

NetView for AIX

Programmer's Guide

Version 4

SC31-8164-00

IBM

NetView for AIX

Programmer's Guide

Version 4

SC31-8164-00

 Note

Before using this product, read the general information under “Notices” on page ix.

First Edition (July 1995)

This document applies to IBM NetView for AIX (feature 5608), which is a feature of SystemView for AIX (5765-527). IBM NetView
for AIX runs under the AIX Operating System for RISC System/6000 Version 3 Release 2 (5756-030) or Version 4 Release 1
(5765-393). This product is based, in part, on Hewlett-Packard Company's OpenView product.

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM representative or write to
the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address comments to:

 IBM Corporation
 Department CGMD

P.O. Box 12195
Research Triangle Park, North Carolina 27709

 U.S.A.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1992, 1995. All rights reserved.

The following statements pertain to portions hereof.

 Copyright Hewlett-Packard Company 1991, 1993. All rights reserved. Reproduced by permission.

 Copyright Dartmouth College 1992. All rights reserved. Reproduced by permission.

 Copyright American Computer & Electronics Corporation 1996. All rights reserved. Reproduced by permission.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix
Trademarks . ix

About This Book . xi
Who Should Use This Book . xi
How to Use This Book . xi

Using the Man Pages . xi
Highlighting and Operation Naming Conventions xii

What Is New in This Book . xii
Where to Find More Information . xii

Part 1. Getting Started with NetView for AIX Programming 1

Chapter 1. Introducing the NetView for AIX Program 3
The Network Management Environment . 3
The Object-Oriented Approach to Network Management 4
Understanding NetView for AIX Terms . 4
Developing Applications for NetView for AIX . 7
Developing Applications for a Client/Server Environment 11

Chapter 2. Integrating Your Application with NetView for AIX 13
Types of Applications . 13
Integrating Your Application with Logging and Tracing 17
Process Management . 18
The Local Registration File . 19
The $LANG Environment Variable . 24
Customizing NetView for AIX Startup . 24

Chapter 3. Creating and Using the Application Registration File 27
Understanding Application Registration Files . 27
Creating the Application Block . 27
Adding Your Application to an Object Menu . 34
Adding Your Application to the Tools Window 34
Defining Application Invocation . 36
Using Dialog Boxes . 37
How Registration Files Are Processed . 42

Chapter 4. Integrating Your Application with NetView for AIX Security
Services . 43

Deciding Whether to Secure Your Application 43
A Guide to Integrating . 43
Understanding the Security Registration File . 44
Format of the Security Application File . 45

Chapter 5. Designing Application Help . 49
Using the NetView for AIX Help System . 49
Providing Help from the NetView for AIX Menu 50
Providing Help through a Dialog Box . 53
Providing Help from Your Application's Menu 54

 Copyright IBM Corp. 1992, 1995 iii

Displaying Help Information Programmatically 56

Part 2. Working with the NetView for AIX User Interface 57

Chapter 6. Understanding the NetView for AIX User Interface 61
Structuring Your Application . 62
NetView for AIX Events . 63
Processing Events . 67
Using the Object Selection List . 69
Some Useful EUI Techniques . 71
Dynamic Menu Registration . 75

Chapter 7. Creating and Using Objects and Fields 79
Using the NetView for AIX Object Database . 79
Creating Fields . 79
Creating Objects . 87
Getting and Setting Object Field Values . 91
Retrieving Object Attribute Information . 95
Deleting Objects . 97

Chapter 8. Creating and Using Symbols . 99
Understanding Symbol Attributes . 99
Creating Bitmaps for NetView for AIX Symbols 105
Defining Symbols with Symbol Type Registration Files 109
Defining Symbols with NetView for AIX EUI Routines 114
Changing Symbol Appearance and Behavior 122
Retrieving Symbol Information . 126
Deleting Symbols . 129

Chapter 9. Creating and Using Submaps 131
Understanding Maps . 131
Understanding Submaps . 131
Creating a Submap . 132
Displaying a Submap . 137
Getting Map and Submap Information . 138
Using Submap Background Graphics . 142

Chapter 10. Map Events and Map Editing 145
Receiving Notification of Map Changes . 145
Opening and Closing Maps . 148
Participating in Map Changes . 152
Handling Cut and Paste Operations . 157
Integrating and Documenting Your Map Application 158

Part 3. Using the NetView for AIX Management APIs 161

Chapter 11. Understanding the NetView for AIX Management
Environment . 167

Defining Network Management Systems . 167
Network Management Protocols and APIs . 168
Understanding Managers and Agents . 170
Programming with Managers and Agents . 174

iv Programmer's Guide

Open Systems Interconnection (OSI) Management 178
The Inheritance Relationships among Object Instances and Classes 180
Developing Network Management Applications 187

Chapter 12. Using the XOM API . 189
Understanding XOM . 189
The Strategy and Structure of XOM . 190
XOM Packages . 192
XOM Data Objects . 194
Manipulating Objects with XOM . 198

Chapter 13. Using the XMP API . 213
The Protocol Services of XMP . 214
The Supporting Functions of XMP . 215
Common Parameters and Results of XMP Functions 216
Synchronous and Asynchronous Calls in XMP 221
Program Sequencing . 224
Handling Errors . 227
Using XMP and XOM . 229

Chapter 14. C-Language Binding for the XOM and XMP APIs 231
C-Language Naming Conventions . 231
Function Return Value and Returned Parameters 234
Compiling and Linking . 235

Chapter 15. Introduction to the NetView for AIX WinSNMP API 237
What Is WinSNMP? . 237
Compliance . 238
SNMP . 239
Highlights of SNMPv1 . 242
Highlights of Community Based SNMPv2 (SNMPv2C) 243
Highlights of Secure User Based SNMPv2 (SNMPv2USEC) 245

Chapter 16. Programming with NetView for AIX WinSNMP 247
Levels of SNMP Support . 247
Transport Interface Support . 249
Entity/Context Translation Modes . 249
Local Database . 251
Sessions . 251
Memory Management . 252
Asynchronous Model . 255
Polling and Retransmission . 256
RequestIDs . 257
Error Handling . 258
WinSNMP Data Types . 260
WinSNMP Interfaces . 262
Declarations . 268
Mapping Traps Between SNMPv1 and SNMPv2 279

Chapter 17. Using the NetView for AIX SNMP API 281
The SNMP Model of Communication . 281
The Management Information Base . 283
The NetView for AIX SNMP API . 286
For Further Reading . 288

 Contents v

Chapter 18. Using SNMP API Functions and Data Structures 289
SNMP Functions . 289
SNMP Data Structures . 293
SNMP API Coding Examples . 298

Chapter 19. Filtering Network Events . 307
Creating Filters . 307
Using Filters . 312

Chapter 20. Using the General Topology Manager 315
Introducing the General Topology Manager . 315
Open Topology MIB Tables and Groups . 318
Open Topology MIB Traps . 332
State and Status Information . 335
Topology Objects in the NetView for AIX Object Database 337

Chapter 21. Communicating with the General Topology Manager 343
The Discovery Process . 343
Creating and Updating a Topology . 347
Using the Trap Interface . 349
Using the GTM API . 350
Presenting Topology Information to the User 356

Appendix. Migrating Version 3 Applications 359
Packaging for a Client/Server Environment . 359
Using NetView for AIX Security . 359
Using NetView for AIX Collections . 359

Part 4. Glossary, Bibliography, and Index . 361

Glossary . 363

Bibliography . 381
NetView for AIX Publications . 381
IBM RISC System/6000 Publications . 381
NetView Publications . 382
TCP/IP Publications for AIX (RS/6000, PS/2, RT, 370) 382
AIX SNA Services/6000 Publications . 382
Internet Request for Comments (RFCs) . 382
Related Publications . 383

Index . 385

vi Programmer's Guide

 Figures

1. Using NetView for AIX APIs with Your Application 10
2. Field Binding List Data Structure . 94
3. Symbol Bitmap . 106
4. Symbol Bitmap Mask . 107
5. Symbol Created with Bitmap and Bitmap Mask 108
6. House Symbol Class . 110
7. Interactions between Managers and Agents 176
8. A Registration Tree . 181
9. A Containment (Naming) Tree . 182

10. An Inheritance Tree . 184
11. Inheritance and Class Types in XOM . 192
12. Package Closures for CMIS and SNMP Packages 193
13. Mixed Public and Private OM Objects 196
14. Representation of an OM Object . 199
15. Using OM_EXPORT and OM_IMPORT 205
16. The Error OM Class . 228
17. NetView for AIX WinSNMP Architecture 238
18. The Discovery Process . 346

 Tables

1. Functions in the OVuTL API . 17
2. Functions in the OVsPMD API . 19
3. Purpose of Lines in the Local Registration File 20
4. Fields in the Third Line of an LRF . 22
5. Help Menu Item Descriptions . 51
6. NetView for AIX Events . 63
7. Valid Data Type and Flag Combinations 82
8. NetView for AIX Object Database Convenience Routines 93
9. NetView for AIX Status Colors . 101

10. Bitmap and Bitmap Mask Coding Results 108
11. Map Events and Callback Routines . 145
12. Division of Functions between Managers and Agents 174
13. Types of Request Messages Used in Communications 175
14. XOM Interface Naming Conventions . 198
15. Key XOM Syntaxes . 200
16. OM Attributes of a CMIS-Get-Result OM Object 206
17. OM Attributes of an SNMP-Get-Argument 211
18. XMP Interface Naming Conventions . 213
19. XMP Functions to Support CMIS and SNMP Services 214
20. XMP Functions to Manage the Environment 215
21. XMP Functions to Support Asynchronous Activity 216
22. Comparing Parameters from Synchronous and Asynchronous Calls . . 223
23. State Transitions for a Manager . 226
24. State Transitions for an Agent . 226
25. Elements for which C Language Name Is Provided 232
26. Constructing C-language Names for Object Identifiers 234

 Copyright IBM Corp. 1992, 1995 vii

27. SNMP Message Types . 283
28. The SNMP API Functions . 289
29. Sequence of SNMP Function Calls in Blocking Model 291
30. Sequence of SNMP Function Calls in Nonblocking Model 292
31. Contents of OVsnmp Header Files . 293
32. SNMP Data Structures . 294
33. OVsnmpSession Structure Fields . 294
34. Callback Function Parameters . 296
35. Elements of the OVsnmpPdu Data Structure 296
36. Elements of the OVsnmpConfEntry Data Structure 298
37. Return Codes from Filter API Calls . 310
38. Error Messages from Filter API Calls . 311
39. The Vertex Table . 320
40. The Service Access Point Table . 321
41. The Simple Connection Table . 322
42. The Underlying Connection Table . 323
43. The Arc Table . 325
44. The Underlying Arc Table . 326
45. The Graph Table . 328
46. The Members Table . 329
47. The Member Arcs Table . 330
48. The Attached Arcs Table . 330
49. The Additional Members Table . 331
50. The Additional Graph Table . 332
51. Open Topology MIB Traps . 332
52. Restrictions on NetView for AIX Topology MIB Traps and Tables . . . 333
53. NetView for AIX Open Topology MIB Limitations 334
54. Mapping Operational State and Status to NetView for AIX Status . . . 337
55. Mapping nvotStatusType to Other Status Values 337

viii Programmer's Guide

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make them available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any func-
tionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

500 Columbus Avenue
 Thornwood, NY 10594
 USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

 Site Counsel
 IBM Corporation

P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, NC 27709-2195

 USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement.

This document is not intended for production use and is furnished as is without any
warranty of any kind, and all warranties are hereby disclaimed including the warran-
ties of merchantability and fitness for a particular purpose.

 Trademarks
The following terms, denoted by an asterisk (*) at their first occurrences in this pub-
lication, are trademarks of IBM Corporation in the United States or in other coun-
tries:

AIX APPN IBM
InfoExplorer MVS/DFP NetView
NETCENTER PS/2 RISC System/6000
RT SystemView System/390

 Copyright IBM Corp. 1992, 1995 ix

The following terms, denoted by a double asterisk (**) at their first occurrences in
this publication, are trademarks of other companies in the United States or in other
countries:

CompuServe CompuServe,Inc.
DynaText Electronic Book Technologies, Inc.
NFS Sun Microsystems, Inc.
OSF and OSF/Motif Open Software Foundation, Inc.
Microsoft and Microsoft Windows

Microsoft Corporation
UNIX Novell, Inc.
Windows Microsoft Corporation
X-Window Systems Massachusetts Institute of Technology

x Programmer's Guide

About This Book

This book is for anybody who wants to write application programs to run with the
IBM* NetView* for AIX* program.

Who Should Use This Book
Use this book if you will be writing programs that you will integrate with the NetView
for AIX program, or if you will integrate other programs with NetView for AIX. You
should have an understanding of the AIX operating system and be familiar with the
C programming language.

Before writing applications to run with the NetView for AIX program, you should
understand the program from the user's point of view. Familiarize yourself with the
NetView for AIX program by using it and by reading the NetView for AIX User's
Guide for Beginners and other manuals listed in the bibliography .

How to Use This Book
Use this book, in conjunction with the NetView for AIX Programmer's Reference
and the NetView for AIX Application Interface Style Guide, to design, code, and
integrate applications that will run with the NetView for AIX program. This guide is
divided into three parts:

� Getting Started with NetView for AIX Programming

� Working with the NetView for AIX Graphical User Interface

� Using the NetView for AIX Management APIs

Each part contains several chapters, which address specific programming tasks.
You should read all of the first part, and look at the other parts to determine which
are relevant to your application. Each part begins with a detailed table of contents
for that part.

Using the Man Pages
This guide will give you an understanding of the programming techniques you will
use. Specific details, such as the syntax of routine calls, are provided in the
NetView for AIX Programmer's Reference. Much of the information in the NetView
for AIX Programmer's Reference is also available through the man command,
which you can enter on your aixterm screen. The information seen in this way is
called man pages or reference pages. After you use this guide to determine which
routines or data structures you will use, you can find their exact specifications in the
NetView for AIX Programmer's Reference or in the man pages. If you are viewing
this book online using the DynaText browser, you can click on routine names that
are displayed in blue to see the description of that routine in the online NetView for
AIX Programmer's Reference.

 Copyright IBM Corp. 1992, 1995 xi

Highlighting and Operation Naming Conventions
The following highlighting conventions are used in this book, with the noted
exceptions:

Bold Identifies commands and shell script paths (except in reference
information), default values, user selections, daemon paths (on first
occurrence), and flags (in parameter lists).

Italics Identifies parameters whose actual names or values are to be sup-
plied by the user, and terms that are defined in the following text.

Monospace Identifies subjects of examples, messages in text, examples of
portions of program code, examples of text you might see dis-
played, information you should actually type, and examples used
as teaching aids.

The NetView for AIX operation naming convention used in this book shows the
location of the operation in relation to the menu bar or context menu. The naming
convention follows the format shown in this example:

Monitor..Network Configuration..Addresses

In this example, Monitor is a menu bar or context menu option, Network
Configuration is an operation available from the Monitor submenu, and Addresses
is an option that is available when you select Network Configuration.

Some operations require you to make selections from several layers of submenus
before you reach the submenu containing the operation.

What Is New in This Book
Chapter 20, “Using the General Topology Manager” on page 315 and Chapter 21,
“Communicating with the General Topology Manager” on page 343 have been
updated to add more details about the NetView for AIX Open Topology MIB and to
describe the new General Topology Manager (GTM) API routines.

Chapter 4, “Integrating Your Application with NetView for AIX Security Services” on
page 43 has information about the new NetView for AIX security services.

Appendix, “Migrating Version 3 Applications” on page 359 has information about
migrating Version 3 applications to Version 4

Where to Find More Information
The Internet Request for Comments (RFC) documents listed are shipped on the
NetView for AIX program installation media and are installed in the /usr/OV/doc
directory.

The following sources provide specific information that is not documented in the
NetView for AIX Version 4 library:

� The Memo to Users provides additional information about the NetView for AIX
program.

� The online help facility provides task, dialog box, and graphical interface infor-
mation to help you use this program.

xii Programmer's Guide

Part 1. Getting Started with NetView for AIX Programming

Chapter 1. Introducing the NetView for AIX Program 3
The Network Management Environment . 3
The Object-Oriented Approach to Network Management 4
Understanding NetView for AIX Terms . 4
Developing Applications for NetView for AIX . 7

NetView for AIX Registration Files . 7
NetView for AIX Application Programming Interfaces 8
The NetView for AIX Help System . 10
Designing Consistent Applications . 11

Developing Applications for a Client/Server Environment 11
Packaging Implications . 11
API Implications . 11
Mount Implications . 12
Daemon Implications . 12
Network Communication Implications . 12

Chapter 2. Integrating Your Application with NetView for AIX 13
Types of Applications . 13

Drop-In Applications . 13
Tool Applications . 14
Map Applications . 16
Developing Applications for Control Desk Windows 16

Integrating Your Application with Logging and Tracing 17
Logging . 17
Tracing . 17

Process Management . 18
The Local Registration File . 19

Structure of the Local Registration File . 20
General Syntax Notes for the Local Registration File 20
First Line of the Local Registration File . 20
Second Line of the Local Registration File . 21
Third Line of the Local Registration File . 22
Example of a Local Registration File . 23
Rules for Building a Local Registration File 23

The $LANG Environment Variable . 24
Customizing NetView for AIX Startup . 24

Chapter 3. Creating and Using the Application Registration File 27
Understanding Application Registration Files . 27
Creating the Application Block . 27

Specifying the Application's Version, Copyright, and Description 28
Defining the Help Directory . 28
Integrating Applications into the Menu Structure 29
Using the Command Entry . 31
Defining a NameField . 33

Adding Your Application to an Object Menu . 34
Adding Your Application to the Tools Window 34
Defining Application Invocation . 36
Using Dialog Boxes . 37

Defining Dialog Boxes with the Enroll Block 38

 Copyright IBM Corp. 1992, 1995 1

Defining Rules within Enroll Blocks . 38
Using Fields in the Enroll Block . 40
Providing Enroll Block Help . 41
Registering for Map Editing Events . 41

How Registration Files Are Processed . 42

Chapter 4. Integrating Your Application with NetView for AIX Security
Services . 43

Deciding Whether to Secure Your Application 43
A Guide to Integrating . 43
Understanding the Security Registration File . 44
Format of the Security Application File . 45

Creating Security Registration Files from Application Registration Files . . . 46

Chapter 5. Designing Application Help . 49
Using the NetView for AIX Help System . 49
Providing Help from the NetView for AIX Menu 50

Providing Applications Index Help . 51
Providing Tasks Index Help . 52
Providing Function Index Help . 52

Providing Help through a Dialog Box . 53
Providing Help from Your Application's Menu 54

Developing the Help Directory Structure . 55
Displaying Help Information Programmatically 56

2 Programmer's Guide

Chapter 1. Introducing the NetView for AIX Program

The NetView for AIX program is a powerful, flexible tool for managing networks.
Because the world of network management is so dynamic, the NetView for AIX
program provides several mechanisms with which you can extend its function or
tailor it to your specific needs. This guide explains how to perform these tasks.

The Network Management Environment
Modern computer networks have grown and diversified to the point where they are
a different sort of enterprise from computing environments of the past. No longer
do networks consist of a collection of “dumb” terminals, all linked to one controlling
computer, all made by the same vendor and speaking the same language. Some
of the distinguishing characteristics of modern networks are:

� They are widely dispersed geographically.

� They include hardware and software from numerous vendors.

� They may use public telephone lines and other nonproprietary data links.

� They support an unprecedented volume of traffic.

� They include devices that can act autonomously, rather than being controlled
by a master computer.

� They are subject to frequent changes in the status of the nodes that make up
the network.

� They have a set of common functional requirements, but many networks
require specialized capabilities.

The growth in the number and size of networks, and in their importance to many
businesses and industries, has created a need for sophisticated management appli-
cations. These applications monitor and control networks to optimize their effec-
tiveness as communications tools.

Because networks are no longer proprietary, standard protocols, which enable
devices from different vendors to communicate with one another, have been
defined by organizations such as ISO (International Standards Organization).
These include TCP/IP (Transmission Control Protocol/Internet Protocol), CMIP
(Common Management Information Protocol), and SNMP (Simple Network Man-
agement Protocol).

In addition to standard protocols, network management applications require
standard ways to describe and interact with the resources that they manage. In
order to shield management applications from having to know the implementation of
every device in the network, an object-oriented approach is used.

 Copyright IBM Corp. 1992, 1995 3

The Object-Oriented Approach to Network Management
In the object-oriented model, each entity on the network is represented as a
managed object. Each object is serviced by an agent, which is responsible for
maintaining the data associated with the object, by responding to requests issued
by management applications, or managers. These requests might involve reporting
data values, setting or resetting status bits, or changing numeric or character
values. Agents are also responsible for sending events, or traps, to managers to
notify them of noteworthy conditions related to the agent's object.

The object-oriented approach has several characteristics that work well with the
needs of network management applications:

� Management functions can be distributed among network nodes, rather than
concentrated in one manager station.

� The management application does not need to know the definition of each
object on the network.

� Each managed object, through its agent, is responsible for the maintenance of
its own data and for responding to requests issued by managers.

� It supports asynchronous processing, in which a manager does not have to
wait for a response from one request before processing or making another.

� It allows network objects to emit notifications, called events or traps, of network
changes that may be of interest to managers.

Understanding NetView for AIX Terms
The following terms and concepts will be used throughout this Guide. A working
knowledge of how to use the NetView for AIX program will also be beneficial when
reading this manual.

Object An object is an internal representation of a logical or physical entity or
resource that exists somewhere in a computer network. An object is
made up of a set of fields that specify all the characteristics of the
object. Programmers can create objects, delete objects, or modify the
fields within an object. Programmers can retrieve the list of all fields
associated with an object and search the object database for objects
that contain specific field values. Examples of resources represented by
objects might include:

� A computer node

� A software process on a computer

� An IP network

Note: The term object has a special meaning in the context of the
XOM API. In that context it is called an OM object. Object
without a modifier has the meaning described here.

Field Fields are the building blocks from which objects are constructed.
Fields have one of the following data types: 32-bit integer, Boolean,
character string, or enumerated value. An integer or character-string
field can contain a single data element or a list of data elements of the
same type; a Boolean field contains a single indicator, and an enumer-
ated field contains one enumeration.

4 Programmer's Guide

The NetView for AIX object database manages all object and field infor-
mation for the NetView for AIX program. Developers can access the
object database through the NetView for AIX programming libraries.
See Chapter 7, “Creating and Using Objects and Fields” on page 79 for
more information on objects and fields.

Map A map is a collection of NetView for AIX objects and their relationships.
A map contains a subset of all the objects in the NetView for AIX object
database. Different maps can display different management domains,
or they can provide different presentations of the same domain.

Users, not applications, create maps. Users can create several maps,
and they can control which applications operate on the various maps.
While users create maps and define their scope, applications dynam-
ically update maps to reflect the state of the management environment.

Submap A submap is a collection of related symbols that are displayed in a
single graphical window. A submap provides a view into the map object
space. Each submap displays a different perspective of the information
in the map, with the submaps typically organized in a hierarchical
fashion.

The most common method users employ to navigate through submaps
is by double-clicking the mouse on symbols called explodable symbols.
Double-clicking on an explodable symbol will cause a submap to be dis-
played if a submap is associated with the object represented by that
symbol. The submap contains additional symbols which describe, in
more detail, the object associated with the explodable symbol. The
object associated with the explodable symbol is called the parent object.
The submap that is displayed by double-clicking on the symbol associ-
ated with the parent object is called a child submap. For more informa-
tion on working with submaps, see Chapter 9, “Creating and Using
Submaps” on page 131.

Symbol A symbol is a graphical representation of an object as it appears on a
submap of a particular map. Symbols are presentation elements;
objects are underlying database elements that represent real-world
network elements. Several symbols can represent the same object,
even when the symbols are on different submaps.

A symbol can be either explodable or executable. When a user double-
clicks on an explodable symbol, the child submap associated with that
symbol will be displayed. When a user double-clicks on an executable
symbol, the program associated with that symbol will be run.

Even though symbols represent objects, symbols can have some of their
own characteristics beyond those of the object they represent. These
characteristics, or attributes, can vary between the different symbols
representing a particular object. For more information on these attri-
butes, see Chapter 8, “Creating and Using Symbols” on page 99.

Selection List
The selection list is a list of objects that correspond to symbols selected
by the user. The selection list is one of the primary ways that users
pass arguments to NetView for AIX applications. See “Using the Object
Selection List” on page 69.

 Chapter 1. Introducing the NetView for AIX Program 5

Manager A manager is a software application that monitors and controls a
network.

Agent An agent is a software application that is responsible for reporting on
and maintaining the data pertaining to one or more objects. The inter-
actions of managers and agents are described in “Transactions between
Managers and Agents” on page 174.

Event The NetView for AIX program uses two distinct types of events. A map
event is a notification issued because of a user or application action that
affects the status of the current map or of the NetView for AIX graphical
interface. A network event is a message sent by an agent to one or
more managers to provide notification of an occurrence affecting a
network object. In a network managed with SNMP, network events are
called traps.

Filter An event filter is a specification used by an application to indicate which
network events it wants to receive. Events may be filtered by node, fre-
quency, event type, and various other criteria. Chapter 19, “Filtering
Network Events” on page 307 describes event filtering in more detail.

Dialog Box
A dialog box is a window placed on the screen by a manager application
to enable a user to specify details of a request. The NetView for AIX
program may require your application's cooperation in processing user
requests involving dialog boxes. More information on dialog boxes is
provided in “Using Dialog Boxes” on page 74.

Registration Files
Registration files are configuration files that NetView for AIX reads when
it is started. These files can be used to define many features of your
application. The NetView for AIX program uses the following registration
files:

� Application Registration Files

� Field Registration Files

� Local Registration Files

� Symbol Type Registration Files

� Security Registration Files

API An API (Application Programming Interface) is a library of routines that
developers can use to construct applications. API routines are available
to work with many areas of the NetView for AIX program. More informa-
tion about APIs is provided in “NetView for AIX Application Programming
Interfaces” on page 8. Specific details are provided in the NetView for
AIX Programmer's Reference and in the online man pages.

The NetView for AIX End User Interface
The NetView for AIX program provides an advanced user interface that
provides a graphical view of the network. The NetView for AIX program
displays system and network management information through
OSF/Motif ** windows. These windows contain submaps that show
views of the network. Icons represent system or network elements, and
lines represent the connections between elements. One of the primary
ways for users to interact with the NetView for AIX program is to manip-
ulate the objects represented in the window. The NetView for AIX EUI

6 Programmer's Guide

API is a library of routines that manipulate the graphical user interface.
These routines are the subject of Part 2, “Working with the NetView for
AIX User Interface” on page 57.

Developing Applications for NetView for AIX
The NetView for AIX program uses an event-driven programming model. Programs
developed under an event-driven model look fundamentally different from traditional
programs. An event-driven program is a collection of routines that declare an
interest in specific events generated by the user or system. These supporting rou-
tines are called as user and system events occur, and they perform the program's
primary tasks. The program's main routine simply performs initialization, associates
routines with particular events, and then enters a loop that waits for and processes
events. The routine that is called when an event occurs is known as a callback
routine. The declaration of a routine's interest in a particular event is referred to as
callback registration. The portion of the main routine that waits for and processes
events is called the event loop.

Developers construct NetView for AIX applications using two basic components:
registration files and the NetView for AIX Application Programming Interface. The
API is a library of routines that perform many programming tasks.

NetView for AIX Registration Files
Registration files are an easy way to define the static information about your appli-
cation and the data with which it works. The following types of registration files are
used:

Application Registration File
The Application Registration File (ARF) contains information about your
application: its place in the NetView for AIX menu structure, the types of
objects it can manipulate, the location of help information, and much
more. Chapter 3, “Creating and Using the Application Registration File”
on page 27 describes the ARF.

Field Registration File
The Field Registration File (FRF) includes definitions of new types of
fields. See “Using the Field Registration File” on page 80 for more
information.

Symbol Type Registration File
Use a Symbol Type Registration File (STRF) to create new symbols for
your application to use. “Defining Symbols with Symbol Type Registra-
tion Files” on page 109 describes how to create new symbols.

Local Registration File
You should create a Local Registration File (LRF) for each agent that
you create or install. You can also create LRFs for any daemons that
you create. “The Local Registration File” on page 19 describes the LRF
format.

Security Registration File
Version 4 of NetView for AIX provides you with a security service based
on GSS-API authentication between clients and servers. Through the
NetView for AIX security server, network administrators can control the
access different users have to NetView for AIX features, including appli-
cations integrated into NetView for AIX. Users are assigned to security

 Chapter 1. Introducing the NetView for AIX Program 7

'groups', and the administrator determines access privileges for different
users and security groups. When you design your application, you need
to decide whether you are going to exploit NetView for AIX security APIs
to manage security.

To take advantage of the security feature, your application must use the
Security Registration File (SRF) to register a security profile with the
NetView for AIX security server.

NetView for AIX Application Programming Interfaces
The NetView for AIX program provides Application Programming Interfaces (APIs)
that help you create applications for the NetView for AIX environment without
learning the details of data structures, input/output requirements, and other
low-level program components. This section contains a brief description of these
APIs.

The XMP API
The NetView for AIX program manages objects in a TCP/IP environment that uses
the SNMP and IP protocols for communication. It also supports the CMIP protocol
and CMIS services over the TCP/IP protocol (CMOT), providing a way to manage
OSI networks from an SNMP environment.

The XMP API masks the differences between SNMP objects and CMIS objects. It
provides service primitives that correspond to the SNMP and CMIS services, so
you can write an application to handle communication from either an SNMP agent
or a CMOT agent. XMP employs the X/Open OSI-Abstract-Data Manipulation
(XOM) API for general data manipulation.

For CMIS requests, the pmd daemon provides transparent control and initiation of
all associations. Because SNMP is connectionless, the communications
infrastructure hides the details of managing time-outs and retries for SNMP
requests.

The XMP API is described in more detail in Chapter 13, “Using the XMP API” on
page 213.

The SNMP API
You can develop SNMP-based network management applications with the NetView
for AIX program's SNMP API. These applications can use the SNMP services and
understand the SNMP MIB format. This API does not enable you to develop
SNMP agents, other than supporting trap generation.

The NetView for AIX SNMP API also provides access to the NetView for AIX pro-
gram's event filtering capabilities. By using filtering services provided through
nvsnmp, applications can use event management services that would otherwise be
available only through the XMP API. They can also control the number of traps an
application receives, and reduce overhead in the application.

The NetView for AIX SNMP API is described in more detail in Chapter 17, “Using
the NetView for AIX SNMP API” on page 281.

8 Programmer's Guide

The OVuTL API
Because the interaction among managers and agents is often complex, it is impor-
tant to be able to document and review the sequence of actions leading up to an
unexpected behavior. The OVuTL API provides access to the NetView for AIX pro-
gram's nettl tracing and logging facility. The nettl facility traces and logs the activity
of network applications and formats the binary data to make it more useful for
problem determination. For more information about the OVuTL API, see “Inte-
grating Your Application with Logging and Tracing” on page 17.

The OVsPMD API
The OVsPMD API provides a way for an agent you develop to cooperate with the
NetView for AIX process management daemon, ovspmd. For more information
about the OVsPMD API, see “Process Management” on page 18.

The End User Interface API
The NetView for AIX end user interface (EUI) API enables you to develop user
interfaces and integrate them with the NetView for AIX program.

The NetView for AIX EUI API provides routines to handle many aspects of pro-
gramming, including:

� Connecting to the graphical interface
 � Handling errors
� Creating objects and their component fields
� Creating and modifying submaps
� Creating and modifying symbols
� Verifying changes a user makes to a map
� Dynamically reconfiguring the graphical interface's menu bar, object menus,

and Tool Window
 � Processing callbacks.

The Event Filtering API
An NetView for AIX operator can define filters to limit both the number of events
displayed in the event window and the number of traps that will be converted to
alerts and sent to NetView. The Event Filtering API permits your application to
access existing filters and to create new filters.

See Chapter 19, “Filtering Network Events” on page 307 for more information on
the event filtering API.

The General Topology Manager API
The General Topology Manager (GTM) API enables you to communicate with the
NetView for AIX program in order to store and present information about non-IP
networks and devices. The GTM is described in Chapter 20, “Using the General
Topology Manager” on page 315 and Chapter 21, “Communicating with the
General Topology Manager” on page 343.

Figure 1 on page 10 illustrates how the major NetView for AIX APIs interact with
your application.

 Chapter 1. Introducing the NetView for AIX Program 9

Graphical User Interface

Your Application

SNMP
API

SNMP
STACK

Network

User

Filters

XMP API

SNMP CMOT

GTM
API

EUI
API

X Windows
System
OSF/Motif

Figure 1. Using NetView for AIX APIs with Your Application

The NetView for AIX Help System
The NetView for AIX program provides a comprehensive help system to assist
users with their tasks. Each application should provide its own help information,
which the NetView for AIX program integrates into a common help system with a
common user interface.

For Version 3, the NetView for AIX program implemented a new hypertext help
system. Version 4 continues to use this help system. Links between help panels
enable users to see information on related topics, and links from help panels to
online books enable users to pursue more details than are included in help panels.
Application developers can still use the ovhelp tool, as described in Chapter 5,
“Designing Application Help” on page 49, to present help information.

Developers can integrate help information into the NetView for AIX program in a
variety of ways. In most cases, you can construct files containing help information

10 Programmer's Guide

and place them in specific directories. The NetView for AIX program automatically
integrates the help information in those files into the NetView for AIX help system.
In other cases, you may need to call routines from the NetView for AIX EUI API to
integrate your information into the NetView for AIX help system. See Chapter 5,
“Designing Application Help” on page 49 for more information on integrating help
information into the NetView for AIX program.

Designing Consistent Applications
As an application developer, you must make many choices when designing your
application. Some of those decisions affect the physical appearance or behavior of
the application. In order to provide consistency between different applications,
consult the NetView for AIX Application Interface Style Guide as you develop your
application. The style guide provides recommendations to help you ensure applica-
tion consistency. For example, the style guide describes how applications should
construct dialog boxes and how applications should use buttons and other user
interface controls.

Developing Applications for a Client/Server Environment
A distributed client/server environment may or may not have a large impact on the
design and packaging of your application, depending on what the application does.
The client/server enabling of NetView for AIX provides the ability to distribute
graphical applications (and the memory and CPU processing requirements associ-
ated with them) to client machines in the network. These clients connect to a
server (the main management workstation) to receive topology information and
other types of network management information.

 Packaging Implications
If your application is launched from the menu bar and will be installed on every
client, then the new client/server environment may have no impact on your applica-
tion. Applications that require both a GUI and supporting daemons may require
that the GUI be installed on clients and that the daemon be installed only on the
server. Typically, GUI or end user interface functions should be viewed as client
functions, and should be packaged to install on a client. Daemons should be pack-
aged to install on the server. If you are unsure where a function belongs, package
it to install on clients, since all workstations, including the server, have client
functionality.

 API Implications
The NetView for AIX API calls have been modified to hide the details of a
client/server environment from the calling application. Applications that make calls
to the OVw, OVsnmp, nvSnmp, and XMP APIs do not need to be changed to run in
a client/server environment. API calls that involve communication with a daemon
(either on a client or on the server) will automatically direct the call to the appro-
priate machine. It will be transparent to an application on a client whether an API
call is crossing the network to a server or being made locally to a daemon that
resides on the same machine. “Using APIs in a Client/Server Environment” on
page 169 has more information about API support in a client/server environment.

 Chapter 1. Introducing the NetView for AIX Program 11

 Mount Implications
Much of the configuration information is shared between clients and the server
through NFS mounts. Vendor MIBs are installed on the server machine. When a
MIB is loaded, NetView for AIX makes the MIB available to clients by NFS
mounting the /usr/OV/conf directory in read-only mode on the client machines. Any
changes to the /usr/OV/conf directory on the server are visible to the clients.

 Daemon Implications
Because daemons may be distributed, it is wise to not assume anything about the
location of daemons in the network. For example, an application running on a
client should not assume that there is a netmon daemon running on the client.
Similarly, an application should not try to read the trapd.log file or other outputs
from daemons unless the application is specifically designed to be a server func-
tion. Trap forwarding is another area that is sensitive to the location where an
application is running; unless the application is specifically a server application, do
not design the application to forward traps to LOOPBACK, because they will be lost
on client machines. Applications that can run anywhere in the network should
forward traps to the NetView for AIX server.

Network Communication Implications
Applications that use IPC calls for communication between parts of the application
may need to be modified to use RPC or TCP ports as their communication mech-
anism.

12 Programmer's Guide

Chapter 2. Integrating Your Application with NetView for AIX

This chapter describes the ways that applications can be integrated into the
NetView for AIX program. By understanding the possible levels of application inte-
gration, you can determine which activities, and which chapters in this manual,
apply to your application. In addition to the chapters suggested for each type of
application, be sure to read the information presented later in this chapter on
process management and tracing and logging.

Types of Applications
The NetView for AIX Application Interface Style Guide groups applications into
three types:

 � Drop-in applications

 � Tool applications

 � Map applications

These classifications are based on how tightly the application integrates with the
NetView for AIX program. The characteristics of these application types are
described in this chapter.

Regardless of what type of application you are developing, you should be familiar
with the Version 4 NetView for AIX security feature. See Chapter 4, “Integrating
Your Application with NetView for AIX Security Services” on page 43 for an intro-
duction to NetView for AIX security and to understand the steps for integrating your
application with NetView for AIX security.

 Drop-In Applications
Drop-in applications are applications that integrate with the NetView for AIX
program only through the menu bar. They are typically stand-alone applications
that are integrated into the menu structure for user convenience. Drop-in applica-
tions do not use an Application Programming Interface (API).

To integrate drop-in applications into the NetView for AIX menu, you will create an
application registration file, which controls where a menu item is placed in the
NetView for AIX menu structure. The application registration file (ARF) also defines
the command to be executed when the user selects the menu item. When the user
selects the menu item, the application is invoked using the command specified in
the ARF.

Drop-in applications can take advantage of the NetView for AIX environment. Use
entries in the application registration file to configure the application so that it is
invoked with NetView for AIX environment variables as arguments (for example, the
selection name of the currently selected object). You can also configure the ARF
File entry to allow the command to be executed only if the selected objects have
particular characteristics. For example, you can specify that your application will be
invoked only if the object is a node but not a gateway. Chapter 3, “Creating and
Using the Application Registration File” on page 27 provides a complete description
of the application registration file.

 Copyright IBM Corp. 1992, 1995 13

Examples of Drop-In Applications
One simple but useful example is to provide access to the telnet program through
the NetView for AIX graphical interface. The user might select a node on a map,
then select a telnet menu item from the NetView for AIX menu structure or tools
window. The application registration file could specify that the telnet program be
invoked with the IP hostname of the selected object as the argument.

Consider another example in which a standalone X-Windows-based program is
added to the NetView for AIX menu structure. Assume that the X-based program
retrieves the current disk system usage values from a remote system and displays
them in a graph. The ARF might specify that the IP hostname be used to identify
the remote system. The ARF might also specify that the command be invoked only
for those systems with particular capabilities (for example, an object with the node
capability field set).

Drop-in applications can integrate help information into the Help menu item on the
NetView for AIX main menu bar. To integrate drop-in application help information,
you place an appropriately formatted help file into a predefined directory, and iden-
tify that file in the application's ARF. The NetView for AIX help system automat-
ically shows the help information to the user through one of the menu items in the
NetView for AIX menu bar.

Chapters about Drop-In Applications
You can integrate drop-in applications into NetView for AIX using the information
presented in:

� Chapter 3, “Creating and Using the Application Registration File” on page 27

� Chapter 4, “Integrating Your Application with NetView for AIX Security
Services” on page 43

� Chapter 5, “Designing Application Help” on page 49

 Tool Applications
Tool applications typically are written explicitly for integration with the NetView for
AIX program and use the NetView for AIX Application Programming Interfaces
(APIs). The NetView for AIX Application Interface Style Guide refers to applications
that provide their own interface as application tools and application subtools. An
application tool is a set of integrated functions within an application that is pre-
sented to the user in one or more windows. Application subtools are specific func-
tions that can be carried out from an application tool. Applications that present
their functions through tools and subtools are called tool applications.

Tool applications have the following characteristics:

� They are accessible through NetView for AIX menus or executable symbols.
Once invoked by the user, tool applications usually provide their own user inter-
face (for example, an application-specific menu structure).

� They can perform actions on objects that exist in the map.

� They use a limited set of NetView for AIX API routines.

Tool applications are integrated into the NetView for AIX program more tightly than
are drop-in applications. Tool applications use the NetView for AIX registration files
and usually provide some form of help access through the NetView for AIX help

14 Programmer's Guide

system. Tool applications also use the NetView for AIX API to some degree. Tool
applications typically do not modify the contents of a map.

Note: Do not confuse tool applications as described here with applications that are
placed into the tools window. If you create a tool application, you might
want to add it to the tools window, but you are not required to do so. Simi-
larly, you might want to add a new tool application under the Tools pull-
down menu on the main NetView for AIX menu bar, but you can put it
wherever you choose in the menu structure. Please refer to the NetView
for AIX Application Interface Style Guide for suggestions about adding to
the NetView for AIX menu structure. For more information about adding
applications to the tools window, please see “Adding Your Application to the
Tools Window” on page 34.

Examples of Tool Applications
Consider a tool application that checks the disk utilization of systems on a network.
The application attempts to find all systems that have less than 10% disk space
free. (The threshold might be configurable through a window provided by the appli-
cation.) The application would be integrated into the NetView for AIX main menu
bar. When selected by the user, the application will search for those systems
whose free disk space is dangerously low. Once the tool application locates those
systems, it will graphically accent, or highlight, those objects on the map. (Note
that highlighting the symbol for an object does not alter the object database.) The
user could then select one of those objects and telnet to that system to correct the
disk usage problems. The application could provide help by placing text files in the
appropriate directory, as described in Chapter 5, “Designing Application Help” on
page 49.

This tool application relies on a number of NetView for AIX elements. It uses the
application registration file to integrate into the NetView for AIX menu bar, and it
employs the NetView for AIX Help system as well. This application uses the
NetView for AIX EUI API to highlight the symbols that correspond to the computer
nodes that are low on disk space.

Chapters about Tool Applications
Tool application developers should read a few key chapters in this manual. They
include:

� Chapter 3, “Creating and Using the Application Registration File” on page 27

� Chapter 4, “Integrating Your Application with NetView for AIX Security
Services” on page 43

� Chapter 5, “Designing Application Help” on page 49

� Chapter 6, “Understanding the NetView for AIX User Interface” on page 61 ,
and possibly other chapters in Part 2, “Working with the NetView for AIX User
Interface”

� Chapter 11, “Understanding the NetView for AIX Management Environment” on
page 167 , and possibly other chapters in Part 3, “Using the NetView for AIX
Management APIs”

 Chapter 2. Integrating Your Application with NetView for AIX 15

 Map Applications
Map applications are applications that modify the contents of maps, that is, they
update the NetView for AIX object database. To do this, map applications create
and modify objects that represent an entity in a real-world network or system man-
agement domain. The map application assigns meaning to objects and the
relationships between objects. Map applications can then create submaps that rep-
resent a subset of the map objects and their relationships. The next step, dis-
playing the submaps to the user, is not handled directly by the map application.
The NetView for AIX graphical interface acts as a mediator between the user and
the map application, and displays submaps when requested by the user or by
another application. The map application creates the underlying submaps, objects,
and symbols that are presented to the user through submaps.

Examples of Map Applications
The IP Map application provided with the NetView for AIX program is an example
of a map application. IP Map creates submap hierarchies that represent the dif-
ferent levels of network elements (networks, segments, nodes, and so forth) in an
IP network. IP Map then populates each submap with icon and connection
symbols that represent the objects on the network. Users can view a submap by
double-clicking on a symbol or by selecting the submap from the submap list box
available from the NetView for AIX main menu bar. The map application constructs
the submaps, and the NetView for AIX graphical interface displays the submaps to
the user.

Chapters about Map Applications
If you are writing a map application, you can expect to read portions from many of
the remaining chapters in this manual. Map application developers need to use a
wide variety of the functionality provided in the NetView for AIX developer's kit.
Map application developers need to be familiar with such broad topics as:

� Chapter 3, “Creating and Using the Application Registration File” on page 27

� Chapter 4, “Integrating Your Application with NetView for AIX Security
Services” on page 43

� Chapter 5, “Designing Application Help” on page 49

� Chapter 6, “Understanding the NetView for AIX User Interface” on page 61

� Chapter 10, “Map Events and Map Editing” on page 145 , and possibly other
chapters in Part 2, “Working with the NetView for AIX User Interface”

Depending on the map application, you may need to refer to some or all of the
chapters listed above.

Developing Applications for Control Desk Windows
The NetView for AIX graphical interface provides a special type of window called a
control desk window. These windows give you more direct control of your applica-
tion's execution than regular NetView for AIX windows allow. Applications designed
to run in a control desk window require some special coding, which is described in
Chapter 6, “Understanding the NetView for AIX User Interface” on page 61.

Most applications will fall into one of the application types described in this chapter.
There may, however, be some blending of application types. For example, an

16 Programmer's Guide

application might possess the characteristics of both tool and map applications. In
that case, you would need to read relevant sections from the appropriate chapters.

Integrating Your Application with Logging and Tracing
The NetView for AIX logging and tracing API, OVuTL, allows you to record informa-
tion during the operation of your application. This information can be useful when
you are developing and testing your application or diagnosing network management
problems. Logging and tracing are the two tools provided for obtaining this kind of
information. Logging and tracing have different objectives:

 Logging
Logging is generally provided for the benefit of system or network administrators,
developers, and some sophisticated end users. The messages you log should be
understandable to this class of user. The system administrator uses the nettl
process to configure, filter, and format log messages. The NetView for AIX logging
process has practically no impact on the performance of your manager or agent, so
logging can safely be turned on at any time.

 Tracing
Tracing is far more comprehensive in its intent than logging. Tracing provides
unambiguous evidence about the state of execution at key points in the code.
Tracing is intended primarily for the developer, to assist during the testing phase of
development. It is not intended for end-customer use; the information in the tracing
files is typically understood only by the developer. When you turn tracing on, you
should expect to experience a moderate degradation of performance. Therefore,
tracing is generally on only during testing and debugging. The NetView for AIX
program provides the OVuTL API to let you integrate your application with the
common logging and tracing facility called nettl. This facility uses daemon proc-
esses to receive log and trace data from network applications, and to direct that
data to its appropriate destination. For more information about the nettl subsystem,
see the nettl man page, as well as other man pages to which it refers.

Table 1 shows the three routines in the OVuTL API:

For more information about the OVuTL API, see the OVuTL() man page; it contains
important details and examples of how to use this API.

Table 1. Functions in the OVuTL API

Routine Description

OVuTLInit() Initializes the software and hostname information for the
logging and tracing output. You must call OVuTLInit() once
only, before any calls to OVuLog() or OVuTrace().

OVuLog() Enters a log message in the log file. By default this is
/usr/OV/nettl.LOG00.

OVuTrace() Enters a trace message in the trace file. By default this is
/usr/OV/nettl.TRC0.

 Chapter 2. Integrating Your Application with NetView for AIX 17

 Process Management
When you write an agent or daemon application for the NetView for AIX environ-
ment, you can choose how fully to allow it to cooperate with the NetView for AIX
process management daemon, ovspmd. Process management controls the startup
and shutdown of agent processes. It also sends information about agents' activities
to nettl, the NetView for AIX tracing and logging subsystem, for potential use in
problem determination.

From the perspective of a system administrator, process management is largely
invisible. Two commands, ovstart and ovstop , execute the startup and shutdown
functions, and one command, ovstatus , provides status information while the
NetView for AIX program is running. However, as a programmer designing an
application, you need to understand the different levels of control available to an
agent application, and select the one that works best. The NetView for AIX
program provides an application programming interface, the OVsPMD API, that
helps you incorporate process management functions in your agent.

You can write one of three kinds of agents:

Well-behaved Agent Uses the OVsPMD API to send status information
regarding successful and unsuccessful initialization, and
normal and abnormal termination. It also exits when it
receives the command OVS_CMD_EXIT from ovspmd.

If you are writing a new program, you should create a
well-behaved agent.

Non-Well-Behaved Agent
Does not use the OVsPMD API, and does not go into
the background on its own. During shutdown, the
ovspmd daemon sends SIGTERM to non-well-behaved
agents to notify them of the need to terminate. Non-
well-behaved processes that fail to terminate are sent
SIGKILL.

If you have an existing agent that does not go into the
background, you can decide to not modify it, and simply
declare it a non-well-behaved agent.

Daemon Agent Goes into the background on its own. While the
ovspmd daemon can start such an agent, it cannot
communicate with it thereafter, which means it cannot
obtain status information about it or terminate it.

If you have an existing agent that does go into the
background, you can decide not to modify it, and simply
declare it a daemon agent. However, this results in
poor integration of the agent and inefficient perform-
ance.

To create a well-behaved agent, use the OVsPMD API, which has four functions:

18 Programmer's Guide

See the man page for OVsPMD_API() for additional details. In general, to create a
well-behaved agent you should follow these rules:

1. Call the OVsInit() routine when your agent begins initialization. This gives you
a socket for later communication with the ovspmd process.

2. After initialization is complete, and regardless of whether it was successful or
not, call the OVsInitComplete() routine. A parameter to this routine indicates
the initialization status; if initialization failed, your agent should exit.

3. Your agent should be organized around a select() loop, waiting for input from
managers or from the managed object. You should select for reading on the
file descriptor returned by the OVsInit() routine.

4. When select() indicates the file descriptor is readable, use the OVsReceive()
routine to get the command from the ovspmd daemon. Currently the only
command is OVS_CMD_EXIT, which means your agent should clean up, call
OVsDone(), and exit.

5. If your agent exits on its own initiative (that is, without instructions from
ovspmd), call the OVsDone() routine, indicating in the message parameter the
reason for termination. This message will be logged by ovspmd along with
other exit information.

6. Never go into the background (fork and exit in the parent); the child process
cannot be managed by ovspmd.

Table 2. Functions in the OVsPMD API

Function Description

OVsInit() Indicates that the agent is beginning its initialization phase.
Returns a socket for communicating with ovspmd.

OVsInitComplete() Used to indicate that the agent has finished its initialization phase.

OVsReceive() Used to receive a command from ovspmd. Currently, the only
command is OVS_CMD_EXIT, which indicates that your process
should terminate.

OVsDone() Used to inform ovspmd that the agent is terminating normally. One
parameter is a text message used to indicate the reason for termi-
nation.

The Local Registration File
You can create a local registration file (LRF) for any new agent that you create or
install. The LRF allows managers to access your agent or application through the
NetView for AIX program. You can also create an LRF for any new daemon you
create. If you create an LRF for your daemon, you can integrate it with NetView for
AIX process management.

The LRF is a specially formatted ASCII file that serves two purposes:

� The LRF contains information about the agent, including:

– The agent's name
– The full path name of the agent's executable code
– How to start the agent

� The LRF contains information about objects managed by the agent.

 Chapter 2. Integrating Your Application with NetView for AIX 19

Structure of the Local Registration File
Each line in the LRF has a specific purpose, as explained in Table 3.

Note: The LRF must contain at least the first two lines of information. These first
two lines describe the agent and are used for process management.

The third and any subsequent lines in the LRF pertain to any objects managed by
the agent and are used by the object registration service. See “Third Line of the
Local Registration File” on page 22 for more information.

Table 3. Purpose of Lines in the Local Registration File

Line Description

First Specifies the agent name and the pathname of its executable file

Second Specifies process management information

Third (and sub-
sequent)

Specifies objects managed by the agent, including their object classes,
object instances, operations agents can perform on them, their protocol
stack, and password

General Syntax Notes for the Local Registration File
Each line in an LRF contains two or more fields. Each field, including the last field,
is terminated by a colon. Some fields are optional, but you must include the colon
terminator for the missing field.

The pound sign (#) indicates the beginning of a comment, which continues to the
end of the line. Blank spaces are not permitted within any field, nor are multibyte
characters permitted. Only printable ASCII characters are permitted in the first two
lines of the LRF. The colon (:), comma (,), backslash (\), and pound sign (#) are
permitted only as terminator characters.

First Line of the Local Registration File
The first line of the LRF specifies the name and location of the agent, as follows:

Name
A character string for the name of the agent being registered. You must
ensure that the name is unique. No default value is given; you must supply
a name.

This name is the name used when invoking the ovstart, ovstop, and
ovstatus commands.

Path A character string that specifies the location of the agent executable code on
disk. No default value given; you must supply the full (absolute) pathname.

Here is an example of the first line of an LRF:

ip_manager:/usr/OV/bin/MEGA/ip_mgr:

With this LRF, you could start the agent with the command ovstart ip_manager .
This would invoke the program stored in /usr/OV/bin/MEGA/ip_mgr.

20 Programmer's Guide

Second Line of the Local Registration File
The second line of the LRF defines the startup requirements for the agent.

There are five fields in the second line of the LRF. Each field is terminated by a
colon (:). The field descriptions are:

Initial Start Flag An optional character string. The flag defaults to
OVs_NO_START , indicating that the agent starts only if it is
explicitly named on the ovstart command, or if another agent
that depends on this one is started.

OVs_YES_START means the agent starts automatically when
ovstart is run with no arguments.

OVs_NO_STOP means the agent is not stopped unless it is
explicitly named on the ovstop command.

Dependencies A list of agent names, separated by commas, that must already
be running before your agent can be started. Use the names as
they appear in the Name field of the appropriate LRFs.

This field is optional; if nothing is specified, the agent can be
started at any time.

Arguments This field contains a series of character strings, separated by
commas. The arguments specified in this field are passed to the
agent as it starts, just as though they were passed from a user
at the command line.

This field is optional; if nothing is specified, it means that no
arguments are required.

Behavior This optional character-string field specifies how the agent will
interact with the ovspmd process management daemon. Agents
can be well-behaved (OVs_WELL_BEHAVED), non-well-
behaved (OV_NON_WELL_BEHAVED), or daemons
(OVs_DAEMON). The default is OVs_NON_WELL_BEHAVED .

Timeout This integer field is optional. The default is 5 seconds.

For well-behaved agents, this field is used to manage evident
startup failures, as follows:

� Your agent invokes OVsInitComplete() and returns
OVS_RSP_FAILURE in the status code parameter but fails
to terminate before the timeout expires.

� Your agent invokes OVsDone() but fails to terminate before
the timeout expires.

In either case, the ovspmd daemon terminates the agent
process, sending it SIGTERM and, if necessary, SIGKILL .

If your agent is either non-well-behaved or a daemon, the
ovspmd daemon waits until the timeout expires before starting
any agent that lists your agent in its Dependencies field. Also,
after the ovspmd daemon sends the SIGTERM command to
your agent, it waits until the timeout expires before sending it a
SIGKILL signal.

 Chapter 2. Integrating Your Application with NetView for AIX 21

Here is an example of the second line of an LRF:

OVs_YES_START:pmd,ems_sieve_manager:-v,-n:OVs_WELL_BEHAVED:15:

Third Line of the Local Registration File
The first two lines of the LRF contain information that relates to process manage-
ment. This information is used by the ovspmd daemon when it sends start and
stop requests to an agent or application.

The third line of the LRF contains information about the objects that are managed
by the agent. This information is stored in the object registration service database,
which is maintained by the orsd daemon. When a message from a manager or
agent is sent to a specific object, the pmd daemon consults a directory of orsd
database entries to determine the location of the object.

Table 4 describes the fields in the third line of the LRF. For more detailed informa-
tion on these fields, consult the LRF man page.

Here is an example of the third line of an LRF:

1.3.6.1.2.1.4:1.3.6.1.2.1.9.3=˜:OVs_GETR:OVs_ACMOT_TCP:OVs_Pwd=MySecret:

Table 4. Fields in the Third Line of an LRF

Field Description

Object Class The location of the object class in the registration tree. There is no
valid default value for this field.

You can use a wildcard character (*) in this field only if the agent
uses SNMP through the XMP interface.

Object Instance The fully distinguished name (FDN) of the object instance, created
by concatenating the Relative Distinguished Names (RDNs) in the
containment hierarchy. There is no valid default for this field.

This field is not used for agents that use SNMP through the XMP
interface; instead, a hyphen is used as a placeholder.

A wildcard character indicates that the agent manages more than
one instance of the class; in particular, it manages all instances
whose instance values match this field up to the point of the
wildcard. A wildcard character can be used only as the last char-
acter in this field.

A tilde (˜) is a special “target-host address” character, used mainly
in the LRFs of agents. This character is replaced with the IP
address of the target host.

Operation Specifies the operations that the agent can perform on the
managed object. If a wildcard is specified, it means all operations
except EVENT_REPORT are supported.

Protocol Stack Specifies the protocol stack that must be used to reach the object.
If you leave this field blank, the default value is
OVs_ACMOT_TCP .

Password A password is necessary only for SNMP proxy resolution. If you
leave this field blank, the default value is null .

22 Programmer's Guide

Example of a Local Registration File
This example of a local registration file shows an IP agent that manages all
instances of CMOT Internet IP objects that exist on the same node as the agent.

IPAgnt Local Registration File OVs_CMOT_TCP
IPAgnt_A.ð17.ð_MegaCorp_International:/usr/OV/bin/ip_mgr:
OVs_YES_START:pmd,ems_sieve_agent:-v,-n:OVs_WELL_BEHAVED:15:
1.3.6.1.2.1.4.2ð.1:1.3.6.1.2.1.9.3=˜/1.3.6.1.2.1.4.2ð.1.1=\:\:OVs_ACMOT_TCP:OVs_Pwd=Hush:

The first line in the preceding example is a comment line. The next three lines
correspond to the first, second, and third lines in an LRF, as follows:

1. Name and location of agent

 � Name
 � Full pathname

2. Process management information for agent

� Initial start flag
 � Dependencies
 � Arguments
 � Behavior
 � Timeout

 3. Object description

 � Object class
 � Object instance
� Operations that agent can perform on the managed object
� Protocol stack used to reach the object
� Password (used only for SNMP proxy resolution)

Rules for Building a Local Registration File
There are some rules you should follow when you build an LRF:

� The first line contains global information and is not specific to any object it
manages. There is only one such line in an LRF.

� The second line contains startup information. If any of the fields in this line are
not specified, the terminator (:) associated with that field must still be present,
because all fields in the file are position-dependent.

� The object must be defined in either Internet MIB (version 1) or a subset of
ASN.1 universal simple types.

� An instance of an object cannot be managed by more than one agent.

� A wildcard is allowed in an object class only if the object instance is an SNMP
variable, as indicated by a hyphen (-).

� When an asterisk wildcard is used in an object instance field, it is allowed only
at the end of the sequence of RDNs.

� The use of a wildcard in an operation field represents all operations except
EVENT-REPORT.

� Ensure that use of wildcards in an LRF will not result in a duplicate entry in
another LRF, since all LRFs are consolidated.

� Start a new entry on a new line.

� Entries cannot contain duplicate object class, instance, and operations.

 Chapter 2. Integrating Your Application with NetView for AIX 23

� Blanks are not permitted in any field.

� All fields must be specified. If a default value is used, the accompanying field
terminator (:) must be used.

� The distinguished name consists of one or more RDNs. Only the distinguishing
attribute is used for routing.

There are many ways to integrate your application with the NetView for AIX
program. You must choose the method that fits your needs best. One task which
must be completed for any application is creating an application registration file,
which is the subject of the next chapter.

The $LANG Environment Variable
The $LANG environment variable is used to indicate the language in which informa-
tion is written. The $LANG variable is often used as a directory name in the path
names of user-configurable files. For example, the path name for application regis-
tration files is /usr/OV/registration/$LANG.

For English-language versions of the NetView for AIX product, C is always used in
path names, even if the $LANG variable is set to En_Us. When you create new
registration files, bitmap files, help files, or other files whose path name contains
$LANG as the name of a directory, be sure to specify C as that directory name.
Thus, any new application registration files should be placed under the
/usr/OV/registration/C directory.

Customizing NetView for AIX Startup
Some customers and application vendors want to set environment variables or
execute scripts when the nv6000 command is executed. These modifications
should not be made in the /usr/OV/bin/nv6000 script itself, or in /etc/netnmrc,
because these files are subject to modification with any service update or new
version of the NetView for AIX program. User or vendor modifications to the
nv6000 script and the netnmrc file will not be preserved when migrating to a new
version of NetView for AIX, or when applying a service update that affects those
files.

To enable customers and vendors to make modifications that will not be lost by
upgrading, the nv6000 startup script runs the script named /usr/OV/bin/applsetup (if
it exists) just prior to starting the user interface. This script is run in the same
process as the nv6000 command and thus allows the setting or changing of envi-
ronment variables and other custom actions to be performed just as though the
code had been edited into /usr/OV/bin/nv6000 itself.

You can edit /usr/OV/bin/applsetup to add individual commands or commands to
run other shell scripts. Each such command must run its script in the current
process if that script sets or changes environment variables that are to be passed
to the EUI at startup time. For example, the following command runs "myscript" in
the current process:

 . /usr/OV/bin/myscript

24 Programmer's Guide

If you have made any modifications to the nv6000 script, we strongly recommend
that you move them to /usr/OV/bin/applsetup to avoid possible loss of startup
customization in the future.

For modifications that start processes that you want to have running independent of
the NetView for AIX user interface, and that require root access, you can use the
new /usr/OV/bin/netnmrc.aux script. This script is run at the end of netnmrc.
Entries in this script do not have to run in the current process. If you have made
any modifications to /etc/netnmrc, we strongly recommend that you move them to
netnmrc.aux to avoid possible loss of startup customization in the future.

Since the applsetup and netnmrc.aux scripts reside in /usr/OV/bin, they will auto-
matically be backed up and migrated so long as the /usr/OV/bin.USER category is
selected for backup.

 Chapter 2. Integrating Your Application with NetView for AIX 25

26 Programmer's Guide

Chapter 3. Creating and Using the Application Registration
File

This chapter describes how to create and use application registration files to inte-
grate your application with the NetView for AIX program. You must create an appli-
cation registration file (ARF) for each application that you write. The ARF is very
important in defining how your application interacts with the NetView for AIX
program.

A complete syntactical description of the ARF and other registration files is provided
in the OVwRegIntro man page. For convenience, all registration file entries use a
syntax that resembles the C programming language.

Understanding Application Registration Files
Application Registration Files are stored in the directory
/usr/OV/registration/$LANG . The $LANG environment variable provides support
for native language support. If not otherwise defined, $LANG is assumed to be C,
which means no native-language support is provided.

The registration files provide a static mechanism to configure NetView for AIX
behavior. Registration files are complemented by the NetView for AIX Application
Programming Interfaces (APIs). When used in conjunction with the registration
files, the APIs provide the additional support required to make your application an
integral part of the NetView for AIX program. The NetView for AIX APIs are
described in Part 2, “Working with the NetView for AIX User Interface” on page 57
and Part 3, “Using the NetView for AIX Management APIs” on page 161.

Note: The following examples use quotation marks around character strings coded
in the ARF. Quotation marks are required on the Command entry and on
the names of menu items in a Menu block. Quotation marks are required
on other character strings if they contain any blank characters or if the
string contains a keyword, such as application . Otherwise, quotation
marks are optional.

Creating the Application Block
Each application is integrated into the NetView for AIX program using a structure in
its ARF called an application block. The application block defines many aspects of
the interface between the application and the NetView for AIX program. Entries
and sub-blocks in the application block specify the following behavior:

� Menu bar structure

� Instructions for invoking the application command

� The version, description, and copyright strings displayed for the application

� Where application help information is located

� The format of dialog boxes that the NetView for AIX graphical interface can
display on behalf of the application

 Copyright IBM Corp. 1992, 1995 27

An ARF contains a single Application block that represents a single application. An
application can be defined only once; its name must be unique. The Application
block has the following syntax:

Application "<application name>" {
 ..

one or more application specifications
 ..
 }

The <application name> is replaced by the string by which the NetView for AIX
program will refer to your application. The remainder of this chapter describes
application specifications in more detail.

Specifying the Application's Version, Copyright, and Description
Users can view an application's version string, description, and copyright by
selecting the Applications Index from the main NetView for AIX Help menu. For
this information to be displayed properly, it must be specified in the ARF. The
version is specified as a string in a Version entry. The application's purpose is
specified in a Description block. The copyright is defined in a Copyright block. The
following example demonstrates the use of these blocks:

Application "My app" {
 ..
 Version "1.ð1";
 Description {

"Sample application description",
 "goes here."
 }
 Copyright {

"(C) 1995 International Business Machines Corp."
 }
 ..
 }

The Version text string must be a single line. The Description and Copyright blocks
are composed of one or more text strings separated by commas.

Defining the Help Directory
All applications integrated under the NetView for AIX program can provide online
help information. The HelpDirectory entry in the application block defines where
the help information is located.

The HelpDirectory section in the ARF specifies the directory containing the applica-
tion's help files. The NetView for AIX program assumes the string
/usr/OV/help/$LANG/ is prefixed to the directory name specified in the
HelpDirectory entry. Assume that the default language is C, and consider this
example:

Application "My app" {
 ..
 HelpDirectory "thisapp";
 ..
 }

28 Programmer's Guide

In this case, the help files are found in the /usr/OV/help/C/thisapp directory.

Instructions for defining the actual application help files are not presented here.
Chapter 5, “Designing Application Help” on page 49 describes how to implement
help files for your application. Refer to the NetView for AIX Application Interface
Style Guide for guidelines about designing online help.

Integrating Applications into the Menu Structure
A key feature of the NetView for AIX program is its ability to integrate network and
systems management applications with a common menu interface. This section
shows you how to integrate applications into the NetView for AIX menu structure
through the ARF.

The NetView for AIX program allows you to integrate your application either on the
main menu bar or under a menu cascade. Regardless of where your application is
integrated in the NetView for AIX menu structure, the following tasks are required to
register your application:

Step 1. Specify the menu item on the main menu bar under which your applica-
tion will be integrated.

Step 2. Specify the relationship, or linkage, between the main menu bar item and
the next menu item or pull-down menu.

Step 3. Continue defining menu items in cascading menus as needed.

Step 4. When you have reached the menu entry in which your application should
be invoked, define an Action block that specifies how to invoke the appli-
cation.

Here are the steps in more detail.

Defining the Menu Structure
Application integration begins in the main menu bar. A MenuBar block specifies
the menu label on the main menu bar under which the application will appear. You
can specify an optional mnemonic character to enable the user to select the item
by typing a single character. For example:

Application "My App" {
 ..

MenuBar "Configure" _C {
 ..
 }
 ..
 }

In the previous example, application integration begins under the Configure menu
bar entry. The user can select this menu item either by using the mouse or by
typing C once the menu bar is activated for keyboard input.

If the specified menu item does not exist, the NetView for AIX program creates it
for you. If it already exists, the NetView for AIX program will make the association
to the existing menu item.

The main menu item on the menu bar is now defined. The next step is to define
additional menu items and the application invocation. These are defined by a

 Chapter 3. Creating and Using the Application Registration File 29

Menu statement within the MenuBar block. The Menu statement specifies the
menu label and its function. One of the following three functions can be used:

f.menu Provides the declaration of a menu cascade within a menu. Menus in
the NetView for AIX menu structure will be extended to include the new
entry, or if one does not exist, a new cascading menu will be created.

f.action Associates an application invocation, or action, with the menu item.
When the user selects the menu item, the application is invoked appro-
priately. The application is notified of the selected action.

! Provides a short-cut mechanism to integrate shell commands into menu
selections. Applications invoked in this way are not notified of the user's
selected action, and selection rules (described in “Defining Application
Invocation” on page 36) cannot be used. If you want these features,
use the f.action function instead.

Using the Menu Structure
The following example demonstrates these menu concepts. The details of invoking
the application will be described in the next section.

Application "My App" {
 ..

MenuBar "Monitor" _M {
"Local Network" _L f.menu NetItem;

 }

Menu NetItem {
"Trends..." _T f.action Trends;
"Statistics..." _S f.action Stats;

 }
 ..
 }

In this example, the user can select the Monitor menu label from the main menu
bar. A pull-down menu containing the Local Network menu item is displayed.
Selecting the Local Network menu item causes a cascading menu to appear that
contains two more choices, Trends... and Statistics.... These choices are speci-
fied in the Menu block, which is associated with the Local Network item by speci-
fying the name NetItem, which appeared in the f.menu specification for that menu
item. Selecting either of these menu items causes the appropriate applications to
be invoked.

Notice the single-character mnemonics in the example menu statements. Mne-
monics are one of the following optional modifiers for a menu statement:

� A single-character mnemonic for keyboard selection, as in the example.

� A precedence value indicating how the menu item should be ordered. Menu
items are displayed according to the ordered precedence, and, within items of
equal precedence, in the application name order. Precedence is specified as
an unsigned integer value; 100 is the highest precedence, and zero is the
lowest.

� A keystroke sequence that invokes the menu selection without displaying the
menu. This is also called a keyboard accelerator and is specified using the
Motif* keyboard binding syntax.

The syntax for these options is specified in the OVwRegIntro man page.

30 Programmer's Guide

Note: Consult the NetView for AIX Application Interface Style Guide for guidance
when adding your application into the NetView for AIX menu structure. In partic-
ular, avoid creating new items on the main menu bar unless absolutely necessary.
Reuse existing menu structures wherever possible, and do not create menu cas-
cades more than three levels deep.

Using the Command Entry
The Command entry lists the complete command line used to invoke the applica-
tion. Whether the user selects the application through a menu item or through an
executable map symbol, this command will be used to invoke the program. Com-
mands that are tty-based (that is, non-X Window System applications) must be run
in an X-terminal window (aixterm(1) , for example). The following example illus-
trates the Command entry:

Application "editor" {
 ..

Command "aixterm -e /usr/bin/vi";
 ..
 }

Quotation marks are required around the command string, even if it contains no
blanks.

Because it is defined at the application block level, the command is considered
global. The application command will be invoked the same way every time, even if
the user selects the application in different ways. Commands can be defined on an
individual, per-action basis. Applications can be invoked in different ways (for
example, with different arguments) depending on the user's selection. See
“Defining Application Invocation” on page 36 for more information on per-action
commands.

Using Shell Environment Variables
The NetView for AIX program provides a run-time environment for applications,
allowing applications to access values of NetView for AIX environment variables.
Applications have access to a number of key items, including the menu items used
to invoke the application and the object selection list. These environment variables
can appear on the command line that invokes the application. The following
NetView for AIX environment variables are available for your use:

OVwSelections
A string containing the selection names of the objects in the selection
list when the application is invoked. The names are separated by blank
characters.

OVwNumSelections
The number of selection names in the selection list when the application
is invoked.

OVwSelectionn (n=1..10)
OVwSelection1 is set to the selection name of the first object in the
selection list, OVwSelection2 is set to the second name, and so on.
These strings are returned in the order in which their associated objects
were selected. The selection list is limited to ten elements.

 Chapter 3. Creating and Using the Application Registration File 31

OVwActionID
The name of the action by which the application is invoked. Actions are
defined in the ARF and are described later.

OVwMenuItem
If the application is invoked through a menu item, this environment vari-
able will contain the label of the menu item that caused the action. If
the application is invoked from the Tools window, this variable will
contain the tool's label as specified in the Tool block for that application.

This example demonstrates a command that is invoked with the first element in the
selection list:

Application "Telnet" {
 ..

Command "/usr/bin/telnet $OVwSelection1";
 ..
 }

If you use selection names in your Command entry, you must understand the
format of the selection list. If the selected string contains a space, it will be divided
at the space, and argv(1) will contain only the string preceding the space. You can
handle this situation and use the entire string by placing \" before and after the
selection variable in your Command entry. The following example illustrates this
usage:

Application "Myprog" {
 ..

Command "/usr/bin/myprog \"$OVwSelection1\"";
 ..
 }

Use this technique carefully to avoid unexpected results. For example, if you use \"
around a list of selection variables, they will be collated into one string rather than
being treated individually.

Note: When an application is invoked from an object menu, the selection list con-
sists of the object from whose menu the application was selected. Any pre-
vious object selections made by the user are ignored. For information
about adding your application to an object menu, please see “Adding Your
Application to an Object Menu” on page 34.

Using Process Flags to Control Execution
The NetView for AIX program can manage your application in a number of ways.
By default, the NetView for AIX program invokes your application at run-time when
the user selects the appropriate menu item or executable symbol. Each selection
by the user causes another instance of the application to be loaded and executed.
You can change this behavior by adding special flags to your command entry in the
application block. For example,

Application "My app" {
 ..

Command -Initial -Shared -Restart
"/usr/local/bin/your_app";
 ..
 }

32 Programmer's Guide

There are three flags defined: Initial, Shared, and Restart. The following list
describes their use:

Initial Tells the NetView for AIX program to start the application when the
NetView for AIX program is started. The application will be invoked by
the Command line in the application block.

Shared Tells the NetView for AIX program that only a single instance of this
application command should be running at any time. This application
instance is shared, and will handle action requests that occur after it has
started.

Restart Tells the NetView for AIX program to restart the application if it should
ever exit. This flag is intended for applications that are required for
normal NetView for AIX operation, such as those managing the seman-
tics of NetView for AIX maps.

If you want to use more than one process management option, combine them in
the same Command entry as shown in the example.

Note: If your application serves one purpose and always performs the same func-
tion when called, an ARF specification will be sufficient. However, if your
application is shared and performs several different functions, it must call
the NetView for AIX API routine OVwAddActionCallback(), which is
described in “Defining Callback Routines for Events” on page 63.

Defining a NameField
A single NetView for AIX object can have several names, such as:

� A selection name (NetView for AIX's unique name for the object)
� An IP hostname (for IP networks)
� A user-defined or application-defined name

When a user selects an object on a map, the NetView for AIX selection list is built
using the object's selection name by default. The NameField section lets you
choose other name forms that are used to construct the selection list. You can, for
example, request that only IP Hostnames are used in the selection list. Using a
NameField entry guarantees that actions or commands are allowed only if all
objects in the selection list have that name field. Otherwise, the menu item is
greyed out.

You can use any of the preregistered NetView for AIX name fields in the
NameField section, or you can create your own. For instance, a previous example
demonstrated how to invoke telnet with an NetView for AIX shell environment vari-
able. This works well if the selection item is the same as the host name and the
host is capable of supporting telnet. However, it is be inappropriate for a modem.
By supplementing the Command section of the registration file with a NameField
section, you can guarantee that the command is invoked with a list of selected
items appropriately filtered. You can extend the telnet example by filtering out all
selected items that do not have host names, as shown in the following example:

Application "Telnet" {
 ..

Command "/usr/bin/telnet $OVwSelection1";
NameField "IP Hostname";

 ..
 }

 Chapter 3. Creating and Using the Application Registration File 33

In this example, the command will be enabled only if all objects in the selection list
have an IP Hostname name field. The command will be invoked using the first
object in the selection list as an argument.

You can supply several name types, separated by commas, in the NameField
entry. The NetView for AIX program will check the object's names against each
name specified in the NameField statement. If several names are specified in the
NameField statement, the NetView for AIX program will use the first name that is
valid for the object. The NameField entry is a convenient way to filter selections
from the selection list. You can construct more sophisticated filters using selection
rules, which are specified in the Action block.

Adding Your Application to an Object Menu
In addition to the menu structure accessible through the main menu bar, object-
related menus can be invoked by pointing to an object on the submap and pressing
and holding the third mouse button. Refer to the NetView for AIX User's Guide for
Beginners for information on using these menus. If your application is one that
operates on an object, you can add your application to the menu that is displayed
in this way. To add your application to the object menu, code an ObjectMenu
block. The syntax of the ObjectMenu block is similar to that of the Menu block,
except that no name is specified:

Application "My App" {
 ..

MenuBar "Monitor" _M {
"Local Network" _L f.menu NetItem;

 }

Menu NetItem {
"Trends..." _T f.action Trends;
"Statistics..." _S f.action Stats;

 }
 ObjectMenu {

"Trends..." _T f.action Trends;
"Statistics..." _S f.action Stats;

 }
 ..
 }

Your ObjectMenu entries can invoke the same Action block specification that is
used for the main menu entries, as in the example above, or they can invoke dif-
ferent actions that are defined in another Action block.

Note: When an application is invoked from an object menu, the selection list con-
sists of the object from whose menu the application was selected. Any pre-
vious object selections made by the user are ignored.

Adding Your Application to the Tools Window
As part of its graphical user interface, the NetView for AIX program provides a tools
window which gives users easy access to commonly-used applications in a drag-
and-drop style. You can add your application to the tools window by coding a Tool
block in your ARF. The Tool block has the following syntax:

34 Programmer's Guide

Tool <Precedence> "Label" {
Icon [Bitmap "Filename"] | [Gif "Filename"] | [Solid "Color"];

 LabelColor "Color";
 DragBitmap "Filename";

SelectionMechanism double-click, drag-drop;
Action "Action Name";

}

The Tool block entries are described in the following list:

Precedence An indication of the importance of the item on the Tools Window.
Tools are listed in the Tool Window according to precedence.
Items of the same precedence are ordered according to the order
in which they were registered. The precedence is specified as an
integer from 0 to 100 inclusive, enclosed in brackets (for example,
<50>). An item with a precedence of 100 is listed at the top of the
Tools Window. Note that the Control Desk will always be at the
top of the Tools Window, even if there are other tools registered
with a precedence of 100.

Label The label to appear beneath the icon in the tools window. This
label will appear in the OVwMenuItem environment variable when
the application is invoked from the Tools window.

Icon Specify either Bitmap or Gif with the fully-qualified name of the file
containing a bitmap or gif file for the tool icon, or Solid with the
solid color for the icon.

DragBitmap The fully-qualified name of the file containing a bitmap to be used
for the cursor while dragging the icon. Use only if
SelectionMechanism is drag-drop. This bitmap may contain only
two colors. The drag bitmap requires two files, with suffixes of .p
and .m attached to the file name specified in the Tool block.
These files are similar to those required to build a new symbol,
and are described in “Creating Bitmaps for NetView for AIX
Symbols” on page 105.

SelectionMechanism
The user action (double-clicking the mouse button or drag-drop)
used to invoke the application. You may code either value or both
separated by commas.

Action The name of an Action block that specifies the command to be
invoked when this application is selected.

In the following example of a Tool block, the tool is represented on the tools
window by a Gif icon, and is selected by double-clicking on the icon:

Tool <5ð> "Graph Demo" {
 Icon Gif "/usr/OV/gif/C/graph.gif";
 LabelColor "black";
 DragBitmap "/usr/OV/bitmaps/C/graph";
 SelectionMechanism drag-drop;
 Action "graphDemo";
 }

Action "graphDemo" {
/\ definition of graphDemo action \/

 }

 Chapter 3. Creating and Using the Application Registration File 35

This tool icon has a precedence value of 50. It will be placed closer to the top of
the Tools Window than other applications with a lower precedence value. If there
are other icons with a precedence value of 50, the icons will be arranged alphabet-
ically by application name.

Note: If your application is to be dropped into a control desk window, you must do
some extra work. See “Developing Applications for Control Desk Windows” on
page 74 for details.

Defining Application Invocation
Once the menu structure is in place, the last step is to define how the application is
invoked. Application invocation is defined in an Action block. The Action block
specifies how the application command is invoked, how the process is managed,
and how the application uses the selection list from the map. The following defi-
nitions can be used in an Action block:

SelectionRule
Provides a mechanism to guarantee that the application is invoked only
if the selected objects meet predefined criteria. The selection rule is a
logical expression involving capability fields. The logical expression can
use logical AND (&&), logical OR (||), or logical NOT (!) operators.

MaxSelected
Specifies the maximum number of objects that can be selected on the
map for the action to be enabled. If this value is not specified, any
number of objects may be selected for the action. If this value is set to
zero, no objects may be selected.

MinSelected
Specifies the minimum number of objects that must be selected on the
map for the action to be enabled. If MinSelected is set to some value,
the selection list must contain at least that number of objects. If
MinSelected is not set, any number of objects can be selected. If
MinSelected is not set and a SelectionRule is set, the selection list must
contain at least one object. If MinSelected is set to zero and a
SelectionRule is set, the selection list can contain zero or more objects.

Security Specifies that this action is available only if NetView for AIX security is
active. Chapter 4, “Integrating Your Application with NetView for AIX
Security Services” on page 43 has more information about NetView for
AIX security.

Command
Specifies the command line used to invoke the application on a per-
action basis. Commands specified in an Action block override com-
mands specified globally in the Application block. If no command is
specified globally, a command must be specified for each action defined.

Process Flags
You may define specific process management instructions on a per-
action basis. The Initial, Shared, and Restart flags may be used on a
per-application basis and override any global process flags.

NameField
The NameField entry provides the same object name field validation as
described in the Application section, but on a per-action basis.

36 Programmer's Guide

CallbackArgs
Using the NetView for AIX EUI API, you can designate a callback
routine that is invoked when the user selects this action. Using the
CallbackArgs entry, you can specify a string containing arguments that
are passed to the callback routine. Callback routines are described in
“Defining Callback Routines for Events” on page 63.

The following example illustrates an action block specification:

Application "My App"
 ..

MenuBar "Monitor" _M {
"Network Activity" _A f.menu "Net Activity";

 }
Menu "Net Activity" {

"Trends..." _T f.action Trends;
"Statistics..." _S f.action Stats;

 }
Action Trends {

SelectionRule isNode && isDevice;
 MinSelected 1;
 MaxSelected 1;
 Security;

Command "/usr/local/bin/myapp $OVwSelection1";
CallbackArgs "-trends -verbose";

 }
 ..
 }

In this example, if NetView for AIX security is active, the user can select the
Trends... menu item from the menu cascades to request that the application be
invoked. The NetView for AIX program executes the application only if there is a
single object selected on the map, and that object has the isNode and isDevice
capabilities. If these conditions are met, the application is invoked with the name of
the selected item. The CallbackArgs statement defines a string that is passed to
the application's callback routine when the user invokes this action.

Using Dialog Boxes
The NetView for AIX graphical user interface can be used to perform a variety of
map operations that might affect your application. These map operations can result
in user interaction through a NetView for AIX dialog box. If your application sup-
ports any of the four basic map operations (Add, Describe, Connect, or Configure),
you can let the NetView for AIX graphical user interface construct dialog boxes for
you. This section explains how to use this automatic dialog box generation.

The definition of fields to be presented in dialog boxes is called field enrollment,
because each field presented in a dialog box is a field in the NetView for AIX object
database. You can define the basic characteristics of dialog boxes and leave the
details of dialog box construction to the NetView for AIX program. These dialog
boxes are used only when the user selects the Add, Describe, Connect, or Config-
uration operations. Limited control over dialog box layout is provided.

Note: If you have particular dialog box needs that are not met by NetView for
AIX's field enrollment capability, use OSF/Motif* to implement your own dialog box
directly.

 Chapter 3. Creating and Using the Application Registration File 37

Defining Dialog Boxes with the Enroll Block
Dialog boxes are defined using Enroll blocks. A separate Enroll block is used for
each dialog box type that you define. The Enroll block has the syntax:

Application "My app" {
 ..

Enroll <dialog type> {
one or more field enrollment specifications

 }
 ..
 }

The <dialog type> is one of the following four map operations:

Add The dialog box is presented when a user adds an object to the
map, using the Edit..Add Object menu function.

Describe The dialog box is presented when a user invokes the describe
action on an object, using the Edit..Modify/Describe menu func-
tion.

Connect The dialog box is presented when a user attempts to connect two
objects on the map, using the Edit..Add Connection menu func-
tion.

Configuration The dialog box is presented when a user requests to change
per-map configuration parameters for an application, using the
Edit..Modify/Describe or File..Describe Map menu function.
This dialog box is application-specific and is not related to an
object.

The Enroll block defines which of the four map operation dialog boxes your applica-
tion supports. The next steps are to:

1. Define logical expressions within the Enroll block that let you display different
fields, which depend on the capabilities of the selected objects. These
expressions are called rules.

2. Define field specifications for each field within a rule. The field specifications
define the label, display policy, and editing policy for each field.

Defining Rules within Enroll Blocks
Rules are logical expressions that use object capabilities to control when fields are
displayed. Rules have the following format:

Enroll <dialog type> {
if <capability expression> {

 <field specifications>
 }
 ...
}

In its simplest form, the logical expression is an object capability. Object capability
fields are described in “Field Flags” on page 81. You can use logical AND (&&),
logical OR (||), or logical NOT (!) operators to construct expressions. For example,
consider a Describe dialog box. You may want to display one set of fields if the
user selects an object with network interface capabilities, and another set of fields if

38 Programmer's Guide

the user selects an object with either node or router capabilities. The following
ARF segment illustrates this case:

Application "My app" {
 ..

Enroll Describe {
if isNetworkInterface {

Field "IP Address" {
 ...
 }
 }

if isNode || isRouter {
Field "IP Hostname" {

 ...
 }
 }
 }
 ..
}

In the previous example, the IP Address field will be displayed if the selected
symbol has the isNetworkInterface capability, while the IP Hostname field will be
displayed if the selected symbol has isNode or isRouter capabilities.

Note that rules are based on object capabilities. Rules in the Add and Describe
dialog types operate on a single object. However, the Connect dialog type involves
two end points, or objects, to be connected. In this case, two logical expressions,
separated by a comma, are required, as shown in the next example:

Enroll Connect {
if (isNode || isRouter), isRouter {

 <field specifications>
 }
}

In this case, the first end point must be an object that has either isNode or isRouter
capabilities, while the other end point must have the isRouter capability. Selection
order is not important.

 Chapter 3. Creating and Using the Application Registration File 39

The Configuration dialog type is not related to an object and therefore does not
require rules. The following example illustrates a Configuration Enroll block:

Application "My App" {

 Command -Shared "$HOME/myapp";
 ...
 Enroll Configuration {

Field "myapp_string" {
Label "My string field: ";

 EditPolicy Edit;
DefaultValue "No Comment";

 }
 ...

Field "myapp_enum" {
Label "My enumeration field: ";

 EditPolicy Edit;
DefaultValue "Mode 1";

 }
 }

This example also shows two field definitions, which are described in the next
section.

Using Fields in the Enroll Block
Field specifications within an Enroll block define which object database fields are
presented to the user, as well as their display format. A field specification can
contain the following information:

Field The name of the field in the object database (required)

Label An optional string used as field label in the dialog box. By
default, the label is the same as the field name.

EditPolicy An optional editing policy for the field. By default, fields
can always be edited. You may specify that the field is
read-only (NoEdit) or that the field may be edited only
when it is used in a new map or new object
(EditOnCreation).

IntegerDisplayPolicy An optional display policy for integer fields. By default,
integers are displayed as 32-bit signed decimal values.
You may also specify Unsigned, Hex, or Octal, or IPAddr
for conventional IP Address dot notation format.

The following example illustrates how to specify fields within an Enroll block. In this
example, the field contains an IP address. This means:

� The field should be displayed only if the symbol is a node. This is accom-
plished with the if isNode specification preceding the field definition.

� The field label should be IP Address:

� The field value should be displayed in IP address format.

� The user is prevented from changing the value.

40 Programmer's Guide

Application "My map app" {
 ..

Enroll Describe {
if isNode {

Field "IP Address" {
Label "IP Address:";

 IntegerDisplayPolicy IPAddr;
 EditPolicy NoEdit;
 }
 }
 ..
 }
 ..
}

Many Enroll blocks contain multiple field specifications. You can examine the appli-
cation registration files provided with the NetView for AIX program for more exam-
ples. The OVwRegIntro() man page contains a complete description of entries
within Enroll blocks.

Providing Enroll Block Help
Each Enroll block defines the format for a dialog box generated by the NetView for
AIX program. The NetView for AIX program provides a comprehensive help
system to assist users in their tasks, and dialog-box help is part of this help system.
The help information is displayed when the user selects the Help button in the
dialog box. Use a HelpFile entry in your Enroll block to specify the location of a
dialog-box help file. The HelpFile entry has the following format:

Application "My app" {
 ...

Enroll Describe {
if isNode {

 HelpFile "OVw/Dialogs/describe_help";
Field "IP Address" {

 ...
 }
 }
 }
 ...

The help file follows a specific format that is described in the NetView for AIX Appli-
cation Interface Style Guide. The path of the help file is specified in quotes and is
relative to /usr/OV/help/$LANG/HelpDirectory/appname, where appname is the
name given to your application in the Application block of its ARF.

Registering for Map Editing Events
After defining your dialog box with an Enroll block, if you have at least one
“Command” statement defined in your registration file, you must register your appli-
cation to be notified when the user performs actions that require dialog-box input.
Your application must register both Query and Confirm callback routines. This
process is described in “Participating in Map Changes” on page 152. If you have
no “Command” statements defined in your registration file, your Enroll blocks are
accepted by NetView for AIX and will be displayed whenever those actions are
invoked by the user.

 Chapter 3. Creating and Using the Application Registration File 41

How Registration Files Are Processed
All application registration files (ARFs) are read each time the nv6000 command is
issued. Each time the NetView for AIX program is started, as part of its initializa-
tion process, it searches the registration-file directory, /usr/OV/registration/$LANG,
and its subdirectories, for files. Any file found in this directory is assumed to be a
registration file. For each ARF found, the NetView for AIX program executes the
following steps:

Step 1. Opens the file.

Step 2. Parses the file for correctness.

Step 3. If the file is valid, the NetView for AIX program adds the item to the desig-
nated menu and defines actions and other ARF specifications.

Step 4. If the file contains errors, the NetView for AIX program prints error infor-
mation to stderr, indicating the name of the file and the number of the
line where the error was found. Errors can be caused by syntax errors or
duplicate definitions.

Symbol Type Registration Files (STRFs), described in “Defining Symbols with
Symbol Type Registration Files” on page 109, are processed in the same way as
Application Registration Files. Field Registration Files (FRFs) are processed in the
same way, but only when the nv6000 command is invoked with the -fields option.
See “Using the Field Registration File” on page 80 for more information on FRFs.

42 Programmer's Guide

Chapter 4. Integrating Your Application with NetView for AIX
Security Services

Version 4 of NetView for AIX provides new distributed security services for network
administrators to control the access users have to applications and platform func-
tions, to audit usage, and control access to NetView for AIX itself. As an applica-
tion developer, you can choose to make use of the security services by providing
default security settings for your application.

To make use of NetView for AIX security services, you need to do two things:

� Provide a Security Registration File (SRF) to register sensitive resources.

� Code security APIs. This is only required if your application can be invoked
outside of the EUI menu bar, or if it needs to use other security services (such
as auditing).

Deciding Whether to Secure Your Application
Basically, the decision on whether to make your application secure depends on
whether your application has any sensitive resources. Does your application have
any of the following?

� EUI menu bar items

� Object context menu items

� Items on the Tool Window

� Commands that can be executed from the command line

� Resources that are configurable (with the new auditing capability, should the
network administrator be notified of a configuration change in your application?)

If your application meets any of these criteria, you should define default security
settings for your application.

If you choose not to provide a security framework around your application, the
application can still be used in a network that is taking advantage of NetView for
AIX security services, although your particular application will not be secure.

A Guide to Integrating
This section outlines the steps for integrating your application with NetView for
AIX's distributed security services.

1. Determine which resources need to be secured, as outlined in the previous
section.

2. Create a default Security Registration File (SRF) for the resource. The SRF is
a seed file that specifies the access different security groups have to resources.
You can secure resources at several different levels of granularity, from an
entire application to class methods to individual menu items. Within the SRF,
you define the name of the application, access permissions for the resource,
the actual items that are being secured, the type of item (such as menustring),
and a propagation flag that sets permissions for sub-elements of the item

 Copyright IBM Corp. 1992, 1995 43

you're securing. “Format of the Security Application File” on page 45 shows an
example of a Security Registration File (SRF).

You must register any resources you consider sensitive, such as MenuBar
menustrings, context menu menustrings, Tool Window items, class methods,
and command line user executables.

3. Put the SRF in the directory /usr/OV/security/$LANG/Domains/registration on
the NetView for AIX server machine (do not put the SRF on clients). Set
$LANG=C for English language. For consistency, it is suggested that you use
the same name for the SRF and for the Application Registration File (ARF).

If you use the c_arf2srf utility to create an SRF from the application's ARF, the
SRF will be put in the correct directory automatically.

4. Determine if you need to code any security APIs. If your application is
launched only from the NetView for AIX EUI menu bar and you do not need to
use any other security services (such as auditing), you do not need to code API
calls. For applications registered for the NetView for AIX EUI, the security
server automatically checks the permissions of EUI menu items and greys out
the item or takes it off the menu bar completely (depending on the permissions
the user assigns it in the SRF).

5. If your application can be invoked from outside the EUI, or if it needs to use
other security services (like auditing), code a call to nvs_isClientAuthorized()
just after main() in your program. This API establishes a security context with
the NetView for AIX security server, and determines whether the user
attempting to start the application has any type of access to the application.
This call returns a 'permit' or 'deny' response.

6. Optionally, code a call to nvs_getClientPerms() to allow your program to
retrieve the actual bitmask permissions that the user has assigned for the
resource. In other words, you can find out the exact permissions the user has
been assigned for the resource, such as read-only or read-write-execute.

7. Code a call to nvs_SecErrMsg to return status messages from the other secu-
rity API calls.

8. Optionally, code a call to nvs_Audit to write an entry to an audit logfile if a user
changes configuration of your application. In the call, you define what values
will be audited.

9. Code a call to nvs_deleteSecContext in your exit handler to release the security
context.

Understanding the Security Registration File
NetView for AIX platform applications must register with the security server. The
Security Registration File (SRF) identifies the functional entities that need to be
secured. SRFs are complemented by NetView for AIX security APIs. When used
in conjunction with the registration files, the APIs provide the additional support
required to make your application an integral part of the NetView for AIX security
framework. In a client/server environment, SRFs reside on servers only.

Default Security Registration Files are stored in the directory
/usr/OV/security/$LANG/Domains/registration . To see examples of other SRF
files that are shipped with NetView for AIX, look in this directory. The $LANG envi-
ronment variable provides support for native language localizability. If not other-

44 Programmer's Guide

wise defined, $LANG is assumed to be C, which means no native-language support
is provided.

SRFs are created for different security groups after the network administrator
defines security policies for the groups. NetView for AIX provides two pre-
configured security groups: Oper and SrAdmin . These two security groups have
their own SRF files in their security directories.

Format of the Security Application File
Here is an example of an SRF. Each field is explained in the list following this
example.

###
#
File for Network Management Security System
#
SRF seed file for xnmcollect
#
Copyright International Business Machines Corp. 1995
All rights reserved.
#
###

DOMAIN_ID = xnmcollect
DESCRIPTION = " Defines and controls SNMP Data Collectors and Threshold Monitors"
SEPARATORS = ->
VALID_PERMISSIONS = rx
ELEMENTS =

"xnmcollect" . FALSE executable
"SNMP Data Collector->Tools" . FALSE menustring
"SNMP Data Collector->Tools->Data Collection & Thresholds" . FALSE menustring
"SNMP Data Collector->Tools->Data Collection & Thresholds->SNMP..." . FALSE menustring

The fields in the SRF are defined as follows:

DOMAIN_ID Specifies the name of the application being registered
with the security server. This is not the name of the
specific menu item that you want to control; that is
specified on the ELEMENTS block.

DESCRIPTION Provides a one-line description of what the application
does.

SEPARATORS Identifies the character that is used as a separator
when parsing the element names specified on the ELE-
MENTS block.

VALID_PERMISSIONS Specifies the valid permissions that can be set for your
element. In this example, valid permissions for the
xnmcollect executable are rx (read and execute). Any
single character from a to z inclusive is valid.

ELEMENTS The actual elements being secured, and the security
assigned to the elements and their sub-elements. In
this example, the elements are the menu items for
SNMP data collection, which is the xnmcollect execut-
able.

 Chapter 4. Integrating Your Application with NetView for AIX Security Services 45

Each element definition has the form
ELEMENTS=element_name default_perm propagation
type. These fields are defined as follows:

element_name is the text of the item being secured. It
can be in one of two formats:

� An application name as it appears on the menu bar,
in the form application name->menubar
item->menustring. In the sample SRF file, "SNMP
Data Collector->Tools->Data Collection & Thresh-
olds" is an example of this format. You must
specify the application name and menubar item
name for menu bar items.

Note: The application name should be the same
as the name under which the application is regis-
tered in the Application Registration File.

� An executable name. One or more names are sep-
arated by a separator charater and enclosed in
double quotes. In the sample SRF file, "xnmcollect"
is an example of this format.

