Interchange Utility (EDIUTIL) JCL

370 WebSphere Data Interchange Programmer’s Reference

Required utility data sets
Table 113 lists outlines the sections of JCL required for the different WebSphere
Data Interchange commands. The numbers in the table refer to the section
headings described earlier in this chapter. An asterisk (*) after the number indicates
that the DD statement is optional.

Note: Sections 1 through 6 are required for all commands.

Table 113. Required utility data sets

Command JCL sections

DEENVELOPE 6 11 16 17

DEENVELOPE AND TRANSLATE 6 7* 11 12 16* 17

ENVELOPE 6 7* 8 9 17

ENVELOPE AND SEND 6 7* 8 9 10 17

ENVELOPE DATA EXTRACT 14 17

EXPORT 15 17

HOLD 17

IMPORT 15 17

NETWORK ACTIVITY DATA
EXTRACT

14 17

PRINT 13 17

PURGE 17

QUERY 14 17

RECEIVE 10 11 17

RECEIVE AND DEENVELOPE 6 10 11 16* 17

RECEIVE AND SEND 6 7* 9 11 16* 17

RECEIVE AND TRANSLATE 6 10 11 12 16* 17

RECVFILE AND SEND 6 7* 8 9 10 11 17

REENVELOPE 6 7* 8 9 17

RELEASE 17

REMOVE TRANSACTIONS 17

RETRANSLATE TO
APPLICATION

6 12 17

SEND 9 10 17

TRADING PARTNER
CAPABILITY DATA EXTRACT

14 17

TRADING PARTNER PROFILE
DATA EXTRACT

14 17

TRANSACTION ACTIVITY DATA
EXTRACT

14 17

TRANSACTION DATA EXTRACT 14 17

TRANSFORM 5 6 17 20

TRANSLATE TO APPLICATION 6 12 17

TRANSLATE AND ENVELOPE 5 6 7* 8 9 17

TRANSLATE TO STANDARD 5 6 7* 8 17

Required utility data sets

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 371

Table 113. Required utility data sets (continued)

Command JCL sections

TRANSLATE AND SEND 5 6 7* 8 9 10 17

UNPURGE 17

UPDATE STATUS 10 17

Archive DB2 event log entries (EDIELARD)
This section shows the DB2 event log archive/removal JCL from the JCL distribution
library (EDI.V3R2M0.SEDIINS1). For additional information, see “Reporting and
extracting data” on page 5.
//EDIELARD JOB (INSTALLATION DEPENDENCIES)

//*

//***
//* THIS SAMPLE JCL WILL ARCHIVE AND PURGE LOG ENTRIES FROM A DB2 *
//* EVENT LOG. THIS JCL MUST BE MODIFIED FOR YOUR LOCAL ENVIRONMENT. *
//***
//* 1. CHANGE JOB CARD STATEMENT TO LOCAL REQUIREMENTS *
//* 2. CHANGE ARCHIVE FILE (ARCFILE) AND THE HOLD FILE (HLDFILE) DD *
//* STATEMENTS AS NECESSARY. *
//* 3. IF NECESSARY, CHANGE THE PARM "DIENU" IN THE STEP "ARCHIVE" *
//* FOR YOUR WDI RACF INSTALLATION. *
//* 4. IF NECESSARY, CHANGE DB2 "SYSTEM", "PLAN", AND "LIB" *
//* PARAMETER VALUE IN SYSTSIN DATA STREAMS. *
//***
//*

//***
//* THE ENTRIES SELECTED FOR REMOVAL WILL BE COPIED TO THE ARCHFILE, *
//* AND ALL OTHER ENTRIES WILL BE COPIED TO THE HOLDFILE. *
//***
//CREATE EXEC PGM=IEFBR14

//ARCFILE DD DSN=EDIENU.V3R2M0.ARCFILE,DISP=(NEW,CATLG),

// DCB=(RECFM=V,LRECL=4096,BLKSIZE=0),

// UNIT=SYSALLDA,SPACE=(CYL,(10,5))

//HLDFILE DD DSN=EDIENU.V3R2M0.HLDFILE,DISP=(NEW,CATLG),

// DCB=(RECFM=V,LRECL=4096,BLKSIZE=0),

// UNIT=SYSALLDA,SPACE=(CYL,(10,5))

//*

//ARCHIVE EXEC PGM=IKJEFT01,DYNAMNBR=50

//*

//STEPLIB DD DSN=DB2.SDSNLOAD,DISP=SHR <--DB2
LOAD LIBRARY

// DD DSN=EDI.V3R2M0.SEDILMD1,DISP=SHR <--EDI
LOAD LIBRARY

//*

//***
//* SPECIFY EDI REQUIRED FILES *
//* THE PHYSICAL FILE NAMES ARE INSTALLATION DEPENDENT. *
//* LOGFFS IS THE FLAT FILE SUPPORT PRIVATE LOG FILE *
//***
//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//PRTFILE DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=132)

//ARCFILE DD DSN=EDIENU.V3R2M0.ARCFILE,DISP=SHR

Required utility data sets

372 WebSphere Data Interchange Programmer’s Reference

//HLDFILE DD DSN=EDIENU.V3R2M0.HLDFILE,DISP=SHR

//*

//SYSIN DD *

PERFORM UNLOAD LOG ENTRIES WHERE APPLID(EDIFFS)

LOGDATE(10/01/01) TO(12/31/01)

ARCHIVEFILE(ARCFILE) HOLDFILE(HLDFILE)

/*

//SYSTSIN DD *

DSN SYSTEM (DSN)

RUN PROG (EDIFFUT) -

PLAN (EDIENU32) -

PARM(’LANGID=ENU SYSID=DIENU APPLID=EDIFFS
PLAN=EDIENU32 SYSTEM=DSN’)

END

/*

//***
//* REORG THE DB2 TABLE EDIELOG (EVENT LOG) *
//***
//REORG EXEC PGM=DSNUTILB,PARM=’DSN,DSNTEX’,COND=(4,LT,ARCHIVE)

//STEPLIB DD DSN=DB2.SDSNLOAD,DISP=SHR <--DB2 LOAD LIBRARY

//SYSPRINT DD SYSOUT=*

//UTPRINT DD SYSOUT=*

//SORTOUT DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND)

//SORTWK01 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND)

//UNLD DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND)

//WORK DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND)

//SYSUT1 DD UNIT=SYSALLDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

REORG TABLESPCE (EDIENU32.EDIELOG)

UNLDDN (UNLD)

WORKDDN (UNLD)

REORG INDEX (EDIENU32.EDIELOGX)

/*

Application Program Interfaces (API’s)
You can request WebSphere Data Interchange services directly from an application
program. There are application program interfaces (APIs) defined for the following
services:

v “Environmental services” on page 386

v “Translation services” on page 390

v “Enveloping services” on page 442

v “Data extraction services” on page 474

v “Communication services” on page 479

v “Update status services” on page 498

v “SYNCPOINT services” on page 505

The API for each of these services is described in detail later in this chapter. The
information common to all the APIs is described in “API languages” on page 375.

Archive DB2 event log entries

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 373

The following control blocks are common to all service requests:

v Common control block (CCB)

WebSphere Data Interchange uses the CCB to maintain status across all
services requested by the application and to let your application know if a service
request was successful. The return code and extended return code fields in the
CCB indicate the degree of success. The CCB is initialized by environmental
services. After initialization, the CCB must not be altered by the application
program. You must use the same CCB on all service requests. For a complete
description of the CCB, see “Common Control Block (CCB)” on page 557.

v Service name block (SNB)

The service being requested. Where each API is described in this chapter, the
logical name associated with the API is provided. You must place this logical
name in the SNB before issuing a service request. The SNB is also used to
indicate the number of parameters provided to the service. Applications using the
API must define an SNB for each service requested. For a complete description
of the SNB, see “Service Name Block (SNB)” on page 554.

v Function control block (FCB)

The particular service function being requested. Where each API is described in
this chapter, the function value associated with the block is provided. You must
place this function value in the FCB when requesting a service. For a complete
description of the FCB, see “Function control block (FCB)” on page 560.

Archive DB2 event log entries

374 WebSphere Data Interchange Programmer’s Reference

API languages
You can access WebSphere Data Interchange services with a simple call statement
to a WebSphere Data Interchange-provided stub program. WebSphere Data
Interchange provides four stub programs, one for each application programming
language directly supported by WebSphere Data Interchange. These stub programs
and associated languages are:
v FXXZCBL for COBOL programs
v FXXZPLI for PL/I programs
v FXXZC for IBM C/370 programs (z/OS only)
v FXXZASM for Assembler programs

Although WebSphere Data Interchange directly supports only these languages, any
language that can create an operating-system-style parameter list, and that uses
operating system linkage and register conventions, can request WebSphere Data
Interchange services by using the FXXZASM stub program.

API link edit
The load library distributed with WebSphere Data Interchange contains a load
module for each stub program. These stub programs are linked with the application
program requesting the services. WebSphere Data Interchange is not physically
part of the application load module. You must use the stub programs to access
WebSphere Data Interchange.

When linking an application program, the WebSphere Data Interchange distribution
load library must be part of the //SYSLIB concatenation so the linkage editor can
resolve references to the stub programs. You can also use a separate DD
statement for the WebSphere Data Interchange load library, and a specific
INCLUDE statement in the linkage editor control cards to pull in the language stub
that is needed.

There are no special residency or addressing requirements for an application
program requesting WebSphere Data Interchange services. The application
program can be above or below the 16 MB line, and all parameters passed to
WebSphere Data Interchange through the stub program can also be above or
below the 16 MB line. The relationship between the application load module, the
stub programs, and WebSphere Data Interchange is illustrated in Figure 22 on
page 376.

API languages

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 375

FXXZCBL

Application Logic

WebSphere
Data Interchange

TRANSSRV COMMTRANPROC

Application load module

SNB, CCB, FCB, ...

SNB, CCB, FCB, ...

FXXZCSD

Control

FXXZZIN

Service
table

WebSphere Data Interchange
stub

Figure 22. Load Module Relationships

API languages

376 WebSphere Data Interchange Programmer’s Reference

WebSphere Data Interchange and DB2 attachment
For the most part, the DB2 processing mode that WebSphere Data Interchange
uses is determined by the existence of a file named EDITSIN. If EDITSIN exists,
the DB2 processing mode is CAF.

v If EDITSIN does not exist, the DB2 processing mode is DSN, and WebSphere
Data Interchange does not attempt to attach or detach DB2 (an attachment is
assumed to have taken place prior to WebSphere Data Interchange initialization).

v If EDITSIN exists, OPEN is not N, CAF is not Y, and WebSphere Data Interchange
detects that DB2 is already attached while trying to make the DB2 attachment,
the DB2 processing mode becomes DSN. This exception is true of the
WebSphere Data Interchange facility CLIST.

v If OPEN is not N and values are supplied for SYSTEM and PLAN, WebSphere Data
Interchange attempts to attach DB2.

v If WebSphere Data Interchange finds that DB2 is already attached and CAF is not
Y, the DB2 processing mode becomes DSN.

v If CLOSE is not N and if values are supplied for SYSTEM and PLAN, WebSphere Data
Interchange termination will detach DB2.

The keywords used in EDITSIN are:

SYSTEM
The name of the DB2 subsystem (or group, if data sharing). This value can
be up to four characters long and is required if EDITSIN exists.

PLAN The DB2 plan name. This value can be up to eight characters long and is
required if EDITSIN exists.

OPEN Indicates whether WebSphere Data Interchange must attempt to attach to
DB2 during initialization. The default is Y.

CLOSE
Indicates whether WebSphere Data Interchange must detach from DB2
during WebSphere Data Interchange termination. The default is Y.

CAF If WebSphere Data Interchange initialization detects while trying to make a
DB2 attachment that DB2 is already attached, the WebSphere Data
Interchange DB2 processing mode becomes DSN. A value of Y for this
keyword acts as an override and tells WebSphere Data Interchange to keep
the DB2 processing mode CAF. The default is N.

EDITSIN examples

Example 1:
Your DB2 subsystem is named DB93, your DB2 plan is named EDIENU32, and you
want WebSphere Data Interchange to handle the DB2 attachment and detachment.
Include the following keywords and values in EDITSIN. The OPEN and CLOSE
keywords are not needed because the default action is for WebSphere Data
Interchange to handle DB2 attachment.
SYSTEM(DB93) PLAN(EDIENU32)

Example 2:
Your DB2 subsystem is named DB93, your DB2 plan is named EDIENU32, and you
do not want WebSphere Data Interchange to attach or detach DB2. Include the
following keywords and values in EDITSIN.
SYSTEM(DB93) PLAN(EDIENU32) OPEN(N) CLOSE(N)

DB2 attachment

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 377

Example 3:
Your DB2 subsystem is named DB93, your DB2 plan is named EDIENU32, DB2
might be attached, but, regardless, you do not want WebSphere Data Interchange
to detach from DB2 on termination, and you want WebSphere Data Interchange to
process in CAF mode regardless of whether DB2 was previously attached or not.
Include the following keywords and values in EDITSIN.
SYSTEM(DB93) PLAN(EDIENU32) CLOSE(N) CAF(Y)

WebSphere Data Interchange abend return codes
When a CICS abend is detected, WebSphere Data Interchange returns -8 in the
ZCCBRC field and the EBCDIC representation of the CICS abend code in the ZCCBERC
field. This return code combination is global and is not mentioned in upcoming
tables.

COBOL calls
When using COBOL, you invoke WebSphere Data Interchange as a normal call to
an external function. The call is made to FXXZCBL and is coded as follows:
CALL FXXZCBL USING SNB CCB FCB [other parms]

WebSphere Data Interchange assumes that all parameters are pointers to control
blocks. COBOL passes control block pointers as part of normal processing.

Code fragments for initializing WebSphere Data Interchange with COBOL might
look like the following samples.

SNB-COBOL
01 SNB-DATA.
03 ZSNBLL PIC S9(4) COMP-4.
03 ZSNBID PIC S9(4) COMP-4.
03 ZSNBEYE PIC X(8).
03 ZSNBNAME PIC X(8).
03 ZSNBNDX PIC S9(9) COMP-4.
03 ZSNBPC PIC S9(4) COMP-4.
03 ZSNBFLG0 PIC X(1).
03 ZSNBFLG1 PIC X(1).

03 ZSNBFANC PIC S9(9) COMP-4.

CCB-COBOL
01 CCB-DATA.
03 ZCCBLL PIC S9(4) COMP-4.
03 ZCCBID PIC S9(4) COMP-4.
03 ZCCBEYE PIC X(8).
03 ZCCBRC PIC S9(9) COMP-4.
03 ZCCBERC PIC S9(9) COMP-4.
03 ZCCBSID PIC X(8).
03 ZCCBUID PIC X(8).
03 ZCCBAID PIC X(8).
03 ZCCBCID PIC X(8).
03 ZCCBXFID PIC S9(4) COMP-4.
03 ZCCBLPID PIC X(6).
03 ZCCBCPID PIC S9(9) COMP-4.
03 ZCCBRSV PIC S9(9) COMP-4.
03 ZCCBCCXP PIC S9(9) COMP-4.
03 ZCCBCABP PIC S9(9) COMP-4.
03 ZCCBDBID PIC X(4).
03 ZCCBDBPL PIC X(8).
03 ZCCBDBUI PIC X(8).
03 ZCCBDBPW PIC X(18).
03 ZCCBDSV1 PIC X(26).
03 ZCCBRSV2 PIC S9(9) COMP-4 OCCURS 117 TIMES.

DB2 attachment

378 WebSphere Data Interchange Programmer’s Reference

FCB-COBOL
01 FCB-DATA.
03 ZFCBLL PIC S9(4) COMP-4.
03 ZFCBFUNC PIC S9(4) COMP-4.

INIT-COBOL
01 APPLID PIC X(08).
01 SYSID PIC X(08).
MOVE LOW-VALUES TO SNB-DATA CCB-DATA FCB-DATA.
MOVE 'ENVSERV ' TO ZSNBNAME.
MOVE 5 TO ZSNBPC.
MOVE 'ENU ' TO ZCCBLPID.
MOVE 1 TO ZFCBFUNC.
MOVE 'MYAPPL ' TO APPLID.
MOVE 'SYSTEM ' TO SYSID.
CALL FXXZCBL USING SNB-DATA CCB-DATA FCB-DATA APPLID SYSID.
IF ZCCBRC EQUAL ZERO
* initialization worked
ELSE
* initialization failed
END-IF.

PL/I calls
When using PL/I, you invoke WebSphere Data Interchange as a normal call to an
external function. The call is made to FXXZPLI and is coded as follows:
CALL FXXZPLI(SNB,CCB,FCB,other parms)

WebSphere Data Interchange assumes that all parameters are pointers to control
blocks. PL/I programs would not normally pass on control block pointers to an
external routine. PL/I, unless told otherwise, assumes that the call is being made to
another program written in PL/I and passes special PL/I parameter information
along with the parameters. Because WebSphere Data Interchange does not
understand this information, you must notify the compiler that FXXZPLI is an
assembler program with the following statement:
DCL FXXZPLI EXTERNAL ENTRY OPTIONS (ASSEMBLER,INTER)

Code fragments for initializing WebSphere Data Interchange with PL/I might look
like the following samples.

SNB-PL/I
DCL 1 SNB,
3 ZSNBLL FIXED BIN(15), /* SNB block length */
3 ZSNBID FIXED BIN(15), /* Reserved for future use */
3 ZSNBEYE CHAR(8), /* SNB block name */
3 ZSNBNAME CHAR(8), /* Service name */
3 ZSNBNDX FIXED BIN(31), /* Service index */
3 ZSNBPC FIXED BIN(15), /* Service parameter count */
3 ZSNBFLG0 CHAR(1), /* First flag byte */
3 ZSNBFLG1 CHAR(1), /* Second flag byte */
3 ZSNBFANC POINTER; /* First anchor pointer */

CCB-PL/I
DCL 1 CCB,
3 ZCCBLL FIXED BIN(15), /* CCB block length */
3 ZCCBID FIXED BIN(15), /* Reserved for future use */
3 ZCCBEYE CHAR(8), /* CCB block name */
3 ZCCBRC FIXED BIN(31), /* Return code */
3 ZCCBERC FIXED BIN(31), /* Extended return code */
3 ZCCBSID CHAR(8), /* System ID */
3 ZCCBUID CHAR(8), /* User ID */
3 ZCCBAID CHAR(8), /* Application ID */

DB2 attachment

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 379

3 ZCCBCID CHAR(8), /* Error module ID */
3 ZCCBXFID FIXED BIN(15), /* Component function ID */
3 ZCCBLPID CHAR(6), /* Language profile ID */
3 ZCCBCPID FIXED BIN(31), /* Code page ID */
3 ZCCBRSV FIXED BIN(31), /* Reserved for future use */
3 ZCCBCCXP POINTER, /* CCB extension pointer */
3 ZCCBCABP POINTER, /* Common area block pointer*/
3 ZCCBDBID CHAR(4), /* DB2 subsystem ID */
3 ZCCBDBPL CHAR(8), /* DB2 plan / AIX alias */
3 ZCCBDBUI CHAR(8), /* AIX DB2 user ID */
3 ZCCBDBPW CHAR(18), /* AIX DB2 password */
3 ZCCBRSV1 CHAR(26), /* DI internal use only */
3 ZCCBRSV2(117) FIXED BIN(31); /* DI internal use only */

FCB-PL/I
DCL 1 FCB,
3 ZFCBLL FIXED BIN(15), /* FCB block length */
3 ZFCBFUNC FIXED BIN(15); /* Service function code */

INIT-PL/I
DCL APPLID CHAR(8) INIT('MYAPPL ');
DCL SYSID CHAR(8) INIT('SYSTEM ');

SNB = ";CCB = "; FCB = ";
SNB.ZSNBNAME = 'ENVSERV ';
SNB.ZSNBPC = 5;
CCB.ZCCBLPID = 'ENU ';
FCB.ZFCBFUNC = 1;
CALL FXXZPLI(SNB,CCB,FCB,APPLID,SYSID);
IF CCB.ZCCBRC = 0 THEN DO;
/* initialization worked */
END;
ELSE DO;
/* initialization failed */
END;

C calls
The FXXZC stub program is intended for use with the IBM C/370 compiler and is
only supported in the z/OS environment. Other environments are not supported.
When using C, you invoke WebSphere Data Interchange as a normal function call.
The call is made to FXXZC and is coded as follows.
FXXZC(&MYSNB,&MYCCB,&MYFCB,other parms)

WebSphere Data Interchange assumes that all parameters are pointers to control
blocks. The C call uses the control block address instead of a control block
reference (&MYCCB instead of MYCCB).

Code fragments for initializing WebSphere Data Interchange using C might look like
the following samples.

SNB-C
typedef struct SNB snb; /* Provide "snb" data type */
struct SNB {
short zsnbll; /* SNB block length */
short zsnbid; /* Reserved for future use */
char zsnbeye[8]; /* SNB block name */
char zsnbname[8]; /* Service name */
long zsnbndx; /* Service index */
short zsnbpc; /* Service parameter count */

DB2 attachment

380 WebSphere Data Interchange Programmer’s Reference

char zsnbflg0; /* First flag byte */
char zsnbflg1; /* Second flag byte */
void *zsnbfanc; /* First anchor pointer */
};

CCB-C
typedef struct CCB ccb; /* Provide "ccb" data type */
struct CCB {

short zccbll; /* CCB block length */
short zccbid; /* Reserved for future use */
char zccbeye[8]; /* CCB block name */
long zccbrc; /* Return code */
long zccberc; /* Extended return code */
char zccbsid[8]; /* System ID */
char zccbuid[8]; /* User ID */
char zccbaid[8]; /* Application ID */
char zccbcid[8]; /* Error module ID */
short zccbxfid; /* Component function ID */
char zccblpid[6]; /* Language profile ID */
long zccbcpid; /* Code page ID */
long zccbrsv; /* Reserved for future use */
void *zccbccxp; /* CCB extension pointer */
void *zccbcabp; /* Common area block pointer*/
char zccbdbid[4]; /* DB2 subsystem ID */
char zccbdbpl[8]; /* DB2 plan /AIX alias */
char zccbdbui[8]; /* AIX DB2 user ID */
char zccbdbpw[18]; /* AIX DB2 password */
char zccbrsv1[26]; /* DI internal use only */
long zccbrsv2[117]; /* DI internal use only */
};

FCB-C
typedef struct FCB fcb; /* Provide "fcb" data type */
struct FCB {
short zfcbll; /* FCB block length */
short zfcbfunc; /* Service function code */
};

INIT-C
snb mysnb;
ccb myccb;
fcb myfcb;
memset(&mysnb,'0',sizeof(mysnb));
memset(&myccb,'0',sizeof(myccb));
memset(&myfcb,'0',sizeof(myfcb));
memcpy(mysnb.zsnbname,"ENVSERV",8); /* service
wanted */
mysnb.zsnbpc = 5; /* parms on fxxzc call */
memcpy(myccb.zccblpid,"ENU ",6); /* language
to be used */
myfcb.zfcbfunc = 1; /* INITIALIZE function */
fxxzc(&mysnb,&myccb,&myfcb,"MYAPPL
","SYSTEM ");
if (!myccb.zccbrc) {
/* initialization worked */
} else {
/* initialization failed */
}

DB2 attachment

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 381

Assembler calls
When using Assembler, you invoke WebSphere Data Interchange as a normal call
to an external function. The call is made to FXXZASM using standard operating
system parameter lists, register conventions, and linkage conventions. The register
conventions are:

Note on formatting:

Check termwidth
R0 Not defined
R1 Address of a parameter list
R2 to R12 Not defined
R13 Address of a 72–byte area used by the called program to save the

registers of the calling program
R14 Return address to the program making the call
R15 Entry point for the routine being called

The parameter list pointed to by Register 1 consists of a series of pointers to the
parameters and is coded as follows:
R1------------> +0: Address of the SNB
+4: Address of the CCB
+8: Address of the FCB
+C: Address of service parm 1
+10: Address of service parm 2
and so on for as many parameters as the service requires

Code fragments for initializing WebSphere Data Interchange using Assembler might
look like the following samples.

SNB-Assembler
SNB DSECT ,
DS 0D
ZSNBLL DS H SNB block length
ZSNBID DS H Reserved for future use
ZSNBEYE DS CL8 SNB block name
ZSNBNAME DS CL8 Service name
ZSNBNDX DS F Service index
ZSNBPC DS H Service parameter count
ZSNBFLG0 DS CL1 First flag byte
ZSNBFLG1 DS CL1 Second flag byte
ZSNBFANC DS F First anchor pointer
ZSNBLEN EQU *-ZSNBLL Length of SNB

CCB-Assembler
CCB DSECT ,
DS 0D
ZCCBLL DS H CCB block length
ZCCBID DS H Reserved for future use
ZCCBEYE DS CL8 CCB block name
ZCCBRC DS F Return code
ZCCBERC DS F Extended return code
ZCCBSID DS CL8 System ID
ZCCBUID DS CL8 User ID
ZCCBAID DS CL8 Application ID
ZCCBCID DS CL8 Error module ID
ZCCBXFID DS H Component function ID
ZCCBLPID DS CL6 Language profile ID
ZCCBCPID DS F Code page ID
ZCCBRSV DS F Reserved for future use
ZCCBCCXP DS F CCB extension pointer
ZCCBCABP DS F Common area block pointer

DB2 attachment

382 WebSphere Data Interchange Programmer’s Reference

ZCCBDBID DS CL4 DB2 subsystem ID
ZCCBDBPL DS CL8 DB2 plan / AIX alias
ZCCBDBUI DS CL8 AIX DB2 user ID
ZCCBDBPW DS CL18 AIX DB2 password
ZCCBRSV1 DS CL26 DI internal use only
ZCCBRSV2 DS 117F DI internal use only
ZCCBLEN EQU *-ZCCBLL Length of CCB

FCB-Assembler
FCB DSECT ,
DS 0D
ZFCBLL DS H FCB block length
ZFCBFUNC DS H Service function code
ZFCBLEN EQU *-ZFCBLL Length of FCB

USER-DSECT for initialization sample
USERDS DSECT ,
SAVAREA DS 18F
SNBADDR DS A
CCBADDR DS A
FCBADDR DS A
APPADDR DS A
SYSADDR DS A
SNBAREA DS CL(SNBLEN)
CCBAREA DS CL(CCBLEN)
FCBAREA DS CL(FCBLEN)

INIT-Assembler

* It is assumed storage for the USERDS DSECT *
* has been allocated (initialized with binary zeros) *
* and is addressable. *

APPLID DC CL8'MYAPPL '
SYSID DC CL8'SYSTEM 'LA 13,SAVAREA
LA 6,SNBAREA
LA 7,CCBAREA
LA 8,FCBAREA
USING SNB,6
USING CCB,7
USING FCB,8
MVC ZSNBNAME(8),=CL8'ENVSERV '
MVC ZSNBPC(2),=X'0005'
MVC ZCCBLPID(6),=CL6'ENU '
MVC ZFCBFUNC(2),=X'0001'
ST 6,SNBADDR
ST 7,CCBADDR
ST 8,FCBADDR
LA 9,APPLID
ST 9,APPADDR
LA 9,SYSID
ST 9,SYSADDR
LA 1,SNBADDR
L 15,=V(FXXZASM)
BALR 14,15
ICM 9,15,ZCCBRC
BNZ INITERR

**
* WebSphere Data Interchange initialization successful *
**

INITERR EQU *

DB2 attachment

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 383

**
* WebSphere Data Interchange initialization unsuccessful *
**

API business tasks
No one API service performs an entire business function. To accomplish a business
task, you must call a combination of services in a specific order. For example, if you
want to write a program that reads an application file, translates the file into an EDI
standard format, and sends the data to all trading partners, the following sequence
of API service calls is required:

1. Call the environmental service to initialize WebSphere Data Interchange. For
detailed information, see “Initializing the environmental API” on page 386.

2. Make repeated calls to the translation service to translate and envelope data at
the same time. For detailed information, see “Translate-to-standard API” on
page 393.

3. Call the translation service to signal the end of translation. For detailed
information, see “End translation/enveloping API” on page 458.

4. Call the communication service to send the transactions. For detailed
information, see “Send transactions and restart send transactions API” on
page 483.

5. Call the environmental service to terminate WebSphere Data Interchange. For
detailed information, see “Terminating the API” on page 388.

You can accomplish all of these calls using the TRANSLATE AND SEND command.
The WebSphere Data Interchange utility issues the same API requests that you
would issue in an application program.

You must base the decision on whether to use the API or a WebSphere Data
Interchange Utility request (PERFORM command) on the control and availability of
data rather than availability of WebSphere Data Interchange Utility functions. The
WebSphere Data Interchange Utility provides most of the functions available in the
API. However, the WebSphere Data Interchange Utility requires that the data be in
specific formats (such as C and D records or raw data) and accessed using
specific access methods (such as QSAM in z/OS). This method only provides
overall result status (JCL condition codes). The following are a few reasons you
might consider writing an API program:

v You have more direct control when you write your own API program. At each
step, the system provides detailed information about the status of each API
request. The WebSphere Data Interchange Utility provides a condition code
indicating the most severe error and an audit trail of all errors that occurred. If
you want to automatically process these errors, you could write a program to
parse the AUDIT file, but it could become very complex. Instead, you must
consider writing a program to request API services directly.

v You might want to synchronize the updating of your data with the results of
WebSphere Data Interchange processing. For example, if you are translating,
you might want to update your application record to indicate whether the
translation was successful, and synchronize changes to your data with the
WebSphere Data Interchange databases to verify that the business transaction
has been processed.

DB2 attachment

384 WebSphere Data Interchange Programmer’s Reference

Note: In CICS, you can synchronize application data with WebSphere Data
Interchange data without writing an API program. For more information,
see Chapter 5, “Using WebSphere Data Interchange in the CICS
environment” on page 305.

v The application data might not meet the RAWDATA requirements of WebSphere
Data Interchange or might be formatted in C and D records. As a result, your
data cannot be processed by WebSphere Data Interchange. When you
understand the data, you can instruct WebSphere Data Interchange how to
perform translation.

v Your application data might not meet the access type requirements of
WebSphere Data Interchange (QSAM in z/OS, TS queue or TD queue in CICS).
For example, if the application data is stored in DB2 tables, the data must be
moved into one of the storage mechanisms mentioned above before the
WebSphere Data Interchange utilities can be used.

v The sequence of transactions in interchanges and groups that is created by the
WebSphere Data Interchange Utility might not meet your requirements.

The API functions described in the following sections include the equivalent
PERFORM commands. After reading the command descriptions, determine whether
you need an API program or can use the WebSphere Data Interchange Utility. For
more information, see Chapter 1, “Using The Utility” on page 1.

You might need a combination of application-written API programs and WebSphere
Data Interchange Utility services. For example, you might want to control data

Environmental services
Environmental services both establishes and removes the WebSphere Data
Interchange environment.

First, your application program must request initialization. When initialization is
complete, you can request other services. If you request another service before
requesting an initialization, either a return code of -1 is posted in the CCB, or the
program ABENDs.

Finally, your application program must request termination. The services requested
between initialization and termination (such as translation or communication
services) internally acquire storage, open files, and obtain control over resources.
Requesting termination is necessary so WebSphere Data Interchange can release
all resources that it has obtained.

Table 114 lists the functions provided by the environmental service.

Table 114. Environmental services functions

Function Code Sample Call Statement for Function

Initialize WebSphere Data
Interchange

1 FXXZccc(SNB,CCB,FCB,'applid','sysid')

Terminate WebSphere Data
Interchange

2 FXXZccc(SNB,CCB,FCB)

Initializing the environmental API
You must request the initialization function to enable your program to use the
WebSphere Data Interchange environment. During request processing, WebSphere
Data Interchange confirms that:

v All necessary resources for a WebSphere Data Interchange environment are
available, and

v You are authorized to access the system (identified by the SYSID parameter)

WebSphere Data Interchange also verifies that the language profile ID (saved in
the ZCCBLPID field of the CCB before the call) identifies a member defined in the
language profile (LANGPROF).

The APPLID parameter must identify a member in the application definition profile
(APPDEFS) or in the activity log profile (ACTLOGS). If an APPDEFS member does
not exist, the following assumptions are made:

v The APPLID parameter identifies an ACTLOGS member. If it does not, and
logging is necessary for other service requests, errors occur.

v The management reporting functions must be enabled for the current WebSphere
Data Interchange session.

The syntax for the Initialization API request is.
FXXZccc(SNB,CCB,FCB,applid,sysid)

The same CCB used to initialize the WebSphere Data Interchange session is used
for every call issued during the session. The unique parameters for this function
request are defined in Table 115 on page 387.

Environmental services

386 WebSphere Data Interchange Programmer’s Reference

Table 115. Parameters for the initialization of Environmental services

Parameter Description

SNB
ZSNBNAME

ENVSERV

ZSNBPC
5 if the system ID is specified
4 if the system ID is not specified (CICS).

CCB
ZCCBLPID

The language profile member to be used for this
WebSphere Data Interchange session.

FCB
ZFCBFUNC

1

APPLID The application ID. Must match either a member in the
application definition profile or in the activity log profile. 8 bytes,
left-justified, and padded with blanks.

SYSID The system ID. Must match a resource name the security
administrator assigned to WebSphere Data Interchange.
8 bytes, left-justified, and padded with blanks. The parameter is
optional. The default is DIENU. If you do not specify this field,
the ZSNBPC field must contain 4. Does not apply to the CICS
environment.

The results of the initialization request are posted in the return code (RC) and
extended return code (ERC) fields of the CCB. Valid values are defined in
Table 116.

Table 116. Environmental services initialization return codes

RC Explanation

0 Initialization was successful.

4 Initialization failed. Extended return codes are:

4 No service table defined (failure to locate FXXZIN load module).

8 Insufficient virtual storage to load programs and tables.

12 Failure initializing the EDIT service. This might be caused by an
incorrect ZCCBLPID value (one that cannot be matched with a
LANGPROF member). In DB2 installations, this error can occur
because of the inability to access the profile or translation/validation
tables (in many cases, this could be a DB2 timestamp error,
meaning that the timestamp in load module EDIPSMD is different
from its corresponding DBRM timestamp). If a DB2 timestamp error
is suspected (SQL code -818), you must rebind the DB2 plan.
Besides EDIPSMD, there are two other WebSphere Data
Interchange DB2 load modules: EDIRPML and (for CICS users)
EDICRIN, which could generate DB2 timestamp problems if out
of sync.

16 A WebSphere Data Interchange session for the same user is
already active.

1024 Access to the system is denied.

Environmental services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 387

Utility service API
The utility service API is used when implementing HOT-DI.

The syntax for the utility function request call is:
FXXZccc(SNB,CCB,FCB,UTILCB)

The unique parameters for this function request are defined in Table 117.

Table 117. Environmental services utility service parameters

Parameter Description

SNB ZSNBNAME
UTILSRV

ZSNBPC
4

CCB The common control block that was used to initialize WebSphere
Data Interchange.

FCB ZFCBFUNC
1 Normal execution
2 HOT WebSphere Data Interchange mode

UTILCB The utility service control block.

Terminating the API
You must request the termination function for WebSphere Data Interchange to
perform housekeeping activities for cleanup of all system resources acquired when
processing the API service requests. The cleanup includes releasing virtual storage,
closing files, and releasing locks on resources.

If an error occurs during termination, WebSphere Data Interchange returns a value
other than zero in the return code field (ZCCBRC). If this occurs, your application
program must request the termination function again and continue to request it until
the function completes successfully. A termination failure indicates that a file could
not be closed, or that storage could not be released. When this happens, the
WebSphere Data Interchange component for which the error occurred attempts to
log the error.

After the error occurs, WebSphere Data Interchange returns control to your program
so that your program can request termination again to complete the task.
WebSphere Data Interchange does not attempt to call the program where the error
occurred again, but continues to call other programs that are used during cleanup.

The syntax for the termination function request is:
FXXZccc(SNB,CCB,FCB)

Environmental services

388 WebSphere Data Interchange Programmer’s Reference

The unique parameters required for this function request are defined in Table 118

Table 118. Environmental services termination parameters

Parameter Description

SNB ZSNBNAME
ENVSERV

ZSNBPC
3

FCB ZFCBFUNC
2

The results of the termination request are posted in the return code and extended
return code fields of the CCB. Valid values are defined in Table 119.

Table 119. Environmental services termination return codes

RC Explanation

0 Termination was successful.

>0 Termination failed; try again.

<0 An invalid CCB address, or an incorrect name in the ZSNBNAME field.

Environmental services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 389

Translation services
Translation services, enveloping services, and data extraction services are closely
related. They share an API implemented by the same logical service (TRANPROC).
These services also share the Transaction Store.

Exchanging information with a trading partner is a sequence of interruptible events
whose status must be maintained and tracked. The processes used to exchange
data fall into two categories:
v A batch-oriented process (z/OS)
v A time-critical process (CICS

In the batch-oriented process, application data is stored in files owned by the
applications until the next batch job runs, which translates the application data into
an EDI standard format. This job, or a different job run later, can request that all the
EDI standard data be gathered (enveloped) and sent to the trading partner. The
trading partners receive the data, process the data, and then return a response.

In the time-critical process, application data is usually translated, enveloped, and
sent as soon as the data is available. Although some batching of data might occur,
the batches are typically much smaller than in the batch-oriented process. The
trading partner is expected to process the data and generate a response
immediately.

The Transaction Store database saves all EDI standard data sent or received and
tracks the status of the data as it progresses from translated, to send, to received,
to acknowledged. The Transaction Store is updated by all translation and
enveloping operations, and is maintained and reported on by the Transaction Store
Facility or the WebSphere Data Interchange Utility. Updating the Transaction Store
database is optional and can be controlled using the Application Defaults
(APPDEFS) profile. For more information about the Application Defaults profile,
refer to the WebSphere Data Interchange User’s Guide.

The Transaction Store database consists of seven DB2 tables, described in
Table 120 on page 391.

Translation services

390 WebSphere Data Interchange Programmer’s Reference

Table 120. Translation services DB2 tables

Table Description

EDIVTSTH The transaction handle table. This is the primary table in the
Transaction Store and is referenced by all other tables. An entry is
created whenever a translation occurs and a transaction is
deenveloped. As transactions are added to the Transaction Store,
they are assigned a unique key value called a transaction handle
(THANDLE). The format of the transaction handle is:
YYYYMMDDHHMMSSxxnnnn, where:

YYYYMMDD
The date of the first transaction for the translation session.

HHMMSS
The time of the first transaction for the translation session.

xx A random number assigned by WebSphere Data
Interchange. Valid values are 00 - 99.

nnnn A sequential number assigned by WebSphere Data
Interchange. Valid values are 0 - 9999. If more than
9999 transactions are translated in the same session,
WebSphere Data Interchange receives a new date, new
time, and new random number, and starts the sequence
at 0 again.

This key value is communicated between application programs and
WebSphere Data Interchange API services through the TSKEY and
TSKEYU fields in the TRCB.

EDIVTSTI The EDI standard transaction image table. Contains the EDI
standard transaction image and is created whenever a translation
occurs or a deenvelope takes place.

EDIVTSTO The transaction override table. Contains override values for fields
in the service segments. A transaction override table is created
only when translation occurs and overrides are supplied for service
segment fields. These values are captured at translation time and
used when the transaction is enveloped.

EDIVTSEV Contains information about an entire interchange, such as the
network status, the date and time created, and the date and time
sent. A table entry is created during enveloping or deenveloping for
each interchange header created or deenveloped.

EDIVTSGP Contains information about a group of transactions in an
interchange, such as the functional acknowledgment status of the
group. A table entry is created during the enveloping or
deenveloping process. At least one table entry is created, even
when the interchange does not contain a functional group.

EDIVTSTU Contains information about a transaction in an interchange or
group, such as the date and time the transaction was enveloped,
and the acknowledgment status of the transaction. A table entry is
created during the enveloping or deenveloping process. A
transaction that has been enveloped more than once
(REENVELOPED) will have entries in the EDIVTSTU, EDIVTSGP
and EDIVTSEV tables.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 391

Table 120. Translation services DB2 tables (continued)

Table Description

EDIVTSA The application usage table. Contains information about the
processing of a transaction by an application. A table entry is
created whenever a translation for a transaction is attempted. A
transaction that has been translated more than once
(RETRANSLATE) will have multiple entries in this table. A
transaction that has never been translated (DEENVELOPED only)
will have no entries in this table.

The syntax for the translation function request call is:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

The logical name for the translation service is TRANPROC. The codes and
functions provided by the translation service are:
111 Test translate-to-EDI-standard
131 Production translate-to-EDI-standard
211 Test deenvelope and translate-to-application
212 Production deenvelope and translate-to-application
213 Translate a specific transaction to application
1000 End translation

Translation service functions

The two primary functions of the translation services are:

v Translate-to-EDI-standard

This service transforms data from the application-defined format into the EDI
standard defined format as defined by a map. See “Translate-to-standard API” on
page 393 for more information.

v Translate-to-application

This service transforms data in the EDI standard defined format into the
application defined format as defined by a map. See “Translate-file-to-application
API” on page 429 for more information.

The following five minor functions support the two primary functions:

v End translation

Signals that there is no more data to process. See “End translation/enveloping
API” on page 458 for more information.

v Retrieve interchange header

Retrieves the EDI standard image of the current interchange, and is used by the
WebSphere Data Interchange Utility to create the optional E record. See
“Retrieve interchange header API” on page 472 for more information.

v Retrieve group header

Retrieves the EDI standard image of the current group, and is used by the
WebSphere Data Interchange Utility to create the optional G record. See
“Retrieve group header API” on page 472 for more information.

v Retrieve transaction

Retrieves the EDI standard image of the current transaction, and is used by the
WebSphere Data Interchange Utility to create the optional T record. See
“Retrieve transaction header API” on page 473 for more information.

v Close and queue interchange

Translation services

392 WebSphere Data Interchange Programmer’s Reference

Forces an interchange to be completed and written to a file associated with the
network. See “Retrieve transaction header API” on page 473 for more
information.

Note: The transform function for data transformation maps is not currently
supported using the WebSphere Data Interchange API.

A number of headings in this section include a two-letter abbreviation surrounded by
parentheses to make the section headings unique. The two-character abbreviations
and their meanings are:
DE Deenvelope
EV Envelope
TA Translate to application
TF Translate file
TS Translate to standard

Translate-to-standard API
The translate-to-standard API transforms data from the application format into an
EDI standard format as defined by a map. You select these values through the
options on the Administrator’s Menu.

The WebSphere Data Interchange Utility uses this API internally when you issue
any of the following PERFORM commands:
v TRANSLATE TO STANDARD
v TRANSLATE AND ENVELOPE
v TRANSLATE AND SEND

The enveloping, sending, and testing considerations to be aware of when using the
translate-to-standard API are described in the following topics.

Enveloping and sending
The logical name for the enveloping service is TRANPROC. This service is
described in “Environmental services” on page 386. The following codes and
functions are provided by the enveloping service:
1 Retrieve interchange header
2 Retrieve group header
3 Retrieve transaction header
214 Deenvelope transaction
215 Enveloper transaction
990 Close and QUEUE the current interchange
991 Isue database COMMIT

The syntax for the enveloping and sending service is:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

The following three API functions allow you to translate, envelope, and send a file to
a trading partner:

v The translation service (function code 131)translates the data and updates the
Transaction Store database with the transaction information and an image of the
EDI standard data produced. For more information, see “Translate-to-standard
API”.

v The enveloping service (function code 215)builds the proper service segments
and retrieves the transaction image from the Transaction Store. It invokes the

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 393

communication service with function code 110 which writes the interchange to a
file associated with the network. For more information, see “Envelope API” on
page 444.

v The communication service (function code 211) builds the proper commands for
the network, and invokes the network to send the file to your trading partner. For
more information, see “Send transactions and restart send transactions API” on
page 483.

You can shorten this sequence by using the translate-to-standard function of the
translation service to envelope a transaction when the transaction is translated. To
do this, use the TRANSLATE AND ENVELOPE command as illustrated in
“Translate, envelope, and send process” on page 395.

You can control whether enveloping is done at the time of translation with the
ENVLDELAY field in the TCB. You can only delay enveloping for translated
transactions already stored in the Transaction Store database. For more
information, refer to the Application Defaults profile description in the WebSphere
Data Interchange User’s Guide. For more information about the ENVLDELAY field, see
“Translator Control Block (TRCB)” on page 562.

Consider the following points when performing automatic enveloping:

v All data involved in a translation, including the image of the EDI standard data
produced, is saved in the Transaction Store. This occurs whether enveloping is
part of the translation or is delayed. An EDI standard image is saved even when
the translation is not successful, because the image might prove helpful in
determining why the translation failed.

v If enveloping is done separately from translation, the enveloping service must be
notified which transaction to envelope. This is done through the unique key value
assigned to the transaction when it is added to the Transaction Store. The key is
stored in the database as a 10-byte packed value and is returned in packed
format in the TSKEY field of the translator control block. It is also returned as a
20-byte character value in the TSKEYU field.

When an envelope function is requested, either the TSKEY or TSKEYU value must
be accessible to the enveloping service. The program that issues the
translate-to-standard function can save the TSKEY values in a file which the
program that issues the envelope calls can read to get the TSKEY values. To
organize the data the way you want it enveloped, store the TSKEY values in a file
with other data that can be sorted.

If only the TSKEY values are necessary, you can use the WebSphere Data
Interchange Utility's QUERY command to extract the TSKEY values that you want
enveloped. The QUERY command writes the TSKEY values sequentially into the
file identified by the EDIQUERY ddname.

v The enveloping service, whether invoked separately, or invoked automatically by
setting ENVLDELAY to N, invokes the communications service to write the EDI
standard data to a file associated with the network. Your program does not need
to do this.

v No single API function is the equivalent of the WebSphere Data Interchange
Utility's TRANSLATE AND SEND command. Using the API, translating and
enveloping is one step, and sending the data is another.

Translation services

394 WebSphere Data Interchange Programmer’s Reference

Translate, envelope, and send process

Application program WebSphere Data Interchange

If TRCB.TRABORT EQ ‘Y’

If ‘first record of transaction’

EXIT
ENDIF
If TRCB.EJECT EQ ‘Q’

ENDIF
If TRCB.EJECT EQ ‘E’

ENDIF

If ‘last record of transaction’

EXIT
ENDIF

ENDIF

ENDIF
ENDDO

ENDIF

yes

A

Do while ‘application data exists’

ENDIF

ELSE

If TRCB.TRABORT EQ ‘Y’

If TRCB.TRACCEPT NE ‘Y’

If TRCB.EJECT EQ ‘Q’

If TRCB.EJECT EQ ‘E’

ENDIF

Contents of
“QDATA”
sent to
trading

partners

Write
to

“QDATA”

A

B

New
interchange?

Network
program
called by

WebSphere
Data Interchange

Translate
data

API-Send transactionPerform

Perform Subsequent calls

Skip to next transactionPerform

Perform API termination

API initializationPerform

Perform First call of session (TS)

Perform First call of transaction (TS)

Perform Interchange error processing

Perform Last call of error transaction (TS)

Perform API-End Translation / Enveloping

Perform Interchange error processing

BPerform API-Send transaction

Figure 23. Translate, envelope, and send process

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 395

Test translate-to-standard
There are two methods for testing your transactions:

1. You can use test function code 111 to translate your transactions to EDI
standard format in test mode. Your program follows the same steps as in
production mode. Translation occurs and the interchange created is written to
the file associated with the network, but no information is posted to the
Transaction Store. To post information to the Transaction Store, you must use
the method described below. You can use the results of the translation for
receiving transactions in test mode.

Note: This form of testing is available only through the API.

When you use this method, it is assumed that:

v You require a test usage/rule, if one is available, and the TEST field in the
TRCB is set to T

v You want enveloping to occur so that an EDI standard transaction image will
be created and written to a file that you can inspect

If your test translation is followed by a call to send the data, make sure to define
a destination file that is in no danger of being sent accidentally. The EDI
standard data produced is written to ddname EDITEST. Communications
ignores any request to send data when the ddname of the file to be sent is
EDITEST. In the CICS environment, EDITEST is a TS queue.

You can verify the results of your program's efforts by examining the resulting
data and the information recorded in the event log. To view or print the event
log, choose EVENT LOGGING from the Administrator's Menu.

2. You can use the test usage indicator to inform trading partners that a
transaction you are sending is for test purposes only. When you set the Test
usage field on the Send Usage panel to T, translation and communications
occur normally (including updating the Transaction Store) except that the
envelope carries an indicator that the data is for testing. You might prefer this
method because you can test the entire path from you to your trading partner,
including any returned network or functional acknowledgments.

To use this method with the WebSphere Data Interchange Utility, do one of the
following:

v Set the test indicator flag in the C record to T or U to indicate that this is a
test usage/rule.

v Set the RAWUSAGE keyword on the PERFORM command to T to indicate that
test mode is being used with RAWDATA.

v If you use the API, set the TEST field in the TRCB to T or U.

Note: Only X12 and EDIFACT envelope types have a test-or-production flag
defined. WebSphere Data Interchange does not mix test transactions
with production transactions in the same interchange.

Translate-to-standard data modes
Multiple calls to the translator are usually required to provide the translator with the
data you want translated. The final call confirms that all the data has been provided
and the translation must begin.

The two modes of operation, based on the type of data provided for the translator,
are:

Translation services

396 WebSphere Data Interchange Programmer’s Reference

v Multiple unit of work mode

In this mode, more than one application record contributes to the translation. For
example, a purchase order might include a header record, many detail records,
and a trailer record. With each call to the translator, you provide a single record
that corresponds to a structure in the application data definition, and all
subordinate structures that have not been passed separately. The data is stored
in buffer files until all records for the transaction have been provided.

Use the ATSID field to tell the translator the name of the structure provided in the
TRIDB buffer. When all the data has been provided, call the translator again with
an EJECT field of Y. This tells the translator that the translation must begin. The
translator must have all the data before any translation can take place.

Note: No data is provided when EJECT is set to Y. This setting indicates that all
data has been provided.

v RAWDATA mod e

In multiple unit of work modes, the application knows the type of data being
processed and communicates that information to the translator through the
ATSID field. Use the RAWDATA mode only if the application does not know the
type of data being processed. For example, if you are writing a general-purpose
utility program, your program might not be customized to process all the different
data formats you might encounter.

RAWDATA mode reverses the roles of the application program and the translator.
The translator returns the structure name to the application, and tells the
application when it is time to translate using the value in the TRNSTAT field.

For more information about RAWDATA processing, see “Special considerations
(TS)” on page 411.

Translation special considerations
Many calls can be made to the translator during a translate-to-standard session, but
the following require special attention:

v The first call to the translator after a WebSphere Data Interchange initialization or
after a translation service termination. This call establishes the default values that
apply from the first call until a translator termination call is received.

v The first call to the translator for a transaction. Key information concerning the
transaction is provided, and the translator determines the relationship that this
transaction has with the previous transaction.

v The final call to the translator for a transaction. Translation from the application
format to the EDI standard format actually takes place.

v The final call to the translator to terminate the session. Cleanup is done and final
processing occurs.

All other calls merely involve the movement of data from the application buffers into
the translator buffers. The following topics describe these four critical calls in detail.

Translate-to-standard API
You can use the two following function codes to request a translate-to-standard
function:
111 Requests translation in test mode
131 Requests translation in production mode

You do not need to change your program to switch from test mode to production
mode. You only need to change the function code used to invoke the services. Test
mode is different from production mode in the following ways:

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 397

v WebSphere Data Interchange forces the TEST field in the TRCB to contain a
value of T. If a test transaction exists, it uses the test transaction when testing
your program. If a test transaction does not exist, it uses the production
transaction.

v WebSphere Data Interchange forces the ENVLDELAY field in the TRCB to contain a
value of N. This writes the EDI standard data produced to a file.

v WebSphere Data Interchange forces the FILEID field in the TRCB to contain a
value of EDITEST. If a communications service request to send transaction data
is received and the file name used is EDITEST, WebSphere Data Interchange
ignores the request.

v Control numbers are not taken from the trading partner profile member. Instead,
they are assigned values of Tnnnnn, where nnnnn is a sequential value starting
with 00001.

v WebSphere Data Interchange automatically logs the EDI standard image that is
produced and the application data that is received.

v WebSphere Data Interchange does not write any data to the Transaction Store,
to prevent cluttering up the database with test data.

v Functional acknowledgments are not generated even if requested in the
usage/rule record.

v Statistics maintained by the Management Reporting component of WebSphere
Data Interchange are not updated.

The basic format of the translate-to-standard request is:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

The unique parameters for this API request are defined in Table 121.

Note for accessibility
Following table has spanned cols.

Table 121. Transaction services translate-to-standard parameters

Parameter Description

SNB ZSNBLL
32

ZSNBNAME
TRANPROC

ZSNBPC
6

FCB ZFCBFUNC
131 production
111 test

TRCB The translator control block. For more information about this block,
see “Translator Control Block (TRCB)” on page 562.

TRIDB The input data block. This block contains the application data to be
translated. The format of the data in this block must match the
format of the data defined in the data format. Minimum size is
32000 bytes.

TRODB The output data block. WebSphere Data Interchange uses the
output data block as a work buffer. Minimum size is 32000 bytes.
Maximum size must be the size of the largest EDI standard
segment that is produced, excluding the BIN segment.

Translation services

398 WebSphere Data Interchange Programmer’s Reference

First call of session (TS)
There are numerous fields in the control blocks defined for the translate-to-standard
API function whose values only need to be established once. These values can be
established before the first call, and they do not have to be refreshed or changed
before any other call. Because the first call for a session also qualifies as the first
call for a transaction, you must also follow the instructions in the next section, “First
call for transaction (TS).” The control blocks, the fields within the control blocks, and
the initialization considerations are described in Table 122, Table 123, Table 124,
and Table 125 on page 401.

Table 122. Service name block (SNB) initialization for translate-to-standard

Field name Initialization

ZSNBLL 32

ZSNBNAME TRANPROC

ZSNBPC 6 (all calls for translation services have six parameters)

Table 123. Function code block (FCB) initialization for translate-to-standard

Field name Initialization

ZFCBLL 4

ZFCBFUNC 131 (production) 111 (test)

Table 124. Translator control block (TRCB) initialization for translate-to-standard

Field name Initialization

BLKLEN 1536.

BLKNME EDITRCB.

BLKTYPE The format for the TRIDB and TRODB buffers.
H Unlimited size
(other) Limited to 32768 bytes

FASPEC Indicates that FUNACKFLE is being used. Set this field to Y (If
not provided, the value of FUNACKFLE will be ignored).

XPANDED Y. Indicates that WebSphere Data Interchange must check the
BLKLEN field to determine the software version and release
being used.

ENVLDELAY Indicates whether enveloping must be delayed until translation
is complete.
Y Enveloping does not occur at the same time as

translation.
(other) Enveloping occurs at the same time as translation.

SCOPE Indicates that the point at which WebSphere Data Interchange
issues a database COMMIT.
E Interchange (envelope) level recovery. Applies only

when enveloping occurs.
(other) Transaction level recovery.
Note: The value set in this field affects the recovery scope
used during the session. For more information, see “Send
Recovery Scope” on page 413.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 399

Table 124. Translator control block (TRCB) initialization for translate-to-standard (continued)

Field name Initialization

INMEMTRANS Indicates the maximum number of transactions that must be
maintained in virtual storage before any database updates are
attempted. Applies only if the value of SCOPE is E. The database
is updated when either the value in this field, or the end of the
interchange, is reached.

This value is important in an environment where multiple
application programs request translation services concurrently.
The higher you set the value for INMEMTRANS, the more
concurrency can be achieved. For more information, see
“INMEMTRANS” on page 581.
Note: The value set in this field affects the recovery scope
used during the session. For more information, see “Send
Recovery Scope” on page 413.

FILEID For enveloping, the ddname of the file where the transaction
data is written when an interchange is complete. If you do not
specify a ddname, the ddname specified in the Trans data
queue field of the network profile is used. This value does not
have to be a constant for the entire session, but if specified, it
must be set before an interchange is complete.

ITPBREAK Indicates whether a change in the internal trading partner ID
(vendor number) starts a new interchange.

You can use this field to create separate interchanges for the
individual vendors associated with a trading partner.
Y Starts a new interchange each time the internal trading

partner ID changes. The current interchange must be
closed and written.

N or (other)
Starts a new interchange only when the trading partner
nickname changes. N is 2.7(when)-3 1 Tf
3.1/an6. Tlvalue.

BATCHID The batch ID for a group of transactions. The T 1 Tf
ansaction Store

Table 124. Translator control block (TRCB) initialization for translate-to-standard (continued)

Field name Initialization

ENVLDATE The earliest date that a transaction is considered eligible for
enveloping. Applies only when delayed enveloping is used
(ENVLDELAY is set to Y). If you do not specify a value in this field,
the transaction is considered eligible for enveloping
immediately.
Note: This field is checked with each call to the translator. The
value in this field when the last call for transaction (TS) is made
will be associated with the transaction.

ERRFILTER Indicates which error codes to filter out during this session. The
values set here will be the initial values for the DIERRFILTER
named variable at the start and end of each transaction. For
more information, see “Error filtering” on page 17.

RAWDATAOUT Indicates whether raw data output is desired for fixed-to-fixed
mappings.

Y Uses raw data output for fixed-to-fixed mappings

(other) Uses C and D record output for fixed-to-fixed
mappings

FFILEID The ddname of the file where the translated data for
fixed-to-fixed translation is written. If you do not specify a value
in this field, the ddname is formed from the concatenation of the
Application file name from the target data format and the
File suffix from the trading partner profile. This value does
not have to be a constant for the entire session. However, if you
want to use this field, it must be set before an interchange is
completed.

Table 125. Translator output data block (TRODB) initialization for translate-to-standard

Field name Initialization

BLKLEN Set this field to the size of the data block, including the BLKLEN field. The
minimum value for this field is 32000 bytes.

RESERVED Zeros.

First call for transaction (TS)
On the first call to the translator for a transaction, you must provide the information
required to locate the map that directs the transformation from application data to
EDI standard data. Your EDI administrator creates maps for specific data format
definitions. The ATFID field contains the definition name for which the map was
defined and for which data is being provided. However, many different users can
use a map. Your EDI administrator defines these users by adding trading partner
send usage/rule entries to the map.

The fields for the trading partner send usage/rule are defined in Table 126 on
page 402.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 401

Table 126. Trading partner send usage/rule fields

Field name Description

INTPID The internal trading partner ID. This is the name of the trading
partner as known to your application program, such as a vendor
number or account name.

TEST Indicates the type of transaction being processed. Valid values are:

I This is an information transaction. Use an information
usage/rule, if one is found. If an information usage/rule is
not found, a production usage/rule is used instead. Even
when a production usage/rule is used, the transaction is
flagged as an information transaction.

P This is a production transaction. Use only a production
usage/rule (default).

T This is a test transaction. Use a test usage/rule, if one is
found. If a test usage/rule is not found, a production
usage/rule is used instead. Even when a production
usage/rule is used, the transaction is flagged as a test
transaction.

U The translator must determine if the transaction is test,
information, or production based on the usage/rule found. If
a test usage/rule is found, the transaction is processed as a
test transaction, and a value of T is returned. If an
information usage/rule is found, the transaction is
processed as an information transaction, and a value of I is
returned. If only a production usage/rule is found, the
transaction is processed as a production transaction, and a
value of P is returned.

WebSphere Data Interchange requires these fields to determine what translation is
being requested. The TRCB fields described in Table 127 must be set by the
application on the first call for translation.

Table 127. TRCB fields that you must set on the first call for translation

Field name Initialization

ATFID The data format ID for which data is being provided.

INTPID The internal trading partner ID (such as vendor number
or account name) for which the translated EDI standard
data is destined.

TEST Indicates the type of transaction being processed.
I Information transaction
P Production transaction
T Test transaction
U Transaction type determined by existing, active

usage/rule

RAWDATA Indicates whether the RAWDATA interface must be used.
For more information on the RAWDATA interface, see
“Send raw data” on page 411.
Y Uses the RAWDATA interface
N or (other)

Does not use the RAWDATA interface

Translation services

402 WebSphere Data Interchange Programmer’s Reference

Table 127. TRCB fields that you must set on the first call for translation (continued)

Field name Initialization

EJECT Indicates whether all data for this structure has been
received.

X A partial structure has been provided. For more
information on partial structures, see “Providing
a Partial Structure” on page 413.

Y All application data has been provided and
translation must begin. For more information on
this field, see “Translate-to-standard API” on
page 393. For more information on the effects of
the EJECT field settings, see “Last call for
transaction (TS)” on page 407.

ATSID The name of the structure for which data is being
provided in the TRIDB.

BNDLFLAG Indicates whether a bundle must be started or ended.

The first transaction of a cluster is called the controlling
transaction and is the transaction displayed when you
use the Transaction Store Facility. WebSphere Data
Interchange uses the transaction handle (THANDLE)
value of the controlling transaction to associate all of the
transactions in a cluster. The THANDLE value is returned
in the TSKEY and TSKEYU fields. For more information,
see “Batches and Bundles” on page 415.
Y Starts a new bundle with this transaction.
N Ends the bundle.
(blank) Does not change bundling status. If a bundle is

active, this transaction is considered part of it.

HOLDFLAG Indicates whether this transaction is to be placed on hold
when added to the Transaction Store. A transaction in
hold status is not available for any other activity, such as
enveloping. You must release a held transaction before it
can be processed.
Y Places this transaction in Held status.
N or (othre)

Does not place this transaction in Held status.

ROUTCODE A three-character generic routing code provided by the
application and used by WebSphere Data Interchange to
select a generic send usage/rule. A blank indicates a
default generic send usage/rule.

When a transaction gets enveloped, the envelope function builds the service
segments that surround a transaction. These service segments consist of an
interchange header that identifies the sender and the receiver, a group header that
gathers all transactions of similar characteristics and can be used to identify the
application sender and receiver, and a transaction header that provides the name of
the transaction being sent. Most of the values for fields in these segments are
established by your EDI administrator, but your program can override certain fields
by providing values that you want associated with a transaction. These values must
be provided with the transaction at the time of translation so that WebSphere Data
Interchange can use them when the transaction is enveloped.

Table 128 on page 404 describes the TRCB fields that you can use to provide
overrides. If you do not use overrides, make sure these fields are blank before

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 403

making the first request for a transaction. These fields are also used as return
fields, so make sure your program sets the desired values before making each first
request. For more information on service segments, see “Interchange layer” on
page 443.

Table 128. TRCB fields that provide overrides

Field name Overrides:

ISYNTAXID The interchange syntax ID in the interchange header for envelope
types E and T.

ISYNTAXVER The interchange syntax version in the interchange header for
envelope types E and T.

ISIDQUAL The interchange sender ID qualifier in the interchange header for
envelope types E, I, and X.

ISID The interchange sender ID in the interchange header for data type
IS.

ISENDNAME The interchange sender name in the interchange header for envelope
types U and T.

IREVROUT The interchange reverse routing in the interchange header for
envelopes type E.

IRIDQUAL The interchange receiver ID qualifier in the interchange header for
envelope types E, I, and X.

IRID The interchange receiver ID in the interchange header for data type
IR.

RECVNAME The interchange receiver name in the interchange header for
envelope types U and T.

IROUTEADDR The interchange routing address in the interchange header for
envelope type E.

IVERREL The interchange version and release in the interchange header for
data types LV or VR.

ISPW The interchange password in the interchange header field for data
type PW.

IAPREF The application reference in the interchange header for data type AP.

ISTDID The interchange standard ID in the interchange header for envelope
type I and X.

IPRIOR The interchange priority code in the interchange header for envelope
types E and T.

ICOMMAGREE The interchange communication agreement in the interchange header
for envelope type E and T.

GSIDQUAL The group sender ID qualifier in the group header for envelope group
type E.

GSID The group sender ID in the group header for data type AS.

GRID The group receiver ID in the group header for data type AR.

GRIDQUAL The group receiver ID qualifier in the group header for envelope
group type E.

GAPW The group password in the group header for data type PW.

GVER The group version in the group header for data type VR.

GREL The group release in the group header for data type LV.

GRESPAGENCY The group responsible agency code in the group header for envelope
types E, U, and X.

Translation services

404 WebSphere Data Interchange Programmer’s Reference

Table 128. TRCB fields that provide overrides (continued)

Field name Overrides:

TVER The transaction version in the transaction header for data type VR.

TREL The transaction release in the transaction header for data type LV.

Table 129. TRIDB Initialization - First Call for Transaction

Field name Initialization

BLKLEN The length of the TRIDB, including this field. If you are using the same
TRIDB for all calls, initialize this field only once.

RESERVED Zeros. If you are using the same TRIDB for all calls, initialize this field
only once.

DATALEN Set this field to the number of bytes contained in the DATA field. This
number must match the number of bytes defined for the structure in the
data format.

DATA The application data. The format of the data must match the format of the
structure (in the ATSID field) defined in the data format.

When initialization is complete, the translator is invoked with the following API
request:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

When the translator receives this request, it verifies that everything it needs to
translate the transaction is available. The ATFID, INTPID, and TEST fields are used to
locate the trading partner usages/rules and map, and retrieve the control string
generated from the map along with the EDI standard and transaction descriptions.

Numerous errors can occur at this point. If an error occurs, the return code and
extended return code for the error are posted in the ZCCBRC and ZCCBERC fields of
the CCB.

The TRCB fields that indicate the status of the transaction and of the translator are
defined in Table 130.

Table 130. TRCB fields that provide transaction and translator status

Field name Description

TRXACCEPT Indicates whether the transaction is acceptable and can be
translated.

If the value is not Y and your program continues, the next call
made to the translator is considered the first call for the next
transaction.
Y The transaction is acceptable and can be translated.
(other) The transaction is not acceptable and cannot be

translated.

TRABORT Indicates whether the error is so severe that the translator has
stopped processing.

If this value is not Y and your program continues processing, the
next call made to the translator is considered the first call for the
session.
Y The translator has stopped processing.
(other) The translator continues processing.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 405

The TRCB fields that are returned on the first call for a transaction and that identify
the key attributes of the transaction are defined in Table 131.

Table 131. Fields in TRCB returned on first call for a transaction

Field name Description

TRNID The EDI standard transaction or message ID that is
generated from this application data.

TEST If you used a TEST value of U, this becomes an output field
that indicates whether a production, test, or information
usage/rule is being used.

ENVTYPE Indicates the envelope type that is used when this
transaction is enveloped. Valid values are:
E UNB/UNZ
I ICS/ICE
T STX/END
U BG/EG
X ISA/IEA

MAPKEY The map used to translate the application data.

TPNICK The trading partner nickname associated with the transaction.

Enveloping During Translation:: If enveloping is performed at the same time as
translation (ENVLDELAY value of N), the translator checks the first call to determine if
the transaction just provided is placed into the current interchange, or if the
transaction starts a new interchange. If a new interchange must be started, the
current interchange is completed and written to the file associated with the network
or to the file identified in the FILEID field. See “Fields that cause a new interchange
to start” on page 455 for a description of the fields that cause a new interchange to
be started.

The TRCB fields described in Table 132 are returned when an interchange is
written. The fields provide information about the interchange, the network, and the
file receiving the interchange.

Table 132. Fields in TRCB returned when an interchange is written

Field name Description

EJECT Indicates whether an interchange was written to the file associated
with the network.
Q The interchange was written successfully.
E The interchange was not written successfully.
Note: When this field has a value of E, the QRC and QERC fields
contain values indicating the error. The specific error is logged by
WebSphere Data Interchange Communication services. The most
likely error is that the ddname could not be opened.

QRC The return code associated with the error.

QERC The extended return code associated with the error.

DSNAME The physical data set name to which the interchange was written.
In CICS, this field has the same value as QDDNAME. This is the name
of the TS queue containing the interchange.

QNETID The name of the network associated with the trading partner.

QPTTOPT Indicates whether the network identified by QNETID is a
point-to-point network.
Y The network is a point-to-point network.
(other) The network is not a point-to-point network.

Translation services

406 WebSphere Data Interchange Programmer’s Reference

Table 132. Fields in TRCB returned when an interchange is written (continued)

Field name Description

QSRPGM Indicates whether the network identified by QNETID has a network
send/receive program associated with it. If the network does not
have an associated send/receive program, there is no need to send
the interchange. A network without a send/receive program can be
used for creating interchanges that are sent to a trading partner by
other means.
Y A send/receive program is associated with this network.
(other) No send/receive program is associated with this network.

QDDNAME The ddname to which the interchange is written. This field is blank
if a point-to-point network is used. In CICS, this is the name of the
TS queue to which the interchange was written.

QTPNICK The trading partner nickname for which the interchange was built.

QSIZE The total number of bytes in the interchange, stored as a 4-byte
binary value.

QBT The character representation of QSIZE.

See “Sending transaction data” on page 454 for an explanation of items to consider
if your application program is using the Communication services send API for
sending the data that was just written to the file. See “Send transactions and restart
send transactions API” on page 483 for more information on APIs.

Subsequent calls
Calls made to the translator between the first and last calls transfer transaction data
between the application program and the translator. The application data is placed
in the TRIDB. The structure name describing the data is placed in the ATSID field.
When the call is made, the translator copies the data from the TRIDB into the
translator's internal buffers. With each call, your program must check the
TRXACCEPT and TRABORT fields for error information.

When all the data has been transmitted, a final call is necessary to tell the
translator to translate the data into the EDI standard format. For more information
about final calls, see “Last call for transaction (TS)”.

Last call for transaction (TS)
The last call for a transaction is indicated by an EJECT field set to Y. At this point,
you can also set the other fields if you do not want the values from this transaction
to be used in the first call for the next transaction. The fields you can set are:
v BATCHID
v TRXLIFE
v IMGLIFE
v ENVLDATE

When these fields are initialized, issue the following API request:
FXXZccc(CCB,SNB,FCB,TRCB,TRIDB,TRODB)

Note: Although no data is supplied on this request, the TRIDB and TRODB are still
required.

When the translator receives this request, it translates data from the application
format into the EDI standard format in accordance with the transaction instructions.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 407

Numerous errors can occur at this point. If errors occur, the error codes associated
with the most severe error are posted in the CCB's ZCCBRC and ZCCBERC fields. An
acceptable transaction can have errors. An acceptable error level for the transaction
is established when a usage/rule is created by your EDI Administrator. With each
call, your program must check the TRXACCEPT and TRABORT fields for error
information.

At this point, numerous TRCB fields are provided as output, as described in the
following tables.

Translation - TRCB Fields:: The TRCB fields described in Table 133 are updated
during translation, based on translation type.

Table 133. Fields in TRCB updated during translation

Field name Description

APPCTLNUM The application control value. The application control value is defined by
the application field with an AC data type, or by the fields that were
assigned when the map was created. This value uniquely identifies the
transaction to the application. Applies only to Version 2.1 and earlier.

XACFIELD The application control value. The application control value is defined by
the application field with an AC data type, or by the fields that were
assigned when the map was created. This value uniquely identifies the
transaction to the application. Applies only to Version 3.1 and later.

TRXACCEPT Indicates whether the transaction had an acceptable translation.

TRABORT Indicates that an error occurred that was so severe that the translator did
not continue. If this flag is set to Y, the translator has terminated of its
own accord.

TSKEY The transaction handle for this transaction in format
YYYYMMDDHHMMSSxxnnnn. This key value is returned as a packed10-byte
value in this field, which is how it is stored in the database.

TSKEYU The transaction handle for this transaction. This is the same value as that
in the TSKEY field, except that TSKEYU is an unpacked (character) 20-byte
value.

ERRNUM The total number of errors flagged during data translation.

ERRCDES An array of the first 10 different errors flagged during data translation. For
more information, see “Translator Error Codes” on page 587.

Enveloping - TRCB Fields:: Numerous TRCB fields are related to the current
status of an interchange being created. The next three tables describe the fields
relating to the following three items:
v Interchange header and trailer
v Group header and trailer
v Transaction header and trailer

TRCB fields related to the interchange header and trailer are described in Table 134
on page 409.

Translation services

408 WebSphere Data Interchange Programmer’s Reference

Table 134. Fields in TRCB related to the interchange header and trailer

Field name Description

NEWENV Indicates whether the transaction started a new interchange. If
you want a copy of the interchange header, you can use a
function code value of 1 to obtain an exact image of the
interchange header. For more information, see “Retrieve
interchange header API” on page 472.
Y Started a new interchange
(other) Did not start a new interchange

IHCTL The interchange control number assigned to the current
interchange. The value returned in this field is right-justified
with leading zeros. Applies only to Version 2.1 and earlier.

IHXCTL The interchange control number assigned to the current
interchange. The value returned in this field is right-justified
with leading zeros. Applies only to Version 3.1 and later.

GRPNUM The total number of groups in the interchange at the current
time, stored as a 4-byte binary value. See IGT for the character
representation of this value.

TRNNUM The total number of transactions in the interchange at the
current time, stored as a 4-byte binary value. See ITT for the
character representation of this value.

SEGNUM The total number of segments in the interchange at the current
time, stored as a 4-byte binary value. See IST for the character
representation of this value.

ESIZE The total number of bytes in the interchange at the current
time, stored as a 4-byte binary value. See IBT for the character
representation of this value.

ISID The interchange sender ID (interchange header with data type
IS).

IRID The interchange receiver ID (interchange header with data
type IR).

IDATE The interchange date (interchange header with data type DT).

ITIME The interchange time (interchange header with data type TM).

IVERREL The interchange version and release (interchange header with
data types VR or LV).

IGT The character representation of GRPNUM.

ITT The character representation of TRNNUM.

IST The character representation of SEGNUM.

IBT The character representation of ESIZE.

ISPW The interchange password (interchange header with data type
PW).

IAPREF The application reference (interchange header with data type
AP).

TRCB fields related to group header and trailer are described in Table 135 on
page 410.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 409

Table 135. Fields in TRCB related to group header and trailer

Field name Description

NEWGRP Indicates whether the transaction started a new group. If you want
a copy of the group header, you can use a function code value
of 2 to obtain an exact image of the group header. For more
information, see “Retrieve group header API” on page 472.
Y Started a new group
(other) Did not start a new group

GHCTL The group control number assigned to the current group. The
value returned in this field is right-justified with leading zeros.
Applies only to Version 2.1 and earlier.

GHXCTL The group control number assigned to the current group. The
value returned in this field is right-justified with leading zeros.
Applies only to Version 3.1 and later.

TRNGRP The total number of transactions in the current group at the
current time, stored as a 4-byte binary value. See GTT for the
character representation of this value.

GSID The group sender ID (group header with data type AS).

GRID The group receiver ID (group header with data type AR).

GDATE The group date (group header with data type DT).

GTIME The group time (group header with data type TM).

GAPW The group password (group header with data type PW).

GVER The group version (group header with data type VR).

GREL The group release (group header with data type LV).

GTT The character representation of TRNGRP.

TRCB fields related to transaction header and trailer are described in Table 136.

Table 136. Fields in the translator control block (TRCB) related to transaction header and
trailer

Field name Description

NEWTRN Indicates whether this starts a new transaction. If you want a copy
of the transaction header, you can use a function code value of 3
to obtain an exact image of the transaction header. For more
information, see “Retrieve transaction header API” on page 473.
Y Started a new transaction
(other) Did not start a new transaction

THCTL The transaction control number assigned to the current
transaction. The value returned in this field is right-justified with
leading zeros. Applies only to Version 2.1 and earlier.

THXCTL The transaction control number assigned to the current
transaction. The value returned in this field is right-justified with
leading zeros. Applies only to Version 3.1 and later.

SEGTRN The total number of segments in the current transaction stored as
a 4-byte binary value. See TST for the character representation of
this value.

TTC The current transaction or message ID value. See also TRNID
on 425.

TVER The transaction version (transaction header with data type VR).

Translation services

410 WebSphere Data Interchange Programmer’s Reference

Table 136. Fields in the translator control block (TRCB) related to transaction header and
trailer (continued)

Field name Description

TREL The transaction release (transaction header with data type LV).

TST The character representation of SEGTRN.

Last call of session (TS)
If the translator is called at least once and the TRABORT field does not have a value
of Y, invoke the translator one last time with a termination function code.

The termination function code signals the translator that the application is finished
making enveloping requests. On receiving the request, the translator releases any
resources that it acquired. If an interchange is active, the translator completes and
writes the current interchange.

Special considerations (TS)
The following sections list special considerations.

Send raw data: In normal processing, WebSphere Data Interchange assumes that
the application has detailed knowledge of the data being processed and
communicates this information to the translator by setting the appropriate fields in
the TRCB. The specific values that the application must communicate to the
translator are:
v The internal trading partner ID associated with this transaction in the INTPID field
v The structure name for the data being provided in the TRIDB in the ATSID field
v The end of the transaction, indicated by a value of Y in the EJECT field

If you are writing a general-purpose application program that is capable of handling
numerous application files, similar to the WebSphere Data Interchange Utility, your
application might not be aware of all the details for all possible files.

The translator has a RAWDATA mode that can be used in these situations. The
RAWDATA mode reverses the roles of the application and the translator in a few
ways. Rather than the application sending the information below to the translator,
the translator sends it to the application:
v Which structure is provided
v The internal trading partner ID
v That the transaction is complete and ready for translation

RAWDATA mode is signaled on the first call to the translator for a transaction by
setting the RAWDATA field to Y and setting the ATFID field to the data format ID that
is being used for this transaction. If your application knows the internal trading
partner ID, that value can be put into the INTPID field.

If your application does not know the internal trading partner ID, initialize the
INTPID field with blanks, and the translator can extract the internal trading
partner ID from the application data.

Note: When you use the WebSphere Data Interchange Utility, the internal trading
partner ID must be included in the application data and is extracted by the
translator when the appropriate structure is provided. However, an API
program can set the internal trading partner ID value in the INTPID field,
superseding the requirement that this value be contained in the
application data.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 411

For RAWDATA mode to succeed, your EDI administrator must provide the raw data
specifications when the data format (ATFID value) is defined. The raw data
specifications include:

v The name of the field that contains the internal trading partner ID.

v Either the name of a structure that starts a transaction, or the name of a
structure that ends a transaction, or both. It is best to provide the name of a
structure that ends a translation. The translator can then detect and process the
end of the current transaction without waiting to receive the record that begins
the next transaction.

v The offset into each structure where a value is located that uniquely identifies the
structure.

v A unique value that identifies each structure defined in the data format.

When using generic send usages/rules, the application can select a specific generic
usage/rule by generic routing code. The routing code is provided by the application
in the TRCB, in the C record, or in an application field (raw data only).

After each request, the translator posts information into the TRCB that specifies the
status of the transaction. The TRCB fields specified in Table 137 are updated.

Table 137. TRCB fields defining the status of the transaction

Field Description

ATSID The name of the structure that was received, based on the raw
data specifications.

INTPID The name of the internal trading partner ID. The translator returns
the internal trading partner ID value in this field when the structure
containing the value is received. At this point, the processing in
the first call for a transaction takes place.

If the internal trading partner ID is not in the first structure, first
call processing is delayed until the internal trading partner is
received. This is critical to your program, because if the
transaction is not acceptable (because of missing items in the
environment, such as a map), and partial structures have already
been received, your API must notify the translator to discard all the
previous data. This is done by making one more request with an
EJECT value of F.

For example, if the internal trading partner ID is provided in the
third structure, and an error is returned on this third structure
because a map was not found, you must call the translator again
with an EJECT value of F. This causes the previously accepted
structures for this transaction to be discarded.

If a internal trading partner ID is not defined in the data format, or
if this field contains all blanks, the value of INTPID from the first
call for the transaction is used as the default.

Translation services

412 WebSphere Data Interchange Programmer’s Reference

Table 137. TRCB fields defining the status of the transaction (continued)

Field Description

TRNSTAT Indicates the status of the transaction and, therefore, determines
what your program must do next. Valid values are:

I The data that you supplied has been ignored. This might
occur because the translator could not determine the
structure based on the raw data specifications, or
because the raw data specifications indicated that a
specific structure started each transaction and that
structure has not yet been supplied.

S The data that you supplied was recognized and has
started a transaction.

C The data that you supplied was identified and continued
the transaction.

R The data that you supplied was identified as starting a
transaction, but a transaction is already in progress. Issue
a last call for transaction to terminate the previous
transaction, and call the translator again with the
same data.

Y The data that you supplied was identified as ending a
transaction. To force the translation of the current data,
issue a last call for transaction.

Providing a Partial Structure: Usually, all data for a given structure is provided to
the translator in a single request by moving the complete structure into the TRIDB.
However, if you can not provide all the data in a single request, you can indicate
that a partial structure is being provided by setting the EJECT field to X.

The translator usually ignores the DATALEN field of the TRIDB, because the amount
of data provided is defined by the structure name (ATSID) and the structure
definition in the data format. If the EJECT field is set to X, DATALEN must contain the
amount of data provided with this request.

Continue to provide data with an EJECT value of X until you are ready to provide the
final data for the structure. When you provide the final data for the structure, set the
EJECT field to blank.

Note: In RAWDATA mode, if you send partial data for a structure that contains the
internal trading partner ID field, that field must be present in the first partial
record you send for the structure.

Send Recovery Scope: WebSphere Data Interchange allows you to specify how
much processing must take place before WebSphere Data Interchange makes a
request to the underlying system to commit all resources. Once a COMMIT request
is issued, all database changes made up to this point become permanent.

The amount of processing done before a COMMIT request is issued is called the
recovery scope. The translator allows a transaction level recovery scope or an
interchange level recovery scope.

With interchange level recovery, you can use the INMEMTRANS field to increase
concurrency. The INMEMTRANS field specifies the maximum number of transactions
that must be maintained in virtual storage before any database updates are
attempted. Database updating occurs when either the value in INMEMTRANS, or the

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 413

end of the interchange, is reached. This value is important in an environment where
multiple application programs are requesting translation services concurrently. The
higher the value for INMEMTRANS, the more concurrency achieved. See “Translator
Control Block (TRCB)” on page 562 for the description of INMEMTRANS and virtual
storage considerations.

Do not use interchange level recovery scope if an interchange is to contain a large
number of transactions. If the number of transactions exceeds the value in
INMEMTRANS, other processes are locked out until the entire interchange is complete.
Also, DB2 has a limit on the number of locks that a process can hold. A large
number of transactions could cause this value to be exceeded.

You indicate the recovery level in the SCOPE field of the TRCB. Valid values are:

E Requests interchange level recovery. WebSphere Data Interchange does
not issue a database COMMIT request until an interchange is complete and
has been written to the file associated with the network. Applies only when
enveloping operations are taking place.

T or (other)
Requests transaction level recovery. WebSphere Data Interchange issues a
database COMMIT request at the end of every successful transaction. T is
the recommended value.

Regardless of the value in the SCOPE field, when the translator determines that a
COMMIT request must be issued, the COMMIT is issued before the translator
returns control to the application. If the database changes made by the application
must be synchronized with the database changes made by WebSphere Data
Interchange, you can tell the translator not to issue a COMMIT by setting the
NOCOMIT field to Y. The application can then make database updates based on the
results of the translation and call the translator to issue a database commit (function
code 991). You must use the 991 function code to request the COMMIT (either
directly to DB2 and/or CICS, or by using the SYNCPOINT service) rather than using
the application program because the translator must know that the COMMIT has
taken place. A COMMIT request issued by the application without the knowledge of
the translator could result in a deadlock situation.

The translator issues the necessary call to commit all resources that have been
updated. For more information, see “Issue commit API” on page 471.

Note: Setting the NOCOMIT field to Y prevents the translator from issuing commits,
but it does not prevent WebSphere Data Interchange termination from
issuing a COMMIT. Making a SYNCPOINT service call with the syncpoint
interval set to -1 prior to the WebSphere Data Interchange termination call
will prevent this termination commit. For more information, see “SYNCPOINT
services” on page 505.

If a system or program failure occurs, changes made to the database since the last
COMMIT are removed by the file system. A guarantee of database integrity is only
available for the DB2 version of WebSphere Data Interchange with the Transaction
Store files defined as recoverable.

Forcing Interchange Termination: If enveloping occurs at the same time as
translation, the translator attempts to build the largest interchange possible. The
current interchange is completed and a new one started only when certain field
values change. For more information and a complete list of items that cause a new
interchange, see “Fields that cause a new interchange to start” on page 455.

Translation services

414 WebSphere Data Interchange Programmer’s Reference

You cannot control the size or content of an interchange using the WebSphere Data
Interchange Utility. If you want your application to control the size or content of an
interchange, you must issue a request to close and queue the current-interchange
(function code 990). You must issue this function request between the last call for
the current transaction and the first call for the next transaction. For more
information, see “Close and queue interchange API” on page 456.

The ESIZE field contains the current size of the interchange. This value can be
compared to a threshold value that, once exceeded, signals your program to issue
the request to close the current interchange. When an interchange is closed, a
group trailer segment (if groups are being used) and an interchange trailer segment
are added to the end of the interchange. When setting the threshold value, take the
expected sizes of these segments into account.

If you are using C and D records, you can tell the WebSphere Data Interchange
Utility to force the termination of an interchange by using the Z1 record. However,
you cannot limit the size of an interchange to a specific value using the WebSphere
Data Interchange Utility or facility.

Batches and Bundles: You can group transactions by using the BATCHID field or the
BNDLFLAG field. These two fields are not related and the transaction associations
formed by each are different.

BATCHID creates an informal association provided as a fast, convenient way to
select transactions from the Transaction Store. An alternate index is keyed on the
BATCHID value making it the best field on which to base a selection if you do not use
the THANDLE field.

For example, you could use this field to isolate all the transactions from a particular
program execution. If a problem occurs with the execution, you can use BATCHID to
place all the transactions from that execution on hold, preventing them from being
enveloped until the problem is resolved. You can also use BATCHID to reenvelope
transactions from a certain program execution if the file containing the interchanges
was corrupted.

However you use it, the BATCHID association between transactions is informal and
differs little from a set of transactions created using any common value, such as
trading partner nickname or EDI standard ID.

On the other hand, BNDLFLAG creates a formal relationship between transactions.
The transactions associated with BNDLFLAG are bundled (clustered) and are
generally treated as a single unit. Your application can use bundling if you want to
isolate a group of transactions and have them processed as a single unit rather
than as individual transactions.

Bundling is required for UN/TDI transactions but is optional for the other EDI
standards. With all other EDI standards, transactions are independent of each other
and can be handled independently. For example, X12 defines a header segment,
detail segments, and a trailer segment within a transaction, while UN/TDI defines a
header transaction, detail transactions, and a trailer transaction. You cannot send
the header transaction in one interchange, and the detail and trailer transactions in
another interchange. You must send them all together in the same interchange. Do
not include any additional transactions in that interchange. By bundling, you tell
WebSphere Data Interchange which header belongs with which detail and trailer

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 415

transactions. WebSphere Data Interchange can then envelope the appropriate
transaction separately from unrelated transactions and can treat multiple
transactions as a single unit.

Any action performed on any member of the cluster is done to all members of the
cluster. During enveloping operations, clustered transactions are not placed in the
same interchange as transactions that are not clustered. One cluster is not put in
the same interchange as another cluster. Members in a cluster can have different
BATCHID values, and you can use the same BATCHID in more than one cluster.

Outbound incremental translation: Typically, during outbound translation, all the
application data being translated is read into memory before translation begins. This
can be a disadvantage if application files are large. With incremental translation,
application data is passed into WebSphere Data Interchange in small chunks, and
these chunks can then be translated and released from memory. This minimizes the
use of application data memory.

Incremental translation requires application data to be grouped into headers, details,
and trailers. These three groups are rigid, and data from one cannot be mapped
into another. Incremental translation is only suitable for iterative detail data, such as
line items on an invoice, which means the data group would consist of one header,
many line items, and one trailer. During incremental translation, header data is
passed into WebSphere Data Interchange first and then translated. Next, one or
more detail records (line items) are passed into WebSphere Data Interchange and
then translated. You can pass in and translate as many detail records as necessary.
Finally, the trailer is passed into WebSphere Data Interchange and translated.

When preparing to translate data incrementally, first make sure the application data
is grouped as described above. Next, make sure the map you use maintains this
grouping so that data from one group is not mapped into another group. Then, you
must place an &BOUNDARY special literal in the map.

You must map the &BOUNDARY literal on the data element just prior to the main
detail loop. If the data element is already mapped to an application field name,
create a second map with the &BOUNDARY literal. The &BOUNDARY literal acts
as a switch that tells the control string generator to place a special end-of-header
marker at the beginning of the next level-one loop.

Do not map the literal with an application field name. The &BOUNDARY literal must
only be mapped in maps used for incremental translation. Incremental translation
must never be attempted with maps that do not contain a properly mapped
&BOUNDARY literal. The general rules for mapping the &BOUNDARY literal are:

v If there are loops defined in the header, &BOUNDARY can be mapped anywhere
after the beginning of the last level-one header loop and before the beginning of
the detail loop.

v If there are no loops defined in the header, &BOUNDARY can be mapped
anywhere in the header.

After this is done, recompile the map to generate the control string. Finally, enable
your API program to process the data as described next. Special considerations for
using the EJECT and BOUNDARY fields with incremental translation are described
below. For complete details on using an API for translating data, see “Translation
services” on page 390.

Incremental translation: The header records are first passed into WebSphere
Data Interchange, each with EJECT(blank) and BOUNDARY(X). After the last header

Translation services

416 WebSphere Data Interchange Programmer’s Reference

record is passed in, call the translator again with EJECT(Y) and BOUNDARY(H). This
tells WebSphere Data Interchange to translate the header, and remove the header
application data from memory. Make this call without data.

This next step is iterative. One or more detail records can be passed into
WebSphere Data Interchange, each with EJECT(blank) and BOUNDARY(X). To start
translation of these detail records, call the translator again with EJECT(Y) and
BOUNDARY(D). This tells WebSphere Data Interchange to translate the detail records,
and remove those records from memory. Make this final call without data. You can
repeat this step as many times as necessary.

Finally, after all detail records have been passed and translated, pass all trailer
records into WebSphere Data Interchange, each with EJECT(blank) and
BOUNDARY(X). After the last trailer record is passed, make a subsequent call with
EJECT(Y) and BOUNDARY(T). This tells WebSphere Data Interchange to translate the
trailer, and remove the trailer records from memory. At this point, translation is
complete and if enveloping is not delayed, an envelope will be created and queued.

Pageable translation
Pageable translation is designed to better utilize system memory during translation
by transferring incoming data buffers to DASD once the allotted number (1000) of
internal buffers has been exhausted. The maximum buffer size is 28,632 bytes.
This means that approximately 28 MB of virtual storage can be used to hold data
before pageable translation is triggered. The maximum amount of data that
WebSphere Data Interchange can transfer with pageable translation is
approximately five gigabytes (specifically, 150,000 multiplied by 2863 bytes).
Pageable translation in CICS uses temporary storage queues with names that begin
with EDI. Therefore, the size of DFHTEMP may have to be considered if pageable
translation is desired in CICS.

A sample definition of EDIVAX is:
//EDIVAX DD DISP=(NEW,DELETE,DELETE),UNIT=SYSDA,SPACE=(CYL,1500)

In z/OS, you must define a temporary work file with ddname EDIVAX. Allocate the
amount of space for this file depending on the maximum amount of data to be
translated. You can calculate the amount of storage needed to translate an
envelope without using pageable translation by adding the following components:
Number of bytes in largest interchange
+
4 MB overhead
+
Number of bytes in largest application transaction image
+
Number of structures in largest interchange multiplied by 120 bytes

The number of structures in the largest interchange includes structures that are
passed separately (records) and substructures that are not passed separately but
which contain data during translation. Pageable translation deals with the first two
components, and ensures that the amount of virtual storage required for them does
not exceed 28 MB. The other components are not addressed by pageable
translation.

In CICS, pageable translation uses TS queues with names that begin with EDI.
Therefore, you might have to modify the size of DFHTEMP if you want to use
pageable translation in CICS.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 417

To enable pageable translation using the API, set the VAXFLAG field in the TRCB
to X. To enable pageable translation using the WebSphere Data Interchange Utility,
use the PAGE(Y) keyword on TRANSLATE commands.

Translate-to-application API
On a translate-to-application API request, the translate-to-application service uses
the settings from the Administrator’s Menu to:

v Takes data in the format defined by the EDI standard (from the EDI standards
field), and

v Transforms that data into the application-defined format (from the Data Format
field) as defined by a map (from the Trading partner transactions field).

This is the same API that the WebSphere Data Interchange Utility uses internally
when you issue any of the following PERFORM commands:
v DEENVELOPE AND TRANSLATE
v RECEIVE AND TRANSLATE
v RETRANSLATE TO APPLICATION
v TRANSLATE TO APPLICATION

Receiving and deenveloping
You can use the following API functions to receive a file, deenvelope the
interchanges in the file received, and translate the EDI standard data into an
application format for processing by various application programs:

Receiving data
Communication services (function code 232). See “Receive and restart
receive API” on page 490.

Deenveloping data
Enveloping/Deenveloping services (function code 214). See “Deenvelope
API” on page 459

Translating data
Transaction services (function code 213). See “Translate specific API” on
page 421

The Communication service invokes the network and receives the data from the
network into the specified file.

