
IBM WebSphere Developer for zSeries Version 6.0.1

Common Access Repository Manager

Developer’s Guide

SC31-6914-00

���

IBM WebSphere Developer for zSeries Version 6.0.1

Common Access Repository Manager

Developer’s Guide

SC31-6914-00

���

Note

Before using this document, read the general information under “Notices” on page 75.

Second edition (November 2005)

This edition applies to Common Access Repository Manager for version 6.0.1 of IBM WebSphere Developer for

zSeries (product number 5724-L44) and to all subsequent releases and modifications until otherwise indicated in

new editions.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30

a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)

445-9269. Faxes should be sent Attn: Publications, 3rd floor.

You can also order publications through your IBM representative or the IBM branch office serving your locality.

Publications are not stocked at the address below.

IBM welcomes your comments. You can send your comments by mail to the following address:

IBM Corporation, Attn: Information Development, Department 53NA Building 501, P.O. Box 12195, Research

Triangle Park, NC 27709-2195.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

Contents

About this book v

Who should read this book v

Conventions used in this book v

Chapter 1. Introduction to CARMA . . . 1

Supported operations 3

Locating the sample files 3

Chapter 2. General concepts 5

Browsing 5

Checking in and out 5

Memory allocation 6

Member contents 8

Character buffers 8

Return codes 9

Logging 9

Custom parameters and return values 9

Chapter 3. Developing a RAM 11

Compiling a RAM 11

Defining the RAM to CARMA 12

Exporting functions 12

IDs vs. names 12

RAM predefined data structures 12

Logging 13

Dealing with unsupported operations 13

Handling custom parameters and return values . . 13

State functions 14

initRAM 14

terminateRAM 15

reset 15

Browsing functions 15

getInstances 15

getMembers 16

isMemberContainer 17

getContainerContents 17

Metadata functions 18

getAllMemberInfo 18

getMemberInfo 19

updateMemberInfo 19

Other member operations 20

extractMember 20

putMember 22

lock 24

unlock 24

check_in 25

check_out 25

RAM development using COBOL 26

Compilation 26

COBOL RAM program structure 27

ILC data type equivalents between C and

COBOL 28

Dealing with pointer operations 29

Variables shared between programs 30

Overview of the function programs of the sample

COBOL RAM 32

Handling Custom Action Framework data . . . 32

Debugging and avoiding abnormal termination 34

Chapter 4. Customizing a RAM API

using the CAF 37

CAF object types 37

RAM 37

Parameter 38

Return value 38

Action 39

Developing the RAM model for a custom RAM . . 40

Creating VSAM records from a RAM model . . . 45

CRADEF 45

CRASTRS 48

SAMP RAM VSAM records 49

VSAM cluster access 51

Cluster editing tool 51

Chapter 5. Developing a CARMA client 53

Compiling the CARMA client 53

Running the client 53

Storing results for later use 54

Client predefined data structures 54

Logging 56

Handling custom parameters and return values . . 56

State functions 57

initCarma 57

getRAMList 58

initRAM 58

reset 59

terminateRAM 59

terminateCarma 59

Browsing functions 59

getInstances 59

getMembers 60

isMemberContainer 61

getContainerContents 61

Metadata functions 62

getAllMemberInfo 62

getMemberInfo 63

updateMemberInfo 63

Other operations 64

extractMember 64

putMember 65

lock 67

unlock 67

checkin 68

checkout 68

getCAFData 69

Appendix A. Return codes 71

 iii

Appendix B. Action IDs 73

Notices 75

Trademarks and service marks 76

iv IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

About this book

This book explains how to develop repository access managers (RAMs) and

Common Access Repository Manager (CARMA) clients. It includes the following

topics:

v How to develop a RAM capable of connecting to a software configuration

manager (SCM)

v How to develop a CARMA client capable of accessing various SCMs through

CARMA using RAMs

You can use this document as a guide to these tasks or as a programming

reference.

Who should read this book

This book is intended for application programmers or anyone who wants to learn

how RAMs and clients are developed.

To use this book as a guide for RAM development, you need to be familiar with

the SCM you are developing a RAM for. To use this book for CARMA client

development, you need to understand generic SCM concepts.

Conventions used in this book

Throughout this book there are several references to data sets and members that

have the high-level qualifier CRA. Depending on how your CARMA host has been

configured, these data sets may actually have different file names. For example, the

sample library referred to as CRA.SCRASAM in this book could actually be named

MYCORP.TEST.SCRASAM on your host system. Thus, depending on the configuration

of your host system, the CRA in the data set names referenced in this book may be

replaced with some other string. Contact your system programmer to determine

where these data sets are actually located on your host system.

 v

vi IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Chapter 1. Introduction to CARMA

CARMA is a library that provides a generic interface to z/OS software

configuration managers (SCMs). Developers can build on top of CARMA by

developing repository access managers (RAMs) that plug into the CARMA

environment. RAMs define how CARMA should communicate with various SCMs.

For example, a CARMA host (a z/OS host machine with CARMA on it) could be

configured to use one RAM to communicate with IBM Source Code Library

Manager (SCLM) repositories and another RAM to communicate with your own

custom SCM.

By using CARMA, developers of client software can avoid writing specialized code

for accessing SCMs, and easily allow support for any SCM for which a RAM is

available. CARMA is a DLL stored within an MVS PDS. Only z/OS clients can

directly access CARMA. In order to access CARMA from a workstation, a software

bridge between the workstation and host must be developed. This bridge software

must act as a client to the CARMA host and as a server to workstations. IBM

WebSphere Developer for zSeries (WD/z) ships with such a software bridge to

allow the WD/z CARMA plug-in to access CARMA hosts.

Figure 1 on page 2 illustrates an example CARMA environment.

 1

CARMA currently ships with four sample RAMs:

v Sample PDS RAM - Provides access to the Partitioned Data Sets (PDSs) available

on the CARMA host

v Sample SCLM RAM - Provides access to Software Configuration Library

Manager (SCLM) projects

v Sample COBOL RAM - Provides example COBOL code which demonstrates

handling of ILC issues specific to COBOL-based RAM development

v Skeleton RAM - Provides a starting point for RAM developers to develop their

own RAM

Note: The sample RAMs are provided for the purpose of testing the configuration

of your CARMA environment and as examples for developing your own

RAMs. Do NOT use the provided sample RAMs in a production

environment.

To access your own SCMs using CARMA, you will need to obtain or develop

additional RAMs. See Chapter 2, “General concepts,” on page 5 and Chapter 3,

“Developing a RAM,” on page 11 for more information on developing a RAM to

access your own SCM.

RAM A

CARMA

RAM B

Workstationz/OS Host

PDS RAM SCLM RAM

z/OS Host

SCM A SCM B Some PDS
Some SCLM

Project

z/OS Host (CARMA Host)

CARMA
Client

Software
Bridge

WD/z CARMA
Plug-In

Figure 1. Example CARMA environment

2 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Supported operations

CARMA currently supports the following sets of generic actions:

v Browse an SCM

v Extract an SCM member

v Create and update an SCM member

v Get and update SCM member metadata

v Lock, unlock, check in, and check out a member

Although CARMA supports all of these actions, it is quite possible that a given

SCM may not support one or more of these actions due to its design. Developers

of RAMs accessing such SCMs should follow the guidelines for handling

unsupported operations in “Dealing with unsupported operations” on page 13.

CARMA also provides a framework called the Custom Action Framework (CAF)

for customizing the actions a RAM can perform (see Chapter 4, “Customizing a

RAM API using the CAF,” on page 37 for more information).

Locating the sample files

Sample files have been included in the CARMA host installation packages. After

your CARMA host has been successfully set up, you should be able to find these

sample files as members within the sample library (CRA.SCRASAM). The following

table summarizes these members:

 Table 1. Sample CARMA development files

Member in CRA.SCRASAM Description

CRA390H Header needed for clients

CRA390SD CARMA/390 DLL side deck

CRACLICM JCL to compile a CARMA client

CRACLIRN JCL to run a host-based client

CRACLISA Sample client source code

CRADSDEF C header needed for clients and RAMs

CRAFCDEF C header needed for RAMs

CRAMREPR IDCAMS JCL to REPRO CRAMSG

CRAMSGH Header file common to the sample PDS and

SCLM RAMs

CRAMSGO Object module common to the sample PDS

and SCLM RAMs

CRARAMCM JCL to compile Skeleton RAM

CRARAMCS JCL to compile the C source for the sample

SCLM RAM

CRARAMSA Skeleton RAM source code

CRAREPR JCL to REPRO CRADEF

CRAREPRP JCL to REPRO the sample PDS RAM's

messages

CRAREPRS JCL to REPRO the sample SCLM RAM's

messages

Chapter 1. Introduction to CARMA 3

Table 1. Sample CARMA development files (continued)

Member in CRA.SCRASAM Description

CRARREXX JCL to compile the sample SCLM RAM’s

required REXX modules

CRASBLD REXX source file for the SCLM BUILD API

call

CRASLCK REXX source file for the SCLM LOCK API

call

CRASPDS Source code for the sample PDS RAM

CRASPRM REXX source file for the SCLM PROMOTE

API call

CRASREPR JCL to REPRO CRASTRS

CRASSCLM Source code for the sample SCLM RAM

CRASSV REXX source file for the SCLM SAVE API

call (for putMember)

CRASUL REXX source file for the SCLM UNLOCK

API call

4 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Chapter 2. General concepts

Browsing

CARMA views all entities within an SCM as instances, members, and metadata.

Instances are the entities at the highest level within an SCM. For example, the

sample PDS RAM uses the PDSs themselves as instances. Instances could be

different libraries of code, different levels of code, or whatever the RAM developer

thinks would make the most sense for client users. For most SCMs, an instance

should represent a project or component in the SCM.

Members are entities contained within instances or other members. Members that

contain other members are known as containers, while members that do not

contain other members are known as simple members.

Figure 2 illustrates a simple hierarchy. "Build" and "Development" are instances, the

components are containers, and the source files are simple members.

Checking in and out

CARMA provides a generic interface across various SCMs, each of which may

handle operations differently. Since it is not possible to predict whether the check

in or check out operation for any given SCM will respectively expect or return a

member’s contents, CARMA has been designed such that the check in and check

out actions are flag-setting operations. That is, no member contents are passed to

or returned from the SCM as part of the check in and check out actions.

Build

Container A

Container B

Source File 1

Source File 1

Source File 2

Container C

Source File 1

Source File 3

Source File 2

Development

Container A

Container B

Source File 1

Source File 1

Source File 2

Container C

Source File 1

Source File 3

Source File 2

Instances

Members

Figure 2. Example SCM hierarchy

 5

Certain SCMs might expect the contents of a member to be passed in during a

check in operation for that member. A RAM for such an SCM should handle this

case by storing the member contents in a temporary location before making the

check in call to the SCM.

Similarly, certain SCMs might return the contents of a member during a check out

operation for that member. A RAM for such an SCM should handle this case by

storing the member contents in a temporary location until the client retrieves the

contents. CARMA clients should always expect to perform the check in action

before performing the update action, and to perform the extract action immediately

after performing the check out action.

Memory allocation

Many of the CARMA API functions require that either the RAM or the CARMA

client allocate memory to store function results or parameters that are passed

between the RAM and the CARMA client. For all functions other than

extractMember and putMember, a one dimensional array will need to be allocated by

the RAM and freed by the client to store sets of instance information, member

information, and other information. The following diagram illustrates how the

RAM should allocate this array:

 Each element in the array depicted above is of data structure type type. typePtr is

a type pointer (of type type*) that serves as a handle to the newly allocated

memory. In C, this memory can be allocated with the following code:

typePtr = (type*) malloc(sizeof(type) * numElements);

where numElements is the number of array indices that need to be created. The

memory typePtr points to must be freed by the client once it is no longer needed.

The putMember and extractMember functions use two-dimensional arrays to transfer

member contents, with each array row containing one of the member’s records. For

extractMember, the RAM should allocate the array and the CARMA client should

free the array. For putMember, the CARMA client should both allocate and free the

array. In both cases, the array should be allocated as illustrated in the following

diagram:

type 0 type 1 type 2 type 3 type 4

typePtr

Figure 3. Simple one dimensional array as would be allocated by a RAM

6 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

charPtrPtr is a pointer to a char pointer (it is of type char**) that serves as a

handle to an array of char pointers (elements of type char*). The data for the

two-dimensional character array is actually stored in a one-dimensional character

array; the idea of rows and columns is purely conceptual. The array of char

pointers is used to provide handles to the first element in each row of the

"two-dimensional" array. Thus, in the illustration, the first row of the

two-dimensional array consists of elements 0a and 0b, with 0a being the first

element of that row; the second row consists of elements 1a and 1b, with 1a being

the first element of that row; and so on.

To allocate a two-dimensional array such as the ones required for the

extractMember and putMember functions, the CARMA client must first create

charPtrPtr. In C, use the following declaration:

char** charPtrPtr;

If the CARMA client is allocating the two-dimensional character array (as is the

case for the putMember function) the array can now be allocated. In C, the CARMA

client should use the following code:

charPtrPtr = (char**) malloc(sizeof(char*) * numRows);

charPtrPtr = (char) malloc(sizeof(char) * numColumns * numRows);

for(i = 0; i < numRows; i++)

 (charPtrPtr)[i] = ((*charPtrPtr) + (i * numColumns));

where numRows is the number of rows and numColumns is the number of columns in

the two-dimensional array. The first line allocates the array of char pointers (one

pointer for each row in the two-dimensional array), the second line allocates the

array that holds the data for the two-dimensional array, and the for loop assigns

each of the char pointers in the char pointer array to a row in the two-dimensional

array.

If the RAM is allocating the two-dimensional character array (as is the case for the

extractMember function) an extra step is required before the array can be allocated:

charPtrPtr needs to be passed by reference to the RAM as extractMember's

contents parameter; that is, a pointer to charPtrPtr needs to be passed. This is

necessary so that the client has a handle to the two-dimensional array after the

RAM has allocated the array. Suppose that the RAM receives a parameter named

contents of type char*** in the RAM function that will allocate the

two-dimensional array. The RAM should then allocate the two-dimensional array,

using contents as a handle to the array. In C, the RAM should use the following

code to allocate the two-dimensional array:

charPtr 0

charPtrPtr

charPtr 1 charPtr 2

char 0a char 0b char 1a char 1b char 2a char 2b

Figure 4. Two-dimensional character array as used in extractMember and putMember

Chapter 2. General concepts 7

*contents = (char**) malloc(sizeof(char*) * numRows);

**contents = (char*) malloc(sizeof(char) * numColumns * numRows);

for(i = 0; i < numRows; i++)

 (*contents)[i] = ((**contents) + (i * numColumns));

where numRows is the number of rows and numColumns is the number of columns in

the two-dimensional array. The first line allocates the array of char pointers (one

pointer for each row in the two-dimensional array), the second line allocates the

array that holds the data for the two-dimensional array, and the for loop assigns

each of the char pointers in the char pointer array to a row in the two-dimensional

array.