Note: If you used the nvs_isClientAuthorized or
nvs_getCLientPerms APIs for your application, the
executable name specified in the SRF must match
exactly the target ID specified on these API calls.

default_perm is the access permissions set for the
element. In a "seed" SRF file, this field should be set
to a period (.), indicating that no permissions are
assigned. The network administrator will set the per-
missions through the security dialogs after NetView for
AIX is installed.

propagation specifies whether the permissions set for
the element will be propagated to sub-elements under
that element that are not specified in the SRF (such as
Help). In this example, all propagations are set to
FALSE.

type identifies the type of resource being controlled.
Valid values are

� menustring - any string of text that appears on a
menu pulldown or context menu

� executable - command-line executables
� method - any sensitive class method
� toolitem - any item that appears on the Tools

Window

Creating Security Registration Files from Application Registration Files
Because much of the information in the SRF is already in an application's ARF, and
because certain fields should match, it is a good idea to use the c_arf2srf utility to
create the SRF for your application. This utility reads an application's ARF, creates
an SRF using the application information, and places the SRF in the
/usr/OV/security/$LANG/Domains/registration file.

46 Programmer's Guide

 Chapter 4. Integrating Your Application with NetView for AIX Security Services 47

48 Programmer's Guide

Chapter 5. Designing Application Help

This chapter describes the NetView for AIX help system and how to use it. All
applications that you create should provide online help information as described in
this chapter. Users benefit from having a help system that behaves consistently
across applications, even though those applications have been developed by more
than one vendor or application developer.

There are three ways to provide help for users:

� Through the NetView for AIX help system

Use the NetView for AIX help system to provide help from the NetView for AIX
main menu bar and from dialog boxes. See “Using the NetView for AIX Help
System” for more information.

� Through application-specific help

You can construct custom help menus to provide users with detailed help for a
specific application. See “Providing Help from Your Application's Menu” on
page 54 for more information.

� Through the OVwShowHelp routine

You can process help requests in your application and use this routine to
present a help file or index. See “Displaying Help Information
Programmatically” on page 56 for more information.

An important source of guidance on presenting help information is the NetView for
AIX Application Interface Style Guide. This guide describes the types of help you
can provide, as well as the recommended format for help entries. The NetView for
AIX Application Interface Style Guide provides examples of each of the types of
help described in this chapter.

Note: The NetView for AIX program has implemented a hypertext help system.
This system is currently not available to application developers. All the
capabilities described in this chapter are still fully functional in Version 4 of
NetView for AIX. If you write applications, or if you build applications using
the MIB Application Builder, use the help system described in this chapter.

Using the NetView for AIX Help System
The NetView for AIX help system can manage many of the tasks required to
present help information to the user. In its most basic form, it is composed of the
following items:

� A set of ASCII text files that contain the application help information.

� A mechanism for linking user actions, such as selection of a Help button or
pull-down menu, to a particular help file.

� A viewing facility that presents help information to the user. The viewing
facility, called ovhelp, is an X-based help system that displays help text in a
window, using scroll bars to allow users to scroll through the text.

 Copyright IBM Corp. 1992, 1995 49

There are three different ways in which you can provide help to users of your
application:

� You can provide help through the Task Index and Function Index, which are
accessible from the Help pull-down menu on the NetView for AIX main menu
bar.

� You can provide help through panels accessible from your application's dialog
boxes.

� You can provide a Help pull-down menu on your application's menu bar, and
show a list of topics on which help is available.

The following pages describe how to provide help in each of these ways.

Providing Help from the NetView for AIX Menu
Read this section if you want your application's help information to be available
under the NetView for AIX program's main menu bar. The Help pull-down menu on
the main menu bar contains the following menu items:

Indexes
NetView for AIX Help
NetView for AIX Library
On Help
Legend
AIX Base OS InfoExplorer\
On Version

You can add application help information directly under the Tasks and Functions
Indexes. Other menu items, such as On Version , use information from application
registration files. The remaining help menu entries are used only by the NetView
for AIX program.

Table 5 shows the purpose of each item and indicates whether you can add help
information under the item. Items that have "Reg" in the second column can be
modified by changing a registration file. Items that have "Annot" in the second
column can be modified by the user or administrator through the DynaText anno-
tation function. For a fuller description of the items on the NetView for AIX main
Help menu, refer to the NetView for AIX User's Guide for Beginners.

50 Programmer's Guide

Through this menu, your user can view help information for any NetView for AIX
applications that have created help files to appear in the Task and Function
Indexes.

To integrate application information into the Task Index or the Function Index, place
the ASCII text files in the appropriate subdirectories as described below. The
NetView for AIX program automatically integrates the help information into the Help
menu.

Table 5. Help Menu Item Descriptions

Help Menu Item Can Developer
Modify?

Description

Indexes..Applications Reg Provides version, copyright, and
description information from each applica-
tion's application registration file.

Indexes..Tasks Yes Provides information related to tasks per-
formed with the application.

Indexes..Functions Yes Provides information on functions acces-
sible from the menu bar or explodable
symbols.

NetView for AIX Help Annot Provides task-oriented help on using the
NetView for AIX program.

NetView for AIX
Library

Annot Invokes the DynaText program to present
the NetView for AIX online manuals and
any other libraries that have been created
in DynaText format. This is a separately
installable feature of the NetView for AIX
program.

On Help No Describes each item in the Help menu.

Legend Reg Describes each symbol used by NetView
for AIX and by applications. New symbols
defined in symbol type registration files
will be shown here.

On Version No Provides version information for each
application from its application registration
file.

AIX Base InfoExplorer No Invokes the InfoExplorer program to
present the online manuals that describe
the AIX operating system.

Providing Applications Index Help
The Applications Index lists all applications that are integrated with the NetView for
AIX program. When the user clicks on an application name, the help system dis-
plays version, copyright, and descriptive information about the application. For
examples of the items that appear in such an index, select
Help..Indexes..Applications from the NetView for AIX main menu bar.

The information displayed through the Applications Index is derived from the appli-
cation's application registration file (ARF). See “Specifying the Application's
Version, Copyright, and Description” on page 28 for details about coding this infor-
mation in your application's ARF.

 Chapter 5. Designing Application Help 51

Providing Tasks Index Help
The Tasks Index is an index of help topic titles associated with tasks the user per-
forms through NetView for AIX applications. When the user clicks on a topic title,
the topic information is displayed, complete with detailed documentation of the task.
The following example, which was taken from the NetView for AIX Task Index,
shows the types of items that might appear in the Tasks Index:

AddConnection
ConfigureSubmap
DescribeMap
FindHelp
ViewStatus

To add an entry to the NetView for AIX Tasks Index, follow these steps:

1. Construct an ASCII file containing task help information. The help file should
follow a specific format outlined in the NetView for AIX Application Interface
Style Guide.

2. Store the ASCII help file in the /usr/OV/help/$LANG/<apphelpdir>/OVW/Tasks
directory.

As an example, assume that the help file is named task_open.help. Also, assume
that the default value for $LANG is C, and the application registration file contains a
HelpDirectory entry with the value map_app. The task_open.help file will be stored
in the directory /usr/OV/help/C/map_app/OVW/Tasks.

If the help file is not stored in the correct directory, or if the first line of the help file
is not formatted correctly, the ovhelp utility will not display the help topic in the
Tasks Index.

The ovhelp utility constructs the Tasks Index from all files present in the Tasks
directory. The Tasks Index contains a list of all task help files provided by applica-
tions. The ovhelp utility extracts the first line from each file in this directory and
uses it as an entry in the Tasks Index. Help files will be sorted according to the
first line, so choose the titles carefully to place your files where you want them in
the index. The remainder of the file is treated as the task help, and is presented to
the user when the task is selected from the index.

You can place task entries either in the NetView for AIX Tasks Index on the main
menu bar or in a Tasks Index on an application-specific menu bar. Use the
NetView for AIX Tasks Index for the most general tasks that might be performed by
the application's users. Leave detailed descriptions of tasks for the application's
private Tasks Index. Refer to the NetView for AIX Application Interface Style Guide
for more information.

Providing Function Index Help
The Functions Index is an index of help topics associated with the functions of
NetView for AIX applications. The Functions Index contains a list of all function
help files provided by applications. These files should describe the application's
operating capabilities that are accessible through executable symbols or menu
items. If your application associates actions with executable symbols, or adds to or
modifies the NetView for AIX menu structure, add entries to the NetView for AIX
help menu Functions Index. Describe the additional or modified entries as well as
any extensions you have made to the operation of the NetView for AIX program.

52 Programmer's Guide

Clicking on a topic in the index displays information on the function of an execut-
able symbol or menu item. Each function component should be documented in
terms of what it does and how it works. The following example shows the types of
items that might appear in the Functions Index:

File→DeleteMap...
File→DescribeMap
File→NewMap...
File→Exit

Each entry contains the name of the main menu entry, followed by an arrow and
the function name.

To add an entry to the NetView for AIX Functions Index, follow these steps:

Step 1. Construct an ASCII file containing function help information. The help file
should follow a specific format outlined in the NetView for AIX Application
Interface Style Guide.

Step 2. Store the ASCII help file in the directory,
/usr/OV/help/$LANG/<apphelpdir>/OVW/Functions.

As an example, assume that the help file is named fun_open.help. Also, assume
that the default value for $LANG is C, and the application registration file contains a
HelpDirectory entry with the value map_app. The fun_open.help file will be stored in
the directory, /usr/OV/help/C/map_app/OVW/Functions.

If the help file is not stored in the correct directory, or if the first line of the help file
is not formatted correctly, the ovhelp utility will not display the help topic in the
Tasks Index.

The ovhelp utility constructs the Functions Index from all files present in the Func-
tions directories. The Functions Index contains entries for all applications that
provide function help files. The ovhelp utility extracts the first line from each file in
this directory, and uses it as an entry in the Functions Index. The remainder of the
file is treated as the function help and is presented to the user when the function is
selected from the Functions Index. Help files will be sorted according to the first
line, so choose the titles carefully to place your files where you want them in the
index.

Use the NetView for AIX Help Functions Index to describe the functions your appli-
cation adds to the NetView for AIX menu structure. Do not describe application-
specific menus in the Help Functions Index. Refer to the NetView for AIX
Application Interface Style Guide for guidance in creating your own application-
specific menu structure.

Providing Help through a Dialog Box
Another way users can get help is through Help buttons in dialog boxes managed
by the NetView for AIX program. When you create the application registration file
for your application, code a block called an Enroll block. Enroll blocks are used by
the NetView for AIX program to construct dialog boxes to interact with the user
when the following functions are selected:

� Adding an object to the map
� Connecting two symbols on the map

 Chapter 5. Designing Application Help 53

� Changing an application's configuration
� Changing an object description

If your application uses Enroll blocks to create dialog boxes, you can use the
HelpFile entry in the Enroll block to specify the help text file for your dialog box. If
the user presses the Help button on that dialog box, the NetView for AIX program
displays the appropriate help file using the ovhelp file viewer.

To add a help entry to a dialog box, follow these steps:

Step 1. Construct an ASCII file containing dialog box help information. The help
file should follow a specific format outlined in the NetView for AIX Applica-
tion Interface Style Guide.

Step 2. Store the ASCII help file in the
/usr/OV/help/$LANG/<apphelpdir>/OVW/Dialogs directory.

Step 3. Link the help file to the particular dialog box that it represents. Linking is
done by specifying the path of the help file in the Enroll block in the appli-
cation registration file using the HelpFile entry. The file path is specified
relative to the <apphelpdir> directory.

The syntax of the HelpFile entry is described in Chapter 3, “Creating and Using the
Application Registration File” on page 27.

The following example shows how to link the help file to the Enroll block in the
application registration file. Assume that the help file is named dlg_add_IP.help.

Application "My app" {
 ...
 HelpDirectory thisapp;
 ...

Enroll Describe {
if isNode {

 HelpFile "OVW/Dialogs/dlg_add_IP.help";
 ...
 }
 }
}

Providing Help from Your Application's Menu
The help integration methods described earlier are not adequate for all applications.
If your application provides a customized user interface, such as an application
menu, you will need to use more advanced help integration methods to provide
additional help for your users.

This section explains how to provide help information for applications that provide a
customized user interface. Help information that is not provided through the Help
pull-down menu on the NetView for AIX main menu bar, or through NetView for
AIX-managed dialog boxes, is considered application-specific and must be pre-
sented by the application.

The NetView for AIX program provides limited support for applications that commu-
nicate with the user directly through a customized interface. It is your responsibility
to construct the required help menus and dialog boxes using X programming primi-
tives. You must also determine when a user needs help information. Once a

54 Programmer's Guide

user's request for help has been detected, the application can call an NetView for
AIX API library routine to display the help information.

Including Help in a User Interface
The NetView for AIX Application Interface Style Guide refers to applications that
provide their own interfaces as application tools and application subtools. Applica-
tion tools are a set of integrated functions within an application that is presented to
the user in one or more windows (for example, software that manages user
accounts). Application subtools are specific functions that can be carried out from
an application tool (for example, adding or deleting user accounts). If you want
application tools and subtools to provide help access, you must implement it.

If your application provides an application-specific user interface (for example, an
application tool window), provide access to application help information through that
interface. Before designing your user interface, refer to the NetView for AIX Appli-
cation Interface Style Guide for information on how to structure menus and dialog
boxes for application tools and subtools. Refer to the NetView for AIX Application
Interface Style Guide for recommendations about providing help before designing
your user interface.

Providing Application-Specific Help Files
You should provide application-specific help text files using the formats recom-
mended in the NetView for AIX Application Interface Style Guide. You should store
your application-specific help files under your help directory, using subdirectories to
partition function, task, and dialog help files. You can use the following directory
structure for your application-specific help files. Note that these directories are dif-
ferent from those used for the previously described NetView for AIX help files.

/usr/OV/help/$LANG/<apphelpdir>/Functions
/usr/OV/help/$LANG/<apphelpdir>/Tasks

Developing the Help Directory Structure
Any time a user requests help, the NetView for AIX program looks in a predefined
directory structure for the appropriate help information. The help information is
stored in ASCII text files in subdirectories under the following directory path:

/usr/OV/help/$LANG/<apphelpdir>

The $LANG environment variable defines the default language for help files. The
default value of $LANG is C.

Recall that applications can specify a help directory in the application block in the
application registration file. That value is substituted for <apphelpdir>. For
example, if your default language variable is C and your application registration file
contains the entry:

Application "My app" {
 ...
 HelpDirectory "thisapp";
 ...
}

the root of your help directory will be:

/usr/OV/help/C/thisapp

 Chapter 5. Designing Application Help 55

All help files are stored relative to this directory path. You should substitute your
own values for $LANG and <apphelpdir>.

Refer to the NetView for AIX Application Interface Style Guide for guidance in for-
matting the help files that apply to your application. You can also review the help
files provided with other NetView for AIX applications to see examples of the help
file format.

Displaying Help Information Programmatically
Your application can use the OVwShowHelp() routine to display either:

� The contents of a help file through the ovhelp file viewing facility.

� A help index from which users can select a particular help topic.

The OVwShowHelp() routine has the following format:

int OVwShowHelp(unsigned long helpType, char \helpRequest);

It has the following arguments:

� The helpType argument indicates whether a help file or a help index should be
displayed. It can have the values ovwHelpFile or ovwHelpIndex.

� The value of helpRequest can vary, depending on the help type. If helpType is
ovwHelpFile, the helpRequest argument contains the path of a specially-
formatted help file. The path is specified relative to the root of the application's
help directory. Recall that the application defines a help directory with a
HelpDirectory entry in the application registration file.

If helpType is ovwHelpIndex, the helpRequest argument contains the path of a help
index file. The ovhelp man page describes how to construct and build index files.

Whether you provide help through the NetView for AIX main menu bar, through
NetView for AIX-managed dialog boxes, or through an application-specific user
interface, providing help information with your application will improve its usability
and your users' productivity and satisfaction.

56 Programmer's Guide

Part 2. Working with the NetView for AIX User Interface

Chapter 6. Understanding the NetView for AIX User Interface 61
Structuring Your Application . 62

Connecting Your Application to the NetView for AIX Program 62
Defining Callback Routines for Events . 63
Waiting for and Processing Events . 63

NetView for AIX Events . 63
Registering for Events . 64
Action Events . 66

Processing Events . 67
Checking for NetView for AIX Events . 68
Processing X Events and NetView for AIX Events 68
Checking for File Descriptor Input . 68
Using a Select() Loop . 69
Checking the Event Queue Manually . 69
Using Advanced Event Queue Management 69

Using the Object Selection List . 69
Selection Rules and the Selection List . 70
The ovwSelectionListChange Event . 71

Some Useful EUI Techniques . 71
Managing Memory with the EUI API . 71
Retrieving a Routine's Error Code . 72
Converting an Error Code to a String . 72
Checking NetView for AIX IDs . 73
Getting your Application Name . 73
Highlighting Objects . 73
Using Dialog Boxes . 74
Developing Applications for Control Desk Windows 74
Using the EUI API Help Routines . 75

Dynamic Menu Registration . 75

Chapter 7. Creating and Using Objects and Fields 79
Using the NetView for AIX Object Database . 79
Creating Fields . 79

Using the Field Registration File . 80
Examples of Field Definitions . 83
Using the OVwDbCreateField() Routine . 84
Identifying a Field . 85
Defining Enumeration Values . 85
Retrieving Field Information . 86

Creating Objects . 87
The OVwFieldValue Data Structure . 88
Selection Name . 89
Creating Objects with API Routines . 89
Generating Unique Name Field Values . 90
Creating Objects by Host Name or Selection Name 91

Getting and Setting Object Field Values . 91
Using Basic Routines to Access Field and Object Values 92
Using Convenience Routines . 93
Getting a List of Object Fields . 94

Retrieving Object Attribute Information . 95

 Copyright IBM Corp. 1992, 1995 57

Getting Symbol IDs Associated with an Object 97
Getting a List of All Objects on a Map . 97

Deleting Objects . 97

Chapter 8. Creating and Using Symbols . 99
Understanding Symbol Attributes . 99

Symbol Label . 99
Symbol Type . 100
Symbol Variety . 100
Symbol Behavior . 101
Symbol Status . 101
Symbol Position . 102
Controlling Symbol Position . 103

Creating Bitmaps for NetView for AIX Symbols 105
Symbol Sizes . 105
Creating Bitmaps . 105
Designing Your Symbol . 106
Bitmap Compilation . 108
Displaying the Bitmap . 108

Defining Symbols with Symbol Type Registration Files 109
Defining Icon Symbol Classes . 109
Defining Symbol Subclasses . 112

Defining Symbols with NetView for AIX EUI Routines 114
Creating Icon Symbols . 114
Creating Symbols with Convenience Routines 117
Creating Connection Symbols . 117
Connection Symbols and Metaconnections 118
Creating Several Symbols with a Single Call 118

Changing Symbol Appearance and Behavior 122
Changing a Symbol's Type . 122
Changing a Symbol's Position . 122
Changing a Symbol's Behavior . 123
Changing a Symbol's Label . 124
Changing a Symbol's Status . 124
Changing a Symbol's Status Source . 125
Setting or Clearing Application Interest in a Symbol 125

Retrieving Symbol Information . 126
Using the OVwGetSymbolInfo() Routine . 127
Using the OVwGetConnSymbol() Routine 128
Using the OVwListSymbols() Routine . 128
Symbol Type Routines . 129

Deleting Symbols . 129

Chapter 9. Creating and Using Submaps 131
Understanding Maps . 131
Understanding Submaps . 131
Creating a Submap . 132

Choosing When to Create a Submap . 133
Organizing Your Submap Hierarchy . 134
Special Submaps . 134
Submap Layout Algorithms . 135
Submap Planes . 136
Shared and Exclusive Submaps . 136

Displaying a Submap . 137

58 Programmer's Guide

Changing Submap Characteristics . 137
Deleting a Submap . 138

Getting Map and Submap Information . 138
Getting Map Information . 138
Getting Application Configuration Information 139
Getting Submap Information . 140

Using Submap Background Graphics . 142
Setting and Clearing Background Graphics 142
Symbol Placement and Background Graphics 142
Bit Image Formats . 143

Chapter 10. Map Events and Map Editing 145
Receiving Notification of Map Changes . 145

Map Editing Events . 145
Hidden Symbol Events . 147
Manage and Unmanage Events . 147
An Event Handling Example . 148

Opening and Closing Maps . 148
Processing a Map Open Request . 148
Processing a Map Close Request . 151

Participating in Map Changes . 152
Map Editing Interactions with NetView for AIX 152
Query-Verify-Confirm Routines . 153
Choosing Which Confirm Event to Use . 156
Deleting a Symbol . 157

Handling Cut and Paste Operations . 157
Integrating and Documenting Your Map Application 158

 Part 2. Working with the NetView for AIX User Interface 59

60 Programmer's Guide

Chapter 6. Understanding the NetView for AIX User Interface

This chapter describes design concepts and coding techniques for writing applica-
tions that interact with the NetView for AIX graphical user interface. After reading
this chapter, you will know how to initialize your application, how to structure your
application, and how to perform several basic interface-related tasks within your
application.

Many aspects of your application's behavior are specified in the Application Regis-
tration File that you create for your application. The other building block for your
application is the library of routines called the NetView for AIX APIs. Use these
routines to take advantage of the programming interfaces offered by the NetView
for AIX program.

In writing applications to interact with the NetView for AIX graphical user interface,
you will use the routines of the NetView for AIX EUI (End-User Interface) API. This
API contains over 200 routines, organized into groups according to their functions.
Though you can use the full breadth of the NetView for AIX EUI API, a basic under-
standing of a few key routines in each group will allow you to implement sophisti-
cated applications.

There are seven groups of EUI API routines, organized as follows:

Application integration There are a small number of routines that integrate
your application with the NetView for AIX graphical
interface. Every application that uses the EUI API
needs to use at least some portion of these calls.
These routines allow your application to connect to the
NetView for AIX program, to determine when users
select particular menu items, and to handle errors.
Several of these routines are described in this chapter.

Object database access There are over 40 EUI API routines that operate on
objects and fields. These routines are used to create
objects, to create the fields that comprise objects, to get
or set field values in objects, and to relate fields to
objects and objects to fields. See Chapter 7, “Creating
and Using Objects and Fields” on page 79 for more
information on these routines.

Symbol routines These routines create symbols, alter symbol behavior
and appearance, and get information about an object
as it exists on a map. See Chapter 8, “Creating and
Using Symbols” on page 99 for more information on
these routines.

Map and submap routines
The EUI API contains many routines that are used to
operate on maps and submaps. These routines permit
you to create and modify submaps, as well as to
retrieve information about maps and submaps. See
Chapter 9, “Creating and Using Submaps” on
page 131 for more information on these routines.

 Copyright IBM Corp. 1992, 1995 61

User verification There are 5 EUI API routines that allow a program to
verify changes that a user attempts to make to maps
and objects through the graphical user interface. These
routines are described in “Participating in Map
Changes” on page 152.

Dynamic registration There are over 60 EUI API routines that dynamically
configure the NetView for AIX menu structure. A list of
these routines appears later in this chapter.

Callback routines The NetView for AIX program uses callback routines to
communicate with applications when various events
occur. The NetView for AIX EUI API provides many
definitions for callback routines to be provided by the
developer. Callback routines are described in this
chapter.

If your application uses any of the routines in the NetView for AIX EUI API, except
the object database routines, you must create an application registration file for
your application. See Chapter 3, “Creating and Using the Application Registration
File” on page 27 for information about application registration files.

Structuring Your Application
The event-driven model of programming was described in “Developing Applications
for NetView for AIX” on page 7. To use this model, code your application to
perform the following three steps:

Step 1. Connect to the NetView for AIX program.
Step 2. Define callback routines to be invoked when specific events occur.
Step 3. Enter a loop that waits for and processes events.

Connecting Your Application to the NetView for AIX Program
The first step is to connect your application to the NetView for AIX program. To do
this, you must call the OVwInit() routine. The OVwInit() routine initializes internal
API data structures and establishes a connection from your application to the
NetView for AIX graphical user interface. No other EUI API calls can occur before
your application connects to the NetView for AIX interface. After the OVwInit() call
has been issued, you are free to issue any other calls in the EUI API.

In designing your application, determine what data your application must have
before it proceeds. For example, it may need the name of the open map or the
open submap. Note that when your application is invoked, a map has already been
opened, so you cannot count on the ovwMapOpen event to identify the open map.
“Getting Map and Submap Information” on page 138 describes how your applica-
tion can retrieve information about the open map and other information it may
require.

When your application has finished interacting with the NetView for AIX program,
you must disconnect from the NetView for AIX graphical user interface. This is
done by calling the OVwDone() routine. The OVwDone() routine cleans up internal
API data structures and closes the connection from the application to the NetView
for AIX graphical user interface. An example code segment that illustrates the use
of the OVwInit() and OVwDone() routines appears in the callback routine example
on page 65.

62 Programmer's Guide

Defining Callback Routines for Events
The second step that every NetView for AIX application should perform is to define
callback routines that are invoked when specific events occur. Events can be
caused by user actions, such as adding a symbol to a map, or by applications,
such as creating a submap or changing symbol status.

Applications do not receive all NetView for AIX events automatically. Applications
must specifically register callback routines for events in which they are interested.
If an event occurs and a callback routine is not registered for it, the event is not
sent to the application. Some symbol-related events are sent only to applications
that have registered interest in the affected symbol.

Waiting for and Processing Events
The third step that an NetView for AIX application should perform is to enter a loop
that waits for notification of an event. When an event notification is received, the
callback routine for that event is invoked. The technique you use for recognizing
and processing events depends on your application design and on the types of
events your application must process. See “Processing Events” on page 67 for a
description of these techniques.

NetView for AIX Events
The NetView for AIX program defines 36 events for application use. These events
are listed in Table 6.

Table 6 (Page 1 of 2). NetView for AIX Events

Event Description

ovwEndSession NetView for AIX EUI session termination

ovwSelectListChange Map selection list changed

ovwMapOpen Map open

ovwMapClose Map close

ovwQueryAppConfigChange Application configuration change query

ovwConfirmAppConfigChange Application configuration changed

ovwQueryDescribeChange Description change query

ovwConfirmDescribeChange Description changed

ovwQueryAddSymbol Query to add symbol to map

ovwConfirmAddSymbol Symbol added to map

ovwQueryConnectSymbols Query to connect symbols

ovwConfirmConnectSymbols Symbols connected

ovwQueryDeleteSymbols Query to delete symbols

ovwQueryDeleteSubmap Query to delete a submap

ovwConfirmDeleteSymbols Symbols deleted from map

ovwConfirmDeleteObjects Objects deleted from map

ovwConfirmDeleteSubmaps Submaps deleted from map

ovwConfirmCreateSymbols Symbols created on map

 Chapter 6. Understanding the NetView for AIX User Interface 63

Note: The OVwSubmapClose event is issued only when a submap is closed from
the navigation tree. It is not issued when the window containing a submap
is closed. If your application will depend on this event, be sure to tell your
users to close submaps from the navigation tree.

Table 6 (Page 2 of 2). NetView for AIX Events

Event Description

ovwConfirmCreateObjects Objects created on map

ovwConfirmCreateSubmaps Submaps created on map

ovwConfirmMoveSymbol Symbol moved

ovwConfirmManageObjects Objects managed

ovwConfirmUnmanageObjects Objects unmanaged

ovwConfirmHideSymbols Symbols hidden

ovwConfirmUnhideSymbols Symbols unhidden

ovwConfirmSymbolStatusChange Symbol status change

ovwConfirmObjectStatusChange Object status change

ovwConfirmCompoundStatusChange Compound object status change

ovwConfirmCapabilityChange Object capability field change

ovwConfirmAcknowledgeObjects Object acknowledged

ovwConfirmUnacknowledgeObjects Object unacknowledged

ovwConfirmCreateMetaConnection Metaconnection created (xxmap only)

ovwConfirmExplodeObject Object exploded

ovwUserSubmapCreate Submap Creation Notification

ovwSubmapOpen Submap open

ovwSubmapClose Submap closed

Registering for Events
You can register your application for as many events as it requires. To register for
events, use the OVwAddCallback() routine, which has the following function
prototype:

int OVwAddCallback(OVwEventType event,
 OVwFieldBindList \capabilitySet,
 OVwCallbackProc callbackProc,

void \userData);

The following arguments must be supplied to the OVwAddCallback() routine:

event Defines the event to be registered.

capabilitySet Used for callback routines that pertain to objects. This field lets
you associate callback routines not only to a specific event, but
also to specific kinds of objects based on the values of capability
fields. The callback routine will be called only for objects that have
the specified capability field values. This filtering can reduce the
number of events an application receives. You can have several
callback routines within your application registered for the same
event, provided that they use different object capability fields.

64 Programmer's Guide

Code NULL if object capability fields are not of interest to your
callback routine.

callbackProc The name of the application's callback routine.

userData A user-defined, user-supplied parameter for the callback proce-
dure. You are free to use this field however you wish.

The OVwAddCallback() routine is used to register all events; however, you can
change the arguments depending on the event type. The NetView for AIX program
passes different types of information to the callback routine based on the type of
event that occurs. In some cases, the NetView for AIX program might need to
pass object information, while in another, it might need to pass symbol information.
A specific callback procedure function prototype exists for each event type. These
function prototypes are found toward the end of the <OV/ovw.h> header file.

The following example shows how an application connects to the NetView for AIX
program and how it registers a callback routine. In this example, the application
registers for notification when the NetView for AIX EUI session is terminated.

#include <OV/ovw.h>

endSessionCB(userData, type, normalEnd)
void \userData;
OVwEventType type;
OVwBoolean normalEnd;
{

printf("NetView for AIX is terminating, so are we\n");
 OVwDone();
 exit(ð);
}

main()
{
 int ret;

if (OVwInit() < ð) {
printf("application couldn't initialize with
NetView for AIX\n");
exit(1);

 }

ret = OVwAddCallback(ovwEndSession, NULL,
(OVwCallbackProc) endSessionCB, NULL);

if (ret < ð) {
/\ error processing \/

 }
 OVwMainLoop();
}

Note: The OVwMainLoop() procedure in the main() function has not yet been
described. It will be explained in “Checking for NetView for AIX Events” on
page 68.

 Chapter 6. Understanding the NetView for AIX User Interface 65

 Action Events
In addition to receiving events, NetView for AIX applications can also receive notifi-
cation when users invoke application-provided actions, either from NetView for AIX
menu items or from executable symbols. These are special events called action
events. Callback registration for action events is very similar to event registration
described previously. Action events are registered with the
OVwAddActionCallback() routine, which has the following function prototype:

int OVwAddActionCallback(char \actionID,
 OVwActionCallbackProc callbackProc,

void \userData);

Specify the following arguments:

actionID An action name from the application registration file with which a
callback routine will be associated.

callbackProc The name of the callback routine.

userData A pointer to a user-defined, user-supplied parameter for the
callback procedure. Use this field as you need it.

All action event callback routines have the following function prototype:

void (\OVwActionCallbackProc)(void \userData,
char \actionID, char \menuitemID, OVwObjectIdList \selections,
int argc, char \\argv, OVwMapInfo \map,
OVwSubmapId submapID);

Specify the following arguments for an action event callback routine:

userData A user-defined parameter that may have been specified on the
OVwAddActionCallback() procedure call.

actionID The string by which the action is known in the application registra-
tion file.

menuitemID A string containing the label of the menu item used to invoke the
application. NULL indicates that the application was invoked by an
executable symbol.

selections A pointer to a copy of the current NetView for AIX selection list.
Selection lists are described in “Using the Object Selection List” on
page 69.

argc, argv Contain callback arguments as defined in the CallbackArgs state-
ment in the ARF.

map A pointer to an OVwMapInfo data structure that contains informa-
tion about the open map. The OVwMapInfo structure is described
in “Getting Map Information” on page 138.

submapID The submap ID of the submap on which the event occurred.

The following example shows how to register for Action events. Assume this entry
is present in the application's application registration file:

66 Programmer's Guide

Application "My application" {
MenuBar "Configure" {

"Callback Test" f.action "OVwAddActionCallback test";
 }

Action "OVwAddActionCallback test" {
Command "<your executable path>";

 }
 }

The following example shows how to register a callback routine to handle user
selection of the menu item:

#include <OV/ovw.h>

myActionCB(userData, actionID, menuitemID,
selections, argc, argv, map, submap)

void \userData;
char \actionID;
char \menuitemID;
OVwObjectIdList \selections;
int argc;
char \\argv;
OVwMapInfo \map;
OVwSubmapId submap;
{
 ...
}

main() {
 int ret;

if (OVwInit() < ð) {
printf("error initializing with OVw\n");
exit(1);

 }

ret = OVwAddActionCallback("OVwAddActionCallback test",
(OVwActionCallbackProc) myActionCB, NULL);

 OVwMainLoop();
}

 Processing Events
There are three basic techniques for processing events in NetView for AIX applica-
tions. You can use any of the following methods:

� Process only NetView for AIX events (using OVwMainLoop()).

� Process both X and NetView for AIX events (using OVwXtMainLoop()).

� Use your own select() loop to process events.

Your application needs will dictate which technique to use. If your application does
not use Xt calls directly, the first technique will probably be the easiest to use. If
your application uses Xt calls, you will probably need to use the second technique
(using OVwXtMainLoop()). If neither of these two general-purpose routines suffice,

 Chapter 6. Understanding the NetView for AIX User Interface 67

you can use the third method and implement your own event-processing loop. The
remainder of this section describes these techniques in more detail.

Checking for NetView for AIX Events
The simplest way to check for NetView for AIX events is to use the OVwMainLoop()
routine.

OVwMainLoop() loops forever, continually processing NetView for AIX registered
events. This routine checks each NetView for AIX event against a list of preregis-
tered events, and, if a callback routine is registered for the event, the callback
routine is invoked. Previous examples in this chapter have shown how to use the
OVwMainLoop() routine. You may have noticed in the examples that the last state-
ment in each main() routine is a call to OVwMainLoop(). Because OVwMainLoop()
executes indefinitely, the main() routine does not exit. NetView for AIX applications
must exit through another routine.

Processing X Events and NetView for AIX Events
NetView for AIX applications that perform X-event processing should not use the
OVwMainLoop() routine. Rather, they should use the OVwXtMainLoop() routine to
process events. The OVwXtMainLoop() EUI API routine is designed specifically to
include both NetView for AIX event processing and X-event processing within a
single event handling call. Sample code that demonstrates X-event processing can
be found in the file, /usr/OV/prg_samples/ovw_examples/app6/six.c.

Checking for File Descriptor Input
By default, the OVwMainLoop() and OVwXtMainLoop() routines process only
NetView for AIX and X events. As a convenience, the NetView for AIX EUI API
lets you extend these routines to also check for and process file descriptor input
events. This enables your application to listen for messages from other applica-
tions. The OVwAddInput() routine adds an application file descriptor to the NetView
for AIX event-processing mechanism as another source of events. The routine has
the following syntax:

OVwInputId OVwAddInput(int file_descriptor, int conditionMask,
OVwInputCallbackProc proc, void \userData);

OVwAddInput() is passed the source file descriptor, a condition mask, and an
application-specific user data parameter to be sent to the callback routine. The
callback routine has the following function prototype:

void (\OVwInputCallbackProc)(int fileDescriptor, void \userData);

The following example shows how to use the OVwAddInput() routine:

#include <OV/ovw.h>

my_fd_event_CB(fileDescriptor, userData)
int fileDescriptor;
void \userData;
{
 ...
}

main()
{

68 Programmer's Guide

 int fd;
 OVwInputId ret;

if (OVwInit() < ð) {
printf("error initializing with NetView for AIX\n");

 }
/\ <open socket 'fd', connect to a remote

system and wait for input> \/
ret = OVwAddInput(fd, ovwReadMask, my_fd_event_CB, NULL);

 OVwMainLoop();
}

Using a Select() Loop
If your application has special event processing needs that are not met by
OVwMainLoop() or OVwXtMainLoop(), you can process events using select()
directly. You can use the OVwFileDescriptor() routine to obtain the file descriptor
associated with NetView for AIX event processing. Once you have the file
descriptor, you can add it to the select mask in your select() processing loop.

Checking the Event Queue Manually
There may be occasions where your application is performing long, intense oper-
ations under the assumption that NetView for AIX map status has not changed in
the interim. Critical events can occur that might justify the interruption of your proc-
essing. One such event is the ovwMapClose event.

You can manually check the NetView for AIX event queue for the presence of spe-
cific events using the OVwPeekOVwEvent() routine. This routine is called with a
specific event as an argument. The routine nondestructively examines the NetView
for AIX event queue and returns a boolean value indicating the presence of the
event.

Using Advanced Event Queue Management
A number of other advanced mechanisms are also available to check for NetView
for AIX events. The OVwPending() and OVwProcessEvent() routines provide low-
level control over NetView for AIX event processing and are not described here. If
the basic NetView for AIX event checking calls are not adequate for your applica-
tion, you can refer to the man pages for information on these advanced calls.

Using the Object Selection List
The object selection list is the primary means for users to pass arguments to
NetView for AIX applications. The selection list is automatically provided as an
input argument to action callback routines when they are invoked. This is the
standard mechanism used by applications to receive the contents of the object
selection list. Some applications, however, need to determine the contents of the
object selection list at other times. The EUI API provides the OVwGetSelections()
routine for this purpose. It has the function prototype:

OVwObjectIdList \OVwGetSelections(OVwMapInfo \map, char \actionId);

 Chapter 6. Understanding the NetView for AIX User Interface 69

The OVwGetSelections() routine returns a pointer to an OVwObjectIdList structure
that contains:

� A count of the number of selected objects in the list. The selected objects
must satisfy the selection rules for the action specified as actionId.

� A pointer to a contiguous area of memory containing object IDs. The memory
may be treated as an array.

Most EUI API list data structures are implemented using a pointer to a contiguous
area of memory, rather than a NULL-terminated linked list.

The following example shows how to use the OVwGetSelections() routine to trav-
erse the list of objects whose IDs are represented in the selection list. This
example uses the OVwGetMapInfo() routine to get the map information. See
“Getting Map Information” on page 138 for more information.

#include <OV/ovw.h>
 ...
main()
{
 int i;
 OVwObjectIdList \op;
 OVwMapInfo \map;
 OVwObjectId \lp;
 ...

map = OVwGetMapInfo();
op = OVwGetSelections(map, NULL);
printf("There are %d objects in the selection list\n", op->count);
for (i=ð, lp = op->object_ids; i<op->count; i++, lp++)

 {
printf("object id[%d] is %ld\n", i, \lp);

 }
OVwDbFreeObjectIdList(op);

 ...
}

Note: If an application has been invoked from an object menu, the selection list
passed into the application will consist of the object from which the object
menu was selected. Using OVwGetSelections() in this case will return the
list of objects selected by the user before invoking the application, rather
than the object from which the object menu was selected.

Selection Rules and the Selection List
When you create the ARF for your application, you can define selection rules for
entries in the selection list. Selection rules are defined within the context of a par-
ticular action and determine whether the action will be available based on the list of
selected objects. Selection rules in the ARF are available for programmatic use as
well.

To use selection rules in NetView for AIX programs, use the action ID associated
with the selection rule in the ARF as an input argument to the OVwGetSelections()
routine. For example, consider the following ARF:

70 Programmer's Guide

Application "My app"
{
 ...

Action Trends {
SelectionRule isNode && isDevice;

 ...
}
 ...
}

To use the above selection rule in your program, you pass the Trends argument to
your OVwGetSelections() call. The OVwGetSelections() routine returns the current
selection list only if the selection rule in the Trends action is valid for all the objects
in the selection list.

The ovwSelectionListChange Event
The NetView for AIX program generates the ovwSelectionListChange event when-
ever the selection list changes. You can register a callback routine that uses
OVwGetSelections() to determine the current selection list when this event is
received. Because selection list changes can occur frequently, register for the
ovwSelectionListChange event only if it is absolutely required. Excessive use can
degrade system performance.

Some Useful EUI Techniques
This section describes several techniques that you can use to accomplish common
user interface-related programming tasks.

Managing Memory with the EUI API
Many NetView for AIX EUI API calls allocate data structures in memory. You
should be careful to free the memory associated with these structures when your
program no longer needs them. Convenience routines are provided for this
purpose. For example, the OVwListSubmaps() routine creates an OVwSubmapList
data structure, which you should free with a call to the OVwFreeSubmapList()
routine. The man pages for API routines that create data structures list the name
of the associated routine that frees that structure.

Some routines do not have accompanying memory-freeing routines. These rou-
tines return dynamically-allocated character strings. You must use the C-language
free() function to free the memory allocated for these strings. Use free() to free the
results of the following API routines:

 � OVwCreateMenuItem
 � OVwGetRegContext
 � OVwGetMenuPathSeparator
 � OVwGetMenuItemPath
 � OVwGetMenuItemMenu
 � OVwGetFirstRegContext
 � OVwGetNextRegContext
 � OVwGetNextMenuItem
 � OVwGetFirstMenuItem
 � OVwGetFirstAction
 � OVwGetNextAction
 � OVwFindMenuItem

 Chapter 6. Understanding the NetView for AIX User Interface 71

 � OVwDbObjectIdToSelectionName
 � OVwDbObjectIdToHostname
 � OVwDbGetUniqObjectName
 � OVwDbGetFieldEnumByName
 � OVwDbGetFieldStringValue
 � OVwDbFieldIdToFieldName
 � OVwDbGetEnumName
 � OVwGetAppName

Retrieving a Routine's Error Code
NetView for AIX stores an internal error code for every NetView for AIX API call
you make. This internal error code contains an integer value that represents either
success or, if an error occurs, the cause of the error. You can request this value
by calling the OVwError() EUI API routine, which returns the error code of the last
OVw routine called by the application. All error values are defined in the file
<OV/ovw_errs.h>. The man page for each EUI API routine describes how it returns
errors.

Converting an Error Code to a String
The EUI API also provides a routine that converts an integer error code into the
corresponding text string description. The OVwErrorMsg() routine returns a pointer
to a character string in static memory that describes the error. The call has the
following syntax:

char \OVwErrorMsg(int error);

Because the NetView for AIX program allocates the memory for the character string
from a static buffer, you should not attempt to free the string memory after using it.
The following example shows one way to use the OVwError() and OVwErrorMsg()
routines:

#include <OV/ovw.h>
 ...
main(argc, argv)
 int argc;
 char \\argv;
 {

if (OVwInit() < ð) {
if (OVwError() == OVw_OVW_NOT_RUNNING) {

printf("NetView for AIX must be running prior to
running this application\n")

 }
 else {

printf("%s\n", OVwErrorMsg(OVwError()));
 }
 }
 ...
}

72 Programmer's Guide

Checking NetView for AIX IDs
Upon completion, many EUI API routines return an ID. ID examples include object
IDs, field IDs, symbol IDs, and submap IDs. As a convenience, the EUI API pro-
vides macros that test IDs in different ways. They have the form:

OVwBoolean OVwIsIdNull(id);
OVwBoolean OVwIsIdEqual(id1, id2);

Though you could bypass these macros and implement these tests yourself, these
macros hide the underlying ID data types, making your program more portable in
the event that an ID implementation changes in the future.

Getting your Application Name
The Application block within the application registration file defines your application
name. A number of EUI API calls require an application name as an input argu-
ment. If you hard-code those EUI API calls to use the application name defined in
your application registration file, changing the application name in the ARF would
cause your application to fail.

This problem is solved by using a routine in the EUI API that retrieves your applica-
tion name from the ARF. The OVwGetAppName() routine returns the application
name as defined in the ARF. The following code segment demonstrates:

char \myname;
 ...
myname = OVwGetAppName();
printf("My name is: %s\n", myname);
free(myname);
 ...

Note that the OVwGetAppName() routine returns a pointer to a string whose
memory is dynamically allocated. You should free the memory when it is no longer
needed.

 Highlighting Objects
Applications can highlight one or more objects on a map as a result of a user-
initiated action (e.g., identifying all objects with a particular characteristic). All
symbols representing highlighted objects are graphically displayed with symbol
labels in reverse video. Users can select highlighted objects with the View..Select
Highlighted menu item to make them input for another operation. The highlighting
routines have the following function prototypes:

int OVwHighlightObject(OVwMapInfo \mapInfo, OVwObjectId object,
OVwBoolean clearPrevious);

int OVwHighlightObjects(OVwMapInfo \mapInfo, OVwObjectIdList \objectList,
OVwBoolean clearPrevious);

The object ID or list of object IDs is passed as an argument. Object ID lists are
described in “Using the Object Selection List” on page 69. The mapInfo parameter
may be NULL, in which case these routines will refer to the open map. The
clearPrevious flag controls whether previously highlighted objects are cleared. If
this flag is set to false, previously highlighted objects remain highlighted. If it is set
to true, previously highlighted objects are cleared. An application should use the
clearPrevious flag once at the beginning of each action for which the highlighting is

 Chapter 6. Understanding the NetView for AIX User Interface 73

being done. If the application is performing highlighting in successive calls, then it
should use the clearPrevious flag only for the first call.

Using Dialog Boxes
The user can perform a wide variety of operations through the graphical user inter-
face. In many cases, the NetView for AIX program can handle the user operation
without requiring any help from the application. In other cases, the NetView for AIX
program might need to request more specific information to be passed to the appli-
cation. A dialog box is used for this purpose.

There are four operations that might require your application's involvement:

� Adding a symbol to a submap
� Connecting two symbols on a submap
� Modifying an object's attributes
� Changing how an application is configured to operate on a map

These four operations are treated specially by the NetView for AIX program. The
NetView for AIX EUI API acts as a mediator between the user and the application,
enabling the application to control whether the operations are allowed. If the oper-
ations are allowed, the NetView for AIX program makes the changes on behalf of
the user and then informs the application.

The NetView for AIX program provides special assistance to developers who
support these operations in their applications. The NetView for AIX program does
not require that you implement X-Windows System based dialog boxes for these
operations. Rather, the NetView for AIX program lets you define the structure of
these dialog boxes using entries in the application's application registration file.
Using entries called Enroll blocks, developers can define the structure and behavior
of these NetView for AIX-generated dialog boxes. The use of Enroll blocks is
described in “Defining Dialog Boxes with the Enroll Block” on page 38.

Coding an Enroll block defines the appearance and function of your dialog box, but
it does not present your dialog box to the user when the action is invoked. To have
your dialog box appear when the user edits the map, you must register a callback
for the editing event. This enables you to accept user actions by participating in
the query-verify-confirm sequence. This process is described in “Participating in
Map Changes” on page 152.

Developing Applications for Control Desk Windows
The NetView for AIX graphical user interface provides a special type of window
called a control desk window. These windows give you more direct control of your
application's execution than regular NetView for AIX windows permit. Control desk
windows are typically used for applications that will be kept active over a period of
time or for applications of which multiple copies may be active at one time. For
example, the window in which the events display appears is a control desk window.

If you want your application to run in a control desk window, use
XnvApplicationShell widgets to create windows that will be placed into a control
desk. You must code several widget resources to enable the application to interact
properly with the graphical user interface. Within the XnvApplicationShell class, set
the following values:

74 Programmer's Guide

Resource Required Value

XnvNeuiManaged This resource must be TRUE for a control-desk applica-
tion.

XnvNoutside This resource specifies the initial application placement.
FALSE places the application in a control-desk window;
TRUE places it outside a control-desk window.

XnvNassociatedShell If your application creates additional windows, this
resource must be set inside each secondary shell to the
value of the application's main shell.

You can set these values in your application's Xdefaults file. To do this, remove
the XnvN from the beginning and use the remainder of the name. You can also set
these values using XtSetArg or XtSetValues.

Using the EUI API Help Routines
Most applications can integrate help information into the NetView for AIX help
system without resorting to programming. Some applications, however, must use
the EUI API to integrate application-specific help information into the NetView for
AIX program. This section describes how to use the EUI API to incorporate help
information into the NetView for AIX program.

A single EUI API routine is used to programmatically access and display help infor-
mation. The OVwShowHelp() routine can display to the user either a help file or an
index of help topics. The routine has the function prototype:

int OVwShowHelp(unsigned long helpType, char \helpRequest);

It has the following arguments:

� The helpType argument indicates whether a help file or a help index should be
displayed. It can have the values ovwHelpFile or ovwHelpIndex .

� The helpRequest argument's value can vary, depending on the help type. If
helpType is ovwHelpFile , then the helpRequest argument contains the path of
a specially-formatted help file. The path is specified relative to the root of the
application's help directory. Recall that the application defines a help directory
with a HelpDirectory entry in the application registration file.

If the helpType value is ovwHelpIndex, the helpRequest argument contains the path
of a help index file. The ovhelp() man page describes how to construct and build
index files. Refer to the NetView for AIX Application Interface Style Guide for
guidelines about the format of help files.

Dynamic Menu Registration
Most developers can rely on the NetView for AIX registration files to configure
where an application is placed in the NetView for AIX menu structure. Some devel-
opers, however, might need to programmatically alter the structure of the NetView
for AIX menu bar, the object menu, or the Tools Window. Programmatic access to
these menu structures, though not encouraged, is available to developers. This
capability is called dynamic menu registration. If you need to alter the menu struc-
ture, refer to these man pages:

 � OVwAddMenuItem()

 Chapter 6. Understanding the NetView for AIX User Interface 75

 � OVwAddMenuItemFunction()
 � OVwAddObjMenuItem()
 � OVwAddObjMenuItemFunction()
 � OVwAddToolPalItem()
 � OVwCreateMenu()
 � OVwCreateMenuItem()
 � OVwCreateObjectMenuItem()
 � OVwLockRegUpdates()
 � OVwSaveRegUpdates()

These man pages describe the functions involved in dynamic menu registration,
and point to other man pages that provide further details. The following example
illustrates the use of the dynamic menu registration routines:

#include <stdio.h>
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

int main(int argc, char \\argv)
{
 int rc;
 OVwBoolean block;

OVwMenuItemRegInfo menuItem, menuItem1, menuItem2;
char \menuItemID, \menuItem1ID, \menuItem2ID;

 char \menuID;

 block = atoi[argv];

menuItem.label = "Testing";
menuItem.mnemonic = "t";
menuItem.accelerator = NULL;
menuItem.precedence = 1;

menuItem1.label = "Ping";
menuItem1.mnemonic = "P";
menuItem1.accelerator = NULL;
menuItem1.precedence = 2;

if (OVwInit() < ð)
 {
 printf("%s\n", OVwErrorMsg(OVwError()));
 exit(1);
 }

if ((rc = OVwLockRegUpdates(block)) < ð)
 {
 printf("%s\n", OVwErrorMsg(OVwError()));
 OVwUnlockRegUpdates();
 exit(1);
 }

menuItemID = OVwCreateMenuItem(&menuItem);
if (menuItemID == NULL)

 {
 printf("%s\n", OVwErrorMsg(OVwError()));
 OVwUnlockRegUpdates();

76 Programmer's Guide

 exit(1);
 }

menuID = "test";
if ((rc = OVwCreateMenu(menuID)) < ð)

 {
 printf("%s\n", OVwErrorMsg(OVwError()));
 OVwUnlockRegUpdates();
 exit(1);
 }

menuItem1ID = OVwCreateMenuItem(&menuItem1);
if (menuItem1ID == NULL)

 {
 printf("%s\n", OVwErrorMsg(OVwError()));
 OVwUnlockRegUpdates();
 exit(1);
 }

if (OVwAddMenuItem(menuID, &menuItem1ID) < ð)
 {
 printf("%s\n", OVwErrorMsg(OVwError()));
 OVwUnlockRegUpdates();
 exit(1);
 }

 OVwAddMenuItemFunction(menuItem1ID, ovwFnShell,
"aixterm -e /etc/ping ${OVwSelection1}");

if (OVwAddMenuItem(NULL, &menuItemID) < ð)
 {
 printf("%s\n", OVwErrorMsg(OVwError()));
 OVwUnlockRegUpdates();
 exit(1);
 }

OVwAddMenuItemFunction(menuItemID, ovwFnMenu, menuID);

if (OVwSaveRegUpdates(FALSE) < ð)
 {
 printf("%s\n", OVwErrorMsg(OVwError()));
 OVwUnlockRegUpdates();
 exit(1);
 }

if (OVwUnlockRegUpdates() < ð)
 {
 printf("%s\n", OVwErrorMsg(OVwError()));
 exit(1);
 }

 OVwDone();
 fflush(stdout);
 exit(ð);
}

 Chapter 6. Understanding the NetView for AIX User Interface 77

The following chapters explain how to use the NetView for AIX EUI API to work
with fields, objects, symbols and submaps. Detailed information on all routines is
provided in the NetView for AIX Programmer's Reference and the man pages.

78 Programmer's Guide

Chapter 7. Creating and Using Objects and Fields

This chapter describes the NetView for AIX object database routines. With these
routines, you can create and manipulate objects and fields in the NetView for AIX
object database.

Topics in this chapter include:

� “Using the NetView for AIX Object Database”
 � “Creating Fields”
 � “Creating Objects”
� “Getting and Setting Object Field Values”

 � “Deleting Objects”

Using the NetView for AIX Object Database
The NetView for AIX object database manages all object and field information for
the NetView for AIX program. All NetView for AIX maps use this object database.
You will use only the object database routines described in this chapter, which elim-
inates the need for you to code to a particular database implementation. This
scheme also permits future substitution of a different underlying database without
affecting applications.

The NetView for AIX object database is implemented as a stand-alone module that
works in conjunction with the rest of the NetView for AIX program. Entries in the
NetView for AIX object database persist across NetView for AIX sessions. Fields
and objects created in one NetView for AIX session are available to all other appli-
cations in all NetView for AIX sessions.

Because the NetView for AIX object database is separate from the rest of the
NetView for AIX program, you can access it without using the OVwInit() routine to
connect to the NetView for AIX program. You can use a subordinate routine called
OVwDbInit() to connect directly to the object database. The NetView for AIX object
database routines all begin with the prefix OVwDb. The formats and data structure
definitions for all field and object database routines are located in the file,
<OV/ovw_obj.h>.

 Creating Fields
Fields are object attributes stored in the NetView for AIX object database. Fields
are the building blocks from which objects are constructed. Fields can have one of
the following four data types:

 � 32-bit integer
 � Boolean
 � Character string
 � Enumeration value

Each field definition is uniquely identified by a field ID. A field can contain a single
data element, or it can contain a list of data elements of the same type. The
NetView for AIX program provides a number of routines to create and manipulate
fields. Other API routines retrieve field values and field information from the object
database in various ways. By themselves, fields are not very useful. Only after a

 Copyright IBM Corp. 1992, 1995 79

field is associated with an object can you manipulate its data, such as setting or
retrieving field values. Fields can contain data only when they are associated with
objects.

Two name fields are predefined by the NetView for AIX program and are available
for application use:

 � Selection Name
� IP hostname (IP networks only)

Applications should not redefine or change these predefined NetView for AIX fields.

The field creation routines presented in this section enable you to create fields and
retrieve field information from the object database; they do not enable you to define
field values. “Creating Objects” on page 87 describes how to create objects and
assign initial field values for fields in the object.

To create a field, use either the field registration file (FRF) or the
OVwDbCreateField() routine. API routines are used to set field values. You can
use existing fields or create new ones as your application needs dictate.

Using the Field Registration File
The field registration file (FRF) is the preferred way to create fields. The
OVwDbCreateField() routine is available for flexibility, but should be used only in
restricted cases. There are two important reasons why you should use the FRF to
create fields:

1. The NetView for AIX program parses all application and symbol-type registra-
tion files when it is started. If an entry in these files refers to a field not already
defined, the application may fail. Using the field registration file to define a field
guarantees that a field definition exists when the NetView for AIX program is
started.

2. The FRF displays field specifications to users and developers. Users can
examine the set of field registration files to see which fields are present in the
object database. If fields are created through the API, their existence can only
be determined programmatically.

Upon installation, the English definitions of the fields files are stored in
/usr/OV/fields/C. Any English field definitions that you decide to add should also be
placed in the /usr/OV/fields/C directory. For non-English definitions, you can create
a $LANG directory under /usr/OV/fields and add the new field files to that directory.
If you do this, you must then link all the fields files from /usr/OV/fields/C to the new
/usr/OV/fields/$LANG directory so that ovw will recognize them.

Whether you create a new directory or use /usr/OV/fields/C for your field registra-
tion files, do not put any files that are not field registration files into the directory.
When ovw processes field registration files, it will fail if it encounters a file con-
taining something other than field registration declarations, or if it encounters an
empty subdirectory under the /usr/OV/fields directory.

After defining fields with field registration files, you can construct objects based on
these fields. See “Creating Objects” on page 87 for more information about cre-
ating objects.

80 Programmer's Guide

Processing Field Registration Files
Unlike ARFs and STRFs, FRFs are not processed automatically each time the
NetView for AIX program is started. To tell the NetView for AIX program to read
FRFs, issue the nv6000 command with the -fields option:

 nv6ððð -fields

“How Registration Files Are Processed” on page 42 describes the processing per-
formed for registration files. For more details, refer to the OVwRegIntro man page.

Building a Field Definition
A field definition consists of the following components:

� The field name
� The data type of the field
� Flags that indicate how the field is used

Specify these components in a Field block. Every field must have a data type and
a unique name. Flags can be specified to indicate how the field is to be treated by
the NetView for AIX program.

Each FRF contains one or more Field blocks. Each Field block defines a single
field and has the following syntax:

Field "field name" {
Type <field type>;
[Enumeration <field enumeration>;]
[Flags <field flags>;]

}

The field name and field type are required; the enumeration and flags entries are
optional.

 Field Type
Every field has an associated data type. The Type entry declares the field's data
type. Type is a required entry, and must be set to one of the following types:

Boolean This type can only have the values True or False.

Integer32 A 32-bit signed integer.

String A standard character string, limited to 256 characters.

Enumeration Declares the field to be an enumerated type. All possible values for
the enumerated type are declared in an accompanying Enumeration
entry. An example enumeration appears in “Example of Enumer-
ated Types and Locate Flag” on page 83.

 Field Flags
While the Type field specifies the data type of the field, the Flags field specifies how
the field is treated. The NetView for AIX program gives you the flexibility to treat
fields in different ways. For instance, you can specify that a particular field is a
name field, which means that the value of the field is unique across all objects that
contain the field. You can also specify that a particular field should appear in the
Locate..By Attribute dialog box on the NetView for AIX menu interface. These
behaviors, as well as others, are defined using the Flags statement. There are five
types of flags (behavior) that can be applied to fields:

 Chapter 7. Creating and Using Objects and Fields 81

List Specifies that the field contains a list of fields of the same type. The
list flag allows you to associate several values of the same type with a
single field definition. The list flag is valid only for the string and
integer data types. For example, you might define a field for the
names of administrators of your computer network. The type is string,
and the flag field is set to list to allow you to store more than one
name.

Name Indicates that the value of the field uniquely identifies an object con-
taining this field definition. This flag can be used only for fields of
type string. Non-string data types with unique values, such as a
network adapter's link-level address, can serve as name fields pro-
vided that they are converted to and stored as strings.

Locate By specifying this flag in the field definition, the field name shows up
in the Locate..By Attribute... dialog box when users attempt to
locate an object.

Use care in setting this field. If you do not specify the locate flag,
users cannot locate an object based on your field. On the other hand,
indiscriminate use of the locate field will result in an overabundance of
locate entries, making that dialog box harder to use effectively. Set
this flag only if users will need to locate objects through this field.
This flag cannot be set together with the list flag.

Capability This field is used to classify an object. For example, the NetView for
AIX program defines fields, such as isRouter and isDevice. These
fields are used to classify objects and are often used in assertions.
The capability flag may only be used for Boolean and enumerated
field types. Capability fields determine menu greying (which menu
operations are available based on the selected objects).

For an example of the use of Capability fields, see “Defining Rules
within Enroll Blocks” on page 38.

General Fields with this flag appear in a special General Attributes dialog box
associated with every object. This is for fields that are not application-
specific and do not appear in any application-specific dialog box. The
vendor field is a good example of a general field.

Combining Data Types and Flags
As you can see from the flag descriptions, not all flags can be used with all data
types. Table 7 summarizes valid data type and flag combinations.

Table 7. Valid Data Type and Flag Combinations

Flag Data Type

Integer String Boolean Enumeration

List Á Á

Name Á

Capability Á Á

Locate Á Á Á Á

General Á Á Á Á

82 Programmer's Guide

Combinations of Flags
Flags can be applied to different data types and for different purposes. There may
be occasions where you want to use flags in combination. Flags can be used in
the following ways:

� Any flag can be used individually.

� The name and locate flags can be used together.

� The capability and locate flags can be used together.

� The general flag can be used with the other valid combinations described here.

The combinations listed here are the only valid combinations. For example, you
cannot combine the name and capability flags in a single flags statement.

Examples of Field Definitions
This section shows how to use field types and flags.

Example of Capability Fields
The three fields shown in the following examples are used to determine an object's
capabilities. An object could have device, computer, or node capabilities. In fact,
an object can have a combination of these capabilities. Capability fields are used
to classify objects in the NetView for AIX program; therefore, capability fields
cannot be used to uniquely identify (or name) an object.

Field "isNode" {
 Type boolean;
 Flags capability;
}

Field "isDevice" {
 Type boolean;
 Flags capability;
}

Field "isComputer" {
 Type boolean;
 Flags capability;
}

Example of Enumerated Types and Locate Flag
This example shows how you can use enumerated types to classify the status of
nodes on a network. Each node on a network has a status value from this set. By
setting the locate flag, users have the ability to search for, or locate, all nodes on
the network with a particular status. You should not set the capability flag or name
flag for this field.

 Chapter 7. Creating and Using Objects and Fields 83

Field "IP status" {
 Type enumeration;
 Enumeration "Unset",
 "Unknown",
 "Normal",
 "Marginal",
 "Critical"
 "Unmanaged"
 "Acknowledged"
 "UserStatus1"
 "UserStatus2";
 Flags locate;
}

Example of a Name Flag
Because the hostname of a computer is unique for all nodes on the network, the
name flag can be set for the field.

Field "IP Hostname" {
 Type string;
 Flags name;
}

Example of a List Flag
The following example demonstrates how to use the list flag in field definitions.
This field definition specifies that the field's value is a list of strings, such as the
names of people who can service equipment. Values are added to lists using the
OVwDbSetFieldValue() routine.

Field "Service Contacts" {
 Type string;
 Flags list;
}

Using the OVwDbCreateField() Routine
Fields are created using the OVwDbCreateField() routine. This routine creates an
entry in the NetView for AIX database that describes how data will be stored and
treated. This routine does not assign data for the field (the field value). You can
assign a field value only after you have associated that field with an object. This
process is described in “Creating Objects” on page 87. Once an object exists, you
are free to manipulate all field values associated with that particular object.

Though the same field can be used in different objects, each object can have a
different field value. The OVwDbCreateField() call has the following format:

OVwFieldId OVwDbCreateField(char \fieldName,
int fieldType, unsigned int fieldFlags);

When calling OVwDbCreateField, you need to supply these arguments:

� The fieldName argument is a character string containing the textual name for
the field.

� The fieldType argument is the data type. Valid types are ovwIntField,
ovwBooleanField, ovwStringField, and ovwEnumField. If the data type is a list,
then the fieldFlags argument will have the ovwListField value set.

84 Programmer's Guide

� The fieldFlags argument is a logical expression containing the flags to be set
for the new field. Valid flags are ovwListField, ovwNameField,
ovwCapabilityField, ovwLocateField, and ovwGeneralField. (Valid combina-
tions of field flags were described in “Combinations of Flags” on page 83.) The
fieldFlags argument is zero (0) if no flags are needed. Valid types and flags
are defined in <OV/ovw_obj.h>.

The OVwDbCreateField() call returns an identifier of type OVwFieldId. This identi-
fier is used in subsequent calls involving the field. At this point, the field exists in
the database, and values can be set for the field for particular objects. The fol-
lowing short code segment shows how to create a field that is a list of integers.

 ...
OVwFieldId field_id;
field_id = OVwDbCreateField("a_test", ovwIntField, ovwListField);

Identifying a Field
Most API routines use the field ID, not the field name, when dealing with fields.
Both are unique ways to identify a field. You are free to use either form in your
programs, as long as it is converted to the appropriate form for calls to API rou-
tines. Two NetView for AIX API routines are available to convert between field
names and field IDs. They have the following formats:

OVwFieldId OVwDbFieldNameToFieldId(char \fieldName);
char \OVwDbFieldIdToFieldName(OVwFieldId fieldId);

Applications that create fields using the field registration file will need to use the
OVwDbFieldNameToFieldId() routine at some time. To use routines that take a
field ID as input, you will need first to convert the field name in the field registration
file to a field ID using OVwDbFieldNameToFieldId(). Refer to the man pages if you
need more information about these routines.

Defining Enumeration Values
The NetView for AIX program supports enumerated types as one of the field data
types. If you use enumerated types, and do not use an FRF to define the field, you
must follow the procedures in this section to define the values for the enumeration.

1. Allocate memory for the appropriate data structures. You must allocate
memory for two data structures:

� An array of pointers, where each array entry points to one of the enumer-
ation value strings.

� The OVwEnumConstants data structure contains a count of the number of
enumeration values and a pointer to the array containing pointers to the
enumeration values. The data structure has the following format:

 typedef
struct {
 int count;
 char \\names;
 } OVwEnumConstants;

2. Define each enumeration value. Store the address of the string in the array of
string pointers.

3. Call the OVwDbSetEnumConstants() routine to set the values.

 Chapter 7. Creating and Using Objects and Fields 85

The following code segment shows how to define an enumerated type with three
possible values:

 ...
OVwFieldId id;
OVwEnumConstants \p;
int ret;

/\ create the field without special flags \/
id = OVwDbCreateField("enum_test", ovwEnumField, ð);
if (OVwIsIdNull(id)) {
/\ error processing \/
}

/\ allocate the memory for the enumerated constants
structure \/
p = (OVwEnumConstants \) malloc(sizeof(OVwEnumConstants));

/\ allocate the memory for the pointers to the 3 names \/
p->names = (char \\) malloc(sizeof(char \) \ 3);

/\ now assign each name \/
p->count = 3;
p->names[ð] = "red";
p->names[1] = "green";
p->names[2] = "blue";

ret = OVwDbSetEnumConstants(id, p);

Retrieving Field Information
The NetView for AIX program provides routines that return information about a field.
These routines return such information as the field ID, the field name, and the field
data type. They return information about the field, rather than field values for par-
ticular objects. You can retrieve information for a single field or for all fields with
particular characteristics in the object database.

Use the OVwFieldInfo data structure to retrieve information about a field. The data
structure contains the field name, type, and flags, as well as the field ID. The data
structure has the following format:

typedef struct {
 OVwFieldId field_id;
 char \field_name;
 int field_type;

unsigned int field_flags;
} OVwFieldInfo;

For a Single Field
The OVwDbGetFieldInfo() routine returns field information for a single field. When
called with a field ID, it returns a pointer to an OVwDbFieldInfo data structure con-
taining field information. Because the memory for the structure is dynamically allo-
cated by the NetView for AIX program, you should use the associated API routine
to free the memory when the application is finished. The following code segment
illustrates:

86 Programmer's Guide

OVwFieldInfo \fp;
OVwFieldId id;
 ...
/\ Create a boolean field \/
id = OVwDbCreateField("test", ovwBooleanField, ð);
 ...
/\ Retrieve the field information from the database \/
fp = OVwDbGetFieldInfo(id);
printf("field_id is %d\n, ", fp->field_id);
printf("field_name is %s\n, ", fp->field_name);
printf("field_type is %d\n, ", fp->field_type);
printf("field_flags is ðx%x\n", fp->field_flags);
OVwDbFreeFieldInfo(fp);

For All Fields
The OVwListFields() routine searches the entire NetView for AIX object database
and returns a list of field information for fields that have the appropriate flags set.
Valid flags are ovwAllFields, ovwNameField, ovwLocateField,
ovwCapabilityField, and ovwGeneralField. For example, the following code
segment shows how to retrieve a list of all fields in the object database that have
the ovwNameField flag set:

OVwFieldList \flp;
OVwFieldInfo \fip;
int i;
 ...
flp = OVwDbListFields(ovwNameField);
for (i=ð, fip=flp->field_list; i<count; i++, fip++) {

<process the entry pointed to by fip>
}
OVwDbFreeFieldList(flp);

Getting Enumeration Type Values
After you have defined an enumeration, you can use a number of API routines to
retrieve information about the enumeration. You can retrieve the symbolic name
list with the OVwDbGetEnumConstants() routine and translate between symbol
names and values with the OVwDbGetEnumValue() and OVwDbGetEnumName()
routines. Refer to the man pages for more information on these and other related
routines that operate on enumerated data types.

 Creating Objects
In the NetView for AIX program, an object is an internal representation of a logical
or physical entity or resource that exists in a computer network. An NetView for
AIX object consists of a unique object identifier and a set of fields that specify all
the characteristics of the object. The NetView for AIX program provides routines
that create and delete objects, as well as routines that change the object fields.
Other NetView for AIX routines perform such functions as retrieving the list of all
fields associated with an object and searching the object database for objects that
contain specific field values.

When you create an object, an object definition is added to the NetView for AIX
object database. The object definition is created with a selection name and an
optional field value.

 Chapter 7. Creating and Using Objects and Fields 87

The OVwFieldValue Data Structure
The OVwFieldValue data structure defines field values. Most NetView for AIX
object database routines use the OVwFieldValue data structures in some form,
either as an argument or a returned result. The field value structure is imple-
mented as follows:

typedef struct {
 OVwBoolean is_list;
 int field_type;
 union {
 int32 int_val;
 OVwBoolean bool_val;
 char \string_val;
 int enum_val;
 OVwListFieldValue \list_val;
 } un;
 OVwBoolean modified;
} OVwFieldValue;

When used for simple data types, the is_list boolean value is set to FALSE, and
the field value is stored as an integer, boolean, string, or enumerated value. The
field_type entry specifies which union entry is used. The modified entry is not
used during field creation and can be temporarily ignored. It is used during
dialog-box processing to indicate whether a field has been modified by the user and
thus must be processed by the application that handles entries made through that
dialog box.

If the field value is a list, then the is_list entry is set to TRUE and list_val points
to a structure that heads the list. The following additional data structures define the
list head and the list entries:

typedef struct {
 union {
 int32 int_val;
 OVwBoolean bool_val;
 char \string_val;
 int enum_val;
 } un;
 OVwBoolean selected;
} OVwListFieldEntry;

typedef struct {
 int count;
 OVwListFieldEntry \list;
} OVwListFieldValue;

Note that for lists the data type is not specified in the OVwListFieldEntry data struc-
ture. Because all items in the list must be the same type, it is sufficient to specify
the data type in the OVwFieldValue data structure. The selected entry in the
OVwListFieldEntry can be temporarily ignored.

Note that the list of values is not implemented as a standard linked list. The
OVwListFieldValue structure that heads the list contains an integer count of the
number of list entries, followed by a pointer to a contiguous array of list entries.
For internal memory management reasons, most list data structures are imple-
mented in this way.

88 Programmer's Guide

 Selection Name
A selection name is a special name field that uniquely identifies an object and is set
for all objects. Before describing how the selection name is used, we need to
review some name-field concepts.

The purpose of the selection name is to make sure that every object has a textual
name that can be displayed through the user interface to identify the object. The
selection name is the principal name by which the object is known through the user
interface. Because the selection name is intended for presentation purposes and
can be changed by a user, applications should not be designed to rely on the value
of the selection name.

Every object is uniquely identified by an object ID that is returned when the object
is created. In addition, an object can have many name fields, such as a hostname
for TCP/IP networking, a Fully Distinguished Name for OSI networking, or a name
created by an application. A name-field value for any object is unique. Therefore,
any name field can be used to uniquely identify an object.

A selection name is required for every NetView for AIX object regardless of other
name fields the object might have. You can define your own selection name value
when your object is created, or you can let the NetView for AIX program choose a
value for you.

Creating Objects with API Routines
Three API routines are available to create objects:

� OVwDbCreateObject(), a generic routine that can create any type of NetView
for AIX object

� OVwDbCreateObjectByHostname(), which creates an object by its hostname

� OVwDbCreateObjectBySelectionName(), which creates an object by its
selection name

In general, objects are created with the OVwDbCreateObject() routine. It has the
following format:

OVwObjectId OVwDbCreateObject(OVwFieldBinding \name);

The name argument is a pointer to an OVwFieldBinding structure, which is simply a
structure that links a field ID with a field value. The OVwFieldBinding structure is
defined as follows:

typedef struct {
 OVwFieldId field_id;
 OVwFieldValue \field_val;
} OVwFieldBinding;

If you call OVwDbCreateObject() with a NULL parameter, the NetView for AIX
program will create an object for you and assign it a system-generated selection
name. If you supply a pointer to a valid OVwFieldBinding structure in the
OVwDbCreateObject() routine call, one of three things can happen:

� If the field value you supply is a selection name, the NetView for AIX program
will attempt to define the object. If the selection name is already allocated, the
call returns an error. You can optionally use the OVwDbGetUniqObjectName()
routine to generate a selection name that is guaranteed to be unique. The

 Chapter 7. Creating and Using Objects and Fields 89

OVwDbGetUniqObjectName() routine is described in “Generating Unique Name
Field Values” on page 90.

� If the field value is a name field other than the selection name, the NetView for
AIX program will attempt to define the object. If the name-field value is not
unique, an error will be returned. If the name is unique, the NetView for AIX
program will define the object, set the name-field value, and generate a
selection name for you based on the name field you supply.

� If the field value you provide is not a name field, the NetView for AIX program
will create a selection name for you. The name will be in the form Selection
Namen, where n is a unique integer. You can change the selection name later if
you desire.

The following example shows how to create an object that contains a name field.
In this example, the name field is the NetBIOS system name, as defined in a field
registration file. Since the field is not a selection name, the NetView for AIX
program will also generate a selection name for the object:

OVwFieldId f_id;
OVwObjectId obj_id;
OVwFieldBinding \bp;

/\ get the field ID associated with the NetBIOS Name \/
f_id = OVwDbFieldNameToFieldId("NetBIOS Name")
if (OVwIsIdNull(f_id)) {

/\ error processing \/
}

/\ allocate an OVwFieldBinding structure \/
bp = (OVwFieldBinding \) malloc(sizeof(OVwFieldBinding));

/\ fill in the field_id entry and the field_value structure \/
bp->field_id = f_id;

bp->field_val = (OVwFieldValue \) malloc(sizeof(OVwFieldValue));
bp->field_val->un.string_val = "nametest";
bp->field_val->field_type = ovwStringField;
bp->field_val->is_list = FALSE;

/\ create the object and save the object ID that is returned \/
obj_id = OVwDbCreateObject(bp);
if (OVwIsIdNull(obj_id)) {

/\ error processing \/
}
 ...

Generating Unique Name Field Values
The OVwDbCreateObject() routine returns an error if you attempt to create an
object with a name field value that is not unique. You can generate a new name
and try the call again, but there is no guarantee that your new name is unique.
The NetView for AIX program solves this problem by providing a routine that gener-
ates a unique name for you, using a name you provide as a base. The
OVwDbGetUniqObjectName routine has the following function prototype:

char \OVwDbGetUniqObjectName(OVwFieldId nameFieldId,
char \nameValue);

90 Programmer's Guide

Here is how the routine behaves:

� If you provide a name-field value that is not already assigned, the same name
is returned to you.

� If you provide a name-field value that is already assigned, the NetView for AIX
program will choose a unique name based on the value you provide. The
NetView for AIX program will append an integer to the base name, thereby
making the newly formed name unique.

� If you pass a NULL parameter for the nameValue parameter, the NetView for
AIX program will choose a unique name-field value for you. The NetView for
AIX program will convert the field ID to a base field name, and will append an
integer to the base field name to make the new name unique.

The name generated by the call will be unique, which lets you call the
OVwDbCreateField() routine with assurance that the field name is not already allo-
cated.

Creating Objects by Host Name or Selection Name
You can use the general purpose OVwDbCreateObject() routine to create an object
that has a hostname or selection name. The following steps are involved:

1. Call the OVwDbFieldNameToFieldId() routine to retrieve the field ID associated
with the Hostname or Selection Name. (The "IP Hostname" and "Selection
Name" fields are already present in the database, so you don't need to create
them.)

2. Allocate memory for the OVwFieldValue structure.

3. Fill in the OVwFieldValue structure, setting the string_val entry to the name.

4. Allocate memory for an OVwFieldBinding structure, set the field ID, and set a
pointer to the field value.

5. Call the OVwDbCreateObject() routine.

As a convenience, the NetView for AIX program provides two routines that create
objects by IP Hostname or Selection Name. They require only a single call, and
they have the following formats:

OVwObjectId OVwDbCreateObjectByHostname(char \hostname);
OVwObjectId OVwDbCreateObjectBySelectionName(char \selectionName);

These routines are a convenient alternative to using the generic
OVwDbCreateObject() routine.

Getting and Setting Object Field Values
After creating fields and objects, you can use the remaining object database rou-
tines to manipulate the fields in a wide variety of ways. The NetView for AIX object
database routines described in this section enable you to:

� Get and set field values in the NetView for AIX object database.
� Associate new fields with existing objects.
� Retrieve a list of all the fields associated with an object.
� Retrieve the list of capability or name fields set for an object.
� Get all objects in the object database that contain specific field values.
� Convert between any field name and field ID.

 Chapter 7. Creating and Using Objects and Fields 91

Using Basic Routines to Access Field and Object Values
Using the basic routines presented in this section, you can access all field and
object values in the NetView for AIX object database. Many convenience versions
of these basic calls are also available. The convenience versions reduce the
number of parameters or simplify the result returned. In some cases, the conven-
ience versions reduce the number of calls you need to make to get field informa-
tion. However, they do not perform actions that cannot be performed with the basic
calls.

The most basic way to retrieve field value information is with the
OVwDbGetFieldValue() routine. Given a field ID and object ID, this routine returns
a pointer to a field value structure. The OVwDbGetFieldValue() routine has the
following function prototype:

OVwFieldValue \OVwDbGetFieldValue(OVwObjectId objectId,
OVwFieldId fieldId);

Because the memory used to store the returned field value is allocated by the
NetView for AIX program, you should call the OVwDbFreeFieldValue() routine to
free the memory that is no longer needed.

The following example shows how to retrieve the selection name-field value from
the NetView for AIX object database. This example converts the field name to a
field ID and calls OVwDbGetFieldValue() to retrieve the field value information.

OVwFieldId field_id;
OVwObjectId obj_id;
OVwFieldValue \val_ptr;

 ...
field_id = OVwDbFieldNameToFieldId(ovwNselectionName);

/\ Get the field value. Assume that 'obj_id' is set for our object. \/
val_ptr = OVwDbGetFieldValue(obj_id, field_id);
printf("The Selection Name for this object is %s\n",
 val_ptr->un.string_val);
OVwDbFreeFieldValue(val_ptr);
 ...

Note that the ovwNselectionName string constant is passed in the call to
OVwDbFieldNameToFieldId(). Using this constant is less prone to programming
error than specifying the selection name. The file <OV/ovw_fields.h>, which con-
tains string constant definitions, is included for you automatically if you include
<OV/ovw.h>.

Setting Field Values
The OVwDbSetFieldValue() routine is used to set field values as well as to add
fields to existing objects. It has the following format:

int OVwDbSetFieldValue(OVwObjectId objectId,
 OVwFieldId fieldId,

OVwFieldValue \fieldValue);

To set a field value, you must allocate memory for an OVwFieldValue data struc-
ture, set the appropriate entries, and call the OVwDbSetFieldValue() routine. This
technique was shown in “Creating Objects” on page 87. If you attempt to set a
field value for a field that is not already associated to the object, the NetView for

92 Programmer's Guide

AIX program will add the field to the object. Note that the OVwDbCreateObject()
routine is used to set a single field value and to create an object. The
OVwDbSetFieldValue() routine is used to add other fields to the object and set their
value.

Using Convenience Routines
Because retrieving and setting field values are common operations, the NetView for
AIX program provides convenience routines that simplify these tasks. Some con-
venience routines retrieve particular field values directly, bypassing the overhead of
using the OVwFieldValue data structure upon return. Examples include
OVwDbGetFieldIntegerValue() and OVwDbGetFieldBooleanValue(). To use these
routines, you must know the data type of the field. Other convenience routines
eliminate the need to set up an OVwFieldValue data structure. The desired value
is passed as an argument to the appropriate routine. Examples of these routine
types include OVwDbSetFieldStringValue() and OVwDbSetSelectionName().

Table 8 lists some of the NetView for AIX program's object database convenience
routines.

These routines are not described here, because their use is straightforward after
the basic calls are understood. Refer to the man pages for more information about
these routines.

Table 8. NetView for AIX Object Database Convenience Routines

Convenience Routine Purpose

OVwDbGetFieldIntegerValue()
OVwDbGetFieldBooleanValue()
OVwDbGetFieldStringValue()
OVwDbGetFieldEnumByValue()
OVwDbGetFieldEnumByName()

These routines take an object ID and field
ID as arguments and return the appropriate
field value. They save you the trouble of
having to dereference pointers into the
OVwFieldValue structure.

OVwDbSetFieldIntegerValue()
OVwDbSetFieldBooleanValue()
OVwDbSetFieldStringValue()
OVwDbSetFieldEnumByValue()
OVwDbSetFieldEnumByName()

These routines take an object ID, field ID,
and value as arguments and set the appro-
priate field value. You do not need to set
up the OVwFieldValue structure if you use
these routines.

OVwDbSetSelectionName()
OVwDbSetHostname()

These routines use an object ID and a
string to set the appropriate name field.

OVwDbGetCapabilityFieldValues()
OVwDbGetNameFieldValues()

These routines return a list of name or
capability fields set for the object.

OVwDbNameToObjectId() This routine converts the value of any name
field to the object ID it identifies.

OVwDbSelectionNameToObjectId()
OVwDbObjectIdToSelectionName()
OVwDbHostnameToObjectId()
OVwDbObjectIdToHostname()

These routines translate between selection
name, or object ID and hostname, or object
ID.

OVwDbListObjectsByFieldValue()
OVwDbListObjectsByFieldValues()
OVwDbFreeObjectIdList()

The Locate calls search the entire NetView
for AIX object database for objects and
fields that match certain criteria. Because
they search the entire database, they are
slow.

OVwDbGetFieldValuesByObjects()
OVwDbFreeObjectFieldList()

These routines get a list of values for a
certain field for a list of objects.

 Chapter 7. Creating and Using Objects and Fields 93

Getting a List of Object Fields
The NetView for AIX program provides routines that can return a list containing
several fields, each of which may have different types. For example, the
OVwDbGetFieldValues() routine returns a list of all field values for fields associated
with an object. The OVwDbGetFieldValues() routine returns the full definition of a
particular object, because it returns all the fields of an object.

Representing lists of fields with different types requires a new data structure. The
OVwFieldBindList data structure performs this function and has the following
format:

typedef struct {
 int count;
 OVwFieldBinding \fields;
} OVwFieldBindList;

This structure follows the list scheme used by other NetView for AIX list data struc-
tures. The fields variable points to the first entry in a contiguous array (of size
count) of data structures (in this case, OVwFieldBinding data structures).

Figure 2 illustrates the OVwFieldBindList structure.

isList
f i e l d _t y p e
union

int
boolean
str ing val
enum_val
l i s t_val

modi f ied

isList
f i e l d _t y p e
union

int
boolean
str ing val
enum_val
l i s t_val

modi f ied

isList
f i e l d _t y p e
union

int
boolean
str ing val
enum_val
l i s t_val

modi f ied

f i e l d_i d
f i e l d_va l

f i e l d_i d
f i e l d_va l

f i e l d_i d
f i e l d_va l

...

count
FieldBinding

OVwFieldBindList

OVwFieldValue

Figure 2. Field Binding List Data Structure

94 Programmer's Guide

The following example shows how the OVwFieldBindList data structure is used.
For convenience, assume that each field is a simple type, not a list of simple types.

OVwFieldBindList \fbl_ptr;
OVwFieldBinding \fb_ptr;
OVwObjectId obj_id;
int i;

 ..
/\ assume that 'obj_id' is the object ID for our object \/

fbl_ptr = OVwDbGetFieldValues(obj_id);
for (i=ð, fb_ptr=fbl_ptr->fields; i<fbl_ptr->count; i++,
fb_ptr++) {

printf("Processing field binding entry %d\n", i);
printf(" The field ID is %d\n", fb_ptr->field_id);
switch (fb_ptr->field_val->field_type) {

 case ovwStringField:
printf(" String value is %s\n",

 fb_ptr->field_val->un.string_val);
 break;
 case ovwIntField:

printf(" Integer value is %d\n",
 fb_ptr->field_val->un.int_val);
 break;
 case ovwBooleanField:

printf(" Boolean value is %d\n",
 fb_ptr->field_val->un.bool_val);
 break;
 case ovwEnumField:

printf(" Enum value is %d\n",
 fb_ptr->field_val->un.enum_val);
 break;
 }
}
OVwDbFreeFieldBindList(fbl_ptr);
 ...

Retrieving Object Attribute Information
Some object attributes are maintained globally, and some apply only to the map on
which that object appears. Generally, developers do not need to be concerned with
whether an object attribute is global or map-specific. When setting attributes, the
NetView for AIX API routines take care of setting the appropriate global or map-
specific object attributes.

When an application sets status for an object, the status is set only for the object
on the open map. Setting status on that object does not affect the status of the
same object on another map. Object status is an example of an attribute that is
map-specific.

There are a number of other map-specific object attributes as well. These map-
specific object attributes, and the routines that operate on them, are described in
this section. For example, when calling the OVwSetStatusOnObjects() routine, the
NetView for AIX program automatically sets the map-specific object attribute.

 Chapter 7. Creating and Using Objects and Fields 95

When retrieving object attributes, note the distinction between global and map-
specific attributes. If the application needs global attribute information, the devel-
oper should use the OVwDbGetFieldValues() or related routine. Those routines
were described earlier in this chapter. When retrieving map-specific information,
the developer should use the OVwGetObjectInfo() routine or another routine pre-
sented in this section.

The OVwObjectInfo Data Structure
The OVwObjectInfo data structure stores map-specific object information. This data
structure is used by NetView for AIX routines that retrieve map-specific object infor-
mation. The OVwObjectInfo data structure has the following definition:

typedef struct {
OVwObjectId object_id; /\ object ID \/
OVwSubmapId child_submap_id; /\ child submap of object \/
int num_symbols; /\ number of symbols on open map \/
OVwStatusType object_status; /\ object-specific status \/
OVwStatusType compound_status; /\ compound status \/

 int op_scope; /\ ovwNotApplicable,
ovwOpenMapScope, ... \/

OVwFieldBindList \field_values; /\ object capability field values \/
} OVwObjectInfo;

Note that all of the fields in this structure apply to the object only as it relates to the
current map. They do not apply to instances of the object on other maps. Most of
the fields in the data structure are self-explanatory; however, two fields require
further description.

The op_scope and field_values fields have special uses that are not apparent from
their names. Both fields are used to provide particular information to callback rou-
tines when specific events occur.

� The op_scope field indicates the scope of delete operations.

� The field_values field is used to supply certain object fields to an application
callback routine for ovwConfirmCapabilityChange and
ovwConfirmDeleteObjects events.

The <OV/ovw.h> include file contains the definition for the OVwObjectInfo data
structure, as well as additional comments about the fields and how they are used.

The OVwGetObjectInfo() Routine
The OVwGetObjectInfo() routine retrieves map-specific object information for any
object. Given an object ID, this routine returns a pointer to an OVwObjectInfo data
structure containing complete map-specific object information. An associated
OVwFreeObjectInfo() API routine frees memory allocated by the
OVwGetObjectInfo() routine. They have the following formats:

OVwObjectInfo \OVwGetObjectInfo(OVwMapInfo \mapInfo,
OVwObjectId objectId);

void OVwFreeObjectInfo(OVwObjectInfo \object);

Note that OVwGetObjectInfo() returns only the map-specific information relating to
an object. If you need global object information, use the OVwDbGetFieldValues()
routine.

96 Programmer's Guide

Getting Symbol IDs Associated with an Object
The OVwGetSymbolsByObject() routine provides a list of all the symbols that repre-
sent a given object on the open map. For instance, consider the use of a selection
list in a callback routine. When the NetView for AIX program invokes a callback
routine, it supplies a copy of the current selection list. The selection list is a list of
object IDs. Use the OVwGetSymbolsByObject() routine to convert the list of object
IDs to a list of all symbols that represent the given object.

The OVwGetSymbolsByObject() routine has the following function prototype:

OVwSymbolList \OVwGetSymbolsByObject(OVwMapInfo \mapInfo,
OVwObjectId objectId);

This routine returns a pointer to a standard NetView for AIX list structure, com-
posed of an integer count of the number of entries in the list and a pointer to the
first in a contiguous array of list entries. Be sure to free the dynamically allocated
memory with the OVwFreeSymbolList() routine when you are finished.

Getting a List of All Objects on a Map
The OVwListObjectsOnMap() routine is useful for getting a list of all the objects that
are present on the open map. The OVwListObjectsOnMap() routine has the fol-
lowing function prototype:

OVwObjectList \OVwListObjectsOnMap(OVwMapInfo \mapInfo,
OVwFieldBindList \fieldValues);

The OVwListObjectsOnMap() routine returns a pointer to an OVwObjectList struc-
ture. The OVwObjectList structure is another standard NetView for AIX list struc-
ture that is composed of an integer count of the number of entries in the list and a
pointer to the first in a contiguous array of list entries. The fieldValues argument
is an optional argument that the NetView for AIX program uses to filter the list of
objects returned by the OVwListObjectsOnMap() routine. If field_values is speci-
fied, the list of returned objects is filtered to include only those objects that have the
specified field values. If field_values is NULL, the NetView for AIX program
returns a list of all objects in the open map.

Call the OVwFreeObjectList() routine to free the dynamically allocated memory
when you are finished.

 Deleting Objects
Objects should be deleted from the NetView for AIX object database when they are
no longer needed. The NetView for AIX program's process for deleting an object
addresses the possibility that the object might still be used by another application.
The NetView for AIX program provides a set of routines that applications can call to
cooperatively delete an object. This process guarantees that an object is not
deleted while it is being used by another application.

An object should be deleted when it is deleted from the last submap on which it
appears. Applications can determine that an object is no longer in use by regis-
tering for the ovwConfirmDeleteObjects event. See Chapter 10, “Map Events and
Map Editing” on page 145 for more information about map editing and map events.
The OVwConfirmDeleteObjectsCB() man page also describes when to delete
objects.

 Chapter 7. Creating and Using Objects and Fields 97

When an application has finished using an object, the application should be
designed to:

1. Delete all symbols that represent the object. See “Deleting Symbols” on
page 129 for information on deleting symbols.

2. Call OVwDbUnsetFieldValue() for every field that it controls or sets. The
OVwDbUnsetFieldValue() routine has the following format:

int OVwDbUnsetFieldValue(OVwObjectId objectId, OVwFieldId fieldId);

3. Call the OVwDbDeleteObject() routine to delete the object. The
OVwDbDeleteObject() routine has the function prototype:

int OVwDbDeleteObject(OVwObjectId objId);

The NetView for AIX program will delete the object if either of the following con-
ditions exists:

� No fields are set for the object.

� The object only has fields with either the capability or general flag set.

If either of these conditions is true, the NetView for AIX program will delete the
object. If any application has fields set for the object, the object will not be deleted
until that application unsets its field values and calls the OVwDbDeleteObject()
routine. Note also that before deleting an object, you must delete all the symbols
that represent that object from all maps. Refer to the OVwDbUnsetFieldValue()
and OVwDbDeleteObject() man pages for more information about deleting objects.

98 Programmer's Guide

Chapter 8. Creating and Using Symbols

This chapter describes ways to define and use symbols with the NetView for AIX
program. Read this chapter if your application deals with symbols on NetView for
AIX submaps. You should be familiar with NetView for AIX objects, maps, and
submaps.

Topics in this chapter include:

 � Symbol attributes
 � Creating symbols
� Changing symbol appearance and behavior
� Retrieving symbol information

 � Deleting symbols

This section reviews symbol concepts that you must know before you can create
and use symbols.

The terms symbol and object appear throughout this chapter. You must under-
stand the distinction between symbols and objects before you can use the NetView
for AIX symbol routines. A symbol is a graphical representation of an object as it
appears on a submap of a particular map. Symbols are presentation elements,
while objects are underlying database elements that represent network elements.
An object can be represented by multiple symbols.

Understanding Symbol Attributes
Symbols have attributes beyond those of the objects they represent. Important
symbol attributes include:

 � Label
 � Status
 � Status source
 � Symbol type
 � Plane location
 � Position
 � Behavior

These attributes can vary among the different symbols representing a particular
object, because they are symbol-specific rather than object-specific. This section
describes each of these symbol characteristics.

 Symbol Label
The symbol label is a text string that is displayed at the bottom of each symbol.
The symbol label is provided as a convenience to users. It does not have to be
unique, because it is not used to uniquely identify the symbol. (Numeric symbol
IDs uniquely identify symbols.) An application can assign the initial value of the
symbol label when the symbol is created, but users can change the label. Applica-
tions or users can enable or disable the display of the label.

 Copyright IBM Corp. 1992, 1995 99

 Symbol Type
The symbol type determines the graphical representation of a symbol. The term
symbol type is a convenient way to refer to the symbol class and subclass that
define how the symbol is displayed. The symbol class defines the symbol cate-
gory, and the symbol subclass defines a particular element within that class. The
symbol class defines the outline, or shape and size, of the symbol; the subclass
indicates the bitmap that is superimposed on that outline.

Symbol types can be defined with certain default capability fields. If a symbol with
default capability fields is created in a submap, those capability fields will be added
to the existing capability fields of the underlying object. Symbol classes, symbol
subclasses, and default capability fields are described in detail in “Defining Symbols
with Symbol Type Registration Files” on page 109.

 Symbol Variety
There are two kinds of NetView for AIX symbols: icon symbols and connection
symbols.

Icon symbols are displayed as a symbol graphic (or bitmap) within an outer shape,
such as a circle, square, or diamond. In addition to the basic symbol attributes
(label, status, status source, plane), an icon symbol has the following additional
attributes:

� Class shape, based on the class of the symbol type
� Symbol graphic (or bitmap), based on the subclass of the symbol type

 � Position

A connection symbol is a symbol that connects two icon symbols. A connection
symbol appears as a line drawn between two icon symbols and has the following
attributes beyond the basic symbol attributes:

� Line style based on the subclass of the symbol type
� Two connection end points

A connection symbol can connect any two icon symbols on the same submap. If
the submap has a ring or bus layout, a connection symbol can also connect an icon
symbol and the backbone symbol. A connection symbol cannot connect other con-
nection symbols.

The variety of a symbol type is determined by its symbol class. For example,
symbol types of the Computer class are of the icon variety, while symbol types of
the Connection class are of the connection variety. “Changing a Symbol's Type” on
page 122 explains how to programmatically change the symbol type of existing
symbols. This is permitted as long as the new symbol type has the same variety
as the old symbol. For example, you can change the symbol type of an icon
symbol to a new icon symbol type, but not to a connection symbol type. Symbol
variety is fixed for the life of the symbol.

100 Programmer's Guide

 Symbol Behavior
A symbol can either be explodable or executable. This characteristic determines
what will happen when the user double-clicks on the symbol. Double-clicking on an
explodable symbol results in the display of the child submap that shows the con-
tents of the object represented by the symbol. Double-clicking on an executable
symbol results in the invocation of an action provided by an application.

By default, symbols added to a map are explodable in nature. Both applications
and users can change the behavior of a symbol. You can change the behavior of a
symbol with the OVwSetSymbolBehavior() routine, which is described in “Changing
a Symbol's Behavior” on page 123. You can define the selection list when you
make the symbol executable.

 Symbol Status
Each symbol displayed by the NetView for AIX program can display status informa-
tion through the use of color. Each of the status values has an associated color
that indicates the status of the symbol. Table 9 summarizes the status values,
when they are used, and the color associated with each status condition:

Although these status colors are preset by the NetView for AIX program, application
developers or users can change them through the X resource file,
/usr/OV/app-defaults/OVw.

Table 9. NetView for AIX Status Colors

Status Status Meaning Icon
Color

Con-
nection
Color

Unknown An application sets status to unknown when the
status of an object cannot be determined.

Blue Black

Normal An application sets status to normal when the
object is in a normal operational state.

Green Black

Marginal An application sets status to marginal when the
operation of an object is impaired but still func-
tional.

Yellow Yellow

Critical An application sets status to critical when an
object is not functioning.

Red Red

Unman-
aged

Users can set this value. It indicates that the
object should not be monitored and that status
should be ignored.