The Deenveloping service:
v Parses the interchanges in the file
v Extracts each transaction
v Places details of each transaction along with the transaction image into the

Transaction Store
v Generates a functional acknowledgment, if one was requested
v Reconciles any received acknowledgments with the original transactions

The Translation service retrieves the transaction image from the Transaction Store
and translates the data into the application format.

You can combine the deenvelope and translate functions into one step by calling
the Translation service with a function code of 212. For more information, see
“Translate-file-to-application API” on page 429.

Translation services

418 WebSphere Data Interchange Programmer’s Reference

Processing speed can be improved when you use the DEENVELOPE AND
TRANSLATE combination command. This sequence is illustrated in Figure 24.

First call of session (TF)

Write application record

Subsequent calls (TF/TA)

Transaction not acceptable

Unexpected termination

API termination

Application program WebSphere Data Interchange

If CMCB.FILERCVD EQ ‘Y’

Perform

Do until TRCB.TRABORT EQ ‘Y’

If TRCB.TRABORT NE ‘Y’

If TRCB.TRXACCEPT EQ ‘Y’

Do while TRCB.EJECT NE ‘Y’

Perform

Perform

ENDDO

Perform

ELSE

END - IF

END - IF

ENDDO

If CCB.ZCCBRC NE 4 or CCB.ZCCBERC NE 1

Perform

Perform

END - IF

END - IF

Locate and
translate next
transaction

and return first
structure

Network
program
called by

WebSphere
Data Interchange

Return
next

structure

Data
written to

“RECVFILE”

Data from
trading partnersAPI initializationPerform

API receivePerform

First call of transaction (TS)Perform

Figure 24. Receive, deenvelope, and translate process

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 419

Receiving and deenveloping considerations
The following considerations apply to these services:

v The communications receive function invokes a network program to receive data
into a file. The data placed in this file is under the control of the network
program. WebSphere Data Interchange counts the bytes in the interchanges in
the file in order to update the management reporting component of WebSphere
Data Interchange. No information from the interchanges is recorded in the
Transaction Store.

v The deenvelope function generates the functional acknowledgment for the data
received and reconciles the received functional acknowledgments with the
original transactions. This is true whether code 214 (deenvelope only) or
code 212 (deenvelope and translate) is used.

v Because deenveloping and translation can be separate functions, you need a
way to tell the translator which transaction from the Transaction Store to process.
Use the transaction handle (THANDLE) that is assigned to the transaction when it
is added to the store. The program that is deenveloping the data must track the
transaction handle. If the program does not track the transaction handle, you can
retrieve a list of these values from the Transaction Store using the QUERY
command.

v No single API function is the equivalent of the WebSphere Data Interchange
Utility RECEIVE AND TRANSLATE command. Using the API, receiving the data,
and deenveloping and translating the data are two separate steps.

Test Translate-to-application
You can test your transactions by sending data in either test mode or
production mode. If your main purpose is to test the transaction, use test mode. If
your main purpose is to test the path between your system and that of your
treading partner, use production mode.

When you send test data in text mode (function code 211), the following occurs:

v Data is translated to application format in test mode. Your program follows the
same steps as for production mode. Interchanges are read from a file and
parsed. Transactions are translated and presented to your program one
transaction at a time.

However, no information is written to the Transaction Store, and no functional
acknowledgments are generated or reconciled. If you want information written to
the Transaction Store, or if you want functional acknowledgments returned to
your trading partner, you must use the second test method outlined below.

v When you use the test function code, WebSphere Data Interchange looks for a
test usage/rule (if one is available) and forces test mode. You can verify the
results of your program's efforts by examining the application data produced, as
well as the information recorded in the event log. To view or print the event log,
choose Event logging from the Administrator's Menu.

When you send test data in production mode, the following occurs:

v The data is sent with the test indicator set to T in the interchange header
segment, if the envelope type being used has a test indicator. When you use the
test indicator, translation and functional acknowledgment processing occurs as
usual (including updating the Transaction Store).

v The interchange that contains the functional acknowledgment is identified as
being for test purposes. You might prefer this method, rather than the first option,
because you can test the entire path from your trading partner to your program,
and back to your trading partner (including functional acknowledgments).

Translation services

420 WebSphere Data Interchange Programmer’s Reference

Translate-to-application API
The functions of the translate-to-application API are described in more detail in the
following sections:

Translate specific
Translates a specific transaction into application format. Use this API to
translate a transaction that has been deenveloped or deenveloped and
translated, and is already in the Transaction Store.

Translate file
Deenvelopes and translates all the transactions in a file. Use this API when
all the interchanges in a file have been processed, and all transactions in
the interchanges have been deenveloped, translated, and added to the
Transaction Store.

Translate specific API
The basic format of the API request to translate a specific transaction from EDI
standard format to application format is:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

The unique parameters for the Translate specific API request are defined in
Table 138.

Table 138. Translate specific API request parameters

Parameter Description

SNB ZSNBLL
32

ZSNBNAME
TRANPROC

ZSNBPC
6

FCB ZFCBFUNC 213

TRCB The translator control block. See “Translator Control Block
(TRCB)” on page 562 for details about this block.

TRIDB The input data block. WebSphere Data Interchange uses this
block as a work buffer. This buffer must be at least 32000 bytes
in length. Its maximum size must be the size of the maximum EDI
standard segment that is received, excluding the BIN segment.
See “Translator Input Data Block (TRIDB)” on page 589 for a
general description of this block.

TRODB The output data block. This block contains the application data
produced. The format of the Data field in this block must match
the format of the data defined in the data format. The block has a
minimum size of 32000. See “Translator Output Data Block
(TRODB)” on page 591 for a general description of this block.

First call of session (TA)
There are numerous fields in the control blocks defined for the
translate-to-application API function that need only be established once. These
values can be established before the first call and they do not have to be refreshed
or changed before another call. The following control block fields must be initialized
for the first session call.

For the SNB:

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 421

ZSNBLL
32

ZSNBNAME
TRANPROC

ZSNBPC
6 (all calls for translation services have six parameters)

For the FCB:
ZFCBLL

4
ZFCBFUNC

213

For the TRCB:
BLKLEN

1536
BLKNME

EDITRCB
BLKTYPE

The format for the TRIDB and TRODB buffers:
H Unlimited size
(other)

Limited to 32768 bytes
XPANDED

Y. Indicates that WebSphere Data Interchange must check the BLKLEN field
to determine the software version and release being used.

BATCHID
The batch ID for a group of transactions. The Transaction Store creates an
alternate key value using the batch ID. Other than using the transaction
handle, searching on batch ID is the quickest way to retrieve a transaction
from the Transaction Store during the selection process. The default is
DDHHMMSS, where DD is the current day of the month, and HHMMSS is the
current time.

Note: This field is checked with each call to translator. The value in this
field when the first call of transaction (TA) is made will be associated
with the transaction.

ERRFILTER
Indicates which error codes to filter out during this session. The values set
here will be the initial values for the DIERRFILTER named variable at the
start and end of each transaction. For more detailed information, see “Error
filtering” on page 17.

MAPCHAIN
Indicates whether mapchaining is in effect.
Y Translates the current transaction again using the value in the

variable DIMAPCHAIN to select the map
(other)

Translates the next transaction
FORCETEST

Indicates whether the translate process is forced to select only test
usages/rules. If a value of Y is used in this field for the DEENVELOPE
command, you must also use it with the TRANSLATE TO APPLICATION
command to select only deenveloped transactions.

For the TRIDB:

Translation services

422 WebSphere Data Interchange Programmer’s Reference

BLKLEN
Set this field to the size of the data block, including the BLKLEN field. The
minimum value for this field is 32000 bytes.

RESERVED
Binary zeros.

For the TRODB:

BLKLEN
Set this field to the size of the data block, including the BLKLEN field. The
minimum value for this field is 32000 bytes.

RESERVED
Binary zeros.

First call for transaction (TA)
The following TRCB fields are used on the first call for transaction and must be set
before the first call for transaction is made:

TSKEY
The transaction handle for the transaction you want to translate. The format
of the handle is YYYYMMDDHHMMSSxxnnnn formatted as a 10 byte packed field.
If your program does not handle packed values, initialize this field to all
blanks or all binary zeros and use the TSKEYU field instead.

TSKEYU
The transaction handle for the transaction you want to translate. The format
of the handle is YYYYMMDDHHMMSSxxnnnn formatted as a 20-byte character
field. Use this field only if the TSKEY field does not have a value.

RAWDATA
Indicates whether the translator must automatically fill in the values for the
internal trading partner ID and the record ID before returning the structure
to your application.

Y Fills in the values for internal trading partner ID and record ID

(other)
Does not fill in the values for internal trading partner ID and
record ID

The following TRODB fields are used on the first call for transaction and must be
set before the first call for transaction is made.

BLKLEN
The length of the TRODB, including this field. If you are using the same
TRODB for all calls, initialize this field only once. The minimum length is
32000 bytes.

RESERVED

Set this field to zeros. If you are using the same TRODB for all calls,
initialize this field only once.

When initialization is complete, the translator is invoked with the following API
request.
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

On the first call to the translator for a transaction, the transaction identified in the
TSKEY or TSKEYU field is retrieved from the Transaction Store along with the
interchange, group, and transaction header images. The interchange sender ID and

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 423

sender qualifier are extracted from the interchange header. These values are used
to identify the trading partner who sent the data. For a description of the information
used to identify the trading partner, see “Locating sending trading partner profile
members” on page 469.

The transaction/message ID value is extracted from the transaction header. At this
point, the translator attempts to locate the trading partner usage/rule and map. The
usages/rules and maps must be established by your EDI Administrator before API
requests are made. For a description of the fields used to locate a map, see
“Locating sending and receiving trading partner profile members” on page 470.

Numerous errors can occur at this point. If an error occurs, the return code and
extended return code for the error are posted in the ZCCBRC and ZCCBERC fields of
the CCB. With each call, your program must check the TRXACCEPT and TRABORT
fields for error information.

Transaction TRCB Fields (TA):: The tables in this section describe the fields
returned on the first call for a transaction. Such a large quantity of information is
returned on the first call for a translate-to-application request that multiple tables are
used to show the TRCB fields returned. Each table begins with a description of the
data contained in the table.

The TRCB fields described in Table 139 on page 425 provide some basic attributes
of the transaction just processed, and relate to the transaction side of the
processing rather than the application side.

Translation services

424 WebSphere Data Interchange Programmer’s Reference

Table 139. Transaction attribute fields in the translator control block (TRCB)

Field name Description

TRNID The standard transaction or message ID for the transaction or
message received

TEST Indicates the type of transaction
I Information
P Production
T Test

MAPKEY The map used to translate the EDI standard data

TPNICK The trading partner nickname associated with the transaction

DUPTRAN Indicates whether the interchange being received has been received
before

TRXACCEPT Indicates whether the transaction had an acceptable translation and
indicates that application data has been returned in the TRODB,
unless the EJECT field has a value of Y.

TRABORT Indicates whether an error occurred that was so severe that the
translator did not continue. If this field is set to Y, the translator has
terminated of its own accord.

TSKEY The key value assigned to the transaction in the Transaction Store.
This is called the transaction handle and has a format of
YYYYMMDDHHMMSSxxnnnn. It is returned as a packed 10-byte value in this
field, which is how it is stored in the database.

TSKEYU The key value assigned to the transaction in the Transaction Store. It
has the same value as the TSKEY field, except that TSKEYU is an
unpacked 20-byte value.

EJECT Indicates whether the end of the transaction has been reached. For
more information, see “Partial structures (TA)” on page 441.Y

Transaction ends. No data is returned. The next call is treated as the
first call for the next transaction. (other)

Transaction continues. The next call will return either the next
structure or an EJECT value of Y.

ERRNUM The total number of errors flagged during data translation.

ERRCDES An array of the first 10 different errors flagged during data translation.
For more information, see “Translator Error Codes” on page 587.

The TRCB fields described in Table 140 are application-related and provide
information about the application side of the processing rather than the
transaction side.

Table 140. Application related fields in the translator control block (TRCB)

Field name Description

ATFID The data format ID associated with this transaction.

ATSID The name of the structure being returned on this call. The data
related to the structure is in the TRODB.

APPFILE The ddname for the application file to which the application data
must be written. This field is taken from the data format definition,
but can be overridden in the trading partner receive map rule
record.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 425

Table 140. Application related fields in the translator control block (TRCB) (continued)

Field name Description

APTYPE The type of file identified in APPFILE. Applies only to CICS and
MQ (which is supported in both z/OS and CICS). Valid values are:
MQ MQSeries queue profile member name
PG Program identified in APPFILE
TD TD queue name identified by the first four characters of

APPFILE
TM TS queue (main) identified in APPFILE
TS TS queue (auxiliary) identified in APPFILE
TX CICS transaction code identified by the first four

characters of APPFILE

For z/OS, if you do not specify this keyword, this field is ignored,
and the ddname of a sequential file is used. For CICS, the
default is TS.

INTPID The internal trading partner ID taken from the map receive
usage/rule.

APPCTLNUM The application control value. The application control value is
defined by the application field with an AC data type, or by the
fields that were assigned when the map was created. This value
uniquely identifies the transaction to the application. Applies only
to Version 2.1 and earlier.

XACFIELD The application control value. The application control value is
defined by the application field with an AC data type, or by the
fields that were assigned when the map was created. This value
uniquely identifies the transaction to the application. Applies only
to Version 2.1 and earlier.

RAWDATA Indicates whether the raw data processing was performed. Applies
only if raw data processing was requested by setting the RAWDATA
field to Y on the first request. With raw data processing, the
translator sets the record ID and internal trading partner ID field
values. The format of data written to the application file by the
application program is under the control of the application
program. All the necessary data for C and D records is available,
but need not be used if raw data output is requested.
Y Raw data processing occurred.
N Raw data processing did not occur because the data

format did not have raw data specifications.

The translator output data block contains the application data. For each call to the
translator, a single structure (record) of application data is returned. The structure
returned is indicated by the ATSID field of the TRCB. Data is returned only if the
transaction was acceptable (TRXACCEPT value of Y) and this is not the end of the
transaction (EJECT value is not Y). See “Partial structures (TA)” on page 441 for
special considerations.

The following TRODB fields are concerned with the application data:

DATELEN
The number of characters of data being returned in the DATA field.

DATA The application data with a format defined for the structure (ATSID field).

The TRCB fields described in Table 141 on page 427 are concerned with the
interchange for the current transaction.

Translation services

426 WebSphere Data Interchange Programmer’s Reference

Table 141. Interchange header/trailer fields in the translator control block (TRCB)

Field name Description

QTPNICK The trading partner nickname for the last transaction
processed.

ENVTYPE Indicates the envelope type of the interchange. Valid values
are:
E UNB/UNZ
I ICS/ICE
T STX/END
U BG/EG
X ISA/IEA

IHCTL See IHXCTL.

IHXCTL The interchange control number assigned to the current
interchange. The value returned in this field is right-justified
with leading zeros.

ISYNTAXID The interchange syntax ID for envelope types E and T.

ISYNTAXVER The interchange syntax version for envelope types E and T.

ISIDQUAL The interchange sender ID qualifier for envelope types E, I,
and X.

ISID The interchange sender ID (interchange header with data
type IS).

ISENDNAME The interchange sender name for envelope types U and T.

IREVROUT The interchange reverse routing for envelope type E.

IRIDQUAL The interchange receiver ID qualifier for envelope
types E, I, and X.

IRID The interchange receiver ID (interchange header with data
type IR).

RECVNAME The interchange receiver name for envelope types U and T.

IROUTEADDR The interchange routing address for envelope type E.

IDATE The interchange date (interchange header with data type
DT).

ITIME The interchange time (interchange header with data type
TM).

IVERREL The interchange version and release (interchange header
with data types VR or LV).

ISPW The interchange password (interchange header with data
type PW).

IAPREF The application reference (interchange header with data type
AP).

ISTDID The interchange standard ID for envelope types I and X.

IPRIOR The interchange priority code for envelope types E and T.

ICOMMAGREE The interchange communication agreement for envelope
types E and T.

The following TRCB fields are concerned with the group for the current transaction:
GHCTL

See GHXCTL.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 427

GHXCTL
The group control number assigned to the current group. The value is
returned in this field as a right-justified value with leading zeros.

GSIDQUAL
The group sender ID qualifier for envelope type E.

GSID The group sender ID (group header with data type AS).
GRID The group receiver ID (group header with data type AR).
GRIDQUAL

The group receiver ID qualifier for envelope type E.
GDATE

The group date (group header with data type DT).
GTIME

The group time (group header with data type of TM).
GAPW

The group password (group header with data type PW).
GVER The group version (group header with data type VR).
GREL The group release (group header with data type LV).
GRESPAGENCY

The group responsible agency code for envelope types E, U, and X.

The following TRCB fields are concerned with the transaction header for the current
transaction:

NEWTRN
Indicates whether this transaction had an acceptable translation. If you want
a copy of the transaction header, you can use a function code value of 3 to
obtain an exact image of the transaction header.
Y The transaction had an acceptable translation.
(other)

The transaction did not have an acceptable translation.

THCTL
See THXCTL.

THXCTL
The transaction control number assigned to the current transaction. The
value returned in this field is right-justified with leading zeros.

TTC The current transaction or message ID value. See also TRNID on 425.

TVER The transaction version (transaction header with data type VR).

TREL The transaction release (transaction header with data type LV).

Subsequent calls (TF/TA)
The items listed below summarize the activity that takes place on the first call for a
transaction (TA):

1. The next transaction in the file is located or the specific transaction you
requested is retrieved from the Transaction Store.

2. The map associated with the transaction is found.

3. The translation from EDI standard format into application structures takes place.

4. The application structures are sorted into the order defined by the data format
definition.

5. The first application structure is returned to the calling program in the TRODB.

If the first call for a transaction was successful, the TRXACCEPT field has a value
of Y, and the application continues to call the translator using the following call with
the same parameters as the first call of a transaction):

Translation services

428 WebSphere Data Interchange Programmer’s Reference

FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

The application continues to call the translator until the EJECT field has a value of Y.
For each call made, the next application structure is returned in the TRODB and the
name of the structure is placed in the ATSID field.

Last call for transaction (TA)
The translator signals that the last call for a transaction has just been made by
setting the EJECT field to a value of Y. No data accompanies this call. At this point,
your application might perform application-related processing relative to the end of
the transaction, including updating the application databases. The next call is
interpreted as the first call for the next transaction. The translator issues a COMMIT
request with the next call.

Last call of session (TA)
When all the specific transactions have been processed, call the translator one last
time with an end-translation function code. For more information, see “End
translation/enveloping API” on page 458.

Translate-file-to-application API
You can request a translate-file-to-application in either production or test modes.
Function code 212 requests translation in production mode, and function code 211
requests translation in test mode.

You do not need to change your program to switch from test mode to production
mode. You only need to change the function code used to invoke the services. Test
mode is different from production mode in the following ways:

v WebSphere Data Interchange assumes that the test indicator is set in the
interchange, even when it is not present, or when it indicates production data.
This forces the use of a test transaction, if one exists.

v WebSphere Data Interchange automatically logs the EDI standard image
received and the application data produced.

v WebSphere Data Interchange does not write any data to the Transaction Store to
prevent cluttering up the store with test data.

v Functional acknowledgments are not generated even if requested in the usage
record.

v Statistics maintained by the Management Reporting component of WebSphere
Data Interchange are not updated.

The basic format of the API request to translate-to-application format is:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

The unique parameters for this API request are:
SNB ZSNBLL 32 ZSNBNAME TRANPROC ZSNBPC 6
FCB ZFCBFUNC

212 production
211 test

TRCB The translator control block. For more information, see “Translator Control
Block (TRCB)” on page 562.

TRIDB
The input data block. WebSphere Data Interchange uses the input data
block as a work buffer. The minimum size is 32000 bytes. Maximum size
must be the size of the largest EDI standard segment that is received
excluding the BIN segment. See “Translator Input Data Block (TRIDB)” on
page 589 for a general description of this block.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 429

TRODB
The output data block. This block contains the application data that has
been produced. The format of the data in this block matches the format of
the data defined in the data format. The minimum size is 32000 bytes. See
“Translator Output Data Block (TRODB)” on page 591 for a general
description of this block.

First call of session (TF)
There are numerous fields in the control blocks defined for the
translate-to-application API function whose values need to be established only once.
The values can be established before the first call and they do not have to be
refreshed or changed before another call. Because the first call for a session also
qualifies as the first call for a transaction, you must also follow the instructions in
the next section, “First call for transaction (TF)”. The following tables illustrate the
control blocks, the fields within the control blocks, and the initialization
considerations.

SNB initialization for translate-file-to-application:
ZSNBLL

32
ZSNBNAME

TRANPROC
ZSNPC

6 (all calls for translation services have six parameters)

FCB initialization for translate-file-to-application:
ZFCBLL

4
ZFCBFUNC

212 production
211 test

TRCB initialization for translate-file-to-application:

BLKLEN
1536

BLKNME
EDITRCB

BLKTYPE
The format for the TRIDB and TRODB buffers:
H Unlimited size
(other)

Limited to 32768 bytes

XPANDED
Y Indicates that WebSphere Data Interchange must check the BLKLEN field
to determine the software version and release being used.

ENVLDELAY
Indicates whether functional acknowledgments must not be enveloped.

Y Does not envelope functional acknowledgments

(other)
Envelopes functional acknowledgments

DUPTRAN
Indicates how to process duplicate interchanges. DUPTRAN is an input field

Translation services

430 WebSphere Data Interchange Programmer’s Reference

on the first call of a session and establishes if duplicate interchanges are
errors. On all other requests, DUPTRAN is an output field. Valid values are:
N Does not process duplicate interchanges but considers them as

errors. If a duplicate interchange is received, the translator issues
message TR0211 and returns to the application with an interchange
level error (extended return code value of 5).

Y or (other)
Processes duplicate interchanges and returns transactions flagged
as duplicate transactions. Y is the recommended value.

SCOPE
Indicates the level of recovery required:
E Issues a database COMMIT on the completion of every

interchange. Applies only when enveloping is performed.
(other)

Issues a database COMMIT at the start of every transaction.

Note: This field contains values that affect the recovery scope during the
session. For more information, see “Send Recovery Scope” on
page 413.

INMEMTRANS
Applies only if the value of SCOPE is E. Indicates the maximum number of
transactions that are maintained in virtual storage before any database
updates are attempted. Database updating occurs when the value in this
field, or the end of the interchange, is reached.

This value is important in an environment where multiple application
programs are requesting translation services concurrently. The higher you
set the value for this field, the more concurrency can be achieved. For more
information, see “Translator Control Block (TRCB)” on page 562.

Note: The value set in this field affects the recovery scope during the
current session. For more information, see “Send Recovery Scope”
on page 413.

FILEID
The ddname of the file containing the interchanges to be processed. If you
specify a value in this field, the value in REQID is ignored.

REQID
A member in the mailbox (requestor) profile (REQPROF). The Receive file
name field in the mailbox (requestor) profile identifies the file containing the
interchanges to be processed. This field is required only if FILEID is not
specified.

MRREQID
If the interchanges being deenveloped have not been recorded in the
Management Reporting statistics database, this field identifies the
requestor ID for which statistics must be updated. Applies only if the
interchanges were not received using the Communication service receive
function.

FUNACKFLE
If functional acknowledgments are being enveloped, the ddname of the file
to which the transaction data is written when the interchange is complete. If
you do not specify this keyword, the ddname specified in the Trans data
queue field of the network profile (NETPROF) is used.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 431

BATCHID
The batch ID of a group of transactions. The Transaction Store creates an
alternate key using the batch ID. Other than using the transaction handle,
searching on batch ID is the quickest way to retrieve a transaction from the
Transaction Store during the selection process. The default is DDHHMMSS,
where DD is the current day of the month, and HHMMSSL is the current time.

Note: This field is checked with each call to the translator. The value in this
field when the last call for transaction (TS) is made will be
associated with the transaction.

TRXLIFE
The amount of time that a transaction remains in the Transaction Store
before it is eligible for purging. The default is 30 days.

Note: This field is checked with each call to the translator and if you do not
specify a value, the default value is used. The value that exists when
the last call for transaction (TS) is made will be associated with the
transaction.

IMGLIFE
The amount of time that a transactions image (that is, the EDI standard
data produced) remains in the Transaction Store. The default is 30 days.

Note:

1. This field is checked with each call to the translator. The value that
exists when the last call for transaction (TS) is made will be associated
with the transaction.

2. This field is not currently used.

ERRFILTER
Indicates which error codes to filter out during this session. The values
specified here will be the initial values for the DIERRFILTER named
variable at the start and end of each transaction. For more information, see
“Error filtering” on page 17.

MAPCHAIN
Indicates whether mapchaining is in effect. Valid values are:

Y Translates the current transaction again (using the map identified in
the DIMAPCHAIN variable.

(other)
Translates the next transaction.

FORCETEST
Indicates whether the translate process is forced to select only a test
usage/rule. If you specified a value of Y for this keyword on the
DEENVELOPE command, you must also specify a Y on the TRANSLATE
TO APPLICATION command to select only deenveloped transactions.

TRIDB initialization for translate-file-to-application:
BLKLEN

The size of the data block, including the BLKLEN field. The minimum size is
32000 bytes.

RESERVED
Binary zeros

TRODB initialization for translate-file-to-application:

Translation services

432 WebSphere Data Interchange Programmer’s Reference

BLKLEN
The size of the data block, including the BLKLEN field. The minimum size is
32000 bytes.

RESERVED
Binary zeros.

First call for transaction (TF)
You must iniitalize certain fields before the first call for a transaction is issued.

For the TRIDB:

RAWDATA
Indicates whether the translator fills in the values for the internal trading
partner ID and the record ID before returning the structure to your
application.
Y Fills in the values for the internal trading partner ID and record ID.
N Does not fill in the values for the internal trading partner ID and

record ID.

HOLDFLAG
Indicates whether the transaction is placed in HELD status when added to
the Transaction Store. A transaction in HELD status is not available for any
other activity until you release it.
Y Places the transaction in hold status.
N (or other)

Does not place the transaction in hold status.

For the TRODB:
BLKLEN

The length of the TRODB, including this field. If you are using the same
TRODB for all calls, initialize this field only once.

RESERVED
Zeros. If you are using the same TRODB for all calls, initialize this field only
once.

When initialization is complete, the translator is invoked with the following API
request:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

On the first call to the translator for the session, the file containing the interchanges
(identified by the FILEID or REQID field) is opened and the first interchange in the file
is located. The entire interchange is read into virtual storage and validated. The
interchange sender ID and sender qualifier are extracted from the interchange
header. These values are used to determine which trading partner sent the data.
See “Locating sending trading partner profile members” on page 469 for an
explanation of the search for a trading partner.

On the first call to the translator for a transaction, the next transaction in the current
file is located (which might involve finding the next interchange) and the
transaction/message ID value is extracted from the transaction header. At this
point, the translator attempts to locate a map and usage/rule. Your EDI
administrator must establish the necessary maps and usages/rules before API
requests are made. For more information, see “Locating sending and receiving
trading partner profile members” on page 470 for a description of the fields used
and the search to locate a transaction.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 433

Numerous errors can occur at this point. If an error occurs, the return code and
extended return code for that error are posted in the ZCCBRC and ZCCBERC fields of
the CCB. With each call, your program must check the TRXACCEPT and TRABORT
fields for error information.

TRXACCEPT
Indicates whether the transaction had an acceptable translation. If this value
is not Y and your program continues processing, the next call made to the
translator is considered the first call for the next transaction.

TRABORT
Indicates whether an error was so severe that the translator could not
continue processing.

If this value is Y and your program continues processing, the next call
made to the translator is considered the first call for the session. If the
value in the FILEID or REQID are not changed for the next call, continued
processing might result in an infinite loop because the same file is
processed again from the beginning and generates the same error.

Transaction TRCB Fields (TF):: The tables in this section describe the fields
returned on the first call for a transaction. Such a large quantity of information is
returned on the first call for a translate-file-to-application request that multiple tables
are used to show the TRCB fields returned. There is a description of the data in the
table at the beginning of each table.

The TRCB fields described in Table 142 provide information on basic attributes of
the transaction. This information is about the transaction side of the processing
rather than the application side.

Table 142. TRCB fields providing information on basic transaction attributes

Field name Description

TRNID The standard transaction or message ID for the transaction/message
received.

TEST The type of transaction:
I Information
P Production
T Test

MAPKEY The map used to translate the EDI standard data.

TPNICK The trading partner nickname associated with the transaction.

DUPTRAN Indicates whether this transaction has been received before:
Y Duplicate transaction
(other) New transaction

TRXACCEPT Indicates that translation was acceptable and application data returned in
the TRODB, unless the EJECT field has a value of Y:
Y This transaction had an acceptable translation.
(other) This transaction did not translate due to missing or invalid

information.

TRABORT Indicates whether an error occurred that was so severe the translator
stopped processing:
Y The error was so severe that translation was halted.
(blank) No errors occurred.

TSKEY The key value assigned to the transaction in the Transaction Store. This is
called the transaction handle and has a format of YYYYMMDDHHMMSSxxnnnn.
It is returned as a 10-byte packed value in this field, which is how it is
stored in the database.

Translation services

434 WebSphere Data Interchange Programmer’s Reference

Table 142. TRCB fields providing information on basic transaction attributes (continued)

Field name Description

TSKEYU The key value assigned to the transaction in the Transaction Store. This is
the same value as the TSKEY field, except that this field contains an
unpacked 20-byte value.

EJECT Indicates whether the end of the transaction has been reached. See
“Partial structures (TA)” on page 441 for related considerations.
Y This transaction is complete. No data is returned and the next

call is treated as a first call for transaction.
(other) More data remains for the current transaction. The next call will

return the next structure or an EJECT value of Y.

ERRNUM The total number of errors flagged during data translation.

ERRCDES An array of the first 10 different errors flagged during data translation. For
more information, see “Translator Error Codes” on page 587.

The TRCB fields described in Table 143 are involved in the application side of the
processing rather than the transaction side.

Table 143. Application related fields in TRCB

Field name Description

ATFID The data format ID associated with this transaction.

ATSID The name of the structure being returned on this call. The data contained
in the structure is in the TRODB.

APPFILE The ddname name for the application file to which the application data
must be written. This value is taken from the data format definition but can
be overridden in the map receive usages/rules record.

APTYPE The type of file represented by APPFILE. Applies only to CICS and MQ
(which is supported in both z/OS and CICS). Valid values are:
MQ MQSeries queue profile member name
PG Program identified by APPFILE
TD Transient data queue name identified by the first 4 characters of

APPFILE
TM Temporary storage queue (main) identified by APPFILE
TS Temporary storage queue (auxiliary) identified by APPFILE
TX CICS transaction code identified by the first 4 characters of

APPFILE

For z/OS, if you do not specify this keyword, this field is ignored; instead,
the default is the ddname of a sequential file. For CICS, the
default is TS.

INTPID The internal trading partner ID taken from the map receive usages/rules.

APPCTLNUM See XACFIELD.

XACFIELD The application control value. The application control value is defined by
the application field with an AC data type or by the fields that were
assigned when the map was created. This value uniquely identifies the
transaction to the application.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 435

Table 143. Application related fields in TRCB (continued)

Field name Description

RAWDATA Indicates whether the raw data processing was performed. Applies only if
raw data processing was requested by setting the RAWDATA field to Y on
the first request. With raw data processing, the translator sets the
record ID and internal trading partner ID field values. The format of data
written to the application file by the application program is under the
control of the application program. All the necessary data for C and
D records is available, but need not be used if raw data output is
requested.

Y Raw data processing was performed.

N Raw data processing was not performed because the data format
did not have raw data specifications.

The TRODB contains the application data. For each call to the translator, a single
structure (record) of application data is returned. The type of structure returned is
indicated by the ATSID field of the TRCB. Data is returned only if the transaction
was acceptable (TRXACCEPT is Y) and the transaction is not complete (EJECT value
is Y). See “Partial structures (TA)” on page 441 for special considerations.

The TRODB fields described below are related to application data:

DATALEN

The number of characters of data returned in the DATA field.

DATA The application data with the format defined by the data format definition for
the structure (ATSID field).

The TRCB fields described below are related to functional acknowledgments:
FABUILT

The envelope type of the functional acknowledgment. Valid values are:
E UNB/UNZ
I ICS/ICE
T STX/END
U BG/EG
X ISA/IEA
G The acknowldegement does not have an interchange header.
S The acknowledgement was written to the Transaction Store, but

was not enveloped.
FARC The return code from the translator for the functional acknowledgment

translation performed during deenveloping. For more information about
return codes, refer to WebSphere Data Interchange Messages and Codes.

FAERC
The extended return code from the translator for the functional
acknowledgment translation performed during deenveloping. For more
information about return codes, refer to WebSphere Data Interchange
Messages and Codes.

The TRCB fields described in Table 144 on page 437 are associated with the
interchange to which the current transaction belongs. These fields are established
when the first transaction for the interchange is processed. They remain constant
for all transactions in this interchange.

Translation services

436 WebSphere Data Interchange Programmer’s Reference

Table 144. Interchange header/trailer fields in TRCB

Field Name Description

DSNAME The physical data set name from which transactions are processed.

QTPNICK The trading partner nickname for which the last transaction was
processed.

QSIZE The total number of bytes that were in the interchange, stored as a
4-byte binary value.

QBT The character representation of the QSIZE field.

ENVTYPE The type of envelope type received.

IHCTL The interchange control number assigned to the current interchange.
This value is returned in this field as a right-justified value with
leading zeros. Applies to version 2.1 or earlier.

IHXCTL The interchange control number assigned to the current interchange.
This value is returned in this field as a right-justified value with
leading zeros. Applies to version 3.1 or later.

ISYNTAXID The interchange syntax ID for envelope types E and T.

ISYNTAXVER The interchange syntax version for envelope types E and T.

ISIDQUAL The interchange sender ID qualifier for envelope types E, I, and X.

ISID The interchange sender ID (interchange header for data type IS).

ISENDNAME The interchange sender name for envelope types U and T.

IREVROUT The interchange reverse routing for envelope type E.

IRIDQUAL The interchange receiver ID qualifier for envelope types E, I, and
X.

IRID The interchange receiver ID (interchange header for data type IR).

IRECVNAME The interchange receiver name for envelope types U and T.

IROUTEADDR The interchange routing address for envelope type E.

IDATE The interchange date (interchange header for data type DT).

ITIME The interchange time (interchange header for data type TM).

IVERREL The interchange version and release (interchange header for data
types VR or LV).

ISPW The interchange password (interchange header for data type PW).

IAPREF The application reference (interchange header for data type AP).

ISTDID The interchange standard ID for envelope types I and X.

IPRIOR The interchange priority code for envelope types E and T.

ICOMMAGREE The interchange communication agreement for envelope types
E and T.

NEWENV Indicates whether this transaction is the first transaction of an
interchange. If you want a copy of the interchange header, you can
use a function code value of 1 to obtain an exact image. For more
information, see “Retrieve interchange header API” on page 472.
Y Starts a new interchange
(other) Does not start a new interchange

GRPNUM The total number of groups processed so far in the current
interchange, stored as a 4-byte binary value. The value in this field
changes as the transactions in the interchange are processed,
indicating how much of the interchange has been processed. See
IGT for the character representation of this field.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 437

Table 144. Interchange header/trailer fields in TRCB (continued)

Field Name Description

TRNNUM The total number of transactions processed so far in the current
interchange, stored as a 4-byte binary value. The value in this field
changes as the transactions in the interchange are processed,
indicating how much of the interchange has been processed. See
ITT for the character representation of this field.

SEGNUM The total number of segments processed so far in the current
interchange, stored as a 4-byte binary value. The value in this field
changes as the transactions in the interchange are processed,
indicating how much of the interchange has been processed. See
IST for the character representation of this field.

ESIZE The total number of bytes processed so far in the current
interchange, stored as a 4-byte binary value. The value in this field
changes as the transactions in the interchange are processed,
indicating how much of the interchange has been processed. See
IBT for the character representation of this field.

IGT The character representation of GRPNUM. The value in this field
changes as the transactions in the interchange are processed,
indicating how much of the interchange has been processed.

ITT The character representation of TRNNUM. The value in this field
changes as the transactions in the interchange are processed,
indicating how much of the interchange has been processed.

IST The character representation of SEGNUM. The value in this field
changes as the transactions in the interchange are processed,
indicating how much of the interchange has been processed.

IBT The character representation of ESIZE. The value in this field
changes as the transactions in the interchange are processed,
indicating how much of the interchange has been processed.

The TRCB fields described in Table 145 are associated with the group to which the
current transaction belongs.

Table 145. Group header/trailer fields in the TRCB

Field name Description

GHCTL The group control number assigned to the current group. The
value returned in this field is right-justified with leading zeros.
This field value is established when the first transaction for the
group is processed. Applies to version 2.1 or earlier.

GHXCTL The group control number assigned to the current group. The
value returned in this field is right-justified with leading zeros.
This field value is established when the first transaction for the
group is processed. Applies to version 3.1 or later.

GSIDQUAL The group sender ID qualifier for type E envelope groups.

GSID The group sender ID (group header for data type AS). This
value in this field is established when the first transaction for the
group is processed.

GRID The group receiver ID (group header for data type AR data
type). This value in this field is established when the first
transaction for the group is processed.

GRIDQUAL The group receiver ID qualifier for type E envelope groups.

Translation services

438 WebSphere Data Interchange Programmer’s Reference

Table 145. Group header/trailer fields in the TRCB (continued)

Field name Description

GDATE The group date (group header for data type DT). This value in
this field is established when the first transaction for the group is
processed.

GTIME The group time (group header for data type TM). This value in
this field is established when the first transaction for the group is
processed.

GAPW The group password (group header for data type PW). This
value in this field is established when the first transaction for the
group is processed.

GVER The group version (group header for data type VR). This value
in this field is established when the first transaction for the
group is processed.

GREL The group release (group header for data type LV). This value
in this field is established when the first transaction for the
group is processed.

GRESPAGENCY The group responsible agency code for types E, U, and
X envelopes.

NEWGRP Indicates whether this transaction is the first transaction of an
interchange. If you want a copy of the group header, you can
use a function code value of 2 to obtain an exact image. For
more information, see “Retrieve group header API” on page 472.
Y Starts a new interchange
(other) Does not start a new interchange

TRNGRP The total number of transactions processed so far in the current
group, stored as a 4-byte binary value. This value in this field
changes as transactions in the group are processed, indicating
how much of the group has been processed. See GTT for the
character representation of this field.

GTT The character representation of TRNGRP. This value in this field
changes as transactions in the group are processed, indicating
how much of the group has been processed.

The TRCB fields described in Table 146 are associated with the transaction header
and trailer for the current transaction.

Table 146. Transaction header/trailer fields in the TRCB

Field name Description

NEWTRN Indicates whether a transaction header is available. If you want a
copy of the transaction header, you can use a function code value
of 3 to obtain an exact image. For more information, see “Retrieve
transaction header API” on page 473.
Y A transaction header is available
(other) A transaction header is not available

LASTINENV Indicates whether this transaction is the last transaction in the
current interchange.

THCTL The transaction control number assigned to the current transaction.
The value is returned in this field as a right-justified value with
leading zeros. Applies to version 2.1 or earlier.

THXCTL The transaction control number assigned to the current transaction.
The value is returned in this field as a right-justified value with
leading zeros. Applies to version 3.1 or later.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 439

Table 146. Transaction header/trailer fields in the TRCB (continued)

Field name Description

SEGTRN The total number of segments in the current transaction, stored as
a 4-byte binary value. See TST for the character representation of
this field.

TTC The current transaction or message ID value. See also TRNID on
425.

TVER The transaction version (transaction header for data type VR).

TREL The transaction release (transaction header for data type LV).

TST The character representation of SEGTRN.

Subsequent calls (TF/TA)
The following activities take place on the first call for a transaction (TF):

v The next transaction in the file is located or the requested transaction is retrieved
from the Transaction Store.

v The map associated with the transaction is found.

v The translation from EDI standard format into application structures takes place.

v The application structures are sorted into the order defined by the data format
definition.

v The first application structure is returned to the calling program in the TRODB.

If the first call for a transaction was successful, the TRXACCEPT field has a value of Y
and the application continues to call the translator until the EJECT field has a value
of Y. The application uses the following call:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

The parameters on this call match those on the first call for a transaction. For each
call made, the next application structure is returned in the TRODB and the name of
the structure is placed in the ATSID field.

Last call for transaction (TF)
The translator signals that the last call for a transaction has just been made by
setting the EJECT field to a value of Y. No data accompanies this call. It signals the
end of the current transaction. The next call is interpreted as the first call for the
next transaction.

At this point, your application might perform application-related processing relative
to the end of the transaction, including updating the application databases. For
transaction level recovery (SCOPE is not E), the translator issues a COMMIT request
on the next call.

If this transaction is the last transaction for an interchange, the LASTINENV field must
contain a value of Y.

Last call of session (TF)
The translator signals the last call for a session through the CCB return codes. A
ZCCBRC value of 4 and a ZCCBERC value of 1 indicate that all the data from the
current file has been processed and that the translator has terminated. If there is
another file that your application can process, cycle back to the first call of the
session and set the REQID or FILEID field to specify the next file to be processed.

Translation services

440 WebSphere Data Interchange Programmer’s Reference

Translate-to-application processing considerations (TA)
The following sections describe special considerations for translate-to-application
processing.

Partial structures (TA)
After a transaction has been translated, the application data produced is returned to
the application program in the TRODB. The data is returned one structure at a time
(that is, one structure for each API request made).

When all the data for a transaction has been returned, the next request results in
an EJECT field with a value of Y, indicating that the transaction is complete. The
TRODB can be no smaller than 32000 bytes, but it can be as large as you like. If a
structure exceeds the size of the TRODB, as much data as can fit in the TRODB is
returned and the EJECT field has a value of X.

The REQSIZE field contains the total structure size. When the EJECT field is returned
with a value of X, do not change it. Subsequent calls to the translator returns the
remainder of the structure. The translator continues to return a value of X in the
EJECT field until the entire structure has been returned to the application. The EJECT
field is then changed to a value of D.

If you do not want the remainder of the structure returned, you can set the value of
the EJECT field to blank. The translator returns data for the next structure, rather
than the residual data for the current structure.

Clustered transactions (TA)
During translate-to-standard requests, the application controls transaction clustering
by setting the BNDLFLAG field in the TRCB. During translate-to-application or
deenvelope requests, there is no control provided for clustering transactions as they
are taken from the interchange. WebSphere Data Interchange automatically clusters
all the transactions for a UN/TDI interchange, but does not cluster transactions from
any other interchange type.

If the WebSphere Data Interchange Utility is used to deenvelope and translate a
UN/TDI interchange, and if any transaction in the interchange fails to translate
successfully, no data for any transaction in that interchange is returned to the
application. The all or nothing aspect of processing UN/TDI interchanges is
controlled by the application requesting the translation. The WebSphere Data
Interchange Utility discards all data in a cluster if there is an error for any
transaction in the cluster. However, because data for each transaction in the cluster
is returned by the translator, your application might perform differently.

WebSphere Data Interchange also forces an interchange recovery scope (SCOPE
value of E) when processing a UN/TDI interchange. The interchange recovery
scope is forced by the translator and cannot be changed by the application
program.

Translation services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 441

Enveloping services
Before you can send a transaction to a trading partner, and before a trading partner
can send a transaction to you, the transaction must go through an enveloping
operation. Enveloping is necessary so networks can identify the trading partner who
must receive the data and so the translators can identify and verify the type of data
being received. The three layers of enveloping are:
v Interchange layer
v Group layer
v Transaction layer

Each layer contains a header segment and a trailer segment. The data in these
segments identifies:

v The trading partners involved (both sender and receiver)

v The applications or departments within the trading partner organizations involved
(both sending and receiving)

v The exact nature of the data that is being exchanged

Each layer of enveloping has a specific purpose as described in the following
sections.

Each header and trailer segment contains the following fields to help the receiving
translator verify that a complete and consistent interchange has been received:

v The control numbers in the header and trailer that must match.

v A control count that indicates the number of items that must be present at the
next level. For example, the control count in the interchange trailer indicates how
many groups must be present; the control count in the group trailer indicates how
many transactions must be present; and the control count in the transaction
trailer indicates how many segments must be present in the transaction.

The sender must set these values based on the interchange created, and the
receiver must verify that the data received agrees with the information contained in
the header and trailer segments. These enveloping header and trailer segments are
called control or service segments. Just as there are EDI standards for transactions,
there are EDI standards for the service segments. WebSphere Data Interchange
supports the following EDI enveloping standards:

v EDIFACT envelope standard - envelope and profile ID is E.
UNA Delimiter segment
UNB Interchange header
UNG Group header
UNH Transaction header
UNT Transaction trailer
UNE Group trailer
UNZ Interchange trailer

v ICS envelope standard - envelope and profile ID is I
ICS Interchange header
GS Group header
ST Transaction header
SE Transaction trailer
GE Group trailer
ICE Interchange trailer

v UN/TDI envelope standard - envelope and profile ID is T
SCH Delimiter segment
STX Interchange header

Enveloping services

442 WebSphere Data Interchange Programmer’s Reference

BAT Group header
MHD Transaction header
MTR Transaction trailer
EOB Group trailer
END Interchange trailer

Note: BAT and EOB are accepted by WebSphere Data Interchange during
receive processing but are never generated by WebSphere Data
Interchange.

v UCS envelope standard - envelope and profile ID is U
BG Interchange header
GS Group header
ST Transaction header
SE GE EG

Transaction trailer
GE Group trailer
EG Interchange trailer

v X12 envelope standard - envelope and profile ID is X
ISA Interchange trailer
GS Group header
ST Transaction header
SE Transaction trailer
GE Group trailer
IEA Interchange trailer

Interchange layer
Networks use the interchange header to identify both the trading partner that is
sending the data, and the trading partner that must receive the data. The network
uses the sender ID in the interchange header for routing error messages and
network acknowledgments for the interchange. WebSphere Data Interchange uses
the interchange header on the receiving end to determine:

v The trading partner, which in turn, is used to determine the map needed for
translation

v The destination for any functional acknowledgments that are generated

A control number in the interchange header uniquely identifies this interchange
between the sender and receiver. The control number in the interchange trailer
must match the control number in the header. A count field in the interchange trailer
identifies the number of groups and transactions contained in the interchange.

The interchange layer is optional in WebSphere Data Interchange when GS/GE
segments are used at the group level. When the interchange layer is not present,
the GS02 and GS03 values identify the trading partners involved. GS02 must
contain the trading partner nickname of the sender, and GS03 must contain the
trading partner nickname of the receiver.

Group layer
The group layer is required for the ICS, UCS, and X12 enveloping standards but is
optional for EDIFACT and UN/TDI. The layer is optional in some EDI standards and
mandatory in others because of differences in how the standards define functional
acknowledgments. For X12, UCS, and ICS, the functional acknowledgments
(997 or 999 transactions) are defined at the group layer, and it is the group is
being acknowledged. However, for EDIFACT and UN/TDI, acknowledgments

Enveloping services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 443

(CONTRL message) are defined at the interchange level, and the interchange is
being acknowledged. As a result, the group layer becomes optional.

The group layer identifies the sending and receiving applications or divisions within
the trading partner organization. As a result, all transactions and messages that
have a similar purpose or destination can be grouped together, and routed to the
proper destination based on the values in the group header.

WebSphere Data Interchange uses the application sender ID and receiver ID
values from the group header to locate the map needed to translate a transaction in
the group. For more information, see “Locating sending and receiving trading
partner profile members” on page 470. The group header also contains a control
number that must be unique in the interchange. However, if 997 or 999 functional
acknowledgments are being generated, the group control number must be unique
for the interchange sender/receiver combination. In this case, the group control
number serves the same purpose as the interchange control number. This is one
reason that interchanges using GS and GE as the functional group header and
trailer can be sent without the interchange level of enveloping (if the networks
involved allow it). The group trailer contains a control number that must match the
control number in the group header, and a count field that identifies the number of
transactions in the group.

Transaction layer
The transaction layer identifies the transaction that immediately follows. The
transaction ID (810, 850, 856, and so on) or message ID (ORDERS, INVOICE,
CONTRL, and so on) is in the transaction header. This is the final piece of
information used by WebSphere Data Interchange to locate a map for translating
the transaction. The transaction header contains a control number that must be
unique in the group (if groups are being used), or unique in the interchange (if
groups are not being used). The transaction trailer also contains a control number
that must match the control number in the header and a count field that identifies
the number of segments included in the transaction. This number must match the
actual number of segments received or processing is stopped and an error
message is generated.

Enveloping service
The enveloping service provides the following two functions:

v An enveloping function that extracts transactions from the Transaction Store and
builds transaction headers and trailers, organizing the transactions into groups,
and the groups into interchanges. The enveloping function adds the EDIVTSEV,
EDIVTSGP and EDIVTSTU records to the Transaction Store database.

v A deenveloping function that locates interchanges in a file, parses the
interchange into groups and transactions, and adds the transactions to the
Transaction Store. The deenveloping function also adds the EDIVTSEV,
EDIVTSGP and EDIVTSTU records to the Transaction Store database.

These functions are described in detail in the following sections.

Envelope API
This section describes the details of the envelope API request. The envelope
function extracts transactions from the Transaction Store and builds the transaction,
group, and interchange headers and trailers that are needed to send those
transactions to the appropriate trading partners.

Enveloping services

444 WebSphere Data Interchange Programmer’s Reference

Note: Enveloping does not have to be a separate API request. You can envelope
transactions as they are translated. For more information, see the
“Enveloping and sending” on page 393 and “Translate-to-standard API” on
page 397.

The API that is described below is the same API that the WebSphere Data
Interchange Utility uses internally when you issue any of the following PERFORM
commands:
v ENVELOPE
v ENVELOPE AND SEND
v REENVELOPE
v REENVELOPE AND SEND

The envelope API is invoked once for each transaction that is enveloped. As each
transaction is received, the enveloping function checks the transaction to determine
whether it belongs to the current group and current interchange. If the transaction
does not belong in the current group, the group is closed (a trailer is built) and a
new group is started (a header is built). See “Fields that cause new groups to start”
on page 456 for an explanation of the fields that will start a new group.

If the transaction does not belong in the current interchange, both the group and
interchange are closed (trailers are built) and written to a file associated with the
network, and a new interchange and group are started (headers are built). See
“Fields that cause a new interchange to start” on page 455 for an explanation of the
fields that will start a new interchange.

When WebSphere Data Interchange uses the envelope API, the transactions to be
enveloped (dictated by the selection criteria) are first sorted to yield the fewest
possible groups within the fewest possible interchanges.

If the transactions are not sorted first, an application program using the envelope
API must allow for the fact that an interchange can be generated for each
transaction. For example, if there are 10 transactions, 5 for trading partner A and
5 for trading partner B, and the sequence is A, B, A, B, A, B, A, B, A, B, 10
interchanges are created. Sorting the transactions first would yield 2 interchanges
(A + B) rather than 10.

An application program using the envelope API must obtain a list of the transactions
to envelope. Some ways to obtain a transaction list from the Transaction Store are:

v Set the application program that is adding the transactions to save the
transaction handle values (and any other information needed for sorting) to a file
that is then sorted and read by your enveloping application.

v Use the QUERY command to select transactions. The transaction handles for the
selected transactions are written to the EDIQUERY file in transaction handle
sequence. This does not result in optimal enveloping.

v Use the TRANSACTION DATA EXTRACT command to select transactions. As
with the QUERY command, the transactions are written to the EDIQUERY file in
transaction handle sequence, but this command provides complete transaction
information that can be used to sort the transactions into a optimal sequence for
enveloping.

Envelope API
The basic format of the API request to envelope a transaction is:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

Enveloping services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 445

The unique parameters for this API request are defined in Table 147.

Table 147. Envelope API parameters

Parameter Description

SNB ZSNBNAME
TRANPROC

ZSNBPC
6

FCB ZFCBFUNC
215

TRCB The translator control block. For more information, see “TRCB
field descriptions” on page 566.

TRIDB The input data block. This block is not used during enveloping
operations, but a parameter must be provided. A minimum size
of 16 bytes is sufficient during an enveloping operation. For
more information on this block, see “TRIDB field descriptions”
on page 590.

TRODB The output data block. The output data block is used by
WebSphere Data Interchange as a work buffer. This buffer must
be at least 32000 bytes in length, but its maximum size must
be the size of the maximum EDI standard segment (excluding
the BIN segment) that is processed. For more information on
this block, see “TRODB field descriptions” on page 592.

Initializing the envelope API
There are numerous fields defined in the control blocks for the enveloping API
function whose values need only be established once. These values can be
established before the first call and they do not have to be refreshed or changed
before any other call. The following tables describe the control blocks, the fields
within the control blocks, and the considerations for initializing the envelope API.

SNB initialization for enveloping function:
ZSNBLL

32
ZSNBNAME

TRANPROC
ZSNBPC

6 (all calls for enveloping services have six parameters)

FCB initialization for enveloping function:
ZFCBLL

4
ZFCBFUNC

215

TRCB initialization for enveloping function:

Table 148. TRCB initialization for enveloping function

Field name Description

BLKLEN 1536.

BLKNME EDITRCB

BLKTYPE The format for the TRIDB and TRODB buffers.
H Unlimited size
(other) Limited to 32768 bytes

Enveloping services

446 WebSphere Data Interchange Programmer’s Reference

Table 148. TRCB initialization for enveloping function (continued)

Field name Description

FASPEC Indicates that FUNACKFLE is being used. Set this field to Y (If
not provided, the value of FUNACKFLE will be ignored).

XPANDED Y. Indicates that DataInterchange should check the BLKLEN field to
determine the software version and release being used.

SCOPE Indicates whether DataInterchange issues a database COMMIT
after an interchange is completed or after a transaction is
completed.
E Interchange level recovery
(other) Transaction level recovery
Note: This value affects the recovery scope during the session.

INMEMTRANS Applies only if the value of SCOPE is E. The maximum number of
transactions that should be maintained in virtual storage before
any database updates are attempted. Database updating occurs
when the value in this field, or the end of the interchange, is
reached.

This value is important in an environment when multiple
application programs request translation services at the same
time. The higher you set the value for this field, the more
concurrency can be achieved. For more information on this field,
see “TRCB field descriptions” on page 566.
Note: This value affects the recovery scope during the session.

FILEID The ddname of the file where the transaction data is written when
an interchange is complete. If you do not specify this field, the
ddname specified in the Trans data queue field of the network
profile (NETPROF) is used. This value does not have to be a
constant for the entire session. However, if you want to change
the value in this field, you must do so before the interchange is
completed.

IUSEREXIT The logical name of a user exit to be called by DataInterchange
instead of writing the envelope to a file. This exit is used to
retrieve an envelope from storage using the Get Envelope service
once enveloping is complete. For more information on Get/Put
Envelope exit processing, see Chapter 4, “Exit routines” on
page 273.

IUSERAREA A pointer to a user-defined area. The pointer is passed to the
user exit defined in IUSEREXIT field.

ITPBREAK Indicates whether a change in the internal trading partner ID
starts a new interchange. Valid values are:
Y Each interchange contains data for a single vendor

number.
N or (other)

All data for a trading partner is included in a single
interchange, regardless of vendor number.

Enveloping services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 447

Table 148. TRCB initialization for enveloping function (continued)

Field name Description

ENVCHK Indicates whether the translator checks the transaction’s
enveloping status before processing the transaction. See
“Envelope versus reenvelope” on page 454 for more detailed
information. Valid values are:

1 Verifies that the transaction has never been enveloped
before. If the transaction has been enveloped before, the
translator issues message TR0121 and returns to the
application with a transaction level error (extended return
code value of 3).

2 Verifies that the transaction has been enveloped before.
If the transaction has not been enveloped before, the
translator issues message TR0121 and returns to the
application with a transaction level error (extended return
code value of 3).

(other) Does not verify the transaction’s enveloping status.

ERRFILTER Indicate which error codes to filter out during this session. The
values set here will be the initial values for the DIERRFILTER
named variable at the start and end of each transaction. For more
detailed information, see “Error filtering” on page 17.

RAWDATAOUT Indicates whether RAWDATA output is used for fixed-to-fixed
mappings.
Y Uses RAWDATA output
(other) Uses C & D record output

FFILEID The ddname of the file where the translated data for fixed-to-fixed
translations is written. If this field is not specified, the ddname is
formed from the concatenation of the Application file name
field (from the target data format) and the File suffix field
(from the trading partner profile). This value does not have to be
a constant for the entire session. However, if you want to use this
field, it must be set before an interchange is completed.

TRIDB initialization for enveloping function:
BLKLEN

The size of the data block, including the BLKLEN field. A value of 16 is
sufficient.

RESERVED
Binary zeros.

Note: The input data block (TRIDB) is not used during an enveloping operation but
must be specified in the parameter list.

TRODB initialization for enveloping function:
BLKLEN

The size of the data block, including the BLKLEN field. The minimum length
is 32000 bytes.

RESERVED
Binary zeros.

Envelope transaction
This section describes the initialization required before each call, and the results
returned to your program. Set the following TRCB fields before making the API
request to envelope a transaction:

Enveloping services

448 WebSphere Data Interchange Programmer’s Reference

TSKEY
The transaction handle for the transaction you want to envelope, formatted
as a packed field in 10 bytes. The format of the handle is
YYYYMMDDHHMMSSxxnnnn. If your program does not pack these values,
initialize this field to all blanks or all binary zeros using the TSKEYU field.

TSKEYU
The transaction handle for the transaction you want to envelope, formatted
as a 20-byte character field. The format of the handle is
YYYYMMDDHHMMSSxxnnnn. This field is only used if TSKEY does not have a
value.

When initialization is complete, the enveloper is invoked with the following API
request:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

The transaction identified by the TSKEY or TSKEYU field is retrieved from the
Transaction Store along with the other database records needed, such as the
trading partner profile member, and the send usage/rule and map. Everything that
was needed to translate the transaction (except the control string) is also needed
when the transaction is enveloped.

Numerous errors can occur at this point. If an error occurs, the return code and
extended return code for the error are posted in the ZCCBRC and ZCCBERC fields of
the CCB. With each call, your program must check the TRXACCEPT and TRABORT
fields for error information. The fields returned in the TRCB are explained in the
following tables.

Transaction-related fields (EV): The fields described in Table 149 provide some
basic attributes of the transaction just processed. These fields are related to the
transaction side of the processing.

Table 149. Transaction attribute fields in TRCB

Field name Description

TRNID The standard transaction or message ID for the transaction or
message received.

TEST The type of transaction. Valid values are:
I Information
P Production
T Test

MAPKEY The map used to translate the application data.

TPNICK The trading partner nickname associated with the transaction.

TRXACCEPT Indicates whether the transaction had an acceptable translation and
that application data was returned in the TRODB (unless the EJECT
field has a value of Y).

TRABORT Indicates whether the error was so severe that the translator stopped
processing.

TSKEY The transaction handle for the transaction you want to envelope,
formatted as a packed field in 10 bytes. The format of the handle is
YYYYMMDDHHMMSSxxnnnn.

TSKEYU The transaction handle for the transaction you want to envelope,
formatted as a 20-byte character field. The format of the handle is
YYYYMMDDHHMMSSxxnnnn.

ERRNUM The total number of errors flagged during enveloping.

Enveloping services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 449

Table 149. Transaction attribute fields in TRCB (continued)

Field name Description

ERRCDES An array of the first 10 different errors flagged during enveloping. For
detailed error code information, see “Translator Control Block (TRCB)”
on page 562.

Application-related fields (EV): The TRCB fields described in Table 150 are
related to the application side of the processing.

Table 150. Application related TRCB fields

Field name
Description

ATFID The data format definition ID associated with this transaction.

INTPID The internal trading partner ID taken from the map receive
usages/rules.

APPLTPID The application trading partner.

APPCTLNUM See XACFIELD.

XACFIELD The application control value defined by the application field with data
type of AC or by the fields that are assigned when the map is created.
The application control value uniquely identifies the transaction to the
application.

MAPCHAIN Indicates whether mapchaining is in effect.
Y Translates the current transaction again
(other) Translates the next transaction

TRCB fields for Enveloping: Some fields in the TRCB are related to the current
status of an interchange that is being created. The following tables describe the
fields that relate to the following:
v The interchange header and trailer
v The group header and trailer
v The transaction header and trailer

The TRCB fields described in Table 151 are related to the interchange header or
trailer.

Table 151. Fields in TRCB related to the interchange header or trailer

Field name Description

NEWENV Indicates whether this transaction caused a new interchange to
start. If you want a copy of the interchange header, you can use a
function code value of 1 to obtain an exact image. For more
information, see “Retrieve interchange header API” on page 472.
Y Started a new interchange
(other) Did not start a new interchange

IHCTL The interchange control number assigned to the current
interchange. The value returned in this field is right-justified with
leading zeros. Applies to version 2.1 or earlier.

IHXCTL The interchange control number assigned to the current
interchange. The value returned in this field is right-justified with
leading zeros. Applies to version 3.1 or later.

GRPNUM The total number of groups in the interchange at the current time.
This number is stored as a 4-byte binary value. See IGT for the
character representation of this value.

Enveloping services

450 WebSphere Data Interchange Programmer’s Reference

Table 151. Fields in TRCB related to the interchange header or trailer (continued)

Field name Description

TRNNUM The total number of transactions in the current interchange at the
current time. This number is stored as a 4-byte binary value. See
ITT for the character representation of this value.

SEGNUM The total number of segments in the current interchange at the
current time. This number is stored as a 4-byte binary value. See
IST for the character representation of this value.

ESIZE The total number of bytes in the current interchange at the current
time. This number is stored as a 4-byte binary value. See IBT for
the character representation of this value.

ISYNTAXID The interchange syntax identifier for envelope types E and T.

ISYNTAXVER The interchange syntax version for envelope types E and T.

ISIDQUAL The interchange sender ID qualifier for envelope types E, I and
X.

ISID The interchange sender ID (interchange header for data type IS).

IRECVNAME The interchange receiver name for envelope type T. The
application receiver code for envelope type U if UCS04 does not
contain IR.

IROUTEADDR The interchange routing address for envelope type E.

ISENDNAME The interchange sender name for envelope type T. The
application sender code for envelope type U if UCS03 does not
contain IS.

IREVROUT The interchange reverse routing for envelope type E.

IRIDQUAL The interchange receiver ID qualifier for envelope types E, I and
X.

IRID The interchange receiver ID (interchange header for data type
IR).

IDATE The interchange date (interchange header for data type DT).

ITIME The interchange time (interchange header for data type TM).

IVERREL The interchange version and release (interchange header for data
types VR or LV).

IGT The character representation of GRPNUM.

ITT The character representation of TRNNUM.

IST The character representation of SEGNUM.

IBT The character representation of ESIZE.

ISPW The interchange password (interchange header for data type
PW).

IAPREF The application reference (interchange header for data type AP).

ISTDID The interchange standard ID for envelope types I and X.

IPRIOR The interchange processing priority for envelope types E and T.

ICOMMAGREE The interchange communication agreement for envelope type E.

The TRCB fields described in Table 152 on page 452 are related to the group
header or trailer.

Enveloping services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 451

Table 152. Fields in TRCB related to group header or trailer

Field name Description

NEWGRP Indicates whether this transaction caused a new group to start. If
you want a copy of the group header, you can use a function
code value of 2 to obtain an exact image. For more information,
see “Retrieve group header API” on page 472.
Y Started a new group
(other) Did not start a new group

GHCTL The group control number assigned to the current group. The
value is returned in this field as a right-justified value with leading
zeros. Applies to version 2.1 or earlier.

GHXCTL The group control number assigned to the current group. The
value is returned in this field as a right-justified value with leading
zeros. Applies to version 3.1 or later.

TRNGRP The total number of transactions in the current group at the
current time. This number is stored as a 4-byte binary value. See
GTT for the character representation of this value.

GSIDQUAL The group sender ID qualifier for envelope type E.

GSID The group sender ID (group header for data type AS).

GRIDQUAL The group receiver ID qualifier for envelope type E.

GRID The group receiver ID (group header for data type R).

GDATE The group date (group header for data type DT).

GTIME The group time (group header for data type TM).

GAPW The group password (group header for data type PW).

GVER The group version (group header for data type VR).

GREL The group release (group header field with for data type LV).

GTT A character representation of TRNGRP.

GRESPAGENCY The group controlling agency for envelope type E. The group
responsible agency for envelope types I, U and X.

The TRCB fields described in Table 153 are related to the transaction header or
trailer

Table 153. TRCB fields related to transaction header or trailer

Field name Description

NEWTRN Indicates whether this transaction caused a new transaction to
start. If you want a copy of the transaction header, you can use a
function code value of 3 to obtain an exact image. For more
information, see“Retrieve transaction header API” on page 473.
Y Started a new transaction
(other) Did not start a new transaction

THCTL The transaction control number assigned to the current
transaction. The value returned in this field is right-justified with
leading zeros. Applies to version 2.1 or earlier.

THXCTL The transaction control number assigned to the current
transaction. The value returned in this field is right-justified with
leading zeros. Applies to version 3.1 or later.

SEGTRN The total number of segments in the current transaction stored as
a 4-byte binary value. See TST for the character representation of
this value.

Enveloping services

452 WebSphere Data Interchange Programmer’s Reference

Table 153. TRCB fields related to transaction header or trailer (continued)

Field name Description

TTC The current transaction or message ID value. See also TRNID on
425.

TVER The transaction version (transaction header for data type VR).

TREL The transaction release (transaction header for data type LV).

TST The character representation of SEGTRN.

Queuing - TRCB Fields: The TRCB fields described in Table 154 are returned
when an interchange is written. The value in the EJECT field indicates whether an
interchange was written. The other fields in the table provide information about the
interchange, the network, and the file receiving the interchange.

Table 154. TRCB fields returned when an interchange is written

Field name Description

EJECT Indicates whether an interchange was written to the file associated with
the network. Valid values are:
Q The interchange was written successfully.
E The interchange was not written successfully.
Note: If this field has a value of E, indicating an error occurred, the
QRC and QERC fields contain values indicating which error occurred. The
error is logged by WebSphere Data Interchange Communication
services. The most likely error is that the ddname could not be opened.

QRC The return code associated with the error.

QERC The extended return code associated with the error.

DSNAME The physical data set name to which the interchange is written. For
CICS, this field contains the same value as the QDDNAME field, which
is the name of the TS queue containing the interchange.

QNETID The name of the network associated with the trading partner.

QPTTOPT Indicates whether the network identified by QNETID is a point-to-point
network.

QSRPGM Indicates whether the network identified by QNETID has a network
send and receive program associated with it. If no send and receive
program is associated with a network, there is no need to attempt to
send the interchange. (You might use a network without a send and
receive program for creating interchanges that are sent to a trading
partner using some other means.)

QDDNAME The ddname to which the interchange is written. Does not apply for
point-to-point networks. For CICS, this is the name of the TS queue to
which the interchange is written.

QTPNICK The trading partner nickname for which the interchange is built.

QSIZE The total number of bytes in the interchange. This number is stored as
a 4-byte binary value.

QBT The character representation of QSIZE.

See“Sending transaction data” on page 454 for an explanation of items to consider
if your application program is using the Communication services send API for
sending the data just written to the file.

Enveloping services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 453

Last call of session (EV)
If the translator was called at least once and the TRABORT field does not have a
value of Y, invoke the translator one last time with a termination function code. This
signals the translator that the application is finished making enveloping requests.
Upon receiving the request, the translator releases any resources that were
acquired. If an interchange is active, the translator completes and writes the current
interchange. See “End translation/enveloping API” on page 458.

Envelope processing considerations (EV)
The following sections list special considerations for envelope processing.

Envelope versus reenvelope
Both the WebSphere Data Interchange Utility and Transaction Store Facility provide
a means of enveloping and reenveloping transactions. When the ENVELOPE
function is used, only transactions in the Transaction Store that have never been
enveloped are considered for enveloping. When the REENVELOPE function is
used, only transactions in the store that have already been enveloped are
considered for reenveloping.

The API services do not provide a similar distinction. The application program
making the API request must distinguish whether a transaction is enveloped or
reenveloped. However, you can set the ENVCHK field in the TRCB to indicate the
intentions of the application (ENVELOPE or REENVELOPE), and the envelope
service will verify that the status of the transaction matches the intentions of the
application. The ENVCHK field has the following values and meanings:

1 Envelopes a transaction. If the transaction has ever been previously
enveloped, attempting to envelope it again must be considered an error.
The translator issues message TR0121 and returns a transaction level error
(extended return code value of 3) to the application.

2 Reenvelopes a transaction. If the transaction has not been previously
enveloped, attempting to envelope it again must be considered an error.
The translator issues message TR0121 and returns a transaction level error
(extended return code value of 3) to the application.

(other)
Does not check the status of the transaction.

Clustered transactions (EV)
You can cluster (batch) transactions during translation. The Transaction Store
Facility and WebSphere Data Interchange Utility ensure that any action performed
against any member of a cluster is performed against all members of the cluster. If
any member is enveloped, all members are enveloped. If any member is purged, all
members are purged. This is a feature of the utilities and facilities and not a feature
of the API. The enveloping service checks to make sure that the controlling
transaction of a cluster is the first transaction that is enveloped. There is no check
to ensure whether all members are enveloped or that they are enveloped in any
particular order, except to verify that the controlling transaction is enveloped first.
For more information, see 403.

Sending transaction data
The value in the EJECT field in the TCB indicates when transaction data has been
written to the file associated with the network. If you use the send transaction API
(see “Send transactions and restart send transactions API” on page 483) to send
the data, your program must determine whether the data is to be sent immediately
or at the end of the translation or enveloping function.

Enveloping services

454 WebSphere Data Interchange Programmer’s Reference

Sending transaction data when written: Sending the transaction data when it is
written is the easiest method because the application program does not have to be
as aware of its environment as it does if delayed sending is used. When the EJECT
field indicates that data is written, the DSNAME field contains the name of the data set
to which the transaction data was written, and the QNETID field contains the network
ID associated with the trading partner. You can move the value in QNETID to the
NETID field in the CMCB and the value in DSNAME to the FILENAME field in the CMCB
(setting DATATYP to A). Communications can then be invoked to send the data.

During a WebSphere Data Interchange session (between initialization and
termination), the communications programs remember the names of data sets to
which data has been written. The first time a data set is used, it is opened for
output. Anything in the data set is overwritten with the new transaction data.
However, on subsequent use, the same data set is opened for extend, meaning the
first transaction data is not overlaid, and the new transaction data is written at the
end of the data set. To clear the data set after the data is sent, set the CLRFILE field
in the CMCB to a value of Y. If the file is not cleared after the data has been sent,
interchanges might be sent multiple times resulting in duplicate records.

Notes:

1. You can use the QDDNAME field only if a point-to-point network is not being used.
DSNAME works regardless of which network you are using.

2. You must supply a mailbox (requestor) profile ID on the communications
request, and if multiple networks are being used, there must be a way to
associate a requestor ID with a network.

Sending transaction data later: Deferring the sending of the data until translation
or enveloping is complete is more complex than sending the data immediately. The
application program must keep track of all data sets used and the networks
associated with the data sets so each can be sent to the appropriate network.

Use the data set name as an identifier rather than the ddname, because multiple
ddnames (such as QDATA and QDATAE) can be associated with the same physical
data set. Using the ddname can result in data being sent twice. If the FILEID field is
used and sending is deferred, the application must verify that all interchanges
created are for a single network. If point-to-point networks are being used, all
interchanges created must also be for a single trading partner.

Fields that cause a new interchange to start
During enveloping, transactions are checked against the current interchange to
determine whether the transaction belongs in the current interchange or whether the
interchange must be closed and a new one started. The following fields are
checked for changes to determine if a new interchange must be started:
v EDI trading partner nickname
v Application trading partner nickname
v Trading partner network ID
v Envelope type
v Bundle status
v Any delimiter
v Decimal notation
v Release character
v Usage indicator
v Who is assigning transaction control numbers
v Internal trading partner ID, depending on the value of ITPBREAK in the TRCB
v Any of the following interchange override values in the TRCB

– Syntax ID (ISYNTAXID)

Enveloping services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 455

– Syntax version (ISYNTAXVER)
– Sender ID qualifier (ISIDQUAL)
– Sender ID (ISID)
– Sender name (ISENDNAME))
– Reverse routing (IREVROUT)
– Receiver ID qualifier (IRIDQUAL)
– Receiver ID (IRID)
– Receiver name (RECVNAME)
– Routing address (IROUTEADDR)
– Password (ISPW)
– Application reference (IAPREF)
– Standard ID (ISTDID)
– Priority (IPRIOR)
– Communication agreement (ICOMMAGREE)
– Version/release (IVERREL)

Fields that cause new groups to start
During enveloping, transactions are checked against the current group to determine
whether the transaction belongs in the current group or whether the current group
must be closed and a new one started. The following fields are checked for
changes to determine if a new group must be started:
v Functional group ID assigned to the transaction
v Network security profile member being used
v Group encryption key name
v Group authentication key name
v Envelope profile member being used
v Application sender ID in the send usage/rule
v Application receiver ID in the send usage/rule
v Application password in the send usage/rule
v Any of the following override values in the TRCB

– Application sender ID qualifier (GSIDQUAL)
– Application sender ID (GSID)
– Application receiver ID (GRID)
– Application receiver ID qualifier (GRIDQUAL)
– Group password (GAPW)
– Group version (GVER)
– Group release (GREL)
– Group responsible agency (GRESPAGENCY)

Close and queue interchange API
You can use the close and queue interchange function to your application program
direct control over the content and size of interchanges being created. In normal
processing, the translator/enveloper continues to add transactions to the current
interchange until there is a change in one of the fields that signals a new
interchange. If your application has special requirements for the interchanges
created, you can issue a close-and-queue envelope request at any time. If C and
D records are being used as input to the WebSphere Data Interchange Utility, a
Z1 record can be used to tell the utility to terminate the current interchange. When
a Z1 record is read, the utility issues an API request to close and queue the current
interchange. When this API request is issued, the current interchange is closed by
adding a group trailer segment (if groups are being used) and an interchange trailer
segment. The complete interchange is then given to the Communication service,
which writes the interchange to the file associated with the network.

The basic format of the API request to close and queue the current interchange is:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

Enveloping services

456 WebSphere Data Interchange Programmer’s Reference

The unique parameters for this API request are defined in Table 155.

Table 155. Parameters for the Close and queue interchange API

Parameter Description

SNB ZSNBNAME
TRANPROC

ZSNBPC
6

FCB ZFCBFUNC
990 (close and queue the current interchange)

TRCB The translator control block. This transaction control block is used in
all requests. There are no field initialization requirements for this
control block unless you have special COMMIT requirements. See
“TRCB field descriptions” on page 566 for details.

TRIDB The input data block. No data is required in this block.

TRODB The output data block. This buffer must be at least 32000 bytes in
length, but its maximum size must be the size of the largest standard
segment (excluding the BIN segment) that will be processed. See
“TRODB field descriptions” on page 592 for a general description of
this block.

Queueing - TRCB Fields:
The TRCB fields described in Table 156 are returned when an interchange is
written. The value in the EJECT field indicates whether an interchange is written. The
other fields in the table provide information about the interchange, the network, and
the file receiving the interchange.

Table 156. TRCB fields returned when an interchange is written

Field name Description

EJECT Indicates whether an interchange was written to the file associated
with the network. Valid values are:
Q The interchange was written correctly
E The interchange was not written successfully
Note: If this field has a value of E, the QRC and QERC fields have
values indicating which error occurred. The error is logged by
WebSphere Data Interchange communications services. The most
likely error is that the ddname could not be opened.

QRC The return code associated with the error.

QERC The extended return code associated with the error.

DSNAME The physical data set name to which the interchange was written. For
CICS, this field has the same value as QDDNAME, which is the name of
the TS queue containing the interchange.

QNETID The name of the network associated with the trading partner.

QPTTOPT Indicates whether the network identified by QNETID is a point-to-point
network. Valid values are:
Y The network is a point-to-point network
(other) The network is not a point-to-point network

Enveloping services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 457

Table 156. TRCB fields returned when an interchange is written (continued)

Field name Description

QSRPGM Indicates whether the network identified by QNETID has a network
send and receive program associated with it. If there is no send and
receive program associated with a network, there is no need to
attempt to send the interchange. (You might use a network without a
send and receive program for creating interchanges that are sent to a
trading partner using some other means.)
Y The network has a send and receive program.
(other) The network does not have a send and receive program.

QDDNAME The ddname to which the interchange was written. Does not apply for
point-to-point networks. For CICS, this is the name of the TS queue
to which the interchange is written.

QTPNICK The trading partner nickname for which the interchange is built.

QSIZE The total number of bytes that are in the interchange, stored as a
4-byte binary value.

QBT The character representation of QSIZE.

See “Sending transaction data” on page 454 for an explanation of items to consider
if your application program uses the communications services send API for sending
the data just written to the file.

End translation/enveloping API
If the translator was called at least once and the TRABORT flag does not have a value
of Y, invoke the translator one last time with a termination function code. The
termination function code signals the translator that the application has finished
making translation or enveloping requests. On receiving the request, the translator
releases any resources that it acquired. If an interchange is active, the translator
completes and writes the current interchange.

The basic format of the API request to end translation/enveloping is:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

The unique parameters for this API request are described in Table 157.

Table 157. Parameters for the End translation/enveloping API

Parameter Description

SNB ZSNBNAME
TRANPROC

ZSNBPC
6

FCB ZFCBFUNC
1000

TRCB The same translator control block used in all other requests.

TRIDB The input data block. No data is required in this block.

TRODB The output data block. This buffer must be at least 32000 bytes in
length, but its maximum size must be the size of the largest standard
segment (excluding the BIN segment) that will be produced. See
“TRODB field descriptions” on page 592 for a general description of
this block.

Enveloping services

458 WebSphere Data Interchange Programmer’s Reference

If an interchange is active at the time of the termination request, certain field values
in the TRCB indicate whether the interchange was written. See “Close and queue
interchange API” on page 456 for an explanation of these fields.

Deenvelope API
This section describes the details of the deenvelope API request. Deenveloping
extracts interchanges from a file and parses them to extract transactions to add to
the Transaction Store. The syntax of the interchange or transaction is checked and
functional acknowledgments are generated. Received acknowledgments are
reconciled with the original transactions.

Note: Deenveloping does not need to be a separate API request. You can
deenvelope and translate transactions at the same time. For more
information, see “Receiving and deenveloping” on page 418 and
“Translate-file-to-application API” on page 429.

The deenvelope API described in the following section is the same API used
internally by the WebSphere Data Interchange Utility when you issue any of the
following PERFORM commands:
v DEENVELOPE
v DEENVELOPE AND TRANSLATE
v RECEIVE AND DEENVELOPE
v RECEIVE AND TRANSLATE

Each time the deenveloping API is invoked, the next transaction from the file being
processed is located and added to the Transaction Store. Sometimes locating the
next transaction involves locating the next interchange in the file. Once an
interchange is located, the complete interchange is read into virtual storage. A
syntax check and validation are done on the service segments to verify that the
interchange received has a valid format and is consistent with the specified format.

The basic format of the API request to deenvelope transaction from a file is:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

The unique parameters for this API request are described in Table 158.

Table 158. Parameters for the deenveloping API

Parameter Description

SNB ZSNBNAME
TRANPROC

ZSNBPC
6

FCB ZFCBFUNC
214

TRCB The translator control block. For more information on this block, see
“Translator Control Block (TRCB)” on page 562.

TRIDB The input data block. This buffer must be at least 32000 bytes in
length, but its maximum size must be the size of the largest standard
segment (excluding the BIN segment) that is received. See “Translator
Input Data Block (TRIDB)” on page 589 for a general description of
this block.

Enveloping services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 459

Table 158. Parameters for the deenveloping API (continued)

Parameter Description

TRODB The output data block. WebSphere Data Interchange uses the output
data block as a work buffer. This buffer must be at least 32000 bytes
in length. See “Translator Output Data Block (TRODB)” on page 591
for a general description of this block.

Initializing for deenvelope API
There are numerous fields in the control blocks defined for the deenvelope API
function that must be established only once. These values can be established
before the first call and they do not need to be refreshed or changed before any
other call. Because the first call for a session also qualifies as the first call for a
transaction, you must also follow the instructions in the next section, “Deenvelope
transaction (DE). The control blocks, the fields within the control blocks, and the
initialization considerations are described in the following tables.

SNB initialization for deenveloping:
ZSNBLL

32
ZSNBNAME

TRANPROC
ZSNBPC

6 (number of calls for enveloping services)

FCB initialization for deenveloping:
ZFCBLL

4
ZFCBFUNC

214 (deenvelope)

TRCB initialization for deenveloping is defined in Table 159.

Table 159. TRCB initialization for deenveloping

Field name Description

BLKLEN 1536.

BLKNME EDITRCB.

BLKTYPE The format for the TRIDB and TRODB buffers.
H Unlimited size
(other) Limited to 32768 bytes

XPANDED Y. Indicates that WebSphere Data Interchange must check the
BLKLEN field to determine the software version and release being
used.

ENVLDELAY Indicates whether functional acknowledgments must not be
enveloped.
Y Does not envelope functional acknowledgments
(other) Envelopes functional acknowledgments

Enveloping services

460 WebSphere Data Interchange Programmer’s Reference

Table 159. TRCB initialization for deenveloping (continued)

Field name Description

DUPTRAN Indicates how to process duplicate interchanges. This field is only
an input field on the first call of a session and establishes if
duplicate interchanges are errors. On all other requests, this field
is an output field. Valid values are:

N Does not process duplicate interchanges but considers
them errors. If a duplicate interchange is received, the
translator issues message TR0211 and returns to the
application with an interchange level error (extended
return code value of 5).

Y Processes duplicate interchanges and returns
transactions flagged as duplicate transactions. Y is the
recommended value.

SCOPE Indicates whether interchange or transaction recovery level was
requested.
E Interchange level recovery
(other) Transaction level recovery
Note: This field contains values that affect the recovery scope
during the session. For more information, see “Send Recovery
Scope” on page 413.

INMEMTRANS Applies only if the value of SCOPE is E. Indicates the maximum
number of transactions that must be maintained in virtual storage
before any database updates are attempted. Database updating
occurs when the value in this field, or the end of the interchange,
is reached.

This value is important in an environment where multiple
application programs request translation services at the same
time. The higher you set the value for this field, the greater the
concurrency that can be achieved. For more information on this
field, see “Translator Control Block (TRCB)” on page 562.
Note: This field contains values that affect the recovery scope
during the session. For more information, see “Send Recovery
Scope” on page 413.

FILEID The ddname of the file that contains the interchanges to process.
If this field is specified, REQID is ignored.

IUSEREXIT The logical name of a user exit to be called by WebSphere Data
Interchange instead of reading the input file. This exit is used
when the envelope is to be stored into WebSphere Data
Interchange through the Put Envelope service before
deenveloping. For more information on the Get/Put Envelope Exit
processing, see Chapter 4, “Exit routines” on page 273.

IUSERAREA A pointer to a user-defined area. The pointer is passed to the
user exit defined in IUSEREXIT field.

IUSERACCESS Indicates whether the interchange is presented to the
IUSEREXIT program in virtual storage or in a file.

M Gives the interchange to the exit in virtual storage.
Applies when the IUSERTYPE is UE (user exit).

F Gives the interchange to the exit in a file. When you use
this value, the interchange is first written to the TD
queue file, and then the IUSEREXIT program is invoked.

Enveloping services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 461

Table 159. TRCB initialization for deenveloping (continued)

Field name Description

IUSERTYPE The type of user exit program specified in IUSEREXIT.

PG IUSEREXIT is a program that must be linked to (EXEC
CICS LINK in CICS).

UE IUSEREXIT is a WebSphere Data Interchange user exit
program defined in the User Exits profile

REQID The requestor ID of a member in the mailbox (requestor) profile
(REQPROF). This field is required only if FILEID is not provided.

MRREQID If the interchanges being deenveloped have not been recorded in
the Management Reporting statistics database, this value
identifies the requestor ID for which statistics must be updated.
This update is done only if the interchanges were not received
using the Communication service receive function.

FUNACKFLE If functional acknowledgments are being enveloped, this field
contains the ddname of the file where the transaction data is
written when an interchange is complete. If you do not specify
this field, the ddname specified in the Trans data queue field of
the network profile (NETPROF) is used.
Note: FASPEC must be set to Y

TRXLIFE The amount of time this transaction must remain in the
Transaction Store before it is eligible for purging. The default is
30 days.
Note: This field is checked with each call to the translator. The
value contained in this field when the deenvelope transaction
request is made will be associated with the transaction.

IMGLIFE The length of time this transaction’s image (the standard data
produced) must remain in the Transaction Store. The default is
30 days.

Notes:

1. This field is checked with each call to the translator. The
value contained in this field when the last call for transaction
(TS) is made will be associated with the transaction.

2. This field is not currently supported.

HOLDFLAG Indicates whether this transaction must be placed on hold when
added to the Transaction Store. A transaction in hold status is not
available for any other activity until it is released.
Y Holds the transaction
N or other

Does not hold the transaction. N is the recommended
value.

Note: This field is checked with each call to the translator. The
value contained in this field when the deenvelope transaction
request is made will be the value associated with the transaction.

ERRFILTER Specifies which error codes to filter out during this session. The
values set here will be the initial values for the DIERRFILTER
named variable at the start and end of each transaction. For
more information, see “Error filtering” on page 17.

Enveloping services

462 WebSphere Data Interchange Programmer’s Reference

Table 159. TRCB initialization for deenveloping (continued)

Field name Description

FORCETEST Indicates whether the deenvelope process is to be forced to
select only a test usage/rule regardless of the value of the test
indicator in the envelope. This flag is most useful when receiving
test envelopes with no test indicators (such as the UCS BG). In
this case, you can to force the translator to consider the
envelopes to be tested and only look for test usages/rules.

Y Forces test mode. If a test usage/rule is not found, an
error is generated and the transaction is rejected.

(other) Uses the test indicator from the envelope to determine
the usage/rule to select. Envelopes with no test indicator
are always considered production envelopes.

TRIDB initialization for deenveloping:
BLKLEN

The size of the data block, including the BLKLEN field. The minimum size for
this field is 32000 bytes.

RESERVED
Binary zeros

TRODB initialization for deenveloping:

BLKLEN
The size of the data block, including the BLKLEN field. The minimum value
for this field is 32000 bytes.

RESERVED
Binary zeros.

Deenvelope transaction
There are no initialization requirements before making the request to deenvelope a
transaction, unless you want the next transaction to have different values than the
current transaction for the TRXLIFE, IMGLIFE, or HOLDFLAG fields. Once initialization is
complete, the translator is invoked with the following API request:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

On the first call to the translator for the session, the file containing the interchanges
(identified in the FILEID or REQID field) is opened and the first interchange is
located. The entire interchange is read into virtual storage and validated. The
interchange sender ID and sender ID qualifier are extracted from the interchange
header and used to determine which trading partner sent the data. For an
explanation of the search done for a trading partner, see “Locating sending trading
partner profile members” on page 469.

On the first call to the translator for a transaction, the next transaction in the file is
located (this might involve finding the next interchange) and the
transaction/message ID value is extracted from the transaction header. The
translator attempts to locate a usage/rule and map. This search is done even
though a translation does not take place. The usage/rule indicates the type of
functional acknowledgment requested, and the map identifies the segments and
data elements in the requested transaction.

In functional acknowledgments, only mapped segments and data elements are
validated. Your EDI administrator must establish the transactions and usages/rules

Enveloping services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 463

before API requests are made. For an explanation of the fields used and the search
done to locate a transaction, see “Locating sending and receiving trading partner
profile members” on page 470. The deenveloping process still occurs without a
transaction or usage/rule, but functional acknowledgments are not generated.

Numerous errors can occur at this point. If an error occurs, the return code and
associated extended return code are posted in the ZCCBRC and ZCCBERC fields of the
CCB. With each call, your program must check the TRXACCEPT and TRABORT fields for
error information.

Transaction TRCB Fields (DE): The fields in the following tables are returned on
the deenvelope transaction request. Such a large amount of information is returned
that multiple tables are used to show the TRCB fields.

The TRCB fields described in Table 160 are related to the transaction side of the
processing rather than the application side.

Table 160. TRCB fields related to the transaction

Field name Description

TRNID The standard transaction or message ID for the transaction or
message received.

TEST The type of transaction.
P Production
T Test
I Information

MAPKEY The map used to translate the standard data. Applies only if a
usage/rule was found.

TPNICK The trading partner nickname associated with the transaction.

DUPTRAN Indicates whether this transaction is a duplicate, and whether the
interchange being received has been received before.
Y The transaction is a duplicate.
(other) The transaction is not a duplicate.

TRXACCEPT Indicates whether the transaction had an acceptable translation.
Y The transaction was deenveloped successfully.
(other) The transaction was not deenveloped because something

was missing.

TRABORT Indicates whether the error was so severe that the translator stopped
processing.
Y The translator has stopped processing.
(other) The translator continued processing.
Y

(other)

TSKEY The key value assigned to the transaction in the Transaction Store.
This is called the transaction handle and has a format of
YYYYMMDDHHMMSSxxnnnn. It is returned as a 10-byte packed value in
this field, and stored in the database.

TSKEYU The key value assigned to the transaction in the Transaction Store.
The same value as the TSKEY field, but TSKEYU is an unpacked
(character) 20-byte value.

ERRNUM The total number of errors flagged during data processing.

Enveloping services

464 WebSphere Data Interchange Programmer’s Reference

Table 160. TRCB fields related to the transaction (continued)

Field name Description

ERRCDES An array of the first 10 different errors flagged during data
processing. See “Translator Error Codes” on page 587 for a list of
errors.

The TRCB fields described in Table 161 are related to the application side of the
processing rather than the transaction side.

Table 161. Application-related fields in TRCB

Field name Description

ATFID The data format definition ID associated with this transaction. Applies
only if a usage/rule was found.

INTPID The internal trading partner ID (vendor number) taken from the map
receive usage/rule. Applies only if a usage/rule was found.

The TRCB fields described in Table 162 are related to the functional
acknowledgments.

Table 162. Fields related to functional acknowledgements

Field name Description

FABUILT The envelope type for the functional acknowledgment. Valid values
are:
E UNB/UNZ
I ICS/ICE
T STX/END
U BG/EG
X ISA/IEA
G The acknowledgment does not have an interchange header.
S The acknowledgment was written to the Transaction Store,

but was not enveloped.

FARC The return code from the translator for the functional acknowledgment
translation done during deenvelope. For more information, refer to
WebSphere Data Interchange Messages and Codes.

FAERC The extended return code from the translator for the functional
acknowledgment translation done during deenvelope. For more
information, refer to WebSphere Data Interchange Messages and
Codes.

The TRCB service segment fields (TF) described in Table 163 are associated with
the interchange header and trailer to which the current transaction belongs. The first
table describes the fields that are established when the first transaction for the
interchange is processed and then remain constant for all the transactions in the
interchange.

Table 163. Interchange header/trailer fields in TRCB

Field name Description

DSNAME The physical data set name from which transactions are being
processed.

QTPNICK The trading partner nickname for which the last transaction
processed.

Enveloping services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 465

Table 163. Interchange header/trailer fields in TRCB (continued)

Field name Description

QSIZE The total number of bytes in the interchange, stored as a 4-byte
binary value. See QBT for the character representation of this
value.

QBT The character representation of the QSIZE field.

ENVTYPE The envelope type being received. Valid values are:
E UNB/UNZ
I ICS/ICE
T STX/END
U BG/EG
X ISA/IEA

IHCTL See IHXCTL.

IHXCTL The interchange control number assigned to the current
interchange. The value returned in this field is right-justified with
leading zeros.

ISYNTAXID The interchange syntax ID for envelope types E and T.

ISYNTAXVER The interchange syntax version for envelope types E and T.

ISIDQUAL The interchange sender ID qualifier for envelope types E, I, and
X.

ISID The interchange sender ID (interchange header for data type IS).

IRECVNAME The interchange receiver name for envelope type T. The
application receiver code for envelope type U if UCS04 does not
contain IR.

IROUTEADDR The interchange routing address for envelope type E.

ISENDNAME The interchange sender name for envelope type T. The
application sender code envelope type U if UCS03 does not
contain IS.

IREVROUT The interchange reverse routing for envelope type E.

IRIDQUAL The interchange receiver ID qualifier for envelope types E, I, and
X.

IRID The interchange receiver ID (interchange header for data type
IR).

IDATE The interchange date (interchange header for data type DT).

ITIME The interchange time (interchange header for data type TM).

IVERREL The interchange version and release (interchange header for data
type VR or LV).

ISPW The interchange password (interchange header for data type
PW).

IAPREF The application reference (interchange header for data type AP)

ISTDID The interchange standard ID for envelope types I and X.

IPRIOR The interchange processing priority for envelope types E and T.

ICOMMAGREE The interchange communication agreement for envelope type E.

The values in the TRCB fields described in Table 164 on page 467 change as
transactions are processed to indicate how much of the interchange has been
processed.

Enveloping services

466 WebSphere Data Interchange Programmer’s Reference

Table 164. TRCB fields updated to indicate interchange processing

Field name Description

NEWENV Indicates whether the transaction is the first transaction of an
interchange. If you want a copy of the interchange header, you
can use a function code value of 1 to obtain an exact image. For
more information, see “Retrieve interchange header API” on
page 472.
Y Starts a new interchange
(other) Does not start a new interchange

GRPNUM The total number of groups processed so far in the current
interchange stored as a 4-byte binary value. See IGT for a
character representation of this value.