Regardless of who allocated the array, the CARMA client must free the

two-dimensional character array in both the extractMember and putMember

functions. In C, the CARMA client should use code similar to the following:

free(charPtrPtr[0]);

free(charPtrPtr);

This frees the data array before freeing the char pointer array, thus avoiding a

memory leak.

Member contents

The contents of SCM members can be sent between the RAM, CARMA, and the

client all at once or a piece at a time. It is recommended that the contents of large

members be sent a piece at a time to avoid attempting to allocate a larger chunk of

memory than is available.

The contents will be passed to and from the RAM as two-dimensional character

arrays, each row in the array corresponding to a record in the member. As the

RAM writes to or reads from a member, it should place the first member record it

encounters at index 0 in the array, so that the indices of the array and member

match.

Character buffers

To match the convention for passing strings in MVS, the RAM should expect all

character buffers passed to it to be padded with spaces instead of being

null-terminated. The RAM should also set up any buffers being returned to the

client in the same way. Assuming a buffer length of 30, the string "CARMA

mechanic" would be passed in the format illustrated in Figure 5 instead of the

format illustrated in Figure 6 (where "?" represents an unknown character). Both

RAM and client developers should initialize buffers that they have created to be

filled with spaces.

 C A R M A m e c h a n i c

Figure 5. Example of correct RAM buffer usage

 C A R M A m e c h a n i c \0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Figure 6. Example of incorrect RAM buffer usage

8 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Return codes

All functions that run successfully should produce a return code of 0. If an error

occurs, RAM developers may return a code between 100 and 200 or between 500

and 900. Codes ranging from 100 to 200 are reserved for generic errors that all

RAMs may face. Codes ranging from 500 to 900 should be used for any errors that

are specific to a certain RAM. Likewise, CARMA may return error codes between 4

and 100, a software bridge created between CARMA and a workstation client may

return error codes between 201 and 500, and TSO errors may be flagged by

returning error codes between 900 and 999. See Appendix A, “Return codes,” on

page 71 for a list of the predefined error codes. When an error results in a return

code between 500 and 900, the RAM should fill the error buffer with the details of

the error. When an error results in a return code between 100 and 200, CARMA

will be able to recognize the error and will put the appropriate error message in

the error buffer. If the RAM provides additional error information using its error

buffer, CARMA will append this information to the error message it produces.

Logging

CARMA uses its own logging system. Trace levels can be used to filter log

messages generated by CARMA and the RAM. The available trace levels are listed

in the following table:

 Table 2. Trace levels. Messages at the "None" trace level are not logged.

Enumeration Trace Level

-1 None

0 Error

1 Warning

2 Information

3 Debug

All messages at or below the chosen level will be logged. For example, if

the"Information" trace level is chosen, the following types of messages will be

logged: information, warning, and error. Additional information on logging is

discussed in “Logging” on page 13 (for RAM development) and “Logging” on

page 56 (for CARMA client development).

Custom parameters and return values

Both custom parameters and return values are referenced by elements in void

pointer arrays. Since parameters and return values can be of various data types,

pointers to them are typecast to void* and then stored in a single array. Each such

array holds either the custom parameter or the custom return values, but never

both. The following diagram illustrates the structure of an example custom

parameter array:

Chapter 2. General concepts 9

where params is a pointer to a void array and each voidPtr in the array is a void

pointer that points to a parameter. Custom return value arrays should be similarly

structured.

The number of elements that should be in a custom parameter or return value

array is dependent upon the CAF information in the CARMA VSAM clusters (see

“Creating VSAM records from a RAM model” on page 45). Since it is the

responsibility of the RAM developer to include information on the custom

parameters and return values in the VSAM clusters, the RAM developer should

already know how many elements to include in the custom parameter and return

value arrays. CARMA client developers can use the getCAFData CARMA function

to retrieve information on the custom actions, parameters, and return values for a

RAM (see “getCAFData” on page 69 for more information). Using this information,

CARMA client developers can determine how many custom parameters and return

values are required for each RAM action.

voidPtr 0

params

voidPtr 1 voidPtr 2 voidPtr 3 voidPtr 4

BOB

2.532
12 CARMA

42
string

double
int string

int

Figure 7. Custom parameter array example. Each element in the array is a pointer to a

parameter. The value of each parameter is shown and labeled with its data type.

10 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Chapter 3. Developing a RAM

Repository access managers (RAMs) provide CARMA with access to specific SCMs.

A RAM is a dynamically linked library (DLL) that exports entry points for all API

functions that it implements. An API function reference is included at the end of

this chapter.

Most RAM functions have the following pattern:

1. Determine what instance and/or member the request applies to

2. Contact the SCM to carry out the requested operation

3. Allocate any memory necessary to return the result

4. Fill the allocated memory with the result

5. Return the result to CARMA

You can use the skeleton RAM source file, CRARAMSA (located in the sample library),

as a starting point for your RAM if you are developing your RAM in C. Keep in

mind that your RAM must follow the state, memory allocation, and API

implementation guidelines given in this document; otherwise, serious problems

could develop: CARMA might not communicate properly with the RAM; memory

leaks could develop; or, in the worst case, CARMA or the RAM could abnormally

end. Specifically, read the following sections carefully:

v “Memory allocation” on page 6

v “State functions” on page 14

Compiling a RAM

Your RAM should be compiled as a DLL into a PDS. CRARAMCM, a JCL script in the

sample library, can be modified to compile your RAM code into a DLL.

Specifically, the OUTFILE, INFILE, SYSLIB, and SYSDEFSD data set name symbolics

need to be modified to point to your data set locations. The following table

summarizes these symbolics:

 Data Set Name Smybolic Description

OUTFILE The load library your RAM should be

compiled into

INFILE The source file for the RAM to compile

SYSLIB The library or libraries containing all of your

headers

SYSDEFSD Specifies where the DLL’s side deck should

be built

Since CARMA loads RAMs explicitly, the DLL does not require a side deck in

order for the RAM to work properly. However, it should still be created in order

for the JCL procedure to work properly.

To compile a RAM written in C, the CRADSDEF header file (located in the sample

library) must be included. CRADSDEF contains several data structures necessary to

the RAM's operation. If a RAM is being developed in a language other than C, the

 11

Descriptor and KeyValPair data structures must be implemented before the RAM

can properly communicate its results to CARMA.

Defining the RAM to CARMA

CARMA keeps its RAM information in several VSAM clusters, which must be

populated with records for each of the RAMs in the environment. Refer to

Chapter 4, “Customizing a RAM API using the CAF,” on page 37 to learn how to

insert the appropriate records for your RAM into these VSAM clusters. If you do

not need to customize your RAM API, the only record you need to include in the

VSAM cluster is the record for your RAM; you will not need to add parameter,

return value, or action records.

Exporting functions

When CARMA attempts to load a RAM, it expects to be able to load the RAM API

functions explicitly using the C dllqueryfn function. If using C, a #pragma export

statement such as the one below is used to export each RAM function. The

following example exports the initRAM function:

#pragma export(initRAM)

IDs vs. names

When a member, instance, or other type of data is being returned from the RAM to

CARMA, both its ID and display name are typically returned. The ID should

uniquely identify the entity to the RAM. It would be wise to return a member’s

absolute path (starting at the top-level container) in the ID field so that the

member can easily be accessed by the RAM when future requests are made. The

display name is simply the name that should be displayed on the client.

RAM predefined data structures

Most RAM functions use predefined structures to pass information back to

CARMA.

The Descriptor structure consists of a 64-byte name character field and a 256-byte

ID character field. It is used to describe instances, containers, and simple members.

The KeyValPair structure consists of a 64-byte key field and a 256-byte value field.

It is used for metadata key-value pairs. These structures are summarized in Table 3

and Table 4.

 Table 3. Descriptor data structure

Field Description

char id[256] Unique ID to describe the entity

char name[64] Display Name

 Table 4. KeyValPair data structure

Field Description

char key[64] An index

char value[256] The data

CRAFCDEF, a C header file in the sample library, must be included in the code for

your RAM before you can use these data structures.

12 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Logging

CARMA provides RAMs with a pointer to a logging function, a pointer to a log

file, and a trace level (see Table 2 on page 9) at initialization. The trace level should

be used to filter out some messages that may not interest users. The logging

function takes a 16-byte sender character buffer, a 256-byte message character

buffer, and the log file pointer that is passed in at initialization. An example call in

C follows:

if(traceLevel > 1)

 (*writeToLog)("MyRAM", "Gathering instances", logPtr);

The log file will be created as a sequential data set in the CARMA user’s data sets.

It will be of the format USERNAME.CRATIMESTAMP, where USERNAME is the user name

of the user running CARMA, and TIMESTAMP is a numeric time stamp indicating

the creation time of the log. For example, if user BOB is running CARMA at 3:42

PM, the log could be named BOB.CRA1542.

Dealing with unsupported operations

If you are developing a RAM that communicates with an SCM that does not

support a CARMA operation, you should inform the client that it is disabled by

appropriately modifying your RAM's CAF information (see Chapter 4,

“Customizing a RAM API using the CAF,” on page 37). You may assume that

CARMA clients will not invoke actions marked as disabled. However, you should

still account for the possibility of a client invoking a disabled action by taking one

of the two following actions:

1. Do not implement the function for the disabled action and do not include a

pragma export statement for the function. This will cause CARMA to return a

return code of 16 to any client that requests that operation from your RAM.

2. Implement the function for the disabled action to simply return a return code

of 107. Include the #pragma export statement for the function as you normally

would.

Handling custom parameters and return values

Custom parameters are passed to the RAM using the void** params parameter.

params is an array of void pointers that point to variables of several types. If these

custom parameters have been defined as required parameters for a given function

in the CARMA VSAM clusters (see Chapter 4, “Customizing a RAM API using the

CAF,” on page 37 for more information), it should be assumed that the client has

set up the params properly. To retrieve the parameters, simply typecast the

variables in params back to their proper types. Use the following C code as an

example:

int param0;

char* param1;

double param2;

param0= *((int*) params[0]);

memcpy(param1 (char*), params[1], 30);

param2 = *((double*) params[2]);

A pointer to an unallocated custom return values array is passed to the RAM as

void*** customReturn. If custom return values are defined in the CARMA VSAM

clusters, the RAM must allocate memory for customReturn and fill it appropriately.

Chapter 3. Developing a RAM 13

If the result values of param0, param1, and param2 from the example above needed

to be returned, it could be done using the following C code:

/* These are defined at the top */

int* return0;

char* return1;

double* return2;

/* Program body */

*return0 = 5;

memcpy(*return1, "THE STRING", 10);

*return2 = 3.41

/* Fill the return value structure */

customReturn = malloc(sizeof(void) * 3);

(*customReturn)[0] = (void*) return0;

(*customReturn)[1] = (void*) return1;

(*customReturn)[2] = (void*) return2;

If no custom return values are defined in the CARMA VSAM clusters,

customReturn should be set to NULL.

State functions

The RAM has three state functions: initRAM, terminateRAM, and reset, as

illustrated in Figure 8. initRAM initializes the global variables of the RAM and

establishes the connection to the repository. It cannot be called again within a

session until the RAM has been terminated. reset restores the repository

connection to its initial state. It can be called at any time except immediately after

terminateRAM. terminateRAM can also be called at any time, but the only function

that can be successfully called immediately after terminateRAM is initRAM.

initRAM

int initRAM(Log_Func logFunc, FILE* log, int traceLev,

 char locale[8], char codepage[5], char error[256])

 Log_Func logFunc Input A function pointer to the

CARMA logging function.

This should be stored for use

in other RAM functions.

Uninitialized Initialized Working

terminateRAM

terminateRAM reset

initRAM

reset

non-state
function non-state

function

Figure 8. RAM state diagram

14 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

FILE* log Input A file pointer to the CARMA

log. This should be stored for

use along with the logging

function.

int traceLev Input The logging trace level to be

used throughout the session.

char locale[8] Input Tells CARMA the locale of

the strings that will be

returned to the client

char codepage[5] Input Tells CARMA the code page

of the strings that will be

returned to the client

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

initRAM must be called before all other RAM operations occur. It should be used to

initialize the SCM connection and to set up any global variables used within the

program. Among these global variables should be ones used to store the three

variables passed into this function.

terminateRAM

void terminateRAM(char error[256])

 char error[256] Output If an error occurs, this

should be filled with a

description of the error.

terminateRAM should be used to close the SCM connection, and to free any

resources used by the RAM (such as memory and files).

reset

int reset(char buffer[256])

 char error[256] Output If an error occurs, this

should be filled with a

description of the error.

reset is used to restore the SCM connection to its initial state.