Wheat Black

Acknowl-
edged

Users can set this value. It indicates that the
object should not be monitored and that status
should be ignored.

Green Black

UserStatus1 This value can be defined by your administrator.
See the NetView for AIX User's Guide for Begin-
ners for more information.

Pink Black

UserStatus2 This value can be defined by your administrator.
See the NetView for AIX User's Guide for Begin-
ners for more information.

Violet Black

 Chapter 8. Creating and Using Symbols 101

Symbols can receive status from one of three sources:

Status by Object
This status source causes the symbol to reflect the status for the under-
lying object. It allows multiple symbol instances of the object to receive
and reflect the same status information to the user.

It is recommended that you use this status source for symbols repres-
enting objects at the lowest level in the object hierarchy. Objects at this
level typically do not have component objects below them. Examples of
these types of objects include interface cards or specific software appli-
cations. This status source benefits users who copy symbol instances
between submaps, because each new symbol instance has the same
status as the original symbol instance.

Compound Status
This status source can be used for a symbol whose underlying object
serves as a parent object for a child submap. Using this status source,
the symbol status represents a summation of the status for all symbols
in the child submap. This status source lets higher-level symbols reflect
the state of lower level components controlled by multiple applications.
The NetView for AIX program uses its own algorithm to determine how
to summarize the status of symbols in a submap, but users can tune the
algorithm to fit their needs. Developers have no control over the algo-
rithm used to summarize status for a child submap. Compound status is
appropriate only for symbols whose underlying objects serve as parent
objects of child submaps.

Status by Symbol
This status source lets a specific symbol instance receive status directly
from an application. Use this status source if your application has the
exclusive responsibility for setting status for the specific symbol
instance. Creating a new symbol instance with symbol status source
assures application control over the symbol status. It also eliminates the
possibility of status conflict between applications.

The NetView for AIX Application Interface Style Guide describes the effects of
selecting a particular status mechanism. See that manual for more guidance in
using status consistently across applications.

 Symbol Position
The submap layout algorithm controls how symbols are placed on a submap. The
layout algorithm is chosen during submap creation and is fixed for the life of the
submap. Submaps can use any of the following layout algorithms:

� No Layout Algorithm
� Point to Point

 � Bus
 � Star
 � Tree
 � Ring
 � Row/Column
 � Multiple Connections

See “Submap Layout Algorithms” on page 135 for more information on submap
layout algorithms.

102 Programmer's Guide

The NetView for AIX graphical user interface uses the submap layout algorithm to
determine symbol placement.

Controlling Symbol Position
You can override the default symbol placement and programmatically specify a par-
ticular position for the symbol. You can specify one of the following position types:

No Position
The symbol has no specific position on the submap. The NetView for
AIX program will use the default symbol placement algorithm if you
choose this placement value. This position is valid for any layout algo-
rithm.

Coordinate Position
The symbol has an X, Y coordinate position within a grid of given width
and height. This position is valid for any layout algorithm.

Sequence Position
The position is specified as part of a sequence, relative to its prede-
cessor. The display of the sequence differs for bus, row/column, star,
and ring layouts. A special value is used to indicate the first symbol in
the sequence. This position is valid only for ring, star, bus, or
row/column layout algorithms.

Star Center Position
The symbol is the center of a star layout. This position is valid only for
the star layout algorithm.

Note that not every position form is valid for every submap default layout algorithm.
Specifically, the Sequence Position and Star Center Position are valid for only
some layout algorithms. You should use care in selecting a position form that is
compatible with your submap default layout algorithm.

Guidelines for Symbol Placement
Use the following guidelines when using explicit symbol placement:

� If the submap represents a logical or semantic view of its object, place the
symbols according to the rules that apply to the logical or semantic relationship.

� If the submap represents a physical view of its object, place the symbols
according to their correspondence to the physical objects.

� If the submap contains multiple semantics and you cannot provide an accurate
mapping from symbols to objects, let the NetView for AIX program place the
symbols for you.

Setting Sequence Position
Symbols that use any of the sequence layout algorithms (ring, star, bus,
row/column) are related to each other by positional order. Each symbol is related
to the previous symbol in the sequence by the pred_symbol field in the
OVwSymbolPosition data structure. Setting sequence position involves placing a
symbol at a particular place in the sequence. To override the NetView for AIX pro-
gram's automatic symbol placement, specify the symbol ID of the predecessor
symbol in the pred_symbol field in the OVwSymbolPosition data structure. This
data structure is described in “Creating Icon Symbols” on page 114. The first
symbol in the sequence has the special value ovwNullSymbolId . The NetView for
AIX program will place the symbol in the sequence immediately after the specified

 Chapter 8. Creating and Using Symbols 103

predecessor symbol. Depending on whether the user has enabled or disabled
automatic symbol layout, the symbol may or may not be placed immediately.

Setting Coordinate Position
Use coordinate placement to position symbols relative to one another or at some
fixed point on a background graphic. Submaps without background graphics are
scaled so that unused space on the periphery of the submap is not displayed. This
does not happen for a submap with a background graphic, because symbol place-
ment is relative to the background graphic and the entire background graphic is
always displayed. “Using Submap Background Graphics” on page 142 provides
more information on submap background graphics. Specifying symbol position by
coordinate position requires two sets of values:

� A width and height to specify a coordinate system, or grid.

� X and Y coordinates on the specified coordinate system where the symbol
should be placed.

To define the coordinate system according to which symbols will be placed, you do
not need to know the current virtual size of the submap or its screen size when
scaled for display. The NetView for AIX graphical user interface translates the grid
coordinate position to a virtual position based on the virtual size of the submap.
Under certain circumstances, the grid specification affects the virtual size of the
submap.

For example, a symbol placed at position (100,100) on a 200x200 grid will be
placed at the center of the submap. A symbol placed at position (150,200) on a
300x400 grid will also be placed in the center of the submap. For best results, use
the same grid size for all symbols placed on one submap.

You can use the grid size to determine how large symbols appear on the submap.
For example, two symbols placed at positions (25,25) and (75,75) on a 100x100
grid will appear in the same positions relative to one another as symbols placed at
positions (250,250) and (750,750) on a 1000x1000 grid. Symbols in the latter case
will appear smaller because of the greater distance between them. Symbol place-
ment by coordinates takes effect immediately, regardless of whether automatic
layout is enabled or disabled.

Note that symbol positions specified by coordinates are lost whenever the user
invokes the automatic layout algorithm. If your application needs to disable all
automatic layout, it should create the submap with the layout algorithm set to
ovwNoLayout.

The following code segment shows how to define coordinate position using the
OVwSymbolPosition data structure:

 ...
 OVwSymbolPosition \position;

position->placement = ovwCoordPosition;
position->un.coords.x = 5ð;
position->un.coords.y = 3ð;
position->un.coords.width = 1ðð;
position->un.coords.height = 9ð;

 ...

104 Programmer's Guide

Refer to the OVwSetSymbolPosition() man page if you need more details about
these forms of symbol placement.

Creating Bitmaps for NetView for AIX Symbols
NetView for AIX symbols are created by defining symbol classes and subclasses.
As described in “Symbol Variety” on page 100, the symbol class defines the shape
of the symbol and the subclass defines the bitmap imposed on that shape. This
section describes one way to create symbol bitmaps.

Each bitmap is defined by two files: y bitmap file and a bitmap mask file. You can
use any standard bitmap editing tool to create subclass bitmaps. The following
examples show the use of the Bitmap Editor for this purpose.

 Symbol Sizes
The NetView for AIX program uses different bitmap sizes based on the dimensions
of the NetView for AIX window in which the symbol appears. The NetView for AIX
graphical user interface attempts to scale the window contents appropriately, which
may mean choosing a different symbol bitmap to optimally fit the window. You
should provide a pair of bitmap/bitmap mask files for each size needed by the
application. If the appropriate bitmap file does not exist, the NetView for AIX
program will choose the closest possible match. It is recommended that you
provide bitmaps in the following six sizes (in pixels):

 � 20x20
 � 26x26
 � 32x32
 � 38x38
 � 44x44
 � 50x50

Do your initial design in a medium size, such as 32x32, and then ensure that your
symbol will appear properly in the remaining sizes.

 Creating Bitmaps
You can view the symbols provided with the NetView for AIX program by selecting
Help..Legend from the main menu. If there is an existing symbol that is similar to
the one you want to create, you can begin by copying that symbol's bitmap and
bitmap mask files into files with your name. The NetView for AIX program expects
bitmaps to be in the directory /usr/OV/bitmaps/C . This is where the bitmaps pro-
vided with the NetView for AIX program are located.

The Bitmap Editor can be used to create the bitmap and bitmap mask files. The
format of the bitmap command is as follows:

bitmap [-options ...] filename [WIDTHxHEIGH]

More information about the valid options can be obtained by entering the bitmap
command in your xterm window with no parameters.

 Chapter 8. Creating and Using Symbols 105

The NetView for AIX program uses the following naming convention for naming
bitmap and mask files: name.size.p (the bitmap) and name.size.m (the bitmap
mask). To create a new bitmap file called mb with a size of 32, enter:

bitmap mb.32.p 32x32

Designing Your Symbol
You can think of your symbol as composed of a grid of squares. Each square can
be one of three colors:

 � Black
 � White
� Transparent (the color of the background)

The color of each square is determined by combining the bitmap and bitmap mask
files, as described below.

The Bitmap File
When editing the bitmap file, set the squares to black that are to appear black in
the symbol. Squares that are to appear either as white or transparent should
remain white. The mask file determines whether the white squares end up being
displayed as white or transparent.

Figure 3 shows a sample symbol bitmap.

Bitmap Editor

Clear Hot Spot

Quit

Write Output

Set Hot Spot

Flood Fill

Filled Circle

Circle

Line

Overlay Area

Move Area

Copy Area

Invert Area

Set Area

Clear Area

Invert All

Set All

Clear All

Figure 3. Symbol Bitmap

106 Programmer's Guide

Bitmap Mask File
When editing the mask file, set the squares to black that you want to appear as
black or white in the symbol. Any square that is black in the bitmap mask will show
the square as it is in the bitmap file; any square that is white in the bitmap mask
will be transparent.

An easy way to get started using bitmap masks is to copy your bitmap file and
blacken all the squares within your symbol in the bitmap mask file. This will give
you a mask that matches your bitmap file. You can then experiment with changing
areas in your bitmap mask file to cause squares to be transparent.

Figure 4 shows a sample symbol bitmap mask.

Bitmap Editor

Clear Hot Spot

Quit

Write Output

Set Hot Spot

Flood Fill

Filled Circle

Circle

Line

Overlay Area

Move Area

Copy Area

Invert Area

Set Area

Clear Area

Invert All

Set All

Clear All

Figure 4. Symbol Bitmap Mask

Combining the Files
The bitmap is created by overlaying the bitmap file with the mask file.

Table 10 on page 108 illustrates the results of the possible combinations of bitmap
and mask coding:

 Chapter 8. Creating and Using Symbols 107

Figure 5 shows how the NetView for AIX program would display the bitmap shown
in the previous examples. The letters MB appear in white because they were black
in the mask file and white in the bitmap file. The letters would have appeared in
black had they also been black in the bitmap file.

Figure 5 shows the symbol formed by combining the bitmap and the bitmap mask
files shown above.

Table 10. Bitmap and Bitmap Mask Coding Results

Bitmap Mask Result

Black Black Black

Black White Transparent

White Black White

White White Transparent

Figure 5. Symbol Created with Bitmap and Bitmap Mask

 Bitmap Compilation
Invoke the nv6000 -config command to compile the bitmaps in the
/usr/OV/bitmaps/C directory. This creates a file for each bitmap (the name used for
the bitmap and mask files without extensions). Using this command enables the
bitmaps to be read in quickly during startup of the NetView for AIX program.

Displaying the Bitmap
To display the bitmap, create an NetView for AIX Symbol Type Registration File in
the /usr/OV/symbols/C directory as described in “Defining Symbols with Symbol
Type Registration Files” on page 109. This file should contain a subclass definition
that has a filebase set to the name of the bitmap you created. Then, to see the
symbol displayed with the bitmap, bring up the NetView for AIX program and either
view the symbol through the Help menu (Help..Legend) or add an object
(Edit..Add..Object).

A simple way to test the creation of the icon without having to start the NetView for
AIX program is by using the xsetroot command. This lets you change the pointer
cursor to an icon when the pointer cursor is outside of any window. This can be
done by entering:

xsetroot -cursor <bitmap name> <mask name>

For example:

xsetroot -cursor mb.44.p mb.44.m

Then move the cursor to a position which is not within a window and the cursor
shape will change to the new icon.

108 Programmer's Guide

Defining Symbols with Symbol Type Registration Files
Symbol type registration files are used to define symbol classes and subclasses for
the NetView for AIX program. The predefined NetView for AIX symbol classes and
subclasses are defined using various symbol type registration files in the
/usr/OV/symbols/$LANG directory. We encourage you to use these predefined
symbol classes and subclasses in your applications.

If the existing classes and subclasses are not adequate for your needs, you can
add new symbol subclasses to existing symbol classes, or you can define your own
symbol classes. This portion of the chapter shows how to use symbol type regis-
tration files to define symbol classes and subclasses. Use symbol type registration
files to add symbols that you will use more than once. For temporary symbols, you
can use the NetView for AIX symbol routines described later in this chapter. Only
icon symbol classes and subclasses are described here, because they are the most
commonly used symbols. All references to the terms symbol classes and symbol
subclasses throughout the remainder of this section refer to icon symbol classes
and subclasses.

Defining Icon Symbol Classes
Symbol classes are defined using files in the /usr/OV/symbols/$LANG directory.
Each file in the symbols directory contains one or more symbol class definitions,
where each definition is composed of three elements:

� The class name (a string)

� The description of the external shape (a series of line segments or arcs)

� An optional integer scale factor

Complete examples of symbol class definitions are provided in the following
sections. Symbol class definitions based on line segments are treated first, fol-
lowed by class definitions based on arcs.

Defining Classes Using Line Segments
The majority of icon symbol classes provided with the NetView for AIX program
have straight sides, indicating that they have been defined using line segments. To
define a symbol class using line segments, imagine the shape imposed on a graph.
You define the shape by specifying the coordinates of the end-points of the line
segments. All points must be defined with integer values. For example, to define a
simple square (the Computer symbol class), specify the following definition:

SymbolClass "Computer {
Segment (-1,1) to (1,1) to (1,-1)

to (-1,-1) to (-1,1);
 }

The point (0,0) must lie within the outline of your symbol; otherwise the NetView for
AIX program will not be able to make correct connections between this symbol and
others on the submap.

By default, the scale is from -1 to 1 on both the horizontal and vertical axes. This
scale limits the shapes you can define. To make more complex shapes, you can
increase the scale. The following example illustrates the use of the Scale
parameter:

 Chapter 8. Creating and Using Symbols 109

SymbolClass "House" {
 Scale 5;

Segment (-4,ð) to (-5,ð) to (ð,5) to
(3,2) to (3,3) to
(4,3) to (4,1) to (5,ð) to
(4,ð) to (4,-5) to (-4,-5);

}

This code produces the icon shape shown in Figure 6.

(0,5)

(5,0)(0,0)

(4,-5)(-4,-5)

(-5,0)

Figure 6. House Symbol Class

Specifying a higher scale value enables you to draw more complex shapes. The
NetView for AIX program will interpret the points you specify according to the scale.
To produce a slightly larger symbol, specify points that exceed the specified scale
value. For example, to make the house in the previous example taller, you could
specify the two bottom corners as (4,-7) and (-4,-7). If you use this technique, be
sure not to exceed 150% of your specified scale.

Note that the example segment definition is not explicitly closed. The NetView for
AIX program completes the definition by drawing a line from the last point to the
starting point.

Defining Classes Using Arcs
As an alternative to using line segments, you may also define icon symbol classes
using arcs. Arcs allow you to define class shapes such as circles and ellipses that
would be tedious to define using line segments. The definition of an arc is com-
posed of three components:

Size This is the width and height of a conceptual rectangle in which the line
will rotate. If the width and height are equal, the arc will have a con-
stant radius. Elliptical arcs may be achieved using height and width
values that are unequal.

Origin Specifies an origin for rotation within the conceptual rectangle. The
center of the conceptual rectangle is assumed to have the coordinates
(0,0).

Rotation This specifies the starting angle and number of degrees of rotation. A
starting angle of 0 degrees is equated to a three-o'clock position, and
rotation occurs in a clockwise direction.

110 Programmer's Guide

The following example shows how to define a symbol class with a circular shape:

SymbolClass "Network" {
 Scale 2;

Arc Origin(ð,ð) Size(2,2) Rotation ð, 36ð;
 }

The following example demonstrates how to define a symbol class shaped like an
ellipse that is wider than it is high:

SymbolClass "Network" {
 Scale 4;

Arc Origin(ð,ð) Size(4,2) Rotation ð, 36ð;
 }

Note: Arcs and segments cannot be combined in a single shape definition.

Optional Class Specifications
There are four optional class specifications you can use when you define symbol
classes.

 � Default Layout

When a user double-clicks on an executable symbol on a map, the symbol
explodes into a submap. Use the DefaultLayout entry to specify the default
layout algorithm for the child submap of an object represented by a symbol with
this symbol class. This default can be overridden by a user or an application
when the submap is created. The choices are: Ring, Bus, Star, PointToPoint,
and RowColumn (the default).

� Default Status Source

A symbol can get status from any of the following sources:

– From the underlying object (object status)

– From the parent object of a child submap (compound status)

– From the symbol itself (symbol status)

You can assign default status source to symbol classes by defining a
DefaultStatusSource entry in the class definition. Supply one of three status
source values: Object, Symbol, or Compound . The following example shows
how to set the default layout and the default status source for a symbol class:

SymbolClass "Computer" {
Segment (-1,-1) to (1,-1) to (1,1) to (-1,1);

 DefaultLayout RowColumn;
 DefaultStatusSource Compound;
}

If this entry is not set, symbols in this class will derive their status from the
objects they represent. See “Symbol Status” on page 101 for more details
about symbol status.

 � Default Capabilities

An object can be added to the map by selecting a symbol type on the symbol
palette and dragging it to a submap. The NetView for AIX program automat-
ically creates an object that is associated with the symbol. By default, the new
object has no capabilities. Capabilities are described in “Field Flags” on
page 81.

 Chapter 8. Creating and Using Symbols 111

You can assign default capabilities to objects by defining a Capabilities state-
ment in your class definition. Whenever a symbol is added to a map, the
NetView for AIX program will use the symbol's default capabilities to initialize
the capabilities of the associated object being added as shown in the following
example:

SymbolClass "Computer"
{

Segment (-1,-1) to (1,-1) to (1,1) to
(-1, 1) to (-1,-1);

 Capabilities {
isNode = 1;

 }
}

 � Variety

There are two forms of symbol classes: icons and connections. To this point,
only icons have been shown. It is possible, though, to create symbol classes
that connect other symbols. These are called connection classes. You can
specify that a class is a connection by using the Variety definition and speci-
fying that the class has the value Connection . (The default is Icon). The
following example demonstrates:

SymbolClass "Lines" {
 Variety Connection;
}

For further information about connection symbol classes, see the
OVwRegIntro() man page.

Defining Symbol Subclasses
A Symbol Subclass definition enables you to define a new symbol subclass within a
class of symbols. Subclasses are represented using bitmaps that are superim-
posed on symbol class shapes. You can use any standard bitmap editing tool to
create subclass bitmaps.

Symbol subclasses are defined using a SymbolType block. The SymbolType block
specifies the name of the subclass and the class to which it belongs. The symbol
type can be considered the combination of the symbol class and the symbol sub-
class. It has the following syntax:

SymbolType "class name": "subclass name" {
 ...
 subclass specifications
 ...
 }

The class name is the name of an existing symbol class. The subclass name is a
unique name for the new subclass. The subclass specifications define the bitmaps
that are used for the subclass as well as other characteristics of symbol subclass
behavior. Some subclass specifications are required, and others are optional.

112 Programmer's Guide

Required Subclass Specifications
Two subclass specifications must be present in every icon symbol subclass
definition:

Filebase This entry defines the base name for a symbol subclass bitmap. A
bitmap definition is composed of two parts: filebase.size.p (the
bitmap) and filebase.size.m (the bitmap mask). You should
provide a pair of bitmap/bitmap mask files for each bitmap size
your application supports. You must provide at least one bitmap
pair.

The NetView for AIX program uses different bitmap sizes when-
ever the dimensions of an NetView for AIX window change. The
NetView for AIX graphical user interface attempts to scale the
window contents appropriately, which may mean choosing a dif-
ferent symbol bitmap to optimally fit the window. If the appropriate
bitmap file does not exist, the NetView for AIX program will choose
the closest match. Provide bitmaps in the following sizes (in
pixels): 2ðx2ð, 26x26, 32x32, 38x38, 44x44, and 5ðx5ð.

Cursor Size Whenever a user selects a symbol type from the symbol palette
and moves the symbol type to a map, the cursor shape changes
from a pointer to a bitmap. Use the CursorSize entry to define the
size of the bitmap to be used as the cursor. Use a cursor size of
38x38 pixels.

The following example illustrates both the Filebase and CursorSize entries:

SymbolType "Software": "Application" {
 Filebase "app2";
 CursorSize 38;
}

In this example, the cursor will be 38x38 pixels and will be based on the bitmap
formed by the files app2.38.p and app2.38.m .

Optional Subclass Specifications
In addition to the required subclass specification, you can use optional subclass
specifications to further define your symbol subclass. Use these optional specifica-
tions to override the values that you specified when defining the symbol class. The
following values may be specified:

 � Default layout
� Default status source

 � Default capabilities

If these specifications are not coded in the subclass definition, the values from the
class definition are inherited by the subclass. If these specifications are coded in
the subclass definition, they override, for that subclass only, the values specified in
the class definition.

For further symbol subclass examples, see the registration files provided with the
NetView for AIX program, in the /usr/OV/symbols/$LANG directory.

 Chapter 8. Creating and Using Symbols 113

Defining Symbols with NetView for AIX EUI Routines
Creating symbols with Symbol Type Registration Files gives you stability and sim-
plifies your application coding. However, there may be times when you need the
flexibility of being able to create, modify, or delete symbols while your application is
running. The NetView for AIX EUI API provides several routines that enable you to
work with symbols from within your application.

Creating Icon Symbols
The OVwCreateSymbol() routine is a general purpose routine that can create any
type of icon symbol for an existing object. It has the following function prototype:

OVwSymbolId OVwCreateSymbol(OVwMapInfo \mapInfo, OVwSubmapId submapId,
OVwObjectId objectId, OVwSymbolType symbolType, char \label,
OVwStatusType status, int statusSource,
OVwSymbolPosition \symbolPosition, unsigned int flags)

When you call the OVwCreateSymbol() routine, you must provide the following
arguments:

mapInfo Points to an OVwMapInfo data structure that contains complete
map information. Most NetView for AIX API symbol routines take
a pointer to the mapInfo data structure as the first argument. You
can use the OVwGetMapInfo() routine to generate a mapInfo data
structure, or you can save the map information in a callback
routine that handles the map open event. Within that callback
routine, you can use the OVwCopyMapInfo() routine to save the
map information returned with the ovwMapOpen event. Map
information is valid until the map is closed.

submapId Identifies which submap the symbol should be placed on.
Submaps are described in Chapter 9, “Creating and Using
Submaps” on page 131.

objectId The object ID of the associated underlying object.

symbolType A character string identifying a symbol class and subclass as
defined in a symbol type registration file. The header file
<OV/sym_types.h>, which is automatically included by the
<OV/ovw.h> header file, contains localized string definitions for
symbol types shipped with the NetView for AIX program.

label A character string that is initially displayed at the bottom of the
symbol. Users can change the label at any time, and both users
and developers can optionally disable the display of the label.

status The initial status of the symbol. Possible values are:

 � ovwUnknownStatus
 � ovwNormalStatus
 � ovwMarginalStatus
 � ovwCriticalStatus
 � ovwUnmanagedStatus

statusSource Defines how the symbol receives status information. Possible
values are:

 � ovwSymbolStatusSource

114 Programmer's Guide

 � ovwObjectStatusSource
 � ovwCompoundStatusSource

symbolPosition Specifies where the symbol is to be placed on the submap. A
NULL value indicates that the symbol placement algorithm for the
submap should be used. Although the default position is ade-
quate in most cases, you can specify a particular position for a
symbol you create. You can specify any of the following values:

 � ovwNoPosition
 � ovwCoordPosition
 � ovwSequencePosition
 � ovwStarCenterPosition

See “Controlling Symbol Position” on page 103 for descriptions of
these symbol placements and the layout algorithms with which
each can be used.

You can specify these position forms, as well as the associated
information for the position, using the following data structure:

typedef struct {
 int placement;
 union {
 struct {
 int x;
 int y;
 int width;
 int height;
 } coords;
 OVwSymbolId pred_symbol;
 } un;
} OVwSymbolPosition;

The placement field is set to one of the four position forms. If
you use either the ovwCoordPosition or
ovwSequencePosition , you will also need to set the appropriate
values within the union.

Note: If automatic layout is disabled, the symbol may not be
placed until automatic layout is reenabled. See the
OVwSetSymbolPosition(3) man page if you need precise
information about how the NetView for AIX program treats
explicit symbol placement for the various layout algorithms
when automatic layout is enabled or disabled.

flags Specifies flags which control several aspects of symbol creation.
You can use one or more of the following flags when you create
a symbol:

ovwNoSymbolFlags
Setting this flag is equivalent to passing a NULL value
for the flags parameter to OVwCreateSymbol().

ovwDoNotDisplayLabel
Setting this flag will prevent the symbol label from
being displayed. This flag is typically used when cre-
ating connection symbols.

 Chapter 8. Creating and Using Symbols 115

ovwMergeDefaultCapabilities
Setting this flag will merge the default capability fields
of the symbol type specified in the
OVwCreateSymbol() call with the set of capability
fields for the object. If a capability field exists in the
symbol type definition, but not in the object definition,
it will be added to the object. Existing field values
within the object will not be changed.

ovwDeleteDescendants
When this symbol is deleted, all other symbols that
represent this same object on submaps descending
from this symbol's submap will also be deleted. This
flag is useful for applications that build a submap hier-
archy with symbols representing the same object
appearing on several submaps. This flag facilitates
deletion of the object, since all symbols representing
an object must be deleted before the object can be
deleted.

See the OVwCreateSymbol() man page if you need more infor-
mation about these flags.

The OVwCreateSymbol() routine returns a symbol ID, which is a unique numeric
identifier for the symbol. The symbol ID is used in subsequent calls involving the
symbol.

The following code segment shows how to create a symbol. The ID of the object
that the symbol represents is passed as an argument.

create_symbol(object_id)
OVwObjectId object_id;
{
 OVwSymbolId symid;
 OVwMapInfo \map;

map = OVwGetMapInfo();

/\ Create the symbol, using an NetView for AIX
constant to represent the symbol type \/
symid = OVwCreateSymbol(map, map->root_submap_id, object_id,

ovwSWorkstationComputer, "test", ovwUnknownStatus,
ovwSymbolStatusSource, NULL, ovwNoSymbolFlags);

 ...
OVwFreeMapInfo(map);

}

In this example, the symbol type for the symbol class/subclass Computer: Work-
station is placed on the root submap of the open map. The symbol has the label
“test.” The initial status is unknown, and the status is set on a symbol basis.

116 Programmer's Guide

Creating Symbols with Convenience Routines
Although the OVwCreateSymbol() routine can create any type of icon symbol, con-
venience routines are available that are easier to use in certain situations. They
include:

 � OVwCreateSymbolByName()

 � OVwCreateSymbolBySelectionName()

 � OVwCreateSymbolByHostname()

These routines let you identify the object by one of its names, instead of by its
object ID. If the object does not yet exist, these routines will first create the object
for you using the OVwDbCreateObject() routine.

 � OVwCreateComponentSymbol(),

 � OVwCreateComponentSymbolByName()

These two routines let you create symbols on a submap by identifying the parent
object of the submap, rather than by identifying the submap ID. If the submap
does not exist, the NetView for AIX program will create it for you. These conven-
ience routines use many of the same parameters as the general purpose
OVwCreateSymbol() routine and are quite similar in concept. See the man pages if
you need more information about these routines.

Creating Connection Symbols
Creating a connection symbol is very similar to creating an icon symbol. Many of
the parameters are similar to those used to create an icon symbol. Use the
OVwCreateConnSymbol() routine to create a connection symbol. This routine has
the function prototype:

OVwSymbolId OVwCreateConnSymbol(OVwMapInfo \mapInfo,
 OVwObjectId objectId,

OVwSymbolId endpoint1, OVwSymbolId endpoint2,
 OVwSymbolType symbolType,

char \label, OVwStatusType status,
int statusSource, unsigned int flags);

An object that represents the connection must already exist in order to use the
OVwCreateConnSymbol() routine. The objectId argument contains the object ID of
the object that represents the connection. The endpoint1 and endpoint2 parame-
ters specify the symbol IDs of the icon symbols to be connected. The special value
ovwSubmapBackbone may be substituted for one of the end points if the submap
layout algorithm uses a backbone. The NetView for AIX program supports two
layout algorithms that use backbones: ovwBusLayout and ovwRingLayout .

The symbolType parameter must specify a symbol type belonging to the Con-
nection symbol class. For convenience, you can use a value of NULL for
symbolType to indicate the default symbol type. (A NULL symbol-type value is not
permitted when creating icon symbols.)

 Chapter 8. Creating and Using Symbols 117

Connection Symbols and Metaconnections
When the first connection is created between two symbols, a simple connection
symbol is added to the submap. When a second connection is made between the
two symbols, a special metaconnection submap is automatically created by the
NetView for AIX program to hold the two connections and a metaconnection symbol
replaces the original simple connection. Double-clicking on the metaconnection
symbol displays the metaconnection submap showing all connections between the
two symbols.

Application developers do not need to be concerned with metaconnection symbols
when creating connections. NetView for AIX manages metaconnections for you
automatically.

Developers must be prepared to deal with metaconnections, though, when reading
symbol information. The metaconnection, not the actual connection, appears in ref-
erences to connection symbols in the submap containing the connection. For
example, assume that you need to modify the status of a connection symbol.
When you get a list of all symbols on a submap, you would find a metaconnection
symbol, not the actual connection symbol, for the particular connection. You would
need to get the submap associated with the metaconnection symbol and check that
submap for the presence of your connection symbol. After finding your connection
symbol in the metaconnection submap, you could change the status of the con-
nection symbol.

Refer to the OVwCreateSymbol() man page if you need more information about
metaconnections.

Creating Several Symbols with a Single Call
The NetView for AIX program provides the OVwCreateSymbols() routine to let you
create several symbols in a single call. The OVwCreateSymbols() routine can
create combinations of icon and connection symbols. To do this, the
OVwCreateSymbols() routine uses a rather complex data structure that enables you
to define either icon or connection symbols, or both. None of the data structure
elements are new; they have all been described in some form earlier in this
chapter. The OVwCreateSymbols() routine has the function prototype:

int OVwCreateSymbols(OVwMapInfo \mapInfo,
OVwSymbolCreateList \symbolList);

The symbolList parameter points to a data structure of type OVwSymbolCreateList
that contains a count of the number of symbols and a pointer to an array of
OVwSymbolCreateInfo data structures, each of which fully defines the symbol to be
created. The OVwSymbolCreateList data structure is shown in the following
example:

typedef struct {
int count; /\ number of items in the list \/
OVwSymbolCreateInfo \symbols; /\ contiguous list of items \/

} OVwSymbolCreateList;

Use the OVwSymbolCreateInfo data structure to define each symbol you wish to
create, as shown in the next example:

118 Programmer's Guide

typedef struct {
 int submap_name_style;
 union {
 OVwSubmapId submap_id;
 OVwObjectId parent_id;
 } submap_un;
 int object_name_style;
 union {
 OVwObjectId object_id;
 OVwFieldBinding \object_name;
 } obj_un;
 char \label;
 OVwStatusType status;
 int status_source;
 OVwSymbolType symbol_type;
 int symbol_variety;
 union {
 OVwSymbolPosition \position;
 struct {
 int endpoint1_name_style;
 union {
 OVwSymbolId symbol_id;
 int symbol_index;
 } un_endpoint1;
 int endpoint2_name_style;
 union {
 OVwSymbolId symbol_id;
 int symbol_index;
 } un_endpoint2;
 } endpoints;
 } sc_var_un;

unsigned int flags;
 char \object_comments;
 int error;
 OVwSymbolId symbol_id;
} OVwSymbolCreateInfo;

The following example shows how to create multiple symbols with the
OVwCreateSymbols() routine:

#include <OV/ovw.h>

#define BUILD_ICON(sym,sid,oid,stype,slabel,stat,src,pos,flgs) { \
sym.submap_name_style = ovwSubmapIdValue; \
sym.sc_submap_id = sid; \
sym.object_name_style = ovwObjectIdValue; \
sym.sc_object_id = oid; \
sym.label = slabel; \
sym.status = stat; \
sym.status_source = src; \
sym.symbol_type = stype; \
sym.symbol_variety = ovwIconSymbol; \
sym.flags = flgs; \
sym.sc_icon_position = pos; \
sym.object_comments = "No comment"; \
sym.error = ð; \
sym.symbol_id = ovwNullSymbolId; \

}

 Chapter 8. Creating and Using Symbols 119

#define BUILD_CONNECTION(sym, oid, stype, slabel, svalue,src,sym1,sym2,flgs) {\
sym.object_name_style = ovwObjectIdValue; \
sym.sc_object_id = oid; \
sym.label = slabel; \
sym.status = svalue; \
sym.status_source = src; \
sym.symbol_type = stype; \
sym.symbol_variety = ovwConnSymbol; \
sym.flags = flgs; \
sym.sc_conn_endpoint1_style = ovwEndpointSymbolIdValue; \
sym.sc_conn_endpoint1_id = sym1; \
sym.sc_conn_endpoint2_style = ovwEndpointSymbolIdValue; \
sym.sc_conn_endpoint2_id = sym2; \
sym.object_comments = NULL; \
sym.error = ð; \
sym.symbol_id = ovwNullSymbolId; \

}

void
CreateSymbol(void \, char \actionID, char \menuItemID,
OVwObjectIdList \, int , char \\)
{
 OVwSymbolId symbol_id;
 OVwObjectId object_id;
 OVwSymbolInfo \symbol;
 OVwSymbolCreateList symbolList;
 OVwSymbolCreateInfo symbolInfo;

OVwMapInfo \map = OVwGetMapInfo();

fprintf(stderr, "ACTION: %s\n", actionID);
fprintf(stderr, "MENUITEM: %s\n", menuItemID);

symbolList.count = 1;
symbolList.symbols = &symbolInfo;

 object_id = OVwDbCreateObject(NULL);
BUILD_ICON(symbolInfo, map->root_submap_id, object_id,

"Computer:Workstation", "new symbol", ovwNormalStatus
ovwSymbolStatusSource, NULL, ovwMergeDefaultCapabilities);

 OVwCreateSymbols(map, &symbolList);

symbol_id = symbolList.symbols[ð].symbol_id;
symbol = OVwGetSymbolInfo(map, symbol_id);

 OVwPrintSymbolInfo(symbol, TRUE);

 OVwFreeMapInfo(map);
}

void
CreateConnection(void \, char \actionID, char \menuItemID,

OVwObjectIdList \, int, char \\)
{
 OVwSymbolCreateList symbolList;
 OVwSymbolCreateInfo symbolInfo[3];
 OVwObjectId object_id;
 OVwSymbolId symbol_id;
 OVwSymbolId symbol1_id;
 OVwSymbolId symbol2_id;
 OVwSymbolInfo \symbol;

OVwMapInfo \map = OVwGetMapInfo();

120 Programmer's Guide

fprintf(stderr, "ACTION: %s\n", actionID);
fprintf(stderr, "MENUITEM: %s\n", menuItemID);

symbolList.count = 2;
symbolList.symbols = &symbolInfo[ð];

object_id = OVwDbCreateObject(NULL);

 BUILD_ICON(symbolInfo[ð], map->root_submap_id,
 object_id, "Computer:Workstation",

"number one", ovwMarginalStatus,
ovwObjectStatusSource, NULL, ð);

 BUILD_ICON(symbolInfo[1], map->root_submap_id,
 object_id,"Computer:Workstation",

"number two", ovwMarginalStatus,
ovwObjectStatusSource, NULL, ð);

 OVwCreateSymbols(map, &symbolList);

symbol1_id = symbolList.symbols[ð].symbol_id;
symbol = OVwGetSymbolInfo(map, symbol1_id);

 OVwPrintSymbolInfo(symbol, TRUE);

symbol2_id = symbolList.symbols[1].symbol_id;
symbol = OVwGetSymbolInfo(map, symbol2_id);

 OVwPrintSymbolInfo(symbol, TRUE);

symbolList.count = 1;

BUILD_CONNECTION(symbolInfo[ð], object_id, NULL, NULL,
 ovwNormalStatus, ovwObjectStatusSource,

symbol1_id, symbol2_id, ð);

 OVwCreateSymbols(map, &symbolList);

symbol_id = symbolList.symbols[ð].symbol_id;
symbol = OVwGetSymbolInfo(map, symbol_id);

 OVwPrintSymbolInfo(symbol, TRUE);

symbol = OVwGetConnSymbol(map, symbol1_id, symbol2_id);
 OVwPrintSymbolInfo(symbol, TRUE);

 OVwFreeMapInfo(map);
}

main(int, char \\)
{

if (OVwInit() << ð) {
fprintf(stderr, "%s\n", OVwErrorMsg(OVwError()));

 exit(1);
 }

 OVwAddActionCallback("Symbol",
 (OVwActionCallbackProc)CreateSymbol, NULL);
 OVwAddActionCallback("Connection",
 (OVwActionCallbackProc)CreateConnection, NULL);

 OVwMainLoop();
}

 Chapter 8. Creating and Using Symbols 121

The advantage of using this routine is that it takes less execution time to create
several symbols with OVwCreateSymbols() than it does to create them individually.
The disadvantages of using OVwCreateSymbols() are that the data structures are
more complex, and users can encounter delays while long lists of symbols are
being created.

In general, if users need timely, continuous feedback, consider using the
OVwCreateSymbol() routine or use OVwCreateSymbols() to create only a few
symbols at a time. If users do not expect immediate feedback, you can use the
more efficient OVwCreateSymbols() routine.

Changing Symbol Appearance and Behavior
Once a symbol exists, you can manipulate it in the following ways:

� Change the symbol type (the icon or connection graphic).

� Override NetView for AIX's symbol placement algorithms and manually place
the symbol yourself.

� Change the symbol behavior to be explodable or executable.

� Change the symbol label.

� Change the status source for the symbol.

� Set or clear application interest in a symbol.

Style considerations may apply to these operations. Refer to the NetView for AIX
Application Interface Style Guide for complete guidelines on symbol manipulation.

Changing a Symbol's Type
You can change a symbol's type at any time. Use the OVwSetSymbolType()
routine to change the symbol type. It has the following function prototype:

int OVwSetSymbolType(OVwMapInfo \mapInfo, OVwSymbolId symbolId,
OVwSymbolType symbolType, unsigned int flags);

You can use application-defined symbol types, or you can use the symbol types
provided with the NetView for AIX program. The header file <OV/sym_types.h>,
which is automatically included by the <OV/ovw.h> header file, contains localized
string definitions for symbol types shipped with the NetView for AIX program.

Changing a Symbol's Position
You can change the position of a symbol at any time using the
OVwSetSymbolPosition() routine. This routine changes the position of an existing
symbol. It has the following function prototype:

int OVwSetSymbolPosition(OVwMapInfo \mapInfo, OVwSymbolId symbolId,
OVwSymbolPosition \position);

The OVwSymbolPosition data structure is described in “Creating Icon Symbols” on
page 114. That section tells how to use the OVwSymbolPosition data structure to
define symbol position.

122 Programmer's Guide

Changing a Symbol's Behavior
Use the OVwSetSymbolBehavior() routine to change the behavior of a symbol on
the open map. By default, symbols are explodable. This routine can make a
symbol explodable or executable. The OVwSetSymbolBehavior() routine has the
function prototype:

int OVwSetSymbolBehavior(OVwMapInfo \mapInfo,
OVwSymbolId symbolId, int behavior, char \appName,
char \actionId, OVwObjectList \targetObjects);

The OVwSetSymbolBehavior() routine has the following arguments:

mapInfo Points to an OVwMapInfo data structure that contains complete
map information. You can use the OVwGetMapInfo() routine to
get the map information.

symbolId The symbol ID of the symbol whose behavior is being changed.

behavior Set to ovwSymbolExplodable or ovwSymbolExecutable .

appName The name of an application registered in an Application Registra-
tion File.

actionId The action to be performed by application appName when the
symbol is executed. The actionId argument must name a valid
action registered in the application registration file. Actions are
described in “Defining Application Invocation” on page 36

targetObjects An optional list of object IDs to be used as the selection list when
the action is performed.

Regardless of whether a symbol is explodable or executable, many of the symbol
characteristics always apply. A symbol always has a status source, a status value,
a symbol position, an association to an object, and an optional symbol label.
Changing symbol behavior does not affect these characteristics.

For example, an explodable symbol that receives status by object will continue to
receive status by object, even when changed to an executable symbol. Also, any
associations between an underlying object and child submaps remain in effect
when an explodable symbol is changed to an executable symbol. Users, however,
can no longer navigate to the child submap through the executable symbol.

Note: Use care when changing an explodable symbol to an executable symbol. If
the explodable symbol has a child submap attached, making the symbol
executable might make it difficult for users to access the child submap in
the future. If the child submap is accessible only through a single
explodable symbol and that symbol is made executable, users must resort
to using the NetView for AIX graphical user interface submap list box to
navigate to the submap.

 Chapter 8. Creating and Using Symbols 123

The following code segment demonstrates how to make a symbol executable.
Assume that the action ID Show Users is already defined in the application registra-
tion file for the application “User Admin”:

#include <OV/ovw.h>

make_executable(symId)
OVwSymbolId symId;
{
 int ret;
 char \app_name;

char \action_name = "Show Users";
 OVwMapInfo \map;

map = OVwGetMapInfo();
app_name = OVwGetAppName();
ret = OVwSetSymbolBehavior(map, symId, ovwSymbolExecutable,

app_name, action_name, NULL);
free(app_name);
OVwFreeMapInfo(map);

 ...
}

Note that the OVwGetAppName() routine retrieves the application name before
calling OVwSetSymbolBehavior().

Changing a Symbol's Label
Use the OVwSetSymbolLabel() routine to change a symbol's label. The routine has
the function prototype:

int OVwSetSymbolLabel(OVwMapInfo \mapInfo,
OVwSymbolId symbolId, char \label);

The OVwSetSymbolLabel() routine is only used to define the label. Use the
OVwSetSymbolType() routine to control whether the label is displayed.

Note: You should use discretion when using this routine. In most cases, an appli-
cation should not change a label that has been modified by the user. It is
usually safe to change the label if the application originally set the label and
the user has not modified it (the label still has the value set by the applica-
tion). The OVwGetSymbolInfo() routine, which is described later, can
retrieve the symbol label for a given symbol.

Changing a Symbol's Status
You can change a symbol's status in the following ways:

� On the symbol if the status source is ovwSymbolStatusSource.

� On the object if the status source is ovwObjectStatusSource.

You cannot directly set the status for a symbol that has compound status source. If
the symbol has compound status, you can only set symbol or object status on the
contained symbols or objects. As a result, the compound status may change. The
algorithm for determining how to propagate compound status is managed by the
NetView for AIX program.

124 Programmer's Guide

The NetView for AIX routines that set status values on a symbol or object have the
following function prototypes:

int OVwSetStatusOnSymbol(OVwMapInfo \mapInfo, OVwSymbolId symbolId,
OVwStatusType status);

int OVwSetStatusOnObject(OVwMapInfo \mapInfo, OVwObjectId objectId,
OVwStatusType status);

OVwSetStatusOnSymbol() changes the status on the specified symbol only if the
symbol has status source ovwSymbolStatusSource .

OVwSetStatusOnObject() changes the status of an object in the open map. This
call also sets the object status on all symbols that represent the object and have
status source ovwObjectStatusSource . Neither symbol nor object status can be
set on an object that is unmanaged.

Two list forms of status routines are also available for setting status on several
symbols or objects. They are more efficient than making multiple calls, because
the NetView for AIX program's compound status propagation is disabled until the
status values of all entities in the list are set. They have the function prototypes:

int OVwSetStatusOnSymbols(OVwMapInfo \mapInfo,
OVwSymbolStatusList \symbolList);

int OVwSetStatusOnObjects(OVwMapInfo \mapInfo,
OVwObjectStatusList \objectList);

The symbolList and objectList data structures have the same form as other
common NetView for AIX list structures. They contain a count of the number of
elements in the list, and a pointer to the first in a contiguous array of list entries.

Changing a Symbol's Status Source
In addition to changing the status of a symbol or object, you can also change a
symbol's status source. Status source is defined when the symbol is created, and
is changed at a later time using the OVwSetSymbolStatusSource() routine. It has
the following function prototype:

int OVwSetSymbolStatusSource(OVwMapInfo, \mapInfo,
OVwSymbolId symboldId, int statusSource);

The statusSource field can contain any of the three status sources described earlier
in this manual: ovwSymbolStatusSource, ovwObjectStatusSource, or
ovwCompoundStatusSource .

You should only change status source for symbols that you create or for symbols
that users add to submaps that you create. Do not change status source for
symbols created by other applications. Further, if end-users have modified the
status source for an application created-symbol, you should not alter the user's
preference.

Setting or Clearing Application Interest in a Symbol
NetView for AIX maintains a list of all applications interested in each symbol. Any
time an application creates a symbol, the list of interested applications is initially set
to contain the name of the application. Other applications can add their name to
the list of applications interested in that symbol. There are a couple of reasons for
applications to express interest in a symbol.

 Chapter 8. Creating and Using Symbols 125

� Symbols can take on a different appearance depending on whether an applica-
tion has shown interest in the symbol. If one or more applications are inter-
ested in a symbol, the symbol appears in the application plane of the submap.
If no application is interested, the symbol appears in the user plane.

� Applications can search a submap for all symbols that possess certain criteria.
(These routines will be described later in this chapter.) In this case, the search
can be filtered to only consider those symbols in which the application has
expressed interest.

An application interested in a symbol created by another application should call the
OVwSetSymbolApp() routine. This routine adds the calling application to the list of
applications interested in the symbol. The OVwClearSymbolApps() routine clears
the application from this list. These routines have the function prototypes:

int OVwSetSymbolApp(OVwMapInfo \mapInfo, OVwSymbolId symbolId);
int OVwClearSymbolApp(OVwMapInfo \mapInfo, OVwSymbolId symbolId);

See the OVwSetSymbolApp() man page if you need more information on these
calls.

Retrieving Symbol Information
This section describes the routines that retrieve symbol information. Before
describing these routines, it is necessary to describe the OVwSymbolInfo data
structure. This data structure is used by most NetView for AIX routines that
retrieve symbol information. It supports both icon and connection symbols. Many
of the elements within the OVwSymbolInfo data structure have already been pre-
sented earlier in this chapter.

The OVwSymbolInfo data structure has the following definition:

typedef struct {
OVwSymbolId symbol_id; /\ symbol ID \/
OVwSubmapId submap_id; /\ submap symbol is on \/
OVwObjectInfo object; /\ object represented by the symbol \/
char \symbol_label; /\ symbol label \/
OVwStatusType symbol_status; /\ symbol status \/
int status_source; /\ status source \/
OVwPlaneType plane; /\ submap plane the symbol is on \/
OVwBoolean hidden; /\ whether symbol is hidden on submap \/
OVwSymbolType symbol_type; /\ symbol type \/
int symbol_variety; /\ ovwIconSymbol, ovwConnSymbol \/

 union {
OVwSymbolPosition position; /\ ovwIconSymbol variety \/
struct { /\ ovwConnSymbol variety \/

OVwSymbolId endpoint1_id; /\ connection endpoint \/
OVwSymbolId endpoint2_id; /\ connection endpoint \/
OVwBoolean is_meta_conn; /\ metaconnections? \/

 } conninfo;
 } var_un;

int behavior; /\ ovwSymbolExplodable or \/
/\ ovwSymbolExecutable \/

OVwApplist apps; /\ apps interested in symbol \/
} OVwSymbolInfo;

126 Programmer's Guide

Most of the fields in this data structure have been used in previously-described
symbol routines; two fields in particular deserve comment.

� The symbol_variety field serves as a tag for the union that follows it (var_un).
If the symbol is an icon, the position field contains icon-specific symbol informa-
tion (the symbol position in this case). If the symbol is a connection, then the
conninfo structure defines connection-specific symbol information.

� The is_meta_conn field in the conninfo union indicates whether a connection
symbol is a simple connection or a metaconnection. A metaconnection is a
special connection that represents multiple connections between the two con-
nected symbols. If the symbol is a metaconnection, the contained simple con-
nections are found on the child submap of the object represented by the
metaconnection.

Using the OVwGetSymbolInfo() Routine
The OVwGetSymbolInfo() routine is a general-purpose routine that can retrieve
complete symbol information for any symbol. Given a symbol ID for any symbol,
this routine returns a pointer to an OVwSymbolInfo data structure containing com-
plete symbol information. An associated OVwFreeSymbolInfo() routine frees
memory allocated by the OVwGetSymbolInfo() routine. They have the function
prototypes:

OVwSymbolInfo \OVwGetSymbolInfo(OVwMapInfo \mapInfo,
OVwSymbolId symbolId);

void OVwFreeSymbolInfo(OVwSymbolInfo \symbol);

The following example shows how to use these routines:

#include <OV/ovw.h>

dump_symbol_info(symbol_id)
OVwSymbolId symbol_id;
{
 OVwSymbolInfo \p;
 OVwMapInfo \map;

map = OVwGetMapInfo();
p = OVwGetSymbolInfo(map, symbol_id);
if (p == NULL) {

printf("symbol does not exist on the open map\n");
} else {

printf("The symbol with ID %d has the following values:\n",
 symbol_id);
 printf(" variety: %s\n",

(p->symbol_variety == ovwIconSymbol) ? "icon" : "connection");
 printf(" behavior: %s\n",

(p->behavior == ovwSymbolExecutable) ?
"executable" : "explodable");

 printf(" type: %s\n label: %s\n",
(char \) p->symbol_type, p->symbol_label);

 ...
OVwFreeSymbolInfo(p);

 }
OVwFreeMapInfo(map);

 ...
}

 Chapter 8. Creating and Using Symbols 127

Using the OVwGetConnSymbol() Routine
The OVwGetConnSymbol() routine determines if a connection exists between any
two icon symbols. If such a connection exists, the routine returns a pointer to an
OVwSymbolInfo data structure containing complete connection symbol information.
The routine has the function prototype:

OVwSymbolInfo \OVwGetConnSymbol(OVwMapInfo \mapInfo,
OVwSymbolId endpoint1, OVwSymbolId endpoint2);

The following example shows how to list the connections of a metaconnection
submap:

 ...
int i;
OVwSymbolInfo \syminfo;
OVwSymbolList \symlist;
OVwMapInfo \map = OVwGetMapInfo();
OVwSymbolId from_id, to_id;

syminfo = OVwGetConnSymbol(map, from_id, to_id);
if (!syminfo) {
 printf("No connection!\n");
} else if (!syminfo->var_un.conninfo.is_meta_conn) {
 printf("Single connection.\n");

/\ symbol represents the object syminfo->object \/
} else {
 printf("Metaconnection.\n");

/\ get symbols on metaconnection submap \/
symlist = OVwListSymbols(map, syminfo->object.child_submap_id,

 ovwAllPlanes, NULL);
if (symlist) {

for (i=ð; i<count; i++) {
if (symlist->symbols[i].symbol_variety ==

 ovwConnSymbol) {
 printf("Connection found.\n");

/\ symlist->symbols[i].object is object \/
 }
 }
 OVwFreeSymbolList(symlist);
 }
}

if (syminfo)
 OVwFreeSymbolInfo(syminfo);
OVwFreeMapInfo(map);
 ...

You may specify the special value ovwSubmapBackbone for endpoint2 if the
layout algorithm of the submap is either bus or ring layout.

Using the OVwListSymbols() Routine
Applications frequently need to determine what symbols are present on a given
submap. The OVwListSymbols() routine provides this service. You can retrieve a
list of all symbols on the submap, or you can selectively retrieve a list of only those
symbols for which your application has expressed interest or that are on a specific
plane. The OVwListSymbols() routine has the function prototype:

128 Programmer's Guide

OVwSymbolList \OVwListSymbols(OVwMapInfo \map, OVwSubmapId submapId,
OVwPlaneType plane, char \appName);

The plane argument may be ovwAppPlane, ovwUserPlane, or ovwAllPlanes .
The appName argument can be either the application name or NULL. If appName
contains the application name, OVwListSymbols() will return only those symbols for
which the application has expressed interest. If appName is NULL,
OVwListSymbols() will return a list of all symbols in the specified plane(s).

When finished, you should call OVwFreeSymbolList() to free the memory allocated
by NetView for AIX. This routine has the function prototype:

void OVwFreeSymbolList(OVwSymbolList \symbolList);

Symbol Type Routines
The NetView for AIX program provides two routines that operate on symbol types.
The OVwListSymbolTypes() routine retrieves a list of all the currently registered
symbol types. This routine is useful for determining which symbol types are avail-
able. The OVwListSymbolTypeCaps() routine returns a list of the capabilities that
would be set if the user were to add an object to the map using a specific symbol
type. Refer to the man pages if you need more information on these routines.

 Deleting Symbols
The NetView for AIX program provides two routines to delete symbols. The
OVwDeleteSymbol() routine deletes a single symbol from the open map; the
OVwDeleteSymbols() routine deletes a list of symbols. Either routine can be used
to delete icon or connection symbols. These routines have the function prototypes:

int OVwDeleteSymbol(OVwMapInfo \mapInfo, OVwSymbolId symbolId);
int OVwDeleteSymbols(OVwMapInfo \mapInfo, OVwSymbolIdList
 \symbolList);

In general, an application should only delete those symbols that it creates. Applica-
tions should not delete symbols created either by the user or by another applica-
tion.

If you delete a symbol that is the last symbol on the map that represents an object,
you might need to delete the object as well. “Deleting Objects” on page 97
describes how to delete objects. Chapter 10, “Map Events and Map Editing” on
page 145 describes how to register for map editing events that indicate that an
object should be deleted.

 Chapter 8. Creating and Using Symbols 129

130 Programmer's Guide

Chapter 9. Creating and Using Submaps

This chapter describes the use of maps and submaps in working with the NetView
for AIX user interface. It explains how to create and manipulate submaps, how to
retrieve submap information, and how to change the background of submaps.

To make effective use of the information in this chapter, you should be familiar with
the relationships between objects, maps, submaps, and symbols. These concepts
were introduced in “Understanding NetView for AIX Terms” on page 4. You should
also be familiar with the routines described in Chapter 6, “Understanding the
NetView for AIX User Interface” on page 61 and Chapter 7, “Creating and Using
Objects and Fields” on page 79.

 Understanding Maps
A map is a collection of NetView for AIX objects and their relationships. Users do
not view maps directly; they view windows called submaps that display a subset of
map information.

Among all the maps that might exist, users can select one map to be the open
map. The open map is the only map that can be updated. If updates are needed
for other maps, the updates are made at the time the map is opened. Only one
map can be open at a time in any session. The submap routines described in this
chapter operate on the open map.

 Understanding Submaps
A submap is a collection of related symbols that are displayed in a single graphical
window. A submap provides a view into the map object space. Each submap
displays a different perspective of the information in the map, with the submaps
typically organized in a hierarchical fashion.

The most common method users employ to navigate through submaps is double-
clicking the mouse on special symbols called explodable symbols. Double-clicking
on an explodable symbol will cause a submap to be displayed. The submap con-
tains additional symbols that describe, in more detail, the object associated with the
explodable symbol. The object associated with the explodable symbol is called the
parent object. The submap that is displayed by double clicking on the symbol
associated with the parent object is called a child submap. The child submap
shows all the objects contained within the parent object.

The submap on which the parent object is represented is called the parent submap.
Since several submaps may contain symbols that explode into the same submap, a
submap may have several parent submaps.

For example, consider a submap that contains a single symbol that represents an
entire organization. From this high-level view, a user could double-click on the
symbol to display a child submap that contains a view of the next level of organiza-
tion. From there, the user could select a specific department, followed by the
selection of a specific node. Each of these submaps graphically displays a different
map perspective.

 Copyright IBM Corp. 1992, 1995 131

Creating a Submap
From a programming point of view, the creation of a submap and the display of a
submap are two separate operations. Applications can create submaps at any time
and have them available to respond to a user request. Users control when the
submap is displayed through the NetView for AIX graphical interface, by selecting a
menu item or double-clicking on an explodable symbol.

Use the OVwCreateSubmap() routine to create a submap on the open map. It has
the function prototype:

OVwSubmapId OVwCreateSubmap(OVwMapInfo \mapInfo,
 OVwObjectId parentObject,

int submapPolicy, int submapType, char \submapName,
int layout, unsigned int flags);

When calling the OVwCreateSubmap() routine, supply the following arguments:

mapInfo points to an OVwMapInfo data structure that contains information
about the map. Applications can retrieve map information in the
OVwMapInfo data structure in two ways. Applications can call
the OVwGetMapInfo() routine, or applications can save the map
information that accompanies a map open event. Later sections
will describe how to handle map open events and how to manipu-
late fields in the OVwMapInfo data structure. To create submaps,
though, you can simply pass in the data structure returned by the
OVwGetMapInfo() routine or supplied with the map open event.
The example following this list will show how to use the
OVwGetMapInfo() routine when creating submaps.

parentObject the object ID of the parent object that this submap will represent.
You can also specify ovwNullObjectId , which means that this
submap does not have a parent object. This is known as an
orphan submap.

submapPolicy indicates whether this submap will be shared by other applica-
tions or if it will be owned exclusively by this application. The
possible values are ovwSharedSubmap and
ovwExclusiveSubmap .

submapType an application-defined field that applications can use to classify
submaps. You may use this field for any purpose that suits your
application's requirements. If your application does not use a
particular submap type, use the special value
ovwNoSubmapType .

submapName specifies the name of the submap. This name appears in the
submap title bar. You should keep the name short, and the first
letter of each word in the name should be capitalized.

layout specifies the automatic layout algorithm that controls symbol
placement on the submap. Choose one of the following:

 � ovwNoLayout
 � ovwPointToPointLayout
 � ovwBusLayout
 � ovwStarLayout
 � ovwTreeLayout

132 Programmer's Guide

 � ovwRingLayout
 � ovwRowColumnLayout
 � ovwMultipleConnLayout

Submap layout algorithms are described in “Submap Layout
Algorithms” on page 135.

flags use either ovwNoSubmapFlags or ovwDisableAutoLayout .
Coding ovwDisableAutoLayout initially disables automatic layout
for the submap, but this setting can be changed by the user.

OVwCreateSubmap() checks the input arguments and, if all arguments are valid,
creates the submap. It returns a submap ID that uniquely identifies the submap
within the map. The submap ID is used in future calls involving the submap, such
as adding symbols to the submap or deleting the submap.

The following example shows how to use OVwCreateSubmap() to create a shared
submap. The submap has a bus symbol layout algorithm. We will assume that the
object ID of the parent object is already known.

#include <OV/ovw.h>

OVwSubmapId sub_id;
OVwObjectId obj_id;
OVwMapInfo \map_info;

/\ assume 'obj_id' is set to the ID of the parent object \/
map_info = OVwGetMapInfo();
sub_id = OVwCreateSubmap(map_info, obj_id, ovwSharedSubmap,

ð,"Administer: System Mgmt", ovwBusLayout, ovwNoSubmapFlags);
if (OVwIsIdNull(sub_id)) {

/\ error processing \/
}

At this point, the submap has been created and is internally known by the NetView
for AIX program by the name returned in sub_id. No symbols have yet been
placed on the submap, and the submap has not been displayed to the user.

Note: Many of the arguments to OVwCreateSubmap() are associated in some
way with application style. Refer to the NetView for AIX Application Inter-
face Style Guide for guidance on creating submaps.

Choosing When to Create a Submap
One of the important decisions you need to make as an NetView for AIX application
developer is determining when to create submaps. Applications that are driven
entirely by user requests (for example, menu item selection) may need to wait until
the user selection has occurred before the submap can be created. Other applica-
tions that are driven by network or system events (for example, LAN monitoring
applications) should create submaps as soon as possible.

In general, applications should create submaps as soon as they know that the
submaps are needed (for example, when a new node or network is discovered).
There are several advantages to creating submaps in this way:

� The map is always up to date and is a complete representation of the manage-
ment environment.

� Users do not incur unnecessary delays when they display submaps.

 Chapter 9. Creating and Using Submaps 133

� Status information is current for symbols with compound status source.

� Submap information is present in the event that a user saves a map snapshot.

Organizing Your Submap Hierarchy
If your application creates submaps, you should tie the submaps into an existing
map hierarchy. There are two methods for doing this:

� You can create a submap hierarchy within your application and place a symbol
representing a top-level object in the root submap. The symbol in the root
submap provides an entry point into the application's hierarchy.

� You can create a child submap for an object in an existing submap hierarchy.
If you want to add a child submap to an existing submap hierarchy but a pro-
spective parent object is not already defined, you can add a parent object to a
submap in the existing hierarchy.

Create a child submap of an existing compound object only if, from the user's point
of view, it provides a meaningful extension to the existing hierarchy. For example,
the submap of a computer system that displays the components in a computer
system (software, peripherals, interface cards, etc.) is a good candidate for a child
submap.

Refer to the NetView for AIX Application Interface Style Guide and the NetView for
AIX Administrator's Guide for more information about submap hierarchies.

 Special Submaps
There are some types of submaps that have special characteristics. These
submaps are described here.

The Root Submap
Before you can create a hierarchy of submaps, one special submap must be
chosen as the navigation entry point. This submap is called the root submap. The
NetView for AIX program automatically creates a single root submap for each map.
The root submap represents the highest, most abstract view of the map. You
cannot delete a root submap.

The Home Submap
The NetView for AIX graphical interface lets users specify which submap they want
to see when a map is opened. Rather than seeing the root submap, users can
specify that they want to see some other submap. This is called the home
submap. Selection of the home submap is done entirely through the NetView for
AIX user interface. Applications do not need to know which submap is the home
submap, nor is there any mechanism for programmatically determining the home
submap for a map.

 Orphan Submaps
Though most submaps are based on an object hierarchy, you can programmatically
create a submap that is not related to a parent object. These submaps are called
orphan submaps. Orphan submaps have limited value. The main drawback to
using orphan submaps is that users cannot easily locate and display them through
objects on the map. (Users can, however, display orphan submaps through a
submap list box accessible through the main menu bar). In general, you should not
create orphan submaps.

134 Programmer's Guide

The Metaconnection Submap
Metaconnection submaps are submaps that the NetView for AIX program automat-
ically creates to represent multiple connections between symbols. When a first
connection is made between two symbols, the connection is treated as a simple
connection. If additional connections are made between the symbols, the NetView
for AIX program automatically creates a submap, called a metaconnection submap,
that contains all the connection symbols. Users can view the metaconnection
submap to see all connections between symbols. Developers cannot add con-
nections directly to the metaconnection submap. Rather, connections are made
between the symbols, and the NetView for AIX program automatically adds the new
connections to the metaconnection submap.

Submap Layout Algorithms
When you create a submap, you also define the default algorithm used to place
symbols on the submap. Layout algorithms are fixed for the life of the submap.
Submaps can use any one of the following layout algorithms:

No Layout Algorithm Use for unrelated objects or objects whose only relation-
ship is having the same parent object. You can also use
this layout algorithm for applications that need to specify
the exact placement of symbols (for example, when using
background graphics).

Point to Point Use for point-to-point network connections, showing logical
relationships between objects. This layout algorithm is
also applicable for submaps whose objects have multiple
arbitrary connections.

Bus Use for network connections on a bus segment or for
showing multiple objects that tie into a common relation-
ship.

Star Use for network connections on a star segment or for
showing multiple objects connected into a common master
or hub object.

Tree Use to display nodes in a tree-like hierarchical view.

Ring Use for network connections on a ring segment or for
showing multiple objects with equal connectivity between
all objects.

Row/Column Use for submaps of unrelated objects, or objects whose
only relationship is having the same parent object. This
layout algorithm is preferred over no layout algorithm as it
provides order for the user.

Multiple Connections Use for submaps that primarily contain a set of con-
nections between two objects (for example, the logical
channels of a physical link).

The NetView for AIX graphical interface uses the submap layout algorithm to deter-
mine symbol placement within the submap. Though automatic placement is ade-
quate for most applications, you can override the default symbol layout algorithm
and place symbols at particular locations in the submap. This feature is described
in “Changing a Symbol's Position” on page 122.

 Chapter 9. Creating and Using Submaps 135

 Submap Planes
When users look at a submap, they see a graphical window containing symbols,
connections between the symbols, and, optionally, a special window background.
But in fact, submaps are composed of three separate planes that are superimposed
on one another. The NetView for AIX program manages the graphical information
maintained in these planes. The three planes are:

� A background plane, which contains either a solid color or a user/developer
supplied graphical image.

� An application plane, where applications add symbols.

� A user plane, where users add symbols.

The background plane is fairly straightforward. Applications can select a bit image
to serve as a backdrop for the submap. The bit image resides in the background
plane. If the background plane is empty, the NetView for AIX program displays a
solid color pattern.

Symbols added by applications go on the submap application plane. The presence
of a symbol on the application plane indicates that the underlying object has
semantic meaning to the application.

Symbols added by users go on the user plane, at least initially. Applications can
request notification whenever a user adds a symbol to the user plane. If the appli-
cation judges that the symbol is appropriate for that submap, then the application
can move the symbol from the user plane to the application plane, where it will be
managed by the application. Applications should not normally add, modify, or
delete symbols on the user plane.

Chapter 10, “Map Events and Map Editing” on page 145 describes how applica-
tions can determine when symbols or connections are added to submaps. See that
chapter if your application needs to determine when icon or connection symbols are
added to submaps.

Shared and Exclusive Submaps
When applications create submaps, they can specify whether the submap is a
shared or an exclusive submap. A shared submap is one in which multiple appli-
cations use the same application plane. Any application can add, modify, or delete
a symbol in a shared submap. Further, any application can delete a shared
submap.

An exclusive submap is submap that can be modified only by the creating applica-
tion or the end user. Only the creating application can add, delete, or modify
symbols on the application plane of the submap. Users can add symbols only to
the user plane of an exclusive submap. Only applications can create exclusive
submaps. Submaps created by users through the NetView for AIX user interface
are created as shared submaps.

In general, we recommend using shared submaps whenever possible. Refer to the
NetView for AIX Application Interface Style Guide for more guidance on when to
use shared versus exclusive submaps.

136 Programmer's Guide

Displaying a Submap
There are two ways for submaps to be displayed, depending on how users interact
with NetView for AIX:

� If the user performs any of the following steps, the NetView for AIX user inter-
face automatically displays the submap.

– The user double-clicks the mouse on an explodable symbol.

– The user selects a submap through the NetView for AIX submap list box.

– The user selects the "open" operation on a symbol's pop-up menu.

If the user performs one of these steps and the submap does not already exist,
the NetView for AIX program will notify the user of this and prompt for addi-
tional information needed to create the child submap. The NetView for AIX
graphical interface will then display the submap. The application does not need
to issue a call to the NetView for AIX API to display the submap.

� If a user requests an application action through an NetView for AIX menu item,
the application must explicitly inform the NetView for AIX program when the
submap should be displayed. For example, the user might be able to invoke
an application-supplied action to create a submap. The submap might use the
object selection list as a form of input. The application is responsible for explic-
itly telling the NetView for AIX program to display the submap.

To display a submap window, use the OVwDisplaySubmap() routine. The
OVwDisplaySubmap() routine has the function prototype:

int OVwDisplaySubmap(OVwMapInfo \mapInfo,
OVwSubmapId submapId);

Given a submap ID, this routine does one of two things:

� If the submap is not already displayed, it displays the submap window.

� If the submap window is already displayed, it raises the window to the top.

Changing Submap Characteristics
When you create a submap using the OVwCreateSubmap() routine, you supply a
number of arguments that define the submap's characteristics. These character-
istics include the parent object, submap layout algorithm, submap policy, submap
name, and submap type. Of these characteristics, the submap name is the only
one that can be changed after the submap has been created. All other character-
istics are fixed for the life of the submap.

To change a submap name, use the OVwSetSubmapName() routine. The routine
has the function prototype:

int OVwSetSubmapName(OVwMapInfo \mapInfo,
OVwSubmapId submapId, char \submapName);

Supply a pointer to a mapInfo structure, the submap ID of the particular submap,
and a character string containing the new submap name. The name does not have
to be unique.

 Chapter 9. Creating and Using Submaps 137

Deleting a Submap
The OVwDeleteSubmap() routine deletes a submap. You can delete any submap
that has the shared submap policy, or you can delete an exclusive submap if your
application created it. The OVwDeleteSubmap() routine has the function prototype:

int OVwDeleteSubmap(OVwMapInfo \mapInfo, OVwSubmapId submapId);

Caution: When you delete a submap, the NetView for AIX program assumes that all
symbols on the submap should be deleted as well. The NetView for AIX program
will delete all symbols on that submap. If a symbol is deleted that is the last
symbol that represents an underlying object, then the object will be deleted also.
Further, since an object might serve as a parent object of a child submap, deleting
an object might result in the deletion of a child submap. Deleting a submap can set
off a series of symbol, object, and submap deletions. This recursive deletion guar-
antees that unneeded symbols, objects, and submaps are removed when no longer
needed. In general, applications should not delete submaps created by other appli-
cations. The OVwDeleteSubmap() routine does not delete the submap's parent
object.

Getting Map and Submap Information
NetView for AIX provides a number of routines that are useful for finding out infor-
mation about the open map and its component submaps. These routines can:

� Notify you when a map was created or last closed

� Notify you how the user has configured your application for a map

� Return a list of all submaps within a given map

� Retrieve submap information

� Produce a list of all objects on a map

These routines are described next.

Getting Map Information
The OVwGetMapInfo() routine retrieves information about the open map. It returns
a pointer to a data structure containing the map name, map permissions, map cre-
ation time, the time the map was last closed, and the submap ID of the root
submap. Map information is valid until the map is closed. The OVwGetMapInfo()
routine has the function prototype:

OVwMapInfo \OVwGetMapInfo()

It returns a pointer to the OVwMapInfo data structure, which has the following form:

typedef struct {
 char \map_name;

int permissions; /\ ovwMapReadOnly or ovwMapReadWrite \/
time_t creation_time; /\ map creation time \/
time_t last_closed_time; /\ time r-w map was last closed \/
OVwSubmapId root_submap_id; /\ root submap for

adding top-level symbols \/
} OVwMapInfo;

The root_submap_id field is of particular interest, since it provides an entry point
into the submap hierarchies present for the map. Using the OVwListSymbols()

138 Programmer's Guide

routine you can retrieve a list of all symbols present in a given submap. Using the
root_submap_id as an argument to this routine, you can determine which symbols,
and hence, which submap hierarchies, are present in the root submap.

Many API routines take a pointer to the mapInfo data structure as the first argu-
ment. You should use the OVwGetMapInfo() routine to generate a mapInfo data
structure. Though you could call OVwGetMapInfo() every time you need a mapInfo
structure, a more efficient technique is retrieve the map information once and save
it for future use. The most logical place to do this is in a callback routine that is
registered for the ovwMapOpen event. Within that callback routine, you can use
OVwCopyMapInfo() to save the map information returned with the ovwMapOpen
event. The OVwCopyMapInfo() routine copies the memory in an OVwMapInfo data
structure.

When finished with the OVwMapInfo data structure, call OVwFreeMapInfo() to free
the memory allocated by NetView for AIX.

Getting Application Configuration Information
Users can configure the behavior of some applications through an application con-
figuration dialog box that appears when either a new map is opened or the map
configuration menu item is selected. User configuration may impact the applica-
tion's initialization behavior. This section describes how applications can determine
how they are configured by the user.

Some applications present an application configuration dialog box to the user when
a new map is opened. The application configuration dialog box is defined in an
Enroll block in an Application Registration File. The Enroll block contains entries
for all configuration fields used by the application. (The NetView for AIX Application
Interface Style Guide describes how applications should support application config-
uration). Applications can retrieve the values of application configuration fields
using the OVwGetAppConfigValues() routine. OVwGetAppConfigValues() has the
following function prototype:

OVwFieldBindList \OVwGetAppConfigValues(OVwMapInfo \map,
char \appName);

OVwGetAppConfigValues() returns a pointer to a list of field values. The
OVwFieldBindList data structure is described in “Getting a List of Object Fields” on
page 94. By following the pointers in the field data structures, applications can
determine the values of all application configuration fields. Based on these values,
the application can determine how the user has configured the application. For
example, the user may have disabled the application, or they may have enabled
only certain parts of application functionality. The application, not NetView for AIX,
is responsible for determining how the fields are used and what the field values
mean. When finished, call OVwFreeFieldBindList() to free the memory allocated by
the OVwGetAppConfigValues() routine. Applications can set the application config-
uration fields using the OVwSetAppConfigValues() routine. The
OVwSetAppConfigValues() routine has the function prototype:

int OVwSetAppConfigValues(OVwMapInfo \map,
OVwFieldBindList \configParams);

This routine is useful for setting the values of general fields that may change. The
default values for application configuration fields can be set in the configuration

 Chapter 9. Creating and Using Submaps 139

enroll block in the Application Registration File. See the man pages if you need
more information on this call.

Getting Submap Information
The NetView for AIX EUI API provides two routines that retrieve information at the
submap level, OVwGetSubmapInfo() and OVwListSubmaps().

 Using OVwGetSubmapInfo()
The OVwGetSubmapInfo() routine returns complete information about a given
submap, including the submap name, policy, parent object ID, etc. It has the func-
tion prototype:

OVwSubmapInfo \OVwGetSubmapInfo(OVwMapInfo \mapInfo,
OVwSubmapId submapId);

It returns a pointer to an OVwSubmapInfo data structure. The data structure has
the form:

typedef struct {
 OVwSubmapId submap_id;
 char \submap_name;

int submap_policy; /\ ovwSharedSubmap, ovwExclusiveSubmap \/
char \app_name; /\ app that created submap;

NULL = user-created \/
int submap_type; /\ application-specified value \/
OVwObjectId parent_object_id; /\ parent object of submap;

ovwNullObjectId if orphan \/
int layout_style; /\ automatic layout algorithm \/
OVwBoolean layout_on; /\ has user disabled auto layout? \/
char \bg_graphics; /\ path of bitmap, NULL if none \/

} OVwSubmapInfo;

When finished, call OVwFreeSubmapInfo() to free the memory allocated by
OVwGetSubmapInfo().

 Using OVwListSubmaps()
The OVwListSubmaps() routine retrieves a list of submaps on the open map.
There are a variety of ways to filter which submaps are included in the list:

� You can select whether the list of submaps should include all submaps, or only
those created by a particular application.

� You can filter the list of submaps to include only those submaps that have a
particular submap type. Applications define submap types when they create
submaps.

� You can filter the list of submaps to include only those submaps whose parent
objects have particular field values. Field values are defined using an
OVwFieldBindList structure, which is a list of field values. The
OVwFieldBindList data structure is described in “Getting a List of Object Fields”
on page 94.

The OVwListSubmaps() routine has the following function prototype:

OVwSubmapList \OVwListSubmaps(OVwMapInfo \mapInfo, char \appName,
int submapType, OVwFieldBindList \parentFieldValues);

140 Programmer's Guide

The arguments to OVwListSubmaps() are used in the following way.

mapInfo A pointer to a map information data structure.

appName If NULL, NetView for AIX will search all submaps on the
open map. If it is not NULL, NetView for AIX will limit the
search to submaps created by the application with the name
appName.

submapType A value that has meaning to the creating application. The
special value ovwAnySubmapType matches any submap
type. Submaps created by users always have a value of
ovwAnySubmapType. Submap types were described in
“Creating a Submap” on page 132.

parentFieldValues A pointer to a OVwFieldBindList data structure that contains
the particular field values against which parent objects should
be compared. The OVwFieldBindList data structure is
described in “Getting a List of Object Fields” on page 94.

The OVwListSubmaps() routine returns a pointer to an OVwSubmapList structure.
The OVwSubmapList data structure uses NetView for AIX's standard list form: it
contains a integer count of the number of entries in the list, and a pointer to the first
in a contiguous array of entries.

The following code segment shows how to use the OVwListSubmaps() routine.
This code retrieves a list of submaps that were created by any application and that
have parent objects that have the isNode capability field set to TRUE.

#include <OV/ovw.h>

OVwSubmapList \list_ptr;
OVwMapInfo \mapInfo;
int i;
OVwFieldId f_id;
OVwFieldBinding binding;
OVwFieldBindList bind_list;
OVwFieldValue field_value;

f_id = OVwDbFieldNameToFieldId("isNode");

binding.field_id = f_id;
binding.field_val = &field_value;

binding.field_val->is_list = FALSE;
binding.field_val->field_type = ovwBooleanField;
binding.field_val->field_bool_val = TRUE;

bind_list.count = 1;
bind_list.fields = &binding;

mapInfo = OVwGetMapInfo();
list_ptr = OVwListSubmaps(mapInfo, NULL, ovwAnySubmapType,
 &bind_list);
if (! list_ptr) {

/\ error processing \/
}

for (i=ð; i<count; i++) {

 Chapter 9. Creating and Using Submaps 141

printf("%s\n", list_ptr->submaps[i].submap_name);
}
OVwFreeSubmapList(list_ptr);
OVwFreeMapInfo(map);

When you are done with the data structure returned by OVwListSubmaps(), call the
OVwFreeSubmapList() routine to free the data structure memory allocated by
NetView for AIX. OVwFreeSubmapList() has the function prototype:

void OVwFreeSubmapList(OVwSubmapList \submapList);

Using Submap Background Graphics
By default, the NetView for AIX program uses a solid color pattern as a background
for all submaps. The background graphic for any submap can, however, be
changed to contain a bit image. The background graphic can be changed either by
the end user through the NetView for AIX user interface, or by the developer
through the NetView for AIX EUI API. Background graphics provide a number of
useful functions. You can, for instance, choose a more visually pleasing back-
ground with a different pattern or color. But the most useful function, by far, is the
ability to display a graphical map of the environment being managed. For example,
you can display a bit image of a country, a state, or an office or building floor plan.
By placing symbols at coordinates relative to the background graphic, you can
provide context for submap symbols in a meaningful way.

Setting and Clearing Background Graphics
The NetView for AIX EUI API provides two routines that let you programmatically
control the background graphics for submaps. They have the following function
prototypes:

int OVwSetBackgroundGraphic(OVwMapInfo \mapInfo,
OVwSubmapId submapId, char \filename);

int OVwClearBackgroundGraphic(OVwMapInfo \mapInfo,
OVwSubmapId submapId);

The OVwSetBackgroundGraphic() routine takes a submap ID and the full pathname
of a bit image file, and it sets the background graphic for the specified submap.
The NetView for AIX program scales the bit image to fit the window size. Use the
OVwClearBackgroundGraphic() routine to restore the submap background to the
default solid color pattern.

Note: The background manipulation routines can take several seconds to run.

Symbol Placement and Background Graphics
If you use a background graphic that provides some form of geographical map (for
example, a building floor plan), then you will probably want to place symbols at
particular locations relative to that map. For this placement to work correctly,
specify ovwNoLayout as the layout algorithm when you create the submap.

142 Programmer's Guide

Bit Image Formats
For your convenience, NetView for AIX lets you use background graphic bit images
in either of two formats:

� The Graphics Interchange Format (GIF) developed by CompuServe.

� The X Bitmap format. See the bitmap() man page.

The NetView for AIX program handles the details of displaying different graphics
image formats.

 Chapter 9. Creating and Using Submaps 143

144 Programmer's Guide

Chapter 10. Map Events and Map Editing

This chapter introduces the NetView for AIX map editing routines, which provide
many functions for applications that interact with users who perform map-related
operations such as adding objects, creating submaps, or deleting symbols. Read
this chapter if you want your application to be notified when users or other applica-
tions modify the map. This chapter also provides information that you will need if
your application supports any of the four map-editing operations: adding a symbol
to a submap, connecting two symbols on a submap, modifying an object's attri-
butes, or changing an application's configuration.

This chapter addresses these topics:

� Receiving notification of map changes
� Opening and closing maps
� Participating in map changes
� Cut and paste operations

Receiving Notification of Map Changes
Applications can register callback routines that are invoked when specific NetView
for AIX events occur. See “NetView for AIX Events” on page 63 for a list of 31
NetView for AIX events. There are many other map-related events that applica-
tions might also find interesting. The NetView for AIX program generates an event
when one of the following conditions occurs:

� The map is opened or closed.
� A symbol, object, or submap is created.
� A symbol, object, or submap is deleted.
� A symbol is moved.
� The selection list is changed.
� The status value of a symbol or object is changed.
� An object capability field is changed.
� The user indicates that an object should be managed or unmanaged.
� The user indicates that an object should be acknowledged or unacknowledged.
� A symbol is hidden or unhidden.

The next section describes the NetView for AIX map editing events. You can reg-
ister your application to receive these events with the OVwAddCallback() routine.

Map Editing Events
Table 11 summarizes the map editing events. The left column contains the event
types. The right column contains the event meaning and the name of the function
prototype for the corresponding callback routine.

Table 11 (Page 1 of 2). Map Events and Callback Routines

Event Type Meaning and Callback Routine

ovwEndSession NetView for AIX terminated. (\OVwEndSessionCB)(...)

ovwSelectionListChange The selection list changed.
(\OVwSelectListChangeCB)(...)

ovwMapOpen A map was opened. (\OVwMapOpenCB)(...)

 Copyright IBM Corp. 1992, 1995 145

The names of the callback routine function prototypes are derived from the event
name. For example, the ovwConfirmSymbolStatusChange event has the callback
routine (*OVwConfirmSymbolStatusChangeCB)(). This naming convention lets you
easily translate between event types and function prototypes.

The concepts behind most of these events have been presented earlier in this
manual. Object, symbol, and submap creation, deletion, and modification are
described in previous chapters. You can refer to those chapters if you need to

Table 11 (Page 2 of 2). Map Events and Callback Routines

Event Type Meaning and Callback Routine

MapClose A map was closed. (\OVwMapCloseCB)(...)

ovwConfirmDeleteSymbols One or more symbols were deleted from the map.
(\OVwConfirmDeleteSymbolsCB)(...)

ovwConfirmDeleteObjects One or more objects were deleted from the map.
(\OVwConfirmDeleteObjectsCB)(...)

ovwConfirmDeleteSubmaps One or more submaps were deleted from the map.
(\OVwConfirmDeleteSubmapsCB)(...)

ovwConfirmCreateSymbols One or more symbols were created on the map.
(\OVwConfirmCreateSymbolsCB)(...)

ovwConfirmCreateObjects One or more objects were created on the map.
(\OVwConfirmCreateObjectsCB)(...)

ovwConfirmCreateSubmaps One or more submaps were created on the map.
(\OVwConfirmCreateSubmapsCB)(...)

ovwConfirmMoveSymbol A symbol was moved within a submap.
(\OVwConfirmMoveSymbolCB)(...)

ovwConfirmManageObjects One or more objects became managed on the map.
(\OVwConfirmManageObjectsCB)(...)

ovwConfirmUnmanageObjects One or more objects became unmanaged on the map.
(\OVwConfirmUnmanageObjectsCB)(...)

ovwConfirmAcknowledgeObjects One or more objects became acknowledged on the
map. (\OVwConfirmAcknowledgeObjectsCB)(...)

ovwConfirmUnacknowledgeObjects One or more objects became unacknowledged on the
map. (\OVwConfirmUnacknowledgeObjectsCB)(...)

ovwConfirmExplodeObjects An object was exploded on the map.
(\OVwConfirmExplodeObjectsCB)(...)

ovwConfirmHideSymbols NetView for AIX made one or more symbols hidden.
(\OVwConfirmHideSymbolsCB)(...)

ovwConfirmUnhideSymbols NetView for AIX made one or more symbols unhidden.
(\OVwConfirmUnhideSymbolsCB)(...)

ovwConfirmSymbolStatusChange The status of one or more symbols changed.
(\OVwConfirmSymbolStatusChangeCB)(...)

ovwConfirmObjectStatusChange The object status of one or more objects changed.
(\OVwConfirmObjectStatusChangeCB)(...)

ovwConfirmCompoundStatusChange The compound status of one or more objects changed.
(\OVwConfirmCompoundStatusChangeCB)(...)

ovwConfirmCapabilityChange The capability field of one or more objects changed.
(\OVwConfirmCapabilityChangeCB)(...)

146 Programmer's Guide

review those operations. There are, however, two new concepts that have not
been described yet: hidden symbol events and unmanaged object events. These
are described next.

Hidden Symbol Events
There are some situations in which the user might not want a symbol to appear in
submaps, but, for some reason, the application will not allow the symbol to be
deleted. In this case, the user can hide the symbol using the hide operation in the
NetView for AIX graphical interface. Though the symbol still exists, it is no longer
presented in the NetView for AIX graphical interface. When a symbol is hidden, the
NetView for AIX program sends the ovwConfirmHideSymbols event to all applica-
tions that have registered a callback routine for that event.

A hidden symbol is not deleted. The symbol still exists and can be operated upon
by applications just as if it were visible. Applications can still perform all symbol-
related operations, such as modifying symbol attributes or retrieving symbol infor-
mation. For instance, an application might be coded to ignore a hidden symbol
when performing application-specific status propagation, because hidden symbols
should not contribute to compound status. Users can request that a hidden symbol
be made visible again. When a user selects this operation, the NetView for AIX
program will send an ovwConfirmUnhideSymbols event to all registered applications.

Manage and Unmanage Events
Through the NetView for AIX graphical interface, users can control whether an
object is managed or not. Symbols representing unmanaged objects do not receive
status updates from applications. Applications will receive errors if they attempt to
change the status on an unmanaged object or on the symbol that represents the
unmanaged object. An unmanaged object remains unmanaged until the user
explicitly re-enables management of the object through the NetView for AIX graph-
ical interface.

All symbols representing an unmanaged object have the same status color to
reflect the unmanaged status. By default, unmanaged icon symbols are wheat in
color, and unmanaged connection symbols are black. See Chapter 8, “Creating
and Using Symbols” on page 99 if you need more information about status colors
and their meaning. Note that all symbols representing an object on a particular
map, regardless of the symbol status source, are changed to unmanaged status if
the underlying object is unmanaged. When an application is registered for the
ovwConfirmUnmanageEvent event, it can determine if the object is currently
managed on other maps. Applications can examine the op_scope field in the
OVwObjectInfo data structure to determine whether the object is still managed on
any other maps. The op_scope value will be ovwAllMapsScope if the object has
been unmanaged on the last map on which it was managed. You can code your
application to discontinue monitoring an object if it is no longer being managed on
any map.

Similarly, your application can register for acknowledge and unacknowledge events
to know when the user acknowledges or unacknowledges an object. When an
object is changes from unmanaged to managed, or from acknowledged to unac-
knowledged, its status will be unknown, and you must determine how you want
your application to deal with that object.

 Chapter 10. Map Events and Map Editing 147

An Event Handling Example
The following example shows how you might define a callback routine to handle the
creation of a symbol by another application:

#include <OV/ovw.h>

void \create_symbol_CB(userData, type, map, symbolList)
void \userData;
OVwEventType type;
OVwMapInfo \map;
OVwSymbolList \symbolList;
{
 ...
}

main()
{
 int ret;

if (OVwInit() < ð) {
printf("application couldn't connect to NetView for AIX\n");
exit(1);

 }

ret = OVwAddCallback(ovwConfirmCreateSymbols, NULL,
(OVwCallbackProc) create_symbol_CB, NULL);

if (ret < ð) {
/\ error processing \/

 }
 OVwMainLoop();
}

This example shows how an application passively awaits notification that an event
has occurred. The application does not control whether the symbol creation is
allowed; it is simply notified that the event occurred. The next section describes
how applications can actively interact with the NetView for AIX program to control
whether certain map-editing operations are allowed.

Opening and Closing Maps
If your application modifies the map, there are certain steps that it must perform
whenever a map is opened or closed by the user. The following sections describe
how applications should respond to user requests to open or close a map.

Processing a Map Open Request
You can request that your application be informed of any user request to open a
map by registering a callback routine for the ovwMapOpen event. Within that
callback routine, the application might need to perform these steps:

� Determine what changes, if any, are permitted for the map. The main factors
in this decision are the map permissions and whether the user has enabled the
application for the new map through the application configuration values.

� Make the updates to the map as appropriate for the application. Design your
application to examine the time at which the map was last closed to determine
what changes must be made to make the map current.

148 Programmer's Guide

� If a significant number of time-consuming updates must be made, code your
application to call special API routines to inform the user that a potentially
lengthy map update is occurring. The process of updating a new map is
referred to as map synchronization.

Receiving Map Open Events
Applications register for the ovwMapOpen event using the OVwAddCallback()
routine. The map open callback routine has the following function prototype:

void (\OVwMapOpenCB)(void \userData,
 OVwEventType type,
 OVwMapInfo \map,

OVwFieldBindList \configParams);

The arguments to the callback routine are as follows:

userData A pointer to data defined by the user when the callback routine was
registered.

type The event (ovwMapOpen in this example).

map A pointer to a OVwMapInfo data structure. The permissions field
and the last_closed_time field in the OVwMapInfo data structure are
of special interest. Applications can check the permissions to deter-
mine whether all updates are permitted (read-write permission) or
only status updates are permitted (read-only permission). The map
close time is useful in determining what changes are needed to
make the map current.

configParams Used to return application configuration values. Applications can
traverse the pointers in the OVwFieldBindList data structure to
access values for each of the application configuration fields.

You can design your application to use the map information and application config-
uration parameters to determine whether updates are permitted, as well as what
updates are required to make the map current. You can use the application config-
uration values in any way that is appropriate for your application. For example,
some applications might use a boolean configuration field to indicate whether the
application is enabled or disabled for the map. Other applications might use a
numeric scheme where different values indicate that different levels of map updates
are permitted. It is the developer's responsibility to determine how the user has
configured the application and to act appropriately.

Synchronizing the Map
Anytime a new map is opened, there may be a brief period in which map applica-
tions are updating the map to reflect changes that occurred since the map was last
used. You can inform users that the map is being updated, by having your applica-
tion present a message stating that the map is being synchronized.

Map Synchronization Routines: The NetView for AIX program provides two rou-
tines that inform users of map synchronization. These routines are optional but
recommended. They have the function prototypes:

int OVwBeginMapSync(OVwMapInfo \mapInfo);
int OVwEndMapSync(OVwMapInfo \mapInfo);

Call the OVwBeginMapSync() routine to mark the beginning of a synchronization
phase. Other applications may also synchronize at the same time. While one or

 Chapter 10. Map Events and Map Editing 149

more applications are synchronizing, the user sees an appropriate message in the
status line of all submap windows.

Each application should call the OVwEndMapSync() routine to mark the end of the
synchronization phase. When the last map application completes synchronization,
the synchronizing message is removed from the graphical interface. Users can
then view submaps with confidence that the information is current. Because some
user actions are inhibited during synchronization, be sure to call the
OVwEndMapSync() routine so that these actions will be permitted.

Checking for Events while Synchronizing: Applications can manually check the
NetView for AIX event queue for the presence of specific events that would justify
processing interruption. Since map synchronization is an operation that can take a
long time, consider having your application check the event queue for the presence
of important events, such as the ovwMapClose event. Use the
OVwPeekOVwEvent() routine to check the event queue for the presence of a par-
ticular event.

Starting an Application after a Map Is Opened
When the NetView for AIX program starts a new user session, the map is opened
before the map applications are started. Applications do not receive an
ovwMapOpen event if the map is opened before the application is started.
Because of this behavior, applications need to take special steps at startup time to
determine if the currently open map needs to be updated. These steps include
retrieving the map information for permissions and last-close time and the applica-
tion configuration values.

You can design your map-open callback routine to synchronize the map whether
the application is being started or it is already running. You can manually retrieve
the map information and application configuration values, and you can invoke your
callback routine directly. This simulates the reception of an ovwMapOpen event.
The following example illustrates this technique:

#include <OV/ovw.h>

void mapOpenCB(void \userData, OVwEventType type,
 OVwMapInfo \map_info,

OVwFieldBindList \config_params)
{
/\ check the map permissions, last close time, and
app configuration values to determine what map updates are needed \/
OVwBeginMapSync(map_info);
OVwEndMapSync(map_info);
}

main()
{
 int ret;
 char \appname;
 OVwMapInfo \map;
 OVwFieldBindList \bind_list;

ret = OVwInit();
ret = OVwAddCallback(ovwMapOpen, NULL, (OVwCallbackProc)

mapOpenCB, NULL);

150 Programmer's Guide

/\ Get the map information and app config values, then
invoke the callback routine \/

map = OVwGetMapInfo();
appname = OVwGetAppName();
bind_list = OVwGetAppConfigValues(map, appname);
mapOpenCB(NULL, ovwMapOpen, map, bind_list);

/\ Free the map, bind_list, and appname \/
 OVwFreeMapInfo(map);
 OVwFreeFieldBindList(bind_list);
 free appname;

/\ start checking for events \/
 OVwMainLoop();
}

Processing a Map Close Request
When the user requests to close a map, the NetView for AIX program begins a
dialog with each application that has registered callback routines for the
ovwMapClose event. The NetView for AIX program provides a number of argu-
ments, including a proposed closing time for the map, to each application. Each
application responds to the NetView for AIX program, indicating that the close
request was acknowledged. Within that acknowledgment, the application can agree
to the proposed close time, or it can reply with an earlier close time. An application
can specify an earlier closing time if it is in the midst of updating a map. The
NetView for AIX program closes the map when it receives acknowledgment from all
applications registered to receive the close event. If applications do not respond
within the configured time period, the NetView for AIX program assumes that appli-
cation agrees with the proposed closing time, and proceeds with closing the map.
The acknowledgment timer is configurable through the X resource file,
/usr/OV/app-defaults/OVw.

NetView for AIX uses the earliest of all the returned map close times as the official
map close time. The next time the map is opened, it will reflect the earliest close
time returned by all applications. Applications can then make appropriate updates
to make the map current.

Note: Applications should explicitly acknowledge the close event whenever pos-
sible. The NetView for AIX program will use a timer to detect unacknowl-
edged close events, but that timer duration is typically quite long.

The map close event callback routine, OVwMapCloseCB(), and the map close
acknowledgment routine, OVwAckMapClose, have the following function prototypes:

void (\OVwMapCloseCB)(void \userData, OVwEventType type,
OVwMapInfo \map, time_t closing_time);

int OVwAckMapClose(OVwMapInfo \map, time_t close_time);

See the man pages if you need more information about these routines.

 Chapter 10. Map Events and Map Editing 151

Participating in Map Changes
In some cases, applications must cooperate with the NetView for AIX program to
control whether map editing changes are allowed.

Map Editing Interactions with NetView for AIX
The NetView for AIX program attempts to establish a dialog with an application
when the user performs one of the following NetView for AIX map operations:

� Adding a symbol
� Changing the application configuration for the map
� Connecting two symbols
� Modifying an object's attributes

These map operations require dialog boxes and are described in “Defining Dialog
Boxes with the Enroll Block” on page 38.

When a user performs one of these NetView for AIX map editing operations, the
NetView for AIX program displays a dialog box. The structure of the dialog box is
defined by the Enroll block definitions in the application's ARF. The following steps
occur:

Step 1. The user sets or changes the value of a field in a dialog box.

Step 2. The user selects the Verify button. The NetView for AIX program sends a
query event to the responsible application to verify that the changes are
acceptable. The application must have previously registered a callback
routine, called a query callback routine, which determines whether the
user's changes are valid.

Step 3. The application's query callback routine verifies that the entries in the
dialog-box fields are valid. The application synchronously calls a NetView
for AIX routine, called a verify routine, and passes a boolean value indi-
cating whether the dialog box fields are acceptable. The application can
also return a message that will be displayed in an Application Message
field in the dialog box, to explain to the user why the entries were not
accepted.

Note: Each value in a dialog box field is described by an OVwFieldValue
data structure. See “The OVwFieldValue Data Structure” on
page 88 for a description of this structure. For each field there is
a boolean flag called modified . The value passed to your appli-
cation with the query callback is in an unspecified state. Before
calling the verify routine, your application must set this flag to True
for any field whose value it changes.