TRNNUM The total number of transactions processed so far in the current
interchange stored as a 4-byte binary value. See ITT for a
character representation of this value.

SEGNUM The total number of segments processed so far in the current
interchange stored as a 4-byte binary value. See IST for a
character representation of this value.

ESIZE The total number of bytes processed so far in the current
interchange stored as a 4-byte binary value. See IBT for a
character representation of this value.

IGT The character representation of GRPNUM.

ITT The character representation of TRNNUM.

IST The character representation of SEGNUM.

IBT The character representation of ESIZE.

The TRCB fields described in Table 165, Table 166 on page 468, and Table 167 on
page 468 are associated with the group header and trailer to which the current
transaction belongs. The first table describes the fields that are established when
the first transaction for the group is processed and then remain constant for all the
transactions in the group.

Table 165. Group header/trailer fields in the TRCB

Field name Description

GHCTL See GHXCTL.

GHXCTL The group control number assigned to the current group. The
value returned in this field is right-justified with leading zeros.

GSIDQUAL The group sender ID qualifier for envelope type E.

GSID The group sender ID (group header for data type AS).

GRIDQUAL The group receiver ID qualifier for envelope type E.

GRID The group receiver ID (group header for data type AR).

GDATE The group date (group header for data type DT).

GTIME The group time (group header for data type TM).

GAPW The group password (group header for data type PW).

GVER The group version (group header for data type VR).

GREL The group release (group header for data type LV).

GRESPAGENCY The group controlling agency used in EDIFACT envelopes. The
group responsible agency used in ICS, UCS, and X12 envelopes.

Enveloping services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 467

The values in the TRCB fields described Table 166 change as transactions are
processed to indicate how much of the group has been processed.

Table 166. Transaction header/trailer fields in the TRCB

Field name Description

NEWGRP Indicates whether the transaction is the first transaction of a
group. If you want a copy of the group header, you can use a
function code value of 2 to obtain an exact image. For more
information, see “Retrieve group header API” on page 472.
Y Starts a new group
(other) Does not start a new group

TRNGRP The total number of transactions processed so far in the current
group, stored as a 4-byte binary value (see GTT).

GTT The character representation of TRNGRP.

The TRCB fields described in Table 167 are associated with the transaction header
and trailer for the current transaction.

Table 167. Fields in TRCB associated with the transaction header and trailer

Field name Description

NEWTRN Indicates whether a transaction header is available. If you want a copy
of the transaction header, you can use a function code value of 3 to
obtain an exact image. For more information, see “Retrieve transaction
header API” on page 473.
Y A transaction header is available
(other) A transaction header is not available

LASTINENV Indicates whether this transaction is the last transaction in the current
interchange.
Y Ends the interchange
(other) Does not end the interchange

THCTL See THXCTL.

THXCTL The transaction control number assigned to the current transaction.
The value returned in this field is right-justified with leading zeros.

SEGTRN The total number of segments in the current transaction stored as a
4-byte binary value. See TST for a character representation of this
value.

TTC The current transaction or message ID value. See also the TRNID field
on 425.

TVER The transaction version (transaction header for data type VR).

TREL The transaction release (transaction header for data type LV).

TST The character representation of SEGTRN.

Last call of session (DE)
The translator signals the last call for a session through the CCB return codes. A
ZCCBRC value of 4 and a ZCCBERC value of 1 indicate that all the data from the
current file has been processed and that the translator has terminated. If your
application is to process another file, cycle back to the first call of the session and
set the REQID or FILEID field to indicate the next file that must be processed.

Envelope processing and profile location considerations (E)
The following sections list special considerations for envelope processing.

Enveloping services

468 WebSphere Data Interchange Programmer’s Reference

Locating sending trading partner profile members
During send map processing, the following search sequence is used in an attempt
to locate a member in the trading partner profile (TPPROF) for the sender.

Table 168. Search sequence to locate trading partner profile for the sender

For application data: For C& D records: Then:

If the Application TP
Nickname field names a
field and the field contains a
value

If the APPLTID field of the
C record contains a value

That value is used as the name
of the trading partner profile
member for the sender.

When neither field contains a value, then:

If the Interchange Sender
ID and ID Qualifier fields
name a field and the field
contains a value

If the ISID and ISIDQUAL
contain values

These values are used to
search the trading partner profile
members to find an entry with a
matching Interchange ID and ID
Qualifier. The value in the
associated TP Nickname field is
used as the trading partner
profile member for the sender.

At this point, if no matching entry is found, the sending trading partner is considered to be
unknown and the default trading partner profile (with the nickname of ANY) is used as the
trading partner profile member for the sender.

Locating receiving trading partner profile members
The following search sequence is used in an attempt to locate a member in the
trading partner profile for the receiver.

Table 169. Search sequence to locate trading partner profile for the receiver

For application data: For C& D records: Then:

If the Trading Partner ID
field names a field and the
field contains a value

If the INTPTID field of the C
record contains a value

These values and the value in
the Data Format Name field are
used to search the receive
usages/rules table for an active
usage/rule. If an active
usage/rule is found, the value in
the associated TP Nickname
field is used as the name of the
trading partner profile member
for the receiver.

When neither field contains a value, then:

If the External TP Nickname
field names a field and the
field contains a value

If the EXTPID field contains
a value

That value is used as the
trading partner profile member
for the sender.

When neither field contains a value, then:

If the Interchange Receiver
ID and ID Qualifier fields
name a field and the field
contains a value

If the ISID and ISIDQUAL
contain values

These values are used to
search the trading partner profile
members to find an entry with a
matching Interchange ID and ID
Qualifier. The value in the
associated TP Nickname field is
used as the trading partner
profile member for the receiver.

Enveloping services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 469

Table 169. Search sequence to locate trading partner profile for the receiver (continued)

For application data: For C& D records: Then:

At this point, if no matching entry is found, the receiving trading partner is considered to be
unknown and the default trading partner profile (with the nickname of ANY) is used as the
trading partner profile member for the receiver.

Deenvelope processing and profile location considerations (DE)
The following sections list special considerations for deenvelope processing.

Locating sending and receiving trading partner profile members
During receive map processing, the following search sequence is used in an
attempt to locate a member in the trading partner profile (TPPROF) for the sender.

1. The sender ID qualifier and sender ID are used to search the trading partner
profile members (in TPPROF) to find an entry with a matching Interchange
Qualifier and Interchange ID. If a matching entry is found, the value in the TP
Nickname field is used as the trading partner profile for the sender.

2. If no match is found, the trading partner sender ID is parsed as follows:

a. If the trading partner sender ID is 15 or fewer bytes in length, the
interchange ID is parsed into a 7-byte account number and an 8-byte user
ID.

b. If the sender ID is 16 bytes in length, the interchange ID is parsed into a
8-byte account number and an 8-byte user ID.

c. If the sender ID is 35 bytes in length, the interchange ID is parsed into a
32-byte account number and a 3-byte user ID.

d. If the sender ID contains separators (such as blanks, periods, or slashes),
the value is parsed into an account number and user ID based on the
separators found.

Based on the parsed value, the trading partner profile members are searched
for a matching Account Number and User ID.

3. If no match is found, the interchange ID is used to search the trading partner
profile members for a matching Contact Phone.

At this point, if no matching entry is found, the sending trading partner is considered
to be unknown and the default trading partner profile (with the nickname of ANY) is
used as the trading partner profile member for the sender.

Once the trading partner profile for the sender has been determined, the same
search sequence is performed using the Interchange Receive ID and ID Qualifier
values in the data to attempt to locate the trading partner profile nickname for the
receiver.

Usages retrieved
WebSphere Data Interchange makes a single call to the database to retrieve all the
active usages/rules for a given trading partner and transaction ID. For production
transactions, only production usages/rules are retrieved. For test transactions, both
test and production usages/rules are retrieved. You can use the FORCETEST keyword
in the batch utility to override the usage indicator and force the translator to look at
only the test usages/rules. In this mode, if a test rule is not found, the transaction is
rejected. Once all usages/rules have been retrieved, the data from the usages/rule
is compared with the data from the transaction to find the best usage/rule. This is
determined by adding up the weights that are assigned to the various fields by
WebSphere Data Interchange and picking the usage/rule that has the greatest

Enveloping services

470 WebSphere Data Interchange Programmer’s Reference

weight value. A usage/rule is eliminated from consideration if a value has been
supplied in the usage/rule that does not match a value from the transaction. For
example, if an Application sender ID was specified in the usage/rule and the
usage/rule value does not match the transaction value, that usage/rule is not
considered.

The fields and their weight values are:
Application sender

4096
Application receive

2048
Responsible agency code

1024
Version

512
Release

256
Test mode matches

128
Test mode does not match

64
Sending trading partner is specific

32
Receiving trading partner is specific

16
Sending trading partner is KNOWN

8
Receiving trading partner is KNOWN

4
Sending trading partner is ANY

2
Receiving trading partner is ANY

1

Note: When you are using generic receive usages/rules, WebSphere Data
Interchange makes a second call to retrieve all of the generic usages/rules
(using an ampersand in the trading partner nickname plus standard
transaction ID) and the above weighting values are used to select the
appropriate generic receive usage/rule.

Issue commit API
The only time this function call is necessary is when the previous request has a
NOCOMIT field value of Y, indicating that the translator must not issue a COMMIT at
a point where it usually would do so. Your program then has an opportunity to
change resources (such as updating a database) and then request a COMMIT so
that the changes made by WebSphere Data Interchange and the changes made by
your application program can be synchronized. The COMMIT request is not
honored if:

v An interchange is active and interchange level recovery scope (SCOPE value of E)
is in effect.

v Transaction level recovery scope is in effect and a BUNDLE is in progress.

v The SYNCPOINT interval has not been reached. For more information on
SYNCPOINT interval, see “SYNCPOINT services” on page 505.

The basic format of the COMMIT request is:

Enveloping services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 471

FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

The unique parameters for this API request are defined in Table 170.

Table 170. Parameters for the Issue commit API

Parameter Description

SNB ZSNBNAME
TRANPROC

ZSNBPC
6

FCB ZFCBFUNC
991

TRCB NOCOMIT
N

TRIDB The translator input data block used in previous requests

TRODB The translator output data block used in previous requests

Retrieve interchange header API
This API function allows your application to retrieve the image of the current
interchange header during enveloping or deenveloping. Make this request when the
NEWENV field in the TRCB is set to Y, indicating that a new interchange has just been
started. However, the request can be made at any time until a new interchange is
started.

The format of the Retrieve interchange header request is:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

The unique parameters for this API request are defined in Table 171.

Table 171. Parameters for the Retrieve interchange header API

Parameter Description

SNB The same SNB used in previous requests. No further initialization is
required.

FCB ZFCBFUNC
1

TRCB The same TRCB used in previous requests. No further initialization is
required.

TRIDB The same TRIDB used in previous requests. No further initialization is
required.

TRODB The same TRODB used in previous requests. The translator returns the
current interchange header image in the DATA field. The size of the
image is returned in the DATALEN field.

Retrieve group header API
This API function allows your application to retrieve the image of the current group
header during enveloping or deenveloping. Make this request when the wassuP field
in the TRCB is set to Y, indicating that a new group has just been started. However,
the request can be made at any time until a new group is started.

Note: The BAT segment is only supported on receive. WebSphere Data
Interchange does not create a BAT segment.

Enveloping services

472 WebSphere Data Interchange Programmer’s Reference

The format of this API request is:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

The unique parameters for this API request are defined in Table 172.

Table 172. Parametres for the Retrieve group header API

Parameter Description

SNB The same SNB used in previous requests. No further initialization is
required.

FCB ZFCBFUNC
2

TRCB The same TRCB used in previous requests. No further initialization is
required.

TRIDB The same TRIDB used in previous requests. No further initialization is
required.

TRODB The same TRODB used in previous requests. The translator returns
the current interchange header image in the DATA field. The size of the
image is returned in the DATALEN field.

Retrieve transaction header API
This API function allows your application to retrieve the image of the current
transaction header during enveloping or deenveloping. Make this request when the
NEWTRN field in the TRCB is set to Y, indicating that a new transaction has just been
started. However, the request can be made at any time until the next transaction is
started.

The format of the API request is:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

The unique parameters for this API request are defined in Table 173.

Table 173. Parameters for the Retrieve transaction header API

Parameter Description

SNB The same SNB used in previous requests. No further initialization is
required.

FCB ZFCBFUNC
3

TRCB The same TRCB used in previous requests. No further initialization is
required.

TRIDB The same TRIDB used in previous requests. No further initialization is
required.

TRODB The same TRODB used in previous requests. The translator returns the
current interchange header image in the DATA field. The size of the
image is returned in the DATALEN field.

Enveloping services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 473

Data extraction services
Data extraction services provide functions that enable an application program to
retrieve the same information from the TRODB that is extracted and written to the
EDIQUERY file when a TRANSACTION DATA EXTRACT or a ENVELOPE DATA
EXTRACT is performed.

The format of the API request for data extraction is:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

The unique parameters for this API request are defined in Table 174.

Table 174. Parameters for the Data extraction API

Parameter Description

SNB ZSNBNAME
TRANPROC

ZSNBPC
6

FCB The function control block with one of the following values in ZFCBFUNC:
216 Detailed transaction data
217 Transaction image
218 Transaction acknowledgment image
219 Functional acknowledgment image

TRCB The translator control block. See “Translator Control Block (TRCB)” on
page 562 for details on this control block.

TRIDB The translator input data block. See “Translator Input Data Block
(TRIDB)” on page 589 for a description of this block.

TRODB The translator output data block. This block contains the returned
detailed transaction data and has a minimum size of 32000 bytes. For
more information on this block, see “Translator Output Data Block
(TRODB)” on page 591.

Initialization for data extraction
There are numerous fields in the control blocks defined for data extraction functions
whose values need to be established only once. These values can be established
before the first call and do not have to be refreshed or changed before any other
call. The control blocks, the fields within the control blocks, and the initialization
considerations are shown in the following tables.

SNB initialization required for data extraction is:
ZSNBLL

32
ZSNBNAME

TRANPROC
ZSNBPC

6

FCB initialization required for data extraction is:
ZFCBLL

4
ZFCBFUNC

216, 217, 218, or 219

TRCB initialization required for data extraction is:

Data extraction services

474 WebSphere Data Interchange Programmer’s Reference

BLKLEN
1536

BLKNME
EDITRCB

BLKTYPE
The format for the TRIDB and TRODB buffers:
H Unlimited size
(other)

Limited to 32768 bytes

TRIDB initialization required for data extraction is:

BLKLEN
The size of the data block, including this BLKLEN field.

Note: Although the TRIDB is not used during a data extraction operation, it
still must be specified in the parameter list. A BLKLEN value of 16 is
sufficient.

RESERVED
Binary zeros

TRODB initialization required for for data extraction is:

BLKLEN
The size of the data block, including this BLKLEN field. The minimum value
for this field is 32000 bytes.

RESERVED
Binary zeros

Retrieve detailed data API
This API function allows the application to retrieve detailed information concerning a
transaction from the Transaction Store and returns it as formatted records in the
TRODB. For more information, see “Transaction Store data extract information
categories” on page 264.

The TRCB fields described in Table 175 are required to initialize transactions.

Table 175. TRCB fields required to initialize transactions

Field name Description

TSKEY The transaction handle for the target transaction. The handle is
YYYYMMDDHHMMSSxxnnnn, formatted as a 10-byte packed field. If
your program does not pack these values, initialize this field to all
blanks or all binary zeros and use the TSKEYU field instead.

TSKEYU The transaction handle for the target transaction. The handle is
YYYYMMDDHHMMSSxxnnnn, formatted as a 20-byte character field.
This field is used only if TSKEY does not have a value.

CONCATENATE Indicates whether detailed information records are concatenated
in the TRODB. Valid values are:

Y Concatenate detailed information records in the TRODB.

N Return detailed information records individually.

EJECT Blank.

Data extraction services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 475

Once the initialization is complete, the data extraction service is invoked with the
following API request:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

Complete information about the transaction identified by the TSKEY or TSKEYU field is
retrieved from the Transaction Store and formatted into the data extract record
formats. For more information, see “Transaction Store data extract record formats”
on page 265. The data extraction records are returned in the TRODB data block in
the following sequence:

1. Interchange record

2. Group record, which can be followed by:
v Functional acknowledgment interchange record
v Functional acknowledgment group record
v Functional acknowledgment transaction record

3. Transaction record, which can be followed by:
v Transaction acknowledgment interchange record
v Transaction acknowledgment group record
v Transaction acknowledgment transaction record

4. Application record

When an outbound transaction is enveloped more than once, the preceding
sequence is repeated for each interchange to which the transaction belongs.

When an inbound transaction is translated more than once, more than one
application record is returned for each translation.

If there is a functional acknowledgment for the group, the interchange, group, and
transaction records for the functional acknowledgment are returned with the group
record even if concatenation has not been requested.

If there is a transaction acknowledgment for the transaction, the interchange, group,
and transaction records for the transaction acknowledgment are returned with the
transaction record even if concatenation has not been requested.

Numerous errors can occur at this point. If an error occurs, the return code and
extended return code for that error are posted in the ZCCBRC and ZCCBERC fields of
the CCB. With each call, your program must check the TRXACCEPT and TRABORT
fields for error information.

When the translation was acceptable (TRXACCEPT value of Y), the contents of
TRODB data block depend on the value of CONCATENATE as follows:

Y As much information as possible is concatenated and returned in the
TRODB data block.

(other)
The first record concerning the transaction is returned in the TRODB data
block.

The TRCB fields described in Table 176 are returned in response to the first request
for detailed information about a transaction.

Table 176. Returned information on extract request

Field name Description

TRXACCEPT Indicates whether data was extracted for the specified transaction.

Data extraction services

476 WebSphere Data Interchange Programmer’s Reference

Table 176. Returned information on extract request (continued)

Field name Description

TRABORT Indicates whether if an error was so severe that the translator stopped
processing

A transaction acknowledgment image cannot be generated until the transaction
detail record has been generated. The transaction image detail record is returned in
the TRODB. If the image is too large to fit in the TRODB, the EJECT field of the
TRCB has a value of X. In this case, make repeated requests (leaving the EJECT
value as X) until the EJECT value changes to Y, indicating that no data remains.

Retrieve functional acknowledgment image API
This API function allows your application to retrieve the functional acknowledgment
image for the current group returned from the Retrieve detailed data API. You must
request the current group (function code 216) before requesting an
acknowledgment image (function code 219). Once the group detail record is
returned, make the following API request:
FXXZccc(SNB,CCB,FCB,TRCB,TRIDB,TRODB)

A functional acknowledgment cannot be generated until the transaction detail record
has been generated. The transaction image detail record is returned in the TRODB.
If the image is too large to fit in the TRODB, the EJECT field of the TRCB has a
value of X. In this case, make repeated requests (leaving the EJECT value as X)
until the EJECT value changes to Y, indicating that no data remains.

Data extraction services

478 WebSphere Data Interchange Programmer’s Reference

Communication services
The functions provided in the Communication API enable an application program to
send or receive transaction data, files, and messages to and from trading partners.
This section provides some general comments about data flow and the components
of the Communication services, followed by detailed data about each function.

The transaction or file data that is to transmitted is not passed directly through an
API parameter. Rather, it is provided indirectly as the name of a sequential flat file
that contains the data to be sent or must be used to collect the data that is being
received.

Note: In CICS, the data to be sent or received is restricted to a TS queue.

Ordinarily, the functions called by an API use an external file to contain the data.
Therefore, if to send transaction data to a trading partner, first place the transaction
data in an sequential file using one of the following ways:

v Writing an API program to request enveloping services or translation and
enveloping services. For more information, see “Envelope API” on page 444 and
“Translate-to-standard API” on page 393.

v Using the ENVELOPE, REENVELOPE, or combination commands provided by
the WebSphere Data Interchange Utility.

v Using the enveloping and reenveloping functions provided by the Transaction
Store facility. If transactions are being received from a trading partner, the
communication functions ask the appropriate network programs to collect the
data in the specified file. Management reporting is called at this time to record
the number of interchanges and the total number of bytes received. However,
responses are generated from the transactions in the file in several ways,
including:

v Writing an API program to request that the transactions in the file be
deenveloped, or deenveloped and translated. For more information, see
“Deenvelope transaction” on page 463 and “Translate-file-to-application API” on
page 429.

v Using the DEENVELOPE or combination commands provided by the WebSphere
Data Interchange Utility.

v Using the deenvelope functions provided by the Transaction Store facility.

In some cases an application program indirectly requests a communications API
function from WebSphere Data Interchange by going through a network program
which processes the request with WebSphere Data Interchange. Not all the
programs involved in processing the request are written by or provided with
WebSphere Data Interchange. The indirect path from an application program to a
network program is:

1. The application program makes the Communication API request by calling the
appropriate STUB program (FXXZC, FXXZCBL, FXXZPLI, or FXXZASM).

2. WebSphere Data Interchange invokes the communication component of
WebSphere Data Interchange (EDICM) which reads various profiles, including
the network profile (NETPROF). The network profile entry contains the names of
the following programs:

v The communication routine. This routine is the bridge between WebSphere
Data Interchange and your network, because it knows the interfaces on both
ends and uses data provided by WebSphere Data Interchange to build the

Communication services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 479

commands required by your network program. WebSphere Data Interchange
provides communication routines for the networks directly supported by
WebSphere Data Interchange.

v The network program. Network programs are not provided by WebSphere
Data Interchange, but by your network provider and have defined interfaces.
The purpose of the communication routine is to create this interface.

v The message handler. This program processes responses from the network
program so that results can be communicated to the original program making
the API request. WebSphere Data Interchange provides message handlers
for the networks directly supported by WebSphere Data Interchange.
However, anyone can write a message handler for an internal network or for
one not directly supported by WebSphere Data Interchange.

3. After validation is performed, EDICM invokes the communication routine to
process the API request.

4. The communication routine transforms the application’s API requests into
requests that are acceptable to your network program. Once the commands are
built, the network program is invoked.

5. The network program processes the commands and sends or receives data as
directed by the commands. Once the transmission is complete, the network
program returns to the communication routine.

6. The communication routine invokes the message handler to process the
responses from the network. Control is returned to EDICM, which returns to the
application.

Note: If you are writing an API application, a network program, or a message
handler, be aware that all communication requests made internally by
WebSphere Data Interchange utilities and facilities use the communications
API functions described in this section.

Communications service functions
Table 177 contains an overview of the functions provided by the communications
service. The logical name for the communications service is COMM.

Table 177. Overview of functiondsprovided by Communication services

Function Code Sample Call Statement for Function

Queue standard data 110 FXXZccc(SNB,CCB,FCB,CMCB,TPPDB,DATABLK)

Send transactions 211 FXXZccc(SNB,CCB,FCB,CMCB,TPPDB)

Send files 221 FXXZccc(SNB,CCB,FCB,CMCB,TPPDB)

Receive 232 FXXZccc(SNB,CCB,FCB,CMCB,TPPDB)

Cancel previously sent data 233 FXXZccc(SNB,CCB,FCB,CMCB,TPPDB)

Return file name 300 FXXZccc(SNB,CCB,FCB,CMCB,TPPDB)

Process network
acknowledgments

252 FXXZccc(SNB,CCB,FCB,CMCB,TPPDB)

Trading partner profile data block (TPPDB)
The trading partner profile data block (TPPDB) is a required parameters for all
functions requested from the Communication API. This does not mean that an

Communication services

480 WebSphere Data Interchange Programmer’s Reference

application making an API request must populate each field in the block with data.
In fact, the only field in the TPPDB that must be initialized is the BLKLEN field.

This block is intended as an output block, but certain fields in the block will accept
data. These fields are used by the communication routine to build commands for
the network program and contain the parameters that control or direct the network
program. If your program does not provide values for these fields, corresponding
values retrieved by the communications routine from the mailbox (requestor) profile
entry or the trading partner profile entry are used. The Communication API
determines if you are providing values in this block by looking at the TPNICKNM field.
If this field contains blanks, the TPPDB is interpreted as the output block. If this
field is not blank, the TPPDB is interpreted as the input block and the values
specified in the TPPDB override the values from the mailbox (requestor) profile
member. The TPPDB fields you can specify are described in Table 178.

Table 178. Trading partner fields used by communications

Field name Description

BLKLEN 1532 (the length of the trading partner profile data block).

BLKNME EDITPPDB.

TPNICKNM The trading partner nickname that you want to send data to or receive
data from. This can also be the nickname used for getting parameters
for the network program. For example, when transaction data is sent,
more than one trading partner can be involved. There could be data in
the file for multiple trading partners. If this field is left blank,
communications uses the value from the TPNICKNM field of the CMCB,
and the TPPDB becomes an output-only block. If this field contains a
value, the TPPDB is interpreted as an input block and data from the
following fields is used to construct the commands for the network
program.

NETID The ID of a network profile (NETPROF) entry that defines the network
to which the request must be directed. This field is used as an input
field only if the REQID and the NETID fields of the CMCB contain blanks.

ACCTNUM The account number of the trading partner to which the current request
applies.

USERID The user ID of the trading partner to which the current request applies.

NETCLS A code indicating any special status of the data being sent. The network
specifies the acceptable codes.

NETCHG Indicates how charges are shared between sender and receiver. The
network specifies the acceptable codes.

NETACK Indicates which network acknowledgments are requested. The network
specifies the acceptable codes.

NETVCHK Indicates whether the destination is to be verified before sending occurs.
The network specifies the acceptable codes.

NETRETN The number of days data is kept in a mailbox before it is purged. The
network specifies the acceptable values.

NETEDIO Indicates whether you want EDI segments to be stored in the receiving
file as separate records. The network specifies the acceptable codes.

NETEDIP Indicates whether EDI data you receive is to have special EDI
processing. The network specifies the acceptable codes.

STGFRMTO Indicates whether you want to use the storage format defined by the
network program. The network specifies the acceptable codes.

Communication services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 481

Table 178. Trading partner fields used by communications (continued)

Field name Description

MACHTYPE If your trading partner is using the Personal Computer/Information
Exchange (PC/IE) product to receive your data, enter 1. Otherwise,
leave blank.

STGFRMT Indicates to the network how data is stored for non-EDI files. The
network specifies the acceptable codes.

EOTID The character that signifies the end of message text to the network. This
applies only to sending or receiving free-form messages.

NETCMDS The name of a member of the PDS that is allocated to EDINTCMD
which contains network commands that WebSphere Data Interchange
must pass to the network.

TPDATALINE The phone number to dial, to connect directly to your trading partner’s
computer to pass data.

TIMEOUT The maximum allowable amount of time that the data line for
communications can be idle without being dropped. The network
specifies the acceptable values.

Common CMCB output fields
Some CMCB fields are established by the communications component of
WebSphere Data Interchange (EDICM). They contain input data for the
communication routine, and output data for the application program making the
communications API requests. The values in these fields define the network’s
capabilities and are set based on the values found in the FSUPPORT network
command entry (Network Commands (NETOP) profile) for the network. These fields
are described in the following table and are not repeated in the individual API
descriptions. A value of Y in these fields indicates the function described by the field
is supported by the designated network.

Table 179. Common CMCB output fields

Field name If this field contains a value of Y:

FFILE Non-EDI files are supported.

FEDIX X12 interchanges are supported.

FEDIE EDIFACT interchanges are supported.

FEDIU BG/EG interchanges are supported.

FEDIG GS/GE interchanges are supported.

FEDII ICS interchanges are supported.

FEDIT STX/END interchanges. are supported.

FCANCEL The CANCEL function is supported.

FCLASS User message classes are supported.

FACK Network acknowledgments are supported.

FSYSMSG System messages are supported.

FRCVBTP Receiving by trading partner is supported.

FRESTART Restart is supported.

FNOUSERID Logging in with account number only is supported.

FACCTSEP The character used to separate the account number and user ID.

Communication services

482 WebSphere Data Interchange Programmer’s Reference

Return codes from communications
For all the Communication API requests, the result of the request is indicated by the
return code (ZCCBRC) and extended return code (ZCCBERC) in the CCB. In general,
the ZCCBRC field has the following values:

0 The request was processed without error.

4 A warning that the request was processed, but something unusual was
noticed. Two extended return codes are:

1 The network being used does not have a network program defined
in the network profile, indicating that no SEND/RECEIVE/CANCEL
requests can be processed. 1040

1040 No data was returned on a receive request.

8 An error occurred. Another request might not have the same problem.

12 A severe error occurred. This usually indicates a system error. Additional
requests probably will not succeed.

Send transactions and restart send transactions API
The communication request to send transactions is used to build all the commands
necessary for a network program to send a file of interchanges to the appropriate
trading partners. For point-to-point networks, WebSphere Data Interchange
assumes that all the interchanges in the file are for the same trading partner. For
generalized networks, the file can contain interchanges for multiple trading partners
and the network uses information in the interchange header to route each
interchange to the correct trading partner. Before the network program is invoked to
send the data, the file is scanned by WebSphere Data Interchange and the status
of each interchange in the file is set to SEND STARTED.

The communication request to Restart send transactions applies only if your
network supports restart and you specified checkpoint-level recovery when initially
sending the data. For z/OS, if an error causes network processing to restart during
a send operation, you can use the Restart send transactions API to restart and
complete the send. The Restart send transactions request is not supported in CICS.
For more information on checkpoint recovery, refer to the Expedite Base/MVS
Programming Guide.

If you want to use the Restart send transactions API, you must initialize the control
blocks with the same values that were set for the initial send, except for NETOP
which is not required on restart.

After the network program returns, it updates the status of each interchange to
SEND REQUESTED (return code 0), SENT WITH ERRORS (return codes 1–4), or
SEND REQUEST ERROR (return code not 0–4), based on the degree of success
of the network program. Status is updated through the Update status API (see
“Update status services” on page 498). The WebSphere Data Interchange Utility
uses the send transactions API whenever any of the following PERFORM
commands are requested:
v SEND
v ENVELOPE AND SEND
v REENVELOPE AND SEND
v TRANSLATE AND SEND

The WebSphere Data Interchange Utility uses the Restart send transactions API
only for the RESTART SEND command.

Communication services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 483

The basic format of the API request to send or resend transactions is:
FXXZccc(SNB,CCB,FCB,CMCB,TPPDB)

The unique parameters for the send transactions or restart send transactions API
requests are defined in Table 180.

Table 180. Parameters for the send transactions of restart send transactions API

Parameter Description

SNB ZSNBNAME
COMM

ZSNBPC
5

FCB ZFCBFUNC
211 Send transactions
260 Restart send transactions

CMCB The communications control block. For more information, see
“Communication Control Block (CMCB)” on page 593.

TPPDB The trading partner profile data block. For more information, see
“Trading partner profile data block (TPPDB)” on page 480.

CMCB initialization for sending transaction data
Before issuing an send API request, you must initialize the CMCB fields described
in Table 181.

Table 181. CMCB fields required for sending transaction data

Field name Initialization

BLKLEN 254 (the length of the CMCB).

BLKNME Any 8-character name. The recommended value is EDICMCB.

TPNICKNM The trading partner nickname that is used when building the
commands for the network program. This field is not necessary for a
send transactions request, because the network distributes the data
based on the destination in the interchange header. This field is
ignored if the TPNICKNM field of the TPPDB is supplied.

NETID The ID of the network profile (NETPROF) entry that defines the
invoked network. The value placed in this field is ignored if the REQID
field has a value. When a REQID is provided, the NETID is taken from
the mailbox (requestor) profile entry and this field is updated with that
NETID value.

NETOP Do not edit this file unless instructed by Customer Care personnel to
do so. Changing the information in this file arbitrarily will disrupt the
operation of your communications software. For more information, see
“Send network operation” on page 486.

REQID The mailbox (requestor) profile ID used for this request. The mailbox
(requestor) profile identifies the mailbox you want to use to identify
yourself. Numerous values are taken from this profile entry while
building the commands for the network.

Communication services

484 WebSphere Data Interchange Programmer’s Reference

Table 181. CMCB fields required for sending transaction data (continued)

Field name Initialization

CLRFILE Indicates whether you want WebSphere Data Interchange to clear the
file containing the transaction data at the end of the processing. Valid
values are:

Y Clears the file if the data was sent successfully

U Always clears the file

N or (other)
Does not clear the file

ACCTYP Account type. Applies only if the SENDFILE network command is being
used. This field must contain a value of D to indicate that a trading
partner account number and user ID are being supplied.

DATATYP The type of file name supplied in the FILENAME field. Valid values are:
A Data set name
D ddname

If FILENAME is not provided on input, both FILENAME and DATATYP are
provided on output.

Notes:

1. This field is ignored in CICS.

2. Special IEBASE considerations: Unless the FILENAME field contains
an entire data set name and this field contains a value of A, you
must place a value of D in this field. This is necessary so that
WebSphere Data Interchange can build the proper IEBASE INMSG
FILEID parameter. If FILENAME is left blank, a D is still required in
this field.

FILENAME The name of a file containing the data to be sent. This is either a
ddname or data set name based on the value of DATATYP. If this field is
blank, WebSphere Data Interchange assigns a value using the
following rules:

v The Trans data queue field from the network profile member is used
as a starting point. If this field is blank, a default value of QDATA is
used.

v If the network command is SENDEDI, an E is appended to the
ddname. For example, the QDATA default name becomes QDATAE. If
the ddname is already 8 characters long, the last character is
overlaid with an E.

If FILENAME is not provided on input, both FILENAME and DATATYP are
provided on output.

Notes:

1. In CICS, this field must be a TS queue.

2. Special IEBASE considerations: Unless this field contains an entire
data set name and the DATATYP field contains a value of A, you
must place a value of D in the DATATYP field. This is necessary so
that WebSphere Data Interchange can build the proper IEBASE
INMSG FILEID parameter. If this field is left blank, a D is still
required in the DATATYP field.

DCIND The delivery class for the data being sent. This value is not interpreted
by WebSphere Data Interchange but is handled and understood by the
network program. Valid values are:
blank Normal delivery
P High priority

Communication services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 485

Table 181. CMCB fields required for sending transaction data (continued)

Field name Initialization

ACKIND The type of acknowledgment wanted. See the definition of this field in
“Communication Control Block (CMCB)” on page 593 for a list of
values.

ENAME The message user class to associate with each interchange in the file
being sent. See “Default message user class” on page 487 for the
default values assigned if a specific value is not supplied.

MSGNAME The message name to associate with each interchange in the file being
sent. See “Default message name” on page 488 for the default values
assigned if a specific value is not supplied.

Send network operation
The function you use to invoke communications indicates in general what the
application is requesting, but the network commands profile (NETOP) specifies
which commands must be built for the network program to process. WebSphere
Data Interchange and the WebSphere Data Interchange utilities and facilities set the
network operator based on the type of data contained in the file.

Two network commands are available: SENDEDI and SENDSTREAM. Use
SENDEDI when you want the network program to parse the interchange headers in
the file. Use SENDSTREAM when you want the entire file sent to the trading
partner without any interrogation required by the network program.

Send transactions returned information
The return code (ZCCBRC) and extended return code (ZCCBERC) fields of the
CCB indicate whether the send transactions request was successful.

Numerous errors are possible.

The CMCB fields described in Table 182 are returned on a request to send
transactions.

Table 182. CMCB fields returned on a request to send transactions

Field name Description

SEQNUM The network sequential number assigned to this transmission. The
number is maintained in the Network sequence field of the network
profile entry and is incremented on each request to send data. This
number might be important later if you want to recall (cancel) this
transmission.

ENAME If a value was not supplied as input, the value from the Message user
class field in the mailbox (requestor) profile entry is returned.

ACKIND If a value was not supplied as input, the value from the Net
acknowledgment field of the mailbox (requestor) profile or the Net
acknowledgment field of the trading partner profile is returned.

Communication services

486 WebSphere Data Interchange Programmer’s Reference

Table 182. CMCB fields returned on a request to send transactions (continued)

Field name Description

DATATYP If a value was not supplied as input, D is returned for generalized
networks and A is returned for point-to-point networks, indicating the
type of value in the FILENAME field.

Notes:

1. This field is ignored in CICS.

2. When using point-to-point networks, the DATATYP and FILENAME
fields normally indicate that a data set name was used. However, if
a trading partner was not provided with the request, the ddname
taken from the Trans data queue field of the network profile is
returned.

FILENAME If a value was not supplied as input, the ddname is returned for
generalized networks and the data set name is returned for
point-to-point networks.

Notes:

1. For CICS, this field must be a TS queue.

2. When using point-to-point networks, the DATATYP and FILENAME
fields normally indicate that a data set name was used. However, if
a trading partner was not provided with the request, the ddname
taken from the Trans data queue field of the network profile is
returned.

NPSSCDE The start session response code returned by the message handler
associated with the network. The value is extracted from the network
program response records. This might not apply to all networks.

NPESCDE The end session response code returned by the message handler
associated with the network. The value is extracted from the network
program response records. This might not apply to all networks.

NPERRCD The error code of the most severe error returned by the message
handler associated with the network. The value is extracted from the
network program response records. This might not apply to all
networks. The value in this field is included in the VN1015 error
message.

NPSEVER The severity of the most severe error code returned by the message
handler associated with the network. The value is extracted from the
network program response records. This might not apply to all
networks. The value in this field is included in the VN1015 error
message.

Default message user class
The message user class is a code that trading partners agree to use for identifying
classes of information to be sent or received. It allows users to select a single type
of information from a mailbox that might hold various kinds of data. You can assign
the message user class to an interchange when you send it by supplying a value in
the ENAME field of the CMCB.

If you do not supply a value, the message user class from the mailbox (requestor)
profile member is used. If a message user class is not present in the mailbox
(requestor) profile, a default value is assigned based on the type of interchange, as
follows:
ISA, ICS, or GS

#E2
BG #EC

Communication services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 487

UNB Taken from the UNB14 (APRF) field. If the UNB14 field is not present or
contains blanks, a value of #EE is used.

STX Taken from the STX11 (APRF) field. If the STX11 field is not present or
contains blanks, a value of #EU is used.

Default message name
The message name is an arbitrary value that can be assigned to an interchange
when the interchange is sent. It is part of an alternate key that can later be used to
update the status of an interchange. It can also be used if you need to recall an
interchange. The MSGNAME field of the CMCB contains the message name that must
be assigned to each interchange in the file being sent. If a message name is not
supplied, a default value is assigned based on the type of interchange, as follows:
ISA or ICS

The last 8 bytes of the interchange control number
GS The group control number, left-justified and padded with blanks
BG, UNB, or STX

The interchange control number, left-justified and padded with blanks

Send files API
The communications request to send files is used to build all the commands
necessary for a network program to send a file containing non-EDI data to a
particular trading partner. There is no specific PERFORM command provided with
the WebSphere Data Interchange Utility for sending a file of non-EDI data.

The basic format of the API request to send a file is:
FXXZccc(SNB,CCB,FCB,CMCB,TPPDB)

The TPPDB is described in Table 178 on page 481. The CMCB settings for this
request are described in Table 183. The unique SNB and FCB parameters for the
send files API request are:
SNB

ZSNBNAME
COMM

ZSNBPC
5

FCB
ZFCBFUNC

221

CMCB initialization
Some CMCB fields must be initialized before the API request is made. Table 183
describes the fields and the initialization requirements.

Table 183. CMCB initialization requirements for the send files API

Field name Initialization

BLKLEN 254 (the length of the CMCB).

BLKNME EDICMCB.

TPNICKNM The trading partner nickname to which the file must be sent. This field
is ignored if the TPNICKNM field of the TPPDB contains a value.

NETID The network that is invoked. This field is ignored if the REQID field has
a value. When a REQID is provided, the NETID is taken from the mailbox
(requestor) profile entry and this field is updated with that NETID value.

NETOP SENDFILE.

Communication services

488 WebSphere Data Interchange Programmer’s Reference

Table 183. CMCB initialization requirements for the send files API (continued)

Field name Initialization

REQID The mailbox (requestor) profile ID value to use for this request. The
mailbox (requestor) profile identifies the mailbox that you want to use
to identify yourself. Numerous values are taken from this profile entry
while building the commands for the network.

CLRFILE Indicates whether you want WebSphere Data Interchange to clear the
file at the end of the processing. Valid values are:

Y Clears the file if the data was sent successfully

U Always clears the file

N or (other)
Does not clear the file

ACCTYP D. Indicates that a trading partner account number and user ID are
being supplied.

DATATYP The type of file name supplied in the FILENAME field. Valid values are:
A Data set name
D ddname
Note: In CICS, this field is ignored.

FILENAME The name of a file containing the data to be sent. This is either a
ddname or data set name based on the value of DATATYP.
Note: For CICS, this value must be a TS queue.

DCIND The delivery class for the data being sent. The value entered in this
field is not interpreted by WebSphere Data Interchange, but is handled
and understood by the network program. Valid values are:
blank
P High priority
I Express delivery

ACKIND The type of acknowledgment wanted. See “Communication Control
Block (CMCB)” on page 593 for a list of values.

ENAME The message user class to associate with the file. If a value is not
supplied, the value in the Message user class field from the mailbox
(requestor) profile entry is used.

MSGNAME The message name to associate with the file.

Send files returned information
The return code (ZCCBRC) and extended return code (ZCCBERC) fields of the CCB
indicate if the request to send a file was successful.

Numerous errors are possible.

The CMCB fields that are returned on a send file API request are described in
Table 184.

Table 184. CMCB fields returned on a send file API request

Field name Description

SEQNUM The network sequential number assigned to this transmission. The
number is maintained in the Network sequence field of the network
profile and is incremented on each request to send data. This number
might be important later if you want to RECALL (CANCEL) this
transmission.

ENAME If a value was not supplied as input, the value in the Message user
class field of the mailbox (requestor) profile is returned.

Communication services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 489

Table 184. CMCB fields returned on a send file API request (continued)

Field name Description

ACKIND If a value is not supplied as input, the value from the Net
acknowledgment field of the mailbox (requestor) profile or the trading
partner profile is returned.

NPSSCDE The start session response code returned by the message handler
associated with the network. The value is extracted from the network
program response records. This might not apply to all networks.

NPESCDE The end session response code returned by the message handler
associated with the network. The value is extracted from the network
program response records. This might not apply to all networks.

NPERRCD The error code of the most severe error returned by the message

The TPPDB is described in Table 178 on page 481. The CMCB settings for this
request are described in “CMCB initialization for receive requests”. The unique SNB
and FCB parameters for the receive and Restart receive API request are:
SNB

ZSNBNAME
COMM

ZSNBPC
5

FCB
ZFCBFUNC

232 Receive
261 Restart receive

CMCB initialization for receive requests
Some CMCB fields must be initialized before the receive API request is made.
Table 185 describes the fields and initialization requirements.

Table 185. Initialization for send transaction data

CMCB Initialization

BLKLEN 254 (the length of the CMCB).

BLKNME EDICMCB.

TPNICKNM The trading partner nickname used when building the commands for
the network program. This field is not needed for a receive. If you
specify a trading partner nickname in this field, only data from this
trading partner is requested. If you do not specify a trading partner
nickname, data from all trading partners is requested. This value in this
field is also ignored if the TPNICKNM field of the TPPDB contains a
value.

NETID The network that is invoked. The value in this field is ignored if REQID
contains a value. When REQID is specified, the value for this field is
taken from the NETID field in the mailbox (requestor) profile entry.

NETOP See “Receive network operation” on page 492.

REQID The mailbox (requestor) profile ID value that is used for this request.
The mailbox (requestor) profile identifies the mailbox from which you
want to receive data.

ACCTYP If a TPNICKNM is provided, this field contains D. Otherwise, it must
contain a blank.

DATATYP For z/OS, the type of file name supplied in the FILENAME field (if a
FILENAME value is provided). For CICS, this field is ignored. Valid
values are:
A Data set name
D ddname

If FILENAME is not provided on input, both FILENAME and DATATYP are
provided on output.

FILENAME The name of a file for receiving the data. For z/OS, this is either a
ddname or data set name based on the value of DATATYP. For CICS,
this must be TS queue. If this field is blank, WebSphere Data
Interchange uses the value from the Receive file name field in the
mailbox (requestor) profile member and forces the DATATYP field to D.
This field is required when the RECVFILE network command is used.

Communication services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 491

Table 185. Initialization for send transaction data (continued)

CMCB Initialization

ENAME The message user class used to identify the data received. If a value
is not specified, the Message user class field from the mailbox
(requestor) profile entry is used. The values from this field and the
TPNICKNM field combine to form the selection criteria indicating what
data is desired from the mailbox.

RECVTYP Indicates whether only the first file that meets the selection criteria
must be returned.

G Returns only the first file that meets the selection criteria

blank Returns all files meeting the criteria

RESRECL Controls whether the network program splits records when the data
received has records larger than the logical record length (LRECL) of the
file to which the data is being written (FILENAME field).

S Records are split into smaller records using the maximum size
set in LRECL

blank Stops the network program with an A03 system abend

Receive network operation
The function you use to invoke communications indicates in general what the
application is requesting, but the network commands profile (NETOP) indicates
which commands must be built for the network program to process. WebSphere
Data Interchange and the WebSphere Data Interchange utilities and facilities set the
network operator based on the type of data contained in the file.

Two network commands are available: RECVEDI and RECVSTREAM. Use
RECVEDI when you want the network program to parse the interchange headers in
the file. Use RECVSTREAM when you want the entire file received from the trading
partner without any interrogation required by the network program.

Receive returned information
The return code (ZCCBRC) and extended return code (ZCCBERC) fields of the
CCB indicate if the receive request was successful.

Numerous errors are possible.

The CMCB fields described that are returned on receive data API request are
described in Table 186.

Table 186. CMCB fields returned on the receive data API

Field name Description

DATATYP If a value was not supplied as input, D is returned for generalized
networks and A is returned for point-to-point networks indicating the type
of file in the FILENAME field.
Note: When using point-to-point networks, the DATATYP and FILENAME
fields normally indicate that a data set name was used. If a trading
partner was not specified on the request, the ddname taken from the
Trans data queue field in the network profile entry is returned.

Communication services

492 WebSphere Data Interchange Programmer’s Reference

Table 186. CMCB fields returned on the receive data API (continued)

Field name Description

FILENAME If a value was not supplied as input, the ddname is returned for
generalized networks and the data set name is returned for point-to-point
networks. The ddname returned is the Receive file name field from the
mailbox (requestor) profile entry if the RECVEDI network command is
being used. For other network commands, the FILENAME is a required
input parameter.
Note: When using point-to-point networks, the DATATYP and FILENAME
fields normally indicate that a data set name was used. If a trading
partner was not specified on the request, the ddname taken from the
Trans data queue field in the network profile entry is returned.

TPNICKNM If a value is not supplied on input indicating a request to receive data
from any trading partner, on output this field contains the trading partner
nickname for the first data received (if the network response data
provides enough information for this to be determined). This might not
apply to all networks.

FILERCVD Indicates whether data was received. The message handler sets this flag
if processing the network responses indicates that data was received.
This might not apply to all networks.

ENAME The message user class associated with the first file received is returned
if the network program provides this information. This field is returned by
the message handler while processing the network responses. This might
not apply to all networks.

MSGNAME The message name associated with the first file received is returned if the
network program provides this information. This field is returned by the
message handler while processing the network responses generated by
the network program. This might not apply to all networks.

NPSSCDE The start session response code returned by the message handler
associated with the network. The value is extracted from the network
program response records. This might not apply to all networks.

NPESCDE The end session response code returned by the message handler
associated with the network. The value is extracted from the network
program response records. This might not apply to all networks.

NPERRCD The error code of the most severe error returned by the message handler
associated with the network. The value is extracted from the network
program response records. This might not apply to all networks. The
value in this field is included in the VN1015 error message.

NPSEVER The severity of the most severe error returned by the message handler
associated with the network. The value is extracted from the network
program response records. This might not apply to all networks. The
value in this field is included in the VN1015 error message.

Cancel API
The Cancel request is used to build all the commands necessary for a network
program to cancel (or recall) data previously sent. If a file is sent to a trading
partner by mistake, it can be canceled until the trading partner receives the data.
Not all networks support the Cancel request. The following description is directed at
the AT&T Global Network. No specific PERFORM command provided with the
WebSphere Data Interchange Utility supports the Cancel API.

The basic format of the Cancel API request is:
FXXZccc(SNB,CCB,FCB,CMCB,TPPDB)

Communication services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 493

The TPPDB is described in Table 178 on page 481. The CMCB settings for this
request are described in “CMCB initialization for Cancel requests”. The unique SNB
and FCB parameters for the receive and Restart receive API request are:
SNB

ZSNBNAME
COMM

ZSNBPC
5

FCB
ZFCBFUNC

233

CMCB initialization for Cancel requests
Some CMCB fields must be initialized before the Cancel API request is made.
Table 187 describes the fields and initialization requirements.

Table 187. Initialization for cancel

Field name Initialization

BLKLEN 254 (the length of the CMCB).

BLKNME EDICMCB.

TPNICKNM The trading partner nickname from which files are being recalled. This
field is ignored if the TPNICKNM field of the TPPDB has a value.

NETID The network that is invoked. If the REQID field is specified, this field is
ignored and the value in the mailbox (requestor) profile entry is used.

NETOP CANCEL.

REQID The mailbox (requestor) profile ID value used for this request. The
mailbox (requestor) profile identifies the mailbox that you want to use to
identify yourself. Numerous values are taken from this profile entry while
building the commands for the network.

ACCTYP D. A trading partner account number and user ID is being supplied.

ACKIND The type of acknowledgment wanted regarding the cancellation. See
“Communication Control Block (CMCB)” on page 593 for the field
definition.

DCIND The delivery class used when the file was originally sent.

ENAME The message user class associated with the file when it was originally
sent. If a value is not supplied, the Message user class field from the
mailbox (requestor) profile entry is used.

MSGNAME The message name associated with the file when it was originally sent.

SEQNUM The sequential number assigned to the file when it was originally sent.

CANSD The cancellation start date in YYMMDD format. Initialize with blanks if
not used.

CANST The cancellation start time in HHMMSS format. Initialize with blanks if
not used.

CANED The cancellation end date in YYMMDD format. Initialize with blanks if
not used.

CANET The cancellation end time in HHMMSS format. Initialize with blanks if
not used.

TMZONE The time zone used for CANSD, CANST, CANED, and CANET.
L indicates local time. G indicates Greenwich mean time.

Communication services

494 WebSphere Data Interchange Programmer’s Reference

Cancel returned information
The return code (ZCCBRC) and extended return code (ZCCBERC) fields of the CCB
indicate whether the request to cancel was successful.

Numerous errors are possible.

The CMCB fields described in Table 188are returned from a Cancel request. The
values are returned by the message handler associated with the network. The
values are extracted from the network program response records. This might not
apply to all networks.

Table 188. CMCB fields returned from a Cancel request

CMCB Description

NPSSCDE The start session response code.

NPESCDE The end session response code.

NPERRCD The most severe error code. The value in this field is included in the
VN1015 error message.

NPSEVER The severity of the most severe error. The value in this field is included in
the VN1015 error message.

Return filename API
The Return filename request is issued to determine the name of the file associated
with the network for writing transaction data. This API request is issued internally
during translation or enveloping operations. The network program (such as IEBASE
or DSXMIT2) is not involved in processing this API request; the request is
processed directly through the communication routine.

The basic format of the Return filename API request is:
FXXZccc(SNB,CCB,FCB,CMCB,TPPDB)

The TPPDB is described in Table 178 on page 481. The CMCB settings for this
request are described in “CMCB initialization for Return filename request”. The
unique SNB and FCB parameters for the Return filename API request are:
SNB

ZSNBNAME
COMM

ZSNBPC
5

FCB
ZFCBFUNC

300

CMCB initialization for Return filename request
Some CMCB fields must be initialized before the API request is made. Table 189
describes the fields and initialization requirements.

Table 189. Initialization for query filename

Field name Initialization

BLKLEN 254 (the length of the CMCB).

BLKNME EDICMCB.

Communication services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 495

Table 189. Initialization for query filename (continued)

Field name Initialization

TPNICKNM The trading partner nickname for which the current interchange is being
created. This is important for point-to-point networks because the data set
name used for transaction data is constructed using this field.

NETID The network for which information is wanted. If REQID contains a value,
the value in this field is ignored and this value is taken from the mailbox
(requestor) profile.

REQID The mailbox (requestor) profile ID value used for this request.

Return filename returned information
The return code (ZCCBRC) and extended return code (ZCCBERC) fields of the CCB
indicate whether the request was successful. Numerous errors are possible.

The CMCB fields that are returned on a Return filename request are described in
Table 190.

Table 190. CMCB fields returned by the Return filename API

Field name Description

DATATYP The type of file identified in the FILENAME field.
A Point-to-point network
D Generalized network

FILENAME For generalized networks, the ddname associated with the network
from the Trans data queue field in the network profile entry. For
point-to-point networks, the data set name associated with the trading
partner.

Internal calls
The following API calls are used internally by the WebSphere Data Interchange
Utility.

Queue standard data API
The Queue standard data request is an internal API function issued by the
translator or enveloper when an interchange is complete and ready to be written to
a file associated with the network. The network program is not called to process this
request. The network program is only called when a request to send transaction
data is received. For issues to consider before sending the data, see “Sending
transaction data” on page 454. For information about how to provide the name of
the file where the transaction data must be written, see “Translate-file-to-application
API” on page 429 and “Envelope API” on page 444.

Process network acknowledgments API
The Process network acknowledgments request is used to build all the commands
needed to instruct the network program to return network acknowledgment data.
The WebSphere Data Interchange Utility uses this API when the UPDATE STATUS
command is issued.

The basic format of the Process network acknowledgments API request is:
FXXZccc(SNB,CCB,FCB,CMCB,TPPDB)

The TPPDB is described in Table 178 on page 481. The CMCB settings for this
request are described in “CMCB initialization for Process network acknowledgments

Communication services

496 WebSphere Data Interchange Programmer’s Reference

requests”. The unique SNB and FCB parameters for the Process network
acknowledgments API request are:
SNB

ZSNBNAME
COMM

ZSNBPC
5

FCB
ZFCBFUNC

252

CMCB initialization for Process network acknowledgments
requests
Some CMCB fields must be initialized before the Process network
acknowledgments API request is made, as described in Table 191.

Table 191. CMCB field initialization requirements for Process network acknowledgements
API

Field name Initialization

BLKLEN 254 (the length of the CMCB).

BLKNME EDICMCB.

NETID The network that is invoked. This field is ignored if REQID has a value.

Note: This function must be invoked for each network individually. The
UPDATE STATUS command issues a request for every network defined
in the network profile unless you use the NETID keyword to request a
specific network.

NETOP If a file of network acknowledgments has already been received and you
want to process it, use a NETOP value of NO-NETOP. Otherwise, leave the
field blank and the communication routine will invoke the network program
to return the acknowledgment data.

REQID The mailbox (requestor) profile ID used for this request. If you specify
this field, network acknowledgments are requested and processed for the
specified requestor. If you do not specify this field, acknowledgments are
requested and processed for every requestor defined for the network
identified by NETID.

There are no output CMCB fields for this request. The return code (ZCCBRC) and
extended return code (ZCCBERC) indicate whether the request was successful.

Communication services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 497

Update status services
Update status services allow the status of an interchange to be updated as it
progresses from enveloping, to sending, to receipt by the trading partner. The
update status service is used by the communications routine and message handler
when an interchange is sent, and also during the processing of network
acknowledgments. Certain characteristics of an interchange become known only
when the interchange is sent. Therefore, the update status service also allows other
fields in the interchange to be set when status is updated. These are established
using the update status data block (USDB), which is described in Appendix A.

Information missing?:

The USDB is NOT included in Appendix A. The only information about its contents
that I can find is in “Update status data block” on page 503 which is later in this
section.

Update status service overview
The logical name for the update status service is TRANSSRV.

The basic format of the update status function request call is:
FXXZC(SNB,CCB,FCB,USKB###,status[,USDB[,REQID]])

where ### is one of the following function codes:

210 The envelope full key with trading partner identified by the account number
and user ID.

211 The transaction handle value for one of the transactions in the interchange.

212 An alternate key with the trading partner identified by the account number
and user ID.

213 The full envelope key with the trading partner identified by the interchange
qualifier and interchange ID.

214 An alternate key with the trading partner identified by the interchange
qualifier and interchange ID.

215 The full envelope key with the trading partner identified by the trading
partner nickname.

The six functions supported by the update status service all update the status (and
possibly other fields provided in the USDB) of an interchange. The different function
codes are used to indicate how to identify the interchange whose status has been
updated. Four of the functions make up the key for an interchange, as follows:

v Trading partner nickname - 16 characters, left-justified with trailing blanks

v Direction of the interchange (send or receive) - 1 character

v Interchange receiver ID (from the interchange header) - 35 characters,
left-justified with trailing blanks

v Interchange control number (from the interchange header) - 14 characters,
right-justified with leading zeros

The two remaining functions provide two alternate keys for an interchange
(established at the time an interchange is sent) that also can be used when
processing network acknowledgments. They are:

Update status services

498 WebSphere Data Interchange Programmer’s Reference

v Unique 8-character value associated with the interchange by the network
program

v Another alternate key that might not be a unique value and consists of the
following fields:
– Trading partner nickname - 16 characters, left-justified with trailing blanks
– Message name - 8 characters, left-justified with trailing blanks
– Message user class - 8 characters, left-justified with trailing blanks
– Message sequence number - 5 characters, right-justified with leading zeros

Which key values are supplied to the update status service depends on whether
you use the primary key or one of the alternate keys and on how the trading partner
is identified. The format of the different key values is provided in the sections that
follow.

Update status API
The basic format of the Update status API request is:
FXXZccc(SNB,CCB,FCB,USKB,status[,USDB[, ‘reqid’]])

The unique parameters for the Update status API request are defined in Table 192..

Table 192. Parameters for the Update status API

Parameter Description

SNB ZSNBNAME
TRANSSRV

ZSNBPC
5 if USDB is not specified 6 if USDB is specified 7 if REQID is
specified

FCB The function control block with a ZFCBFUNC value that identifies the
type of key provided. Valid values are:

210 Full envelope key with the trading partner identified by
account number and user ID

211 Transaction handle value of one of the transactions in the
interchange

212 Alternate key provided with the trading partner identified by
account number and user ID

213 Full envelope key with the trading partner identified by
interchange qualifier and interchange ID

214 Alternate key provided with the trading partner identified by
interchange qualifier and interchange ID

215 Full envelope key with the trading partner identified by the
trading partner nickname

USKB The key block with a format based on the value of ZFCBFUNC. For
more information, see “Full envelope key” on page 500.

Update status services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 499

Table 192. Parameters for the Update status API (continued)

Parameter Description

STATUS The new status for the interchange. Valid values are:
41 Send error
42 Send request error
43 Not sent, network error
46 Send started
48 Send requested
49 Sent to network
50 Accepted by the network
51 Delivered by the network
52 Purged by the network
53 Recall requested from network
54 Recall request error
55 Recalled from network

USDB The optional update status data block (see “Update status data block”
on page 503).

REQID If you specify this parameter, the management reporting component
of WebSphere Data Interchange is called to update the statistics on
the number of bytes sent from the specified requestor ID. Applies
only if STATUS is 48 or going from 48 to some other status.

Update status return codes
The results of a update status request are posted in the return code and extended
return code fields of the CCB. Valid values are defined in Table 193.

Table 193. Update status API return codes

0 Status update was successful.

8 Status update failed. Extended return codes are:
210 No interchange was found.
211 Internal program error.
212 An error occurred when attempting to update the database.

Full envelope key
The three ways to identify a trading partner when using the full envelope key are:

v Trading partner nickname, which identifies the trading partner profile member

v Interchange qualifier and interchange ID fields, which are used to search the
trading partner profile members for a matching entry

v Account number and user ID fields, which are used to search the trading partner
profile members for a matching entry

The formats for these values are shown in the following tables.

Trading partner nickname
Table 194 describes the format for a full key using a trading partner nickname. Use
this update status key block when ZFCBFUNC contains 215.

Table 194. Full key using trading partner nicknames

Name Offset Length Format Description

TPNICKNM 0 16 Char The trading partner nickname for an
entry in the trading partner profile.
Left-justified with trailing blanks.

FILLER 16 48 Char Blanks.

Update status services

500 WebSphere Data Interchange Programmer’s Reference

Table 194. Full key using trading partner nicknames (continued)

Name Offset Length Format Description

DIR 64 1 Char The direction of the interchange. must
have value of S.

INTCTLNO 65 14 Char The interchange control number.
Right-justified with leading zeros.

RECEIVER 79 35 Char The interchange receiver ID value sent
in the interchange. Left-justified with
trailing blanks.

Interchange qualifier and ID
Table 195 describes the format for a full key using an interchange qualifier and ID.
Use this update status key block when ZFCBFUNC contains 213.

Table 195. Full key format using an interchange qualifier and ID

Name Offset Length Format Description

QUALIFIER 0 4 Char The interchange qualifier sent in the
interchange. Left-justified with trailing
blanks.

RECEIVER 4 35 Char The interchange receiver ID value sent
in the interchange. Left-justified with
trailing blanks.

INTCTLNO 39 14 Char The interchange control number.
Right-justified with leading zeros.

Table 197. Transaction handle

Name Offset Length Format Description

THANDLE 0 10 Char The transaction handle value of one of
the transactions in the interchange. The
transaction handle has a format of
YYYYMMDDHHMMSSxxnnnn stored as a
10-byte packed value. All of the
transactions in the interchange have the
same status, and the handle value for
any transaction in the interchange can
be used on this request.

Alternate keys
You can identify a trading partner using one of the two alternate keys below:

v Account number and user ID - the value in the UNIQUEID field

v Interchange qualifier and interchange ID - a combination of the MSGCLASS, MSGNAME
and SEQNUM fields

The values for these fields are not known until an interchange has been sent. To
establish the alternate key values, use the update status data block (see “Update
status data block” on page 503) along with one of the other keys. Once this is done,
subsequent updates to status can be made with any of the key values. The formats
for the alternate keys are shown in the following tables.

Alternate key 1 using account number and user ID
The alternate key format described in Table 198 uses the account number and
user ID. Use this update status key block when ZFCBFUNC contains 212.

Table 198. Alternate key format using account number and user ID

Name Offset Size Format Description

ACCTNUM 0 32 Char The trading partner nickname account
number. Left-justified with trailing blanks.

USERID 32 32 Char The trading partner user ID. Left-justified
with trailing blanks.

MSGCLASS 64 8 Char The message user class assigned to the
interchange. Left-justified with trailing
blanks.

MSGNAME 72 8 Char The message name assigned to the
interchange. Left-justified with trailing
blanks.

SEQNUM 80 5 Char The sequence number assigned to the
interchange. Right-justified with leading
zeros.

UNIQUEID 85 8 Char The unique ID value assigned to the
interchange by the network. This value is
used instead of the MSGCLASS, MSGNAME,
or SEQNUM fields unless it contains
blanks. If this field is specified, ACCTNUM
and USERID are not required.

Update status services

502 WebSphere Data Interchange Programmer’s Reference

Alternate key 2 using interchange qualifier and ID
The alternate key format described in Table 199 uses the interchange qualifier and
ID. Use this update status key block when ZFCBFUNC contains 214.

Table 199. Alternate key format using interchange qualifier and user ID

Name Offset Length Format Description

QUALIFIER 0 4 Char The interchange qualifier as sent in the
interchange. Left justified with trailing
blanks.

RECEIVER 4 35 Char The interchange receiver ID as sent in
the interchange. Left-justified with trailing
blanks.

FILLER 39 25 Char Blanks.

MSGCLASS 64 8 Char The message user class assigned to the
interchange. Left-justified with trailing
blanks.

MSGNAME 72 8 Char The message name assigned to the
interchange. Left-justified with trailing
blanks.

SEQNUM 80 5 Char The sequence number assigned to the
interchange. Right-justified with leading
zeros.

UNIQUEID 85 8 Char The unique ID value assigned to the
interchange by the network. This value is
used instead of the MSGCLASS, MSGNAME,
or SEQNUM fields unless it contains
blanks. If this field is specified,
QUALIFIER and RECEIVER are not
required.

Update status data block
Using the update status data block is always optional. This data block contains
information about an interchange that is generally determined at the time an
interchange is sent.

Note: If you specify REQID in the call, a update status data block must be available.
If you do not have any data for the block, initialize all the fields to blanks to
indicate they do not apply.

Table 200 describes the fields used to build an alternate key that can be used later
to retrieve and update the status of this interchange.

Table 200. Interchange fields established during status update

Name Offset Size Format Description

MSGCLASS 0 8 Char The message user class assigned to the
interchange.

MSGNAME 8 8 Char The message name assigned to the
interchange.

SEQNUM 16 5 Char The message sequence number
assigned to the interchange.

Update status services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 503

Table 200. Interchange fields established during status update (continued)

Name Offset Size Format Description

UNIQUEID 21 8 Char The unique message ID assigned to the
interchange by the network. If this field
is not blank, it must contain a value that
is unique for all interchanges currently in
the Transaction Store.

SENDDATE 29 8 CHAR The date the interchange was sent
(YYYYMMDD).

SENDTIME 37 6 CHAR The time the interchange was sent
(HHMMSS).

NETACK 43 1 CHAR The type of network acknowledgment
expected for this interchange. See
“Trading Partner Profile Block (TPPDB)”
on page 603 for valid values.

Update status services

504 WebSphere Data Interchange Programmer’s Reference

SYNCPOINT services
The descriptions of translation and enveloping services frequently refer to the
recovery scope for the session (see “Send Recovery Scope” on page 413).
SYNCPOINT services provide the interface for controlling the recovery scope, and
provide an environment-independent interface for requesting either that changes to
resources are permanent (COMMIT work) or that changes must be removed
(ROLLBACK work).

If a system or application fails, or if a specific ROLLBACK work request is made, all
changes made to resources since the last COMMIT point are backed out of the
system. It will be as if the changes were never made.

In an z/OS/DB2 environment, a request to commit work is made directly to DB2
using a COMMIT request. A request to roll back work is made directly to DB2 with a
ROLLBACK request.

In a CICS/DB2 environment, a request to commit work is made to CICS with an
EXEC CICS SYNCPOINT request. CICS passes this request on to DB2 and
controls the committing of CICS resources with DB2 resources. A request to roll
back work is made to CICS with an EXEC CICS SYNCPOINT ROLLBACK request.
Again, CICS passes this request to DB2 and controls the removal of CICS
resources with DB2 resources.

SYNCPOINT services issues the proper request based on the execution
environment. When you use this API, recovery scope is established using the SCOPE
field in the TRCB. When you use the WebSphere Data Interchange Utility, recovery
scope is established by using the RECOVERY keyword on the PERFORM command.

You can use SYNCPOINT services to lengthen the recovery scope by setting the
SYNCPOINT interval to a positive integer value greater than 1. You can effectively turn
off SYNCPOINT service by setting the SYNCPOINT interval to -1. In this case, the
application program controls the SYNCPOINT interval and must ensure that not to
shorten the recovery scope.

For example, if an interchange recovery scope is in effect and the application
issues a COMMIT (or EXEC CICS SYNCPOINT) request in the middle of the
interchange, the chances of deadlock increase, and the consistency between the
application databases and the WebSphere Data Interchange Transaction Store is
compromised.

Table 201 lists the functions provided by the SYNCPOINT service. The logical name
for the SYNCPOINT service is SYNCSERV.

Table 201. Syncpoint services functions

Function Code Sample Call Statement for Function

Initialize SYNCPOINT services 1 FXXZccc(SNB,CCB,FCB,SYNCVAL)

COMMIT work 2 FXXZccc(SNB,CCB,FCB)

ROLLBACK work 3 FXXZccc(SNB,CCB,FCB)

Note: During API translation, setting the NOCOMMIT field in the TRCB to Y prevents
the translator from issuing commits. However, setting NOCOMMIT to Y does not
prevent the WebSphere Data Interchange termination process from issuing a

Update status services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 505

commit. To prevent this termination commit, issue a SYNCPOINT service call
with the SYNCPOINT interval set to -1 prior to the WebSphere Data
Interchange termination call. For more information, see “Send Recovery
Scope” on page 413.

DB2 TIMEOUT/DEADLOCK processing
DB2 TIMEOUT / DEADLOCK processing occurs in a DB2 environment when
multiple translations are being run concurrently and the trading partners are not in
the same order for all the translations. The DB/2 terminates one of these
transactions and issues one of the following return codes:
–911 The DB/2 parameter is ROLBE=YES.
–913 The DB/2 parameter is ROLBE=NO.

The translator attempts to recognize that a rollback occurred, issues a return code
of –911, and allows the translation to continue, even though another translation
might have acquired the next sequential control number. The DB/2 termination is
flagged with an RS0000 message. The translator will attempt a retry after a return
code of –911 or –913 when appropriate. If DB2 issues a rollback, the translation is
terminated with a TR0810 message.

During retry, WebSphere Data Interchange has the options to issue either:
v A ROLLBACK command
v A FETCH command for the trading partner control numbers again (TA)

Table 202 describes the DB2 recovery conditions and actions.

Table 202. DB2 recovery conditions and actions

Conditions True (T) or False (F) Actions Yes (Y) or No
(N)

Row DI Control Deadlock
Not Timeout

Updates
Made

DB2
Rollback

DI
Rollback

Fetch
Control #s

1 F F F F N Y

2 F F F T N N

3 F F T F N Y

4 F F T T N N

5 F T F F N N

6 F T F T N N

7 F T T F N N

8 F T T T N N

9 T F F F N Y

10 T F F T N Y

11 T F T F N Y

12 T F T T N N

13 T T F F Y Y

14 T T F T N Y

15 T T T F Y N

16 T T T T N N

Update status services

506 WebSphere Data Interchange Programmer’s Reference

Initialize SYNC function
The syntax of the Initialize SYNC function request is:
FXXZccc(SNB,CCB,FCB,interval)

The unique parameters for this function request are defined in Table 203.

Table 203. Parameters for Initialize SYNC request

Parameter Description

SNB
ZSNBNAME

SYNCSERV

ZSNBPC
4

FCB
ZFCBFUNC

1

INTERVAL
Indicates the length of time that elapses between
synchronization points. A 4-byte binary value. Valid values
are:

0 General SYNCPOINT processing based on the
recovery scope in effect.

n A positive number indicating how often a
SYNCPOINT must be taken. For example, if n
had a value of 5 and transaction recovery scope
is specified, a COMMIT is issued after every
5 transactions. Actually, a COMMIT is requested
after each transaction, but only every 5th request
is honored by the SYNCPOINT service.

–1

Initialize SYNC function return codes
The results of the Initialize SYNC request are posted in the return code and
extended return code fields of the CCB. Valid values are:

0 Initialization was successful.

12 Initialization failed. The extended return code is 12 (insufficient virtual
storage).

Update status services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 507

COMMIT work function
The syntax of the COMMIT work function request is:
FXXZccc(SNB,CCB,FCB)

The unique parameters for the COMMIT work function request are defined in
Table 204.

Table 204. Parameters for the COMMIT work function request

Parameter Description

SNB
ZSNBNAME

SYNCSERV

ZSNBPC
3

FCB
ZFCBFUNC

2

The results of the COMMIT work request are posted in the return code and
extended return code fields of the CCB. Valid values are:

0 COMMIT work was successful.

4 COMMIT ignored. The extended return code is:

1 The COMMIT request was ignored for one of the following two
reasons:

v An interval of -1 was established on the SYNCPOINT
initialization function.

v The interval has not been reached yet.

12 COMMIT work failed. The extended return code is:

N The SQLCODE from DB2 indicating why the COMMIT was not
honored.

ROLLBACK work
The syntax of the ROLLBACK work function request is:
FXXZccc(SNB,CCB,FCB)

The unique parameters for the ROLLBACK work function request are defined in
Table 205.

Table 205. Parameters for the ROLLBACK work function request

Parameter Description

SNB
ZSNBNAME

SYNCSERV

ZSNBPC
3

FCB
ZFCBFUNC

3

Update status services

508 WebSphere Data Interchange Programmer’s Reference

The results of the ROLLBACK work request are posted in the return code and
extended return code fields of the CCB. Valid values are:

0 ROLLBACK work was successful.

12 ROLLBACK work failed. The extended return code is:

N The SQLCODE from DB2 indicating the reason for the ROLLBACK
failure.

Note: A ROLLBACK request is always honored and issued even when the
SYNCPOINT interval has a value of -1 or the value has not been reached.

Update status services

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 509

Get envelope service
During outbound processing, you can use the Get envelope service to get data
directly from the translator, rather than from the file the translator writes to.
Normally, after WebSphere Data Interchange creates an interchange, the
interchange is routed automatically to a file. (In CICS, this file is always a TS
queue.) By writing an exit to circumvent this action, the envelope can be retrieved
directly from the translator and then processed. In CICS, for example, the
interchange could be routed to a TD queue. WebSphere Data Interchange
recognizes this type of user exit when the following keywords are used on
enveloping commands: IEXIT(exitname), IACCESS(M), and ITYPE(UE). For more
information, see “Get Envelope service example” on page 654 and “Get/Put
envelope exit and service” on page 284.

The syntax of the Get envelope API request is:
FXXZASM(GPCB,CCB,FCB,BUFFER,LEN)

The parameters for this function request are defined in Table 206.

Table 206. Parameters for the Get envelope API request

Parameter Description

GPCB The Get/Put envelope control block. The fourth parameter passed to
IEXIT user exits.

CCB The common control block used to initialize WebSphere Data
Interchange. The second parameter passed to IEXIT user exits.

FCB The function control block. The third parameter passed to IEXIT user
exits.

BUFFER The working storage into which the envelope will be read. You must
specify the length of this area in the LEN parameter.

LEN The full-word length of the working storage (BUFFER) that will contain the
envelope.

Get envelope service

510 WebSphere Data Interchange Programmer’s Reference

Put envelope service
During inbound processing, you can use the Put envelope service to put data
directly into the translator, rather than having the translator read a file. Normally, in
order to deenvelope an interchange, WebSphere Data Interchange reads a file
containing the interchange. In CICS, this file is always a TS queue. By writing an
exit to circumvent this action, you can pass an envelope directly into the translator.
In CICS, for example, an interchange could be read from a TD queue and passed
directly into the translator. WebSphere Data Interchange recognizes this type of
user exit when the following keywords are used on deenveloping commands:
IEXIT(exitname), IACCESS(M), and ITYPE(UE). For more information, see “Put
Envelope service example” on page 654 and “Get/Put envelope exit and service” on
page 284.

The syntax of the Put envelope API request is:
FXXZASM(GPCB,CCB,FCB,BUFFER,LEN)

The parameters for the Put envelope function request are defined in Table 207.

Table 207. Parameters for the Put envelope API request

Parameter Description

GPCB The Get/Put envelope control block. The fourth parameter passed to
IEXIT user exits.

CCB The common control block used to initialize WebSphere Data
Interchange. The second parameter passed to IEXIT user exits.

FCB The function control block. The third parameter passed to IEXIT user
exits.

BUFFER The working storage into which the envelope will be read. You must
specify the length of this area in the LEN parameter.

LEN The full-word length of the working storage (BUFFER) that will contain the
envelope.

Put envelope service

Chapter 6. Using WebSphere Data Interchange in the z/OS environment 511

Put envelope service

512 WebSphere Data Interchange Programmer’s Reference

Chapter 7. Using WebSphere Data Interchange in the AIX and
Windows environment

The chapter provides instructions for running WebSphere Data Interchange Server.

Running from the command line
WebSphere Data Interchange Server always reads commands from STDIN and
writes the results to STDOUT: these are treated as STREAMs. When invoked from
the command line, the command line processor automatically opens STDIN and
STDOUT, piping them wherever the user requests. You typically prepare a file of
PERFORM commands for input and redirect the input from that file. You would
probably redirect the STDOUT to a file.

An example of this usage is shown below:
ediservr < sample.cmd > results.txt

where sample.cmd is the input file and has PERFORM commands, and results.txt
contains the output from ediservr.exe.

The commands files consist of a set of WebSphere Data Interchange commands
separated by semicolons. Every command is terminated with a semicolon.

The first command is always a SET, and the second command is always INIT.
These are followed by a series of Set file commands that specify the input and
output files for the following PERFORM command(s). The SET FILE PERFORM
sequence can be repeated as many times as required.

A typical command file is as follows:
set plan(ediec32e);
init;
set file(PRTFILE,prtfile);
set file(TRKFILE,trkfile);
set file(EXPFILE,expfile);
set file(XMLFILE,poxml5sr.dat);
set file(OUTFILE,outfile);
PERFORM TRANSFORM WHERE INFILE(XMLFILE) OUTFILE(OUTFILE)

SYNTAX(X) CLEARFILE(Y) XMLEBCDIC(N)
TRACELEVEL(A2);

term;

The contents of sample.cmd are:

SET command
Sets up the environment

plan(ediec32e): to point to the WebSphere Data Interchange database

INIT command
Loads the startup information and connect to the database using
parameters defined above.

SET FILE (LogicalFileName, RealFileName)
Defines various INPUT and OUTPUT files needed for translation. The
LogicalFileName of each file is assigned with a RealFileName that includes
the complete path. Depending on the type of PERFORM command used,
some files are mandatory, while others are optional.

© Copyright IBM Corp. 2002 513

PERFORM
Issues standard perform commands. This command uses LogicalFileNames
for various files used.

TERM Disconnects from the database and frees all allocated memory.

If translation is successful, the contents of results.txt are:
DI Translator Started, build date: Feb 19 2002
DI Translator processed your request.
DI Translator shutdown

If translation fails, the contents of results.txt are:
DI Translator Started, build date: Feb 19 2002
DI Translator Error. RC= "errorcode" , ERC="extended return code"
DI Translator shutdown

Triggering from an MQSeries queue
The WebSphere Data Interchange adapter program is installed as part of
WebSphere Data Interchange for Multiplatforms Version 3.2. The configuration
scripts provided set up the necessary queues and definition objects. The adapter
uses MQSeries Triggering to know when messages need processing.

When a message is put to an application queue, a trigger message is created. The
MQSeries trigger monitor receives the message and executes the adapter. The
adapter then passes the information needed to process the application message to
the WebSphere Data Interchange server/translator. Application messages are
committed, rollbacked, or moved to a failure queue depending on the return codes
from the WebSphere Data Interchange Server.

The adapter will wait the user-configured time interval for any successive
messages, and then terminate. The trigger monitor then restarts WebSphere Data
Interchange adapter upon receipt of another trigger message.

Base MQSeries support architecture uses six MQSeries queues, three input and
three output.

Input queues:
v EDI_IN
v DF_IN
v XML_IN

Output queues:
v EDI_OUT
v DF_OUT
v XML_OUT

The wdi.mqcommands file in the samples directory contains all MQ Service Command
(MQSC) instructions for creating the needed queues.

The necessary queues and definition objects are created in the default queue
manager.

To create these six queues and configure the input queues for triggering, run the
wdicommand script. The specific configuration scripts for integrating with other
products, such as WebSphere MQ Integrator, are available at:
http://www.ibm.com/websphere/datainterchange

Running from the command line

514 WebSphere Data Interchange Programmer’s Reference

Each step of the trigger program is coordinated with a message exits dll or shared
library. On Windows this is called msgExits.dll On AIX it is called msgExits.so. If
this dll is found in the binaries path at run time it will change the behavior of the
trigger program. If it is not found then the trigger program uses its default settings.

The message exits dll can instruct the trigger program to skip messages, terminate,
take or skip a syncpoint, and so on. you can use this to customize the behavior of
the adapter to route failed messages to a special queue, or to notify someone if a
failure in translation occurs. The interface to the message exits dll is documented in
Adapter user exits on page “Adapter user exits”.

When triggered, the adapter:

1. Reads the wdi.properties file for runtime directories.

2. Calls the trigger startup exit msgTrigger() if present and proceeds based on the
return code from the exit.

3. Initializes WebSphere Data Interchange. If WebSphere Data Interchange cannot
be initialized, the adapter turns triggering off for the queue and terminates.

4. Sets the name of the file that the message will be received into, which is
datadirectory(from property files)/rcvdirectory(from property files)/MQSeries
message ID(from MQMD).rcv.

5. For each message on the queue:

a. Browses the data queue to get the information on the next available
message.

b. Calls the message tracking exit if present, and passes it the browse data.
The message exit can return the batch ID to be used and an indicator of
whether to proceed or to skip this message.

c. If OK to proceed, calls WebSphere Data Interchange with a PERFORM
RECEIVE AND PROCESS ONEMESG(Y) WHERE
REQID(mq_queue_name[1-16]) BATCHSET(batchid).

d. Upon returning from WebSphere Data Interchange, calls the msgTransform()
exit with the return codes. If the return code from the exit instructs the
trigger program not to proceed normally, do what the return code is
documented to mean in the adapter user exits on page “Adapter user exits”,
otherwise do the following:

v If translation is acceptable (rc = 0), execute a syncpoint.

v If translation is not acceptable (r <> 0), the adapter posts the message to
the dead letter queue defined within MQSeries. Then execute a
syncpoint.

e. Moves on to the next message (restarts the process at step a).

6. When no more messages arrive within the specified interval (see Adapter user
exits below), call the msgTerminate user exit (if one exists). If it indicates so,
proceed with termination, terminate WebSphere Data Interchange, and then the
adapter itself.

Adapter user exits
To modify or monitor the behavior of the adapter, you can implement the adapter
user exits. The WebSphere Data Interchange adapter loads the library, if found in
the bin directory, and calls the exit functions. The shared library must be named
msgExits.dll (msgExits.so on UNIX®) and should be compiled using the native
compiler for the target platform (for example, Microsoft Visual C++ for Windows).

msgExits.dll interface:

Triggering from an MQSeries queue

Chapter 7. Using WebSphere Data Interchange in the AIX and Windows environment 515

v bool msgTrigger(const char* pszTriggerMessage , void * pvExitContext);

Called when the trigger program is started. Passes the trigger message
TQTMC2. Accepts a context that will be passed into all subsequent calls. The
return value indicates whether to continue or terminate.

v bool bSkip msgArrival(void* pvExitContext, char*pszSessionID)

Message tracking exit that will be called just before attempting to get the next
message. It can browse the queue for any information required and then pass
back a session ID for WebSphere Data Interchange to use as the Batch ID. The
return value indicates whether to process the message or skip it.

v bool bProceed msgTransform(void* pvExitContext, long rc, long ccbrc, long
ccberc)

Results of the transformation. Return values are:

– SYNC_CONTINUE - syncpoint and then continue processing.

– SYNC_TERM - syncpoint and then terminate.

– CONTINUE - do not syncpoint, but continue processing.

– TERMINATE - terminate without taking a syncpoint.

v bool bOK msgTerminate(void* pvExitContext)

OK to terminate? Return values from msgTerminate are:
– #define SYNC_CONTINUE X'0000'
– #define SYNC_TERM X'0001'
– #define CONTINUE X'0002'
– #define TERMINATE X'0003'

A configuration file, wdi.properties, is installed in the wdi/bin directory:

The WebSphere Data Interchange Server runtime information is stored in a
properties file located in the WDI bin directory. The installation default values for
Windows are listed below. The default values for AIX are similar.
runtimedirectory=C:\WDIServer32\bin
datadirectory=C:\WDIServer32\runtime
dtddirectory=dtds
prtdirectory=prt
appdirectory=adf
edidirectory=edi
eexdirectory=eex
xmldirectory=xml
aexdirectory=aex
rptdirectory=rpt
fakdirectory=fak
qrydirectory=qry
xexdirectory=xex
wrkdirectory=wrk
rcvdirectory=rcv
trkdirectory=trk
plan=EDIEC32E
userid=user
userpassword=password
Languagecode=ENU
waitinterval=30000

The userid and userpassword fields are only required if you want to connect to the
database using a different authorization ID than the one under which the adapter
process is running.

All files created and used during run time are created under the data directory. If
you want WebSphere Data Interchange to create files in a different directory,

Triggering from an MQSeries queue

516 WebSphere Data Interchange Programmer’s Reference

change the data directory value in wdi.properties to be the new directory that you
created. This directory can be another drive on Windows or file system on AIX.

The waitinterval value specifies the number of milliseconds that the adapter waits
for messages on the Application queue before terminating. When the adapter
terminates, another trigger message restarts the adapter.

Calling from a C++ program
This section provides an example of how to use the WebSphere Data Interchange
C++ API. This example includes all the source code necessary to build a C++
program, using the WebSphere Data Interchange C++ API, to send several
PERFORM commands to the WebSphere Data Interchange product.

Elements of the C++ API
The C++ API is made up of several classes that are all defined in the diapi.h
header file shipped with the WebSphere Data Interchange product. The classes that
make up the API are:
v CSyncTranslator
v CASyncTranslator
v CRemoteTranslator
v CDIEnvironment
v CDIRequest

When a program includes the diapi.h header file, it can use these objects to interact
with the WebSphere Data Interchange translator by passing in PERFORM
commands to either a CSyncTranslator, CASyncTranslator, or CRemoteTranslator
object. The three different types of translator objects that can be created are as
follows:

1. CSyncTranslator

The CSyncTranslator provides access to the translator in a synchronous
manner. The process waits for each command to complete before allowing the
next command to be performed.

Its methods are:

v CSyncTranslator(void) (Constructor)

Instantiates a new CSyncTranslator object. This method takes no arguments.

v enum eResult Initialize(CDIEnvironment& env)

Causes the translator to be initialized. This method must be called before any
transactions can be processed. This method takes a CDIEnvironment object
that contains information about the system, such as database information
(plan, user ID, password) and system information (language). This method
returns an enumerated type that contains success or failure information about
the method invocation.

v enum eResult Terminate()

Terminates the translator and causes it to free any memory that was
allocated during the translation process. This method takes no arguments
and returns an enumerated type with information about the success or failure
of the method invocation.

v virtual enum eResult ProcessRequest(CDIRequest& req)

Initializes a PERFORM command to be processed by the translator. This
method takes a CDIRequest object that has been initialized with a perform
command. The enumerated type returned by the function can be used to
determine the success or failure of the PERFORM command.

Triggering from an MQSeries queue

Chapter 7. Using WebSphere Data Interchange in the AIX and Windows environment 517

v virtual long GetRetCode(void)

Gets the return code from the last translator action performed. This method
takes no arguments.

v virtual long GetExtRetCode(void)

Accesses the extended return code from the last translator action performed.
This method takes no arguments.

2. CASyncTranslator

The CASyncTranslator provides asynchronous access to the translator. This
method allows your program to begin processing on several transactions at
once without waiting for the previous PERFORM command to complete.

Its methods are:

v CAsyncTranslator(short sMaxReqs=10, short nNice=0)

Takes two arguments: sMaxReqs and nNice. sMaxReqs specifies the
maximum number of requests that can be made. nNice specifies a nice value
any process created by the translator during this session.

v enum eResult Initialize(CDIEnvironment& env)

Initializes the translator using the CDIEnvironment argument. The
CDIEnvironment object contains the system environment information, such as
the database plan, user ID, and password, as well as the system language
setting.

v enum eResult Terminate()

Initializes the translator using the CDIEnvironment argument. The
CDIEnvironment object contains the system environment information, such as
the database plan, user ID, and password, as well as the system language
setting.

v enum eResult ProcessRequest(CDIRequest& req)

Passes the perform command contained in the CDIRequest object to the
translator to be executed.

v short GetMaxRequests()

Returns the maximum number of requests that can be executed at one time.
This value limits the number of translators that can be started by this object.

v short GetCurrentRequests()

Returns the number of requests being processed.

v enum eResult UpdateCurReqCnt(void)

Causes the current request count to be updated.

3. CRemoteTranslator

The CRemoteTranslator provides access to a WebSphere Data Interchange
translator running on a remote system. The CRemoteTranslator is like the
CAsyncTranslator, except its constructor takes the hostname of the remote
system as an additional argument to its constructor.

Its methods are:

v CRemoteTranslator(char* pszHost,short sMaxReqs=10)

Creates a new instance of the CRemoteTranslator class that can
communicate with a remote server using TCP/IP sockets.

v enum eResult Initialize(CDIEnvironment& env)

Initializes the translator using the CDIEnvironment argument. The
CDIEnvironment object contains the system environment information, such as
the database plan, user ID, and password, as well as the system language
setting.

Calling from a C++ program

518 WebSphere Data Interchange Programmer’s Reference

v enum eResult Terminate()

Initializes the translator using the CDIEnvironment argument. The
CDIEnvironment object contains the system environment information, such as
the database plan, user ID, and password, as well as the system language
setting.

v enum eResult ProcessRequest(CDIRequest& req)

Passes the PERFORM command contained in the CDIRequest object to the
translator to be executed.

v short GetMaxRequests()

Returns the maximum number of requests that can be executed at one time.
This value limits the number of translators that can be started by this object.

v short GetCurrentRequests()

Returns the number of requests being processed.

v enum eResult UpdateCurReqCnt(void)

Causes the current request count to be updated.

The following classes are also provided:

v CDIEnvironment

The CDIEnvironment class encapsulates all the system settings needed by the
CSyncTranslator, CAsyncTranslator, and CRemoteTranslator during their
initialization. The CDIEnvironment class must be instansiated and then passed to
the initialize method of one of the translator objects.

Its methods are:

– void SetSys(char* pszVal)

Identifies the installation-defined WebSphere Data Interchange systems used
to run the EDIUTILV utility. The default is DIENU.

– void SetAppl(char* pszVal)

Identifies the Application ID to run the DataInterchange utility. This keyword
also identifies the logfile specified by the Activity Log (ACTLOGS) profile. If
you specify this parameter, the activity log profile must contain a matching
entry to define which log file is used for recording errors and events pertaining
to the application. The two APPLID values shipped with WebSphere Data
Interchange are:

- EDIFFS (default)

v Associated with the LOGFFS ddname

v The default APPLID and log when using the utilities

- EDIMP

v Associated with the LOGEDI ddname

v The APPLID and log used during online DataInterchange processing

– void SetLang(char* pszVal)

Identifies the language profile to use as specified in the Language
(LANGPROF) profile. The value you specify with the SetLang method must
match one of the values in the LANGPROF profile. The LANGPROF that
ships with WebSphere Data Interchange is ENU.

– void SetPlan(char* pszVal)

Identifies the DB2 plan that WebSphere Data Interchange is to use to access
its database tables.

– void SetEdiDataQueueName(char* pszVal)

Calling from a C++ program

Chapter 7. Using WebSphere Data Interchange in the AIX and Windows environment 519

Identifies the routing queue for completion message from the translator. When
the CAsyncTranslator completes the processing of its EDI data it will send a
completion message to this queue.

– void SetAppDataQueueName(char* pszVal)

Identifies the routing queue for completion message for DF data coming from
the translator. When the CAsyncTranslator completes the processing of an DF,
it will send a completion message to this queue.

– void SetEdiErrorQueueName(char* pszVal)

Identifies a queue where errors identified during the processing of EDI data
can be sent. When the CAsyncTranslator encounters errors, an EDI data
message will be sent to this queue.

– void SetAppErrorQueueName(char* pszVal)

Identifies a queue where errors identified during the processing of DF data
can be sent. When the CAsyncTranslator encounters errors, an DF data
message will be sent to this queue.

– void SetHostName(char* pszVal)

Sets the hostname of a remote WebSphere Data Interchange translator. The
value set in this method is only used with the CRemoteTranslator.

– void SetHostPort(int nVal)

Identifies the port number used by a remote WebSphere Data Interchange
translator for network communication. The value set by this method is only
used by the CRemoteTranslator class.

– void SetUser(char* pszVal)

Sets the database user ID needed to access the DB2 database. This only
needs to be set if the user ID of the person running the program does not
have the necessary authority to access the database.

– void SetPassword(char* pszVal)

Sets the password to be used by the translator to access the WebSphere
Data Interchange database. This is only required if the user ID of the person
running the program does not have the authority to access the database.

– void SetRouterType(enum CDIMsgQueue::qtype enVal)

Sets the type of routers (queue) for the completion messages. This method
can accept the following values:
file //File
pipe //Named pipe
socket //TCP/IP socket
email //Email address

– void SetUnitOfWork(enum eUnitOfWork enVal)

Defines a unit of work to the translator. This method allows the application
programmer to define the point at which Commits should be done. Possible
values for this function are:

eTransaction
Commits should be done after every transaction

eEnvelope
Commits should be done after every envelope is encountered

eNoCommit
No commits are performed

– void SetInterfaceType(enum eInterfaceType enVal)

Possible values for the function are:

Calling from a C++ program

520 WebSphere Data Interchange Programmer’s Reference

eITCmdLine //Invoked by command line
eITApi //Invoked by API
eITWeb //Invoked by Web server (not supported)

v CDIRequest

The CDIRequest represents a request for translation that can be submitted to a
translator to be processed. The CDIRequest object names the files necessary to
perform a translation as well as the perform statement to be executed. This is a
list of the files that can be associated with a CDIRequest object:
– Application File
– EDI File
– Tracking File
– Exception File
– EDI Except File
– Print File
– Report File
– Query File
– Work File
– Functional Acknowledgment File

Its methods are:

– CDIRequest(void)

The constructor for CDIRequest builds an instance of the CDIRequest object.
This method does not take any arguments.

– void ClearOutput(void)

Clears all the output fields of the request object.

– void SetAppFile(char* pszFile)

Sets the name of the application file for this request.

