NetView for AIX
Programmer's Reference
Version 4

Document Number SC31-8165-00

April 8, 1996

NetView for AlX SC31-8165-00
Programmer's Reference

Version 4

NetView for AIX
Programmer's Reference

Version 4

SC31-8165-00

Note

Before using this product, read the general information under “Notices” on page xv.

First Edition (July 1995)

This document applies to IBM NetView for AIX (feature 5608), which is a feature of SystemView for AIX (5765-527). IBM NetView
for AIX runs under the AIX Operating System for RISC System/6000 Version 3 Release 2 (5756-030) or Version 4 Release 1
(5765-393). This product is based, in part, on Hewlett-Packard Company's OpenView product.

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM representative or write to
the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address comments to:
IBM Corporation
Department CGMD
P.O. Box 12195
Research Triangle Park, North Carolina 27709
U.S.A.
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 1992, 1995. All rights reserved.
The following statement pertains to portions hereof:
© Copyright Hewlett-Packard Company 1991, 1995. All rights reserved. Reproduced by permission.
© Copyright Dartmouth College 1992. All rights reserved. Reproduced by permission.
© Copyright American Computer & Electronics Corporation 1996. All rights reserved. Reproduced by permission.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

NOLICES . . . XV
Trademarks XV
About This Book XVii
Who Should Use This Book XVii
How to Use This Book XVii

Highlighting and Operation Naming Conventions XVil

Format of Reference Pages Xviii

Meaning of Function Numbers XViii
Where to Find More Information XixX
Chapter 1. Function Tables for NetView for AIX Man Pages 1
Graphical User Interface Routines 1
SNMP Routines 12
WINSNMP Functions 14
XMP Functions 16
Filtering and Thresholding Functions 18
GTM API RoUtiNeS 18
Collection Facility Routines 21
Client/Server APIs 22
Security FUNCtions 22
Miscellaneous Functions 23
INtroducCtions L 23
Chapter 2. Reference Pages 25
at_array to oid(3) 26
at free(3) . . . 27
at_oid_match(3) 28
at_oid_to_array(3) 29
at oid _to Str(3) 30
at str to_oid(3) 31
otmdump(8) . . . 32
mp_abandon(3) 34
mp_action_req(3) 36
Mp_action_rsp(3) 39
Mp_bind(3) . . . 42
mp_cancel_get_req(3) 44
mp_cancel_get rsp(3) 47
mp_create_req(3) 49
mp_create_rsp(3) 52
mp_delete_req(3) 55
mp_delete_rsp(3) 58
mp_error_message(3) 61
mp_event_report_req(3) 62
mp_event_report_rsp(3) 65
mp_get_next_req(3) 67
mp_get_req(3) 69
MP_get_rsp(3) . . . 72
mp_initialize(3) 75
mp_receive(3) 76

© Copyright IBM Corp. 1992, 1995 ili

mp_set_req(3) 81

MP_Set_rsp(3) 84
mp_shutdown(3) 87
mp_unbind(3) 88
MP_Version(3) 90
MP_Wait(3) 93
nvCollectionAdd(3) 95
nvCollectionAddCallback(3) 98
nvCollectionDelete(3) 100
nvCollectionDone(3) 102
nvCollectionError(3) 103
nvCollectionErrorMsg(3) 104
nvCollectionEvaluate(3) 105
nvCollectionFreeDefn(3) 107
nvCollectionGetAllForObject(3) 109
nvCollectionGetIinfo(3), 111
nvCollectionGetTimestamp(3) 113
nvCollectionintersect(3) 114
nvCollectionListCollections(3) 116
nvCollectionModify(3) 117
nvCollectionOpen(3) 119
nvCollectionRead(3) 121
nvCollectionResolve(3) 122
nvCollectionUnion(3) 124
nvFilterDefine(3) 126
nvFilterDelete(3) 129
nvFilterErrorMsg(3) 130
nvFilterFreeNameList(3) 131
nvFilterGet(3) 132
nvFilterGetNameList(3) 134
NVISClient(3) 136
nvotChangeArcDetails(3) 137
nvotChangeArclconinGraph(3) 141
nvotChangeArcLabellnGraph(3) 146
nvotChangeArcStatus(3) 150
nvotChangeBoxBackground(3) 154
nvotChangeBoxDetails(3) 157
nvotChangeBoxlconInGraph(3) 160
nvotChangeBoxLabellnGraph(3) 163
nvotChangeBoxPositionInGraph(3) 166
nvotChangeGraphBackground(3) 169
nvotChangeGraphDetails(3) 172
nvotChangeGraphlcon(3) 175
nvotChangeGraphlconIinGraph(3) 178
nvotChangeGraphLabellnGraph(3) 181
nvotChangeGraphPositionInGraph(3) 184
nvotChangeRootGraphlcon(3) 187
nvotChangeRootGraphLabel(3) 190
nvotChangeUnderlyingArclcon(3) 193
nvotChangeVertexDetails(3) 197
nvotChangeVertexiconIinBox(3) L 200
nvotChangeVertexiconinGraph(3) 203
nvotChangeVertexLabellnBox(3) 206
nvotChangeVertexLabellnGraph(3) 209