Step 4. If the application accepts the entries, the NetView for AIX program may
enable the OK button to permit the user to proceed. If the application
does not accept the entries, the OK button remains disabled. The user
should re-enter new values and start the process again. If the application
accepts the fields, and the NetView for AIX program enables the OK
button, the user can cancel the operation or press OK to proceed.

Step 5. If the user selects OK on the application-specific dialog box and on the
main dialog box for the operation, the NetView for AIX program performs
the operation. The NetView for AIX program sends a confirm event to the
application, confirming that the operation was performed. The application

152 Programmer's Guide

callback routine that handles the confirm event is called the confirm
callback routine.

This handshaking mechanism between the NetView for AIX program and the appli-
cation is known as the Query-Verify-Confirm sequence. There is a separate Query-
Verify-Confirm sequence for each of the four map operations.

Note: For this form of map editing to work correctly, an application must have: 1)
defined one or more enroll blocks in the ARF, and 2) registered both Query
and Confirm callback routines. If an enroll block does not exist, the
NetView for AIX program cannot construct the application-specific dialog
box. If the callback routines are not registered, the NetView for AIX
program cannot communicate with the application.

 Query-Verify-Confirm Routines
The following list contains the callback routine and verify routine function prototypes
that apply for each of the four map operations. The function prototypes are
grouped by map operation.

Adding a Symbol
void (\OVwQueryAddSymbolCB)(void \userData, OVwEventType type,

OVwMapInfo \map, OVwSubmapInfo \submap,
 OVwFieldBindList \capabilityFields,

OVwFieldBindList \dialogBoxFields);

int OVwVerifyAdd(OVwMapInfo \map, OVwFieldBindList \dialogBoxFields,
OVwBoolean verified, OVwBoolean appPlane,
char \errorMsg);

void (\OVwConfirmAddSymbolCB)(void \userData, OVwEventType type,
OVwMapInfo \map, OVwSymbolInfo \symbol,

 OVwFieldBindList \capabilityFields,
OVwFieldBindList \dialogBoxFields);

Changing the Application Configuration
void (\OVwQueryAppConfigCB)(void \userData, OVwEventType type,

OVwMapInfo \map, OVwFieldBindList \configParms);

int OVwVerifyAppConfigChange(OVwMapInfo \map,
 OVwFieldBindList \configParms,

OVwBoolean verified, char \errorMsg);

void (\OVwConfirmAppConfigCB)(void \userData, OVwEventType type,
OVwMapInfo \map, OVwFieldBindList \configParams);

 Chapter 10. Map Events and Map Editing 153

Connecting Two Symbols
void (\OVwQueryConnectSymbolsCB)(void \userData, OVwEventType type,

OVwMapInfo \map, OVwSubmapInfo \submap,
 OVwObjectInfo \object1,
 OVwObjectInfo \object2,
 OVwFieldBindList \capabilityFields,

OVwFieldBindList \dialogBoxFields);

int OVwVerifyConnect(OVwMapInfo \map, OVwObjectInfo \object1,
 OVwObjectInfo \object2,

OVwFieldBindList \dialogBoxFields, OVwBoolean verified,
OVwBoolean appPlane, char \errorMsg);

void (\OVwConfirmConnectSymbolsCB)(void \userData, OVwEventType type,
OVwMapInfo \map, OVwSymbolInfo \symbol,

 OVwObjectInfo \object1,
 OVwObjectInfo \object2,
 OVwFieldBindList \capabilityFields,

OVwFieldBindList \dialogBoxFields);

Changing the Object Description
void (\OVwQueryDescribeCB)(void \userData, OVwEventType type,

OVwMapInfo \map, OVwObjectInfo \object,
OVwFieldBindList \dialogBoxFields);

int OVwVerifyDescribeChange(OVwMapInfo \map, OVwObjectInfo \object,
OVwFieldBindList \dialogBoxFields, OVwBoolean verified,
char \errorMsg);

void (\OVwConfirmDescribeCB)(void \userData, OVwEventType type,
OVwMapInfo \map, OVwObjectInfo \object,
OVwFieldBindList \dialogBoxFields);

If your application supports any of these four map operations, create the appro-
priate enroll blocks in your application's ARF and register the appropriate callback
routines.

Note: If you register your application for any of the query callback routines, your
application must call the associated NetView for AIX verify routine as part of
the query callback processing. Users may experience unnecessary delays
if your application does not call the verify routine as part of query event
processing. Refer to the man pages if you need more information about
these routines.

The following short code segments show how to use the Query-Verify-Confirm rou-
tines. This example shows how an application might handle Describe operations.
Assume the following entry is present in the application's Application Registration
File:

154 Programmer's Guide

Application "User Management" {
 ...

Enroll Describe {
if isUser {

Field "User Name" {
 EditPolicy NoEdit;
 }

Field "Default Shell" {
 }

Field "User Information" {
 }
 }
 }
 ...
}

The next code segment registers callback routines to handle editing interaction with
the NetView for AIX program. Note that the dialog-box fields are passed to the
callback routines in OVwFieldBindList data structures, which are described in
“Getting a List of Object Fields” on page 94. The fields supplied with the query
and confirm events correspond to the fields enrolled in the application-specific
dialog box.

#include <OV/ovw.h>

void \my_Describe_Query_CB(userData, eventType, map,
object, dialogBoxFields)

void \userData;
OVwEventType eventType;
OVwMapInfo \map;
OVwObjectInfo \object;
OVwFieldBindList \dialogBoxFields;
{
int ret;

/\ Check the validity of the dialog box fields. Depending on the \/
/\ result, return either success or failure to calling program \/
if (/\ the operation is valid \/)

ret = OVwVerifyDescribeChange(map, object, dialogBoxFields,
TRUE, NULL);

else
ret = OVwVerifyDescribeChange(map, object, dialogBoxFields, FALSE,

"operation not valid");
}

void \my_Describe_Confirm_CB(userData, eventType, map,
object, dialogBoxFields)

void \userData;
OVwEventType eventType;
OVwMapInfo \map;
OVwObjectInfo \object;
OVwFieldBindList \dialogBoxFields;
{
/\ Operation completed successfully; perform any
application-specific operations \/
}

 Chapter 10. Map Events and Map Editing 155

main() {
int ret;

if (OVwInit() < ð) {
printf("error connecting to NetView for AIX\n");
exit(1);

}

ret = OVwAddCallback(ovwQueryDescribeChange,
(OVwCallbackProc) my_Describe_Query_CB, NULL);

ret = OVwAddCallback(ovwConfirmDescribeChange,
(OVwCallbackProc) my_Describe_Confirm_CB, NULL);

OVwMainLoop();
}

Choosing Which Confirm Event to Use
There are two ways in which applications can receive confirmation of the Add or
Connect map-editing operations. You can register your application for the specific
ovwConfirmAddSymbol or ovwConfirmConnectSymbol events that correspond to the
Query-Verify-Confirm routines, or you can register it for the more generic
ovwConfirmCreateSymbols event. For example, to have your application notified
that a symbol has been added to a submap, register either the
(*OVwConfirmAddSymbolCB)() callback routine or the
(*OVwConfirmCreateSymbolsCB)() callback routine. They are invoked through dif-
ferent events with different function prototypes and arguments.

Your choice of which confirm event to use is largely based on two factors: the way
the symbol is created, and the arguments that are supplied to the callback routines.
The generic ovwConfirmCreateSymbols event is generated regardless of how the
symbol is created (by the user through the graphical interface or by another appli-
cation). The same event is generated when either an icon or connection symbol is
added. In contrast, the ovwConfirmAddSymbol and ovwConfirmConnectSymbol
events are generated only when icon and connection symbols are created, respec-
tively, by the user through the map-editing features of the NetView for AIX graphical
interface. Another difference is that the ovwConfirmCreateSymbols event can be
associated with the creation of multiple symbols. The ovwConfirmAddSymbol and
ovwConfirmConnectSymbol events are only associated with a single symbol. The
data returned to the callback routines differ between the generic
ovwConfirmCreateSymbols event and the specific ovwConfirmAddSymbol and
ovwConfirmConnectSymbol events. For example, compare the following function
prototypes:

void (\OVwConfirmAddSymbolCB)(void \userData,
OVwEventType type, OVwMapInfo \map,

 OVwSymbolInfo \symbol,
 OVwFieldBindList \capabilityFields,

OVwFieldBindList \dialogBoxFields);

void (\OVwConfirmCreateSymbolsCB)(void \userData, OVwMapInfo \map,
OVwEventType type, OVwSymbolList \symbolList

);

Note that the arguments to the (*OVwConfirmAddSymbolCB)() callback routine
provide complete, detailed information about the single symbol affected by the

156 Programmer's Guide

operation. The callback routine also receives a pointer to the complete list of object
database fields enrolled by the calling application. The more generic
(*OVwConfirmCreateSymbolsCB)() routine contains a pointer to a symbol list, which
the application must read to find out about the affected symbols. The generic
(*OVwConfirmCreateSymbolsCB)() routine does not provide access to application-
specific object database fields. It is the application's responsibility to get these
values if they are needed.

Deleting a Symbol
Symbol deletion through the graphical interface uses the Query-Verify-Confirm
transaction, though in a slightly different way. Unlike the dialog boxes presented in
the other map operations, the delete symbol dialog box does not have a Verify
button. The User presses the OK button to proceed, or the Cancel button to cancel
the symbol deletion. If the user presses the OK button, the NetView for AIX
program sends the ovwQueryDeleteSymbol event to all applications registered for the
event. The applications then respond with a boolean value indicating whether the
symbol can be deleted.

� If all of the registered applications approve, the symbol is deleted and the
NetView for AIX program sends the ovwConfirmDeleteSymbol event to all appli-
cations registered for that event.

� If one or more applications do not approve, the NetView for AIX program does
not delete the symbol. The NetView for AIX program informs the user that the
symbol cannot be deleted. At that point, the user can choose to hide the
symbol.

The symbol deletion Query-Verify-Confirm routines have the following function
prototypes:

void (\OVwQueryDeleteSymbolsCB)(void \userData, OVwEventType type,
OVwMapInfo \map, OVwSymbolVerifyList \symbolVerifyList);

int OVwVerifyDeleteSymbol(OVwMapInfo \map,
OVwSymbolVerifyList \symbolVerifyList);

void (\OVwConfirmDeleteSymbolsCB)(void \userData,
 OVwEventType type,

OVwMapInfo \info, OVwSymbolList \symbolList);

If your application creates symbols, consider whether it should handle symbol
deletion. An application should disallow symbol deletion only if the symbol is
required for correct operation.

Handling Cut and Paste Operations
Applications can receive various events when users perform cut and paste oper-
ations through the NetView for AIX graphical interface. Applications do not,
however, receive special cut and paste events. Instead, applications receive the
conventional ovwQueryDeleteSymbols and ovwConfirmCreateSymbols events. The
cut-and-paste sequence appears to an application as unrelated symbol-delete and
symbol-add events.

When the NetView for AIX program performs the cut operation, it enters into a
Query-Verify-Confirm transaction sequence with registered applications. Depending
on how the applications respond in their verify calls, the symbol may be deleted.

 Chapter 10. Map Events and Map Editing 157

When the symbol is pasted, NetView for AIX sends an ovwConfirmCreateSymbols
event to all applications registered for that event. The applications can examine the
symbol and move the symbol from the user plane to the application plane by calling
the OVwSetSymbolApp() routine.

Using delete and add events to represent cut and paste operations has implications
for developers. An application that receives an ovwQueryDeleteSymbols event
might need to buffer information about a deleted symbol, because the information
might be needed later. Your application cannot tell if an ovwQueryDeleteSymbols
event comes from a user request to delete a symbol or from the cut portion of a
cut-and-paste sequence.

Not all applications will need to buffer information about the last symbol deleted. If
your application does not distinguish between the paste and add operations, you
might not need to buffer any information about the previous deletion. You might be
able to treat the paste and add operations similarly.

If your application treats the paste operation and the add operations differently, you
will probably need to buffer some information about the last symbol or symbols
deleted. For instance, you could buffer the object ID related to the symbol, the
submap ID of the submap from which the symbol was cut, or relationships to other
symbols. Most applications should buffer at least the object ID. When an
ovwConfirmCreateSymbols event arrives, your application can compare the object
ID in the buffer to the object ID for the event. If the object IDs match, you can
assume that the ovwConfirmCreateSymbols event actually represents a paste oper-
ation. Further, your application can compare the event request against other infor-
mation that has been buffered, such as the previous submap type, to see if the
paste operation is allowed.

Note: The NetView for AIX program assigns new symbol IDs to pasted symbols.
This means that you cannot directly compare symbol IDs to determine
whether delete and add operations are unrelated or if they are actually cut-
and-paste operations. Further, comparing object IDs may not be adequate
in some cases. If the user cuts multiple symbols that have the same under-
lying object, you may not be able to distinguish the symbols in the paste
operation without some other contextual information. You may need to also
save the submap ID or other unique application identifier.

Integrating and Documenting Your Map Application
Applications that operate on maps might create objects or submaps that have
meaning to other map applications. Developers are encouraged to leverage
existing map applications to build new ones.

If your application could potentially serve as an integration point for other applica-
tions, you should provide adequate instructions for other developers to follow to
integrate their application with yours. For example, describe completely the fol-
lowing application elements:

� General map application information such as names or flags

� Registration files if you use them

� Fields if you create or require special fields

� Symbols and restrictions on their use

158 Programmer's Guide

� Submap types and hierarchy

� How your application uses dialog boxes

� Dependencies on other applications

One possible place to document this information is in your application's man pages.

 Chapter 10. Map Events and Map Editing 159

160 Programmer's Guide

Part 3. Using the NetView for AIX Management APIs

Chapter 11. Understanding the NetView for AIX Management
Environment . 167

Defining Network Management Systems . 167
Network Management Protocols and APIs . 168

Creating Management Applications . 169
Using APIs in a Client/Server Environment 169

Understanding Managers and Agents . 170
Manager Functions . 170
Agent Functions . 171

Programming with Managers and Agents . 174
Transactions between Managers and Agents 174
The Communications Infrastructure . 176

Open Systems Interconnection (OSI) Management 178
Object-Orientation in the OSI Model . 178
Understanding Objects . 179
Understanding Object Classes . 179

The Inheritance Relationships among Object Instances and Classes 180
Scoping and Filtering Requests . 185
Agent Requirements under OSI . 185

Developing Network Management Applications 187

Chapter 12. Using the XOM API . 189
Understanding XOM . 189

Benefits of Using XOM . 189
Object-Oriented Terminology in XOM and XMP 189

The Strategy and Structure of XOM . 190
XOM and Object Orientation . 190
Inheritance in XOM . 191

XOM Packages . 192
About XOM Package Closures . 193
Using OM Packages in Your Management Program 194
The Management Contents Packages . 194

XOM Data Objects . 194
Public and Private OM Objects . 195
Mixed Public and Private OM Objects . 195
Types of Public OM Objects . 196
Memory Management for OM Objects . 197
Using Public and Private OM Objects . 197

Manipulating Objects with XOM . 198
OM Object Descriptors . 199
Attribute Syntax . 200
Attribute Value . 202
XOM Object-Definition Macros . 203
The XOM Functions . 211

Chapter 13. Using the XMP API . 213
The Terminology of XMP . 213
XMP C-language Naming Conventions . 213

The Protocol Services of XMP . 214
The Supporting Functions of XMP . 215

 Copyright IBM Corp. 1992, 1995 161

Common Parameters and Results of XMP Functions 216
Names, Addresses, and Titles . 216
The Session Parameter . 217
The Context Parameter . 218
Other Input Parameters . 219
Return Values for XMP Functions (Status) 220
Invoke Identification Parameter . 220
The Result Parameter . 220

Synchronous and Asynchronous Calls in XMP 221
Synchronous Requester Operation . 222
Asynchronous Requester Calls . 222
Asynchronous Responder Operation . 224
Abandoning Asynchronous Operations . 224

Program Sequencing . 224
XMP Workspaces . 224
Program Initialization and Shutdown Sequences 225
Operating Sequences . 226

Handling Errors . 227
General Error Constants . 227
The OM Class Error . 228

Using XMP and XOM . 229
Example Programs . 230

Chapter 14. C-Language Binding for the XOM and XMP APIs 231
C-Language Naming Conventions . 231

Deriving C-Language Names from Language-Independent Names 232
Function Return Value and Returned Parameters 234

Errors . 234
Supplied Parameters . 235
Asynchronous Operations . 235

Compiling and Linking . 235

Chapter 15. Introduction to the NetView for AIX WinSNMP API 237
What Is WinSNMP? . 237

Benefits Provided by WinSNMP . 238
Compliance . 238
SNMP . 239

Manager Entity . 240
Agent Entity . 240
Dual Role Entity . 240
Management Information Base . 241

Highlights of SNMPv1 . 242
SNMPv1 Protocol Operations . 242
SNMPv1 Data Syntax . 242
SNMPv1 Administrative and Security Framework 243

Highlights of Community Based SNMPv2 (SNMPv2C) 243
SNMPv2C Protocol Operations . 244
SNMPv2C Data Syntax . 244
SNMPv2C Administrative and Security Framework 245

Highlights of Secure User Based SNMPv2 (SNMPv2USEC) 245
SNMPv2USEC Protocol Operations . 245
SNMPv2USEC Data Syntax . 246
SNMPv2USEC Administrative and Security Framework 246

162 Programmer's Guide

Chapter 16. Programming with NetView for AIX WinSNMP 247
Levels of SNMP Support . 247

Implementations . 247
Applications . 248

Transport Interface Support . 249
Entity/Context Translation Modes . 249

SNMPAPI_TRANSLATED Mode . 250
SNMPAPI_UNTRANSLATED_V1 Mode . 250
SNMPAPI_UNTRANSLATED_V2 Mode . 250

Local Database . 251
Sessions . 251
Memory Management . 252

HANDLE'd Resources . 252
C-Style Strings . 253
Descriptors . 253
Summary . 254

Asynchronous Model . 255
Polling and Retransmission . 256
RequestIDs . 257
Error Handling . 258

Common Error Codes . 258
Context-Specific Error Codes . 259
Transport Error Reporting . 260

WinSNMP Data Types . 260
Integers . 261
Pointers . 261
Function Returns . 262
Descriptors . 262

WinSNMP Interfaces . 262
Local Database Functions . 262
Communications Functions . 263
Entity/Context Functions . 264
PDU Functions . 264
Variable Binding Functions . 266
Utility Functions . 267

Declarations . 268
WinSNMP.h Include File . 269

Mapping Traps Between SNMPv1 and SNMPv2 279

Chapter 17. Using the NetView for AIX SNMP API 281
The SNMP Model of Communication . 281

Managers . 281
Agents . 282
Manager and Agent Interaction . 282
SNMP Messages . 282
Types of Messages . 282
Traps . 283

The Management Information Base . 283
Object Identifiers . 284
Extended MIBs . 285
Data Representation . 285

The NetView for AIX SNMP API . 286
Blocking and Nonblocking Operation . 286
Retransmission Support . 287

 Part 3. Using the NetView for AIX Management APIs 163

Memory Management . 287
Location Transparency . 288

For Further Reading . 288

Chapter 18. Using SNMP API Functions and Data Structures 289
SNMP Functions . 289

Coding Models . 291
SNMP Data Structures . 293

Header Files . 293
Data Structures . 294
The OVsnmpSession Structure . 294
The OVsnmpPdu Structure . 296
The OVsnmpConfEntry Structure . 298

SNMP API Coding Examples . 298
SNMP Nonblocking Get Sample . 298
SNMP Table Retrieval Sample . 302

Chapter 19. Filtering Network Events . 307
Creating Filters . 307

 The FilterNode Structure . 307
NetView for AIX Filter API Routines . 308
NetView for AIX Filter API Return Codes 310
Example of Filter API Routines . 311

Using Filters . 312
NetView for AIX Event Registration Routines 312

Chapter 20. Using the General Topology Manager 315
Introducing the General Topology Manager . 315

Benefits of Using the General Topology Manager 315
Components of the NetView for AIX General Topology Manager 316
Understanding Key Terms . 317

Open Topology MIB Tables and Groups . 318
The Vertex Group . 319
The Simple Connection Group . 321
The Arc Group . 324
The Graph Group . 326

Open Topology MIB Traps . 332
List of Traps . 332
Limitations on Changing Variable Values 334

State and Status Information . 335
Operational State . 335
Unknown Status . 335
Availability Status . 335
Alarm Status . 336
Relationships of Status Fields . 336
Mapping to NetView for AIX States . 336
Using the nvotStatusType Structure . 337

Topology Objects in the NetView for AIX Object Database 337
Simple Connections . 338
Arcs . 338
Vertices . 339
Graphs . 339
Members . 340
SAPs . 340

164 Programmer's Guide

IP Discovery . 342

Chapter 21. Communicating with the General Topology Manager 343
The Discovery Process . 343

Discovering Nodes . 343
Adding Your Daemon to the oid_to_command File 344
The snmp_fields Data File . 344
The oid_to_protocol Data File . 345
Creating an LRF for Your Agent and Daemon 345
Other Discovery Methods . 346

Creating and Updating a Topology . 347
Topology Update . 348
Sending Information to the General Topology Manager 348

Using the Trap Interface . 349
Trap Interface Example . 349

Using the GTM API . 350
GTM API Routines . 351
Using the Integration Routines . 352
Using the Basic Routines . 352
Using the Create Routines . 353
Using the Delete Routines . 353
Using the Status Change Routines . 353
Using the Variable Value Change Routines 353
Using the Get Routines . 354
Using the Free Routines . 354
Example of Defining a Graph Structure . 355

Presenting Topology Information to the User 356
Editing a Map . 356
The Presentation of Protocols . 357

 Part 3. Using the NetView for AIX Management APIs 165

166 Programmer's Guide

Chapter 11. Understanding the NetView for AIX Management
Environment

Part 2, “Working with the NetView for AIX User Interface” described numerous
ways of customizing the graphical user interface of the NetView for AIX program.
Part 3, “Using the NetView for AIX Management APIs” describes the management
functions of the NetView for AIX program, and how you can tailor them to meet the
requirements of your network. It provides information about the following topics:

� Understanding network management concepts
� Understanding managers and agents
� Using the NetView for AIX network management APIs
� Filtering network events
� Working with non-IP topologies

This chapter presents key terms and concepts of network management and the
roles of programs called managers and agents. It describes the network manage-
ment system's interactions with the network, and how developers control and
augment those interactions. Subsequent chapters will provide more information
about the network management API routines.

Defining Network Management Systems
The basic functions of a network management system are:

� To collect and store data about network conditions.
� To issue and respond to notifications of network conditions.
� To issue commands that cause actions at network nodes.

This list does not include presenting network data to the user; the management
system stores the data in a format that enables the graphical user interface to
present it when requested.

Specific terms for certain network management concepts are defined here; refer to
them as you proceed through this section.

Agent An agent is the part of a management application that presents a view
of a managed object, accepts requests, and issues responses and notifi-
cations. The agent role is that of a responder, except when issuing
notifications.

Attribute An attribute is an item of information that describes some property of a
managed object. An attribute has an associated value, which may be
simple or complex. For example, one attribute of your RISC
System/6000* workstation is its serial number; the value would probably
be a simple integer value. Other attributes can have much more
complex values.

Managed object
A managed object is a data representation of some real resource that
can be managed, from the perspective of the manager. Every managed
object is a member of some specific object class, whose members all
share the same set of attributes, notifications (events), behavior, and
management operations.

 Copyright IBM Corp. 1992, 1995 167

Management program
A management program consists of a cooperating set of programs that
perform management activities. Such a management program is gener-
ally distributed across a computer network. Each part of the manage-
ment program has certain responsibilities.

Manager A manager is that part of a management program that has responsibility
for performing management activities. It typically issues requests on
behalf of a human user, organizes the data from responses, and stores
the data for access by a graphical user interface. The manager role is
that of a requester, except when responding to notifications.

Object instance
An object instance is a specific member of an object class. An object
instance is identified by a distinguishing attribute. For example, the
RISC System/6000 has one attribute, the serial number, that is unique
among all other RISC System/6000 workstations. This is its distin-
guishing attribute.

Requester
A requester is a proactive entity, which requests data and services from
one or more responders. Most of the activities of a manager place it in
the role of a requester; however, a manager takes the role of a
responder when it (asynchronously) receives a notification.

Responder
A responder is a reactive entity, which responds to, or services, the
asynchronous requests of one or more requesters. Most of the activities
of an agent place it in the role of responder; however, an agent takes
the role of a requester when it issues a notification.

Transaction
A transaction is a conclusive exchange of messages between a
manager and an agent. This may require two messages, for example, a
request from the manager and a response from the agent.

Network Management Protocols and APIs
There are two widely-accepted network management protocols:

� CMIP, the Common Management Information Protocol. This protocol was
designed for managing OSI networks, but it is applied in networks other than
OSI networks. The services defined for CMIP are known as the Common Man-
agement Information Services (CMIS). When CMIP is used over a TCP/IP pro-
tocol, the combination is called CMOT (CMIP over TCP/IP). The NetView for
AIX program provides a CMOT implementation that is compliant with RFC
1085. For additional information about CMOT, refer to RFC 1085.

� SNMP, the Simple Network Management Protocol. This protocol was designed
primarily for managing TCP/IP networks.

SNMP is a transaction-oriented protocol that allows network elements, such as
hosts, terminal servers, gateways, and management agents, to be queried
directly. Because it has low network overhead when making such queries, it
provides an inexpensive way of gathering network statistics. It is ideal for real-
time monitoring and other management programs.

168 Programmer's Guide

Refer to ISO IS 9596-1, Common Management Information—Protocol Specification
and RFC 1157, Simple Network Management Protocol (SNMP) for a full description
of CMIP and SNMP.

Creating Management Applications
The NetView for AIX program provides the following APIs for creating management
applications:

� The NetView for AIX SNMP API

This API provides routines for use with networks that use the SNMP protocol.

� The XMP and XOM APIs

The XMP API enables you to build applications for networks that use either
SNMP or CMOT. XMP uses the XOM API for data management.

� The NetView for AIX GTM API

This API enables you to monitor networks that do not use the Internet Protocol
(IP). It also enables you to create a layered view of your network.

� The NetView for AIX filter API

This API enables you to create and modify event filters within your application.

This chapter refers occasionally to these APIs; additional information is provided in
subsequent chapters.

Using APIs in a Client/Server Environment
The majority of NetView for AIX APIs have been enabled for a client/server environ-
ment. Existing applications that reference the OVw, OVsnmp, nvSnmp, and XMP
APIs do not need to know if they are running on a client or server. If your applica-
tions use APIs that require communication with a NetView for AIX daemon, either
on a client where an application is running or a remote server, it is transparent to
the application whether the communication is staying on the client or going to a
server. Specifically, the enablement is as follows:

� The OVw API allows for a remote connection to the ovwdb daemon.

� The OVsnmp API allows for connecting to trapd to receive traps.

� The XMP API allows applications to connect to PMD.

� The SNMP API allows for receiving filtered traps on a client.

� The OVuTL API allows nettl APIs on the client.

� The event filtering API allows for processing of filters on a client.

The OVsPMD API for communication with the process management daemon
(ovspmd) is not available on clients.

The semantics of network connections have been embedded into the details of the
APIs. OVsnmp requests issued from a client do not first go through the server
before going to the network. This has the following implications:

� If a network device is configured to support SNMP communication from a spe-
cific network management station, a client's IP address must be added to that
network device's configuration. Otherwise, SNMP requests from the MIB
browser, xnmgraph, and other SNMP-based applications will time out.

 Chapter 11. Understanding the NetView for AIX Management Environment 169

� By default, traps sent to loopback (127.0.0.1) on a client machine are lost.
There is no trap reception mechanism on a client machine. Thus, all applica-
tions running on a client should send traps to the NetView for AIX server.

If you have a distributed application that has graphical applications running on
clients and daemons running on the server, you may need to use two new APIs.
Use the new OVDefaultServerName() routine to determine the name of the server
machine. A call to this routine checks to see if there is a
/usr/OV/databases/servername file on the machine. If the file exists, the machine is
a client, and the contents of the file specify the server's hostname. If the file does
not exist, NetView for AIX assumes the machine is a server and returns the current
hostname.

Applications can use the NVisClient() routine to determine if the target machine is a
client or server. This API can be used to determine the most effective communi-
cation mechanism for an application to use for connecting to its daemons. Applica-
tions on a client could use RPC or network sockets; an application on a server
could use IPC mechanisms for improved performance.

Understanding Managers and Agents
Because the environment to be managed is distributed, the allocation of manage-
ment activities is also distributed. This idea is crucial, and it is the basis for the
concepts of managers and agents, which were defined in “Defining Network Man-
agement Systems” on page 167. Managers and agents distribute management
activities throughout the managed network.

Note that these definitions express how agents and managers interact without lim-
iting these interactions. An agent can respond to the requests of several man-
agers, and a manager can request the services of several agents.

New managers and agents can be added, either as totally new processes or as
replacements for old managers and agents, without significant impact on the overall
system. The advantage of this modular approach is most obvious and useful
where common services, likely to be used by many managers, are implemented in
agents. In this case, new management programs do not have to provide these
services; instead, they can use the already defined and existing agents.

 Manager Functions
A manager is a proactive entity that acts as the tool of a user to obtain, analyze,
present, and act upon information about the distributed system environment. A
manager performs the following tasks:

� Collects and processes raw data.

� Stores data to be presented to the user through the graphical user interface.

� Obtains user requests and acts upon them. User requests might involve
changing certain elements of the environment or gathering additional data.

A manager is typically driven by the requests of its user. However, many man-
agers engage in “hidden” activity for data gathering and automated control.

In addition to their proactive role, most managers are alert to notifications that indi-
cate a change in status somewhere in the environment. Although most of the activ-

170 Programmer's Guide

ities of a manager place it in the role of a requester, it acts as a responder when it
receives asynchronous notifications.

Managers in the NetView for AIX environment respond to user actions and other
asynchronous events. The technique used to handle these asynchronous events
depends on the API used to construct the manager. When using SNMP, you must
register an appropriate callback function to handle inbound asynchronous mes-
sages. This callback determines the nature of the inbound message, which must
be either a response to an earlier asynchronous request or an incoming notification.
The callback function then directs control to a routine that responds appropriately to
the message. The XMP API, on the other hand, does not use callback routines.

Some user actions can require that your management program call appropriate
request functions to retrieve information from, or cause some action on the part of,
a managed object. The associated callback for each user action must contain the
code necessary to accomplish the user's request.

Managers do not typically generate notifications. This is a direct reflection of the
OSI model of management. There is no physical barrier to prevent a manager from
issuing notifications, but corruption of the model can cause undue complexity in the
implementation.

Finally, managers exist to service users' requests. In the absence of a user, some
managers can shut down without negatively affecting any other element of the dis-
tributed network management solution. Some managers, however, may need to
remain running if their purpose is to monitor, record, or automatically react to
network activity.

 Agent Functions
An agent is a reactive entity, which waits for and services the requests of one or
more managers. It is a manager's window into the management aspects of the
managed object it represents. Agents can also service other agents.

Agents are fundamentally request-driven, responding to requests from managers.
When an agent receives a request, it needs to invoke the appropriate routines to
handle that request.

In addition to their reactive role, most agents perform a proactive role. Agents are
responsible for flagging special events that occur in the objects they manage and
for generating notifications. These notifications (event reports) receive special
treatment and are relayed to any manager that has expressed interest in them.

Three basic concepts should be understood about the function of an agent:

1. An agent acts as a server.

To build an object-oriented environment, an agent should be a server. A server
simply responds to requests for its services and does nothing more. An agent
should, for the most part, be completely driven by requests from other manage-
ment programs. The exception is the requirement that the agent must be able
to issue notifications to other management programs.

 Chapter 11. Understanding the NetView for AIX Management Environment 171

2. The externalized function of an agent is completely specified by the object defi-
nition.

An agent responds to requests directed at any object instance without knowing
who the requester is. The agent's response is based on the defined object
class template. The goal of an agent is to support the object definition. As a
developer, you need to develop software to carry out the requests that your
agent supports and the notifications that are generated by the agent. Note that
the object definition may be revised as you develop the agent.

It is important to remember that all functionality in an agent should support the
definition of the managed object. Local, internal management functions can be
embedded in the agent; however, the only functions that are exposed by the
agent must be those expressed in the object definition. Resist the temptation
to let features beyond this scope intrude on your design or to redefine the
object to account for such features.

3. An agent can either act as an interface to an existing object or maintain the
object.

The object can be any logical or physical resource on a network. The resource
to be managed can exist independently of the agent. Thus, there are two types
of agents:

� An interface to some existing physical object, such as a modem.
� An agent that maintains and represents a logical object.

The Structure of an Agent
An agent's structure has two parts:

� One part participates in communications with managers, accepting requests
and issuing notifications.

� The other part accesses the managed object to carry out the requests and to
detect the conditions that warrant issuing an event report.

After initialization, most agents are organized around a loop, waiting for one of the
following circumstances:

� An incoming request. The agent first determines what the request requires,
then acts on it. This can be simple or complex, depending on the agent and
the request. After servicing the request, the agent re-enters the wait loop.

� Conditions in the managed object that warrant issuing an event report. The
agent assembles the required information, issues the event report, and returns
to the wait loop.

For each agent that you create, you should create a local registration file (LRF).
The LRF identifies the agent to the NetView for AIX program and contains informa-
tion about the agent and its managed object. See “The Local Registration File” on
page 19 for more information on local registration files.

Accessing the Managed Object
To support the managed object you have defined, your agent must access that
resource. You should build a dedicated access module that shields the complexity
of accessing the resource from the rest of the code.

172 Programmer's Guide

The following three techniques can be used to access objects:

 � Polling
� Using other agents
� Using specialized access mechanisms

Polling: This technique polls the object for the necessary data. This means
accessing your object at some interval to determine whether any thresholds have
been exceeded or if some status has changed. You may also want to access the
object in order to update your local copy of its data.

To do polling, set up a time-out from the wait loop in the main routine. For
example, if you are using the XMP API, the mp_wait() function call enables you to
specify a number of bound-session objects to wait on, and a time-out value. When
the mp_wait() function call exceeds the time-out value, you can call a time-out
handler.

Using Other Agents: Another technique is to access a managed object through
another agent. Such an agent must be able to issue requests. This ability is the
defining characteristic of an object manager. The processing associated with
issuing requests is identical, whether it is done by an object manager or a
manager.

Always give high priority to clearing incoming messages from the XMP queue in
order to avoid having the socket to XMP overflow and lose data. You can use
either asynchronous or synchronous calls to clear the XMP queue. Both synchro-
nous and asynchronous calls remove the messages from the socket and queue the
data for subsequent asynchronous retrieval.

Using Specialized Access Mechanisms: You can also access an object by com-
municating with specialized software or hardware available for that purpose. Your
main routine could receive either a signal, a message, or an interprocess communi-
cation (IPC) message from a resource that has such an access mechanism.

Using Agents as Object Managers
Depending on the complexity of your network, you may see, and write, different
kinds of agents. For example, an object manager is an agent that has character-
istics of both an agent and a manager, except that it typically does not have the
manager's user interface component. The object manager provides higher-level
services than an agent alone could offer to the resources it manages. Object man-
agers use the services of the simple agents just as any other manager would. In
turn, the manager uses the services of the object manager, just as it would use the
services of any other agent.

The following list describes two kinds of object managers:

Proxy Agent
A proxy agent is a dedicated translator for a resource whose actual
agent uses a foreign protocol. A proxy takes requests in one language,
such as CMIS, translates them to the foreign language (which is arbi-
trary), and submits the translated request to the actual agent. Any
response from the actual agent is picked up by the proxy agent, trans-
lated into the language of the request (CMIS in this case), and resent to
the manager.

 Chapter 11. Understanding the NetView for AIX Management Environment 173

You can use a proxy agent to allow SNMP access to nodes that do not
support SNMP. When you configure a proxy, the proxy agent receives
the SNMP request and forwards it to the requested node using which-
ever non-SNMP protocol the requested node supports.

Mediation Device
A mediation device is an object manager whose managed object is typi-
cally a large subnet. The mediation device represents that subnet to a
higher-level manager. Mediation devices usually appear only in very
large networks. They can include the translation function of a proxy
agent.

The function of a mediation device is to distill the massive quantities of
information available on subnets, extract the most relevant data, and
make that data available to a higher-level manager.

Programming with Managers and Agents
In the NetView for AIX environment, a management program is split into object-
related components (agents) and user-related components (managers).

Network elements, such as bridges, routers, and modems, are typically managed
by agents that are developed specifically for those elements. Agents take care of
management interactions for these objects through standardized services that hide
the complexity of direct communication.

It is important, in an object-oriented environment, to distribute the functions of a
management program appropriately between managers and agents. Table 12 pro-
vides guidelines for the division of functions:

Table 12. Division of Functions between Managers and Agents

Element Description

Manager � Generally has a user interface
� Uses the services of one or more agents

 � Receives notifications
� Directs agent activities
� Is not required to be running all of the time

Agent � Represents information and functions of possible interest to
one or more managers regarding a set of objects

� Is usually running
� Does not interface with users
� Interfaces with some types of objects

 � Generates notifications
� Responds to manager requests

Transactions between Managers and Agents
A requester can send several types of messages to a responder. These messages
are described in Table 13 on page 175.

174 Programmer's Guide

Each request message has a parameter to identify the target objects, and other
parameters as required by its function and by the protocol used. Each request
message also has a corresponding response message with necessary parameters
and defined error values to accommodate failures.

For most of the requests, the nature of the operation is implicit in the function. The
CMIS action operation request, however, is a generic request. Objects can be
defined to include operations outside the scope of the other requests; the action
operation request provides access to such operations.

Table 13. Types of Request Messages Used in Communications

Message Type Valid Services Description

Get CMIS, SNMP Obtain a value maintained by the managed
object.

Set CMIS, SNMP Set a value maintained by the managed
object.

Event-report CMIS, SNMP Report special conditions about a managed
object.

Cancel-get CMIS Cancel a pending get request.

Get-next SNMP Obtain the name and value of the next
SNMP variable in the object.

Action CMIS Invoke one of the actions defined for the
managed object.

Create CMIS Create an instance of an object class.

Delete CMIS Delete an instance of an object class.

SNMP Traps and CMIS Notifications
Managed objects can issue unsolicited messages, generically called event reports.
In SNMP, such a message is called a trap; in CMIS, the term used is notification.
One of the defining characteristics of a managed object is the event reports it can
issue.

The event-report request is unique in that its purpose is not to elicit a reaction from
a managed object, but rather to report special or abnormal conditions for the
managed object. The event-report request is used by agents.

Figure 7 on page 176 represents the interactions between a manager and an
agent.

 Chapter 11. Understanding the NetView for AIX Management Environment 175

Figure 7. Interactions between Managers and Agents

An agent can both generate and receive event reports. For example, suppose an
agent generates a notification because it detects a change of behavior in the object
that could affect the network. You can code a higher-level agent to detect certain
patterns or thresholds of these notifications and issue notifications based on these
patterns or thresholds.

Characteristics of Transactions
Requests (including event-report requests) and responses can include parameters.
In the case of requests, the parameters are input data; in the case of responses,
they contain output data and error values.

You can further categorize transactions as either attribute-oriented or object-
oriented. The attribute-oriented transactions operate on one or more attributes of
the target object. These include the get, set, and get-next requests. The object-
oriented transactions, create and delete, operate on the entire target object.

Two types of transactions, the action request and event-report request, cannot be
strictly classified as either attribute-oriented or object-oriented. Actions can be
defined in such a way that they may fall into either category. Notifications (event-
reports) are not targeted at a managed object and cannot be classified as attribute-
oriented or object-oriented. Notifications are directed to a manager.

Some requests require a response; others do not. The first case is called a con-
firmed request; the second case is called an unconfirmed request. For a confirmed
request, the service invoker expects a reply from the service performer that con-
tains information about the status of the request. For an unconfirmed request,
lower layers of the protocol guarantee delivery of the request, but that is the end of
the transaction. No reply is expected for an unconfirmed request.

The Communications Infrastructure
The communications infrastructure is the means by which messages are
exchanged. XMP-based management programs automatically use the communi-
cations infrastructure. The communications infrastructure provides location trans-
parency, a feature that enables managers and agents to access objects and agents
without using hard-coded addresses. It consists of the following components:

� The pmd daemon
� The orsd daemon
� The ORS database

176 Programmer's Guide

The pmd daemon directs management information between multiple managers and
agents running concurrently. It is a message switch, determining its routing action
either from user-specified addresses or from routing tables configured through the
orsd daemon.

The ORS Database: The orsd daemon creates and maintains a global directory of
agents, their locations, their protocols, and the objects each agent manages. Each
agent should have that information registered with the orsd daemon by means of a
local registration file. The orsd daemon permits dynamic modification of object-
registration information. The orsd daemon ensures that all NetView for AIX nodes
within the management domain are automatically updated as information changes.
This directory is the object registration service (ORS) database.

The pmd daemon responds to all service needs, including association management
and automatic retries of requests. An association is the relationship between a
manager and another manager or agent that permits the exchange of information.
XMP-based management programs do not have to initiate or control CMIS associ-
ations to the destinations of management requests.

For CMIS requests, the pmd daemon provides transparent control and initiation of
all associations. SNMP is, of course, connectionless. For SNMP requests, the
communications infrastructure hides the details of managing time-outs and retries.

Routing Messages: The communications infrastructure provides object location
transparency. This means that you can specify an object instance for some opera-
tion without specifying the agent that is to perform the operation. For location
transparency to work, the object and its agent must be registered with the commu-
nications infrastructure through the ORS.

If, for some request, you specify only the class and name of an object instance, the
pmd daemon uses the database created by ORS to route the requested operation
to the agent responsible for that object instance.

Usually, full object names are looked up in a database rather than keyed in by a
user. Therefore, you can make requests and know that the name of the managed
object contains sufficient information for the pmd daemon to route the request to
the proper agent. You do not need to separately determine the address of the
agent and supply that address to each request.

Note: There is a trade-off between the convenience of location transparency and
network performance. Routing is most efficient if the distribution address of
the agent is specified in each request. This avoids a search through the
object registration data. The pmd daemon can supply the missing informa-
tion and provide object location transparency, but there is a cost in perform-
ance.

Notifications, sometimes called event reports or traps, are a special case. Notifica-
tions are always routed through the event management service because the same
notification might be reported to several management programs.

The following pages refer specifically to the OSI management environment. If you
plan to use only the SNMP API, and are not interested in using the XMP API to
develop CMOT-based network applications, you can skip ahead to “Developing
Network Management Applications” on page 187.

 Chapter 11. Understanding the NetView for AIX Management Environment 177

Open Systems Interconnection (OSI) Management
The design of the NetView for AIX program is partially derived from the manage-
ment model defined by the Open Systems Interconnection (OSI) subcommittee of
the International Standards Organization (ISO). This model is called the OSI man-
agement model and defines the Common Management Information Services
(CMIS) and Common Management Information Protocol (CMIP). The NetView for
AIX program extends the OSI model to include networks that use Transmission
Control Protocol/Internet Protocol (TCP/IP).

Object-Orientation in the OSI Model
The OSI management model uses an object-oriented approach, modelling all the
system resources to be managed as managed objects. These resources include
communications hardware, such as modems, bridges, and gateways, and software,
such as operating systems, databases, and LAN programs.

Communications services, including OSI CMIP and Internet TCP/IP, were devel-
oped to allow communication between systems. However, standard communication
protocols alone are not sufficient to manage complex distributed system environ-
ments. Distributed management programs require standard descriptions of the
resources to be managed.

Therefore, the OSI management standards adopted an object-oriented model for
encapsulating these resources, and for standardizing the interfaces they present to
the network.

Using of the object-oriented model in management programs promotes the
following:

Modularity Functions are isolated into clearly defined and readily imple-
mented modules.

Extensibility Functions and services of existing management programs can
be used as the foundations of new distributed management
programs.

In object-oriented programming, code and data are fused into a single entity called
a managed object. A managed object is composed of a set of attributes that char-
acterize the object, actions that the object can perform, and notifications (mes-
sages) that the object can issue spontaneously.

A managed object represents a resource, such as hardware or software, that can
perform operations or that can be monitored by a management program. The inter-
face to the managed object is a management program called an agent. To request
some action from a managed object, management programs send messages to the
agent that represents the managed object. The managed object can respond to
requests by returning a message. In fact, the only interaction between the
manager and the managed object occurs through messages. Data about the
system resource is encapsulated in the managed object, and that data is never
manipulated directly by any other management program.

The object-oriented model naturally supports asynchronous processing. Asynchro-
nous processing allows a management program to send a request message to a
managed object and continue processing, perhaps corresponding with other
objects, while waiting for a response from the initial request.

178 Programmer's Guide

 Understanding Objects
A managed object is an abstraction that represents a resource. The resource is an
entity that is available somewhere on the network and has the capacity for being
managed. The resource can be physical, such as a router or workstation, or it can
be logical, such as a file system or a user. Examples of managed objects might
include:

� A computer workstation
� A network interface card attached to a computer workstation
� A collection of free disk space data for nodes on a network

Those attributes of a resource that are related to the management of that resource
are accessible through the managed object. Attributes that can not be managed
are not included in the managed object definition. For example, some of the man-
agement attributes of a printer include its model, serial number, location, and paper
supply status. A printer also supports operations that can be managed, such as
reset and self-test. An example of a printer attribute that would not be part of a
managed-object abstraction is the color of the printer. The color of the printer is an
example of an attribute that cannot be identified, monitored, or requested to
perform some operation programmatically.

Thus, as previously mentioned, managed objects are defined based on the
following:

Attributes Items of information about the object.

For example, a RISC System/6000 workstation has attributes that
include the amount of memory, disk size, type of network adapter,
and serial number.

Actions The operations that the object can perform.

For example, a RISC System/6000 workstation supports startup
and shutdown functions.

Notifications The messages that can be issued to notify other objects or man-
agement programs in the distributed system of conditions in the
managed object.

For example, a RISC System/6000 workstation might issue a notifi-
cation whenever a fatal system error occurs.

Understanding Object Classes
A class, which is also referred to as an object class, represents one or more
objects that have common attributes. There are many objects that have the same
attributes. For example, there may be several hundred RISC System/6000 work-
stations on a network. Each workstation is an instance of an object class. The
collection of RISC System/6000 workstations (that is, the collection of the objects
that have common attributes) represents an object class.

An object class is a description of the resource management properties that
members of the object class have in common. The object class can be thought of
as a logical structure that describes how each member of the class looks and
behaves.

 Chapter 11. Understanding the NetView for AIX Management Environment 179

Objects Are Instances of an Object Class
An instance is a specific object in an object class. Thus, the term instance has the
same meaning as the term object. Instances of a specific object class have the
same mandatory package of attributes; however, the actual values of the attributes
vary from instance to instance. For example, one attribute of the RISC
System/6000 workstation class might be the size of the hard disk. One instance of
that class (that is, one workstation) might have a 120MB hard disk, and another
instance (a different workstation) might have a 200MB hard disk.

The Distinguishing Attribute
For each object class, one attribute is singled out as the key attribute that distin-
guishes each instance from all other members of that class. This attribute is called
the distinguishing attribute.

For instance, a RISC System/6000 workstation class might have the following
attributes:

� Amount of memory
� Size of hard disk

 � Serial number
� Type of network adapter

All instances of this class, that is, all RISC System/6000 workstations, have these
attributes. To identify one instance of the class (one RISC System/6000 work-
station) from all other instances, one of the attributes must always have a different
value for each instance. The serial number attribute must always have a different
value for each RISC System/6000 workstation. Thus, the serial number attribute is
the distinguishing attribute.

The Inheritance Relationships among Object Instances and Classes
In the object-oriented model, inheritance is the property by which one object class
is defined as an extension of another. The new class has all the properties of the
parent, plus any additional properties required.

The following three relationships provide a structured framework for defining and
using objects:

� The registration relationship
� The containment relationship
� The inheritance relationship

Each of these relationships is hierarchical and is represented as a tree. They con-
stitute a well-known base in the network and systems management community.
While these relationships are not inherently part of the object-oriented approach,
understanding them is important when you work with classes of objects in a
network management system.

180 Programmer's Guide

The Registration Relationship
The registration relationship is a hierarchy of unique identifiers for object classes,
name bindings, actions, notifications, parameters, and attributes. The registration
relationship pertains to these elements, not to object instances. Figure 8 shows
part of a registration tree.

TOP

ISO

S TD REG MEMBER
AUTHORITY BODY

DOD

INTERNET

DIRECTORY MGMT EXPERIMENTAL

ENTERPRISES

RESERVED

0 1 2

0 1 2 3

6

1

4
1 2 3

1

0 2

PRIVATE

IBM

ORG

PROTEON
1

Figure 8. A Registration Tree

As object definitions are developed by businesses or organizations in the network
community, they are assigned an identification number that uniquely identifies the
business or organization and the object definitions. This is illustrated in Figure 8.

An object class identifier (OID) is the registration number that is made of a series of
integers that traverse a path from the root of the registration tree to the object to be
registered. Each branch of the registration tree has an associated registration
authority that determines how numbers in the subtree beneath it are allocated. For
example, IBM is a branch derived from the private enterprise branch of the registra-
tion tree. The path, 1.3.6.1.4.1.2, defines a branch for which IBM is the registration
authority.

The registration relationship must be established during object definition. The reg-
istration identification is used during design to ensure that object classes, attributes,
actions and notifications are uniquely identified within the registration tree. Man-
agement programs require correct registration identification numbers to identify the
unique class of a managed-object instance.

Developers use documents published by ISO to identify existing object definition
and registration relationships. The existing object definitions are often referred to

 Chapter 11. Understanding the NetView for AIX Management Environment 181

as a management information base (MIB). Registration numbers are also used by
the management program to identify the class of a managed-object instance.

The Containment Relationship
The containment relationship describes how each object instance is related to other
object instances within a particular environment. This relationship pertains to object
instances, not object classes. The containment relationship defines OSI addressing
and is not associated with IP or SNMP environments.

All object instances are contained within other object instances. The containing
object instance is called the superior object instance and the contained object
instance is called the subordinate.

cat-name (1.5.8)=catenet1

node-name (1.9.10)=nodea node-name (1.9.10)=nodeb

int-name (1.8.9.10)=interfacea1 int-name (1.8.9.10)=interfaceb1

int-name (1.8.9.10)=interfaceb2int-name (1.8.9.10)=interfacea2

Figure 9. A Containment (Naming) Tree

For example, in Figure 9, consider the object instance for the computer workstation
named nodeb. The object instance is defined based on the computer workstation
object class, which has the example registration ID 1.22.3.

The object instance is part of a larger environment. The workstation contains two
interface cards (interfaceb1 and interfaceb2), and it is contained within a LAN
named catenet1.

The containment relationship is the hierarchy by which object instances are con-
tained in others. The containment relationship implies that an object exists only as
long as its superior object exists. Deleting a managed object can cause the implicit
destruction of all its subordinate objects.

Every object class has a distinguishing attribute that is used to uniquely identify
each instance of the class. An object instance's distinguishing attribute, together
with the value of that attribute, is called the relative distinguished name (RDN) of
the object instance.

182 Programmer's Guide

By traversing the containment tree, also called the naming tree, from the root to an
object instance, you can construct a sequence of RDNs that is unique to the object
instance. This unique sequence is called the distinguished name (DN) of the object
instance. The DN is also sometimes referred to as the fully distinguished name
(FDN).

Again, see Figure 9 on page 182:

� int-name is the distinguishing attribute of the interface object class. Its example
registration ID is 1.8.9.10.

� node-name is the distinguishing attribute of the node object class. Its example
registration ID is 1.9.10.

� cat-name is the distinguishing attribute of the catenet object class. Its example
registration ID is 1.5.8.

The RDN of the interface card named interfacea2 is:

{ 1.8.9.1ð=interfacea2 }

Assuming that this catenet object instance is an immediate subordinate of the root,
the FDN of this interface card is:

{ 1.5.8=catenet1, 1.9.1ð=nodea, 1.8.9.1ð=interfacea2 }

The RDN of an object instance is unique only under its superior; the FDN of an
object instance is globally unique.

Note: The containment tree is also referred to as the naming tree since it is used
to uniquely name object instances. Throughout the remainder of this book,
the term naming tree is used.

The Inheritance Relationship
The inheritance relationship describes which object classes are derived from others.
When one object class is derived from another, it inherits the characteristics of that
parent class. The inheritance relationship is used to define new object classes
based on existing ones. The inheritance relationship is typically applied to OSI
object definitions, not to IP or SNMP objects.

Object classes are arranged in an hierarchy. A class that is the ancestor of
another class is called a superclass. A class that is a child of another class is
called a subclass. Every subclass inherits all the characteristics of its immediate
superclass and all superclasses higher up in the inheritance hierarchy. Figure 10
on page 184 shows a sample inheritance tree.

 Chapter 11. Understanding the NetView for AIX Management Environment 183

Figure 10. An Inheritance Tree

There may be cases where a new object class requires characteristics present in
existing object classes that are not hierarchically related. To address this, an
object class is allowed to have more than one superclass. When an object inherits
characteristics from more than one class, it inherits the merged set of character-
istics. This is called multiple inheritance.

In the inheritance tree diagram in Figure 10, the FDDI object class needs charac-
teristics that are present in both the LAN and WAN object classes. The FDDI
object class is constructed using multiple inheritance. The FDDI object class con-
tains the merged set of characteristics from both the LAN and WAN classes.

The root node in the inheritance tree is treated specially. It is the ancestor to all
other object classes and has no superclass. In the diagram, the root object class is
not shown. The Network object class is a descendant of the root object class.

 Relationship Summary
The following list summarizes the relationships and their purpose:

Registration Registration applies to the definition of object classes. The class
of an object instance is specified by a registration ID number,
assigned by a registration authority. As you traverse the registra-
tion hierarchy from the top to a particular object class, the
sequence of registration ID numbers along the path forms an iden-
tifier that is unique for the object class.

Naming The naming relationship is also called the containment relationship.
Managed objects can contain other managed objects. This hier-
archy of containment is used to derive a unique name for each
object instance. Each object has a relative distinguished name
(RDN), which might not be globally unique.

However, the concatenation of RDNs in the chain of containment
forms a unique name, the distinguished name (DN), which is
globally unique.

For example, if object A contains B, which contains C, which con-
tains D, the distinguished name of D is A.B.C.D; no other object
instance can have that name.

184 Programmer's Guide

Inheritance Managed-object classes can derive their attributes, actions, and
notifications by inheriting the definitions of attributes, actions, and
notifications from other objects. The inheritance relationship
defines the hierarchy of derivation for object classes. The resulting
tree is similar to a genealogy of object classes.

Scoping and Filtering Requests
The CMIS services allow you to target a request to a specific object or group of
objects in the naming tree. The targeting process involves two mechanisms:
scoping and filtering.

Scoping is used to identify the target object or objects for a request, based on their
containment relationship to a reference object instance. Filtering applies logical
tests to further refine the list of candidate objects. Although scoping and filtering
are frequently discussed together, they are independent.

 Scoping
Scoping is available for the following CMIS operations:

 � Action request
 � Delete request
 � Get request
 � Set request

When you use scoping, the base object in the naming tree is a reference point for
the scoping. Then you apply one of the five scoping levels:

Base object This is the default scope, used whenever the scope is unspeci-
fied.

First level only This selects all the immediate subordinates of the base object.

Whole subtree This selects the base object and all of its subordinates.

Individual level This selects all the nth level subordinates of the base object.
The immediate subordinates are first level; their immediate sub-
ordinates are second level; and so on.

Base to nth level This selects the base object and all of its subordinates through
the nth level.

 Filtering
A filter consists of logical tests that are applied to each member of the list of object
candidates. Filtering extracts a subset of the managed objects from the list gener-
ated during scoping.

Agent Requirements under OSI
The following minimum requirements of an agent help ensure interoperability and
are all related to participation in the OSI management environment. The agent
must:

� Support all the operations defined for the managed object
� Detect and report all errors that can occur in the object
� Recognize scoping and filtering and return error codes if scoping and filtering

are not supported

 Chapter 11. Understanding the NetView for AIX Management Environment 185

 Handling Errors
Handling errors is a major responsibility for agents. There are many different CMIS
and SNMP errors that an agent needs to recognize and return in order to be inter-
operable. These are defined in the XMP header files as constants prefixed with
MP_E_.

The real challenge in handling errors is to map the errors you detect to the CMIS
errors. Sometimes there is an obvious correlation and other times it is not so
obvious. You need to correlate error conditions to CMIS errors as thoroughly as
possible.

If your agent encounters an error that cannot be mapped to one of the defined
errors, but must be returned, return the MP_E_PROCESSING_FAILURE error.

Another type of error that can occur is the failure to successfully get or set part of a
list of attributes. In this case, you need to return the list with correct values for
those attributes that the operation could successfully get or set, with error indicators
for the rest. These errors are returned using the CMIS-Get-List-Error and
CMIS-Set-List-Error functions.

Refer to the NetView for AIX Programmer's Reference for a description of when to
generate each of the CMIS errors.

Handling Scoping and Filtering
Scoping and filtering of requests are described in “Scoping and Filtering Requests”
on page 185. If your agent does not support scoping or filtering, you must at least
return an error when a request includes these features.

If your agent does support either of these features, there are minimum require-
ments for each of them to ensure interoperability.

Scoping: Supporting scoping can be a complex task. Scoped requests are aimed
at either the base object or subordinates contained in it. For example, if an agent
for a workstation receives a scoped request, it is for something contained in the
workstation, such as a LAN Interface Card (LANIC) object. If your agent manages
both the workstation and the LANIC objects, it can complete the operation.

However, if the agent manages only the workstation, it must forward the request to
the agent responsible for the LANIC objects contained in the workstation. This for-
warding is done by issuing one or more appropriately rescoped requests. Finally,
when all responses to these requests have returned, the agent must forward the list
of the responses back to the requesting management program.

The higher an object is in the naming tree the more difficult it is to support scoping,
because all subordinate objects must be considered. If your agent supports
scoping, then all of the scoping options should be valid; scoping should not be par-
tially implemented.

Filtering: Supporting filtering can also be a complex task. There are three
choices:

� You can choose not to support filtering at all and return an error when you
receive a request with a filter specified.

186 Programmer's Guide

� You can choose to meet the following minimum requirements for supporting
filtering:

– Support equality, greater-or-equal, less-or-equal, and present as the test
conditions when specified by the object class definitions.

– Support the AND and OR operators for a pair of conditions.

� You can choose to support filtering beyond the minimum requirements. For
example, you could include support of substring matching, set comparisons,
NOT operators, and nested ANDs and ORs. Remember to keep the design of
your agent focused on supporting the object definition.

Refer to the ISO IS 9595, Common Management Information—Service Definition
for more information about filters and filtering.

 Synchronization
When a manager (or object manager) uses scoped get or set requests, the opera-
tion might fail on one or more of the selected objects. Thus, in addition to the
scope, the requester must also specify how the responder should deal with this
condition. The two possible ways to handle partial failure are:

Atomic retrieval Under this scheme, all retrievals are checked to determine
whether they succeed. If any of them fail, no retrievals are
performed. Otherwise, all retrievals are performed.

Best-effort retrieval Under this scheme, all retrievals are attempted. Those that
fail return an error; those that succeed are returned.

This general principle is called synchronization. Your agent must recognize the
type of synchronization requested and respond accordingly. For example, consider
an object manager that receives a scoped request with atomic synchronization. It
then issues several appropriately re-scoped requests. If any of these fail, the
object manager cancels any outstanding requests, issues a service error, and
sends a message to the requester to terminate the request.

Developing Network Management Applications
The NetView for AIX program provides a rich set of tools for your use in developing
network management applications. The remaining chapters in this section describe
these components:

Chapter 12, “Using the XOM API” on page 189 describes the use of the XOM
API to manipulate data structures for XMP.

Chapter 13, “Using the XMP API” on page 213 describes the use of the XMP
API to create network management programs.

Chapter 14, “C-Language Binding for the XOM and XMP APIs” on page 231
describes the C-language binding to the XOM and XMP APIs.

Chapter 17, “Using the NetView for AIX SNMP API” on page 281 and
Chapter 18, “Using SNMP API Functions and Data Structures” on page 289
describe the use of the NetView for AIX SNMP API.

Chapter 19, “Filtering Network Events” on page 307 describes the use of the
NetView for AIX Filter File API and filter registration routines to register your
application to receive events using filters.

 Chapter 11. Understanding the NetView for AIX Management Environment 187

Chapter 20, “Using the General Topology Manager” on page 315 describes the
use of the NetView for AIX Topology MIB to monitor networks that do not use
the IP protocol.

Chapter 21, “Communicating with the General Topology Manager” on
page 343 describes the use of the trap interface and the GTM API to commu-
nicate with the General Topology Manager.

188 Programmer's Guide

Chapter 12. Using the XOM API

This chapter describes the OSI-Abstract-Data Manipulation application program-
ming interface (the XOM API). If you are new to XMP and XOM, you are encour-
aged to read this chapter from beginning to end. These APIs are not especially
difficult to use after you have mastered them. However, these interfaces, especially
XOM, introduce terms, concepts, and techniques that may seem strange at first.
By skipping forward, you might become confused.

 Understanding XOM
XMP employs XOM to create, examine, modify, and delete the arguments to XMP
functions. This section introduces you to the XOM API.

XOM provides a generalized data-handling mechanism. It was designed for use in
conjunction with application-specific OSI APIs, such as XMP. Most of the data
types manipulated by the XOM API arise from ASN.1 definitions, but some are con-
venience objects.

ASN.1 is the OSI-defined standard for describing a set of named and defined data
types that can be as simple as integers, characters, and Booleans or as complex
as arrays and structures. ASN.1 includes ways to create new types based on the
predefined types. Basic encoding rules (BER) define how ASN.1 types are
encoded to be transported over the network.

Benefits of Using XOM
Direct manipulation of ASN.1 data can be time-consuming and prone to errors.
One of XOM's main purposes is to hide as much of ASN.1's complexity as pos-
sible, including the BER.

One of the key benefits of XOM is its generality; after you have learned how to
work with an interface that uses XOM, such as XMP, you can transfer that skill to
any other OSI API that uses XOM (such as XDS, the X/Open programmatic inter-
face to X.500 directory services).

Object-Oriented Terminology in XOM and XMP
XOM has some object-oriented characteristics. The OSI model of network man-
agement is also object-oriented. Because both XOM and XMP use object-oriented
terminology, there is some potential for confusion.

This book adopts the lexicons (terms and function names) of the XOM and XMP
specification books. However, the lexicon of XOM is very similar to that of XMP.
For example, XOM defines an om_create() function, and XMP defines an
mp_create_req() function; the two have very different usage and effect. This book
differentiates between the XOM and XMP lexicons; occasional special notes in this
chapter point out the distinction.

 Copyright IBM Corp. 1992, 1995 189

The Strategy and Structure of XOM
An implementation of XOM exists only as part of the implementation of another
API; XOM cannot, by definition, exist independently of another API. An API, such
as XMP, that uses XOM specifies two key components:

� A set of functions specific to the API. For XMP, this set includes the CMIS and
SNMP service functions and several utility functions. These functions are
described in “The Protocol Services of XMP” on page 214.

� A set of structured information objects that constitute the parameters and
results of the API functions. These objects are defined in a package of class
definitions. XOM packages are described in “XOM Packages” on page 192.
The essential purpose of XOM is to manage these information objects.

XOM can relieve you, the programmer, of having to define and deal directly with
large and complex data structures. The XOM functions provide you with tools to
operate on substructures of the parameters and results of the XMP functions.

XOM and Object Orientation
This section describes the XOM information objects, called OM objects. There are
a few unavoidable forward references to the XOM functions that manipulate OM
objects. Later sections develop this material in more detail.

XOM is designed to provide another way to represent abstract data. Briefly, an OM
object is nothing more than a modest, logical, C-language data structure used to
express abstract data types that reflect the underlying data representation defined
by ASN.1.

As a C-language programmer, you are accustomed to using arrays, structures, and
unions to create complex data types. XOM defines a new set of tools to achieve
this task, hiding the underlying ASN.1 implementation.

Carefully note the definitions in the following list:

OM attribute
OM attributes are the building blocks of OM objects; each OM attribute
is one component of an OM object. For example, an OM attribute that
stores an IP address could be one component of an OM object that
represents a network address. An OM attribute is represented as a C
language structure called an OM descriptor. It has three parts: (1) the
type (name) of the OM attribute, (2) its syntax, and (3) its value. The
syntax denotes the data type of the value (as an integer, Boolean, or
string, for example).

To continue the example, an OM attribute intended to store an IP
address might have the type ip-Address, the syntax OCTET STRING,
and a value that is a string length of four, containing, in order, the four
octets of a particular IP address.

OM object
An OM object consists of a list of OM attributes. It is represented in the
C language as an array of OM descriptors. The OM class of the OM
object specifies the number of OM attributes on the list and the type and
syntax of each.

190 Programmer's Guide

Each attribute of a managed object is typically represented as an OM
object. (The distinction between OM objects and managed objects is
crucial here.) Many OM attributes are themselves OM objects; these
are called subobjects.

OM class An OM class defines the list of OM attributes that make up a particular
kind of OM object. As noted before, the OM class of the OM object
specifies the number of OM attributes in the list and the type and syntax
of each.

You can think of OM classes as the data types for OM objects; by this
model, any given OM object is a variable whose data type is specified
by its OM class. Do not forget, however, that an OM object is just a list
of OM attributes.

Many of the parameters and results of XMP and XOM functions are OM
objects, which by definition are members of some OM class.

Note: Do not confuse the terms in the preceding list with the object-oriented terms
from the domain of network management. For example, note that an OM
object is a data structure, but a managed object is a resource to be
managed. The distinction between these two sets of terms must be remem-
bered to avoid confusion.

Throughout this book, care has been taken to avoid such confusion. The
terms OM object, OM class, and OM attribute always carry the OM prefix.
Whenever the terms object, class, or attribute appear without the OM prefix,
they refer to the network management domain, not to XOM.

Inheritance in XOM
Because XOM is object-oriented, it includes the notion of inheritance. OM classes
are related in a hierarchy of superclass, class, and subclass; this hierarchy forms a
strict tree structure, without cross-links. See Figure 11 on page 192.

A subclass of an OM class inherits all of the OM attributes of the parent OM class.
The parent OM class is called the superclass of the subclass.

There is an important relationship between an OM class and its superclasses. An
instance of any OM class is always considered to be an instance of each of its
superclasses. This means that XOM and XMP functions can accept any subclass
of the OM class of an input parameter. Likewise, these functions can return any
subclass of the OM class of an output parameter. XOM provides a special func-
tion, om_instance(), to determine exactly to which OM class an OM object belongs.
For information about this function, refer to the NetView for AIX Programmer's Ref-
erence.

For example, XMP defines a function called mp_get_req(), described in “The Pro-
tocol Services of XMP” on page 214. The mp_get_req() function works for both
CMIS and SNMP get operations. To accommodate this, there is a Get-Argument
OM class with two subclasses: CMIS-Get-Argument and SNMP-Get-Argument.
The mp_get_req() function requires a Get-Argument and accepts either a
CMIS-Get-Argument or a SNMP-Get-Argument. This is how XMP can serve both
CMIS and SNMP users.

Some OM classes in the OM class hierarchy are abstract, while others are con-
crete. Abstract OM classes exist as a means to provide, through inheritance,

 Chapter 12. Using the XOM API 191

common OM attributes to a group of concrete classes. You cannot create an OM
object whose OM class is abstract; you can create only an OM object whose OM
class is concrete. In the previous example of the two types of get arguments, the
Get-Argument OM class is abstract. Only its subclasses, CMIS-Get-Argument and
SNMP-Get-Argument, are concrete. In Figure 11, both the abstract and concrete
OM classes have the prefix MP_C_ and are fully capitalized. This reflects the form
of the C-language identifiers used for abstract and concrete OM classes.

The root of the OM class hierarchy is the abstract OM class Object, the only OM
class that has no superclass. All other OM classes are subclasses of the OM class
Object.

The only OM attribute of the abstract OM class Object is the class, which conse-
quently is inherited by all OM classes. In every OM object, this attribute identifies
the class of the OM object. This attribute appears in the C-language structure for
every OM object.

Figure 11. Inheritance and Class Types in XOM

 XOM Packages
An XOM package is a functionally related set of OM classes. In the XMP interface,
there are four base packages:

� The OM package
� The Common package
� The CMIS package
� The SNMP package

OM class definitions in the OM and Common packages are automatically included
in both the CMIS and SNMP packages, as explained in “About XOM Package
Closures” on page 193.

The class definitions for these packages appear in the NetView for AIX Program-
mer's Reference. Each class definition consists of the following:

� A description of the OM class, which identifies its superclasses, and whether
the OM class is abstract or concrete.

192 Programmer's Guide

� A table that lists each OM attribute that is specific to the OM class. Each table
entry includes:

– The name of the OM attribute
– The syntax of the OM attribute
– Any constraint on the length (applicable only to string-type syntaxes)
– Any constraint on the possible number of values for the OM attribute:

- An optional OM attribute has either 0-1 or 0 or more as a constraint.
- A mandatory OM attribute has either 1 or 1 or more as a constraint.

� An elaboration of the purpose, use, and potential values for each OM attribute.

� A list of which attributes are mutually exclusive.

“Declaring OM Objects” on page 206 explains in more detail how to use the class
definitions in the NetView for AIX Programmer's Reference.

About XOM Package Closures
The term package closure appears occasionally in the literature about XOM. The
closure of a package (P) is the set of all packages that the package (P) requires in
order to resolve all its OM class definitions.

For example, each OM class defined in the CMIS package includes, as its first attri-
bute, the object identifier. This attribute relates to the OM class Object, which, as
noted before, is the root of the OM class hierarchy. This class is defined in the OM
package. Therefore, the closure of the CMIS package, or any other package, must
include the OM package.

It is through the notion of a package closure that the CMIS package automatically
includes the Common package and the OM package. This is illustrated in
Figure 12.

Figure 12. Package Closures for CMIS and SNMP Packages

 Chapter 12. Using the XOM API 193

Using OM Packages in Your Management Program
When your management program uses the XMP API, the Common and OM pack-
ages are automatically available. You can include other packages in your manage-
ment program. This requires two steps:

1. Provide the package name to your management program with the
OM_EXPORT macro, which is defined by XOM. For example:

OM_EXPORT (MP_SNMP_PACKAGE)
OM_EXPORT (MP_CMIS_PACKAGE)

2. Bind the package to your workspace by calling the mp_version() routine. See
“XMP Workspaces” on page 224 for more information on this routine.

For more information about OM_EXPORT and other XOM macros, see “XOM
Object-Definition Macros” on page 203. For more information about the
mp_version() function and other XMP functions, see “The Protocol Services of
XMP” on page 214 and “The Supporting Functions of XMP” on page 215. The
OM_EXPORT macro and mp_version() routine create a series of declarations and
actions that give you access to the class definitions in the CMIS, SNMP, and the
Management Contents Packages, which are defined in the NetView for AIX Pro-
grammer's Reference. These two steps give you access to the OM management
services packages through the XMP API. OM_EXPORT and mp_version() can also
be used to access the NetView for AIX management contents packages through
the XMP API.

The Management Contents Packages
The management contents packages contain object classes that are related to the
specific management information handled by agents and managers. These pack-
ages describe the mapping of the attribute values to XOM classes.

The OM classes in a Management Contents Package are just like any other OM
class. The way you use an OM class is not affected by the fact that it does not
belong to the base XMP packages (OM, COMMON, CMIS and SNMP).

The packages provided in this implementation are listed below, and are described
in the NetView for AIX Programmer's Reference.

� ISO 10165-2, Management Information Services—Structure of Management
Information Part 2: Definition of Management Information

� LNV package - IBM LAN NetView - definitions of attributes and OM classes for
interoperability with HP agents

XOM Data Objects
XOM represents the data it manipulates as OM objects. As the developer of a
network management program, you need to be able to create and discard these
OM objects, and to examine and exchange data with them, in whole or in part.

194 Programmer's Guide

Public and Private OM Objects
XOM defines two types of OM objects, public and private, which are described in
the following list:

Public OM objects
A public OM object consists of a special C-language data structure that
is directly accessible by a management program. A public object can be
defined by a management program or by XOM. XOM public objects
exist in a workspace that is accessible by a management program.
Values of OM attributes in public OM objects can be directly inspected
by the management program. If an attribute belongs to a public object
defined by the program, the program can use a regular assignment
statement to change the attribute's value.

The output of an XOM or XMP function is not a public OM object,
except for the result of an om_get() function, which is a public OM
object.

Public OM objects can be translated into private OM objects with the
om_put() routine.

Private OM objects
A private OM object is maintained in an XOM workspace, and its repre-
sentation is hidden from a management program. Private objects are
supplied because they are easier to use by XMP functions. The XOM
API functions give you indirect access to a private OM object; you
cannot manipulate it directly. For example, to change the value of an
OM attribute in a private OM object, you would use the XOM om_put()
function, rather than an assignment statement.

Private OM objects can be translated into public OM objects with the
om_get() routine.

OM objects that are passed to and from XOM and XMP functions are allowed to be
private. Most functions also allow these OM objects to be public. Sometimes they
can be constants, such as MP_DEFAULT_SESSION. Any OM object that is the
result of XOM and XMP functions, with the exception of om_get(), is private. You
can create an equivalent public object with a call to om_get().

Both public and private OM objects are accessed through a C-language pointer. In
the case of a private object, the pointer is used only as a function parameter; for a
public object, the pointer refers to the data structure containing the OM object.

Mixed Public and Private OM Objects
OM objects are frequently complex, consisting of several other OM objects, which
can consist of still other OM objects. It is possible to have an object that mixes
public and private elements. For example, as illustrated in Figure 13 on page 196,
the mp_action_req() function uses an OM object parameter of OM class
MP_C_CMIS_ACTION_ARGUMENT. One field of this OM object is another OM
object of OM class MP_C_ACTION_INFO. This OM object has a further OM object
field of OM class MP_C_ACTION_TYPE_ID.

Even if the MP_C_CMIS_ACTION_ARGUMENT OM class is public, any of its OM
object members, such as the MP_C_ACTION_INFO field, can be private.
However, the reverse (MP_C_CMIS_ACTION_ARGUMENT, private;

 Chapter 12. Using the XOM API 195

MP_C_ACTION_INFO, public) cannot be true; no component of a private OM
object can be public.

Figure 13. Mixed Public and Private OM Objects

Types of Public OM Objects
There are two types of public OM objects. They are defined in the following list:

Service-generated
A service-generated public OM object should be considered read-only.
It is public, but it exists in the workspace that XOM provides. Service-
generated public OM objects are created when you request a public
copy of some private OM object. This is a common action, because
although OM objects that are the output of XMP and XOM functions are
private, your management program needs to work with a public OM
object. This is because the structure of private OM objects is hidden
from the application, so that only public OM objects can be inspected by
your program.

Client-generated
A client-generated public OM object exists in a workspace that you
provide through memory allocation or static declaration.

The key difference between these two types of public OM objects is the way you
treat the memory involved.

196 Programmer's Guide

Memory Management for OM Objects
OM objects are accessed through a C-language pointer. How the memory
addressed by this pointer must be treated depends on whether it is controlled by
XOM or by your management program. The following list indicates how memory
should be managed for each type of OM object:

Client-generated public OM objects
You have full responsibility for memory management for this type of OM
object. If you allocate memory, you must later deallocate it. Failure to
do so results in memory leaks, which can result in management
program failures caused by resource consumption.

Service-generated public OM objects
XOM has full responsibility for memory management for this type of OM
object. XOM allocates memory when you create the public version of a
private OM object with the om_get() routine, and deallocates it when you
delete the public OM object with the om_delete() routine. Treat this type
of OM object as read-only.

Destroying the XOM workspace through mp_shutdown() does not affect
service-generated public OM objects; you must recover the memory
associated with each OM object by calling om_delete() for each object.

Private OM objects
XOM has full responsibility for memory management for this type of OM
object. Whenever you create new private OM objects, you should
delete them when they are no longer needed.

The function call mp_shutdown() automatically deletes all private objects
associated with the workspace. Destroying the XOM workspace with
mp_shutdown() does recover the resources associated with private
objects.

Warning Do not modify the pointer to a private OM object or anything to which it
points. Doing so can cause unpredictable, catastrophic errors.

Also, the data in a service-generated public OM object must be considered read-
only. Do not directly modify the pointer to a service-generated public OM object, or
anything to which it points. Modifying either the pointer or the OM object to which it
points can cause unpredictable, catastrophic errors.

There is one exception: if the service-generated public OM object has, as one of its
elements, a private OM object, you can use the private subobject as an argument
to an XOM function, such as om_put(), that modifies it.

Using Public and Private OM Objects
No management program can deal exclusively with either public or private OM
objects; you must use both types in every case. However, you can focus your
program on one approach or the other. Your decision depends on the type of
program you are writing.

 Chapter 12. Using the XOM API 197

When to Use Public OM Objects
Public OM objects let you use static data structures, instead of making multiple
calls to XOM functions to construct private OM objects dynamically. Therefore,
public OM objects are, in general, used by management programs filling a
responder role, because the requirements of such a program are generally well
defined.

When to Use Private OM Objects
Private OM objects let you dynamically create data structures by calling XOM func-
tions, instead of having to define static data structures to cover all possibilities.
Therefore, private OM objects are, in general, appropriate for management pro-
grams filling a requester role. Since the requests issued by these programs are
often based on the actions of a human user, it is impossible to know in advance
what structures might be needed.

Manipulating Objects with XOM
The XOM API implements the XOM concepts described in this chapter. This
section introduces the programmatic interface to XOM, including the functions and
key data structures. Many of these data structures are defined in the following
Management Services Packages header files:

 � xom.h
 � xmp.h
 � xmp_cmis.h
 � xmp_snmp.h

When using APIs like XOM and XMP, you should know the conventions used to
assign C-language identifiers. Table 14 shows the conventions used by XOM in
assigning C-language identifiers. XMP uses similar conventions, which are noted in
Table 18 on page 213.

Table 14. XOM Interface Naming Conventions

Item Convention Example

Functions The names of XOM functions are prefixed
with om_ and are in lower-case letters. In
this book, they are further distinguished
by a trailing pair of empty parentheses.

om_get()

Function
parameters
and results

The names of XOM function parameters
and results are in lower-case letters, itali-
cized, and have no special prefix.

string_offset

Data types The names of XOM data types are pre-
fixed with OM_ and are in lower-case
letters.

OM_return_code

Macros and
defined con-
stants

The names of XOM macros and defined
constants are prefixed with OM_ and are
in upper-case letters.

OM_OID_DESC

Syntaxes The names of XOM syntaxes are
described in “Attribute Syntax” on
page 200. They are prefixed with OM_S_
and are in upper case letters.

OM_S_ENUMERATION

198 Programmer's Guide

Note: Whenever this book states the prefix for a set of identifiers, the entire prefix
is stated. For example, suppose a set of identifiers carries the prefix OM_.
Identifiers with the prefix OM_S_ would not be members of the designated
set.

OM Object Descriptors
Each OM class consists of a list of OM attributes. Each OM attribute is in turn
represented as a C-language data structure, called the OM descriptor, whose dec-
laration is as follows:

typedef struct OM_descriptor_struct
 {
 OM_type type;
 OM_syntax syntax;
 OM_value value;
 } OM_descriptor;

Therefore, an OM object is an array of OM descriptors. Figure 14 illustrates the
explanation that follows.

OM Attribute

OM Attribute

OM Attribute

OM Attribute

Type Syntax Value

0

1

n

n+1

OM_CL ASS

OM_NO_MORE_TYPES OM_S_NO_MORE_SYNTAXES

int32

int32

0

(NULL)

Figure 14. Representation of an OM Object

An OM descriptor contains three elements, which are described in the following list:

type The type specifies the name of the OM attribute. This field always con-
tains a defined constant, which can be found in the header files related
to the package containing the OM attribute. The OM attributes in xom.h
are prefixed with OM_, and those in xmp.h, xmp_cmis.h, and
xmp_snmp.h are prefixed with MP_. The OM attributes in the Manage-
ment Contents Packages will have different prefixes, such as DMI_ for
the DMI package.

syntax The syntax specifies how the value in the value field should be inter-
preted according to the ASN.1 syntaxes supported by the XOM specifi-
cation. It always contains a defined constant, one of the 21 OM
syntaxes specified in xom.h. The syntax always begins with the prefix
OM_S_.

value This field contains the attribute value. It is a union containing a 32-bit
value that can have several interpretations, as specified by the syntax,
and a pointer to a string or object. Readers familiar with ASN.1 should
note that this field contains both the length and value.

 Chapter 12. Using the XOM API 199

If the syntax field specifies any syntax that is not a string-type or object,
the pointer field is NULL, and the 32-bit field contains the value of the
attribute. This value may be an integer, a Boolean value, or whatever
else the syntax field specifies.

If the syntax field specifies a syntax that is a string-type, the pointer field
points to the beginning of the string, and the 32-bit field is an integer
that specifies the length of the string (number of bits in a bit-string, or
octets in an octet- or character-string). If the syntax is defined as object,
the 32-bit field is zero and the pointer points to an OM object.

The first and last OM attributes of an OM object have special significance:

� The first OM attribute , shown as OM Attribute0 in Figure 14 on page 199, is
inherited from the root OM object, OM_C_OBJECT. This attribute identifies the
class of the object. The type and syntax fields are always the same,
OM_CLASS and OM_S_OBJECT_IDENTIFIER_STRING. The value field
varies, depending on the type of the OM object. The names of the OM classes
are also found in the header files (xmp.h, xmp_cmis.h, xmp_snmp.h,
omp_dmi.h, and lnv.h), and their prefixes also obey the same rules defined in
the two previous lists.

� The last OM attribute , shown as OM Attributen+1 in the previous figure, is
always a null descriptor used to terminate the attribute list for the OM object.

 Attribute Syntax
The previous section showed that the second field of an OM descriptor specifies
the syntax of the attribute. The XOM specification defines the important syntaxes
described in Table 15.

Table 15 (Page 1 of 2). Key XOM Syntaxes

Syntax Cate-
gory

Defined Values Description

Boolean OM_S_BOOLEAN The value for an attribute of
this syntax can be either
OM_FALSE or OM_TRUE.

Enumeration OM_S_ENUMERATION The value for an attribute of an
enumerated syntax is one of a
set of distinct values defined for
the particular attribute.

Integer OM_S_INTEGER The value for an attribute of
this syntax is an integer.

Null OM_S_NULL This is a no-value placeholder.

Object OM_S_OBJECT The value for an attribute of an
object syntax is an OM object.
It can be any instance of a
class associated with the
syntax.

200 Programmer's Guide

Because it is not necessary to use all the bits to indicate the possible OM syntaxes,
some bits in the syntax field can be used for other purposes. For this reason, the
value in the syntax should be ANDed with the mask OM_S_SYNTAX before it is
compared against any of the OM syntaxes listed above. The other bits are:

OM_S_LONG_STRING
Significant only when the syntax is one of the String syntaxes. This bit
indicates that the length of the string exceeds the local limit and should
be manipulated by means of om_read/om_write.

OM_S_NO_VALUE
Indicates that the value is not present, because an exclusion was
requested in the om_get call.

OM_S_LOCAL_STRING
Significant only when the syntax is String(*). This bit indicates that the
string is represented in a local form.

OM_S_SERVICE_GENERATED
Indicates that the object is in public format and was generated by XOM
or XMP.

OM_S_PRIVATE
Indicates that the object is in private format.

Table 15 (Page 2 of 2). Key XOM Syntaxes

Syntax Cate-
gory

Defined Values Description

String OM_S_BIT_STRING
OM_S_ENCODING_STRING
OM_S_GENERAL_STRING
OM_S_GENERALISED_TIME_STRING
OM_S_GRAPHIC_STRING
OM_S_IA5_STRING
OM_S_NUMERIC_STRING
OM_S_OBJECT_DESCRIPTOR_STRING
OM_S_OBJECT_IDENTIFIER_STRING
OM_S_OCTET_STRING
OM_S_PRINTABLE_STRING
OM_S_TELETEX_STRING
OM_S_UTC_TIME_STRING
OM_S_VIDEOTEX_STRING
OM_S_VISIBLE_STRING

A string is an ordered
sequence of zero or more bits,
octets, or characters.

The value for an attribute of
any syntax in this category is a
string whose form and meaning
are associated with the partic-
ular syntax.

The length of a string depends
on the string type. It is the
number of bits in a bit string, or
the number of octets in an
octet or character string.

Multi-octet characters are pos-
sible. String length is confined
to the interval {0, 2óò}. Any
further constraints on the value
length of a particular string are
specified in the corresponding
class definition.

Unlimited
Integer

OM_S_UNLIMITED_INTEGER The value for an attribute of
this syntax is an integer that
may be any size.

Real OM_S_REAL The value for an attribute of
this syntax is a real number,
composed of a positive or neg-
ative mantissa and an integer
exponent.

 Chapter 12. Using the XOM API 201

 Attribute Value
The following data structure is used to store the value of an attribute:

typedef union OM_value_union
 {
 OM_string string;
 OM_boolean boolean;
 OM_enumeration enumeration;
 OM_integer integer;
 OM_real real;
 OM_padded_object object;
 } OM_value;

A data value of this data type is an attribute value. It has no components if the
value's syntax is no-more-syntaxes, or if the value's syntax is no-value. Otherwise
it has one of the following components:

String The attribute's syntax is a String syntax. The OM_string data type is
defined as follows:

 typedef struct
 {
 OM_string_length length;
 void \elements;
 } OM_string;

 #define OM_STRING(string)
 {(OM_string_length)(sizeof(string-1),string)}

Length The number of octets by means of which the string is
represented.

Elements The string's elements (the octets that make up its value).

In the C-language interface, the bits of a bit string are
represented as a sequence of octets. The first octet stores
the number of unused bits in the last octet. The bits in the
bit string, commencing with the first bit and proceeding to
the trailing bit, shall be placed in bits 7 to 0 of the second
octet, followed by bits 7 to 0 of the third octet, followed by
bits 7 to 0 of each subsequent octet, followed by as many
bits as are needed of the final octet, beginning with bit 7.

 2nd octet 3rd octet

position of bit string: ð 1 2 3 4 5 6 7 8 9 ...

bit position in octet: 7 6 5 4 3 2 1 ð 7 6 ...
 ↑ ↑
 most least
 significant significant
 bit bit

In the C-language interface, a macro, {OM_STRING}, is
provided for fabricating a data value of this data type,
given only the value of its Elements component. The
macro, however, applies to octet strings and character
strings, but not to bit strings.

202 Programmer's Guide

Boolean The attribute's syntax is OM_S_BOOLEAN.

False is denoted by zero {OM_FALSE}, true by any other integer,
although the symbolic constant {OM_TRUE} specifically refers to the
integer one.

Enumeration
The attribute's syntax is OM_S_ENUMERATION.

Integer The attribute's syntax is OM_S_INTEGER.

Unlimited Integer
The attribute's syntax is OM_S_UNLIMITED_INTEGER.

This attribute is represented as an OM_string data type (see description
of OM_string above), where:

Length The number of octets by means of which the integer is
represented.

Elements The octets which make up the value of the integer. These
octets are encoded as if it were the Value field of an
integer encoding according to Basic Encoding Rules (see
ISO IS 8825).

Note: This new syntax was introduced to overcome a problem in the
XOM specification which currently maps an Integer to a OM_uint32, lim-
iting its value to the integers which can be represented in 32 bits. This
is not a standard syntax and thus its use may cause problems or be
difficult to port to other platforms. It is also subject to change as X/Open
addresses this problem in future versions of XOM.

Real The attribute's syntax is OM_S_REAL.

Object The attribute's syntax is OM_S_OBJECT. The OM_padded_object data
type is defined as follows:

 typedef struct
 {
 OM_uint32 padding;
 OM_object object;
 } OM_padded_object;

This data type uses its padding component to align the Object compo-
nent with the Elements component of the String component. This facili-
tates initialization in the C language.

XOM Object-Definition Macros
An OM class name or package name is identified by an XOM object-identifier
string. Details about these strings are presented in “Declaring OM Objects” on
page 206. Like any other C-language variable, they must be defined in only one
source file, and declared external in other source files that use them. There are
two XOM object definition macros, OM_EXPORT and OM_IMPORT, that work
together to simplify these declarations in your management program. Figure 15 on
page 205 illustrates their relationship. Two other macros, OM_OID_DESC and
OM_NULL_DESCRIPTOR, simplify the process of declaring an OM object.

 Chapter 12. Using the XOM API 203

The following list summarizes the XOM object-definition macros:

OM_EXPORT
The input parameter to this macro is a concrete OM class, or package
name. Based on the contents of the header files, the macro generates
all the associated declarations necessary to make the OM class, or
package name available for your use.

For any given concrete OM class, or package name, this macro must
appear in only one, compilation module of your management program.
If you use it twice, the C-language compiler detects multiply defined
symbols.

OM_IMPORT
Like OM_EXPORT, the input parameter to this macro is a concrete OM
class, or package name. This name must appear as the input param-
eter for a call to OM_EXPORT in some other module. Based on the
declarations established by that occurrence of OM_EXPORT, the
OM_IMPORT macro generates all the associated external declarations
necessary to match the declarations that OM_EXPORT established.

For any given OM class, or package name, this macro must appear in
all modules that use that name except for the module where the name is
a parameter for OM_EXPORT.

OM_OID_DESC
This macro declares the first attribute of an OM object, the Class attri-
bute. It takes as parameters the type of an OM object, as described for
OM descriptors, and the associated OM object-identifier string. It uses
these parameters to declare an OM descriptor of the specified type and
identifier.

The use of the macro OM_OID_DESC is not restricted to the first attri-
bute of a class. It can be used to fill in the descriptor of any OM attri-
bute whose syntax is Object Identifier.

OM_NULL_DESCRIPTOR
This macro is used to terminate the declaration of an OM object. It
appears as the last OM descriptor of an OM object.

Using the OM_EXPORT and OM_IMPORT Macros
Figure 15 on page 205 illustrates the recommended way to use the OM_EXPORT
and OM_IMPORT macros for exporting a name from one key source code
(C-language) file and importing it in all others.

204 Programmer's Guide

Figure 15. Using OM_EXPORT and OM_IMPORT

Remember these rules about OM_EXPORT and OM_IMPORT:

� The name of each concrete OM class, and package, that you use must appear
in only one source code (C-language) file as a parameter to OM_EXPORT.

� The name of each concrete OM class and package that you use as a param-
eter to OM_EXPORT must appear as a parameter to OM_IMPORT in every
other source code (C-language) file that uses the name.

� Both OM_EXPORT and OM_IMPORT must appear in the global declarations
portion of the source code (C-language) file.

In most development environments, you can minimize confusion by designating one
key module as the exporter; all other modules use OM_IMPORT exclusively.

Note: OM class identifiers appear in the header files with an additional prefix,
OMP_O_. For example, the MP_C_SNMP_GET_ARGUMENT identifier appears as
OMP_O_MP_C_SNMP_GET_ARGUMENT. This additional prefix is required by the
OM_EXPORT and OM_IMPORT macros; you should not use it in your manage-
ment program.

Using the OM_OID_DESC and OM_NULL_DESCRIPTOR Macros
The following code fragment declares an OM object, called action-error[], whose
OM class is Action-Error:

static OM_descriptor action-error[] =
 {
 OM_OID_DESC(OM_CLASS, MP_C_ACTION_ERROR),

{MP_MANAGED_OBJECT_CLASS, OM_S_OBJECT, {{ð, NULL}}},
{MP_MANAGED_OBJECT_INSTANCE, OM_S_OBJECT, {{ð, NULL}}},
{MP_CURRENT_TIME, OM_S_GENERALISED_TIME_STRING, {ð, NULL} },
{MP_ACTION_ERROR_INFO, OM_S_OBJECT, {{ð, NULL}}},

 OM_NULL_DESCRIPTOR,
 };

The first OM attribute of the OM object, action-error[0], is created using the
OM_OID_DESC macro. The OM object is terminated by the presence of the
OM_NULL_DESCRIPTOR macro as the last element.

 Chapter 12. Using the XOM API 205

“Declaring OM Objects” on page 206 describes the remaining OM descriptors in an
OM object, which correspond to the attributes defined in the OM class definitions in
the NetView for AIX Programmer's Reference.

The Object-ID Convenience Routines
All attributes and objects have object identifiers (OIDs). In XMP, these OIDs are
encoded as hexadecimal strings, which appear as OM attributes in several OM
objects. You may need to manipulate an object-identifier string as you fill in or
interpret an OM object.

There are six convenience routines provided to help you. These routines begin
with the prefix at_ and are described in the following list:

at_array_to_oid() Converts an array of integers corresponding to an object identi-
fier to an object-identifier string.

at_free() Releases dynamic memory previously allocated by other
memory functions.

at_oid_to_array() Converts an object-identifier string to an array of integers corre-
sponding to the object identifier.

at_oid_match() Determines whether two object-identifier strings match.

at_oid_to_str() Converts an object identifier string to a NULL-terminated string
in dot-notation form. This is the reverse operation of
at_str_to_oid().

at_str_to_oid() Converts a NULL-terminated string in dot-notation form to a
BER-encoded object-identifier string.

Note: The at_free() routine should be called to release memory after using these
object-identifier convenience routines.

Declaring OM Objects
This section describes how to derive a declaration from a class definition. There
are two examples in this section.

Example Parameter for an XMP Function: Table 16 defines the OM class called
CMIS-Get-Result. An object of this OM class is an input parameter to the
mp_get_rsp() function. The mp_get_rsp() function is described later, but its basic
purpose is to send the requested information about some managed object.

The first column gives the name of each OM attribute of the OM class; the second
column gives the syntax of each OM attribute; the third column specifies the
maximum length (if any) of a string-type OM attribute; the fourth column specifies
the limits on how many instances of the OM attribute can be present, and the last
column gives the default value of the OM attribute, if any.

Table 16. OM Attributes of a CMIS-Get-Result OM Object

Value OM Attribute Value Syntax Value
Length

Value
Number

Initial
Value

managed-Object-Class Object(Object-Class) - 0-1 -

managed-Object-Instance Object(Object-Instance) - 0-1 -

current-Time String(Generalized-Time) - 0-1 -

attribute-List Object(Attribute) - 0 or
more

-

206 Programmer's Guide

The following code fragment uses the previous definitions to declare an OM object,
called _publicGetResultObj, whose OM class is MP_C_CMIS_GET_RESULT. In a
real application, the values of the attributes may be determined at run time.

OM_descriptor _publicGetResultObj[] =
 {
 OM_OID_DESC(OM_CLASS, MP_C_CMIS_GET_RESULT),

{MP_MANAGED_OBJECT_CLASS, OM_S_OBJECT, {{ð, _publicObjectClass}}},
{MP_MANAGED_OBJECT_INSTANCE, OM_S_OBJECT, {{ð, _publicObjectInstance}}},
{MP_ATTRIBUTE_LIST, OM_S_OBJECT, {{ð, _publicAttribute}}},

 OM_NULL_DESCRIPTOR
 };

The OM attributes of _publicGetResultObj are constructed as follows:

MP_MANAGED_OBJECT_CLASS: The value of the attribute
MP_MANAGED_OBJECT_CLASS must be set to an instance of the OM class
OBJECT_CLASS that will contain the object identifier of the managed object class
encoded in BER.

The following fragment of code shows a public object whose class is
OBJECT_CLASS:

OM_descriptor _publicObjectClass[] =
 {
 OM_OID_DESC(OM_CLASS, MP_C_OBJECT_CLASS),
 {MP_GLOBAL_FORM, OM_S_OBJECT_IDENTIFIER_STRING,
 OM_STRING(OMP_O_DMI_O_EVENT_FORWARDING_DISCRIMINATOR)},
 OM_NULL_DESCRIPTOR
 };

The value of the MP_GLOBAL_FORM attribute is the object identifier, in BER
encoding, of the managed object class. This value can be obtained either through
the convenience routines (at_str_to_oid() or at_array_to_oid()) or from the con-
stants defined in the header file of the Management Contents Package.

The identifier OMP_O_DMI_O_EVENT_FORWARDING_DISCRIMINATOR is a
macro which evaluates to a string corresponding to the encoded form of the object
identifier 2.9.3.2.3.4. The macro OM_STRING is used to convert it to an
OM_object_identifier.