– void SetEdiFile(char* pszFile)

Sets the name of the EDI file for this request.

– void SetTrackingFile(char* pszFile)

Sets the name of the tracking file for this request.

– void SetExceptionFile(char* pszFile)

Sets the name of the exception file where DF data can be written if a fatal
error is encountered during the processing of the PERFORM command.

– void SetEdiExceptFile(char* pszFile)

Sets the name of the exception file where EDI data can be written if a fatal
error is encountered during the processing of the PERFORM command.

– void SetPrintFile(char* pszFile)

Sets the name of the print file where status information about a completed
translation can be written.

– void SetReportFile(char* pszFile)

Sets the name of the report file where reports and printouts that you have
requested can be stored.

– void SetQueryFile(char* pszFile);

Sets the name of the file where results from a QUERY or DATA EXTRACT
can be stored.

– void SetWorkFile(char* pszFile)

Sets the name of a file that can be used as a temporary workspace during the
translation.

– void SetFunAckFile(char* pszFile)

Calling from a C++ program

Chapter 7. Using WebSphere Data Interchange in the AIX and Windows environment 521

Sets the name of the file that you want to use for returning functional
acknowledgments for the deenveloped transactions.

WebSphere Data Interchange API example
This section outlines an example program that uses the C++ API for WebSphere
Data Interchange. This example is made up of one source file that initializes a
CDIRequest object with a PERFORM TRANSFORM statement. The “Sample script”
contains a listing of the main items for this example.

This program begins by creating CSyncTranslator, CDIEnvironment, and
CDIRequest object (a TransformRequest) to handle the request. Next, the request
is initialized with the filenames needed to process the request, and the
setPerformCommand method is used to set the desired PERFORM command to
execute.

When the PERFORM command is created and the translator initialized, the
ProcessRequest method is called to execute the PERFORM command. When that
is complete, the return codes are checked and the translator terminated and the
program is exited.

Building the Example
This example can be built on the different platforms supported by WebSphere Data
Interchange.

v AIX

1. Copy the files apiexamp.cpp and apiexamp.mk from /usr/wdi/DIv32/samples
to your home directory or any other work directory where you have
permissions to write files. Also copy the sample input file poxml5sr.dat to the
same directory.

2. Issue the command make -f apiexamp.mk. This will build an executable
named apiexamp.

3. Execute the newly built apiexamp executable.

v Windows

1. Using Microsoft Visual C++, open the ediexamp.dsw workspace in the
samples directory.

2. Build the apiexamp project. The executable will be created in the samples
directory.

3. Execute the newly built apiexamp executable.

Sample script
#include <iostream.h>
#include <string.h>
#include "diapi.h"

/*--*/
/* Main program */
/*--*/
void pause(void);

int main ()
{

CDIEnvironment aCDIEnvironment;
CDIRequest aTransformRequest;
CSyncTranslator aCSyncTranslator;
enum eResult rc;
char* pszPhysicalName = NULL;
long lFileLen = 0;

Calling from a C++ program

522 WebSphere Data Interchange Programmer’s Reference

// Let the user know what we’re doing:
cout << endl

<< "XML to EDI sample transformation using the C++ API" << endl;

//Define the Data Interchange Environment
aCDIEnvironment.SetPlan("EDIEC32E");
aCDIEnvironment.SetLang("ENU ");

// Initialize the translator:
cout << endl << "Initialize the translator by calling "

"CSyncTranslator::Initialize()" << endl;
rc = aCSyncTranslator.Initialize(aCDIEnvironment);
cout << "Initialize() returns: rc=" << rc << ", zccbrc="

<< aCSyncTranslator.GetRetCode() << ", zccberc="
<< aCSyncTranslator.GetExtRetCode() << endl;

//pause();

// Let the user know we are setting up the files and command:
cout << endl << "Set the input/output filenames and the "

"command by calling " << endl
<< "CSyncTranslator::SetFileName and "
"CDIRequest::SetPerformCmd." << endl;

// Name the input and output files:
aCSyncTranslator.SetFileName("XMLFILE", "poxml5sr.dat");
aCSyncTranslator.SetFileName("OUTFILE", "sample.out");
aCSyncTranslator.SetFileName("FFSEXCP", "sample.aex");
aCSyncTranslator.SetFileName("PRTFILE", "sample.prt");

// Set the perform commands to be executed:
// XML-TO-EDI TEST CASE: **
aTransformRequest.SetPerformCmd
("PERFORM TRANSFORM WHERE INFILE(XMLFILE) OUTFILE(OUTFILE) "

"SYNTAX(X) CLEARFILE(Y) XMLEBCDIC(N) TRACELEVEL(A2)");

// Let the user know we are going to do the translations
cout << endl << "Translate the document by calling "

"CSyncTranslator::ProcessRequest." << endl;

// Ask the synchronous translator to process the EDI to ADF Request:
rc = aCSyncTranslator.ProcessRequest(aTransformRequest);

// Let the user know what happened:
cout << "CSyncTranslator::ProcessRequest() returns: rc=" << rc

<< ", zccbrc=" << aCSyncTranslator.GetRetCode()
<< ", zccberc=" << aCSyncTranslator.GetExtRetCode() << endl;

// Confirm the input and output names and print the return codes:
rc = aCSyncTranslator.GetFileName(&pszPhysicalName, "XMLFILE ", &IFileLen);
cout <<"Input file was : " << pszPhysicalName << ", "

<< lFileLen << " bytes written" << endl;

rc = aCSyncTranslator.GetFileName(&pszPhysicalName, "OUTFILE ", &IFileLen);
cout <<"Output file was : " << pszPhysicalName << ", "

<< lFileLen << " bytes written" << endl;

rc = aCSyncTranslator.GetFileName(&pszPhysicalName, "FFSEXCP ", &IFileLen);
cout <<"Exception file was: " << pszPhysicalName << ", "

<< lFileLen << " bytes written" << endl;

rc = aCSyncTranslator.GetFileName(&pszPhysicalName, "PRTFILE ", &IFileLen);
cout << "Print file was : " << pszPhysicalName << ", "

<< lFileLen << " bytes written" << endl;
//pause();

// Terminate the translator:

Calling from a C++ program

Chapter 7. Using WebSphere Data Interchange in the AIX and Windows environment 523

cout << endl << "Now terminate the translator to free up "
"any resources" << endl;

rc = aCSyncTranslator.Terminate();
cout << "CSyncTranslator::Terminate() returns: rc=" << rc << endl;
cout << endl << "Note: If rc=0, then DO NOT check RetCode and "

"ExtRetCode because " << endl
<< "the CSyncTranslator is now uninitialized." << endl;

// Let the user know were done:
cout << endl << "XML to EDI sample transformation complete." << endl;

// Terminate and go home:
return(0);

}

void pause()
{

char achar;
cout << "Hit enter to continue" << endl;
cin.get(achar);

}

Calling from a C++ program

524 WebSphere Data Interchange Programmer’s Reference

Chapter 8. Interfacing to other networks and applications

This chapter describes the interfaces between your application, WebSphere Data
Interchange, and the network. You can use this chapter to develop programs that
communicate with applications and networks.

All communication requests by WebSphere Data Interchange or by applications
using WebSphere Data Interchange are made through the Communications API.
For more information, see “Communication services” on page 479. WebSphere Data
Interchange includes support for multiple networks and allows you to write programs
to add support for any network that is not supported. WebSphere Data Interchange
uses profiles that define the network (Network Profile (NETPROF)) and define the
operations supported by that network (NETOP). The communications API requests
listed below represent the minimum support required from a network for WebSphere
Data Interchange to function properly on that network.

v Send transactions (function code 211) with network commands of SENDEDI and
SENDFILE.

v Send files (function code 221) with network command of SENDFILE.

v Receive files (function code 232) with network commands of RECVEDI and
RECVFILE.

v Cancel (function code 233) with network command of CANCEL.

v Return file name (function code 300).

v Retrieve status (function code 252) with network command of RECVMSG.

For more information about API requests, see Chapter 6, “Using WebSphere Data
Interchange in the z/OS environment” on page 359.

WebSphere Data Interchange supports two types of networks:

v A generalized network with:

– A network program provided by the network provider, such as IEBASE from
IBM Global Services and DSXMIT2 from the General Electric Information
Services Company

– A file interface to the network program where commands are placed in an
input file by the requestor and responses are placed in the output file by the
network program. WebSphere Data Interchange has no control over this
interface since it is defined by the network provider

– The ability to process multiple interchanges in a single file and use information
from the interchanges to determine the destination

– A connection made to the network itself rather than any particular trading
partner, holding data in a mailbox until requested by the trading partner

v A point-to-point network with:

– A generalized communications package rather than a specific program
designed for a particular network.

– A direct connection to the trading partner.

– Files that contain data for a single trading partner.

Some details of each interface are provided in the following sections.

© Copyright IBM Corp. 2002 525

Generalized networks
The application-to-network flow diagram Figure 25 on page 528 illustrates how an
API request from an application flows into the WebSphere Data Interchange
communications module. The communications module reads all the necessary
profiles and invokes the communications routine defined to handle the network. The
name of the communications routine is provided in the Communication rtn field of
the network profile (NETPROF). The communications routine passes information
between the application and the network program and must:
v Process the API request
v Build the appropriate interface to the network program
v Interpret the results from the network program

If you are providing an interface to your own network, you must:

1. Write a message handler to process the responses generated by the network
program. The logical name of the message handler is specified in the Message
handler field of the Network profile. The physical load module name and the
implementation language for the message handler are specified in the user
program information (User Exits (ADAMCTL)) profile. For more information, see
“Message handler” on page 536.

2. Design and enter the network commands profile (NETOP) entries to build the
commands required by the network program.

3. Determine which of the communications routines provided by WebSphere Data
Interchange that you want to use.

The seven logical names you can use in the Communications routine field of the
network profile are:
v VANINFC
v VANEXPV4
v VANIINB1
v VANIMQ
v VANICICS
v GEISVAN
v PTTOPT

There are slight differences in the operation of these programs, and you should
choose one that meets your needs. The differences are:

v VANEXPV4 is for CICS only and is an alternative to VANINFC. For more
information, see “Sent to Network status” on page 334.

v VANICICS is for CICS only, fills in several pre-defined data blocks, and then
passes control to the user-supplied network program specified in the Network
program field of the network profile. For more information, see “Special
communications routine for CICS” on page 537.

v PTTOPT identifies the point-to-point network. For more information, see
“Point-to-point networks” on page 531.

v VANIMQ is for the exclusive use of MQSeries send and receive.

v VANIINB1 changes a value of G in the RECVTYP field of the CMCB to a value
of N. For more information, see “Communication Control Block (CMCB)” on
page 593.

v If the return code from the network program is zero, VANIINB1 does not update
the status of the interchanges but assumes that the message handler updates
the status of all interchanges. The other programs update the status based on
the return code and assume that the message handler changes the status if
necessary.

Generalized networks

526 WebSphere Data Interchange Programmer’s Reference

v VANINFC updates the network sequence value once for each interchange in a
file. The other programs update the sequence number once for the entire file.

v VANIINB1 and GEISVAN request status for a single requestor at a time. The
other programs request status for 10 requestors at a time.

v GEISVAN uses a network command of STATUS to request status from the
network. The other programs use a network command of RECVMSG.

v The message handler for GEISVAN only processes the status update responses
from DSXMIT2 during a STATUS request. All other responses from DSXMIT2 are
processed directly by GEISVAN. For the other programs, the message handler
processes all responses.

v GEISVAN asks for status to be placed into a file with a ddname of GEISTAT.
VANIINB1 asks for status to be placed into a file with a ddname of INB1STAT.
The other programs assume the status is written in the network output file.

v The default TD queue for GEISVAN is GEISQ. The other programs have a
default value of QDATA.

v The default network input file for GEISVAN is DSXMIPT. The other programs
have a default value of INFILE.

v The default network output file for GEISVAN is SYSOUT. The other programs
have a default value of OUTFILE.

v GEISVAN does not pass network parameters to the network program.

v GEISVAN does not expect a return code from the network program. The other
programs expect a return code with the following values and meanings:
<0 Serious error. Status is send request error (42).
0 Request processed without error. Status is send requested (48).
1 – 4 Request processed with warnings. Status is sent with errors (41).
>4 Request processed with errors. Status is send request error (42).

v GEISVAN does not assume RESTART is an option. The other programs check
the FRESTART field of the FSUPPORT network command and invoke the network
program with a RESTART option if restart is supported by the network.

The communications routine calls the network program with an z/OS ATTACH
macro after the commands dictated by the network commands profile (such as
SENDEDI, RECVFILE) have been written to the input file. The name of the input file
is contained in the Network input file field of the network profile entry and the
commands written to this file are created from directions stored in the Network
Commands profile (NETOP) entries. The Network Commands entries contain
instructions for pulling data from various sources along with literals to create
commands. For more information, see “Building network commands” on page 532.
The network program be written in any language with any attributes because it is
accessed using an z/OS ATTACH macro. The parameters passed to the network
program are specified in the Network parameters field in the network profile entry.

A communications routine in combination with NETOP should be able to create the
commands necessary for the network. Each network produces responses that have
a unique format and are written to the output file identified by the Network output
file field in the network profile entry. Therefore, if you are providing your own
network you must provide a program (known as a message handler) that processes
those responses to detect errors and perhaps to update the status of interchanges
in WebSphere Data Interchange. The name of the message handler program is
entered in the Message handler field of the network profile entry, which must be
defined in the user program information profile (User Exits). For more information,
see “Message handler” on page 536.

Generalized networks

Chapter 8. Interfacing to other networks and applications 527

Application-to-network flow diagram

The numbers in the diagram refer to the following sequence of events:

1. An application program requests WebSphere Data Interchange communication
services through the API defined in “Communication services” on page 479. The
request retrieves:

v The mailbox (requestor) profile member (REQPROF) identified by the REQID
field of the communications control block.

v The trading partner profile member (TPPROF) identified by the TPNICKNM field
of the communications control block. This retrieval occurs only if the trading
partner data block passed to communications contains blanks.

v The network profile member (NETPROF) identified by the requestor member
or by the NETID field in the CCB.

v The functions supported by the network identified in the FSUPPORT member
in the network commands profile (NETOP).

Application

Network
Profile

Mailbox

Network
Commands

Trading
Partner

Message
handler

Status
update
service

WebSphere
Data Interchange
communications

Communication
routine

Network
program

Network
output

file

A

A

1

9

8 2

5

7

634

Network
Profile

Network
input
file

Figure 25. Application-to-network flow diagram

Generalized networks

528 WebSphere Data Interchange Programmer’s Reference

2. Using the program identified in the Communication rtn field of the network
profile member, communications invokes this program as a user-exit routine
through the language interface routine (FXXZccc). The communications routine
name is a logical name and must be one of the following:
v VANINFC
v VANIINB1
v VANEXPV4
v PTTOPT
v GEISVAN

VANICICS and VANIMQ are (not applicable for this flow.

3. The communication routines has control. Communications routines are driven by
the function requested (send, receive, or cancel) and by the network command
specified in the NETOP field of the communications control block. The 8-byte
network ID and the 8-byte network command are concatenated and used as a
partial key to retrieve all matching entries from the Network Commands profile
(NETOP). Network Commands members contain instructions for building
commands, which are literal values combined with data from the other control
blocks and profile members. The commands are written to a file as specified by
the Network input file field from the network profile.

If transaction data is being sent (function code 211), the file of transactions is
scanned and each interchange in the file is updated to have a status of Send
started (46). The following fields are also associated with the interchange:
v Message name (MSGNAME)
v Message user class (ENAME)
v Message sequence number (SEQNUM)
v Network acknowledgment expected (ACKIND)
v Send date
v Send time

When commands have been built and written to the network input file and
status has been updated, the program identified in the Network program field is
invoked using the z/OS ATTACH facility. The parameters passed to the network
program are specified in the Network parameters field of the network profile.
Network parameters are not passed to the network program when the
communications routine is GEISVAN.

4. This is a synchronous operation where the communication routine waits until the
network program is finished. When that program returns control, it is assumed
that the operation is completed or that the network program is responsible for
making sure the operation completes.

A return code of 0 from the network program indicates success. Return codes
1-4 indicate no serious errors. A return code of less than 0 or greater than 5
indicates the function failed completely.

Note: A return code of 0 is assumed when the communication routine is
GEISVAN.

5. If sending transaction data is requested, the communication routine updates the
status in the Transaction Store of each interchange in the file based on the
return code from the network program. A return code of 0 results in a status of
Send requested (48). Return codes 1-4 result in a status of Sent with
errors (41). Any other return code results in a status of Send request
error (42).

Note: If the communication routine is VANIINB1 and the return code from the
network program is zero (0), the communication routine does not update

Generalized networks

Chapter 8. Interfacing to other networks and applications 529

the status. In this case, the message handler must update the status of
each interchange in the file. This is because VANIINB1 is targeted for the
Expedite network program and when Expedite has a return code of 0, it
has written an entry for each interchange to the network output file
(OUTMSG). The message handler for Expedite can read these records
and update the status of each interchange.

However, if the return code from the network program is not 0, VANIINB1
sets the status of each interchange to Send request error (42), and the
message handler must update the status for those interchanges that
were successfully sent. With a nonzero return code, the assumption is
that the network program not have been able to (or chose not to)
complete its processing. Therefore, the network output file (OUTMSG)
not contain an entries for all interchanges, but only entries for those that
were successfully processed.

For example, if you are sending a file that contains four X12
interchanges but the second interchange in the file has an error that
prevents the network program from processing it (such as an unknown
destination), VANIINB1 will initialize the status of all four interchanges to
Send request error (42), because the return code from the network
program should not be zero now (identifying the error).

Assuming the network program continued processing after the error, the
message handler updates the status of the first, third, and fourth
interchanges to Send requested (48). If the error in the second
interchange was severe enough to cause the network to stop processing
(such as an I/O error reading the file), only the status of the first
transaction is updated by the message handler to Send requested (48),
and the status of the other three interchanges remains Send request
error (42).

Because a message handler is driven by the responses in the network output
file created by the network program, it only updates the status of interchanges it
has been told about through the responses of the network program. The
VANIINB1 communication routine assumes that if the return code from the
network program is 0, a response record of some type is written to the network
output file for every interchange in the file so that the message handler can
update the status.

The communication routine uses the Message handler field from the network
profile member and invokes this program as a user-exit routine through the
language interface routine (FXXZccc). For more information about message
handler programs, see “Message handler” on page 536.

6. If the network output file contains status information about previously sent data,
the message handler should use the status update service to update the status
information in the Transaction Store. For more information, see “Update status
services” on page 498.

7. If the network output file indicates that data has been received, the message
handler should set the FILERCVD field in the communications control block to Y
and put the account number and user ID of the trading partner sending the data
into the trading partner data block.

8. The communication routine uses a reverse lookup on the trading partner profile
members to locate the entry belonging to the returned account number and
user ID. The trading partner nickname is returned to the application program so

Generalized networks

530 WebSphere Data Interchange Programmer’s Reference

that it knows data was received and from what trading partner. If any errors
were encountered, the communication routine writes an entry to the event log
indicating the type of error that occurred. The contents of the NPSEVER and
NPERRCD fields from the communications control block are included in the
VN1015 message logged by the communications routine.

The communication routine acts on the value in the CLRFILE field from the
communication interface control block, clearing a file just sent if requested to
do so.

9. The application regains control with the results of the operation indicated by the
ZCCBRC and ZCCBERC fields of the CCB.

Point-to-point networks
WebSphere Data Interchange for z/OS provides a communications routine called
PTTOPT for sending and receiving documents through a point-to-point connection.
The point-to-point connection allows you to direct transactions to a file not
associated with a network. To use a point-to-point network, you specify the
Communication rtn field of the network profile (NETPROF).

When the PTTOPT communications routine receives a request to queue a
transaction, the transaction is written to a system-generated file created specifically
for the trading partner. The file name is a concatenation of the current user ID and
the trading partner nickname, with a period inserted every eight characters. For
example, if the user ID is MKRUEGER and the trading partner nickname is
JWILLIAMS, the file name is MKRUEGER.JWILLIAM.S. The file must already exist,
and because the file is allocated dynamically, there are no JCL or CLIST
requirements for the file. Transactions are appended to the end of the file; you must
clear the file of transactions that are successfully sent to the trading partner.

PTTOPT forwards all other requests to your send/receive program, passing the
same parameters that were passed to it. Your program sets the return codes and
control block information that are expected by the requesting application. For more
information, see “Parameters passed to the communications routine” on page 532

Activating point-to-point connections
To activate point-to-point communications, follow these steps:

1. Add a member to the user program information profile (User Exits) for the
point-to-point program.

2. Add a point-to-point member to the network profile by specifying the following:

v PTTOPT in the Communication routine field

v The logical name of your send/receive program in the Network program field

3. In the Network ID fields of the trading partner profile members for the
point-to-point trading partners, enter the name of the point-to-point member that
you added to the network profile in step 2 above.

4. Enter the name of the network profile member in the Network ID field of the
mailbox (requestor) profile members for the point-to-point requestors.

5. Add a member called netid FSUPPORT to the network commands profile,
where netid is the network ID in your network profile. The literal entered in the
command field () of this member identifies the functions that are supported by
the point-to-point connection.

You can create the point-to-point member by copying the member FSUPPORT
and changing the network ID and LITERAL VALUE values. For details about the
LITERAL VALUE literal, see “FSUPPORT member” on page 535

Generalized networks

Chapter 8. Interfacing to other networks and applications 531

Point-to-point network processing flow
The flow for a point-to-point network is similar to the flow for the generalized
network (described in “Application-to-network flow diagram” on page 528) with the
following exceptions:

1. The network program is called as a WebSphere Data Interchange exit rather
than using an z/OS ATTACH. You must define the program in the User Exits
(ADAMCTL) profile and write the program in a language supported by
WebSphere Data Interchange. See Chapter 4, “Exit routines” on page 273 for a
description of user exits. The parameters passed to the point-to-point network
program are the same as those passed to the communications routine.

2. The network program receives the same parameters as the communications
routine (a programming interface rather than a file interface).

3. There is no message handler for a point-to-point network. The network program
is responsible for processing the requests and for processing the results
expected by the API.

Parameters passed to the communications routine
Communications invokes the communications routine to process each request from
an application that requires network activity, such as requests to send or receive
transactions. Your application program supplies the required values before calling
communication. For more information, see “Communication services” on page 479.

The data supplied by the application is combined with information from the profiles,
and the parameters listed below are passed to the communications routine. For
point-to-point networks (Communication rtn has a value of PTTOPT), these same
parameters are sent to the network program. For more information about control
blocks, see Appendix A, “WebSphere Data Interchange control blocks” on page 553
v Service Name Block (SNB)
v Common Control Block (CCB)
v Function Control Block (FCB)
v Communication Interface Control (CMCB)
v Trading Partner Profile (TPPDB)
v Network Profile Block (NPDB)
v Mailbox (Requestor) Profile Block (REQDB)

Building network commands
A communications routine (such as VANIINB1) uses a network commands profile to
build command records that it places in a network input file (such as INMSG). The
information needed to build the command records is in the control blocks passed to
the communication routine. Entries in the network commands profile tell the
communication routine what data from the control blocks should be used in building
the commands for the network program.

Network commands profile
Table 208 on page 533 describes the network commands profile. Each member of
the profile provides data for a particular field in a command record. The command
record field is defined by the SEQUENCE, POSITION, and LENGTH fields of the Network
Commands (NETOP) profile member. The data for the command record field can
either be a literal value (LITERAL VALUE) or it can be a value from one of the
WebSphere Data Interchange control blocks (BLOCK NAME or BLOCK POSITION).

The keys to a profile member are the network ID (NETID), network commands ID
(NETOP), and network commands field sequence number (FLDSEQ).

Point-to-point networks

532 WebSphere Data Interchange Programmer’s Reference

Table 208. Definition of the network operation profile

Label Length Type Description

BLOCK NAME 8 Char Name of block from which data is taken

BLOCK
POSITION

4 Char Block position

LENGTH 4 Char Command field length

LINE 4 Char Command line sequence number

LITERAL VALUE 58 Char Command field value

NETWORK
COMMAND

8 Char Network commands ID

NETWORK ID 8 Char Network ID

POSITION 4 Char Command field position

SEQUENCE 8 Char Network commands field sequence number

Network commands profile field descriptions

BLOCK NAME
The name of the block from which data is to be taken or the name of a network
command. Valid values are:
EDICMCB

Communication interface control block
EDINPDB

Network profile block
EDITPPDB

Trading partner profile block
EDIREQDB

Mailbox (Requestor) profile block
(blank)

LITERAL VALUE field contents

BLOCK POSITION
The starting position of the source data within the block identified in BLKNAME. The
position is relative to 1.

LENGTH
The length of data to move from the source location (or BLKPOS) to the command
record (or CMDFPOS). The length of a command record is defined in the Input record
length field of the network profile.

LINE
The sequence number of the command record to which the source data should be
moved, or enter an asterisk to use the current command line.

LITERAL VALUE
A literal used in the command field that applies only when BLKNAME is blank. When
BLKNAME is not blank, this field can contain comments. This field can also contain
one of these special literals:

//IMBED//
Uses the network command indicated by the BLKNAME field

//STRIP//
Removes trailing blanks from data moved to the command line

Building network commands

Chapter 8. Interfacing to other networks and applications 533

NETWORK COMMAND
The name of a network command, such as SENDX12. These names match those
in the NETOP field of the communication interface control block. Must be eight
characters, left-justified, and padded with trailing blanks.

NETWORK ID
The name (key) that identifies the network. The network commands profile must
contain a member with this name. Must be eight characters, left-justified, and
padded with trailing blanks.

POSITION
The starting position in the command record where the source data should be
moved, or an asterisk to use the current field position.

SEQUENCE
The sequential number of this entry in the network command. The sequence
number has two parts:
v The first 4 bytes contain the command line number.
v The last 4 bytes contain the field sequence number in the line.

Network command example
Table 209 describes the network command entries used to build the commands for
sending X12 standard transactions over the network. The NETWORK ID (IINR4),
NETWORK COMMAND (SENDX12), and SEQUENCE (1-n) fields are not shown in the table.

Table 209. Network command example

BLOCK
NAME

BLOCK
POSITION

SEQUENCEPOSITION LENGTH LITERAL
VALUE

Notes

1 1 3 CSS Start session
command

EDIREQDB 38 1 4 8 Account

EDIREQDB 70 1 12 8 User ID

EDIREQDB 102 1 20 16 Old and new
password

EDINPDB 148 1 36 5 Time zone

EDINPDB 153 1 41 8 System type

EDINPDB 161 1 49 4 System level

2 1 3 CSP Send EDI File
command (part 1)

EDITPPDB 360 2 4 1 Network message
class

EDITPPDB 361 2 5 1 Message charge
code

EDICMCB 81 2 6 1 Acknowledgment
type

EDICMCB 99 2 7 8 Message name

EDICMCB 61 2 15 5 Message
sequence number

EDICMCB 80 2 20 1 Message delivery
class

Building network commands

534 WebSphere Data Interchange Programmer’s Reference

Table 209. Network command example (continued)

BLOCK
NAME

BLOCK
POSITION

SEQUENCEPOSITION LENGTH LITERAL
VALUE

Notes

EDICMCB 91 2 21 8 Message user
class

3 1 3 CSP Send EDI file
command (part 2)

EDICMCB 78 3 4 1 Data type

EDICMCB 107 3 5 56 File/ddname

4 1 3 CSE Session end
command

The network commands service builds the following four commands:
----+----1----+----2----+----3----+----4----+----5----+----6
CSSacctnum userid oldpswd newpswd W05004381 R14
CSP 6B 00164 MSGCLSY 10F
CSPDQDATA
CSE

FSUPPORT member
Communications determines the support provided by a network before calling the
communications routine for the network. It does this by reading the network
commands profile using the key network id and network command FSUPPORT.
The literal in the command field value (LITERAL VALUE) of the member indicates
which functions are supported. The first byte corresponds to FQUEUED; the second
byte corresponds to FMSGS, and so on. Values entered in the FSUPPORT member
must be in uppercase. Table 210 describes how to use the FSUPPORT bytes.

Table 210. FSUPPORT byte values

Byte name: A value of Y specifies that:

FQUEUED Queued functions are supported.

FMSGS Free-form messages are supported.

FFILE Free-form files are supported.

FEDIX ISA/IEA files are supported.

FEDIE UNB/UNZ files are supported.

FEDIU BG/EG files are supported.

FEDIG GS/GE files are supported.

FEDII ICS/ICE files are supported.

FEDIT STX/END files are supported.

FCANCEL CANCEL is supported.

FCLASS Message class is supported.

FACK Network acknowledgments are supported.

FSYSMSG System messages are supported.

FRCVBTP Receive by trading partner is supported.

FRESTART Restart is supported.

FNOUSERID Account number only is entered.

Building network commands

Chapter 8. Interfacing to other networks and applications 535

Table 210. FSUPPORT byte values (continued)

Byte name: A value of Y specifies that:

FACCTSEP The character that is used to separate account number and user ID
(blank, period, slash).

For non-BG interchange envelopes: If the value of FNOUSERID is Y, the full
account number is concatenated with the full user ID. If the value is other than Y,
the following occurs:

v For UNB and STX envelopes, or if more than seven characters were entered in
the Account number field, all trailing blanks are removed from the account
number, the separator defined by the FACCTSEP field is concatenated, followed by
the user ID. This value is then truncated to the maximum allowed by the
standard.

v For ISA and ICS envelopes, where seven or fewer characters were entered in
the Account number field, seven bytes of the account number will be
concatenated with eight bytes of the user ID.

Message handler
The message handler program is identified in the Message handler field of the
network profile. The message handler is architecturally the same as a user exit and,
therefore, has the same language and linkage edit considerations as user exits. For
more information, see Chapter 4, “Exit routines” on page 273

The value in the Message handler field is the logical name for the exit. The physical
load module name and the implementation language for the message handler are
defined in the user program information profile (User Exits). An User Exit entry is
not needed for the network profile entries that are distributed by WebSphere Data
Interchange as these programs are defined in internal WebSphere Data Interchange
tables.

The communication routine passes the following parameters to the message
handler:

v SNB

Before calling the message handler, the communication routine moves the name
of the message handler from the network profile to the ZSNBNAME field in this
block.

v CCB

The message handler returns a value of 12 in the ZCCBRC field to indicate that
the message handler could not process the network output file. Any other
nonzero value returned in ZCCBRC indicates the message handler found
something wrong.

v FCB

Before calling the message handler, the communication routine places a value
of 1 in the ZFCBFUNC field of this block.

v CMCB

The message handler sets the FILERCVD field. The message handler also returns
a value in the NPSERVER and NPERRCD fields.

v CMTPPDB

The message handler sets the ACCTNUM and USERID fields.

v NPDB

Building network commands

536 WebSphere Data Interchange Programmer’s Reference

The message handler is invoked by the communication routine after the network
program has returned control. The message handler processes the responses
the network program has written to the network output file as follows:

– Processes data in the network output file.

– Calls the status update service to update the status in the Transaction Store,
if status update messages are contained in network output file. For more
information, see “Update status services” on page 498.

– Sets the error code in the NPERRCD field and the severity code in the NPSEVER
field of the CMCB if errors are noted in network output file. It also sets the
ZCCBRC field in the CCB to indicate that the NPSEVER and NPERRCD fields have
meaning. The communication routine uses the NPERRCD and NPSEVER values
when logging a VN1015 error message.

Special communications routine for CICS
A special communications routine for the CICS environment (logical name
VANICICS) uses a LINK interface to pass control to the network program and the
message handler. If you do not plan to use Expedite/CICS to communicate with
trading partners, this special communications routine meet your needs. You can
provide your own network program and message handler with a CICS interface.
VANICICS passes control information to the network program and message handler
by way of the CICS COMMAREA. Your program is expected to overwrite the
COMMAREA with the resulting information, and VANCICS will log errors if your
program determines the execution was unsuccessful. VANICICS also provides the
interchange queueing function. Whenever an interchange is generated through an
ENVELOPE function, the translator indirectly invokes the associated communication
routine to write the interchange to the appropriate TS queue. Management reporting
functions are also provided. Whenever an EDI data receive occurs, VANICICS
invokes management reporting to update the appropriate statistics.

Network profile definition for CICS
The first task in using VANICICS is to define a new network profile member. For
more information on defining a network profile member, refer to the WebSphere
Data Interchange User’s Guide.

The following Network Profile fields are important and are described below. The
other fields are ignored by WebSphere Data Interchange and can be used however
you wish. Your programs receive a copy of this profile member. Based on this, your
programs can use the information stored in these ignored fields for your own
purposes.

NETWORK ID
The name WebSphere Data Interchange knows this network by. Whatever
name you pick, it must be used in the associated requestor and trading
partner profile members.

NETWORK NAME
A comment field used to briefly describe the network.

COMM ROUTINE
To use VANICICS, it is critical that you enter VANICICS in this field to tell
WebSphere Data Interchange that whenever a function handled by a
communications routine is invoked, VANICICS is given control.

NETWORK PROGRAM
The name of your network program. WebSphere Data Interchange will

Message handler

Chapter 8. Interfacing to other networks and applications 537

CICS LINK to this program anytime a communications function is directed
to VANICICS. The information sent to your program is described in the next
section.

TRANS DATA QUEUE
The default TS queue name where interchanges are written when an
interchange queueing function is received by VANICICS. Your programs are
not invoked during an interchange queueing function, but it is important for
your network program to know where the interchanges reside. This name
can then be used whenever a send function is directed to your network
program.

MSG HANDLER
The name of your message processing program. WebSphere Data
Interchange will CICS LINK to this program during the processing of an
UPDATE STATUS request. VANICICS does not invoke this program after
other network functions, such as send or receive. The usual function of this
program is to update the status in the Transaction Store.

Note: For VANICICS, the MSG HANDLER field contains the name of a physical load
module that WebSphere Data Interchange invokes through CICS LINK. For
all other communication routines, this field contains a logical service name.
This invocation method was chosen for VANICICS because it is easier to
use the CICS LINK interface in CICS.

Network program control information for CICS
The network program you supply receives control information via the CICS
COMMAREA. The COMMAREA is made up of a set of 4-byte addresses pointing to
control blocks. These control blocks contain all the critical information your program
requires to process the request. While most of the communication routines in
WebSphere Data Interchange use the network commands profile member,
VANICICS does not. The interface to your network program is similar to the z/OS
point-to-point communication routine. Control blocks with critical information are
passed to the program instead of the command being built in the COMMAREA.
This method of passing control blocks gives your program greater flexibility. The
format of the COMMAREA your program receives is defined in Table 211.

Table 211. Format of COMMAREA received by the network program

Name: Offset: Length: Type: Address of control block:

SNBADDR 0 4 Bin SNB

CCBADDR 4 4 Bin CCB

FCBADDR 8 4 Bin FCB

CMCBADDR 12 4 Bin CMCB

TPPADDR 16 4 Bin CMTPPDB
Note: The CMTPPDB block
contains data only if the TPNICKN
keyword specifically refers to a
trading partner. Otherwise, the
TPNICKNM field in this block
contains the value
DEFAULTTPNICK.

NPDBADDR 20 4 Bin NPDB

REQADDR 24 4 Bin REQDB

Communications routine for CICS

538 WebSphere Data Interchange Programmer’s Reference

Your network program must handle three main function codes that are passed in
the ZFCBFUNC field of the FCB. Valid values and the required action are:

211 Send a TS queue containing interchanges. The FILENAME field of the
CMCB contains the name of the TS queue to send. The REQDB contains
information about the mailbox or user ID for which the send is to be done.

232 Receive interchanges into a TS queue. The FILENAME field of the CMCB
contains the name of the TS queue to receive. The REQDB contains
information about the mailbox or user ID for which the receive is to be
done.

252 Receive status information for an Update status request. You can use the
CMDOUT field in the NPDB block as a place to hold the name of a TS or TD
queue to write out the status information. The NPDB contains an in-storage
copy of the associated network profile member. The REQDB contains
information about the mailbox or user ID for which the receive is to
be done.

When your network program has completed its processing, it must return control to
WebSphere Data Interchange via the CICS RETURN command. WebSphere Data
Interchange expects your network program to indicate success or failure back to
WebSphere Data Interchange. Your network program does this by overwriting the
incoming COMMAREA with meaningful information. The overwritten COMMAREA
should be formatted as shown in Table 212.

Table 212. Format of the overwritten COMMAREA

Name: Offset: Length: Type: Address of control block:

RESPONSE 0 5 Char Response code

SEVERITY 5 2 Char Response severity

FILLER 7 21 Char Unused filler

Successful condition (network)
If your network program has executed successfully, it should set the fields in the
COMMAREA to the specified values:
RESPONSE

HI000
SEVERITY

00
FILLER

Blanks

No data received (network)
Your network program issue a receive request but there not be any data available
to be received. WebSphere Data Interchange does not consider this an error
condition; however, this information should be conveyed back to the original calling
program. Your network program should indicate to WebSphere Data Interchange
that a receive was issued but no data was returned by setting the fields in the
COMMAREA to the specified values>
RESPONSE

HI000
SEVERITY

04
FILLER

Blanks

Communications routine for CICS

Chapter 8. Interfacing to other networks and applications 539

Error occurred (network)
Your network program encounter many different errors. You can indicate to
WebSphere Data Interchange that an error occurred, get a VN1022 message
logged, and get an error extended return code of 1022 returned to the caller by
filling in the COMMAREA with these values:
RESPONSE

Any five character string other than HI000
SEVERITY

08 or 12. This string should indicate a specific error in your network
program to aid in problem determination. This response code is included in
the VN1022 message.

FILLER
Blanks

Message handler control information
During the processing of an Update status request, WebSphere Data Interchange
CICS LINKs to the message handler. VANICICS does not start this program after
other network functions, such as send or receive. The message handler program
you supply receives control information through the CICS COMMAREA. The format
of the COMMAREA your program receives is defined in Table 213.

Table 213. COMMAREA received by the message handler

Name: Offset: Length: Type: Address of control block:

SNBADDR 0 4 Bin SNB

CCBADDR 4 4 Bin CCB

FCBADDR 8 4 Bin FCB

CMCBADDR 12 4 Bin CMCB

NPDBADDR 20 4 Bin NPDB

TPPADDR 16 4 Bin CMTPPDB

REQADDR 24 4 Bin REQDB

The message handler is invoked and will always receive the same function code
(252). Therefore, the ZFCBFUNC field in the FCB is not important. When your
message handler gains control, its primary task is to update the status of the
Transaction Store. You do this by using the update envelope status API
documented in “Update status services” on page 498. To aid you in using this API,
the SNB and CCB control blocks passed into your program are already initialized
and ready to be used by this API.

When your message handler program has completed its processing, it must using
the CICS RETURN command to return control to WebSphere Data Interchange.
WebSphere Data Interchange expects your message handler program to indicate
success or failure back to WebSphere Data Interchange. Your message handler
program does this by overwriting the incoming COMMAREA with meaningful
information. The overwritten COMMAREA should be formatted as defined in
Table 214.

Table 214. COMMAREA set by the message handler

Name: Offset: Length: Type: Description:

RESPONSE 0 5 Char Response code

SEVERITY 5 2 Char Response severity

Communications routine for CICS

540 WebSphere Data Interchange Programmer’s Reference

Table 214. COMMAREA set by the message handler (continued)

Name: Offset: Length: Type: Description:

FILLER 7 21 Char Unused filler

Successful condition (message handler)
If your message handler has executed successfully, it should set the fields in the
COMMAREA as follows:
RESPONSE

HI000
SEVERITY

00
FILLER

Blanks

Error occurred (message handler)
Your message handler encounter many different errors. You can indicate to
WebSphere Data Interchange an error occurred, and get a VN1022 message
logged, and get an error extended return code of 1022 returned to the caller by
filling in the COMMAREA as follows:
RESPONSE

Any five character string other than HI000. The string that you enter should
indicate a specific error in your message handler program to aid in problem
determination. This response code is included in the VN1022 message.

SEVERITY
08 or 12. This string should indicate a specific error in your network
program to aid in problem determination. This response code is included in
the VN1022 message.

FILLER
Blanks

Continuous receive interface (CICS only)
The continuous receive facility was designed to work with Expedite/CICS and
Information Exchange, but it can be used with user-written applications. The intent
of this interface is to house WebSphere Data Interchange processing information in
the continuous receive profile, away from the receiving application's logic. The
user-supplied receive application does not need to be concerned with the
WebSphere Data Interchange processing that should be performed. This
information is contained in the continuous receive profile member. This interface is
available in the CICS environment only.

There are three major differences between continuous receive processing which
interacts with Expedite/CICS and processing that interacts with user-written receive
applications as follows:

v Only continuous receives associated with Expedite/CICS are started and stopped
with CICS transactions EDIR and EDIS, or with PLT programs EDICRTS and
EDICRSP. Continuous receives associated with user-written receive applications
are not started or stopped through WebSphere Data Interchange. The
user-written receive application passes the name of the continuous receive profile
member to WebSphere Data Interchange when a continuous receive occurs.
Since this is all the control information WebSphere Data Interchange requires to
perform the appropriate processing, starting and stopping is not necessary. Any
request to start or stop a continuous receive associated with a user-written
receive application is ignored by WebSphere Data Interchange.

Communications routine for CICS

Chapter 8. Interfacing to other networks and applications 541

v The mailbox (requestor) profile ID is optional for continuous receive profile
members associated with user-written receive applications. If one is supplied in
the profile, WebSphere Data Interchange updates the management reporting
receive statistics database. If one is not supplied, management reporting
statistics are not updated.

v The mailbox (requestor) profile ID is mandatory for continuous receives
associated with Expedite/CICS. The continuous receive profile member ID must
be a maximum of 8 characters long. Continuous receive profile member IDs
associated with Expedite/CICS can have a maximum length of 16 characters.

Invoking the continuous receive interface
When a user-written receive application receives EDI data from a source (such as a
leased line, different VAN, remote TD queue), it can invoke the continuous receive
interface to have this EDI data processed. The EDI data must reside in a TS queue
for WebSphere Data Interchange to process it. When the data resides in a TS
queue, the user application uses the CICS LINK command to give control to
program EDICRIN. When the CICS LINK command is issued for program EDICRIN,
a COMMAREA must be passed. The COMMAREA must have the format defined in
Table 215.

Table 215. COMMAREA format for continuous receive (CICS)

Name: Offset: Length: Type: Address of control block:

CRMEMBER 0 8 Char Continuous receive profile member
name

RESERVED 8 2 Char Reserved for future use

ENVFILE1 10 8 Char TS queue (1st 32-K record)

USRFLD 18 16 Char User area

RESERVED 34 146 Char Reserved for future use

ENVFILE2 180 8 Char TS queue (2nd 32-K record)

ENVFILE3 188 8 Char TS queue (3rd 32-K record)

ENVFILE4 196 8 Char TS queue (4th 32-K record)

ENVFILE5 204 8 Char TS queue (5th 32-K record)

ENVFILE6 212 8 Char TS queue (6th 32-K record)

RESERVED 220 36 Char Reserved for future use

When invoking program EDICRIN, the user-written receive application must be
concerned with the following fields:

CRMEMBER
The name of the continuous receive profile member that contains the
WebSphere Data Interchange processing information. The maximum length
of this field is eight characters. The profile member contains information
such as whether translation is desired, the name and type of the print file,
and other critical information for WebSphere Data Interchange to process
the incoming data. For more information on the fields in the profile, refer to
the continuous receive profile definition in the WebSphere Data Interchange
User’s Guide.

ENVFILEx
The name of the TS queues holding the EDI data that WebSphere Data
Interchange is to process. The TS queues contain multiple interchanges

Continuous receive interface

542 WebSphere Data Interchange Programmer’s Reference

and processing is based on the value in CRMEMBER. For more information
about processing multiple TS queues, see “Processing multiple incoming TS
queues” on page 309.

USRFLD
The data in this field is moved to the USRFLD field in the WebSphere Data
Interchange Utility control block. This data is then available to response
programs started subsequently. For more information, see “WebSphere
Data Interchange Utility control information field descriptions” on page 326.

When WebSphere Data Interchange has completed its processing, it returns control
to the user-written receive application. WebSphere Data Interchange updates the
COMMAREA indicating success or failure. The user-written receive application is
informed whether WebSphere Data Interchange accepted responsibility for the data.
WebSphere Data Interchange does not return any information as to whether the
data was processed successfully. This task is to be performed by the response
application supplied in the continuous receive profile. The user-written receive
application should be sensitive to the returned COMMAREA. If WebSphere Data
Interchange was not able to accept ownership for the data, the user-written
response program should be prepared to back up the data. When the problem is
fixed, the data can be given back to WebSphere Data Interchange to process. The
first seven characters in the returned COMMAREA will contain one of the following
values:

HI00000
WebSphere Data Interchange was able to accept ownership of the data.
Whether or not WebSphere Data Interchange processing was successful,
the continuous receive response application must detect and report any
WebSphere Data Interchange processing errors.

HI77712
The continuous receive profile member indicated that translation and
deenveloping was not to be performed. The only WebSphere Data
Interchange processing performed was the invocation of the continuous
receive response program. This program returned a value of -1 in the
severity code (CCBRC) field, indicating that processing was unsuccessful. The
data in ENVFILEx should be backed up.

HI88812
WebSphere Data Interchange processing abended in the EDIB transaction.
The data in ENVFILEx should be backed up.

HI99912
The profile member specified in the CRMEMBER field could not be located, or
the Active? flag in the profile is set to N. The data in ENVFILEx should be
backed up.

If one of the errors above is encountered, WebSphere Data Interchange attempts to
log an error message to the EXPL TD queue. EXPL can be directed to a destination
to which other errors are routed.

Interfacing with SAP
SAP is a client/server application which supports business processes such as sales,
materials management, and distribution for mainframes and UNIX.

Continuous receive interface

Chapter 8. Interfacing to other networks and applications 543

SAP generates application data in the SAP Intermittent Document (IDOC) layout.
The file is sent to the EDI subsystem (or translator) using file transfer products such
as FTP or TCP/IP.

You must provide the usage/rules for translating inbound and outbound IDOCs. For
inbound processing, you can use the literal keyword &THANDLE to map the
WebSphere Data Interchange archive key to the SAP IDOC. For outbound
processing, you can use the special WebSphere Data Interchange variable name
DISAPSEQ to save the IDOC record sequence number on the first error
encountered. The value of DISAPSEQ is captured in the SAP status record to
indicate the first record in error.

You can capture SAP status information during different phases of the EDI process
by specifying the keyword SAPUPDT on PERFORM commands. SAP status tracking
is only supported with the WebSphere Data Interchange Utility.

PERFORM commands allow you to extract or remove the SAP status records from
the database based on selection criteria, and write them (in SAP EDI_DS record
format) to a sequential file for transfer to the SAP system. WebSphere Data
Interchange supports the SAP status EDI_DS record at IDOC releases 2, 3,
and 4.

Outbound processing and SAP status
You can control the capture of SAP status by setting the SAPUPDT keyword to Y on
Utility PERFORM statements during outbound processing. However, if you specify
SAPUPDT keyword, the SAP status is stored along with the WebSphere Data
Interchange archive key in a new database called EDIVSSTK. The status is then
updated at various key points during EDI processing.

To activate SAP status tracking, you must specify the SAPUPDT keyword on the
following PERFORM commands:
v ENVELOPE
v ENVELOPE AND SEND
v REENVELOPE
v REENVELOPE AND SEND
v RESTART SEND
v SEND
v TRANSLATE AND ENVELOPE
v TRANSLATE AND SEND
v TRANSLATE TO STANDARD

Inbound processing and SAP status
You can control the inbound processing of SAP status for functional
acknowledgments by setting the SAPUPDT keyword to Y on Utility PERFORM
statements. When you specify the SAPUPDT keyword and the Transaction Store is
active, functional acknowledgment status is collected in the database.

To activate SAP status tracking, you must specify the SAPUPDT keyword on the
following PERFORM commands:
v DEENVELOPE
v DEENVELOPE AND TRANSLATE
v RECEIVE AND DEENVELOPE
v RECEIVE AND TRANSLATE

Interfacing with SAP

544 WebSphere Data Interchange Programmer’s Reference

SAP status codes supported by WebSphere Data Interchange
The SAP status codes supported by WebSphere Data Interchange are:
04 Error within control information of EDI subsystem
05 Error during translation process
06 Translation successful
09 Error during interchange handling
10 Interchange handling successful
11 Error during dispatch
12 Dispatch successful
16 Functional Acknowledgment positive
17 Functional Acknowledgment negative
22 Dispatch successful, acknowledgment still due

You must provide the translation usage/rule required to perform the translation of
the inbound and outbound IDOCs. The literal keyword &THANDLE is provided to
map the WebSphere Data Interchange archive key to the SAP IDOC for inbound
processing, and the WebSphere Data Interchange variable name DISAPSEQ is
provided to allow you to save the IDOC record sequence number of the first error
during outbound processing. The variable DISAPSEQ is collected in the SAP status
record to indicate the first record in error.

Extracting SAP status records
You can use the SAP STATUS EXTRACT command to extract SAP status records
from the WebSphere Data Interchange database, and write them to an output file.
The record length for the output file must at least as large as the SAP status
EDI_DS record. The error codes returned by this command are:
792 No records match the selection criteria.
796 Records were truncated in the output file.

Removing SAP status records
You can use the SAP STATUS REMOVE command to remove SAP status records
from the WebSphere Data Interchange database. The only error code returned by
this command is:
796 Error occurred during processing.

Interfacing with MQSeries
You can exchange data with your trading partners using MQSeries queues in
network profiles. WebSphere Data Interchange prohibits the use of MQSeries
queues as the target of the envelope process or as input to the deenvelope
process. MQSeries queues can be used as part of a logical network where
enveloped data is sent to and received from MQSeries queues. WebSphere Data
Interchange provides a sample network profile member named MQSAMP to assist
you with the setup of this local network, as described in the following steps:

1. Ask your MQSeries Administrator to define the MQSeries queue you plan on
using.

2. Define WebSphere Data Interchange MQSeries Queue profile members for the
queues your MQSeries administrator has created. For more information, refer to
the WebSphere Data Interchange User’s Guide.

3. On the Update Profile Member Panel, complete the fields listed below as
follows:

Interfacing with SAP

Chapter 8. Interfacing to other networks and applications 545

Communication rtn
VANIMQ. The name of the communication routine that builds network
commands and invokes the network's send and receive program to
process the commands.

Envelope File
The logical name of the staging file that will hold the enveloped
transactions waiting to be sent to your trading partner when you create
output messages in WebSphere Data Interchange, but do not instruct
WebSphere Data Interchange to send them yet. For example, if you do
a PERFORM TRANSFORM, but do not specify an output logical name
on the rule or PERFORM command, then output messages will be
written to the envelope file associated with the network used by the
destination trading partner. If you leave this field blank, the default is
QDATA.

Input rec length
Not used by the WebSphere MQ interface.

Message handler
Not used by the WebSphere MQ interface.

Msg text header
Not used by the WebSphere MQ interface.

Net acks file
Not used by the WebSphere MQ interface.

Net output file
Not used by the WebSphere MQ interface.

Network ID
A unique name to identify the network, such as MQSAMP. This value is
referenced by the mailbox (requestor) profile and the trading partner
profile. Use the same ID throughout WebSphere Data Interchange to
refer to this network.

Network input file
Not used by the WebSphere MQ interface.

Network name
A descriptive name of the network, such as Sample MQSeries Network.
This field is optional.

Network parameters
The logical names of the queues used to send and receive messages to
a trading partner when WebSphere MQ queues are used to
communicate with the trading partner. WebSphere Data Interchange
associates each external trading partner with a network. If WebSphere
MQ queues are used to communicate with the trading partner, then the
trading partners ″network″ consists of two WebSphere MQ queues; a
queue used to send to the trading partner (SENDMQ) and a queue that
the trading partner uses to send messages to you (RECEIVEMQ). This
field must match the WebSphere Data Interchange MQSeries queue
profile member names created in Step 2 above. The SENDMQ keyword
should be followed by the WebSphere Data Interchange MQSeries
queue profile member name where you send data. The RECEIVEMQ
keyword should be followed by the WebSphere Data Interchange
MQSeries queue profile member name where you receive data. Both
parameters must be delimited by blanks. If you are performing one way

Interfacing with MQSeries

546 WebSphere Data Interchange Programmer’s Reference

communication with your trading partner, only the keyword (or value)
combination of that direction is required.

Network program
EDIMQSR, EDIRFH2 or EDICYCL. The physical name of the send and
receive program. This program is invoked by the communication routine
to process requests. If messages are to be MQPUT to a queue with
only an MQMD header, then specify the EDIMQSR network program. If
messages are the be MQPUT to a queue with both the MQMD header
and an RFH2 header, then specify EDIRFH2. WebSphere Data
Interchange will fill out the <mcd> folder and add values like the sender
and receiver ID’s to the <usr> folder of the RFH2 for each message
MQPUT to the queue. EDIRFH2 should also be used for queues going
to the iSoft EDI over the Internet (EDI-INT) Gateway product. If the
queue goes to a product using the JMS API, such as the IBM Trading
Partner Interchange product, Cyclone Interchange Server, or the IBM
Web Services Gateway, then specify EDICYCL. This will cause
WebSphere Data Interchange to format the RFH2 correctly for these
products.

Network sequence
Not used by the WebSphere MQ interface..

Script name
Not used by the WebSphere MQ interface.

System level
This field is not used by any currently supported network.

System type
Not used by the WebSphere MQ interface.

Time zone
Not used by the WebSphere MQ interface.

Trans data queue
The ddname of the file that will hold the enveloped transactions waiting
to be sent to your trading partner. This file is also used when queuing or
sending transactions. If you leave this field blank, the default is QDATA.

Trans rec length
For distributed platforms and z/OS this field is not used. For the
Transaction Server only, trans rec lengthis the length of records in the
TD queue. For WebSphere Data Interchange, the maximum usable
record length for a TS queue is 28000. To utilize all 28000 bytes in each
record, enter a value of zero or blank in this field. Otherwise, the
maximum number that can be entered in this 4 character field is 9999.

4. Your new network profile member can be used in trading partner profiles and
mailbox (requestor) profiles. For more information see Appendix A, “WebSphere
Data Interchange control blocks” on page 553.

5. If you are using continuous receive, you also perform the following tasks:

v When using MQSeries queues with an application file, you must identify the
associated MQSeries queue profile member in the data format fields
(specifically, the Application file name and Application file type fields).

v When executing a translation, you can read data to or write data from
MQSeries queues (for print, report, exception, and so on).

v When using an MQSeries queue for your application data file, you must enter
the MQSeries queue profile member name and the MQ type in at least one of
the following places:

Interfacing with MQSeries

Chapter 8. Interfacing to other networks and applications 547

– Application file name and file type in the data format
– Application file name and file type in the Receive Usage panel
– Any PERFORM command that uses the APPFILE and APPTYPE keywords

For more information, see “Continuous receive using MQSeries” on page 331.

Additional information added to MQRFH2
Additional information has been added to MQRFH2 from the EDIRFH2 network
program. The EDIRFH2 network program has been modified to propagate routing
information in the USR folder of the MQRFH2 header. For a translation from EDI to
another format (for example, XML or DF), the following information would be added
to the USR folder:

<ReceiverID>
EDI receiver ID from WebSphere Data Interchange

<ReceiverQual>
EDI receiver qualifier from WebSphere Data Interchange

<SenderID>
EDI sender ID from WebSphere Data Interchange

<SenderQual>
EDI sender qualifier from WebSphere Data Interchange

In an DF to DF, the trading partner nickname would be used and the <SenderQual>
and <ReceiverQual> tags would be left blank. In an DF there is no WebSphere
Data Interchange envelope.

XML special considerations
When processing XML data, there are some additional things that you must
consider that are not relevant for other types of source and target documents.
These include understanding how WebSphere Data Interchange resolves the DTDs
that it uses to validate the XML data, and how it handles different encoding types
such as EBCDIC or UTF-8. This section describes these special considerations.

Note: The XMLEBCDIC keyword is used only for z/OS systems and is ignored for
Windows and AIX.

XML DTD resolution
External DTDs can be parsed along with the XML data. The DTD can be used to
validate that the XML data conforms to the DTD, and can also be used to resolve
things such as default attribute values and parameter entity references. If you want
the parser to process an external DTD along with the XML data, you must copy the
DTD file to the server system. On z/OS, the file can be stored as either a PDS
member or an HFS file.

If your sever is a z/OS system, there are some special encoding considerations to
keep in mind when uploading the DTD files. When you use the DTD to validate a
source (input) XML document, upload the DTD as text if you specify XMLEBCDIC as Y
(default). If you specify XMLEBCDIC as N, the DTD file must contain an XML
declaration that includes the appropriate encoding type for the file. For more
information, see the section on XML encoding considerations for z/OS. For data
transformation maps, WebSphere Data Interchange does not validate output (target)
XML documents, and so does not use DTDs for this case. If the DTD will be used
to validate the outbound XML data for send maps, upload the DTD as text.

Interfacing with MQSeries

548 WebSphere Data Interchange Programmer’s Reference

If DTD processing is to be done as part of the XML parsing (based on the selected
validation level), the following processing takes place whenever the parser finds a
reference to an external DTD file:

1. When an external DTD reference is found in the XML data, all path information
(such as a URL path or file path information) is removed from the DTD name,
leaving only a base DTD name.

2. Then the base DTD name is combined with the XMLDTDS value to determine
the filename of the DTD file. This DTD file is used by the XML parser in place of
the URL specified on the DOCTYPE declaration in the XML data. For z/OS, if
the XMLDTDS value does not start with a slash (HFS file), the file is assumed
to be a PDS and the first 8 characters of the base name (minus the extension)
are assumed to be the member name. If the XMLDTDS value starts with a
slash, the value is assumed to be an HFS path and the base name is appended
to the path information. For CICS, the XMLDTDS value must be an HFS path,
and the base name is appended to the path information. For Windows and AIX,
the XMLDTDS value specifies a path, and the base name is appended to the
path information.

For example, if the XML data contains the following DOCTYPE declaration:

<!DOCTYPE PurchaseOrder SYSTEM "http://xyz.org/xml/dtds/MyPO.dtd">

The DTD name is resolved as follows:

1. The URL path information is removed, leaving MyPO.dtd as the base name.

2. If the server system is AIX or Windows, or if the XMLDTDS value starts with a
slash such as /u/ediuser/mydtds, then the base name is appended to the
XMLDTDS value making the DTD file name /u/ediuser/mydtds/MyPO.dtd.

3. If the server system is z/OS and the XMLDTDS value does not start with a
slash such as EDIUSER.MYDTDS, then the base name (without the extension)
is assumed to be a PDS member making the DTD file name
EDIUSER.MYDTDS(MYPO).

Additional DTD resolution for z/OS
On z/OS this process might cause conflicts where long DTD names, or DTD names
that differ only in their extensions are used. To resolve conflicts caused by long
DTD names you can use a DTD alias file. The DTD alias file (DD:DTDALIAS)
allows you to specify an alias for a DTD name. For example, if you are keeping
your DTD files in a PDS, but you have two DTD files, LongDTDName1.dtd and
LongDTDName2.dtd, using the first 8 characters would yield the same member
name for both (LONGDTDN). The DTDALIAS file allows you to specify different
member names for each of these. The format is the DTD (base) name followed by
one or more blanks, followed by the alias name. Remember that PDS member
names are not case sensitive, but HFS file names are case sensitive. For example:

longdtdname1.dtd LONGN1
longdtdname2.dtd LONGN2

If you allocate a DTD alias file (DD:DTDALIAS), the alias table table is used as
follows:

1. The base name is first looked up in the alias file. The search for the base name
in the alias file is not case sensitive.

2. If the base name is found in the alias file, the alias name is combined with the
XMLDTDS value to determine the filename of the DTD file.

XML special considerations

Chapter 8. Interfacing to other networks and applications 549

3. If no alias is found or the DTDALIAS file is not allocated, then the base name is
used as above.

As an example. if you used the above DTDALIAS file, specified the parameter
XMLDTDS(EDISUER.DTDS) on your PERFORM command, and your XML data
contained the following DOCTYPE declaration:
<!DOCTYPE po SYSTEM “http://xyz.org/xml/dtds/LongDTDName1.dtd”>

The parser would resolve the DTD as follows:

1. Remove the URL path information from the DTD name, resulting in a base
name of LongDTDName1.dtd.

2. Search the DTDALIAS file for this base name. Since this search is not case
sensitive, it would find the first entry, resulting in an alias name of LONGN1.

3. Combine the alias name with the XMLDTDS value, instead of using the base
name. Since EDIUSER.DTDS does not start with a slash, it is assumed to be a
PDS. Therefore, the member EDIUSER.DTDS(LONGN1) will be processed as
the DTD file for this XML document.

XML encoding considerations for z/OS
The XML processor uses the XML Toolkit for z/OS and OS/390 to parse the XML
data. This parser supports many different character encodings, and follows the XML
standards for auto-detection of the character encoding. However, this can
sometimes cause problems when dealing with EBCDIC data.

According to the XML standard, if the XML document is not in UTF-8 (similar to
ASCII for most commonly used characters) or UTF-16 format, it must begin with an
XML encoding declaration (<?xml...>). For EBCDIC data, the encoding= attribute
must be present and indicate which encoding type is in use. If the XML data was
generated as ASCII data and then converted to EBCDIC format, it is likely that the
encoding= attribute would not be added or updated to reflect the EBCDIC
conversion.

Additionally, the new line character (EBCDIC x’15’) is not recognized as a valid
white space character by the XML standard. However, in z/OS this is often inserted
into files as a record separator by editors, upload applications and other z/OS
applications.

To resolve these problems, the XML processor in WebSphere Data Interchange can
instruct the parser to override the default (auto-detected) encoding type for the XML
document with a special encoding type: ebcdic-xml-us. This causes the parser to
ignore the encoding= attribute in the XML declaration and use this special type
instead. This encoding type is based on the IBM1140 codepage and will treat any
newline characters as a carriage-return character (x’0A’), which is a valid XML white
space character.

When receiving XML data, specifying the XMLEBCDIC keyword as Y (which is also the
default setting) instructs the XML processor to override the default encoding type
with the special ebcdic-xml-us encoding type. This applies to any external DTDs
processed, as well as to the XML data itself. This allows the XML processor to
handle XML data and DTDs in EBCDIC format that contain new line characters but
not contain the correct encoding type in the XML declaration.

When you specify XMLEBCDIC as N, the XML processor determines the encoding
type for both the data and external DTDs based on the normal XML auto-detection
rules. Use this setting if your input XML data is in a format other than EBCDIC,

XML special considerations

550 WebSphere Data Interchange Programmer’s Reference

such as ASCII or UTF-16. Since the value of XMLEBCDIC is also used to control the
interpretation of the DTD files, your DTDs must contain an XML declaration
(<?xml...>) with the proper encoding type.

When generating XML data, the XML data is always created as EBCDIC. No
encoding type is specified in the default XML prolog. If you want to send the data in
another format, such as ASCII or UTF-16, the translation must be done outside of
WebSphere Data Interchange. In many cases, translation can be handled by the
transport mechanism (such as FTP) that you use to send the data to another
system. If you need to specify an encoding= attribute in your XML declaration, you
override the default prolog. For data transformation maps, you do this by setting the
DIPROLOG special property. For send maps, you use the DIPROLOG mapping
variable.

XML special considerations

Chapter 8. Interfacing to other networks and applications 551

552 WebSphere Data Interchange Programmer’s Reference

Appendix A. WebSphere Data Interchange control blocks

This appendix describes WebSphere Data Interchange control blocks, including
block layouts and field descriptions. The control blocks aare provided in softcopy
format.

For Windows and AIX, only the C header files (.h) are included. These files are in
the include directory under the main installation directory.

For z/OS and CICS, the control blocks are in the following distribution load libraries.

EDI.V3R2M0.SEDIASM1
Assembler and COPY

EDI.V3R2M0.SEDICBL1
COBOL and CBLCPY

EDI.V3R2M0.SEDICCC1
C and H

EDI.V3R2M0.SEDIPLI1
PL/I and INCLUDE

The names and descriptions of the files are listed in Table 216. Use these files as a
starting point for copy books that are tailored for use by your installation.

Table 216. Distribution libraries member descriptions

File Name Description

DIAPI Defines the C++ API for AIX and Windows

EDICCB Common Control Block (CCB)

EDICMCB Communications Control Block (CMCB)

EDIDBLK Translator Data Block (TRIDB, TRODB, DATABLK)

EDIDEA Data Extract Application Record

EDIDEE Data Extract Interchange Record

EDIDEG Data Extract Group Record

EDIDENTA Network Activity Record

EDIDER Data Extract Image Record

EDIDET Data Extract Transaction Record

EDIDETPA Transaction Activity Record

EDIDETPC Trading Partner Capability Record

EDIDETPI Trading Partner Information Record

EDIFCB Function Control Block (FCB)

EDIFFC WebSphere Data Interchange Utility C Record

EDIFFD WebSphere Data Interchange Utility D Record

EDIFFDU WebSphere Data Interchange Utility Control Information Block

EDIFFE WebSphere Data Interchange Utility E Record

EDIFFG WebSphere Data Interchange Utility G Record

EDIFFI WebSphere Data Interchange Utility I Record

© Copyright IBM Corp. 2002 553

Table 216. Distribution libraries member descriptions (continued)

File Name Description

EDIFFQ WebSphere Data Interchange Utility Q Record

EDIFFT WebSphere Data Interchange Utility T Record

EDIFFZ WebSphere Data Interchange Utility Z Record

EDIHBLK Translator Huge Block (TRIDB, TRODB)

EDINPDB Network Profile Data Block (NPDB)

EDIRQDB Mailbox (Requestor) Profile Data Block (REQDB)

EDISNB Service Name Block (SNB)

EDISPDB Security Profile Data Block (SPDB)

EDISUDB Status Update Data Block

EDISUK0 Status Update 210 Key Block

EDISUK1 Status Update 211 Key Block

EDISUK2 Status Update 212 Key Block

EDISUK3 Status Update 213 Key Block

EDISUK4 Status Update 214 Key Block

EDISUK5 Status Update 215 Key Block

EDITPDB Trading Partner Profile Data Block (TPPDB)

EDITRCB Translator Control Block (TRCB)

EDIVNMH VANICICS commarea to message handler (z/OS only)

EDIVNNP VANICICS commarea to network program (z/OS only)

Service Name Block (SNB)
The SNB allows you to access WebSphere Data Interchange services by
associating a logical name with a physical load module name at the time of
execution. These logical names and load modules are associated in a static
WebSphere Data Interchange table.

The same interface used to access WebSphere Data Interchange API services is
used when WebSphere Data Interchange invokes a user-written exit program. User
exits are defined and given logical names during the customization process. The
User Exits (ADAMCTL) profile is then updated so that the physical load module and
the implementation language can be associated with the logical name. User Exit
profile entries are automatically added to the service table during execution as user
exits are requested.

Using the same SNB each time you request a service improves performance. Once
a SNB has been used, the logical and physical association is saved in the ZSNBNDX
field, eliminating the table search on the next request. During processing, the SNB
is modified by WebSphere Data Interchange. If you want a reentrant program, do
not assign storage for the SNB from static storage.

Table 217 on page 555 describes the layout of the SNB.

WebSphere Data Interchange control blocks

554 WebSphere Data Interchange Programmer’s Reference

Table 217. SNB definition. Layout of the SNB and descriptions of fields

Name Offset Length Type Description

ZSNBLL 0 2 Bin SNB length

ZSNBID 2 2 Bin Reserved

ZSNBEYE 4 8 Char Dump eye catcher

ZSNBNAME 12 8 Char Service name

ZSNBNDX 20 4 Bin Service entry index

ZSNBPC 24 2 Bin Parameter count

ZSNBFLG0 26 1 Char Reserved for WebSphere Data
Interchange

ZSNBFLG1 27 1 Char Reserved for WebSphere Data
Interchange

ZSNBFANC 28 4 Bin Reserved for WebSphere Data
Interchange

SNB field descriptions

ZSNBLL
A 2 byte binary field that contains the length of the SNB control block. An SNB is 32
bytes.

ZSNBID
Reserved. This field is not currently used.

ZSNBEYE
The first time an SNB is used, WebSphere Data Interchange initializes this field with
a value of **ZSNB**. When you look at virtual storage dumps, this field helps
identify the sections containing an SNB.

ZSNBNAME
Indicates the logical name of the WebSphere Data Interchange service being
requested. Service names must be left-justified and padded with blanks.
WebSphere Data Interchange maintains an internal table that associates a logical
name with the physical load module that processes the request. User exits are
given logical names at various points during the customization process. The
association of a user-defined logical name with a physical load module name is
done through the User Exits (ADAMCTL) profile. Valid values are:

ENVSERV
Environmental services

TRANPROC
Translation services

TRANPROC
Enveloping services

TRANPROC
Data extraction services

COMM
Communications services

TRANSSRV
Update status services

SNB

Appendix A. WebSphere Data Interchange control blocks 555

SYNCSERV
SYNCPOINT services

ZSNBNDX
Used internally by WebSphere Data Interchange to record the offset into the internal
table that defines the services.

ZSNBPC
Indicates the number of parameters that are being provided in the FXXZC,
FXXZCBL, FXXZPLI or FXXZASM call. Not all functions in a service require the
same number of parameters. Setting the parameter count incorrectly can yield
unpredictable results.

ZSNBFLG0
Reserved for WebSphere Data Interchange. First flag byte.

ZSNBFLG1
Reserved for WebSphere Data Interchange. First flag byte.

ZSNBFANC
Reserved for WebSphere Data Interchange. First anchor position.

SNB

556 WebSphere Data Interchange Programmer’s Reference

Common Control Block (CCB)
The CCB is used by WebSphere Data Interchange to maintain status information
about the current WebSphere Data Interchange session. A WebSphere Data
Interchange session includes anything that happens between an initialize service
request and a terminate service request. The CCB used on the initialize request
must be used for all requests made during a session. The CCB is provided to all
WebSphere Data Interchange programs and all user-defined exit programs that are
invoked during the session.

Most of the fields in this control block are for use by WebSphere Data Interchange.
However, the return code (ZCCBRC) and extended return code (ZCCBERC) are used to
communicate the results of the request to the calling program. The CCB must be at
least 608 bytes long for WebSphere Data Interchange to maintain status. However,
the length of the CCB can exceed 608 bytes if your application program wants to
provide data to a user-defined exit program invoked to process an application
request. Anything defined beyond the ZCCBRSV field is for application use only and is
not altered by WebSphere Data Interchange. During processing, the CCB is
modified by WebSphere Data Interchange. If you want a reentrant program, the
storage for the CCB must not come from a static storage area.

Table 218 describes the layout of the CCB.

Table 218. CCB definition. Layout of the CCB and descriptions of fields

Name Offset Length Type Description

ZCCBLL 0 2 Bin CCB length

ZCCBID 2 2 Bin Reserved

ZCCBEYE 4 8 Char Dump eyecatcher

ZCCBRC 12 4 Return code

ZCCBERC 16 4 Extended return code

ZCCBSID 20 8 System ID

ZCCBUID 28 8 User ID

ZCCBAID 26 8 Application ID

ZCCBCID 44 8 Error module ID

ZCCBXFID 52 2 Function ID

ZCCBLPID 54 6 Language profile ID

ZCCBCPID 68 4 Code page ID

ZCCBRSV 72 4 Reserved

ZCCBCCXP 76 4 Pointer to CCB extension

ZCCBCABP 80 4 Pointer to common area block

ZCCBDBID 84 4 z/OS DB2 subsystem ID

ZCCBDBPL 88 8 z/OS DB2 plan/AIX DB2 alias

ZCCBDBUI 96 8 AIX DB2 user ID

ZCCBDBPW 104 18 AIX DB2 password

ZCCBDRSV1 122 26 Reserved for WebSphere Data
Interchange

ZCCBRSV2 148 460 Reserved for WebSphere Data
Interchange

CCB

Appendix A. WebSphere Data Interchange control blocks 557

CCB field descriptions

ZCCBLL
A 2-byte binary field that contains the length of the CCB control block. A CCB is
608 bytes and that amount of storage must be allocated for this block.

ZCCBID
This field is not currently used.

ZCCBEYE
A label that is useful for identifying this control block when looking at a storage
dump. During the WebSphere Data Interchange initialization call, WebSphere Data
Interchange initializes this field with the text **ZCCB**. The calling program is not
affected by this field.

ZCCBRC
A signed integer that indicates the success or failure of your last request. The
severity of the error is identified in this field and the exact error is identified in the
ZCCBERC field. Valid values are:

0 Successful completion

–nnnn An error getting to the service you have requested

+nnnn
An error returned from the requested service

ZCCBERC
A signed integer that identifies the error that occurred.

ZCCBSID
WebSphere Data Interchange provides the system ID (a static value of EDIV00)
during the initialize service API request.

ZCCBUID
The user ID field activated by WebSphere Data Interchange during the initialize
service API request. For a TSO user, this is the TSO user ID. For an z/OS batch
job, this is the user ID provided in the //JOB card. For a CICS system, this is the
CICS signon user ID, the terminal ID, or the application ID of the CICS region.

ZCCBAID
Identifies the Application Default (APPDEFS) profile entry to use for this WebSphere
Data Interchange session.The value in this field is moved into the CCB when a
service API request is initialized and is a required parameter.

ZCCBCID
Used internally by WebSphere Data Interchange for error logging, but the
information it contains can be used in problem determination.

ZCCBXFID
Used internally by WebSphere Data Interchange for error logging, but the
information it contains can be used in problem determination.

ZCCBLPID
The language profile ID. During initialization, WebSphere Data Interchange verifies
that a Language (LANGPROF) profile entry exists that matches this field. If a
LANGPROF entry does not exist or this field is not specified, initialization fails.

ZCCBCPID
This field is not currently used.

CCB

558 WebSphere Data Interchange Programmer’s Reference

ZCCBRSV
Reserved for WebSphere Data Interchange. Do not alter after initialization.

ZCCBCCXP
The pointer to the CCB extension. Do not alter after initialization.

ZCCBCABP
The pointer to the common area block. Do not alter after initialization.

ZCCBDBID
The z/OS DB2 subsystem ID. Do not alter after initialization.

ZCCBDBPL
The z/OS DB2 plan/AIX DB2 alias. Do not alter after initialization.

ZCCBDBUI
The AIX DB2 user ID.

ZCCBDBPW
The AIX DB2 password.

ZCCBRSV1
Reserved for WebSphere Data Interchange. Do not alter after initialization.

ZCCBRSV2
Reserved for WebSphere Data Interchange. Do not alter after initialization.

CCB

Appendix A. WebSphere Data Interchange control blocks 559

Function control block (FCB)
The function control block (FCB) identifies the function requested from the service
identified in the SNB. Table 219 describes the layout of the FCB.

Table 219. FCB definition. Layout of the FCB and descriptions of fields

Name Offset Length Type Description

ZFCBLL 0 2 Binary FCB length

ZFCBFUNC 2 2 Binary Function code

FCB field descriptions

ZFCBLL
A 2-byte binary field that contains the length of the FCB. An FCB is 4 bytes.

ZFCBFUNC
The function requested for the service defined by the SNB control block. Valid
values are:

v Environmental services (ENVSERV)
1 Initialize WebSphere Data Interchange
2 Terminate WebSphere Data Interchange
5 Switch APPLID

v Translation services (TRANPROC)
131 Production translate-to-standard
111 Test translate-to-standard
212 Production deenvelope and translate-to-application
211 Test deenvelope and translate-to-application
213 Translate a specific transaction to application
1000 End translation

v Enveloping services (TRANPROC)
1 Return interchange header
2 Return group header
3 Return transaction header
215 Envelope transactions
214 Deenvelope transactions
990 Close and queue current envelope
991 Issue COMMIT request

v Data extraction services (TRANPROC)
216 Retrieve detailed data
217 Retrieve transaction image
218 Retrieve functional acknowledgment image
219 Retrieve transaction acknowledgment image

v Communications services (COMM)
211 Send transactions
221 Send files
232 Receive
233 Cancel
252 Process network acknowledgment
300 Return file name
110 Queue transaction data

v Update Status Services (TRANSSRV)
210 Update using envelope key (account number, user ID)
211 Update with transaction handle

FCB

560 WebSphere Data Interchange Programmer’s Reference

212 Update using alternate key (account number, user ID)
213 Update using envelope key (qualifier, receiver ID)
214 Update using alternate key (qualifier, receiver ID)
215 Update using envelope key (trading partner nickname)

v SYNCPOINT services (SYNCSERV)
1 Initialize SYNCPOINT services
2 Request a COMMIT
3 Request a ROLLBACK

FCB

Appendix A. WebSphere Data Interchange control blocks 561

Translator Control Block (TRCB)
The translator control block (TRCB) is the primary control block used to convey
information between an application and WebSphere Data Interchange when using
translation, enveloping, and data extraction services. For more information about
these services, see “Translation services” on page 390, “Enveloping services” on
page 442, and “Data extraction services” on page 474

Table 220 describes the layout of the TRCB.

Table 220. TRCB definition. Layout of the translator control block (TRCB) and descriptions
of fields

Name Offset Length Type Description

BLKLEN 0 2 Bin Block length

RSRVD1 2 2 Bin Reserved

BLKNME 4 8 Char Block name

REQID 12 16 Char Requestor ID

APPFILE 28 8 Char Application file name

ATFID 36 16 Char Data format ID

ATSID 52 16 Char Structure ID

EJECT 68 1 Char Processing flag

INTPID 69 35 Char Internal trading partner ID

APPCTLNUM 104 32 Char Application control value

TRNID 136 16 Char Standard transaction ID

TEST 152 1 Char Usage indicator

IHCTL 153 9 Char Interchange control number

GHCTL 162 9 Char Group control number

THCTL 171 9 Char Transaction control number

ENVTYPE 180 1 Char Envelope type

BLKTYPE 181 1 Char Data block type

DUPTRAN 182 1 Char Duplicate flag

ITPBREAK 183 1 Char New interchange on INTPID
change

REQSIZE 184 4 Bin Required size

XPANDED 188 1 Char Expanded flag

NEWENV 189 1 Char New interchange flag

NEWGRP 190 1 Char New group flag

NEWTRN 191 1 Char New transaction flag

QSIZE 192 4 Bin Interchange size

ESIZE 196 4 Bin Number of bytes processed of
this interchange

GRPNUM 200 4 Bin Number of groups processed so
far

TRNNUM 204 4 Bin Number of transactions in
processed the interchange

TRCB

562 WebSphere Data Interchange Programmer’s Reference

Table 220. TRCB definition. Layout of the translator control block (TRCB) and descriptions
of fields (continued)

Name Offset Length Type Description

SEGNUM 208 4 Bin Number of segments in
processed in the interchange

TRNGRP 212 4 Bin Number of transactions
processed in the group

SEGTRN 216 4 Bin Segment count for transaction

ERRNUM 220 4 Bin Error counter

QBT 224 8 Char Interchange size

IHXCTL 232 14 Char Interchange control number

ISYNTAXID 246 4 Char Interchange syntax ID

ISYNTAXVER 250 1 Char Interchange syntax version

ISIDQUAL 251 4 Char Interchange sender ID qualifier

ISID 255 35 Char Interchange sender ID

ISENDNAME 290 14 Char Interchange sender name or
application sender code

IREVROUT 304 14 Char Interchange reverse routing

IRIDQUAL 318 4 Char Interchange receiver ID qualifier

IRID 322 35 Char Interchange receiver ID

IRECVNAME 357 14 Char Receiver name

IROUTEADDR 371 14 Char Routing address

IDATE 385 6 Char Interchange date

ITIME 391 6 Char Interchange time

IVERREL 397 5 Char Interchange version/release

IGT 402 6 Char Interchange group total

ITT 408 6 Char Interchange transaction total

IST 414 10 Char Interchange segment total

IBT 424 8 Char Interchange byte total

ISPW 432 14 Char Interchange password

IAPREF 446 14 Char Application reference

ISTDID 460 4 Char Interchange standard ID

FASPEC 464 1 Char Indicates that FUNACKFLE is
being used.

IPRIOR 465 1 Char Delivery priority

ICOMMAGREE 466 35 Char Communication agree

GHXCTL 501 14 Char Group control number

GFGID 515 6 Char Group functional group ID

GSIDQUAL 521 4 Char Group sender qualifier

GSID 525 35 Char Group application sender ID

GRIDQUAL 560 4 Char Group receiver qualifier

GRID 564 35 Char Group application receiver ID

GDATE 599 6 Char Group date

TRCB

Appendix A. WebSphere Data Interchange control blocks 563

Table 220. TRCB definition. Layout of the translator control block (TRCB) and descriptions
of fields (continued)

Name Offset Length Type Description

GTIME 605 6 Char Group time

GVER 611 12 Char Group version

GREL 623 12 Char Group release

GTT 635 6 Char Group transaction total

GAPW 641 14 Char Group password

GRESPAGENCY 655 2 Char Group responsible agency

RSRVD3 657 12 Char Reserved

THXCTL 669 14 Char Transaction control number

TTC 683 6 Char Transaction ID

TVER 689 6 Char Transaction version

TREL 695 6 Char Transaction release

TST 701 10 Char Transaction segment total

LASTINENV 711 1 Char Last transaction in interchange

XACFIELD 712 35 Char Application control number

FABUILT 747 1 Char Functional acknowledgment built

QGTNUM 748 4 Bin Total number of groups in the
interchange

QTTNUM 752 4 Bin Total number of transactions in
the interchange

QSTNUM 756 4 Bin Total number of segments in the
interchange

QGT 760 6 Char Total number of groups in the
interchange

QTT 766 6 Char Total number of transactions in
the interchange

QST 772 10 Char Total number of segments in the
interchange

FASPM 782 8 Char Functional acknowledgment
standard profile member

ENVCHK 790 1 Char Envelope status check

TRNSTAT 791 1 Char RAWDATA transaction status

APTYPE 792 2 Char Application file type

TSKEY 794 10 Packed Packed transaction handle

TSKEYU 804 20 Char Unpacked transaction handle

MAPKEY 824 16 Char Map ID

BATCHID 840 8 Char Batch ID

ENVLDATE 848 8 Char Earliest envelope date

TRXLIFE 856 2 Bin Transaction life span

IMGLIFE 858 2 Bin Transaction image life span

HOLDFLAG 860 1 Char Hold flag

BNDLFLAG 861 1 Char Bundle flag

TRCB

564 WebSphere Data Interchange Programmer’s Reference

Table 220. TRCB definition. Layout of the translator control block (TRCB) and descriptions
of fields (continued)

Name Offset Length Type Description

RAWDATA 862 1 Char RAWDATA flag

ENVLDELAY 863 1 Char Delayed enveloping flag

TRXACCEPT 864 1 Char Transaction acceptable flag

TRABORT 865 1 Char Translator abort flag

FILEID 866 8 Char User-defined file ID

DSNAME 874 56 Char Physical data set name

QNETID 930 8 Char Network ID

QPTTOPT 938 1 Char Point-to-point network flag

QSRPGM 939 1 Char Send/Receive program flag

QDDNAME 940 8 Char ddname for transaction file

FUNACKFLE 948 8 Char ddname for functional
acknowledgment file

QTPNICK 956 16 Char Trading partner nickname

QRC 972 2 Bin Queuing return code

QERC 974 2 Bin Queuing extended return code

ERRCDES 976 20 Bin First 10 error codes

INMEMTRANS 996 2 Bin In-storage transactions

NOCOMMIT 998 1 Char Commit flag

SCOPE 999 1 Char Recovery scope

TPNICK 1000 16 Char Trading partner nickname

CONCATENATE 1016 1 Char Concatenation flag

ASSERTLVL 1017 1 Char Assertion level

RAWDATAOUT 1018 1 Char RAWDATA wanted for output

FIXEDTRX 1019 1 Char Fixed-to-fixed transaction flag

MRREQID 1020 16 Char Management reporting
requestor ID

ERRFILTER 1036 80 Char Initial error filter

FFILEID 1116 8 Char File ID for fixed translations

VARTRACE 1124 1 Char Variable trace wanted flag

EXPTRACE 1125 1 Char Expression trace wanted flag

SSEGVAL 1126 1 Char Service segment validation flag

TRXFACODE 1127 1 Char Functional acknowledgment code
generated for the transaction

IUSEREXIT 1128 8 Char User exit for envelopes

IUSERAREA 1136 4 Bin User area for IUSEREXIT

IUSERACCESS 1140 1 Char User exit access type

IUSERTYPE 1141 2 Char User exit program type

MAPCHAIN 1143 1 Char Mapchain active flag

FORCETEST 1144 1 Char Force test receive translation

TRCB

Appendix A. WebSphere Data Interchange control blocks 565

Table 220. TRCB definition. Layout of the translator control block (TRCB) and descriptions
of fields (continued)

Name Offset Length Type Description

ENVPRBRK 1145 1 Char Envelope profile name change at
ISA break

SUSBLKF 1146 1 Char CICS suspend block flag

CLRERRS 1147 1 Char Clear ERRCDES array flag

FARC 1148 4 Bin Functional acknowledgment
return code

FAERC 1152 4 Bin Functional acknowledgment
extended return code

SAPUPDT 1156 1 Char SAP updates requested

SAPTRX 1157 1 Char SAP transaction indicator

SAPCLIENT 1158 3 Char SAP client

SAPDOCNUM 1161 16 Char SAP document number

SAPSEQ 1177 6 Char SAP error record sequence
number

ROUTCODE 1183 3 Char Generic send usage routing code

FAEREQ 1186 1 Char Functional acknowledgment
envelope file required

BOUNDARY 1187 1 Char Incremental translation flag

SUSBLKP 1188 4 Bin CICS SUSPEND block pointer

CUSERDATA 1192 256 Char User data area

APPLTPID 1448 15 Char Application trading partner ID

EXTENDC 1464 1 Char Extend the C record flag

VAXFLAG 1465 1 Char Pageable translation flag

GDATE8 1466 8 Char Group envelope 8-byte data

RECOVBAD 1474 1 Char Recover from bad EDI standard
data

RSRVD4 1475 61 Char Reserved for WebSphere Data
Interchange

TRCB field descriptions

BLKLEN
A 2-byte binary field that contains the length of the TRCB control block. A TRCB is
1536 bytes.

RSRVD1
Reserved.

BLKNME
EDITRCB. The name of the TRCB.

REQID
The requestor ID for a member in the mailbox (requestor) profile. This field might
be required for the translating-to-file and deenveloping requests, because the
Receive file name field in the mailbox (requestor) profile contains the ddname for
the file to be processed.

TRCB

566 WebSphere Data Interchange Programmer’s Reference

If a value is specified for FILEID, this field is not required.

APPFILE
The name of the file where application records should be written. This field is
returned by the translator during operations that translate EDI standard data to an
application format. The value is taken from the data format definition unless a value
is supplied in the trading partner receive usage record.

In z/OS, this field contains a ddname for a file. In CICS, the storage mechanism
represented by this field is indicated in the Aptype field.

ATFID
The data format ID. This is a required input field for any operation that translates
application data to an EDI standard format, because it is part of the primary key
used to determine the translation usages/rules.

This field is an output field for operations that translate EDI standard data to an
application format and for the enveloping function.

ATSID
The name of the structure that describes the format of the application data. Unless
raw data is being processed, this is a required input field for functions that translate
application data to an EDI standard format.

This field is an output field for functions that translate EDI standard data to an
application format.

EJECT
Indicates when all data associated with a transaction has been provided, and when
an interchange has been written to the file associated with the network. Used by
almost all functions, as both an input and an output field. See the descriptions of
the different functions for the specific allowable values for this field.

INTPID
The internal trading partner ID associated with a transaction. This field might
contain a customer ID, vendor ID or other identifier known to the application.

This field is a required input field for functions that translate application data to an
EDI standard format because it is part of the key used to locate the translation
usage/rules.

This field is not required for input if raw data is being processed, but becomes the
output field. It is also the output field for those functions that translate EDI standard
data to an application format and for the enveloping function.

APPCTLNUM
A 32-byte version of XACFIELD.

TRNID
The ID of the EDI standard transaction or message that is being translated,
enveloped, and deenveloped. This is always a returned field.

TEST
Indicates whether the transaction requires a test usage/rule. This is a required input
field for functions that translate application data to an EDI standard format because
it is part of the key used for locating the translation usages/rules. Valid values are:

I Information transaction. An information usage/rule should be used if one is

TRCB

Appendix A. WebSphere Data Interchange control blocks 567

found. If an information usage/rule is not found, a production usage/rule is
used instead. Even when a production usage/rule is used, the transaction is
flagged as an information transaction.

P Production transaction. Only a production usage/rule should be used
(default).

T Test transaction. A test usage/rule should be used if one is found. If a test
usage/rule is not found, a production usage/rule is used instead. Even when
a production usage/rule is used, the transaction is flagged as a test
transaction.

U The translator should determine if the transaction is test, information, or
production based on the usage/rule found. If a test usage/rule is found, the
transaction is a test transaction, and a value of T is returned. If an
information usage/rule is found, the transaction is an information
transaction, and a value of I is returned. If only a production usage/rule is
found, the transaction is a production transaction, and a value of P is
returned.

This field is an output field when translating EDI standard data to an application
format, and for deenveloping or enveloping.

IHCTL
A 9-character version of IHXCTL.

GHCTL
A 9-character version of GHXCTL.

THCTL
A 9-character version of THXCTL.

ENVTYPE
The type of interchange enveloping used. This is a returned value for translating,
enveloping, and deenveloping functions. Valid values are:
E UNB/UNZ
I ICS/ICE
T STX/END
U BG/EG
X ISA/IEA

BLKTYPE
Indicates whether 2- or 4-byte length data blocks are being used for the TRIDB and
TRODB structures. The formats for TRIDB and TRODB are always the same. Valid
values are:
H 4-byte length blocks
(other)

2-byte length blocks

DUPTRAN
Indicates whether duplicate interchanges are considered errors. This is usually an
output field for those functions that translate data from EDI standard format to
application format or deenvelope functions. This is an input field for the translate file
and the deenvelope function. Valid values are:
Y or (other)

Part of a duplicate interchange; duplicates are not errors.
N Not part of a duplicate interchange; duplicates are errors.

TRCB

568 WebSphere Data Interchange Programmer’s Reference

ITPBREAK
Indicates whether a change in value of the internal trading partner (INTPID field)
should create a new interchange. Applies only to envelope processing. Valid values
are:
Y Starts a new interchange each time the INTPID value changes
(other)

Does not cause an interchange break, unless the change in internal trading
partner results in a new trading partner nickname

REQSIZE
The size of the structure being returned in the TRODB. Applies only when EDI
standard data is being translated to an application format and the TRODB is not
large enough to contain the entire structure. This is provided for informational
purposes only because all the data can be retrieved as partial structures.

XPANDED
Indicates whether a post-Release 1 API program is executing. Set this field to Y.

NEWENV
Indicates whether this transaction is the first transaction in an interchange. This is a
returned field for all except the translate-specific functions (function code 213). Valid
values are:
Y First transaction of an interchange
(other)

Not the first transaction of an interchange

NEWGRP
Indicates whether the current transaction is the first transaction of a group. This is a
returned field for all except the translate-specific functions (function code 213). Valid
values are:
Y First transaction of a group
(other)

Not the first transaction of a group

NEWTRN
Indicates whether a new transaction was started. This is a returned field for all
translating, enveloping, and deenveloping functions. Valid values are:
Y New transaction
(other)

Not a new transaction

QSIZE
When translation to a EDI standard or enveloping, the total number of bytes in the
interchange queued (EJECT value of Q). When received, the total number of bytes
in the interchange (NEWENV value of Y during translating to a EDI standard or
deenveloping). See QBT for a character representation of this field.

ESIZE
If an interchange is being processed, this field represents the amount of the
interchange processed so far. See IBT for a character representation of this field.

For send operations (translate-to-standard), this field represents the size of the
interchange.

For receive operations (translate-to-application), this field represents the number of
bytes from the interchange that have been processed.

TRCB

Appendix A. WebSphere Data Interchange control blocks 569

GRPNUM
If an interchange is being processed, this field represents the number of groups in
the interchange processed so far. See IGT for a character representation of this
field.

For send operations (translate-to-standard), this field represents the number of
groups in the interchange.

For receive operations (translate-to-application), this field represents the number of
groups from the interchange that have been processed.

TRNNUM
If an interchange is being processed, this field represents the number of
transactions in the interchange processed so far. See ITT for a character
representation of this field.

For send operations (translate-to-standard), this field represents the number of
transactions in the interchange.

For receive operations (translate-to-application), this field represents the number of
transactions from the interchange that have been processed.

SEGNUM
If an interchange is being processed, this field represents the number of segments
in the interchange processed so far. See IST for a character representation of this
field.

For send operations (translate-to-standard), this field represents the number of
segments in the interchange.

For receive operations (translate-to-application), this field represents the number of
segments from the interchange that have been processed.

TRNGRP
If an interchange is being processed, this field represents the number of
transactions in the group processed so far. See GGT for a character representation
of this field.

For send operations (translate-to-standard), this field represents the number of
transactions in the group.

For receive operations (translate-to-application), this field represents the number of
transactions from the group that have been processed.

SEGTRN
The total number of segments in the current transaction. See TST for a character
representation of this field.