Browsing functions

getInstances

Retrieves the list of instances available in the SCM

int getInstances(Descriptor** records, int* numRecords, void** params,

 void*** customReturn, char filter[256],

 char error[256])

Chapter 3. Developing a RAM 15

Descriptor** records Output This should be allocated and

filled with the IDs and

names of the available

instances.

int* numRecords Output The number of records that

have been allocated and

returned

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 13)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 13)

char filter[256] Input This can be passed from the

client to filter out sets of

instances.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Operation:

1. Query the SCM for its list of instances, possibly applying a filter.

2. Allocate the records array. If developing a RAM in C, use the following code:

records = (Descriptor) malloc(sizeof(Descriptor) * *numRecords);

3. Fill the records array with the IDs and names.

If it is not possible to query the SCM for instances, it may be useful to have the

client pass in a list of known instances using the filter buffer. The RAM should

then check the list and return the instances in the records array. The instances can

be hard-coded if they are constant for the SCM.

getMembers

Retrieves the list of members within an instance

int getMembers(char instanceID[256], Descriptor** members,

 int* numRecords, void** params, void*** customReturn,

 char filter[256], char error[256]);

 char instanceID[256] Input The instance for which the

members should be returned

Descriptor** members Output This should be allocated and

filled with the IDs and

names of the members

within the instance.

int* numRecords Output The number of members for

which the array has been

allocated

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 13)

16 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 13)

char filter[256] Input This can be passed from the

client to filter out sets of

members.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Operation:

1. Query the SCM for the given instance’s members, possibly applying a filter.

2. Allocate the members array. If developing a RAM in C, use the following code:

*members = malloc(sizeof(Descriptor) * *numRecords);

3. Fill the members array with the IDs and names of the members.

isMemberContainer

Sets isContainer to true if a member is a container; false if not

int isMemberContainer(char instanceID[256], char memberID[256],

 int* isContainer, void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member being checked

char memberID[256] Input The member that is being

checked

int* isContainer Output Should be set to 1 if the

member is a container; 0 if

not

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 13)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 13)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Set *isContainer to 1 if the member is a container, or 0 if it is not a container.

getContainerContents

Retrieves the list of members available within a container

int getContainerContents(char instanceID[256], char memberID[256],

 Descriptor** contents, int* numMembers,

 void** params, void*** customReturn,

 char filter[256], char error[256])

Chapter 3. Developing a RAM 17

char instanceID[256] Input The instance containing the

container

char memberID[256] Input The container’s ID

Descriptor** contents Output Should be allocated and

filled with the IDs and

names of the members

within the container

int* numRecords Output The number of members for

which the array has been

allocated

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 13)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 13)

char filter[256] Input This can be passed from the

client to filter out sets of

members.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Operation:

1. Query the SCM for the given container’s members, possibly applying a filter.

2. Allocate the contents array. If developing a RAM in C, use the following code:

*contents = malloc(sizeof(Descriptor) * *numMembers);

3. Fill the contents array with the IDs and names of the members.

Metadata functions

getAllMemberInfo

Retrieves all of a member’s metadata

int getAllMemberInfo(char instanceID[256], char memberID[256],

 KeyValPair** metadata, int* num, void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member whose

metadata is being retrieved

KeyValPair** contents Output This should be allocated and

filled with all the metadata

key-value pairs for the

specified member

int* num Output The number of key-value

pairs for which the array has

been allocated

18 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 13)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 13)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Operation:

1. Query the SCM for the given member’s metadata.

2. Allocate the contents array. If developing a RAM in C, use the following code:

*metadata = malloc(sizeof(KeyValPair) * *num);

3. Fill the contents array with the key-value pairs.

getMemberInfo

Retrieves a specific piece of a member’s metadata

int getMemberInfo(char instanceID[256], char memberID[256],

 char key[64], char value[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member whose

metadata is being retrieved

char key[64] Input The key for the value to be

returned

char value[256] Output The requested value

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 13)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 13)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

getMemberInfo returns the value of the specified key for the given member.

updateMemberInfo

Updates a specific piece of a member’s metadata

Chapter 3. Developing a RAM 19

int updateMemberInfo(char instanceID[256], char memberID[256],

 char key[64], char value[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member whose

metadata is being set

char key[64] Input The key for the value to be

set

char value[256] Input The value to set

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 13)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 13)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

updateMemberInfo attempts to update a member’s metadata (specified by the given

key) with the given value.

Other member operations

extractMember

Retrieves a member’s contents

int extractMember(char instanceID[256], char memberID[256],

 char*** contents, int* lrecl, int* numRecords,

 char recFM[4], int* moreData, int* nextRec,

 void** params, void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

extracted

char*** contents Output Will be allocated as a

two-dimensional array to

contain the member’s

contents

int* lrecl Output The number of columns in

the data set and array

int* numRecords Output The number of records in the

data set or the number of

rows in the array

char recFM[4] Output Will contain the data set’s

record format (FB, VB, etc.)

20 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

int* moreData Output Set the value of the variable

to which this points as 1 if

extract should be called

again (because there is still

more data to be extracted).

Otherwise, assign the value

to which it points as 0

int* nextRec Input/Output Input: The member record

where the RAM should

begin extracting

Output: The first record in

the data set that wasn’t

extracted if *moreData is set

to 1; otherwise, undefined

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 13)

void** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 13)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

extractMember returns the contents of the data set in a two-dimensional array. The

function is designed to support sending the data in chunks, so that the array does

not have to be allocated to the entire size of the file. The records in the data sets

are considered to be indexed with the first record being record 0.

Operation:

1. Determine how many records are in the data set, what lrecl and the record

formats are, and set *lrecl and recFM.

a. If the *numRecords - nextRec is greater than RAM’s data chunk size, set

*numRecords to the data chunk’s number of records, and set *moreData to 1;

finally, allocate the array.

b. Otherwise, set *numRecords to *numRecords - *nextRec and allocate the

array. If developing a RAM in C, use the following code:

 *contents = (char**) malloc(sizeof(char*) * (*numRecords));

 **contents = (char*) malloc(sizeof(char) * (*lrecl) * (*numRecords));

 for(i = 0; i < *numRecords; i++)

 (*contents)[i] = ((**contents) + (i * (*lrecl)));

2. Fill the array with the expected set of records. Ensure that the records are not

null-terminated. If there is more data to return, set *nextRec to the 0-based

index of the next record.

Example

Setup: The member contains 26 records, each containing the next alphabetic

character, starting with "A" in record 0. Its *lrecl value is 5, its recFM value is

“FB”, and the RAM’s data chunk size is 10.

Chapter 3. Developing a RAM 21

Figure 9 shows what extractMember should return for each call needed to extract

all the contents.

putMember

Updates a member’s contents or creates a new member if the specified memberID

does not exist within the instance

int putMember(char instanceID[256],

 char memberID[256], char** contents, int lrecl,

 int* numRecords, char recFM[4], int moreData,

 int nextRec, int eof, void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

updated/created

char** contents Input Contains the new member

contents

int lrecl Input The number of columns in

the data set and array

int* numRecords Input/Output The number of records in the

data set or the number of

rows in the array

char recFM[4] Input Contains the data set’s

record format (FB, VB, etc.)

int moreData Input Will be 1 if the client has

more chunks of data to send;

0 otherwise

 First Call Second Call Third Call

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

*lrecl = 5

*numRecords = 10

*moreData = 1

*nextRec = 10

*lrecl = 5

*numRecords = 10

*moreData = 1

*nextRec = 20

*lrecl = 5

*numRecords = 6

*moreData = 0

*nextRec = X

Figure 9. Example of return values for subsequent calls to extractMember. Notice that during the third call, *nextRec

has a listed value of X. This means that the value of *nextRec is not significant and will not need to be altered.

22 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

int nextRec Input The record in the data set to

which the 0th record of the

contents array maps

int eof Input If 1, denotes that the last row

of the array should mark the

last row in the data set; 0

otherwise

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 13)

void** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 13)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Like extractMember, putMember supports the data being sent in chunks. putMember

should also support clients that wish to pass data chunks that are not in sequential

order. For example, a client may send records 10 through 19, 20 through 29, and

then 0 through 9. The RAM should handle such a situation and properly update

the member, or return an error code and fill the error buffer with a string stating

that it cannot handle such a situation.

numRecords describes how many records the client would like to update/write on

input, and the RAM should set it to the number of records that were actually

written for output. If there is a difference between the two, the client will attempt

to put in the members that were not written. Therefore, after receiving a response

from the RAM, the client will set nextRec to the new numRecords value plus

nextRec on its next putMember call.

For putMember, nextRec tells the RAM where to begin writing the contents buffer

that has been passed in. For example, if nextRec is 0, the RAM should start at the

beginning of the member.

moreData signifies that the client will be calling putMember again with another

chunk. It is up to the RAM developer to decide how to handle a situation where

moreData is set and the next call to the RAM is not a call to the putMember function

providing the next chunk of data. In such a case, the RAM might simply return an

error. Alternatively, it could handle the problem and move on.

eof signifies that the current contents buffer contains the last records of a member.

If a 40-record member needed to be shortened to 5 records, eof would be set to 1

when the 5th record were being passed in. This should never be set when moreData

equals 1.

See the source for the Skeleton RAM and the sample PDS RAM for more help (see

“Locating the sample files” on page 3 for information on how to find these source

files).

Operation:

Chapter 3. Developing a RAM 23

1. Ensure that the lrecl, numRecords, and nextRec values that were passed in are

valid.

2. Open up the dataset and write from record nextRec to record nextRec +

numRecords.

3. If eof is specified, ensure that all records starting with the record at index

nextRec + numRecords are removed.

4. If moreData is equal to 0, close the data set. If moreData is equal to 1, either

leave the data set open if its state cannot be maintained between calls, or close

the data set and make sure that it can be reopened to the appropriate place

with the values being passed in next time putMember is called.

lock

Locks the member

int lock(char instanceID[256], char memberID[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

locked

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 13)

void** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 13)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

unlock

Unlocks the member

int unlock(char instanceID[256], char memberID[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

unlocked

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 13)

void** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 13)

24 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

check_in

Checks in the member. This only consists of setting a flag to mark that it is

checked in.

int check_in(char instanceID[256], char memberID[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

checked in

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 13)

void** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 13)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

check_out

Checks out the member. This only consists of setting a flag to mark that it is

checked out.

int check_out(char instanceID[256], char memberID[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

checked out

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 13)

void** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 13)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Chapter 3. Developing a RAM 25

RAM development using COBOL

While the C programming language is a sufficient choice for the development of

most RAMs, you may occasionally find it beneficial to develop a RAM in COBOL.

Be warned that while there are certain advantages to using COBOL for RAM

development, there are also certain disadvantages as well:

Advantages of RAM development in COBOL

v Code between functions is more clearly separated, enforcing stringent

design and mandating a careful inventory of shared resources between

RAM program functions.

v Since COBOL is heavily associated with the host, the facilities for

COBOL development may be more readily available on your system.

v Since string manipulation in COBOL does not rely on NULL delimiters,

protection exceptions are less likely than they would be during C

development.

v RAMs that involve the incorporation of business logic implementation or

heavy amounts of data shuffling are simpler to develop in COBOL.

v COBOL code has the property of being self-documenting.

Disadvantages of RAM development in COBOL

v Dynamic structures used by CARMA are cumbersome to deal with in

COBOL.

v Usage of additional C-style facilities involves adding C code to CUTILS

DLL.

v Code must be added to the RGVA DLL in order to share variables

between RAM function programs.

v Data typing available within C is not available in COBOL. You must

exercise more care when dealing with pointers.

 CARMA ships with a sample RAM developed in COBOL, appropriately called the

sample COBOL RAM. You may use this RAM as a starting point for your own

RAM written in COBOL, but the provided sample COBOL RAM should not be

used in a production environment.

Compilation

Compiling the sample COBOL RAM

The JCL for compiling the sample COBOL RAM (CRACOBJ1, located in the sample

library) can be modified as necessary to add new source code to the sample

COBOL RAM, compile source code for your own COBOL RAM, include side decks

for new helper DLLs, or change the destination PDS for COBOL RAM builds.

Compiling helper DLLs

Source code is provided for the two helper DLLs used by the sample COBOL

RAM. Each helper DLL can be compiled from a single source file. The following

table summarizes these source files (all of the source files and JCL listed can be

found in the sample library):

Source File Name Language

JCL to Compile

Source DLL Name

CRACOB14 COBOL CRACOBJ3 RGVA

CRACOBC1 C CRACOBJ2 CUTILS

26 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

You can use these source files and JCL scripts as a starting point for developing

any helper DLLs you may need for the development of your own COBOL-based

RAM.

Note: When using this JCL to compile a COBOL RAM, this JCL must reference the

definition side deck for any code utilized by the RAM.

COBOL RAM program structure

Coding the program ID

RAMs developed in C implement several CARMA functions, such as initRAM or

getMembers. RAMs developed in COBOL instead implement each of these functions

as individual COBOL programs (called RAM function programs). At compile time,

the source code for each program is included and compiled into a single DLL,

which exports each program ID to a definition side deck for use by CARMA. The

program ID of each RAM function program should match the name of the RAM

function implemented by that program.

Note: This matching should be case-sensitive. For instance, the following code

would define the program that implements the getInstances RAM function:
PROGRAM-ID. ’getInstances’.

The linkage section

Within a COBOL RAM function program, the linkage section is used for defining

parameter values, establishing addressability to pointer values passed as

parameters, and referencing the integer value returned by the RAM function.

Each parameter being passed to the RAM function should be defined as a 77-level

item. Although these parameters cannot be grouped as 77-level items, it is

recommended that they be defined adjacent to each other in the same sequence

that they are passed to the program (for clarity, locality of reference, and

readability).

For example, you could use the following code to define the parameters for the

getInstances RAM function program:

 77 GIP-RECORDS POINTER.

 77 GIP-NUMRECS POINTER.

 77 GIP-PARAMS POINTER.

 77 GIP-RETURN POINTER.

 77 GIP-FILTER POINTER.

 77 GIP-ERROR POINTER.

77-level items should also be defined for areas referenced by pointers that are not

dynamic in size. For instance, a definition should exist for referencing the 256-byte

error buffer. Use the following definition code for this error buffer:

77 ERROR-BUFFER PIC X(256).

Note: The error buffer cannot be used within the program until addressability has

been established using SET. Refer to “Dealing with pointer operations” on

page 29 for more information on establishing addressability.

The linkage section should also contain a reference to the integer value being

returned from the RAM function (the return code). Define this integer using the

following code:

77 INT-RVAL PIC S9(9) BINARY.

Chapter 3. Developing a RAM 27

Addressability to the return code need not be established. It may simply be used

as if it were defined within the working storage section.

Defining the procedure division

Parameters should be established with a USING phrase so that they can be made

available to the COBOL program. Since parameters can be passed by reference or

value, you should determine which method is most appropriate for your

parameters depending upon the coding practices in use.

Note: For simplicity and consistency, the provided example code passes

parameters by value as often as possible. However, a few examples pass

parameters by reference as needed in certain situations.

The following example procedure division declaration illustrates how you might

designate parameters to be passed by value.

PROCEDURE DIVISION USING BY VALUE GIP-RECORDS

 BY VALUE GIP-NUMRECS

 BY VALUE GIP-PARAMS

 BY VALUE GIP-RETURN

 BY VALUE GIP-FILTER

 BY VALUE GIP-ERROR

 RETURNING INT-RVAL.

Since each RAM function returns an integer value, the RETURNING phrase is used to

specify that an integer value is being returned from the COBOL program.