 MP_MANAGED_OBJECT_INSTANCE: The
MP_MANAGED_OBJECT_INSTANCE OM object identifies (by
Distinguishing-Name) the instance of the object on which the GET operation was
performed. As described in the Chapter 11, “Understanding the NetView for AIX
Management Environment” on page 167, a Distinguished-Name consists of a
sequence of Relative-Distinguished-Names, each of which usually consists of one
Attribute-Value-Assertion (AVA). Within the AVA, the
MP_NAMING_ATTRIBUTE_ID is another OID in BER encoding format, which can
be manipulated as described above for the managed object class.

 Chapter 12. Using the XOM API 207

/\ Objects for building an Object Instance \/

static OM_descriptor _publicDiscriminatorIdValue[] =
 {
 OM_OID_DESC(OM_CLASS, C_DMI_SIMPLE_NAME_TYPE),

{DMI_NUMBER, OM_S_INTEGER, {{1}}},
 OM_NULL_DESCRIPTOR
 };

 OM_descriptor _publicAvaObj[]=
 {
 OM_OID_DESC(OM_CLASS, MP_C_AVA),
 {MP_NAMING_ATTRIBUTE_ID, OM_S_OBJECT_IDENTIFIER_STRING,
 OM_STRING(OMP_O_DMI_A_DISCRIMINATOR_ID)},
 {MP_NAMING_ATTRIBUTE_VALUE,OM_S_OBJECT, {{ð,_publicDiscriminatorIdValue}}},
 OM_NULL_DESCRIPTOR
 };

 OM_descriptor _publicDsRdnObj[]=
 {
 OM_OID_DESC(OM_CLASS, MP_C_DS_RDN),

{MP_AVAS, OM_S_OBJECT, {{ð, _publicAvaObj}}},
 OM_NULL_DESCRIPTOR
 };

 OM_descriptor _publicDsDnObj[]=
 {
 OM_OID_DESC(OM_CLASS, MP_C_DS_DN),

{MP_RDNS, OM_S_OBJECT, {{ð, _publicDsRdnObj}}},
 OM_NULL_DESCRIPTOR
 };

 OM_descriptor _publicObjectInstance[]=
 {
 OM_OID_DESC(OM_CLASS, MP_C_OBJECT_INSTANCE),

{MP_DISTINGUISHED_NAME, OM_S_OBJECT, {{ð, _publicDsDnObj}}},
 OM_NULL_DESCRIPTOR
 };

Note that the syntax of MP_NAMING_ATTRIBUTE_VALUE OM attribute of the AVA
is labelled any. When the OM class definition specifies a syntax of any for some
OM attribute, follow these rules to fill-in the syntax and value fields:

1. If the attribute has a syntax that is defined in one of the packages (Common,
CMIS, SNMP or Management Contents Packages), you can just use that
syntax, and set the value accordingly.

2. Alternatively, if the value is an ASN.1 unconstructed type (as defined in the
table following), you can use the appropriate OM syntax specification (prefixed
with OM_S_, and set the value accordingly. The following OM syntaxes corre-
spond to ASN.1 simple types:

 OM_S_BIT_STRING
 OM_S_BOOLEAN
 OM_S_GENERAL_STRING
 OM_S_GENERALIZED_TIME
 OM_S_GRAPHIC_STRING
 OM_S_IA5_STRING

208 Programmer's Guide

 OM_S_NUMERIC_STRING
 OM_S_OBJECT_DESCRIPTOR_STRING
 OM_S_OCTET_STRING
 OM_S_INTEGER
 OM_S_NULL
 OM_S_OBJECT_IDENTIFIER_STRING
 OM_S_PRINTABLE_STRING
 OM_S_VIDEOTEX_STRING
 OM_S_VISIBLE_STRING
 OM_S_TELETEX_STRING
 OM_S_UTC_TIME_STRING
 OM_S_UNLIMITED_INTEGER
 OM_S_REAL

3. If the attribute syntax is a constructed ASN.1 type, the syntax must be set to
OM_S_OBJECT and the value must be an instance of the OM class that maps
the ASN.1 constructed type. This is done with the attribute
DMI_A_DISCRIMINATOR_ID whose value is an instance of class
DMI_SIMPLE_NAME_TYPE.

4. Last, you have the option to set the syntax field to
OM_S_ENCODING_STRING, and use your own functions to encode (or
decode) the attribute value (using BER) to (or from) a string representation.
This encoded string is used as the value of the attribute.

MP_ATTRIBUTE_LIST: The OM_descriptors of type MP_ATTRIBUTE_LIST corre-
spond to the attributes of the managed object. Each attribute of a managed object
is represented by an OM object of OM class MP_C_ATTRIBUTE. In this example,
the GET request has requested the value of one attribute of the managed object.

static OM_descriptor _publicAttributeId[] =
 {
 OM_OID_DESC(OM_CLASS, MP_C_ATTRIBUTE_ID),
 {MP_GLOBAL_FORM, OM_S_OBJECT_IDENTIFIER_STRING,
 OM_STRING(OMP_O_DMI_A_DISCRIMINATOR_ID)},
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor _publicDiscriminatorIdValue[] =
 {
 OM_OID_DESC(OM_CLASS, C_OMI_SIMPLE_NAME_TYPE),

{DMI_NUMBER, OM_S_INTEGER, {{1}},
 };

static OM_descriptor _publicAttribute[] =
 {
 OM_OID_DESC(OM_CLASS, MP_C_ATTRIBUTE),

{MP_ATTRIBUTE_ID, OM_S_OBJECT, {{ð, _publicAttributeId}}},
{MP_ATTRIBUTE_VALUE, OM_S_OBJECT, {{ð,_publicDiscriminatorIdValue}}},

 OM_NULL_DESCRIPTOR
 };

There is one point to note about an MP_C_ATTRIBUTE OM object:

� The MP_ATTRIBUTE_VALUE OM attribute is another point where the OM
class definition specifies a syntax of any. See the discussion on the
MP_MANAGED_OBJECT_INSTANCE in the previous section for details about
what this means.

 Chapter 12. Using the XOM API 209

This example is a graphical summary of the relationships of various parts of one
XMP response. Other arguments and responses are based on the same principles
and have similar structure. Once you understand this example well, the other
parameters are easier to follow.

About the Number of OM Descriptors: In general, each OM descriptor corre-
sponds to one OM attribute from the formal definition of the OM class in the
NetView for AIX Programmer's Reference. To be more precise, each OM
descriptor corresponds to the value of one formal OM attribute from the OM class
definition.

This clarification is most important for those OM class definitions with OM attributes
that can have multiple values. In the class definition tables, such OM attributes
have an or more statement in the value number column.

The MP_ATTRIBUTE_LIST OM attribute in the current example has multiple
values. Thus, there may be multiple instances of this descriptor.

About the Order of OM Descriptors: To further clarify, an OM object consists, in
general, of an unordered list of OM attribute values. That means that your declara-
tion does not necessarily have to maintain the order of the OM class definition or
template declaration file. The values for a multi-valued OM attribute are, however,
ordered.

Note: The OM descriptors for a multi-valued OM attribute must be grouped
together without intervening OM attributes. In fact, all OM descriptors for
multi-valued OM attributes are always grouped together, regardless of their
source.

Thus, when you receive a message containing one or more multi-valued
attributes, you can be sure that all the values for each attribute are adja-
cent.

Your processing of an OM object must account for the fact that the list of OM
descriptors in an OM object is unordered. You could use a loop that incorporates
the following two steps:

� Determine the type of the next OM descriptor, probably in a switch block.
� If it is not OM_NULL_DESCRIPTOR, process it accordingly; otherwise, termi-

nate the loop.

Alternatively, you could write an utility function that takes as input a pointer to an
OM object and an OM attribute identifier, and returns an index (pointer) to the first
corresponding OM descriptor in the OM object. This could be used to avoid the
loop and switch.

Another Example for an XMP Parameter: Table 17 on page 211 illustrates a
parameter to the mp_get_req() function, this time the SNMP version of a GET argu-
ment.

210 Programmer's Guide

The following code fragment shows the public objects that form an argument of the
mp_get_req() function.

/\ Network Address \/

OM_descriptor _publicNetworkObj[] =
 {
 OM_OID_DESC(OM_CLASS, MP_C_NETWORK_ADDRESS),

{MP_IP_ADDRESS, OM_S_OCTET_STRING, {4, "\x9\x4F\x1\x6D"}},
 OM_NULL_DESCRIPTOR
 };

/\ Community name \/
OM_descriptor _accessControl[] =

 {
 OM_OID_DESC(OM_CLASS, MP_C_COMMUNITY_NAME),

{MP_COMMUNITY, OM_S_OCTET_STRING, OM_STRING("public")},
 OM_NULL_DESCRIPTOR
 };

/\ Declarations for snmp_get_argument \/
OM_descriptor _publicGetArgumentObj[] =

 {
 OM_OID_DESC(OM_CLASS, MP_C_SNMP_GET_ARGUMENT),

{MP_RESPONDER_IP_ADDRESS, OM_S_OBJECT, {{ð, _publicNetworkObj}}},
{MP_VAR_ID_LIST, OM_S_OBJECT_IDENTIFIER_STRING, {{ð,ð}}},
{MP_ACCESS_CONTROL, OM_S_OBJECT, {ð, _accessControl}},

 OM_NULL_DESCRIPTOR
 };

Table 17. OM Attributes of an SNMP-Get-Argument

Value OM Attribute Value Syntax Value
Length

Value
Number

Initial
Value

responder-Ip-Address Object(Network-Address) - 0-1 -

var-Id-list String(Object-Identifier) - 1 or
more

-

access-Control Object(Access-Control) - 0-1 -

The XOM Functions
The following list summarizes each of the functions in the XOM library.

om_copy() Creates an independent duplicate of a private OM object.

om_copy_value() Copies a string from one private OM object to another.

om_create() Creates a new private OM object of a particular class.

om_decode() Creates a private OM object that represents an encoded private
OM object.

om_delete() Deletes a service-generated OM object.

om_encode() Creates a new private OM object that encodes an existing
private OM object, using the Basic Encoding Rules for ASN.1.

om_get() Creates a public copy of all or part of a private OM object.

om_instance() Tests an OM object for membership in a particular OM class.

 Chapter 12. Using the XOM API 211

om_put() Puts attribute values of an OM object, public or private, into a
private OM object.

om_read() Reads a segment of a string from a private OM object.

om_remove() Removes and discards an attribute value, or the entire attribute
itself, from a private OM object.

om_write() Writes a segment of a string into a private OM object.

Most of these functions have a reciprocal relationship with another function:

� om_delete() has the reverse effect of om_create().
� om_decode() has the reverse effect of om_encode().
� om_remove() has the reverse effect of om_put().
� om_read() has the reverse effect of om_write().

Refer to the NetView for AIX Programmer's Reference for a detailed description of
each function.

The XOM functions are always used in concert with XMP functions. Examples of
how the XOM functions are used appear together with examples of XMP functions
in Chapter 13, “Using the XMP API” on page 213.

212 Programmer's Guide

Chapter 13. Using the XMP API

XMP was designed to offer the services of both CMIS and SNMP. This section
introduces XMP, its services, some common arguments and parameters, and other
important aspects of XMP. Later sections provide more information on performing
basic program tasks.

The Terminology of XMP
This chapter uses many of the terms that were defined in “Defining Network Man-
agement Systems” on page 167. Two new terms that are important in under-
standing XMP are defined here:

Responder A responder is a reactive entity that responds to, or services,
the (asynchronous) requests of one or more requesters.
Most of the activities of an agent place it in the role of a
responder; however, an agent takes the role of a requester
when it issues a notification or event.

Requester A requester is a proactive entity that requests data and ser-
vices from one or more responders. Most of the activities of
a manager place it in the role of a requester; however, a
manager takes the role of a responder when it receives
(asynchronously) a notification or event.

Both of these roles can be taken on by either a manager or an agent.

XMP C-language Naming Conventions
This section uses identifiers that are defined in the following header files:

 � xom.h
 � xmp.h
 � xmp_cmis.h
 � xmp_snmp.h

Table 18 shows the conventions used by XMP in assigning C-language identifiers.

Throughout this chapter, the full C-language identifier is used for the items in this
table.

Table 18 (Page 1 of 2). XMP Interface Naming Conventions

Item Convention Example

Functions The names of XMP functions are
always prefixed with mp_, and are
always in lower case letters. Also,
many XMP functions have, as a suffix,
either _req() or _rsp(). These indicate
CMIS and SNMP requests and
response functions, respectively. The
empty parentheses also help distinguish
function names in this document.

mp_get_req()

 Copyright IBM Corp. 1992, 1995 213

Table 18 (Page 2 of 2). XMP Interface Naming Conventions

Item Convention Example

Function parame-
ters and results

The names of XMP function parameters
and results are always in lower case,
italicized, and have no special prefix.
Since C-language functions have a
single result, some XMP functions have
parameters that point to additional
return values. The names of such
parameters have a suffix of _return.
Thus, you can easily distinguish output
parameters from input parameters that
just happen to be pointers.

argument
*result_return

Data types The names of data types are always
prefixed with two capital letters, either
OM_ or MP_, depending on whether
they are defined by XOM or XMP,
respectively. The rest of such names
are always in lower case letters.

MP_status

Macros and defined
constants

The names of XMP macros and defined
constants, including XMP-defined OM
attribute names, are always prefixed
with MP_, and are always in upper case
letters.

MP_IP_ADDRESS

OM class names The names of XMP-defined OM class
names are always prefixed with MP_C_,
and are always in upper case letters.

MP_C_SNMP_GET_RESULT

Error-related con-
stants

The names of the values for
error-related enumerated types defined
by XMP are always prefixed with
MP_E_, and are always in upper case
letters.

MP_E_INVALID_FILTER

Enumeration con-
stants (tag values)

The names of the values for other enu-
merated types defined by XMP are
always prefixed with MP_T_, and are
always in upper case letters.

MP_T_COLD_START

The Protocol Services of XMP
XMP supports the seven CMIS services, through the CMIS OM package, and the
four SNMP services, through the SNMP package. The services of the three shared
services are mapped to shared function names, as shown in Table 19.

Table 19 (Page 1 of 2). XMP Functions to Support CMIS and SNMP Services

CMIS Service SNMP
Service

XMP Functions Description (of request only)

Action – mp_action_req()
mp_action_rsp()

Requests that the responder
perform one of the actions
defined for an object.

Cancel get – mp_cancel_get_req()
mp_cancel_get_rsp()

Requests that the responder ter-
minate servicing an earlier asyn-
chronous get request that has
not yet been completed.

Create – mp_create_req()
mp_create_rsp()

Requests that the responder
create an instance (object) of
the specified object class.

214 Programmer's Guide

The requester functions have the _req() suffix. The responder functions have the
_rsp() suffix. The responder functions are used only to respond to a request.

For the get, set and notification (trap) requests, the XMP functions accept
protocol-specific parameters for both CMIS and SNMP.

Table 19 (Page 2 of 2). XMP Functions to Support CMIS and SNMP Services

CMIS Service SNMP
Service

XMP Functions Description (of request only)

Delete – mp_delete_req()
mp_delete_rsp()

Requests that the responder
destroy a particular instance
(object) of an object class.

Get Get mp_get_req()
mp_get_rsp()

Requests that the responder
supply the values of one or
more object attributes.

Set Set mp_set_req()
mp_set_rsp()

Requests that the responder
modify the values of one or
more object attributes.

Notification Trap mp_event_report_req()
mp_event_report_rsp()

Issues one of the notifications
(events or traps) defined for an
object.

– Get
next

mp_get_next_req()
mp_get_next_rsp()

Requests that the responder
supply the type (name) and
value of the next SNMP variable
in the object.

The Supporting Functions of XMP
In addition to the protocol services, XMP defines several additional functions that
are necessary to manage the environment and others that support asynchronous
activity. These are described in Table 20 and Table 21 on page 216.

Table 20. XMP Functions to Manage the Environment

XMP Functions Description

mp_bind() Opens a session with the communications infrastructure. This function
returns an MP_C_SESSION OM object, which is described in “Common
Parameters and Results of XMP Functions” on page 216.

mp_error_message() Maps an MP_status OM object into a null-terminated string that contains an
error message describing the error.

mp_initialize() Initializes the XOM workspace. This function returns a handle to the work-
space.

mp_shutdown() Discards the workspace. After this call, no XMP functions may be used
until mp_initialize() initializes a new workspace.

mp_unbind() Terminates a given session with the communications infrastructure. This
function does not destroy the associated MP_C_SESSION OM object but
invalidates it for further use.

mp_version() Associates OM packages and features with the workspace that was initial-
ized with mp_initialize().

mp_wait() Waits for the availability of management messages from one or more bound
sessions.

 Chapter 13. Using the XMP API 215

There are three convenience routines that you can use to register XMP-based
applications to receive filtered events. These routines are described in “NetView for
AIX Event Registration Routines” on page 312.

Table 21. XMP Functions to Support Asynchronous Activity

XMP Functions Description

mp_abandon() Abandons a pending asynchronous request. Any associated response is
discarded without notice.

mp_receive() Used to obtain the argument of an asynchronous message. Responders
use it to receive requests and to receive responses to notifications.
Requesters use it to receive notifications and to obtain the results from
asynchronous requests.

mp_wait() Waits for the availability of management messages from one or more bound
sessions.

Common Parameters and Results of XMP Functions
This section describes the common parameters and results from a typical XMP
function. The following example illustrates an XMP function call:

mp_get_req (session, context, argument, result_return, invoke_id_return)

OM objects of two important OM classes appear as input parameters to most XMP
functions. They are:

 � MP_C_SESSION
 � MP_C_CONTEXT

The values of parameters of the OM class MP_C_SESSION are static over the life
of the binding. The values of parameter of the OM class MP_C_CONTEXT are
static over the life of one or more transactions (requests or notifications). They are
collected in these OM objects to simplify the parameter list for XMP functions.

In addition, other data structures appear regularly as output or results of most of
the XMP functions:

� status (one of several concrete subclasses of the abstract OM class Error)
 � invoke_id

Names, Addresses, and Titles
XMP provides a variety of ways to identify the source or destination of a message.
The terms used for this have very specific meanings in this context. Each form of
identifier indicates an abstract OM class, whose subclasses are used as described
in the following list:

name The subclasses of name are used to define managed object instances.
For example, the subclass MP_C_DS_DN is used for ISO-naming of
managed objects.

address The subclasses of address are used to define the specific location of a
particular manager or agent. For example, the subclass
MP_C_NETWORK_ADDRESS consists of an octet string containing an
IP address that can be used to specify the location of an agent or
manager.

216 Programmer's Guide

title The concrete subclasses of title are used to define the specific system
name or management process responsible for a managed-object
instance. In particular, the string contained in the subclass
MP_C_ENTITY_NAME corresponds to the name specified in the first
line of the Local Registration File (LRF).

 Address Specification
The way in which the source and destination of a message are specified depends
on the protocol being used. In the case of SNMP, a responder address can be
specified as a parameter in the argument for any particular request. In the case of
CMIP, the communications infrastructure uses the ORS directory information to
map the name of the managed object to the appropriate title or address.

Precedence in Access Control
Any access control specified in the session is overridden by access control speci-
fied in the context. Likewise, access control specified in the context is overridden
by access control specified in the function argument.

The Session Parameter
Most XMP functions require a parameter called session, an OM object whose OM
class is MP_C_SESSION. The mp_bind() function uses MP_C_SESSION OM
objects as both input and output parameters. You can think of a session as a
binding to the communications infrastructure. You can create multiple bindings to
the communications infrastructure by making multiple calls to mp_bind(); each call
returns a distinct session. This facilitates having sessions with differing character-
istics. This technique might be used in a single process acting as multiple agents,
or to tailor a binding for a particular destination.

Note: Once the mp_bind() function starts a session, you cannot modify any of the
OM attributes of the session OM object. Doing so may cause unpredict-
able, potentially catastrophic errors.

You can use the default MP_C_SESSION OM object called
MP_DEFAULT_SESSION as input to the mp_bind() function. Its characteristics are
described in the Session class definition in the NetView for AIX Programmer's Ref-
erence.

Note: The default session is not an appropriate choice for a management program
that has a responder role. The properties of the default session do not
allow the session to receive indications, because it does not include the
entity name. The NetView for AIX program requires the entity name to
provide location transparency.

Function of the Session
The session serves several purposes:

Addressing: The session parameter can contain addressing information for both
the requester and responder.

Establishing the Role of the Management Program: The session parameter
includes an OM attribute, MP_ROLE, used to specify whether to enable manager or
agent roles for the session.

 Chapter 13. Using the XMP API 217

Default Access Control: Most of the XMP routines have arguments which include
an optional access-control attribute. When the underlying service provider uses
CMIP, the program does not support access control for association establishment,
so this attribute must not be present in session or context objects that will be used
to access CMIP agents. When it is part of the request, such as the Community
Name in an SNMP-Get-Argument or the External Access Control in a
CMIS-Set-Argument, it is sent to the responder, and the responder is responsible
for validating the Access Control information.

Process Handling: One OM attribute of the session, MP_FILE_DESCRIPTOR,
provides a file descriptor that is used in the mp_wait() function. If the session is
inactive, the value is MP_NO_VALID_FILE_DESCRIPTOR.

The Context Parameter
Most XMP functions require a parameter called context, which is an OM object
whose OM class is MP_C_CONTEXT.

The context parameter defines several characteristics of a transaction that fre-
quently are identical for a number of transactions. The context parameter collects
these into a single OM object which can be created and reused as necessary.

The defined default context, MP_DEFAULT_CONTEXT, is always valid as input to
XMP functions, though possibly insufficient for some management programs.
Details about these default characteristics appear in the description of the context
OM class in the NetView for AIX Programmer's Reference.

The OM class MP_C_CONTEXT contains two key groups of OM attributes:

 � Service controls
 � Local controls

Service Controls of the Context
The service control OM attributes are described in the following list:

MP_ACCESS_CONTROL
This optional OM attribute specifies access-control information that
extends any access-control information specified in the session param-
eter.

MP_MODE
Requests either confirmed (MP_T_CONFIRMED) or non-confirmed
(MP_T_NON_CONFIRMED) service. This OM attribute is meaningful
only for calls to mp_set_req(), mp_event_report_req(), and
mp_action_req().

MP_PRIORITY
This OM attribute is not used by the NetView for AIX program.

218 Programmer's Guide

Local Controls of the Context
The local control OM attributes are described in the following list:

MP_ASYNCHRONOUS
Indicates whether a function call should be made synchronously
(OM_FALSE) or asynchronously (OM_TRUE) as described in “Synchro-
nous and Asynchronous Calls in XMP” on page 221. Its value is mean-
ingful only for those functions that can be called either way.

MP_SIZE_LIMIT
Indicates the maximum number of linked responses allowed for any syn-
chronous call to mp_get_req(), mp_set_req(), mp_action_req(), or
mp_delete_req(). Details about the effect of exceeding this limit appear
in the description of this OM class in the NetView for AIX Programmer's
Reference.

MP_TIME_LIMIT
Indicates the number of seconds to wait for a response to a synchro-
nous function call. If this limit is exceeded, the request is terminated.
Details about other effects appear in the description of this OM class in
the NetView for AIX Programmer's Reference.

Other Input Parameters
Besides the session and context parameters, each protocol function in XMP has a
function-specific input argument:

� For requester functions, the function-specific input argument is called argument.

� For responder functions, the function-specific input argument is called
response.

Each of these is an OM object with OM attributes appropriate for the function. See
the NetView for AIX Programmer's Reference for descriptions of the protocol func-
tions of XMP and the appropriate OM class definitions.

Interpreting the Object Instance
When an agent receives a request, it must interpret the object instance and trans-
late the object instance information into addressing information that will be used to
access the object. For optimal performance, the agent should not have to translate
the object instance information before using it as an addressing mechanism. To
eliminate translation, use the object's distinguishing attribute to identify the object
instance when you send requests from your management program. For example, a
workstation agent can use an IP address for the distinguishing attribute. When this
agent receives a request, it can access the specified object (workstation) by using
the distinguishing attribute.

The distinguished name (DN) for a LANIC card on a workstation might be a concat-
enation of the network relative distinguished name (RDN), the LAN RDN, the work-
station RDN, and then the LANIC RDN. In this case, the distinguishing attribute for
the LANIC card would be the last RDN from the distinguished name.

However, in some cases the last distinguished name is not enough. For instance,
imagine an agent that manages all of the LANIC cards on a LAN. To identify a
specific object instance of a LANIC card, the agent needs the distinguished name
of both the workstation and the LANIC card.

 Chapter 13. Using the XMP API 219

If an agent encounters an error interpreting the last part of the DN, it should verify
the complete name. The assumptions made about the previous part of the Fully
Distinguishing Name (FDN) may have been wrong.

If you cannot model a distinguishing attribute that can be used as the addressing
mechanism for the object, the agent has to maintain an internal table that translates
the object instance information into an address mechanism. The implementation of
this is object-dependent.

Return Values for XMP Functions (Status)
The functional result of every XMP function is a private OM object, MP_status.
This is one of the OM object constants (MP_SUCCESS, MP_INVALID_SESSION,
MP_NO_WORKSPACE, MP_INSUFFICIENT_RESOURCES), or an instance of one
of the five concrete subclasses of the abstract OM class Error. The details of these
OM objects are described in “The OM Class Error” on page 228.

Invoke Identification Parameter
All the XMP protocol requester functions have an output parameter called
invoke_id_return. This parameter is an integer that is different for every invocation
of a requester function and uniquely identifies the particular call. It is provided
solely to support asynchronous operation.

When XMP is used asynchronously, the result is obtained later in a call to
mp_receive(). One of the output parameters of mp_receive() is the
invoke_id_return parameter of the function call whose result is being returned.

You need to keep a record of invoke_id_return for every asynchronous call, so that
you later can match the incoming result.

The Result Parameter
The XMP request functions, with the exception of mp_cancel_get_req(), include a
parameter called result_return. This pointer points to a private OM object that con-
tains the result of the request as sent by the responder. However, this is true only
under the following conditions:

� The request function must be called in synchronous mode.
� The request function return value (MP_Status) must be MP_SUCCESS.

If the request is made asynchronously, encounters an error, or fails to initiate a
transaction, the result_return parameter is not valid.

When the result_return parameter is valid, the OM object can be composed of
either a single reply or multiple linked replies.

 Linked Replies
Some requests can cause multiple linked replies. When a request causes multiple
replies, each reply is called a partial result. The following CMIS requests cause
multiple linked replies:

 � mp_action_req()
 � mp_delete_req()
 � mp_get_req()
 � mp_set_req()

220 Programmer's Guide

For a synchronous call, the result_return parameter is a private OM object of OM
class MP_C_MULTIPLE_REPLY; this is a list of OM objects of OM class
MP_C_CMIS_LINKED_REPLY_ARGUMENT, each of which constitutes a partial
result.

You can examine this result_return parameter by using XOM function calls, such as
om_instance() and om_get().

For an asynchronous call, the result_or_argument_return value from a call to
mp_receive() is an OM object of OM class
MP_C_CMIS_LINKED_REPLY_ARGUMENT.

Notes:

1. When an agent receives a request for a managed object, it must respond. If it
does not recognize the specified object, it must return the constant
MP_ABSENT_OBJECT. For a scoped request, the agent must signal the end
of replies by returning MP_ABSENT_OBJECT in the final message.

2. Be sure to identify the type of the attribute present in the linked reply argument,
because many attributes that contain different OM classes are permitted in this
object.

Synchronous and Asynchronous Calls in XMP
As a programmer, you are familiar with synchronous function calls. Code that
follows a synchronous function call can assume that the effect of the call is com-
plete. For example, when the malloc() function returns, memory has (or, for errors,
has not) been allocated. This call to malloc() will not result in memory allocation at
some indeterminate time in the future. The call and its effect are synchronous.

XMP enables you to make any call, except mp_cancel_get_req(), synchronously,
and to use requester functions asynchronously. When you make an asynchronous
function call, the XMP interface first determines if the call is valid. If so, the trans-
action with the responder is initiated, and your management program is notified,
through MP_Status, that the call succeeded. Success in this case applies to the
successful initiation of the request; the request itself has not yet been processed.

After your management program is notified of the successful initiation of the
request, it can continue processing while the request is being serviced. If a
response is expected, you must later call mp_receive() to determine the outcome of
the request. If the responder was unable to process the request successfully, that
fact becomes known when the response is processed.

Requester function calls are made synchronously or asynchronously based on the
value of the Boolean MP_ASYNCHRONOUS OM attribute of the context param-
eter. If this attribute is set to OM_TRUE, requester function calls are made asyn-
chronously; otherwise, they are made synchronously.

All XMP responder functions and all XMP supporting functions are always synchro-
nous; there is no asynchronous option for them.

 Chapter 13. Using the XMP API 221

Synchronous Requester Operation
When you make synchronous requester calls, use the following rules to interpret
the effect of each call:

� If the return value of the function is MP_SUCCESS, the function call success-
fully initiated the request. If a reply was expected, the following points are also
true:

– The request was successfully processed.

– The result_return parameter contains one of the private OM objects speci-
fied for the operation. For instance, in the case of a synchronous call to
mp_get_req(), the result_return for a CMIS get operation contains an OM
object whose OM class is MP_C_CMIS_GET_RESULT,
MP_C_SNMP_GET_Result, MP_C_CMIS_MULTIPLE_REPLY, or
MP_ABSENT_OBJECT (if no managed objects were selected for the
request).

In the case of a MP_C_CMIS_MULTIPLE_REPLY, each associated
MP_C_CMIS_LINKED_REPLY_ARGUMENT OM object contains one reply.
This reply may indicate an error, so you need to check all the individual
replies to be sure that the operation was completely successful. The
MP_C_CMIS_MULTIPLE_REPLY OM object terminates with an
OM_NULL_DESCRIPTOR.

� If the return value of the function (its MP_status OM object) is not
MP_SUCCESS, the request has failed, at least partially. The return value OM
object is one of the concrete subclasses of the abstract OM class Error. This
OM object indicates the nature of the error.

Asynchronous Requester Calls
The constant MP_MAX_OUTSTANDING_OPERATIONS specifies the maximum
number of asynchronous transactions that can be outstanding at any time. An
asynchronous transaction is outstanding until one of the following occurs:

� The last reply is received through mp_receive().
� The transaction is abandoned through mp_abandon().
� The session is closed through mp_unbind().
� The workspace is destroyed through mp_shutdown().

Because an asynchronous function call returns before the request has been ser-
viced, you need a mechanism to obtain the responses to that request. In XMP, this
mechanism is the mp_receive() function.

When you use asynchronous requester calls, use these rules to interpret the effect
of each call:

� If the return value of the function, which is an MP_status OM object, is
MP_SUCCESS, the function call was valid and successfully initiated the
request. There is no information at this point about the success or failure of
that request, only that it has been successfully initiated.

The invoke_id_return parameter is a unique number that identifies this partic-
ular call. Use this identifier to match an incoming reply, from mp_receive(), with
the call to which it pertains.

On an asynchronous request, the result_return parameter is not valid. The
result is obtained later through mp_receive().

222 Programmer's Guide

� If the return value of the function is not MP_SUCCESS, the function call did not
initiate a transaction; no reply is sent, even for a confirmed request.

Note: If you have outstanding asynchronous calls on a session, wait for them
to terminate and obtain their results before you issue a synchronous call
on the session. You cannot mix synchronous and asynchronous calls
on a session.

Handling Errors Reported by mp_receive()
If a responder encounters an error in servicing a request, it builds an appropriate
response input parameter to the response function.

From the requester's point of view, certain output parameters from mp_receive()
communicate the same information as the MP_status and the result_return param-
eter of a synchronous call. This correspondence is shown in Table 22.

The following rules apply to these mp_receive() output parameters:

� The result_or_argument_return parameter contains one of the private OM
objects specified for the operation, if the operation_notification_status_return
value is MP_SUCCESS. For instance, in the case of an asynchronous call to
mp_get_req(), the result_or_argument_return parameter contains an OM object
whose OM class is either MP_C_CMIS_GET_RESULT,
MP_C_CMIS_MULTIPLE_REPLY, or MP_ABSENT_OBJECT (if no managed
objects were selected for the request).

If a CMIS request was scoped so that multiple objects were selected, several
calls to mp_receive() report a MP_C_LINKED_REPLY_ARGUMENT response,
each containing one reply from an agent. This reply may indicate an error so
you need to check all the individual replies to be sure that the operation was
completely successful. The agent signals the end of replies by sending
MP_ABSENT_OBJECT as the last reply.

� If the operation_notification_status_return OM object is not MP_SUCCESS, the
request failed, at least partially. The OM object is one of the concrete sub-
classes of the abstract OM class Error; which one determines the nature of the
error. In this case, the result_or_argument_return is not valid.

Table 22. Comparing Parameters from Synchronous and Asynchronous Calls

Asynchronous parameters from mp_receive() Synchronous parameters

operation_notification_status_return MP_status (the function return value)

result_or_argument_return result_return

Matching Responses to Outstanding Asynchronous Requests
An invoke_id_return value is returned by an asynchronous request. Later, when
the response for that request is received, the mp_receive() function returns the
same value in its own invoke_id_return parameter.

This gives you a mechanism to match the call to its reply. You, of course, must
implement a scheme for recording invoke identification values and for matching
them to your outstanding asynchronous requests.

 Chapter 13. Using the XMP API 223

Asynchronous Responder Operation
The role of a responder has no asynchronous characteristics. All responder activity
is carried out synchronously. However, a responder must behave correctly to
support asynchronous communications.

Receiving Requests and Notifications
Responder management programs receive requests, which may be request func-
tions or notifications, through mp_receive(), but the role is reversed compared to
that of a requester. If the request, such as mp_set_req(), was made in confirmed
mode, you need to respond by calling the corresponding response function, such
as mp_set_rsp().

When you receive a request or notification, such as a get request or event notifica-
tion, one of the output parameters of the mp_receive() function is invoke_id_return.
This value must be used as one of the input parameters to the response function,
invoke_id. Do not modify the invoke_id_return value that you receive from
mp_receive(), and ensure that the value you use in a response function matches
the value from the corresponding call to mp_receive(). The invoke identification is
the only link a requester has between its request and your response. If this link is
lost, the response is discarded and the corresponding request eventually times out.

Abandoning Asynchronous Operations
XMP provides two functions that enable you to terminate an outstanding asynchro-
nous request:

� The mp_abandon() function requests that XMP discard any further responses
to the request. This has no effect on the activity of the responder.

� The mp_cancel_get_req() function is a confirmed service that sends a message
to the responder, informing it that further processing of the get request is
unnecessary. The responder is then free to terminate such processing.

Using this function in a management program is beneficial, because it can
reduce management traffic on the network. Locally, the effect is identical to
that of mp_abandon().

 Program Sequencing
This section provides information about the typical sequences of XMP function
calls.

 XMP Workspaces
The first step to take in creating a program that uses the XMP and XOM APIs is to
create an XMP workspace. The XMP workspace is used by XOM to store data
structures that it manipulates to support XMP functions. To create an XMP work-
space, use the following statement as one of the first executable statements at the
beginning of your management program:

workspace = mp_initialize();

The workspace should be discarded at the end of the management program, using
the following statement:

 mp_shutdown(workspace);

224 Programmer's Guide

Program Initialization and Shutdown Sequences
Management programs that use XMP have characteristic initialization and shutdown
sequences that involve five XMP functions:

 � mp_initialize()
 � mp_version()
 � mp_bind()
 � mp_unbind()
 � mp_shutdown()

 Initialization Sequence
The following steps apply to the initial phases of every management program
operation:

Step 1. Create a workspace with mp_initialize(). This initial workspace supports
only the Common and OM packages.

Step 2. Request that additional features be added to the workspace, using
mp_version(). The feature_list parameter of this call normally contains
either MP_CMIS_PACKAGE or MP_SNMP_PACKAGE and any manage-
ment contents packages, such as DMI. This is dependent on your man-
agement program requirements and design. Use OM_EXPORT to export
these identifiers in the global declarations. The OM_EXPORT XOM
macro is described in “Using the OM_EXPORT and OM_IMPORT
Macros” on page 204. At this point, you are able to create and manipu-
late OM objects using XOM functions and the class definitions in the
packages you added.

Step 3. Open one or more sessions with the communications infrastructure using
mp_bind(). The session OM object you get back from each call to
mp_bind() is an input parameter to many XMP functions and contains
common values for transactions. The session OM object is described in
“The Session Parameter” on page 217.

At this point, your management program is in operational status and can perform
any required activities in its role as an agent or manager.

 Shutdown Sequence
The following steps apply to the closing phases of operation:

Step 1. Close all open sessions, using mp_unbind() on each one. This step
abandons all outstanding asynchronous operations associated with each
session. If you want to resolve outstanding requests, your management
program can call mp_receive() repeatedly until the value of the
completion_flag_return parameter is MP_T_NOTHING before issuing the
mp_unbind() function call.

Step 2. Discard the workspace using mp_shutdown(). Note that a shutdown
alone does not recover the resources associated with service-generated
public OM objects created during the life of the workspace. Therefore,
use om_delete() against each such OM object when you are finished with
it.

Note: The function call mp_shutdown() automatically unbinds all sessions.

 Chapter 13. Using the XMP API 225

 Operating Sequences
In general, every transaction (request or notification) between a manager and an
agent begins in the idle state. The state of the transaction changes when an
activity occurs, such as issuing or receiving a request. Later activity that resolves
the current state causes the state to return to idle.

Note that these diagrams show the states of a particular transaction, not the global
state of the process. Therefore, the idle state might well be renamed non-existent:
transitions out of this state imply the initiation of a transaction; transitions into it
imply the completion. Table 23 shows the typical activities of a management
program in the role of a manager. Note that each line in the second column of the
table is a separate trigger for the transition noted in the first column. Also, the
number in parentheses refers to a different but related transition.

Table 24 illustrates typical activities of a management program in the role of an
agent:

Table 23. State Transitions for a Manager

Transition Number XMP Function

1 mp_action_req()
mp_create_req()
mp_delete_req()
mp_get_req()
mp_get_next_req()
mp_set_req()

2 mp_receive() (confirmation for (1))
Request (1) was synchronous and unconfirmed
mp_abandon() (request (1))

3 Receive partial (linked) reply

4 mp_cancel_get_req() (request (1))

5 mp_receive() (a notification)

6 mp_event_report_rsp()
Notification (5) was unconfirmed

Table 24. State Transitions for an Agent

Transition Number XMP Function

1 mp_receive() (an indication)

2 mp_action_rsp()
mp_cancel_get_rsp()
mp_create_rsp()
mp_delete_rsp()
mp_get_rsp()
mp_set_rsp()
Indication (1) was unconfirmed

3 Send partial (linked) reply

4 mp_event_report_req()

5 mp_receive() (confirmation for (4))
Request (4) was synchronous
Request (4) was unconfirmed
mp_abandon() (request (4))

226 Programmer's Guide

You must ensure that every activity with which your management program is
involved, as either requester or responder, returns to the idle state. To do other-
wise represents incomplete handling of process interactions.

Important Note: Calls to the XMP/XOM library do not protect themselves from
interrupt by signals. If your application uses signals, you must block signal delivery
around all XMP/XOM function calls.

 Handling Errors
This section summarizes information about managing errors that can arise in the
XMP and XOM interfaces.

Errors are reported to your management program through the function return value.
The XMP functions return, as their functional result, a private OM object, a member
of the abstract OM class Error. More specifically, any particular function return
value is a private OM object whose OM class is one of the concrete subclasses of
the abstract OM class Error. Most commonly, XMP functions return the constant
OM object MP_SUCCESS, which indicates a successful completion.

General Error Constants
XMP functions usually return the constant OM object MP_SUCCESS, which is
self-explanatory.

The following three error constants (OM objects) can be returned by all XMP func-
tions except mp_error_message() and mp_initialize():

MP_NO_WORKSPACE
The workspace parameter is invalid.

MP_INVALID_SESSION
The session parameter is invalid.

MP_INSUFFICIENT_RESOURCES
There are inadequate local resources, such as insufficient memory, to
execute the function.

 Chapter 13. Using the XMP API 227

The OM Class Error
Figure 16 illustrates the OM class Error and its subclasses. Abstract OM class
names contain lower-case letters; concrete OM class names do not.

MP_C_COMMUNICATIONS_ERROR

MP_C_LI BRARY_ERROR

MP_C_CMIS_SERVI CE_ERROR

MP_C_SNMP_SERVICE_ERROR

MP_C_SYSTEM_ERROR

Serv i ce- Er ro r

Figure 16. The Error OM Class

There are five concrete subclasses of the abstract OM class Error:

MP_C_COMMUNICATIONS_ERROR
OM objects of this OM class report failures detected by the XMP library.

MP_C_LIBRARY_ERROR
OM objects of this OM class report failures detected by the XMP library.

MP_C_CMIS_SERVICE_ERROR
OM objects of this OM class report failures detected by the CMIS pro-
tocol.

MP_C_SNMP_SERVICE_ERROR
OM objects of this OM class report failures detected by the SNMP pro-
tocol.

MP_C_SYSTEM_ERROR
OM objects of this OM class report failures detected by the operating
system.

The OM class Error includes two OM attributes inherited by all its subclasses:

MP_PROBLEM
The syntax of this OM attribute is OM_S_ENUMERATED. Its value,
prefixed by MP_E_, is a description of the difficulty, for example,
MP_E_SIZE_LIMIT_EXCEEDED.

MP_PARAMETER
The syntax of this OM attribute varies according to the MP_PROBLEM
of the error. The OM class descriptions in the NetView for AIX Pro-
grammer's Reference explain, for each value of MP_PROBLEM, what
the OM syntax of the associated MP_PARAMETER is.

For some values of MP_PROBLEM, there is no associated
MP_PARAMETER; in this case, the OM attribute is missing.

None of the subclasses of Error specify any additional OM attributes; however, they
do specify particular values for these OM attributes.

For example, the MP_C_LIBRARY_ERROR OM class specifies 20 different values
for MP_PROBLEM; an OM object of this OM class must have one of these values,
some of which further specify the OM syntax of an associated MP_PARAMETER.

228 Programmer's Guide

On the other hand, the MP_C_COMMUNICATIONS_ERROR OM class specifies
different values for MP_PROBLEM and specifies an MP_PARAMETER with a
syntax of OM_S_INTEGER.

A communications error occurs only when the communications infrastructure cannot
send the message to the proper recipient. A communications error usually means
either that the recipient (agent/manager) is not running, or that the agent has not
been registered in the ORS.

The man page for each XMP function defines the errors it can return.

Note: Your management program never creates an OM object of any subclass of
Error except the ones derived from Service-Error. OM objects of these OM
classes are created exclusively by the XMP implementation as function
return values, and, in the case of mp_receive(), as an output parameter.

Using XMP and XOM
As you begin coding management programs with these APIs, follow these steps:

Step 1. Determine the values that you want the session and context OM objects
to have. These OM objects are described in “The Session Parameter” on
page 217 and “The Context Parameter” on page 218. Use XOM func-
tions, or suitable constants, to set these parameters.

Step 2. Initiate your workspace and session using mp_initialize(), mp_bind(), and
mp_version() as described in “Initialization Sequence” on page 225.
Perform any necessary local initialization.

At this point, a management program performing an agent role typically
drops into a loop. The agent stays in the loop while waiting for an
incoming request by using mp_wait(). When an incoming request arrives,
the management program uses mp_receive() to get the request, services
it, and returns to mp_wait(). The agent role requires that the manage-
ment program be able to detect the conditions that require the issuance
of an SNMP trap or CMIS notification, through mp_event_report_req().
How the management program performs the agent role is dependent on
the management program design.

A management program that performs the manager role typically begins
interacting with a user. Based on user input or other criteria, the man-
agement program issues requests to appropriate managed objects. The
manager role can require that the management program receive and
process SNMP traps and CMIS notifications, using mp_receive().

Note: A manager must receive incoming data as its top priority. An
agent may issue many linked replies to a get request. If the
manager responds slowly, or not at all, its interface with the post-
master may overflow, causing lost data.

Step 3. At each step, your design dictates when your management program
needs to issue protocol requests and responses, such as mp_get_req(),
mp_get_next_rsp(), or mp_event_report_req(). Refer to the NetView for
AIX Programmer's Reference for the syntax and parameters of each XMP
function you want to use.

Step 4. Use the XOM calls to build an appropriate argument OM object. This is
highly dependent on the operation and managed objects involved. Use

 Chapter 13. Using the XMP API 229

the object definition to find the registration identifications of the attributes
in which you are interested and the OM class definition of the argument.

Step 5. Make the XMP call. Many requests can be made either synchronously or
asynchronously. These modes are described in “Synchronous and Asyn-
chronous Calls in XMP” on page 221.

The binding to the C language is explained in Chapter 14, “C-Language
Binding for the XOM and XMP APIs” on page 231.

 Example Programs
Example programs provide detailed illustrations of XMP calls with both protocols,
CMIP and SNMP. The source files of the examples are located in the directory
/usr/OV/prg_samples/xmp. To run these examples, you must log in as the root
user.

To run the CMIP example, change directory to /usr/OV/prg_samples/xmp/cmip.
Read the /usr/OV/prg_samples/xmp/cmip/README file, which explains how to run
the example and what results to expect.

To run the SNMP example, change directory to /usr/OV/prg_samples/xmp/snmp.
Read the /usr/OV/prg_samples/xmp/snmp/README file, which explains how to run
the example and what results to expect.

A third example illustrates the use of the ovesmd daemon with the XMP API. To
run this example, change directory to /usr/OV/prg_samples/xmp/ems. Read the
/usr/OV/prg_samples/xmp/ems/README file, which explains how to run the
example and what results to expect.

230 Programmer's Guide

Chapter 14. C-Language Binding for the XOM and XMP APIs

This chapter explains certain characteristics of the C-language binding to the XMP
API. The binding specifies C-language identifiers for all the elements of the XMP
API so that management programs written in the C language can access the man-
agement information services. These XMP API elements include function names,
typedef names, and constants.

There is a complete list of all the identifiers in the following header files:

� The xom.h file contains definitions for the X/Open OSI-Abstract-Data Manipu-
lation (XOM) API.

� The xmp.h file contains common definitions for the XMP API.

� The xmp_cmis.h file contains specific definitions for the abstract services of the
Common Management Information Service (CMIS) and the ASN.1 productions
of the related protocol (CMIP).

� The xmp_snmp.h file contains specific definitions for the abstract services of
the Simple Network Management Protocol (SNMP) and the associated ASN.1
productions.

� The header files for the Management Contents packages.

C-Language Naming Conventions
The XMP API uses part of the C-language public namespace for its facilities. All
identifiers start with one of the following prefixes:

 � mp
 � MP
 � OMP

The following prefixes are reserved and cannot be used by developers of manage-
ment programs:

 � mpP
 � mpX
 � MPX
 � OMP
 � _mp

The XOM API uses naming conventions that are similar, although not identical, to
the XMP API naming conventions. The XOM API naming conventions are
described in the NetView for AIX Programmer's Reference. All the XOM identifiers
start with the prefix OM or om.

 Copyright IBM Corp. 1992, 1995 231

To improve readability, this book uses language-independent names for most of the
API elements; however, the C-language name is given for the elements listed in
Table 25:

For all other elements, this book uses language-independent names.

Table 25. Elements for which C Language Name Is Provided

Element Description Example
C-language Name

Function calls The names of XMP functions have the
prefix mp_ and are in lower-case letters.
Also, many XMP functions have the suffix
_req() or _rsp() to indicate CMIS request
and response functions. Function calls
end with parentheses.

mp_get_req()

Convenience rou-
tines

The names of convenience routines have
the prefix at_ and are in lower-case
letters.

at_oid_to_str()

Function parameters The names of XMP function parameters
are in lower-case letters, italicized, and
have no special prefix.

name

Data types The names of data types have the prefix
OM_ or MP_, depending on whether they
are defined by XOM or XMP. The rest of
the data type name is in lower-case
letters.

MP_status

Deriving C-Language Names from Language-Independent Names
The C-language names can be derived from the language-independent names by a
mechanical process that depends on the kind of name. The following sections
explain how to derive the C-language name from the language-independent name.

OM Class Names
To derive the C-language name for an XMP-defined OM class name, follow these
steps:

Step 1. Change all letters to upper case
Step 2. Add the prefix MP_C_
Step 3. Change hyphens (-) to underscores (_).

Note: The language-independent OM class names are those used in ASN.1 with
the exception that names containing multiple words are separated with
hyphens.

Example: Get-Result becomes MP_C_GET_RESULT.

 Defined Constants
To derive the C-language name for a macro or defined constant, including
XMP-defined OM attributes but excluding error-related constants and enumeration
constants, follow these steps:

Step 1. Change all letters to upper case
Step 2. Add the prefix MP_
Step 3. Change hyphens (-) to underscores (_)

232 Programmer's Guide

Notes:

1. The name of an OM attribute is local to its OM class, which means that the
same name may appear in different OM classes. For example, the OM attri-
bute filter is defined in both the Get-Argument OM class and the Set-Argument
OM class.

2. The language-independent OM attribute names are those used in ASN.1 with
the exception that names containing multiple words are separated with
hyphens.

Example: scope becomes MP_SCOPE.

 Error Constants
To derive the C-language name for an error constant (the name of a value for an
error-related enumerated type defined by XMP), follow these steps::

Step 1. Change all letters to upper case
Step 2. Add the prefix MP_E_
Step 3. Change hyphens (-) to underscores (_)

Example: access-denied becomes MP_E_ACCESS_DENIED.

 Enumeration Constants
To derive the C-language name for an enumeration constant (tag value), follow
these steps:

Step 1. Determine the value
Step 2. Change all letters to upper case
Step 3. Add the prefix MP_T_
Step 4. Change hyphens (-) to underscores (_)

Example: Enum(CMIS-Sync) becomes MP_T_BEST_EFFORT.

OM Attribute Limits
In the OM attribute tables in “Declaring OM Objects” on page 206, there are two
columns labeled Value Length and Value Number. If the upper limit in either of
these columns is not 1, it is given an identifier. To derive the C-language name for
the upper limit for the value length or value number of an OM attribute, follow these
steps:

Step 1. To the OM attribute name, add the prefix MP_VL_ for value length or
MP_VN_ for value number.

Step 2. Change hyphens (-) to underscores (_).

Examples: the C-language name for the upper limit for the length of the value of
the OM attribute IP-ADDRESS is MP_VL_IP_ADDRESS. The C-language name
for the upper limit for the number of values of the OM attribute SUBSTRINGS is
MP_VN_SUBSTRINGS.

 Chapter 14. C-Language Binding for the XOM and XMP APIs 233

 Object Identifiers
To derive the C-language name for an object identifier, follow these steps:

Step 1. Change all letters to upper case
Step 2. Add the appropriate package identification and C prefix for the item, for

example, MP_C_ for an OM class. The C prefixes are:
C_ - for OM classes
O_ - for Managed Objects
A_ - for Attributes and Attribute Groups
N_ - for Notifications
S_ - for Parameters
B_ - for Name Bindings
P_ - for Packages

Step 3. Add the prefix OMP_O_
Step 4. Change hyphens (-) to underscores (_)

Table 26 gives some examples:

Table 26. Constructing C-language Names for Object Identifiers

Independent Name C-language Name

top
activeDestination
communicationsAlarm
miscellaneousError
additionalInformation
discriminator-system

OMP_O_DMI_O_TOP
OMP_O_DMI_A_ACTIVE_DESTINATION
OMP_O_DMI_N_COMMUNICATIONS_ALARM
OMP_O_DMI_S_MISCELLANEOUS_ERROR
OMP_O_DMI_P_ADDITIONAL_INFORMATION
OMP_O_DMI_B_DISCRIMINATOR__SYSTEM

Function Return Value and Returned Parameters
If a function succeeds, the function return value is expressed in the C language by
the constant MP_SUCCESS. If the function is not successful, an error is returned.

Because the C language does not provide multiple return values, functions must
return all other results by writing into storage passed by the management program.
Any argument that is a pointer to such storage has a name ending with _return.
For example, the C-language parameter declaration Uint * completion_flag_return in
the mp_receive() function indicates that the function will return an unsigned integer
as a result; the actual argument to the function must be the address of a suitable
variable. This notation enables the user to distinguish between an input parameter
that happens to be a pointer and an output parameter where the asterisk is used to
simulate the semantics of passing by reference.

 Errors
If a function is not successful, it returns a value other than MP_SUCCESS and
does not update the return parameters. The function return value in this case is
one of the following:

� The constant MP_NO_WORKSPACE
� The constant MP_INVALID_SESSION
� The constant MP_INSUFFICIENT_RESOURCES
� A private object of one of the subclasses of the OM class Error

234 Programmer's Guide

In order to allow automatic connection management (connection establishment and
release that are not apparent), the XMP API might not communicate with a man-
agement program when mp_bind() is called. Instead, the XMP API might wait to
establish the connection until a management operation or management notification
is requested. Because of this flexibility, all functions can return the same errors as
mp_bind(). For example, a get operation can return an authentication error
because the connection was deferred until access actually was needed.

 Supplied Parameters
If the value of a parameter to a function is not valid, such as a value outside the
domain of the function or a pointer outside the address space of the program (or a
null pointer), the function's behavior is undefined, unless otherwise stated in the
function description.

 Asynchronous Operations
Error reporting is more complicated for asynchronous operations, because these
operations can fail either before the remote operation is started or during the
remote operation. An error in the first stage is reported immediately in the return
value of the invoking function. An error in the second stage is returned as the
operation_notification_status_return result of a later call to mp_receive().

Compiling and Linking
All management programs that use the XMP API must include the xom.h and
xmp.h headers, in that order, and at least one of the xmp_cmis.h and xmp_snmp.h
headers.

When compiling management programs, no special switches are required. The fol-
lowing is an example of a program compile statement:

cc -c agent.c

A management program must be linked with the libxmp.a library. This library
includes the following management services and packages:

 � XOM API
 � XMP API
 � Common
 � XOM
 � LNV

A management program can be dynamically linked to the CMIS and SNMP man-
agement service packages by using the mp_version() function. No special link
statement is required.

The following is an example of a program link statement:

cc agent.o -l xmp -o agent

 Chapter 14. C-Language Binding for the XOM and XMP APIs 235

236 Programmer's Guide

Chapter 15. Introduction to the NetView for AIX WinSNMP
API

This chapter describes the NetView for AIX implementation of the Windows SNMP
Manager API Specification Version 1.1a. The specification represents the suc-
cessful collaboration of many companies within the computer industry. Although
originally drafted for the Microsoft Windows** environment, the design of the API is
platform independent. IBM chose to implement NetView for AIX Windows SNMP
(from here on referred to as WinSNMP) in its continued support for open tech-
nology. Parts of this chapter contain text from the specification. If you would like
the complete specification document, see “SNMP Information” on page 383.

The original Internet-standard network management framework, as described in
RFCs 1155, 1157, and 1212, is termed the SNMP version 1 framework (SNMPv1).
In addition, there are three proposed Internet standards, as described in RFCs
1418, 1419, and 1420, that address the use of transports other than User
Datagram Protocol (UDP) over Internet Protocol (IP) for SNMPv1. These RFCs
describe SNMPv1 over Open Systems Interconnection (OSI), AppleTalk, and Inter-
network Packet Exchanger (IPX).

The latest Draft-standard network management framework, as described in RFC
1901 through RFC 1908, is termed the Community-based SNMPv2 framework
(SNMPv2C). (See “SNMP Information” on page 383 for a listing of RFCs.)

The Windows SNMP Manager API Specification introduces no constraints on the
use of SNMPv1 or SNMPv2C, nor on the functionality supported by those protocols
as prescribed in the relevant Internet RFCs. For the purposes of this document,
SNMPv1 is seen as a subset of SNMPv2C.

What Is WinSNMP?
WinSNMP provides a single interface for application programmers and software
vendors. This interface defines the procedure calls, data types, data structures,
and associated semantics to which an application developer can program and
which an SNMP software vendor can implement.

Figure 17 on page 238 shows IBM's WinSNMP end-to-end SNMP connectivity
from an entity acting in a manager role to an entity acting in an agent role. This
diagram is a high-level rendition of the model embodied in the current version of
WinSNMP.

 Copyright IBM Corp. 1992, 1995 237

Local
Database

W
I
N
S
N
M
PSNMP Mgr

Application

SNMP Mgr
Application N

e
t
w
o
r
k SNMPv2USEC

Agent

SNMPv1
Agent

SNMPv2C
Agent

Trilingual
SNMPv1/SNMPv2C/SNMPv2USEC

Engine

WinSNMP Architecture

T
R
A
N
S
P
O
R
T

Figure 17. NetView for AIX WinSNMP Architecture

Benefits Provided by WinSNMP
WinSNMP offers these major benefits—all intended to accelerate the development,
dissemination, and use of SNMP network management applications:

� SNMP enabling technology for functional network management applications (for
example, SNMP makes ASN.1, BER, and SNMP protocol details transparent).

� SNMP service provider independence. A WinSNMP application runs with any
compliant WinSNMP implementation.

� Uniform SNMPv1 and SNMPv2 support. A WinSNMP application does not
have to know the SNMP version level of the target SNMP entities acting in an
agent role. The WinSNMP implementation performs any and all necessary
mappings between SNMPv1 and SNMPv2 in accordance with the appropriate
RFCs.

� Transparent support for the secure SNMPv2 “User Based Security” model
(SNMPv2USEC).

 Compliance
Software which conforms to the Windows SNMP Manager API Specification is con-
sidered to be WinSNMP compliant.

Suppliers of implementations which are WinSNMP compliant are referred to as
WinSNMP suppliers. Nothing in the Windows SNMP Manager API Specification is
meant to dictate or preclude particular implementation strategies. The specification
allows for various overlapping levels of SNMP support on the part of an implemen-
tation:

� Level 0 = Message encoding/decoding only
� Level 1 = Level 0 + interaction with SNMPv1 agents
� Level 2 = Level 1 + interaction with SNMPv2 agents
� Level 3 = Level 2 + interaction with other SNMPv2 managers

To be WinSNMP compliant, a vendor must implement 100% of the Windows SNMP
Manager API Specification, as appropriate to the level of SNMP interaction the
given implementation supports. WinSNMP vendors are encouraged to state clearly
the level of SNMP interaction they support in all of their marketing and technical
literature.

238 Programmer's Guide

Note: The NetView for AIX WinSNMP API provides Level 3 implementation.

Applications that are capable of operating with any WinSNMP compliant implemen-
tation, which supports at least the level of SNMP interaction required by the appli-
cation, are considered to have a WinSNMP interface and are referred to as
WinSNMP applications.

The current version of the Windows SNMP Manager API Specification defines the
use of the API by management applications. A future revision or separate exten-
sion may include features for use by SNMP agents. A companion document, the
WinSNMP/MIB API Specification, provides definitions of elements used as oper-
ands to SNMP operations. If you would like the complete specification document,
see “SNMP Information” on page 383.

 SNMP
SNMP is a request-response protocol used to transfer management information
between entities acting in a manager role and entities acting in an agent role. Man-
agers are often configured as management stations and agents are often config-
ured as managed nodes. A manager can also act as an agent to another manager
in both vertical (hierarchical) and horizontal (distributed) relationships. Likewise, a
physical node might be managed by multiple agents, and an agent might manage
multiple physical nodes. When the prototypical management station/managed node
perspective is used for the sake of simplicity and clarity of presentation, that prac-
tice is not meant to preclude other forms of SNMP interactions.

Each managed device or application contains monitoring and (possibly) control
instrumentation. This instrumentation is accessed by the agent. The agent repres-
ents its access to this instrumentation to the manager through a Management Infor-
mation Base (MIB), filtered by the SNMP security mechanisms. Management
applications communicate with agents through SNMP to monitor and (possibly)
control managed devices or applications.

A management application may issue several requests to an agent, without waiting
for a response. Alternatively, it may issue a request and wait for a response, oper-
ating in a lock-step fashion with the agent. Furthermore, SNMP may be imple-
mented on a wide range of transport protocols, each with varying delivery
mechanisms and reliability characteristics. The normal transmission mechanism
(UDP) is through non-guaranteed messages which may be dropped, duplicated, or
re-ordered. Thus, with SNMP, it is the responsibility of each management applica-
tion to determine and implement the desired level of reliability for its communi-
cations. This means that the management application decides on its own
retransmission and timeout strategy.

An agent may send asynchronous messages, called traps in SNMPv1 or notifica-
tions in SNMPv2, to a management application. This important feature of SNMP is
also fully supported by WinSNMP.

Note: In this document, the term traps is used to refer both to traps and notifica-
tions, unless specifically qualified in a given instance.

SNMP can be broken down into these distinct parts:

 � Entities

 Chapter 15. Introduction to the NetView for AIX WinSNMP API 239

Network nodes with the capability of transferring network management informa-
tion using SNMP.

� Structure of Management Information

An agent's management information is structured as a collection of managed
objects that are stored in a virtual database called the MIB. Each object vari-
able is identified using an object identifier (OID).

 � Protocol Operations

Describes the types of operations and messages that can be used to send
management information between entities. Management objects are
encapsulated within a protocol data unit (PDU).

� Administrative and Security Framework

Defines the authentication, access control, and privacy mechanisms (if any)
used to protect management information against unwanted operations.

 Manager Entity
A manager is a node that actively participates in network management. It solicits
and interprets data about network devices and network traffic, and typically inter-
acts with a user to achieve the user's intentions. A manager can also initiate
changes in an agent by changing the value of a variable on the agent node. Man-
agers are frequently implemented as network management applications.

 Agent Entity
An SNMP agent is software that resides on a network node and is responsible for
communicating with managers regarding that node. The node is represented as a
managed object, with various fields or variables, that are defined in the appropriate
MIB. The agent has two purposes:

� To respond to requests from managers, supplying or changing the values of the
object's variables as requested

� To generate traps to alert managers of events, such as a component failure,
occurring at the node

Not all devices support SNMP directly. A device that does not directly support
SNMP is called foreign. A proxy agent is an agent that serves a foreign device by
translating between SNMP and the foreign device's protocol.

Dual Role Entity
A dual role entity is a node that has the ability to act both as a manager and an
agent. Such nodes are often referred to as Mid-Level Managers (MLM). These
types of entities solicit and interpret data about local network devices (acting as a
manager). When this entity detects a predefined event, it sends an asynchronous
notification to another manager (thus acting in an agent role). Dual role entities are
usually used to localize network management traffic and distribute the network
management workload among several nodes.

240 Programmer's Guide

Management Information Base
This section reviews highlights of data representation and the concept of a MIB.

The MIB is a method of describing managed objects by specifying the names,
types, and order of the fields, or variables, that make up the object. A MIB con-
tains the definitions for a collection of standardized and non-standardized (vendor
and experimental) objects.

The Internet MIB-II is one of many standard MIBs. MIB-II defines common objects
for managing TCP/IP networks. Other standard MIBs manage specific network ele-
ments as well.

Note: For more information about these topics, refer to RFC 1155, RFC 1212, and
RFC 1213.

MIB-II (RFC 1213) defines standardized objects for TCP/IP agents. To access the
value of a MIB-II object, an SNMP manager sends a request to the agent repres-
enting the desired instance of the object. The request message contains MIB infor-
mation (an OID) that lets the agent identify the specific objects. The corresponding
response message from the agent carries the same identifying information.

 OIDs
For the purpose of developing SNMP applications, an OID is a data type that pre-
cisely identifies a MIB-II object. An OID (sometimes referred to as the registration
ID) consists of a sequence of nonnegative integers that describe a path through the
object-naming hierarchy to the object. The naming hierarchy is commonly called
the naming tree.

Naming Tree: The naming tree has the structure of a conventional tree with arbi-
trary breadth and depth. The nodes are labeled with nonnegative integers (each
node among siblings must have a unique label).

Various organizations have administrative authority for assigning labels within sub-
trees of the naming tree. They can assign subordinate, or child, nodes and/or dele-
gate this responsibility to other organizations. The root node of the naming tree
has three children:

ccitt(ð) The administration authority for this branch is the Interna-
tional Telegraph and Telephone Consultative Committee
(CCITT).

iso(1) The administration authority for this branch is the Interna-
tional Organization for Standards, and the International
Electrotechnical Committee (ISO/IEC). This is the path under
which networking management is defined.

joint-iso-ccitt(2) The administration authority for this branch is shared
between CCITT and ISO/IEC.

Ultimately, every path through the naming tree terminates at a leaf node. The
sequence of labels along the path (starting at the root) is the OID for the object
named at the leaf.

OIDs in Practice: The convention for writing OIDs is called dotted decimal nota-
tion. An OID in dotted decimal notation consists of the integers of the OID in
sequence with a dot between them. The prefix for the OIDs in the MIB-II is:

 Chapter 15. Introduction to the NetView for AIX WinSNMP API 241

1.3.6.1.2.1

In the next example, the full name of the path is shown beneath the corresponding
numerical identifiers in the OID:

1 . 3 . 6 . 1 . 2 . 1 . 6 . 7
iso.org.dod.internet.mgmt.mib-2.tcp.tcpAttemptFails

Similarly, the prefix for the OIDs in IBM's enterprise-specific MIBs is:

1.3.6.1.4.1.6.3

 Extended MIBs
Many agents support extended MIBs, that define objects that are not included in
standard MIBs. Your application can query an object from an extended MIB exactly
as it would query a MIB-II object. Users should work with the proper registration
authorities when defining MIB extensions.

 Data Representation
Information is exchanged between SNMP entities using the basic encoding rules
(BERs) defined for the abstract syntax notation (ASN.1). ASN.1 is a very rich data
description language. The WinSNMP API takes care of the details of ASN.1
encoding and decoding; you do not have to deal directly with ASN.1 or the BER.

Highlights of SNMPv1
This section briefly discusses the protocol operations, data syntax, and security
framework which comprise SNMP version 1.

SNMPv1 Protocol Operations
The following table describes the 5 basic operations (PDU types) found in SNMPv1.

PDU Type Description

GetRequest Used to request the value of one or more object variables
managed by an agent.

GetNextRequest Used to request the value of the object variables which
immediately follow those specified in the request.

GetResponse Used to carry response data to a GetRequest or
GetNextRequest.

SetRequest Used to write a new value into one or more object variables
managed by an agent.

Trap An unsolicited notification sent from an SNMP agent to an
SNMP manager.

SNMPv1 Data Syntax
The following list identifies the few simple ASN.1 data types that are used in
SNMPv1.

Type Description

Integer A simple type consisting of positive and negative whole
numbers, including zero, and of arbitrary size up to 32 bits.
Some objects restrict integer to a range.

242 Programmer's Guide

Octet String A simple type taking zero or more octets, each octet being
an ordered sequence of 8 bits. The value of any octet in
the string is unrestricted.

Object Identifier An array of integers (unsigned longs) Each integer repres-
ents one element of the OID.

Counter A nonnegative integer that calculates change and increases
until it reaches a maximum value, then wraps around and
starts increasing again from zero.

Gauge A type representing a nonnegative integer, which may
increase or decrease, but which latches at a maximum
value.

TimeTicks A type representing a nonnegative integer that counts the
time in hundredths of a second since some event occurred.

IPaddress A type representing a 32-bit Internet address. It is repres-
ented as an octet string of length 4, in network byte-order.
When this ASN.1 type is encoded using the ASN.1 basic
encoding rules, only the primitive encoding form is used.

Opaque A type representing an arbitrarily-coded ASN.1 string, which
has been coded into an octet string using the BERs.

SNMPv1 Administrative and Security Framework
The SNMPv1 framework associates each SNMP message with a community. An
agent may exercise control of its management information by limiting the parts of its
MIB tree which can be accessed (MIB view), along with the types of operations
which can be performed, through the use of a community identifier.

Whenever a manager entity sends an SNMPv1 message to an agent entity, the
message must include the correct community identifier in order to be allowed
access to the desired data. An Agent may allow global access to its data by
accepting a standardized community value of public, or may limit access by using a
private value.

SNMP manager entities typically maintain a database of private community values
for some or all of the agents with which it communicates.

Highlights of Community Based SNMPv2 (SNMPv2C)
Community based SNMPv2 (SNMPv2C) is the long awaited follow on to the
SNMPv1 protocol and has been approved as a draft-standard by the Internet Engi-
neering Steering Group (IESG) in January 1996. Improvements to SNMP include a
larger set of PDU error status codes to describe failures, enhancements to the pro-
tocol operations, and an increased subset of ASN.1 syntax types for greater flexi-
bility when defining new MIBs. SNMPv2C is defined in RFC 1901 through RFC
1908.

Noticeably absent in SNMPv2C are improvements to the security mechanisms for
protecting management information from unwanted manipulation and disclosure as
well as the ability to remotely configure security information at the Agent. One of
the flaws in version 1 of SNMP was that only a clear text “community” string is

 Chapter 15. Introduction to the NetView for AIX WinSNMP API 243

used to prevent unauthorized agent operations. All management data (including
the community string itself) flows unencrypted between a Manager and an Agent.

Standardizing a security framework within the IESG has proven to be problematic.
The IESG decided to move the protocol improvements (mentioned above) forward
but to continue using the “community based” security framework from SNMPv1 until
consensus is reached on a new security solution.

SNMPv2C agents are currently defined to WinSNMP via the configuration file:
/usr/OV/conf/snmpv2.conf.

SNMPv2C Protocol Operations
This section describes the enhanced list of protocol operations (PDU types) defined
for SNMPv2C.

PDU Type Description

GetRequest Used to request the value of one or more object variables
managed by an agent.

GetNextRequest Used to request the value of the object variables which
immediately follow those specified in the request.

Response Used to carry data variables in response to a GetRequest,
GetNextRequest, GetBulkRequest, or InformRequest PDU.

SetRequest Used to write a new value into one or more object variables
managed by an agent.

TrapRequest This SNMPv1 data type is now obsolete.

GetBulkRequest Used to request the values of a potentially large number of
object variables. It replaces the use of multiple
GetNextRequest PDUs when the efficient and rapid
retrieval of large MIB tables is desired.

InformRequest Used to send management information from one manager
entity (or MLM) to another manager entity. After the
receiving manager entity receives an InformRequest, it gen-
erates a response to the originating entity signifying receipt
of the data.

SNMPv2Trap An unsolicited notification sent from an agent to an SNMP
manager.

Report Semantics not presently defined. For use with future
administrative and security frameworks.

SNMPv2C Data Syntax
This section describes the enhanced list of ASN.1 data types used in SNMPv2C.

Integer Unchanged from SNMPv1. A simple type consisting of posi-
tive and negative whole numbers which can be represented
using 32 bits.

Octet String Unchanged from SNMPv1. A simple type taking zero or
more 8-bit octets, each with a range 0 to 255.

Object Identifier Unchanged from SNMPv1. A simple type which is an array
of integers representing a MIB OID.

244 Programmer's Guide

Address Unchanged from SNMPv1. A simple type which is an octet
string representing an IP address in network byte order.

TimeTicks Unchanged from SNMPv1. A nonnegative integer type which
counts the time in hundredths of a second since some event
occurred.

Opaque Used for backward-compatibility only. An octet string type
used to represent an arbitrarily coded ASN.1 string.

Integer32 Indistinguishable from type Integer, but never needs more
than 32 bits for a two's complement representation.

Counter32 Redefines the SNMPv1 Counter type as a 32-bit nonnegative
increasing integer counter. When its maximum value is
reached, it wraps around and begins increasing again from 0.

Gauge32 Redefines the SNMPv1 Gauge type as a 32-bit nonnegative
integer which may increase or decrease, but will latch at its
maximum value.

Counter64 A new 64-bit data type to be used only when the use of
Counter32 type would wrap in less than one hour.

Unsigned32 A new nonnegative 32-bit type which is the nonnegative
version of Integer32.

SNMPv2C Administrative and Security Framework
The community based administrative and security framework for SNMPv2C remain
unchanged from SNMPv1.

Highlights of Secure User Based SNMPv2 (SNMPv2USEC)
In the absence of an IESG standard for secure SNMP, WinSNMP is employing the
User-Based Security Model for SNMPv2 (SNMPv2USEC) to perform authenticated
transactions with agents who also support SNMPv2USEC. SNMPv2USEC is one
of the leading experimental models under consideration for future IESG standardi-
zation. The WinSNMP API supports secure SNMPv2USEC in its “transparent”
mode only. SNMPv2USEC agent information is currently not exposed via the appli-
cation interface, but only the local configuration file:
 /usr/OV/conf/snmpv2.conf.

This allows WinSNMP applications to automatically obtain the benefits of SNMPv2
security now, while being insulated from future API changes which may be required
to accommodate the eventual SNMPv2 security standard! Of course, NetView for
AIX WinSNMP will fully support whatever model is finally selected as the IESG
standard.

SNMPv2USEC Protocol Operations
The protocol operations (PDU types) for SNMPv2USEC remain unchanged from
SNMPv2C with the exception of the Report PDU whose semantics have now been
defined. The use of the Report PDU is reserved for SNMP internals and therefore
outside the scope of this information.

 Chapter 15. Introduction to the NetView for AIX WinSNMP API 245

SNMPv2USEC Data Syntax
The protocol operations (PDU types) for SNMPv2USEC remain unchanged from
SNMPv2C.

SNMPv2USEC Administrative and Security Framework
The security framework for Secure SNMPv2 is designed to preserve the following
properties:

Data Authentication Describes the ability to ensure that an SNMP message has
not been altered in transit by an unauthorized entity. It
also provides a mechanism to verify the source identity of
the message originator.

Data Privacy Describes the ability to protect the information within an
SNMP message from disclosure while in transit through
encryption.

Note: Due to US export regulations, NetView for AIX
WinSNMP supports data authentication but does
not support data privacy at this time.

SNMPv2USEC provides data authentication using the MD5 message digest algo-
rithm. In this model, both the source and destination of a message have know-
ledge of a shared secret authentication key. When a manager wishes to send an
authenticated request to an agent, it places the secret key or password (known by
both entities) along with the management data into an SNMPv2 message. The
entire message is then processed by the MD5 algorithm creating a digest
(fingerprint). The secret key in the message is then replaced with this fingerprint,
and the resulting message is sent.

Note: The management data within the message is not protected from disclosure;
it is transmitted unencrypted along with its authentication fingerprint.

Upon receipt of the message, the agent replaces the incoming fingerprint with its
value of the secret key and runs the message through the MD5 algorithm. A match
between the resulting fingerprint and the incoming fingerprint indicates that the data
portion of the message has not been altered from the data originally sent and that
the originator had to have known the secret key. The message is therefore consid-
ered authentic. A fingerprint mismatch would have indicated that either the origi-
nator did not know the correct key or that the data portion of the message had
been altered during transit.

Data privacy is provided by SNMPv2USEC using the Symmetric Encryption Pro-
tocol (DES). Both the source and destination SNMP entities have knowledge of a
shared secret privacy key or password (which may be different from the
Authentication key described earlier). When a manager wants to send a private
request to an agent, it encrypts the entire authenticated message (both data and
fingerprint portions) using DES and the privacy key. The resulting encrypted
message is then transmitted to the destination.

246 Programmer's Guide

Chapter 16. Programming with NetView for AIX WinSNMP

This chapter outlines some of the high level considerations relevant to the program-
ming “model” envisioned by the NetView for AIX implementation of the Windows
SNMP Manager API Specification (from here on referred to as WinSNMP). This
model is meant to add background and context for evaluating the WinSNMP API.
In general, although it is not possible to avoid all references to implementation
details, WinSNMP tries to openly state all relevant implementation assumptions.
For further information about WinSNMP, see Chapter 15, “Introduction to the
NetView for AIX WinSNMP API” on page 237.

The major aspects of WinSNMP implementation that affect application development
include:

� Levels of SNMP Support
� Transport Interface Support
� Entity/Context Translation Modes
� Local Database Information

 � Session Characteristics
 � Memory Management
 � Asynchronous Model
� Polling and Retransmission

 � Error Handling
 � Data Types

Levels of SNMP Support
WinSNMP allows for multiple levels of SNMP support—explicitly for implementa-
tions and implicitly for applications.

These levels of support are independent of and unrelated to the modes of interpre-
tation of entity and context arguments.

Note: The implementation will report its maximum level of SNMP support in
response to the SnmpStartup function.

 Implementations
The WinSNMP API allows an implementation to support any of four overlapping
levels of SNMP operations:

� Level 0 = Message encoding/decoding only
� Level 1 = Level 0 + interaction with SNMPv1 agents
� Level 2 = Level 1 + interaction with SNMPv2 agents
� Level 3 = Level 2 + interaction with other SNMPv2 managers

Note: The NetView for AIX WinSNMP API provides Level 3 implementation.

Level 0 Implementations
Level 0 implementations must support all WinSNMP functions except those that
require communication with other SNMP entities, namely:

 � SnmpSendMsg
 � SnmpRecvMsg
 � SnmpRegister

 Copyright IBM Corp. 1992, 1995 247

Level 0 implementations exist to provide SNMP message encoding and decoding
services to applications that do not require the communications transport services
of the WinSNMP implementation, but still require WinSNMP services, such as:

� Local Database Functions
 � SnmpEncodeMsg
 � SnmpDecodeMsg

All WinSNMP implementations must include full Level 0 support.

Level 1 Implementations
Level 1 implementations support communications with SNMPv1 agents, in addition
to providing full Level 0 support.

Because WinSNMP applications are structured to support SNMPv2, Level 1 imple-
mentations must support the requisite transformations specified in RFC 1908. (See
“SNMP Information” on page 383 for a listing of RFCs.) For example, if a
WinSNMP application submits a GetBulkRequest PDU to a Level 1 implementation,
the WinSNMP implementation transforms the PDU into a GetNextRequest PDU,
per RFC 1908, and proceeds accordingly.

WinSNMP always returns traps in SNMPv2 format, whether the trap emanates from
an SNMPv1 agent or, as a notification, from an SNMPv2 agent. This behavior is
also defined by RFC 1908.

Level 1 implementations must support the use of target agent addresses and com-
munity strings; but are not required to support any SNMPv2 mechanisms, other
than the coexistence transformations mentioned above.

Level 2 Implementations
Level 2 implementations support communications with SNMPv2C agents, in addi-
tion to providing full Level 1 and Level 0 support.

Level 3 Implementations
Level 3 implementations support communications with other SNMPv2C manage-
ment entities via the InformRequest PDU type, in addition to providing full Level 2,
Level 1, and Level 0 support.

 Applications
The WinSNMP API is oriented toward the writing of applications that are
SNMPv2-enabled, at least in terms of their structure. A WinSNMP application may
always use the relevant PDU types defined for SNMPv2 (as specified in the
“Declarations” section of the /usr/OV/include/NVAIXwinsnmp.h file. This ensures
that the implementation will perform the necessary transformations, in accordance
with RFC 1908, when communicating with an SNMPv1 agent on behalf of the appli-
cation. Likewise, a WinSNMP application always receives trap PDUs (via
SnmpRecvMsg from the implementation) as SNMPv2 traps, even when the issuing
entity is an SNMPv1 agent.

Note: It is possible for WinSNMP applications to utilize the implementation merely
for SNMP message encoding and decoding and to bypass the WinSNMP
implementation with respect to communications with the destination entities.
In this mode, the application must perform the necessary GetResponse and
trap PDU transformations for itself, at its own discretion.

248 Programmer's Guide

Transport Interface Support
For everything above Level 0, the WinSNMP implementation conducts the commu-
nications transactions with the SNMP agents on behalf of the applications. Nothing
in WinSNMP attempts to dictate how an implementation (or an application) will
actually execute the communications process with remote entities.

A number of options exist. They are not necessarily mutually exclusive—several
might be used by an implementation with one or more in the same or a different
combination being used by its client applications.

Note: IBM WinSNMP supports the UDP and TCP transport protocols.

Entity/Context Translation Modes
WinSNMP applications have the capability of instructing the implementation to inter-
pret entity/context arguments as either a literal SNMPv1 agent address and com-
munity string, respectively, or as a SNMPv2C agent address and community string.
An alternative to either of these modes is that in which these arguments are inter-
preted as user or application "friendly" names for entities and managed object col-
lections to be translated into their respective SNMPv1, SNMPv2C, or
SNMPv2USEC components via the implementation's local database.

The three entity and context translation modes are:

 Important

SNMPv2USEC entities may be accessed via SNMPAPI_TRANSLATED mode
only. Specific security information for these agents are only accessible though
a database look-up. This is due to that fact that the SNMPv2 User Based
Security (SNMPv2USEC) model is currently not an Internet standard. Not
exposing SNMPv2USEC details to the application allows for a seamless transi-
tion to whatever the final Internet SNMP Security standard happens to be.

The WinSNMP implementation always identifies its current default entity/context
translation mode setting in the return value from the SnmpStartup function (which
may be called multiple times). A WinSNMP application may request a different
entity/context translation mode at any time with the SnmpSetTranslateMode func-
tion.

The sample code which follows includes literal string representations of some of the
arguments to the WinSNMP functions. This is merely for expository purposes. In
the interests of internationalization and localization application writers are encour-
aged to isolate all such text string values in StringTables in separate resource files
or to use some similar technique to modularize such strings out of the operating
logic of their applications.

SNMPAPI_TRANSLATED Translate via Local Database look-up

SNMPAPI_UNTRANSLATED_V1 Literal transport address and community string for an
SNMPv1 agent

SNMPAPI_UNTRANSLATED_V2 Literal transport address and community string for an
SNMPv2C agent

 Chapter 16. Programming with NetView for AIX WinSNMP 249

Context string arguments are passed as octet string structures (smiOCTETS
descriptors) since both SNMPv1 and SNMPv2C community strings can contain any
values, not just those from the ASCII or DisplayString character set.

 SNMPAPI_TRANSLATED Mode
When the translation mode is set to SNMPAPI_TRANSLATED, an application
makes calls similar to the following:

LPCSTR entityName = "Secure_USEC_Hub";
smiOCTETS contextName;
contextName.ptr = "Secure_USEC_Hub";
contextName.len = lstrlen(contextName.ptr);
hAgent = SnmpStrToEntity(hSomeSession, entityName);
hView = SnmpStrToContext(hSomeSession, const &contextName);

The implementation looks up "Secure_USEC_Hub" in its local database (currently
the /usr/OV/conf/snmpv2.conf file) and if successful, assembles the appropriate
internal data structures (including any SNMPv2USEC security data) and returns
HANDLE values for use by the application.

 SNMPAPI_UNTRANSLATED_V1 Mode
When the translation mode is set to SNMPAPI_UNTRANSLATED_V1, an applica-
tion makes calls similar to the following:

LPCSTR entityName = "192.151.207.34";
smiOCTETS contextName;
contextName.ptr = "public";
contextName.len = lstrlen (contextName.ptr);
hAgent = SnmpStrToEntity (hSomeSessin, entityName);
hView = SnmpStrToContext (hSomeSession, const &contextName);

The implementation assumes, based on the SNMPAPI_UNTRANSLATED_V1
setting for hSomeSession, that "192.151.207.34" equates to an IP address to be
reached via UDP port 161, and that this value is being passed as a far pointer to a
constant NULL terminated text string (LPCSTR) that it must first convert to dotted
decimal notation. The setting also indicates that an SNMPv1 packet should be
constructed when communicating with this entity.

 SNMPAPI_UNTRANSLATED_V2 Mode
When the translation mode is set to SNMPAPI_UNTRANSLATED_V2, an applica-
tion makes calls similar to the following:

LPCSTR entityName = "192.151.207.34";
smiOCTETS contextName;
contextName.ptr = "public";
contextName.len = lstrlen (contextName.ptr);
hAgent = SnmpStrToEntity (hSomeSessin, entityName);
hView = SnmpStrToContext (hSomeSession, const &contextName);

The implementation assumes, based on the SNMPAPI_UNTRANSLATED_V1
setting for hSomeSession, that "192.151.207.34" equates to an IP address to be
reached via UDP port 161, and that this value is being passed as a far pointer to a
constant NULL terminated text string (LPCSTR) that it must first convert to dotted

250 Programmer's Guide

decimal notation. The setting also indicates that an SNMPv2C packet should be
constructed when communicating with this entity.

 Local Database
WinSNMP must meet at least the following four objectives:

1. A WinSNMP application must have full access to all components of the SNMP
message issued by the WinSNMP implementation. At the extreme, the
SnmpEncodeMsg and SnmpDecodeMsg functions enable access to and manip-
ulation of fully-serialized, ready-for-transport SNMP messages.

2. A WinSNMP application must not have to incorporate WinSNMP
implementation-specific routines or data structures to utilize any of the
functionality defined by WinSNMP itself. Each WinSNMP implementation may
use private mechanisms external to the WinSNMP applications, but all neces-
sary interfaces to these mechanisms will be via the defined WinSNMP APIs
only.

3. A WinSNMP application must not have to know the SNMP version level of the
target SNMP entities acting in an agent role. The WinSNMP implementation
performs all necessary mappings between SNMPv1, SNMPv2C, and
SNMPv2USEC in accordance with the appropriate RFCs, and especially RFC
1908. With respect to agent addressing, this is especially true for TRANS-
LATED mode access; for protocol operations it holds regardless of the
entity/context translation mode in effect.

4. One implication of the foregoing requirement is that the SNMPv1 message
format must fit neatly within the structure adopted for the SNMPv2 message
format. This statement applies to WinSNMP messages only—it is not meant in
any way to limit or modify anything in RFC 1908.

 Sessions
The session created by the SnmpCreateSession function is used to manage the
link between the WinSNMP application and the WinSNMP interface implementation.
That is, the session is the unit of resource and communications management
between a calling WinSNMP application and its supporting WinSNMP implementa-
tion. A well-behaved WinSNMP application uses the session construct to logically
organize its operations and to minimize resource requirements on the implementa-
tion. The following statements summarize the role and certain attributes of
WinSNMP sessions:

� A session is opened with SnmpCreateSession, and closed with SnmpClose.

� A session-id is returned by the SnmpCreateSession function to the application
as a HANDLE variable, which the implementation may use internally to manage
resources.

� The minimum number of concurrent sessions which an implementation must
support is one.

� The maximum number of concurrent sessions is undefined and is
implementation-specific and, possibly, resource-dependent.

When an application's request to open a session cannot be granted because of
the limitations stated above, the implementation returns SNMPAPI_FAILURE to

 Chapter 16. Programming with NetView for AIX WinSNMP 251

SnmpCreateSession and sets SnmpGetLastError or SnmpGetLastErrorStr to
report SNMPAPI_ALLOC_ERROR.

� All WinSNMP API functions, except for SnmpCreateSession, which return
HANDLE variables include a session-id handle as an input parameter. The
implementation uses the session-id handle internally to manage and account
for resources on behalf of the session.

� HANDLE variables created under one open session can be utilized by other
open sessions (if any) within a given application (task). Optionally, an imple-
mentation may internally share HANDLE variables among sessions in separate
applications.

Note: This optional resource efficiency, if it is supported by an implementation,
is totally transparent to the application.

� When an application closes a session by executing the SnmpClose function, all
resources created on behalf of that session by the implementation, and not pre-
viously freed by the application, are freed automatically by the implementation.
If an implementation supports the optional sharing of HANDLE variables among
open sessions across multiple applications, then the resources are not phys-
ically freed until the final open session that created the resources closes.

� Sessions may have other attributes, above and beyond those discussed above
(for example, the dstEntity and context interpretation modes of TRANSLATED,
UNTRANSLATED_V1, and UNTRANSLATED_V2).

 Memory Management
The allocation, ownership, deallocation, and garbage collection of memory objects
is often a troublesome issue in a complex multiprovider programming arrangement.
This issue can be resolved with an understanding of the options and the rules,
agreeing to a division of labor, authority, and responsibility among the components;
and competence and diligence in implementing such an agreement.

In WinSNMP programming, it is important to remember that the implementation is
actually just an extension of the calling application. Applications can allocate, use,
and deallocate memory; if they terminate without freeing allocated memory, the
operating system deallocates it for them automatically.

The WinSNMP arrangement includes three different kinds of memory objects:

 � HANDLE'd resources
� C-style (NULL terminated) strings
� Non-scalar WinSNMP API data types of variable length

 HANDLE'd Resources
There are five varieties of HANDLE'd resources:

 � Sessions
 � Entities
 � Contexts
� Protocol data units (PDUs)

 � VarBindLists (VBLs)

These objects are accessed by way of handles for two reasons:

252 Programmer's Guide

� To hide their structures from the applications; and

� To permit implementations to optimize or differentiate themselves as compared
with their construction and manipulation of these objects "behind" the API.

All HANDLE'd objects are of data type HSNMP_<object_tag> and are always
owned by the implementation. An application may request their creation and may
signal their eligibility for deletion and reclamation, but these operations (like all
others concerning these objects) are indirect...the realization is up to the implemen-
tation.

 C-Style Strings
The C-style (NULL terminated) strings are provided mainly for convenience to
easily convert entity and OID objects to and from the most common string repre-
sentation. The WinSNMP functions that use C-style strings are limited to:
SnmpStrToEntity, SnmpEntityToStr, SnmpStrToOid, and SnmpOidToStr. (The
inclusion of Str in the name is a bit misleading in the case of the
SnmpStrToContext and SnmpContextToString functions, as the context parameter
in these functions must be an SNMP-style octet string to accommodate the legal
data values.)

The application is entirely responsible for allocating, managing, and freeing this
memory, as might be appropriate to its specific operating requirements or circum-
stances. This requires passing a size parameter to the implementation in functions
which use pointers to C-style string variables as output arguments (for example,
SnmpEntityToStr and SnmpOidToStr).

 Descriptors
These are the three non-scalar WinSNMP API data types, of variable length:

 � smiOCTETS
 � smiOID
 � smiVALUE

All three are structures. The first two are both descriptor structures, consisting of
two members: len and ptr. For smiOCTETS, len is an unsigned long integer
(smiUINT32) value indicating the number of bytes in the subject octet string (no
necessary NULL terminating byte) and ptr is a far pointer to a byte array containing
the octet string. For smiOID, len is an unsigned long integer value indicating the
number of unsigned long integers in the subject OID and ptr is a far pointer to an
array of unsigned long integers representing the OID's sub-identifiers.

The smiVALUE structure also consists of two members, but is different and a bit
more complex. The first member is an unsigned long integer indicating the syntax
of the second member. The second member is the union of all the possible
WinSNMP API data types. A calling application must first check the syntax
member of a returned smiVALUE structure to know how to translate the second
member, which might be a simple scalar value or might be one of the WinSNMP
API structures with defined syntax (including an smiOCTETS, or one of its deriva-
tives such as smiIPADDR, or an smiOID). In actuality, the smiVALUE structure is
not a problem—it is always of a fixed size.

It is only when its syntax member indicates that the value member is either an
smiOCTETS or an smiOID structure (which contain pointers to variable length data)

 Chapter 16. Programming with NetView for AIX WinSNMP 253

that the memory management agreement becomes important. It is important to
know who assigns the pointers (for example, allocates the memory), who fills in the
len members, who owns these objects, and who is responsible for freeing the
resources when they are no longer needed or in cases of memory shortage.

Fortunately, the statement of this problem is more complex than the statement of its
resolution!

� For input parameters, the application provides the structure and populates its
members (for example, allocates the memory for the variable length objects).

� For output parameters, the application again provides the structure, but the
implementation populates its members (for example, allocates the memory for
the variable length objects).

� The application must use an appropriate function (for example, GlobalFreePtr)
to free the memory that it has allocated for such input parameters and must
use the SnmpFreeDescriptor WinSNMP function to free the memory allocated
by the implementation for these output parameters.

The combined effects of this particular agreement yield substantial benefits:

� It clearly delineates a small number of cooperative memory management
requirements.

� It clearly assigns responsibility in each case.

� It reduces the likelihood of over allocation of temporary buffer space.

� It reduces the likelihood of unnecessary buffer copying (from maximum size
temporary buffers to the right size working buffers).

� It leverages a "natural" memory management posture while providing inde-
pendent flexibility in this area to both applications and implementations alike.

 Summary
As a general rule, the WinSNMP application is responsible for freeing all WinSNMP
resources allocated through calls to the WinSNMP API using the following
functions:

SnmpFree<xxx> Entity, Context, PDU, VBL, Descriptor

SnmpClose Session

SnmpCleanup Task

These calls are cumulative, in the sense that SnmpFree<xxx> frees a single spe-
cific HANDLE'd resource, SnmpClose frees all such resources allocated to a given
session within the calling task, and the session HANDLE'd resource itself,
SnmpCleanup, performs (in effect) an SnmpClose on all open sessions within the
task. Applications are encouraged to use these in the order shown as appropriate
to the application's processing logic.

Important: Every time a WinSNMP function call results in the return of a
HANDLE'd object resource to the application, each and every such resource will be
a new resource. In this context, new means a unique value for that kind of
resource at that instant in the calling application. This means, for example, that it is
safe—with respect to a subsequent SnmpRecvMsg call—to free the srcEntity,
dstEntity, context, and PDU resources right after calling SnmpSendMsg. Note that
a given application for example, might need or want to retain them, of course. If

254 Programmer's Guide

you built these resources for a polling operation, you will probably want to retain
them for the next iteration...and in many cases you will want to match up out-bound
RequestIDs with received RequestIDs.

An allocated HANDLE'd object resource is never freed by the implementation
except upon request by the application using one of the three types of calls outlined
at the top of this section or—as an optional capability of an implementation—upon
abnormal termination of an application which otherwise left resources allocated. It
is the application's responsibility to request the creation of and the deletion of all
WinSNMP HANDLE'd object resources. The implementation is free to perform
these operations any way it wants internally, as long as the external appearance to
the application accords with this set of specifications.

 Asynchronous Model
One contemporary programming model has applications "driven" by the receipt and
processing of asynchronous message-events. This asynchronous callback-driven
model maps well to modern object-oriented theory, the SNMP distributed manage-
ment paradigm, and the X-Windows programming and runtime environments. Like-
wise, although WinSNMP does not presume any particular transport mechanism for
the conveyance of SNMP messages between managers and agents, SNMP is a
datagram-based protocol, in which no actual channel (virtual circuit) is established
between remote entities. This behavior also maps well to the message-driven pro-
gramming model. For those reasons, among others, this is the programming model
adopted by WinSNMP.

Modern callback-driven applications typically must respond to other kinds of impor-
tant events, some of which may rely on synchronous relationships. Actually, all of
the functions specified in the WinSNMP API have a synchronous component—most
are totally synchronous; these three critical functions have an asynchronous
dimension:

 � SnmpSendMsg
 � SnmpRecvMsg
 � SnmpRegister

Of these, SnmpRecvMsg has the most impact on asynchronous operations.

The basic asynchronous model for programming with WinSNMP follows these
steps:

1. The application opens a session with the WinSNMP implementation (with the
SnmpCreateSession function).

2. If the application is interested in receiving traps, it indicates this (with the
SnmpRegister function).

3. The application prepares one or more PDUs for transmission to and processing
by the WinSNMP implementation via WinSNMP messages (using
SnmpCreatePdu and other PDU, variable-binding, and utility functions).

4. The application submits one or more asynchronous requests consisting of
SNMP PDU and message "wrapper" elements (with the SnmpSendMsg func-
tion).

 Chapter 16. Programming with NetView for AIX WinSNMP 255

5. The application receives notification that a response to a request is available or
that a registered trap has occurred (via the callback function specified in the
SnmpCreateSession function).

6. The application retrieves the response (with the SnmpRecvMsg function).

7. The application processes the response as appropriate (using application-
specific logic).

8. The application closes the WinSNMP session (with the SnmpClose function).

In general, steps 2 on page 255 through 7 can take place in nearly any order and
at any time during program execution.

Polling and Retransmission
Given the asynchronous nature of both SNMP itself and the WinSNMP
SnmpSendMsg, SnmpRecvMsg, and SnmpRegister functions, users of this API (for
example, implementors and applications writers) must be concerned with timeout
and retry issues. Taken together, timeout and retry will be referred to hereinafter
as retransmission.

Note: Back-off mechanisms are not currently included.

Applications have sole responsibility for polling: for example, they establish the fre-
quency, and initiate transactions and timer management. This ensures that appli-
cations have knowledge of the request-id component of the out-going PDUs.

With respect to retransmission, applications clearly have the primary responsibility,
regarding both policy and execution. Implementations must provide retransmission
policy support (via their local database) and may optionally provide retransmission
execution support.

Accordingly, in WinSNMP applications the timeout period, in practice, refers to the
elapsed time between an application's issuance of an SnmpSendMsg request and
receipt of the corresponding message via the SnmpRecvMsg function. From the
perspective of the implementation, the timeout period refers to the elapsed time
between the actual sending of an SNMP request message to a destination entity
and the receipt of the SNMP response message from that destination.