ERRNUM
The total number of errors in the current transaction.

QBT
The character representation of QSIZE.

IHXCTL
If an interchange with a CN data type is being processed, this field contains the
interchange control number extracted from the interchange header.

TRCB

570 WebSphere Data Interchange Programmer’s Reference

ISYNTAXID
If an EDIFACT or UN/TDI interchange is being processed, this field contains the
interchange syntax identifier extracted from the interchange header field UNB01 or
STX01. For enveloping functions, this field is also an input field that identifies the
syntax to be used when building the interchange header segment.

ISYNTAXVER
If an EDIFACT or UN/TDI interchange is being processed, this field contains the
interchange syntax version extracted from the interchange header field UNB01 or
STX01. For enveloping functions, this field is also an input field that identifies the
syntax identifier to be used when building the interchange header segment.

ISIDQUAL
If an EDIFACT, ICS, or ISA interchange is being processed, this field contains the
interchange sender ID qualifier extracted from the interchange header field UNB04,
ICS04, or ISA05.

For enveloping functions, this field is also an input field that identifies the sender ID
qualifier to be used when building the interchange header segment.

ISID
If an interchange with an IS data type is being processed, this field contains the
interchange sender ID extracted from the interchange header.

For enveloping functions, this field is also an input field that identifies the
interchange sender ID to be used when building the interchange header segment.
If this value differs from the current interchange sender ID value, a new
interchange is created.

ISENDNAME
If a UN/TDI interchange is being processed, this field contains the interchange
sender name extracted from the interchange header field STX04. For enveloping
functions, this field is also an input field that identifies the sender name to be used
when building the interchange header segment.

If a UCS interchange is being processed, this field contains the application sender
code extracted from the interchange header field UCS03 if this field does not
contain an IS data type. For enveloping functions, this field is also an input field
that identifies the application sender code to be used when building the interchange
header segment if this field does not contain an IS data type.

IREVROUT
If an EDIFACT interchange is being processed, this field contains the interchange
reverse routing extracted from the interchange header field UNB05.

For enveloping functions, this field is also an input field that identifies the reverse
routing to be used when building the interchange header segment.

IRIDQUAL
If an EDIFACT, ICS, or ISA interchange is being processed, this field contains the
interchange receiver ID qualifier extracted from the interchange header field
UNB04, ICS04, or ISA05.

For enveloping functions, this field is also an input field that identifies the
receiver ID qualifier to be used when building the interchange header segment.

TRCB

Appendix A. WebSphere Data Interchange control blocks 571

IRID
If an interchange with an IR data type is being processed, this field contains the
interchange receiver ID extracted from the interchange header.

For enveloping functions, this field is also an input field that identifies the
interchange receiver ID to be used when building the interchange header segment.
If this value differs from the current interchange receiver ID value, a new
interchange is created.

IRECVNAME
If a UN/TDI interchange is being processed, this field contains the interchange
receiver name extracted from the interchange header field STX06. For UN/TDI
enveloping functions, this field is also an input field that identifies the receiver name
to be used when building the interchange header segment.

If a UCS interchange is being processed, this field contains the application receiver
code extracted from the interchange header field UCS04 if this field does not
contain an IR data type. For UCS enveloping functions, this field is also an input
field that identifies the application receiver code to be used when building the
interchange header segment if this field does not contain an IS data type.

IROUTEADDR
If an EDIFACT interchange is being processed, this field contains the interchange
routing address extracted from the interchange header field UNB08.

For enveloping functions, this field is also an input field that identifies the routing
address to be used when building the interchange header segment.

IDATE
If an interchange with a DT data type is being processed, this field contains the
interchange date extracted from an interchange header.

ITIME
If an interchange with a TM data type is being processed, this field contains the
interchange time extracted from an interchange header.

IVERREL
If an interchange with a VR or LV data type is being processed, this field contains
the interchange version or release extracted from the interchange header.

IGT
The character representation of GRPNUM.

ITT
The character representation of TRNNUM.

IST
The character representation of SEGNUM.

IBT
The character representation of ESIZE.

ISPW
If an interchange with a PW data type is being processed, this field contains the
interchange password extracted from the interchange header.

TRCB

572 WebSphere Data Interchange Programmer’s Reference

For enveloping functions, this field is also an input field that identifies the
interchange password to be used when building the interchange header segment. If
this value differs from the current interchange password value, a new interchange is
created.

IAPREF
If an interchange with an AP data type is being processed, this field contains the
interchange application reference extracted from the interchange header.

For enveloping functions, this field is also an input field that identifies the
interchange application reference to be used when building the interchange header
segment. If this value differs from the current interchange application reference
value, a new interchange is created.

ISTDID
If an X12 or ICS interchange is being processed, this field contains the interchange
standard ID extracted from the interchange header field ISA11 or ICS02.

For enveloping functions, this field is also an input field that identifies the EDI
standard ID to be used when building the interchange header segment.

FASPEC
Indicates that FUNACKFLE is being used.

IPRIOR
If an EDIFACT or UN/TDI interchange is being processed, this field contains the
interchange processing priority extracted from the interchange header field UNB15
or STX12.

For enveloping functions, this field is also an input field that identifies the
processing priority to be used when building the interchange header segment.

ICOMMAGREE
If an EDIFACT interchange is being processed, this field contains the interchange
communication agreement extracted from the interchange header field UNB17.

For enveloping functions, this field is also an input field that identifies the
processing priority to be used when building the interchange header segment.

GHXCTL
If a group with a CN data type is being processed, this field contains the group
control number extracted from the group header.

GFGID
If a group is being processed, this field contains the functional group ID value
associated with the group.

GSIDQUAL
If an EDIFACT group is being processed, this field contains the group sender ID
qualifier extracted from the group header field UNG03.

For enveloping functions, this field is also an input field that identifies the sender ID
qualifier to be used when building the group header segment.

GSID
If a group with an AS data type is being processed, this field contains the group
application sender ID extracted from the group header.

TRCB

Appendix A. WebSphere Data Interchange control blocks 573

For enveloping functions, this field is also an input field that identifies the group
application sender ID to be used when building the group header segment. If this
value differs from the current group application sender ID value, a new group is
created.

GRIDQUAL
If an EDIFACT group is being processed, this field contains the group receiver ID
qualifier extracted from the group header field UNG05.

For enveloping functions, this field is also an input field that identifies the
receiver ID qualifier to be used when building the group header segment.

GRID
If a group with an AR data type is being processed, this field contains the group
application receiver ID extracted from the group header.

For enveloping functions, this field is also an input field that identifies the group
application receiver ID that should be used when building the group header
segment. If this value differs from the current group application receiver ID value, a
new group is created.

GDATE
If a group with a DT data type is being processed, this field contains the group
date extracted from the group header.

GTIME
If a group with a TM data type is being processed, this field contains the group
time extracted from the group header.

GVER
If a group with a VR data type is being processed, this field contains the group
version extracted from the group header.

For enveloping functions, this field is also an input field that identifies the group
version that should be used when building the group header segment. If this value
differs from the current version value, a new group is created.

GREL
If a group with an LV data type is being processed, this field contains the group
release extracted from the group header.

For enveloping functions, this field is also an input field that identifies the group
release that should be used when building the group header segment. If this value
differs from the current group release value, a new group is created.

GTT
The character representation of TRNGRP.

GAPW
If a group with a PW data type is being processed, this field contains the group
application password extracted from the group header.

For enveloping functions, this field is also an input field that identifies the group
application password that should be used when building the group header segment.
If this value differs from the current group application password value, a new group
is created.

TRCB

574 WebSphere Data Interchange Programmer’s Reference

GRESPAGENCY
If an EDIFACT group is being processed, this field contains the group controlling
agency extracted from the group header field UNG09. For enveloping functions, this
field is also an input field that identifies the controlling agency to be used when
building the group header segment.

If an ICS, UCS, or X12 group is being processed, this field contains the group
responsible agency extracted from the group header field GS07. For enveloping
functions, this field is also an input field that identifies the responsible agency name
to be used when building the group header segment.

RSRVD3
Reserved.

THXCTL
If a transaction with a CN data type is being processed, this field contains the
transaction control number extracted from the transaction header.

TTC
If a transaction with a TC data type is being processed, this field contains the
transaction or message ID extracted from the transaction header.

TVER
If a transaction with a VR data type is being processed, this field contains the
transaction version extracted from the transaction header.

For enveloping functions, this field is also an input field that identifies the
transaction version that should be used when building the transaction header
segment.

TREL
If a transaction with an LV data type is being processed, this field contains the
transaction release extracted from the transaction header.

For enveloping functions, this field is also an input field that identifies the
transaction release that should be used when building the transaction header
segment.

TST
The character representation of SEGNUM.

LASTINENV
Indicates whether this transaction is the last transaction of the interchange. Valid
values are:
Y Last transaction of the interchange
(other)

Not the last transaction of the interchange

XACFIELD
The application control number that uniquely identifies the transaction to the
application. This is a returned value for all translation and enveloping functions.
Which field contains the application control number is indicated in the data format
with an AC data type. This field can be overridden by providing up to eight fields
that can be concatenated to form an application control number in the map ID.

TRCB

Appendix A. WebSphere Data Interchange control blocks 575

FABUILT
Indicates the envelope type, if any, for the functional acknowledgment. You can
control when functional acknowledgments are deenveloped. For more information,
see the ENVLDELAY field on 579. Valid values are:
E UNB/UNZ
G GS/GE
I ICS/ICE
S Stored, but not enveloped
T STX/END
U BG/EG
X ISA/IEA

QGTNUM
When queued, the total number of groups in the interchange (EJECT value of Q
during translating to an EDI standard or during enveloping). When received, the
total number of groups in the interchange (NEWENV value of Y during translating to a
EDI standard or during deenveloping). See QGT for a character representation of this
field.

QTTNUM
When queued, the total number of transactions in the interchange (EJECT value
of Q during translating to an EDI standard or during enveloping). When received,
the total number of transactions in the interchange (NEWENV value of Y during
translating to an EDI standard or during deenveloping). See QTT for a character
representation of this field.

QSTNUM
When queued, the total number of segments in the interchange (EJECT value of Q
during translating to an EDI standard or during enveloping). When received, the
total number of segments in the interchange (NEWENV value of Y during translating
to a EDI standard or during deenveloping). See QST for a character representation
of this field.

QGT
The character representation of QGTNUM.

QTT
The character representation of QTTNUM.

QST
The character representation of QSTNUM.

FASPM
Used only by the translator. The standard profile member used in building the
service segments for the functional acknowledgment.

ENVCHK
Indicates that the translator should verify a transaction’s status during an envelope
function for the intent of the envelope operation. Valid values are:
1 Envelopes transactions, and rejects this transaction if it has been enveloped

before.
2 Reenvelopes transactions, and rejects this transaction if it has not been

enveloped before.
(other)

Does not check the status of the transaction.

This field becomes important if multiple jobs can be enveloped concurrently and you
want to ensure that a transaction is not enveloped and sent twice.

TRCB

576 WebSphere Data Interchange Programmer’s Reference

TRNSTAT
Indicates the status of the transaction. Your application can use this field in
conjunction with the RAWDATA field to determine the status of a raw data transaction
or to determine the next action expected from the application. Valid values are:

I The data format has defined a structure that starts a transaction but the
structure has not been received. Data is ignored until the starting
transaction structure is recognized.

S The starting transaction structure has been received. If a starting structure
is not defined, this value is set when the first structure is received.

C A transaction is in progress and the structure passed was neither the
starting nor the ending structure.

R A transaction is in progress and a structure that defines the start of a
transaction was received. The data is ignored. The application must first call
the translator with an EJECT value of Y to process the current transaction,
and then call the translator again with the same data to start a new
transaction

Y A transaction is in progress and a structure recognized as the ending
structure is received. The transaction is ready to be processed and a call to
the translator is required with an EJECT value of Y.

APTYPE
The type of application file identified in the APPFILE field. Applies only to CICS.
Valid values are:
PG Program
TD TD queue identified by the first 4 characters of APPFILE
TM TS queue (in main storage)
TS TS queue (in auxiliary storage) identified by APPFILE
TX Transaction code identified by the first 4 characters of APPFILE

TSKEY
The Transaction Store handle value for a transaction in packed format. This is an
input field for the translate-specific and envelope functions.

This field indicates the transaction to be translated or enveloped. For all other
functions, this field is an output field that indicates the transaction key value just
processed.

If handling the key in a packed format is a problem for your program, TSKEYU
contains the key value in an unpacked format. If TSKEY contains all blanks or
binary zeros, the value in the TSKEYU field is used.

TSKEYU
The Transaction Store handle value for a transaction in unpacked format. If the
TSKEY field contains blanks or binary zeros, this field becomes the input field for the
translate-specific and envelope functions.

This field indicates the transaction to be translated or enveloped. This field is a
returned value for all translation, enveloping, and deenveloping functions. If this field
is used as an input field, its packed value is returned in the TSKEY field.

MAPKEY
A returned value that identifies the map used to translate the data.

TRCB

Appendix A. WebSphere Data Interchange control blocks 577

BATCHID
An input field used for all translation functions. This field is an indexed field in the
Transaction Store database and provides an efficient method for retrieving
transactions from the store. It can also be used to identify all the transactions that
were processed during a particular execution of a job. If you do not specify a value,
the system date and time are used to create a default value of DDHHMMSS.

ENVLDATE
The earliest date that a transaction is eligible to be enveloped and sent. If you do
not specify a date, the transaction is eligible immediately, unless other conditions
indicate that it is not eligible (such as a transaction in held status). This is an input
field for translating application data to an EDI standard format only.

TRXLIFE
The number of days the transaction should remain in the Transaction Store before it
is eligible to be purged. If this field contains zero, a default value of 30 days is
used. The default value is returned in this field. This is an input field for all
translating and deenveloping functions.

IMGLIFE
The number of days the transaction image should remain in the Transaction Store
before it is eligible to be purged. If this field contains zero, a default value of
30 days is used. The default value is returned in the this field. This is an input field
for all translating and deenveloping functions.

A transaction's life span (TRXLIFE) and the transaction’s image life span (this field)
are always the same. However, you should still set a value for this field to ensure
correct processing.

HOLDFLAG
Indicates whether a transaction should be held. This is an input field for functions
that add transactions to the Transaction Store. Valid values are:
Y Holds the transaction
(other)

Does not hold the transaction

BNDLFLAG
Specifies the bundle status for transaction. This is an input field for translating
application data to an EDI standard format. If the current trading partner is not using
functional groups (the Functional group field in the trading partner profile
contains N), changes in data that would generally cause a new group to be created
are ignored, and the bundles are not terminated. Valid values are:
Y The start of a bundle. This transaction becomes the controlling transaction

for the bundle. All transactions that follow become part of the bundle until:
v Another transaction ends the current bundle or starts a new bundle.
v The input data forces a new group or envelope.
v The translation process ends.

N The last transaction in the bundle.
(blank)

Continue as before.

RAWDATA
Indicates whether raw data processing is being used.

For translating application data to an EDI standard format, valid values are:
Y Uses the RAWDATA interface.

TRCB

578 WebSphere Data Interchange Programmer’s Reference

(other)
Uses the C and D record type interface. Application knows the format of the
data and is communicating the type of data identified in the ATSID field.

Y Requests raw data processing. If raw data specifications were provided in
the data format ID, the translator automatically moves in the record ID
values, and the internal trading partner ID is moved to the specified field.
The RAWDATA field is returned with a value of Y.

If raw data specifications have not been supplied in the data format, the
RAWDATA field is set to N and raw data processing does not occur. The data
format ID is returned in the ATFID field.

(other)
Does not request raw data processing.

For translating EDI standard data to an application format, valid values are:

Note: If RAWDATA processing has been requested and was possible, WebSphere
Data Interchange writes the data to the application file in raw data format.
However, if RAWDATA processing was not requested or was not possible,
C and D records are written to the application file. Your application program
can write the records in any desired format, regardless of the setting of the
RAWDATA field.

ENVLDELAY
Indicates whether enveloping should be delayed for transactions being translated. In
any case, the transaction (or functional acknowledgment) and its image are saved
in the Transaction Store. The value set for this field on the first call of a session is
used for the entire session.

For translating EDI standard data to an application format, valid values are:
Y Does not envelope the transaction at the same time it is translated.
(other)

Envelopes the transaction at the same time it is translated

For the deenveloping and translating a file, valid values are:
Y Does not envelope functional acknowledgments at the same time it is

translated.
(other)

Envelopes the functional acknowledgments at the same time it is translated.

For related information about functional acknowledgments, see the FUNACKFLE field
description on 580.

TRXACCEPT
Indicates whether the transaction just processed had an acceptable error level.
Valid values are:
Y The transaction translated with an acceptable error level (less than or equal

to the error level specified in the trading partner usage/rule).
N The transaction had an unacceptable error level.

TRABORT
Indicates whether an error found while processing the last request was so severe
that the translator does not continue. Valid values are:
Y The error was so severe that translation was halted.
(blank)

No errors occurred.

TRCB

Appendix A. WebSphere Data Interchange control blocks 579

FILEID
The ddname (TSQ name in CICS) to which an interchange should be written during
a TRANSLATE-TO-STANDARD (without delayed enveloping) or ENVELOPE
function. The value in this field overrides the default file name in the Trans data
queue field from the network profile.

This is also the ddname from which transactions should be read during a translate
file or deenvelope function. The value in this field overrides the default file name in
the Receive file name field from the mailbox (requestor) profile.

DSNAME
The name of the data set to which transactions were written (EJECT is Q), or from
which transaction data is being read (NEWENV is Y). In CICS, this field has the same
value as the QDDNAME field.

QNETID
The network ID associated with the interchange that was written (EJECT is Q).

QPTTOPT
Indicates whether the network associated with the interchange that was written
(EJECT is Q) is a point-to-point network. Valid values are:
Y Point-to-point network
N Not a point-to-point network

QSRPGM
Indicates whether the network associated with the interchange that was written
(EJECT is Q) has a send/receive program defined. Valid values are:
Y A send/receive program is defined
N No send/receive program is defined

QDDNAME
The ddname of the file to which the interchange was written (EJECT is Q).

FUNACKFLE
The ddname (TSQ name in CICS) to which a functional acknowledgment
interchange should be written if enveloping is not being delayed (ENVLDELAY is N).
Applies only during deenveloping or translate-file functions. This field overrides the
default file name in the Trans data queue field from the network profile.

Note: FASPEC must also be set to Y.

QTPNICK
The trading partner nickname associated with an interchange just written (EJECT
is Q), or the trading partner nickname associated with a transaction just received.

QRC
The error return code on the attempt to write an interchange. Applies only when
EJECT has a value of E.

QERC
The extended error return code on the attempt to write an interchange. Applies only
when EJECT has a value of E.

ERRCDES
An array of ten binary values of 2 bytes each indicating the errors found while
processing this transaction. You can use the CLRERRS field in this control block to
reset the array. For more information about error codes, “Translator Error Codes” on
page 587.

TRCB

580 WebSphere Data Interchange Programmer’s Reference

INMEMTRANS
A 2-byte binary value that indicates the number of transactions that should be
maintained in storage before database updates are attempted. Applies only when
using interchange level recovery. For related information about interchange level
recovery, see the description of the SCOPE field on 581. This value affects the
degree of concurrency you can achieve if you execute multiple processes at the
same time.

Keeping transactions in storage can delay the application of a database lock and
reduce the amount of time that the lock is held. The amount of storage used by
each transaction depends on the function being performed, as follows:

ENVELOPE
1508 bytes per transaction. If encryption is taking place, you must add the
size of an average transaction image.

TRANSLATE AND ENVELOPE
1820 bytes per transaction. You can subtract 240 from this value, if
overrides from the C record are not being used. If encryption is taking
place, you must add the size of an average transaction image.

DEENVELOPE, DEENVELOPE AND TRANSLATE
1508 bytes per transaction.

If interchange level recovery is being used and you do not specify a value for this
field, the default value of 100 is used.

NOCOMMIT
Indicates whether COMMIT requests should be delayed until the application
databases have been updated. Once the databases have been updated, an API
request to commit should be issued. Valid values are:
Y Does not issue a COMMIT. Overrides the value in the SCOPE field.
N Issues COMMITs as specified in the SCOPE field.

SCOPE
Indicates the recovery scope that should be in place for this session. Valid
values are:
T Transaction recovery scope. The translator issues a COMMIT request at the

end of every transaction during translate-to-standard or enveloping
functions and at the beginning of every transaction during
translate-to-application or deenveloping functions.

E Interchange recovery scope. The translator issues a COMMIT request only
after an interchange has been written during translate-to-standard or
enveloping functions and on the next request after the last transaction of an
interchange (LASTINENV field) during translate-to-application or deenveloping
functions.

An interchange recovery scope is not recommended for interchanges that contain a
large number of transactions because the number of locks that can be obtained by
a process is limited in DB2. If this limit is exceeded, DB2 automatically issues a
ROLLBACK.

When setting the value in this field, you must consider the value you set in
INMEMTRANS. If the number of transactions in an interchange exceeds the value in
INMEMTRANS, other concurrent processes are blocked from the time the value is
exceeded until the interchange has been completely processed.

TRCB

Appendix A. WebSphere Data Interchange control blocks 581

TPNICK
The trading partner nickname associated with the current transaction.

CONCATENATE
Indicates whether data extraction records should be concatenated in the output data
block. Applies only to data extraction requests. Valid values are:
Y Concatenates data extraction records.
N Does not concatenate data extraction records.

ASSERTLVL
During mapping, the &ASSERTn special literal can be used to establish assertions
about the transaction. For example, you can specify that the total amount of a
transaction does not exceed one million dollars. The n in &ASSERTn is the
assertion level that should be active for this translation. Only &ASSERTn special
literals with an n value greater than or equal to the value in this field are executed.
The default assertion level is 0, indicating that all assertions apply.

RAWDATAOUT
Indicates whether raw data format should be used for output data resulting from a
fixed-to-fixed translation. Valid values are:
Y Uses raw data format for output from fixed-to-fixed translation.
N Does not use raw data format for output from fixed-to-fixed translation.

FIXEDTRX
A returned value that indicates whether the current transaction used fixed-to-fixed
translation.

MRREQID
During a translate file or deenvelope function, you can provide the name of a
requestor ID in the MRREQID field. If this value is specified, the management
reporting component of WebSphere Data Interchange is notified of the number of
bytes in the interchanges processed in the session. Specify this field only if the
interchanges being processed have not already been counted. By default, the data
is counted when it was received using WebSphere Data Interchange
communications functions and entering a value in this field is not necessary.

ERRFILTER
The initial list of errors that should be filtered during this translation session so that
error messages are not created for them. The list of errors provided here is active
at the start of each transaction and provides the initial values for the DIERRFILTER
named variable. Separate the entries with a blank or comma. You can specify a
range of codes by using a dash (-) between the low and high values of the range.
For example, to filter all warning error codes (0 through 99) plus error codes 103
and 105, specify 0-99,103,105 in this field. For a list of error codes, see “Translator
Error Codes” on page 587.

The following errors cannot be filtered and attempts to do so will be ignored:

v 106-110, 117-118

v 204, 207-210

v 301, 303, 305, 308-334

v 401, 403, 405-411

v 501, 505-509

v 601, 602, 604

v 900-999

TRCB

582 WebSphere Data Interchange Programmer’s Reference

If the following errors are filtered, the error is ignored and a transaction, group or
interchange is processed in spite of the inconsistency:
302, 304

Transaction header/trailer inconsistent
402, 404

Group header/trailer inconsistent
502, 503

Interchange header/trailer inconsistent

When the error occurs before or after the usages/rules are processed, error codes
3-6 (messages TR0403-TR0406) cannot be filtered using the DIERRFILTER field in
the usage/rule. However, you can filter these errors using the DIERRFILTER keyword
on the PERFORM statement.

FFILEID
The ddname (TSQ name in CICS) to which the result of a fixed-to-fixed translation
should be written during a translate-to-standard (without delayed enveloping) or
envelope functions. This field overrides the default file name that is the
concatenation of the Application file name field from the target data format and
the File suffix field from the trading partner profile.

VARTRACE
Indicates whether a variable level translator trace is wanted (for WebSphere Data
Interchange use only).

EXPTRACE
Indicates whether an expression level translator trace is wanted (for WebSphere
Data Interchange use only).

SSEGVAL
Indicates the level of service segment validation that should take place. The service
segments are the segments used when a transaction is enveloped (ISA, GS, ST,
UNB, UNH, UNT, and so on). If you do not specify this field, no validation is
performed. You can use the SERVICESEGVAL keyword on the PERFORM command to
set this value. Valid values are:
1 Validates service segments for syntax only. This includes checking for

mandatory data that is missing, as well as data elements that are too large
or too small.

2 In addition to checking syntax, validates the values in the service segment
data elements according to their types (only dates and times are validated),
and if a validation table has been specified, checks the value of the data
element against the validation table.

TRXFACODE
The type of functional acknowledgment that was generated for this transaction.
Valid values are:
A Accepted
R Rejected
E Accepted with errors

IUSEREXIT
During send processing, the name of a user exit that is given to each interchange
as it is created by WebSphere Data Interchange. During receive processing, the
name of a user exit that will provide the interchange to be processed by
WebSphere Data Interchange.

IUSERAREA
The 4-bytes of information that is returned to the program identified by IUSEREXIT.

TRCB

Appendix A. WebSphere Data Interchange control blocks 583

IUSERACCESS
Indicates how the interchange should be presented to the IUSEREXIT program. Valid
values are:
M Delivers the interchange to the exit in virtual storage. Applies only when

IUSERTYPE contains UE (user exit).
F Delivers the interchange to the exit in a file. The interchange is first written

to the TD queue file, and then the IUSEREXIT program is invoked.

IUSERTYPE
The type of program specified in IUSEREXIT. Valid values are:
PG A program that should be linked to (EXEC CICS LINK in CICS).
UE A WebSphere Data Interchange user exit program defined in the User Exits

(ADAMCTL) profile.

MAPCHAIN
Indicates whether a transaction will be translated multiple times using different
translation usage/rules. Valid values are:
Y Translates the current transaction again rather than translating the next

transaction.
(other)

Translates the next transaction.

FORCETEST
Indicates whether the deenvelope and/or translate-to-application process is forced
to select only a test usage/rule regardless of the value of the test indicator in the
envelope. Valid values are:
Y Forces the process to test mode and select only a test usage/rule (if

defined). If a test usage/rule is not found, an error is generated and the
transaction is rejected.

If this value is used on the deenvelope process, it must also be used on the
TRANSLATE-TO-APPLICATION or RETRANSLATE-TO-APPLICATION
commands to select those transactions stored by the deenvelope process.

N Uses the test indicator from the envelope to determine the usage/rule to
select (default). An envelope without a test indicator is always considered a
production envelope.

ENVPRBRK
Specifies whether a change in the EDI standard envelope member name should
create a new interchange envelope or a new group envelope. Valid values are:
Y Creates a new interchange envelope when the EDI standard envelope

profile member name changes.
(other)

Creates a new group envelope when the EDI standard envelope profile
member name changes (default).

SUSBLKF
Indicates whether a suspend block has been allocated (CICS API only). If the API
program supplies the suspend block (32 bytes, initialized with binary zeroes), the
CICS SUSPENDs will be in effect over multiple translator calls. By having
WebSphere Data Interchange issue periodic SUSPENDs, AICA abends can be
eliminated. Valid values are:
Y A suspend block has been allocated and its address is in SUSBLKP.
(other)

No suspend block has been allocated.

TRCB

584 WebSphere Data Interchange Programmer’s Reference

CLRERRS
Indicates whether the ERRCDES array should be reset before processing continues.
Valid values are:
Y Resets the ERRCDES array before processing.
(other)

Does not reset the ERRCDES array before processing.

FARC

variable DICUSERDATA. This field can be modified by user exits and is copied to
the C record before the C record is output by WebSphere Data Interchange. The
default is all blanks.

APPLTPID
The ID of an application trading partner (or internal trading partner within your
business organization such as a division or department). The application trading
partner ID can be used when no specific EDI trading partner is defined, or in
combination with an EDI trading partner. Interchange control numbers are
generated using a combination of the application and EDI trading partner IDs. This
trading partner ID should be used when multiple application trading partners do
business with the same EDI trading partner.

EXTENDC
Indicates whether extended C record format should be used. Valid values are:
Y Uses extended C record format.
(blank)

Does not use extended C record format (default).

VAXFLAG
Indicates whether pageable translation should be enabled. Valid values are:
X Enables pageable translation.
(blank)

Does not enable pageable translation.

For more information, see the PAGE keyword description on 147.

GDATE8
The date of the group envelope in 8-byte date format.

RECOVBAD
Indicates whether the translator should try to recover from bad EDI standard data.
The translator checks for EDI standard interchange headers when a segment
terminator is not found on a particular standard segment. The translator then
attempts to reset the delimiters and check the current segment/record for the
segment terminator. Valid values are:
Y Tries to recover from bad EDI standard data (default).
N Does not try to recover from bad EDI standard data.

RSRVD4
Reserved for WebSphere Data Interchange.

TRCB

586 WebSphere Data Interchange Programmer’s Reference

Translator Error Codes
The following sections identify the error codes that are generated by the translator.

Translator warnings
Table 221. Translator warnings

Code Msg Code Msg Code Msg Code Msg

1 TR0401 2 TR0841 3 TR0403 4 TR0404

5 TR0405 6 TR0406 7 TR0407 8 TR0408

9 TR0409

Field-level translator errors
Table 222. Field-level translator errors

Code Msg Code Msg Code Msg Code Msg

101 TR0001 102 TR0002 103 TR0003 104 TR0004

105 TR0005 106 TR0006 107 TR0007 108 TR0008

109 TR0009 110 TR0014 111 TR0010 112 TR0011

113 TR0012 114 TR0013 115 TR0015 116 TR0016

117 TR0017 118 TR0018 119 TR0023 120 TR0024

199 TR0026

Segment-level translator errors
Table 223. Segment-level translator errors

Code Msg Code Msg Code Msg Code Msg

201 TR0050 202 () TR0051 203 TR0052 204 TR0053

205 TR0054 206 () TR0055 207 TR0019 208 TR0020

209 TR0021 210 () TR0022 211 TR0056 212 TR0058

213 TR0059 214 () TR0060 215 TR0057

Transaction-level translator errors
Table 224. Transaction-level translator errors

Code Msg Code Msg Code Msg Code Msg

302 TR0101 304 TR0103 305 TR0104 306 TR0821

307 TR0818 308 TR0820 309 TR0822 310 TR0825

311 TR0826 312 TR0830 313 TR0834 314 SA0042

315 TR0105 316 TR0106 317 TR0107 318 TR0108

319 TR0109 320 TR0110 321 TR0111 322 TR0112

323 TR0850 324 TR0113 325 TR0114 326 TR0025

327 TR0115 328 TR0116 329 TR0848 330 TR0117

331 TR0118 332 TR0119 333 TR0120 334 TR0121

335 TR1257 336 TR1258 337 TR1259 338 TR1260

339 TR1261 340 TR1262 341 TR0122

TRCB

Appendix A. WebSphere Data Interchange control blocks 587

Group-level translator errors
Table 225. Group-level translator errors

Code Msg Code Msg Code Msg Code Msg

301 TR0100 303 TR0102 402 TR0151 404 TR0153

405 TR0154 406 TR0155 407 TR0156 408 TR0157

409 TR0107 410 TR0108 411 TR0158 412 TR1257

413 TR1258 414 TR1259 415 TR1260 416 TR1261

417 TR1262

Interchange-level translator errors
Table 226. Interchange-level translator errors

Code Msg Code Msg Code Msg Code Msg

401 TR0150 403 TR0152 501 TR0201 502 TR0203

503 TR0205 504 TR0206 505 TR0824 901 TR0810

902 TR0811 903 TR0812 904 TR0815 905 TR0816

906 TR0817 907 TR0843 908 TR0827 909 TR0828

910 TR0829 911 TR0832 912 TR0836 913 TR0838

914 TR0839 915 TR0840 916 TR1201 917 TR1202

918 TR1203 919 TR1205 920 TR1206 921 SA0042

922 TR0846 923 TR0847 924 TR0848 925 TR0849

926 TR0851 927 TR1207 928 TR1208 929 TR1209

930 TR1252 931 TR1253 932 TR1254 933 TR1255

934 TR1256 935 TR1257 936 TR1258 937 TR1259

938 TR1260 939 TR1261 940 TR1262 941 TR1263

TRCB

588 WebSphere Data Interchange Programmer’s Reference

Translator Input Data Block (TRIDB)
The translator input data block (TRIDB) is required on all service requests for
translation, enveloping, and data extraction. For more information about these
services, see “Translation services” on page 390, “Enveloping services” on
page 442, and “Data extraction services” on page 474

Table 227 describes how the TRIDB is used for all functions and the initialization
requirements for each.

Table 227. TRIDB functions and initialization requirements

Function
code:

Initialization requirements:

1 A BLKLEN of 16 is sufficient. For more information, see “Retrieve interchange
header API” on page 472

2 A BLKLEN of 16 is sufficient. For more information, see “Retrieve group header
API” on page 472

3 A BLKLEN of 16 is sufficient. For more information, see “Retrieve transaction
header API” on page 473

111 113 The DATA field contains the application data. The DATALEN field identifies the
length of the data in the DATA field. The block has no minimum length and it
can be as large as necessary to hold the application data. For more
information, see “Translate-to-standard API” on page 393

211 212 TRIDB is used as a work buffer to hold a segment from the transaction. The
minimum BLKLEN is 32000 but should be large enough to hold the largest
segment, excluding the binary segment. For more information, see
“Translate-to-application API” on page 418

213 TRIDB is used as a work buffer to hold a segment from the transaction. The
minimum BLKLEN is 32000 but should be large enough to hold the largest
segment, excluding the binary segment. For more information, see “Translate
specific API” on page 421

214 TRIDB is used as a work buffer to hold a segment from the transaction. The
minimum BLKLEN is 32000 but should be large enough to hold the largest
segment, excluding the binary segment. For more information, see
“Deenvelope API” on page 459

215 A BLKLEN of 16 is sufficient. For more information, see “Envelope API” on
page 444

216 A BLKLEN of 16 is sufficient. For more information, see “Retrieve detailed data
API” on page 475

217 A BLKLEN of 16 is sufficient. For more information, see “Retrieve transaction
image API” on page 477

218 A BLKLEN of 16 is sufficient. For more information, see “Retrieve transaction
acknowledgment image API” on page 477

219 A BLKLEN of 16 is sufficient. For more information, see “Retrieve functional
acknowledgment image API” on page 478

990 A BLKLEN of 16 is sufficient. For more information, see “Close and queue
interchange API” on page 456

991 A BLKLEN of 16 is sufficient. For more information, see “Issue commit API” on
page 471

1000 A BLKLEN of 16 is sufficient. For more information, see “End
translation/enveloping API” on page 458

TRIDB

Appendix A. WebSphere Data Interchange control blocks 589

Table 228 describes how to define the TRIDB with 4 byte lengths.

Table 228. Defining the TRIDB with 4 byte lengths

Name Offset Length Type Description

BLKLEN 0 4 Bin Block length

RESERVED 4 8 Hex Reserved

DATALEN 12 4 Bin Length of the data in the DATA
field

DATA 16 Variable Char Application data for function
codes 111 and 131

TRIDB field descriptions

BLKLEN
The length of the TRIDB.

RESERVED
Initialize with binary zeros.

DATALEN
For function codes 111 and 131, the amount of data being provided in the DATA
field.

DATA
For function codes 111 and 131, the application data that should be translated. The
format of the data must match the definition in the data format.

TRIDB

590 WebSphere Data Interchange Programmer’s Reference

Translator Output Data Block (TRODB)
The translator output data block (TRODB) is required on all service requests for
translation, enveloping, and data extraction. For more information, see “Translation
services” on page 390, “Enveloping services” on page 442, and “Data extraction
services” on page 474

The TRODB always has a minimum length of 32000. Entering a value less
than 32000 in the BLKLEN field results in a TR0829l error message, and the
translator terminates. There is no maximum length for the TRODB.

Table 229 describes shows how the TRODB is used for all functions and the
initialization requirements for each.

Table 229. TRODB functions and initialization requirements

Function
code:

Initialization requirements:

1 The DATA field contains the interchange header image. The DATALEN field
identifies the number of bytes in the header segment. For more information,
see “Retrieve interchange header API” on page 472

2 The DATA field contains the group header image. The DATALEN field identifies
the number of bytes in the header segment. For more information, see
“Retrieve group header API” on page 472

3 The DATA field contains the transaction header image. The DATALEN field
identifies the number of bytes in the header segment. For more information,
see “Retrieve transaction header API” on page 473

111 TRODB is used as a work buffer to hold a segment from the transaction. The
minimum BLKLEN value is 32000 but should be large enough to hold the
largest segment, excluding the binary segment. For more information, see
“Translate-to-standard API” on page 397

131 TRODB is used as a work buffer to hold a segment from the transaction. The
minimum BLKLEN value is 32000 but should be large enough to hold the
largest segment, excluding the binary segment. For more information, see
“Translate-to-standard API” on page 397

211 The DATA field contains the application data. The DATALEN field identifies the
length of the data in the DATA field. For more information, see
“Translate-to-application API” on page 418

212 The DATA field contains the application data. The DATALEN field identifies the
length of the data in the DATA field. For more information, see
“Translate-file-to-application API” on page 429

213 The DATA field contains the application data. The DATALEN field identifies the
length of the data in the DATA field. For more information, see
“Translate-to-application API” on page 421

214 TRODB is used as a work buffer to hold a segment from the transaction. The
minimum BLKLEN value is 32000 but should be large enough to hold the
largest segment, excluding the binary segment. For more information, see
“Deenvelope API” on page 459

215 TRODB is used as a work buffer to hold a segment from the transaction. The
minimum BLKLEN value is 32000, but should be large enough to hold the
largest segment, excluding the binary segment. For more information, see
“Envelope API” on page 444

216 The DATA field contains the data extraction detail record. The DATALEN field
identifies the number of bytes in the record. For more information, see
“Retrieve detailed data API” on page 475

TRODB

Appendix A. WebSphere Data Interchange control blocks 591

Table 229. TRODB functions and initialization requirements (continued)

Function
code:

Initialization requirements:

217 The DATA field contains the image record and the DATALEN field identifies the
number of bytes in the record. For more information, see “Retrieve transaction
image API” on page 477

218 The DATA field contains the image record. The DATALEN field identifies the
number of bytes in the record. For more information, see “Retrieve transaction
acknowledgment image API” on page 477

219 The DATA field contains the image record. The DATALEN field identifies the
number of bytes in the record. For more information, see “Retrieve functional
acknowledgment image API” on page 478

990 TRODB is used as a work buffer to hold a segment from the transaction. The
minimum BLKLEN value is 32000, but should be large enough to hold the
largest segment, excluding the binary segment. For more information, see
“Close and queue interchange API” on page 456

991 TRODB is used as a work buffer to hold a segment from the transaction. The
minimum BLKLEN value is 32000, but should be large enough to hold the
largest segment, excluding the binary segment. For more information, see
“Issue commit API” on page 471

1000 TRODB is used as a work buffer to hold a segment from the transaction. The
minimum BLKLEN value is 32000, but should be large enough to hold the
largest segment, excluding the binary segment. For more information, see
“End translation/enveloping API” on page 458

Table 230 describes how to define the TRODB with 4 byte lengths.

Table 230. Defining the TRODB with 4 byte lengths

Name Offset Length Type Description

BLKLEN 0 4 Bin Block length

RESERVED 4 8 Hex Reserved

DATALEN 12 4 Bin Length of data in the DATA field

DATA 16 Variable Char Application data for function
codes 211, 212, and 213

TRODB field descriptions

BLKLEN
The length of the TRODB. Maximum length is 32000.

RESERVED
Initialized with binary zeros.

DATALEN
For function codes 211–213 and 216–219, the amount of data being provided in the
DATA field.

DATA
For function codes 211–213, the application data that were produced. The format of
the data must match the definition in the data format.

For function codes 216–219, the detail extraction records that were produced.

TRODB

592 WebSphere Data Interchange Programmer’s Reference

Communication Control Block (CMCB)
Table 231 describes the fields in the communication control block (CMCB). The
offset values in this table are relative to 0. If this control block is used in network
commands (NETOP) profile, you should add 1 to the offset value, because the
offsets used for the Network Commands (NETOP) profile are relative to 1.

Table 231. Definition of communication interface control block

Name Offset Length Type Description

BLKLEN 0 2 Bin Length of the CMCB

RESERV1 2 2 Bin Reserved

BLKNME 4 8 Char Block name

TPNICKNM 12 16 Char Trading partner nickname

NETID 28 8 Char Network ID

NETOP 36 8 Char Network command

REQID 44 16 Char Requestor ID

SEQNUM 60 5 Char Message/file/transaction
sequence number

CONTRCV 65 1 Char Continuous receive flag

FTYPE 66 2 Char File type

FILERCVD 68 1 Char File received flag

RESERV2 69 5 Char Reserved

CLRFILE 74 1 Char Clear file indicator

DATAFMT 75 1 Char Format of data being sent

ACCTYP 76 1 Char Account type

DATATYP 77 1 Char Data type

RECVTYP 78 1 Char Type of receive

DCIND 79 1 Char Delivery class

ACKIND 80 1 Char Acknowledgment code

RESRECL 81 1 Char Resolution of RECLEN

SCRIPT 82 8 Char Script name

ENAME 90 8 Char Envelope name

MSGNAME 98 8 Char Message name

FILENAME 106 56 Char File name

CANSD 162 6 Char Cancel start date

CANST 168 6 Char Cancel start time

CANED 174 6 Char Cancel end date

CANET 180 6 Char Cancel end time

TMZONE 186 1 Char Time zone

MODEM 187 1 Char Modem type

NPSSCDE 188 5 Char Start session response code

NPESCDE 193 5 Char End session response code

NPERRCD 198 5 Char Error code

CMCB

Appendix A. WebSphere Data Interchange control blocks 593

Table 231. Definition of communication interface control block (continued)

Name Offset Length Type Description

NPSEVER 203 2 Char Error severity

BLKTYPE 205 1 Char Block type

FQUEUED 206 1 Char Queued functions indicator

FMSGS 207 1 Char Free-form messages indicator

FFILE 208 1 Char Free-form files indicator

FEDIX 209 1 Char EDI ISA/IEA file indicator

FEDIE 210 1 Char EDI UNB/UNZ file indicator

FEDIU 211 1 Char EDI BG/EG file indicator

FEDIG 212 1 Char EDI GS/GE file indicator

FEDII 213 1 Char EDI ICS/ICE file indicator

FEDIT 214 1 Char EDI STX/END file indicator

FCANCEL 215 1 Char CANCEL indicator

FCLASS 216 1 Char Message class indicator

FACK 217 1 Char Network acknowledgment
indicator

FSYSMSG 218 1 Char System messages indicator

FRCVBTP 219 1 Char Receive by trading partner
indicator

FRESTART 220 1 Char Restart indicator

FNOUSERID 221 1 Char Account number indicator

FACCTSEP 222 1 Char Value used to separate account
and user ID

DDCOLON 223 3 Char DD: string

RESERV3 226 2 Char Reserved

ADMTYPE 228 2 Char Administrative response file type

UNIQID 230 8 Char Unique ID returned by the
network program

SAPUPDT 238 1 Char SAP update flag

FSENTNET 239 1 Char Skip send requested status flag

RESERV4 240 14 Char Reserved for WebSphere Data
Interchange

CMCB field descriptions
The following descriptions cover only the fields that apply to the API. Your definition,
however, must include all fields in the block. The descriptions apply to all functions
for which the block is used, unless exceptions are stated.

BLKLEN
A 2-byte binary field that contains the length of the CMCB control block. A CMCB is
254 bytes.

RESERV1
Reserved.

CMCB

594 WebSphere Data Interchange Programmer’s Reference

BLKNME
The name of this block which is EDICMCB.

TPNICKNM
The key for a member of the trading partner profile. For receiving, Communications
supplies the nickname for the sender of the first file received if your application
does not supply it.

NETID
The key for a member of the network profile. Your application must supply the
network ID if it does not supply a requestor ID. If the application supplies a
requestor ID, Communications uses the network ID from the mailbox (requestor)
profile and ignores this field. For related information, see REQID on 595.

NETOP
Specifies the commands that should be built for the network program to process.
Valid values are:

SENDFILE
Sends non-EDI file for function codes 0121 and 0221.

SENDX12
Sends X12 standard transactions for function code 0211.

SENDEDI
Sends EDIFACT or UN/TDI standard transactions for function code 0211.

SENDUCS
Sends UCS standard transactions for function code 0211.

RECVFILE
Receives non-EDI file for function codes 0132 and 0232.

RECVX12
Receives X12 standard transactions for function codes 0132 and 0232.

RECVEDI
Receives EDIFACT or UN/TDI standard transactions for function codes
0132 and 0232.

RECVUCS
Receives UCS standard transactions for function codes 132 and 232.

CANCEL
Cancels delivery of a file or message for function codes 133 and 233.

NO-NETOP
Processes a file of responses for function code 252, but does not invoke a
network program. Used if you have network acknowledgment responses in
a file that have not been processed.

REQID
The key for a member of the mailbox (requestor) profile. Communication gets the
network ID from the mailbox (requestor) profile member. Your application must
supply the network ID if it does not supply the requestor ID. For related
information, see NETID on 595.

SEQNUM
The sequence number assigned to a transaction, file, or message. For sending or
queuing to send, Communication returns the sequence number. For canceling a file
or message, your application supplies the sequence number of the file or message
to be canceled.

CMCB

Appendix A. WebSphere Data Interchange control blocks 595

CONTRCV
Indicates whether continuous receive should be active. Applies only to CICS. Valid
values are:
(blank)

Starts single receive
C Starts continuous receive
E Ends continuous receive

FTYPE
Indicates the destination file type for received transactions. Valid values are:
MQ MQSeries queue
TM TS queue - main storage
TS TS queue - auxiliary storage
PG Program

FILERCVD
Indicates whether a file was received. Valid values are:
Y File was received.
(other)

File was not received.

RESERV2
Reserved.

CLRFILE
Indicates when the Communications service is to clear the file you are sending.
Applies only to immediate sending of EDI standard transactions and non-EDI files.
Valid values are:
Y Clears the file after successfully sending the transaction data or non-EDI

file.
U Always clears the file.

DATAFMT
Indicates whether data is in binary format. The first character of the Envelope name
field defines the receive class used by the Expedite product interface. Expedite will
set the data type to A or E, depending on which Expedite product you are using.
Valid values are:
B Binary data
(blank)

Not binary data (default)

ACCTYP
For sending or canceling data, your application must supply a value of D, which
indicates that the trading partner ID is an account number or user ID (Network
reference: DESTTYP). For receiving data, your application must supply one of the
following values (IN reference: SRCTYP):
(blank)

Receives from any source
D Receives from a trading partner identified by an account number or user ID

DATATYP
The type of file name supplied in the FILENAME field. Valid values are:
A Data set name
D ddname

For sending, your application must supply the data type. You can use a ddname
only for immediate sends.

CMCB

596 WebSphere Data Interchange Programmer’s Reference

For receiving, the communications service supplies the data type if:
v The application does not supply the data type.
v NETOP contains RECVX12, RECVEDI, or RECVUCS.
v Immediate receive (function code 232) is requested.

The Expedite parameters for network profiles is FILEID.

RECVTYP
The type of messages to receive. Valid values are:
G Receives only the first message or file that matches the trading partner

nickname, the envelope name, or both. For example, receive only X12
envelopes from partner ABC.

(blank)
Receives all messages and files that meet the receive criteria.

The Expedite parameter for network profiles is ALLFILES.

DCIND
The delivery class. Valid values are:
(blank)

Normal delivery.
P High priority delivery.
I Express delivery. Might require that the receiving partner be signed on to

the network when the data is sent.

The Expedite parameter for network profiles is PRIORTY.

ACKIND
The type of acknowledgment requested. For sending, valid values are:
(blank)

No acknowledgments
R Receipt only
D Delivery only
B Both receipt and delivery
A Purge only
C Both receipt and purge
E Either receipt or purge
F Receipt and either delivery or purge
(binary zero)

Network acknowledgement code (NETACK) from the trading partner profile is
returned in this field

For canceling, valid values are:
(blank)

No acknowledgements
H Only header information in the acknowledgement
T Both header and text information in the acknowledgement

The Expedite parameter is ACK.

RESRECL
Indicates whether the received data set records and the output records must be the
same length. Valid values are:
E Applies only to IINB41. Ends the session with an error if the length of the

output record is greater than the length of the data set record.
S Splits the output records to fit the length defined for the data set records.

CMCB

Appendix A. WebSphere Data Interchange control blocks 597

You do not need to set this field if the storage format (STGFRMT from the trading
partner profile) contains C or D. In these cases, the length of the output record is
set to the length of the data set record.

The Expedite parameter is RESRECL.

SCRIPT
The name of the script that your communications software should follow when
processing requests for service. The script would be part of your communication
software package and not part of WebSphere Data Interchange.

ENAME
The envelope name. For sending and canceling, if your application supplies a null
value (binary zero), Communications uses the value in the Message user class field
from the mailbox (requestor) profile and returns it here. If the mailbox (requestor)
profile does not supply a value, the default is #IDI#.

For receiving, if your application supplies a null value, Communications uses the
value in the Message user class field from the mailbox (requestor) profile and
returns the message user class of the first file received.

The Expedite parameter is ACK.

MSGNAME
The message name. You can define any value that fits in the field length, or use
blanks. For sending or canceling, your application supplies the message name. The
default is #IDI#.

For receiving, communications returns the message name of the first file received.

The Expedite parameter is MSGNAME.

FILENAME
The name of a file containing data to be sent or into which data is to be received
from the network. The Data type field (DATATYP) indicates whether the name is a
data set name or a ddname.

Your application must supply the file name for sending non-EDI files (function
codes 121 and 221). You can use a ddname only for immediate sends. For
sending EDI standard transactions (function code 211), this field is optional. If you
do not specify a file name, Communications uses the ddname in the Transaction
data queue field from the network profile member. When sending EDIFACT or
UN/TDI requests, an E is appended to the ddname. When sending UCS requests,
a U is appended to the ddname. The ddname is used as supplied for sending X12
requests. Communications also sets the Data type field (DATATYP) to D.

For receiving non-EDI files, your application must supply the file name. You can use
a ddname only for immediate receives. For receiving EDI standard transactions, this
field is optional. If you do not specify a file name, Communications uses the
ddname in the Receive file name field from the mailbox (requestor) profile
member. WebSphere Data Interchange also sets the Data type field (DATATYP)
to D.

The Expedite parameter for network profiles is FILEID.

CMCB

598 WebSphere Data Interchange Programmer’s Reference

CANSD
The cancellation start date in YYMMDD format. Applies only to canceling files and
messages.

The Expedite parameter for network profiles is STARTDATE.

CANST
The cancellation start time in HHMMSS format. Applies only to canceling files and
messages.

The Expedite parameter for network profiles is STARTTIME.

CANED
The cancellation end date in YYMMDD format. Applies only to canceling files and
messages.

The Expedite parameter is ENDDATE.

CANET
The cancellation end time in HHMMSS format. Applies only to canceling files and
messages.

The Expedite parameter is ENDTIME.

TMZONE
The time zone for cancellation requests. Valid values are:
L Local time
G Greenwich Mean Time

The Expedite parameter is TIMEZONE.

MODEM
The type of modem used.

NPSSCDE
The network program start-session response code.

NPESCDE
The network program end-session response code.

NPERRCD
The network program error code.

NPSEVER
The network program error severity code.

BLKTYPE
The type of data blocks passed to communications for sending messages. Applies
only to sending messages using function codes 141 and 241. Valid values are:
H Data blocks are larger that 32 K bytes
(other)

Data blocks are smaller that 32 K bytes

FQUEUED
Indicates whether the network supports queued functions. Valid values are:
Y Supports queued functions
(other)

Does not support queues functions

CMCB

Appendix A. WebSphere Data Interchange control blocks 599

FMSGS
Indicates whether the network supports free-form messages. Valid values are:
Y Supports free-form messages
(other)

Does not support free-form messages

FFILE
Indicates whether the network supports non-EDI files. Valid values are:
Y Supports non-EDI files
(other)

Does not support non-EDI files

FEDIX
Indicates whether the network supports X12 ISA/IEA envelopes. Valid values are:
Y Supports X12 ISA/IEA envelopes
(other)

Does not support X12 ISA/IEA envelopes

FEDIE
Indicates whether the network supports EDIFACT UNB/UNZ envelopes. Valid
values are:
Y Supports EDIFACT UNB/UNZ envelopes
(other)

Does not support EDIFACT UNB/UNZ envelopes

FEDIU
Indicates whether the network supports BG/EG envelopes. Valid values are:
Y Supports BG/EG envelopes
(other)

Does not support BG/EG envelopes

FEDIG
Indicates whether the network supports GS/GE envelopes. Valid values are:
Y Supports GS/GE envelopes
(other)

Does not support GS/GE envelopes

FEDII
Indicates whether the network supports ICS/ICE envelopes. Valid values are:
Y Supports ICS/ICE envelopes
(other)

Does not support ICS/ICE envelopes

FEDIT
Indicates whether the network supports STX/END envelopes. Valid values are:
Y Supports STX/END envelopes
(other)

Does not support STX/END envelopes

FCANCEL
Indicates whether the network supports the CANCEL function. Valid values are:
Y Supports CANCEL functions
(other)

Dos not support CANCEL functions

FCLASS
Indicates whether the network supports user message classes. Valid values are:
Y Supports queued functions

CMCB

600 WebSphere Data Interchange Programmer’s Reference

(other)
Does not support queues functions

FACK
Indicates whether the network supports network acknowledgments. Valid
values are:
Y Supports network acknowledgements
(other)

Does not support network acknowledgements

FSYSMSG
Indicates whether the network supports system messages. Valid values are:
Y Supports system messages
(othre)

Does not support system messgaes

FRCVBTP
Indicates whether the network supports receiving by trading partner. Valid
values are:
Y Supports receiving by trading partner ID
(other)

Does not support receiving by trading partner ID

FRESTART
Indicates whether the network supports restart. Valid values are:
Y Supports restart
(other)

Does not support restart

FNOUSERID
Indicates whether the network supports account numbers only. Valid values are:
Y Supports account numbers only
(other)

Requires other information in addition to account number

FACCTSEP
The character used to separate the account number and user ID.

DDCOLON
The text string “DD:”.

RESERV3
Reserved.

ADMTYPE
The type of administrative response file for CICS.

UNIQID
A unique ID returned by the network program.

SAPUPDT
Indicates whether VANI is to update SAP (for WebSphere Data Interchange use
only).

CMCB

Appendix A. WebSphere Data Interchange control blocks 601

FSENTNET
Indicates whether the status should be set directly to Sent to network (skipping
over Send requested status). This is the case with network program EDIMQSR
(the MQSeries network program). Valid values are:
Y Skips the Send requested status and sets status to Sent to network
N Does not skip the Send requested status

RESERV4
Reserved.

CMCB

602 WebSphere Data Interchange Programmer’s Reference

Trading Partner Profile Block (TPPDB)
Table 232 describes the trading partner profile block (TPPDB) All fields in this block
are optional. When you specify a value, it is used in place of the corresponding
value in the trading partner profile. When you specify TPNICKNM in the CMCB and
leave it blank in this block, Communications returns a value for the fields that apply
to the request.

The offset values in this table are relative to 0. If this control block is used in the
Network Commands (NETOP) profile, you should add 1 to the offset value,
because the offsets used for the Network Commands profile are relative to 1.

Table 232. Definition of the Trading Partner Profile Block

Name Offset Length Type Description

BLKLEN 0 2 Bin Length of TPPDB

RESERV1 2 2 Bin Reserved

BLKNME 4 8 Char Block name

TPNICKNM 12 16 Char Trading partner nickname

NETID 28 8 Char Network ID

SYSQUAL 36 1 Char Intersystem address qualifier

SYSID 37 8 Char Intersystem ID

ACCTNUM 45 32 Char Requestor's network account number

USERID 77 32 Char Requestor's network user ID

ENVLQUAL 109 4 Char Interchange qualifier

ENVLID 113 35 Char Interchange sender/receiver ID

CONAME 148 40 Char Company name

ADDR1 188 40 Char Company address line 1

ADDR2 228 40 Char Company address line 2

PHONE 268 25 Char Contact phone number

CONTACT 293 30 Char Contact name

PASSWORD 323 14 Char Interchange password for send

RCVPASS 337 14 Char Interchange password for receive

SECUID 351 8 Char Network security profile member

NETCLS 359 1 Char Network message class

NETCHG 360 1 Char Network charges code

NETACK 361 1 Char Network acknowledgment code

NETVCHK 362 1 Char Destination verification code

NETRETN 363 3 Char Mailbox retention period

NETEDIO 366 1 Char Option for storing received data

NETEDIP 367 1 Char Special processing requested for
received data

STGFRMTO 368 1 Char Storage format override

MACHTYPE 369 1 Char Machine type

STGFRMT 370 1 Char Storage format

EOTID 371 1 Char End of text/message delimiter

TPPDB

Appendix A. WebSphere Data Interchange control blocks 603

Table 232. Definition of the Trading Partner Profile Block (continued)

Name Offset Length Type Description

LOGENV 372 1 Char Log envelope data

FNGRPENV 373 1 Char Send functional group

SEDELIM 374 1 Char Sub-element delimiter

DEDELIM 375 1 Char Data Element delimiter

SGDELIM 376 1 Char Segment delimiter

SGSEP 377 1 Char Segment ID separator

DECNOT 378 1 Char Decimal notation

RLSCHAR 379 1 Char Release character

TPICTLNO 380 9 Char Interchange mask

TPGCTLNO 389 9 Char Group mask

TPTCTLNO 398 9 Char Transaction mask

COMMENT1 407 40 Char Comment line 1

COMMENT2 447 40 Char Comment line 2

NETCMDS 487 8 Char Net commands PDS member

TPDATALINE 495 32 Char Data line phone number

TIMEOUT 527 4 Char Communications line timeout value

SEGMENTED 531 1 Char Segmented output requested

SUFFIX 532 2 Char File suffix

TPENVSUF 534 2 Char Envelope profile member suffix

TPGENRCV 536 1 Char Generic receive usages allowed

TPCMPRES 537 1 Char Compress flag

TPRSRV1 538 8 Char Reserved for WebSphere Data
Interchange

TPSUPAD3 546 40 Char Company address line 3

TPSUPCTY 586 30 Char City name

TPSUPST 616 2 Char State code

TPSUPPST 618 15 Char Postal code

TPSUPCON 633 30 Char Country code

TPSUPFAX 663 25 Char Fax number

TPSUPU3 688 40 Char Comment line 3

TPSUPU4 728 40 Char Comment line 4

TPSUPU5 768 40 Char Comment line 5

TPSUPU6 808 40 Char Comment line 6

TPSUPU7 848 40 Char Comment line 7

TPSUPU8 888 40 Char Comment line 8

TPSUPU9 928 40 Char Comment line 9

TPSUPU10 968 40 Char Comment line 10

PRIORITY 1008 1 Char Delivery priority

TPRSRV2 1009 3 Char Reserved for WebSphere Data
Interchange

TPPDB

604 WebSphere Data Interchange Programmer’s Reference

Table 232. Definition of the Trading Partner Profile Block (continued)

Name Offset Length Type Description

DESCRIPT 1012 30 Char Profile member description

LOGLOCK 1042 1 Char Logical lock flag

LASTUID 1043 17 Char User ID that performed the latest
update

LASTUDT 1060 4 Bin Date and time of the latest update

TPTYPE 1064 1 Char Trading partner type

DESEP 1065 1 Char Repeating data element separator

PROCESS 1066 40 Char Associated process ID

TPRSRV3 1106 426 Char Reserved for WebSphere Data
Interchange

TPPDB field descriptions

BLKLEN
A 2-byte binary field that contains the length of the TPPDB data block. A TPPDB is
1532 bytes.

RESERV1
Reserved.

BLKNME
The name of this block.

TPNICKNM
The name you use to refer to the trading partner. The value in this field must
identify a member from the trading partner profile.

NETID
The network ID. The value in this field must match the key field of a member of the
network profile.

SYSQUAL
Indicates whether intersystem addressing is required for this trading partner. For the
AT&T Global Network, must contain the value I if intersystem addressing is required
(IN reference: DTBLTYP). Enter the ID of the other system in the SYSID field.

SYSID
For intersystem addressing, the ID of the system responsible for the receiver's
account. The ID is limited to 3 characters.

The Expedite parameter for network profiles is SYSID.

ACCTNUM
The account number that the network assigns to the trading partner. Applies only to
sending or receiving non-EDI files and messages. The entry must be left-justified.
For sending and receiving EDI standard transactions using ISA/IEA envelopes, the
last position must be blank. The combined value of this field and the USERID field
must be a unique value. This field is required if you want to use network
acknowledgments.

TPPDB

Appendix A. WebSphere Data Interchange control blocks 605

USERID
The user ID that the network assigns your trading partner. Applies only to sending
or receiving non-EDI files and messages. The entry must be left-justified. The
combined value of this field and the ACCTNUM field must be a unique value. Together,
the account number and user ID make up the trading partner ID in the interchange
envelope except for UCS (BG/EG) envelopes. For UCS envelopes, the phone
number contains the trading partner ID. This field is required if you want to use
network acknowledgments.

ENVLQUAL
The type of interchange ID used in the ENVLID field. The EDI standard defines
these codes. If this field or the Interchange ID field (ENVLID) is blank, the enveloper
takes the qualifier from the envelope profile member.

ENVLID
The ID used to fill in the interchange receiver ID field when you send to this
partner, and to identify the interchange sender when you receive from this partner. If
you leave this field blank, the enveloper uses the account number and user ID (or
phone number for BG/EG interchanges).

CONAME
The name of the trading partner's company. The company name can be used as
envelope data by using the CO envelope data type.

ADDR1
Line 1 of the trading partner's address.

ADDR2
Line 2 of the trading partner's address.

PHONE
The trading partner's telephone number. When enveloping type U (BG/EG)
interchanges, if the Interchange ID field is blank, the value in this field is used as
the interchange receiver ID. When de-enveloping type U interchanges, if the
Interchange ID field is blank, the value in this field is used as the interchange
sender ID.

CONTACT
The name of the person you speak with when dealing with this trading partner.

PASSWORD
The password that you and your trading partner agreed upon for sending to this
trading partner. The value in this field corresponds to the PW data type in the
interchange envelope.

RCVPASS
The password that you and your trading partner agreed upon for receiving from this
trading partner. If this value matches the interchange password (PW data type) that
was received, translation occurs.

SECUID
The name of the network security profile member that specifies the encryption and
authentication processes that apply to EDI data. For sending, the trading partner
usage/rule specifies the network security profile member. If the send usage/rule
does not specify a member, the member specified here is used.

NETCLS
Indicates any special status of the data being sent. Applies only to send
requests.Valid values are:

TPPDB

606 WebSphere Data Interchange Programmer’s Reference

(blank)
Normal status

T Test status

The Expedite parameter for network profiles is MODE.

NETCHG
Indicates how charges are shared between sender and receiver. Applies only to
send requests. Valid values are:
1 Receiver pays all charges.
2 Receiver pays all charges if agreed to, or charges are split between sender

and receiver.
3 Receiver pays all charges if agreed to, or charges are split between sender

and receiver if agreed to. Otherwise, the sender pays all charges (default).
4 Charges are split between sender and receiver if agreed to. Otherwise, the

sender pays all charges.
5 Charges are split between sender and receiver.
6 Sender pays all charges.

The Expedite parameter for network profiles is CHARGE.

NETACK
Indicates which network acknowledgments are requested. Applies to send requests
when the acknowledgment indicator in the CMCB contains binary zeros. For related
information, see ACKIND on 597. The network specifies the acceptable values. Valid
values are:
(blank)

No acknowledgments
R Receipt only
D Delivery only
B Both receipt and delivery
A Purge only
C Both receipt and purge
E Either receipt or purge
F Receipt and either delivery or purge

The Expedite parameter for network profiles is ACK.

NETVCHK
Indicates whether the destination is verified before sending occurs. Valid
values are:
N Does not verify the destination (default)
Y Requires verification
F Requests verification, and sends even if the destination is not verified

(useful for intersystem addressing)

If your request does not specify a trading partner, the trading partner information is
taken from the mailbox (requestor) profile.

The Expedite parameter for network profiles is VERIFY.

NETRETN
The number of days that data is to be kept in the network mailbox before it is
purged, if it is not received. Enter blanks or zeroes to use the default number. For
Expedite Base/z/OS, the valid range is 001-180. For Expedite/CICS, the valid range
is 001-099, left-justified.

TPPDB

Appendix A. WebSphere Data Interchange control blocks 607

If your request does not specify a trading partner, the trading partner information is
taken from the mailbox (requestor) profile.

NETEDIO
Indicates whether you want EDI segments stored in the receiving file as separate
records. You provide the file name in the mailbox (requestor) profile. Valid
values are:
Y Ends records at the segment delimiter (default)
N Does not end records at the segment delimiter

If your request does not specify a trading partner, the trading partner information is
taken from the mailbox (requestor) profile.

The Expedite parameter is EDIOPT.

NETEDIP
Indicates whether the EDI data you receive has special EDI processing (breaking
records by the segment delimiter). Valid values are:
Y Performs EDI processing if the common data header indicates that the data

is in EDI standard format (default)
N Omits EDI processing, regardless of the common data header

If your request does not specify a trading partner, the trading partner information is
taken from the mailbox (requestor) profile.

The Expedite parameter for network profiles is AUTOEDI.

STGFRMTO
Indicates whether you want to use the storage format defined in the common data
header. Valid values are:
Y Uses the storage format as defined in the common data header (default)
N Ignores the storage format defined in the common data header

If there is no common data header, the format indicated in the Storage format field
is used. If your request does not specify a trading partner, the trading partner
information is taken from the mailbox (requestor) profile.

The Expedite parameter for network profiles is DLMOVERRIDE.

MACHTYPE
This field is not currently used.

STGFRMT
Indicates to the network how data is stored for free-form messages and files.
Applies only to sending or receiving non-EDI files.

When determining what codes to select, consider the type of data you want to send
and how the file is received. Contact a representative of each network you are
using for all available codes. For example, if you are using:

For Expedite Base/z/OS (IEBASE), valid values are:
C Stores each record with a carriage return and line-feed character and uses

the end-of-file character. These characters are represented and stored as
hexadecimal values 0D0A (CRLF) and 1A (EOF). Select this option to send
files containing program source code that is defined with variable length
records. Output records do not include the carriage return and line-feed
characters.

TPPDB

608 WebSphere Data Interchange Programmer’s Reference

L Precedes each record with a 2-byte hexadecimal record length. Select this
option when sending data in fixed format or when sending binary data. The
output record is determined by the value in the first 2 bytes that contain the
record length.

N Stores data as it is received. Output records are built based on the record
length of the data set allocated to receive the data.

For Expedite/CICS, valid values are:
A Stores each record with a carriage return and line-feed character and uses

the end-of-file character. These characters are represented and stored as
hexadecimal values 0D0A (CRLF) and 1A (EOF). Select this option to send
files containing program source code that is defined with variable length
records. Output records do not include the carriage return and line-feed
characters.

L Precedes each record with a 2-byte hexadecimal record length. Select this
option when sending data in fixed format or when sending binary data. The
output record is determined by the value in the first 2 bytes that contain the
record length.

O Other (free-form).

The Expedite parameter for network profiles is DELIMITED.

EOTID
The character that signifies the end of the message text to the network. EOTID
applies only to sending or receiving free-form messages.

The Expedite parameter for network profiles is ENDSTR.

LOGENV
Indicates whether EDI standard data will be logged. Applies only when the Log
standard data field from the Application Defaults (APPDEFS) profile member does
not contain a Y or an N. Valid values are:
Y Logs EDI standard data
(other)

Does not log EDI standard data

FNGRPENV
Indicates whether functional groups will be created for transactions with type E
(UNB/UNZ) envelopes. Functional groups are always created for type I (ICS/ICE),
U (BG/EG), and X (ISA/IEA) envelopes, and they are never created for type
T (STX/END) envelopes. Valid values are:
Y Creates functional groups for type E envelopes
(other)

Does not create functional groups for type E envelopes

SEDELIM
The character that separates sub-elements (component data elements) in a
transaction set. A value here (other than a low-value or space) overrides the
character specified in the EDI standard. This value is only used when interchanges
are created (not when they are received).

DEDELIM
The character that separates the data elements in a transaction set. A value here
(other than a low-value or space) overrides the character specified in the EDI
standard. This value is only used when interchanges are created (not when they
are received).

TPPDB

Appendix A. WebSphere Data Interchange control blocks 609

SGDELIM
The character that marks the end of each segment in a transaction set. A value
here (other than a low-value or space) overrides the character specified in the EDI
standard. This value is only used when interchanges are created (not when they
are received).

SGSEP
The character that separates the segment ID and the first data element in a
segment for type E (UNB/UNZ) envelopes only. A value here (other than a
low-value or space) overrides the character specified in the EDI standard. This
value is only used when interchanges are created (not when they are received).

DECNOT
The character that represents decimal points in a transaction set. For type E
(UNB/UNZ) envelopes, a value here (other than a low-value or space) overrides the
character specified in the EDI standard. For all other types, a period represents the
decimal point. This value is only used when interchanges are created (not when
they are received).

RLSCHAR
For type E (UNB/UNZ) and T (STX/END) envelopes, this character indicates when
a delimiter is being used as part of the data. A value here (other than a low-value or
space) overrides the value specified in the EDI standard. This value is only used
when interchanges are created (not when they are received).

TPICTLNO
The initial reference number that the enveloper places in the CN data type of the
interchange header and trailer. This value is used as the base value for each
trading partner/receiver ID combination. It does not represent the current control
number for this trading partner.

TPGCTLNO
The initial reference number or special codes that the enveloper places in the
CN data type of the functional group header and trailer. This value is used as the
base value for each trading partner/receiver ID combination. It does not represent
the current control number for this trading partner.

TPTCTLNO
The initial reference number or special codes that the enveloper places in the
CN data type of the transaction set header and trailer. This value is used as the
base value for each trading partner/receiver ID combination. It does not represent
the current control number for this trading partner.

COMMENT1
A 40-byte area for free-form notes about the trading partner.

COMMENT2
A 40-byte area for free-form notes about the trading partner.

NETCMDS
The name of a member of a PDS that will be allocated to the ddname of
EDINTCMD. This member will contain the commands that you want to pass to a
network. WebSphere Data Interchange reads the commands from the PDS member
and writes the commands to the network input file specified in the network profile
member after all substitutable variable tags have been resolved by WebSphere
Data Interchange.

TPPDB

610 WebSphere Data Interchange Programmer’s Reference

TPDATALINE
The phone number used to connect your computer to talk directly to your trading
partner's computer.

TIMEOUT
The maximum allowable time that the data line for communications can be idle
without being dropped. If you specify a trading partner when requesting network
activity (send or receive), the value for this field is taken from the trading partner
profile. Otherwise, the value for this field is taken from the mailbox (requestor)
profile.

SEGMENTED
Indicates whether you want EDI segments to be stored in the output file as
separate records. Valid values are:
Y Ends records at the segment delimiter
N Does not end at the segment delimiter (default)

SUFFIX
A 2-character suffix for the ddname used to store the results of a fixed-to-fixed
translation. The basic part of the ddname is taken from the Application file name
field of the target data format.

TPENVSUF
A 2-character suffix for a generic EDI standard envelope profile member name. The
basic part of the name is taken from the Send or Receive usage override field.

TPGENRCV
A code to indicate whether generic receive usages/rules are allowed for this trading
partner. Valid values are:
Y Allows generic receive usages/rules
(other)

Does not allow generic receive usages/rules

TPCMPRES
The Expedite Base/z/OS compression code. Applies only during send processing.
Valid values are:
Y Compresses the data.
N Does not compress the data.
T Expedite Base/z/OS uses its own table to decide whether to compress

the data.

TPRSRV1
Reserved for WebSphere Data Interchange.

TPSUPAD3
Line 3 of the trading partner's address.

TPSUPCTY
The trading partner's city.

TPSUPST
The trading partner's state code.

TPSUPPST
The trading partner's postal code.

TPSUPCON
The trading partner's country.

TPPDB

Appendix A. WebSphere Data Interchange control blocks 611

TPSUPFAX
The trading partner's fax number.

TPSUPU3
A 40-byte area for free-form notes about the trading partner.

TPSUPU4
A 40-byte area for free-form notes about the trading partner.

TPSUPU5
A 40-byte area for free-form notes about the trading partner.

TPSUPU6
A 40-byte area for free-form notes about the trading partner.

TPSUPU7
A 40-byte area for free-form notes about the trading partner.

TPSUPU8
A 40-byte area for free-form notes about the trading partner.

TPSUPU9
A 40-byte area for free-form notes about the trading partner.

TPSUPU10
A 40-byte area for free-form notes about the trading partner.

PRIORITY
Indicates whether to prioritize delivery of messages.
(blank)

Normal delivery
P Priority delivery

TPRSRV2
Reserved for WebSphere Data Interchange.

DESCRIPT
The description of this profile member.

LOGLOCK
The profile member logical lock flag (for WebSphere Data Interchange use only).

LASTUID
The user ID of the last person to update this profile member.

LASTUDT
The date and time that this profile member was last updated.

TPTYPE
The trading partner type. Valid values are:
A Application or internal trading partner
E EDI or external trading partner (default)
B Both an external and internal trading partner

DESEP
The repeating data element separator to be used for all transactions sent to this
trading partner.

TPPDB

612 WebSphere Data Interchange Programmer’s Reference

PROCESS
The ID of the business process associated with this trading partner such as
PRODUCTION_PURCHASING.

TPRSRV3
Reserved for WebSphere Data Interchange.

TPPDB

Appendix A. WebSphere Data Interchange control blocks 613

Communication Data Block (DATABLK)
Your application assigns values to this block only when sending a message for
function codes 141 and 241. This block can be defined two ways:
v Data blocks that are 32-K bytes or less.
v Data blocks that are more than 32-K bytes.

Use the tables below to define the DATABLK. Use the BLKTYPE field in the CMCB to
indicate which definition you are using.

Data blocks up to 32-K bytes
Table 233. Data blocks up to 32–K bytes

Name Offset Length Type Description

BLKLEN 0 2 Bin Length of the data block

RESERV1 1 2 Bin Reserved

BLKNME 2 8 Char Name of this block

DATALEN 10 2 Bin Length of the following message

DATA 12 Variable Char Text of the message

Data blocks more than 32-K bytes
Table 234. Data blocks greater than 32–K bytes

Name Offset Length Type Description

BLKLEN 0 4 Bin Length of the data block

RESERV1 2 8 Char Reserved

DATALEN 10 4 Bin Length of the following message

DATA 12 Variable Char Text of the message

DATABLK field descriptions

BLKLEN
The length of the data block, including this field. The DATABLK length is either 14 or
16 bytes, plus the length of the message.

BLKNME
The name your application gives to the data block.

DATALEN
The length of the message in the DATA field. The message must not exceed 32-K
bytes unless the BLKTYPE field of the CMCB contains a value of other (data blocks
larger than 32-K bytes).

DATA
The message text. For the AT&T network, your application must arrange the
message text in 80-byte segments that begin with the letter T.

DATABLK

614 WebSphere Data Interchange Programmer’s Reference

Network Profile Block (NPDB)
The Network profile block (NPDB) contains the settings for the network you are
using. A network profile block can be defined for each network you use.

The offset values in Table 235 are relative to 0. If this control block is used in
Network Commands (NETOP) profile, you should add 1 to the offset value,
because the offsets used for the Network Commands profile are relative to 1

Table 235. Definition of the Network Profile Block

Name Offset Length Type Description

BLKLEN 0 2 Bin Length of NPDB

RESERV1 2 2 Bin Reserved

BLKNME 4 8 Char NPDB name

NETID 12 8 Char Network ID

NETNME 20 30 Char Network name

COMROT 50 8 Char Communication routine name

NETPGM 58 8 Char Network program name

PGMPARM 66 57 Char Network program parameters

CMDIN 123 8 Char Network command input file

CMDLRECL 131 4 Char Network command record length

QDATA 135 8 Char TD queue file

DATLRECL 143 4 Char Transaction data record length

TMZONE 147 5 Char Time zone

SYSTYP 152 8 Char System type

SYSLVL 160 4 Char System level

TXTHDR 164 1 Char Message text header character

CMDOUT 165 8 Char Network command output file

MSGROUT 173 8 Char Program to process messages

SEQNUM 181 5 Char Sequence number for network

NETACKFILE 186 8 Char File where network
acknowledgments are written

NETPHONE 194 32 Char Dial connection phone number

SCRIPT 226 8 Char Script name

FILLER 234 14 Char Reserved for WebSphere Data
Interchange

DESCRIPT 248 30 Char Member description

LOGLOCK 278 1 Char Logical lock flag

LASTUID 279 17 Char User ID that performed the
latest update

LASTUDT 296 4 Bin Date and time of the latest
update

.

NPDB

Appendix A. WebSphere Data Interchange control blocks 615

NPDB field descriptions

BLKLEN
A 2-byte binary field that contains the length of the NPDB data block. An NPDB is
300 bytes.

RESERV1
Reserved.

BLKNME
The name of the network profile block. EDINPDB.

NETID
The ID of this network such as MYNET.

NETNME
The name of the network such as My EDI Network.

COMROT
The communication routine or the name of the main program that builds network
commands and calls the network program to process the commands. WebSphere
Data Interchange supplies the VANICICS, VANIINB1, VANIMQ, and PTTOPT
programs. Any programs you write must be defined in a member of the User Exits
(ADAMCTL) profile.

NETPGM
The name of the network program (such as IEBASE) that sends and receives the
transactions, messages, and files.

PGMPARM
The network program parameters. The parameters that are passed to the network
program for connecting to IBM services are NOSPIE,NOSTAE/,IBM0DIMR,,,,,,,Y.

CMDIN
The network command input file. The file that contains the commands the network
program processes (IN reference: INMSG).

CMDLRECL
The network command record length or the length of records in the network
command input file. Maximum length is 80.

QDATA
The file that contains EDI standard transactions that are waiting to be sent to
trading partners. If you leave the field blank, the file has one of the following names
by default, that represent the specified interchange envelope type:
QDATA

ISA/IEA. The transaction data is in X12 syntax.
QDATAE

STX/END or UNB/UNZ. The transaction data is in EDIFACT or in UN/TDI
syntax.

QDATAU
BG/EG. The transaction data is in UCS syntax.

If you enter a name, an E is appended to the ddname for sending EDIFACT or
UN/TDI requests, or a U is appended to the ddname for sending UCS requests.
X12 requests use the ddname as supplied.

NPDB

616 WebSphere Data Interchange Programmer’s Reference

The type of send command issued (such as SENDX12) determines which file is
used. For example, if you enter the name SENDPO and use the file to send
EDIFACT transactions, WebSphere Data Interchange expects to find an allocation
for the ddname SENDPOE.

DATLRECL
The length of records in the TD queue. For z/OS, the logical record length that you
allocate for the file.

The Expedite parameter for network profiles is VANIINB1.

TMZONE
The time zone for your location. The network specifies the allowable codes.

The Expedite parameter is TIMEZONE.

SYSTYP
This field is not used by any currently supported network.

SYSLVL
This field is not used by any currently supported network.

TXTHDR
This field is not used by any currently supported network.

CMDOUT
The network command output file containing the network's responses to the
command input file.

MSGROUT
The name of the program that processes messages from the network.

The Expedite parameter for network profiles is INBIMSG.

SEQNUM
A sequential number assigned to all outbound documents.

NETACKFILE
The name of a file (z/OS ddname) where you would like the network to write
network acknowledgments when you request a status update. The network
acknowledgments are read and evaluated by the message handler program.

NETPHONE
The phone number to dial to connect to your network.

SCRIPT
The script to be used by your communications software when processing service
requests. This script would be part of your communication software package and
not part of WebSphere Data Interchange.

FILLER
Reserved.

DESCRIPT
The description of this profile member.

LOGLOCK
The profile member logical lock flag (for WebSphere Data Interchange use only).

NPDB

Appendix A. WebSphere Data Interchange control blocks 617

LASTUID
The user ID of the last person to update this profile member.

LASTUDT
The date and time that this profile member was last updated.

NPDB

618 WebSphere Data Interchange Programmer’s Reference

Mailbox (Requestor) Profile Block (REQDB)
Table 236 describes the mailbox (requestor) profile block (REQDB). The offset
values in this table are relative to 0. If this control block is used in network
commands (NETOP) profile, you should add 1 to the offset value, because the
offsets used for the Network Commands (NETOP) profile are relative to 1.

Table 236. Definition of the Requestor Profile Block

Name Offset Length Type Description

BLKLEN 0 2 Bin Length of REQDB

RESERV1 2 2 Bin Reserved

BLKNME 4 8 Char Block name

REQID 12 16 Char Requestor ID

NETID 28 8 Char Network ID

ACCTNO 36 32 Char Network account number

USERID 68 32 Char Network user ID

PASSWD 100 16 Char Network password

MSGUCL 116 8 Char Network message user class

INDDNAME 124 8 Char Receive file name

NETCLS 132 1 Char Network message class

NETCHG 133 1 Char Network charge code

NETACK 134 1 Char Network acknowledgment

NETVCHK 135 1 Char Destination verification

NETRETN 136 3 Char Mailbox retention period

NETEDIO 139 1 Char EDI receive option

NETEDIP 140 1 Char EDI processing override

STGFRMTO 141 1 Char Storage format override

STGFRMT 142 1 Char Storage format

NETCMDMBR 143 8 Char Net commands PDS member

TIMEOUT 151 4 Char Communication line timeout
value

NTACKPGM 155 8 Char Remote Network
Acknowledgments processing
program

ALTNETPHONE 163 32 Char Alternate data line phone

COMPRESS 195 1 Char Compression

PRIORITY 196 1 Char Delivery priority

FILLER 197 15 Char Reserved for WebSphere Data
Interchange

DESCRIPT 213 30 Char Member description

LOGLOCK 243 1 Char Logical lock flag

LASTUID 244 17 Char User ID that performed the
latest update

LASTUDT 261 4 Bin Date and time of the latest
update

REQDB

Appendix A. WebSphere Data Interchange control blocks 619

REQDB field descriptions

BLKLEN
A 2-byte binary field that contains the length of the REQDB data block. A REQDB is
264 bytes.

RESERV1
Reserved.

BLKNME
The name of the mailbox (requestor) profile block. EDIREQDB.

REQID
The name (key) used to refer to this requestor.

NETID
The name (key) that identifies the network. The value in this field must match the
name of a member in the network profile.

ACCTNO
The account number that the network assigns to the requestor. The entry must be
left-justified. For sending and receiving EDI standard transactions using ISA/IEA
enveloping, the last position must be blank.

USERID
The user ID that the network assigns to the requestor. The entry must be
left-justified.

PASSWD
The requestor's password for using the network. When connecting to IBM services,
the first 8 characters are the current password, and the second 8 characters are
the new password (used for changing the password).

MSGUCL
The message user class. A user-defined code that trading partners agree to use for
identifying classes of information to be sent or received. Examples of classes are
DEPT01, X12, MSG, FILE, EDI, and UCS. Leave this field blank to indicate that all
information for the mailbox is to be sent or received.

INDDNAME
The name of the file into which information is received from the network. The
translator processes EDI standard transactions from this file.

NETCLS
Indicates the status of the data being sent. Applies only to sending. Valid
values are:
(blank)

Normal status
T Test status

If your request specifies a trading partner, the value is taken from the trading
partner profile and the value in this field is not used.

The Expedite parameter for network profiles is MODE.

NETCHG
Indicates how charges are shared between sender and receiver. If your request
specifies a trading partner, the value is taken from the trading partner profile and
the value in this field is not used. Valid values are:

REQDB

620 WebSphere Data Interchange Programmer’s Reference

1 Receiver pays all charges.
2 Receiver pays all charges if agreed to, or charges are split between sender

and receiver.
3 Receiver pays all charges if agreed to, or charges are split between sender

and receiver if agreed to. Otherwise, the sender pays all charges (default).
4 Charges are split between sender and receiver if agreed to. Otherwise, the

sender pays all charges.
5 Charges are split between sender and receiver.
6 Sender pays all charges.

The Expedite parameter for network profiles is CHARGE.

NETACK
Indicates which network acknowledgments (receipt, delivery, purge) you want to
receive when sending to this trading partner. If your request specifies a trading
partner, the value is taken from the trading partner profile and the value in this field
is not used. Valid values are:
(blank)

No acknowledgments
R Receipt only
D Delivery only
B Both receipt and delivery
A Purge only
C Both receipt and purge
E Either receipt or purge
F Receipt and either delivery or purge

The Expedite parameter for network profiles is ACK.

NETVCHK
Indicates whether the destination is verified before sending occurs. If your request
specifies a trading partner, the value is taken from the trading partner profile and
the value in this field is not used. Valid values are:
N No verification (default)
Y Verification required
F Attempt to verify, but send even if the destination is not verified (useful for

intersystem addressing)

The Expedite parameter for network profiles is VERIFY.

NETRETN
The number of days that data is to be kept in the network mailbox before it is
purged, if it is not received. Enter blanks or zeroes to use the default number. For
Expedite Base/z/OS, the valid range is 001-180. For Expedite/CICS, the valid range
is 01-99, left-justified. If your request specifies a trading partner, the value is taken
from the trading partner profile, and the value in this field is not used.

NETEDIO
A value that indicates whether you want to store EDI segments in the receiving file
as separate records. If your request specifies a trading partner, the value is taken
from the trading partner profile and the value in this field is not used. Valid values
are:
Y Ends records at the segment delimiter (default)
N Does not end records at the segment delimiter

The Expedite parameter is EDIOPT.

REQDB

Appendix A. WebSphere Data Interchange control blocks 621

NETEDIP
Indicates whether EDI data you receive has special EDI processing (breaking
records by the segment delimiter). If your request specifies a trading partner, the
value is taken from the trading partner profile and the value in this field is not used.
Valid values are:
Y Performs EDI processing if the common data header indicates that the data

is in EDI standard format (default)
N Omits EDI processing, regardless of the common data header

The Expedite parameter for network profiles is AUTOEDI.

STGFRMTO
Indicates whether you want to use the storage format defined in the common data
header. If there is no common data header, the format indicated in the storage
format field is used. If your request specifies a trading partner, the value is taken
from the trading partner profile and the value in this field is not used. Valid
values are:
Y Uses the storage format as defined in the common data header (default)
N Ignores the storage format defined in the common data header

The Expedite parameter for network profiles is DLMOVERRIDE.

STGFRMT
Indicates to the network how data is stored for free-form messages and files.

Valid values for several IBM products are listed below. Contact a representative of
each network you are using for all available values.

For Expedite Base/z/OS (IEBASE), valid values are:
C Stores each record with a carriage return and line-feed character and uses

the end-of-file character. These characters are represented and stored as
hexadecimal values 0D0A (CRLF) and 1A (EOF). Program source code
defined with variable length records is the type of file generally sent with
this option. Output records do not include the carriage return and line-feed
characters.

L Precedes each record with a 2-byte hexadecimal record length. Select this
option when sending data in fixed format or when sending binary data. The
output record is determined by the value in the first 2 bytes that contain the
record length.

N Stores data as it is received. Output records are built based on the record
length of the data set allocated to receive the data.

For Expedite/CICS, valid values are:
A Stores each record with a carriage return and line-feed character and uses

the end-of-file character. These characters are represented and stored as
hexadecimal values 0D0A (CRLF) and 1A (EOF). Program source code
defined with variable length records is the type of file generally sent with
this option. Output records do not include the carriage return and line-feed
characters.

L Precedes each record with a 2-byte hexadecimal record length. Select this
option when sending a data set defined in fixed format or when sending
binary data. The output record is determined by the value in the first
2 bytes that contain the record length.

O Other (free-form).

The Expedite parameter for network profiles is DELIMITED.

REQDB

622 WebSphere Data Interchange Programmer’s Reference

NETCMDMBR
The name of a PDS member that will be allocated to the ddname of EDINTCMD.
This member will contain the commands that you want to pass to a network.
WebSphere Data Interchange reads the commands from the PDS member and
writes them to the Network input file specified in the network profile member after
all substitutable variable tags have been resolved by WebSphere Data Interchange.

TIMEOUT
The maximum allowable time that the data line for communications can be idle
without being dropped. If you specify a trading partner when requesting network
activity (send or receive), the value for this field is taken from the trading partner
profile. Otherwise, the value for this field is taken from the mailbox (requestor)
profile.

NTACKPGM
The name of a program that will be used to process network acknowledgments
from a secondary network. This program is used only if you are using a gateway as
your primary network to connect to a secondary network, and have requested and
received network acknowledgments (into the Network acknowledgment file) from
the secondary network.

Note: When a gateway is used to connect to another VAN, the gateway is referred
to as the primary network because it is the network with which WebSphere
Data Interchange interfaces. The other VAN is referred to as the secondary
or remote network because WebSphere Data Interchange goes through the
gateway to reach the other network. When the gateway is used to connect
directly to a trading partner's site or when the gateway is used as the only
network, there is no secondary network.

ALTNETPHONE
The alternate phone number to dial to connect to your network.

COMPRESS
Indicates to Expedite Base/z/OS whether to compress the data. Applies only
to sending. Valid values are:
Y Compresses the data.
N Does not compress the data.
T Uses the Expedite Base/z/OS compression table to decide whether to

compress the data.

PRIORITY
Indicates to Expedite Base/z/OS and Expedite/CICS how to prioritize message
delivery. Valid values are:
(blank)

Normal delivery
P High priority

FILLER
Reserved for WebSphere Data Interchange.

DESCRIPT
The description of this profile member.

LOGLOCK
The profile member logical lock flag (for WebSphere Data Interchange use only).

LASTUID
The user ID of the last person to update this profile member.

REQDB

Appendix A. WebSphere Data Interchange control blocks 623

LASTUDT
The date and time that this profile member was last updated.

REQDB

624 WebSphere Data Interchange Programmer’s Reference

Appendix B. Sample programs

This appendix provides information about sample programs and exit routines. Many
of these are provided with the product, and reference is given to where you can find
the supplied code. For other samples, the code is illustrated within this appendix.

Creating tagged import files from fixed format files
Sample programs included in the product enable you to convert a fixed format (flat)
file into a tagged import file for importing trading partner profile (TPPROF)
members, send transaction usages, and receive transaction usages.

These sample programs and JCL include extensive documentation that describes
how they work and how they can be used.

These programs are:

v A COBOL program named EDIXF2T, which is the main program executed.

v An Assembler program named EDIXTAGF, which is link edited with EDIXTAGF,
and is a formatting service to create the tags.

v Sample JCL named EDIXF2T used to define the fixed flat file and to execute the
conversion program EDIXF2T.

These programs and JCL are provided as source and can be modified, compiled,
and link edited to suit your individual needs.

Initializing and terminating WebSphere Data Interchange
Sample programs for initialization and termination of WebSphere Data Interchange
are provided for COBOL, PL/I, and C.

COBOL initialization/termination example
A COBOL program that illustrates how to initialize and terminate WebSphere Data
Interchange using the API is provided with the product. The library member name
for this program is EDI.V3R2M0.SEDICBL2(FXXCOBA).

PL/I initialization/termination example
A PL/I program that illustrates how to initialize and terminate WebSphere Data
Interchange using the API is provided with the product. The library member name
for this program is EDI.V3R2M0.SEDIPLI2(FXXPLIA).