Ending the program

Since each COBOL RAM function program serves the purpose of a C RAM

function, each RAM function program should be terminated with an END PROGRAM

directive. When compiling a COBOL RAM DLL, the COBOL source programs

associated with each RAM function are provided to the COBOL compiler as a

concatenated DD statement. Failing to provide END PROGRAM directives will cause

programs to be treated as nested, which will yield compiler error messages.

ILC data type equivalents between C and COBOL

Because CARMA is intended to be ILC-compatible, COBOL data type equivalents

must exist for C data types. A thorough treatment of this topic is given within

Language Environment documentation (Language Environment Writing Interlanguage

Communication Applications). However, for your convenience, mappings for

common data types are listed in the following table:

 C Data Type COBOL Equivalent

int PIC S9(9) BINARY

char * POINTER

char ** POINTER

void * POINTER

void *** POINTER

Since COBOL is not as strongly-typed as C, any pointer passed to a COBOL

program is effectively similar to a void pointer in C. In other words, once a pointer

is passed to a COBOL program, it is the responsibility of the COBOL programmer

to ensure that the pointer is handled properly for the correct data type. There is no

distinct data type associated with the COBOL pointer as there is in C.

28 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Since double and triple pointers may be passed into COBOL-based RAMs, it may

be necessary to dereference these pointers multiple times. Although this task is

more elegantly accomplished in C, it is possible to do in COBOL. However, to

avoid the complexities associated with pointer operations in COBOL, sample code

has been provided for a C utility DLL that performs pointer operations that would

be overly complicated to implement in COBOL. The C utility DLL is further

discussed in “Dealing with pointer operations.”

Dealing with pointer operations

Simple pointer operations

For most parameters passed to COBOL RAM function programs, a small amount

of pointer dereferencing code is necessary using the SET operator. For example,

most programs will receive a pointer to a 256-byte buffer for a detailed error

message. Before you can fill this buffer, it must be dereferenced using SET.

As an example, the following code demonstrates how to establish addressability to

the error buffer. The pointer to the error buffer is passed by value to the procedure

division for getInstances and is defined in the linkage section as follows:

77 GIP-ERROR POINTER.

Later in the linkage section, a 77-level item is defined for dereferencing and

performing operations on the error buffer:

77 ERROR-BUFFER PIC X(256).

Then, within the procedure division we establish addressability to the error buffer

after verifying that GIP-ERROR is not NULL:

SET ADDRESS OF ERROR-BUFFER TO GIP-ERROR.

Now we can treat the error buffer as we would any normal 256-byte alphanumeric

field. In this case, the error buffer is a 256-byte non-NULL-terminated string.

Complex pointer operations

For pointers with multiple levels of indirection, dereferencing operations can be

complicated. The COBOL code to perform such dereferencing operations would

require multiple 77-level items with a SET operation for each level of indirection. To

complicate matters, dynamically allocated structures are difficult to access without

knowing an absolute maximum size for the structure.

Instead of attempting complex pointer operations in COBOL, it is highly

recommended that code of this nature be implemented in a modular fashion by

using the C utility DLL. Currently functions are implemented for memory

allocation and contents buffer data insertion and retrieval. You may find it helpful

to add to this code as necessary and use it for more complex operations.

Alternatively, complex pointer operations can be performed within COBOL, but

can decrease the code readability. To deal with dynamic structures, pointer

arithmetic is necessary through using redefines. To create a pointer that may be

manipulated through pointer arithmetic, use code similar to the following within

the working storage section:

01 SOME-POINTER POINTER.

01 SOME-POINTER-MANIP REDEFINES SOME-POINTER.

 05 ADD-TO-ME PIC S9(9) BINARY.

Chapter 3. Developing a RAM 29

After defining the pointer, you can manipulate it as necessary using the redefined

version. The following code would change the pointer to point to the next

structure in a contiguously allocated chunk of memory containing multiple

structures.

ADD SIZE-OF-STRUCTURE TO ADD-TO-ME.

SET ADDRESS OF STRUCTURE TO SOME-POINTER.

Memory Allocation

Certain RAM functions, such as extractMember and getAllMemberInfo, require that

the RAM allocate memory. This memory is later freed by CARMA, which uses C's

free function to deallocate the memory. For this reason, a RAM implemented in

COBOL must use C's malloc function to allocate memory. The C utility DLL has a

C function called CMALLOC to provide access to malloc from within COBOL code.

The CMALLOC function accepts as an argument an integer containing the number of

bytes to be allocated and returns a pointer to the chunk of memory that was

allocated. It is the RAM developer’s responsibility to ensure that the pointer is not

NULL before attempting to use the chunk of allocated memory.

The following sample call to CMALLOC illustrates its use:

01 MALLOC-SIZE PIC S9(9) BINARY.

01 VOID-POINTER-RETURNED POINTER.

CALL "CMALLOC" USING BY VALUE MALLOC-SIZE

 RETURNING VOID-POINTER-RETURNED.

Variables shared between programs

Many RAM functions for a RAM written in C may have variables defined with a

global scope. As such, each function can access and modify the values of these

variables and, in turn, make these values accessible to other functions. However,

because each RAM function is implemented in COBOL as a separate COBOL

program, there is no way to directly share variables between programs. Because of

this problem, a DLL consisting of sample code (CRACOB14, located in the sample

library) has been shipped, which demonstrates a way to store and retrieve

variables that are intended to have global scope. This code is also known as RGVA.

RGVA (RAM Global Variables Accessor) provides a transactional interface for

retrieving data that is global within the RAM's scope. Within RGVA's code, each

variable is associated with an index value. When invoking RGVA, pass a flag

indicating whether or not you want to store or retrieve the variable's value, the

index of the variable to store or retrieve, and a buffer that contains the variable

itself. The code for RGVA is intended to be extensible, meaning that it can be

updated to store a variety of variables with minimal coding. Note that it is

necessary to update the code for RGVA to provide storage for additional variables.

Retrieving variables

In order to retrieve a variable, one must pass several pieces of information to

RGVA grouped under a 1-level item. The first is a flag that indicates whether to

retrieve ("R") or store ("S") the variable's value. The second flag indicates the index

of the variable to be retrieved. The third portion that must be allocated is a

sufficient amount of space to store the item being retrieved.

 CAUTION:

If enough space is not allocated, the results of this operation will be

unpredictable and could result in the abnormal termination of your RAM.

30 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

For example, to retrieve the variable with index 1, which is a pointer to the logging

function within the distributed sample, one would set up an area in working

storage with code similar to the following:

01 RGVA-ARGUMENTS.

 05 RGVA-FLAG PIC X VALUE ’R’.

 05 RGVA-WHICH-ONE PIC X VALUE ’1’.

 05 RGVA-SOME-POINTER POINTER.

In this example, the information in the working storage section is hard-coded to

retrieve the variable with index 1, which happens to be of type POINTER. To retrieve

the data, you would call RGVA using the following code:

CALL ‘RGVA’ USING RGVA-ARGUMENTS.

After this call, the value of the pointer being fetched from RGVA will be contained

in RGVA-SOME-POINTER. You could then utilize this value as necessary.

Storing variables

Storing variables works in a similar manner to retrieving variables. As an example,

the following code illustrates another entry for the working storage section that is

used to store a value:

01 RGVA-ARGUMENTS.

 05 RGVA-FLAG PIC X VALUE ’S’.

 05 RGVA-WHICH-ONE PIC X VALUE ’8’.

 05 RGVA-TEST-AVG PIC 9(3).

This entry is hard-coded to store the variable with the index 8, which is a test

average consisting of 3 numeric digits. RGVA is then invoked as before:

MOVE 100 TO RGVA-TEST-AVG.

CALL ‘RGVA’ USING RGVA-ARGUMENTS.

After the call has been made, RGVA will have stored the variable for later retrieval

(provided that RGVA has been updated with the code for storing this value).

Adding to RGVA

In order to customize RGVA, you will have to make additions to the RGVA code.

First, the variable being added will need to be included as a 5-level item to the

RAM-GLOBAL-VARIABLES group within RGVA’s working storage.

Secondly, 100-STORE-VARIABLE and 200-RETRIEVE-VARIABLE will need to have their

EVALUATE statements updated to perform the action that will store the new variable.

Depending on your coding practices, it may be necessary to create a paragraph to

perform the task of storing or retrieving the variable value. This code is not

present in the sample, but it would be necessary to implement this sort of logic so

that you could implement multiple custom actions. The sample code treats

performAction as a custom action.

Lastly, it may be necessary to update RGVA-PARMS-IN within the linkage section to

provide a section that redefines RGVA-PARM-SPACE. For instance, if a new variable

named RGVA-TEST-AVG were being added to RGVA, the updated group would be

defined as follows:

01 RGVA-PARMS-IN.

 05 RGVA-RS-FLAG PIC X.

 05 RGVA-WHICH-ONE PIC X.

 05 RGVA-PARM-SPACE PIC X(256).

 05 FPTR-LOG-FUNC REDEFINES RGVA-PARM-SPACE

 POINTER.

 05 FILE-PTR-LOG REDEFINES RGVA-PARM-SPACE

 POINTER.

Chapter 3. Developing a RAM 31

05 INT-TRACE-LEVEL REDEFINES RGVA-PARM-SPACE

 PIC S9(9) BINARY.

 05 STRING-ERROR REDEFINES RGVA-PARM-SPACE

 PIC X(256).

 05 RGVA-TEST-AVG-IN REDEFINES RGVA-PARM-SPACE

 PIC 9(3).

In order to accommodate the new variable, RAM-GLOBAL-VARIABLES would be

defined as follows after the update:

01 RAM-GLOBAL-VARIABLES.

 05 RGV-LOG-FUNC-WRITETOLOG POINTER.

 05 RGV-FILE-PTR-LOGPTR POINTER.

 05 RGV-INT-TRACELEVEL PIC S9(9) USAGE IS BINARY.

 05 RGV-CALL-COUNT PIC 9(9).

 05 RGV-TEST-AVG PIC 9(3).

Once these additions have been made, the variable may be referenced by name for

storing or retrieving within the code for RGVA.

Overview of the function programs of the sample COBOL RAM

The sample COBOL RAM uses the following function programs. Depending on

which CARMA functions your COBOL RAM supports, you may need to write a

different set of function programs for your COBOL RAM.

extractMember

Extracts ten records from a data set and returns them to the client.

Regardless of the instanceID or memberID passed to the program, the same

data set will be extracted. The data set must be defined by a DD statement

for CBLIN within the CLIST for starting CARMA. You should point CBLIN to

a data set with an LRECL of 80 and RECFM of FB. This program serves as

an example of how to perform extraction and deal with memory allocation

issues in COBOL.

putMember

Writes a single chunk of data to the same data set that is extracted by

extractMember. The size of the chunk written is the number of records

passed to putMember. The incoming data is expected to have a RECFM of

FB and an LRECL of 80. The value for nextRec should be zero.

getInstances

Returns a list of three instances to the client. These instances are static,

hard-coded values.

getMembers

Returns a list of two members regardless of the instanceID passed to it.

Thus, when viewed from the client, each instance will have exactly two

members under it.

initRAM

Contains example code for making calls to the RGVA DLL.

performAction

Contains example code for dealing with custom parameters and custom

return values.

Handling Custom Action Framework data

The sample COBOL source file (CRACOB17, located in the sample library)

implements a simple custom action that accepts an integer and a string as custom

parameters, displays them, and then sends these parameters back as custom

32 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

returns in reverse order. Thus, this sample code illustrates the techniques for

creating custom actions, utilizing custom parameters, and passing custom return

values.

Custom actions

Custom actions may be created by using CRACOB17 as an example for implementing

the performAction RAM function. Within the performAction RAM function

program, use an EVALUATE statement to selectively execute code based upon

PA-ACTIONID:

EVALUATE PA-ACTIONID

 WHEN 100 PERFORM CUSTOM-ACTION-100

 WHEN 200 PERFORM CUSTOM-ACTION-200

 WHEN OTHER

 PERFORM-LOG-ERROR-AND-EXIT

END-EVALUATE.

Custom parameters

Custom parameters can be retrieved through two dereferencing operations. After

ensuring that the pointer passed to the RAM program is not NULL, establish

addressability to the array of pointers. Then dereference each pointer to access each

custom parameter that it refers to. The following excerpt from the linkage section

for theperformAction RAM function program describes the fields as they are

defined for dealing with two custom parameters:

77 PA-PARAMS POINTER.

01 PARAMS.

 05 PARAM1 POINTER.

 05 PARAM2 POINTER.

01 CUSTOM-PARAM1 PIC S9(9) BINARY.

01 CUSTOM-PARAM2 PIC X(8).

First establish addressability to the custom parameter pointer list using the

following code:

SET ADDRESS OF PARAMS TO PA-PARAMS.

Then establish addressability to individual parameters.

SET ADDRESS OF CUSTOM-PARAM1 TO PARAM1.

SET ADDRESS OF CUSTOM-PARAM2 TO PARAM2.

The custom parameters can now be used as if they were normal fields in the

working storage section.

Note: The above example code does not include the checks for NULL pointers you

should include in your code.

Custom returns

Accessing custom return values within a COBOL RAM requires more caution than

dealing with custom returns. For custom returns to be established, a series of

concise steps must be followed. The following code outlines linkage section items

that are used to reference a list of two custom returns:

77 PA-RETURNS POINTER.

01 RETURNS-LV2 POINTER.

01 RETURNS-LV3.

 05 RETURN1 POINTER.

 05 RETURN2 POINTER.

01 CUSTOM-RETURN1 PIC X(8).

01 CUSTOM-RETURN2 PIC S9(9) BINARY.

Chapter 3. Developing a RAM 33

Begin by dereferencing the first level of indirection:

SET ADDRESS OF RETURNS-LV2 TO PA-RETURNS.

Then allocate the memory necessary for the array of pointers to the custom

parameters:

COMPUTE MALLOC-SIZE =

 SIZE-OF-POINTER * NUM-CUSTOM-RETURNS

END-COMPUTE.

CALL "CMALLOC" USING BY VALUE MALLOC-SIZE

 RETURNING RETURN-POINTER.

Now set the second level pointer to point at that block of memory.

SET RETURNS-LV2 TO RETURN-POINTER.

Next, establish addressability to the list of pointers to return values that you have

just allocated:

SET ADDRESS OF RETURNS-LV3 TO RETURNS-LV2.