The fundamental retransmission policy mechanism will be the local database. Each
potential destination entity entry in the local database includes the timeout (elapsed
time in seconds) and retry (count) elements among others. These values can be
stored in and retrieved from the local database by an application with the
Snmp[Get/Set]Timeout and Snmp[Get/Set]Retry functions. At runtime, an applica-
tion may elect to use, update, or ignore the default values in the local database.
When an implementation that supports retransmit execution is operating in
retransmit mode, it must use the timeout and retry values from the local database
for the respective destination entities.

None of the foregoing precludes or impedes the out-of-the-box mode of operation.
An implementation should boot up with some generic default values in its (concep-
tual) local database for use when an application initializes entities in the
SNMPAPI_UNTRANSLATED_V1 or SNMPAPI_UNTRANSLATED_V2 mode.

256 Programmer's Guide

So, for WinSNMP, the following summarizes the timeout and retry elements
approach:

� The application manages the policy via the local database functions by storing
desired values for each destination entity. Optionally, the implementation may
also update the actual observed values in its local database for subsequent use
by the application in adjusting the desired (policy) values.

� The application executes the policy, at its discretion. That is, when it issues a
request (via SnmpSendMsg) and wants to monitor the timeout event, it sets a
timer (most likely using the desired timeout value retrieved from the local data-
base).

� If the response comes in before the timer goes off, it cancels the timer. If the
timer expires, the application decides whether to retry (most likely, but not only,
based on the retry count value retrieved from the local database).

� If, during the course of execution, the application determines that either the
default timeout or retry values are inappropriate, it can either ignore that fact, or
change its runtime behavior accordingly, or modify the default values for the
respective entities in the local database.

� Certain network smart applications might populate and update the default
values in the local database, while many more network agnostic applications
just use the default values, whether just for its policy (when the implementation
actually does the execution) or for both policy and execution purposes.

� Applications may request that the implementation execute the retransmission
policy (using the values in the local database) via the SnmpSetRetransmitMode
function, with (SNMPAPI_ON). A valid response to this request by a compliant
implementation is either SNMPAPI_SUCCESS or SNMPAPI_MODE_INVALID.

� The application may elect to leave retransmission execution entirely to the
implementation or to augment it with its own execution. An application can use
SnmpSetRetransmit again, with (SNMPAPI_OFF), to turn off the implementa-
tion in this regard.

� When the implementation executes the retransmission policy, it repeats the ori-
ginal request-id component in each retransmitted PDU.

� When the implementation responds to the SnmpSetRetransmitMode
(SNMPAPI_ON) request with the SNMPAPI_MODE_INVALID error, the applica-
tion must assume all responsibility for execution of the retransmission policy.

 RequestIDs
This WinSNMP v1.1a release states that:

� RequestID of 0 must be allowed in PDUs.

� WinSNMP API functions cannot use RequestID as a return value, since
SNMPAPI_FAILURE == 0.

� SnmpSendMsg and SnmpRecvMsg return either SNMPAPI_SUCCESS [1] or
SNMPAPI_FAILURE [0], not the RequestID.

� Applications can use the SnmpGetPduData function to retrieve a PDU's
RequestID when necessary.

� An application can ask the implementation to generate and assign a RequestID
to a PDU by passing zero in the RequestID parameter of the SnmpCreatePdu

 Chapter 16. Programming with NetView for AIX WinSNMP 257

function and can then determine that value, if desired with the
SnmpGetPduData function, per the previous bullet item.

� The implementation uses its best efforts to generate RequestIDs that are
temporally unique internally (that is, a simple incrementing algorithm will
suffice). It does not have to avoid conflicts with externally generated
RequestIDs. It may assign zero as a generated RequestID in the normal
course of events.

� An application that wants to force a RequestID of zero (or any other value) can
use the SnmpSetPduData function to do so.

 Error Handling
All WinSNMP functions have an immediate return value. If this value is
SNMPAPI_FAILURE (0), it means that the implementation detected or encountered
an error. The application must then call the SnmpGetLastError or
SnmpGetLastErrorStr function to retrieve the extended error information that
describes the specific problem encountered.

The distinction between SNMP error codes and SNMP API error codes in the
context-specific section is more significant. The former are fixed by the RFCs; the
latter are creations of WinSNMP.

Common Error Codes
Any WinSNMP function can fail with any one of the following error codes returned
via SnmpGetLastError or SnmpGetLastErrorStr:

 SNMPAPI_NOT_INITIALZED
 SNMPAPI_ALLOC_ERROR
 SNMPAPI_OTHER_ERROR

SNMPAPI_NOT_INITIALIZED signals that SnmpStartup was not successfully exe-
cuted, either since program execution began or since SnmpCleanup successfully
completed. If SnmpStartup fails, an immediate call to SnmpGetLastError or
SnmpGetLastErrorStr (before any other WinSNMP calls) returns the error code
applicable to the failure of SnmpStartup; all subsequent calls to WinSNMP functions
before a successful SnmpStartup execution will fail with
SNMPAPI_NOT_INITIALIZED.

SNMPAPI_ALLOC_ERROR signals that the implementation was unable to obtain
sufficient resources to carry out the requested action. Applications should respond
by freeing resources, or by reducing the resource requirements of the request, or
by informing the user (for example, via MessageBox or log file entry) and facilitating
a normal shutdown via SnmpClose calls or SnmpCleanup.

SNMPAPI_OTHER_ERROR signals that an unknown, undefined, or otherwise inde-
terminate error occurred. Implementations may provide an optional, ancillary, and
independent means of providing additional feedback to the user for subsequent
problem resolution. In most cases, applications should attempt to shutdown grace-
fully via SnmpClose calls or SnmpCleanup after receiving this error.

258 Programmer's Guide

Context-Specific Error Codes
The following lists are excerpted from the "Declarations" section of the
/usr/OV/include/WinSNMP.h file. They are included here mainly as a place-holder
for a future elaboration of each error condition, similar to what was done in
“Common Error Codes” on page 258.

/\ Syntax Values for Exception Conditions in SNMPv2 Response Varbinds \/
#define SNMP_VALUE_NOSUCHOBJECT (ASN_CONTEXT | ASN_PRIMITIVE | ðxð)
#define SNMP_VALUE_NOSUCHINSTANCE (ASN_CONTEXT | ASN_PRIMITIVE | ðx1)
#define SNMP_VALUE_ENDOFMIBVIEW (ASN_CONTEXT | ASN_PRIMITIVE | ðx2)

/\ SNMP Error Codes Returned in Error_status Field of PDU...Not API Error Codes \/
/\ Error Codes Common to SNMPv1 and SNMPv2 \/
#define SNMP_ERROR_NOERROR ð
#define SNMP_ERROR_TOOBIG 1
#define SNMP_ERROR_NOSUCHNAME 2
#define SNMP_ERROR_BADVALUE 3
#define SNMP_ERROR_READONLY 4
#define SNMP_ERROR_GENERR 5
/\ Error Codes Added for SNMPv2 \/
#define SNMP_ERROR_NOACCESS 6
#define SNMP_ERROR_WRONGTYPE 7
#define SNMP_ERROR_WRONGLENGTH 8
#define SNMP_ERROR_WRONGENCODING 9
#define SNMP_ERROR_WRONGVALUE 1ð
#define SNMP_ERROR_NOCREATION 11
#define SNMP_ERROR_INCONSISTENTVALUE 12
#define SNMP_ERROR_RESOURCEUNAVAILABLE 13
#define SNMP_ERROR_COMMITFAILED 14
#define SNMP_ERROR_UNDOFAILED 15
#define SNMP_ERROR_AUTHORIZATIONERROR 16
#define SNMP_ERROR_NOTWRITABLE 17
#define SNMP_ERROR_INCONSISTENTNAME 18

/\ WinSNMP API Function Return Codes \/
#define SNMPAPI_FAILURE ð /\ Generic error code \/
#define SNMPAPI_SUCCESS 1 /\ Generic success code \/
/\ WinSNMP API Error Codes (for SnmpGetLastError) \/
#define SNMPAPI_ALLOC_ERROR 2 /\ Error allocating memory \/
#define SNMPAPI_CONTEXT_INVALID 3 /\ Invalid context parameter \/
#define SNMPAPI_CONTEXT_UNKNOWN 4 /\ Unknown context parameter \/
#define SNMPAPI_ENTITY_INVALID 5 /\ Invalid entity parameter \/
#define SNMPAPI_ENTITY_UNKNOWN 6 /\ Unknown entity parameter \/
#define SNMPAPI_INDEX_INVALID 7 /\ Invalid VBL index parameter \/
#define SNMPAPI_NOOP 8 /\ No operation performed \/
#define SNMPAPI_OID_INVALID 9 /\ Invalid OID parameter \/
#define SNMPAPI_OPERATION_INVALID 1ð /\ Invalid/unsupported operation \/
#define SNMPAPI_OUTPUT_TRUNCATED 11 /\ Insufficient output buf len \/
#define SNMPAPI_PDU_INVALID 12 /\ Invalid PDU parameter \/
#define SNMPAPI_SESSION_INVALID 13 /\ Invalid session parameter \/
#define SNMPAPI_SYNTAX_INVALID 14 /\ Invalid syntax in smiVALUE \/
#define SNMPAPI_VBL_INVALID 15 /\ Invalid VBL parameter \/
#define SNMPAPI_MODE_INVALID 16 /\ Invalid mode parameter \/
#define SNMPAPI_SIZE_INVALID 17 /\ Invalid size/length parameter \/
#define SNMPAPI_NOT_INITIALIZED 18 /\ SnmpStartup failed/not called \/
#define SNMPAPI_MESSAGE_INVALID 19 /\ Invalid SNMP message format \/
#define SNMPAPI_HWND_INVALID 2ð /\ Invalid Window handle \/

 Chapter 16. Programming with NetView for AIX WinSNMP 259

/\ Others will be added as needed \/
#define SNMPAPI_OTHER_ERROR 99 /\ For internal/undefined errors \/

Transport Error Reporting
In the case of errors that are detected at the time of accepting a request to send or
to receive a packet, these are returned synchronously by SnmpSendMsg,
SnmpRecvMsg, or SnmpRegister via a return code of SNMPAPI_FAILURE (which
the application must follow-up with a call to SnmpGetLastError (to retrieve the
extended error code). In the case of errors which are detected after the packet has
gone out onto the wire, the WinSNMP implementation sends a packet receipt notifi-
cation to the affected session and these errors are returned via an
SNMPAPI_FAILURE indication from the next SnmpRecvMsg call on that session.

The generic transport layer (TL) error codes for WinSNMP are:

#define SNMPAPI_TL_NOT_INITIALIZED 1ðð /\ Transport layer not initialized \/
#define SNMPAPI_TL_NOT_SUPPORTED 1ð1 /\ Transport does not support protocol \/
#define SNMPAPI_TL_NOT_AVAILABLE 1ð2 /\ Network subsystem has failed \/
#define SNMPAPI_TL_RESOURCE_ERROR 1ð3 /\ Transport resource error \/
#define SNMPAPI_TL_UNDELIVERABLE 1ð4 /\ Destination unreachable \/
#define SNMPAPI_TL_SRC_INVALID 1ð5 /\ Source endpoint invalid \/
#define SNMPAPI_TL_INVALID_PARAM 1ð6 /\ Input parameter invalid \/
#define SNMPAPI_TL_IN_USE 1ð7 /\ Source endpoint in use already \/
#define SNMPAPI_TL_TIMEOUT 1ð8 /\ No response within Timeout interval \/
#define SNMPAPI_TL_TOO_BIG 1ð9 /\ PDU too big for send/receive \/
#define SNMPAPI_TL_OTHER 199 /\ Undefined transport error \/

Specific transport layer errors are listed as appropriate in the definitions of the
SnmpRegister, SnmpSendMsg, and SnmpRecvMsg functions in the NetView for
AIX Programmer's Reference.

Implementations should attempt to map specific transport errors to one of the
generic transport errors. If the mapping is not possible, the implementation should
return SNMPAPI_TL_OTHER. This error is preferred over
SNMPAPI_OTHER_ERROR, for unmapped transport layer errors.

WinSNMP Data Types
The following is an excerpt from the "Declarations" section of the
/usr/OV/include/WinSNMP.h file.

/\ WinSNMP API Type Definitions \/
typedef HANDLE HSNMP_SESSION, FAR \LPHSNMP_SESSION;
typedef HANDLE HSNMP_ENTITY, FAR \LPHSNMP_ENTITY;
typedef HANDLE HSNMP_CONTEXT, FAR \LPHSNMP_CONTEXT;
typedef HANDLE HSNMP_PDU, FAR \LPHSNMP_PDU;
typedef HANDLE HSNMP_VBL, FAR \LPHSNMP_VBL;
typedef unsigned char smiBYTE, FAR \smiLPBYTE;
/\ SNMP-related types from RFC1442 (SMI) \/
typedef signed long smiINT, FAR \smiLPINT;
typedef smiINT smiINT32, FAR \smiLPINT32;
typedef unsigned long smiUINT32, FAR \smiLPUINT32;
typedef struct {
 smiUINT32 len;
 smiLPBYTE ptr;} smiOCTETS, FAR \smiLPOCTETS;

260 Programmer's Guide

typedef const smiOCTETS FAR \smiLPCOCTETS;
typedef smiOCTETS smiBITS, FAR \smiLPBITS;
typedef struct {
 smiUINT32 len;
 smiLPUINT32 ptr;} smiOID, FAR \smiLPOID;
typedef const smiOID FAR \smiLPCOID;
typedef smiOCTETS smiIPADDR, FAR \smiLPIPADDR;
typedef smiUINT32 smiCNTR32, FAR \smiLPCNTR32;
typedef smiUINT32 smiGAUGE32, FAR \smiLPGAUGE32;
typedef smiUINT32 smiTIMETICKS, FAR \smiLPTIMETICKS;
typedef smiOCTETS smiOPAQUE, FAR \smiLPOPAQUE;
typedef smiOCTETS smiNSAPADDR, FAR \smiLPNSAPADDR;
typedef struct {
 smiUINT32 hipart;
 smiUINT32 lopart;} smiCNTR64, FAR \smiLPCNTR64;

/\ Structure used to compose a value member for a variable binding \/
typedef struct { /\ smiVALUE portion of VarBind \/

smiUINT32 syntax; /\ Insert SNMP_SYNTAX_<type> \/
 union {
 smiINT sNumber; /\ SNMP_SYNTAX_INT
 SNMP_SYNTAX_INT32 \/
 smiUINT32 uNumber; /\ SNMP_SYNTAX_UINT32
 SNMP_SYNTAX_CNTR32
 SNMP_SYNTAX_GAUGE32
 SNMP_SYNTAX_TIMETICKS \/

smiCNTR64 hNumber; /\ SNMP_SYNTAX_CNTR64 \/
 smiOCTETS string; /\ SNMP_SYNTAX_OCTETS
 SNMP_SYNTAX_BITS
 SNMP_SYNTAX_OPAQUE
 SNMP_SYNTAX_IPADDR
 SNMP_SYNTAX_NSAPADDR \/

smiOID oid; /\ SNMP_SYNTAX_OID \/
 smiBYTE empty; /\ SNMP_SYNTAX_NULL
 SNMP_SYNTAX_NOSUCHOBJECT
 SNMP_SYNTAX_NOSUCHINSTANCE
 SNMP_SYNTAX_ENDOFMIBVIEW \/

} value; /\ union \/
 } smiVALUE, FAR \smiLPVALUE;
typedef const smiVALUE FAR \smiLPCVALUE;

 Integers
The standard integer type used by WinSNMP is unsigned long (smiUINT32). In a
few places, parameters are specified as signed long (smiINT) to comply with data
elements defined in the respective RFCs. (This is especially true of some of the
PDU components.)

 Pointers
All pointer variables used in this specification are far pointers; large model program-
ming is assumed.

 Chapter 16. Programming with NetView for AIX WinSNMP 261

 Function Returns
All return values from WinSNMP functions fall into two categories:

� A HANDLE to a resource allocated by the implementation on behalf of the
application, including:

 – Sessions (HSNMP_SESSION)
 – Entities (HSNMP_ENTITY)
 – Contexts (HSNMP_CONTEXT)
 – PDUs (HSNMP_PDU)

– Variable Binding Lists (HSNMP_VBL)

� A long unsigned integer (smiUINT32) value representing a status
(SNMPAPI_STATUS).

– SNMPAPI_FAILURE (equates to 0 or NULL)
– SNMPAPI_SUCCESS (equates to 1 or a positive count)

 Descriptors
Two important WinSNMP data types, octet strings and OIDs, take the form of
descriptors. A descriptor is a structure consisting of a length member (len) and a
pointer member (ptr), of the appropriate type (for example, smiLPBYTE or
smiLPUINT32, respectively), to the actual data item of interest. Either of these two
descriptors can occur in the value member of an smiVALUE structure, as can any
of the scalar WinSNMP types.

When a descriptor that has been allocated by the application is actually populated
(has its len and ptr members defined for it) by the implementation, the application
must eventually call the SnmpFreeDescriptor function to enable the implementation
to release the resources associated with ptr member.

For more detailed memory management information, see “Descriptors” on
page 253, in the Memory Management section.

 WinSNMP Interfaces
This section comprises the function reference for WinSNMP. In general, not a lot
of significance attaches to the categorization or ordering of these functions:

� Local database functions
 � Communications functions
 � Entity/context functions
 � PDU functions
� Variable binding functions

 � Utility functions

Local Database Functions
The functions in this section concern manipulation of the local database of SNMP
administrative information.

The term database in this context is not meant to imply any particular data storage,
access, or manipulation techniques. The WinSNMP implementation is the owner of
the local database and may utilize any proprietary mechanisms it considers best, as
long as all the functions defined in this section are fully supported and no additional
implementation-specific functions are required of a WinSNMP application to utilize

262 Programmer's Guide

the local database. Compliant WinSNMP implementations may require additional
implementation-specific mechanisms external to a WinSNMP application (for
example, setting an environment variable to point to a local database file).

The functions in this section are:

Return Type Procedure Name Parameters

SNMPAPI_STATUS SnmpGetTranslateMode (OUT smiLPUINT32 nTranslateMode);

SNMPAPI_STATUS SnmpSetTranslateMode (IN smiUINT32 nTranslateMode);

SNMPAPI_STATUS SnmpGetRetransmitMode (OUT smiLPUINT32 nRetransmitMode);

SNMPAPI_STATUS SnmpSetRetransmitMode (IN smiUINT32 nRetransmitMode);

SNMPAPI_STATUS SnmpGetTimeout (IN HSNMP_ENTITY hEntity,
OUT smiLPTIMETICKS nPolicyTimeout,
OUT smiLPTIMETICKS nActualTimeout);

SNMPAPI_STATUS SnmpSetTimeout (IN HSNMP_ENTITY hEntity,
IN smiTIMETICKS nPolicyTimeout);

SNMPAPI_STATUS SnmpGetRetry (IN HSNMP_ENTITY hEntity,
OUT smiLPUINT32 nPolicyRetry,
OUT smiLPUINT32 nActualRetry);

SNMPAPI_STATUS SnmpSetRetry (IN HSNMP_ENTITY hEntity,
IN smiUINT32 nPolicyRetry);

 Communications Functions
The functions in this section concern communications between the calling
WinSNMP application and the serving WinSNMP implementation. Communications
to and from other management entities, can reside on the local machine, on a con-
nected LAN or WAN, or an internet. They are handled by the WinSNMP implemen-
tation on behalf of the WinSNMP application, and without any overt orchestration by
the latter.

The functions in this section are:

Return Type Procedure Name Parameters

SNMPAPI_STATUS SnmpStartup (OUT smiLPUINT32 nMajorVersion,
OUT smiLPUINT32 nMinorVersion,
OUT smiLPUINT32 nLevel,
OUT smiLPUINT32 nTranslateMode,
OUT smiLPUINT32 nRetransmitMode);

SNMPAPI_STATUS SnmpCleanup (void);

HSNMP_SESSION SnmpCreateSession (IN HWND hWnd,
IN UINT wMsg,
IN CALLBACK fCallBack,
IN LPVOID lpClientData);

smiINT SnmpSelect (IN smiINT nfds,
IN fd_set *readfds,
IN fd_set *writefds,
IN fd_set *exceptfds,
IN struct timeval *timeout);

SNMPAPI_STATUS SnmpClose (IN HSNMP_SESSION session);

 Chapter 16. Programming with NetView for AIX WinSNMP 263

Return Type Procedure Name Parameters

SNMPAPI_STATUS SnmpSendMsg (IN HSNMP_SESSION session,
IN HSNMP_ENTITY srcEntity,
IN HSNMP_ENTITY dstEntity,
IN HSNMP_CONTEXT context,
IN HSNMP_PDU pdu);

SNMPAPI_STATUS SnmpRecvMsg (IN HSNMP_SESSION session,
OUT LPHSNMP_ENTITY srcEntity,
OUT LPHSNMP_ENTITY dstEntity,
OUT LPHSNMP_CONTEXT context
OUT LPHSNMP_PDU pdu);

SNMPAPI_STATUS SnmpRegister (IN HSNMP_SESSION session,
IN HSNMP_ENTITY srcEntity,
IN HSNMP_ENTITY dstEntity,
IN HSNMP_CONTEXT context,
IN smiLPCOID notification,
IN smiUINT32 state);

 Entity/Context Functions
The functions in this section enable the application to use human-oriented string
identifiers for the entity and context objects and concepts, while permitting the
WinSNMP implementation to adopt proprietary repository, access method, and
runtime representation strategies.

The functions in this section are:

Return Type Procedure Name Parameters

HSNMP_ENTITY SnmpStrToEntity (IN HSNMP_SESSION session,
IN LPCSTR entity);

SNMPAPI_STATUS SnmpEntityToStr (IN HSNMP_ENTITY entity,
IN smiUINT32 size,
OUT LPSTR string);

SNMPAPI_STATUS SnmpFreeEntity (IN HSNMP_ENTITY entity);

HSNMP_CONTEXT SnmpStrToContext (IN HSNMP_SESSION session,
IN smiLPCOCTETS string);

SNMPAPI_STATUS SnmpContextToStr (IN HSNMP_CONTEXT context,
OUT smiLPOCTETS string);

SNMPAPI_STATUS SnmpFreeContext (IN HSNMP_CONTEXT context);

 PDU Functions
This section defines functions which construct PDUs for use in the SnmpSendMsg
and SnmpEncodeMsg functions and which decompose PDUs received via the
SnmpRecvMsg and SnmpDecodeMsg functions. The variable binding functions
also pertain to PDU composition and decomposition, but are retained as a separate
section.

Actual PDU and variable binding data structures are private to the WinSNMP imple-
mentation. The PDU and variable binding functions enable applications to extract

264 Programmer's Guide

the component data elements that are available for whatever use the application
deems appropriate. The elements comprising a PDU from the perspective of a
WinSNMP application are:

/\ This typedef is for expository purposes only.
It is not a required component of WinSNMP \/
typedef struct {
 smiINT PDU_type;
 smiINT32 request_id;

smiINT error_status -- "non_repeaters" for BulkPDU
smiINT error_index -- "max_repetitions" for BulkPDU
HSNMP_VBL varbindlist;} -- we'll examine this one in the next section

 PDU;

The functions in this section are:

Return Type Procedure Name Parameters

HSNMP_PDU SnmpCreatePdu (IN HSNMP_SESSION session,
IN smiINT PDU_type,
IN smiINT32 request_id,
IN smiINT error_status/non_repeaters,
IN smiINT error_index/max_repetitions,
IN HSNMP_VBL vbl);

SNMPAPI_STATUS SnmpGetPduData (IN HSNMP_PDU PDU,
OUT smiLPINT PDU_type,
OUT smiLPINT32 request_id,
OUT smiLPINT error_status/non_repeaters,
OUT smiLPINT error_index/max_repetitions,
OUT LPHSNMP_VBL vbl);

SNMPAPI_STATUS SnmpSetPduData (IN HSNMP_PDU PDU,
IN const smiINT FAR *PDU_type,
IN const smiINT32 FAR *request_id,
IN const smiINT FAR *non_repeaters,
IN const smiINT FAR *max_repetitions,
IN const HSNMP_VBL FAR *vbl);

HSNMP_PDU SnmpDuplicatePdu (IN HSNMP_SESSION session,
IN HSNMP_PDU PDU);

SNMPAPI_STATUS SnmpFreePdu (IN HSNMP_PDU PDU);

The following table illustrates the possible PDU_type values used in WinSNMP
functions:

 PDU_types Table
SNMP_PDU_GET Indicates a Get Request-PDU

SNMP_PDU_GETNEXT Indicates a GetNextRequest-PDU

SNMP_PDU_GETBULK Indicates a GetBulkRequest-PDU

SNMP_PDU_V1TRAP Indicates an SNMPv1-Trap-PDU

SNMP_PDU_SET Indicates a SetRequest- PDU

SNMP_PDU_INFORM Indicates an InformRequest-PDU

SNMP_PDU_RESPONSE Indicates a Response-PDU

SNMP_PDU_TRAP Indicates an SNMPv2-Trap-PDU

 Chapter 16. Programming with NetView for AIX WinSNMP 265

The following table illustrates the possible SNMP error values used in the
error_status element of an SNMP PDU:

SNMP Error Values Table

SNMP_ERROR_NOERROR Specifies the noError error.

SNMP_ERROR_TOOBIG Specifies the tooBig error.

SNMP_ERROR_NOSUCHNAME Specifies the noSuchName error.

SNMP_ERROR_BADVALUE Specifies the badValue error.

SNMP_ERROR_READONLY Specifies the readOnly error.

SNMP_ERROR_GENERR Specifies the genErr error.

SNMP_ERROR_NOACCESS Specifies the noAccess error.

SNMP_ERROR_WRONGTYPE Specifies the wrongType error.

SNMP_ERROR_WRONGLENGTH Specifies the wrongLength error.

SNMP_ERROR_WRONGENCODING Specifies the wrongEncoding error.

SNMP_ERROR_WRONGVALUE Specifies the wrongValue error.

SNMP_ERROR_NOCREATION Specifies the noCreation error.

SNMP_ERROR_INCONSISTENTVALUE Specifies the inconsistentValue error.

SNMP_ERROR_RESOURCEUNAVAILABLE Specifies the resourceUnavailable error.

SNMP_ERROR_COMMITFAILED Specifies the commitFailed error.

SNMP_ERROR_UNDOFAILED Specifies the undoFailed error.

SNMP_ERROR_AUTHORIZATIONERROR Specifies the authorizationError error.

SNMP_ERROR_NOTWRITABLE Specifies the notWritable error.

SNMP_ERROR_INCONSISTENTNAME Specifies the inconsistentName error.

Variable Binding Functions
WinSNMP relies on a varbindlist structure (VBL), and drops the concept of a sepa-
rate varbind structure (VB). No capability is lost because an individual varbind
structure can be represented by a varbindlist structure of one member. A
WinSNMP application accesses the varbindlist structure via handles of type
HSNMP_VBL. A WinSNMP implementation hides the details of this structure from
the application using whatever proprietary mechanisms and techniques it considers
optimal.

These functions allow applications to easily construct and manipulate VarBindLists
for inclusion in PDUs. Note that a varbind is not directly associated with a PDU,
only indirectly through inclusion in a varbindlist. A varbindlist gets associated with
and de-referenced from a PDU with the SnmpSetPduData and SnmpGetPduData,
respectively.

The functions in this section are:

Return Type Procedure Name Parameters

HSNMP_VBL SnmpCreateVbl (IN HSNMP_SESSION session,
IN smiLPCOID name,
IN smiLPCVALUE value);

266 Programmer's Guide

Return Type Procedure Name Parameters

HSNMP_VBL SnmpDuplicateVbl (IN HSNMP_SESSION session,
IN HSNMP_VBL vbl);

SNMPAPI_STATUS SnmpFreeVbl (IN HSNMP_VBL vbl);

SNMPAPI_STATUS SnmpCountVbl (IN HSNMP_VBL vbl);

SNMPAPI_STATUS SnmpGetVb (IN HSNMP_VBL vbl,
IN smiUINT32 index,
OUT smiLPOID name,
OUT smiLPVALUE value);

SNMPAPI_STATUS SnmpSetVb (IN HSNMP_VBL vbl,
IN smiUINT32 index,
IN smiLPCOID name,
IN smiLPCVALUE value);

SNMPAPI_STATUS SnmpDeleteVb (IN HSNMP_VBL vbl,
IN smiUINT32 index);

Table of Syntax Values Used in Variable Binding Data Structures

SNMP_SYNTAX_INT32
SNMP_SYNTAX_OCTETS
SNMP_SYNTAX_OID
SNMP_SYNTAX_BITS
SNMP_SYNTAX_IPADDR
SNMP_SYNTAX_CNTR32
SNMP_SYNTAX_GAUGE32
SNMP_SYNTAX_TIMETICKS
SNMP_SYNTAX_OPAQUE
SNMP_SYNTAX_NSAPADDR
SNMP_SYNTAX_CNTR64
SNMP_SYNTAX_UINT32
SNMP_SYNTAX_NULL
SNMP_SYNTAX_NOSUCHOBJECT
SNMP_SYNTAX_NOSUCHINSTANCE
SNMP_SYNTAX_ENDOFMIBVIEW

 Utility Functions
The utility functions are offered to ease the tasks of bookkeeping and dealing with
objects passed across the Windows SNMP interface.

Return Type Procedure Name Parameters

SNMPAPI_STATUS SnmpGetLastError (IN HSNMP_SESSION session);

smiLPBYTE SnmpGetLastErrorStr (IN HSNMP_SESSION session);

SNMPAPI_STATUS SnmpStrToOid (IN LPCSTR string,
OUT smiLPOID dstOID);

SNMPAPI_STATUS SnmpOidToStr (IN smiLPCOID srcOID,
IN smiUINT32 size,
OUT LPSTR string);

SNMPAPI_STATUS SnmpOidCopy (IN smiLPCOID srcOID,
OUT smiLPOID dstOID);

 Chapter 16. Programming with NetView for AIX WinSNMP 267

Return Type Procedure Name Parameters

SNMPAPI_STATUS SnmpOidCompare (IN smiLPCOID xOID,
IN smiLPCOID yOID,
IN smiUINT32 maxlen,
OUT smiLPINT result);

SNMPAPI_STATUS SnmpEncodeMsg (IN HSNMP_SESSION session,
IN HSNMP_ENTITY srcEntity,
IN HSNMP_ENTITY dstEntity,
IN HSNMP_CONTEXT context,
IN HSNMP_PDU pdu,
OUT smiLPOCTETS msgBufDesc);

SNMPAPI_STATUS SnmpDecodeMsg (IN HSNMP_SESSION session,
OUT LPHSNMP_ENTITY srcEntity,
OUT LPHSNMP_ENTITY dstEntity,
OUT LPHSNMP_CONTEXT context,
OUT LPHSNMP_PDU pdu,
IN smiLPCOCTETS msgBufDesc);

SNMPAPI_STATUS SnmpFreeDescriptor (IN smiUINT32 syntax,
IN smiLPOPAQUE descriptor);

 Declarations
The WinSNMP.h include file contains common declarations for SNMP datatypes,
attributes, and values and for WinSNMP API datatypes, attributes, and values. It
must be delivered as WinSNMP.h with every compliant implementation.

Additional declarations required or offered by an implementation must be delivered
in a separate include file with an implementation-specific name.

An attempt has been made to balance brevity and clarity in these declarations. In
general, however, there has been a slight bias toward brevity. Developers can
easily include longer, more descriptive equivalents to the declarations through addi-
tional #define and typedef statements in a private include files loaded after
WinSNMP.h.

268 Programmer's Guide

WinSNMP.h Include File

/\ v1.1 WinSNMP.h \/
/\ v1.ð - Sep 13, 1993 \/
/\ v1.1 - Jun 1ð, 1994 \/

#ifndef _INC_WINSNMP /\Include WinSNMP declarations \/
#define _INC_WINSNMP /\ Just once! \/

#ifndef _INC_WINDOWS /\ Include Windows declarations, if not already done \/
#include <windows.h>
#define _INC_WINDOWS /\ Just once! \/
#endif /\ _INC_WINDOWS \/

#ifdef __cplusplus
extern "C" {
#endif

/\ WinSNMP API Type Definitions \/
typedef HANDLE HSNMP_SESSION, FAR \LPHSNMP_SESSION;
typedef HANDLE HSNMP_ENTITY, FAR \LPHSNMP_ENTITY;
typedef HANDLE HSNMP_CONTEXT, FAR \LPHSNMP_CONTEXT;
typedef HANDLE HSNMP_PDU, FAR \LPHSNMP_PDU;
typedef HANDLE HSNMP_VBL, FAR \LPHSNMP_VBL;
typedef unsigned char smiBYTE, FAR \smiLPBYTE;
/\ SNMP-related types from RFC1442 (SMI) \/
typedef signed long smiINT, FAR \smiLPINT;
typedef smiINT smiINT32, FAR \smiLPINT32;
typedef unsigned long smiUINT32, FAR \smiLPUINT32;
typedef struct {
 smiUINT32 len;
 smiLPBYTE ptr;} smiOCTETS, FAR \smiLPOCTETS;
typedef const smiOCTETS FAR \smiLPCOCTETS;
typedef smiOCTETS smiBITS, FAR \smiLPBITS;
typedef struct {
 smiUINT32 len;
 smiLPUINT32 ptr;} smiOID, FAR \smiLPOID;
typedef const smiOID FAR \smiLPCOID;
typedef smiOCTETS smiIPADDR, FAR \smiLPIPADDR;
typedef smiUINT32 smiCNTR32, FAR \smiLPCNTR32;
typedef smiUINT32 smiGAUGE32, FAR \smiLPGAUGE32;
typedef smiUINT32 smiTIMETICKS, FAR \smiLPTIMETICKS;
typedef smiOCTETS smiOPAQUE, FAR \smiLPOPAQUE;
typedef smiOCTETS smiNSAPADDR, FAR \smiLPNSAPADDR;
typedef struct {
 smiUINT32 hipart;
 smiUINT32 lopart;} smiCNTR64, FAR \smiLPCNTR64;

/\ ASN/BER Base Types \/
/\ (used in forming SYNTAXes and certain SNMP types/values) \/
#define ASN_UNIVERSAL (ðxðð)
#define ASN_APPLICATION (ðx4ð)
#define ASN_CONTEXT (ðx8ð)
#define ASN_PRIVATE (ðxCð)
#define ASN_PRIMITIVE (ðxðð)
#define ASN_CONSTRUCTOR (ðx2ð)

 Chapter 16. Programming with NetView for AIX WinSNMP 269

/\ SNMP ObjectSyntax Values \/
#define SNMP_SYNTAX_SEQUENCE (ASN_UNIVERSAL | ASN_CONSTRUCTOR | ðx1ð)
/\ These values are used in the "syntax" member of the smiVALUE structure which follows \/
#define SNMP_SYNTAX_INT (ASN_UNIVERSAL | ASN_PRIMITIVE | ðxð2)
#define SNMP_SYNTAX_BITS (ASN_UNIVERSAL | ASN_PRIMITIVE | ðxð3)
#define SNMP_SYNTAX_OCTETS (ASN_UNIVERSAL | ASN_PRIMITIVE | ðxð4)
#define SNMP_SYNTAX_NULL (ASN_UNIVERSAL | ASN_PRIMITIVE | ðxð5)
#define SNMP_SYNTAX_OID (ASN_UNIVERSAL | ASN_PRIMITIVE | ðxð6)
#define SNMP_SYNTAX_INT32 SNMP_SYNTAX_INT
#define SNMP_SYNTAX_IPADDR (ASN_APPLICATION | ASN_PRIMITIVE | ðxðð)
#define SNMP_SYNTAX_CNTR32 (ASN_APPLICATION | ASN_PRIMITIVE | ðxð1)
#define SNMP_SYNTAX_GAUGE32 (ASN_APPLICATION | ASN_PRIMITIVE | ðxð2)
#define SNMP_SYNTAX_TIMETICKS (ASN_APPLICATION | ASN_PRIMITIVE | ðxð3)
#define SNMP_SYNTAX_OPAQUE (ASN_APPLICATION | ASN_PRIMITIVE | ðxð4)
#define SNMP_SYNTAX_NSAPADDR (ASN_APPLICATION | ASN_PRIMITIVE | ðxð5)
#define SNMP_SYNTAX_CNTR64 (ASN_APPLICATION | ASN_PRIMITIVE | ðxð6)
#define SNMP_SYNTAX_UINT32 (ASN_APPLICATION | ASN_PRIMITIVE | ðxð7)
/\ Exception conditions in response PDUs for SNMPv2 \/
#define SNMP_SYNTAX_NOSUCHOBJECT (ASN_CONTEXT | ASN_PRIMITIVE | ðxðð)
#define SNMP_SYNTAX_NOSUCHINSTANCE (ASN_CONTEXT | ASN_PRIMITIVE | ðxð1)
#define SNMP_SYNTAX_ENDOFMIBVIEW (ASN_CONTEXT | ASN_PRIMITIVE | ðxð2)

typedef struct { /\ smiVALUE portion of VarBind \/
smiUINT32 syntax; /\ Insert SNMP_SYNTAX_<type> \/

 union {
 smiINT sNumber; /\ SNMP_SYNTAX_INT
 SNMP_SYNTAX_INT32 \/
 smiUINT32 uNumber; /\ SNMP_SYNTAX_UINT32
 SNMP_SYNTAX_CNTR32
 SNMP_SYNTAX_GAUGE32
 SNMP_SYNTAX_TIMETICKS \/

smiCNTR64 hNumber; /\ SNMP_SYNTAX_CNTR64 \/
smiOCTETS string; /\ SNMP_SYNTAX_OCTETS

 SNMP_SYNTAX_BITS
 SNMP_SYNTAX_OPAQUE
 SNMP_SYNTAX_IPADDR
 SNMP_SYNTAX_NSAPADDR \/

smiOID oid; /\ SNMP_SYNTAX_OID \/
 smiBYTE empty; /\ SNMP_SYNTAX_NULL
 SNMP_SYNTAX_NOSUCHOBJECT
 SNMP_SYNTAX_NOSUCHINSTANCE
 SNMP_SYNTAX_ENDOFMIBVIEW \/

} value; /\ union \/
} smiVALUE, FAR \smiLPVALUE;

typedef const smiVALUE FAR \smiLPCVALUE;

/\ SNMP Limits \/
#define MAXOBJIDSIZE 128 /\ Max number of components in an OID \/
#define MAXOBJIDSTRSIZE 14ð8 /\ Max len of decoded MAXOBJIDSIZE OID \/

270 Programmer's Guide

/\ PDU Type Values \/
#define SNMP_PDU_GET (ASN_CONTEXT | ASN_CONSTRUCTOR | ðxð)
#define SNMP_PDU_GETNEXT (ASN_CONTEXT | ASN_CONSTRUCTOR | ðx1)
#define SNMP_PDU_RESPONSE (ASN_CONTEXT | ASN_CONSTRUCTOR | ðx2)
#define SNMP_PDU_SET (ASN_CONTEXT | ASN_CONSTRUCTOR | ðx3)
/\ SNMP_PDU_V1TRAP is obsolete in SNMPv2 \/
#define SNMP_PDU_V1TRAP (ASN_CONTEXT | ASN_CONSTRUCTOR | ðx4)
#define SNMP_PDU_GETBULK (ASN_CONTEXT | ASN_CONSTRUCTOR | ðx5)
#define SNMP_PDU_INFORM (ASN_CONTEXT | ASN_CONSTRUCTOR | ðx6)
#define SNMP_PDU_TRAP (ASN_CONTEXT | ASN_CONSTRUCTOR | ðx7

/\ SNMPv1 Trap Values \/
/\ (These values might be superfluous wrt WinSNMP applications) \/
#define SNMP_TRAP_COLDSTART ð
#define SNMP_TRAP_WARMSTART 1
#define SNMP_TRAP_LINKDOWN 2
#define SNMP_TRAP_LINKUP 3
#define SNMP_TRAP_AUTHFAIL 4
#define SNMP_TRAP_EGPNEIGHBORLOSS 5
#define SNMP_TRAP_ENTERPRISESPECIFIC 6

/\ SNMP Error Codes Returned in Error_status Field of PDU \/
/\ (these are NOT WinSNMP API Error Codes \/
/\ Error Codes Common to SNMPv1 and SNMPv2 \/
#define SNMP_ERROR_NOERROR ð
#define SNMP_ERROR_TOOBIG 1
#define SNMP_ERROR_NOSUCHNAME 2
#define SNMP_ERROR_BADVALUE 3
#define SNMP_ERROR_READONLY 4
#define SNMP_ERROR_GENERR 5
/\ Error Codes Added for SNMPv2 \/
#define SNMP_ERROR_NOACCESS 6
#define SNMP_ERROR_WRONGTYPE 7
#define SNMP_ERROR_WRONGLENGTH 8
#define SNMP_ERROR_WRONGENCODING 9
#define SNMP_ERROR_WRONGVALUE 1ð
#define SNMP_ERROR_NOCREATION 11
#define SNMP_ERROR_INCONSISTENTVALUE 12
#define SNMP_ERROR_RESOURCEUNAVAILABLE 13
#define SNMP_ERROR_COMMITFAILED 14
#define SNMP_ERROR_UNDOFAILED 15
#define SNMP_ERROR_AUTHORIZATIONERROR 16
#define SNMP_ERROR_NOTWRITABLE 17
#define SNMP_ERROR_INCONSISTENTNAME 18

 Chapter 16. Programming with NetView for AIX WinSNMP 271

/\ WinSNMP API Values \/
/\ Values used to indicate entity/context translation modes \/
#define SNMPAPI_TRANSLATED ð
#define SNMPAPI_UNTRANSLATED_V1 1
#define SNMPAPI_UNTRANSLATED_V2 2

/\ Values used to indicate SNMP "communications level" supported by the implementation \/
#define SNMPAPI_NO_SUPPORT ð
#define SNMPAPI_V1_SUPPORT 1
#define SNMPAPI_V2_SUPPORT 2
#define SNMPAPI_M2M_SUPPORT 3

/\ Values used to indicate retransmit mode in the implementation \/
#define SNMPAPI_OFF ð /\ Refuse support \/
#define SNMPAPI_ON 1 /\ Request support \/

/\ WinSNMP API Function Return Codes \/
typedef smiUINT32 SNMPAPI_STATUS /\ Used for function ret values \/
#define SNMPAPI_FAILURE ð /\ Generic error code \/
#define SNMPAPI_SUCCESS 1 /\ Generic success code \/

272 Programmer's Guide

/\ WinSNMP API Error Codes (for SnmpGetLastError) \/
/\ (NOT SNMP Response-PDU error_status codes) \/
#define SNMPAPI_ALLOC_ERROR 2 /\ Error allocating memory \/
#define SNMPAPI_CONTEXT_INVALID 3 /\ Invalid context parameter \/
#define SNMPAPI_CONTEXT_UNKNOWN 4 /\ Unknown context parameter \/
#define SNMPAPI_ENTITY_INVALID 5 /\ Invalid entity parameter \/
#define SNMPAPI_ENTITY_UNKNOWN 6 /\ Unknown entity parameter \/
#define SNMPAPI_INDEX_INVALID 7 /\ Invalid VBL index parameter \/
#define SNMPAPI_NOOP 8 /\ No operation performed \/
#define SNMPAPI_OID_INVALID 9 /\ Invalid OID parameter \/
#define SNMPAPI_OPERATION_INVALID 1ð /\ Invalid/unsupported operation \/
#define SNMPAPI_OUTPUT_TRUNCATED 11 /\ Insufficient output buf len \/
#define SNMPAPI_PDU_INVALID 12 /\ Invalid PDU parameter \/
#define SNMPAPI_SESSION_INVALID 13 /\ Invalid session parameter \/
#define SNMPAPI_SYNTAX_INVALID 14 /\ Invalid syntax in smiVALUE \/
#define SNMPAPI_VBL_INVALID 15 /\ Invalid VBL parameter \/
#define SNMPAPI_MODE_INVALID 16 /\ Invalid mode parameter \/
#define SNMPAPI_SIZE_INVALID 17 /\ Invalid size/length parameter \/
#define SNMPAPI_NOT_INITIALIZED 18 /\ SnmpStartup failed/not called \/
#define SNMPAPI_MESSAGE_INVALID 19 /\ Invalid SNMP message format \/
#define SNMPAPI_HWND_INVALID 2ð /\ Invalid Window handle \/
#define SNMPAPI_OTHER_ERROR 99 /\ For internal/undefined errors \/
/\ Generic Transport Layer (TL) Errors \/
#define SNMPAPI_TL_NOT_INITIALIZED 1ðð /\ TL not initialized \/
#define SNMPAPI_TL_NOT_SUPPORTED 1ð1 /\ TL does not support protocol \/
#define SNMPAPI_TL_NOT_AVAILABLE 1ð2 /\ Network subsystem has failed \/
#define SNMPAPI_TL_RESOURCE_ERROR 1ð3 /\ TL resource error \/
#define SNMPAPI_TL_UNDELIVERABLE 1ð4 /\ Destination unreachable \/
#define SNMPAPI_TL_SRC_INVALID 1ð5 /\ Source endpoint invalid \/
#define SNMPAPI_TL_INVALID_PARAM 1ð6 /\ Input parameter invalid \/
#define SNMPAPI_TL_IN_USE 1ð7 /\ Source endpoint in use \/
#define SNMPAPI_TL_TIMEOUT 1ð8 /\ No response before timeout \/
#define SNMPAPI_TL_PDU_TOO_BIG 1ð9 /\ PDU too big for send/receive \/
#define SNMPAPI_TL_OTHER 199 /\ Undefined TL error \/

/\ WinSNMP API Function Prototypes \/
#define IN /\ Documentation only \/
#define OUT /\ Documentation only \/
#define SNMPAPI_CALL WINAPI /\ FAR PASCAL calling conventions \/

 Chapter 16. Programming with NetView for AIX WinSNMP 273

/\ Local Database Functions \/

SNMPAPI_STATUS SNMPAPI_CALL SnmpGetTranslateMode
(OUT smiLPUINT32 nTranslateMode);

SNMPAPI_STATUS SNMPAPI_CALL SnmpSetTranslateMode
(IN smiUINT32 nTranslateMode);

SNMPAPI_STATUS SNMPAPI_CALL SnmpGetRetransmitMode
(OUT smiLPUINT32 nRetransmitMode);

SNMPAPI_STATUS SNMPAPI_CALL SnmpSetRetransmitMode
(IN smiUINT32 nRetransmitMode);

SNMPAPI_STATUS SNMPAPI_CALL SnmpGetTimeout
(IN HSNMP_ENTITY hEntity,
OUT smiLPTIMETICKS nPolicyTimeout,
OUT smiLPTIMETICKS nActualTimeout);

SNMPAPI_STATUS SNMPAPI_CALL SnmpSetTimeout
(IN HSNMP_ENTITY hEntity,
IN smiTIMETICKS nPolicyTimeout);

SNMPAPI_STATUS SNMPAPI_CALL SnmpGetRetry
(IN HSNMP_ENTITY hEntity,
OUT smiLPUINT32 nPolicyRetry,
OUT smiLPUINT32 nActualRetry);

SNMPAPI_STATUS SNMPAPI_CALL SnmpSetRetry
(IN HSNMP_ENTITY hEntity,
IN smiUINT32 nPolicyRetry);

274 Programmer's Guide

/\ Communications Functions \/

SNMPAPI_STATUS SNMPAPI_CALL SnmpStartup
(OUT smiLPUINT32 nMajorVersion,
OUT smiLPUINT32 nMinorVersion,
OUT smiLPUINT32 nLevel,
OUT smiLPUINT32 nTranslateMode,
OUT smiLPUINT32 nRetransmitMode);

SNMPAPI_STATUS SNMPAPI_CALL SnmpCleanup
 (void);

HSNMP_SESSION SNMPAPI_CALL SnmpCreateSession
(IN HWND hWnd,
IN UINT wMsg,
IN CALLBACK fCallBack,
IN LPVOID lpclientData);

SNMPAPI_STATUS SNMPAPI_CALL SnmpClose
(IN HSNMP_SESSION session);

SNMPAPI_STATUS SNMPAPI_CALL SnmpSendMsg
(IN HSNMP_SESSION session,
IN HSNMP_ENTITY srcEntity,
IN HSNMP_ENTITY dstEntity,
IN HSNMP_CONTEXT context,
IN HSNMP_PDU PDU);

SNMPAPI_STATUS SNMPAPI_CALL SnmpRecvMsg
(IN HSNMP_SESSION session,
OUT LPHSNMP_ENTITY srcEntity,
OUT LPHSNMP_ENTITY dstEntity,

 OUT LPHSNMP_CONTEXT context,
OUT LPHSNMP_PDU PDU);

SNMPAPI_STATUS SNMPAPI_CALL SnmpRegister
(IN HSNMP_SESSION session,
IN HSNMP_ENTITY srcEntity,
IN HSNMP_ENTITY dstEntity,
IN HSNMP_CONTEXT context,
IN smiLPCOID notification,
IN smiUINT32 state);

 Chapter 16. Programming with NetView for AIX WinSNMP 275

/\ Entity/Context Functions \/

HSNMP_ENTITY SNMPAPI_CALL SnmpStrToEntity
(IN HSNMP_SESSION session,
IN LPCSTR string);

SNMPAPI_STATUS SNMPAPI_CALL SnmpEntityToStr
(IN HSNMP_ENTITY entity,
IN smiUINT32 size,
OUT LPSTR string);

SNMPAPI_STATUS SNMPAPI_CALL SnmpFreeEntity
(IN HSNMP_ENTITY entity);

HSNMP_CONTEXT SNMPAPI_CALL SnmpStrToContext
(IN HSNMP_SESSION session,
IN smiLPCOCTETS string);

SNMPAPI_STATUS SNMPAPI_CALL SnmpContextToStr
(IN HSNMP_CONTEXT context,
OUT smiLPOCTETS string);

SNMPAPI_STATUS SNMPAPI_CALL SnmpFreeContext
(IN HSNMP_CONTEXT context);

/\ PDU Functions \/

HSNMP_PDU SNMPAPI_CALL SnmpCreatePdu
(IN HSNMP_SESSION session,
IN smiINT PDU_type,
IN smiINT32 request_id,
IN smiINT error_status,
IN smiINT error_index,
IN HSNMP_VBL varbindlist);

SNMPAPI_STATUS SNMPAPI_CALL SnmpGetPduData
(IN HSNMP_PDU PDU,
OUT smiLPINT PDU_type,
OUT smiLPINT32 request_id,
OUT smiLPINT error_status,
OUT smiLPINT error_index,
OUT LPHSNMP_VBL varbindlist);

SNMPAPI_STATUS SNMPAPI_CALL SnmpSetPduData
(IN HSNMP_PDU PDU,
IN const smiINT FAR \PDU_type,
IN const smiINT32 FAR \request_id,
IN const smiINT FAR \non_repeaters,
IN const smiINT FAR \max_repetitions,
IN const HSNMP_VBL FAR \varbindlist);

HSNMP_PDU SNMPAPI_CALL SnmpDuplicatePdu
(IN HSNMP_SESSION session,
IN HSNMP_PDU PDU);

SNMPAPI_STATUS SNMPAPI_CALL SnmpFreePdu
(IN HSNMP_PDU PDU);

276 Programmer's Guide

/\ Variable-Binding Functions \/

HSNMP_VBL SNMPAPI_CALL SnmpCreateVbl
(IN HSNMP_SESSION session,
IN smiLPCOID name,
IN smiLPCVALUE value);

HSNMP_VBL SNMPAPI_CALL SnmpDuplicateVbl
(IN HSNMP_SESSION session,
IN HSNMP_VBL vbl);

SNMPAPI_STATUS SNMPAPI_CALL SnmpFreeVbl
(IN HSNMP_VBL vbl);

SNMPAPI_STATUS SNMPAPI_CALL SnmpCountVbl
(IN HSNMP_VBL vbl);

SNMPAPI_STATUS SNMPAPI_CALL SnmpGetVb
(IN HSNMP_VBL vbl,
IN smiUINT32 index,
OUT smiLPOID name,
OUT smiLPVALUE value);

SNMPAPI_STATUS SNMPAPI_CALL SnmpSetVb
(IN HSNMP_VBL vbl,
IN smiUINT32 index,
IN smiLPCOID name,
IN smiLPCVALUE value);

SNMPAPI_STATUS SNMPAPI_CALL SnmpDeleteVb
(IN HSNMP_VBL vbl,
IN smiUINT32 index);

 Chapter 16. Programming with NetView for AIX WinSNMP 277

/\ Utility Functions \/

SNMPAPI_STATUS SNMPAPI_CALL SnmpGetLastError
(IN HSNMP_SESSION session);

SNMPAPI_STATUS SNMPAPI_CALL SnmpStrToOid
(IN LPCSTR string,
OUT smiLPOID dstOID);

SNMPAPI_STATUS SNMPAPI_CALL SnmpOidToStr
(IN smiLPCOID srcOID,
IN smiUINT32 size,
OUT LPSTR string);

SNMPAPI_STATUS SNMPAPI_CALL SnmpOidCopy
(IN smiLPCOID srcOID,
OUT smiLPOID dstOID);

SNMPAPI_STATUS SNMPAPI_CALL SnmpOidCompare
(IN smiLPCOID xOID,
IN smiLPCOID yOID,
IN smiUINT32 maxlen,
OUT smiLPINT result);

SNMPAPI_STATUS SNMPAPI_CALL SnmpEncodeMsg
(IN HSNMP_SESSION session,
IN HSNMP_ENTITY srcEntity,
IN HSNMP_ENTITY dstEntity,
IN HSNMP_CONTEXT context,
IN HSNMP_PDU pdu,
OUT smiLPOCTETS msgBufDesc);

SNMPAPI_STATUS SNMPAPI_CALL SnmpDecodeMsg
(IN HSNMP_SESSION session,
OUT LPHSNMP_ENTITY srcEntity,
OUT LPHSNMP_ENTITY dstEntity,
OUT LPHSNMP_CONTEXT context,
OUT LPHSNMP_PDU pdu,
IN smiLPCOCTETS msgBufDesc);

SNMPAPI_STATUS SNMPAPI_CALL SnmpFreeDescriptor
(IN smiUINT32 syntax,
IN smiLPOPAQUE descriptor);

#ifdef __cplusplus
}
#endif
#endif /\ _INC_WINSNMP \/

278 Programmer's Guide

Mapping Traps Between SNMPv1 and SNMPv2
One of the differences between SNMPv1 and SNMPv2 is a change to the trap
format: in SNMPv1, the trap format was unlike the format of the other PDUs; in
SNMPv2 the trap format is identical to the format of the other PDUs.

When the WinSNMP API delivers a trap to a management application, it always
uses the SNMPv2 trap format, even if an SNMPv1 agent generated the trap. The
SNMPv2 coexistence document, RFC 1908, specifies how an SNMPv1 trap is
translated into the SNMPv2 trap format, and this algorithm is used in all implemen-
tations of the WinSNMP API.

In SNMPv1, the trap format has five fields:

Enterprise Identifies the type of device that generated the trap

Agent-addr Identifies the network address of the device

Generic-trap/specific-trap
Identifies the trap that was generated

Time-stamp Identifies when the trap was generated

Variable-bindings
Contain the payload, if any, associated with the trap.

In SNMPv2, the trap format consists simply of a list of “n” variable bindings:

� The first variable binding contains the time-stamp
� The second variable binding identifies the trap, using an OID
� The third through “n” variable bindings, if any, contain the payload.

When SnmpRecvMsg returns an SNMP_PDU_TRAP message, the application
examines the variable bindings of that message to determine trap information.

When translating an SNMPv1 trap to the SNMPv2 format, one additional variable
binding may be present, at the end of the list, which corresponds to the enterprise
field. According to the SNMPv2 coexistence document, this variable binding need
only be present if the trap was enterprise-specific. However, in order to simplify the
programming of management applications, this variable binding is always added by
the WinSNMP API when it translates an SNMPv1 trap to the SNMPv2 format.

 Chapter 16. Programming with NetView for AIX WinSNMP 279

280 Programmer's Guide

Chapter 17. Using the NetView for AIX SNMP API

This chapter describes the NetView for AIX Simple Network Management Protocol
Application Programming Interface (SNMP API). It includes the following:

� An overview of SNMP
� The functions and key data structures in the SNMP API
� How to perform basic tasks using the SNMP API

The detailed reference pages and error code information for the SNMP API are in
the NetView for AIX Programmer's Reference and the online man pages.

This chapter is for application developers who need to use the SNMP API.
Readers are presumed to have the following background:

� Programming skills using the C programming language. In addition to general
programming skills, the SNMP API programmer should understand the princi-
ples of memory management (allocation and deallocation) and the use of
select() or a similar I/O mechanism.

� General networking familiarity. In particular, readers should understand these
concepts:

– Transport reliability, and other developer-visible differences between UDP
and TCP

 – Internet addressing

� Substantial knowledge of network management principles, the Simple Network
Management Protocol, and related topics. In particular, readers should be
familiar with the following:

– The SNMP protocol definition as described in RFC 1157

– The Internet-standard Management Information Base (MIB) as described in
RFC 1155 and RFC 1213

– The concepts of managers and agents

The SNMP Model of Communication
Managing contemporary computer networks requires an approach that simplifies
the potentially complex problems of communication and coordination. The pre-
vailing approach, and the one adopted by SNMP, is to view the network as a col-
lection of cooperative, communicating entities. There are basically two types of
entities: management nodes (managers) and managed nodes (agents).

 Managers
A manager is a node that actively participates in network management. It solicits
and interprets data about network devices and network traffic, and typically inter-
acts with a user to achieve the user's intentions. A manager can also trigger
changes in an agent by changing the value of a variable on the agent node. Man-
agers are frequently implemented as network management applications.

 Copyright IBM Corp. 1992, 1995 281

 Agents
An SNMP agent is software that resides on a network node and is responsible for
communicating with managers regarding that node. The node is represented as a
managed object, which has various fields or variables, which are defined in the
appropriate MIB. The agent has two purposes:

� To respond to requests from managers, supplying or changing the values of the
object's variables as requested

� To generate traps to alert managers of noteworthy events occurring at the
node, such as a component failure

Not all devices support SNMP directly. A device that does not directly support
SNMP is called foreign. A proxy agent is an agent that serves a foreign device by
translating between SNMP and the foreign device's protocol.

Manager and Agent Interaction
A manager can be one of many processes on a specific computer. For example, a
manager might try to provide data about certain gateways. It would use the
gateway agent by requesting data about throughput, retransmission rates, and
other parameters. Such a manager might also need to reset gateway counters
periodically by communicating with the gateway agent.

Managers do not need to know any internal details about the object managed by an
agent. Likewise, an SNMP agent can service requests from many SNMP man-
agers. The agent does not need to know the context of the request or the structure
of the manager making the request. The agent validates the request, services it,
and enters its passive state awaiting the next request. This division of responsibil-
ities simplifies network management solutions.

Note: The NetView for AIX SNMP API is intended for the development of
SNMP-based network management applications. It does not support the develop-
ment of SNMP agents, other than allowing the generation of traps.

 SNMP Messages
Requests and responses are transferred in Protocol Data Units, or PDUs. A PDU
is the formal name for a message that is sent or received in the course of SNMP
communication.

SNMP uses the User Datagram Protocol (UDP), an intrinsically connectionless
channel. This implementation of an SNMP API is based on Revision 1.1 of the
CMU SNMP Library, which introduces a connection-oriented model from the appli-
cation perspective. Internally, this implementation still uses connectionless UDP;
the agent is not involved in opening or closing a session.

Types of Messages
Table 27 describes the five basic types of messages your application can handle.

282 Programmer's Guide

Table 27. SNMP Message Types

Type Formal Name Description

Get Request GET_REQ_MSG A Get Request message requests the value
of one or more of the variables of the object
managed by an agent.

Set Request SET_REQ_MSG A Set Request message writes new data to
one or more of the variables of the object
managed by an agent.

Get Next Request GETNEXT_REQ_MSG A Get Next Request message requests the
Object Identifier(s) and value(s) of the next
variable of the object managed by an agent.

Trap Request TRAP_REQ_MSG A Trap Request message sends a non-
blocking alert to an SNMP manager. Traps
have special semantics and values.

Get Response GET_RSP_MSG A Get Response message contains data that
has come from an agent in response to a
Get Request.

 Traps
In the model presented previously, the manager requests information from the
agent. The agent then responds. However, it is possible for an agent to issue
messages without a corresponding request. Such a message is known as a trap.

Traps exist to handle special conditions. When an agent or manager detects such
a condition, it can emit a trap message. There are several predefined traps speci-
fied by SNMP (see the /usr/OV/include/OV/OVsnmpApi.h file), which can be
extended by using enterprise-specific traps. Using the NetView for AIX SNMP API,
an application can receive SNMP traps.

The Management Information Base
This section reviews highlights of data representation and the concept of a Man-
agement Information Base, or MIB.

The MIB is a method of describing managed objects by specifying the names,
types, and order of the fields, or variables, that make up the object. A MIB con-
tains the definitions for a collection of standardized and non-standardized (vendor,
experimental) objects.

The Internet MIB-II is one of many standard MIBs. The purpose of the MIB-II is to
define common objects for managing TCP/IP networks. Other standard MIBs exist
(or are being defined) to manage specific network elements as well.

Note: Detailed explanations of these topics are beyond the scope of this guide.
For more information about these topics, refer to RFC 1155, RFC 1212, and
RFC 1213. Also see “For Further Reading” on page 288 in this chapter.

The Internet MIB-II definition (RFC 1213) defines standardized objects for TCP/IP
agents. To access the value of a MIB-II object, an SNMP manager sends a
request to the agent representing the desired instance of the object. The request
message contains MIB information (an object identifier) that lets the agent identify

 Chapter 17. Using the NetView for AIX SNMP API 283

the specific objects. The corresponding response message from the agent carries
the same identifying information.

 Object Identifiers
For the purpose of developing SNMP applications, an object identifier (OID) is a
data type that precisely identifies a MIB-II object. An OID (sometimes referred to
as the registration ID) consists of a sequence of non-negative integers that describe
a path through the object-naming hierarchy to the object. The naming hierarchy is
commonly called the naming tree.

The Naming Tree
The naming tree has the structure of a conventional tree with arbitrary breadth and
depth. The nodes are labeled with non-negative integers (each node among sib-
lings must have a unique label).

Various organizations have administrative authority for assigning labels within sub-
trees of the naming tree. They can assign subordinate, or child, nodes, and/or del-
egate this responsibility to still other organizations. The root node of the naming
tree has three children:

ccitt(ð) The administration authority for this branch is the Interna-
tional Telegraph and Telephone Consultative Committee
(CCITT).

iso(1) The administration authority for this branch is the Interna-
tional Organization for Standards, and the International
Electrotechnical Committee (ISO/IEC). This is the path under
which networking management is defined.

joint-iso-ccitt(2) The administration authority for this branch is shared
between CCITT and ISO/IEC.

Ultimately, every path through the naming tree terminates at a leaf node. The
sequence of labels along the path (starting at the root) is the OID for the object
named at the leaf.

OIDs in Practice
The convention for writing object identifiers is called dot notation. An OID in dot
notation consists of the integers of the OID in sequence with a period (dot) between
them. The prefix for the OIDs in the MIB-II is:

1.3.6.1.2.1

In the next example, the full name of the path is shown beneath the corresponding
numerical identifiers in the OID:

1 . 3 . 6 . 1 . 2 . 1 . 6 . 7
iso.org.dod.internet.mgmt.mib-2.tcp.tcpAttemptFails

Similarly, the prefix for the OIDs in IBM's enterprise-specific MIBs is:

1.3.6.1.4.1.6.3

284 Programmer's Guide

Converting Object Identifiers to Text Strings
The NetView for AIX program provides two API routines that convert MIB variable
names between their dot-notation format and their textual equivalents. Use the
OVmib_read_objid routine to convert a character string to dot notation. This
permits you to build, from the textual name of a MIB variable, an oid in the proper
form to submit as a parameter to many SNMP API routines. The function prototype
for this routine is:

int OVmib_read_objid(const char \name,
 ObjectID \oid,
 u_int \oid_length);

The OVmib_read_objid routine performs a lookup function to convert the input
string to dot notation. If the input string begins with a period, the routine converts
the string as coded. If the input string does not begin with a period, the routine will
attach the following default prefixes:

 � .iso.org.dod.internet.mgmt.mib-2

 � .iso.org.dod.internet.private.enterprises

Use the OVmib_get_objid_name routine to convert an oid in dot notation to its
textual name. This permits you to build, from an oid returned by an API routine, a
text string suitable for messages and log files. The function prototype for this
routine is:

const char OVmib_get_objid_name(ObjectID \oid,
 u_int \oid_length);

An example program showing how to use these routines is provided in
/usr/OV/prg_samples/nvsnmp_app/name_to_oid.c. Please refer to the NetView for
AIX Programmer's Reference or the man pages for more information about these
routines.

 Extended MIBs
Many agents support extended MIBs, which define objects that are not included in
standard MIBs. Your application can query an object from an extended MIB exactly
as it would query a MIB-II object. Users should work with the proper registration
authorities when defining MIB extensions.

 Data Representation
Information is exchanged between SNMP processes using the Basic Encoding
Rules (BER) defined for the Abstract Syntax Notation (ASN.1). ASN.1 is a very
rich data description language; gaining a full understanding of it is a formidable
task. The SNMP API takes care of the details of ASN.1 encoding and decoding, so
you do not have to deal directly with ASN.1 or the Basic Encoding Rules.

SNMP uses a few simple ASN.1 data types. The following list describes the base
data types that SNMP communication uses.

Type Description

INTEGER A simple type consisting of positive and negative whole
numbers, including zero, and of arbitrary size up to 32 bits.
However, some objects restrict INTEGER to a range.

 Chapter 17. Using the NetView for AIX SNMP API 285

OCTET STRING A simple type taking zero or more octets, each octet being
an ordered sequence of eight bits. The value of any octet
in the string is unrestricted.

OBJECT IDENTIFIER An array of integers (unsigned longs). Each integer repres-
ents one element of the object identifier.

COUNTER A non-negative integer that calculates change and increases
until it reaches a maximum value, then wraps around and
starts increasing again from zero.

GAUGE A type representing a non-negative integer, which may
increase or decrease, but which latches at a maximum
value.

TIMETICKS A type representing a non-negative integer that counts the
time in hundredths of a second since some event.

IPADDRESS A type representing a 32-bit Internet address. It is repres-
ented as an OCTET STRING of length 4, in network byte-
order. When this ASN.1 type is encoded using the ASN.1
basic encoding rules, only the primitive encoding form shall
be used.

OPAQUE A type representing an arbitrarily-coded ASN.1 string, which
has been coded into an OCTET STRING using the basic
encoding rules.

The NetView for AIX SNMP API
The NetView for AIX SNMP API is based on Revision 1.1 of the CMU SNMP
Library, and offers the following features:

� Blocking and non-blocking function calls
� Support for automatic retransmission
� Support for manual retransmission
� Easy, predictable memory management
� Location transparency for proxies
� The ability to send and receive traps
� Registration of applications to receive specific traps

Blocking and Nonblocking Operation
Your application can make SNMP requests in either of two ways: blocking or non-
blocking.

 Blocking
When your application issues a blocking SNMP request, it is suspended until either
the response arrives or a time-out error occurs on the session. Blocking operation
is appropriate for an application that is not event-driven and needs the response
information before further processing is warranted.

286 Programmer's Guide

 Nonblocking
When your application issues a non-blocking SNMP request, it can continue other
processing while the request is being serviced. The SNMP API function returns as
soon as the SNMP interface determines its validity. When the response arrives,
your application should call the OVsnmpRead() routine. Then the response is auto-
matically processed by a callback routine that you specified in the non-blocking
request. Non-blocking operation is appropriate for an application that is event-
driven or can proceed with further processing while waiting for the response.

 Retransmission Support
SNMP uses the User Datagram Protocol (UDP) at the transport layer. UDP pro-
vides a simple but unreliable transport. It is possible for a message, or part of a
message, to get lost in transmission and never arrive at its destination. Services
that use UDP, such as SNMP, may require that some messages be retransmitted.

If your application uses blocking requests, the SNMP library provides
retransmission based on the values established when the session is first opened.
See the OVsnmpOpen() man page for details.

If your application uses non-blocking requests, the NetView for AIX SNMP API pro-
vides two ways to manage retransmission:

� Automatic retransmission using the X Extensions

 � Manual retransmission

 Automatic Retransmission
The SNMP API library includes extended support for event-driven X-based applica-
tions. When you use this feature, X and the SNMP library manage all message
retransmission, using the XtAppMainLoop() routine.

 Manual Retransmission
Applications that are event-driven, but not X-based, make non-blocking requests.
These applications can manage their retransmission requirements using the system
select() function and two specialized SNMP functions provided for that purpose:
OVsnmpDoRetry() and OVsnmpGetRetryInfo(). Refer to the man pages for more
information on using these routines.

 Memory Management
The NetView for AIX SNMP API uses two simple rules for memory management:

� When you pass a data structure into a library function, it is consumed. The
memory it occupies is deallocated by the library.

� When you obtain a data structure from a library function, you must deallocate
the associated memory.

Sometimes, a data structure obtained by one function call is consumed by a later
one. For example, the call to open a session creates an OVsnmpSession data
structure, which is later consumed by the OVsnmpClose call.

Occasionally, you must provide data to fill in a structure that the SNMP library has
allocated. For instance, you might provide a list of variables to a request message.
Such data must always be dynamically allocated. Otherwise, a failure will occur
when the library attempts to deallocate statically allocated memory.

 Chapter 17. Using the NetView for AIX SNMP API 287

You must ensure that the memory allocated by the SNMP library or by your appli-
cation is later deallocated. Neglecting to do so can result in a memory leak, which
gradually consumes resources until a failure occurs. Use the free_pdu flag to
overcome this problem.

Note: When a request times out, the callback function is invoked with the type
parameter equal to SNMP_ERR_NORESPONSE. The library will automat-
ically free the request PDU. No memory deallocation is required.

 Location Transparency
The NetView for AIX SNMP implementation provides special support for applica-
tions that communicate with an agent through a proxy. Such an application can
address a message directly to the true (foreign) agent; the underlying implementa-
tion will determine which host is the proxy and route the message accordingly.

The information used to recognize proxy agents resides in the
/usr/OV/conf/ovsnmp.conf file. This file must be configured by the administrator
of the manager.

For Further Reading
The following documents contain useful information that is beyond the scope of this
guide.

� RFC 1155: Structure and Identification of Management Information for
TCP/IP-based Internets. K. McCloghrie and M. T. Rose, (May 1990). Contains
MIB object definitions (Obsoletes RFC 1065).

� RFC 1157: A Simple Network Management Protocol. J. D. Case,
M. Fedor, M. L. Schoffstall, and C. Davin, (May 1990). Defines SNMP (Obso-
letes RFC 1098).

� RFC 1187: Bulk Table Retrieval with the SNMP. K. McCloghrie,
M. T. Rose, and C. Davin, (October 1990).

� RFC 1212: Concise MIB Definitions. K. McCloghrie and M. T. Rose, (March
1991). Describes the format for creating MIB object files.

� RFC 1213: Management Information Base Network Management of TCP/IP
Base Internets: MIB-II. K. McCloghrie and M. T. Rose, eds., (March 1991).
Defines MIB-II (Obsoletes RFC 1158; most current edition as of the printing of
this guide).

� RFC 1215: Convention for Defining Traps for Use with the SNMP.
M. T. Rose, ed. (March 1991).

� The Simple Book. M. T. Rose, (Prentice Hall, 1991). Introduces management
of TCP/IP networks using the SNMP.

288 Programmer's Guide

Chapter 18. Using SNMP API Functions and Data Structures

This chapter describes the basic functions and data structures you will encounter in
the NetView for AIX SNMP API. This includes the following items:

 � SNMP functions

� The X extensions to the SNMP API for event-driven X-based applications

� Key data structures in the SNMP API

 SNMP Functions
There are twenty-five SNMP functions, in five categories. Table 28 describes
these functions:

Table 28 (Page 1 of 2). The SNMP API Functions

Category Function Name Description

Session
Management

OVsnmpOpen
OVsnmpXOpen

OVsnmpTrapOpen
OVsnmpXTrapOpen

nvSnmpTrapOpenFilter
nvSnmpXTrapOpenFilter

OVsnmpClose
OVsnmpXClose

Establishes an active SNMP session.
Use OVsnmpXOpen in an event-driven
X application.

Opens a session with the SNMP trap
daemon, trapd, to receive SNMP traps.
Use OVsnmpXTrapOpen in an event-
driven X application.

Sets up to receive specific SNMP traps
as specified by a filter parameter. Use
nvSnmpXTrapOpenFilter in an event-
driven X application.

Terminates an active SNMP session
and frees associated resources. Use
OVsnmpXClose in an event-driven X
application.

 Copyright IBM Corp. 1992, 1995 289

Table 28 (Page 2 of 2). The SNMP API Functions

Category Function Name Description

Message Setup
and Management

OVsnmpCreatePdu

OVsnmpAddNullVarBind
OVsnmpAddTypedVarBind

OVsnmpFixPdu

OVsnmpFreePdu

OVsnmpErrString

Allocates an SNMP Protocol Data Unit
(PDU) data structure. A PDU contains
an SNMP message.

Allocates and initializes an
OVsnmpVarBind data structure, which
is then attached to a PDU. Used in Get,
Get Next, and Set operations.

If, in a list of variables, one or more
variables cause a request to fail (for
any reason), OVsnmpFixPdu can be
used to strip the offending variable(s)
from the list. The result is a list that can
be used to retry the request.

Deallocates a PDU structure and
recovers associated resources.

Converts SNMP error values to text
strings.

Communication OVsnmpSend
OVsnmpXSend

OVsnmpBlockingSend

OVsnmpRecv

OVsnmpRead

Sends an SNMP message in non-
blocking mode. Unless an error occurs,
resources associated with the PDU are
deallocated with this call. Use
OVsnmpXSend in an event-driven
X-based application to achieve auto-
matic nonblocking retransmission.

Sends an SNMP message in blocking
mode. Unless an error occurs,
resources associated with the PDU are
deallocated with this call.

Receives a message on a specific
SNMP session. Does not use a
callback.

Receives messages on all active SNMP
sessions. Returns information through
the callback function.

Manual
Retransmission

OVsnmpGetRetryInfo

OVsnmpDoRetry

Gets retransmission information on
pending SNMP requests.

Retransmits a pending SNMP request.

Table Retrieval nvSnmpBlockingGetTable

nvSnmpGetTable
nvSnmpXGetTable

nvSnmpGetTableElement

Retrieves a MIB variable that is a table.
Uses blocking mode.

Retrieves a MIB variable that is a table.
Uses nonblocking (event-driven) mode.

Retrieves a single table element from a
table retrieved from a MIB.

290 Programmer's Guide

 Coding Models
This section illustrates the different coding models that can be used with this API:

 � Blocking applications

 � Nonblocking applications

 – X-based approach
– Other event-driven approaches

Example programs provide detailed illustration of the manager's operation in each
type of communication. The example programs are in the
/usr/OV/prg_samples/ovsnmp_app and /usr/OV/prg_samples/nvsnmp_app directo-
ries.

 Blocking Model
A hypothetical SNMP blocking transaction might use SNMP functions in the fol-
lowing sequence:

This coding model would be normal for an application that does not use the X
library and is not otherwise event-driven. For example, this model is appropriate for
a command-line application that makes one SNMP request at a time, provides
feedback to the user, and waits for the next user request.

In the blocking model, it is not necessary to use select() or other techniques to
detect a response. The OVsnmpBlockingSend routine does not return to the calling
program until it returns either a response pdu or a time-out message.

If your OVsnmpBlockingSend call times out, returning SNMP_ERR_RESPONSE,
you do not need to call OVsnmpFreePdu, but you should call OVsnmpClose to
clean up the socket descriptor, session structure, etc.

Table 29. Sequence of SNMP Function Calls in Blocking Model

Manager Agent

Listen for Requests
OVsnmpOpen()
OVsnmpCreatePdu()
OVsnmpAddVarBind()
OVsnmpBlockingSend() Receive request PDU

Generate response PDU
Send response PDU

OVsnmpFixPdu()
OVsnmpClose()

 Nonblocking Model
Nonblocking approaches differ significantly from the blocking approach. There are
two nonblocking models: one for X-based applications, another for other event-
driven applications. For either case, you provide a pointer to a function to handle
the nonblocking arrival of responses. This kind of function is known as a callback
function. When a response arrives for your application the callback is invoked to
manage the incoming PDU. Exactly how this happens depends on whether your
application is X-based.

 Chapter 18. Using SNMP API Functions and Data Structures 291

X-Based Approach: The NetView for AIX SNMP API library has extended func-
tions to support X-based applications. The X environment manages these oper-
ations transparently, invoking your callback whenever a response arrives for your
application. If you use this approach, you do not need to:

� Issue calls to read or receive responses
� Manage retransmission of lost messages

The coding model for an application that uses the X extensions uses the same
logical sequence of calls as those used by a non-X-based nonblocking application,
but they are encapsulated in the X callbacks for SNMP requests and responses.

Other Nonblocking Approaches: A hypothetical SNMP nonblocking transaction
might employ SNMP functions in the following sequence:

After you issue the send call, you must later use select() to determine whether a
response has arrived. If so, you must issue a call to the OVsnmpRead() routine to
cause the callback to be invoked. Use the OVsnmpRecv() routine to receive the
PDU directly without invoking the callback. If the manager is interacting with only
one agent, you can use the receive call. If the manager is interacting with multiple
agents, you should use the read call. This coding model is appropriate for an
event-driven application that does not use the X environment.

Note: You cannot combine the X coding models presented in this section with the
other coding models. That is, an X application must use the X-extended
functions and refrain from calling select(). Conversely, a non-X application
must not use the X extensions.

Table 30. Sequence of SNMP Function Calls in Nonblocking Model

Manager Agent

Listen for Requests
OVsnmpOpen()
OVsnmpCreatePdu()
OVsnmpAddVarBind()
OVsnmpSend()
OVsnmpGetRetryInfo(), select(), and
OVsnmpDoRetry() (as necessary)

Read/receive request PDU

Generate response PDU
Send response PDU

OVsnmpRead() or OVsnmpRecv()
OVsnmpFixPdu()
OVsnmpClose()

292 Programmer's Guide

SNMP Data Structures
This section introduces a few key data structures and their purposes and relation-
ships. Specific details about other parameters to SNMP functions are available in
the man pages.

 Header Files
The header files define many data structures that are part of the NetView for AIX
SNMP API. Table 31 describes the contents of the OVsnmp header files.

Refer to the SNMP man pages for information on compiling and linking your appli-
cation.

Table 31. Contents of OVsnmp Header Files

File Name Description

/usr/OV/include/OV/OVsnmp.h Main include file for NetView for AIX SNMP
applications. This header file includes
OVsnmpApi.h. Also contains protocol defi-
nitions, error definitions, and trap type defi-
nitions.

/usr/OV/include/OV/OVsnmpApi.h Main function declarations, structure defi-
nitions, and control definitions.

/usr/OV/include/OV/OVsnmpAsn1.h ASN.1 type definitions for the API. These
are the ASN.1 types that are supported by
the NetView for AIX SNMP API.

/usr/OV/include/OV/OVsnmpClnt.h More function declarations.

/usr/OV/include/OV/OVsnmpImpl.h More ASN.1 types. These are for conven-
ience.

/usr/OV/include/OV/OVsnmpXfns.h Function declarations for the X11 exten-
sions in the NetView for AIX SNMP API.

 Chapter 18. Using SNMP API Functions and Data Structures 293

 Data Structures
Table 32 describes key SNMP data structures.

You will use two structures in particular: the OVsnmpSession structure, and the
OVsnmpPdu structure (including its substructures).

Table 32. SNMP Data Structures

Data Struc-
ture Name

Created By Freed By Description

OVsnmpSession OVsnmpOpen
OVsnmpTrapOpen
nvSnmpTrapOpenFilter

OVsnmpClose Identifies a particular SNMP
communication session.
Used as an input parameter
to several other functions.

OVsnmpPdu OVsnmpCreatePdu OVsnmpFreePdu Container for an SNMP
message. Includes the
message data and informa-
tion about the type of
message (Get, Get Next,
Set, or Trap).

OVsnmpVarBind OVsnmpAddVarBind OVsnmpFreePdu Elements in a linked list of
variables. Each element of
the list includes an object
identifier for the variable and
the variable's value. Part of
the OVsnmpPdu structure.

OVsnmpVal OVsnmpAddVarBind OVsnmpFreePdu A union that can contain an
integer, a string, or an object
identifier. Part of the
OVsnmpVarBind structure.

The OVsnmpSession Structure
The OVsnmpSession structure is allocated by a call to the OVsnmpOpen() routine
and is an input parameter to several other functions. It has the following fields, as
shown in Table 33:

Table 33 (Page 1 of 2). OVsnmpSession Structure Fields

Type Name Description

u_char *community The agent's community name for get requests.
Defaults to public . When the session is closed, this
memory is deallocated.

u_int community_len The number of bytes in the get community name.

int sock_fd The socket file descriptor for the session; used to
establish the read mask for calls to select(3).

294 Programmer's Guide

Table 33 (Page 2 of 2). OVsnmpSession Structure Fields

Type Name Description

u_short session_flags A bitmask for information and control. The following
values are defined:

IS_PROXIED_FOR: if set, notes that destination
node is being proxied for by an anonymous node.
The library sets this value appropriately.

FREE_PDU: defaults to set . If set, the send func-
tions deallocate memory for PDUs.

RECV_TRAPS: if set, requests that traps be
accepted by this session. If the session is not
created by OVsnmpTrapOpen(), this allows you to
receive traps on your local port. Most agents send
traps to port 162, which is reserved for SNMP, and
monitored by the SNMP trap daemon. Use
OVsnmpTrapOpen() to receive traps on port 162.
The default for this flag is Unset .

(void)() (*callback) () Points to the callback function to be invoked when a
response returns from a call to OVsnmpSend() or
OVsnmpXSend(). These two send functions are
nonblocking, and the callback function is to be
invoked when the corresponding response arrives.

void *callback_data Points to data the callback function is to receive
(note the syntax of the callback invocation in “The
Callback Function” on page 295). The memory is
not accessed by the library.

u_char * setCommunity The agent's community name for set requests.
When the session is closed, this memory is deallo-
cated.

u_int community_len The number of bytes in the set community name.

int32 nvSnmpBind Internal use only; do not modify.

octet *TNRdecodeCnf Internal use only; do not modify.

OVeCDNode *TNRderegSieve Internal use only; do not modify.

The Callback Function
The intent of your application determines the structure and purpose of the callback
function in the previous table. If you use the nonblocking calls in the SNMP API,
the callback function defines the interaction of your application and the remote
peer.

The callback function is automatically invoked when your application uses
OVsnmpRead() to obtain the response to a nonblocking send request. In X appli-
cations, the callback is invoked automatically when the response arrives. The call
syntax is shown in the following example:

callback (type, session, pdu, callback_data)

If the response is obtained with the OVsnmpRecv() routine, the callback does not
occur.

 Chapter 18. Using SNMP API Functions and Data Structures 295

Table 34 describes the parameters your callback function must define. These input
parameters are passed to the callback function. “The OVsnmpPdu Structure” on
page 296 describes these parameters in more detail.

Table 34. Callback Function Parameters

Type Name Description

int type One of the following SNMP message types, or
SNMP_ERR_NO_RESPONSE if a time out occurs:
GET_REQ_MSG, GETNEXT_REQ_MSG, SET_REQ_MSG, or
TRAP_REQ_MSG (if the session is receiving traps).
type indicates the type of PDU that generated the
response.

OVsnmpSession *session Identifies the session with which the incoming PDU is
associated.

OVsnmpPdu *pdu This is the PDU that was received. This parameter
will be NULL if a time out occurred.

void *callback_data Application-specific data, which is specified as a
value passed into the OVsnmpOpen() call.

The OVsnmpPdu Structure
This data structure contains all the data specific to a particular SNMP message. It
is created in one of two ways:

� When preparing to send a request, a call is made to the OVsnmpCreatePdu()
routine.

� When a response or trap is received.

The SNMP send functions normally deallocate the memory associated with input
PDU structures. To deallocate the PDU associated with a response or trap, use
the OVsnmpFreePdu() routine.

Table 35 describes each of the elements.

Table 35 (Page 1 of 2). Elements of the OVsnmpPdu Data Structure

Type Field Name Description

ipaddr address The IP address of the agent. Your application
never needs to set this value; it is ignored in a
call to a send function.

int command The specific SNMP command. Must be one
of the following: GET_REQ_MSG,
GETNEXT_REQ_MSG, SET_REQ_MSG,
TRAP_REQ_MSG, or GET_RSP_MSG.

int request_id An identifier assigned by the SNMP API. This
value must not be modified by your applica-
tion.

int error_status When a response PDU is received, this vari-
able contains a positive value if an error
occurred on the request. If no error occurred,
the value is zero. This value is ignored in a
call to a send function.

296 Programmer's Guide

Table 35 (Page 2 of 2). Elements of the OVsnmpPdu Data Structure

Type Field Name Description

int error_index An index into the variable list. If error_status
shows that an error occurred, then error_index
indicates which element of the list caused the
error.

OVsnmpVarBind variables This is a pointer to a linked list of variables,
each element of which is an OVsnmpVarBind
data structure. Memory referenced by this
pointer is deallocated by a call to
OVsnmpFreePdu(), OVsnmpFixPdu(), or any
send function.

Note: The following fields are specific to trap PDUs and are not valid in any other PDUs.

ObjectID *enterprise A vendor-specific identifier that uniquely iden-
tifies the type of device sending the trap.
Defaults (on send) to 1.3.6.1.4.1.2.6.3.1, a
generic object identifier for Netview specific
traps.

u_int enterprise_length The number of elements in the object ID. The
default is 10 elements.

u_long agent_addr The IP address of the agent that sent the trap.
Defaults (on send) to the IP address the PDU
is sent on.

int generic_type One of the SNMP-defined types of traps. See
RFC 1157 for details.

int specific_type When generic_trap indicates that an
enterprise-specific trap has occurred, the
value of specific_trap contains the specific
trap. Otherwise, the value is meaningless.

u_long time The time (in tenths-of-seconds) since the
agent was last activated. The default is the
length of time that the application has been
running.

Note: The following fields are part of the embedded OVsnmpVarBind data structure(s).

OVsnmpVarBind* next_variable Points to the next element in the variable list.
NULL in last element.

ObjectID *oid The object identifier (object ID) for this vari-
able.

u_int oid_length The number of elements in the object ID for
this variable.

u_char type The ASN.1 type of the variable.

OVsnmpVal val A union containing a long integer, a string, or
an object ID. The active field is indicated by
type.

u_int val_len The number of elements in the value of the
variable. Note that this may not equal the
number of bytes in val; for example, an object
ID consists of an array of long integers.

 Chapter 18. Using SNMP API Functions and Data Structures 297

The OVsnmpConfEntry Structure
This is the primary data structure used by the SNMP configuration routines.

The SNMP configuration routines also use the OVsnmpConfCntl,
OVsnmpConfWcList, and OVsnmpConfDest data structures. See the OVsnmpIntro
man page for information about these structures.

Table 36. Elements of the OVsnmpConfEntry Data Structure

Type Field Name Description

char *name The name of the target node. It can be a
hostname or alias, an IP address, or a proxy
name.

char *community Community name for SNMP commands.

char *setCommunity Community name for SNMP set commands.

char *proxy Name of proxy to use.

int timeout Length of time, in tenths of seconds, to wait
before retrying a request. The value must be
greater than 0.

int retry The number of times to retry a request before
concluding that the node in inoperable. The
value must be greater than or equal to 0.

int pollInterval The IP status polling interval, in seconds.

unsigned
short

remotePort The SNMP port number on the target node.

SNMP API Coding Examples
This section contains two sample programs that use the NetView for AIX SNMP
API. The first example issues a nonblocking get request and waits for a reply. The
second example illustrates the use of the table retrieval routines in both blocking
and nonblocking modes.

Any application that uses the OVsnmp API must link to /usr/OV/lib/libovsnmp.a or
/usr/OV/lib/libnvsnmp.a.

SNMP Nonblocking Get Sample
#include <OVsnmp.h>
#include <stdio.h>
#include <sys/select.h>
#include "/usr/include/malloc.h"
#include "snmpdemo.h"

#define NUMARGS 3

static struct oid_info
{
 char \name;
 ObjectID oid[MAX_SUBID_LEN];
 int oid_len;
 u_char type;
} oids[7] = { {"sysDescr", {1,3,6,1,2,1,1,1,ð}, 9, ASN_OCTET_STR},

298 Programmer's Guide

{"sysObjectID", {1,3,6,1,2,1,1,2,ð}, 9, ASN_OBJECT_ID},
{"sysUpTime", {1,3,6,1,2,1,1,3,ð}, 9, TIMETICKS},
{"sysContact", {1,3,6,1,2,1,1,4,ð}, 9, ASN_OCTET_STR},
{"sysName", {1,3,6,1,2,1,1,5,ð}, 9, ASN_OCTET_STR},
{"sysLocation", {1,3,6,1,2,1,1,6,ð}, 9, ASN_OCTET_STR},
{"sysServices", {1,3,6,1,2,1,1,7,ð}, 9, INTEGER}

 };

static int num_oids = 7;

struct nonBlockingInfo
{
 int waiting;
 int error;
 OVsnmpPdu \response;
};

static char \testName;
OVsnmpSession \session;
struct nonBlockingInfo info;

void printVariable(OVsnmpVarBind \var);
void nonBlockingGet();
void pduCallback(int type, OVsnmpSession \session,

OVsnmpPdu \response, void \userData);
void closeSession(OVsnmpSession \session);

/\\/
/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ main \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/
/\\/

int main(int argc, char \\argv)
{
 const char \community;
 const char \destination;

testName = argv[ð];

if (argc != NUMARGS)
 {

printf("%s: Incorrect arg count %d\n", testName, argc);
printf("usage: %s hostname community\n", testName);

 exit(1);
 }

 destination = argv[1];
 community = argv[2];

session = OVsnmpOpen(community, destination,
 SNMP_USE_DEFAULT_RETRIES,
 SNMP_USE_DEFAULT_INTERVAL,
 SNMP_USE_DEFAULT_LOCAL_PORT,
 SNMP_USE_DEFAULT_REMOTE_PORT,
 pduCallback, &info);

if (session == NULL)
 {

printf("Unable to initialize SNMP session: ");
 printf("%s\n", OVsnmpErrString(OVsnmpErrno));

 Chapter 18. Using SNMP API Functions and Data Structures 299

 exit(1);
 }

 info.waiting = 1;
info.response = NULL;

 info.error = ð;

 nonBlockingGet(community, destination);
 closeSession(session);
} /\ end of main \/

/\\/
/\\\\\\\\\\\\\\\\\\\\\\\\\\ nonBlockingGet \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/
/\\/

void nonBlockingGet()
{
 OVsnmpPdu \requestGet;
 OVsnmpVarBind \varp;
 int NBresponse,
 numFDs;
 struct fd_set readFDs;
 struct timeval timeVal;

int i, count;

session->session_flags &= ¡FREE_PDU;

if ((requestGet = OVsnmpCreatePdu(GET_REQ_MSG)) == NULL)
 {

printf("Unable to create PDU. %s.\n", OVsnmpErrString(OVsnmpErrno));
 exit(1);
 }

for (i = ð; i < num_oids; i++)
 {

varp = OVsnmpAddNullVarBind(requestGet, oids[i].oid, oids[i].oid_len);
if (varp == NULL)

 {
 printf("%s.\n", OVsnmpErrString(OVsnmpErrno));
 OVsnmpFreePdu(requestGet);
 closeSession(session);
 }
 }

NBresponse = OVsnmpSend(session, requestGet);
if (NBresponse == -1)

 {
printf("Error sending request. %s.\n", OVsnmpErrString(OVsnmpErrno));

 OVsnmpFreePdu(requestGet);
 closeSession(session);
 }

while (info.waiting == 1)
 {

numFDs = OVsnmpGetRetryInfo(&readFDs, &timeVal);
count = select(numFDs, &readFDs, NULL, NULL, &timeVal);
if (count < ð)

300 Programmer's Guide

 {
 printf("select");
 closeSession(session);
 }

else if (count > ð)
 {
 OVsnmpRead(&readFDs);
 }
 else
 {
 OVsnmpDoRetry();
 }
 }
 OVsnmpFreePdu(requestGet);
}

/\\/
/\\\\\\\\\\\\\\\\\\\\\\\\\\ pduCallback \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/
/\\/

void pduCallback(int type, OVsnmpSession \session, OVsnmpPdu \request,
 void\ cData)
{
 OVsnmpVarBind \varp;

struct nonBlockingInfo \data = (struct nonBlockingInfo\) cData;

data->waiting = ð;

if (type == SNMP_ERR_NO_RESPONSE)
 {
 printf("%s.\n", OVsnmpErrString(type));
 OVsnmpFreePdu(request);
 return;
 }

if (request->error_status == SNMP_ERR_NOERROR)
 {

for (varp = request->variables; varp !=NULL;
varp = varp->next_variable)

 {
 printVariable(varp);
 }
 }
 else

printf("(callback) %s.\n", OVsnmpErrString(OVsnmpErrno));
 OVsnmpFreePdu(request);
 return;
}
/\\/
/\\\\\\\\\\\\\\\\\\\\\\\\\\ closeSession \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/
/\\/

void closeSession(OVsnmpSession \session)
{

if (OVsnmpClose(session) < ð)
 {

printf("Error closing session! %s.\n", OVsnmpErrString(OVsnmpErrno));
 exit(1);

 Chapter 18. Using SNMP API Functions and Data Structures 301

 }
 else
 {

printf("\n\nSession closed successfully.\n");
 exit(ð);
 }
}

/\\/
/\\\\\\\\\\\\\\\\\\\\\\\\ printVariable \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/
/\\/

void printVariable(OVsnmpVarBind \var)
{
 int buflen;
 char buf[1ð28];

buflen = sizeof(buf);
sprint_by_type(buf, buflen, var, VAL_ONLY);

 printf("%s\n", buf);
}

SNMP Table Retrieval Sample
#include <stddef.h>
#include <sys/types.h>
#include <sys/select.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <OV/OVsnmp.h>
#include <OV/OVsnmpClnt.h>
#include <OV/OVsnmpXfns.h>
#include "snmpdemo.h"

#define NUMARGS 3

struct info
{
 int block;

int cont; /\ abbreviation for continue \/
 int rows;
 int columns;
};

static char \programName;

void printVariable(OVsnmpVarBind \var,
 int tableFormat);
void callback(int type,
 OVsnmpSession \session,
 OVsnmpPdu \response,
 void \userData);

/\\/
/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ main \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/
/\\/

302 Programmer's Guide

int main(int argc, char \\argv)
{
 OVsnmpVarBind \ptr;
 OVsnmpPdu \pduPtr;
 const char \destination,
 \community;
 char \table;

int oidLen = 9;
 /\\\\\\\\\\\\\\\\\\\\\\\\/

/\ ObjectID for IfEntry \/
 /\\\\\\\\\\\\\\\\\\\\\\\\/

static ObjectID oid1[MAX_SUBID_LEN] = {1,3,6,1,2,1,2,2,1},
oid2[MAX_SUBID_LEN] = {1,3,6,1,2,1,3,1,1};

 /\\\\\\\\\\\\\\\\\\\\\\\\/
/\ ObjectID for AtEntry \/

 /\\\\\\\\\\\\\\\\\\\\\\\\/
 OVsnmpSession \session;
 int response,
 rows, columns,
 numFDs, count;
 struct fd_set readFDs;
 struct timeval timeVal;
 struct info callbackdata;

if (argc < NUMARGS)
 {

printf("Usage: %s <hostname> <community> \n", programName);
 exit(1);
 }

programName = argv[ð];
destination = argv[1];

 community = argv[2];

 /\\/
/\ Open a session to be passed to the nvSnmp-GetTable() calls. \/
/\ This is where you can provide a callback function and callback \/
/\ data to be used. \/

 /\\/
session = OVsnmpOpen(community,

 destination,
 SNMP_USE_DEFAULT_RETRIES,
 SNMP_USE_DEFAULT_INTERVAL,
 SNMP_USE_DEFAULT_LOCAL_PORT,
 SNMP_USE_DEFAULT_REMOTE_PORT,
 callback,
 &callbackdata);

if (session == NULL)
 {

printf("OVsnmpOpen: %s\n", OVsnmpErrString(OVsnmpErrno)); exit(1);
 }

 /\\/
/\ block = 1 means that we are doing a blocking call. \/
/\ This is used for control within the callback function. \/

 /\\/
callbackdata.block = 1;

 Chapter 18. Using SNMP API Functions and Data Structures 303

 /\\/
/\ This is a blocking call. It will not return until a \/
/\ timeout has occurred or the data has been received. \/

 /\\/
pduPtr = nvSnmpBlockingGetTable(session, oid1, oidLen, &(callbackdata.rows),

 &(callbackdata.columns));
printf("# of Rows = %d\n# of Columns = %d\n",

 callbackdata.rows, callbackdata.columns);

 /\\/
/\ block = ð means that we are doing a nonblocking call. \/
/\ This is used for control within the callback function. \/

 /\\/
callbackdata.block = ð;

 /\\\/
/\ This is a nonblocking call. It will return immediately. \/
/\ The requested PDU will be available within the callback \/
/\ specified when the session was established. \/

 /\\\/
response = nvSnmpGetTable(session, oid2, oidLen, &(callbackdata.rows),

 &(callbackdata.columns));

 /\\\/
/\ callbackdata.cont is set within the callback function. \/
/\ It is used to determine when all of the table has been \/
/\ retrieved by the nonblocking call. \/

 /\\\/
 while (!callbackdata.cont)
 {

numFDs = OVsnmpGetRetryInfo(&readFDs, &timeVal);
count = select(numFDs, &readFDs, NULL, NULL, &timeVal);
if (count < ð)

 {
printf("Error in select. Check errno."); exit(1);

 }
else if (count > ð)

 {
 OVsnmpRead(&readFDs);
 }
 else
 {

printf("The select timed out - retrying via OVsnmpDoRetry().");
 OVsnmpDoRetry();
 }

} /\ end of while (!callbackdata) \/
}

/\\/
/\\\\\\\\\\\\\\\\\\\\\\\\\\\\ callback() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/
/\\/
void callback(int type, OVsnmpSession \session, OVsnmpPdu \response,
 void \userData)
{
 OVsnmpVarBind \ptr, \elementPtr;

struct info \data = (struct info\) userData;
int i, j, tableFormat;

304 Programmer's Guide

 printf("\nCallback called.\n");
if (type == SNMP_ERR_NO_RESPONSE)

 {
printf("No Response Returned (within user callback)\n");

 exit(1);
 }

printf("Data from within callback:\n");
 printf(" # of Rows = %d\n # of Columns = %d\n",
 data->rows, data->columns);

elementPtr = nvSnmpGetTableElement(response, data->rows, ð, ð);
 printf(" Element[ð,ð]: ");

tableFormat = 1;
 printVariable(elementPtr, tableFormat);
 printf("\n");

elementPtr = nvSnmpGetTableElement(response, data->rows, 1, 2);
 printf(" Element[1,2]: ");

tableFormat = 1;
 printVariable(elementPtr, tableFormat);
 printf("\n");

printf("response->command = %d\n", response->command);
printf("response->request_id = %d\n", response->request_id);
printf("response->error_status = %d\n", response->error_status);
if (data->columns < 4)

tableFormat = 1;
 else

tableFormat = ð;

for (i = ð; i < data->rows; i++)
 {

for (j = ð; j < data->columns; j++)
 {

elementPtr = nvSnmpGetTableElement(response, data->rows, i, j);
 printVariable(elementPtr, tableFormat);
/\
 if (tableFormat)
 printf(" ");
\/
 }
 printf("\n");
 }

 /\\\/
/\ If this callback was called due to a nonblocking call, \/
/\ set cont to TRUE so that calling program knows all \/
/\ data has been received. \/

 /\\\/
if (data->block == ð)

data->cont = 1;
}
/\\/
/\\\\\\\\\\\\\\\\\\\\\\\\ printVariable \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/
/\\/

static void printVariable(OVsnmpVarBind \var, int tableFormat)
{

 Chapter 18. Using SNMP API Functions and Data Structures 305

 int buflen, match;
 char buf[1ð28];

buflen = sizeof(buf);
sprint_by_type(buf, buflen, var, VAL_ONLY);

 printf("%s", buf);
 if (tableFormat)
 printf(" ");
 else
 printf("\n");
}

306 Programmer's Guide

Chapter 19. Filtering Network Events

Events are a critical part of a modern network management system. The occur-
rence of events dictates much of the processing done in such a system. Because
of this, you may want to control the processing of events in certain ways:

� Limit how often your application receives certain events.