C initialization/termination example
The following C program illustrates how to initialize and terminate WebSphere Data
Interchange using the API within subroutines DIinit and DIterm.
/* -- */
/* Get the control block definitions */
/* -- */
#include "stdio.h" /* C I/O routines */
#include "disnb.h" /* get SNB definition */
#include "diccb.h" /* get CCB definition */
#include "difcb.h" /* get FCB definition */
/* -- */
/* Prototypes for internal functions */
/* -- */

static int check_ierr(ccb*);

© Copyright IBM Corp. 2002 625

static int check_terr(ccb*);
int

main()
{

ccb DIccb; /* WebSphere Data Interchange common block */
/* --- */
/* Call a routine to Initialize WebSphere Data Interchange */
/* --- */
if (!DIinit(&DIccb)) {

/* -- */
/* Application logic goes here */
/* -- */
/* -- */
/* Call a routine to Terminate WebSphere Data Interchange */
/* -- */
DIterm(&DIccb);

}
/* -- */
/* A subroutine to initialize WebSphere Data Interchange */
/* -- */

int
DIinit(CCBptr)

ccb *CCBptr; /* Pointer to Common Control Block */
{

snb SNB; /* Local snb */
fcb FUNCBLK; /* Local fcb */
/* --- */
/* Initialize the CCB */
/* 1. Clear it */
/* 2. Set CCB length */
/* 3. Move in language indicator */
/* --- */
memset(CCBptr,'0',sizeof(ccb));
CCBptr->zccbll=sizeof(ccb);
memcpy(CCBptr->zccblpid,"ENU ",6);
/* --- */
/* Initialize the SNB for environmental services */
/* 1. Clear it */
/* 2. Set SNB length */
/* 3. Set the number of parameters that will be passed */
/* 4. Set the name of the SERVICE being called */
/* --- */
memset(&SNB,'0',sizeof(SNB));
SNB.zsnbll=sizeof(SNB);
SNB.zsnbpc=5;
memcpy(SNB.zsnbname,"ENVSERV ",8);
/* --- */
/* Initialize the FUNCBLK for the function wanted */
/* 1. Set the length of the function block */
/* 2. Set the function value to 1 indicating INITIALIZATION */
/* --- */
FUNCBLK.zfcbll=sizeof(fcb);
FUNCBLK.zfcbfunc=1;
/* --- */
/* Make the call to FXXZC to initialize the ENVIRONMENT and */
/* check for any errors after the call. The fourth parameter to */
/* FXXZC must be changed to the APPLICATION NAME. This */
/* determines which activity log the transactions and/or error */
/* messages are logged to. */
/* --- */
printf("INITIALIZE - SET UP WebSphere Data Interchange ENVIRONMENTn");
fxxzc(&SNB,CCBptr,&FUNCBLK,"APPLNAME","SYSID");
return check_ierr(CCBptr);

}
/* -- */
/* A subroutine to terminate WebSphere Data Interchange */
/* -- */

Initializing and terminating WebSphere Data Interchange

626 WebSphere Data Interchange Programmer’s Reference

int
DIterm(CCBptr)

ccb *CCBptr; /* Pointer to Common Control Block */
{

snb SNB; /* Local snb */
fcb FUNCBLK; /* Local fcb */
/* --- */
/* Initialize the SNB for environmental services */
/* 1. Clear it */
/* 2. Set SNB length */
/* 3. Set the number of parameters that will be passed */
/* 4. Set the name of the SERVICE being called */
/* --- */
memset(&SNB,'0',sizeof(SNB));
SNB.zsnbll=sizeof(SNB);
SNB.zsnbpc=3;
memcpy(SNB.zsnbname,"ENVSERV ",8);
/* --- */
/* Initialize the FUNCBLK for the function wanted */
/* 1. Set the length of the function block */
/* 2. Set the function value to 2 indicating TERMINATION */
/* --- */
FUNCBLK.zfcbll=sizeof(fcb);
FUNCBLK.zfcbfunc=2;
/* --- */
/* Make the call to FXXZC to terminate the ENVIRONMENT and */
/* check for any errors after the call. */
/* --- */
printf("TERMINATE the WebSphere Data Interchange ENVIRONMENTn");
fxxzc(&SNB,CCBptr,&FUNCBLK);
return check_terr(CCBptr);

}
/* -- */
/* A subroutine to check the results of a terminate */
/* -- */

int
check_terr(CCBptr)

ccb *CCBptr; /* Pointer to CCB
control block */
{

int lrc; /* Local return value */
/* -- */
/* Check Return Codes received from TERMINATION */
/* return 1 if there are errors */
/* return 0 if there are NO errors */
/* -- */
lrc=1;
switch ((int)CCBptr->zccbrc) {

case 0:
/* -- */
/* ZERO indicates termination was successful */
/* -- */
lrc=0;
printf("WebSphere Data Interchange TERMINATION SUCCESSFULn");
break;

default:
/* -- */
/* Invalid return code. Display the return codes and */
/* terminate processing */
/* -- */
printf("INVALID RETURN CODE FROM WebSphere Data Interchangen");
printf("RETURN CODE = %ld, EXTENDED RETURN CODE = %ldn",

CCBptr->zccbrc,CCBptr->zccberc);
break;

}
return lrc;

}

Initializing and terminating WebSphere Data Interchange

Appendix B. Sample programs 627

/* -- */
/* A subroutine to check the results of an initialize */
/* -- */

int
check_ierr(CCBptr)

ccb *CCBptr; /* Pointer to CCB control block */
{

int lrc; /* Local return value */
/* -- */
/* Check Return Codes received from Initialization */
/* return 1 if there are errors */
/* return 0 if there are NO errors */
/* -- */
lrc=1;
switch ((int)CCBptr->zccbrc) {

case 0:
/* -- */
/* ZERO indicates initialization was successful and */
/* regular processing can continue */
/* -- */
lrc=0;
printf("WebSphere Data Interchange INITIALIZATION SUCCESSFULn");
break;

case 4:
/* -- */
/* FOUR indicates initialization was not successful. */
/* Display the return code and extended return code and */
/* terminate processing. */
/* -- */
printf("WebSphere Data Interchange INITIALIZATION FAILEDn");
printf("RETURN CODE = %ld, EXTENDED RETURN CODE = %ldn",

CCBptr->zccbrc,CCBptr->zccberc);
break;

default:
/* -- */
/* Invalid return code. Display the return codes and */
/* terminate processing */
/* -- */
printf("INVALID RETURN CODE FROM WebSphere Data Interchangen");
printf("RETURN CODE = %ld, EXTENDED RETURN CODE = %ldn",

CCBptr->zccbrc,CCBptr->zccberc);
break;

}
return lrc;

}

Querying the Transaction Store
Sample programs for querying the WebSphere Data Interchange Transaction Store
are provided for COBOL and PL/I.

Querying the Transaction Store using COBOL
A sample COBOL CICS program shows how to invoke the Utility to query the
Transaction Store. The program library member name is
EDI.V3R2M0.SEDICBL2(FXXCOBU)

Querying the Transaction Store using PL/I
A sample PL/I CICS program shows how to invoke the Utility to query the
Transaction Store. The program library member name is
EDI.V3R2M0.SEDIPLI2(FXXPLIU)

Initializing and terminating WebSphere Data Interchange

628 WebSphere Data Interchange Programmer’s Reference

Translating and queueing for send using C
This C program shows how to translate application data to EDI format and
envelopes the EDI data for subsequent sending to a trading partner using the API.
It uses the TRterm subroutine which is in the End Translation sample (see “Ending
translation using C” on page 633).
/* -- */
/* Include the definition files */
/* -- */
#include "stdio.h" /* C I/O definitions */
#include "disnb.h" /* SNB definition */
#include "diccb.h" /* CCB definition */
#include "difcb.h" /* FCB definition */
#include "ditrcb.h" /* TRCB definition */
#include "didblk.h" /* TRIDB and TRODB definitions */

/* -- */
/* Prototype internal functions */
/* -- */

static int check_error(ccb*);
int

main()
{

snb TRsnb; /* SNB for translator */
ccb DIccb; /* WDI common blk */
fcb TRfcb; /* Translator function block */
TRcb TPCB; /* Translator control block */
DATAblk *TPIDB,*TPODB; /* Pointers to data blocks */
/* --- */
/* Call a routine to Initialize WebSphere Data Interchange */
/* --- */
if (!DIinit(&DIccb)) {

/* -- */
/* Initialize was successful so continue processing */
/* -- */
/* -- */
/* Prepare the translator SNB */
/* 1. Initialize to zeros */
/* 2. Set the SNB length */
/* 3. Set the number parameters passed to the translator */
/* 4. Set the name of the translator service (TRANPROC) */
/* -- */
memset(&TRsnb,'0',sizeof(TRsnb));
TRsnb.zsnbll=sizeof(snb);
TRsnb.zsnbpc=6;
memcpy(TRsnb.zsnbname,"TRANPROC",8);
/* -- */
/* Prepare the translator FCB */
/* 1. Set the FCB length */
/* 2. Set the function for PRODUCTION SEND TRANSLATE (131) */
/* -- */
TRfcb.zfcbll=sizeof(fcb);
TRfcb.zfcbfunc=131;
/* -- */
/* Prepare the translator control block */
/* -- */
memset(&TPCB,' ',sizeof(TPCB));
TPCB.blklen = sizeof(TPCB);
memcpy(TPCB.blknme,"EDITRCB ",8);
/* -- */
/* set ATFID to data format ID that was defined using the */
/* Data Format screens. This format describes the */
/* structure of your Application data. */
/* -- */
memcpy(TPCB.atfid,"POSEND",6);
/* -- */

Translating and queueing for send using C

Appendix B. Sample programs 629

/* Set the internal trading partner ID for this trading partner */
/* that was defined using Trading Partner transaction screens */
/* -- */
memcpy(TPCB.intpid,"XYZCOMPANYINTPID",16);
/* -- */
/* Prepare the INPUT and OUTPUT data blocks */
/* -- */
TPIDB = (DATAblk*) malloc(32767);
TPIDB->blklen = 32767;
memcpy(TPIDB->blknme,"EDITRIN ",8);

/* MOVE APPLICATION DATA TO TPIDB.data */
/* MOVE APPLICATION DATA length to TPIDB.datlen *

TPODB = (DATAblk*) malloc(32767);
TPODB->blklen = 32767;
memcpy(TPODB->blknme,"EDITROUT",8);
/* -- */
/* Call the translator to TRANSLATE application data */
/* -- */
printf("TRANSLATE - TRANSLATE AND QUEUE TO SENDn");
fxxzc(&TRsnb,&DIccb,&TRfcb,&TPCB,TPIDB,TPODB);
if (!check_error(&DIccb)) {

/* --- */
/* There were no errors, call translator with a TERMINATION */
/* request to finish building and to queue the transaction */
/* data */
/* --- */
TRterm(&TRsnb,&DIccb,&TRfcb,&TPCB,TPIDB,TPODB);

}
/* -- */
/* Terminate WebSphere Data Interchange */
/* -- */
DIterm(&DIccb);

}
}

static int
check_error(CCBptr)

ccb *CCBptr; /* Pointer to common block */
{

int lrc; /* return code */
/* --- */
/* Check the return codes from a SEND TRANSLATE request */
/* --- */
lrc=0;
switch ((int)CCBptr->zccbrc) {

case 0:
/* --- */
/* Return code is zero, the translator was successful */
/* --- */
printf("Translation was successfuln");
break;

case 8:
/* --- */
/* If the return code is EIGHT and the Extended Return Code*/
/* is from ONE to SIX, this indicates a Translation Error. */
/* If the Extended Return Code is greater than or equal to */
/* TEN, a non-translation error has occurred and */
/* translator will have terminated itself automatically */
/* --- */
switch ((int)CCBptr->zccberc) {

case 1: /* data element error */
printf("Data element level error occurredn");
break;

case 2: /* segment level error */
printf("Segment level occurredn");
break;

case 3: /* transaction level error */
case 4: /* function group level error */

Translating and queueing for send using C

630 WebSphere Data Interchange Programmer’s Reference

case 5: /* envelope level error */
case 6: /* invalid data in input file */

printf("Unexpected error during send processingn");
printf("Return code = %ld, extended return code = %ld",

CCBptr->zccbrc,CCBptr->zccberc);
break;

default:
lrc = 1;
printf("Non translation error occurredn");
printf("Return code = %ld, extended return code = %ld",

CCBptr->zccbrc,CCBptr->zccberc);
break;

}
case 12:

/* --- */
/* A severe error occurred */
/* --- */
lrc = 1;
printf("A severe error occurred in translationn");
printf("Return code = %ld, extended return code = %ld",

CCBptr->zccbrc,CCBptr->zccberc);
break;

default:
/* --- */
/* An invalid return code was returned */
/* --- */
lrc = 1;
printf("An invalid return code from the translatorn");
printf("Return code = %ld, extended return code = %ld",

CCBptr->zccbrc,CCBptr->zccberc);
break;

}
return lrc;

}

Sending queued data using C
This C program shows how to send previously-translated-and-enveloped data to a
trading partner using the API.
/* -- */
/* Get the control block definitions */
/* -- */
#include "stdio.h" /* C I/O library */
#include "disnb.h" /* SNB definition */
#include "diccb.h" /* CCB definition */
#include "difcb.h" /* FCB definition */
#include "dicmcb.h" /* TRCB definition */
#include "ditpdb.h" /* TPPDB definition */
/* -- */
/* Provide function prototypes */
/* -- */

static int check_error(ccb*);
int

main()
{

ccb DIccb; /* Common Control Block */
snb CMsnb; /* SNB for communications */
fcb CMfcb; /* FCB for communications */
CMcb CMCB; /* Communication control block */
TPPdb CMTPPDB; /* Trading Partner Data Block */
/* --- */
/* Call function for WebSphere Data Interchange initialization */
/* --- */
if (DIinit(&DIccb))

return 1;
/* --- */

Translating and queueing for send using C

Appendix B. Sample programs 631

/* Initialize the SNB for communications support */
/* 1. Initialize the block to zeros */
/* 2. Set block length */
/* 3. Set the number of parameters to communications */
/* 4. Set the name of the communications service (COMM) */
/* --- */
memset(&CMsnb,'0',sizeof(snb));
CMsnb.zsnbll=sizeof(snb);
CMsnb.zsnbpc=6;
memcpy(CMsnb.zsnbname,"COMM ",8);
/* --- */
/* Initialize the function block for communications */
/* 1. Set the length of the block */
/* 2. Set the function to SEND TRANSACTION DATA */
/* --- */
CMfcb.zfcbll=sizeof(fcb);
CMfcb.zfcbfunc=211;
/* --- */
/* Initialize the control block for communications */
/* --- */
memset(&CMCB,' ',sizeof(CMCB));
CMCB.blklen=sizeof(CMCB);
memcpy(CMCB.blknme,"EDICMCB",7);
/* --- */
/* Set the network operation (netop) to indicate that we want to */
/* send X12 data (SENDX12) */
/* --- */
memcpy(CMCB.netop,"SENDX12",7);
/* --- */
/* Set the requestor id (reqid) equal to the member ID of an */
/* entry in the REQUESTOR profile. */
/* --- */
memcpy(CMCB.reqid,"XYZCOMPANYPOSEND",16);
/* --- */
/* NULLS in the ename field indicates the message user class from */
/* the REQUESTOR profile will be used */
/* --- */
memset(CMCB.ename,'0',sizeof(CMCB.ename));
/* --- */
/* Initialize the trading partner Data block */
/* --- */
memset(&CMTPPDB,' ',sizeof(CMTPPDB));
CMTPPDB.blklen=sizeof(CMTPPDB);
memcpy(CMTPPDB.blknme,"EDITPPDB",8);
/* --- */
/* Issue the call to send the X12 data */
/* --- */
printf("SEND TRANSACTION DATAn");
fxxzc(&CMsnb,&DIccb,&CMfcb,&CMCB,&CMTPPDB,(void*)0);
if (check_error(&DIccb)) {

/* -- */
/* Add code here to process a failed SEND request */
/* -- */

}
/* --- */
/* Terminate WebSphere Data Interchange */
/* --- */
DIterm(&DIccb);
return 0;

}
static int

check_error(CCBptr)
ccb *CCBptr; /* Pointer to the common block */

{
int lrc; /* return code */

lrc=1;
/* --- */

Sending queued data using C

632 WebSphere Data Interchange Programmer’s Reference

/* Process according to the return code in the CCB */
/* --- */
switch ((int)CCBptr->zccbrc) {

case 0:
/* --- */
/* Data was successfully sent */
/* --- */
printf("Data successfully sent to the networkn");
lrc=0;
break;

case 4:
/* --- */
/* Warning from communications */
/* --- */
printf("A warning was received when SENDING datan");
printf("Return code = %ld, extended return code = %ldn",

CCBptr->zccbrc,CCBptr->zccberc);
lrc=0;
break;

case 8:
case 12:

/* --- */
/* An error was returned by communications */
/* --- */
printf("An error was received when SENDING datan");
printf("Return code = %ld, extended return code = %ldn",

CCBptr->zccbrc,CCBptr->zccberc);
break;

default:
/* --- */
/* An invalid return code from communications */
/* --- */
printf("An invalid return code when SENDING datan");
printf("Return code = %ld, extended return code = %ldn",

CCBptr->zccbrc,CCBptr->zccberc);
break;

}
return lrc;

}

Ending translation using C
This C program shows how to end translation of application data and envelope it for
subsequent sending to a trading partner using the API.
/* -- */
/* Get control block definitions */
/* -- */
#include "stdio.h" /* C I/O library */
#include "disnb.h" /* SNB definition */
#include "diccb.h" /* CCB definition */
#include "difcb.h" /* FCB definition */
#include "ditrcb.h" /* TRCB definition */
#include "didblk.h" /* TRIDB and TRODB definitions */

/* -- */
/* Prototype for internal function */
/* -- */

static void check_error(ccb*);
int

TRterm(SNBptr,CCBptr,TPCBptr,TPIDB,TPODB)
snb *SNBptr; /* Pointer to SNB for translator */
ccb *CCBptr; /* Pointer to common block */
TRcb *TPCBptr; /* Pointer to translator control block */
DATAblk *TPIDB; /* Pointer to input data block */
DATAblk *TPODB; /* Pointer to output data block */

{

Sending queued data using C

Appendix B. Sample programs 633

fcb TRfcb; /* function block for translator termination */
/* --- */
/* Set up the function block for TERMINATION of the translator */
/* --- */
TRfcb.zfcbll = sizeof(fcb);
TRfcb.zfcbfunc = 1000;
/* --- */
/* Make the call to terminate translation */
/* --- */
printf("END_TRANSLATOR - Terminate call to translatorn");
fxxzc(SNBptr,CCBptr,&TRfcb,TPCBptr,TPIDB,TPODB);
check_error(CCBptr);

}
static void

check_error(CCBptr)
ccb *CCBptr; /* Pointer to common block */

{
switch ((int)CCBptr->zccbrc) {

case 0:
/* --- */
/* Termination of the translator was successful */
/* --- */
printf("TRANSACTION PROCESSOR TERMINATED SUCCESSFULLYn");
break;

case 8:
case 12:

/* --- */
/* Termination failed */
/* --- */
printf("TRANSACTION PROCESSOR TERMINATION FAILEDn");
printf("Return code = %ld , extended return code = %ldn",

CCBptr->zccbrc,CCBptr->zccbrc);
break;

default:
/* --- */
/* Invalid return code */
/* --- */
printf("Invalid return code from TERMINATION calln");
printf("Return code = %ld , extended return code = %ldn",

CCBptr->zccbrc,CCBptr->zccbrc);
break;

}
}

Receiving data from a network using C
This C program shows how to receive data from a network using the API.

/* -- */
/* Get the control block definitions */
/* -- */
#include "stdio.h" /* C I/O library */
#include "disnb.h" /* SNB definition */
#include "diccb.h" /* CCB definition */
#include "difcb.h" /* FCB definition */
#include "dicmcb.h" /* TRCB definition */
#include "ditpdb.h" /* TPPDB definition */
/* -- */
/* Prologues for internal functions */
/* -- */

static int check_error(ccb*);
int

main()
{

ccb DIccb; /* Common Control Block */
snb CMsnb; /* SNB for communications */

Ending translation using C

634 WebSphere Data Interchange Programmer’s Reference

fcb CMfcb; /* FCB for communications */
CMcb CMCB; /* Communication control block */
TPPdb CMTPPDB; /* Trading Partner Data Block */
/* --- */
/* Call function for WebSphere Data Interchange initialization */
/* --- */
if (DIinit(&DIccb))

return 1;
/* --- */
/* Initialize the SNB for communications support */
/* 1. Initialize the block to zeros */
/* 2. Set block length */
/* 3. Set the number of parameters to communications */
/* 4. Set the name of the communications service (COMM) */
/* --- */
memset(&CMsnb,'0',sizeof(snb));
CMsnb.zsnbll=sizeof(snb);
CMsnb.zsnbpc=6;
memcpy(CMsnb.zsnbname,"COMM ",8);
/* --- */
/* Initialize the function block for communications */
/* 1. Set the length of the block */
/* 2. Set the function to RECEIVE */
/* --- */
CMfcb.zfcbll=sizeof(fcb);
CMfcb.zfcbfunc=232;
/* --- */
/* Initialize the control block for communications */
/* --- */
memset(&CMCB,' ',sizeof(CMCB));
CMCB.blklen=sizeof(CMCB);
memcpy(CMCB.blknme,"EDICMCB",7);
/* --- */
/* Set the network operation (netop) to indicate that we want to */
/* receive X12 data (RECVX12) */
/* --- */
memcpy(CMCB.netop,"RECVX12",7);
/* --- */
/* Set the requestor id (reqid) equal to the member ID of an */
/* entry in the REQUESTOR profile. */
/* --- */
memcpy(CMCB.reqid,"XYZCOMPANYPODEPT",16);
/* --- */
/* acctyp of "D" means to receive for this trading partner only */
/* --- */
*CMCB.acctyp='D';
/* --- */
/* datatyp of "D" indicates a DDNAME is used rather than DSNAME */
/* --- */
*CMCB.datatyp='D';
/* --- */
/* NULLS in the ename field indicates the message user class from */
/* the REQUESTOR profile will be used */
/* --- */
memset(CMCB.ename,'0',sizeof(CMCB.ename));
/* --- */
/* Set record length indicator (RESRECL) to indicate that the */
/* lrecl of the output file should be used as the record length */
/* --- */
*CMCB.resrecl = 'S';
/* --- */
/* Initialize the trading partner Data block */
/* --- */
memset(&CMTPPDB,' ',sizeof(CMTPPDB));
CMTPPDB.blklen=sizeof(CMTPPDB);
memcpy(CMTPPDB.blknme,"EDITPPDB",8);
/* --- */

Receiving data from a network using C

Appendix B. Sample programs 635

/* Issue the call to receive the X12 data */
/* --- */
printf("RECEIVE IMMEDIATEn");
fxxzc(&CMsnb,&DIccb,&CMfcb,&CMCB,&CMTPPDB,(void*)0);
if (!check_error(&DIccb)) {

/* -- */
/* Add code here to call translator to processed received data */
/* -- */

}
/* --- */
/* Terminate WebSphere Data Interchange */
/* --- */
DIterm(&DIccb);
return 0;

}
static int

check_error(CCBptr)
ccb *CCBptr; /* Pointer to the common block */

{
int lrc; /* return code */
lrc=1;
/* --- */
/* Process according to the return code in the CCB */
/* --- */
switch ((int)CCBptr->zccbrc) {

case 0:
/* --- */
/* Data was successfully received */
/* --- */
printf("Data successfully received from the networkn");
lrc=0;
break;

case 4:
/* --- */
/* Warning from communications */
/* --- */
printf("A warning was received when RECEIVING datan");
printf("Return code = %ld, extended return code = %ldn",

CCBptr->zccbrc,CCBptr->zccberc);
lrc=0;
break;

case 8:
case 12:

/* --- */
/* An error was returned by communications */
/* --- */
printf("An error was received when RECEIVING datan");
printf("Return code = %ld, extended return code = %ldn",

CCBptr->zccbrc,CCBptr->zccberc);
break;

default:
/* --- */
/* An invalid return code from communications */
/* --- */
printf("An invalid return code when RECEIVING datan");
printf("Return code = %ld, extended return code = %ldn",

CCBptr->zccbrc,CCBptr->zccberc);
break;

}
return lrc;

}

Translating received data using C
This C program shows how to deenvelope previously-received EDI data and
translate it to application format using the API.

Receiving data from a network using C

636 WebSphere Data Interchange Programmer’s Reference

/* -- */
/* Include the definition files */
/* -- */
#include "stdio.h" /* C I/O definitions */
#include "disnb.h" /* SNB definition */
#include "diccb.h" /* CCB definition */
#include "difcb.h" /* FCB definition */
#include "ditrcb.h" /* TRCB definition */
#include "didblk.h" /* TRIDB and TRODB definitions */
/* -- */
/* prototypes */
/* -- */

static int check_error(ccb*);
int

main()
{

snb TRsnb; /* SNB for translator */
ccb DIccb; /* Common control block */
fcb TRfcb; /* Translator function block */
TRcb TPCB; /* Translator control block */
DATAblk *TPIDB,*TPODB; /* Pointers to data blocks */
/* --- */
/* Call a routine to Initialize WebSphere Data Interchange */
/* --- */
if (!DIinit(&DIccb)) {

/* -- */
/* Initialize was successful so continue processing */
/* -- */
/* -- */
/* Prepare the translator SNB */
/* 1. Initialize to zeros */
/* 2. Set the SNB length */
/* 3. Set the number parameters passed to the translator */
/* 4. Set the name of the translator service (TRANPROC) */
/* -- */
memset(&TRsnb,'0',sizeof(TRsnb));
TRsnb.zsnbll=sizeof(snb);
TRsnb.zsnbpc=6;
memcpy(TRsnb.zsnbname,"TRANPROC",8);
/* -- */
/* Prepare the translator FCB */
/* 1. Set the FCB length */
/* 2. Set the function for PRODUCTION SEND TRANSLATE (131) */
/* -- */
TRfcb.zfcbll=sizeof(fcb);
TRfcb.zfcbfunc=212;
/* -- */
/* Prepare the translator control block */
/* -- */
memset(&TPCB,' ',sizeof(TPCB));
TPCB.blklen = sizeof(TPCB);
memcpy(TPCB.blknme,"EDITRCB ",8);
/* -- */
/* set REQID to REQUESTOR profile that was defined using */
/* profile screens. The requestor profile contains the */
/* DDNAME of the file that was received and is to be translated.*/
/* -- */
memcpy(TPCB.reqid,"XYZCOMPANYPODEPT",16);
/* -- */
/* Prepare the INPUT and OUTPUT data blocks */
/* -- */
TPIDB = (DATAblk*) malloc(32767);
TPIDB->blklen = 32767;
memcpy(TPIDB->blknme,"EDITRIN ",8);
TPODB = (DATAblk*) malloc(32767);
TPODB->blklen = 32767;

Translating received data using C

Appendix B. Sample programs 637

memcpy(TPODB->blknme,"EDITROUT",8);
/* -- */
/* Call the translator to TRANSLATE STANDARD data to APPL format*/
/* -- */
for (;!DIccb.zccbrc;) {

printf("TRANSLATE STANDARD DATA to APPLICATION FORMATn");
fxxzc(&TRsnb,&DIccb,&TRfcb,&TPCB,TPIDB,TPODB);
if (!check_error(&DIccb)) {

/* -- */
/* Add code here to process the application data */
/* placed in TRODB by the translator. */
/* -- */

}
}
/* -- */
/* Terminate WebSphere Data Interchange */
/* -- */
DIterm(&DIccb);

}
}

static int
check_error(CCBptr)

ccb *CCBptr; /* Pointer to common block */
{

int lrc; /* return code */
/* --- */
/* Check the return codes from a RECEIVE TRANSLATE request */
/* --- */
lrc=0;
switch ((int)CCBptr->zccbrc) {

case 0:
/* --- */
/* Return code is zero, the translator was successful */
/* --- */
printf("Translation was successfuln");
break;

case 8:
/* --- */
/* If the return code is EIGHT and the Extended Return Code*/
/* is from ONE to SIX, this indicates a Translation Error. */
/* If the Extended Return Code is greater than or equal to */
/* TEN, a non-translation error has occurred and */
/* translator will have terminated itself automatically */
/* --- */
switch ((int)CCBptr->zccberc) {

case 1: /* data element error */
printf("Data element level error occurredn");
CCBptr->zccbrc=CCBptr->zccberc=0;
break;

case 2: /* segment level error */
printf("Segment level occurredn")
CCBptr->zccbrc=CCBptr->zccberc=0;
break;

case 3: /* transaction level error */
case 4: /* function group level error */
case 5: /* envelope level error */
case 6: /* invalid data in input file */

lrc=1;
printf("Error in Envelope format or contentn");
printf("Return code = %ld, extended return code = %ld",

CCBptr->zccbrc,CCBptr->zccberc);
CCBptr->zccbrc=CCBptr->zccberc=0;
break;

default:
lrc = 1;
printf("Non translation error occurredn");
printf("Return code = %ld, extended return code = %ld",

Translating received data using C

638 WebSphere Data Interchange Programmer’s Reference

CCBptr->zccbrc,CCBptr->zccberc);
break;

}
case 12:

/* --- */
/* A severe error occurred */
/* --- */
lrc = 1;
printf("A severe error occurred in translationn");
printf("Return code = %ld, extended return code = %ld",

CCBptr->zccbrc,CCBptr->zccberc);
break;

default:
/* --- */
/* An invalid return code was returned */
/* --- */
lrc = 1;
printf("An invalid return code from the translatorn")
printf("Return code = %ld, extended return code = %ld",

CCBptr->zccbrc,CCBptr->zccberc);
break;

}
return lrc;

}

Generating reports
Sample programs are provided for generating several reports.

Generating a data extract report
Two COBOL programs that illustrate how to generate a Transaction Store report
using as input the output from a previous PERFORM ENVELOPE DATA EXTRACT
Utility command are provided with the product. The library member names for these
programs are EDI.V3R2M0.SEDICBL1(EDISAMR1) and
EDI.V3R2M0.SEDICBL1(EDISAMS1).

Generating a network activity report
A COBOL program that illustrates how to generate a Transaction Store report using
as input the output from a previous PERFORM TRADING PARTNER CAPABILITY
DATA EXTRACT Utility command is provided with the product. The library member
name for this program is EDI.V3R2M0.SEDICBL1(EDISAMT1).

Initializing, invoking, and terminating HOT-DI
Sample COBOL programs are provided that show how to initialize, invoke, and
terminate HOT-DI.

COBOL HOT-DI initialization example
This COBOL CICS program shows how to initialize a HOT-DI session using the API.
The library member name for this program is EDI.V3R2M0.SEDICBL2(FXXHOT1).

COBOL HOT-DI invocation example
This COBOL CICS program shows how to invoke the WebSphere Data Interchange
Utility through a HOT-DI session using the API. The library member name for this
program is EDI.V3R2M0.SEDICBL2(FXXHOT2).

Translating received data using C

Appendix B. Sample programs 639

COBOL HOT-DI termination example
This COBOL CICS program shows how to terminate a HOT-DI session using the
API. The library member name for this program is EDI.V3R2M0.SEDICBL2(FXXHOT3).

Invoking response programs
Response programs are user applications that the WebSphere Data Interchange
Utility (or continuous receive facility) invokes. For more information about response
programs, see “Response applications” on page 335.

COBOL response program example
This COBOL CICS program shows some of the function of a simple continuous
receive response program. The library member name for this program is
EDI.V3R2M0.SEDICBL2(FXXRESP).

Field exit programs
Sample field exit programs are provided that show different functions. You can copy
these samples and customize them for your application.

Sample 1
This C program is an example of a Send/Receive Translation field user exit. The
library member name for this program is EDI.V3R2M0.SEDICCC1(EDITRX1).

Sample 2
This C program is an example of a Send/Receive Translation field user exit. It takes
the value that has been accumulated by EDITRX1 and returns it for mapping. The
library member name for this program is EDI.V3R2M0.SEDICCC1(EDITRX2).

Sample 3
This COBOL program is an example of a Send/Receive Translation field user exit.
The library member name for this program is EDI.V3R2M0.SEDICBL1(EDICOBE).

Test for filter type
This C program is an example of a Send/Receive Translation filter user exit. It
checks the Security Profile to determine the type of filtering to be done and invokes
the appropriate routine. The library member name for this program is
EDI.V3R2M0.SEDICCC1(EDITRF4).

Filtration exit examples
Several filter example programs are provided with the product: their descriptions
follow. For more information on the filtration routines and the parameter definitions
required for various languages, see “Filtering routine” on page 297.

Hexadecimal filter example
This C program is an example of a Send/Receive Translation filter user exit and is
invoked for hexadecimal filtering. The library member name for this program is
EDI.V3R2M0.SEDICCC1(EDITRF1).

Initializing, invoking, and terminating HOT-DI

640 WebSphere Data Interchange Programmer’s Reference

ASCII filter example
This C program is an example of a Send/Receive Translation filter user exit and is
invoked for ASCII filtering. The library member name for this program is
EDI.V3R2M0.SEDICCC1(EDITRF2).

ASCII/BAUDOT filter example
This C program is an example of a Send/Receive Translation filter user exit and is
invoked for ASCII/BAUDOT filtering. The library member name for this program is
EDI.V3R2M0.SEDICCC1(EDITRF3).

Authentication examples
Two authentication example programs are provided with the product: their
descriptions follow. For more information about authentication routines, see
“Authentication routine” on page 294.

Sample 1
This C program is an example of a Send/Receive Translation authentication user
exit. It is invoked for the authentication of data using the IBM 4753 Network
Security Processor. The library member name for this program is
EDI.V3R2M0.SEDICCC1(EDITRAA).

Sample 2
This C program is an example of a Send/Receive Translation authentication user
exit. It is invoked for the authentication of data using the IBM Common
Cryptographic Architecture Cryptographic API.
/* --- */
/* $MAJOR */
/* */
/* Module Name: CCAAA */
/* */
/* Descriptive Name: Authentication routine */
/* */
/* STATUS: */
/* */
/* Function: This program is an example of an authentication */
/* routine which uses the IBM Common Cryptographic */
/* Architecture Cryptographic Application Programming */
/* Interface as defined in reference SC40-1675. */
/* */
/* This program is invoked by WebSphere Data Interchange */
/* during the enveloping or de-enveloping process */
/* */
/* Dependencies: none */
/* */
/* Restrictions: None */
/* */
/* Language: C */
/* */
/* Attributes: Reentrant, AMODE(31) RMODE(ANY) */
/* INCLUDE OBJ(CCAAA) */
/* INCLUDE OBJ(FXXZCITF) */
/* INCLUDE OBJ(FXXZC) */
/* ENTRY FXXZCITF */
/* NAME CCAAA(R) */
/* */
/* NOTES: Since this program is written in C, the entry point */
/* must be FXXZCITF, which is provided by the WDI product. */
/* FXXZCITF establishes the necessary C environment */

Filtration exit examples

Appendix B. Sample programs 641

/* and branches to the main entry point of the program. */
/* */
/* Parameters passed from WDI can be above the line so this */
/* program has to be 31 bit addressable */
/* */
/* */
/* PARAMETERS: IN - Service Name Block (snb) */
/* Common Block (ccb) */
/* Function Block (fcb) */
/* Authentication handle (fh) */
/* Authentication key (ak) */
/* Security data block (spdb) */
/* Buffer size */
/* Buffer containing input data */
/* Length of data in input buffer */
/* Number of characters remaining that would */
/* not fit into the input buffer */
/* Address for return of the MAC value */
/* */
/* IN OUT - None */
/* */
/* OUT - CAS COMMON BLOCK */
/* */
/* RC ERC Meaning */
/* 8 21 Invalid function code */
/* 8 24 Error getting data */
/* */
/* * As defined by the processor implementing the CCA */
/* */
/* --- */
#include <stdefs.h>
#pragma linkage (CSNBMGN,OS) /* MAC Generate Routine */
#include "disnb.h" /* SNB definition */
#include "diccb.h" /* CCB definition */
#include "difcb.h" /* FCB definition */
#include "dispdb.h" /* Security data block definition */

/* --- */
/* Constant definitions used by this program */
/* --- */

#define NULLPTR (void *) 0 /* Null pointer */
#define EXISTS 0 /* Existence check */
#define MAC_GEN 1 /* Generate a MAC */
#define MAC_VER 2 /* Verify a MAC */
#define KEY_SIZE 16 /* Key size */
#define MAC_SIZE 4 /* MAC length */
/* --- */
/* Static data used by program */
/* --- */
static fcb getfcb={4,1}; /* Used to get more data */
static char *MAC_METHOD = "X9.9-1 "; /* MAC X9.9-1 method */
static char *ONLY = "ONLY "; /* No segmenting */
static char *FIRST = "FIRST "; /* First segment of data */
static char *MIDDLE = "MIDDLE "; /* Middle segment of data */
static char *LAST = "LAST "; /* Last segment of data */
static char *MAC_LENGTH = "MACLEN4 "; /* MAC length of 4 bytes */
main(snbptr,ccbptr,fcbptr,fh,ak,spdbptr,

bufsize,bufin,datalen,rbc,macval)
snb *snbptr; /* Service name block pointer set up by WDI */

/* to invoke this program */
ccb *ccbptr; /* Common block pointer used by WDI for all */

/* function requests */
fcb *fcbptr; /* Function block pointer which indicates */

/* the direction of the authentication */
/* 1=SEND(MAC_GEN), 2=RECEIVE(MAC_VER) */

long *fh; /* Auth. handle which is used when GETTING */
/* more data */

char *ak; /* 16 byte key name for the process */

Authentication examples

642 WebSphere Data Interchange Programmer’s Reference

spdb *spdbptr; /* Security profile member that specified */
/* this program should be called */

long *bufsize; /* The size of the input buffer */
char *bufin; /* Buffer that contains the source data */
long *datalen; /* Length of data within the input buffer */
long *rbc; /* The number of source bytes remaining */

/* that would not fit into the input buffer */
long *macval; /* Pointer where MAC value should be returned*/

{
long rule_count; /* Rule array count */
char rule_array[5][8]; /* Rule array */
char min_in[8]; /* Minimum size buffer to work with */
char *local_in; /* Local input buffer pointer */
long local_dl; /* Length of data in local buffer */
char key_token[64]; /* Key token for authentication */
long local_long; /* Filler variable */
char chain_vect[18]; /* Chaining vector */
char local_macval[8]; /* Must pass routine 8 byte area */
char *rule; /* Current rule to follow */

/* --- */
/* Do some special processing if this is an GEN or VER request. */
/* --- */
if ((fcbptr->zfcbfunc == MAC_GEN)

(fcbptr->zfcbfunc == MAC_VER))
{

/* -- */
/* The key passed to this routine by WDI (ak) is a 16-byte key */
/* name that is taken from either the WDI mapping records for */
/* generation or the S1S or S2S security segments for */
/* validation. The CCA MACgen and MACver calls require that */
/* a CCA MAC key be provided as a key token value. It is your */
/* responsibility to write code to handle the storage */
/* of internal key tokens in a key storage data set so that an */
/* association can be made between the name of a key (key label) */
/* and the value of that key (CCA MAC key value). You */
/* must also provide a key management routine that can be called */
/* from this routine. The function of this key management routine*/
/* would be to accept a 16-byte key label and type as input and */
/* return as output a 64-byte key identifier. For more */
/* information on key labels, key types, and key identifiers, see */
/* "IBM Common Cryptographic Architecture Cryptographic */
/* Application Programming Interface Reference (SC40-1675)" */
/* */
/* If your security subsystem is the Integrated Cryptographic */
/* Feature (ICRF) with the Integrated Cryptographic Service */
/* Facility / MVS (ICSF/MVS), you should replace "key_transform" */
/* by a routine that calls whatever program your installation */
/* uses to manage DATA keys and MAC keys. For more information */
/* on ICSF/MVS, see the following ICSF/MVS publications: */
/* "General Information (GC23-0093)" */
/* "Administrator's Guide (SC23-0097)" */
/* "Application Programmer's Guide (SC23-0098)" */
/* "System Programmer's Guide (SC23-0096)" */
/* -- */
memset(key_token, ' ', sizeof(key_token));
key_transform(ak,"MAC ",key_token);
/* -- */
/* Determine what you are asked to do and process. */
/* -- */

switch(fcbptr->zfcbfunc)
{
case EXISTS:

/* -- */
/* Existence check returns with success. */
/* -- */
break;

case MAC_GEN:

Authentication examples

Appendix B. Sample programs 643

case MAC_VER:
/* -- */
/* Generate a MAC value both times and let */
/* WDI handle the verification. */
/* -- */
/* -- */
/* Set up some initial values. */
/* -- */
rule_count = 3; /* Method, control, length */
memset(min_in, ' ', sizeof(min_in));
memset(chain_vect, 0x00,sizeof(chain_vect));
memset(rule_array, ' ', sizeof(rule_array));
memcpy(rule_array[0], MAC_METHOD, sizeof(rule_array[0]));
memcpy(rule_array[2], MAC_LENGTH, sizeof(rule_array[2]));
memcpy(key_token, ak, KEY_SIZE);
/* -- */
/* Set up local pointers and sizes. You want to */
/* ensure that you have a buffer of at least 8 */
/* bytes. */
/* -- */
local_dl = *datalen;
if (*bufsize < 8)

{
memcpy(min_in, bufin, *bufsize);
local_in = min_in;
}

else
local_in = bufin;

/* -- */
/* In order to chain the data, you have to have */
/* at least 8 bytes for the -FIRST- segment. */
/* -- */
if (*rbc)

{
if (local_dl < 8)

{
/* -- */
/* Attempt to fill the buffer up. */
/* -- */

local_long = 8 - local_dl;
fxxzc(fh,ccbptr,&getfcb,

&local_in[local_dl],&local_long);
if (ccbptr->zccbrc)

{
ccbptr->zccbrc = 8; /* Error ... */
ccbptr->zccberc = 24; /* Error getting data */
return;
}

local_dl += local_long;
}
/* -- */
/* If you have more bytes left, you should */
/* have filled the buffer up to 8 for */
/* the -FIRST- segment. */
/* -- */

rule = (*rbc) ? FIRST : ONLY;
}

else
rule = ONLY;

memcpy(rule_array[1], rule, sizeof(rule_array[1]));
/* -- */
/* Call the MAC generate verb. */
/* -- */
CSNBMGN(&(ccbptr->zccbrc), &(ccbptr->zccberc), NULLPTR,

NULLPTR, key_token, &local_dl, local_in, &rule_count,
rule_array, chain_vect, local_macval);

if (ccbptr->zccbrc) /* Error? ... */

Authentication examples

644 WebSphere Data Interchange Programmer’s Reference

return;
while (*rbc)

{
/* -- */
/* Get some more data. */
/* -- */

fxxzc(fh, ccbptr, &getfcb, local_in, &local_dl);
if (ccbptr->zccbrc)

{
ccbptr->zccbrc = 8; /* Error ... */
ccbptr->zccberc = 24; /* Error getting data */
return;
} /* end if */
/* -- */
/* Reset the segmenting control. */
/* -- */

memcpy(rule_array[1], ((*rbc) ? MIDDLE : LAST),
sizeof(rule_array[1]));

/* -- */
/* Call the MAC generate verb. */
/* -- */

CSNBMGN(&(ccbptr->zccbrc),&(ccbptr->zccberc),NULLPTR,
NULLPTR,key_token,&local_dl,local_in,&rule_count,
rule_array,chain_vect,local_macval);

if (ccbptr->zccbrc) /* Error?
... */

return;
} /* end while */

memcpy(macval,local_macval,MAC_SIZE); /* Copy 4-byte MAC */
break;

default:
/* -- */
/* Wrong function code. Set error and return. */
/* -- */
ccbptr->zccbrc = 8; /* Error ... */
ccbptr->zccberc = 21; /* Invalid function code */
break;

} /* end switch */
return;
} /* end main */

Encryption examples
Two encryption example programs are provided with the product: their descriptions
follow. For more information on the encryption routines, see “Encryption routine” on
page 290.

Sample 1
This C program is an example of a Send/Receive Translation encryption user exit. It
is invoked for the encryption/decryption of data using the IBM 4753 Network
Security Processor. The library member name for this program is
EDI.V3R2M0.SEDICCC1(EDITREE).

Sample 2
This C program is an example of a Send/Receive Translation encryption user exit. It
is invoked for the encryption/decryption of data using the IBM Common
Cryptographic Architecture Cryptographic API.
/* --- */
/* $MAJOR */
/* */
/* Module Name: CCAEE */
/* */

Authentication examples

Appendix B. Sample programs 645

/* Descriptive Name: Encryption/Decryption routine */
/* */
/* Status: */
/* */
/* Function: This program is an example of a encryption/decryption */
/* routine which uses the IBM Common Cryptographic */
/* Architecture Cryptographic Application Programming */
/* Interface as defined in reference SC40-1675. */
/* */
/* This program is invoked by WebSphere Data Interchange */
/* during the enveloping or de-enveloping process */
/* */
/* Dependencies: none */
/* */
/* Restrictions: none */
/* */
/* Language: C */
/* */
/* Attributes: Reentrant, AMODE(31) RMODE(ANY) */
/* INCLUDE OBJ(CCAEE) */
/* INCLUDE OBJ(FXXZCITF) */
/* INCLUDE OBJ(FXXZC) */
/* ENTRY FXXZCITF */
/* NAME CCAEE(R) */
/* */
/* Notes: Since this program is written in C, the entry */
/* point must be FXXZCITF, which is provided by the */
/* WDI product. FXXZCITF establishes the necessary */
/* C environment and branches to the main entry point */
/* of the program. */
/* */
/* Parameters passed from WDI can be above the line so */
/* this program has to be 31 bit addressable. */
/* */
/* Parameters: IN - Service Name Block (snb) */
/* Common Block (ccb) */
/* Function Block (fcb) */
/* Encryption Handle (fh) */
/* Encryption key value (ek) */
/* Security Data Block (spdb) */
/* Buffer size */
/* Buffer containing input data */
/* Buffer containing output data */
/* Length of data in input buffer */
/* Number of characters remaining that would */
/* not fit into the input buffer */
/* Initialization vector return address */
/* */
/* IN OUT - None */
/* */
/* OUT - CAS Common Block */
/* */
/* RC ERC Meaning */
/* 0 0 Success */
/* 8 21 Invalid function code */
/* 8 22 CFB method not supported */
/* 8 23 Error returning data to WDI */
/* 8 24 Error getting data from WDI */
/* 8 26 Invalid input data */
/* 8 11 Keyname not known */
/* * * * */
/* */
/* * As defined by processor implementing the */
/* CCA */
/* */
/* --- */
#include <stdefs.h>

Encryption examples

646 WebSphere Data Interchange Programmer’s Reference

#include "disnb.h" /* SNB definition */
#include "diccb.h" /* CCB definition */
#include "difcb.h" /* FCB definition */
#include "dispdb.h" /* Security data block definition */
#pragma linkage (CSNBRNG,OS) /* Random Number Generate */
#pragma linkage (CSNBENC,OS) /* Encipher routine */
#pragma linkage (CSNBDEC,OS) /* Decipher routine */

/* -- */
/* Constant definitions used by this program */
/* -- */

#define EXISTS 0 /* Existence check */
#define ENCRYPT 1 /* Encrypt data */
#define DECRYPT 2 /* Decrypt data */
#define GETIV 3 /* Get initialization vector */
#define CBC_TYPE '1' /* CBC ciphering type */
#define IV_SIZE 8 /* Initialization vector size */
#define KEY_SIZE 16 /* Input key size */
#define NULLPTR (void *) 0 /* NULL pointer */
#define True 1
#define False 0

/* -- */
/* Static data used by this program */
/* -- */

static fcb getfcb = {4,1}; /* Used to get more data */
static fcb putfcb = {4,2}; /* Used to put data */
static char *RANDOM = "RANDOM "; /* Used for random number */
static char *CBC_METH = "CBC "; /* CBC ciphering method */
static char *ICV_INIT = "INITIAL "; /* Starting ICV value */

/* -- */
/* Local function prototypes */
/* -- */
void pad_buff(char *buff,long data_len,long *crypt_len);

/* --- */
/* Main entry point begins here. */
/* --- */
main(snbptr, ccbptr, fcbptr, fh, ek, spdbptr,

bufsize, bufin, bufout, datalen, rbc, iv)
snb *snbptr; /* Service name block pointer set up by WDI */
ccb *ccbptr; /* Common block pointer used by WDI */
fcb *fcbptr; /* Function block pointer which indicates */

/* what to do: */
/* 0=EXISTS, 1=ENCRYPT, 2=DECRYPT, 3=GETIV */

long *fh; /* Encryption handle - used with GET and PUT */
char *ek; /* Encryption key name */
spdb *spdbptr; /* Security profile member */
long *bufsize; /* The size of the input/output buffers */
char *bufin; /* Buffer that contains the source data */
char *bufout; /* Buffer for the output data */
long *datalen; /* Length of data in the input buffer */
long *rbc; /* The number of bytes remaining of the source*/

/* that would not fit into the input buffer */
char *iv; /* Initialization vector return area */

{
long rule_count; /* Rule array count */
char rule_array[8]; /* Rule array */
char form[8]; /* Form of random number */
char min_in[16]; /* Minimum size buffer to work with */
char min_out[16]; /* Minimum output buffer to work out */
char *local_in; /* Local input buffer pointer */
char *local_out; /* Local output buffer pointer */
long local_bs; /* Size of local buffer */
long local_dl; /* Length of data in local buffer */
char key_token[64]; /* CCA DATA key token */
char siv[IV_SIZE]; /* Save original IV value */
long filler; /* Filler variable */
long bytes_left; /* Number bytes remaining after input */

/* buffer adjusted for encryption */

Encryption examples

Appendix B. Sample programs 647

long crypt_in; /* Encryption/decryption length */
long crypt_len; /* Encryption/decryption length */
char chain_vect[18]; /* Chaining vector */
int padded = False; /* Loop exit variable */
/* -- */
/* Set up some initial values. */
/* -- */

rule_count = 1;
memset(min_in, ' ', sizeof(min_in));
memset(min_out, ' ', sizeof(min_out));
memset(rule_array, ' ', sizeof(rule_array));
memcpy(rule_array, CBC_METH, sizeof(rule_array));
memset(key_token, ' ', sizeof(key_token));
/* --- */
/* Do some special processing if this is an encrypt or decrypt */
/* request. */
/* --- */
if ((fcbptr->zfcbfunc == ENCRYPT)

(fcbptr->zfcbfunc == DECRYPT)) {
/* -- */
/* Check for the correct ciphering method. CCA only defines the */
/* CBC method, so reject a request for the Cipher Feedback method */
/* -- */
if (spdbptr->encrtype != CBC_TYPE)

{
ccbptr->zccbrc = 8; /* Error ... */
ccbptr->zccberc = 22; /* Invalid cipher method */
return;

}
/* -- */
/* The key passed to this routine by WDI (ek) is a 16-byte key */
/* name that is taken from either the WDI mapping records for */
/* encryption or the S1S or S2s security segments for */
/* decryption. The CCA Encipher and Decipher calls require that */
/* a CCA DATA key be provided as a key token value. It is */
/* your responsibility to write code to handle the storage */
/* of internal key tokens in a key storage data set so that an */
/* association can be made between the name of a key (key label) */
/* and the value of that key (CCA DATA key value). You */
/* must also provide a key management routine that can be called */
/* from this routine. The function of this key management routine*/
/* would be to accept a 16-byte key label and type as input and */
/* return as output a 64-byte key identifier. For more */
/* information on key labels, key types, and key identifiers, see */
/* "IBM Common Cryptographic Architecture Cryptographic */
/* Application Programming Interface Reference (SC40-1675)" */
/* */
/* If your security subsystem is the Integrated Cryptographic */
/* Feature (ICRF) with the Integrated Cryptographic Service */
/* Facility / MVS (ICSF/MVS), you should replace "key_transform" */
/* by a routine that calls whatever program your installation */
/* uses to manage DATA keys and MAC keys. For more information */
/* on ICSF/MVS, see the following ICSF/MVS publications: */
/* "General Information (GC23-0093)" */
/* "Administrator's Guide (SC23-0097)" */
/* "Application Programmer's Guide (SC23-0098)" */
/* "System Programmer's Guide (SC23-0096)" */
/* -- */
key_transform(ek,"DATA ",key_token);

}
/* -- */
/* Determine what you are asked to do and process accordingly. */
/* -- */

switch(fcbptr->zfcbfunc)
{
case EXISTS:

/* -- */

Encryption examples

648 WebSphere Data Interchange Programmer’s Reference

/* Existence check returns with success. */
/* -- */
break;

case GETIV:
/* -- */
/* Call the Random Number generate verb to get a random */
/* number. Return codes from the CSNBRNG routine will be */
/* returned to your caller. */
/* -- */
memcpy(form, RANDOM, sizeof(form));
CSNBRNG(&(ccbptr->zccbrc), &(ccbptr->zccberc), NULLPTR,

NULLPTR, form, iv);
break;

case ENCRYPT:
/* -- */
/* Tuck away the original IV value for later encryption. */
/* -- */
memcpy(siv,iv,IV_SIZE);
/* --- */
/* The size of the buffers passed by WDI is */
/* specified in the Security Profile. This program needs a */
/* buffer size of at least 16 bytes. If you specified */
/* a size less than 16, use a buffer internal to this */
/* routine rather than the buffers passed by WDI. */
/* --- */
if (*bufsize < 16) {

memcpy(min_in, bufin, *bufsize);
local_in = min_in;
local_out = min_out;
local_bs = sizeof(min_in);

} else {
local_in = bufin;
local_out = bufout;
local_bs = *bufsize;

}
local_dl = *datalen;
/* --- */
/* Now that your working buffer size is right, */
/* you might have gotten data in that is less than */
/* 8 bytes. First, attempt to fill the buffer */
/* up to 8 bytes. If that doesn't work, pad it. */
/* --- */
if (local_dl < 8) {

if (*rbc) { /* Any bytes not passed?*/
filler = 8 - local_dl;
fxxzc(fh,ccbptr,&getfcb, &local_in[local_dl],&filler);
if (ccbptr->zccbrc) {

ccbptr->zccbrc = 8; /* Error ... */
ccbptr->zccberc = 24; /* Error getting data */
return;

}
if ((filler+local_dl) < 8)

{
pad_buff(local_in,filler+local_dl,&local_bs);
padded = True;

}
local_dl = 8; /* Either padded or filled*/

} else {
pad_buff(local_in, local_dl, &local_bs);
local_dl = 8;
padded = True;

} /* end if(rbc) */
} /* end if(local_dl) */
/* --- */
/* Adjust the buffer length to a multiple of 8 */
/* and set the number of bytes that will not be */
/* processed the first pass. */

Encryption examples

Appendix B. Sample programs 649

/* --- */
bytes_left = local_dl % 8;
crypt_len = local_dl - (bytes_left);
if (crypt_len > 8) {

crypt_len -= 8;
bytes_left += 8;

}
crypt_in = crypt_len;
/* --- */
/* Start looping until all data is processed. */
/* You know you are finished when some type of */
/* padding has been done. */
/* --- */
for(;;) {

/* --- */
/* Call the encipher verb and check for errors. */
/* --- */
filler = 0;
crypt_len = crypt_in;
CSNBENC(&(ccbptr->zccbrc), &(ccbptr->zccberc), NULLPTR,

NULLPTR, key_token, &crypt_len, local_in, iv,
&rule_count, rule_array, &filler, chain_vect,
local_out);

if (ccbptr->zccbrc)
return;

/* --- */
/* Use the WDI provided interface to return the encrypted*/
/* data to WDI. */
/* --- */
fxxzc(fh, ccbptr, &putfcb, local_out, &crypt_len);
if (ccbptr->zccbrc) {

ccbptr->zccbrc = 8; /* Error ... */
ccbptr->zccberc = 23; /* Error putting data */
return;

}
/* --- */
/* If padding was done, you are finished. */
/* Else, continue with next set of data. */
/* --- */
if (padded)

break;
/* --- */
/* Ensure that any bytes not processed in the */
/* first pass are accounted for. */
/* --- */
if (bytes_left)

memcpy(local_in,local_in+crypt_in,bytes_left);
/* --- */
/* Check for any data that was not passed to */
/* you in the original input buffer. */
/* --- */
if (bytes_left >= crypt_in)

{
bytes_left -= crypt_in;

} else {
if (*rbc) {

filler = crypt_in - bytes_left;
fxxzc(fh,ccbptr,&getfcb,

&local_in[bytes_left],&filler);
if (ccbptr->zccbrc) {

ccbptr->zccbrc = 8; /* Error ... */
ccbptr->zccberc = 24;/* Error getting data */
return;

}
} else

filler = 0;
/* --- */

Encryption examples

650 WebSphere Data Interchange Programmer’s Reference

/* Check to see if any padding needs to be done. */
/* --- */
if ((filler+bytes_left) < crypt_in)

{
pad_buff(local_in, filler+bytes_left, &crypt_in);
padded = True;

}
bytes_left = 0; /* Set back to zero */

}
/* --- */
/* Continuation is accomplished by copying the first 8 */
/* bytes of the chaining vector into the initialization */
/* vector for the next call. */
/* --- */
memcpy(iv,chain_vect,IV_SIZE);

} /* end for(;;) */
/* --- */
/* Encrypt the IV using ECB. The CBC method with an IV of */
/* 0 and 8 bytes of data is the same. */
/* --- */
crypt_len = IV_SIZE;
memset(iv,0x00,IV_SIZE);
CSNBENC(&(ccbptr->zccbrc), &(ccbptr->zccberc), NULLPTR,

NULLPTR, key_token, &crypt_len, siv, iv,
&rule_count, rule_array, &filler, chain_vect, min_out);

/* --- */
/* Check for error encrypting the IV. */
/* --- */
if (ccbptr->zccbrc)

return;
/* --- */
/* Return the encrypted IV to the caller. */
/* --- */
memcpy(iv,min_out,IV_SIZE);
break;

case DECRYPT:
/* --- */
/* Encrypted data MUST be a multiple of 8. */
/* --- */
if (((*rbc + *datalen)%8 != 0)

((*rbc + *datalen) <= 0))
{

ccbptr->zccbrc = 8; /* Error ... */
ccbptr->zccberc = 26; /* Input data error */
return;

}
/* --- */
/* Call the decipher verb to decipher the IV. You are using */
/* the CBC method with an IV of 0 and data length of 8 which */
/* is the same as the ECB method. */
/* --- */
crypt_len = IV_SIZE;
memcpy(min_in, iv, IV_SIZE);
memset(form, 0x00, sizeof(form));
CSNBDEC(&(ccbptr->zccbrc), &(ccbptr->zccberc), NULLPTR,

NULLPTR, key_token, &crypt_len, min_in, form,
&rule_count, rule_array, chain_vect, iv);

/* --- */
/* Check for errors deciphering the IV. */
/* --- */
if (ccbptr->zccbrc)

return;
/* --- */
/* The size of the buffers passed by WDI is */
/* specified in the Security Profile. This program needs a */
/* buffer size of at least 8 bytes. If you specified a size */
/* less than 8, use a buffer internal to this */

Encryption examples

Appendix B. Sample programs 651

/* routine rather than the buffers passed by WDI. */
/* --- */
local_dl = *datalen;
if (*bufsize < 8) {

memcpy(min_in, bufin, *bufsize);
local_in = min_in;
local_out = min_out;
local_bs = sizeof(min_in);

} else {
local_in = bufin;
local_out = bufout;
local_bs = *bufsize;

} /* end if */
/* --- */
/* Now that your working buffer size is right, you might have*/
/* received data that is less than 8 bytes. Encrypted data */
/* MUST be a multiple of 8 bytes. If you did not receive */
/* 8, there must be more out there to get. */
/* --- */
if (local_dl < 8) {

filler = 8 - local_dl; /* Get only up to 8 */
fxxzc(fh,ccbptr,&getfcb, &local_in[local_dl],&filler);
if (ccbptr->zccbrc) {

ccbptr->zccbrc = 8; /* Error ... */
ccbptr->zccberc = 24; /* Error getting data */
return;

}
local_dl = 8;

}
/* -- */
/* Adjust the buffer length to a multiple of 8 */
/* and set the number of bytes that will not be */
/* processed the first pass. If you were passed */
/* a buffer length that was not a multiple of */
/* 8, you will process only the highest multiple */
/* you can get on the first call to decipher, */
/* then any bytes left with the residual not */
/* passed to us. */
/* -- */
bytes_left = local_dl % 8;
crypt_len = local_dl - bytes_left;
/* -- */
/* Start looping until all data is processed. */
/* You break out of this loop when you determine */
/* that all characters have been processed and */
/* subtracted the number of pad characters. */
/* -- */
for(;;) {

/* --- */
/* Call the decipher verb and check for errors. */
/* --- */
crypt_in = crypt_len;
CSNBDEC(&(ccbptr->zccbrc), &(ccbptr->zccberc), NULLPTR,

NULLPTR, key_token, &crypt_len, local_in, iv,
&rule_count, rule_array, chain_vect, local_out);

if (ccbptr->zccbrc)
return;

/* --- */
/* Put the data out. If no data is left to pro- */
/* cess, the last byte will contain the number */
/* of pad characters in ASCII. When this is */
/* encountered, you exit the loop. */
/* --- */
if (*rbc) {

fxxzc(fh, ccbptr, &putfcb, local_out, &crypt_len);
if (ccbptr->zccbrc) {

ccbptr->zccbrc = 8; /* Error ... */

Encryption examples

652 WebSphere Data Interchange Programmer’s Reference

ccbptr->zccberc = 23; /* Error putting data */
return;

} /* end if */
} else {

/* --- */
/* The last position must be the number */
/* of pad characters in ASCII. If this */
/* is not true, exit in error. */
/* --- */
filler = local_out[crypt_len-1] & 0x0F;
if ((filler < 1) (filler > 8))

{
ccbptr->zccbrc = 8; /* Error ... */
ccbptr->zccberc = 26; /* Input data error */
return;

} /* end if */
/* --- */
/* Flush output minus pad characters. */
/* --- */
crypt_len = crypt_len - filler;
fxxzc(fh, ccbptr, &putfcb, local_out, &crypt_len);
if (ccbptr->zccbrc) {

ccbptr->zccbrc = 8; /* Error ... */
ccbptr->zccberc = 23; /* Error putting data */
return;

} /* end if */
break; /* Exit the loop */

} /* end if */
/* --- */
/* Ensure that any bytes not processed in the */
/* first pass are accounted for. This only */
/* needs to be done for the first pass. */
/* --- */
if (bytes_left)

memcpy(local_in, local_in+crypt_in, bytes_left);
/* --- */
/* Get any data that was not passed to you in */
/* the original input buffer. You wouldn't have */
/* gotten this far if there wasn't anything */
/* there. */
/* --- */
filler = crypt_in - bytes_left;
fxxzc(fh,ccbptr,&getfcb, &local_in[bytes_left],&filler);
if (ccbptr->zccbrc) {

ccbptr->zccbrc = 8; /* Error ... */
ccbptr->zccberc = 24; /* Error getting data */
return;

}
crypt_len = filler + bytes_left;
bytes_left = 0; /* Set back to zero */
/* --- */
/* Change the initialization vector for the next call. */
/* --- */
memcpy(iv,chain_vect,IV_SIZE);

} /* end for(;;) */
break;

default:
/* --- */
/* Wrong function code. Set error and return. */
/* --- */
ccbptr->zccbrc = 8; /* Error ... */
ccbptr->zccberc = 21; /* Invalid function code */
break;

} /* end switch */
return;
} /* end main */
/* --- */

Encryption examples

Appendix B. Sample programs 653

/* Routine: pad_buff */
/* */
/* Purpose: Pad a buffer with ASCII 0s and put the number of places */
/* padded in the last position. */
/* */
/* In : buff - The buffer to pad */
/* data_len - The length of data in the buffer */
/* crypt_len - Current maximum buff size */
/* */
/* Out : Modified buffer (buff) and data length (crypt_len) */
/* */
/* --- */
void pad_buff(buff, data_len, crypt_len)

char *buff; /* Input buffer to pad */
long data_len; /* Current data length in buffer */
long *crypt_len; /* Current cipher length of buffer*/
long num_pad = 0; /* Number of characters padded */
/* --- */
/* If the buffer length is on a 8-byte boundary (Including */
/* zero), force the first pad. 'crypt_len' is always on an */
/* 8-byte boundary and 'data_len' is always less than it, so */
/* you can never overflow your buffer. */
/* --- */

if ((data_len%8) == 0) {
buff[data_len++] = 0x30; /* Force the first pad */
num_pad = 1;

} /* end if */
/* --- */
/* Pad with ASCII 0s. */
/* --- */

for (;data_len%8;num_pad++, ++data_len)
buff[data_len] = 0x30;
/* --- */
/* Put number of pad characters in ASCII in last position */
/* and change the crypt length to new buffer size. */
/* --- */

buff[data_len-1] = (num_pad & 0x0F) 0x30;
*crypt_len = data_len;
} /* end pad_buff() */

Get Envelope service example
This COBOL CICS program is an example of an outbound envelope user exit
(PERFORM ENVELOPE...IEXIT(EDIGETE) ITYPE(UE)). The library member name
for this program is EDI.V3R2M0.SEDICBL2(FXXGETE).

Put Envelope service example
This COBOL CICS program is an example of an inbound envelope user exit
(PERFORM DEENVELOPE...IEXIT(EDIPUTE) ITYPE(UE)). The library member
name for this program is EDI.V3R2M0.SEDICBL2(FXXPUTE).

Inbound envelope program example
This COBOL CICS program is an example of an inbound envelope user exit
(PERFORM DEENVELOPE...IEXIT(EDIPUTE) ITYPE(UE)). The library member
name for this program is EDI.V3R2M0.SEDICBL2(FXXIENV).

Encryption examples

654 WebSphere Data Interchange Programmer’s Reference

Outbound envelope program example
This COBOL CICS program is an example of an outbound envelope program
(PERFORM ENVELOPE...IEXIT(EDIOENV) ITYPE(PG)). The library member name
for this program is EDI.V3R2M0.SEDICBL2(FXXOENV).

VANICICS network program example
This COBOL CICS program shows the basic structure of a VANICICS network
program. The library member name for this program is
EDI.V3R2M0.SEDICBL2(FXXNETP).

Outbound envelope program example

Appendix B. Sample programs 655

VANICICS network program example

656 WebSphere Data Interchange Programmer’s Reference

Appendix C. Space calculation examples

Space requirements for tables and files
The following tables describe the database records and formulas used for
determining the space requirements for each of the WebSphere Data Interchange
tables and files:
v Table 237
v Table 238 on page 659
v Table 239 on page 662
v Table 240 on page 666
v Table 241 on page 669
v Table 242 on page 670

The table headings have the following meanings:

Record name Identifies the DB2 table names and VSAM file names of the
WebSphere Data Interchange database records that you have
installed.

Product Specifies if the record applies to DB2, or to VSAM, or to both.

Type Specifies whether the database record is defined as a DB2 table,
DB2 index, or as a VSAM file..

Description Specifies the database record and formulas to assist in estimating
DASD allocation. References to database records are given using
the naming convention of EDIxxxx. For example, the control string
table is EDICSTX..

Table 237. Database records (general)

Record name Product/Type Description

SCREENS z/OS/VSAM
file

WebSphere Data Interchange Screens. Contains the text for all screens displayed
by WebSphere Data Interchange. Static file unless updated during PTF application

HELPS z/OS/VSAM
file

WebSphere Data Interchange Help Text. Contains the help text for all online help
provided by WebSphere Data Interchange. Static file unless updated during PTF
application

EDISSTK ALL/DB2
table

SAP tracking file - Maintains SAP control information and EDI subsystem status to
create the SAP status record

SSTKNUM = TSTHNUM

EDISSTKX ALL/DB2
table

SAP Tracking Unique Index - One record for each SAP record

SSTKXNUM = SSTKNUM

EDISSTXX ALL/DB2
table

SAP tracking file index. An index used to maintain the EDISSTK table. One record
for each trading partner, interchange control number, and receiver id in EDISSTK.

SSTXXNUM = TSTHNUM

EDIMSGS ALL/DB2
table

Message Table. Contains the text for all messages issued by WebSphere Data
Interchange. This is a static table except during PTF application when messages
can be added or updated.

MSGNUM = 2448 (for base 3.2)

EDIMSGSX ALL/DB2
index

Message Table Index. There is one index entry for each message.

MSGSXNUM = MSGSNUM

© Copyright IBM Corp. 2002 657

Table 237. Database records (general) (continued)

Record name Product/Type Description

EDIELOG ALL/DB2
table

Event Log Table. Contains all the event log entries for all the application IDs used.

EDIIMP is the application for logging messages during product administration.

EDIFFS is the application for logging messages during utility execution.

ELOGNUM = Number of total event log entries

EDIELOGX ALL/DB2
index

Event Log Table Index. There is one index entry for each event log entry by
application ID.

ELOGXNUM = ELOGNUM

EDIELOG1 ALL/DB2
index

Event Log Table Index. There is one index entry for each event log entry by
application ID and user ID.

ELOG1NUM = ELOGNUM

EDIELOG2 ALL/DB2
index

Event Log Table Index. There is one index entry for each event log entry by
application ID and user ID.

ELOG2NUM = ELOGNUM

EDIENVP ALL/DB2
table

Enveloping Plug-in Description - one row exists for each envelope type supported.
The table is fixed in size.

ENVP = 5

EDIENVPX ALL/DB2
index

Enveloping Plug-in Table Index - One row exists for each entry of the EDIENVP
table.

ENVPX = ENVP

EDICSTX ALL/DB2
table

Control String Header and Detail. Control string used to speed execution during
translation. There are Map CS, DF CS, and STD CS. In general, there is one
entry for each EDIADFHDR entry, one for each EDISTDSTH entry, and four
entries for each EDIMAPHDR entry.

CSTXNUM = TDIDNUM + (4 * TPTXNUM)

EDICSTXX ALL/DB2
index

Control String Unique Index. A unique index created on the key value to
EDICSTX. There is one index entry for each EDICSTX entry.

CSTXXNUM = CSTXNUM

Space requirements for tables and files

658 WebSphere Data Interchange Programmer’s Reference

Table 238. Standards database records

Record name Product/Type Description

EDISTDDEH ALL/DB2
table

Standard Data Element Definition. Provides information about a data element
within a standard. One entry exists for each data element defined in each
standard. These are some of the standards shipped by WebSphere Data
Interchange:
EDI902 304
TDCC28 863
UCSV3R1 323
X12V2R2 710
X12V2R3 765
X12V3R4 823
X12V3R1 901
E 34
I 22
T 22
U 21
X 28
SCDENUM = one of the above values or your own estimate

EDISTDDEHX ALL/DB2
index

Standard Data Element Definition Unique Index. A unique index created on the
key value to EDISTDDEH. There is one index entry for each EDISTDDEH entry.

SCDEXNUM = SCDENUM

EDISTDDEHY ALL/DB2
index

Standard Data Element Definition Index. An index created for each STDID in
EDISTDDEH. There is one index entry for each EDISTDDEH entry.

SCDEYNUM = SCDENUM

EDISTDDED ALL/DB2
table

Standard Element Detail (Composite DE). Provides information about usage of a
subelement within an element. One entry exists for each element defined in each
standard of a Composite DE.

SCEDNUM = your own estimate

EDISTDDEDU ALL/DB2
index

Standard Element Detail Unique Index. A unique index created on the key value to
EDISTDDED. There is one index entry for each EDISTDDED entry.

SCEDUNUM = SCEDNUM

EDISTDDEDX ALL/DB2
index

Standard Element Detail Unique Index. A unique index created on COMPID,
STDID, and POSNO value of EDISTDDED. There is one index entry for each
EDISTDDED entry.

SCEDXNUM = SCEDNUM

EDISTDDEDY ALL/DB2
index

Standard Element Detail Index. An index created on DEID, COMPID, and STDID
value of EDISTDDED. There is one index entry for each EDISTDDED entry.

SCEDYNUM = SCEDNUM

EDISTDDEDZ ALL/DB2
index

Standard Element Detail Index. An index created on STDID and COMPID value of
EDISTDDED. There is one index entry for each EDISTDDED entry.

SCEDZNUM = SCEDNUM

EDISTDCDN ALL/DB2
table

Standard Element Detail (Composite DE) Note Definition. Provides information
about composite data element notes within a standard. One entry exists for each
CDE defined within a standard.

SCCDNUM = your own estimate

Space requirements for tables and files

Appendix C. Space calculation examples 659

Table 238. Standards database records (continued)

Record name Product/Type Description

EDISTDCDNX ALL/DB2
index

Standard Composite Data Element Note Unique Index. A unique index created on
the key value to EDISTDCDN. There is one index entry for each EDISTDCDN
entry.

SCCDXNUM = SCCDNUM

EDISTDSGD ALL/DB2
table

Standard Data Element Usage. Records usage of a data element within a
segment. One of these exists each time an element is used within a segment.
These are some of the standards shipped by WebSphere Data Interchange:
EDI902 1012
TDCC28 3677
UCSV3R1 1083
X12V2R2 2830
X12V2R3 3001
X12V3R4 3382
X12V3R1 3707
E 46
I 26
T 22
U 25
X 32
SCDUNUM = one of the above values or your own estimate

EDISTDSGDU ALL/DB2
index

Standard Data Element Usage Unique Index. A unique index created on the key
value to EDISTDSGD. There is one index entry for each EDISTDSGD entry.

SCDUUNUM = SCDUNUM

EDISTDSGDX ALL/DB2
index

Standard Data Element Usage Unique Index. A unique index created on segment,
standard, and posno of EDISTDSGD. There is one index entry for each
EDISTDSGD entry.

SCDUXNUM = SCDUNUM

EDISTDSGDY ALL/DB2
index

Standard Data Element Usage Unique Index. An index created on the data
element ID of EDISTDSGD. There is one index entry for each EDISTDSGD entry.

SCDUYNUM = SCDUNUM

EDISTDSGDZ ALL/DB2
index

Standard Data Element Usage Unique Index. An index created on the segment
and standard ID of EDISTDSGD. There is one index entry for each EDISTDSGD
entry.

SCDUZNUM = SCDUNUM

EDISTDSGH ALL/DB2
table

Standard Segment Definition. Provides information about a segment within a
standard. One entry exists for each segment defined in each standard. These are
some of the standards shipped by WebSphere Data Interchange:
EDI902 60
TDCC28 514
UCSV3R1 155
X12V2R2 400
X12V2R3 433
X12V3R4 464
X12V3R1 520
E 6
I 6
T 6
U 6
X 6
SCSGNUM = one of the above values or your own estimate

Space requirements for tables and files

660 WebSphere Data Interchange Programmer’s Reference

Table 238. Standards database records (continued)

Record name Product/Type Description

EDISTDSGHX ALL/DB2
index

Standard Segment Definition Unique Index. A unique index created on the key
value to EDISTDSGH. There is one index entry for each EDISTDSGH entry.

SCSGXNUM = SCSGNUM

EDISTDSGN ALL/DB2
table

Standard Segment Note Definition. Provides information about segment notes
within a standard. One entry exists for each segment note associated with a
standard segment.

SCSNNUM = your own estimate

EDISTDSGNX ALL/DB2
index

Standard Segment Note Unique Index. A unique index created on the key value to
EDISTDSGN. There is one index entry for each EDISTDSGN entry.

SCSNXNUM = SCSNNUM

EDISTDSTH ALL/DB2
table

Standard Definition. Defines the name, version, release, and default envelope type
that should be used for a particular standard. One entry exists for each EDI
standard and for each Envelope standard defined on the system. In most cases at
least two of the X, E, I, T, or U envelope standards will be installed, plus any EDI
standards that are applied or copied.
Note: If you apply or copy a standard, this action adds entries to all EDISTDxxx
tables.

SCSTNUM = Number of standards installed

EDISTDSTHX ALL/DB2
index

Standard Definition Unique Index. A unique index created on the key value to
EDISTDSTH. There is one index entry for each EDISTDSTH entry.

SCSTXNUM = SCSTNUM

EDISTDTXD ALL/DB2
table

Standard Segment Usage. Records usage of a segment within a transaction.
There is one entry for each time a segment is used within a transaction. These
are some of the standards shipped by WebSphere Data Interchange:
EDI902 15
TDCC28 127
UCSV3R1 32
X12V2R2 19
X12V2R3 25
X12V3R4 28
X12V3R1 39
SCSUNUM = one of the above values or your own estimate

EDISTDTXDX ALL/DB2
index

Standard Segment Usage Unique Index. A unique index created on the key value
to EDISCSU. There is one index entry for each EDISCSU entry.

SCSUXNUM = SCSUNUM

EDISTDTXDY ALL/DB2
index

Standard Segment Usage Index. An index created on the key value to segment
and standard ID of EDISTDTXD. There is one index entry for each EDISTDTXD
entry.

SCSUYNUM = SCSUNUM

EDISTDTXDZ ALL/DB2
index

Standard Segment Usage Index. An index created on the segment value of
EDISTDTXD. There is one index entry for each EDISTDTXD entry.

SCSUZNUM = SCSUNUM

Space requirements for tables and files

Appendix C. Space calculation examples 661

Table 238. Standards database records (continued)

Record name Product/Type Description

EDISTDTXH ALL/DB2
table

Standard Transaction Definition. Provides information about a transaction within a
standard. There is one entry for each transaction defined in a standard. These are
some of the standards shipped by WebSphere Data Interchange:
EDI902
TDCC28
UCSV3R1
X12V2R2
X12V2R3
X12V3R4
X12V3R1
SCTXNUM = one of the above values or your own estimate

EDISTDTXHX ALL/DB2
index

Standard Transaction Definition Unique Index. A unqiue index created on the key
value to EDISTDTXH. There is one index entry for each EDISTDTXH entry.

SCTXXNUM = SCTXNUM

EDISTDTXHY ALL/DB2
index

Standard Transaction Definition Index. An index created on the standard ID value
of EDISTDTXH. There is one index entry for each EDISTDTXH entry.

SCTXYNUM = SCTXNUM

EDISTDTXN ALL/DB2
table

Standard Transaction Note Definition. Provides information about transaction notes
within a standard. There is one entry for each transaction note associated with a
standard transaction.

SCTNNUM = your estimate

EDISTDTXNX ALL/DB2
index

Standard Transaction Note Unique Index. A unique index created on the key value
to EDISTDTXN. There is one index entry for each EDISTDTXN entry.

SCTNXNUM = SCTNNUM

EDISTDENV ALL/DB2
table

Standard Envelope Standard Definition. Provides enveloping information about a
standard. There is one entry for each envelope standard.

SCEVNUM = your estimate

EDISTDENVX ALL/DB2
index

Standard Envelope Standard Unique Index. A unique index created on the key
value to EDISTDENV. There is one index entry for each EDISTDENV entry.

SCEVXNUM = SCEVNUM

Table 239. Maps database records

Record name Product/Type Description

EDIMAPHEAD ALL/DB2
table

Map Header. Contains information relative to the mapping between an data
format and a standard transaction. There is one entry for each map created. A
good starting point for this number might be the number of data formats
(EDIADFHEAD) that you have plus the number of standard transactions that
you are interested in (EDISTDTXH).

TPTXNUM = Number of mappings

EDIMAPHEADX ALL/DB2
index

Map Header Unique Index. A unique index created on the key value to
EDIMAPHEAD. There is one index entry for each EDIMAPHEAD entry.

TPTXXNUM= TPTXNUM

EDIMAPAPPLCNTL ALL/DB2
table

Map Application Control. Contains information about Map AC fields. There is
from one to seven rows for each map created.

TPACNUM = Number of AC records

Space requirements for tables and files

662 WebSphere Data Interchange Programmer’s Reference

Table 239. Maps database records (continued)

Record name Product/Type Description

EDIMAPAPPLCNTLX ALL/DB2
index

Map Application Control Unique Index. A unique index created on the key value
to EDIMAPAPPLCNTL. There is one index entry for each EDIMAPAPPLCNTL
entry.

TPACXNUM= TPACNUM

EDIMAPAPPLCNTLY ALL/DB2
index

Map Application Control Index. An index created on the map ID value of
EDIMAPAPPLCNTL. There is one index entry for each EDIMAPAPPLCNTL
entry.

TPACZNUM= TPACNUM

EDIMAPSEG ALL/DB2
table

Map Segment Usage. Copied from EDISTDSGH and EDISTDSGD entries and
keeps track of the use of a segment in the mapping. There is one of these for
each mapped segment defined in the transaction and one for each segment
selected in a repeated mapping.
SSSTD = Average number of segments in a transaction (mapped
and not mapped)
SSRMAP = Average number of segments MAPPED in a REPEATED
mapping
TPSGNUM = TPTXNUM * (SSSTD + SSRMAP)

EDIMAPSEGX ALL/DB2
index

Map Segment Usage Unique Index. An index created on key value to
EDIMAPSEG. There is one index entry for each EDIMAPSEG entry.

TPSGXNUM= TPSGNUM

EDIMAPSEGY ALL/DB2
index

Map Segment Usage Index. An index created on the Map value of
EDIMAPSEG. There is one index entry for each EDIMAPSEG entry.

TPSGYNUM= TPSGNUM

EDIMAPSEGZ ALL/DB2
index

Map Segment Usage Index. An index created on the HL key values of
EDIMAPSEG. There is one index entry for each EDIMAPSEG entry.

TPSGZNUM= TPSGNUM

EDIMAPELE ALL/DB2
table

Map Data Element Definition. Copy of key information in EDISTDDEH and
EDISTDSGD entries made when a data element is mapped. To estimate the
number of entries, multiply the average number of segments that are mapped
by the average number of fields per segment to get the average number of
EDIMAPELE entries per EDIMAPHEAD entry.
SSMAP = Average number of MAPPED segments per map
ELSS = Average number of elements per selected segment (mapped
or not mapped)
TPDDNUM = TPTXNUM * SSMAP * ELSS

EDIMAPELEX ALL/DB2
index

Map Data Element Definition Unique Index. A unqiue index created on the key
value to EDIMAPELE. There is one index entry for each EDIMAPELE entry.

TPDDXNUM= TPDDNUM

EDIMAPELEY ALL/DB2
index

Map Data Element Definition Index. An index created on the map occurrence
value to EDIMAPELE. There is one index entry for each EDIMAPELE entry.

TPDDYNUM= TPDDNUM

EDIMAPGBLVAR ALL/DB2
table

Map Global Variables.

TPGVNUM = Number of global variables used

EDIMAPGBLVARX ALL/DB2
index

Map Global Variables Unique Index, A unique index created on the key value
to EDIMAPGBLVAR. There is one index entry for each EDIMAPGBLVAR entry.

TPGVXNUM = TPGVNUM

Space requirements for tables and files

Appendix C. Space calculation examples 663

Table 239. Maps database records (continued)

Record name Product/Type Description

EDIMAPSYNTAX ALL/DB2
table

Map Syntax.

TPSYNUM = Number of syntax rows

EDIMAPSYNTAX ALL/DB2
index

Map Syntax.Unique Index. A unique index created on the key value to
EDIMAPSYNTAX. There is one index entry for each EDIMAPSYNTAX entry.

TPSYXNUM = TPSYNUM

EDIMAPLCLVAR ALL/DB2
table

Map Local Variables.

TPLVNUM = Number of local variable entries

EDIMAPLCLVAR ALL/DB2
index

Map Local Variables Unique Index. A unique index created on the key value to
EDIMAPLCLVAR. There is one index entry for each EDIMAPLCLVAR entry.

TPLVXNUM = TPLVNUM

EDIMAPREF ALL/DB2
table

Map References.

TPRFNUM = Number of map references

EDIMAPREFX ALL/DB2
index

Map References Unique Index. A unique index created on the key value to
EDIMAPREF. There is one index entry for each EDIMAPREF entry.

TPRFXNUM = TPRFNUM

EDIMAPNODES ALL/DB2
table

Map Nodes.

TPMNNUM = Number of map node entries

EDIMAPNODESX ALL/DB2
index

Map Nodes Unique Index. A unique index created on the key value to
EDIMAPNODES. There is one index entry for each EDIMAPNODES entry.

TPMNXNUM = TPMNNUM

EDIMAPCMDS ALL/DB2
table

Map Commands. Contains information about mapping commands. There is
one entry for each map command created.

TPCMDNUM = Number of map commands

EDIMAPCMDSX ALL/DB2
index

Map Commands Unique Indesx. A unique index created on the key value to
EDIMAPCMDS. There is one index entry for each EDIMAPCMDS entry.

TPCMDXUM = TPCMDNUM

EDIRULE ALL/DB2
table

Trading Partner Rules. Keeps track of how TRANSFORM maps are used and
execution options of same. See EDITPRT and EDITPST, which are the same
for SEND/RECEIVE maps.

TPRUNUM = your estimate

EDIRULEX ALL/DB2
index

Trading Partner Rules Unique Index. A unique index created on the key value
to EDIRULE. There is one index entry for each EDIRULE entry.

TPRUXNUM = TPRUNUM

EDIRULE1 ALL/DB2
index

Trading Partner Rules Index. An index created on the Format values to
EDIRULE. There is one index entry for each EDIRULE entry.

TPRU1NUM = TPRUNUM

EDIRULE2 ALL/DB2
index

Trading Partner Rules Index. An index created on the Sending TP value to
EDIRULE. There is one index entry for each EDIRULE entry.

TPRU2NUM = TPRUNUM

Space requirements for tables and files

664 WebSphere Data Interchange Programmer’s Reference

Table 239. Maps database records (continued)

Record name Product/Type Description

EDIRULE3 ALL/DB2
index

Trading Partner Rules Index. An index created on the Receiving TP value to
EDIRULE. There is one index entry for each EDIRULE entry.

TPRU3NUM = TPRUNUM

EDITPRT ALL/DB2
table

Map Receive Usage. Records the use of a mapping by a particular trading
partner. This is only used for transactions being received: there is one entry for
each trading partner using a particular transaction.

TPTXNUM = Total number of mapppings

PRECV = Percentage of mappings (TPTXNUM) that are receive mappings

TPPROFNUM = Total number of trading partners

TPRECV = Percentage of tradings partners you receive data from

TPRTNUM = (TPTXNUM * PRECV) * (TPPROFNUM * TPRECV)

EDITPRTX ALL/DB2
index

Map Receive Usage Unique Index. A unique index created on the key value in
EDITPRT. There is one index entry for each EDITPRT entry.

TPRTXNUM = TPRTNUM

EDITPRTY ALL/DB2
index

Map Receive Usage Index. An index created on the std transaction and tp
nickname values of EDITPRT. There is one entry for each EDITPRT entry.

TPRTYNUM = TPRTNUM

EDITPRTZ ALL/DB2
index

Map Receive Usage Index. An index created on the TP nickname values of
EDITPRT. There is one entry for each EDITPRT entry.

TPRTZNUM = TPRTNUM

EDITPST ALL/DB2
table

Map Send Usage. Records the use of a mapping by a particular trading
partner. Used only for transactions being sent. There is one entry for each
trading partner using this transaction with a given data format ID and internal
trading partner ID.

Usually a single internal trading partner ID is defined per trading partner.

TPTXNUM = Total number of mappings

PSEND = Percentage of mappings (TPTXNUM) that are send mappings

TPPROFNUM = Total number of trading partners

TPSEND = Percentage of trading partners you send to

TPSTNUM = (TPTXNUM * PSEND) * (TPPROFNUM * TPSEND)

EDITPSTX ALL/DB2
index

Map Send Usage Unique Index. A unique index created on the key value in
EDITPST. There is one index entry for each EDITPST entry.

TPSTXNUM = TPSTNUM

EDITPSTY ALL/DB2
index

Map Send Usage Unique Index. An index created on the TP nickname of
EDITPST. There is one index entry for each EDITPST entry.

TPSTYNUM = TPSTNUM

EDITPSTZ ALL/DB2
index

Map Send Usage Unique Index. An index created on the internal TP ID value
of EDITPST. There is one index entry for each EDITPST entry.

TPSTZNUM = TPSTNUM

Space requirements for tables and files

Appendix C. Space calculation examples 665

Table 240. Data formats database records

Record name Product/Type Description

EDIADFDICT ALL/DB2
table

Application Format Dictionary Definition. Contains information about a
collection (dictionary) of related data format objects. There is one entry for
each dictionary

TDDICT = your estimate

EDIADFDICTX ALL/DB2
index

Application Format Dictionary Unique Index. A unique index created on the
key value of EDIADFDICT. There is one index entry for each EDIADFDICT
entry.

TDDICTX = TDDICT

EDIADFRECIDINFO ALL/DB2
table

Application Format Record ID Information. Contains information about the
location and characteristics of the Record ID of a data format. There is one
entry for each unique location of a data format record ID

TDRECID = your estimate

EDIADFRECIDINFO ALL/DB2
index

Application Format Record ID Information Unique Index. A unique index
created on the key value of EDIADFRECIDINFO. There is one index entry
for each EDIADFRECIDINFO entry.

TDRECIDX = TDRECID

EDIADFHEADER ALL/DB2
table

Application Format Definition. Contains information about an data format.
There is one entry for each data format defined. An estimate of the number
of input and output data definitions contained in the applications that are
going to be EDI enabled. This corresponds to a 01 level-number in COBOL.

TDIDNUM = Number of data formats

EDIADFHEADERX ALL/DB2
index

Application Format Definition Unique Index. A unique index created on the
key value of EDIADFHEADER. There is one index entry for each
EDIADFHEADER entry.

TDIDXNUM = TDIDNUM

EDIADFHDRMEM ALL/DB2
table

Application Format Detail. One row exists for each loop, record, or structure
within the header.

TDHDRM = your estimate

EDIADFHDRMEMX ALL/DB2
index

Application Format Detail Unique Index. A unique index created on the key
value of EDIADFHDRMEM. There is one index entry for each
EDIADFHDRMEM entry.

TDHDRMX = TDHDRM

EDIADFHDRMEMY ALL/DB2
index

Application Format Detail Index. An index created on the key value of
EDIADFHDRMEM. There is one index entry for each EDIADFHDRMEM
entry.

TDHDRMY = TDHDRM

EDIADFLOOP ALL/DB2
table

Application Loop Definition. There is one entry for each loop required by the
data format.

TDLOOP = your estimate

EDIADFLOOPX ALL/DB2
index

Application Loop Definition Unique Index. A unique index created on the key
value to EDIADFLOOP. There is one index entry for each EDIADFLOOP
entry.

TDLOOPX = TDLOOP

Space requirements for tables and files

666 WebSphere Data Interchange Programmer’s Reference

Table 240. Data formats database records (continued)

Record name Product/Type Description

EDIADFLOOPY ALL/DB2
index

Application Loop Definition Index. An index created on the dictionary value of
EDIADFLOOP. There is one index entry for each EDIADFLOOP entry.

TDLOOPY = TDLOOP

EDIADFLOOPZ ALL/DB2
index

Application Loop Definition Index. An index created on the recordidinfo value
of EDIADFLOOP. There is one index entry for each EDIADFLOOP entry.

TDLOOPZ = TDLOOP

EDIADFLOOPMEM ALL/DB2
table

Application Loop Detail. There is one entry for each loop or record within the
Loop

TDLOOPM = your estimate

EDIADFLOOPMEMX ALL/DB2
index

Application Loop Detail Unique Index. A unique index created on the key
value to EDIADFLOOPMEM. There is one index entry for each
EDIADFLOOPMEM entry.

TDLOOPMX = TDLOOPM

EDIADFRECORD ALL/DB2
table

Application Record Definition. There is one entry for each record format
defined. An estimate of the number of input/output data definitions contained
in the applications that are going to be EDI enabled. This corresponds to a
01 level-number in COBOL.

TDREC = your estimate

EDIADFRECORDX ALL/DB2
index

Application Record Definition Unique Index. A unique index created on the
key value to EDIADFRECORD. There is one index entry for each
EDIADFRECORD entry.

TDRECX = TDREC

EDIADFRECORDY ALL/DB2
index

Application Record Definition Unique Index. A unique index created on the
key value to EDIADFRECORD. There is one index entry for each
EDIADFRECORD entry.

TDRECY = TDREC

EDIADFRECORDZ ALL/DB2
index

Application Record Definition Unique Index. A unique index created on the
key value to EDIADFRECORD. There is one index entry for each
EDIADFRECORD entry.

TDRECZ = TDREC

EDIADFRECMEM ALL/DB2
table

Application Record Detail Definition. There is one entry for each record
element of a record. An entry is created for each structure and field used to
describe the record.

TDRECM = your estimate

EDIADFRECMEMX ALL/DB2
index

Application Record Detail Unique Index. A unique index created on the key
value to EDIADFRECMEM. There is one index entry for each
EDIADFRECMEM entry.

TDRECMX = TDRECM

EDIADFRECMEMY ALL/DB2
index

Application Record Detail Index. A unique index created on the key value to
EDIADFRECMEM. There is one index entry for each dictionary name and
record name value in an EDIADFRECMEM entry.

TDRECMY = TDRECM

Space requirements for tables and files

Appendix C. Space calculation examples 667

Table 240. Data formats database records (continued)

Record name Product/Type Description

EDIADFSTRUCT ALL/DB2
table

Application Structure Definition. There is one entry for each structure defined
in the dictionary.

TDSTR = your estimate

EDIADFSTRUCTX ALL/DB2
index

Application Structure Definition Unique Index. A unique index created on the
key value to EDIADFSTRUCT. There is one index entry for each
EDIADFSTRUCT entry.

TDSTRX = TDSTR

EDIADFSTRUCTY ALL/DB2
index

Application Structure Definition Index. An index created on the dictionary
name, structure name value of EDIADFSTRUCT. There is one index entry
for each EDIADFSTRUCT entry.

TDSTRY = TDSTR

EDIADFSTRUCTMEM ALL/DB2
table

Application Structure Detail Definition. There is one entry for each structure
element of a structure. An entry is created for each subordinate structure
and field used to describe the structure.

TDSTRM = your estimate

EDIADFSTRUCTMEMX ALL/DB2
index

Application Structure Detail Unique Index. A unique index created on the key
value to EDIADFSTRUCTMEM. There is one index entry for each
EDIADFSTRUCTMEM entry.

TDSTRMX = TDSTRM

EDIADFSTRUCTMEMY ALL/DB2
index

Application Structure Detail Index. An index created on the dictionary name,
structure name value to EDIADFSTRUCTMEM. There is one index entry for
each EDIADFSTRUCTMEM entry.

TDSTRMY = TDSTRM

EDIADFFIELD ALL/DB2
table

Application Field Definition. There is one entry for each field defined in the
dictionary.

TDFLD = your estimate

EDIADFFIELDX ALL/DB2
index

Application Field Unique Index. A unique index created on the key value to
EDIADFFIELD. There is one index entry for each EDIADFFIELD entry.