Allocate the necessary memory for the custom parameters:

* Allocate space for 8 byte string

MOVE 8 TO MALLOC-SIZE.

CALL "CMALLOC" USING BY VALUE MALLOC-SIZE

 RETURNING RETURN1.

*Allocate space for integer

MOVE 4 TO MALLOC-SIZE.

CALL "CMALLOC" USING BY VALUE MALLOC-SIZE

 RETURNING RETURN2.

Note: This code automatically sets the list of pointers within a RETURNING phrase.

As such, it is not necessary to set these pointers manually.

Finally, establish addressability to the return values and set them accordingly.

SET ADDRESS OF CUSTOM-RETURN1 TO RETURN1.

SET ADDRESS OF CUSTOM-RETURN2 TO RETURN2.

MOVE ‘COBOLRAM’ TO CUSTOM-RETURN1.

MOVE 42 TO CUSTOM-RETURN2.

Debugging and avoiding abnormal termination

There are several utilities and coding practices available to facilitate COBOL RAM

development.

Displaying values to help debug your COBOL RAM

The DISPLAY verb can be used to inspect the values of program variables,

parameters being passed, and buffers being filled. Moreover, DISPLAY statements

can be most useful if they are inserted to trace the execution path. Most

importantly, note that the displayed values for pointers are shown in decimal, not

in hexadecimal. It is possible to write a routine that converts a pointer’s value to

hexadecimal and then displays the converted value, but this is left as an exercise

for the reader.

NULL pointers

Attempting to dereference a NULL pointer will almost certainly result in a

protection exception. This effectively will result in not only the termination of the

RAM, but also of CARMA. To avoid such an abnormal termination, all pointer

34 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

values should be checked for NULL values. Further documentation is provided

about pointers and checking for NULL values within Enterprise COBOL for z/OS

Language Reference.

Properly exiting your RAM function programs

Conventionally STOP RUN is used to end the execution of a program written purely

in COBOL. However, coding STOP RUN within a COBOL RAM will terminate the

enclave containing both CARMA and the COBOL RAM. It is recommended that

you do not use STOP RUN statements unless you wish for the RAM to exhibit this

sort of behavior. You should use EXIT PROGRAM instead of STOP RUN to leave

execution of the COBOL RAM and return to CARMA processing.

Chapter 3. Developing a RAM 35

36 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Chapter 4. Customizing a RAM API using the CAF

The Custom Action Framework (CAF) is used by RAM developers to describe to

CARMA clients how their RAM APIs differ from the standard RAM API. The CAF

allows a RAM API to define the following differences between its API and the

standard RAM API:

v Additional ("custom") actions

v Disabled standard actions

v Additional ("custom") parameters to standard actions

v Additional ("custom") return values to standard actions

These differences are defined using CAF information. CAF information can be

thought of as a contract between a RAM and the CARMA clients using that RAM;

the RAM is guaranteed to run properly as long as CARMA clients follow the

RAM's CAF information. Before attempting to define a RAM's CAF information,

you may want to create a conceptual model of your RAM's CAF information. This

will help you plan how you will define your RAMs CAF information in the

CARMA VSAM clusters. This chapter provides a practical example of how to

create such a model for a RAM and how to then define the CAF information for

the RAM using that model.

Before you can follow the example, you should first understand the basic CAF

object types. The example RAM model is designed using these objects.

CAF object types

There are four types of objects used in CAF information: RAMs, parameters, and

return values, and actions.

RAM

RAMs provide CARMA with access to specific SCMs. CAF information for your

RAM includes the following:

Name The RAM's name

Description

A short description of the RAM

RAM ID

A numeric identifier for the RAM between 0 and 99

Programming Language

The programming language the RAM was written in (C, COBOL, or PL/I)

RAM DLL name

The name of the RAM DLL

Version

The version number of the RAM

Repository version

The repository version that the RAM was designed to work with

CARMA version

The CARMA version the RAM was designed to work with

 37

Parameter

Parameters are values passed to an action from the CARMA client. They are

defined per-RAM; thus, once a parameter has been defined, its parameter ID can

be used in the parameter list of any action defined for that RAM. This can be

useful if many of the actions for a RAM require the same parameters.

CAF information for your RAM will include the following information about each

parameter:

Name The parameter's name

Description

A short description of the parameter

Parameter ID

A numeric identifier for the parameter between 0 and 999. Parameter IDs

for a RAM must be sequential, starting at 0. For example, you cannot only

define parameters with the following IDs: 0, 1, and 3. You must also define

a parameter with a parameter ID of 2.

RAM ID

The ID of the RAM the parameter belongs to

Type The data type of the parameter. Choose from the following list of standard

programming data types: int, long, double, and string.

Length

A numeric value that is specified differently based on the parameter type:

 Parameter Type Specification Instructions

int Arbitrary (this value does not matter)

long Arbitrary (this value does not matter)

double The precision of the parameter

string The field width of the parameter

Constant

Whether or not the parameter will always contain the same value

Default value

The parameter's default value. This is not optional information.

Prompt

The prompt that should be displayed by CARMA clients when requesting

a value for the parameter from users

Return value

Return values are the result of an action called by CARMA. They are defined

per-RAM; thus, once a return value has been defined, its return value ID can be

used in the return value list of any action defined for that RAM. This can be useful

if many of the actions for a RAM require the same return values.

CAF information for your RAM will include the following information about each

return value:

Name The return value's name

Description

A short description of the return value

38 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Return value ID

A numeric identifier for the return value between 0 and 999. Return value

IDs for a RAM must be sequential, starting at 0. For example, you cannot

only define return values with the following return value IDs: 0, 1, and 3.

You must also define a return value with a return value ID of 2.

RAM ID

The ID of the RAM the return value belongs to

Type The data type of the return value. Choose from the following list of

standard programming data types: int, long, double, and string.

Length

A numeric value that is specified differently based on the return value

type:

 Parameter Type Specification Instructions

int Arbitrary (this value does not matter)

long Arbitrary (this value does not matter)

double The precision of the return value

string The field width of the return value

Constant

Whether or not the parameter will always contain the same value

Default value

The default value of the parameter

Prompt

The prompt that should be displayed by CARMA clients when requesting

from users a value for the parameter

Action

All RAMs have a standard set of actions defined within the RAM API. You can use

the CAF to modify these standard actions to use additional input parameters, to

use additional return values, or to be hidden from CARMA (essentially disabling

the actions).

Note: Although it is not possible to specify to the CAF that a default parameter in

a standard action be removed, such a parameter can simply be ignored in

the implementation of that action if passed to the action by a CARMA client.

You can also declare new ("custom") actions. Each declared custom action must

have an assigned ID (called its action ID). When a CARMA client attempts to

invoke a custom action in a RAM, CARMA will first call the RAM’s performAction

function, passing the action ID (provided by the CARMA client) of the custom

action as a parameter. The performAction function should then attempt to call the

function for the custom action with the specified action ID.

Note: It is the responsibility of the RAM developer to handle the case where an

invalid action ID is provided to the RAM's performAction function. A

reasonable way of handling this case would be to return an error to the

client along with a detailed error message.

CAF information for your RAM will include the following information about each

action (for disabled actions, only the RAM and action IDs are required):

Chapter 4. Customizing a RAM API using the CAF 39

Name The action's name

Description

A short description of the action

Action ID

A numeric identifier for the action between 0 and 999. Action IDs between

0 and 79 override standard actions (see Appendix B, “Action IDs,” on page

73 for a full listing of the IDs for the standard actions). Action IDs between

80 and 99 are reserved for use by CARMA. Use an ID between 100 and 999

to define a custom action.

RAM ID

The ID of the RAM the action belongs to

Parameter list

A list of the IDs for the parameters the action uses. If you are overriding a

standard action, you only need a list of those parameters that are being

added to the list of standard parameters. If you are defining a custom

action, you must list the IDs of all the parameters required by the action

except the instance and member IDs, which are passed by default to every

custom action.

Return value list

A list of the IDs for the return values the action returns. If you are

overriding a standard action, you only need a list of those return values

that are being added to the list of standard return values. If you are

defining a custom action, you must list the IDs of all the return values

being returned by the action except for the action's return code, which

must always be returned by every custom action.

Developing the RAM model for a custom RAM

Suppose we want to create a RAM named SAMP RAM that is capable of accessing

an SCM solution named Sample SCM. Assume that Sample SCM operates in a

manner that would cause SAMP RAM to have the following differences from a

standard CARMA RAM:

v Provides no support for checking out files

v Its lock action returns the lock type in addition to the return values for the

standard CARMA lock action

v It has a "lock instance" action, which locks an instance within the SCM. This

action requires the following parameters:

1. Instance ID

2. Reason

and returns the following values:

1. Lock type

2. Return code
v Has a "disenflaguate" action, which removes a flag from a member within the

SCM. This action requires the following parameters:

1. Instance ID

2. Member ID

3. Reason

and returns the following values:

1. Return code

40 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

v Has a "concatenate" action, which concatenates the contents of two members

within the SCM. This action requires the following parameters:

1. Target instance ID

2. Target member ID

3. Destination instance ID

4. Destination member ID

and returns the following values:

1. New instance ID

2. New member ID

3. Return code

In order to fully support the functionality of Sample SCM, we will use the CAF to

customize our RAM API. We would need to create three new custom actions (for

the lock instance, disenflaguate, and concatenate operations) and override two of

the standard actions (lock and check out).

Assume for this example that we are developing the first version of SAMP RAM

(version 1.0), that it is being designed to access Sample SCM version 1.4 and work

with CARMA version 2.5, and that it will be written in C and compiled into a DLL

named SAMPRAM. For this example we will assign SAMP RAM a RAM ID of 1.

Note: We will assume that SAMPRAM, the RAM's DLL, is stored in the common PDS

that contains all of the RAMs available on the CARMA host. See “Compiling

a RAM” on page 11 to learn where a RAM's DLL should be stored.

We now have all the information about the RAM needed for the SAM RAM model

(see “RAM” on page 37). The following table summarizes this information:

 Table 5. Information about SAMP RAM

Name SAMP RAM

Description

Provides CARMA access to instances of

Sample SCM

RAM ID 1

Programming Language C

RAM DLL Name SAMPRAM

Version 1.0

Repository Version 1.4

CARMA Version 2.5

At this time, you may find it helpful to tabulate the information (as described in

“Action” on page 39) for all of the actions that need to be created or overridden.

The following tables summarize this information. Note that the action ID for the

lock action matches the action ID of the standard lock action (see Appendix B,

“Action IDs,” on page 73) in order to ensure that the original lock action is

overridden. The disabled check out action is similarly assigned an ID

corresponding to the standard check out action.

 Table 6. Information about SAMP RAM's lock instance action

Name Lock instance

Description Locks an instance within the SCM

Chapter 4. Customizing a RAM API using the CAF 41

Table 6. Information about SAMP RAM's lock instance action (continued)

Action ID 100

RAM ID 1

Parameter List

Instance ID

Reason

Return Value List

Return code

Lock type

 Table 7. Information about SAMP RAM's disenflaguate action

Name Disenflaguate

Description

Removes a flag from a member within the

SCM

Action ID 101

RAM ID 1

Parameter List

Instance ID

Member ID

Reason

Return Value List Return code

 Table 8. Information about SAMP RAM's concatenate action

Name Concatenate

Description

Concatenates the contents of two members

within the SCM

Action ID 102

RAM ID 1

Parameter List

Destination instance ID

Destination member ID

Target instance ID

Target member ID

Return Value List

Return code

New instance ID

New member ID

 Table 9. Information about SAMP RAM's lock action. Note that we do not provide a

description for this action, since the description from the standard action is already available

to the client. You may override the existing description by specifying a new one in the

VSAM clusters, but the client may or may not use the updated description.

Name Lock

Description

Action ID 10

RAM ID 1

Parameter List

Instance ID

Member ID

Return Value List

Return code

Lock type

42 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Table 10. Information about SAMP RAM's check out action. Since this action is disabled, we

do not need to include a description, parameter list, or return value list.

Name Check out

Description (Disabled)

Action ID 13

RAM ID 1

Parameter List

(Disabled)

Return Value List

Since the instance and member IDs are passed by default to all actions (see the

description of “Parameter list” in “Action” on page 39), only three additional

parameters need to be defined for the custom actions (lock instance, disenflaguate,

and concatenate) and the lock action: reason, target instance ID, and target member

ID. For the concatenate action, we can map destination instance ID and destination

member ID respectively to the default parameters instance ID and member ID.

We can now list all of the parameters needed for the SAMP RAM model. The

following tables summarize this information. Note that the parameters are assigned

parameter IDs sequentially, starting with 0 for the first parameter.

 Name Reason

Description Reason why the action should be performed

Parameter ID 0

RAM ID 1

Type String

Length 30

Constant No

Default Value None

Prompt

Why are you requesting that the action be

performed?

 Name Target instance ID

Description

ID of the instance containing the member

whose contents should be appended to the

end of the given member

Parameter ID 1

RAM ID 1

Type String

Length 15

Constant No

Default Value None

Prompt

Which instance contains the member that

you want to concatenate with the selected

member?

 Name Target member ID

Chapter 4. Customizing a RAM API using the CAF 43

Description

ID of the member whose contents should be

appended to the end of the given member

Parameter ID 2

RAM ID 1

Type String

Length 30

Constant No

Default Value None

Prompt

Which member’s contents do you want to

append to the end of the selected member?

Only three additional return values need to be defined for SAMP RAM, since the

return code is already returned by default (see the description of “Return value

list” in “Action” on page 39). The following tables summarize the return value

information needed for our SAM RAM model. Again, note that the return values

are assigned return value IDs sequentially, starting with 0 for the first return value.

 Name Lock type

Description The lock type being applied to the member

Return Value ID 0

RAM ID 1

Type Int

Length 4

 Name New instance ID

Description

The instance in which the action's results

have been placed

Return Value ID 1

RAM ID 1

Type String

Length 30

 Name New member ID

Description

The member containing the results of the

action

Return Value ID 2

RAM ID 1

Type String

Length 30

With all of the information necessary to define SAMP RAM to the CAF neatly

tabulated, we can represent the information visually. Figure 10 on page 45

illustrates the relationship between the actions, parameters, and return values used

in SAMP RAM. Before setting up the clusters for a RAM, you may find it helpful

to develop a similar diagram.