� Limit how certain events are sent to remote manager stations.

� Enable applications to receive events only from certain network nodes.

� Ignore events generated during a certain part of the day.

The NetView for AIX program enables you to do all this, and more, through the use
of event filters. Filtering network events can eliminate unnecessary or repetitive
processing of frequent events and reduce the number of alerts sent to the NetView
interface.

The NetView for AIX filter editor is part of the NetView for AIX graphical interface.
This editor enables the user to define, modify, and delete filtering rules for use by
applications. Refer to the NetView for AIX User's Guide for Beginners for informa-
tion about using the filter editor before developing an application that will use event
filters.

 Creating Filters
Depending on the purpose of your application, you may want to limit the events it
receives. The NetView for AIX filter API routines enable you to define, modify,
delete, or retrieve filters for use within your application. The following routines are
provided:

 � nvFilterDefine

 � nvFilterDelete

 � nvFilterErrorMsg

 � nvFilterFreeNameList

 � nvFilterGet

 � nvFilterGetNameList

An application that will use these routines must include the nvFilter library,
/usr/OV/lib/libnvfilter.a.

The FilterNode Structure
 An include file is provided that contains the function headers and a filter structure,
named FilterNode, that will be used as a parameter to several of these routines.
In your code, include the file as follows:

 #include <nvFilter.h>

 Copyright IBM Corp. 1992, 1995 307

The structure has the following definition:

 struct FilterNode
 {
 char \FilterName;
 char \FilterDescription;

struct FilterNode \Next;
 }

Parameter Description

FilterName A pointer to the name of a filtering rule.

FilterDescription A pointer to the description of a filtering rule. This field is
optional.

Next A pointer to the next FilterNode. This field is used only by
the nvGetFilterNameList routine.

NetView for AIX Filter API Routines
This section describes the syntax and parameters of the routines in the NetView for
AIX Filter API. Complete details on each routine are provided in the NetView for
AIX Programmer's Reference and in the man pages

Defining a Filter Rule
Use the nvFilterDefine() routine to create a new filtering rule or to update an
existing rule. It has the following function prototype:

int nvFilterDefine(struct FilterNode \Filter, char \FileName,
char \FilterStr, int Update);

Parameter Description

Filter A pointer to a filter structure containing the name of the filtering
rule and an optional description of the rule.

FileName The path and name of the filter file.

FilterStr The filtering rule.

Update Zero (0) - do not update; one (1) - update contents if the rule
exists.

Returns Zero (0) if no error occurred; if an error occurred, one of the return
codes listed in Table 37 on page 310.

Deleting Filter Rules
Use the nvFilterDelete() routine to remove a filtering rule from the filter file. It has
the following function prototype:

int nvFilterDelete(char \RuleName, char \FileName);

Parameter Description

RuleName The name of the filtering rule to be deleted.

FileName The path and name of the filter file to be deleted.

Returns An error if the filtering rule does not exist.

308 Programmer's Guide

Retrieving a Filter Rule
Use the nvFilterGet() routine to retrieve the contents of a filtering rule. It has the
following function prototype:

int nvFilterGet(struct FilterNode \Filter, char \FileName,
char \Buffer, int \BufLen, int Expand);

Parameter Description

Filter A pointer to a filter structure containing the name of the filtering
rule. If a description exists for the specified rule, it is returned in
the FilterDescription field.

FileName The path and name of the filter file.

Buffer A pointer to the memory location where the rule will be written. If
this field is NULL, the length of the filtering rule will be returned in
the BufLen parameter.

BufLen A pointer to the size of the buffer. If the buffer is too small, an
error is returned and BufLen is changed to reflect the actual size of
the filtering rule.

Expand Zero (0) - do not expand references to other filtering rules and
hostnames; one (1) - expand the references.

Returns Zero (0) if no error occurred; if an error occurred, one of the return
codes listed in Table 37 on page 310.

If there are two or more filters defined with the same name, this routine will return
the first filter found by searching from the top of the specified file.

To determine the size of the buffer required, you can call the nvFilterGet routine
once with Buffer set to NULL, and then use the value returned in BufLen in a
second call to retrieve the rule.

Space is allocated for the rule description on each call to the nvFilterGet routine.
Your application is responsible for deallocating this memory between calls to this
routine. These techniques are illustrated in “Example of Filter API Routines” on
page 311.

Listing Filter Rules
Use the nvFilterGetNameList() routine to retrieve a list of all the filtering rule names
and descriptions in the filter file. It has the following function prototype:

int nvFilterGetNameList(char \FileName, struct FilterNode \\FilterList);

Parameter Description

FileName The path and name of the filter file.

FilterList The address of a pointer to a FilterNode structure. Contains the
address of the first node in the link list upon returning.

Returns Zero (0) if no error occurred; if an error occurred, one of the return
codes listed in Table 37 on page 310.

This routine returns a list of unique filter names. If the specified file contains more
than one filter with a given name, only the first filter encountered will be included in
the list.

 Chapter 19. Filtering Network Events 309

Freeing Filter Rule Storage
Use the nvFilterFreeNameList() routine to free the memory allocated during the cre-
ation of the list of filtering rule names. It has the following function prototype:

void nvFilterFreeNameList(struct FilterNode \FilterList);

Parameter Description

FilterList A pointer to the head of the filter list.

Returns There is no return parameter.

Reading Error Messages
Use the nvFilterErrorMsg() routine to retrieve the error message that corresponds to
a Filter API return code. It has the following function prototype:

char \nvFilterErrorMsg(int Retcode);

Parameter Description

Retcode The return code from the Filter API call.

When you pass a return code from a Filter API routine to the nvFilterErrorMsg
routine, it returns a message from the list in Table 38 on page 311.

NetView for AIX Filter API Return Codes
When an NetView for AIX Filter API routine is called, it passes a return code to the
calling program to indicate the result of the call. A return code of zero (0) indicates
successful completion of the call; otherwise, one of the following return codes is
passed on completion of the call:

The man pages for these routines list the return codes that can be returned by
each routine. The return code names listed in Table 37 are for use in your code;
“Example of Filter API Routines” on page 311 illustrates checking a return code for
a particular value from the table. Table 38 on page 311 lists the messages that
are returned when you pass one of these return codes to the nvFilterErrorMsg
routine:

Table 37. Return Codes from Filter API Calls

Value Name

 1 NVFILTER_FILE_NOT_FOUND
 2 NVFILTER_FILE_ACCESS_ERROR
 3 NVFILTER_MEMORY_ACCESS_ERROR
 4 NVFILTER_FILTERNAME_NOT_FOUND
 5 NVFILTER_INSUFFICIENT_SPACE
 6 NVFILTER_DUPLICATE_FILTERNAME
 7 NVFILTER_FILTER_FILE_EMPTY
 8 NVFILTER_INCORRECT_FILTER_FILE_FORMAT
20 NVFILTER_HOSTNAME_RESOLUTION_ERROR
21 NVFILTER_FILTER_RESOLUTION_ERROR
22 NVFILTER_FILTER_REFERENCE_ERROR
23 NVFILTER_TIME_FORMAT_ERROR
24 NVFILTER_MAX_BUFFERSIZE_EXCEEDED

310 Programmer's Guide

Table 38. Error Messages from Filter API Calls

Value Message

 0 Filter file access request completed successfully.
 1 The requested filter file was not found.
 2 Error occurred while attempting to access the filter file.
 3 Memory access error.
 4 The specified filter was not found in the filter file.
 5 Insufficient space for requested filter.
 6 The filtername already exists in the filter file.
 7 The filter file is empty.
 8 The filter file is not in the required format.
20 Error occurred while attempting to resolve a hostname.
21 Error occurred while attempting to resolve a reference to another filter.
22 Filter reference format error.
23 Time format error.
24 Filter exceeds filter buffer size.
Other Unknown Filter API error.

Example of Filter API Routines
The following example illustrates the use of the nvFilterGetNameList and
nvFilterGet routines. In this example, the list of filters stored in /tmp/filterFile is
retrieved, then each filter from the list is retrieved and printed. Note the careful
management of memory: the free command is used to free the storage for the
current filter description before each call to the nvFilterGet routine, and the
nvFilterFreeNameList routine is used to free the memory allocated by the
nvFilterGetNameList routine. Notice the two calls to the nvFilterGet routine, as
described in “Retrieving a Filter Rule” on page 309.

#include <stdio.h>
#include <string.h>
#include "/usr/include/malloc.h"
#include <nvFilter.h>

void main()
{
 struct FilterNode \filterList, \current;
 char \buffer;

int rc, bufferLen = ð, j = ð, expand = ð;
char \filterFile = "/tmp/filterFile";

rc = nvFilterGetNameList(filterFile, &filterList);
if (rc < ð) {

printf("%d: %s\n", rc, nvFilterErrorMsg(rc));
 }

for (current = filterList; current !=NULL; current = current->Next)
 {
 free(current->FilterDescription);

/\ call nvFilterGet once to get required bufferLen value \/
rc = nvFilterGet(current, filterFile, NULL, &bufferLen, expand)
if (rc != NVFILTER_INSUFFICIENT_SPACE) {

printf("%d: %s\n", rc, nvFilterErrorMsg(rc));
 }

buffer = (char \) malloc(bufferLen \ sizeof(char));

 Chapter 19. Filtering Network Events 311

 free(current->FilterDescription);
/\ call nvFilterGet again to get the rule \/
rc = nvFilterGet(current, filterFile, buffer, &bufferLen, expand);
if (rc != ð) {

printf("%d: %s\n", rc, nvFilterErrorMsg(rc));
 }

printf("Buffer %d: %s\n", j, buffer);
 j++;
 free(buffer);
 }
 nvFilterFreeNameList(filterList);
}

 Using Filters
The NetView for AIX filter API routines enable you to manipulate filter files and
rules, but they do not register your application to receive filtered events. The regis-
tration process you use depends on which network management protocol you use.

If your application uses the NetView for AIX SNMP API, you can register for filtered
events using two routines that are part of that API.

Step 1. Create the filter rule, using the NetView for AIX filter editor or the Filter
API routines described in this chapter.

Step 2. Use the nvSnmpTrapOpenFilter routine or the nvSnmpXTrapOpenFilter
routine to register your application using your filter. These routines are
described in Chapter 18, “Using SNMP API Functions and Data
Structures” on page 289.

If your application uses the XMP API, you can control its registration using the rou-
tines described in this section. To register for filtered events when using XMP,
follow these steps:

Step 1. Create the filter rule, using the NetView for AIX filter editor or the Filter
API routines described in this chapter.

Step 2. Use the OVeFilterAttr() routine to convert the filter rule to an XOM data
structure.

Step 3. Use the OVeRegister() routine to register your application using the data
structures you have just created.

The OVeFilterAttr() and OVeRegister() routines are described next.

NetView for AIX Event Registration Routines
Use the following convenience routines to control your application's event registra-
tion when using XMP:

 � OVeFilterAttr()

 � OVeRegister()

 � OVeDeregister()

312 Programmer's Guide

Many of the parameters used by these routines are XOM data structures. XOM is
an API that is used with XMP to manage the complex data structures it requires.
XOM is described in Chapter 12, “Using the XOM API” on page 189.

For detailed information about files that must be included when calling these rou-
tines, see the man page for the routine you will use.

Before using these routines to register an event filter for your application, create the
filter with either the NetView for AIX filter editor or the Filter API routines. After
creating the filter rules by one of these means, you must convert them into XOM
data structures before you can use them with XMP. Use the OVeFilterAttr() routine
to perform this conversion.

Creating the XOM Structure for Your Filter
Use the OVeFilterAttr() routine to convert an existing filter rule into an XOM data
structure. It has the following function prototype:

int OVeFilterAttr(OM_workspace workspace,
 char \filter_string,
 OM_private_object \out_filter_attribute,
 char \\err_ptr,
 OM_return_code \om_error);

The workspace parameter specifies an XMP workspace in which the XOM object
will be created. See “XMP Workspaces” on page 224 for more information on
XMP workspaces. The OVeFilterAttr() routine accepts a filter string as input and
returns an XOM structure that can be passed to the OVeRegister() routine to reg-
ister the filter. Refer to the man page for more information about the parameters
and syntax of the input filter string.

Registering Your Filter
After creating a filter structure with OVeFilterAttr(), use the OVeRegister() routine to
register your application to receive events. It has the following function prototype:

int OVeRegister(OM_private_object session, OM_workspace workspace,
 OVeConvRegNode \node_list,
 OM_private_object filter_attribute,
 OVeConvConfirm \\confirm_list,
 OM_return_code \om_error);

Refer to the man page for more information on this routine and its parameters.

Creating Filters on Remote Manager Stations
If your network includes more than one manager station running the NetView for
AIX program, you can establish event filters on each management station. An
application on one management station can register to receive certain events from
another management station by setting up a filter on the remote station. To estab-
lish a remote filter, pass a list of nodes to the OVeRegister() routine in the
node_list parameter.

 Chapter 19. Filtering Network Events 313

Cancelling Application Registration
Use the OVeDeregister() routine to cancel an application's registration to receive
events. Specify the nodes, including the local node and any remote nodes, at
which filters will be deleted, and the filters that are to be deleted. Filters and
locations are identified in a list of objects returned from the OVeRegister() call.

The OVeDeregister() routine has the following function prototype:

int OVeDeregister(OM_private_object session, OM_workspace workspace,
 OVeConvDeRegNode \filter_list,
 OVeConvConfirm \\confirm_list,
 OM_return_code \om_error);

The filter_list parameter is a pointer to a linked list of destination addresses, object
classes, and instances defining the filter objects to be deleted. The elements of
this list were returned when the application registered these filters by calling the
OVeRegister() routine. Refer to the man page for more information about this
routine and its parameters.

314 Programmer's Guide

Chapter 20. Using the General Topology Manager

You can use the NetView for AIX program, with no modifications, to manage net-
works that use the IP and SNMP protocols. You can also use the NetView for AIX
program to manage networks that use other protocols, by creating applications to
pass information to the NetView for AIX program in the required format. The
NetView for AIX General Topology Manager (GTM) accepts information about
devices that use other protocols, stores this information in a database, and pre-
sents the information to the user. This chapter introduces the GTM and the Open
Topology MIB, which is used to store topology data about non-IP networks.
Chapter 21, “Communicating with the General Topology Manager” on page 343
explains how to set up applications to use the GTM to perform these tasks.

Introducing the General Topology Manager
This section describes the benefits of using the General Topology Manager, the
components that make up the GTM, and some key terms that are used in
describing topology elements.

Benefits of Using the General Topology Manager
Although it is possible to construct a separate application to gather and display
information about networks that use other protocols, there are many advantages,
both for you as a developer and for your user, to integrating this information with
the NetView for AIX program. This section lists the benefits of this approach to
both developers and users.

Benefits for the Developer
Using the NetView for AIX GTM to integrate your network's information with the
NetView for AIX program provides these benefits to you as an application
developer:

� Enables you to present topology information to your user through the xxmap
application, so that you do not need to build a separate application to display
topology information.

� Enables you to integrate the gathering of your protocol data with the NetView
for AIX discovery process.

� Correlates non-IP data with IP data, so that duplicate object information is not
stored in the database.

� Provides your user the benefits described below without your writing any appli-
cations.

Benefits for Your User
Using the NetView for AIX GTM to integrate and present information about other
networks helps your user understand how networks are connected. The GTM per-
forms these functions:

� Integrates non-IP networks and devices with IP and other protocols that inte-
grate their information with the NetView for AIX program.

� Correlates the non-IP data with IP data so that multiprotocol nodes are pre-
sented properly.

 Copyright IBM Corp. 1992, 1995 315

� Allows your user to specify whether status is to be propagated across protocols
or only within a protocol.

� Allows your user to switch views of a device running multiple protocols

� Provides event-card integration (pressing the highlight button for a non-IP event
will display the submap where the node is displayed within that protocol, just as
it does for an IP event). The highlight button is not supported for non-IP events
that are not received through the NetView for AIX GTM.

For more information on presenting non-IP topology information to your user, see
“Presenting Topology Information to the User” on page 356.

Components of the NetView for AIX General Topology Manager
The programs that you write to provide information about your non-IP network will
interact with two NetView for AIX daemons: noniptopod and gtmd.

The noniptopod Daemon
The /usr/OV/bin/noniptopod (noniptopod) daemon registers to receive traps from
netmon (through ovesmd) that indicate the discovery of a new node that has an IP
address. The noniptopod daemon receives the new node's IP address from the
trap. As described in “Discovering Nodes” on page 343, it determines whether the
node supports any of a list of non-IP protocols. If it finds that the node supports a
non-IP protocol, noniptopod issues a command to begin gathering topology data
from that node.

The gtmd Daemon
The /usr/OV/bin/gtmd (gtmd) daemon receives topology information that describes
the attributes of devices on a non-IP network. This daemon stores topology infor-
mation in its database and stores object-related information in the NetView for AIX
object database for use by display applications.

The gtmd and noniptopod daemons are, by default, not started when the NetView
for AIX program is started. You can use SMIT to configure them and indicate that
they should be started by the nv6000 command.

The Open Topology MIB
The data structures you will use to describe open-topology elements are defined in
the NetView for AIX Open Topology MIB. Note that this MIB is not a loadable MIB
like one that represents a managed object; it is a set of data structures to be used
in representing general topology data. The MIB also defines actions that can be
performed on these topology elements, and a set of status values. All these MIB
elements are described in the remainder of this chapter.

The Open Topology MIB is stored in the
/usr/OV/snmp_mibs/drafts/ibm-nv6ktopo.mib file.

The xxmap Application
The NetView for AIX General Topology Manager uses the xxmap application to
display topology information.

316 Programmer's Guide

The gtmdump Utility
The gtmdump utility is a troubleshooting tool for displaying the contents of the GTM
database and monitoring GTM trap processing. Current values in the Open
Topology MIB can be dumped to a file for review by NetView for AIX product
support.

This command can be found in the Programmer's Reference.

Understanding Key Terms
The following terms, many of which are borrowed from graph theory, are defined to
describe the syntax of generic topology objects and connections. In addition to the
graph theory model, a layered connectivity model is used to show the relationship
between the higher and lower layers of the communications network. These terms
will be used throughout this chapter:

Vertex A vertex is a point in some space. A set of vertices is connected by any
number of arcs to form a graph. A vertex contains logical or physical
interfaces to a network. Logical interfaces are protocols, such as
APPN* or IP. Physical interfaces are hardware adapters, such as token
ring, Ethernet, or FDDI.

Arc An arc represents connectivity between vertices or graphs acting as
vertices. An example of an arc is a connection between two IP hosts or
connectivity via token ring. An arc is the representation of a connection
that is independent of either end point. You can define an arc to repre-
sent the end-to-end delivery of a function or application, while using
simple and underlying connections to represent the actual path over
which the function is provided.

Graph A graph is a representation of a set of vertices and the connections
between them. It represents a physical network, such as a token ring or
an Ethernet, or a logical network, such as IP or APPN. In addition to
representing physical or logical resources, a graph can be used to group
resources in a network based on any criteria, for example, all the
network elements in a single building. By showing a graph as a vertex,
a topology application can treat the graph as a single unit for topology
display.

In addition to representing a logical or physical network, a graph can
represent a computer node. Each of the computer's components is
represented as a vertex with the accompanying connections. This sort
of graph is called a box graph.

Member The members of a graph are all the vertices and other graphs that are
contained within the graph.

Member arc
An arc is a member arc of a graph if it is completely contained within the
graph.

Underlying arc
An underlying arc is an arc that represents a connection that provides
the lower-level connectivity used by another arc.

Simple connection
A simple connection represents a connection as seen from one of its
end points. A simple connection can include the number of octets sent

 Chapter 20. Using the General Topology Manager 317

on the connection, operability of the connection as seen from an end
point, or other information that is specific to an end point.

Underlying connection
Lower-layer connections used by a higher layer are called underlying
connections. For example, a connection between two IP hosts uses the
physical connection for its transport. The physical connections used to
transport data between the hosts are the underlying connections. The
layered connectivity model is used to represent the dependencies
between connections in a communication stack.

Service access point
A service access point (SAP) is the mechanism by which a lower-layer
network element provides access to its services for higher-layer ele-
ments. For example, an IP host might use a LAN for its physical trans-
port layer. The vertex representing the LAN station provides a SAP to
be used by the host.

A vertex can use only one SAP. The SAP used by the vertex repres-
ents a lower-level protocol, and each vertex can use only one lower-
level protocol. A resource can provide services to many other resources
through one or more SAPs. To represent these relationships, SAP
usage is represented as a table.

The basic concepts of vertex and simple connection convey the basic connectivity
information about any resource. A graph provides a way to group resources or
represent a topology. The use of layered connectivity enables you to model the
relationships between physical and logical networks, or between the networks and
the functions they provide.

More information about each of these key terms is provided in the following dis-
cussion of how they are represented in the tables of the Topology MIB.

Open Topology MIB Tables and Groups
The NetView for AIX Open Topology MIB is defined by a set of twelve tables that
contain object and relationship information. The tables are divided into four groups:

 � Vertex Group

 – Vertex Table
 – SAP Table

 � Arc Group

 – Arc Table
– Underlying Arc Table

� Simple Connection Group

– Simple Connection Table
– Underlying Connection Table

 � Graph Group

 – Graph Table
 – Members Table

– Member Arcs Table
– Attached Arcs Table

318 Programmer's Guide

– Additional Members Table
– Additional Graph Table

Each group consists of a single primary table and several secondary tables. The
primary table represents an object. The secondary tables represent relationships
between the objects. A group consists of all the tables and variables that describe
all the resources of a single class.

The primary table contains one entry for each resource of the type represented by
the table. The secondary tables provide additional information about resources in a
group. They provide a mechanism for unlimited-length lists and a place for infor-
mation that applies to a subset of resources in the primary tables.

Each entry in a secondary table is associated with one row in its primary table. In
the secondary tables, there can be multiple entries for a single row in the primary
table. To enable easy association of the information in the secondary tables with a
single row in a primary table, the index variables for the secondary tables will be
the index variables for the primary table. In each of the following table descriptions,
the index variables will be shown in bold type.

Creation and Deletion of Group Entries
When an entry is created in a primary table of a group, the associated entries in
the secondary tables can also be created. Additional entries can be added to the
secondary tables for a resource at times other than resource creation. When an
entry is deleted from a primary table, all associated information is deleted at the
same time from the secondary tables. Associated information can be deleted
without deleting all information about a resource.

In the following group descriptions, the first table is always the primary table. All
other tables in the group are secondary tables.

The Vertex Group
The vertex group contains all the information necessary to represent a vertex. It
consists of the following tables:

 � Vertex table
� Service access point table

The Vertex Table
A vertex represents a resource that contains an interface within a managed system.
An interface provides access to a network or service. A vertex will either be a
physical resource such a token ring, Ethernet or FDDI, or a logical resource such
as IP or APPN.

A vertex contains two variables for naming: vertexProtocol and vertexName. The
variable vertexProtocol is the prefix for the vertex name. The variable vertexName
is the name. The vertexProtocol and vertexName variables are the index variables
for the vertex table. They are used as part of the index fields for the service
access point (SAP) and simple connection tables.

Each vertex has operability characteristics. The vertex table contains the state
management variables defined in section “State and Status Information” on
page 335.

 Chapter 20. Using the General Topology Manager 319

The information described above for vertices is resource-independent. It is the
basic information needed to define any vertex; it is not sufficient to represent a
complete vertex. The variables vertexManagementExtension and
vertexManagementAddr are provided to store additional resource-specific informa-
tion.

Graphs, arcs, and simple connections will refer to vertices. If a referenced vertex is
not represented by the agent that represents a referencing graph, arc, or simple
connection, the local agent must create a vertex to contain the name of the refer-
enced vertex, because all references between tables are local. The vertexMine
field indicates whether a vertex is represented by the agent that owns the vertex
table. If vertexMine has a value of MINE, then the vertex is represented by the
local SNMP agent, and all the fields in the vertex are valid. If vertexMine is equal
to NOT_MINE, the vertex is represented by another agent, and the entry in the
local table contains only the information that the local agent knows about the
vertex. For a vertex with vertexMine equal to NOT_MINE, the operational state
field has no meaning.

Note: The gtmd daemon and the xxmap application do not use the vertexMine
field. It is for the use and control of discovery or management applications.

The variable vertexLocation is a readable string that can be used to store the
vertex location. This variable is not displayed by the xxmap application.

Table 39. The Vertex Table

Attribute Type

vertexProtocol nvotVertexProtocolType

vertexName char *

vertexMine nvotOwnerType

vertexLocation char *

vertexManagementExtension nvotOctetString

vertexManagementAddr nvotOctetString

vertexOperationalState nvotOperationalStateType

vertexUnknownStatus nvotUnknownStatusType

vertexAvailabilityStatus nvotAvailabilityStatusType

vertexAlarmStatus nvotAlarmStatusType

vertexLabel char *

vertexIcon char *

The Service Access Point (SAP) Table
While vertices are the means to represent communication entities or interfaces
across various protocol layers, the SAP object class is the representation of the
logical relationship between two vertices inside a computer. When a communi-
cation entity in a given protocol layer makes use of the services of a lower-layer
entity through a service point, the vertex representing the higher-layer entity uses a
SAP provided by a vertex representing an entity in the lower layer. Likewise, a
vertex representing an entity in the lower layer provides SAPs for use by vertices
representing entities in the higher layer. Moreover, a given interface or communi-
cation entity may provide its services to more than one entity in a higher layer at
the same time.

320 Programmer's Guide

The variables sapVertexProtocol and sapVertexName refer to the vertex either
using or providing the SAP.

The sapServiceType indicates whether the vertex is using or providing the SAP.

The variables sapProtocol and sapAddress define the SAP itself. Refer to the man
pages for the nvotCreateUsingSap and nvotCreateProvidingSap routines for a com-
plete explanation of the use of these variables.

Table 40. The Service Access Point Table

Attribute Type

sapVertexProtocol nvotVertexProtocolType

sapVertexName char *

sapServiceType nvotServiceType

sapProtocol nvotVertexProtocolType

sapAddress char *

The Simple Connection Group
The simple connection group contains all information necessary to represent a
simple connection. It consists of the following tables:

� Simple connection table
� Underlying connection table

The Simple Connection Table
A simple connection represents the information about a connection that is known
only to the endpoint, such as total bytes received or total bytes received with an
error. It is the point of attachment of an arc in a vertex or graph, even if the arc
does not exist. In this case, the simple connection represents an intention of con-
nection between two endpoints. The partner of a simple connection is the vertex or
graph that this endpoint would like to connect.

A simpleConnection has three index variables: localEndpointProtocol,
localEndpointName and simpleConnIndexId. The localEndpointProtocol and
localEndpointName fields identify the vertex or graph for which this is endpoint-
specific information about one of its connections. The localEndpointProtocol and
localEndpointName fields contain the same values as the index variables for the
local connection endpoint in the graph or vertex tables. The variable
simpleConnIndexId is an instance variable that identifies all simple connections with
the same localEndpointProtocol and localEndpointName values.

Associated with the index field, there is a name binding field that determines if the
simple connection is associated to a vertex or a graph. The defined values are:

 � SIMPLE_CONN_VERTEX_NAME_BINDING
 � SIMPLE_CONN_GRAPH_NAME_BINDING

This field is not part of the simple connection attributes; It is defined in the simple
connection structure. The index variables for simple connection form part of the
index variables of the underlying connection table.

 Chapter 20. Using the General Topology Manager 321

The variable simpleConnName is the human-readable label for the simple con-
nection to be used on a topology display.

A simple connection identifies the partner at the other end of the connection with
the variables connectionPartnerProtocol and connectionPartnerName. These vari-
ables have identical values to the index variables in the vertex or graph table for
the connection partner. If the local vertex does not know the vertex at the other
end of the connection, this information is omitted. In order to determine if the
partner is a vertex or a graph, the variable nameBinding should be filled with one of
the values below:

 � VERTEX_NAME_BINDING

 � GRAPH_NAME_BINDING

The variables simpleConnManagementExtension and simpleConnManagmentAddr
are pointers to detailed information about the simple connection.

The variable simpleConnIcon identifies the icon used to represent this simple con-
nection.

A simple connection also has operability characteristics. See section “State and
Status Information” on page 335 for further details.

Table 41. The Simple Connection Table

Attribute Type

localEndpointProtocol nvotProtocolType

localEndpointName char *

simpleConnIndexId int

simpleConnName char *

nameBinding nvotNameBindingType

connectionPartnerProtocol nvotProtocolType

connectionPartnerName char *

simpleConnManagementExtension nvotOctetString

simpleConnManagementAddr nvotOctetString

simpleConnIcon char *

simpleConnOperationalState nvotOperationalStateType

simpleConnUnknownStatus nvotUnknownStatusType

simpleConnAvailabilityStatus nvotAvailabilityStatusType

simpleConnAlarmStatus nvotAlarmStatusType

The Underlying Connection Table
Some connections consist of other connections. These other connections are
called underlying connections. There are two types of underlying connections: par-
allel and serial. A parallel underlying connection is the set of simple connections
that run in parallel between the same endpoints. A serial underlying connection is
an ordered sequence of simple connections between two endpoints. Serial under-
lying connections are thought of as running one after the other to form the con-
nection. Between any two endpoints, there can be parallel underlying connections,

322 Programmer's Guide

serial underlying connections, or a combination of parallel and serial underlying
connections.

This table identifies the underlying connections of a simple connection. The under-
lying connections of a simple connection are simple connections. The index vari-
ables for the underlying connection table are ulcEndpointProtocol,
ulcEndpointName, ulcEndpointId, nameBinding, uconnEndpointProtocol,
uconnEndpointName and uconnSimpleConnId.

The variables ulcEndpointProtocol,ulcEndpointName and ulcEndpointId are equiv-
alent to the localEndpointProtocol, localEndpointName and simpleConnIndexId vari-
ables of the simpleConnection table. They identify the simple connection that is
underlying of another simple connection. Associated with the index field, there is a
name binding field that determines if this simple connection is associated to a
vertex or a graph. The defined values are:

 � SIMPLE_CONN_VERTEX_NAME_BINDING
 � SIMPLE_CONN_GRAPH_NAME_BINDING

The variables nameBinding, uconnEndpointProtocol, uconnEndpointName, and
uconnSimpleConnId are also equivalent to the index variables of the simple con-
nection table. They identify the simple connection which has the underlying con-
nection described by this table.

Each individual underlying connection may be parallel or serial. The variable
underlyingConnectionKind defines whether the individual underlying connection is
parallel or serial. It has two values: PARALLEL and SERIAL . When the under-
lying connection is SERIAL , a sequence of lower-level links run between the two
endpoints of a connection. The variables nextSerialEndpointProtocol,
nextSerialEndpointName and nextSerialSimpleConnId are the instance of the next
serial connection. By combining these variables with ulcEndpointProtocol,
ulcEndpointName and ulcEndpointId until the next serial variables are found with
don't care values, you can discover the connections that make up the serial con-
nection order. The variable underlyingConnectionKind cannot be changed. If the
kind of an individual underlying connection changes, all underlying connections for
the using simple connection must be deleted and a new set of underlying simple
connections added.

Table 42 (Page 1 of 2). The Underlying Connection Table

Attribute Type

ulcEndpointProtocol nvotProtocolType

ulcEndpointName char *

ulcEndpointId int

underlyingConnectionKind nvotUnderlyingKindType

nameBinding nvotNameBindingType

uconnEndpointProtocol nvotProtocolType

uconnEndpointName char *

uconnSimpleConnId int

nextSerialNameBinding nvotNameBindingType

nextSerialEndpointProtocol nvotProtocolType

 Chapter 20. Using the General Topology Manager 323

Table 42 (Page 2 of 2). The Underlying Connection Table

Attribute Type

nextSerialEndpointName char *

nextSerialSimpleConnId int

ulcIcon char *

ulcLabel char *

The Arc Group
The arc group contains all the information necessary to represent an arc. It con-
sists of the following tables:

 � Arc table
� Underlying arc table

The Arc Table
An arc shows a connection between two vertices or graphs. An arc may represent
a real resource, such as a SNA session or a TCP connection, or it can be a user-
defined arc. A user-defined arc provides a method to aggregate multiple real
resources into a single entity. A user-defined arc provides an aggregation function
for arcs just as a graph does for a topology. A user-defined arc could represent the
connection between a client display and the server machine that provides an appli-
cation that is viewed on the client display. This connection could involve several
physical connections, which might use different protocols. In this case, these phys-
ical connections could be represented as serial underlying connections, with SAPs
used to identify the relationship between the connections and the arc.

The arc identifies its endpoints with the pairs of fields, aEndpointProtocol,
aEndpointName, and zEndpointProtocol, zEndpointName. Each endpoint pair con-
tains the value of the index fields of the endpoint in either the graph or vertex table.

The index fields for the arc table are aEndpointProtocol, aEndpointName,
zEndpointProtocol, zEndpointName, and arcIndexId. There can be many arcs
between the same endpoints; arcIndexId serves as an instance identifier to distin-
guish between arcs with the same endpoints. Associated with the index field, there
is a name binding field that determines, for each endpoint, whether it is a vertex or
a graph. The defined values are:

 � ARC_VERTEX_VERTEX_NAME_BINDING
 � ARC_VERTEX_GRAPH_NAME_BINDING
 � ARC_GRAPH_VERTEX_NAME_BINDING
 � ARC_GRAPH_GRAPH_NAME_BINDING

This field is not part of the arc attributes; It is defined in the arc structure. The
index fields from the arc form part of the index for the underlying arcs table.

The fields aDetailsIndexId and zDetailsIndexId are the additional index fields
needed to build the name of the simple connection for each endpoint of the arc.
These fields contain the simpleConnIndexId value for each endpoint.

The variables arcManagementExtension and arcManagmentAddr are detailed infor-
mation about the arc.

324 Programmer's Guide

An arc also has operability characteristics. See “State and Status Information” on
page 335 for further details. For an arc, the operability characteristics refer to the
arc as a whole.

Table 43. The Arc Table

Attribute Type

aEndpointProtocol nvotProtocolType

aEndpointName char *

zEndpointProtocol nvotProtocolType

zEndpointName char *

arcIndexId int

aDetailsIndexId int

zDetailsIndexId int

arcManagementExtension nvotOctetString

arcManagementAddr nvotOctetString

arcOperationalState nvotOperationalStateType

arcUnknownStatus nvotUnknownStatusType

arcAvailabilityStatus nvotAvailabilityStatusType

arcAlarmStatus nvotAlarmStatusType

The Underlying Arc Table
The underlying arcs table is semantically equivalent to the underlying connection
table. The major difference is that the underlying connection table points to simple
connections while the underlying arcs table points to arcs.

The index fields for this table are ulaAendpointProtocol, ulaAendpointName,
ulaZendpointProtocol, ulaZendpointName, ulaArcIndexId, ulaArcIndexId,
nameBinding, uconnAendpointProtocol, uconnAendpintName,
uconnZendpointProtocol, uconnZendpointName and uconnArcIndexId.

The first five fields contain the same value as the index fields for the arc table.
These fields identify the arc which is using the underlying arc. Associated with the
index field, there is a name binding field that determines, for each endpoint,
whether it is a vertex or a graph. The defined values are:

 � ARC_VERTEX_VERTEX_NAME_BINDING
 � ARC_VERTEX_GRAPH_NAME_BINDING
 � ARC_GRAPH_VERTEX_NAME_BINDING
 � ARC_GRAPH_GRAPH_NAME_BINDING

This field is not part of the underlying arc attributes. It is defined in underlying arc
structure.

The variables nameBinding, uconnAendpointProtocol, uconnAendpointName,
uconnZendpointProtocl, uconnZendpointName and uconnArcIndexId are also equiv-
alent to the index variables of the arc table. They identify the arc which has the
underlying arc described by this table.

Each underlying arc may be either parallel or serial. The variable
underlyingArcKind defines whether the underlying arc is parallel or serial. It has

 Chapter 20. Using the General Topology Manager 325

two values PARALLEL and SERIAL . When the underlying arc is SERIAL , a
sequence of lower-level links run between the two endpoints of a connection. The
variables nextSerialAendpointProtocol, nextSerialAendpointName,
nextSerialZendpointProtocol, nextSerialAendpointName and nextSerialArcIndexId
are the instance of the next serial arc. By combining these variables with
ulaAendpointProtocol, ulaAendpointName, ulaZendpointProtocol,
ulaZendpointName and ulaArcIndexId until the next serial variables are found with a
don't care values, you can discover the connections that make up the serial arc
order. The variable underlyingArcKind can not change. If the kind of an individual
underlying arc changes, the complete set of underlying arcs for the using arc must
be deleted and a new set created.

Table 44. The Underlying Arc Table

Attribute Type

ulaAendpointProtocol nvotProtocolType

ulaAendpointName char *

ulaZendpointProtocol nvotProtocolType

ulaZendpointName char *

ulaArcIndexId int

underlyingArcKind nvotUnderlyingKindType

nameBinding nvotNameBindingType

uconnAendpointProtocol nvotProtocolType

uconnAendpointName char *

uconnZendpointProtocol nvotProtocolType

uconnZendpointName char *

uconnArcIndexId int

nextSerialNameBinding nvotNameBindingType

nextSerialAEndpointProtocol nvotProtocolType

nextSerialAendpointName char *

nextSerialZendpointProtocol nvotProtocolType

nextSerialZendpointName char *

nextSerialArcIndexId int

ulaIcon char *

ulaLabel char *

The Graph Group
The graph group contains all information necessary to represent a graph. It con-
sists of the following tables:

 � Graph table
 � Members table
� Member arcs table
� Attached arcs table
� Additional members table
� Additional graph table

326 Programmer's Guide

The vertex and simple connection groups must be supported by all applications that
use this MIB. The arc and graph groups are optional. If an agent implements the
graph group it must also implement the arc group.

For each of the groups above, an implementation may need to define resource-
specific tables to contain nongeneric information. Each resource-specific table is
associated with an implementation of a single group. Each resource-specific table
must use the same index variables as the primary table for the group in which it is
defined. If there can be multiple entries in the resource specific table for a single
resource, an instance identifier must be added to the index variables.

The Graph Table
A Graph is used to represent either a network hierarchy or a box which contains
the vertices which are part of topologies. There are two basic types of graphs: the
topology-graph and the box-graph.

The topology-graph and the box-graph are different in nature. A topology-graph is
typically a connected graph which represents the topology network. The topology-
graph represents either a resource-specific topology or a higher-level topology.
The higher-level topology is a graph where membership is defined based on man-
agement domains or any user defined grouping.

The box-graph represents the vertices contained in a machine. The vertices within
a machine can be both physical and logical interfaces. Although GTM and xxmap
do not have any restriction, there are typically no arcs between vertices within a
box-graph.

Both types of graphs can contain vertices and other graphs, although box-graphs
typically contain only vertices. A vertex may be part of many different graphs.

The topology-graph serves two purposes. The first purpose is to depict a resource-
specific topology, such as a LAN ring, an APPN network node graph, or the con-
tainment of vertices within a single machine. The second purpose is to provide a
means to group nodes and other graphs in a network into higher-level graphs.
Higher-level graphs are constructed based on user-defined criteria, such as phys-
ical location or owning organization, and represent user-defined partitions of a
network. Higher-level graphs provide a way to represent partitions of a topology
based on management domains, other ways in which the network is managed, or
however the user thinks about the network.

When drawing a topology display, a graph is drawn as a vertex. A graph is used to
provide the zoom-in, zoom-out function commonly associated with a graphical
topology display by providing a mechanism to represent different levels of
abstraction about a network. In a topology, this function is used to show the
connectivity of a network or a subnetwork. In a box, this function is used to show
the placement of different network interfaces within a single box.

The graphType field indicates if the table row is a box or a graph. This variable
cannot be changed. The value BOX indicates that this graph is a box. The value
GRAPH indicates that this is a topology. The different types of graphs are usually
named differently. The topology-graphs could be named by their resource-specific
names, such as an IP domain name or a SNA netid. The higher-level graphs (a
machine, all the network in a building) are given user-defined names. The box-
graphs could be named by a combination of manufacturer, make, model and serial

 Chapter 20. Using the General Topology Manager 327

number, if available. Each set of names will have distinct prefixes. The prefix and
name fields are graphProtocol and graphName. These are also the index fields for
this table. The index variables are the basis for the index fields for the members,
member arcs, attached arcs, additional members, and additional graph tables.

The layoutAlgorithm field defines the layout algorithm that the xxmap should use
when drawing the graph. The layout algorithms are those used by the NetView for
AIX program and the variable cannot be changed. The defined values are:

 � NONE_LAYOUT
 � POINT_TO_POINT_LAYOUT
 � BUS_LAYOUT
 � START_LAYOUT
 � SPOKED_RING_LAYOUT
 � ROWCOL_LAYOUT
 � POINT_TO_POINT_RING_LAYOUT
 � TREE_LAYOUT

The variable graphLocation is a readable string and could be used to store the
graph location. This variable is not displayed by xxmap.

The variable backgroundMap is a figure that will be displayed as background when
this graph is exploded.

The variables graphManagementExtension and graphManagmentAddr contain
detailed information about the graph.

The isRoot field indicates whether this graph is the top graph in a hierarchy of
graphs. For any hierarchy of graphs only one graph is the root.

The graphLabel and graphIcon fields should be used only when this graph is an
endpoint of an underlying arc. Use these attributes to eefine the label and icon of
the graph endpoint.

Table 45. The Graph Table

Attribute Type

graphType nvotGraphType

graphProtocol nvotGraphProtocolType

graphName char *

layoutAlgorithm nvotLayoutType

userDefinedLayout char *

graphLocation char *

backgroundMap char *

graphManagementExtension nvotOctetString

graphManagementAddr nvotOctetString

isRoot nvotBooleanType

graphLabel char *

graphIcon char *

328 Programmer's Guide

The Members Table
The members table identifies the vertices and graphs which are part of a graph.
Each row of the members table is named by five variables: memberProtocol,
memberName, nameBinding, memberComponentProtocol and
memberComponentName. The variables memberProtocol and memberName are
the same values that identify the graph in the graph table.

The variables memberComponentProtocol and memberComponentName are used
to identify the vertex or graph which is inside the graph. In order to determine if the
member is a vertex or a graph, the variable nameBinding should be filled with one
of the values below:

 � VERTEX_NAME_BINDING

 � GRAPH_NAME_BINDING

The variable memberLabel is the human readable label that will be displayed by the
graphic application. A vertex or a graph could have different labels depending on
which graph it is member of.

The variable memberIcon defines an icon to represent a vertex or a graph inside an
specific graph.

Table 46. The Members Table

Attribute Type

memberProtocol nvotGraphProtocolType

memberName char *

nameBinding nvotNameBindingType

memberComponentProtocol nvotProtocolType

memberComponentName char *

memberLabel char *

memberIcon char *

The Member Arcs Table
The member arcs table provides a list of all arcs that have both endpoints com-
pletely within a graph. For each graph that has arcs within it, there is one table
entry associating the arcs with the graph in which they are contained. An arc may
be contained within many graphs.

Each row of the members table is named by eight variables: maGraphProtocol,
maGraphName, nameBinding, maAendpointProtocol, maAendpointName,
maZendpointProtocol, maZendpointName and maArcIndexId. The variables
maGraphProtocol and maGraphName are the same values that identify the graph
in the graph table.

The variables nameBinding, maAendpointProtocol, maAendpointName,
maZendpointProtocol, maZendpointName and maArcIndexId are used to identify
the arc which is inside the graph. In order to determine which kind of arc is this
member arc, the variable nameBinding should be filled with one of the values
below:

 � ARC_VERTEX_VERTEX_NAME_BINDING

 Chapter 20. Using the General Topology Manager 329

 � ARC_VERTEX_GRAPH_NAME_BINDING

 � ARC_GRAPH_VERTEX_NAME_BINDING

 � ARC_GRAPH_GRAPH_NAME_BINDING

The variable maLabel is the human-readable label that will be displayed by the
graphic application. An arc could have different labels depending on which graph it
is member arc of.

The variable maIcon defines an icon to represent the arc inside an specific graph.

Table 47. The Member Arcs Table

Attribute Type

maGraphProtocol nvotGraphProtocolType

maGraphName char *

nameBinding nvotNameBindingType

maAendpointProtocol nvotProtocolType

maAendpointName char *

maZendpointProtocol nvotProtocolType

maZendpointName char *

maArcIndexId int

maLabel char *

maIcon char *

The Attached Arcs Table
The graph attached arcs table provides a list of all arcs that have an endpoint
within the graph. For each graph that has arcs attached, there is one table entry
for each associated arc.

A graph attached arc row is named by the graph to which the arc is attached and
the arc itself; this serves to associate the attached arc with each graph to which it
is attached. The graph name will consist of two fields: aaGraphProtocol and
aaGraphName. These fields contain the corresponding values of the graphProtocol
and graphName fields in the graph table for the graph to which the arc is attached.

The arc name are six fields, which are index in arc table: nameBinding,
aaAendpointProtocol, aaAendpointName, aaZendpointProtocol, aaZendpointName
and aaArcIndexId.

Table 48 (Page 1 of 2). The Attached Arcs Table

Attribute Type

aaGraphProtocol nvotGraphProtocolType

aaGraphName char *

nameBinding nvotNameBindingType

aaAendpointProtocol nvotProtocolType

aaAendpointName char *

aaZendpointProtocol nvotProtocolType

330 Programmer's Guide

Table 48 (Page 2 of 2). The Attached Arcs Table

Attribute Type

aaZendpointName char *

aaArcIndexId int

The Additional Members Table
This table contains optional additional information about a graph member. A graph
member has a row in this table when the graph has a layout algorithm of
NONE_LAYOUT .

This table has index fields: aMemberProtocol, aMemberName, nameBinding,
aMemberComponentName and aMemberComponentName. These variables
contain the same values that identify the graph member in the members table.

The fields xCoordinate and yCoordinate define the location on the display of this
member when the layout algorithm is NONE_LAYOUT .

The fields xGrid and yGrid, which define the scale of the icon for this member on
the display of the graph, are currently not supported by the NetView for AIX
program.

Table 49. The Additional Members Table

Attribute Type

aMemberProtocol nvotGraphProtocolType

aMemberName char *

nameBinding nvotNameBindingType

aMemberComponentProtocol nvotProtocolType

aMemberComponentName char *

xCoordinate int

yCoordinate int

xGrid int

yGrid int

The Additional Graph Table
This table contains additional information about a graph. To tie the additional infor-
mation back to the graph it applies to, the index fields for this table contain the
same values as those used by graph plus an instance identifier to allow for mul-
tiple entries for each graph. The variables addGraphProtocol and addGraphName
contain the same values as the graphProtocol and graphName for the main graph
information. The variables addGraphIndexId is a unique instance identifier for each
entry for the same graph.

For any layout algorithm that has a root or center member, the variables
graphRootProtocol and graphRootName contain the value of the instance identifier
of the root vertex in the members table. Explicit variables are not needed for the
protocol and name since addGraphProtocol and addGraphName are also part of
the indices into the members table.

 Chapter 20. Using the General Topology Manager 331

The variable graphDescr1 contains descriptive information about the graph. This
variable is not displayed by xxmap.

The variables graphDescrX and graphDescrY are the x and y coordinates to be
used to place the information in graphDesc1 on the display of a graph.

As a root graph is not member of any other graph and the label and icon informa-
tion of a graph are contained in members table, the variables rootGraphLabel and
rootGraphIcon identify the label and the icon of a root graph.

Table 50. The Additional Graph Table

Attribute Type

addGraphProtocol nvotGraphProtocolType

addGraphName char *

addGraphIndexId int

graphRootProtocol nvotGraphProtocolType

graphRootName char *

graphDesc1 char *

graphDescrX int

graphDescrY int

rootGraphLabel char *

rootGraphIcon char *

Open Topology MIB Traps
The Open Topology MIB defines a set of traps to be used to communicate topology
changes to network management programs. These traps can be used to inform
managers of:

� Newly-discovered vertices or connections
� Deletion of network resources
� Changes of status
� Changes in variable values

List of Traps
Table 51 lists the traps defined in the Open Topology MIB and supported by the
NetView for AIX program. The traps are organized by the table to which they
apply. The names are self-explanatory; see the MIB for the syntax, hexadecimal
code, and description of each trap type.

Table 51 (Page 1 of 2). Open Topology MIB Traps

Table Trap Name

Vertex newVertex
deletedVertex
vertexStateChange
vertexVariableChange

SAP newSAPTrap
deletedSAP

332 Programmer's Guide

The preceding table does not include all the traps defined in the Open Topology
MIB. There are some tables, traps, and variables that are defined in the MIB but
not currently used by the NetView for AIX program. These items are defined in the
MIB for architectural integrity and possible future use. Table 52 lists the items that
are not supported. Do not use the following traps or variables to send topology
information to the NetView for AIX program:

Table 51 (Page 2 of 2). Open Topology MIB Traps

Table Trap Name

Simple Connection newSimpleConnection
deletedSimpleConnection
simpleConnectionStateChange
simpleConnectionVariableChange

Underlying Connection newUnderlyingConnection
deletedUnderlyingConnection

Arc newArc
deletedArc
arcStateChange
arcVariableChange

Underlying Arc newUnderlyingArc
deletedUnderlyingArc

Graph newGraph
deletedGraph
graphVariableChange

Member Arc newMemberArc
deletedMemberArc

Members newMemberTrap
deletedMember

Additional Member Information newMemberInformation
memberInformationVariableChange

Additional Graph Information newAdditionalGraphInformation
additionalGraphInformationVariableChange

Table 52 (Page 1 of 2). Restrictions on NetView for AIX Topology MIB Traps and Tables

MIB Table Restrictions/Comments

Vertex Do not use vertexMine variable.

SAP Do not use sapVariableChange trap.

Simple Connection Do not use the following variables in the
simpleConnectionVariableChange trap:

 � connectionPartnerProtocol
 � connectionPartnerName

Underlying Connection Do not use underlyingConnectionKind variable.

Do not use nextSerialUlcIndexId variable.

Arc Only use change of aDetailsIndexId and zDetailsIndexId
variables from -1 to a value. No other changes to
aDetailsIndexId or zDetailsIndexId are supported.

Underlying Arc Do not use underlyingArcKind variable.

Do not use nextSerialUlaIndexId variable.

 Chapter 20. Using the General Topology Manager 333

Another restriction not related to a specific table involves the names given to partic-
ular protocols. An item in the NetView for AIX object database cannot have a list
structure in its name field. This restricts a particular protocol to have only one
unique name per entity. Care must be taken in the use of SAPs so that this
restriction is not violated. When an entity, for example a vertex, provides a SAP,
that SAP is also treated as a name for the vertex object. Thus, that OVw object
cannot have two different names with the same protocol.

Table 52 (Page 2 of 2). Restrictions on NetView for AIX Topology MIB Traps and Tables

MIB Table Restrictions/Comments

Graph Do not use userdefinedLayout variable.

Do not use the following variables in the
graphVariableChange trap:

 � graphType
 � layoutAlgorithm

Member Arc Do not use memberArcVariablechange traps.

Graph-Attached Arcs Table is not supported.

Members Do not use memberVariablechange traps.

Additional Member Do not use xGrid variable.

Do not use yGrid variable.

Additional Graph Do not use graphDesc1 variable.

Do not use graphDescrX variable.

Do not use graphDescrY variable.

Limitations on Changing Variable Values
The following table describes, for each table in the NetView for AIX Open Topology
MIB, which attributes do not support the variable value change function. Index vari-
ables are mandatory and do not support changes.

Table 53 (Page 1 of 2). NetView for AIX Open Topology MIB Limitations

Table Attribute

Vertex No restrictions

Graph/Box graphType
layoutAlgorithm

Arc Only support change of aDetailsIndexId and zDetailsIndexId
attributes from -1 to a value and from a value to -1. No
other changes to aDetailsIndexId and zDetailsIndexId are
supported.

SAP Do not support changes

Simple connection connectionPartnerProtocol
connectionPartnerName

Underlying connection Do not support changes

Underlying arc Do not support changes

Members No restrictions

Member arc No restrictions

334 Programmer's Guide

Table 53 (Page 2 of 2). NetView for AIX Open Topology MIB Limitations

Table Attribute

Attached arc Do not support changes

Additional member No restrictions

Additional graph No restrictions

State and Status Information
The state and status variables defined for the Open Topology MIB are based on
ISO 10164-2, State Management. This section will summarize the relevant vari-
ables and the expected values. There are more states and statuses in ISO
10164-2 than those described here, but only those states and statuses described
here are used by the NetView for AIX Open Topology MIB.

 Operational State
Operational state indicates whether a resource is physically installed and working.
It has two distinct states:

Enabled The resource is fully or partially operable and available for use.

Disabled The resource is totally inoperable and unavailable to provide service to
the user.

In addition to the operational state, three status fields are defined. These status
fields provide additional information about the state of a resource. The status fields
used are unknown status, availability status, and alarm status.

 Unknown Status
Unknown status indicates whether the state of the resource is unknown. Unknown
status is true when an agent cannot reflect the current state of a resource. When
this field is true, the operational state, availability status, and alarm status may not
be accurate and will reflect the last known values.

 Availability Status
Availability status provides further qualification about the state of the resource. It is
set valued and has the value of the empty set when none of the conditions apply.
Availability status has the following values that indicate restrictions on operational
state:

In test The resource is undergoing a test procedure.

Failed The resource has some fault which prevents it from operating.
Operational state is disabled.

Power off The resource is not turned on. Operational state is disabled.

Off line The resource requires a routine operation be performed to place it
on line and make it available for use. The operation may be
manual or automatic. Operational state is disabled.

Off duty The resource is inactive based on a schedule. Operational state is
enabled or disabled.

 Chapter 20. Using the General Topology Manager 335

Dependency The resource cannot operate because some other resource on
which it depends is inoperable. Operational state is disabled.

Degraded The service available from the resource is degraded in some
manner. Operational state is enabled.

Not Installed The resource is not installed. Operational state is disabled.

Not all the availability status values apply to all resources.

 Alarm Status
Alarm status provides further details about alarms issued for a resource and the
actions underway to correct them. It is set valued and has the value of the empty
set when none of the defined values apply. It has the following defined values:

Under repair The resource is being repaired.

Critical One or more critical alarms have been detected in the
resource and have not been cleared.

Major One or more major alarms have been detected in the
resource and have not been cleared.

Minor One or more minor alarms have been detected in the
resource and have not been cleared.

Alarm outstanding One or more alarms have been detected in the resource and
have not been cleared. The condition might be disabling.

Relationships of Status Fields
Though availability status places restrictions on the values of operational state,
alarm status places no restrictions on the allowable values of operational state.
Availability status and alarm status place no restrictions on the values the other can
take. This means that there are no combinations of availability status and alarm
status that are not valid. Because availability status is the main qualifier of opera-
tional state, it is combined with operational state to determine the state of a
resource. See ISO 10164-2 for more information about state management.

Mapping to NetView for AIX States
Table 54 on page 337 shows how the valid combinations of operational state,
unknown status, availability status, and alarm status values map to NetView for AIX
status. If a column contains any , any legal value of the variable is allowed. All
combinations not covered in the following table are not valid, and map to an
NetView for AIX status of unknown.

336 Programmer's Guide

Table 54. Mapping Operational State and Status to NetView for AIX Status

Operational
State

Unknown
Status

Availability
Status

Alarm Status NetView for
AIX Status

any true any critical critical

any true any other than
critical

unknown

enabled false empty set any normal

any false off duty any normal

disabled false not installed any unmanaged

disabled false off line any marginal

disabled false dependency any critical

enabled false degraded critical critical

enabled false degraded other than
critical

marginal

disabled false failed any critical

disabled false power off any critical

enabled false in test any marginal

Using the nvotStatusType Structure
The status change routines of the GTM API, which are described in “Using the
Status Change Routines” on page 353, use the structure nvotStatusType . The
status values defined in this structure are the same as those used by the NetView
for AIX program. The following table shows, for each status defined in
nvotStatusType , the values that will be assumed by GTM for the status variables.

The STATUS_UNMANAGED status should be used only when creating objects.

Table 55. Mapping nvotStatusType to Other Status Values

nvotStatusType Operational
State

Unknown
Status

Availability Status Alarm Status

STATUS_UNKNOWN DISABLED TRUE EMPTY_SET MINOR

STATUS_NORMAL ENABLED FALSE EMPTY_SET MINOR

STATUS_CRITICAL ENABLED FALSE DEGRADED CRITICAL

STATUS_MARGINAL ENABLED FALSE IN_TEST MINOR

STATUS_UNMANAGED DISABLED FALSE NOT_INSTALLED MINOR

Topology Objects in the NetView for AIX Object Database
The GTM creates objects in the NetView for AIX object database based on the
topology information it receives. The objects belong to the following categories:

 � Simple Connection
 � Arc
 � Vertex
 � Graph

 Chapter 20. Using the General Topology Manager 337

Each of the objects has a name field. Applications may use the name field as a
key into the object database.

Other traps or API calls may cause GTM to add fields to existing objects, merge
objects together, or split objects apart. The traps that cause these actions are :

 � SAP
 � Member
 � IP Discovery

 Simple Connections
Simple connections have one name field, which is "localEndpointProtocol Con-
nection". The value of the field is "localEndpointName simpleConnIndexId".

OVW Field Name Type

isSimpleConnection Boolean Cap

islocalEndpointProtocol Boolean Cap Loc

localEndpointProtocol Connection String Name Loc

XXMAP Status Enumeration of OV Statuses

XXMAP Operational State Enumeration of Operational States

XXMAP Unknown Status Boolean

XXMAP Availability Status Bitmask of Availability Statuses

XXMAP Alarm Status Bitmask of Alarm Statuses

XXMAP Management Extension String

XXMAP Management Address String

XXMAP Protocol String

XXMAP Index Id Int32

XXMAP Name Binding Int32

 Arcs
The arc name field is "aEndpointProtocol zEndpointProtocol Arc". The value of the
field is "aEndpointName zEndpointName arcIndexId".

OVW Field Name Type

isArc Boolean Cap

isaEndpointProtocol Boolean Cap Loc

iszEndpointProtocol Boolean Cap Loc

aEndpointProtocol zEndpointProtocol Arc
String Name Loc

XXMAP Status Enumeration of OV Statuses

XXMAP Operational State Enumeration of Operational States

XXMAP Unknown Status Enumeration of Unknown Statuses

XXMAP Unknown Status Boolean

XXMAP Availability Status Bitmask of Availability Statuses

338 Programmer's Guide

XXMAP Alarm Status Bitmask of Alarm Statuses

XXMAP Management Extension String

XXMAP Management Address String

XXMAP Protocol String

XXMAP Protocol z String

XXMAP Index Id Int32

XXMAP Name Binding Int32

XXMAP Name a String

XXMAP Name z String

 Vertices
The vertex name field is "vertexProtocol Address". The value of the field is
"vertexName".

OVW Field Name Type

isVertex Boolean Cap

XXMAP Location String

XXMAP Protocol List String List

XXMAP SAPs Used List Int32 List (Set by SAP traps)

isvertexProtocol Boolean Cap Loc

vertexProtocol Address String Name Loc

vertexProtocol Status Enumeration of OV Statuses

vertexProtocol Operational State Enumeration of Operational States

vertexProtocol Unknown Status Boolean

vertexProtocol Availability Status Bitmask of Availability Statuses

vertexProtocol Alarm Status Bitmask of Alarm Statuses

vertexProtocol Management Extension String

vertexProtocol Management Address String

 Graphs
The graph name field is "graphProtocol Name". The value of the field is
"graphName".

OVW Field Name Type

isBox Boolean Cap (True when graphType =
BOX)

isGraph Boolean Cap (True when graphType =
GRAPH)

isRootGraph Boolean Cap

XXMAP Location String

XXMAP Protocol String

 Chapter 20. Using the General Topology Manager 339

XXMAP Protocol List String List (Exists only when isNode =
TRUE)

isgraphProtocol Boolean Cap Loc

graphProtocol Name String Name Loc

XXMAP Layout Algorithm Enumeration of Graph layout algorithms

graphProtocol Management Extension String

graphProtocol Management Address String

 Members
Member traps affect Box Graph and Vertex objects.

When a Vertex member component is added to a Box Graph member, the TopM
Node ID field is added to the Vertex object. The value of this field is the
OVwObjectId of the Box Graph member.

Merging Box Graphs
If a Vertex member component is added to a Box Graph member, and that Vertex
has a TopM Node ID that was previously set to a value that is not the OVwObjectId
of the current Box Graph member, then the Vertex is a member of two different Box
Graphs. Since the Vertex has the semantics of an interface card, and a Box Graph
has the semantics of a computer, this situation implies that one interface card
exists in two computers. This situation is impossible; we must merge the two Box
Graphs into one Box Graph. We do this by moving all of the fields from the object
identified by the Vertex's TopM Node ID to the object identified by the Box Graph
member, deleting the object identified by the Vertex's TopM Node ID, then synchro-
nizing the Box Graph member.

An OVwMapName protocol Symbol List field is added to the member component if
the member component is either a Vertex or Box Graph. This field contains a list
of the symbols that exist for the Vertex or Box Graph object.

OVW Field Name Type

TopM Node ID Integer (added to a member component Vertex
when the member is a Box Graph)

XXMap Protocol Members Integer List (added to a member component
Vertex when the member is a Box Graph)

OVwMapName vertexProtocol Symbol List
Integer List (added to member component
Vertices)

OVwMapName graphProtocol Symbol List
Integer List (added to member component Box
Graphs)

 SAPs
SAP traps affect Vertex and Box Graph objects.

340 Programmer's Guide

SAP-induced changes to Vertex
Adding SAPs to a Vertex sometimes cause Vertex objects to be merged.
Removing SAPs from a Vertex sometimes cause Vertex objects to be split.

Adding SAPs to a Vertex: If the Vertex described by "sapProtocol sapName"
was previously added with a Vertex add trap, then two objects exist: one with field
"sapVertexProtocol Address" set to "sapVertexName", and one with field
"sapProtocol Address" set to "sapName". In this case, all of the fields on the object
with field "sapProtocol Address" set to sapName are moved to the other Vertex
object, and then it is deleted. This operation is called merging.

If the SAP Service Type is providing , a "sapVertexProtocol SAP Protocols Pro-
vided" List field is added to the Vertex object. This list contains all of the protocols
provided by a given Vertex.

If the SAP Service Type is using , the Vertex's "XXMAP SAPs Used List" item that
corresponds with the Vertex's "XXMAP Protocol List" item equal to
"sapVertexProtocol" is set to "sapProtocol".

For example, if two vertices existed with the following field values :

Vertex 1

XXMAP Protocol List XXMAP SAPs Used List
------------------- --------------------
 9 ð

Vertex 2

XXMAP Protocol List XXMAP SAPs Used List
------------------- --------------------
56 ð

A SAP Add trap with "sapVertexProtocol" = 56, which uses "sapProtocol" = 9, will
result in Vertex 1 being deleted and all fields from Vertex 1 moved to Vertex 2. In
addition, the XXMAP SAPs Used List would be updated to show that protocol 56
uses 9, and 9 does not use any other protocol.

Vertex 2

XXMAP Protocol List XXMAP SAPs Used List
------------------- --------------------
56 (Uses ----------->) 9
 9 (Uses ----------->) ð

The name of the provided or used SAP is also added to the vertex.

OVW Field Name Type

sapVertexProtocol SAP Protocols Provided
Int32 List (Added if the SAP is provided.)

XXMAP SAPs Used Int32 List (Changes only if the SAP is used. This
field is added when the Vertex is created.)

sapProtocol Address String Name Loc

 Chapter 20. Using the General Topology Manager 341

Removing SAPs from a Vertex: In general, removing a SAP causes actions
opposite to those caused by adding a SAP. If the Vertex has been merged due to
a adding a SAP, as described in “Adding SAPs to a Vertex,” then removing that
SAP causes the Vertex object to be split into two Vertex objects. The object is split
based on information contained in the "XXMAP Protocol List", "XXMAP SAPs Used
List", and "sapVertexProtocol SAP Protocols Provided List" fields.

SAP-induced changes to Box Graphs
If adding a SAP causes two Vertex objects to be merged, as described in “Adding
SAPs to a Vertex” on page 341, and the values of the TopM Node ID fields of the
two Vertices are different, then the Box Graph objects identified by the TopM Node
ID fields are merged. The situation that mandates this merge is described in
“Merging Box Graphs” on page 340.

 IP Discovery
The IP discovery, IP topology and IP map programs correlate IP nodes and IP
interfaces with boxes and vertices added by the GTM.

342 Programmer's Guide

Chapter 21. Communicating with the General Topology
Manager

This chapter describes the ways in which your program can interact with the
General Topology Manager. It includes the following topics:

� “The Discovery Process”
� “Sending Information to the General Topology Manager” on page 348
� “Using the Trap Interface” on page 349
� “Using the GTM API” on page 350
� “Presenting Topology Information to the User” on page 356

The Discovery Process
You can integrate your open-topology application with the NetView for AIX dis-
covery process, or you can locate agents supporting your protocol through your
application. This section describes the steps necessary to have the NetView for
AIX discovery process help you to identify your agents and start your management
application. It concludes with some information about using your own discovery
process.

There are several tasks you must complete in order to enable the NetView for AIX
program to monitor your non-IP network. Each of the following tasks is explained
in this section:

� Assign an object identifier (oid) to be used for all interface nodes that use a
given non-IP protocol.

� Create a proxy agent to represent the objects in the non-IP network. This
agent must support the oid assigned for this protocol.

� Create a daemon that can interact with the agent, and that will send information
to the NetView for AIX General Topology Manager.

� Code an entry in the oid_to_command file, specifying the start command and
other information related to your daemon.

Note: This chapter refers to an agent that supports your protocol's oid and a
daemon that interacts with that agent and with the gtmd daemon. This
description is intended to clarify the different roles that must be fulfilled
within this model of communication. If combining these roles into one piece
of software meets your needs better, you can take that approach and think
of the agent and daemon described here as functions within your code.

 Discovering Nodes
When the NetView for AIX network monitor daemon, netmon, discovers an IP node,
it issues a trap, which is received by the NetView for AIX non-IP topology discovery
daemon, noniptopod. The netmon daemon passes the IP Address of the discov-
ered node to the noniptopod daemon. The noniptopod daemon reads the
oid_to_command file. For each entry in this file, the noniptopod daemon issues an
SNMP GET request, using the oid from the file entry, to the IP Address of the
newly-discovered node. If it receives a non-null response to any of these requests,
the noniptopod daemon issues the command that matches the oid for which a
value was received.

 Copyright IBM Corp. 1992, 1995 343

Note: If your interface node is not in the discovered region of the NetView for AIX
management station, add it to your netmon seed file to ensure its discovery. Seed
files are described in the NetView for AIX Administrator's Guide.

Adding Your Daemon to the oid_to_command File
Add an entry to the oid_to_command file, describing how your daemon is invoked,
so that the noniptopod daemon can invoke your daemon whenever an agent that
supports that oid is discovered. In this file, specify:

� The oid assigned to your interface node.

� The host name where your daemon resides, if it is not local. Do not enter the
local host name if your daemon is local; this will cause an error in invoking the
daemon.

� The command to be issued to invoke your daemon.

� The command to be issued to stop your daemon. This entry is not required,
but it is useful in ensuring an orderly shutdown when necessary.

The format of the file entry is specified in the man page for the oid_to_command
file.

If you add a protocol not supported by the Internet MIB-2, you must also add your
protocol information to two other data files, the snmp_fields data file and the
oid_to_protocol data file. These files are described next.

The snmp_fields Data File
The /usr/OV/fields/$LANG/snmp_fields file is used by the xxmap application to
convert from an integer specifying the vertex protocol in the NetView for AIX
topology MIB to a string that represents the vertex protocol name. The file shipped
with the NetView for AIX program lists several protocols in an enumeration list.
The operator or other applications are free to add to this file for user-defined inte-
gers and protocols. The first enumeration, Unset, has the value 0, and each suc-
ceeding enumeration has a value of one larger than the previous enumeration;
Other = 1, Regular 1822 = 2, and so on. The file has the following format:

Field "SNMP ifType" {
 Type Enumeration;
 Flags locate;
 Enumeration "Unset",
 "Other",
 "Regular 1822",
 "HDH 1822",
 "DDN X.25",

"RFC 877 X.25",
 "Ethernet CMSACD",

"IEEE 8ð2.3 CMSACD",
}

344 Programmer's Guide

The oid_to_protocol Data File
The /usr/OV/conf/oid_to_protocol file is used by the xxmap application to convert
from an oid provided in the NetView for AIX topology MIB to a string that repres-
ents the graph protocol name. The file shipped with the NetView for AIX program
lists several protocols in an enumeration list. The operator or other applications are
free to add to this file for user-defined oids and protocols. The oid_to_protocol file
has the following format:

Comment
"SNMP ifType"=1.3.6.1.2.1.2.2.1.3

${SNMP ifType}.1="Other"
${SNMP ifType}.2="Regular 1822"
${SNMP ifType}.3="HDH 1822"
${SNMP ifType}.4="DDN X.25"
${SNMP ifType}.5="RFC 877 X.25"
${SNMP ifType}.6="Ethernet CMSACD"

Creating an LRF for Your Agent and Daemon
You should create a local registration file (LRF) for the agent that represents your
non-IP network. See “The Local Registration File” on page 19 for information
about local registration files. You can also create an LRF for your daemon.
Whether you should create an LRF for your daemon depends on when you want
your daemon to run:

� If you want your daemon to be started whenever the NetView for AIX program
is started, create an LRF for your daemon and use the ovaddobj command to
add your daemon to the NetView for AIX startup file. Refer to the ovaddobj
man page for more information.

� If you want your daemon to be invoked only when an interface node with the
appropriate oid is discovered, do not create an LRF for your daemon.

Figure 18 on page 346 illustrates the data flow for the process of discovering an
agent that supports an oid and retrieving data from that agent.

 Chapter 21. Communicating with the General Topology Manager 345

pmd

ovesmd

noniptopod

Start
Command

Node
Discovered
Event

netmon

oid-to-
command
file

Proprietary
Daemon

Traps
or API
calls

gtmd

generic
topology
database

object
database

xxmap

get-req

get-rsp

Agent
(supports oid)

Figure 18. The Discovery Process

Other Discovery Methods
If you prefer not to integrate your management application with the NetView for AIX
discovery process, you can discover agents that support your protocol from within
your application. For example, if you support only one oid, you can write an appli-
cation that always runs and have it register for node-discovery traps. When a trap
is received, you can issue a get request for your oid to determine whether the
agent supports it.

Another possibility, if your network is very stable, is to maintain a list of IP
addresses for the nodes managed by your proxy agents. Then your application
can interrogate those agents for information.

Note that if you do not use the NetView for AIX discovery process to activate your
daemon, you must either add your daemon to the ovsuf file, so that it will be started
when the NetView for AIX program is started, or provide some other means, such
as a user interface, for starting your application. Even if you perform the discovery
process, your application must use the NetView for AIX General Topology Manager
to communicate topology information to the NetView for AIX program.

346 Programmer's Guide

Creating and Updating a Topology
Most of the terminology used by the GTM comes from graph theory. See “Under-
standing Key Terms” on page 317 for a review of key terms. The sample below
shows how to represent a topology using GTM. This example will use only the
main components defined in the Open Topology MIB.

Because the NetView for AIX program uses a hierarchical model to display
topology information, the first thing we have to create is a root object. This object
will be represented as a graph and it will be displayed in the root submap. The
application can define the label, icon and some other attributes of this graph. After
creating the root graph, all the topology information should be created under this
root.

Suppose your application is a LAN discovery. Under the root graph you have
another graph that represents a token ring network, so that by opening the root
graph submap you can see another graph representing the token ring network.

This network contain stations that will be represented in gtmd by boxes. Although
boxes and graphs have the same attributes they are different. We can consider
that a box always represents a resource like a computer. Opening the token ring
submap you can see stations.

To complete our sample, suppose that each station contains a token-ring interface
card. The interface card will be represented by a vertex in gtmd, so opening each
station submap you can see one token ring interface card.

The following steps shows how to create the sample described above in the GTM
database.

Step 1. Create a root graph LAN_Root

Step 2. Create a graph Token_Ring to represent the token ring network, and
create a relationship between the token ring graph and the root graph:
LAN_Root contains Token_Ring

Step 3. Create a box John and define the relationship: put box John inside
network Token_Ring

Step 4. Create a box Paul and define the relationship: put box Paul inside the
network Token_Ring

Step 5. Create a box George and define the relationship: put box George inside
the network Token_Ring

Step 6. Create a box Ringo and define the relationship: put box Ringo inside the
network Token_Ring

Step 7. Create a vertex tr_1 and define the relationship: put vertex tr_1 inside the
box John

Step 8. Create a vertex tr_2 and define the relationship: put vertex tr_2 inside the
box Paul

Step 9. Create a vertex tr_3 and define the relationship: put vertex tr_3 inside the
box George

Step 10. Create a vertex tr_4 and define the relationship: put vertex tr_4 inside the
box Ringo

 Chapter 21. Communicating with the General Topology Manager 347

The sample in /usr/OV/prg_samples/nvot shows the sequence of routines that
creates the topology above using GTM API routines.

Using the same sample, let us now connect the network. Suppose that station
John is connected to station Paul , Paul is connected to George , George is con-
nected to Ringo and Ringo is connected to John . The connections are repres-
ented in GTM by arcs.

The arcs should be inside a graph to be displayed, so the four arcs mentioned
above will be inside the graph Token_Ring .

In order to complete the whole sample, let us show one of the correlation mech-
anisms used by GTM. Suppose that the token ring interface card tr_1 inside the
station John is using the physical address 10005AA825E8 and suppose that IP
Topology discovery has discovered an IP node Lennon that provides this token
ring interface card with physical address 10005AA825E8.

If John has a token ring card using address 10005AA825E8 and Lennon is pro-
viding a token ring card with the same address, then John and Lennon are the
same physical station.

Using the SAP table of the NetView for AIX Open Topology MIB, you can correlate
objects that represent related resources. In the sample above, the token ring card
tr_1 and the IP interface card will be displayed together by both ipmap and xxmap.

 Topology Update
After the initial discovery process, your agent must detect and report changes to
the topology of your network. Your agent should inform your daemon of these
changes, and then your daemon must notify the NetView for AIX program.

The traps that are available for this purpose are described in “Open Topology MIB
Traps” on page 332 and listed in Table 51 on page 332.

Note: In order to have new traps properly correlated with existing nodes, you must
send the vertexProtocol and vertexName or the graphProtocol and
graphAddress as the first two variables in the trap. If you use the routines
of the GTM API to update your topology, it is crucial to use the correct
index variables to ensure that updates are applied to the correct elements.

Sending Information to the General Topology Manager
When your proprietary daemon is invoked, it should obtain topology data from the
agent representing the non-IP objects. Communications between your agent and
daemon can be in any format. You can choose either of two methods for passing
information from your daemon to the NetView for AIX program:

� You can establish an SNMP session with the NetView for AIX program and use
the Open Topology MIB and the NetView for AIX SNMP API or SNMP com-
mands to send enterprise-specific SNMP traps containing open topology infor-
mation.

� You can use the NetView for AIX GTM API to open a socket interface with the
gtmd daemon and to pass open topology information to gtmd.

348 Programmer's Guide

You can use a combination of the two methods if this best suits your purpose. The
GTM API now supports all of the tables defined in the Open Topology MIB. “Using
the GTM API” on page 350 lists the tables supported by the GTM API.

Both methods send information to the gtmd daemon, which stores the information
in a data base where it is available to the xxmap display application. Both methods
are described here.

Using the Trap Interface
In order to use the NetView for AIX GTM trap interface, your daemon must estab-
lish an SNMP session with the NetView for AIX program. Your daemon then
passes information to the gtmd daemon in the form of enterprise-specific SNMP
traps defined in the Open Topology MIB. These traps are described in “Open
Topology MIB Traps” on page 332.

Trap Interface Example
The following sample demonstrates the use of the trap interface to create a graph
with two other graphs as members and one arc between them, which is a member
arc. The snmptrap command is used to send the traps.

node = manaca
enterprise = .1.3.6.1.4.1.2.6.3.1
agent-addr = 9.179.2.113 (manaca.sumare.ibm.com)

#Create a root graph
#specific-trap = ðx7ððððð15 (1879ð48213)
/usr/OV/bin/snmptrap manaca .1.3.6.1.4.1.2.6.3.1 9.179.2.113 6 1879ð48213 1 \
.1.3.6.1.4.1.2.5.3.4.1.1.2 ObjectIdentifier 2.2.1.3.9 \
.1.3.6.1.4.1.2.5.3.4.1.1.3 OctetString "Root_Graph" \
.1.3.6.1.4.1.2.5.3.4.1.1.1 Integer 3 \
.1.3.6.1.4.1.2.5.3.4.1.1.4 Integer 3 \
.1.3.6.1.4.1.2.5.3.4.1.1.7 OctetString "world.gif" \
.1.3.6.1.4.1.2.5.3.4.1.1.6 OctetString "Root_Graph_Location" \
.1.3.6.1.4.1.2.5.3.4.1.1.8 ObjectIdentifier 2.2.1.3.9 \
.1.3.6.1.4.1.2.5.3.4.1.1.9 OctetString "Root_Graph_Management_Address" \
.1.3.6.1.4.1.2.5.3.4.1.1.1ð ObjectIdentifier 2.2.1.3.9.11 \
.1.3.6.1.4.1.2.5.3.4.1.1.11 Integer 1

#Create a bus graph
#specific-trap = ðx7ððððð15 (1879ð48213)
/usr/OV/bin/snmptrap manaca .1.3.6.1.4.1.2.6.3.1 9.179.2.113 6 1879ð48213 1 \
.1.3.6.1.4.1.2.5.3.4.1.1.2 ObjectIdentifier 2.2.1.3.6 \
.1.3.6.1.4.1.2.5.3.4.1.1.3 OctetString "Bus_Graph" \
.1.3.6.1.4.1.2.5.3.4.1.1.1 Integer 3 \
.1.3.6.1.4.1.2.5.3.4.1.1.4 Integer 4 \
.1.3.6.1.4.1.2.5.3.4.1.1.7 OctetString "newyork.gif" \
.1.3.6.1.4.1.2.5.3.4.1.1.6 OctetString "Bus_Graph_Location" \
.1.3.6.1.4.1.2.5.3.4.1.1.8 ObjectIdentifier 2.2.1.3.6 \
.1.3.6.1.4.1.2.5.3.4.1.1.9 OctetString "Bus_Graph_Management_Address" \
.1.3.6.1.4.1.2.5.3.4.1.1.1ð ObjectIdentifier 2.2.1.3.6.11

#Create bus graph as root graph member
#specific-trap = ðx7ððððð1E (1879ð48222)
/usr/OV/bin/snmptrap manaca .1.3.6.1.4.1.2.6.3.1 9.179.2.113 6 1879ð48222 1 \
.1.3.6.1.4.1.2.5.3.4.4.1.2 ObjectIdentifier 2.2.1.3.9 \

 Chapter 21. Communicating with the General Topology Manager 349

.1.3.6.1.4.1.2.5.3.4.4.1.3 OctetString "Root_Graph" \

.1.3.6.1.4.1.2.5.3.4.4.1.4 Integer 1 \

.1.3.6.1.4.1.2.5.3.4.4.1.6 ObjectIdentifier 2.2.1.3.6 \

.1.3.6.1.4.1.2.5.3.4.4.1.7 OctetString "Bus_Graph"

#Create a 6611 router
#specific-trap = ðx7ððððð15 (1879ð48213)
/usr/OV/bin/snmptrap manaca .1.3.6.1.4.1.2.6.3.1 9.179.2.113 6 1879ð48213 1 \
.1.3.6.1.4.1.2.5.3.4.1.1.2 ObjectIdentifier 2.2.1.3.29 \
.1.3.6.1.4.1.2.5.3.4.1.1.3 OctetString "6611_Router" \
.1.3.6.1.4.1.2.5.3.4.1.1.1 Integer 4 \
.1.3.6.1.4.1.2.5.3.4.1.1.4 Integer 7 \
.1.3.6.1.4.1.2.5.3.4.1.1.7 OctetString "ncarolina.gif" \
.1.3.6.1.4.1.2.5.3.4.1.1.6 OctetString "6611_Router_Location" \
.1.3.6.1.4.1.2.5.3.4.1.1.8 ObjectIdentifier 2.2.1.3.29 \
.1.3.6.1.4.1.2.5.3.4.1.1.9 OctetString "6611_Router_Address" \
.1.3.6.1.4.1.2.5.3.4.1.1.1ð ObjectIdentifier 2.2.1.3.29.1ð

#Create 6611 router as root graph member
#specific-trap = ðx7ððððð1E (1879ð48222)
/usr/OV/bin/snmptrap manaca .1.3.6.1.4.1.2.6.3.1 9.179.2.113 6 1879ð48222 1 \
.1.3.6.1.4.1.2.5.3.4.4.1.2 ObjectIdentifier 2.2.1.3.9 \
.1.3.6.1.4.1.2.5.3.4.4.1.3 OctetString "Root_Graph" \
.1.3.6.1.4.1.2.5.3.4.4.1.4 Integer 2 \
.1.3.6.1.4.1.2.5.3.4.4.1.6 ObjectIdentifier 2.2.1.3.29 \
.1.3.6.1.4.1.2.5.3.4.4.1.7 OctetString "6611_Router"

#Create an arc between bus graph and 6611 router
#specific-trap = ðx7ððððððE (1879ð482ð6)
/usr/OV/bin/snmptrap manaca .1.3.6.1.4.1.2.6.3.1 9.179.2.113 6 1879ð482ð6 1 \
.1.3.6.1.4.1.2.5.3.3.1.1.4 ObjectIdentifier 2.2.1.3.6 \
.1.3.6.1.4.1.2.5.3.3.1.1.5 OctetString "Bus_Graph" \
.1.3.6.1.4.1.2.5.3.3.1.1.7 ObjectIdentifier 2.2.1.3.29 \
.1.3.6.1.4.1.2.5.3.3.1.1.8 OctetString "6611_Router" \
.1.3.6.1.4.1.2.5.3.3.1.1.9 Integer 1

#Create a member arc
#specific-trap = ðx7ððððð18 (1879ð48216)
/usr/OV/bin/snmptrap manaca .1.3.6.1.4.1.2.6.3.1 9.179.2.113 6 1879ð48216 1 \
.1.3.6.1.4.1.2.5.3.4.2.1.2 ObjectIdentifier 2.2.1.3.9 \
.1.3.6.1.4.1.2.5.3.4.2.1.3 OctetString "Root_Graph" \
.1.3.6.1.4.1.2.5.3.4.2.1.4 Integer 1 \
.1.3.6.1.4.1.2.5.3.4.2.1.5 ObjectIdentifier 2.2.1.3.6 \
.1.3.6.1.4.1.2.5.3.4.2.1.6 OctetString "Bus_Graph" \
.1.3.6.1.4.1.2.5.3.4.2.1.7 ObjectIdentifier 2.2.1.3.29 \
.1.3.6.1.4.1.2.5.3.4.2.1.8 OctetString "6611_Router" \
.1.3.6.1.4.1.2.5.3.4.2.1.9 Integer 1

Using the GTM API
The NetView for AIX GTM API is a set of routines that enable an application to
interact with the General Topology Manager over a socket interface rather than by
using traps. To provide reliability of data transfer, the socket interface in the API
operates in blocking mode. This means that if the socket buffer is full, the applica-
tion will be blocked until the request is totally written into the socket buffer, avoiding
the loss of information.

350 Programmer's Guide

With Version 4 of NetView for AIX, the GTM API includes a group of basic routines
that give you complete open access to all tables, variables, and operations defined
in the NetView for AIX Generic Topology MIB. Each of these basic routines
includes a parameter that serves as a pointer to a structure you define. The struc-
ture defines all table variables or attributes of the corresponding object on which
the operation is being performed. “Example of Defining a Graph Structure” on
page 355 has an example of how you define such a structure. This example is
part of a sample program called
/usr/OV/prg_samples/nvot/nvotBasicSerialUnderlyingArc.c.

The GTM API now supports all the tables defined in the Open Topology MIB. The
API routines operate on the following tables:

 � Vertex
 � Graph
 � Arc
 � SAP
 � Member
 � Member Arc
 � Additional Member
 � Additional Graph

GTM API Routines
The routines in the GTM API are divided into the following groups:

� Basic routines: use these routines to gain completely open access to all tables,
variables, and operations defined in the Generic Topology MIB. See “Using the
Basic Routines” on page 352 for more information on these routines.

� Integration routines: use these routines to establish the socket connection
between your application and the General Topology Manager, to control the
creation of objects in the NetView for AIX object database, and to interpret
messages returned from API calls. See “Using the Integration Routines” on
page 352 for more information on these routines.

� Create routines: use these routines to create new objects in the open-topology
database and to establish their relationships with other objects. See “Using the
Create Routines” on page 353 for more information on these routines.

� Delete routines: use these routines to delete existing objects from the open-
topology database. See “Using the Delete Routines” on page 353 for more
information on these routines.

� Status change routines: use these routines to change the status of a vertex or
an arc in the open-topology database. See “Using the Status Change
Routines” on page 353 for more information on these routines.

� Variable value change routines: use these routines to change the values of
variables in the open-topology database. See “Using the Variable Value
Change Routines” on page 353 for more information on these routines.

� Get routines: use these routines to retrieve information from the tables in the
open-topology database. See “Using the Get Routines” on page 354 for more
information on these routines.

� Free routines: use these routines to free memory allocated by some of the get
routines. See “Using the Free Routines” on page 354 for more information on
these routines.

 Chapter 21. Communicating with the General Topology Manager 351

The names of most of the GTM API routines clearly indicate the function performed
by each routine. Consult the man pages for the details of coding each routine.

Using the Integration Routines
There are five integration routines in the NetView for AIX GTM API. Use these
routines to control the establishment of your GTM session and its behavior.

nvotInit Use this routine to open a socket connection to the General Topology
Manager If your application runs on a different network node from the
NetView for AIX program, specify the hostname of the node on which
the NetView for AIX program runs. You can also specify details of the
handling of arc objects and parent graphs. See the man page for
details.

nvotDone
Use this routine to close the connection between your application and
the General Topology Manager. If your application is designed to run
continually, you may not need to call this routine.

nvotSetSynchronousCreation
Use this routine to indicate whether your application is interested in the
ObjectId of each created object. Each item created in the gtm database
is also created in the NetView for AIX object database. If you want the
ObjectId of each object that is created in the NetView for AIX object
database returned to your application, use this routine to say so. Note
that the socket interface will run faster if ObjectIds are not returned.
The default behavior is not to return ObjectIds.

nvotGetError
Use this routine to retrieve the error code set upon the execution of the
last API routine.

nvotGetErrorMsg
Use this routine to display the message string associated with a return
code. You can pass the result of the nvotGetError routine into this
routine to have the message displayed. See the man page for an
example.

Using the Basic Routines
Programmers with some familiarity with the Generic Topology MIB can use the fol-
lowing routines to gain completely open access to all tables, variables, and oper-
ations defined in the Generic Topology MIB.

 � nvotArcHandler
 � nvotGraphHandler
 � nvotVertexHandler
 � nvotSapHandler
 � nvotSimpleConnectionHandler
 � nvotUnderlyingArcHandler
 � nvotUnderlyingConnectionHandler
 � nvotMemberHandler
 � nvotMemberArcHandler
 � nvotAttachedArcHandler
 � nvotAdditionalMemberHandler
 � nvotAdditionalGraphHandler

352 Programmer's Guide

Using the Create Routines
Use the following routines to create new objects in the open topology database and
establish their relationships with other objects:

 � nvotCreateVertexInGraph
 � nvotCreateVertexInBox
 � nvotCreateArcInGraph
 � nvotCreateRootGraph
 � nvotCreateGraphInGraph
 � nvotCreateBoxInGraph
 � nvotCreateUsingSap
 � nvotCreateProvidingSap
 � nvotCreateSerialUnderlyingArc
 � nvotCreateParallelUnderlyingArc
 � nvotCreateGraph
 � nvotCreateBox

Using the Delete Routines
Use the following routines to delete existing objects from the open topology
database:

 � nvotDeleteVertex
 � nvotDeleteArc
 � nvotDeleteGraph
 � nvotDeleteBox
 � nvotDeleteUsingSap
 � nvotDeleteProvidingSap
 � nvotDeleteVertexFromGraph
 � nvotDeleteVertexFromBox
 � nvotDeleteArcFromGraph
 � nvotDeleteGraphFromGraph
 � nvotDeleteBoxFromGraph
 � nvotDeleteUnderlyingArc

Using the Status Change Routines
Use the following routines to change the status of a vertex or an arc in the open
topology database:

 � nvotChangeVertexStatus
 � nvotChangeArcStatus

Using the Variable Value Change Routines
Use the following routines to change the values of variables in the tables in the
open topology database:

 � nvotChangeBoxIcon
 � nvotChangeBoxLabel
 � nvotChangeGraphIcon
 � nvotChangeGraphLabel
 � nvotChangeVertexIcon
 � nvotChangeVertexLabel
 � nvotChangeVertexIconInGraph
 � nvotChangeVertexLabelInGraph
 � nvotChangeVertexIconInBox

 Chapter 21. Communicating with the General Topology Manager 353

 � nvotChangeVertexLabelInBox
 � nvotChangeArcIconInGraph
 � nvotChangeArcLabelInGraph
 � nvotChangeGraphIconInGraph
 � nvotChangeGraphLabelInGraph
 � nvotChangeBoxIconInGraph
 � nvotChangeBoxLabelInGraph
 � nvotChangeRootGraphIcon
 � nvotChangeRootGraphLabel
 � nvotChangeGraphBackground
 � nvotChangeBoxBackground
 � nvotChangeVertexPositionInGraph
 � nvotChangeVertexPositionInBox
 � nvotChangeGraphPositionInGraph
 � nvotChangeBoxPositionInGraph
 � nvotChangeUnderlyingArcIcon
 � nvotChangeUnderlyingArcLabel
 � nvotSetCenterGraphForGraph
 � nvotSetCenterBoxForGraph
 � nvotChangeVertexDetails
 � nvotChangeGraphDetails
 � nvotChangeBoxDetails
 � nvotChangeArcDetails

Using the Get Routines
Use the following routines to retrieve information from the tables in the open
topology database:

 � nvotGetVerticesInGraph
 � nvotGetVerticesInBox
 � nvotGetArcsInGraph
 � nvotGetGraphsInGraph
 � nvotGetBoxesInGraph
 � nvotGetSapsInVertex
 � nvotGetGraphsWhichArcIsMemberOf
 � nvotGetGraphsWhichBoxIsMemberOf
 � nvotGetGraphsWhichGraphIsMemberOf
 � nvotGetGraphsWhichVertexIsMemberOf
 � nvotGetBoxesWhichVertexIsMemberOf
 � nvotGetArcObjectId
 � nvotGetBoxObjectId
 � nvotGetGraphObjectId
 � nvotGetVertexObjectId

Note that the get routines allocate memory to hold data structures. This memory
must be freed by using one of the free routines.

Using the Free Routines
The get routines, which were described in “Using the Get Routines,” allocate
memory to hold the data structures that are required to describe open topology
objects. Use the free routines to deallocate this memory. There is a free routine
for each data structure:

 � nvotFreeVertex

354 Programmer's Guide

 � nvotFreeVertexList
 � nvotFreeGraph
 � nvotFreeGraphList
 � nvotFreeBox
 � nvotFreeBoxList
 � nvotFreeArc
 � nvotFreeArcList
 � nvotFreeSap
 � nvotFreeSapList
 � nvotFreeSimpleConnection
 � nvotFreeSimpleConnectionList
 � nvotFreeUnderlyingConnection
 � nvotFreeUnderlyingConnectionList
 � nvotFreeUnderlyingArc
 � nvotFreeUnderlyingArcList
 � nvotFreeMembers
 � nvotFreeMembersList
 � nvotFreeMemberArcs
 � nvotFreeMemberArcsList
 � nvotFreeAttachedArcs
 � nvotFreeAttachedArcsList
 � nvotFreeAdditionalMembers
 � nvotFreeAdditionalMembersList
 � nvotFreeAdditionalGraph
 � nvotFreeAdditionalGraphList

Example of Defining a Graph Structure
The following example shows how you could define a graph structure to be used
with the nvotGraphHandler basic routine. This example is taken from the sample
program /usr/OV/prg_samples/nvot/nvotBasicSerialUnderlyingArc.c.