TDFLDX = TDFLD

EDIADFFIELDY ALL/DB2
index

Application Field Index. An index created on the dictionary name, structure
name value to EDIADFFIELD. There is one index entry for each
EDIADFFIELD entry.

TDFLDY = TDFLD

EDIXMLDICT ALL/DB2
table

XML Dictionary Definition. There is one entry for each XML Dictionary
defined. An XML Dictionary is a collection of XML DTDs.

XMLD = your estimate

EDIXMLDICTX ALL/DB2
index

XML Dictionary Unique Index. A unique index created on the key value to
EDIXMLDICT. There is one index entry for each EDIXMLDICT entry.

XMLDX = XMLD

EDIDTDHDR ALL/DB2
table

XML DTD Header Definition. There is one entry for each XML DTD defined
in the dictionary.

XMLDTD = your estimate

Space requirements for tables and files

668 WebSphere Data Interchange Programmer’s Reference

Table 240. Data formats database records (continued)

Record name Product/Type Description

EDIDTDHDR ALL/DB2
index

XML DTD Unique Index. A unique index created on the key value to
EDIDTDHDR. There is one index entry for each EDIDTDHDR entry.

XMLDTDX= XMLDTD

EDIDTD ALL/DB2
table

XML DTD Detail. There is one entry for each line of an XML DTD.

XMLDET = your estimate

EDIDTDX ALL/DB2
index

XML DTD Detail Unique Index. A unique index created on the key value to
EDIDTD. There is one index entry for each EDIDTD entry.

XMLDETX= XMLDET

Table 241. Trading Partner database records

Record name Product/Type Description

EDIPSTP ALL/DB2
table

Trading Partner Profile. There is one entry for each trading partner.

PSTPNUM = Number of trading partners

EDIPSTPX ALL/DB2
index

Trading Partner Profile Unique Index. There is one index entry for each EDIPSTP
entry.

PSTPXNUM = PSTPNUM

EDIPSTP1 ALL/DB2
index

Trading Partner Profile Unique Index. There is one index entry for each EDIPSTP
entry.

PSTP1NUM = PSTPNUM

EDIPSTP2 ALL/DB2
index

Trading Partner Profile Unique Index. There is one index entry for each EDIPSTP.

PSTP2NUM = PSTPNUM

EDIPSTP3 ALL/DB2
index

Trading Partner Profile UniqueIndex. There is one index entry for each EDIPSTP.

PSTP3NUM = PSTPNUM

EDITPCM ALL/DB2
table

Comment Table. There is one entry for each trading partner that has associated
comment data entered through the WebSphere Data Interchange Client interface.
If WebSphere Data Interchange Client is not used, this table is empty.

TPCMNUM = PSTPNUM

EDITPCMX ALL/DB2
index

Comment Table Unique Index. A unique index created on the key values in
EDITPCM. There is one index entry for each EDITPCM entry.

TPCMXNUM = TPCMNUM

EDITPCN ALL/DB2
table

Trading Partner Comment Table. There is one entry for each Trading
Partner/Contact relationship that has associated comment data entered through
the WebSphere Data Interchange Client interface. If WebSphere Data Interchange
Client is not used, this table is empty.

TPCNNUM = PSTPNUM * average number of contacts per trading partner

EDITPCNX ALL/DB2
index

Trading Partner Contact Table Unique Index. A unique index created on the key
value in EDITPCN. There is one entry for each EDITPCN entry.

TPCNXNUM = TPCNNUM

Space requirements for tables and files

Appendix C. Space calculation examples 669

Table 241. Trading Partner database records (continued)

Record name Product/Type Description

EDITPCT ALL/DB2
table

Contact Table. There is one entry for each contact entered through the
WebSphere Data Interchange Client interface. If WebSphere Data Interchange
Client is not used, this table is empty.

TPCTNUM = Number of contacts

EDITPCTX ALL/DB2
index

Contact Table Unique Index. A unique index created on the key value in EDITPCT.
There is one entry for each EDITPCT entry.

TPCTXNUM = TPCTNUM

EDIPROF ALL/DB2
table

Trading Partner Profile Control Numbers. There is one entry for each
sender/receiver combination used.

PROFNUM = number of different sender/receiver combinations used

EDIPROFX ALL/DB2
index

Trading Partner Profile Control Number Table Index. There is one index entry for
each sender/receiver pair combination used.

PROFXNUM = PROFNUM

Table 242. Set up database records

Record name Product/Type Description

EDIPSAC ALL/DB2
table

Activity Log Profile. There is one index entry for each log file. WebSphere Data
Interchange creates two log files; additional log files are created by the user.

PSACNUM = 2 + number of user log files

EDIPSACX ALL/DB2
index

Activity Log Unique Index. There is one index entry for each Activity Log Profile.

PSACXNUM = PSACNUM

EDIPSAD ALL/DB2
table

User Exit Information Profile. There is one entry for each user exit referenced.
WebSphere Data Interchange creates two entries for its own use; additional
entries are created by the user to identify user exits used by the installation.

PSADNUM = 2 + number of user installation exit programs

EDIPSADX ALL/DB2
index

User Exit Profile Unique Index. There is one index entry for each EDIPSAD entry.

PSADXNUM = PSADNUM

EDIPSAP ALL/DB2
table

Application Defaults Profile. This profile is used to establish settings at an
application level (as opposed to the system level) for an invocation of WebSphere
Data Interchange. There is one index entry for each application ID.

PSAPNUM = 2 + number of user-specified applications

EDIPSAPX ALL/DB2
index

Application Definition Profile Unique Index. There is one index entry for each
EDIPSAP entry.

PSAPXNUM = PSAPNUM

EDIPSCR ALL/DB2
table

Continuous Receive Profile. There is one entry for each unique path by which data
is received from a VAN.

PSCRNUM = Number of paths to VAN

EDIPSCRX ALL/DB2
index

Continuous Receive Unique Index. There is one index entry for each EDIPSCR
entry.

PSCRXNUM = PSCRNUM

Space requirements for tables and files

670 WebSphere Data Interchange Programmer’s Reference

Table 242. Set up database records (continued)

Record name Product/Type Description

EDIPSDI ALL/DB2
table

WebSphere Data Interchange Control File. This table is static.

EDIPSDIX ALL/DB2
index

WebSphere Data Interchange Control File Unique Index. This table is static.

EDIPSEE ALL/DB2
table

E Envelope Profile Table. There is one entry for each E envelope profile member
(EDIFACT).

PSEENUM = number of E envelope profile members

EDIPSEEX ALL/DB2
index

E Envelope Profile Table Index. There is one entry for each E envelope profile
member (EDIFACT).

PSEEXNUM = PSEENUM

EDIPSEI ALL/DB2
table

Export/Import Control File. This table is static.

EDIPSEIX ALL/DB2
index

Export/Import Control File Unique Index. This table is static.

EDIPSIE ALL/DB2
table

I Envelope Profile Table. There is one entry for each I envelope profile member
(ICS).

PSIENUM = Number of I envelope profile members

EDIPSIEX ALL/DB2
index

I Envelope Profile Table Index. There is one index entry for each I envelope profile
member (ICS).

PSIEXNUM = PSIENUM

EDIPSLP ALL/DB2
table

Language Profile. There is one entry for each language used: in this release only
English (ENU) is supported.

PSLPNUM = 1

EDIPSLPX ALL/DB2
index

Language Profile Unique Index. There is one index entry for each EDIPSLP entry.

PSLPXNUM = PSLPNUM

EDIPSMQ ALL/DB2
table

MQSeries Profile Table. There is one index entry for each MQSeries profile
member.

PSMQNUM = number of MQSeries profile members

EDIPSMQX ALL/DB2
index

MQSeries Profile Table Index. There is one index entry for each MQSeries profile
member.

PSMQXNUM = PSMQNUM

EDIPSNO ALL/DB2
table

Network Commands Profile. There is one entry for each line of a Network
Operation statement (or Network Command); WebSphere Data Interchange
supplies several commands to support the Continuous Receive process.

PSNONUM = 200 + number of user-supplied statements

EDIPSNOX ALL/DB2
index

Network Operation Profile Log Unique Index. There is one index entry for each
EDIPSNO entry.

PSNOXNUM = PSNONUM

EDIPSNP ALL/DB2
table

Network Profile. There is one entry for each network defined to the system;
WebSphere Data Interchange supplies the definitions for eight networks.

PSNPNUM = 8 + number of additional networks

Space requirements for tables and files

Appendix C. Space calculation examples 671

Table 242. Set up database records (continued)

Record name Product/Type Description

EDIPSNPX ALL/DB2
index

Network Profile Unique Index. There is one index entry for each EDIPSNP entry.

PSNPXNUM = PSNPNUM

EDIPSPD ALL/DB2
table

Profile Definitions. This table contains the definitions of the WebSphere Data
Interchange profiles. This is a static file and does not change in size.

PSPDNUM = number of profile definitions

EDIPSPDX ALL/DB2
index

Profile Definitions Unique Index. There is one index entry for each EDIPSPD entry.

PSPDXNUM = PSPDNUM

EDIPSRQ ALL/DB2
table

Mailbox or Requestor Profile. There is one entry for each mailbox used to receive
data.

PSRQNUM = number of mailboxes

EDIPSRQX ALL/DB2
index

Requestor Profile Unique Index. There is one index entry for each EDIPSRQ
entry.

PSRQXNUM = PSRQNUM

EDIPSSP ALL/DB2
table

Security Profile. There is one entry for each security processing grouping. The
names of the exit programs to be used for encryption, authorization, filtering, and
compression are specified in a named security profile.

PSSPNUM = number of security processing groups

EDIPSSPX ALL/DB2
index

Security Profile Unique Index. There is one index entry for each EDIPSSP entry.

PSSPXNUM = PSSPNUM

EDIPSSY ALL/DB2
table

System Profile. There is one entry for each group of settings of a CICS Persistent
Environment. Persistent Environment provides a means of improving performance
in CICS.

PSSYNUM = Number of setting groupings

EDIPSSYX ALL/DB2
index

System Profile Unique Index. There is one index entry for each EDIPSSY entry.

PSSYXNUM = PSSYNUM

EDIPSTD ALL/DB2
table

Validation and Translation Table Definitions. Contains the definitions of validation
and translation tables. This table is subject to large additions when new standards
are applied to your system, or when new applications are added. There is one
entry for each validation and translation table in WebSphere Data Interchange.

WebSphere Data Interchange provides 49 tables at installation; importing
standards increases the number of tables by the number of Code Lists that
accompany the Standard.

PSTDNUM = 49 + user-created or imported tables

EDIPSTDX ALL/DB2
index

Table Definitions Unique Index. There is one index entry for each EDIPSTD entry.

PSTDXNUM = PSTDNUM

EDIPSTE ALL/DB2
table

T Envelope Profile Table. There is one entry for each T envelope profile member
(UN/TDI).

PSTENUM = number of T envelope profile members

EDIPSTEX ALL/DB2
index

T Envelope Profile Table Index. There is one entry for each T envelope profile
member (UN/TDI).

PSTEXNUM = PSTENUM

Space requirements for tables and files

672 WebSphere Data Interchange Programmer’s Reference

Table 242. Set up database records (continued)

Record name Product/Type Description

EDIPSTT ALL/DB2
table

Translation Table. There is one entry for each code of a translation table.
WebSphere Data Interchange supplies 953 values in the 49 tables loaded at
installation. This table is subject to quite large additions when new standards are
applied to your system or when new applications are added.

PSTTNUM = (Average number of values * PSTDNUM) + 953

EDIPSTTX ALL/DB2
index

Translation Table Entry Unique Index. There is one index entry for each EDIPSTT
entry.

PSTTXNUM = PSTTNUM

EDIPSTT1 ALL/DB2
index

Translation Table Entry Unique Index. There is one index entry for each EDIPSTT
entry.

PSTT1NUM = PSTTNUM

EDIPSTV ALL/DB2
table

Validation Table. There is one entry for each validation table. WebSphere Data
Interchange supplies three tables at installation with a total number of 294 values.
This table is subject to quite large additions when new standards are applied to
your system or when new applications are added.

PSTVNUM = (Average number of values *PSTDNUM) + 294

EDIPSTVX ALL/DB2
index

Validation Table Entry Unique Index. There is one index entry for each EDIPSTV
entry.

PSTVXNUM = PSTVNUM

EDIPSUE ALL/DB2
table

U Envelope Profile Table. There is one entry for each type U envelope profile
member (UCS).

PSUENUM = number of type U envelope profile members

EDIPSUEX ALL/DB2
index

U Envelope Profile Table Index. There is one index entry for each type U envelope
profile member (UCS).

PSUEXNUM = PSUENUM

EDIPSXE ALL/DB2
table

X Envelope Profile Table. There is one entry for each X envelope profile member
(X12).

PSXENUM = number of type X envelope profile members

EDIPSXEX ALL/DB2
index

X Envelope Profile Table Index. There is one index entry for each type X envelope
profile member (X12).

PSXEXNUM = PSXENUM

Transaction Store tables
The tables listed in Table 243 on page 674 are all part of the Transaction Store. The
number of entries in the Transaction Store depends on two major factors:

1. The length of time that transactions remain in the database before being
purged. You can specify this value when you add transactions to the
Transaction Store. The default is 30 days.

2. The elapsed number of days between runnings of the Transaction Store remove
utility.

TSLIFE = TRXLIFE + PGRSPAN where:
TRXLIFE The number of days before a transaction might be purged
PGRSPAN The number of days between running the purge utility

Space requirements for tables and files

Appendix C. Space calculation examples 673

Along with TRXLIFE and PRGSPAN, the other important number to estimate is the
number of transactions per day that you will be processing. The examples below
are based on knowing these three pieces of information.

Table 243. Transaction Store tables

Record name Product/Type Description

EDITSTH ALL/DB2
Table

Transaction Store Transaction Handle. Contains detailed information relative to a
transaction. There is one entry for each transaction send translated or
de-enveloped.

TRXPDAY = Number of transactions per day

TSTHNUM = TRXPDAY * TSLIFE

EDITSTHX ALL/DB2
Index

Transaction Store Transaction Handle Unique Index. A unique index created on
the key value to EDITSTH. There is one index entry for each EDITSTH entry.

TSTHXNUM = TSTHNUM

EDITSTHO ALL/DB2
Index

Transaction Store Table Unique Index.

TSTHONUM = TSTHNUM

EDITSTI ALL/DB2
Table

Transaction Store Transaction Image. Contains the standard transaction image for
a transaction. There will be one entry for each EDITSTH entry.

TSTINUM = TSTHNUM

EDITSTIX ALL/DB2
Index

Transaction Store Transaction Image Unique Index. A unique index created on the
key value to EDITSTI. There is one index entry for each EDITSTI entry.

TSTIXNUM = TSTINUM

EDITSTO ALL/DB2
Table

Transaction Store Transaction Override. Contains the envelope override values for
a particular set of transactions. This only applies to send transactions, and only for
those transactions that supply override values in the C record or through the API.
If overrides are not used, the number is 0. If overrides are used, at least one
record is created for each PERFORM TRANSLATE TO STANDARD command
executed. If the override values change, one record is created each time an
override value changes from one transaction to the next.

TSTONUM = 0

EDITSTOX ALL/DB2
Index

Transaction Store Transaction Override Unique Index. A unique index created on
the key value to EDITSTO. There is one index entry for each EDITSTO entry.

TSTOXNUM = TSTONUM

EDITSAU ALL/DB2
Table

Transaction Store Application Usage. Contains information relative to the
translation of a transaction by an application. There is one entry for each
EDITSTH entry unless there are many transactions that are de-enveloped but
never translated.

TSAUNUM = TSTHNUM

EDITSAUX ALL/DB2
Index

Transaction Store Application Usage Unique Index X. A unique index created on
the key value to EDITSAU. There is one index entry for each EDITSAU entry.

TSAUXNUM = TSAUNUM

EDITSAUY ALL/DB2
Index

Transaction Store Application Usage Index Y. An index created on the BATCHID
value used to retrieve transactions. There is one entry for each EDITSAU entry
with a different BATCHID value.

TSAUYNUM = TSAUNUM

Space requirements for tables and files

674 WebSphere Data Interchange Programmer’s Reference

Table 243. Transaction Store tables (continued)

Record name Product/Type Description

EDITSEV ALL/DB2
Table

Transaction Store Transaction Envelope. Contains information about an
interchange. There is one entry created every time an envelope or de-envelope
function is requested.

TRXPENV = Average number of transactions per envelope

TSEVNUM = TSTHNUM / TRXPENV

EDITSEVX ALL/DB2
Index

Transaction Store Transaction Envelope Unique Index. A unique index created on
the key value to EDITSEV. There is one index entry for each EDITSEV entry.

TSEVXNUM = TSEVNUM

EDITSEV1 ALL/DB2
Table

Transaction Store Envelope Unique Index.

TSEV1NUM = TSEVNUM

EDITSGP ALL/DB2
Table

Transaction Store Group. Maintains information about a functional group. There is
at least one entry for each interchange sent or received.

GRPPENV = Average number of groups per envelope (minimum of 1)

TSGPNUM = TSEVNUM * GRPPENV

EDITSGPX ALL/DB2
Index

Transaction Store Group Unique Index. A unique index created on the key value to
EDITSGP. There is one index entry for each EDITSGP entry.

TSGPXNUM = TSGPNUM

EDITSTU ALL/DB2
Table

Transaction Store Transaction Usage. Contains information about the use of a
transaction in an interchange. There is one entry each time a transaction is added
to or extracted from an interchange. A good assumption is one entry for each
EDITSTH entry unless there are a large number of transactions with translation
errors or transactions that were never enveloped for some other reason.

TSTUNUM = TSTHNUM

EDITSTUX ALL/DB2
Index

Transaction Store Transaction Usage Unique Index X. A unique index created on
the key value to EDITSTU. There is one index entry for each EDITSTU entry.

TSTUXNUM = TSTUNUM

EDITSTUY ALL/DB2
Index

Transaction Store Transaction Usage Index Y. An index created on the transaction
handle value used to keep track of which transaction is being enveloped. A good
assumption is that there is one index entry for for each EDITSTU entry unless a
large amount of REENVELOPE activity occurs.

TSTUYNUM = TSTUNUM

EDITSLT ALL/DB2
table

Transaction Store Lock Table. Contains a single record that is used as a lock table
when update activity involves the Transaction Store.

TSLTNUM = 1

Management Reporting Tables
The database records in Table 244 on page 676 are all part of Management
Reporting. Management Reporting database records are defined for two categories:

v Measurement records reflect statistics current as of the effective date of the last
PERFORM UPDATE STATISTICS command that was processed.

Space requirements for tables and files

Appendix C. Space calculation examples 675

v Pending records contain statistic entries created by WebSphere Data Interchange
processes, but have not yet been updated to the measurement records by the
PERFORM UPDATE STATISTICS command.

The number of entries in the Measurement database is dependent on two major
factors:

1. MEASLIFE: the number of days that entries are stored in the measurement
database before they are purged during the PERFORM REMOVE STATISTICS
process.

2. MEASPDAY: the number of statistic entries that are written to the measurement
database per EDI processing day.

The number of entries in the Pending database is dependent on two major factors:

1. PENDLIFE: the number of days that entries are stored in the pending database
before they are purged during the PERFORM UPDATE STATISTICS process.

2. PENDPDAY: the number of statistic entries that are written to the pending
database per EDI processing day.

The following examples are based on knowing these four pieces of information.

Table 244. Management reporting tables

Record name Product/Type Description

EDIMRCM ALL/DB2
table

Management Reporting Communications Measurement. Contains measurement
information relative to an interchange. For each active Requestor ID, you can have
two cumulative entries (send and receive). Also, each Requestor ID can have a
maximum of two daily entries (one send and one receive) per EDI processing day.
If a Requestor ID has multiple interchanges during a day, the daily entry created
for that day will be updated for each interchange.

RIDNUM = Number of Requestor IDs (RID)

CUMENTS = Number of cumulative entries = RIDNUM * 2

PRIDINT = Daily percentage of RIDs having an interchange

MEASPDAY = (RIDNUM * 2) * PRIDINT

MRCMNUM = (MEASPDAY * MEASLIFE) + CUMENTS

EDIMRCMX ALL/DB2
index

Management Reporting Communications Measurement Unique Index. A unique
index created on the key value to EDIMRCM. There is one index entry for each
EDIMRCM entry.

MRCMXNUM = MRCMNUM

Space requirements for tables and files

676 WebSphere Data Interchange Programmer’s Reference

Table 244. Management reporting tables (continued)

Record name Product/Type Description

EDIMRPC ALL/DB2
table

Management Reporting Pending Communications. Contains pending measurement
information relative to an interchange. When executing the PERFORM UPDATE
STATISTICS command, this data is applied to the EDIMRCM database and then
is purged. There is no cumulative record concept in the pending database,
therefore for each active Requestor ID, you can have multiple send and receive
entries per EDI processing day.

RIDNUM = Number of Requestor ID's (RID)

SENDNUM = Average number of send interchanges per RID per day

RECVNUM = Average number of receive interchanges per RID per day

PENDPDAY = (SENDNUM + RECVNUM) * RIDNUM

MRPCNUM = PENDPDAY * PENDLIFE

EDIMRPCX ALL/DB2
index

Management Reporting Pending Communications Unique Index. A unique index
created on the key value to EDIMRPC. There is one index entry for each
EDIMRPC entry.

MRPCXNUM = MRPCNUM

EDIMRRT ALL/DB2
table

Management Reporting Receive Usage Measurement. Contains measurement
information relative to a receive usage. For each active receive usage you can
have one cumulative entry, plus one daily entry per EDI processing day. This table
is directly related to the EDITPRT table. Use the table entry to see how to
calculate TPRTNUM, total number of receive usages. The following calculations
assume you will have at least one transaction per active receive usage (EDITPRT
entry) per day.

PACTIVE = Daily percentage of receive usages having activity

MEASPDAY = TPRTNUM * PACTIVE

MRRTNUM = (MEASPDAY * MEASLIFE) + TPRTNUM

EDIMRRTX ALL/DB2
index

Management Reporting Receive Usage Measurement Unique Index. A unique
index created on the key value to EDIMRRT. There is one index entry for each
EDIMRRT entry.

MRRTXNUM = MRRTNUM

Space requirements for tables and files

Appendix C. Space calculation examples 677

Table 244. Management reporting tables (continued)

Record name Product/Type Description

EDIMRPR ALL/DB2
table

Management Reporting Pending Receive Usage. Contains pending measurement
information about a receive usage. When PERFORM UPDATE STATISTICS is
executed, this data is added to the EDIMRRT database, and then purged from the
Pending database. Because there is no cumulative record function in the Pending
database, there can be multiple receive entries per EDI processing day for each
active receive usage.

Estimating the size of this table can be difficult because its size depends on the
RECOVERY scope specified during translation. With transaction recovery scope,
table size is easier to estimate because you have an EDIMRPR entry for each
received transaction. With interchange recovery scope, you have one entry for
each receive usage that is used within the interchange.

For example, suppose that an interchange contains 100 transactions. With
transaction recovery scope, 100 EDIMRPS entries would be created. With
interchange recovery scope, there can be as few as 1 EDIMRPR entry (all
transactions have the same receive usage) or as many as 100 EDIMRPR entries
(each transaction has a different receive usage).

Transaction level recovery formula:

TRXPDAY = Number of transactions per day. This value is also used in space
calculations for EDITSTH

PRECV = Percentage of transactions that are receive transactions

MRPRNUM = TRXPDAY * PRECV * PENDLIFE

Interchange level recovery formula:

TRXPDAY = Number of transactions per day. This value is also used in space
calculations for EDITSTH

PRECV = Percentage of transactions that are receive transactions

TRXPENV = Average number of transactions per interchange. This value is also
used in space calculations for EDITSEV

ENVPDAY = Number of interchanges received per day = (TRXPDAY*PRECV) /
TRXPENV

AVGUSGS = Average number of usages per interchange

MRPRNUM = ENVPDAY * AVGUSGS * PENDLIFE

EDIMRPRX ALL/DB2
index

Management Reporting Pending Receive Usage Unique Index. A unique index
created on the key value to EDIMRPR. There is one index entry for each
EDIMRPR entry.

MRPRXNUM = MRPRNUM

Space requirements for tables and files

678 WebSphere Data Interchange Programmer’s Reference

Table 244. Management reporting tables (continued)

Record name Product/Type Description

EDIMRST ALL/DB2
table

Management Reporting Send Usage Measurement. Contains measurement
information relative to send usage of a trading partner mapping transaction ID. For
each active send usage you can have one cumulative entry, plus one daily entry
per EDI processing day. This table is directly related to the EDITPST table. Use
the table entry to see how to calculate TPSTNUM, total number of send usages.
The following calculations assume you will have at least one transaction per active
send usage (EDITPST entry) per day.

PACTIVE = daily percentage of send usages having activity

MEASPDAY = TPSTNUM * PACTIVE

MRSTNUM = (MEASPDAY * MEASLIFE) + TPSTNUM

EDIMRSTX ALL/DB2
index

Management Reporting Send Usage Measurement Unique Index. A unique index
created on the key value to EDIMRST. There is one index entry for each
EDIMRST entry.

MRSTXNUM = MRSTNUM

Space requirements for tables and files

Appendix C. Space calculation examples 679

Table 244. Management reporting tables (continued)

Record name Product/Type Description

EDIMRPS ALL/DB2
table

Management Reporting Pending Send Usage. Contains pending measurement
information relative to a send usage. When executing the PERFORM UPDATE
STATISTICS command, this data is applied to the EDIMRST database and then is
purged. There is no cumulative record concept in the pending database, therefore
for each active send usage, you can have multiple send entries per EDI
processing day.

Estimating the size of this table can be difficult because its size depends on the
RECOVERY scope specified during translation. With transaction recovery scope,
table size is easier to estimate because there is an EDIMRPS entry for each send
transaction. With interchange recovery scope, there is one entry for each send
usage used within the interchange.

For example, suppose that an interchange contains 100 transactions. With
transaction recovery scope, 100 EDIMRPS entries would be created. With
interchange recovery scope, there can be as few as 1 EDIMRPS entry (all
transactions have the same send usage) or as many as 100 EDIMRPS entries
(each transaction has a different send usage).

Transaction level recovery formula:

TRXPDAY = Number of transactions per day. This value is also used in space
calculations for EDITSTH.

PSEND = Percentage of transactions that are send transactions.

MRPSNUM = TRXPDAY * PSEND * PENDLIFE

Interchange level recovery formula:

TRXPDAY = Number of transactions per day. This value is also used in space
calculations for EDITSTH.

PSEND = Percentage of transactions that are send transactions.

TRXPENV = Average number of transactions per interchange. This value is also
used in space calculations for EDITSEV.

ENVPDAY = Number of interchanges sent per day = (TRXPDAY*PSEND) /
TRXPENV

AVGUSGS = Average number of usages that occur in each interchange.

MRPSNUM = ENVPDAY * AVGUSGS * PENDLIFE

EDIMRPSX ALL/DB2
index

Management Reporting Pending Send Usage Unique Index. A unique index
created on the key value to EDIMRPS. There is one index entry for each
EDIMRPS entry.

MRPSXNUM = MRPSNUM

EDIOWNR ALL/DB2
table

Management Reporting Table Owner User ID.

Space requirements for tables and files

680 WebSphere Data Interchange Programmer’s Reference

Allocation tables
This section describes the DB2 and VSAM allocation parameters shipped with
WebSphere Data Interchange, and the two allocation values for the parameters.
The secondary allocation parameter supports allocating additional storage up to 123
extents. Table 245 and Table 246 on page 687 also provide information used in the
“Space calculation scenario” on page 687.

Notes:

1. FLOOR specifies that a fractional part of a number has been discarded and the
next smallest integer is being used.

2. CEILING specifies that a fractional part of a number is rounded up to the next
whole integer.

3. Table 250 calculations are made assuming PCTFREE=0 and FREEPAGE=0.

4. DB2 tables always have at least one data page. If the result of (nkb/4) -2 is less
than 1, a value of 1 is used in the calculation.

Supplied DB2 database allocation
Table 245 describes all database records used by WebSphere Data Interchange
and the number of records that the allocation values will accommodate.

Formulas for DB2 database allocation
This formula was used to determine the number of records per page (rpp):
rsz = Record size
ups = Usable page size = 4074
rpp = Records per page = FLOOR(ups/rsz)

This formula was used to determine the number of records per page for the index
tables:
ksz = Index size (record size)
ups = Usable page size = 4067
spp = Sub-pages per page = 8
rpp = Records per page = FLOOR((ups - (spp * (ksz+21)))/(ksz+4))

This formula was used to determine the number of records in the Primary Allocation
(rpa) for non-index tables:
nkb = Number of kilobytes in Primary Allocation
rpa = Number of records in Primary Allocation = (((nkb/4) - 2) * rpp)

Table 245. DB2 database allocation

Table name Primary
Allocation
(Kilobytes)

Secondary
Allocation
(Kilobytes)

Records per
page

Record size Records in Primary
Allocation

EDICSTX 4800 2400 1 4032 1198

EDICSTXX 32 16 143 22 858

EDIELOG 1000 500 9 440 2232

EDIELOGX 1000 500 44 72 10664

EDIELOG1 1000 500 39 80 9424

EDIELOG2 1000 500 35 88 8432

EDIENVP 10 5 29 140 15

EDIENVPX 10 5 320 8 160

EDIMRCM 100 25 101 40 2323

Allocation tables

Appendix C. Space calculation examples 681

Table 245. DB2 database allocation (continued)

Table name Primary
Allocation
(Kilobytes)

Secondary
Allocation
(Kilobytes)

Records per
page

Record size Records in Primary
Allocation

EDIMRCMX 100 25 111 29 2553

EDIMRPC 100 25 92 44 2116

EDIMRPCX 100 25 101 32 2323

EDIMRRT 100 25 42 96 966

EDIMRRTX 100 25 34 88 782

EDIMRPR 100 25 40 100 920

EDIMRPRX 100 25 101 32 2323

EDIMRST 100 25 46 88 1058

EDIMRSTX 100 25 39 79 897

EDIMRPS 100 25 44 92 1012

EDIMRPSX 100 25 101 32 2323

EDIMSGS 1000 500 12 336 2976

EDIMSGSX 1000 500 385 6 95480

EDIOWNR 10 2 339 12 170

EDIPROF 500 100 1 4096 123

EDIPROFX 100 20 61 53 1403

EDIPSAC 10 5 50 80 25

EDIPSACX 10 5 319 8 160

EDIPSAD 50 10 50 81 525

EDIPSADX 10 5 319 8 160

EDIPSAP 10 5 49 82 25

EDIPSAPX 10 5 319 8 160

EDIPSCR 10 5 21 193 11

EDIPSCRX 10 5 188 16 94

EDIPSDI 10 5 6 591 3

EDIPSDIX 10 5 778 1 389

EDIPSEI 10 2 70 58 35

EDIPSEIX 10 2 320 8 160

EDIPSEE 100 50 7 531 161

EDIPSEEX 100 50 320 8 7337

EDIPSIE 100 50 16 253 368

EDIPSLP 10 5 46 87 23

EDIPSLPX 10 5 385 6 193

EDIPSMQ 100 50 24 166 552

EDIPSMQX 100 50 320 8 7337

EDIPSNO 150 50 25 158 888

EDIPSNOX 50 10 132 24 1386

EDIPSNP 10 5 15 264 8

Allocation tables

682 WebSphere Data Interchange Programmer’s Reference

Table 245. DB2 database allocation (continued)

Table name Primary
Allocation
(Kilobytes)

Secondary
Allocation
(Kilobytes)

Records per
page

Record size Records in Primary
Allocation

EDIPSNPX 10 5 319 8 160

EDIPSPD 10 5 1 4046 1

EDIPSPDX 10 5 319 8 160

EDIPSRQ 50 10 17 234 179

EDIPSRQX 10 5 188 16 94

EDIPSSP 10 5 30 133 15

EDIPSSPX 10 5 319 8 160

EDIPSSY 10 5 60 67 30

EDIPSSYX 10 5 319 8 160

EDIPSTD 500 100 44 92 5412

EDIPSTDX 100 50 319 8 7337

EDIPSTE 100 50 14 284 322

EDIPSTEX 100 50 320 8 7337

EDIPSTP 500 100 4 1012 492

EDIPSTPX 100 50 188 16 4324

EDIPSTP1 100 50 49 64 1127

EDIPSTP2 100 50 83 39 1909

EDIPSTP3 100 50 127 25 2921

EDIPSTT 200 100 38 106 1824

EDIPSTTX 100 50 75 43 1725

EDIPSTT1 100 50 44 71 1012

EDIPSTV 200 100 38 106 1824

EDIPSTVX 100 50 75 43 1725

EDIPSUE 100 50 15 268 345

EDIPSUEX 100 50 320 8 7337

EDIPSXE 100 50 14 275 322

EDIPSXEX 100 50 320 8 7337

EDISTDDEH 5000 2500 1 4222 1248

EDISTDDEHX 300 120 86 38 6205

EDISTDDEHY 50 20 108 30 1124

EDISTDDED 25 12 79 51 336

EDISTDDEDU 25 10 81 40 344

EDISTDDEDX 25 10 81 40 344

EDISTDDEDY 25 10 71 46 374

EDISTDDEDZ 100 40 86 38 1955

EDISTDCDN 50 25 3 1079 32

EDISTDCDNX 50 20 76 43 788

EDISTDSGH 1000 500 1 4000 248

Allocation tables

Appendix C. Space calculation examples 683

Table 245. DB2 database allocation (continued)

Table name Primary
Allocation
(Kilobytes)

Secondary
Allocation
(Kilobytes)

Records per
page

Record size Records in Primary
Allocation

EDISTDSGHX 100 40 86 38 1955

EDISTDSGD 5000 2500 79 51 98592

EDISTDSGDU 2000 800 81 40 40338

EDISTDSGDX 2000 800 81 40 40338

EDISTDSGDY 500 200 320 8 39237

EDISTDSGDZ 1000 400 86 38 21080

EDISTDSGN 100 50 3 1089 69

EDISTDSGNX 50 20 76 43 788

EDISTDSTH 100 50 1 2771 23

EDISTDSTHX 20 5 108 30 321

EDISTDENV 300 150 43 94 3139

EDISTDENVX 50 20 108 30 1124

EDISTDTXD 4000 2000 57 71 56886

EDISTDTXDX 2000 800 77 42 38346

EDISTDTXDY 1000 400 86 38 21080

EDISTDTXDZ 1000 400 320 8 79112

EDISTDTXH 1000 500 1 4012 248

EDISTDTXHX 100 40 86 38 1955

EDISTDTXHY 20 8 108 30 321

EDISTDTXN 50 25 3 1081 32

EDISTDTXNX 100 40 72 45 1656

EDISSTK 40 10 25 159 200

EDISSTKX 20 5 155 20 465

EDISSTXX 20 5 48 65 144

EDITPCM 150 50 2 2000 71

EDITPCMX 50 20 75 43 788

EDITPCN 150 100 45 90 1598

EDITPCNX 50 10 57 56 599

EDITPCT 300 100 2 2000 146

EDITPCTX 30 10 81 40 446

EDIRULE 400 100 6 600 588

EDIRULEX 200 50 35 88 1632

EDIRULE1 200 150 19 139 912

EDIRULE2 200 50 189 16 9024

EDIRULE3 200 50 189 16 9024

EDITPRT 40 10 18 217 144

EDITPRTX 20 5 41 76 123

EDITPRTY 20 5 76 43 282

Allocation tables

684 WebSphere Data Interchange Programmer’s Reference

Table 245. DB2 database allocation (continued)

Table name Primary
Allocation
(Kilobytes)

Secondary
Allocation
(Kilobytes)

Records per
page

Record size Records in Primary
Allocation

EDITPRTZ 20 5 189 16 564

EDITPST 40 10 12 324 96

EDITPSTX 20 5 37 83 111

EDITPSTY 20 5 68 48 201

EDITPSTZ 20 5 47 67 141

EDIMAPHEAD 50 25 21 192 221

EDIMAPHEADX 100 40 188 16 4324

EDIMAPAPPLCNTL 60 30 12 337 156

EDIMAPAPPLCNTLX 50 20 171 18 1785

EDIMAPAPPLCNTLY 50 20 189 16 1974

EDIMAPSEG 2000 1000 1 2884 498

EDIMAPSEGX 400 160 143 22 14014

EDIMAPSEGY 100 40 189 16 4324

EDIMAPSEGZ 800 320 123 26 24354

EDIMAPELE 5000 2500 1 2821 1248

EDIMAPELEX 2000 800 101 32 50298

EDIMAPELEY 1000 400 132 24 32736

EDIMAPGBLVAR 50 25 22 184 231

EDIMAPGBLVARX 25 10 108 30 455

EDIMAPSYNTAX 5000 2500 49 82 61152

EDIMAPSYNTAXX 2000 800 171 18 84660

EDIMAPLCLVAR 5000 2500 25 162 31200

EDIMAPLCLVARX 2000 800 71 46 34860

EDIMAPREF 5000 2500 12 337 14976

EDIMAPREFX 2000 800 171 18 84660

EDIMAPNODES 5000 2500 2 2085 2496

EDIMAPNODESX 2000 800 171 18 84660

EDIMAPCMDS 5000 2500 2 2072 2496

EDIMAPCMDSX 2000 800 171 18 53286

EDIADFDICT 50 25 1 2166 11

EDIADFDICTX 25 10 108 30 455

EDIRECIDINFO 50 25 1 2178 11

EDIRECIDINFOX 50 20 108 30 1124

EDIADFHEADER 50 25 1 2565 210

EDIADFHEADERX 50 20 71 46 1974

EDIADFHEADERY 50 20 108 30 1124

EDIADFHEADERZ 50 20 108 30 1124

EDIADFHDRMEM 100 50 37 110 851

Allocation tables

Appendix C. Space calculation examples 685

Table 245. DB2 database allocation (continued)

Table name Primary
Allocation
(Kilobytes)

Secondary
Allocation
(Kilobytes)

Records per
page

Record size Records in Primary
Allocation

EDIADFHDRMEMX 50 20 68 48 704

EDIADFHDRMEMY 50 20 71 46 735

EDIADFLOOP 50 25 1 2226 11

EDIADFLOOPX 50 20 53 60 557

EDIADFLOOPY 50 20 108 30 1124

EDIADFLOOPZ 50 20 108 30 1124

EDIADFLOOPMEM 100 50 37 108 851

EDIADFLOOPMEMX 100 40 50 64 1127

EDIADFLOOPMEMY 50 20 53 60 557

EDIADFRECORD 200 100 1 2242 48

EDIADFRECORDX 100 40 53 60 1219

EDIADFRECORDY 50 20 108 30 1124

EDIADFRECORDZ 50 20 108 30 1124

EDIADFRECMEM 1000 500 28 141 6944

EDIADFRECMEMX 300 120 50 64 3577

EDIADFRECMEMY 100 40 53 60 1219

EDIADFSTRUCT 400 200 1 2196 98

EDIADFSTRUCTX 100 40 53 60 1219

EDIADFSTRUCTY 50 20 108 30 1124

EDIADFSTRUCTMEM 2000 200 27 149 13446

EDIADFSTRUCTMEMX 600 240 50 64 7252

EDIADFSTRUCTMEMY 200 80 53 60 2544

EDIADFFIELD 5000 2500 1 2551 1248

EDIADFFIELDX 2000 800 53 60 26394

EDIADFFIELDY 1000 400 108 30 26536

EDIXMLDICT 50 25 34 118 357

EDIXMLDICTX 25 10 108 30 455

EDIDTDHDR 5000 2500 2 1398 2496

EDIDTDHDRX 2000 800 53 60 26394

EDIDTD 50 25 12 320 126

EDIDTDX 50 20 50 64 515

EDITSTH 600 120 12 323 1776

EDITSTHX 150 30 272 10 9656

EDITSTHO 24 8 123 26 492

EDITSTI 600 120 2 2000 296

EDITSTIX 150 30 210 14 7455

EDITSTO 600 120 17 237 2516

EDITSTOX 150 30 272 10 9656

Allocation tables

686 WebSphere Data Interchange Programmer’s Reference

Table 245. DB2 database allocation (continued)

Table name Primary
Allocation
(Kilobytes)

Secondary
Allocation
(Kilobytes)

Records per
page

Record size Records in Primary
Allocation

EDITSAU 600 120 58 70 8584

EDITSAUX 150 30 210 14 7455

EDITSAUY 150 30 171 18 6071

EDITSEV 600 120 11 501 1184

EDITSEVX 150 30 48 66 1704

EDITSEV1 10 3 319 8 160

EDITSGP 600 120 11 341 1628

EDITSGPX 150 30 38 80 1349

EDITSTU 600 120 16 241 2368

EDITSTUX 150 30 32 94 1136

EDITSTUY 150 30 272 10 9656

EDITSLT 10 5 4074 1 2037

Supplied database allocation for VSAM
Table 246 describes the VSAM records used by WebSphere Data Interchange
including the number of records that the allocation values will accommodate.

Formula for VSAM database allocation
This formula was used to determine the number of records per control interval (rci):
rsz = Record size
ciz = Control interval size = 4096
rci = FLOOR((ciz-4/(rsz+3))

Note: Assume 10 control intervals per track.

Table 246. VSAM database allocation

Table name Primary
Allocation
(Kilobytes)

Secondary
Allocation
(Kilobytes)

Records per
page

Record size # of Primary
Allocation Records

HELPS 105 10 2000 2 2100

SCREENS 20 5 2000 2 400

Space calculation scenario
The items listed below provide the information required to perform the example
space calculations. The items are followed by tables showing the DB2 and VSAM
space allocations necessary for the example. These tables are followed by a blank
worksheet which can be copied and used for your own estimates.

Note: When you are attempting to do a space estimate, do not spend too long
trying to arrive at an exact number of fields in a structure or number of
elements in a segment. Pick a value that seems reasonable and use it.

Allocation tables

Appendix C. Space calculation examples 687

The majority of DASD required by WebSphere Data Interchange is used in the
Transaction Store, and the amount of DASD required for the Transaction Store
depends on the number of transactions processed per day and the average size of
a transaction image. The following values have the most impact on your space
calculations:

v 100 trading partners.

v 50 requestor IDs.

v 10 transactions sets used but the entire X12V3R1 standard has been applied.

v Average transaction has 30 segments defined with 10 fields per segment and all
of these are mapped.

v Half of the mapped data elements required a literal, accumulator, or other special
action (validation table, date edit, translate table, and so forth).

v 25000 transactions per month.

v 2000-character transactions.

v 10 data formats.

v Transaction level recovery is specified during translation.

v One mapping for each transaction set and that mapping is used by the 100
trading partners. 50 trading partners will be used for Receive processing and 50
trading partners will be used for Send processing.

v 30 segments mapped per transaction with 10 fields per segment.

v 30 structures per data format with 10 fields per structure.

v Average number of transactions per envelope is eight.

v Each interchange contains one functional group.

v Transactions are retained for one month with a TRANSACTION REMOVE
command run once a month.

v Management reporting statistics are retained for two months with a PERFORM
UPDATE STATISTICS command run once a week.

DB2 database allocation required for space calculation scenario
Table 247 on page 689 describes the allocation required given the set of
assumptions explained in “Space calculation scenario” on page 687.

Formula for DB2 primary allocation (PRIQTY)
This formula was used to determine the DB2 primary allocation amount (PRIQTY):
rpp = Records per page

(shown in Table 245 on page 681.)
psz = DB2 page size = 4096
alu = DB2 allocation unit = 1024 bytes
rnb = Total number of records wanted
pri = Primary allocation = ((FLOOR (rnb/rpp) + 2) *psz)/alu

Space calculation scenario

688 WebSphere Data Interchange Programmer’s Reference

Table 247. DB2 allocation required for the space calculation scenario

Table name Number of
records required

DB2 primary
allocation

Comments

EDICSTX 50 208 CSTXNUM = TDIDNUM + (4 * TPTXNUM)

CSTXNUM = 10 + (4 * 10)

CSTXNUM = 50

EDICSTXX 50 12 CSTXXNUM = CSTXNUM

CSTXXNUM = 50

EDISTDDEH 901 96 SCDENUM = EDISCDE entries in X12V3R1

EDISTDDEHX 901 28 SCDEXNUM = SCDENUM
SCDEXNUM = 901

EDISTDSGD 3707 184 SCSGNUM = EDISCSG entries in X12V3R1

EDISTDSGDX 3707 136 SCDUXNUM = SCDUNUM
SCDUXNUM = 3707

EDISTDSEG 520 48 SCSGNUM = EDISCSG entries in X12V3R1

EDISTDSEGX 520 20 SCSGXNUM = SCSGNUM
SCSGXNUM = 520

EDISTDSTH 1 12 SCSTNUM = 1 standard loaded

EDISTDSTHX 1 8 SCSTXNUM = SCSTNUM
SCSTXNUM = 1

EDISTDTXD 1622 88 SCSUNUM = EDISCSU entries in X12V3R1

EDISTDTXDX 1622 64 SCSUXNUM = SCSUNUM
SCSUXNUM = 1622

EDISTDTRX 39 12 SCTXNUM = EDISCTX entries in X12V3R1

EDISTDTRXX 39 12 SCTXXNUM = SCTXNUM
SCTXXNUM = 39

EDIMAPELE 3000 352 SSMAP = Average number of MAPPED segments = 30
ELSS = Average number elements per segment = 10
TPDDNUM = TPTXNUM * SSMAP * ELSS
TPDDNUM = 10 * 30 * 10 = 3000

EDIMAPELEX 3000 100 TPDDXNUM = TPDDNUM
TPDDXNUM = 3000

EDITPRT 500 96 TPTXNUM = Total number of mappings = 10

PRECV = Percentage of Receive mappings = 50%

TPPROFNUM = Total number of trading partners = 100

TPRECV = Percentage trading partners receiving = 100%

TPRTNUM = (TPTXNUM * PRECV) * (TPPROFNUM *
TPRECV)

TPRTNUM = (10 * .5) * (100 * 1)

TPRTNUM = 500

EDITPRTX 500 60 TPDDXNUM = TPDDNUM

TPDDXNUM = 3000

Space calculation scenario

Appendix C. Space calculation examples 689

Table 247. DB2 allocation required for the space calculation scenario (continued)

Table name Number of
records required

DB2 primary
allocation

Comments

EDIRULE 1500 324 TPDDNUM = Total number of fields = 3000
SPMAP = Percentage of fields that are mapped with
either literal values, accumulators, edits,
validation/translation tables, sub-string/concatenate,
user exits = 50%
TPRUNUM = TPDDNUM * SPMAP
TPRUNUM = 3000 * .5 = 1500

EDIRULEX 1500 56 TPRUXNUM = TPRUNUM
TPRUXNUM = 1500

EDIMAPSEG 300 44 SSSTD = Average number of segments in a
transaction = 30

SSRMAP = Average number repeated mappings = 0
TPSGNUM = TPTXNUM * (SSSTD + SSRMAP)
TPSGNUM = 10 * (30 + 0) = 300

EDIMAPSEGX 300 16 TPSGXNUM = TPSGNUM
TPSGXNUM = 300

EDITPST 500 152 TPTXNUM = Total number of mappings = 10

PSEND = Percentage of mappings for Send = 50%

TPPROFNUM = Total number of trading partners = 100

TPSEND = Percentage of trading partners you send to =
100%

TPSTNUM = (TPTXNUM * PSEND) * (TPPROFNUM *
TPSEND)

TPSTNUM = (10 * .5) * (100 * 1)

TPSTNUM = 500

EDITPSTX 500 52 TPSTXNUM = TPSTNUM

TPSTXNUM = 500

EDIMAPHEAD 10 12 TPTXNUM = Number of mappings = 10

EDIMAPHEADX 10 12 TPTXXNUM = TPTXNUM
TPTXNUM = Number of mappings = 10
TPTXXNUM = 10

EDIADFHEADER 10 12 TDIDNUM = Number of data formats = 10

EDIADFHEADERX 10 12 TDIDXNUM = TPIDNUM
TDIDXNUM = 10

EDIADFSTRUCT 3600 240 TDIDNUM = Number of data formats = 10
STFMT = Average number of structures per data
format = 30
FLSTR = Average number of fields per structure = 10
TDSTNUM = ((STFMT * 2) + (STFMT * FLSTR))
* TDIDNUM
TDSTNUM = ((30 * 2) + (30 * 10)) * 10
TDSTNUM = 3600

EDIADFSTRUCTX 3600 168 TDSTXNUM = TPSTNUM
TDSTXNUM = 3600

Space calculation scenario

690 WebSphere Data Interchange Programmer’s Reference

Table 247. DB2 allocation required for the space calculation scenario (continued)

Table name Number of
records required

DB2 primary
allocation

Comments

EDITSTH 50000 16676 TRXPDAY = Number of transactions per day = 25000/30

TSTHNUM = TRXPDAY * TSLIFE

TSTHNUM = 833.3 * 60 = 50000
Note: TRXLIFE = Days before purge = 30

PRGSPAN = Frequency of remove utility = 30

TSLIFE = TRXLIFE + PGRSPAN

TSLIFE = 30 + 30 = 60

EDITSTHX 50000 744 TSTHXNUM = TSTHNUM

TSTHXNUM = 50000

EDITSTI 50000 100008 TSTINUM = TSTHNUM = 50000

EDITSTIX 50000 964 TSTIXNUM = TSTINUM

TSTIXNUM = 50000

EDITSTO 0 8 TSTONUM = 0 (Overrides not being used)

EDITSTOX 0 8 TSTOXNUM = TSTONUM

TSTOXNUM = 0

EDITSAU 50000 3856 TSAUNUM = TSTHNUM = 50000

EDITSAUX 50000 964 TSAUXNUM = TSAUNUM

TSAUXNUM = 50000

EDITSAUY 50000 1188 TSAUYNUM = TSAUNUM

TSAUYNUM = 50000

EDITSEV 6250 3136 TRXPENV = Average number of transactions per
envelope = 8

TSEVNUM = TSTHNUM / TRXPENV

TSEVNUM = 50000 / 8 = 6250

EDITSEVX 6250 532 TSEVXNUM = TSEVNUM

TSEVXNUM = 6250

EDITSGP 6250 2284 GRPPENV = Average groups per envelope = 1

TSGPNUM = TSEVNUM * GRPPENV

TSGPNUM = 6250 * 1 = 6250

EDITSGPX 6250 668 TSGPXNUM = TSGPNUM

TSGPXNUM = 6250

EDITSTU 50000 12508 TSTHNUM = TSTHNUM = 50000

EDITSTUX 50000 6260 TSTUXNUM = TSTUNUM

TSTUXNUM = 50000

Space calculation scenario

Appendix C. Space calculation examples 691

Table 247. DB2 allocation required for the space calculation scenario (continued)

Table name Number of
records required

DB2 primary
allocation

Comments

EDITSTUY 50000 744 TSTUYNUM = TSTUNUM

TSTUYNUM = 50000

EDIMRCM 3100 178 RIDNUM = Number of Requestor IDs (RID) = 50

CUMENTS = Number of cumulative entries = RIDNUM * 2

CUMENTS = 50 * 2 = 100

PRIDINT = Daily percentage of RIDs having an
interchange = 50%

MEASPDAY = (RIDNUM * 2) * PRIDINT

MEASPDAY = (50 * 2) * .5 = 50

MRCMNUM = (MEASPDAY * MEASLIFE) + CUMENTS

MRCMNUM = (50 * 60) + 100 = 3100
Note:
MEASLIFE = 60
PENDLIFE = 7
RIDNUM = 50
TPRTNUM = 500
TPSTNUM = 500

EDIMRCMX 3100 122 MRCMXNUM = MRCMNUM

MRCMXNUM = 3100

EDIMRPC 7000 435 Transaction level recovery formula:

RIDNUM = Number of Requestor IDs (RID) = 50

SENDNUM = Average number of send interchanges per
RID per day = 10

RECVNUM = Average number of receive interchanges per
RID per day = 10

PENDPDAY = (SENDNUM + RECVNUM) * RIDNUM

PENDPDAY = (10 + 10) * 50 = 1000

MRPCNUM = PENDPDAY * PENDLIFE

MRPCNUM = 1000 * 7 = 7000

EDIMRPCX 7000 302 MRPCXNUM = MRPCNUM

MRPCXNUM = 7000

EDIMRRT 15500 1926 PACTIVE = Daily percentage of receive usages having
activity = 50%

MEASPDAY = TPRTNUM * PACTIVE

MEASPDAY = 500 * .5 = 250

MRRTNUM = (MEASPDAY * MEASLIFE) + TPRTNUM

MRRTNUM = (250 * 60) + 500 = 15500

Space calculation scenario

692 WebSphere Data Interchange Programmer’s Reference

Table 247. DB2 allocation required for the space calculation scenario (continued)

Table name Number of
records required

DB2 primary
allocation

Comments

EDIMRRTX 15500 1983 MRRTXNUM = MRRTNUM

MRRTXNUM = 15500

EDIMRPR 2919 385 Transaction level recovery formula:

TRXPDAY = Number of transactions per day = 25000/30 =
834

PRECV = Percentage of transactions that are receive
transactions = 50%

MRPRNUM = TRXPDAY * PRECV * PENDLIFE

MRPRNUM = 834 * .5 * 7 = 2919

EDIMRPRX 2919 125 MRPRXNUM = MRPRNUM

MRPRXNUM = 2919

EDIMRST 15500 1774 PACTIVE = Daily percentage of send usages having
activity = 50%

MEASPDAY = TPSTNUM * PACTIVE

MEASPDAY = 500 * .5 = 250

MRSTNUM = (MEASPDAY * MEASLIFE) + TPSTNUM

MRSTNUM = (250 * 60) + 500 = 15500

EDIMRSTX 15500 1728 MRSTXNUM = MRSTNUM

MRSTXNUM = 15500

EDIMRPS 2919 353 Transaction level recovery formula:

TRXPDAY = Number of transactions per day = 25000/30 =
834

PRECV = Percentage of transactions that are receive
transactions = 50%

MRPRNUM = TRXPDAY * PRECV * PENDLIFE

MRPRNUM = 834 * .5 * 7 = 2919

EDIMRPSX 2919 126 MRPSXNUM = MRPSNUM

MRPSXNUM = 2919

VSAM database allocation required for space calculation scenario
Table 248 on page 694 describes the allocation required given the set of
assumptions as explained in “Space calculation scenario” on page 687.

Formula for VSAM primary allocation (TRKS)
The VSAM primary allocation amount (TRKS) is determined with:
rci = Records per control interval

(shown in Table 246 on page 687.)

Space calculation scenario

Appendix C. Space calculation examples 693

ppt = Number of control intervals per TRACK = 10
(3380=10, 3330=3, 3340=2, 3350=4, 3375=8)

rnb = Total number of records wanted
pri = Primary allocation = CEILING (((FLOOR (rnb/rci)) / ppt))

Note: A minimum of two tracks are allocated. EDISCRN and EDIHELP are not
fixed in size.

Table 248. VSAM allocation required for the space calculation scenario

Table name VSAM Primary Allocation (tracks)

EDISCRN 20

EDIHELP 25

Space calculation worksheets
Use the worksheet in Table 249 to help you to calculating your space estimates for
DB2 database records supplied.

Table 249. DB2 database allocation worksheet

Table name Number of records required DB2 primary allocation

EDICSTX

EDICSTXX

EDIELOG

EDIELOGX

EDIELOG1

EDIELOG2

EDIENVP

EDIENVPX

EDIMRCM

EDIMRCMX

EDIMRPC

EDIMRPCX

EDIMRRT

EDIMRRTX

EDIMRPR

EDIMRPRX

EDIMRST

EDIMRSTX

EDIMRPS

EDIMRPSX

EDIMSGS

EDIMSGSX

EDIOWNR

EDIPROF

EDIPROFX

EDIPSAC

Space calculation scenario

694 WebSphere Data Interchange Programmer’s Reference

Table 249. DB2 database allocation worksheet (continued)

Table name Number of records required DB2 primary allocation

EDIPSACX

EDIPSAD

EDIPSADX

EDIPSAP

EDIPSAPX

EDIPSCR

EDIPSCRX

EDIPSDI

EDIPSDIX

EDIPSEI

EDIPSEIX

EDIPSEE

EDIPSEEX

EDIPSIE

EDIPSIEX

EDIPSLP

EDIPSLPX

EDIPSMQ

EDIPSMQX

EDIPSNO

EDIPSNOX

EDIPSNP

EDIPSNPX

EDIPSPD

EDIPSPDX

EDIPSRQ

EDIPSRQX

EDIPSSP

EDIPSSPX

EDIPSSY

EDIPSSYX

EDIPSTD

EDIPSTDX

EDIPSTE

EDIPSTEX

EDIPSTP

EDIPSTPX

EDIPSTP1

EDIPSTP2

EDISPTP3

Space calculation worksheets

Appendix C. Space calculation examples 695

Table 249. DB2 database allocation worksheet (continued)

Table name Number of records required DB2 primary allocation

EDIPSTT

EDIPSTTX

EDIPSTT1

EDIPSTV

EDIPSTVX

EDIPSUE

EDIPSUEX

EDIPSXE

EDIPSXEX

EDISTDDEH

EDISTDDEHX

EDISTDDEHY

EDISTDDED

EDISTDDEDU

EDISTDDEDX

EDISTDDEDY

EDISTDDEDZ

EDISTDCDN

EDISTDCDNX

EDISTDSGH

EDISTDSGHX

EDISTDDSGD

EDISTDSGDU

EDISTDSGDX

EDISTDSGDY

EDISTDSGDZ

EDISTDSGN

EDISTDSGNX

EDISTDSTH

EDISTDSTHX

EDISTDENV

EDISTDENVX

EDISTDTXD

EDISTDTXDX

EDISTDTXDY

EDISTDTXDZ

EDISTDTXH

EDISTDTXHX

EDISTDTXHY

EDISTDTXN

Space calculation worksheets

696 WebSphere Data Interchange Programmer’s Reference

Table 249. DB2 database allocation worksheet (continued)

Table name Number of records required DB2 primary allocation

EDISTDTXNX

EDISSTK

EDISSTKX

EDISSTXX

EDITPCM

EDITPCMX

EDITPCN

EDITPCNX

EDITPCT

EDITPCTX

EDIRULE

EDIRULEX

EDIRULE1

EDIRULE2

EDIRULE3

EDITPRT

EDITPRTX

EDITPRTY

EDITPRTZ

EDITPST

EDITPSTX

EDITPSTY

EDITPSTZ

EDIMAPHEAD

EDIMAPHEADX

EDIMAPAPPLCNTL

EDIMAPAPPLCNTLX

EDIMAPAPPLCNTLY

EDIMAPSEG

EDIMAPSEGX

EDIMAPSEGY

EDIMAPSEGZ

EDIMAPELE

EDIMAPELEX

EDIMAPELEY

EDIMAPGBLVAR

EDIMAPGBLVARX

EDIMAPSYNTAX

EDIMAPSYNTAXX

EDIMAPLCLVAR

Space calculation worksheets

Appendix C. Space calculation examples 697

Table 249. DB2 database allocation worksheet (continued)

Table name Number of records required DB2 primary allocation

EDIMAPLCLVARX

EDIMAPREF

EDIMAPREFX

EDIMAPNODES

EDIMAPNODESX

EDIMAPCMDS

EDIMAPCMDSX

EDIADFDICT

EDIADFDICTX

EDIRECIDINFO

EDIRECIDINFOX

EDIADFHEADER

EDIADFHEADERX

EDIADFHEADERY

EDIADFHEADERZ

EDIADFHDRMEM

EDIADFHDRMEMX

EDIADFHDRMEMY

EDIADFLOOP

EDIADFLOOPX

EDIADFLOOPY

EDIADFLOOPZ

EDIADFLOOPMEM

EDIADFLOOPMEMX

EDIADFLOOPMEMY

EDIADFRECORD

EDIADFRECORDX

EDIADFRECORDY

EDIADFRECORDZ

EDIADFRECMEM

EDIADFRECMEMX

EDIADFRECMEMY

EDIADFSTRUCT

EDIADFSTRUCTX

EDIADFSTRUCTY

EDIADFSTRUCTMEM

EDIADFSTRUCTMEMX

EDIADFSTRUCTMEMY

EDIADFFIELD

EDIADFFIELDX

Space calculation worksheets

698 WebSphere Data Interchange Programmer’s Reference

Table 249. DB2 database allocation worksheet (continued)

Table name Number of records required DB2 primary allocation

EDIADFFIELDY

EDIXMLDICT

EDIXMLDICTX

EDIDTDHDR

EDIDTDHDRX

EDIDTD

EDIDTDX

EDITSTH

EDITSTHX

EDITSTHO

EDITSTI

EDITSTIX

EDITSTO

EDITSTOX

EDITSAU

EDITSAUX

EDITSAUY

EDITSEV

EDITSEVX

EDITSEV1

EDITSGP

EDITSGPX

EDITSTU

EDITSTUX

EDITSTUY

EDITSLT

Space calculation worksheets

Appendix C. Space calculation examples 699

Space calculation worksheets

700 WebSphere Data Interchange Programmer’s Reference

Appendix D. Performance considerations

This appendix provides performance information on WebSphere Data Interchange
and WebSphere Data Interchange to help you plan your system requirements.

The following considerations and tuning techniques are highly recommended to
achieve optimum WebSphere Data Interchange performance:
v “General optimization techniques”
v “WebSphere Data Interchange/z/OS considerations” on page 702
v “WebSphere Data Interchange CICS considerations” on page 703
v “File maintenance techniques” on page 704
v “Transaction Store query techniques” on page 704
v “VS COBOL II field exit considerations” on page 706

General optimization techniques
v If you are a high-volume EDI customer using a DB2 repository:

– Define multiple DASD volumes to DB2 storage group EDISTG01 to facilitate
spreading DB2 data sets across multiple packs.

– Define large DASD allocations for Transaction Store DB2 tables EDITSAU,
EDITSTH, EDITSTI, EDITSTU, EDITSEV, EDITSGP which are heavily
referenced.

– Monitor the status of DB2 Table data sets on a regular basis (at least twice
monthly, more often if possible). Use LISTCAT and DB2 Utilities such as
CHECK, RUNSTAT, and REORG to monitor and tune the DB2 table data sets.

– Add volumes to DB2 storage groups, increase table space DASD, and
reorganize DB2 Table data sets when CI, and especially CA, splits are
encountered.

v Define the Master Catalog for the high-level data set name qualifier on a
separate pack from all other z/OS data sets.

v Log only application data images and EDI standard data images during the
testing period. The trading partner profile (TPPROF) controls logging of
interchange images. The usage/rule controls the logging of application images.
Additionally, do not log profile access attempts if not necessary for your
environment. The Log action on the Profile menu controls this.

v Log only events during the testing period. The Activity Logs (ACTLOGS) profile,
member EDIFFS, Log flag controls whether normal events are logged. Error
conditions and events that change a transaction's status are recorded even if
logging is turned off.

v Minimize translator error messages by setting the &DIERRFILTER keyword.

v Use commands that combine several functions in one; for example, rather than
using TRANSLATE TO STANDARD and then ENVELOPE, use TRANSLATE
AND ENVELOPE to have both functions performed at the same time.

v If concurrency is an issue and multiple WebSphere Data Interchange invocations
use the same trading partner, use the RECOVERY keyword to single-thread the
multiple DI invocations through the trading partner profile. This is true for
outbound translation and when generating functional acknowledgments.
Transaction level recovery, rather than envelope level recovery, might be
advisable here to help concurrency and improve throughput. This can be
accomplished using the RECOVERY keyword.

© Copyright IBM Corp. 2002 701

v Specify that WebSphere Data Interchange pass application data structures in
groups whenever possible. Passing data structures in groups requires less
interaction, less overhead, and less I/O than passing data structures separately.

v Avoid excessive use of the keyword literals &E, &IF, &ERR, and &ASSERT in
highly repetitive loop maps. Although conditional logic map is a valuable feature
but, if used excessively, it degrades translation performance and increases
processing costs.

v Compile maps to generate control strings for your EDI envelope standards to
reduce I/O associated with retrieving envelope definitions.

v If you are currently using a validation level of 2, consider using the keyword
literals &DIVALTYPE and &DIVALLEVEL as an alternative. You can limit
validation to specific, important elements using these keywords.

WebSphere Data Interchange/z/OS considerations
v Define FFSWORK data set in the WebSphere Data Interchange/z/OS utility JCL

as virtual I/O to drastically reduce I/O exceptions relating to the work data set.
//FFSWORK DD DSN=&&FFSWORK,DISP=(NEW,DELETE,DELETE),
// DCB=(RECFM=V,BLKSIZE=32760),
// UNIT=VIO,SPACE=(TRK,(3,3))

v Use a record length greater than 512 with a large block size for envelope files to
reduce I/O during envelope and de-envelope operations.

v Define the transaction input data sets (APDATA01, APDATA02, and so forth) on
separate DASD from other WebSphere Data Interchange/z/OS data sets to
greatly reduce data set contention.

v If translating large files, the following formula can be used to determine virtual
storage requirements. (The same formula pertains to both inbound and outbound
translation.)
Virtual storage required = Largest application transaction image

+ EDI interchange length + 4 MB overhead

Largest application transaction image: The length of the largest transaction in
application format (input to TRANSLATE AND ENVELOPE, or output from
DEENVELOPE AND TRANSLATE).

If multiple EDI transactions are being processed, only consider the largest
transaction in application format because WebSphere Data Interchange releases
the application image as each transaction is processed. In most cases, the
application image is many times larger than the EDI counterpart because
application fields are fixed length. Also, data format structures passed as a group
tend to drastically increase this length due to exorbitant padding.

EDI interchange image: The length of the entire EDI interchange, including header
and trailer segments.
EDIFACT

UNB through UNZ
ANSI X12

ISA through IEA
UCS BG through EG
UN/TDI

STX through SCH
ICS ICS through ICE

General optimization techniques

702 WebSphere Data Interchange Programmer’s Reference

4 MB overhead: The amount of storage required for loading programs, I/O
buffering, etc. WebSphere Data Interchange obtains most storage above the 16 MB
line.

Note: The z/OS default limit for above-the-line storage is 32 MB. Specifying a JCL
REGION of between 16 MB and 32 MB reduces this default limit. Only
change the JCL REGION specification when your estimation exceeds 32 MB,
or use REGION=8 MB to remove the limit. For detailed information about the
REGION parameter, refer to z/OS JCL documentation.

WebSphere Data Interchange CICS considerations
v For CICS/ESA installations, the WebSphere Data Interchange Persistent

Environment can be used. The Persistent Environment is designed to minimize
read operations involved in translating data.

v Make sure transaction EDIX is enabled. This is done with CEMT I TRAN(EDIX).

v The WebSphere Data Interchange Utility single-threads through print files,
exception files, report files, tracking files, and query files. The names of these
files can be specified in the Utility Control Information block passed by the
application to the Utility. If concurrency is an issue, choose unique names for
these files.

v If concurrency is an issue, spread functional acknowledgments to separate TS
queues by setting the FUNACKFILE keyword.

v For CICS/ESA installations, have EDIMSG defined as a CICS data table, if
possible. Use the CICS RDO facility to do this. However, be aware that changes
made in batch or TSO are not reflected immediately in CICS data tables.

v If you run many small, concurrent WebSphere Data Interchange translations
involving numerous trading partners, you can develop HOT-DI applications to
drive WebSphere Data Interchange.

v If translating large files, the following formula can be used to determine virtual
storage requirements. (The same formula pertains to both inbound and outbound
translation.)
Virtual storage required = Largest application transaction image

+ EDI interchange length + 4 MB overhead

Largest application transaction image: The length of the largest transaction in
application format (input to TRANSLATE AND ENVELOPE, or output from
DEENVELOPE AND TRANSLATE).

If multiple EDI transactions are being processed, you need only consider the largest
transaction in the application format because WebSphere Data Interchange
releases the application image as each transaction is processed. In most cases, the
application image is many times larger than the EDI counterpart because
application fields are fixed length. Also, data format structures passed as a group
tend to drastically increase this length due to exorbitant padding.

EDI interchange image: The length of entire EDI interchange, including header
and trailer segments.
EDIFACT

UNB through UNZ
ANSI X12

ISA through IEA
UCS BG through EG
UN/TDI

STX through SCH

WebSphere Data Interchange/z/OS considerations

Appendix D. Performance considerations 703

ICS ICS through ICE

4 MB overhead: The amount of storage required for loading programs, I/O
buffering, etc. WebSphere Data Interchange obtains most storage above the 16 MB
line.

In CICS, most storage will be obtained from extended DSA. (This is a CICS 3.2
EDSALIN SIT parameter.) You must also consider other CICS activity, such as
concurrent WebSphere Data Interchange tasks. Concurrent tasks each require 3
MB of additional overhead.

Maximize throughput by using concurrent WebSphere Data Interchange tasks.
There should not be more than six of these at any one time. Use the CICS RDO
TRANClass command to limit concurrent activity.

File maintenance techniques
v Delete or archive unused and outdated data from WebSphere Data

Interchange/z/OS data sets on a regular basis. Small data sets result in better
performance.

v Do not track unneeded, outdated transactions in the Transaction Store database.
Performance is degraded when a database query range includes these
unimportant records. Execute PURGE and REMOVE commands regularly to
delete unneeded records. Also, use an appropriate purge interval. For more
information on the file content and space calculations, see Appendix C, “Space
calculation examples” on page 657

v Specify a WHERE clause for REMOVE commands to reduce the scope of the
database query to transactions with a PURGE - DATE EXPIRED status. Before
transactions can be removed, you must run a database query to determine the
remove eligibility of expired transactions. Narrowing the query to only eligible
transactions improves performance. For example, if the default purge interval of
30 days is used, transactions added in the last 30 days are not eligible for
removal. The command could be: REMOVE TRANSACTIONS WHERE
HANDLE(*-999) TO(*-30).

v If the Transaction Store information is not used or needed for your environment,
turn off the writing of these records through options in the Application Defaults
(APPDEFS) profile. However, be aware that if ENVELOPE or TRANSLATE TO
APPLICATION is used, it is essential that Transaction Store records be written as
this ensures their retrieval.

v Archive event log entries regularly. For more information on the archive utility,
see “Using sample JCL” on page 359 Or, if records therein are not needed, use
the sample install JCL to DELETE, DEFINE, and LOAD the log file. Sample JCL
is contained in target library SEDIINS1. Member EDIJVSDF contains JCL to
delete and define the log. Only run the applicable job step for the event log in
question.

Transaction Store query techniques
The WHERE option specified during a database query plays a significant role in
performance. A database query takes place with various PERFORM statements, the
most common of which are ENVELOPE, TRANSLATE TO APPLICATION, PRINT,
PURGE, and REMOVE. These Transaction Store utility functions require a search
and retrieval of information contained in the Transaction Store.

WebSphere Data Interchange CICS considerations

704 WebSphere Data Interchange Programmer’s Reference

The following techniques apply to all PERFORM commands that require a database
selection/query. These same techniques can be utilized with the interactive
Transaction Store facility. The following list contains criteria and the order in which
the criteria are checked. (All fields at the same indentation level are checked in the
order listed.)

--
Transaction Handle
Batch ID
Direction

All information in Transaction Handle Record(s)

Table: EDITSTH

Application Control field
Direction
Standard Transaction ID
Transaction Handle
Date added to store
Time added to store
Trading Partner Nickname
Internal Trading Partner ID
Network ID
Envelope Type
Earliest purge date
Earliest envelope date

All information in Application Record(s)

Table: EDITSAU

Application ID
Data Format ID
Batch ID
Translation Error Level
Delivered date
Delivered time

All information in Transaction Usage Record(s)

Table: EDITSTU

Interchange Control Number
Group Control Number
Transaction Control Number
Interchange Receiver ID

All information in Group Usage Record(s)

Table: EDITSGP

Application Sender ID
Application Receiver ID
Functional Acknowledgment Pending

All information in Envelope Usage Record(s)

Table: EDITSEV

Interchange Sender ID
Send date
Send time
Network Status
Network Acknowledgment Pending
Envelope date
Envelope time

--

You do not need to understand all the relationships between the files and records to
utilize the preceding information. However, be aware that generally there is one

Transaction Store query techniques

Appendix D. Performance considerations 705

record for each EDI transaction in each of the previous tables. With this in mind,
correctly applying the following two rules can significantly improve query
performance:

1. Directly limit the query to a specific range of transactions using a handle range,
batch ID, and/or direction (send or receive). Since the primary file is the
transaction handle file (EDITSTH), and the primary key to this file is the
transaction handle, specifying a handle range reduces the number of records
accessed. When specifying a handle range, the selection program is given a
partial key, thereby excluding inapplicable records.

Note: When executing the WebSphere Data Interchange Utility you can use
(*-n) in the From and To values of the HANDLE range where the asterisk
(*) represents the current system date and n represents the number of
days before it.

Handle, Direction, and Batch ID are the only fields that directly narrow the
search window. Further criteria specifications, such as Trading Partner
Nickname or Standard Transaction ID, require a scan of all records obtained
using Handle, Direction, or Batch ID.

2. You can limit the query using the transaction handle record (EDITSTH).
Searching for specific criteria in the transaction handle record is the next best
way to limit the selection. These values are not keys, but work better than using
the transaction usage record, group usage record, or envelope usage record.
For example, if you translate and send many transactions to a specific trading
partner and want to retrieve these specific transactions, use the trading partner
nickname instead of the interchange receiver ID. The trading partner nickname
is more specific, and so is faster to retrieve than the interchange receiver ID
and more efficient for performing queries.

VS COBOL II field exit considerations
If WebSphere Data Interchange/z/OS translation performance degrades after adding
a VS COBOL II field exit, it is probably because of a tremendous increase in the
EXCP count. This degradation can often be attributed to the LIBKEEP runtime
parameter. By default, the runtime parameter LIBKEEP equals N which causes the
runtime environment to reinitialize every time a program or sub-program is
executed. When a field exit is called by WebSphere Data Interchange thousands of
times, the exception count goes up and performance goes down. The execution
option of LIBKEEP can be changed to Y in macro IGZEOPD, thus keeping the
runtime environment in memory after a GOBACK from the field exit. This is a global
change and affects all COBOL applications using this run time library. Consider the
implications:

1. A system programmer needs to balance exceptions with region size constraints.
The more sophisticated a COBOL program is, the longer it takes to initialize the
runtime environment. In the case of WebSphere Data Interchange field exits,
this probably is minimal because these exits typically only work with storage.
However, keeping the environment in storage might effect the region sizes of
other larger COBOL applications.

2. Consider the environmental issue of both COBOL OS/VS and VSCOBOL II.
Because LIBKEEP can keep the COBOL II runtime in memory, COBOL OS/VS
programs can access this rather than using strictly COBOL OS/VS. The only
impact is that this forces a NO END JOB response in a COBOL OS/VS
program.

Transaction Store query techniques

706 WebSphere Data Interchange Programmer’s Reference

The problem of the IGZEOPD macro being global can be bypassed by using a
separate CSI for a copy of the VS COBOL II run time library. A special run time
library can be installed where LIBKEEP equals Y. This library can then be
STEPLIBed in the WebSphere Data Interchange/z/OS job, so it is not accessed by
the rest of the z/OS system. This eliminates the impact on other COBOL
applications.

The LIBKEEP and RTEREUS options are similar with the exception that RTEREUS
provides reusability for concurrent jobs. Both are runtime options and not compiler
or link-edit options. For more information about runtime parameters, refer to the VS
COBOL II Application Programming Guide.

VS COBOL II field exit considerations

Appendix D. Performance considerations 707

VS COBOL II field exit considerations

708 WebSphere Data Interchange Programmer’s Reference

Appendix E. Mapping the MQRFH2 header to the JMS API

This appendix explains how the MQRFH2 mapping to the Java Message Service
(JMS) API works when you are communicating with a JMS Client.

The MQSeries Java Message Service (JMS) implementation uses the Message
Content Descriptor (MCD) folder of the MQRFH2 to carry information about the
message, as described in the MQRFH2 header. By default, the Message Domain
(MSD) property is used to identify whether the message is a text, bytes, stream,
map, or object message. This value is set depending on the type of the JMS
messages.

If the application calls setJMSType, it can set the MCD type field to a value of its
choosing. This type field can be read by the WebSphere MQ Integrator message
flow, and a receiving JMS application can use the getJMSType method to retrieve
its value. This applies to all kinds of JMS messages.

When a JMS application creates a text or bytes message, the application can set
MCD folder fields explicitly by calling the setJMSType method and passing in a
string argument in a special Universal Resource Identifier (URI) format as follows:
mcd://domain/[set]/[type][?format=fmt]

This URI form allows an application to set the MCD to a domain that is not one of
the standard jms_xxxx values; for example, to domain mrm. It also allows the
application to set any or all of the MCD set, type, and format fields if desired.

The string argument to setJMSType is interpreted as follows:

1. If the string does not appear to be in the special URI format (for example, it
does not start with mcd://), the string is added to the MCD folder as the type
field.

2. If the string does start with mcd:// and conforms to the URI format, and the
message is a Text or Bytes message, the URI string is split into its constituent
parts. The domain part overrides the jms_text or jms_bytes value that would
otherwise have been generated, and the remaining parts (if present) are used to
set the set, type, and format fields in the MCD. Note that set, type, and format
are all optional.

3. If the string starts with mcd:// and the message is a Map, Stream or Object
message, the setJMSType call throws an exception. You cannot override the
domain, or provide a set or format for these classes of messages, but you can
provide a type if you wish.

When an MQ message is received with an MSD other than one of the standard
jms_xxxx values, it is instantiated as a JMS text or bytes message and a URI-style
JMSType is assigned to it. The receiving application can read this using the
getJMSType method.

© Copyright IBM Corp. 2002 709

710 WebSphere Data Interchange Programmer’s Reference

Appendix F. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 2002 711

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

Notices

712 WebSphere Data Interchange Programmer’s Reference

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX
CICS
DB2
DB2 Universal Database
IBM
IBMLink
MQSeries
MVS
OS/390
WebSphere
z/OS

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Appendix F. Notices 713

714 WebSphere Data Interchange Programmer’s Reference

Glossary of terms and abbreviations

This glossary defines WebSphere Data
Interchange terms and abbreviations used in this
book. If you do not find the term you are looking
for, see the index or the IBM Dictionary of
Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by
the American National Standards Institute. Copies
may be ordered from the American National
Standards Institute, 11 West 42 Street, New York,
New York 10036. Definitions are identified by the
symbol (A) after the definition.

A
AAR. Association of American Railroads. Represents
the railroad industry in areas such as standards, public
relations, and advertising.

acknowledgment. See functional acknowledgment,
network acknowledgment.

action bar. The area at the top of a panel that
contains choices currently available in the application
that is running. Compare to the function key area, which
contains actions common to all programs.

Activity Log. A WebSphere Data Interchange Client
equivalent of the ACTLOGS profile on the WebSphere
Data Interchange Host.

ADF. See data format.

ANSI. American National Standards Institute.

ANSI ASC X12. ANSI Accredited Standards
Committee X12, which develops and maintains generic
standards for business transactions for EDI.

application. A program that processes business
information. An application that requests services from
WebSphere Data Interchange is an enabled application.

application data. The actual data in an application
data file.

application data format. See data format.

application default profile. Identifies business
applications, such as purchasing and accounts
receivable, to WebSphere Data Interchange and sets
specific WebSphere Data Interchange processing
defaults for an application.

B
base structure. The data structure that contains all
the data structures and data fields that define the
application data for a single transaction.

binary format (BIN). Representation of a decimal
value in which each field must be 2 or 4 bytes long. The
sign (+ or -) is in the far left bit of the field, and the
number value is in the remaining bits of the field.
Positive numbers have a 0 in the sign bit. Negative
numbers have a 1 in the sign bit and are in twos
complement form.

C
CICS. Customer Information Control System.

CD-ROM. Compact Disk-Read Only Memory; a
storage medium for large amounts of data needed
external to the personal computer.

client-server. A computing environment in which two
or more machines work together to achieve a common
task.

CLIST. See Command list.

code list. A table, supplied by WebSphere Data
Interchange or defined by the user, that contains all
acceptable values for a single data field.

command line. The line at the bottom of the panel
that provides an alternate way of requesting services
rather than using the Action column of the panel body.

Command list (CLIST). A list of commands and
statements designed to perform a specific function for
the user.

composite data element. In EDI standards, a group
of related subelements, such as the elements that make
up a name and address.

compound element. An item in the source or target
document that contains child items. Examples are EDI
segments and composite data elements, data format
records and structures, and XML elements.

Config. The WebSphere Data Interchange Client
database that stores the information necessary for
running WebSphere Data Interchange Client, including
messages, queries, reports, and preferences.

control number. Numbers (or masks used to create
numbers) that are used to identify an interchange,
group, or EDI transaction.

© Copyright IBM Corp. 2002 715

control string. An object compiled from a map, data
format, and EDI standard transaction; it contains the
instructions used by the translator to translate a
document from one format to another.

control structure. The beginning and ending
segments (header and trailer) of standard enveloped
transmissions.

conversion. The WebSphere Data Interchange Client
process of transforming Host Standards, ADFs, and
Trading Partner Transactions (TPTs) into WebSphere
Data Interchange Client format Standards, Data
Formats, and Maps.

Crystal Reports. A product used by WebSphere Data
Interchange Client to format reports.

Customer Information Control System (CICS). An
IBM licensed program that enables transactions entered
at remote terminals to be processed concurrently by
user-written application programs.

customize. To alter to suit the needs of a company,
such as removing from an EDI standard the segments
and data elements that the company does not use.

Customization data. Data not used directly by the
translator, such as data formats, EDI standards, and
maps.

D
DASD. Direct access storage device.

data dictionary. A file containing the definitions of all
the data elements of an EDI standard.

data element. A single item of data in an EDI
standard, such as a purchase order number.
Corresponds to a data field in a data format.

data element delimiter. A character, such as an
asterisk (*), that follows the segment identifier and
separates each data element in a segment. See also
element separator and segment ID separator.

data field. A single item of data in a data format, such
as a purchase order number. Corresponds to a data
element in an EDI standard.

data format. A description of the application data for a
particular transaction. A data format is composed of
loops, records, data structures, and fields.

data format dictionary. A file that contains data
format components.

data format record. A group of logically related fields
set up as a record in a data format.

data format structure. A group of related data fields
in a data format, such as the fields making up the line
item of an invoice. Corresponds to a composite data
element in an EDI standard.

DataInterchange/MVS. The IBM DataInterchange
product used on the host; pieces include a TSO
parameter entry mechanism and a translator. The
functionality available in this product is now available in
WebSphere Data Interchange for z/OS.

DataInterchange/MVS-CICS. The CICS-based IBM
DataInterchange product. The functionality available in
this product is now available in WebSphere Data
Interchange for z/OS.

data structure. A group of related data fields in a data
format, such as the fields making up the line item of an
invoice. Corresponds to a segment in a standard.

data transformation map. One of three supported
map types. A data transformation map is a set of
mapping instructions that describes how to translate
data from a source document into a target document.
Both the source and target documents can be one of
several support document types.

DB2. Database 2, an IBM relational database
management system.

ddname. Data definition name.

decimal notation. The character that represents a
decimal point in the data.

delimiter. A character that terminates a string of
characters, such as the value contained in a data
element.

DI Client. WebSphere Data Interchange Client; the
Windows-based, client/server interface for WebSphere
Data Interchange.

dictionary. See data dictionary.

direct access storage device (DASD). A device in
which access time is effectively independent of the
location of the data.

distribution libraries. Supplied partitioned data sets
on tape containing one or more components used to
transfer data to a new system.

distribution tape. A magnetic tape that contains the
distribution libraries for installing a new system.

DLL. Dynamic Link Library; an executable module that
is linked into the main WebSphere Data Interchange
executable module.

DLL/VBX. Dynamic Link Library for Visual Basic; a
DLL which adheres to the conventions of the Visual
Basic programming language.

Glossary

716 WebSphere Data Interchange Programmer’s Reference

document. A business document that is exchanged
between two enterprises as part of a business process,
such as a purchase order or invoice. A document within
WebSphere Data Interchange is singular. For example,
it cannot contain multiple purchase orders. A document
can also be represented in any syntax. For example, an
XML purchase order and an EDI purchase order are
both documents.

Document Type Definition (DTD). A list of all
components included in the XML document and their
relationship to each other. This defines the structure of
an XML document.

domain. The data structure or group of data structures
in a data format to and from which you should restrict
the mapping of EDI repeating segments and loops.

drivers. See DLL and DLL/VBX.

DTD. See Document Type Definition.

E
EDI. Electronic data interchange.

EDIA. Electronic Data Interchange Association.

EDI administrator. The person responsible for setting
up and maintaining WebSphere Data Interchange.

EDI message. See message.

EDI standard. The industry-supplied, national, or
international formats to which information is converted,
allowing different computer systems and applications to
interchange information.

EDI transaction. A single business document, such as
an invoice.

EDI transaction set. A group of logically related data
that make up an electronic business document, such as
an invoice or purchase order.

EDIFACT. Electronic Data Interchange for
Administration Commerce and Transport. See
UN/EDIFACT.

electronic data interchange (EDI). A method of
transmitting business information over a network,
between business associates who agree to follow
approved national or industry standards in translating
and exchanging information.

electronic transmission. The means by which
information is transferred between parties, such as over
a public network.

element. See data element.

element separator. A character that separates the
data elements in a segment. See also data element
delimiter.

encryption. The encoding and scrambling of data.
Data is encrypted by the sender and decrypted by the
receiver using a predetermined program and unique
electronic key.

event. An occurrence that is important to a user’s
computer tasks, such as a software error, sending a
transaction, or acknowledging a message.

Extensible Markup Language (XML). A standard
metalanguage for defining markup languages that was
derived from, and is a subset of SGML. It is used to
represent structured documents and data.

F
field. See data field.

floating segment. A segment of an EDI standard that
may exist in many positions relative to other segments.

forward translation table. A user-defined table that
translates data values that differ between trading
partners. For example, if a manufacturer and supplier
have different part numbers for the same item, each
company can use its own part number and have it
converted to the other company’s part number during
translation. Forward translation tables translate local
values to standard values.

functional acknowledgment. An electronic
acknowledgment returned to the sender to indicate
acceptance or rejection of EDI transactions.

functional group. One or more transaction sets of a
similar type transmitted from the same location,
enclosed by functional group header and trailer
segments.

function key. A key that causes a specified sequence
of operations to be performed when it is pressed.
Generally used to refer to keys labelled Fn, where n is a
number from 1 to 24.

function key area. Two lines at the bottom of the
panel that list the active function keys for the panel.

G
global variable.. A variable that is shared among all
instances of all documents within a translation session.

H
header. A control structure that indicates the start of
an electronic transmission.

Glossary

Glossary of terms and abbreviations 717

hierarchical loop. A technique for describing the
relationship of data entities which are related in a
parent/child manner, like a corporate organization chart.
Used in mapping to group related data elements and
segments such as trading partner address.

HL. See hierarchical loop.

I
IBM Global Network. The IBM communications
network that provides products and services to IBM
customers.

ICS. International Control Segments.

import. The process of taking WebSphere Data
Interchange objects exported on another WebSphere
Data Interchange system and incorporating them into
the receiving system.

International Control Segments.

Interactive System Productivity Facility (ISPF). An
IBM-licensed program that serves as a full-screen editor
and dialog manager.

Information Exchange. A commerce engine of IBM
Interchange Services for e-business that permits users
to send and receive information electronically.

interchange. The exchange of information between
trading partners.

ISPF. Interactive System Productivity Facility.

J
JCL. Job Control Language.

K
key. In a profile member, the field that identifies the
member. For example, the key for members of the
trading partner profile is the trading partner nickname.

L
Link Pack Area (LPA). In z/OS, an area of main
storage containing reenterable routines from system
libraries. Their presence in main storage saves loading
time.

literal. In mapping, a value that is constant for each
occurrence of the translation. If you provide the literal
value during mapping, the translator does not have to
refer repeatedly to the source to obtain the value.

local variable. A variable that is specific to the
instance of the document in which it is being used.

log file. A file in which events are recorded.

logging. The recording of events in time sequence.

loop. A repeating group of related segments in a
transaction set or a repeating group of related records
and loops in a data format.

loop ID. A unique code identifying a loop and the
number of times the group can be repeated.

loop repeat. A number indicating the maximum
number of times a loop can be used in a transaction
set.

LPA. Link pack area.

M
mailbox. If you use a mail type protocol to exchange
messages with your trading partners, you will have one
or more registered mailboxes. The mailbox profile is
used in WebSphere Data Interchange to define your
mailboxes and any associated preferences.

map. A set of instructions that indicate to WebSphere
Data Interchange how to translate data from one format
to another.

map rule. An association between a data
transformation map and a trading partner.

maximum use. A number indicating the maximum
number of times a segment can be used in a
transaction set or the maximum number of times that a
data format loop or record can repeat.

member. A collection of data for one entry in a profile.
For example, a member of the trading partner profile
contains data about one trading partner.

message. A free-form, usually short, communication to
a trading partner. In UN/EDIFACT standards, a group of
logically related data that make up an electronic
business document, such as an invoice. A message is
equivalent to a document.

message log. The file in which WebSphere Data
Interchange Client logs messages about errors that
occur within the client.

multiple-occurrence mapping. A form of mapping in
which all occurrences of a loop or repeating segment
are mapped to the same repeating structure in the data
format.

N
network acknowledgment. A response from the
network indicating the status of an interchange
envelope, such as sent or received.

Glossary

718 WebSphere Data Interchange Programmer’s Reference

network commands. The commands that you want
WebSphere Data Interchange to pass to your network,
defined in the network commands profile. In the host
product, this file is named NETOP.

network profile. The WebSphere Data Interchange
Client terminology for NETPROF members on
WebSphere Data Interchange Host.

O
ODBC. Open Data Base Connectivity. ODBC is an
industry standard for making connections between a
variety of software products and databases on different
hardware platforms.

ODETTE. Organization for Data Exchange through
Teletransmission in Europe.

Open Data Base Connectivity. See ODBC.

P
panel body. The area in the middle of the panel that
contains entry fields, lists of selectable items, menu
choices, and scrollable text.

parse. To break down into component parts.

path qualified mapping. A form of mapping in which
all occurrences of a repeating compound or simple data
element are mapped to a repeating compound or simple
data element in another document.

PDF. Program Development Facility.

PDS. Partitioned data set.

PDS members. Groups of related information stored in
partitioned data sets.

profile. Descriptive information about trading partners,
network connections, and so on. Each profile can
contain one or more objects or members. For example,
the trading partner profile contains members for your
trading partners (one member for trading partner
address).

program directory. A document shipped with each
release of a product that describes the detailed content
of the product.

Q
qualifier. A data element which gives a generic
segment or data element a specific meaning. Qualifiers
are used in mapping single or multiple occurrences.

quiesce. To end a process by allowing operations to
complete normally.

quiescing. The process of bringing a device or a
system to a halt by rejection of new requests for work.

R
RACF. Resource access control facility.

receive map. One of three supported map types. A
receive map is a set of mapping instructions that
describe how to translate an EDI standard transaction
into a proprietary application data document.

receive usage. An association between a receive map
and a trading partner.

record. A logical grouping of related data structures
and fields.

release character. The character that indicates that a
separator or delimiter is to be used as text data instead
of as a separator or delimiter. The release character
must immediately precede the delimiter.

repository data. A group of data definitions, formats,
and rules/usages, that WebSphere Data Interchange
uses to process your data.

requestor. See mailbox.

Resource Access Control Facility (RACF). An
IBM-licensed program that provides for access control
by identifying and verifying the users to the system,
authorizing access to protected resources, logging the
detected unauthorized attempts to enter the system,
and logging the detected accesses to protected
resources.

reverse translation table. A user-defined table that
translates data values that differ between trading
partners. For example, if a manufacturer and supplier
have different part numbers for the same item, each
company can use its own part number and have it
converted to the other company’s part number during
translation. Reverse translation tables translate standard
values to local values.

rule. See map rule.

runtime data. Data used by the WebSphere Data
Interchange translator, such as control strings, code
lists, translation tables and profiles.

S
SAF. System Authorization Facility.

SAP. (1) A German company named Systeme,
Anwendungen, and Produkte specializing in application
software. A major product, SAP R/3, is a
component-based architecture/application that
integrates business processes, such as sales, materials
management, and distribution. (2) SAP R/3 supports an

Glossary

Glossary of terms and abbreviations 719

EDI interface subsystem. SAP�R/3 generates
application data in the SAP R/3 Intermediate Document
(IDOC) layout. This data is then sent to the EDI
subsystem via a file transfer product, such as FTP or
TCP/IP.

security administrator. The person who controls
access to business data and program functions.

segment. A group of related data elements. A
segment is a single line in a transaction set, beginning
with a function identifier and ending with a segment
terminator delimiter. The data elements in the segment
are separated by data element delimiters.

segment directory. A file containing the format of all
segments in an EDI standard.

segment identifier. A unique identifier at the
beginning of each segment consisting of two or three
alphanumeric characters.

segment ID separator. The character that separates
the segment identifier from the data elements in the
segment.

segment terminator. The character that marks the
end of a segment.

send map. On of three supported map types. A send
map is a set of mapping instructions that describe how
to translate a proprietary application data document into
an EDI standard transaction.

send usage. An association between a send map and
a trading partner.

simple element. An item in the source or target
document that does not contain child items, only data.
Examples are EDI data elements, data format fields,
XML attributes, and PCDATA values.

single-occurrence mapping. A form of mapping in
which each occurrence of a loop or repeating compound
or simple data element in a document is mapped to a
different compound or simple data element in another
document.