44 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Creating VSAM records from a RAM model

Now that we have a model for the SAMP RAM, we can easily define SAMP

RAM's CAF information. To do this, it is first necessary to understand where and

how the CAF information is stored. There are two CAF key-sequenced VSAM

clusters that store all of the CAF information: CRADEF and CRASTRS. As CARMA is

loaded, it discovers the RAMs available to it (as well as their corresponding

actions, parameters, and return values) by reading CRADEF, which contains

information about the capabilities of the RAMs available. As necessary, CARMA

tries to determine if a user’s preferred language is available for a given RAM by

checking CRASTRS, which contains locale-specific information for the RAMs.

CRADEF

CRADEF stores all the language-independent CAF data (data that do not need to be

translated from one locale to another), using English characters from code page

00037. It contains records for each of the CAF object types (RAMs, actions,

parameters, and return values), using a record width of 1032 bytes. However, only

Parameter 0
Name: Reason

Type: string
Length: 30
Constant: N

Parameter 1
Name: Target Instance ID

Type: string
Length: 15
Constant: N

Parameter 2
Name: Target Member ID

Type: string
Length: 30
Constant: N

Return Value 0
Name: Lock Type

Type: int
Length: 4

Return Value 1
Name: New Instance ID

Type: string
Length: 30

Return Value 2
Name: New Member ID

Type: string
Length: 30

Action 10
Name: Lock

Action 100
Name: Lock Instance

Action 101
Name: Disenflaguate

Action 102
Name: Concatenate

Disabled Action 13
Check OutRAM 1

Figure 10. Visual representation of the SAMP RAM model. Only information relevant to the relationship between the

objects is shown.

Chapter 4. Customizing a RAM API using the CAF 45

action records may actually make use of all 1032 bytes; the other record types

simply fill the unused bytes with spaces. CRADEF uses an 8-byte key and reserves

the remaining 1024 bytes for data. Table A summarizes the composition of a

generic record in CRADEF:

 Table 11. CRADEF record format

1032-Byte Record

(8 bytes)

Key

(1024 bytes)

Data

Record keys

CRADEF record keys are composed of the following fields:

1. (1 byte) The type character (″A″ for action, ″D″ for disabled action, ″P″ for

parameter, ″R″ for RAM, and ″T″ for return value)

2. (2 bytes) The two-digit RAM ID left-padded with 0s (a unique identification

number between ″00″ and ″99″)

3. (3 bytes) The three-digit secondary ID left-padded with 0s. For all RAMs, this

should be ″000″. For standard actions you should use the predefined action ID,

and for custom actions you should use a custom action ID greater than or

equal to ″100″. For parameters and return values, you should use sequential

IDs starting at ″000″.

4. (2 bytes) Unused (reserved for future use). Fill these bytes with spaces.

The following table summarizes the CRADEF key format.

 Table 12. CRADEF key format. The number of bytes reserved for each field is specified in

parentheses. Fields marked as ″Unused″ should be filled entirely with spaces.

8-Byte Key

(1 byte)

Type

(2 bytes)

RAM ID

(3 bytes)

Secondary ID

(2 bytes)

Unused

Record data

The rest of the bytes in each record are used for the record data. These 1024 bytes

contain different fields depending on the record type:

RAM

1. (8 bytes) The version number of the RAM. This value may be displayed

to users by CARMA clients.

2. (8 bytes) The programming language the RAM is written in. Select from

the following list of valid values: ″C″, ″COBOL″, ″PLI″ (alternatively,

″PL1″ may be used).

3. (8 bytes) The version number of the repository that the RAM is

compatible with. This value may be displayed to users by CARMA

clients.

4. (8 bytes) The version number of CARMA that the RAM is compatible

with. This value may be displayed to users by CARMA clients.

5. (8 bytes) The name of the RAM DLL

Action

Note: The combined width of fields (1) and (3) below should be less than

or equal to 1023.

46 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

1. (0 to 1023 bytes) A list of the parameter IDs used by the action. The IDs

listed should be separated by commas. Do not use a trailing comma at

the end of the list.

2. (1 byte) The pipe character, ″|″. This symbol is used to denote the

separation between the parameter ID list and the return value ID list.

Note: This character must be included even if either the parameter ID

list or the return value ID list is empty. However, it should not

be included if both the parameter ID list and return value ID list

are empty.

3. (0 to 1023 bytes) A list of the return value IDs used by the action. The

IDs listed should be separated by commas. Do not use a trailing

comma at the end of the list.

Disabled action

1. (1024 bytes) Empty spaces. No data is required for disabled actions.

Parameter

1. (16 bytes) The data type of the parameter. Choose from the following

available values: ″INT″, ″LONG″, ″DOUBLE″, ″STRING″.

2. (16 bytes) The length of the parameter. This is either a precision (for

parameters of type ″DOUBLE″) or field width (for parameters of type

″STRING″). Specify this value numerically (for example, as ″12″ instead

of ″twelve″). Use an arbitrary value if the parameter type is neither

″DOUBLE″ nor ″STRING″.

3. (1 byte) A ″Y″ or ″N″ to indicate whether this parameter does or does

not (respectively) have a constant value.

Return value

1. (16 bytes) The data type of the return value. Choose from the following

available values: ″INT″, ″LONG″, ″DOUBLE″, ″STRING″.

2. (16 bytes) The length of the return value. This is either a precision (for

return values of type ″DOUBLE″) or field width (for return values of

type ″STRING″). Specify this value numerically (for example, as ″12″

instead of ″twelve″). Use an arbitrary value if the return value type is

neither ″DOUBLE″ nor ″STRING″.

 The following table summarizes the CRADEF data formats for each of the CAF object

types.

 Table 13. CRADEF data formats for each CAF object type (the "Type" column lists the abbreviated type characters

instead of the full type names). The number of bytes reserved for each field is specified in parentheses (a ″*″

indicates a variable-length field). Fields marked as ″Unused″ should be filled entirely with spaces.

Type 1024-Byte Data

R

(8 bytes)

RAM Version

(8 bytes)

Programming

Language

(8 bytes)

Repository Version

(8 bytes)

CARMA Version

(8 bytes)

DLL Name

A

(* bytes)

Parameter ID List

(1 byte)

List Separator Pipe

(* bytes)

Return Value ID List

D

(1024 bytes)

Unused

P

(16 bytes)

Type

(16 bytes)

Length

(1 byte)

Constant

Chapter 4. Customizing a RAM API using the CAF 47

Table 13. CRADEF data formats for each CAF object type (the "Type" column lists the abbreviated type characters

instead of the full type names). The number of bytes reserved for each field is specified in parentheses (a ″*″

indicates a variable-length field). Fields marked as ″Unused″ should be filled entirely with spaces. (continued)

Type 1024-Byte Data

T

(16 bytes)

Type

(16 bytes)

Length

CRASTRS

CRASTRS stores all the language-dependent CAF data (data that needs to be

translated from one locale to another, such as descriptions and messages). The

languages are indexed within the VSAM cluster based on an eight-character locale

(for example, “EN_US ” or “FR_FR ”) and a five-character code page (for example,

“00037”). As a CARMA client initializes CARMA, the client provides CARMA a

locale and code page, which CARMA attempts to locate in CRASTRS. If the specified

locale and code page combination is not available in the CARMA environment,

CARMA will use the default locale (“EN_US”) and code page (“00037”) and return

an error to the client.

When a client request the list of available RAMs, CARMA will reference CRASTRS to

attempt to compose a list of the RAMs that are available in the client’s requested

locale and code page. By convention, if a RAM record is available in a given locale,

it is expected for its actions, parameters, and return values to also be available in

that same locale.

CRASTRS uses a record width of 2101 bytes. CRASTRS uses a 21-byte key and reserves

the remaining 2080 bytes for data. The following table summarizes the composition

of a generic record in CRASTRS:

 Table 14. CRASTRS record format

2101-Byte Record

(21 bytes)

Key

(2080 bytes)

Data

Note: Disabled actions do not need records in CRASTRS since they have no string to

be translated.

Record keys

CRASTRS record keys are composed of the following fields:

1. (8 bytes) The locale of the record (for example, “EN_US ”)

2. (5 bytes) The code page of the record (for example, “00037”)

3. (8 bytes) The key to the CRADEF record to which this CRASTRS record corresponds

The following table summarizes the CRASTRS key format.

 Table 15. CRASTRS key format. The number of bytes reserved for each field is specified in

parentheses.

21-Byte Key

(8 byte)

Locale

(5 bytes)

Code Page

(8 bytes)

Record Key

48 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Record data

The rest of the bytes in each record are used for the record data. These 2080 bytes

contain different fields depending on the record type:

RAM, action, and return type

1. (16 bytes) The name of the CAF object this record corresponds to

2. (1024 bytes) A description of the CAF object this record corresponds to

Parameter

1. (16 bytes) The name of the parameter this record corresponds to

2. (16 bytes) The default value of the parameter this record corresponds to

3. (1024 bytes) The prompt the client should display when requesting a

value for the parameter this record corresponds to

4. (1024 bytes) A description of the parameter this record corresponds to

 All information in the data section should be in the locale and code page specified

in the key. The following table summarizes the CRASTRS data formats for each of

the CAF object types.

 Table 16. CRASTRS data formats for each CAF object type (the "Type" column lists the

abbreviated type characters instead of the full type names). Note that the disabled action

type has not been included in this table because CRASTRS should not have any records for

disabled actions. The number of bytes reserved for each field is specified in parentheses.

Type 2080-Byte Data

A

R

T

(16 bytes)

Name

(1024 bytes)

Description

P

(16 bytes)

Name

(16 bytes)

Default Value

(1024 bytes)

Prompt

(1024 bytes)

Description

SAMP RAM VSAM records

Building on our earlier SAMP RAM example, we can define records for SAMP

RAM in CRADEF as shown in the following table.

 Table 17. SAMP RAM records (one per row) in CRADEF. Each cell represents a field. Refer to

“CRADEF” on page 45 to determine the widths for these fields.

Key Data

A 01 010 000 |

A 01 100 000 | 000

A 01 101 | 000

A 01 102 001,002 | 001,002

D 01 013

P 01 000 STRING 30 N

P 01 001 STRING 15 N

P 01 002 STRING 30 N

R 01 000 1.0 C 1.4 2.5 SAMPRAM

T 01 000 INT 4

T 01 001 STRING 30

T 01 002 STRING 30

Chapter 4. Customizing a RAM API using the CAF 49

Please refer to CRA.SCRAVSAY(CRAINIT) for an example of the proper column

format. This sequential data set is used to initialize CRADEF during CARMA

installation. Initially, it contained records for the sample PDS RAM, the sample

SCLM RAM, and Skeleton RAM. However, depending on the configuration of your

host, CRA.SCRAVSAY(CRAINIT) may have been modified if RAMs have been added

or removed from your CARMA environment.

To add a RAM to the CRADEF cluster, you should add its records to

CRA.SCRAVSAY(CRAINIT). Ensure that all record keys are in alpha-numeric order so

that the data set can be successfully REPROed. You should use the JCL script

located at CRA.SCRALIB(CRAREPR) to REPRO CRA.SCRAVSAY(CRAINIT).

Now we need to define the locale-specific records in CRASTRS. Assume that SAMP

RAM needs support for English and Brazilian Portuguese. We can define records

for SAMP RAM in CRASTRS as shown in the following table.

 Table 18. SAMP RAM records (one per row) in CRASTRS. Each cell represents a field. Refer to “CRASTRS” on page 48

to determine the widths for these fields. Note that the records that have a key ending with A01010 have no data. The

data for these records are optional, since these records correspond to standard actions that have been overridden.

CARMA will provide the client with the default name and description for these overridden standard actions.

Key Data

EN_US 00037 A01010

EN_US 00037 A01100 Lock Instance Locks the instance

EN_US 00037 A01101 Disenflaguate Removes a flag

EN_US 00037 A01102 Concatenate Concatenates two data sets

EN_US 00037 P01000 Reason Why not?

Why do you

want me to

perform the

action?

The reason

for

performing

the action

EN_US 00037 P01001

Target

Instance ID

MyInstance

In which

instance is

the member

located?

The instance

containing

the member to

be

concatenated

EN_US 00037 P01002

Target Member

ID

MyMember

Which member

would you

like to

concatenate?

The member to

be

concatenated

EN_US 00037 R01000 Sample RAM An example RAM

EN_US 00037 T01000 Lock Type

The type of lock the SCM put

on the member

EN_US 00037 T01001 New Instance ID

The concatenation's instance

ID

EN_US 00037 T01002 New Member ID The concatenation's member ID

PT_BR 01047 A01010

PT_BR 01047 A01100 Bloquear Instância Bloqueia a instância

PT_BR 01047 A01101 Tirar sinalizador Remove um sinalizador

PT_BR 01047 A01102 Concatenar

Concatena dois conjuntos de

dados

50 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Table 18. SAMP RAM records (one per row) in CRASTRS. Each cell represents a field. Refer to “CRASTRS” on page 48

to determine the widths for these fields. Note that the records that have a key ending with A01010 have no data. The

data for these records are optional, since these records correspond to standard actions that have been overridden.

CARMA will provide the client with the default name and description for these overridden standard

actions. (continued)

Key Data

PT_BR 01047 P01000 Motivo Por que não?

Por que você

deseja que eu

execute a

ação?

O motivo para

executar a

ação

PT_BR 01047 P01001

ID de

Instância de

Destino

MyInstance

Em qual

instância o

membro está

localizado?

A instância

que contém o

membro a ser

concatenado

PT_BR 01047 P01002

ID do Membro

de Destino

MyMember

Qual membro

você deseja

concatenar?

O membro a

ser

concatenado

PT_BR 01047 R01000 RAM de Amostra Um RAM de exemplo

PT_BR 01047 T01000 Tipo de Bloqueio

O tipo de bloqueio que SCM

coloca no membro

PT_BR 01047 T01001 Novo ID de Instância

O ID de instância de

concatenação

PT_BR 01047 T01002 Novo ID do Membro

O ID do membro de

concatenação

Please refer to CRA.SCRAVSAY(CRASINIT) for an example of the proper column

format. This sequential data set is used to initialize CRASTRS during CARMA

installation. Like CRA.SCRAVSAY(CRAINIT), initially, it contained the strings for the

sample PDS RAM, the sample SCLM RAM, and Skeleton RAM. Depending on the

configuration of your host, CRA.SCRAVSAY(CRASINIT) may also have been modified

if RAMs have been added or removed from your CARMA environment.