 Chapter 21. Communicating with the General Topology Manager 355

/\\\/
/\ Creating components \/
/\\\/

/\\\/
/\ Root graph \/
/\\\/

/\\\\\\\\\\\\\\\\\\\\\\\\\
 \\ GRAPH OPERATION - Filling nvotGraph Structure
 \\\\\\\\\\\\\\\\\\\\\\\\\/
 nvotGraph graph;

operation = CREATE_OPERATION ;
graph.operation = operation ;
graph.validAttributes = ð ;
graph.graphAttr.graphType = GRAPH ; /\ 3 \/
graph.validAttributes |= GRAPHTYPE_ATTR ;

graph.graphAttr.graphProtocol = strdup("1.3.6.1.2.1.2.2.1.3.2") ;
graph.validAttributes |= GRAPHPROTOCOL_ATTR ;

graph.graphAttr.graphName = strdup("Serial_Underlying_Arc_Basic_Root") ;
graph.validAttributes |= GRAPHNAME_ATTR ;

graph.graphAttr.layoutAlgorithm = POINT_TO_POINT_LAYOUT ; /\ 3 \/
graph.validAttributes |= LAYOUTALGORITHM_ATTR ;

graph.graphAttr.isRoot = TRUE ;
graph.validAttributes |= ISROOT_ATTR ;

rc = nvotGraphHandler (&graph);

 nvotFreeGraph (&graph);

Presenting Topology Information to the User
The gtmd daemon stores the topology information that it receives in the NetView for
AIX object database and the generic topology database. The xxmap application
reads these databases for display and semantic information and presents submaps
for non-IP protocols.

When the xxmap application is started, it starts in a synchronization phase. During
this synchronization, the NetView for AIX program displays the "synchronizing"
message on the status line of the displayed submaps. During synchronization,
xxmap brings the displayed maps up-to-date with the topology and object data-
bases.

Editing a Map
The xxmap application enables users to change maps through the NetView for AIX
interface. Users can add and delete symbols. However, added symbols will not be
verified or stored in the topology database. They will be stored only in the NetView
for AIX map database and will exist in the user plane.

Users can delete symbols from the map. The object represented by that symbol
will be deleted from the object database only after all symbols representing that
object have been deleted. That object which is semantically stored in the topology
database will not be deleted. It can be deleted only by the agent that added that
particular information.

Symbols deleted by the operator will re-appear the next time xxmap synchronizes
that submap. You can use cut-and-paste operations on symbols, but the symbols

356 Programmer's Guide

will exist in the user plane after the paste operation. Care must be taken when
cutting and pasting agent-added objects, because these operations are not
reflected in the topology database and can cause inconsistencies in the map.

You can write an application that registers for user modifications to the map, and
updates the topology database by sending information to the gtmd daemon as if the
changes had been detected in the network. Chapter 10, “Map Events and Map
Editing” on page 145 describes how to design an application to process user
actions.

The Presentation of Protocols
The basis of all protocols, including IP, will be the root submap. On this window, a
symbol is displayed for each protocol being managed. Each of these symbols will
explode into a submap containing more symbols for that protocol. This submap
can also contain symbols that explode into submaps. This aggregation can con-
tinue as desired by the user or application.

Each protocol is represented in this tree structure as a separate and distinct branch
starting at the root submap. Any application that supports other protocols must
build its protocol hierarchy using a graph that has isRoot set to TRUE, graphs,
members, and vertices. These can be established with any number of layers. One
graph can be a member of several other graphs. However, a vertex can be a
member of only one graph of type box, because it represents a physical entity.

Arcs, underlying arcs, simple connections, and underlying simple connections can
all be created to represents links between the already defined graphs and vertices.
Arcs, graphs, and vertices will appear in NetView for AIX submaps only if they are
members of a particular graph.

The NetView for AIX program also provides another submap layout style through
the NetView for AIX topology MIB called the pointTopoint layout. This layout allows
a directed ring layout with the nodes connected to each other.

Correlation of Protocols
Any protocol running on a particular interface (vertex) or computer (graph) can be
correlated with another protocol. Both of these protocols can be discovered by
separate agents, with one of the agents knowing it is using both protocols. This
information is communicated to the NetView for AIX program using the NetView for
AIX topology MIB.

Vertices added by different agents, and later correlated, will become the same
object-database object. The graphs that contain these vertices will also become
the same object in the object database.

For example, if IP adds a vertex for an IP interface, it is added to the object data-
base and a symbol is drawn on the screen in the node submap. Later, another
application discovers the token-ring interface card, which it adds as a vertex.
Because the IP vertex knows the token-ring address of the interface card, these
two vertices can be correlated. They will be merged to be the same object-
database object.

The box objects which contain these vertices will also be merged to become the
same object database object. All symbols for the separate objects will be deleted
and new symbols will be created for the new merged object.

 Chapter 21. Communicating with the General Topology Manager 357

The result of correlation is that all of the protocols running in the same physical
machine will appear in one submap. This means that same computer can appear
in several submaps across many protocols but will explode into a single submap
containing symbols that represent all of the protocols.

An application or agent must use the SAP table in the NetView for AIX topology
MIB to start the correlation process. An application must send a SAP trap that
contains the protocol and name of the vertex it has discovered, the protocol and
name of the interface to correlate with, and whether this vertex is using a service
from the other protocol or providing a service to the other protocol. For example,
Protocol IP, Vertex 9.67.7.193 uses the services of Protocol TR, Vertex
10005a65b525. Protocol TR, Vertex 10005a65b525, provides a service to Protocol
IP, Vertex 9.67.7.193. Once this information is received, if both vertices are known
by the NetView for AIX program, the correlation will take place.

Propagation of Status across Protocols
The xxmap application can be configured to propagate status across all protocols
or only within each protocol. The default is to propagate status within each protocol
only, so that a failure in any resource will be shown only on the view showing the
protocol in which the failure occurred. The user can change the propagation
method so that the status of a resource depends on the status of all of its compo-
nent resources, regardless of protocol. This change can be made permanent by
changing the application registration file for xxmap, which is
/usr/OV/registration/C/xxmap. The XXMAP Protocol Status field indicates whether
status is propagated for each protocol. The default value is True; changing this
value to False will cause the xxmap application to propagate status across proto-
cols. The user will still have the option to change the status-propagation method
through the graphical user interface.

Switching among Protocols
Another function of the xxmap application is to switch among different protocol
branches that contain the same computer or interface. From the View menu item,
the Protocols menu item will display a dialog box that lists all of the protocols
running on a particular machine, and its interfaces if the symbol represents a
machine. On an interface card, the Protocols menu item shows all of the protocols
running on that interface. Along with the protocols, it displays the address or name
of the object within that protocol and its current status. When a particular protocol
is selected in that dialog box, a list of submaps that contain this object within that
protocol is listed. From there, a submap can be displayed by clicking on the
submap name.

358 Programmer's Guide

Appendix. Migrating Version 3 Applications

If you have created an application for NetView for AIX Version 3 the migration to
Version 4 of the NetView for AIX program should require only minimal changes.
The changes you will have to make depend on which application programming
interfaces (APIs) and files you have used in creating your application. This chapter
is designed to help you understand the changes that will be required to enable your
application to run with Version 4 of the NetView for AIX program. For more infor-
mation on all the enhancements made in Version 4 of the NetView for AIX program,
see NetView for AIX Concepts: A General Information Manual.

Packaging for a Client/Server Environment
Depending on how extensive your application is and how closely integrated to
NetView for AIX, you may need to repackage your application and use the new
client/server APIs in your application. Applications that are self-contained and are
simply launched from the menu bar may be able to migrate with no changes.
Applications that include daemons or an EUI that is closely integrated into NetView
for AIX may need to be modified so that some of the function installs on a server,
and some of the function is installed on clients. See “Developing Applications for a
Client/Server Environment” on page 11 for more information about packaging impli-
cations in a client/server environment.

Using NetView for AIX Security
Applications that migrate to Version 4 can do so without making any changes to
use NetView for AIX security services. However, if NetView for AIX security is on,
your application will not have any security settings and will be unsecured. It is
recommended that you ship a minimum security configuration for your application.
Chapter 4, “Integrating Your Application with NetView for AIX Security Services” on
page 43 explains how to integrate your application with the NetView for AIX secu-
rity server.

Using NetView for AIX Collections
NetView for AIX now provides a collection facility through which an administrator
can perform actions or run applications against a group of objects. The objects are
selected based on a policy the administrator defines. There are several nvCol*
APIs for integrating an application with the Collection Facility. See the Program-
mer's Reference for more information about these APIs.

 Copyright IBM Corp. 1992, 1995 359

360 Programmer's Guide

Part 4. Glossary, Bibliography, and Index

Glossary . 363

Bibliography . 381
NetView for AIX Publications . 381
IBM RISC System/6000 Publications . 381
NetView Publications . 382
TCP/IP Publications for AIX (RS/6000, PS/2, RT, 370) 382
AIX SNA Services/6000 Publications . 382
Internet Request for Comments (RFCs) . 382
Related Publications . 383

AIX Trouble Ticket/6000 Publications . 383
Service Point Publication . 383
Other IBM TCP/IP Publications . 383
SNMP Information . 383
X Window System Publications . 384
X/Open Specification . 384
OSF/Motif Publications . 384
ISO/IEC Standards . 384

Index . 385

 Copyright IBM Corp. 1992, 1995 361

362 Programmer's Guide

 Glossary

This glossary includes terms and definitions from:

� The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the Amer-
ican National Standards Institute, 11 West 42nd
Street, New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

� The ANSI/EIA Standard—440-A, Fiber Optic Termi-
nology. Copies may be purchased from the Elec-
tronic Industries Association, 2001 Pennsylvania
Avenue, N.W., Washington, DC 20006. Definitions
are identified by the symbol (E) after the definition.

� The Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft inter-
national standards, committee drafts, and working
papers being developed by ISO/IEC JTC1/SC1 are
identified by the symbol (T) after the definition, indi-
cating that final agreement has not yet been
reached among the participating National Bodies of
SC1.

� The Network Working Group Request for Com-
ments: 1208.

� The IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

� The Object-Oriented Interface Design: IBM
Common User Access Guidelines, Carmel, Indiana:
Que, 1992.

The following cross-references are used in this glos-
sary:

Contrast with: This refers to a term that has an
opposed or substantively different meaning.

Synonym for: This indicates that the term has the
same meaning as a preferred term, which is defined in
its proper place in the glossary.

Synonymous with: This is a backward reference from
a defined term to all other terms that have the same
meaning.

See: This refers the reader to multiple-word terms that
have the same last word.

See also: This refers the reader to terms that have a
related, but not synonymous, meaning.

Deprecated term for: This indicates that the term
should not be used. It refers to a preferred term, which
is defined in its proper place in the glossary.

A
action . (1) In the AIX Operating System, a defined
task that an application performs. An action modifies
the properties of an object or manipulates the object in
some way. (2) An operation on a managed object, the
semantics of which are defined as part of the managed
object class definition.

active . (1) The state a resource is in when it has been
activated and is operational. Contrast with inoperative.
(2) In the AIX Operating System, pertaining to the
window pane in which the text cursor is currently posi-
tioned.

adapter . (1) A part that electrically or physically con-
nects a device to a computer or to another device.
(2) Hardware card that allows a device, such as a PC,
to communicate with another device, such as a monitor,
a printer, or other I/O device.

address . See internet address.

agent . In the TCP/IP environment, a process running
on a network node that responds to requests and sends
information.

aggregate . In programming languages, a structured
collection of data objects that form a data type. (I)

AIX. Advanced Interactive Executive.

AIX Operating System . (1) IBM's implementation of
the UNIX Operating System. The AIX Operating
System runs on the RISC System/6000 system.
(2) See UNIX Operating System.

AIX NetView/6000 . An abbreviated name for AIX
SystemView NetView/6000.

AIX NetView Service Point . (1) A licensed program
that operates in the AIX and UNIX environments. The
AIX NetView Service Point functions as a gateway in an
unattended environment. (2) A workstation-based IBM
licensed program through which application programs
can be used to monitor, manage, and diagnose prob-
lems in non-SNA networks and communication devices.

AIX SystemView NetView/6000 . A comprehensive
management tool for heterogeneous devices on Trans-
mission Control Protocol/Internet Protocol (TCP/IP) net-
works. The NetView for AIX program can use the IBM
AIX Service Point program to communicate with the
NetView and NETCENTER programs.

 Copyright IBM Corp. 1992, 1995 363

alert . (1) An error message sent to the system ser-
vices control point (SSCP) at the host system. (R)
(2) In the NetView for AIX program, selected traps are
converted to alerts that are then forwarded to the
NetView or NETCENTER programs for handling. (3) In
the NetView and NETCENTER programs, a high-priority
event that warrants immediate attention.

API. Application programming interface.

application plane . (1) Submaps contain two layers, or
planes, on which symbols are displayed. The applica-
tion plane displays symbols of objects that are managed
by at least one network or system management applica-
tion. Symbols of an object on the application plane
appear without shading, directly against the submap
background. (2) See user plane and background
plane.

application programming interface . (1) A library of
routines, provided with a product, which allows cus-
tomer or vendor programmers to integrate applications
with the product. (2) A routine within such a library.

application registration file . A file created by a pro-
grammer to integrate an application into the NetView for
AIX program by defining its place in the program's
menu structure, where help information is found, the
number and types of parameters allowed, the command
line used to start the application, and other character-
istics of a user-written application.

arc . In multiple topology, an arc represents
connectivity between vertices or graphs. The con-
nection is independent of either end point.

ASCII. American Standard Code for Information Inter-
change. The standard code, using a coded character
set consisting of 7-bit coded characters (8-bit including
parity check), used for information interchange among
data processing systems, data communication systems,
and associated equipment. The ASCII set consists of
control characters and graphic characters. (A)

attribute . (1) Objects are defined by attributes. Object
attributes appear as fields in the Object Description
dialog box and Attributes dialog boxes for applications.
The NetView for AIX windows tool provides a dialog box
that displays general attributes and capabilities of
objects based on their attributes. (2) See also
managed object and managed object class.

attribute list . A list that displays the attributes that can
be set for specific objects. These are global object attri-
butes that are valid for an object across maps. The
attributes list box is available in the Add Object, Add
Connection, and Describe Object dialog boxes. When
adding or describing an object, the attributes associated
with the object can be viewed or modified.

automatic layout . Automatic layout enables or disa-
bles the layout algorithm. Each submap may have a
layout algorithm that determines how symbols are
placed on the submap. The following layout algorithms
are available:

 � Point-to-point
 � Star
 � Bus
 � Ring
 � Row/Column
 � Tree
 � No Layout

B
background plane . The lowest layer or plane in a
submap. The background plane provides the back-
ground that symbols are viewed against. A background
graphic can be placed in the background plane to
provide contextual information for viewing symbols.

background process . (1) In the AIX Operating
System, a mode of program execution in which the shell
does not wait for program completion before prompting
the user for another command. (2) A process that does
not require operator intervention but can be run by the
computer while the workstation is used to do other
work. (3) Contrast with foreground process. (4) See
also daemon.

behavior . (1) A characteristic of a symbol that deter-
mines what happens when the symbol is selected with
the mouse. Symbol behavior may be either explodable
or executable.

Explodable Double-clicking on the symbol causes a
question dialog box to be displayed:

The question dialog box provides three
choices: use the default submap,
modify the submap settings, or cancel
this submap creation.

Executable The symbol executes an application
that performs an action on a set of
target objects.

(2) See also executable symbol and explodable symbol.

Berkeley Internet Name Domain (BIND) . The
Berkeley implementation of the Domain Name System
(DNS).

BIND. Berkeley Internet Name Domain.

buffer . (1) A temporary storage unit, especially one
that accepts information at one rate and delivers it at
another rate. (R) (2) An adjustable memory storage
space, temporarily reserved for performing input or
output, into which data is read or from which data is
written. (R)

364 Programmer's Guide

bus layout . (1) A layout algorithm that displays a bus
configuration and shows symbols arranged along the
bus. A bus topology shows symbols in a linear layout,
such as computers on a bus network segment. (2) See
point-to-point layout, ring layout, tree layout, row/column
layout, and star layout. See also layout algorithm.

bus segment . (1) A part of a network that represents
nodes attached to a single, linear cable that transmits
data. (2) An expansion of a selected bus segment from
the Network. which shows the hosts, gateways, and
devices attached to a LAN cable or segment.

button . A word or picture on the screen that can be
selected. Once selected and activated, a button begins
an action in the same manner that pressing a key on
the keyboard can begin an action. (R)

C
callback routine . A routine specified by an application
to be started when a specific event is detected.

callback registration . Identifying or registering a
callback routine.

cancel button . (1) Exits the dialog box and resets the
values of its contents. (2) See button.

card . (1) A unique place to display information that
relates to an event. A card provides a repository for
information and a fast path to the MIB browser applica-
tion and the topology map representation of managed
objects. Cards are placed in workspaces and can be
sent to other users, searched, ordered, and reports can
be generated from them. (2) See also MIB and work-
space.

CCITT. (1) Comite Consultatif International
Telegraphique et Telephonique. The International Tele-
graph and Telephone Consultative Committee. (2) See
Consultative Committee on International Telegraph and
Telephone (CCITT).

child submap . (1) A submap that represents a
detailed view of an object, or the “contents” of an object
(called the parent object) on a map. Double-clicking on
an explodable symbol that represents the parent object
opens the child submap. (2) See also parent object.

class . In the AIX Operating System, pertaining to the
I/O characteristics of a device. System devices are
classified as block or character devices.

click . To press and release a mouse button.

client . (1) In an AIX distributed file system environ-
ment, a system that is dependent on a server to provide
it with programs or access to programs. (2) See also
server.

CMIP. Common Management Information Protocol.

CMIS. Common Management Information Services.

CMOT. Common Management Information Protocol
over TCP/IP.

command . (1) A request from a terminal for the per-
formance of an operation or the execution of a partic-
ular program. (2) A request to perform an operation or
run a program. When parameters, values, flags, or
other operands are associated with a command, the
resulting character string is a single command. (R)

Common Management Information Protocol (CMIP) .
The protocol elements used to provide the operational
and notification services defined by Common Manage-
ment Information Services. CMIP is part of the Organ-
ization for Standardization (ISO) and Open Systems
Interconnection (OSI) specification.

Common Management Information Services
(CMIS). A suite of operational and notification services
used for the management of systems. CMIS is a part
of the International Organization for Standardization
(ISO) and Open Systems Interconnection (OSI) specifi-
cation.

Common Management Information Protocols over
TCP/IP (CMOT). A protocol interface defined by the
Internet Engineering Task Force (IETF) that enables the
use of CMIP over a TCP/IP protocol stack.

communications infrastructure . A framework of com-
munication that consists of a postmaster, object regis-
tration service, startup file, communication protocols,
and application programming interfaces. The communi-
cation infrastructure also provides access to event man-
agement services and data management services.

community name . A password that must be used for
certain SNMP requests.

component . Hardware or software that is part of a
functional unit.

compound status . (1) The compound status scheme
determines how status is propagated from symbols in
child submaps to symbols of the parent object. The
combined status of symbols determines the resulting
compound status. Compound status can propagate up
through multiple levels of submaps in the network map.
The compound status setting applies to the entire map.
In effect, the status of specific nodes propagates up to
a symbol on a higher-level submap. Compound status
is configured by using one of three schemes:

 � Default
� Propagate Most Critical
� Propagate at Threshold Value

 Glossary 365

(2) See default compound status.

configuration . (1) The manner in which the hardware
and software of an information processing system are
organized and interconnected. (T) (2) The devices and
programs that make up a system, subsystem, or
network. (3) The act of organizing and interconnecting
the components of an information processing system.

connection . (1) In system communications, a line
over which data can be passed between two systems or
between a system and a device. (2) A physical or
logical link between objects that appears as a line
between them on the topology map. For example, the
connection line between a gateway and network repres-
ents an interface on that network. Multiple connections
appear as one line. (3) Synonym for physical con-
nection.

connection symbol . (1) A special symbol type that
connects two icon symbols (or an icon symbol and a
backbone) on a submap. The NetView for AIX program
provides the following registered connection symbols:

 � Solid line
 � Dashed line
 � Dotted line

(2) See also icon.

Consultative Committee on International Telegraph
and Telephone (CCITT) . A United Nations Specialized
Standards group whose membership includes common
carriers concerned with devising and proposing recom-
mendations for international telecommunications repres-
enting alphabets, graphics, control information, and
other fundamental information interchange issues. (R)

context menu . (1) A menu (also known as a pop-up
menu) that provides no visual cue to its presence, but
pops-up when operators perform a menu selection with
button 3 of a three-button mouse.

control desk . (1) A component of the graphical inter-
face that enables the network operator to group applica-
tions instances together. The operator can create
multiple control desks through configuration of the
X-Defaults file or by using the mouse to drag the
control-desk icon from the Tool Palette. (2) See also
tool palette.

copy . (1) In the NetView for AIX program, a menu
item function that copies selected symbols and objects
to the cut buffer. To complete the copy operation,
select the Paste menu item. (2) See cut, cut buffer,
and paste.

critical status . (1) In the NetView for AIX program,
the status state, displayed by a symbol, that indicates a
problem with the object. If the status is compound
status, it reflects a critical condition in the parent
object's child submap. If the status is direct status, it

may reflect a critical condition for the symbol or the
object. The default color for critical status is red.
(2) See normal status, marginal status, and compound
status.

cut . (1) A function used to cut (delete) objects and
place them in the cut buffer. The Cut Button can be
used in conjunction with the Paste menu item to move
objects by pasting them from the cut buffer to a submap
(cut-and-paste). (2) See copy, cut buffer, and paste.

cut buffer . (1) A memory area where symbols and
objects that are cut or copied are temporarily stored.
The cut buffer enables cut and paste, or copy and
paste, operations. (2) See copy, cut, and paste.

D
daemon . (1) A background process usually started at
system initialization that runs continuously and performs
a function required by other processes. (2) In the AIX
Operating System, a program that runs unattended to
perform a standard service. Some daemons are trig-
gered automatically to perform their task; others operate
periodically. (3) See also background process.

data . A representation of facts, concepts, or
instructions in a form suitable for communication, inter-
pretation, or processing by human or automatic means.
Data includes constants, variables, arrays, and char-
acter strings.

default . An initial configuration setting. Defaults are
supplied when the NetView for AIX program is first run
to reduce the amount of time required to start actively
managing systems on a network. Users and applica-
tions can alter many default settings.

default compound status . When a new map is
created, compound status is set to a default value. The
default value for compound status causes the graphical
interface to propagate status.

delete . (1) An Edit menu function that deletes symbols
and objects. A confirmation box is displayed before the
deletion is performed. Some objects may be rediscov-
ered and their symbols can be hidden. The Delete
function is available for maps, submaps, and snapshots.
(2) See also hide symbol and edit menu.

destination . Any point or location, such as a node,
station, or a particular terminal, to which information is
to be sent.

device . A mechanical, electrical, or electronic
contrivance with a specific purpose.

dialog box . (1) A dialog box provides data fields and
buttons for setting controls, selecting from lists,
choosing from mutually exclusive options, entering data,

366 Programmer's Guide

and presenting the user with messages. The NetView
for AIX dialog boxes are defined by OSF/Motif. (2) A
pop-up window that is used primarily to gather user
input.

discovery . The automatic detection of network
topology changes (for example, new and deleted nodes,
new and deleted interfaces).

discriminator . (1) An object that supports network
management to enable a system to select operations
and event reports relating to other managed objects.
(2) See also filter.

display . (1) A visual presentation of data. (I) (A)
(2) To present data visually. (I) (A) (3) A device or
medium on which information is presented, such as a
terminal screen. (4) Deprecated term for panel.

DOC. Documentation.

domain . (1) That part of a network in which the data
processing resources are under common control. (T)
(2) In a database, all the possible values of an attribute
or a data element. (3) In TCP/IP, the naming system
used in hierarchical networks. The domain naming
system uses the DOMAIN protocol and the named
daemon. (4) In a domain system, groups of hosts are
administered separately within a tree-structured hier-
archy of domains and subdomains.

domain name . (1) A naming scheme consisting of a
sequence of subnames separated by a period. Each
section of the domain name is called a label. (2) In
TCP/IP, a name of a host system in a network. A
domain name consists of a sequence of subnames sep-
arated by a delimiter character.

double-click . To press and release a mouse button
twice in rapid succession.

drag . To press and hold a mouse button while moving
the mouse to move the pointer on the computer display.
Symbols can be dragged from the Add Object Palette or
Add Connection Palette to a submap to place a symbol
on a submap. Dragging is used to select menus, move,
and resize submap windows or dialog boxes.

dump . (1) To record, at a particular instant, the con-
tents of all or part of one storage device in another
storage device. Dumping is usually for the purpose of
debugging. (T) (2) Data that has been dumped. (T)
(3) To copy data in a readable format from main or
auxiliary storage onto an external medium such as tape,
diskette, or printer.

dynamic . (1) In programming languages, pertaining to
properties that can be established only during the exe-
cution of a program; for example, the length of a
variable-length data object is dynamic. (I) (2) Per-
taining to an operation that occurs at the time it is

needed rather than at a predetermined or fixed time.
(3) In NetView for AIX, the contents of windows in the
event display function are either dynamic or static. In
the dynamic display (workspace), events continue to be
added to the cards/list. (4) Contrast with static.

E
edit menu . An action bar menu that contains items
that enable the user to edit symbols and objects in an
open map or submap. Editing includes tasks, such as
adding, deleting, and copying.

EMS. Event management services

end user . A person, device, program, or computer
system that utilizes a computer network for the purpose
of data processing and information exchange. (T)

end-user interface (EUI) . See graphical user interface
and EUI.

Enhanced X-Windows Toolkit . (1) In the AIX Oper-
ating System, a collection of basic functions for devel-
oping a variety of application environments. Toolkit
functions manage Toolkit initialization, widgets, memory,
events, geometry, input focus, selections, resources,
translation of events, graphics contexts, pixmaps, and
errors. (2) See also X-Window System.

enterprise . An entire business organization. An enter-
prise may consist of one or more establishments, divi-
sions, plants, warehouses, and so on that require an
information system.

enterprise-specific MIB . (1) An SNMP management
Information Base (MIB) developed by individual vendors
for specific products. Vendors register their private
MIBs under the enterprise object identifier subtree.
(2) See MIB.

entity . (1) In the NetView for AIX program, an element
on a network that has semantic attributes. (2) See also
object.

enterprise-specific trap . (1) An enterprise-defined
SNMP trap indicated by generic trap number 6 and a
unique specific trap number that denotes an enterprise-
unique event.

error . A discrepancy between a computed, observed,
or measured value or condition and the true, specified,
or theoretically correct value or condition. (I) (A)

EUI. (1) End-user interface. (2) Synonymous with
graphical interface.

event . (1) An occurrence of significance to a task,
such as an SNMP trap or a NetView for AIX internal
event. (2) In the NetView for AIX program, an unsolic-

 Glossary 367

ited notification from the managed object or SNMP
agent that at least one of the following has occurred:

� A threshold limit was exceeded.
� The network topology changed.
� An informational message or an error occurred.
� An object's status changed.
� A node's configuration changed.

(3) In the NetView and NETCENTER programs, a
record indicating irregularities of operation in physical
elements of a network. (4) A CMIP event report.

event card . In the NetView for AIX program, a graph-
ical representation, resembling a punched card, of the
information contained in an event sent by an agent to a
manager reflecting a change in the status of one of the
agent's managed nodes.

event forwarding discriminator . (1) A discriminator
that acts on potential event reports. (2) See
discriminator.

event management services (EMS) . A centralized
method of generating, receiving, routing, and logging
network events.

EXEC. (1) In the AIX Operating System, to overlay the
current process with another executable program.
(2) See also fork.

exclusive submap . (1) A submap that is created by
an application with exclusive rights of control. If an
application creates a submap as an exclusive submap,
only that application can determine what happens in the
application plane of the submap. (2) See shared
submap.

executable symbol . (1) A symbol configured such
that double-clicking on it causes an application to
perform an action on a set of target objects. When you
change the behavior of a symbol to executable, you
choose from a list of registered applications and
actions, and you choose a set of objects (target objects)
that the application acts upon. You can modify these
settings at any time. Executable symbols are useful for
easily performing complex network management tasks
as often as needed. (2) See explodable symbol and
behavior.

explodable symbol . (1) A symbol configured such
that double-clicking on it displays the child submap of
the parent object that the symbol represents. The child
submap displays the contents of the parent object. If
the object the symbol represents has no child submap,
a question dialog box appears enabling you to create
and configure a child submap. After the submap is
created, double-clicking on the symbol opens the child
submap. (2) See executable symbol and behavior.

F
feature . A part of an IBM product that may be ordered
separately by the customer. A feature is designated as
either special or specify and may be designated also as
diskette-only.

field . Fields are the building blocks of which objects
are composed. A field is characterized by a field name,
a data type (integer, Boolean, character string, or enu-
merated value), and a set of flags that describes how
the field is treated by NetView for AIX. A field can
contain data only when it is associated with an object.

filter . (1) In the NetView for AIX program, a set of cri-
teria that determines which events are received by reg-
istered applications, selected for displaying, or
forwarded to the NetView and NETCENTER programs
as alerts. (2) In the NetView program, a function that
limits the data that is to be recorded on the database
and displayed at the terminal. See recording filter and
viewing filter. (3) In the AIX Operating System, a
command that reads standard input data, modifies the
data, and sends it to the display screen. (4) A device
or program that separates data, signals, or material in
accordance with specified criteria. (A)

filtering . In the NetView for AIX program, a process
that applies tests to previously identified objects to
extract a subset.

foreground process . (1) In the AIX Operating
System, a process that must run to completion before
another command is issued to the shell. The fore-
ground process is in the foreground process group,
which is the group that receives the signals generated
by a terminal. (2) In the NetView for AIX program, the
xnm application and the applications running under it.
(3) Contrast with background process.

fork . (1) In the AIX Operating System, to create and
start a child process. (2) See also EXEC.

function index . (1) An index that enables you to get
online help that describes the functions of the graphical
interface. You can display the Function index from the
Help menu. (2) See also help menu.

G
gateway . (1) In the AIX Operating System, an entity
that operates above the link layer and translates, when
required, the interface and protocol used by one
network into those used by another distinct network.
(2) A functional unit that interconnects two computer
networks with different network architectures. A
gateway connects networks or systems of different
architectures. A bridge interconnects networks or
systems with the same or similar architectures. (T)

368 Programmer's Guide

(3) In TCP/IP, a device used to connect two systems
that use either the same or different communication pro-
tocols.

GIF. Graphical Interchange Format.

graph . In multiple topology, a graph represents a col-
lection of vertices, arcs, and other graphs. An IP
segment is a graph that contains all IP machines and
their connections.

graph-attached arc . In multiple topology, a graph-
attached arc represents an arc that connects two
graphs from within each of the two graphs.

Graphic Interchange Format (GIF) . In the NetView
for AIX program, the format used for the background
pictures of a network topology map.

graphical user interface . (1) In the NetView for AIX
program, the integrating interface application that pro-
vides the means for displaying submaps and for inte-
grating network applications. The graphical interface is
a single, consistent interface that enables multiple appli-
cations to interact. (2) See also EUI.

gtmd daemon . A background process that receives
generic topology information for the multiprotocol
topology functions of the NetView for AIX program.

H
help button . Displays the help entries.

help menu . An action bar menu to provides detailed
help information about the NetView for AIX graphical
interface. It also provides information about registered
applications that are integrated with the graphical inter-
face.

help panel . Information displayed by a system in
response to a help request from a user. See task
panel.

hide symbol . (1) An operation that enables users to
prevent symbols from being displayed on a submap.
The symbols still exist but are not visible.

highlighting . (1) In the NetView for AIX program, a
visual cue showing the nodes or connections that are
the output of certain operations. (2) Emphasizing a
display element or segment by modifying its visual attri-
butes. (I) (A)

home submap . A starting point on a map. The home
submap is the first submap that appears when a map is
opened. Each map may have a home submap. When
new maps are created, the home submap is the root
submap.

host . (1) The primary or controlling computer in the
communications network. (R) (2) A computer attached
to a network. (R) (3) In TCP/IP, any system that has at
least one Internet address associated with it. A host
with multiple network interfaces may have multiple
Internet addresses associated with it. (4) See also host
processor.

host processor . (1) A processor that controls all or
part of a user application network. (T) (2) In a network,
the processing unit in which the access method for the
network resides.

I
icon . A graphic symbol, displayed on a screen, that a
user can point to with a device, such as a mouse, in
order to select a particular function or software applica-
tion. (T)

ID. Identification.

inoperative . The condition of a resource that has been
active, but is not. The resource may have failed,
received an INOP request, or been suspended while a
reactivate command is being processed.

instance . A concrete realization of an abstract object
class. An instance of a widget or gadget is a specific
data structure that contains detailed appearance and
behavioral information that is used to generate a spe-
cific graphical object on-screen at run time. (R)

input/output (I/O) . The means by which the subagent
determines the value of a MIB variable. For example,
there is code to instrument a MIB variable to load the
central processing unit (CPU).

input/output (I/O) . (1) Pertaining to a device whose
parts can perform an input process and an output
process at the same time. (I) (2) Pertaining to a func-
tional unit or channel involved in an input process,
output process, or both, concurrently or not, and to the
data involved in such a process.

interface . A shared boundary between two functional
units, defined by functional characteristics, signal char-
acteristics, or other characteristics, as appropriate. The
concept includes the specification of the connection of
two devices having different functions. (T)

Internet . A wide-area network connecting thousands of
disparate networks in industry, education, government,
and research. The Internet network uses TCP/IP as the
standard protocol for transmitting information.

internet address . The numbering system used in
TCP/IP Internetwork communications to specify a partic-
ular network, or a particular host on that network, with

 Glossary 369

which to communicate. Internet addresses are denoted
in dotted decimal form.

internet-level submap . The highest level of the
topology map that shows how internet protocol networks
or subnets are connected by gateways.

I/O. Input/output

IP. Internet Protocol.

ISO. International Organization for Standardization

K
keyword . (1) In programming languages, a lexical unit
that, in certain contexts, characterizes some language
construct; for example, in some contexts, IF character-
izes an if-statement. A keyword normally has the form
of an identifier. (I) (2) One of the predefined words of
an artificial language. (3) A name or symbol that identi-
fies a parameter. (4) Part of a command operand that
consists of a specific character string, such as
DSNAME=.

L
label . A label is used to distinguish a symbol from
other symbols on a submap and map. The label is dis-
played below a symbol. Labels can be assigned or
modified at any time by using the Symbol Description
dialog box.

LAN . Local area network.

layout algorithm . A method for arranging symbols on
a map or submap.

legend . An explanatory list of the symbols, icons, and
other components of a network.

link . (1) In data communications, a transmission
medium and data link control component that together
transmit data between adjacent nodes. (R) (2) In
TCP/IP, a communications line. A TCP/IP link may
share the use of a communications line with SNA.

local . Pertaining to a device, file, or system that is
accessed directly from your system, without the use of
a communications line. Contrast with remote. (R)

local registration file (LRF) . A file that provides infor-
mation about an agent or daemon, such as the name,
the location of the executable code, and details about
the objects that an agent manages.

LRF. Local registration file.

M
managed object . (1) An object that is being actively
managed. Applications can monitor and manage
objects for topology, status, and configuration changes.
When you choose to manage an object, the objects in
child submaps of the managed object also become
managed. An object can be toggled between managed
and unmanaged. You can choose which objects to
manage, thereby, customizing the management region
for any map. (2) See unmanaged object and manage-
ment region.

managed object class . A named set of managed
objects sharing the same (named) sets of attributes,
notifications, management operations (packages), and
which share the same conditions for presence of those
packages. (I)

management information base (MIB) . (1) A set of
variable bindings that reflect the current state of an
SNMP agent. Extensions to the MIB can be added by
a business enterprise. (2) See also enterprise-specific
MIB.

management region . The set of managed objects on
a particular map that defines the extent of the network
that is being actively managed. The management
region may vary across maps.

manager . The part of a distributed management appli-
cation that issues requests and receives notifications;
that is, uses the services of one or more agents.

map . A set of related submaps that provides a graph-
ical and hierarchical presentation of a network and its
systems.

member . In multiple topology, the member indicates
that other graphs or vertices are contained within a par-
ticular graph.

member arc . In multiple topology, a member arc indi-
cates the arc that is contained within a particular graph.

menu . A list of options displayed to the user by a data
processing system, from which the user can select an
action to be initiated. (T)

menu bar . A rectangular area at the top of the client
area of a window that contains the titles of the standard
pull-down menus for that application. (R)

menu item . One of a list of options contained in a
menu.

message . (1) An assembly of characters and some-
times control codes that is transferred as an entity from
an originator to one or more recipients. A message
consists of two parts: envelope and context. (2) Infor-

370 Programmer's Guide

mation from the system that informs the user of a condi-
tion that may affect further processing of a current
program. (R)

MIB. Management Information Base.

mnemonic . A single character of a menu item, often
the first letter, that represents a function. The mne-
monic is the underlined character.

module . A program unit that is discrete and identifi-
able with respect to compiling, combining with other
units, and loading; for example, the input to or output
from an assembler, compiler, linkage editor, or execu-
tive routine.

monitor . (1) A device that observes and records
selected activities within a data processing system for
analysis. Possible uses are to indicate significant
departure from the norm, or to determine levels of utili-
zation of particular functional units. (T) (2) Software or
hardware that observes, supervises, controls, or verifies
operations of a system. (A)

monitor menu . An action bar menu that provides
access to application tools that present information
about selected objects. The information consists of
node name, description, status, and objects.

motif . See OSF/Motif.

mouse . A device that a user moves on a flat surface
to position a pointer on a panel. It allows a user to
select a choice or function to be performed or to
perform operations on a panel, such as dragging or
drawing lines from one position to another.

N
navigation tree . A component of the graphical user
interface that forms a hierarchy of open submaps illus-
trating the parent-child relationship. The navigation tree
enables the network operator to determine which
submaps are currently open and to close, restore, or
raise the windows that contain submaps.

NETBIOS. Network Basic Input/Output System

netmon daemon . A background process that dis-
covers and monitors nodes on the network. See also
daemon.

NetView program . An IBM licensed program used to
monitor a network, manage it, and diagnose network
problems.

network . (1) An arrangement of nodes and intercon-
necting branches. (T) (2) A configuration of data proc-
essing devices and software connected for information
interchange.

network address . (1) An identifier for a node, station,
or unit of equipment in a network. (2) An address, con-
sisting of subarea and element fields, that identifies a
link, a link station, or a network addressable unit.
Subarea nodes use network addresses; peripheral
nodes use local addresses. The boundary function in
the subarea node to which a peripheral node is
attached transforms local addresses to network
addresses and vice versa. (3) See also network name.

Network Basic Input/Output System (NETBIOS) .
The standard interface to networks, IBM personal com-
puters, and compatible personal computers, that is used
on LANs to provide message, print-server, and
file-server functions. The IBM NETBIOS application
program interface (API) provides a programming inter-
face to the LAN so that an application program can
have LAN communication without knowledge and
responsibility of the data link control (DLC) interface.

network name . (1) The symbolic identifier by which
end users refer to a network addressable unit, a link, or
a link station within a given network. In APPN net-
works, network names are also used for routing pur-
poses. (2) See also network address.

network operator . (1) A person who controls the
operation of all or part of a network. (2) In a multiple-
domain network, a person or program responsible for
controlling all domains.

NFS. Network File System. (R)

node . (1) An end point of a link, or a junction common
to two or more links in a network. Nodes can be
processors, controllers, or workstations, and they can
vary in routing and other functional capabilities. (R)
(2) The portion of a hardware component, along with its
associated software components, that implements the
functions of the seven architectural layers (SNA). (3) In
a tree structure, a point at which subordinate items of
data originate. (R)

node name . In the NetView for AIX program, the sym-
bolic name assigned to a specific node during network
definition.

node-level submap . Contains the addressable
resources of a network, such as a gateway, router,
workstation, and personal computer.

noniptopod daemon . A background process that is
responsible for instigating multiprotocol discovery appli-
cations during NetView for AIX operation.

normal status . (1) Indicates that a network object is
functioning normally. The default icon symbol color for
normal status is green. The default connection symbol
color for normal status is black. (2) See critical status
and marginal status.

 Glossary 371

notification . Information emitted by a managed object
relating to an event that has occurred within the
managed object. (I)

O
object . (1) In the NetView for AIX program, a generic
term for any entity that NetView for AIX discovers and
displays on the topology map, or any entity that you add
to the topology map. (2) In the AIX object data
manager, an instance or member of an object class,
conceptually similar to a structure that is a member or
array of structures. (3) In the NetView for AIX program,
objects convey to the symbol various semantic attri-
butes that represent an entity. (4) See managed
object. (5) See also entity and symbol.

object attribute . (1) An object is defined by its attri-
butes. The attributes are fields in which values are
stored. For any object, an Object Description dialog
box enables you to highlight applications and display
attribute values that specific applications use to manage
the object. For example, each object has a selection
name attribute. The value of any selection name is the
textual name of the object. Objects that support SNMP
have an IP address attribute. The attribute value of any
object supporting SNMP is the actual address. Applica-
tions and users may assign new values to object attri-
butes, and may provide new attributes for certain
objects. (2) See managed attribute. (3) See also attri-
bute, object, and selection name.

object class . (1) In AIX SystemView NetView/6000,
objects are divided into four classes: computer, con-
nector, device, software, location, and cards. (2) In the
AIX object data manager, a stored collection of objects
with the same definition. Conceptually similar to an
array of structures. (3) See also object class, symbol
class, and managed object class.

object ID . The unique name identification of a man-
agement information base object.

object instance . (1) A specific object in a particular
class of objects. A physical network entity or resource,
such as a computer, modem, gateway, bridge, X.25
switch; or an abstract network entity such as an applica-
tion, LAN manager, subnet manager, agent or proxy.
Specific object managers own each object instance in
the network. (2) See also object class.

object registration service (ORS) . (1) In the AIX
SystemView NetView/6000 program, a component that
creates and maintains a global directory of object man-
agers, their locations, and their protocols. The post-

master daemon uses this directory to route messages
and provide location transparency for managers and
agents, which eliminates having to hard-code object
addresses. (2) See also pmd daemon.

OK button . Saves and cancels the value of the dialog
box.

online . (1) Pertaining to the operation of a functional
unit when it is under the direct control of the computer.
(T) (2) Pertaining to a user's ability to interact with a
computer.

open systems interconnection (OSI) . The intercon-
nection of open systems in accordance with standards
of the International Organization for Standardization
(ISO) for the exchange of information. (T) (A)

Operating System/2 (OS/2) . A set of programs that
control the operation of high-speed large-memory IBM
personal computers (such as the IBM Personal
System/2 computer, Models 50 and above), providing
multitasking and the ability to address up to 16MB of
memory.

operator . (1) A person who operates a device. (2) A
person or program responsible for managing activities
controlled by a given piece of software such as MVS,
the NetView program, or IMS. (3) A person who keeps
a system running. (4) See network operator.

ORS. Object registration service.

orsd daemon . (1) A background process that main-
tains the consistency and integrity for the object regis-
tration service. (2) See also object registration service
(ORS).

OS/2. Operating System/2

OSF. Open Software Foundation.

OSF/Motif . (1) A graphical interface that contains a
tool kit, presentation description language, window
manager, and style guideline. (2) See also Open Soft-
ware Foundation.

OSI. Open systems interconnection.

ovesmd daemon . A process of event management
services that runs on the management station and is
responsible for routing and delivering events to
manager applications.

ovspmd daemon . A background process that coordi-
nates the start and stop of the other AIX SystemView
NetView/6000 daemons.

372 Programmer's Guide

P
page . The information displayed at the same time on
the screen of a display device.

panel . (1) A formatted display of information that
appears on a terminal screen. (2) In computer
graphics, a display image that defines the locations and
characteristics of display fields on a display surface.
(3) See help panel. Contrast with screen.

parent object . The relationship that an object has with
its child submap. Symbols of a parent object can
appear on multiple submaps.

parent submap . (1) The view from which an object
was expanded. Each segment has a parent Network
submap. Each network has the Internet submap for its
parent. (2) See also parent window.

parent window . (1) In AIX Enhanced X Windows, the
window that controls the size and location of its chil-
dren. If a window has children, it is a parent window.
(2) See also parent submap.

paste . (1) Used in conjunction with the Cut and Copy
menu item to complete a cut-and-paste operation or a
copy operation. It retrieves items from the cut buffer
and places symbols of objects on a submap of your
choice. (2) See also copy and cut buffer.

physical connection . (1) A connection that estab-
lishes an electrical circuit. (2) In the AIX SystemView
NetView/6000 program, a point-to-point connection or
multipoint connection. Synonymous with connection.

ping . Packet internet groper. Used to test Internet
Protocol-level connectivity to a destination by sending
an ICMP echo request and waiting for a response.

pmd daemon . (1) A background process that central-
izes the external communications for all applications
and processes. The pmd daemon contains SNMP and
CMOT protocol stacks to enable SNMP and CMOT to
receive and send information. (2) See also postmaster.

point-to-point layout . (1) A layout that shows an arbi-
trarily interconnected set of symbols. (2) See bus
layout, ring layout, tree layout, and star layout. See
also layout algorithm.

polling . (1) On a multipoint connection or a point-to-
point connection, the process whereby data stations are
invited, one at a time, to transmit. (I) (2) Interrogation of
devices for such purposes as to avoid contention, to
determine operational status, or to determine readiness
to send or receive data. (A)

pop-up menu . In the AIXwindows program, a type of
MenuPane widget that appears as the result of some

user action, usually clicking a mouse button, and then
disappears when the action is completed.

port . (1) An access point for data entry or exit. (2) A
connector on a device to which cables for other
devices, such as display stations and printers, are
attached. (3) In TCP/IP, a 16-bit number used to com-
municate between TCP and a higher-level protocol or
application. Some protocols, such as the File Transfer
Protocol (FTP) and the Simple Mail Transfer Protocol
(SMTP), use the same port number in all TCP/IP imple-
mentations. (4) The representation of a physical con-
nection to the link hardware. A port is sometimes
referred to as an adapter. There may be one or more
ports controlled by a single DLC process.

postmaster . (1) A process (daemon) that directs
network management information between multiple
applications and agents running concurrently. The post-
master determines the route by using specified
addresses or a routing table that is configured in the
object registration service. (2) See also pmd daemon
and object registration file (ORS).

process ID . A unique number that is assigned by the
AIX Operating System to each program that is running.
(R)

protocol . (1) A set of semantic and syntactic rules
that determine the behavior of functional units in
achieving communication. (I) (2) In Open Systems
Interconnection architecture, a set of semantic and syn-
tactic rules that determine the behavior of entities in the
same layer in performing communication functions. (T)

proxy agent . A “translator” routine that manages an
object and converts its communications defined by one
protocol.

pull-down menu . In the AIXwindows program, a type
of MenuPane widget that gives the appearance of being
pulled down from a MenuBar widget as the result of a
user action, usually, clicking a mouse button.

R
real time . (1) In Open Systems Interconnection archi-
tecture, pertaining to the processing of data by a com-
puter in connection with another process outside the
computer according to time requirements imposed by
the outside process. This term is also used to describe
systems operating in conversational mode and proc-
esses that can be influenced by human intervention
while they are in progress. (I) (A) (2) In Open Systems
Interconnection architecture, pertaining to an application
such as a process control system or a computer-
assisted instruction system in which response to input is
fast enough to affect subsequent input.

 Glossary 373

Recommendation X.25 . An International Telegraph
and Telephone Consultative Committee (CCITT) recom-
mendation for the interface between data terminal
equipment and packet-switched data networks.

record . (1) In programming languages, an aggregate
that consists of data objects, possibly with different attri-
butes, that usually have identifiers attached to them. In
some programming languages, records are called struc-
tures. (I) (2) A set of data treated as a unit. (TC97)
(3) A set of one or more related data items grouped for
processing.

recording filter . In the NetView program, the function
that determines which events, statistics, and alerts are
stored on a database.

registration file . See application registration file.

remote . (1) Pertaining to a system, program, or device
that is accessed through a telecommunication line.
(2) A device that does not use the same protocol and
is, therefore, unknown. (3) Contrast with local.

resource . Any facility of the computing system or
operating system required by a job or task, and
including main storage, input/output devices, the proc-
essing unit, data sets, and control or processing pro-
grams.

response . (1) In data communications, a reply repres-
ented in the control field of a response frame. It
advises the primary or combined station of the action
taken by the secondary or other combined station to
one or more commands. (2) See also command.

ring . A network configuration in which devices are
connected by unidirectional transmission links to form a
closed path.

ring layout . (1) A layout algorithm in which symbols
are arranged in a ring on a submap. A ring layout is
one of several layout algorithms that are available in the
AIX SystemView NetView/6000 windows tool. (2)
(3) See bus layout, point-to-point layout, row/column
layout, tree layout, and star layout. See also layout
algorithm.

RISC. Reduced instruction-set computer.

root-level submap . Contains the highest level of the
submap hierarchy. Multiple networks can be placed
within the root level submap.

root user . See superuser authority.

route . An ordered sequence of nodes and trans-
mission groups (TGs) that represents a path from an
origin node to a destination node traversed by the traffic
exchanged between them.

router . See Internet router.

routing . (1) The process of determining the path to be
used for transmission of a message over a network. (T)
(2) The assignment of the path (route) by which a
message will reach a destination on the network. (3) In
X.25 communications, the process by which a packet
gets to the intended user. (R)

row/column layout . (1) A layout algorithm in which
symbols are arranged in rows and columns on a
submap. (2) See bus layout, ring layout, point-to-point
layout, tree layout, and star layout. See also layout
algorithm.

S
scaling . (1) The way a submap is presented within
the submap window. Scaling or zooming is available
for each submap. In scaling, the AIX SystemView
NetView/6000 program scales symbols on the map to
the size of the submap window. When windows are
resized, the symbols and background graphics change
size to reflect the new window size. Scaling is the
default setting for submaps. (2) See zoom.

screen . (1) In the AIX extended curses library, a
window that is as large as the display screen of the
workstation. (2) Deprecated term for display panel.

scroll . To move a display image vertically or horizon-
tally to view data that cannot be observed within a
single display screen.

seed file . In the AIX SystemView NetView/6000
program, a file that contains a list of nodes within an
administrative domain, which the automatic discovery
function uses to accelerate the generation of the
network topology map.

segment . (1) A group of display elements. (2) A con-
tiguous area of virtual storage allocated to a job or
system task. A program segment can be run by itself,
even if the whole program is not in main storage. (3) A
portion of a computer program that may be executed
without the entire program being resident in main
storage. (4) In AIX Enhanced X Windows, one or more
lines that are drawn but not necessarily connected at
the end points. (5) In the IBM Token-Ring Network, a
section of cable between components or devices on the
network. A segment may consist of a single patch
cable, multiple patch cables connected together, or a
combination of building cable and patch cables con-
nected together.

segment-level submap . Represents the topology of a
segment of a network. A segment submap contains
network nodes and connectors.

374 Programmer's Guide

select . (1) In the AIX Operating System, to choose a
button on the display screen. (2) To place the cursor
on an object (name or command) and press a button on
the mouse or the appropriate key on the keyboard.

selection list . A list of selected objects for the open
map or open snapshot. The selection list provides a list
of objects on which various operations can be invoked
by users and applications. As objects are selected or
deselected, the selection list is immediately updated.
The selection list will display the objects' selection
names. When a map and snapshot are open concur-
rently, each will have an independent list of selected
objects.

selection name . (1) The unique name of an object
that is used in a selection list. The AIX SystemView
NetView/6000 program identifies an object by its
selection name. An object can be assigned a selection
name through the Add Object dialog box. (2) See also
object and object attribute.

server . (1) In the AIX Operating System, an applica-
tion program that usually runs in the background and is
controlled by the system program controller. (2) In
Enhanced X Windows, provides the basic windowing
mechanism. It handles IPC connections from clients,
demultiplexes graphics requests onto screens, and mul-
tiplexes input back to clients. (3) See also client.

service access point . In multiple protocol topology, a
service access point indicates correlation between pro-
tocols. This is the service that an entity, such as, the
internet protocol uses or provides another entity. For
example, the internet protocol uses the services of a
token-ring adapter. The service access point, in this
case, is the name by which the internet protocol knows
the adapter that is the token-ring address.

shared . Pertaining to the availability of a resource for
more than one use at the same time.

shared submap . A submap on which multiple applica-
tions manage objects on the application plane. Shared
submaps allow applications to cooperatively contribute
information to the same submap.

shell script . A synonym for shell procedure.

simple connection . In multiple topology, a simple
connections represents connectivity as seen from one
end point. This may contain specific information about
one end point of the connection.

Simple Network Management Protocol (SNMP) . A
protocol running above the User Datagram Protocol
(UDP) used to exchange network management informa-
tion.

SMIT. System Management Interface Tool

SNA. Systems Network Architecture.

SNMP. Simple Network Management Protocol.

SP. Service point.

star layout . (1) A layout algorithm where the symbols
are arranged in a star. (2) See bus layout, point-to-
point layout, ring layout, tree layout, and row/column
layout. See also layout algorithm.

startup file . A file that contains information about the
ordered sequence of network management processes,
such as daemons and agents. The startup sequence is
listed in the /usr/OV/conf/ovsuf file.

static . (1) In programming languages, pertaining to
properties that can be established before execution of a
program; for example, the length of a fixed length vari-
able is static. (T) (2) In AIX SystemView NetView/6000,
static workspace contains only certain events. The
static workspace is not updated. (3) Pertaining to an
operation that occurs at a predetermined or fixed time.
(4) Contrast with dynamic.

station . An input or output point of a system that uses
telecommunications facilities; for example, one or more
systems, computers, terminals, devices, and associated
programs at a particular location that can send or
receive data over a telecommunication line.

status . (1) The current condition or state of a program
or device. (R) (2) In the AIX SystemView NetView/6000
program, the condition of a node or portion of a network
as represented by the color of a symbol on a submap.

status propagation . (1) The changing of the status of
compound objects based on the propagation rules of
the objects contained entirely within it. (2) See also
propagate most critical and propagate threshold.

status source . (1) The source of the status being col-
lected, propagated, or displayed. The source of symbol
status may come from:

� An application that sets status on a specific symbol,
which is called Symbol Status Source.

� An application that sets the same status on all
symbols of a given object, which is called Object
Status Source.

 � Compound Status.

(2) See also object status source, symbol status
source, and compound status.

submap . (1) A particular view of some aspect of a
network that displays symbols that represent objects.
Some symbols may explode into other submaps,
usually having a more detailed view than their parent
submap. The application that creates a submap deter-
mines what part of the network the submap displays.

 Glossary 375

(2) See also root-level submap, internet-level submap,
node-level submap, and segment-level submap.

submap window . A submap window contains an AIX
SystemView NetView/6000 menu bar, a submap
viewing area, a status line, and a button box. You can
display multiple submap windows of an open map and
an open snapshot at any given time.

subnet . (1) In TCP/IP, a part of a network that is iden-
tified by a portion of the Internet address. (2) In the
AIX Operating System, synonym for subnetwork.

subnetwork . (1) In the AIX Operating System, one of
a group of multiple logical network divisions of another
network, such as can be created by the Transmission
Control Protocol/Internet Protocol (TCP/IP) interface
program. (2) Any group of nodes that have a set of
common characteristics, such as the same network ID.

subsystem . A secondary or subordinate system,
usually capable of operating independently of, or asyn-
chronously with, a controlling system. (T)

superuser authority . (1) In the AIX Operating
System, the unrestricted authority to access and modify
any part of the operating system, usually associated
with the user who manages the system. (R) (2) See
root user.

symbol . (1) In the AIX SystemView NetView/6000
program, a picture or icon that represents an object.
Each symbol has an outside and inside component.

� The outside component differentiates the object
classes.

� The inside component differentiates the objects
within the class. (2) See also object class and
symbol class.

symbol class . (1) A collection of symbols that have
the same or similar properties. A symbol class is
represented by the shape of the symbol. Each symbol
subclass in a given class contains the same shape.
Each symbol class has a unique set of subclasses
associated with it. Applications may register additional
symbol classes. Some of the registered symbol classes
provided with the AIX SystemView NetView/6000
program include:

 � Computer
 � Connector
 � Device
 � Software
 � Location
 � Cards

You can view all the registered classes from the Display
Legend panel, or from the Add Object Palette. (2) See
also symbol subclass and symbol type.

symbol graphic . A graphic, such as a picture of a
workstation, used to distinguish symbol subclasses.

symbol label . A name assigned to a symbol to distin-
guish it from other symbols in a submap. A symbol
label may be displayed below the symbol. Symbol
labels are optional.

symbol status source . (1) A setting that allows appli-
cations to set the status of a particular symbol on a
submap. Other symbols representing the same object
are not affected by the symbol's status. Symbol Status
Source is useful for propagating status through an appli-
cation and for graphically displaying status specific to
the semantics of a particular submap. (2) See also
object status source.

symbol subclass . (1) A set of symbols that is in a
given symbol class. A particular subclass in a given
class defines the type of the symbol. For example, in
the symbol class called Computer, the subclasses
consist of PC, workstation, mini, and mainframe. All
symbols in the subclass of the same class contain the
same outline (shape). The AIX SystemView
NetView/6000 program displays the symbol subclass as
the graphic inside the outer shape of the symbol.
(2) See also symbol class and symbol type.

symbol type . (1) The symbol type consists of the
symbol class and the symbol subclass. A specific
symbol type is defined by the concatenation of a symbol
class and a symbol subclass within that class. The
symbol class is identified on submaps by the outer
shape of the symbol and the symbol subclass by the
graphic inside the shape. (2) See also symbol class
and symbol subclass.

SystemView . The IBM systems management strategy
for planning, coordinating, and operating open, heter-
ogeneous, enterprise-wide information systems.

T
target objects . (1) Objects targeted for some action
by an application. When the behavior of a symbol is
set as executable, an application is chosen to perform
an action on a set of objects, called target objects. The
objects that are targeted by the application can also be
chosen. Each executable symbol may have its own set
of target objects. (2) See also executable symbol.

task . In a multiprogramming or multiprocessing envi-
ronment, one or more sequences of instructions treated
by a control program as an element of work to be
accomplished by a computer. (I) (A)

task index . (1) An index that provides online help
entries for a variety of tasks that are available in the
AIX SystemView NetView/6000 program and applica-
tions that are integrated with the AIX SystemView

376 Programmer's Guide

NetView/6000 program. The Task Index can be
accessed from the Help menu. (2) See also help
menu.

TCP. Transmission Control Protocol.

TCP/IP. Transmission Control Protocol/Internet Pro-
tocol.

telnet . An application protocol offering virtual terminal
service in the Internet suite of protocols. With the telnet
service, a remote system can be connected to a local
system.

terminal . (1) A device, usually equipped with a key-
board and a display device, capable of sending and
receiving information over a communications line.
(2) See also workstation. (R)

threshold . In the AIX SystemView NetView/6000
program, a setting that specifies the maximum value a
statistic can reach before notification that the limit was
exceeded. For example, when a monitored MIB value
has exceeded the threshold, SNMPCollect generates a
threshold event.

token . (1) In a local area network, the symbol of
authority passed successively from one data station to
another to indicate the station temporarily in control of
the transmission medium. Each data station has an
opportunity to acquire and use the token to control the
medium. A token is a particular message or bit pattern
that signifies permission to transmit. (T) (2) A
sequence of bits passed from one device to another
along the token ring. When the token has data
appended to it, it becomes a frame.

token ring . A network with a ring topology that passes
tokens from one attaching device to another. For
example, the IBM Token-Ring Network.

tool palette . (1) A component of the graphical inter-
face that enables the operator to open application
instances by using the mouse to drag-and-drop the
icons that represent the application. (2) See also
control desk.

topology . In the AIX SystemView NetView/6000
program, the geographical, logical layout of a network.
The way in which the nodes in a network are intercon-
nected.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that sup-
ports peer-to-peer connectivity functions for both local
and wide-area networks.

trap . An unsolicited event generated by an agent and
forwarded to a manager. Traps inform the manager of
changes that occur in the network.

tree layout . (1) A layout algorithm that displays a tree
configuration and shows symbols arranged in a hierar-
chical tree structure. (2) See point-to-point layout, ring
layout, bus layout, row/column layout, and star layout.

U
underlying arc . In multiple topology, an underlying arc
represents a lower-layer end point that is independently
connected and is being used by a higher-layer end
point connection.

underlying connection . In multiple topology, an
underlying connection represents lower-layer
connectivity that is used by higher-layer connectivity.
For example, two IP hosts that use a physical con-
nection for transport. The physical connection that
transports data between the hosts is the underlying con-
nection.

UDP. User Datagram Protocol.

UNIX Operating System . An operating system devel-
oped by Bell Laboratories that features multiprogram-
ming in a multiuser environment. The UNIX Operating
System was originally developed for use on minicom-
puters but has been adapted for mainframes and micro-
computers.

Note: The AIX Operating System is IBM's implementa-
tion of the UNIX operating system. See AIX.

unknown status . (1) The status of an object that is
not yet known or does not actually exist in the network.
The default icon symbol color for unknown status is
Blue. The default connection symbol color is Black.
(2) See critical status, normal status, unknown status,
unmanaged status, and status.

unmanaged object . (1) An object that is not actively
managed. An unmanaged object displays status as
Unmanaged. It does not display active status (normal,
marginal, critical). Unmanaged objects do not display
compound status nor do they contribute to compound
status. Objects can be kept in an unmanaged state if
they are not of interest. An object may be toggled
between a managed and unmanaged state. (2) See
managed object and unmanaged status.

unmanaged status . (1) The status that indicates that
an object is unmanaged. The default icon symbol color
displayed to indicate unmanaged status is Wheat. The
default connection symbol color displayed is Black.
(2) See critical status, normal status, compound status,
unknown status, and status.

user . Any person or anything that may issue com-
mands and messages to or receive commands and
messages from the information processing system. (T)

 Glossary 377

User Datagram Protocol (UDP) . (1) In IP, a packet-
level protocol built directly on the Internet protocol layer.
UDP is used under SNMP for application-to-application
programs between IP host systems. (2) In AIX
SystemView NetView/6000, the TCP/IP standard
datagram protocol.

user plane . (1) The plane on a submap in which the
AIX SystemView NetView/6000 program displays
symbols that are not managed by any application. You
can visually distinguish symbols in the user plane from
symbols in the application plane. Symbols in the user
plane are displayed with a shadow, which makes the
symbol appear higher than symbols in the application
plane. (2) See application plane.

V
value . (1) A specific occurrence of an attribute, for
example, “blue” for the attribute color. (TC97) (2) A
quantity assigned to a constant, a variable, a param-
eter, or a symbol.

variable . (1) A name used to represent a data item
whose value can change while the program is running.
(2) In programming languages, a language object that
may take different values, one at a time. The values of
a variable are usually restricted to a certain data type.
(3) A quantity that can assume any of a given set of
values. (A)

vertex . In multiple topology, the lowest point that can
be defined. A vertex contains physical and logical inter-
faces. Logical interfaces are protocols, such as IP.
Physical interfaces are adapters, such as token-ring,
ethernet, and fiber distributed data interface (FDDI).

view . See submap.

viewing filter . In the NetView program, the function
that allows a user to select the alert data to be dis-
played on a terminal. All other stored data is blocked.

view menu . An action bar menu that provides options
for changing the way symbols are displayed on indi-
vidual or all submaps.

W
WAN. Wide area network.

wide-area network (WAN) . (1) A network that pro-
vides communication services to a geographical area
larger than those serviced by a local area network or a
metropolitan area network, and that may use or provide
public communication facilities. (T) (2) A data communi-
cations network designed to serve an area of hundreds
or thousands of miles; for example, public and private

packet-switching networks, and national telephone net-
works. (3) Contrast with local area network.

widget . (1) In the AIX Operating System, a graphic
device that can receive input from the keyboard or
mouse and communicate with an application or with
another widget by means of a callback. Every widget is
a member of only one class and always has a window
associated with it. (2) The fundamental data type of
the AIX Enhanced X WindowsToolkit. (3) An object
that provides a user-interface abstraction; for example,
a Scrollbar widget. It is the combination of an AIX
Enhanced X Windows window (or subwindow) and its
associated semantics. A widget implements procedures
through its widget class structure.

wildcard character . Synonym for pattern-matching
character.

window . A portion of a visual display surface in which
display images pertaining to a particular application can
be presented. Different applications can be displayed
simultaneously in different windows. (A)

workspace . (1) That portion of main storage that is
used by a computer program to store the objects a user
creates. (2) Acts as a card holder for an event display
application. Most event-display-application functions
are applied on workspaces as report generation,
search, order, and append.

workstation . (1) A functional unit at which a user
works. A workstation often has some processing capa-
bility. (T) (2) One or more programmable or nonpro-
grammable devices that allow a user to do work. (3) A
terminal or microcomputer, usually one that is con-
nected to a mainframe or to a network, at which a user
can perform applications.

X
X Window System . (1) A network-transparent win-
dowing system developed by the Massachusetts Insti-
tute of Technology. It is the basis for Enhanced
X-Windows, which runs on the AIX Operating System.
(2) See also Enhanced X-Windows Toolkit.

X.25. (1) A CCITT Recommendation that defines the
physical level (physical layer), link level (data link layer),
and packet level (network layer) of the OSI reference
model. An X.25 network is an interface between data
terminal equipment (DTE) and data circuit-terminating
equipment (DCE) operating in the packet mode, and
connected to public data networks by dedicated circuits.
X.25 networks use the connection-mode network
service. (2) See recommendation X.25.

X11. (1) X Window System, Version 11. (2) See also
X Window System.

378 Programmer's Guide

Z
zoom . (1) To progressively increase or decrease a
part of an image on a screen or in a window. (2) See
also scaling and zoom factor.

zoom factor . (1) Used to determine the magnification
of a submap. You can choose a zoom factor up to ten
times the normal view. (2) See scaling and zoom.

 Glossary 379

380 Programmer's Guide

 Bibliography

NetView for AIX Publications

The following paragraphs briefly describe the publica-
tions for Version 4 of the NetView for AIX program:

NetView for AIX Concepts: A General Information
Manual (GC31-8160)

This book provides an overview of the NetView for AIX
program that business executives can use to evaluate
the product. System planners can also use this infor-
mation to learn how NetView for AIX manages heter-
ogeneous networks.

NetView for AIX Database Guide (SC31-8167)

This book provides information for system administra-
tors and database administrators to configure the
NetView for AIX program to work with the following rela-
tional database management systems: DB2/6000,
INFORMIX, INGRES, ORACLE, and SYBASE. This
book also describes how to transfer IP topology,
trapdlog, and snmpCollect data to the relational data-
base and how to manipulate the data.

NetView for AIX Installation and Configuration
(SC31-8163)

This book provides installation and configuration steps
for the system programmer who will install and con-
figure the NetView for AIX program.

NetView for AIX User's Guide for Beginners
(SC31-8158)

This book contains “how-to” information that provides
network operators the help they need to get acquainted
with NetView for AIX and accomplish some basic net-
working tasks. It is written for the user who is unfa-
miliar with the NetView for AIX program.

NetView for AIX Administrator's Guide (SC31-8168)

This book explains network management principles and
describes how the NetView for AIX program's compo-
nents work together. It is for the advanced user. Most
of the tasks require root authority. This book includes
tasks such as customizing the graphical interface, fil-
tering events, configuring events, and managing
network performance and configuration.

NetView for AIX Administrator's Reference (SC31-8169)

This book contains reference information for commands,
daemons, and files. It is used primarily when per-
forming administrative tasks.

NetView for AIX Diagnosis Guide (SC31-8162)

This book is intended to help you classify and resolve
problems related to the operation of the NetView for AIX
program.

NetView for AIX Application Interface Style Guide
(SC31-6240)

This book provides guidelines for system programmers
who develop applications that will be integrated with the
NetView for AIX program.

NetView for AIX Programmer's Guide (SC31-8164)

This book provides information for programmers about
creating network management applications. This book
also contains information about the NetView for AIX
program server, commands, function calls, and object
classes.

NetView for AIX Programmer's Reference (SC31-8165)

This book is intended for programmers and contains ref-
erence information about the NetView for AIX program
and its server, commands, function calls, and object
classes.

NetView for AIX and the Host Connection (SC31-8161)

This book provides information for System/390 and
NetView users who want to manage TCP/IP and SNA
networks.

Quick Reference Card (SX75-0113)

This summary provides a brief description of each
NetView for AIX daemon. The card also lists the menu
items and the submenu items below them.

In addition to these printed books, online documentation
of the NetView for AIX library is available. An online
Help Index is also available from the NetView for AIX
Help pull-down window. The Help Index provides dialog
box help and task help.

IBM RISC System/6000
Publications

In addition to the NetView for AIX documentation, the
following publications may also be helpful to users:

AIX Quick Reference (SC23-2401)

 Copyright IBM Corp. 1992, 1995 381

Task Index and Glossary for IBM RISC System/6000
(GC23-2201)

IBM RISC System/6000 Problem Solving Guide
(SC23-2204)

AIX Communications Concepts and Procedures for IBM
RISC System/6000 (GC23-2203)

AIX Commands Reference for IBM RISC System/6000
(GC23-2366, GC23-2367, GC23-2376, GC23-2393)

AIX Files Reference for IBM RISC System/6000
(GC23-2200)

 NetView Publications

The following list contains selected NetView Version 2
Release 3 publications:

NetView Administration Reference (SC31-6128)

NetView At a Glance (GC31-7016)

NetView Automation Planning (SC31-6141)

NetView Customization Guide (SC31-6132)

NetView Installation and Administration Guide (MVS:
SC31-6125) (VM: SC31-6182) (VSE: SC31-6182)

NetView Operation (SC31-6127)

NetView Problem Determination and Diagnosis
(LY43-0014)

NetView Resource Alerts Reference (SC31-6136)

NetView Samples (MVS: SC31-6126) (VM: SC31-6183)
(VSE: SC31-6184)

The following list contains selected NetView Version 2
Release 4 publications:

NetView Administration Reference (SC31-7080)

NetView Automation Planning (SC31-7082)

NetView Customization Guide (SC31-7091)

NetView General Information (GC31-7098)

NetView Installation and Administration Facility/2 Guide
(SC31-7099)

NetView Installation and Administration Guide
(SC31-7084)

NetView Operation (SC31-7066)

NetView Problem Determination and Diagnosis
(LY43-0101)

NetView Resource Alerts Reference (SC31-7097)

TCP/IP Publications for AIX
(RS/6000, PS/2, RT, 370)

The following list shows the books available for TCP/IP
in the AIX Operating System library:

AIX Operating System TCP/IP User's Guide
(SC23-2309)

AIX PS/2 TCP/IP User's Guide (SC23-2047)

TCP/IP for IBM X-Windows on DOS (SC23-2349)

AIX SNA Services/6000
Publications

The following list of publications are for use with the AIX
Operating System:

AIX SNA Server/6000 User's Guide (SC31-7002)

AIX SNA Server/6000 Configuration Reference
(SC31-7014)

AIX SNA Server/6000 Transaction Program
(SC31-7003)

Internet Request for Comments
(RFCs)

The following documents describe Internet standards
supported by the NetView for AIX program. Copies of
these documents are shipped on the AIX SystemView
NetView/6000 product installation media. They are
installed in the /usr/OV/doc directory.

RFC 1095: The Common Management Services and
Protocol over TCP/IP (CMOT)

RFC 1155: Structure and Identification of Management
Information for TCP/IP-Based Internets

RFC 1157: Simple Network Management Protocol
(SNMP)

RFC 1187: Bulk Table Retrieval with the SNMP

RFC 1189: The Common Management Information
Services and Protocols for the Internet (CMOT and
CMIP)

382 Programmer's Guide

RFC 1212: Concise MIB Definitions

RFC 1213: Management Information Base for Network
Management of TCP/IP-Based Internets: MIB-II

RFC 1215: Convention for Defining Traps for Use with
the SNMP

RFC 1229: Extensions to the Generic-Interface MIB

RFC 1230: IEEE 802.4 Token Bus MIB

RFC 1231: IEEE 802.5 Token Bus MIB

RFC 1232: Definitions of Managed Objects for the DS1
Interface Type

RFC 1233: Definitions of Managed Objects for the DS3
Interface Type

RFC 1239: Reassignment of Experimental MIBs to
Standard MIBs

RFC 1243: AppleTalk Management Information Base

RFC 1253: OSPF Version 2 Management Information
Base

RFC 1269: Definitions of Managed Objects for the
Border Gateway Protocol (Version 3)

RFC 1271: Remote Network Monitoring Management
Information Base

RFC 1284: Definitions of Managed Objects for the
Ethernet-like Interface Types

RFC 1285: FDDI Management Information Base

RFC 1286: Definitions of Managed Objects for Bridges

RFC 1289: DECnet Phase IV MIB Extensions

RFC 1304: Definition of Managed Objects for the SIP
Interface Type

RFC 1315: Management Information Base for Frame
Relay DTEs

RFC 1316: Definitions of Managed Objects for Char-
acter Stream Devices

RFC 1317: Definitions of Managed Objects for
RS-232-like Hardware Devices

RFC 1318: Definitions of Managed Objects for Parallel-
printer-like Hardware Devices

RFC 1450: Management Information Base for Version 2
of the Simple Network Management Protocol (SNMPv2)

RFC 1452: Coexistence between Version 1 and Version
2 of the Internet-Standard Network Management Frame-
work

 Related Publications

The following publications are closely related to or refer-
enced by the NetView for AIX Library:

AIX Trouble Ticket/6000
Publications

For information about the AIX Trouble Ticket/6000
program, consult the following publications:

AIX Trouble Ticket/6000 Brochure (GC31-7161)

AIX Trouble Ticket/6000 User's Guide (SC31-7162)

Service Point Publication

AIX NetView Service Point Installation, Operation, and
Programming Guide (SC31-6120)

Other IBM TCP/IP Publications

The following list shows other available IBM TCP/IP
publications:

Introducing IBM Transmission Control Protocol/Internet
Protocol Products for OS/2, VM, and MVS (GC31-6080)

IBM TCP/IP Version 2 for VM and MVS: Diagnosis
Guide (LY43-0013)

MVS/DFP Version 3 Release 3: Using the Network File
System Server (SC26-4732)

 SNMP Information

You can use the following sources for detailed SNMP
information:

The Simple Book, M.T. Rose, Prentice-Hall, 1991 (ISBN
0-13-812611-9)

The Windows SNMP Manager API Specification, the
WinSNMP/MIB API Specification, and other information
on Windows SNMP are available through anonymous
FTP from the host sunsite.unc.edu under the directory
path /pub/micro/pc-stuff/ms-windows/WinSNMP

These Internet standards provide SNMP information:

RFC 1901: Introduction to Community-based SNMPv2

 Bibliography 383

RFC 1902: Structure of Management Information for
Version 2 of the Simple Network Management Protocol
(SNMPv2)

RFC 1903: Textual Conventions for Version 2 of the
Simple Network Management Protocol (SNMPv2)

RFC 1904: Conformance Statements for Version 2 of
the Simple Network Management Protocol (SNMPv2)

RFC 1905: Protocol Operation for Version 2 of the
Simple Network Management Protocol (SNMPv2)

RFC 1906: Transport Mapping for Version 2 of the
Simple Network Management Protocol (SNMPv2)

RFC 1907: Management Information Base for Version 2
of the Simple Network Management Protocol (SNMPv2)

RFC 1908: Coexistence between Version 1 and Version
2 of Internet-standard Network Management Framework

RFC 1909: An Administrative Infrastructure for SNMPv2
(SNMPv2USEC)

RFC 1910: User-based Security Model for SNMPv2
(SNMPv2USEC)

X Window System Publications

The following list shows selected X Window System
publications:

Introduction to the X Window System, Oliver Jones,
Prentice-Hall, 1988 (ISBN 0-13-499997)

X Window System Technical Reference, Steven Mikes,
Addison-Wesley, 1990 (ISBN 0-201-52370)

X Window System: Programming and Applications with
Xt, Douglas A. Young, Prentice-Hall, 1989 (ISBN
0-13-972167)

X Window System: Programming and Applications with
Xt, OSF/Motif Edition, Douglas A. Young, Prentice-Hall,
1990 (ISBN 0-13-497074)

 X/Open Specification

For information about the X/Open OSI-Abstract-Data
Manipulation (XOM) application programming interface
(API), consult the following X/Open documents:

X/Open OSI-Abstract-Data Manipulation (XOM) API,
CAE Specification

X/Open Preliminary Specification. Systems Manage-
ment: GDMO to XOM Translation Algorithm

 OSF/Motif Publications

The following list contains selected OSF/Motif publica-
tions:

OSF/Motif Series (5 volumes), Open Software Founda-
tion, Prentice Hall, Inc. 1990

OSF/Motif Application Environment Specifications,
(AES) (ISBN 0-13-640483-9)

OSF/Motif Programmer’s Guide (ISBN 0-13-640509-6)

OSF/Motif Programmer’s Reference,
(ISBN 0-13-640517-7)

OSF/Motif Style Guide (ISBN 0-13-640491-X)

OSF/Motif User’s Guide, (ISBN 0-13-640525-8)

 ISO/IEC Standards

For information about the ISO/IEC standards on which
the NetView for AIX program is based, refer to the fol-
lowing publications:

ISO IS 7498-4, Open Systems Interconnection–Basic
Reference Model–Part 4: Management Framework

ISO 8824, Open Systems Interconnection–Specification
of Abstract Syntax Notation One (ASN.1)

ISO 8825, Open Systems Interconnection– Specification
of Basic Encoding Rules for Abstract Syntax Notation
One (ASN.1)

ISO IS 9595, Common Management
Information–Service Definition

ISO IS 9596-1, Common Management
Information–Protocol Specification

ISO DIS 9899, Information Processing–Programming
Language C

ISO 10040, Systems Management Overview

The ISO/IEC standards can be obtained from the fol-
lowing address:

 OMNICOM
243 Church St. NW
Vienna, VA 22180-4434

 (800) OMNICOM
 (703) 281-1135

(703) 281-1505 (FAX)

384 Programmer's Guide

 Index

Special Characters
$LANG variable 24

A
access levels for maps 51
Action block 36
action event 66
additional graph table 331
additional members table 331
agent

accessing objects 172
daemon 18
functions 171
interaction with manager 282
introduced 6, 171
non-well-behaved 18
proxy 173
SNMP 282
structure 172
well-behaved 18
WinSNMP 240

agent/manager interaction 282
alarm status 336
APIs

EUI 61
Filter 307
GTM 350
introduced 6
OVsPMD 18
OVuTL 17
SNMP 281, 286
WinSNMP 237
XMP 213, 229
XOM 189, 229

application
name 73
types of 13

drop-in 13
map 16
tool 14

xxmap 356
Application block 27
application help 49
application plane 136
application registration file 27
application-specific help

help display routines 56
help files 55
incorporating in user interface 55

arc 317
arc group 324
arc table 324
asynchronous model in WinSNMP 255
asynchronous processing 178, 221
attached arcs table 330
attribute 167
automatic retransmisson 287
availability status 335

B
background plane 136
basic encoding rules (BERs) 189
behavior of symbols 101
bitmaps

compiling 108
creating 105
designing 106
displaying 108
sizes 105

blocking coding model 291
blocking operation 286
box graph 317

C
C language

binding to XMP API 231
compiling and linking 235
deriving names from:

defined constants 232
enumeration constants 233
error constants 233
object identifiers 234
OM attribute limits 233
OM class names 232

libraries 235
naming conventions 231
return values 234

C-style strings 253
callback function 63, 295
cancelling event registration 314
capability fields 36, 82, 83
changing a symbol 122
child submap 131
CMIP 168
CMIS 168
CMOT 168
coding models

blocking 291
nonblocking 291

 Copyright IBM Corp. 1992, 1995 385

coding models (continued)
SNMP API 291

Command entry 31
communication protocols 3, 168
communications functions, WinSNMP 263
communications infrastructure 176
community based SNMPv2 (SNMPv2C)

administrative and security framework 245
data syntax 244
overview 243
protocol operations 244

compliance with WinSNMP 238
connecting your application 62
connection symbol 100
containment tree 182
context parameter 218
control desk 74
controlling symbol position 103
convenience routines

C-language names 232
getting and setting field and object values 93
symbol creation 117, 118

coordinate position 104
Copyright entry 28
correlation protocols 357
creating event filters 307
creating fields 79
creating objects

generating unique name field value 90
using API routines 89
with hostname or selection name 91

creating objects and fields 79
creating symbols

connection symbols 117
icon symbols 114, 117

cut-and-paste 356

D
daemon

gtmd 316
netmon 343
noniptopod 316
ovspmd 18

data objects 194
data representation 242, 285
data types, WinSNMP

descriptors 262
function returns 262
integer 261
pointer variable 261

database
generic topology 356
local, WinSNMP 251
map 356
object 79, 356

deleting a submap 138
deleting a symbol 129
deleting filter rules 308
deleting objects 97
Description entry 28
descriptors, WinSNMP 253, 262
designing application help 18, 49
dialog box 6, 37, 74
dialog box help 53
directory structure 55
discovery 343
displaying a submap 137
distinguishing attribute 168, 180, 219
dual role entity 240
dynamic menu registration 75

E
end-user interface 6
Enroll block 38
entity/context functions, WinSNMP 264
entity/context translation modes

overview 249
SNMPAPI_TRANSLATED mode 250
SNMPAPI_UNTRANSLATED_V1 mode 250
SNMPAPI_UNTRANSLATED_V2 mode 250

enumerated types 85
enumeration constant 233
environment variable 31
error handling in WinSNMP

common error codes 258
context-specific error codes 259
transport error reporting 260

errors
converting to a string 72
GTM API 352
handling by agents 186
in asynchronous operations 235
OM class 228
OM object 227
on input parameters 235
retrieving codes 72
XMP API 223, 234
XMP message strings 233

EUI 61
EUI API 61
event

action event 66
checking for 68
filtering 6, 307
manage/unmanage 147
processing 67
registering for 64
types 6
X events 68

386 Programmer's Guide

event queue 69
event registration routines 312
exclusive submap 136
executable symbol 101
explodable symbol 101
extended MIBs 242, 285

F
field

capability 83
creating 79
definition 4, 40
definition examples 83
enumerated 85
flags 81
ID 85
name 85
registration file 80
retrieving 86
specification 38
types 81
values, getting and setting 91

field registration file 80
file descriptor input 68
files

oid_to_command 344
oid_to_protocol 345
ovsuf 346
seed 343
snmp_fields 344

filter editor 307
filter file API 307
filter rule

converting to XOM format 313
creating 308
deleting 308
listing 309
retrieving 309

filtering events 307
filtering requests 185, 186
FilterNode 307
FilterNode structure 307
flags

field 81
list 82
locate 82
name 82
process 32

function index help 52
functions

C-language names 232
callback 171
of a manager 170
of a menu item 30
of an agent 171

functions (continued)
request and response 213
SNMP API 289
WinSNMP API 262
XMP 213
XOM 211

G
General Topology Manager (GTM)

benefits 315
communicating with 343
components 316
key terms 317
trap interface 349

getting and setting object field values
using basic routines 92
using convenience routines 93

graph 317
graph group 326
graph table 327
graphical user interface 6, 61
GTM API

create routines 353
delete routines 353
free routines 354
get routines 354
integration routines 352
introduced 350
status change routines 353
variable value change routines 353

gtmd daemon 316

H
HANDLE'd resources 252
header files 231, 293
help

application-specific 54
designing 49
for dialog box 41, 53
indexes 51
OVwShowHelp() routine 56
routines 75

Help button 53
help directory structure 55
Help menu 50
help system 49
HelpDirectory entry 28
HelpFile entry 41
helpRequest parameter 56
helpType parameter 56
hidden symbol event 147
highlighting objects 73
home submap 134

 Index 387

I
icon symbol 100
indexes, help 51
inheritance 180, 191
inheritance tree 183
Initial flag 33
integrating an application 13
International Standards Organization (ISO) 3

L
label 99
layout algorithms for submaps 135
linked replies 220
LNV package 194
local database functions, WinSNMP 262
local database, WinSNMP 251
local registration file (LRF) 19, 345
location transparency 288
logging 17

M
main menu bar help 50
managed object 4, 167, 178
management contents packages 194
management information base (MIB) 241, 283
manager/agent interaction 282
managers

functions 170
in SNMP communication 281
in WinSNMP 240
interaction with agents 282
introduced 170

manual retransmission 287
map database 356
map synchronization 356
mapping to NetView for AIX status 336
mapping traps between SNMPv1 and SNMPv2 279
maps

changes 145
editing 145, 356
events 145

mediation device 174
member 317
member arc 317
member arcs table 329
members table 329
memory management 71, 252, 287
Menu entry 30
menu integration 29
MenuBar block 29
messages, SNMP 282
metaconnection submap 118, 135

MIB 241, 283
mnemonic 30
multiple inheritance 184

N
NameField entry 33
naming tree 183, 241, 284
netmon daemon 343
NetView for AIX help system 49
network management

basic functions 167
introduced 3
key terms 167

non-well-behaved agent 18
nonblocking coding model 291
nonblocking operation in SNMP 286
noniptopod daemon 316, 343
notifications 224
nvotStatusType structure 337

O
object database

introduced 79
topology objects in 337

object identifiers
C-language name 234
for non-IP nodes 343
in SNMP 284
in WinSNMP 241

object manager 173
object menu 70
object orientation

in OSI 178
in XOM 189, 190
introduced 4

object selection list 69
ObjectMenu block 34
objects

attributes 167
class 179
creating 87
deleting 97
getting and setting field values 91
highlighting 73
instance 168, 180
introduced 4
listing 97
OM 194
parent 131
public and private 195
retrieving attribute information 95
unmanaged 147

oid_to_command file 343, 344

388 Programmer's Guide

oid_to_protocol file 345
OM attribute

C-language name 232
defined 190
value length 233
value number 233

OM class 191
OM object 190, 194
OM package 192
Open Systems Interconnection 178
opening a map 148
operational state 335
OSI Management 178
ovhelp utility 49
OVsnmpConfCntl structure 298
OVsnmpConfDest structure 298
OVsnmpConfEntry structure 298
OVsnmpConfWcList structure 298
OVsnmpPdu 296
OVsnmpPdu structure 296
OVsnmpSession 294
OVsnmpSession structure 294
OVsPMD API 18
ovspmd daemon 18
ovstart 18
ovstatus 18
ovstop 18
ovsuf file 346
OVuTL API 17
ovwdb daemon 183
OVwDbCreateField() routine 84
OVwErrorMsg() routine 72
OVwField Value data structure 88
OVwFieldValue 88
OVwInit() routine 62
OVwShowHelp() routine 56
OVwSymbolInfo structure 126

P
packages

closure 193
Management Contents 194
XOM 192

parent object 131
parent submap 131
PDU functions, WinSNMP 264
polling 173
polling and retransmission, WinSNMP 256
position of a symbol 102
prefixes, reserved 231
private OM objects 195
process flags 32
process management

API 18
commands 18

process management (continued)
introduced 18
ovspmd daemon 18

processing events 67
programming with WinSNMP 247
protocol correlation 357
protocol switching 358
protocols 3, 168, 214
proxy agent 173, 343
public OM objects 195

R
registering a filter 313
registering for events 126, 312
registration files

application 27
field 80
introduced 6
local 19
symbol type 109

registration tree 181
relationships 336
requester 168, 213, 222
RequestID in WinSNMP 257
responder 168, 213, 224
Restart flag 33
retransmisson support 287
retrieving error codes 72
retrieving field information 86
root submap 134
rule in Enroll block 38

S
SAP 318
SAP table 320
scoping 185, 186
secure user based SNMPv2 (SNMPv2USEC)

administrative and security framework 246
data syntax 246
protocol operations 245

seed file 343
select loop 69
selection list 5, 31, 69, 70, 101
selection mechanism 35
selection name 89
selection rule 36, 70
sequence position 103
service access point 318
session parameter 217
session, WinSNMP 251
Shared flag 33
shared submap 136
shell environment variable 31

 Index 389

simple connection 317
simple connection group 321
simple connection table 321
SNMP 293, 294

agents 282
communication model 281
configuring 298
data representation 285
in WinSNMP 239
introduced 168
managers 281
messages 282
MIBs 283
naming tree 241, 284
object identifier 284
traps 283

SNMP API
blocking operation 286
functions and data structures 289
introduced 286
location transparency 288
manual retransmission 287
memory management 287
nonblocking operation 287

SNMP support levels in WinSNMP
applications 248
implementations 247

snmp_fields data file 344
SNMPAPI_TRANSLATED mode 250
SNMPAPI_UNTRANSLATED_V1 mode 250
SNMPAPI_UNTRANSLATED_V2 mode 250
SNMPv1

administrative and security framework 243
data syntax 242
protocol operations 242

SNMPv2 (SNMPv2C)
administrative and security framework 245
data syntax 244
overview 243
protocol operations 244

SNMPv2 (SNMPv2USEC)
administrative and security framework 246
data syntax 246
protocol operations 245

state transitions
agent 226
manager 226

status
colors 101
compound 102
of a symbol 101
propagation across protocols 358
source 101

status fields
operational state 335
unknown status 335

subclass 183
submap

child 131
creating 131, 132
displaying 137
exclusive 136
hierarchy 134
home 134
ID 133
introduced 5
layout algorithms 135
metaconnection 135
planes

application 136
background 136
user 136

root 134, 357
shared 136
topology 357
when to create 133

superclass 183
symbol

and object 99
application interest in 125
attributes 99
behavior 101, 123
bitmap 105
changing 122
class 109
connection 100
creating 109
deleting 129
executable 101
explodable 101
hidden 147
icon 100, 114
label 99, 124
listing 128
position 102, 122
sizes 105
status 101, 124
subclass 112
type 100, 122
variety 100

symbol type registration file 109
synchronization 187

T
task index help 52
Tool block 34
tools window 34
topology

benefits 315
topology mib

groups 319
location 316

390 Programmer's Guide

topology (continued)
topology mib (continued)

tables 318
traps 332, 348

topology update 348
tracing and logging 9, 17
transport interface support in WinSNMP 249
trapd daemon 17
traps 6, 283
traps, mapping between SNMPv1 and SNMPv2 279
trees

containment 182
inheritance 183
naming 183, 241
registration 181

U
underlying arc 317
underlying arc table 325
underlying connection 318
underlying connection table 322
unknown status 335
unmanaged object 147
user plane 356
utility functions, WinSNMP 267

V
variable binding functions, WinSNMP 266
Version entry 28
vertex 317
vertex group 319
vertex table 319

W
well-behaved agent 18
WinSNMP

agents 240
asynchronous model 255
community based SNMPv2 (SNMPv2C)

administrative and security framework 245
data syntax 244
overview 243
protocol operations 244

compliance 238
data representation 242
data types

descriptors 262
function returns 262
integers 261
pointers 261

declarations 268
dual role entity 240
entity/context translation modes

overview 249

WinSNMP (continued)
entity/context translation modes (continued)

SNMPAPI_TRANSLATED mode 250
SNMPAPI_UNTRANSLATED_V1 mode 250
SNMPAPI_UNTRANSLATED_V2 mode 250

error handling
common error codes 258
context-specific error codes 259
transport error reporting 260

function references
communications 263
entity/context 264
local database 262
PDU 264
utility functions 267
variable binding 266

levels of SNMP support
applications 248
implementations 247

local database 251
managers 240
mapping traps between SNMPv1 and SNMPv2 279
memory management

C-style strings 253
descriptors 253
HANDLE'd resources 252

MIBs 241
OIDs 241
overview 237
polling and retransmission 256
programming with 247
RequestID 257
secure User Based SNMPv2 (SNMPv2USEC)

administrative and security framework 246
data syntax 246
protocol operations 245

sessions 251
SNMPV1

administrative and security framework 243
data syntax 242
protocol operations 242

transport interface support 249
WinSNMP.h include file 269
workspace 224

X
X defaults file 75
X-based coding 292
X-extensions 287
XMP API

asynchronous calls 221, 222
initialization 225
naming conventions 213
parameters 216
program sequence 224

 Index 391

XMP API (continued)
protocols 214
return values 220
session 225
shutdown 225
state transitions 226
supporting functions 215
synchronous calls 221
terminology 213
workspace 224

XOM API
functions 211
introduced 189
naming conventions 231
packages 192
terminology 190

xxmap application 316, 356

392 Programmer's Guide

Communicating Your Comments to IBM

NetView for AIX
Programmer's Guide
Version 4

Publication No. SC31-8164-00

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

United States and Canada: 1-800-227-5088

� If you prefer to send comments electronically, use this network ID:

– IBM Mail Exchange: USIB2HPD at IBMMAIL
– IBMLink: CIBMORCF at RALVM13

 – Internet: USIB2HPD@VNET.IBM.COM

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Help us help you!

NetView for AIX
Programmer's Guide
Version 4

Publication No. SC31-8164-00

We hope you find this publication useful, readable and technically accurate, but only you can tell us! Your
comments and suggestions will help us improve our technical publications. Please take a few minutes to
let us know what you think by completing this form.

Specific Comments or Problems:

Please tell us how we can improve this book:

Thank you for your response. When you send information to IBM, you grant IBM the right to use or
distribute the information without incurring any obligation to you. You of course retain the right to use the
information in any way you choose.

Your Internet Address:

Name Address

Company or Organization

Phone No.

Overall, how satisfied are you with the information in this book? Satisfied Dissatisfied

 Ø Ø

How satisfied are you that the information in this book is: Satisfied Dissatisfied

Accurate Ø Ø
Complete Ø Ø
Easy to find Ø Ø
Easy to understand Ø Ø
Well organized Ø Ø
Applicable to your task Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Help us help you!
SC31-8164-00

IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Information Development
Department CGMD
International Business Machines Corporation
PO BOX 12195
RESEARCH TRIANGLE PARK NC 27709-9990

Fold and Tape Please do not staple Fold and Tape

SC31-8164-00

IBM

Program Number: 5765-527

Printed in U.S.A.

SC31-8164-ðð

DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2330 OF '.EDF#CV'
DSMMOM397I '.EDF#CV' WAS IMBEDDED AT LINE 190 OF '.EDF#FCV7'
DSMMOM397I '.EDF#FCV7' WAS IMBEDDED AT LINE 330 OF '.EDFCOVER'
DSMMOM397I '.EDFCOVER' WAS IMBEDDED AT LINE 49 OF 'LBVL0MST'
DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2 OF 'LBVL0C2'
DSMMOM397I 'LBVL0C2' WAS IMBEDDED AT LINE 187 OF 'EDFPRF40'
DSMBEG323I STARTING PASS 2 OF 4.
DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2330 OF '.EDF#CV'
DSMMOM397I '.EDF#CV' WAS IMBEDDED AT LINE 190 OF '.EDF#FCV7'
DSMMOM397I '.EDF#FCV7' WAS IMBEDDED AT LINE 330 OF '.EDFCOVER'
DSMMOM397I '.EDFCOVER' WAS IMBEDDED AT LINE 49 OF 'LBVL0MST'
DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2 OF 'LBVL0C2'
DSMMOM397I 'LBVL0C2' WAS IMBEDDED AT LINE 187 OF 'EDFPRF40'
DSMBEG323I STARTING PASS 3 OF 4.
DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2330 OF '.EDF#CV'
DSMMOM397I '.EDF#CV' WAS IMBEDDED AT LINE 190 OF '.EDF#FCV7'
DSMMOM397I '.EDF#FCV7' WAS IMBEDDED AT LINE 330 OF '.EDFCOVER'
DSMMOM397I '.EDFCOVER' WAS IMBEDDED AT LINE 49 OF 'LBVL0MST'
DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2 OF 'LBVL0C2'
DSMMOM397I 'LBVL0C2' WAS IMBEDDED AT LINE 187 OF 'EDFPRF40'
DSMBEG323I STARTING PASS 4 OF 4.
DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2330 OF '.EDF#CV'
DSMMOM397I '.EDF#CV' WAS IMBEDDED AT LINE 190 OF '.EDF#FCV7'
DSMMOM397I '.EDF#FCV7' WAS IMBEDDED AT LINE 330 OF '.EDFCOVER'
DSMMOM397I '.EDFCOVER' WAS IMBEDDED AT LINE 49 OF 'LBVL0MST'
DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2 OF 'LBVL0C2'
DSMMOM397I 'LBVL0C2' WAS IMBEDDED AT LINE 187 OF 'EDFPRF40'