SMP/E. System Modification Program Extended.

source document definition. A description of the
document layout that will be used to identify the format
of the input document for a translation.

special literal. The send and receive Mapping Data
Element Editors include the Literal or Mapping
Command field. Literals are constant values you enter
in this field, such as 123. Special literals are values you
enter in this field that begin with an ampersand (&) and
are command to WebSphere Data Interchange, rather
than constant values. For example, to use today’s date,
you enter &DATE.

SQL. Structured query language.

standards. See EDI standard.

structure. See data structure or data format structure.

subelement. In UN/EDIFACT standards, a data
element that is part of a composite data element. For
example, a data element and its qualifier are
subelements of a composite data element.

subelement separator. A character that separates the
subelements in a composite data element.

System Modification Program Extended (SMP/E).
An IBM-licensed program used to install software and
software changes on OS/VS1 and OS/VS2 systems.

T
tag. In UN/EDIFACT standards, the segment identifier.
In export/import, a code identifies each field in the
export record. Such export/import files are known as
“tagged” files.

target document definition. A description of the
document layout that will be used to create an output
document from a translation.

TD queue. See transient data queue.

TDCC. Transportation Data Coordinating Committee.

TDQ. Transient data queue.

temporary storage queue (TS). Storage locations
reserved for immediate results in CICS. They are
deleted after the task that created them is complete and
they are no longer necessary.

Time Sharing Option (TSO). A component of the
z/OS operating system that allows users full access to
z/OS functionality, but shares machine resources across
users.

Time Sharing Option Extensions (TSO/E). The base
for all TSO enhancements. It provides z/OS users with
additional functions, improved usability, and better
performance.

TPT. Trading partner transaction. See map.

trading partner profile. The profile that defines your
trading partners, including information about network
account numbers, user IDs, who pays for network
charges, etc.

trading partners. Business associates, such as a
manufacturer and a supplier, who agree to exchange
information using electronic data interchange.

trading partner transaction. See map.

trailer. A control structure that indicates the end of an
electronic transmission.

Glossary

720 WebSphere Data Interchange Programmer’s Reference

transaction. A single business document, such as an
invoice. See also EDI transaction.

transaction set. A group of standard data segments,
in a predefined sequence, needed to provide all of the
data required to define a complete transaction, such as
an invoice or purchase order. See also EDI transaction
set.

Transaction Store. The file that contains the results of
translations and a history of translation activity.

transform. The process of converting a document
from one format to another.

transient data queue (TD). A sequential data set used
by the Folder Application Facility in CICS to log system
messages.

translation. The process of converting a document
from one format to another.

translation table. A user-defined table that translates
data values that differ between trading partners. For
example, if a manufacturer and supplier have different
part numbers for the same item, each company can use
its own part number and have it converted to the other
company's part number during translation.

TSO. Time Sharing Option.

TSO/E. Time Sharing Option.

TSQ. See temporary storage queue.

U
UCS. Uniform Communication Standard.

unary operator. An operator that changes the sign of
a numeric value.

UN/EDIFACT. United Nations Electronic Data
Interchange for Administration Commerce and
Transport.

Uniform Communication Standard (UCS). The EDI
standard used in the grocery industry.

UN/TDI. United Nations Trade Data Interchange.

Usage. An association between a send or receive map
and a trading partner.

V
validation table. A table, supplied by WebSphere
Data Interchange or defined by the user, which contains
all acceptable values for a single data field.

variable. The entity in which a value may be stored
based on data received; as opposed to a constant
value.

W
WebSphere Data Interchange. A generic term for the
WebSphere Data Interchange products, WebSphere
Data Interchange for z/OS and WebSphere Data
Interchange for Multiplatforms. WebSphere Data
Interchange is a translator of data from one document
format to another; the pieces of this product include a
TSO parameter entry mechanism, a CICS parameter
entry mechanism, a Windows-based parameter entry
mechanism (WebSphere Data Interchange Client), and
a translator.

WebSphere Data Interchange Client. A
Windows-based product for entry of parameters needed
by the WebSphere Data Interchange translator.

WebSphere MQ. An IBM product that is used to
implement messaging and queueing of data groups.
Earlier releases of this product were known as
MQSeries.

WebSphere MQ queue profile. Represents a
relationship between a logical name and a physical
WebSphere MQ queue name.

WINS. Warehouse Information Network Standard.

Windows®. Microsoft’s graphical operating system
under which WebSphere Data Interchange Client runs.

X
X12. A common EDI standard approved by the
American National Standards Institute.

XML. See Extensible Markup Language.

Glossary

Glossary of terms and abbreviations 721

Glossary

722 WebSphere Data Interchange Programmer’s Reference

Bibliography

This section describes the documentation
available for the WebSphere Data Interchange
product.

WebSphere Data Interchange
publications
The WebSphere Data Interchange publications
are:

v WebSphere Data Interchange for z/OS
Administration Guide, SC34-6214

v WebSphere Data Interchange User’s Guide,
SC34-6215

v WebSphere Data Interchange Messages and
Codes, SC34-6216

v WebSphere Data Interchange Programmer’s
Reference, SC34-6217

v WebSphere Data Interchange for z/OS
Installation Guide, SC34-6999

You can order publications from the IBMLink™

Web site at:
http://www.ibm.com/ibmlink

In the United States, you can also order
publications by dialing 1-800-879-2755.

In Canada, you can order publications by dialing
1-800-IBM-4YOU (1-800-426-4968).

For further information about ordering publications
contact your IBM authorized dealer or marketing
representative.

Softcopy books
All the WebSphere Data Interchange books are
available in softcopy formats.

Portable Document Format (PDF)
The library is supplied as stand-alone PDFs in US
English in the DOC directory on the product CD.
The contents of the DOC directory can be viewed
without installing the product.

PDF files can be viewed and printed using the
Adobe Acrobat Reader. You will need Adobe
Acrobat Reader with Search Version 4.05 on
Windows NT, or Adobe Acrobat Reader with
Search Version 4.5 on UNIX® systems.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. web site
at:

http://www.adobe.com/

If you cut and paste examples of commands from
PDF files to a command line for execution, you
must check that the content is correct before you
press Enter. Some characters might be corrupted
by local system and font settings.

WebSphere Data Interchange
information available on the
Internet
The WebSphere Data Interchange product Web
site is at:

http://www.ibm.com/websphere/datainterchange/

By following links from this Web site you can:

v Obtain latest information about the WebSphere
Data Interchange products.

v Access the WebSphere Data Interchange books
in PDF format.

© Copyright IBM Corp. 2002 723

WebSphere Data Interchange on the Internet

724 WebSphere Data Interchange Programmer’s Reference

Index

Special characters
& 119, 416
+ 517

Numerics
000 record 187
0C1/0C2 record 187
1Y2 record 205
1Y3 record 205
1Y4 record 206
1Y5 record 206
1Y6 record 206
1Y7 record 207
1Y8 record 207
1Y9 record 208
1YA record 208
2W1 record 211
2W2 record 211
2W3 record 211
2W4 record 212
2W5 record 213
2W6 record 213
2W7 record 213
2W8 record 214
2W9 record 214
2WA record 214
2WB record 215
3T5 record 223
3T6 record 224
3T7 record 225
3V1 record 218
3V2 record 218
3V3 record 219
3V9 record 220
3VA record 220
3VB record 222
3VC record 222
3VD record 222
3VE record 223
7A1 record 202
7P1 record 189
7P2 record 190
7P3 record 201
7P4 record 202
7Z1 record 202

A
abends, CICS return codes 378
account key

alternate 502
full 501

acknowledgment images data extracts, record
layout 271

activity log profile 235
adapter user exits 515

administrative data
exporting 9
importing 9

AJ1 record 231
AJ2 record 231
AJ3 record 231
API 517

business tasks 384
cancel send 493

parameters 494
close and queue interchange

parameters 457
commit work parameters 508
data extraction parameters 474
deenveloping 459

parameters 459
end translation/enveloping 458

parameters 458
ENVELOPE AND SEND command 385
enveloping 444, 445

parameters 446
environmental services

initializing 386
initializing parameters 387
initializing request results 387
terminating 388
terminating parameters 389
terminating request results 389

example 522
get envelope parameters 510
initialize SYNC parameters 507
internal calls 496
issue commit 471
issue commit parameters 472
languages 375
link edit 375
process network acknowledgments parameters 496
put envelope parameters 511
queue standard data 496
receive parameters 491
receive transactions 490
restart receive parameters 491
restart receive transactions 490
restart send transactions 483

parameters 484
retrieve detailed data 475
retrieve group header parameters 473
retrieve interchange header parameters 472
retrieve transaction acknowledgment image 477,

478
retrieve transaction header 473

parameters 473
retrieve transaction image 477
return filename parameters 495
rollback work parameters 508
send files parameters 488
send transactions 483

parameters 484

© Copyright IBM Corp. 2002 725

API (continued)
stub programs 375
translation services

first call request 402
first call request:overrides 404
functions 392
translate specific 421
translate specific:parameters 421
translate-file-to-application 429
translate-file-to-application:parameters 429
translate-to-application 418, 421
translate-to-application:testing 420
translate-to-standard 393, 397
translate-to-standard testing 396
translate-to-standard:parameters 398

update status parameters 499
utility service

initializing HOT-DI 388
parameters 388

writing custom programs 384
application

control record 220
data extracts

record layouts 270
default profile 235
file 171
path to network program 479
processing flow to network 528
terminal attached 315
TRCB fields returned 425, 435, 465

envelopes 450
TRODB fields returned 426, 436

application program interface. See API. 359
applications

response 335
continuous receive 337
transaction 338
WebSphere Data Interchange Utility 336

response program types 335
APPLID

initializing environmental services 386
z/OS environment 12

archiving
event log entries 5

Assembler
calls 382

ASSERT literal 119
associated objects

data formats 209
EDI standards 203
export/import 182
maps 216

authentication exit
languages

Assembler 296
C 296
COBOL 295

parameters 294
authentication exits 294
automatic enveloping 394

B
batches 415, 441, 454
BK2 record 223
BOUNDARY 416
BOUNDARY literal 416
bundles 415, 441, 454
business tasks, API 384

C
C and D records

input file 171
C language, calls 380
C records

field descriptions 245
layout 243

call exit 302
calling from a C+ 517
calls

Assembler 382
C language 380

samples 380
COBOL 378

samples 378
first call for transaction 401, 423, 424, 433
first call of session 399, 421, 430
get envelope 285
internal 496
last call for transaction 407, 429, 440
last call of session 411, 429, 440, 454, 468
PL/I 379

samples 379
put envelope 285
subsequent 407, 428, 440
transaction status fields 405

cancel request
CMCB fields returned 495
CMCB initialization 494
returned information 495

cancel send
API 493
parameters 494

case sensitive keywords 169
categories

reporting 5, 6
CCB

field descriptions 558
layout 557
overview 374

CCB returned fields
call exit 302
cancel request 495
commit work request 508
get data 301
get envelope 286
initialize SYNC request 507
put data 301
put envelope 287
receive 492
return filename request 496

726 WebSphere Data Interchange Programmer’s Reference

CCB returned fields (continued)
rollback request 509
send files 489
send transactions 486
update status request 500

CICS
abend return codes 307
abends returns codes 378
call utility services 321
communication 537
continuous receive 541, 542
DB2 setup 316

thread pools 317
envelope queue alternatives 308
environment 305

control information 306
HOT-DI 318
invoking 305
results 306
terminating 321
terminating:HOT-DI 321
WebSphere Data Interchange Utility 305

initializing WebSphere Data Interchange 319
network

program control 538
ZFCBFUNC field 539

network profile 537
performance profile layout 242
persistent environment 11
post-enveloping programs 308
pre-enveloping programs 308
recovery 310

application 314
WebSphere Data Interchange 314
WebSphere Data Interchange utility 311

regions, separate WebSphere Data
Interchange 315

return codes 321
abends 378

running WebSphere Data Interchange in a separate
region 315

serial file processing 310
special considerations 703
startup considerations 317
storage mechanisms 307
TS queues, processing multiple 309
unit of work 310, 311

application 314
WebSphere Data Interchange 314

clauses
SELECTING 16
WHERE 15

close and queue interchange API 456
parameters 457

CLOSE MAILBOX command 20
examples 20

clusters 415, 441, 454
CMCB

field descriptions 594
initialization 484, 488, 491, 494, 495, 497
layout 593

CMCB (continued)
output fields 482
overview 593

CMCB returned fields
cancel request 495
file data 489
receive request 492
return filename request 496
transaction data 486

COBOL
authentication exit definition 295
calls 378

samples 378
encryption exit definition 292
field exit definition 281
filtering exit definition 298
special considerations 706
translation exit definition 283

combination commands
DEENVELOPE AND TRANSLATE 22
ENVELOPE AND SEND 27
RECEIVE AND DEENVELOPE 63
RECEIVE AND PROCESS 64
RECEIVE AND SEND 65
RECEIVE AND TRANSLATE 66
RECONSTRUCT AND SEND 68
RECVFILE AND SEND 70
REENVELOPE AND SEND 73
TRANSLATE AND ENVELOPE 102
TRANSLATE AND SEND 104

Comm-Press JCL sample 364
command examples

CLOSE MAILBOX 20
DEENVELOPE 21
DEENVELOPE AND TRANSLATE 23
DELETE PROFILE 24
ENVELOPE 25
ENVELOPE AND SEND 28
ENVELOPE DATA EXTRACT 30
EXPORT 32
GLB DUMP 33
GLB TRACE 34
HOLD 36
IMPORT 37
LOAD LOG ENTRIES 38
NETWORK ACTIVITY DATA EXTRACT 39
PRINT ACKNOWLEDGMENT IMAGE 42
PRINT ACTIVITY SUMMARY 43
PRINT EVENT LOG 46
PRINT STATUS SUMMARY 48
PRINT STATUS SUMMARY2 50
PRINT TRANSACTION DETAILS 51
PRINT TRANSACTION IMAGE 53
PROCESS 55
PROCESS NETWORK ACKS 56
PURGE 58
QUERY 60
QUERY PROFILE 61
RECEIVE 62
RECEIVE AND DEENVELOPE 63
RECEIVE AND PROCESS 64

Index 727

command examples (continued)
RECEIVE AND SEND 65
RECEIVE AND TRANSLATE 66
RECONSTRUCT 67
RECONSTRUCT AND SEND 68
RECVFILE 69
RECVFILE AND SEND 70
REENVELOPE 72
REENVELOPE AND SEND 74
REMOVE LOG ENTRIES 77
REMOVE STATISTICS 78
REMOVE TRANSACTIONS 80
REPORT CONTINUOUS RECEIVE STATUS 81
RESET STATISTICS 82
RESTART RECEIVE 83
RESTART SEND 84
RETRANSLATE TO APPLICATION 86
SAP STATUS EXTRACT 87
SAP STATUS REMOVE 88
SEND 89
SENDFILE 90
START CONTINUOUS RECEIVE 91
STOP CONTINUOUS RECEIVE 92
TRADING PARTNER CAPABILITY DATA

EXTRACT 93
TRADING PARTNER PROFILE DATA

EXTRACT 96
TRANSACTION ACTIVITY DATA EXTRACT 97
TRANSACTION DATA EXTRACT 100
TRANSFORM 101
TRANSLATE AND ENVELOPE 102
TRANSLATE AND SEND 105
TRANSLATE TO APPLICATION 107
TRANSLATE TO STANDARD 108
UNPURGE 111
UPDATE STATISTICS 112
UPDATE STATUS 113

command language
format 16
syntax 15
validation 17

command statements
SELECTING clause 16
WHERE clause 15

commands
and optional records 255
building network 532
CLOSE MAILBOX 20
combination 63, 64, 65, 66, 68, 70, 73, 102, 104
continuous receive 9
data management 4
DB2 file 170
DEENVELOPE 21
DEENVELOPE AND TRANSLATE 22
DELETE PROFILE 24
ENVELOPE 25
ENVELOPE AND SEND 27
ENVELOPE DATA EXTRACT 29
enveloping 445
EXPORT 32
exporting 9

commands (continued)
file 169
GLB 11
GLB DUMP 33
GLB TRACE 34
HOLD 35
IMPORT 37
importing 9
inbound processing 3
LOAD LOG ENTRIES 38
map commands record 223
NETWORK ACTIVITY DATA EXTRACT 39
network file 171
network profile 532

command example 534
layout 234

overview 15
persistent environment 11
PRINT ACKNOWLEDGMENT IMAGE 41
PRINT ACTIVITY SUMMARY 43
PRINT EVENT LOG 45
PRINT STATUS SUMMARY 47
PRINT STATUS SUMMARY2 49
PRINT TRANSACTION DETAILS 51
PRINT TRANSACTION IMAGE 53
printing 6, 41, 43, 45, 47, 48, 49, 50, 51, 52, 53,

55, 56
PROCESS 55
PROCESS NETWORK ACKS 56
profile maintenance 9
PURGE 57
QUERY 59
QUERY PROFILE 61
RECEIVE 62
RECEIVE AND DEENVELOPE 63
RECEIVE AND PROCESS 64
RECEIVE AND SEND 65
RECEIVE AND TRANSLATE 66
RECEIVE in CICS 4
RECONSTRUCT 67
RECONSTRUCT AND SEND 68
RECVFILE 69
RECVFILE AND SEND 70
REENVELOPE 71
REENVELOPE AND SEND 73
RELEASE 75
REMOVE LOG ENTRIES 77
REMOVE STATISTICS 78
REMOVE TRANSACTIONS 79
REPORT CONTINUOUS RECEIVE STATUS 81
RESET STATISTICS 82
RESTART RECEIVE 83
RESTART SEND 84
RETRANSLATE TO APPLICATION 85
SAP STATUS EXTRACT 87
SAP STATUS REMOVE 88
SEND 89

fixed-to-fixed translation 3
SENDFILE 90
START CONTINUOUS RECEIVE 91
STOP CONTINUOUS RECEIVE 92

728 WebSphere Data Interchange Programmer’s Reference

commands (continued)
syntax 15
TRADING PARTNER CAPABILITY DATA

EXTRACT 93
TRADING PARTNER PROFILE DATA

EXTRACT 95
TRANSACTION ACTIVITY DATA EXTRACT 97
TRANSACTION DATA EXTRACT 99
TRANSFORM 101
TRANSLATE AND ENVELOPE 102
TRANSLATE AND SEND 104, 384
TRANSLATE TO APPLICATION 106
TRANSLATE TO STANDARD 108
UNLOAD LOG ENTRIES 109
UNPURGE 110
UPDATE STATISTICS 112
UPDATE STATUS 113

commarea
CICS 538
continuous receive 542

return codes 543
message handler 540
performance monitor user exit 355

comments
trading partner 202

commit work API parameters 508
commits

commit workAPI
CCB fields returned 508

issue commit API 471
common control block (CCB) 374
communication

CICS routine 537
CMCB fields 482
FSUPPORT member 535
parameters 532

communication data block
See DATABLK. 614

communication services
functions 480
overview 479
return codes 483

communications
IEBASE

JCL samples 363, 364
compression exit

languages
Assembler 300
C 299
COBOL 298

parameters 297
compression exits 297
concatenating data 476
condition codes

overriding 18
contact

trading partner 201
trading partner details 202

continuous receive
CICS interface 541

invoking 542

continuous receive (continued)
commands 9
MQSeries 331
outside Expedite/CICS 335
processing received data 333
profile layout 241
recovering 350
reporting status 81
return codes 543
selection criteria 332
sessions 348

cleanup 350
starting and stopping 348
unrecoverable 350

special considerations 331
starting 91
status

codes 11
reporting 10
sent to network 334

stopping 92
control blocks 553

CCB
field descriptions 558
layout 557
See CCB 374

CMCB
field descriptions 594
layout 593

common (CCB) 374
DATABLK

field descriptions 614
layout 614

FCB
field descriptions 560
layout 560
See FCB. 374

function (FCB) 374
NPDB

field descriptions 616
layout 615

overview 374
REQDB

field descriptions 620
layout 619

service name (SNB) 374
SNB

field descriptions 555
layout 554
See SNB. 374

TPPDB
field descriptions 605
layout 603

TRCB
field descriptions 566
layout 562

TRIDB
field descriptions 590
layout 589

TRODB
field descriptions 592

Index 729

control blocks (continued)
TRODB (continued)

layout 591
update status (USDB) 503

control information
WebSphere Data Interchange Utility 323

format 324
control information, WebSphere Data Interchange Utility

field descriptions 326
control numbers 202
CTLFILE 183
custom programs

API 384, 385

D
D records

layout 252, 253
data

concatenation 476
sending

non-EDI 90
data elements

composite
notes record 208

detail
record 207

header
record 206

data extract exit 303
data extraction

API parameters 474
parameters 474
services overview 474
SNB initialization 474
TRCB fields returned 476

transaction detail 476
TRCB initialization 474
TRIDB initialization 475
TRODB fields returned, transaction detail 477
TRODB initialization 475

data extracts
common key

transaction store 264
network activity 262
trading partner capability 261
trading partner profiles 260
transaction activity 262
transaction store categories 264

data formats
associated objects 209
export/import 209
export/import file sample 209
records

dictionary 211
field 213
format header 211
format record ID 211
header details 214
loop 212
loop details 214

data formats (continued)
records (continued)

record 213
record details 214
structure 213
structure details 215

data management 4
data management commands 4
data modes

multiple unit of work 397
raw data 397
translate-to-standard 396

data transformation
map rule 225

DATABLK
field descriptions 614
layout 614

DATE keyword 16
DB2

attachment 377
command file 170
deadlock processing 506
recovery 506
sample JCL 370
setup considerations 316

thread pools 317
timeout processing 506
translation tables 391

DB2 command file(EDITSIN) 377
ddname, JCL samples 365
DEENVELOPE AND TRANSLATE command 22

examples 23
DEENVELOPE command 21

examples 21
deenveloping

API 459
FCB initialization 460
parameters 459
SNB initialization 460
special considerations 420

trading partner profiles 470
transactions 63
translate-to-application 418, 420
TRCB initialization 460
TRIDB initialization 463
TRODB initialization 463

default
message name 488
message user class 487

defining
EDI1 TD queue 334
EDI2 and EDI2 TD queues 344

DELETE PROFILE command 24
examples 24

deleting profiles 9
destination files

JCL samples 361
details records

data format header 214
data format loop 214
data format record 214

730 WebSphere Data Interchange Programmer’s Reference

details records (continued)
data format structure 215
EDI standard data element 207
EDI standard segment 206
EDI standard transaction 205
global variable 223
trading partner contact 202
XML DTD 231

diagrams
HOT-DI

inbound processing 320
initializing 319
outbound processing 323

load module 375
receive, deenvelope, and translate 419
translation, envelope and send 395

dictionary
data format 211
XML data 231

DIERRFILTER variable 17
DLM keyword 12
DTD resolution for z/OS 549
DTDs

details record 231
headers record 231
resolution 548

E
E record layout 258
EDI standards

associated objects 203
composite data element header record 208
data element detail record 207
data element header record 206
envelopes 442
export/import 203
export/import file sample 204
JCL samples 365
segment detail record 206
segment header record 206
segment notes record 207
transaction detail record 205
transaction header record 205
transaction notes record 208

EDI1 TD queue, defining 334
EDI2 and EDI3 TD queues, defining 344
EDICRIN 542
EDIEIADF 185
EDIEICST 185
EDIEIDDF 185
EDIEIPRF 185
EDIEISTD 185
EDIEITBL 185
EDIEITPT 185
EDIFACT profile layout 237
EDIQUERY 175
EDISYSIN 169
EDITSIN 170, 377
EDIVAX 177
EDIW transaction 356

element records, map 219
elements of the C++ 517
encoding, XML considerations 550
encryption exit 290

languages
Assembler 293
C 293
COBOL 292

parameters 291
end translation/enveloping API 458

parameters 458
envelope

API 444, 445
CICS queue alternatives 308
EDI standards 442
file 172
file overrides 172
key 500

ENVELOPE AND SEND command 27
examples 28

ENVELOPE command 25
examples 25

envelope data
reporting 30

ENVELOPE DATA EXTRACT command 29
examples 30

envelope transaction 448
enveloping

API 444, 445
automatic during translation 394
commands 445
data file

JCL samples 362
FCB initialization 446
initializing 446
interchange status fields 406
overview 393
parameters 446
SNB initialization 446
sorting transactions 445
special considerations 454

trading partner profiles 468
transactions 448
TRCB initialization 446
TRIDB initialization 448
TRODB initialization 448

enveloping options file 178
enveloping services

functions 444
overview 442
parameters 446

environment
persistent

enabling/disabling 342
multiple regions 342
multiple z/OS subtasks 341
z/OS space requirements 341

environment, persistent 340
environmental services

initializing 386
parameters 387

Index 731

environmental services (continued)
initializing (continued)

request results 387
overview 386
terminating parameters 389
terminating request results 389
utility service API parameters 388

error codes
translator 587

field-level 587
group-level 588
interchange-level 588
segment-level 587
transaction-level 587
warnings 587

errors
filtering 17
TRXABORT field 434
TRXACCEPT field 434

errors, Transaction-level translator 587
event logs

archiving entries 5
removing entries 5

events logging report 46
exception file 173
exit routines 273

authentication
Assembler definition 296
C definition 296
COBOL definition 295
parameters 294

call 302
compression

Assembler definition 300
C definition 299
COBOL definition 298
parameters 297

data extract 303
encryption

Assembler definition 293
C definition 293
COBOL definition 292
parameters 291

field 273, 276
Assembler definition 280
C definition 280
COBOL definition 281
receive parameters 278
send parameters 277

filtering parameters 297
get data

parameters 300
get/put envelope 284

parameters 286
languages 274
linkage editor 274
message handler 536
performance monitor 355
post-translation 273, 282
pre-translation 273, 281

exit routines (continued)
put data

parameters 301
security 274, 287

authentication 294
compression 297
enabling during receive 289
enabling during send 288
encryption 290
parameters 290
support 300

transaction 281
Assembler definition 284
C definition 284
COBOL definition 283

translation parameters 282
Expedite/CICS

continuous receives 335
interface 345

export
associated objects 182

EXPORT command 32
examples 32

export/import
B1 field descriptions 228
B2 field descriptions 229
common control record 187
common end of group record 187
data formats 209
EDI standards 203
file sample 216

data format 209
EDI standards 204
table definitions 227
XML definitions 230

JCL samples 367, 368
maps 215
profiles layouts 232
queues 343
record sequence 188
table definition 227
table definitions 227

sample 227
table entry definition 229
trading partner profile header record 189
trading partner profile record 190
XML definitions 230

exporting
administrative data 9
commands 9
control file 183

field descriptions 183
data categories 182
files 185

data area 188
record sequence 186

maps 9
profiles 188
trading partner information 9
utility overview 182

732 WebSphere Data Interchange Programmer’s Reference

F
F record layout 259
FAENV 178

example 180
field descriptions 179
file format 180

FCB
initialization

deenveloping 460
enveloping 446
translate-file-to-application 430
translate-to-application 422
translate-to-standard 399

layout 560
overview 374

FFSEXCP 173
FFSTRAK 173

JCL samples 362
FFSWORK 176

JCL samples 362
field descriptions

control information
WebSphere Data Interchange Utility 326

field exit 276
languages

Assembler 280
C 280
COBOL 281

logical name 273
receive parameters 278
send parameters 277

fields
data format 213
starting groups 456
starting interchanges 455

files 173
application 171
CMCB fields returned, send request 489
command 169, 170
commands JCL sample 368
data area 188
destination JCL sample 361
EDISYSIN 169
EDITSIN 170, 377
envelope 172

data JCL sample 362
envelope options 178
export 183
export/import

data format sample 209
EDI standard sample 204
JCL sample 367
XML definition sample 230

export/import JCL sample 368
FFSTRAK JCL sample 362
FFSWORK JCL sample 362
formats 169
functional acknowledgments 178
import 183
input 169

C and D 171

files (continued)
input (continued)

raw data 171
maintenance techniques 704
network command (NETOP) 171
output 169

EDIQUERY 175
output JCL sample 367
pageable translation 177

JCL sample 369
print 174
PRTFILE JCL sample 361
query 175
receiving 69, 70
report 175

JCL sample 366
sending 70
SYSIN 169
tracking 173
translation to application 429
work 176
z/OS and IEBASE JCL sample 363
z/OS and IEBASE/Comm-Press JCL sample 364

filtering errors 17
filtering exit parameters 297
first call for transaction 401, 423, 433

TRCB returned fields 424
first call of session 399, 421, 430
first calls, translation 402

overrides 404
forcing interchange termination 414
format

command language 16
header data format 211

formulas, required space for pageable translation 417
FSUPPORT member 535
function control block (FCB) 374

field descriptions 560
functional acknowledgments

commands 178
file 178
JCL samples 368
override JCL 368
retrieve functional acknowledgment image API 478
TRCB fields returned 436, 465

G
G records

layout 258
generalized networks 525, 526
get data exit 300

parameters 300
get envelope

API parameters 510
call 285
services overview 510

get/put envelope
exit parameters 286
exit routine 284
program 303

Index 733

get/put envelope service
parameters 286

GLB commands 11
GLB DUMP command 33

examples 33
GLB TRACE command 34

examples 34
groups

data extract record layouts 267
fields that start 456
headers, retrieve group header API 472
layer 443
status, header and footer 409
TRCB fields returned 427, 438, 451

status 467

H
HANDLE keyword 16
headers

details record data format 214
map record 218
XML DTD 231

HOLD command 35
examples 36

HOT-DI
inbound processing diagram 320
initializing 318, 388

diagram 319
multiple tasks 319

outbound processing 322
diagram 323

processing considerations 320
running CICS 318
terminating 321

I
I records

layout 256
ICS profile layout 238
import

associated objects 182
IMPORT command 37

examples 37
importing

administrative data 9
commands 9
control file 183

field descriptions 183
data categories 182
files 185

data area 188
record sequence 186

maps 9
profiles 188
trading partner information 9
utility overview 182

inbound processing 3
HOT-DI diagram 320
SAP status 544

incremental translation, internal 416
independent programs 302
Information Exchange interface 345
Information Exchange sessions 345

cleanup 347
information on the Internet

WebSphere Data Interchange 723
WebSphere Data Interchange libraries 723

initialize SYNC
API parameters 507
returned information 507

initialize SYNC request
CCB fields returned 507

initializing
CMCB

cancel 494
process network acknowledgments 497
receive 491
return filename 495
send files 488
send transactions 484

enveloping 446
environmental services 386

parameters 387
return codes 387

HOT-DI 318
diagram 319
multiple tasks 319

HOT-DI utility service 388
SYNC functions 507
WebSphere Data Interchange 305
WebSphere Data Interchange in CICS 319

input
files 169
records 171

interchange ID keys
alternate 503
full 501

interchanges
alternate key creation 498, 502
data extract record layout 265
enveloping

TRCB status 406
fields that start 455
headers

retrieve interchange header API 472
key creation 498
layer 443
status, header and footer 408
termination, forced 414
TRCB fields returned 436, 450, 453, 457

status 466
interfaces

Expedite/CICS 345
Information Exchange 345
MQSeries 545
network 525
other applications and networks 525
SAP 543

internal
calls 496

734 WebSphere Data Interchange Programmer’s Reference

internal (continued)
translation, outbound 416

invoking WebSphere Data Interchange Utility using
EDIW 356

ISPF functions 186
issue commit API 471
issue commit parameters 472

J
JCL

samples 359
JCL DISP option 171
JCL parameter example 13
JCL samples 359, 360, 361, 369, 370
JMS implementation 709

K
keys

account number and user ID
alternate keys 502
full key 501

full envelope 500
interchange 498

alternate 498, 502
interchange ID and qualifier

alternate key 503
full key 501

trading partner nickname 500
transaction ID 501
transaction store, common data extract 264

keywords
APPLID, z/OS environment 12
case sensitive 169
DATE 16
DLM 12
HANDLE 16
LANGID 12
MQEXCP 12
MQPRT 12
MQQUERY 13
MQRPT 12
MQSYSIN 12
MQTRAK 13
overview 15
PLAN 13
RECOVERY 313
SYSID 12
SYSTEM 13
TIME 16
USERPGM 8

L
LANGID keyword 12
language profile layout 236
languages

exit 274
last call for transaction 407, 429, 440
last call of session 411, 429, 440, 454, 468

layers
group 443
interchange 443
transaction 444

libraries 553
link edit requirements 375
linkage editor 274
literals

& 416
load libraries 553

members 553
LOAD LOG ENTRIES command 38

example 38
load modules diagram 375
locating trading partner profiles 469, 470
logs, activity layout 235
loops

data format 212
details record data format 214

M
mailbox (requestor) profile block (REQDB) 619

field descriptions 620
mailbox profiles 232
maintenance

file 704
profiles 9

management reports
categories 5
creating 7, 8
data extract layouts 260

managing data 4
maps

associated objects 216
export/import 215
exporting 9
importing 9
receive 3
records

application control 220
commands 223
data transformation map rule 225
element 219
global variables 223
header 218
local variables 222
nodes 222
receive usage 224
reference 222
segment 218
send usage 223
syntax 220

members
FSUPPORT 535
load libraries 553

message handler 536
control information 540
error occurred response fields 541
successful condition response fields 541

Index 735

messages
default name 488
default user class 487

modes
production 398
switching 398
test 398

MQEXCP keyword 12
MQPRT keyword 12
MQQUERY keyword 13
MQRFH2 709
MQRPT keyword 12
MQSeries

continuous receive 331
interface overview 545
queues, profile layout 243

MQSYSIN keyword 12
MQTRAK keyword 13
multiple unit of work 397
MVS

communications
IEBASE and Comm-Press JCL sample 364
IEBASE JCL sample 363

DB2 attachment 377
special considerations 702
WebSphere Data Interchange Utility 11

N
NETOP 171
network

acknowledgments API parameters 496
activity data extract record 262
activity report 39
application to network program 479
CICS program control 538
commands profile 234, 532

example 534
field descriptions 533

error occurred response fields 540
no data received response fields 539
profile 233
security profile 233
send network function 486
successful condition response fields 539

NETWORK ACTIVITY DATA EXTRACT command 39
examples 39

network commands file 171
building. 532

network interfaces
generalized 525, 526
other applications and networks 525
point-to-point 525, 531

activating connections 531
supported 525

network profile block (NPDB) 615
field descriptions 616

network profiles
CICS definition 537

nodes record 222
non-EDI data, sending 90

O
optimizing performance 701
optional records 173, 255
options, JCL DISP 171
outbound processing

HOT-DI diagram 323
SAP status 544

outbound processing, HOT-DI 322
output

CMCB fields 482
files 169

envelope 172
output file, JCL samples 367
overrides, envelope file 172
overriding condition codes 18

P
pageable translation 177, 417

file 177
file size formula 177
JCL samples 369
required space formula 417

parameters
communication 532
sample DB2 JCL 370
sample JCL 359
sample XML JCL 370

partial structures 413, 441
PDF (Portable Document Format) 723
perform commands file

JCL samples 368
performance monitor user exit 355

commarea format 355
performance, special considerations 701
persistent environment 11, 340

commands 11
enabling/disabling 342
multiple regions 342
multiple z/OS subtasks 341
sizing z/OS space 341

PL/I calls 379
samples 379

PLAN keyword 13
point-to-point networks 525, 531

activating connections 531
Portable Document Format (PDF) 723
post-translation exit, logical name 273
pre-translation exit, logical name 273
PRINT ACKNOWLEDGMENT IMAGE command 41

examples 42
PRINT ACTIVITY SUMMARY command 43

examples 43
print activity summary report 44
print commands 46, 48, 50, 52
PRINT EVENT LOG command 45

examples 46
print events logging report 46
print file 174

sample 175

736 WebSphere Data Interchange Programmer’s Reference

PRINT STATUS SUMMARY command 47
examples 48

PRINT STATUS SUMMARY2 command 49
examples 50

PRINT TRANSACTION DETAILS command 51
examples 51

PRINT TRANSACTION IMAGE command 53
examples 53

printing
commands 41, 43, 45, 47, 49, 51, 53, 55, 56

printing commands 6
PROCESS command 55
process network acknowledgments API

CMCB initialization 497
parameters 496

PROCESS NETWORK ACKS command 56
examples 55, 56

processing
continuous receive 333
flow, application to network 528
HOT-DI considerations 320
inbound 3
multiple TS queues 309
serial 310
TS queues, additional processing 342

production, switching modes 398
profile maintenance

commands 9
profiles

activity log
layout 235

application defaults
layout 235

CICS performance
layout 242

continuous receive
layout 241

deleting 9
EDIFACT envelope

layout 237
ICS envelope

layout 238
language

layout 236
layouts

export/import 232
mailbox (requestor)

layout 232
MQSeries queue

layout 243
network

layout 233
network commands 532

example 534
layout 234

network security
layout 233

querying 9, 61
requestor

See mailbox profiles 232
trading partner data block 480

profiles (continued)
trading partners

data extract 260
export/import profiles 188
field descriptions 192
file example 192
format 190

UCS envelope
layout 240

UN/TDI envelope
layout 239

user exit
layout 235

X12 envelope
layout 240

program 517
programming languages

API-supported 375
Assembler 382
C 380
COBOL 378
PL/I calls 379

programs
data exit 303
get/put envelope 303
independent 302
list table considerations 352
processing table considerations 353
samples included 183

PRTFILE 174
JCL samples 361
sample 175

publications
WebSphere Data Interchange 723

PURGE command 57
examples 58

purging transactions 57
put data exit

parameters 301
put envelope

API parameters 511
call 285
services overview 511

Q
Q record layout 259
queries

profiles 9
transaction store 704

QUERY command 59
examples 60

query file 175
QUERY PROFILE command 61

examples 61
querying

profiles 61
transactions 59

queue standard data API 496
parameters 496

Index 737

R
raw data 397

input file 171
record layout 255
sending 411

receive
CMCB initialization 491
maps 3
parameters 491
returned information 492
transactions API 490
usage map record 224

RECEIVE AND DEENVELOPE command 63
examples 63

RECEIVE AND PROCESS command 64
RECEIVE AND SEND command 65

examples 64, 65
RECEIVE AND TRANSLATE command 66

examples 66
RECEIVE command 62

combination commands in CICS 4
examples 62

receive, deenvelope and translate diagram 419
receiving

and deenveloping, translate-to-application 418
files 69, 70
restart command 83
special considerations 420
trading partner profiles, locating 469, 470
transactions 62, 63, 64, 65, 66
translate-to-application 418

special considerations 420
RECONSTRUCT AND SEND command 68

examples 68
RECONSTRUCT command 67

examples 67
reconstructing transactions 67, 68
record format ID

data format 211
records

000 end of group 187
0C1/0C2 187
1Y2 205
1Y3 205
1Y4 206
1Y5 206
1Y6 206
1Y7 207
1Y8 207
1Y9 208
1YA 208
2W1 211
2W2 211
2W3 211
2W4 212
2W5 213
2W6 213
2W7 213
2W8 214
2W9 214
2WA 214

records (continued)
2WB 215
3T5 223
3T6 224
3T7 225
3V1 218
3V2 218
3V3 219
3V9 220
3VA 220
3VB 222
3VC 222
3VD 222
3VE 223
7A1 202
7P1 189
7P2 190
7P3 201
7P4 202
7Z1 202
acknowledgment image data extract layout 271
AJ1 231
AJ2 231
AJ3 231
application data extract layout 270
BK2 223
C (control) 243

field descriptions 245
layout 243

D (data) 243
D (data) record layout 253
data

layout 252
layout:multiple structures 253
layout:single structure 253
size constraints 253

data format 213
details record

data format 214
E (interchange header) layout 258
end transaction and interchange (Z) layout 254
export/import common control 187
export/import common end of group 187
F (file) layout 259
G (group header) layout 258
group data extract layout 267
header, trading partner profile 189
I (information) layout 256
interchange data extract layout 265
layouts 169
mapping 211, 212, 213, 214, 215, 218, 219, 220,

222, 223, 224, 225, 231
optional 173, 243, 255

commands 255
Q (queuing totals) layout 259
raw data 243

layout 255
SAP status, extracting 545
SAP status, removing 545
T (transaction set header) layout 258

738 WebSphere Data Interchange Programmer’s Reference

records (continued)
trading partner

comments definition 202
contact 201
contact details 202
control numbers 202

trading partner profile 190
transaction data extract layout 268
transaction image data extract layout 271
transaction store

data extract 265
utility 243
Z (end transaction and interchange) 243, 254
Z layout 254

recovery
continuous receives 350
DB2 conditions 506
RECOVERY keyword considerations 313
scope 413
unit of work 310, 314

application 314
WebSphere Data Interchange utility 311

RECVFILE AND SEND command 70
examples 70

RECVFILE command 69
examples 69

REENVELOPE AND SEND command 73
example 74

REENVELOPE command 71
examples 72

reenveloping transactions 73
RELEASE command 75
releasing transactions 75
REMOVE LOG ENTRIES command 77

examples 77
REMOVE STATISTICS command 78

examples 78
REMOVE TRANSACTIONS command 79

examples 80
removing

event log entries 5
statistics 78
transactions 57, 77, 79

REPORT CONTINUOUS RECEIVE STATUS
command 81

examples 81
report file 175

JCL samples 366
reporting

continuous receive status 10
statistics 4

reports
customized 30
envelope data 30
events logging 46
management reports 7, 8
network activity 39
print activity summary 44
print events logging 46
selection criteria for status summary 50
status summary 48

reports (continued)
status summary2 50
transaction data 8
transaction details 52
transaction image 54
transaction store 7, 8

required space
pageable translation formula 417

RESET STATISTICS command 82
examples 82

response applications 335
continuous receive 337
transaction 338

specifying 340
types 335
WebSphere Data Interchange Utility 336

RESTART RECEIVE command 83
examples 83

restart receive parameters 491
restart receive transactions API 490
RESTART SEND command 84

examples 84
restart send transactions

parameters 484
restart send transactions API 483
restarting receives

RESTART RECEIVE command 83
restarting sends 84
RETRANSLATE TO APPLICATION command 85

examples 86
retrieve detailed data 475
retrieve functional acknowledgment image API 478
retrieve group header

API 472
parameters 473

retrieve interchange header
API 472
parameters 472

retrieve transaction acknowledgment image API 477
retrieve transaction header

API 473
parameters 473

retrieve transaction header API 473
retrieve transaction image API 477
return

filename request
CMCB fields returned 496

return codes
CICS abends 378
communication 483
WebSphere Data Interchange

CICS considerations 321
return filename API 495

parameters 495
return filename request

CMCB initialization 495
returned information 496

rollback
rollback work request

CCB fields returned 509

Index 739

rollback work API
parameters 508

RPTFILE 175
running from the command line 513
running WebSphere Data Interchange Server

from the command line 513
triggering from an MQSeries queue 514

S
samples

command file JCL 368
communications with IEBASE and Comm-Press

JCL 364
communications with IEBASE JCL 363
DB2 parameter JCL 370
ddname JCL 365
destination files JCL 361
EDI standard JCL 365
envelope data file JCL 362
export/import JCL 367, 368
export/import JCL statements 367
FFSTRAK JCL 362
FFSWORK JCL 362
functional acknowledgments JCL 368
JCL 359
JCL modifications 359
JCL parameters for z/OS 13
JCL PRTFILE 361
output JCL 367
pageable translation JCL 369
report file JCL 366
STEPLIB JCL 360
translate-to-standard JCL 361
Utility parameter JCL 359
XML parameter JCL 370

SAP
extracting status records 545
inbound processing status 544
interface 543
outbound processing status 544
removing status records 545
status codes 545

SAP STATUS EXTRACT command 87
examples 87

SAP STATUS REMOVE command 88
examples 88

scope, recovery 413
security exit 287

authentication 294
compression 297
enabling during receive 289
enabling during send 288
encryption 290
logical name 274
parameters 290
support 300

security support exits 300
segments

detail record 206
header record 206

segments (continued)
notes record 207
records, maps 218

SELECTING clauses 16
selection criteria

continuous receive 332
selection criteria for status summary report 50
send

map files
export/import:send map sample 216

SEND command 89
examples 89
fixed-to-fixed translation 3

send files
API 488
CMCB initialization 488
parameters 488
returned information 489

send maps
files

export/import sample 216
send network function 486
send transactions

API 483
CMCB initialization 484
parameters 484
returned information 486

send usages
map record 223

SENDFILE command 90
examples 90

sending
files 70
non-EDI data 90
partial structures 413
raw data, required values 411
recovery scope for raw data 413
restart command 84
trading partner profiles

locating 469, 470
transactions 64, 65, 68, 73, 454

deferred 455
immediately 455

translation functions 393
sent to network status 334
serial processing 310
service name block (SNB) 374

field descriptions 555
service segments, TRCB fields returned 465
services

CCB fields returned
call exit 302
get data 301
get envelope 286
put data 301
put envelope 287

communication
functions 480
overview 479
return codes 483

data extraction overview 474

740 WebSphere Data Interchange Programmer’s Reference

services (continued)
enveloping overview 442
environmental overview 386
get envelope overview 510
get/put envelope parameters 286
put envelope overview 511
SYNCPOINT overview 505
translation overview 390
update status overview 498
utility in CICS 321

sessions
continuous receive 348

cleanup 350
identifying unrecoverable sessions 350
starting and stopping 348

first call 399, 421, 430
Information Exchange 345

cleanup 347
last call 411, 429, 440, 454, 468

setup
DB2 in CICS 316

thread pools 317
SNB 374

initialization
data extraction 474
deenveloping 460
enveloping 446
translate-file-to-application 430
translate-to-application 422
translate-to-standard 399

overview 554
softcopy books 723
special considerations

CICS 703
COBOL 706
continuous receive 331
deenveloping 420

trading partner profiles 470
EDICRIN 542
enveloping 454

trading partner profiles 468
performance 701
processing program table 353
program list table 352
receiving 420
translate-to-application, receiving and

deenveloping 420
translate-to-standard 411
translation 397

translate-to-application 441
XML 548
z/OS 702

START CONTINUOUS RECEIVE command 91
examples 91

starting continuous receives 91, 348
startup, CICS 317
statements, export/import JCL sample 367
statistics

removing 78
reporting 4
resetting cumulative records 82

status
continuous receive 11, 81
sent to network 334

status codes
SAP 545

status summary report 48
STEPLIB requirements 360
STOP CONTINUOUS RECEIVE command 92

examples 92
stopping continuous receives 92, 348
storage

CICS mechanisms 307
structures

data format 213
details record

data format 215
partial 413, 441

stub programs 375
get data exit 300
get/put envelope exit 286
get/put envelope service 286
put data exit 301

SYNCPOINT services
overview 505

syntax
command language 15
conventions xxvii
map records 220

SYSID keyword 12
SYSIN 169
SYSTEM keyword 13

T
T records

layout 258
tables

B1 definition 227
B1 field descriptions 228
DB2 translation 391
definitions

export/import file sample 227
definitions, export/import 227
entries

B2 definition 229
B2 field descriptions 229

TD queues
defining EDI1 334
defining EDI2 and EDI3 344
export/import 343
reserved 342

terminal-attached applications 315
terminating

environmental services 388
parameters 389
return codes 389

HOT-DI 321
interchanges 414
WebSphere Data Interchange 321

testing
switching modes 398

Index 741

testing (continued)
translate-to-application API 420
translate-to-standard API 396

thread pools 317
TIME keyword 16
timeout/deadlock processing, DB2 506
TPPDB for communications 480
tracking file 173
trademarks 713
trading partner 202

exporting information 9
importing information 9

TRADING PARTNER CAPABILITY DATA EXTRACT
command 93

examples 93
trading partner profile block (TPPDB) 603

field descriptions 605
TRADING PARTNER PROFILE DATA EXTRACT

command 95
examples 96

trading partners
capability data extract record 261
comments definition 202
contact definition 201
contact details definition 202
control numbers 202
nickname key 500
profile block (TPPDB) and communication 480
profiles

data extract record 260
export/import 188
export/import:file sample 192
field descriptions 192
format 190
locating members for receiving 469, 470
locating members for sending 469, 470

reporting 5
retrieving usages 470

transaction
headers

retrieve transaction header API 473
TRANSACTION ACTIVITY DATA EXTRACT

command 97
examples 97

TRANSACTION DATA EXTRACT command 99
examples 100

transaction details report 52
transaction exit languages

Assembler 284
C 284
COBOL 283

transaction ID
key 501
retrieving usages 470

transaction image
data extract record layouts 271
report 54

transaction store
common key 264
data extracts

information categories 264

transaction store (continued)
data extracts (continued)

record layouts 265
query techniques 704

transactions
activity data extract record 262
bundles 415, 441, 454
clusters 415, 441, 454
CMCB fields returned

receive request 492
send request 486

data extract record layouts 268
deenveloping 63
detail

record 205
report 52

enveloping 448
sorting 445

exit routines 281
post-translation 282
pre-translation 281

first call 401, 423, 433
returned TRCB fields 424
TRCB status 405

header record 205
headers

TRCB fields returned 428, 439
headers, retrieve transaction header API 473
image report 54
last calls 407, 429, 440
layer 444
managing 4
notes record 208
procesing 64
purging 57
querying 59
receiving 62, 63, 64, 65, 66
reconstructing 67, 68
reenveloping 73
releasing 75
removing 77, 79
reporting categories 6
retrieve detailed data API 475
retrieve transaction acknowledgment image

API 477
retrieve transaction image API 477
sending 65, 68, 73
sorting for enveloping 445
status

header and footer 410
raw data 412

subsequent calls 407, 428, 440
supplied by WebSphere Data Interchange 353
translating 66
TRCB fields returned 406, 425, 427, 434, 452, 464

envelopes 449
header/trailer 468
status 468

TRANSFORM command 101
examples 101

TRANSLATE AND ENVELOPE command 102

742 WebSphere Data Interchange Programmer’s Reference

TRANSLATE AND ENVELOPE command (continued)
examples 102

TRANSLATE AND SEND command 104
API business tasks 384
examples 105

translate specific
API 421
parameters 421

TRANSLATE TO APPLICATION command 106
examples 107

TRANSLATE TO STANDARD command 108
examples 108

translate-file-to-application
API 429
FCB initialization 430
parameters 429
SNB initialization 430
TRCB initialization 430
TRIDB initialization 432, 433
TRODB initialization 433

translate-to-application
API functions 421
API test 420
FCB initialization 422
receiving and deenveloping 418
SNB initialization 422
special considerations 441
TRCB initialization 422
TRIDB initialization 423
TRODB initialization 423

translate-to-application API 418
translate-to-standard

API 393
function codes 397
test 396

data modes 396
FCB initialization 399
JCL samples 361
parameters 398
SNB initialization 399
special considerations 411
TRCB initialization 399
TRIDB initialization 405
TRODB initialization 401

translation
automatic enveloping 394
error codes 587

field-level 587
group-level 588
interchange-level 588
segment-level 587
transaction-level 587
warnings 587

files
output 173

internal incremental 416
pageable 177, 417

JCL sample 369
partial structures 441
special considerations 397
transactions 66

translation (continued)
translation status fields 408

translation exit
parameters 282

translation services
DB2 tables 391
first call 402

overrides 404
functions 392
overview 390
translate-to-application API 418
translation specific parameters 421
translation-file-to-application parameters 429
translation-to-standard parameters 398

translator control block (TRCB) 562
field descriptions 566

translator errors, Transaction-level 587
translator input data block (TRIDB) 589

field descriptions 590
translator output data block (TRODB) 591

field descriptions 592
TRCB fields

group status, header and footer 409
interchange status, enveloping 406
interchange status, header and footer 408
transaction header and footer 410
transaction status

raw data 412
transaction status, first call 405
translation status 408

TRCB initialization
data extraction 474
deenveloping 460
enveloping 446
translate-file-to-application 430
translate-to-application 422
translate-to-standard 399

TRCB returned fields
application data 425, 435, 465
data extraction detail data 476
data extraction records 476
envelope application data 450
functional acknowledgment data 436, 465
group data 427, 438
group header/trailer data 451
group status data 467
interchange data 436, 453, 457
interchange header/trailer data 450
interchange status data 466
service segment data 465
transaction data 406, 425, 427, 434, 464

envelopes 449
transaction header data 428, 439
transaction header/trailer data 452, 468
transaction status data 468

TRIDB initialization
data extraction 475
deenveloping 463
enveloping 448
translate-file-to-application 432, 433
translate-to-application 423

Index 743

TRIDB initialization (continued)
translate-to-standard 405

triggering from an MQSeries queue 514
TRODB initialization

data extraction 475
deenveloping 463
enveloping 448
translate-file-to-application 433
translate-to-application 423
translate-to-standard 401

TRODB returned fields
application data 426, 436
data extraction detail data 477

TRXABORT 434
TRXACCEPT 434
TS queues

additional processing 342
export/import 343
multiple queues in CICS 309
reserved 342

U
UCS profile layout 240
UN/TDI profile layout 239
unit of work 310, 311, 314

multiple 397
raw data 397

UNLOAD LOG ENTRIES command 109
UNPURGE command 110

examples 111
UPDATE STATISTICS command 112

examples 112
update status

services overview 498
update status API 499

parameters 499
UPDATE STATUS command 113

examples 113
update status data block (USDB) 503
update status request

CCB fields returned 500
returned information 500

usages
formula for retrieving 470
retrieved for trading partner and transaction ID 470

USDB 503
user exit profile layout 235
user ID key

alternate 502
user ID keys

full 501
USERPGM keyword 8
utility condition codes 18
utility service API

CICS 321
initializing 388
parameters 388

V
validating command language 17
VANCICS 537
variables

DIERRFILTER 17
global details record 223
local record 222

W
warnings

translator 587
WebSphere Data Interchange on the Internet 723
WebSphere Data Interchange publications 723
WebSphere Data Interchange Utility 11

CICS abend return codes 307
commands overview 15
determining results 306
invoking 305
keywords overview 15
overview 1
passing control information 306
record formats 243
terminating 321

WHERE clauses 15
work file 176

X
X12 profile layout 240
XML

definitions
export/import 230
export/import sample 230

DTD resolution 548
encoding considerations 550
records

dictionary 231
DTD details 231
DTD header 231

sample JCL 370
special considerations 548

Z
Z record layout 254
Z records 254
ZFCBFUNC field in CICS 539

744 WebSphere Data Interchange Programmer’s Reference

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the
information is presented.

To make comments about the functions of IBM products or systems, talk to
your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring any
obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:

– From outside the U.K., after your international access code use
44–1962–842327

– From within the U.K., use 01962–842327

v Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

– IBMLink: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2002 745

746 WebSphere Data Interchange Programmer’s Reference

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Terms used in this book
	Syntax conventions used in this book
	Related books

	Chapter 1. Using The Utility
	Any-to-any data translation
	Outbound processing using send maps
	Fixed-to-fixed translation using send maps
	Sending with fixed-to-fixed translation

	Inbound processing using receive maps
	Managing data
	Removing and archiving event log entries

	Reporting and extracting data
	PRINT commands

	Producing management reports from the Transaction Store
	Creating management reporting reports
	Creating transaction data or transaction envelope reports
	Creating Transaction Store reports

	Exporting and importing
	Profile maintenance
	Continuous receive
	Reporting continuous receive status

	Persistent environment
	Using the WebSphere Data Interchange Utility in the z/OS environment
	Optional JCL parameter example

	Chapter 2. WebSphere Data Interchange commands and keywords
	Command language syntax
	DATE, TIME, and HANDLE keywords
	Command language validation

	Error filtering
	Overriding utility condition codes
	CLOSE MAILBOX command
	Syntax
	CLOSE MAILBOX command example

	DEENVELOPE command
	Syntax
	DEENVELOPE command examples
	Example 1:
	Example 2:

	DEENVELOPE AND TRANSLATE command
	Syntax
	DEENVELOPE AND TRANSLATE command examples
	Example 1:
	Example 2:

	DELETE PROFILE command
	Syntax
	DELETE PROFILE command examples
	Example 1:
	Example 2:

	ENVELOPE command
	Syntax
	ENVELOPE command examples
	Example 1:
	Example 2:

	ENVELOPE AND SEND command
	Syntax
	ENVELOPE AND SEND command examples
	Example 1:
	Example 2:
	Example 3:

	ENVELOPE DATA EXTRACT command
	Syntax
	ENVELOPE DATA EXTRACT command examples
	Example 1:
	Example 2:
	Example 3:

	EXPORT command
	Syntax
	EXPORT command example

	GLB DUMP command
	Syntax
	GLB DUMP command examples
	Example 1:
	Example 2:

	GLB TRACE command
	Syntax
	GLB TRACE command examples
	Example 1:
	Example 2:

	HOLD command
	Syntax
	HOLD command example

	IMPORT command
	Syntax
	IMPORT command example

	LOAD LOG ENTRIES command
	Syntax
	Load log entries command example

	NETWORK ACTIVITY DATA EXTRACT command
	Syntax
	NETWORK ACTIVITY DATA EXTRACT command examples
	Example 1:
	Example 2:

	PRINT ACKNOWLEDGMENT IMAGE command
	Syntax
	PRINT ACKNOWLEDGMENT IMAGE command example

	PRINT ACTIVITY SUMMARY command
	Syntax
	PRINT ACTIVITY SUMMARY command example

	PRINT EVENT LOG command
	Syntax
	PRINT EVENT LOG command example

	PRINT STATUS SUMMARY command
	Syntax
	PRINT STATUS SUMMARY command example

	PRINT STATUS SUMMARY2 command
	Syntax
	PRINT STATUS SUMMARY2 command example

	PRINT TRANSACTION DETAILS command
	Syntax
	PRINT TRANSACTION DETAILS command example

	PRINT TRANSACTION IMAGE command
	Syntax
	PRINT TRANSACTION IMAGE command example

	PROCESS command
	Syntax
	PROCESS command examples
	Example 1:
	Example 2:

	PROCESS NETWORK ACKS command
	Syntax
	PROCESS NETWORK ACKS command example

	PURGE command
	Syntax
	PURGE command example

	QUERY command
	Syntax
	QUERY command example

	QUERY PROFILE command
	Syntax
	QUERY PROFILE command examples
	Example 1:
	Example 2:

	RECEIVE command
	Syntax
	RECEIVE command examples
	Example 1:
	Example 2:

	RECEIVE AND DEENVELOPE command
	Syntax
	RECEIVE AND DEENVELOPE command examples
	Example 1:
	Example 2:

	RECEIVE AND PROCESS command
	Syntax
	RECEIVE AND PROCESS command example

	RECEIVE AND SEND command
	Syntax
	RECEIVE AND SEND command example

	RECEIVE AND TRANSLATE command
	Syntax
	RECEIVE AND TRANSLATE command examples
	Example 1:
	Example 2:

	RECONSTRUCT command
	Syntax
	RECONSTRUCT command example

	RECONSTRUCT AND SEND command
	Syntax
	RECONSTRUCT AND SEND command example

	RECVFILE command
	Syntax
	RECVFILE command example

	RECVFILE AND SEND command
	Syntax
	RECVFILE AND SEND command example

	REENVELOPE command
	Syntax
	REENVELOPE command example

	REENVELOPE AND SEND command
	Syntax
	REENVELOPE AND SEND command example

	RELEASE command
	Syntax
	RELEASE command example

	REMOVE LOG ENTRIES command
	Syntax
	REMOVE LOG ENTRIES command example

	REMOVE STATISTICS command
	Syntax
	REMOVE STATISTICS command example

	REMOVE TRANSACTIONS command
	Syntax
	REMOVE TRANSACTIONS command example

	REPORT CONTINUOUS RECEIVE STATUS command
	Syntax
	REPORT CONTINUOUS RECEIVE STATUS command examples
	Example 1:
	Example 2:

	RESET STATISTICS command
	Syntax
	RESET STATISTICS command example

	RESTART RECEIVE command
	Syntax
	RESTART RECEIVE command example

	RESTART SEND command
	Syntax
	RESTART SEND command example

	RETRANSLATE TO APPLICATION command
	Syntax
	RETRANSLATE TO APPLICATION command example

	SAP STATUS EXTRACT command
	Syntax
	SAP STATUS EXTRACT command example

	SAP STATUS REMOVE command
	Syntax
	SAP STATUS REMOVE command example

	SEND command
	Syntax
	SEND command examples
	Example 1:
	Example 2:

	SENDFILE command
	Syntax
	Mapping issues with RAWDATA keyword on SENDFILE
	SENDFILE command examples
	Example 1:
	Example 2:

	START CONTINUOUS RECEIVE command
	Syntax
	START CONTINUOUS RECEIVE command examples
	Example 1:
	Example 2:

	STOP CONTINUOUS RECEIVE command
	Syntax
	STOP CONTINUOUS RECEIVE command examples
	Example 1:
	Example 2:

	TRADING PARTNER CAPABILITY DATA EXTRACT command
	Syntax
	TRADING PARTNER CAPABILITY DATA EXTRACT command examples
	Example 1:
	Example 2:

	TRADING PARTNER PROFILE DATA EXTRACT command
	Syntax
	TRADING PARTNER PROFILE DATA EXTRACT command examples
	Example 1:
	Example 2:

	TRANSACTION ACTIVITY DATA EXTRACT command
	Syntax
	TRANSACTION ACTIVITY DATA EXTRACT command example

	TRANSACTION DATA EXTRACT command
	Syntax
	TRANSACTION DATA EXTRACT command examples
	Example 1:
	Example 2:

	TRANSFORM command
	Syntax
	TRANSFORM command example

	TRANSLATE AND ENVELOPE command
	Syntax
	TRANSLATE AND ENVELOPE command examples
	Example 1:
	Example 2:

	TRANSLATE AND SEND command
	Syntax
	TRANSLATE AND SEND command examples
	Example 1:
	Example 2:

	TRANSLATE TO APPLICATION command
	Syntax
	TRANSLATE TO APPLICATION command examples
	Example 1:
	Example 2:
	Example 3:

	TRANSLATE TO STANDARD command
	Syntax
	TRANSLATE TO STANDARD command examples
	Example 1:
	Example 2:

	UNLOAD LOG ENTRIES command
	Syntax
	UNLOAD LOG ENTRIES command example

	UNPURGE command
	Syntax
	UNPURGE command example

	UPDATE STATISTICS command
	Syntax
	UPDATE STATISTICS command example

	UPDATE STATUS command
	Syntax
	UPDATE STATUS command examples
	Example 1:
	Example 2:
	Example 3:

	Keyword descriptions
	ACCTID
	ACFIELD
	ACKFILE
	ACKTYPE
	ACTUSAGE
	ADDRLN1
	ADDRLN2
	APPFILE
	APPLICATION
	APPLID
	APPRECID
	APPSEC
	APPSNDID
	APPTYPE
	ARCHIVEFILE
	ARCHIVETYPE
	ASSERTLVL
	BATCH
	BATCHSET
	CCEXCEPTION
	CLEARFILE
	CLIENT
	CMMTLN1
	CMMTLN2
	CMPYNM
	CNTCTNM
	CNTCTPH
	CONCATENATE
	CTLFILE
	CTLTYPE
	DAYS
	DELFILE
	DICTIONARY
	DIERRFILTER
	DIR
	DLVDATE
	DLVTIME
	DOCUMENT
	DUPCHECK
	DUPENV
	DYNSQL
	EENVDATE
	EIFORMAT
	ENVDATE
	ENVPRBREAK
	ENVTIME
	ENVTYPE
	EPURDATE
	EXTENDC
	FADELAY
	FILEID
	FIXEDFILEID
	FORCETEST
	FORMAT
	FUNACKFILE
	FUNACKP
	FUNACKREQ
	GROUP
	GRPCTLNO
	HANDLE
	HOLDFILE
	HOLDTYPE
	IACCESS
	IAREA
	ID
	IEXIT
	IFCC
	IMAGE
	INFILE
	INMEMTRANS
	INTCTLNO
	INTERCHANGE
	INTID
	INTRECID
	INTSNDID
	INTYPE
	ITPBREAK
	ITYPE
	LASTTRXDATE
	LEVEL
	LOGAEID
	LOGDATE
	LOGFORM
	LOGTIME
	LOGUSER
	MAPID
	MAXRUNTIME
	MEMBER
	MERGED
	MRREQID
	MSGUCLASS
	MULTIDOCS
	NETACKP
	NETID
	NETNAME
	NETSTAT
	NEWAPPLID
	NOMSG
	NUMDELS
	NUMUPDTS
	ONELOGICAPP
	ONEMSG
	OPTRECS
	OUTFILE
	OUTFORMAT
	OUTLEN
	OUTTYPE
	PAGE
	PRIORTO
	PURGINT
	RAWDATA
	RAWFMTID
	RAWTEST
	RAWUSAGE
	RECEIVEACKDATA
	RECEIVEACKIMAGE
	RECOVBAD
	RECOVERY
	REQID
	REQTP
	RESET
	SAPSTAT
	SAPUPDT
	SCRIPT
	SEGMENTED
	SENDACKDATA
	SENDACKIMAGE
	SEQNUM
	SERVICESEGVAL
	SETCC
	SNDDATE
	SNDTIME
	STANDALONE
	STDDESC
	STDID
	STDLV
	STDTRID
	STDVR
	STSTAT
	SYNTAX
	TESTMODE
	TPID
	TPNICKN
	TPNICKNESEND
	TRACELEVEL
	TRANSACTION
	TRERLVL
	TRKFILE
	TRXCTLNO
	TRXDATE
	TRXSTAT
	TRXTIME
	USERID
	USERPGM
	VERIFY
	WRTCTLNO
	XML
	XMLDICT
	XMLDTDS
	XMLEBCDIC
	XMLSEGINP
	XMLSTDID
	XMLVALIDATE

	Chapter 3. File formats and WebSphere Data Interchange Utility records
	Dynamically allocated application files
	Transaction Store input and output files
	Command file (EDISYSIN or SYSIN)
	WebSphere Data Interchange DB2 command file (EDITSIN)
	Example 1
	Example 2

	Network commands file (NETOP)
	Application file
	Envelope file
	Exception file (FFSEXCP)
	Tracking file (FFSTRAK)
	Print file (PRTFILE)
	Report file (RPTFILE)
	Query file (EDIQUERY)
	Work file (FFSWORK)
	Pageable translation work file (EDIVAX)
	Enveloping options file for functional acknowledgments (FAENV)
	FAENV field descriptions
	FAENV file format
	Sample entries
	A practical example

	Export/Import utility function
	Export/Import control file (CTLFILE)
	Export/Import control file label descriptions
	CATEGORY
	REPLACE
	KEYID
	ASSOBJ
	USAGETID
	MBRNAME

	Export/Import files
	Export/Import common control record (0C1/0C2)
	Export/Import common end of group record (000)
	Export/Import file data area

	Exporting and importing trading partner profiles
	Importing new definitions to WebSphere Data Interchange
	Export/Import trading partner profile header record (7P1)
	Export/Import trading partner profile record (7P2)
	Trading partner profile member field descriptions

	Trading partner contact definition (7P3)
	Trading partner control numbers (7P4)
	Comments definition (7A1)
	Contact definition (7Z1)

	Export and importing EDI standard records
	EDI standard dictionary record (1Y1)
	EDI standard transaction header record (1Y2)
	EDI standard transaction detail record (1Y3)
	EDI standard segment header record (1Y4)
	EDI standard segment detail record (1Y5)
	EDI standard data element header record (1Y6)
	EDI standard data element detail record (1Y7)
	EDI standard segment notes record (1Y8)
	EDI standard transaction notes record (1Y9)
	EDI standard composite data element notes record (1YA)

	Exporting and importing data formats
	Data format dictionary record (2W1)
	Data format record ID record (2W2)
	Data format header record (2W3)
	Data format loop record (2W4)
	Data format record record (2W5)
	Data format structure record (2W6)
	Data format field record (2W7)
	Data format header details record (2W8)
	Data format loop details record (2W9)
	Data format record details record (2WA)
	Data format structure details record (2WB)

	Exporting and importing maps
	Map header record (3V1)
	Map segment record (3V2)
	Map element record (3V3)
	Map application control record (3V9)
	Map syntax record (3VA)
	Map local variables record (3VB)
	Map reference record (3VC)
	Map nodes record (3VD)
	Map commands record (3VE)
	Global variables details record (BK2)
	Send usage record (3T5)
	Receive usage record (3T6)
	Data transformation map rule record (3T7)

	Exporting and importing table definitions
	Export/Import table definition (B1)
	Export/Import table definition (B1) field descriptions

	Export/Import table entry (B2)
	Table entry (B2) field descriptions

	Exporting and importing XML records
	XML dictionary record (AJ1)
	XML DTD header record (AJ2)
	XML DTD details record (AJ3)

	Additional profile layouts
	Mailbox (requestor) profile (REQPROF-P2)
	Network security profile (SECUPROF-P2)
	Network profile (NETPROF-P2)
	Network commands profile (NETOP-P2)
	Activity log profile (ACTLOGS-P2)
	Application defaults profile (APPDEFS-P2)
	User exit profile (ADAMCTL-P2)
	Language profile (LANGPROF-P2)
	EDIFACT (E envelope) profile (E-P2)
	ICS (I envelope) profile (I-P2)
	UN/TDI (T envelope) profile (T-P2)
	UCS (U envelope) profile (U-P2)
	X12 (X envelope) profile (X-P2)
	Continuous receive profile (CONTRECV-P2 for CICS only)
	CICS performance profile (SYSPROF-P2 for CICS only)
	MQSeries queue profile (MQSERIES-P2)

	WebSphere Data Interchange Utility records format
	Control (C) records
	Control record label descriptions

	Data (D) records
	Data record format - single structure
	Data record label descriptions (single structure)
	Data record format (multiple structures)
	Data record label descriptions (multiple structures)

	End transaction and interchange (Z) records
	Z record format
	Z record label descriptions

	Raw data records
	Raw data record format

	Optional records
	Information (I) records
	Interchange header (E) records
	Group header (G) records
	Transaction set header (T) records
	Queuing totals (Q) records
	File (F) records

	Management reporting
	Trading partner profile data extract
	Trading partner capability data extract
	Network activity data extract
	Transaction activity data extract

	Transaction Store data extract information categories
	Transaction Store data extract common key
	Transaction Store data extract record formats
	Interchange data extract record layout
	Group data extract record layout
	Transaction data extract record layout
	Application data extract record layout
	Transaction/Acknowledgment image data extract record layout

	Chapter 4. Exit routines
	Exit languages
	Exit linkage editor instructions

	Any-to-any data transformation
	Exit Function
	User written function prototype

	Field exit routines
	Field exit routines shipped with WebSphere Data Interchange
	Send parameters
	Service name block (SNB)
	Common control block (CCB)
	Field value
	Field offset (4 byte binary value)
	Field length (4 byte binary value)
	Permanent work area (4096 byte buffer)
	Temporary work area (1024 byte buffer)
	Return field length (4 byte binary value)

	Receive parameters
	Service name block (SNB)
	Common control block (CCB)
	Data element value
	Field offset (4 byte binary value)
	Field length (4 byte binary value)
	Permanent work area (4096 byte buffer)
	Temporary work area (1024 byte buffer)
	Return field length (4 byte binary value)

	Field exit parameter language definitions
	Assembler definition
	C definition
	COBOL definition

	Transaction exit routines
	Pre-translation exit
	Post-translation exit
	Pre- and Post-translation exit parameters
	Service name block (SNB)
	Common control block (CCB)
	Transaction image
	Compatibility parameter (4 byte binary value containing 0)
	Image length (4 byte binary value)
	Permanent work area (4096 byte buffer)
	Temporary work area (1024 byte buffer)
	Compatibility field (4 byte binary value containing 0)

	Translation exit language definitions
	COBOL definition
	C definition
	Assembler definition

	Get/Put envelope exit and service
	Get envelope call
	Put envelope call
	FXXZccc stub program

	Security routines
	Enabling security during send
	Enabling security during receive
	Security parameters
	Encryption routine
	Encryption parameters
	Encryption routine language definitions

	Authentication routine
	Authentication routine parameters
	Authentication exit language definitions

	Compression routine
	Compression parameters

	Filtering routine
	Filtering parameters
	Filtering exit language definitions

	Security support routines
	Get data routine
	Put data routine
	Call exit routine

	Independent programs
	Data extract exit
	Get/Put envelope program

	Chapter 5. Using WebSphere Data Interchange in the CICS environment
	Running the WebSphere Data Interchange Utility in the CICS environment
	Invocation options
	Passing control information
	Determining results
	WebSphere Data Interchange abend return codes
	CICS storage mechanisms
	CICS envelope queue alternatives
	Pre- and Post-envelope programs
	Processing multiple incoming TS queues
	Ensuring serial processing of WebSphere Data Interchange Utility files
	Units of work and recovery considerations
	WebSphere Data Interchange Utility unit of work
	Using the RECOVERY keyword
	Identifying the WebSphere Data Interchange unit of work

	Including WebSphere Data Interchange changes in your applications unit of work
	Terminal-attached applications
	Running the WebSphere Data Interchange Utility in a separate CICS region
	DB2 setup considerations
	DB2 thread pool considerations

	CICS startup considerations

	Running WebSphere Data Interchange in a HOT-DI environment
	Initializing HOT-DI
	Initialization syntax

	Initializing WebSphere Data Interchange
	Initialization syntax

	Initializing multiple HOT-DI tasks
	HOT-DI processing considerations
	Call utility services
	Processing function syntax

	WebSphere Data Interchange return code considerations
	Terminating WebSphere Data Interchange
	Termination function syntax

	Terminating HOT-DI
	Termination syntax

	Outbound communications

	WebSphere Data Interchange Utility control information
	Format of WebSphere Data Interchange Utility control information
	WebSphere Data Interchange Utility control information field descriptions
	SYNCVAL
	CMDP
	CMDLEN
	CMDNAME
	CMDTYPE
	DELIMITER
	PRTNAME
	PRTTYPE
	RPTNAME
	RPTTYPE
	EXCPNAME
	EXCPTYPE
	TRAKNAME
	TRAKTYPE
	QRYNAME
	QRYTYPE
	APPLID
	LANGID
	RESPID
	RESPTYP
	RTERMID
	USRFLD
	SYSID
	RESPFLAG
	FILETYP
	ECBP
	CCBRC
	CCBERC
	FILEID
	APPFILE
	ABNDCODE
	THANDLE
	FFIEHDR
	FARC
	FAERC
	FABUILT
	FFMTFLG
	USERSYNC
	APMTFLG
	USERCOND
	APMTCBP
	RES1
	FFNOCONV
	FANAME
	RESPACTV
	WORKNAME
	BATFLG
	NOEXCP
	INVPARM
	LOGACTV
	FFUSADDR
	CCBP
	FFMTCBP

	Continuous receive considerations
	Continuous receive using MQSeries
	Continuous receive selection criteria
	WebSphere Data Interchange processing after data is received
	Effects of defining the EDI1 TD queue
	Sent to Network status
	Using continuous receive outside Expedite/CICS

	Response applications
	Invoking your application
	Types of response applications
	WebSphere Data Interchange Utility response application (U)
	Continuous receive response application (C)
	Transaction response application (T)
	Specifying the transaction response application

	Persistent environment
	Running multiple z/OS subtasks
	Sizing the z/OS data space
	Enabling and disabling the persistent environment
	Using multiple regions

	Reserved TS and TD queues
	TS queues that might require additional processing
	Queues used by export and import
	TS queues used for export and import
	TS queues used by import only

	TD queues EDI2 and EDI3
	EDI2
	EDI3

	Interface between WebSphere Data Interchange, Expedite/CICS, and Information Exchange
	Information Exchange sessions
	Information Exchange session cleanup
	Continuous receive sessions
	Starting and stopping continuous receive sessions
	Continuous receive session cleanup
	Identifying unrecoverable continuous receive sessions
	Recovering continuous receives
	Program list table considerations
	Processing program table considerations

	WebSphere Data Interchange supplied transactions
	Performance monitor user exit
	Format of performance monitor commarea

	Using EDIW to invoke the WebSphere Data Interchange Utility

	Chapter 6. Using WebSphere Data Interchange in the z/OS environment
	Using sample JCL
	WebSphere Data Interchange Utility (EDIUTIL) JCL
	Section 1 JCL modifications
	Section 2 WebSphere Data Interchange Utility parameters
	Section 3 STEPLIB requirements
	Section 4 PRTFILE
	Section 5 TRANSLATE TO STANDARD files
	Section 6 Destination files
	Section 7 FFSTRAK file
	Section 8 FFSWORK file
	Section 9 Envelope data file
	Section 10 Network communications
	Section 11 EDI standards
	Section 12 ddname
	Section 13 Report file
	Section 14 Output file
	Section 15 Export/Import statements
	Section 16 Functional acknowledgment overrides
	Section 17 Perform command file
	Section 18 Pageable translation work file
	Section 19 DB2 parameters
	Section 20 XML parameters

	Required utility data sets
	Archive DB2 event log entries (EDIELARD)

	Application Program Interfaces (API's)
	API languages
	API link edit

	WebSphere Data Interchange and DB2 attachment
	EDITSIN examples
	Example 1:
	Example 2:
	Example 3:

	WebSphere Data Interchange abend return codes
	COBOL calls
	SNB-COBOL
	CCB-COBOL
	FCB-COBOL
	INIT-COBOL

	PL/I calls
	SNB-PL/I
	CCB-PL/I
	FCB-PL/I
	INIT-PL/I

	C calls
	SNB-C
	CCB-C
	FCB-C
	INIT-C

	Assembler calls
	SNB-Assembler
	CCB-Assembler
	FCB-Assembler
	USER-DSECT for initialization sample
	INIT-Assembler

	API business tasks

	Environmental services
	Initializing the environmental API
	Utility service API
	Terminating the API

	Translation services
	Translation service functions
	Translate-to-standard API
	Enveloping and sending

	Translate, envelope, and send process
	Test translate-to-standard
	Translate-to-standard data modes

	Translation special considerations
	Translate-to-standard API
	First call of session (TS)
	First call for transaction (TS)
	Subsequent calls
	Last call for transaction (TS)
	Last call of session (TS)
	Special considerations (TS)

	Pageable translation
	Translate-to-application API
	Receiving and deenveloping
	Receiving and deenveloping considerations

	Test Translate-to-application
	Translate-to-application API
	Translate specific API
	First call of session (TA)
	First call for transaction (TA)
	Subsequent calls (TF/TA)
	Last call for transaction (TA)
	Last call of session (TA)

	Translate-file-to-application API
	First call of session (TF)
	First call for transaction (TF)
	Subsequent calls (TF/TA)
	Last call for transaction (TF)
	Last call of session (TF)

	Translate-to-application processing considerations (TA)
	Partial structures (TA)
	Clustered transactions (TA)

	Enveloping services
	Interchange layer
	Group layer
	Transaction layer
	Enveloping service
	Envelope API
	Envelope API
	Initializing the envelope API
	Envelope transaction
	Last call of session (EV)

	Envelope processing considerations (EV)
	Envelope versus reenvelope
	Clustered transactions (EV)
	Sending transaction data
	Fields that cause a new interchange to start
	Fields that cause new groups to start

	Close and queue interchange API
	Queueing - TRCB Fields:

	End translation/enveloping API
	Deenvelope API
	Initializing for deenvelope API
	Deenvelope transaction
	Last call of session (DE)

	Envelope processing and profile location considerations (E)
	Locating sending trading partner profile members
	Locating receiving trading partner profile members

	Deenvelope processing and profile location considerations (DE)
	Locating sending and receiving trading partner profile members
	Usages retrieved

	Issue commit API
	Retrieve interchange header API
	Retrieve group header API
	Retrieve transaction header API

	Data extraction services
	Initialization for data extraction
	Retrieve detailed data API
	Retrieve transaction image API
	Retrieve transaction acknowledgment image API
	Retrieve functional acknowledgment image API

	Communication services
	Communications service functions
	Trading partner profile data block (TPPDB)
	Common CMCB output fields
	Return codes from communications
	Send transactions and restart send transactions API
	CMCB initialization for sending transaction data
	Send network operation
	Send transactions returned information
	Default message user class
	Default message name

	Send files API
	CMCB initialization
	Send files returned information

	Receive and restart receive API
	CMCB initialization for receive requests
	Receive network operation
	Receive returned information

	Cancel API
	CMCB initialization for Cancel requests
	Cancel returned information

	Return filename API
	CMCB initialization for Return filename request
	Return filename returned information

	Internal calls
	Queue standard data API
	Process network acknowledgments API
	CMCB initialization for Process network acknowledgments requests

	Update status services
	Update status service overview
	Update status API
	Update status return codes

	Full envelope key
	Trading partner nickname
	Interchange qualifier and ID
	Account number and user ID
	Transaction handle

	Alternate keys
	Alternate key 1 using account number and user ID
	Alternate key 2 using interchange qualifier and ID
	Update status data block

	SYNCPOINT services
	DB2 TIMEOUT/DEADLOCK processing
	Initialize SYNC function
	Initialize SYNC function return codes

	COMMIT work function
	ROLLBACK work

	Get envelope service
	Put envelope service

	Chapter 7. Using WebSphere Data Interchange in the AIX and Windows environment
	Running from the command line
	Triggering from an MQSeries queue
	Adapter user exits

	Calling from a C++ program
	Elements of the C++ API
	WebSphere Data Interchange API example
	Building the Example
	Sample script

	Chapter 8. Interfacing to other networks and applications
	Generalized networks
	Application-to-network flow diagram

	Point-to-point networks
	Activating point-to-point connections
	Point-to-point network processing flow

	Parameters passed to the communications routine
	Building network commands
	Network commands profile
	Network commands profile field descriptions
	BLOCK NAME
	BLOCK POSITION
	LENGTH
	LINE
	LITERAL VALUE
	NETWORK COMMAND
	NETWORK ID
	POSITION
	SEQUENCE

	Network command example
	FSUPPORT member

	Message handler
	Special communications routine for CICS
	Network profile definition for CICS
	Network program control information for CICS
	Successful condition (network)
	No data received (network)
	Error occurred (network)

	Message handler control information
	Successful condition (message handler)
	Error occurred (message handler)

	Continuous receive interface (CICS only)
	Invoking the continuous receive interface

	Interfacing with SAP
	Outbound processing and SAP status
	Inbound processing and SAP status
	SAP status codes supported by WebSphere Data Interchange
	Extracting SAP status records
	Removing SAP status records

	Interfacing with MQSeries
	Additional information added to MQRFH2

	XML special considerations
	XML DTD resolution
	Additional DTD resolution for z/OS
	XML encoding considerations for z/OS

	Appendix A. WebSphere Data Interchange control blocks
	Service Name Block (SNB)
	SNB field descriptions
	ZSNBLL
	ZSNBID
	ZSNBEYE
	ZSNBNAME
	ZSNBNDX
	ZSNBPC
	ZSNBFLG0
	ZSNBFLG1
	ZSNBFANC

	Common Control Block (CCB)
	CCB field descriptions
	ZCCBLL
	ZCCBID
	ZCCBEYE
	ZCCBRC
	ZCCBERC
	ZCCBSID
	ZCCBUID
	ZCCBAID
	ZCCBCID
	ZCCBXFID
	ZCCBLPID
	ZCCBCPID
	ZCCBRSV
	ZCCBCCXP
	ZCCBCABP
	ZCCBDBID
	ZCCBDBPL
	ZCCBDBUI
	ZCCBDBPW
	ZCCBRSV1
	ZCCBRSV2

	Function control block (FCB)
	FCB field descriptions
	ZFCBLL
	ZFCBFUNC

	Translator Control Block (TRCB)
	TRCB field descriptions
	BLKLEN
	RSRVD1
	BLKNME
	REQID
	APPFILE
	ATFID
	ATSID
	EJECT
	INTPID
	APPCTLNUM
	TRNID
	TEST
	IHCTL
	GHCTL
	THCTL
	ENVTYPE
	BLKTYPE
	DUPTRAN
	ITPBREAK
	REQSIZE
	XPANDED
	NEWENV
	NEWGRP
	NEWTRN
	QSIZE
	ESIZE
	GRPNUM
	TRNNUM
	SEGNUM
	TRNGRP
	SEGTRN
	ERRNUM
	QBT
	IHXCTL
	ISYNTAXID
	ISYNTAXVER
	ISIDQUAL
	ISID
	ISENDNAME
	IREVROUT
	IRIDQUAL
	IRID
	IRECVNAME
	IROUTEADDR
	IDATE
	ITIME
	IVERREL
	IGT
	ITT
	IST
	IBT
	ISPW
	IAPREF
	ISTDID
	FASPEC
	IPRIOR
	ICOMMAGREE
	GHXCTL
	GFGID
	GSIDQUAL
	GSID
	GRIDQUAL
	GRID
	GDATE
	GTIME
	GVER
	GREL
	GTT
	GAPW
	GRESPAGENCY
	RSRVD3
	THXCTL
	TTC
	TVER
	TREL
	TST
	LASTINENV
	XACFIELD
	FABUILT
	QGTNUM
	QTTNUM
	QSTNUM
	QGT
	QTT
	QST
	FASPM
	ENVCHK
	TRNSTAT
	APTYPE
	TSKEY
	TSKEYU
	MAPKEY
	BATCHID
	ENVLDATE
	TRXLIFE
	IMGLIFE
	HOLDFLAG
	BNDLFLAG
	RAWDATA
	ENVLDELAY
	TRXACCEPT
	TRABORT
	FILEID
	DSNAME
	QNETID
	QPTTOPT
	QSRPGM
	QDDNAME
	FUNACKFLE
	QTPNICK
	QRC
	QERC
	ERRCDES
	INMEMTRANS
	NOCOMMIT
	SCOPE
	TPNICK
	CONCATENATE
	ASSERTLVL
	RAWDATAOUT
	FIXEDTRX
	MRREQID
	ERRFILTER
	FFILEID
	VARTRACE
	EXPTRACE
	SSEGVAL
	TRXFACODE
	IUSEREXIT
	IUSERAREA
	IUSERACCESS
	IUSERTYPE
	MAPCHAIN
	FORCETEST
	ENVPRBRK
	SUSBLKF
	CLRERRS
	FARC
	FAERC
	SAPUPDT
	SAPTRX
	SAPCLIENT
	SAPDOCNUM
	SAPSEQ
	ROUTCODE
	FAEREQ
	BOUNDARY
	SUSBLKP
	CUSERDATA
	APPLTPID
	EXTENDC
	VAXFLAG
	GDATE8
	RECOVBAD
	RSRVD4

	Translator Error Codes
	Translator warnings
	Field-level translator errors
	Segment-level translator errors
	Transaction-level translator errors
	Group-level translator errors
	Interchange-level translator errors

	Translator Input Data Block (TRIDB)
	TRIDB field descriptions
	BLKLEN
	RESERVED
	DATALEN
	DATA

	Translator Output Data Block (TRODB)
	TRODB field descriptions
	BLKLEN
	RESERVED
	DATALEN
	DATA

	Communication Control Block (CMCB)
	CMCB field descriptions
	BLKLEN
	RESERV1
	BLKNME
	TPNICKNM
	NETID
	NETOP
	REQID
	SEQNUM
	CONTRCV
	FTYPE
	FILERCVD
	RESERV2
	CLRFILE
	DATAFMT
	ACCTYP
	DATATYP
	RECVTYP
	DCIND
	ACKIND
	RESRECL
	SCRIPT
	ENAME
	MSGNAME
	FILENAME
	CANSD
	CANST
	CANED
	CANET
	TMZONE
	MODEM
	NPSSCDE
	NPESCDE
	NPERRCD
	NPSEVER
	BLKTYPE
	FQUEUED
	FMSGS
	FFILE
	FEDIX
	FEDIE
	FEDIU
	FEDIG
	FEDII
	FEDIT
	FCANCEL
	FCLASS
	FACK
	FSYSMSG
	FRCVBTP
	FRESTART
	FNOUSERID
	FACCTSEP
	DDCOLON
	RESERV3
	ADMTYPE
	UNIQID
	SAPUPDT
	FSENTNET
	RESERV4

	Trading Partner Profile Block (TPPDB)
	TPPDB field descriptions
	BLKLEN
	RESERV1
	BLKNME
	TPNICKNM
	NETID
	SYSQUAL
	SYSID
	ACCTNUM
	USERID
	ENVLQUAL
	ENVLID
	CONAME
	ADDR1
	ADDR2
	PHONE
	CONTACT
	PASSWORD
	RCVPASS
	SECUID
	NETCLS
	NETCHG
	NETACK
	NETVCHK
	NETRETN
	NETEDIO
	NETEDIP
	STGFRMTO
	MACHTYPE
	STGFRMT
	EOTID
	LOGENV
	FNGRPENV
	SEDELIM
	DEDELIM
	SGDELIM
	SGSEP
	DECNOT
	RLSCHAR
	TPICTLNO
	TPGCTLNO
	TPTCTLNO
	COMMENT1
	COMMENT2
	NETCMDS
	TPDATALINE
	TIMEOUT
	SEGMENTED
	SUFFIX
	TPENVSUF
	TPGENRCV
	TPCMPRES
	TPRSRV1
	TPSUPAD3
	TPSUPCTY
	TPSUPST
	TPSUPPST
	TPSUPCON
	TPSUPFAX
	TPSUPU3
	TPSUPU4
	TPSUPU5
	TPSUPU6
	TPSUPU7
	TPSUPU8
	TPSUPU9
	TPSUPU10
	PRIORITY
	TPRSRV2
	DESCRIPT
	LOGLOCK
	LASTUID
	LASTUDT
	TPTYPE
	DESEP
	PROCESS
	TPRSRV3

	Communication Data Block (DATABLK)
	Data blocks up to 32-K bytes
	Data blocks more than 32-K bytes
	DATABLK field descriptions
	BLKLEN
	BLKNME
	DATALEN
	DATA

	Network Profile Block (NPDB)
	NPDB field descriptions
	BLKLEN
	RESERV1
	BLKNME
	NETID
	NETNME
	COMROT
	NETPGM
	PGMPARM
	CMDIN
	CMDLRECL
	QDATA
	DATLRECL
	TMZONE
	SYSTYP
	SYSLVL
	TXTHDR
	CMDOUT
	MSGROUT
	SEQNUM
	NETACKFILE
	NETPHONE
	SCRIPT
	FILLER
	DESCRIPT
	LOGLOCK
	LASTUID
	LASTUDT

	Mailbox (Requestor) Profile Block (REQDB)
	REQDB field descriptions
	BLKLEN
	RESERV1
	BLKNME
	REQID
	NETID
	ACCTNO
	USERID
	PASSWD
	MSGUCL
	INDDNAME
	NETCLS
	NETCHG
	NETACK
	NETVCHK
	NETRETN
	NETEDIO
	NETEDIP
	STGFRMTO
	STGFRMT
	NETCMDMBR
	TIMEOUT
	NTACKPGM
	ALTNETPHONE
	COMPRESS
	PRIORITY
	FILLER
	DESCRIPT
	LOGLOCK
	LASTUID
	LASTUDT

	Appendix B. Sample programs
	Creating tagged import files from fixed format files
	Initializing and terminating WebSphere Data Interchange
	COBOL initialization/termination example
	PL/I initialization/termination example
	C initialization/termination example

	Querying the Transaction Store
	Querying the Transaction Store using COBOL
	Querying the Transaction Store using PL/I

	Translating and queueing for send using C
	Sending queued data using C
	Ending translation using C
	Receiving data from a network using C
	Translating received data using C
	Generating reports
	Generating a data extract report
	Generating a network activity report

	Initializing, invoking, and terminating HOT-DI
	COBOL HOT-DI initialization example
	COBOL HOT-DI invocation example
	COBOL HOT-DI termination example

	Invoking response programs
	COBOL response program example

	Field exit programs
	Sample 1
	Sample 2
	Sample 3

	Test for filter type
	Filtration exit examples
	Hexadecimal filter example
	ASCII filter example
	ASCII/BAUDOT filter example

	Authentication examples
	Sample 1
	Sample 2

	Encryption examples
	Sample 1
	Sample 2

	Get Envelope service example
	Put Envelope service example
	Inbound envelope program example
	Outbound envelope program example
	VANICICS network program example

	Appendix C. Space calculation examples
	Space requirements for tables and files
	Transaction Store tables
	Management Reporting Tables

	Allocation tables
	Supplied DB2 database allocation
	Formulas for DB2 database allocation

	Supplied database allocation for VSAM
	Formula for VSAM database allocation

	Space calculation scenario
	DB2 database allocation required for space calculation scenario
	Formula for DB2 primary allocation (PRIQTY)

	VSAM database allocation required for space calculation scenario
	Formula for VSAM primary allocation (TRKS)

	Space calculation worksheets

	Appendix D. Performance considerations
	General optimization techniques
	WebSphere Data Interchange/z/OS considerations
	WebSphere Data Interchange CICS considerations
	File maintenance techniques
	Transaction Store query techniques
	VS COBOL II field exit considerations

	Appendix E. Mapping the MQRFH2 header to the JMS API
	Appendix F. Notices
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	WebSphere Data Interchange publications
	Softcopy books
	Portable Document Format (PDF)

	WebSphere Data Interchange information available on the Internet

	Index
	Sending your comments to IBM