To add a RAM to the CRASTRS cluster, you should add its records to

CRA.SCRAVSAY(CRASINIT). Ensure that all record keys are in alpha-numeric order so

that the data set can be successfully REPROed. You should use the JCL script

located at CRA.SCRALIB(CRASREPR) to REPRO CRA.SCRAVSAY(CRASINIT).

VSAM cluster access

When editing VSAM clusters, ensure that no clients are accessing CARMA.

CARMA may exhibit abnormal behavior if the VSAM cluster changes while it is

operating. It is recommended that only system administrators and RAM

developers have write access to the VSAM clusters, but that all users have read

access.

Cluster editing tool

Currently, there is a tool under development that will provide RAM developers

with an easy-to-use dialog-based interface from which they can add all the CAF

information for their RAMs to the VSAM clusters. Once development of this tool is

complete, developers will no longer need to edit the clusters directly since the tool

will automatically convert RAM models into cluster records.

Chapter 4. Customizing a RAM API using the CAF 51

52 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Chapter 5. Developing a CARMA client

CARMA clients can be designed to work specifically with a RAM, can provide a

generic interface for any RAM to use, or can do a combination of the two. A good

example of a generic client that can also be modified to work specifically with

certain RAMs is IBM WebSphere Developer for zSeries (WD/z). WD/z was

designed to support the basic functions all RAMs have in common, so a RAM

fitting perfectly into the CARMA RAM API specification would work with WD/z

right out of the box. WD/z also provides extension points with which RAM

developers can customize the client for their RAM(s). On the other end of the

spectrum, a very specific, non-interactive client could be written to simply run

maintenance operations through a RAM.

CARMA clients can make use of some or all of the basic CARMA API functions.

The only functions that are required to be implemented are initCarma, initRAM,

and terminateCarma. terminateRAM is not required because terminateCarma will

take care of cleaning up the RAMs if it is called and CARMA still has RAMs

loaded. However, special care should be taken with the memory that is passed to

and from CARMA. Often, the RAM will allocate memory that the client is required

to free. Please read through “Storing results for later use” on page 54 and

“Memory allocation” on page 6 carefully, as memory leaks and abnormal program

termination can easily result from not following the recommendations on handling

memory for each function.

Compiling the CARMA client

CARMA clients can include the CARMA DLL’s side deck during compilation

(causing the CARMA DLL to be loaded implicitly) or can be compiled without the

side deck (causing the CARMA DLL to be loaded explicitly). The example client

(CRACLISA in the sample library) implicitly loads the CARMA DLL. The JCL code to

compile a client that will implicitly load the CARMA DLL is in the sample file

named CRACLICM.

Running the client

When running a CARMA client, you must ensure that CARMA and all its RAMs

have the resources they require available to them. CARMA requires access to its

message VSAM cluster (CRAMSG), the CAF VSAM clusters (CRADEF and CRASTRS),

and the PDS containing the RAMs. Browse the JCL used to run clients (CRACLIRN,

located in the sample library) to see the DD statements CARMA requires (CRASTRS,

CRAMSG, and CRADEF) and how the CARMA DLL and the PDS containing all RAMs

are added to the STEPLIB DD statement. RAMs should document any resources they

require. For example, the sample PDS RAM and sample SCLM RAM each require

a message cluster to be available, so the JCL used to run the client should be

modified so that the RAM can access these resources. Failure to provide CARMA

or the RAMs with access to their required resources may result in abnormal

behavior.

When providing resources to RAMs, the TSO/ISPF message libraries should also

be considered. RAMs may use the TSO/ISPF messages if errors occur. By default,

the JCL used to run a client will provide the RAMs with the English (00037 code

page) version of these messages. The JCL should be edited appropriately if the

RAM should return TSO/ISPF messages to the client in a different language.

 53

Storing results for later use

The client should store the results for most operations executed during a CARMA

session, especially the results from browsing functions such as getMembers and

getInstances. All instances, simple members, and containers have both an ID and

a display name. The display name is what the client should display to the user.

The display name for an entity should be given in the context of that entity’s

instance and, if applicable, all parent containers needed to reach that entity. The ID

defines the entity to the RAM uniquely. For example, the entity’s ID could simply

contain its absolute path. Alternatively, the RAM could use a hashing function to

obtain the entity’s absolute path from the ID. The ID should be stored by the client

so that it can be passed back to the RAM as needed. For example, a user might

obtain a list of members within an instance and then check to see if one of those

members is a container.

The other pieces of data that might need to be stored by the client (if they are not

already known) are metadata keys, RAM CAF information, and names. The RAM

CAF information is required by virtually every function that uses a RAM to carry

out an operation. The CAF information that is required may be as simple as the ID

of the RAM the action should be run by.

Client predefined data structures

Most RAM functions use predefined structures to pass information back to

CARMA and then the RAM. The RAMRecord consists of an integer RAM ID, a

16–byte name character field, and several other character fields that describe the

RAM. The Descriptor structure consists of a 64–byte name character field and a

256–byte ID character field. It is used to describe instances, containers, and simple

members. The KeyValPair structure consists of a 64–byte key field and a 256–byte

value field. It is used for metadata key-value pairs. The Parameter structure

consists of an integer ID, a 16-byte name, a 16-byte type, a 16-byte default value,

an integer length, an integer specifying whether it is constant (a value of 1

indicates that it is), a 1024-byte prompt, and a 1024-byte description. The

returnValue structure consists of an integer ID, a 16-byte name, a 16-byte type, an

integer length, and a 1024-byte description. The Action structure consists of an

integer ID, a 16-byte name, a pointer to an integer array to store the IDs of the

parameters related to the action, an integer storing the number of parameters

associated with the action, a pointer to an integer array to store the IDs of the

return values related to the action, an integer storing the number of return values

associated with the action, and a 1024-byte description.

When running an action against CARMA, the client should see if the action's

respective Action structure exists for the RAM being worked with. If so, it should

then use the Action structure and related Parameter structures to call the action.

After the action is complete, the client should use the returnValue structures

related to the action called to properly parse the action’s response.

The applicable structures are summarized in the following tables. These structures

are available in the CRADSDEF header file located in the sample library. These

structures are almost always allocated by the RAM, so it is unlikely that the client

will ever have to initialize any of their buffers. However, the client will have to

free any memory that is allocated by the RAM.

54 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Table 19. RAMRecord data structure

Field Description

int id Unique ID to describe the RAM

char name[16] Display name

char version[8] RAM version

char reposLevel[8] The level of the SCM the RAM accesses.

char language[8] Language in which the RAM is written

char CRALevel[8] The level of CARMA for which the RAM

was designed.

char moduleName[8] Name of the RAM module to load

char description[2048] Displayed as a RAM description by the

client.

 Table 20. Descriptor data structure

Field Description

char id[256] Unique ID to describe the entity

char name[64] Display name

 Table 21. KeyValPair data structure

Field Description

char key[64] An index

char value[256] The data

 Table 22. Action data structure

Field Description

int id A numeric identifier for the action between 0

and 999. Action IDs between 0 and 79

override standard actions, while IDs

between 100 and 999 to define custom

actions. Action IDs between 80 and 99 are

reserved for use by CARMA.

char name[16] The action's name

int* paramArr A list of the IDs for the parameters the

action uses

int numParams The number of elements in the paramArr

array

int* returnArr A list of the IDs for the return values the

action returns

int numReturn The number of elements in the returnArr

array

char description[1024] A short description of the action

 Table 23. Parameter data structure

Field Description

int id A numeric identifier for the parameter

between 0 and 999

Chapter 5. Developing a CARMA client 55

Table 23. Parameter data structure (continued)

Field Description

char name[16] The parameter's name

char type[16] The data type of the parameter ("INT",

"LONG", "DOUBLE", or "STRING")

char defaultValue[16] The parameter's default value

int length The precision of the parameter (if it is of the

"DOUBLE" type) or the field width of the

parameter (if it is of the "STRING" type). If

the parameter is of some other type, then

this value can be ignored.

int isConstant Whether or not the parameter will always

contain the same value

char prompt[1024] The prompt that the CARMA client should

display when requesting a value for the

parameter from users

char description[1024] A short description of the parameter

 Table 24. returnValue data structure

Field Description

int id A numeric identifier for the return value

between 0 and 999

char name[16] The return value's name

char type[16] The data type of the return value ("INT",

"LONG", "DOUBLE", or "STRING")

int length The precision of the return value (if it is of

the "DOUBLE" type) or the field width of

the return value (if it is of the "STRING"

type). If the return value is of some other

type, then this value can be ignored.

char description[1024] A short description of the return value

Logging

CARMA and RAMs will write messages to a log per CARMA session. When

initializing CARMA, a trace level should be passed to it. The trace levels are

shown in Table 2 on page 9. Logging can be disabled by sending CARMA a trace

level of -1.

Handling custom parameters and return values

Custom parameters are passed to the RAM using the void** params parameter.

params is an array of void pointers that point to variables of several types. The

getCAFData function will return the Custom Action Framework information for all

RAM functions. Call this before running any other RAM functions to determine

what custom parameters and return values the RAM functions use. Required

custom parameters must be passed to the RAM using the params parameter. If

there are no required custom parameters, set params to NULL. To fill params, simply

assign the void pointers in the array to each custom parameter. Use the following

C code as an example:

56 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

int param0 = 5;

char* param1 = "HELLO";

double param2 = 4.3234;

void** params = (void**) malloc(sizeof(void*) * 3);

params[0] = (void*) ¶m0;

params[1] = (void*) ¶m1;

params[2] = (void*) ¶m2;

Pass a void*** parameter into all RAM functions defined to return custom return

values. You may simply pass a pointer to a void** variable that you define. Once

the custom return values have been returned, they can be unpacked as

demonstrated in the following C code:

/* Declared at top */

int return0;

char* return1;

/* Call the CARMA function */

/* ... */

/* Unpack the void** (returnVals) */

return0 = *((int*) returnVals[0]);

memcpy(return1, (char*) returnVals[1], 15);

State functions

CARMA expects certain functions to be run in order. These state functions and

their expected order are:

1. initCARMA — CARMA initializes several global variables; the session log, and

the locale to be used for the session with this function. This function should not

be called a second time unless a terminateCarma call is made first.

2. getRAMList — This should be called before loading any RAMs, but clients may

cache the RAM list and ignore this function if desired. However, there is little

performance benefit in doing this, because CARMA will run the function as it

needs the list itself.

3. initRAM — This must be called for each RAM before attempting to run any of

that RAM’s functions. Once this is run, CARMA will keep a pointer to the

RAM until termination. RAMs should not be re-initialized without first

terminating them.

4. reset — This may be called if the user wants to reload the SCM environment

because a change has occurred. It will tell the RAM to restore itself to its initial

state.

5. terminateRAM — This function does not have to be called. Each loaded RAM’s

terminateRAM function will be called by terminateCarma if terminateCarma is

called first. Once terminateRAM is called, each RAM must be re-initialized using

the initRAM function before any other function can be called for that RAM.

6. terminateCarma — This should always be called when exiting the CARMA

session. It will handle cleaning up all of the RAMs that are currently loaded.

Once this is called, initCarma must be run again before attempting to call any

other CARMA function.

initCarma

Will set up the CARMA environment, session log, and session locale

int initCarma(int traceLev, char locale[5], char error[256])

Chapter 5. Developing a CARMA client 57

int traceLev Input The trace level for the

current session. See

“Logging” on page 56 for

more information.

char locale[5] Input Five character, non-null

terminated buffer containing

the locale for which all

displayable strings should be

set

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

If this function is not called, a default locale of "EN_US" and a default trace level

of 0 will be used.

getRAMList

Retrieves the list of available RAMs from CARMA

int getRAMList(RAMRecord** records, int *numRecords, char error[256])

 RAMRecord** records Output Will contain an array of

RAMRecord data structures to

be used for display

information about the RAMs

and accessing them with

other functions

int* numRecords Output The number of RAMRecord

data structures contained in

the records array

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

The list of RAMs that is returned is dependent on the locale that was passed into

initializeCarma. All RAMs stored within the CARMA environment that have

display strings for the specified client locale will be returned.

initRAM

Initializes a RAM. CARMA will store a pointer to the RAM for quick future access.

int initRAM(int RAMid, char locale[8], char codepage[5], char error[256])

 int RAMid Input Tells CARMA which RAM

should be initialized. This ID

was obtained after running

getRAMList.

char locale[8] Input Tells CARMA the locale of

the strings that should be

returned to the client

char codepage[5] Input Tells CARMA the code page

of the strings that should be

returned to the client

58 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

reset

Tells the RAM to reset itself to its initial state

int reset(int RAMid, char error[256])

 int RAMid Input Tells CARMA which RAM

should be reset. This ID was

obtained after running

getRAMList.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

terminateRAM

Tells the RAM to clean up its environment. CARMA will release the RAM module.

int terminateRAM(int RAMid, char error[256])

 int RAMid Input Tells CARMA which RAM

should be terminated. This

ID was obtained after

running getRAMList.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

terminateCarma

Will clean up the CARMA environment, including the environments of any loaded

RAMs

int terminateCarma(char error[256])

 char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Browsing functions

getInstances

Retrieves the list of instances available in the SCM

int getInstances(int RAMid, Descriptor** RIrecords,int* numRecords,

 void** params, void*** customReturn, char filter[256],

 char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

Chapter 5. Developing a CARMA client 59

Descriptor** RIrecords Output This will be allocated and

filled with the IDs and

names of instances.

int* numRecords Output The number of records that

have been allocated and

returned

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 56)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 56)

char filter[256] Input This can be passed from the

client to filter out sets of

instances.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Note: Be sure to free the RIrecords array

getMembers

Retrieves the list of members available within the specified instance

int getMembers(int RAMid, char instanceID[256],

 Descriptor** memberArr, int* numRecords, void** params,

 void*** customReturn, char filter[256], char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance for which the

members should be retrieved

Descriptor** memberArr Output This will be allocated and

filled with the IDs and

names of instances.

int* numRecords Output The number of records that

have been allocated and

returned in the array

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 56)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 56)

60 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

char filter[256] Input This can be passed from the

client to filter out sets of

members.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Note: Be sure to free the memberArr array.

isMemberContainer

Sets isContainer to true if the member is a container; false if not

int isMemberContainer(int RAMid, char instanceID[256],

 char memberID[256], int* isContainer,

 void** params, void*** customReturn,

 char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member that may be a

container

int* isContainer Output Set this to 1 if the member is

a container; 0 if not.

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 56)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 56)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

getContainerContents

Retrieves the list of members within a container

int getContainerContents(int RAMid, char instanceID[256],

 char memberID[256], Descriptor** contents,

 int* numMembers, void** params,

 void*** customReturn, char filter[256],

 char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

Chapter 5. Developing a CARMA client 61

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The container for which the

members are being retrieved

Descriptor** contents Output This will be allocated and

filled with the IDs and

names of the members

within the container.

int* numRecords Output The number of member

records that have been

allocated and returned in the

array

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 56)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 56)

char filter[256] Input This can be passed from the

client to filter out sets of

members

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Note: Be sure to free the contents array.

Metadata functions

getAllMemberInfo

Retrieves all metadata for the given member

int getAllMemberInfo(int RAMid, char instanceID[256],

 char memberID[256], KeyValPair** metadata,

 int* num, void** params, void*** customReturn,

 char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member for which

metadata is being returned

KeyValPair** metadata Output This will be allocated and

filled with the keys and

values of the metadata.

62 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

int* num Output The number of metadata

KeyValPair structs allocated

and returned in the array

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 56)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 56)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Note: Be sure to free the metadata array.

getMemberInfo

Retrieves a specific piece of metadata for the given member

int getMemberInfo(int RAMid, char instanceID[256],

 char memberID[256], char key[64], char value[256],

 void** params, void*** customReturn, char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member for which

metadata is being retrieved

char key[64] Input The key of the metadata

value to be retrieved

char value[256] Output The value being retrieved

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 56)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 56)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

updateMemberInfo

Updates a specific piece of metadata for the given member

Chapter 5. Developing a CARMA client 63

int updateMemberInfo(int RAMid, char instanceID[256],

 char memberID[256], char key[64], char value[256],

 void** params, void*** customReturn,

 char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member for which

metadata is being set

char key[64] Input The key of the metadata

value to be set

char value[256] Input The value being set

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 56)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 56)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Other operations

extractMember

int extractMember(int RAMid, char instanceID[256],

 char memberID[256], char*** contents, int* lrecl,

 int* numRecords, char recFM[4], int* moreData,

 int* nextRec, void** params, void*** customReturn,

 char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

extracted

char*** contents Output Will be allocated as

two-dimensional array to

contain the member’s

contents

int* lrecl Output The number of columns in

the data set and array

64 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

int* numRecords Output The number of records in the

data set or the number of

rows in the array

char recFM[4] Output Will contain the data set’s

record format (FB, VB, etc.)

int* moreData Output Set the value of the variable

to which this points as 1 if

extract should be called

again (because there is still

more data to be extracted).

Otherwise, assign the value

to which it points as 0.

int* nextRec Input/Output Input: The member record

where the RAM should

begin the extraction

Output: The first record in

the data set that was not

extracted if *moreData is set

to 1; otherwise, undefined

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 56)

void** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 56)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

The contents buffer is a two-dimensional character array that will be filled by the

RAM and returned to the client. For the first extractMember call, nextRec must be

0. The RAM may choose to return the data in chunks of records. Extract should be

called until moreData is 0. If moreData is 1, extractMember needs to be called again,

and the extraction from the member will start with the record indexed by the value

of nextRec returned on the previous call. The RAM will need the client to pass that

value of nextRec back in for the following call.

See Chapter 3, “Developing a RAM,” on page 11 for an example of extractMember’s

operation from the RAM’s point of view.

Note: Be sure to free contents properly. It has been allocated as a large contiguous

data chunk, so it should be freed in the following manner (the example is in C):

for(i = 0; i < numRecords; i++)

 free(contents[i]);

free(contents);

putMember

Updates a member’s contents or creates a new member if the member ID is not

found within the specified instance

Chapter 5. Developing a CARMA client 65

int putMember(int RAMid, char instanceID[256],

 char memberID[256], char** contents, int lrecl,

 int* numRecords, char recFM[4], int moreData,

 int nextRec, int eof, void** params, void*** customReturn,

 char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

updated/created

char** contents Input Contains the new member

contents

int lrecl Input The number of columns in

the data set and array

int* numRecords Input/Output The number of records in the

data set or the number of

rows in the array

char recFM[4] Input Contains the data set’s

record format (FB, VB, etc.)

int moreData Input Will be 1 if the client has

more chunks of data to send;

0 otherwise

int nextRec Input The record in the data set to

which the 0th record of the

contents array maps

int eof Input If 1, denotes that the last row

of the array should mark the

last row in the data set; 0

otherwise.

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 56)

void** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 56)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

The client may choose a chunk size for the function or attempt to pass the whole

file’s contents at once. The client may also choose to jump around within a file. For

example, records 0 through 15 could be passed first, 40 through 50 next, and then

16 through 39. However, not all RAMs may handle non-sequential data chunks

such as this properly.

If sending data in chunks, moreData should be 1 on every call until the final one,

during which it should be 0. nextRec should always be set to the first record to be

66 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

updated in the member. Remember that this uses a 0-based index. eof is used to

specify that the member record at nextRec + numRecords should be the last one in

the updated member. For example, if that sum is 15 and there are currently 30

records in the member, records 16 through 29 will be deleted by the RAM after it

updates through record 15.

See the source for the sample client (CRACLISA in the sample library) for more help.

Note: The contents buffer should be allocated before the call in a manner similar to

the following (the example is in C):

 contents = (char**) malloc(sizeof(char*) * (numRecords));

 contents = (char) malloc(sizeof(char) * (lrecl) * (numRecords));

 for(i = 0; i < numRecords; i++)

 (contents)[i] = ((*contents) + (i * (lrecl)));

and should be freed after the call in a manner similar to the following (the

example is in C):

 free(contents[0])

 free(contents);

lock

Locks the member

int lock(int RAMid, char instanceID[256], char memberID[256],

 void** params, void*** customReturn, char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member to be locked

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 56)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 56)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

unlock

Unlocks the member

int unlock(int RAMid, char instanceID[256], char memberID[256],

 void** params, void*** customReturn, char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

Chapter 5. Developing a CARMA client 67

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member to be unlocked

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 56)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 56)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

checkin

Check in the member. This only sets a flag. A putMember call is expected

immediately after this call.

int checkin(int RAMid, char instanceID[256], char memberID[256],

 void** params, void*** customReturn, char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member to be checked

in

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 56)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 56)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

checkout

Check out the member. This only sets a flag. A extractMember call is expected

immediately after this call.

int checkout(int RAMid, char instanceID[256], char memberID[256],

 void** params, void*** customReturn, char error[256])

68 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member to be checked

out

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 56)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 56)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

getCAFData

Retrieves the CAF data for the requested RAM

int getCAFData(int RAMid, Action** actions, int* numActions,

 int** disabledActions, int* numDisabled,

 Parameter** params, int* numParams,

 returnValue** returnVals, int* numReturn,

 char error[256])

 Table 25.

int RAMid Input Tells CARMA for which

RAM the CAF data should

be pulled. This ID was

obtained after running

getRAMList.

Action** actions Output This will be allocated and

filled with the custom

actions for the given RAM.

int* numActions Output The number of actions being

returned

int** disabledActions Output This will be allocated and

filled with the disabled

actions for the given RAM.

int* numDisabled Output The number of disabled

actions being returned

Parameter** params Output This will be allocated and

filled with the custom

parameters for the given

RAM

int* numParams Output The number of parameters

being returned

Chapter 5. Developing a CARMA client 69

Table 25. (continued)

returnValue** returnVals Output This will be allocated and

filled with the custom return

values for the given RAM.

int* numReturn Output The number of return values

being returned

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

See Chapter 4, “Customizing a RAM API using the CAF,” on page 37 for more

information on the types of data that may be returned. The data that is returned

should be stored for the remainder of the session so that it can be checked before

any function call for the respective RAM.

70 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Appendix A. Return codes

 Return Code Description

20 Internal error

22 No RAMs defined for this locale

24 CRADEF not found

26 No records found in CRADEF

28 CRADEF read error

30 (placeholder)

32 Invalid CRADEF record found

34 Requested RAM not found

36 Could not load RAM module

38 Could not load pointer to RAM function

40 Requested RAM RAM name has not been

loaded

42 Invalid CRASTRS record found

44 CARMA has not been initialized

46 Failed attempting to load the RAM list

48 Out of memory

50 Record in CRADEF does not have equivalent

in CRASTRS for this locale

52 Action references unknown parameter

54 Action references unknown return type

56 CRASTRS read error

58 Neither the specified locale or the default

locale (EN_US, codepage 00037) could be

found in CRASTRS

60 CRAMSG not found

62 CRAMSG read error

101 Could not allocate memory

102 TSO/ISPF Library functions not available

103 Invalid member identifier

104 Cannot allocate (out of space)

105 Member not found

106 Instance not found

107 Function not supported

108 Member is not a container

109 Invalid parameter value

110 Member cannot be updated

111 Member cannot be created

112 Not authorized

113 Could not initialize

 71

Return Code Description

114 Could not terminate

115 Resource out of sync

116 File locked

117 Specified next record out of range

118 Unsupported record format

119 Invalid LRECL

120 Invalid metadata key

121 Cannot update property value

122 Invalid metadata value

123 Property value is read-only

124 Requested member is empty

125 Empty instance

126 No members found

127 Reset error

197 (encapsulated ISPF/LMF error message)

198 Unable to access log file

199 Unknown RAM error

222 Error retrieving Custom Action Framework

parameter list

223 Missing an expected Custom Action

Framework parameter

224 Unknown data type specified for Custom

Action Framework parameter

225 Error retrieving Custom Action Framework

return values

72 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Appendix B. Action IDs

 Action ID Action Name

0 initRam

1 terminateRam

2 getMembers

3 extractMember

4 putMember

5 getAllMemberInfo

6 getMemberInfo

7 updateMemberInfo

8 isMemberContainer

9 getContainerContents

10 lock

11 unlock

12 checkIn

13 checkOut

14 getInstances

15 reset

16 performAction

80 initCarma

81 terminateCarma

82 getRAMList

83 getCAFData

 73

74 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Notices

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP

Schedule Contract with IBM® Corp.

This information was developed for products and services offered in the U.S.A. IBM may not offer the

products, services, or features discussed in this document in other countries. Consult your local IBM

representative for information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However, it is the user’s

responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not give you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

 IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

P.O. Box 12195, Dept. TL3B/B503/B313

3039 Cornwallis Rd.

Research Triangle Park, NC 27709-2195

U.S.A.

 75

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or

any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples may include the names of individuals, companies, brands,

and products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates

programming techniques on various operating platforms. You may copy, modify, and distribute these

sample programs in any form without payment to IBM, for the purposes of developing, using, marketing

or distributing application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs. You may copy, modify, and distribute these sample programs in any form

without payment to IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (C)

Copyright IBM Corp. 2000, 2004. All rights reserved.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

v IBM

v WebSphere®

v zSeries®

Other company, product, and service names, which may be denoted by a double asterisk(**), may be

trademarks or service marks of others.

(C) Copyright IBM Corporation 2000, 2004. All Rights Reserved.

76 IBM WebSphere Developer for zSeries Version 6.0.1: Common Access Repository Manager Developer’s Guide

Readers’ Comments — We’d Like to Hear from You

IBM WebSphere Developer for zSeries Version 6.0.1

Common Access Repository Manager Developer’s Guide

 Publication No. SC31-6914-00

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC31-6914-00

SC31-6914-00

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Information Development

Department G7IA / Bldg. 503

P.O. Box 12195

Research Triangle Park, NC

 27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5724-L44

Printed in USA

SC31-6914-00

	Contents
	About this book
	Who should read this book
	Conventions used in this book

	Chapter 1. Introduction to CARMA
	Supported operations
	Locating the sample files

	Chapter 2. General concepts
	Browsing
	Checking in and out
	Memory allocation
	Member contents
	Character buffers
	Return codes
	Logging
	Custom parameters and return values

	Chapter 3. Developing a RAM
	Compiling a RAM
	Defining the RAM to CARMA
	Exporting functions
	IDs vs. names
	RAM predefined data structures
	Logging
	Dealing with unsupported operations
	Handling custom parameters and return values
	State functions
	initRAM
	terminateRAM
	reset

	Browsing functions
	getInstances
	getMembers
	isMemberContainer
	getContainerContents

	Metadata functions
	getAllMemberInfo
	getMemberInfo
	updateMemberInfo

	Other member operations
	extractMember
	Example

	putMember
	lock
	unlock
	check_in
	check_out

	RAM development using COBOL
	Compilation
	Compiling the sample COBOL RAM
	Compiling helper DLLs

	COBOL RAM program structure
	Coding the program ID
	The linkage section
	Defining the procedure division
	Ending the program

	ILC data type equivalents between C and COBOL
	Dealing with pointer operations
	Simple pointer operations
	Complex pointer operations
	Memory Allocation

	Variables shared between programs
	Retrieving variables
	Storing variables
	Adding to RGVA

	Overview of the function programs of the sample COBOL RAM
	Handling Custom Action Framework data
	Custom actions
	Custom parameters
	Custom returns

	Debugging and avoiding abnormal termination
	Displaying values to help debug your COBOL RAM
	NULL pointers
	Properly exiting your RAM function programs

	Chapter 4. Customizing a RAM API using the CAF
	CAF object types
	RAM
	Parameter
	Return value
	Action

	Developing the RAM model for a custom RAM
	Creating VSAM records from a RAM model
	CRADEF
	Record keys
	Record data

	CRASTRS
	Record keys
	Record data

	SAMP RAM VSAM records
	VSAM cluster access
	Cluster editing tool

	Chapter 5. Developing a CARMA client
	Compiling the CARMA client
	Running the client
	Storing results for later use
	Client predefined data structures
	Logging
	Handling custom parameters and return values
	State functions
	initCarma
	getRAMList
	initRAM
	reset
	terminateRAM
	terminateCarma

	Browsing functions
	getInstances
	getMembers
	isMemberContainer
	getContainerContents

	Metadata functions
	getAllMemberInfo
	getMemberInfo
	updateMemberInfo

	Other operations
	extractMember
	putMember
	lock
	unlock
	checkin
	checkout
	getCAFData

	Appendix A. Return codes
	Appendix B. Action IDs
	Notices
	Trademarks and service marks

	Readers’ Comments — We'd Like to Hear from You