IV Programmer's Reference

nvotChangeVertexPositionInBox(3) 212

nvotChangeVertexPositionInGraph(3) 215
nvotChangeVertexStatus(3) L 218
nvotCreateArcIinGraph(3) 221
nvotCreateBoxInGraph(3) 227
nvotCreateGraph(3) 232
nvotCreateGraphinGraph(3) 235
nvotCreateParallelUnderlyingArc(3) 240
nvotCreateProvidingSap(3) 245
nvotCreateRootGraph(3) 249
nvotCreateSerialUnderlyingArc(3) 253
nvotCreateUsingSap(3) 258
nvotCreateVertexInBox(3) 261
nvotCreateVertexInGraph(3) 265
nvotDeleteArc(3) L 269
nvotDeleteArcFromGraph(3) 272
nvotDeleteBox(3) 276
nvotDeleteBoxFromGraph(3) 278
nvotDeleteGraph(3) 281
nvotDeleteGraphFromGraph(3) 283
nvotDeleteProvidingSap(3) 286
nvotDeleteUnderlyingArc(3) 289
nvotDeleteUsingSap(3) 292
nvotDeleteVertex(3) 295
nvotDeleteVertexFromBoOX(3) 297
nvotDeleteVertexFromGraph(3) 299
NvotDONE(3) 302
NVotFree(3) 304
nvotGetArcsinGraph(3) 307
nvotGetArcObjectld(3) 310
nvotGetBoxesINGraph(3) 314
nvotGetBoxObjectld(3) 317
nvotGetBoxesWhichVertexlsMemberOf(3) 320
NVOIGELEITOr(3) 323
NVOtGetErrorMsg(3) 326
nvotGetGraphObjectld(3) 327
nvotGetGraphsinGraph(3) 330
nvotGetGraphsWhichArclsMemberOf(3) 333
nvotGetGraphsWhichBoxlsMemberOf(3) 338
nvotGetGraphsWhichGraphlsMemberOf(3), 341
nvotGetGraphsWhichVertexlsMemberOf(3) 344
nvotGetSapsOnVertex(3) 347
nvotGetVertexObjectld(3) 350
nvotGetVerticesInBox(3) 353
nvotGetVerticesInGraph(3) 356
nVotinit(3) L 359
nvotSetCenterBoxForGraph(3) 362
nvotSetCenterGraphForGraph(3) 365
nvotSetSynchronousCreation(3) L 368
nvotVertexHandler(3) 370
nvSnmpBlockingGetTable(3) 376
NvSNMPErString(3) 379
nvSnmpTrapOpenFilter(3) 380
NVS_AUdIt(3) 384

Contents V

nvs_deleteSecContext(3) 386

nvs_getClientPerms(3) 388
nvs_isClientAuthorized(3) 391
nvs_SecErrMsg(3) 394
NVS_iSSecON(3) 395
OM_COPY(3) . . o 396
om_copy value(3) 398
om_create(3) 400
om_decode(3) 402
om_delete(3) 404
om_encode(3) 406
oM_get(3) . . . 408
om_instance(3) 412
OM_PUL(3) . . o o 414
om_read(3) . . . s 417
omM_remove(3) . . . e 419
om_Write(3) . . . 421
OVDefaultServerName(3) 424
OVeDeregister(3) e 425
OVEeFIlterAttr(3) 427
OVeRegister(3) e 431
OVmib_get_objid_name(3) 433
OVmib_read objid(3) s 434
OVsnmpAddVarBind(3) 435
OVsnmpBlockingSend(3) 437
OVsSNMPCIOSE(3) 440
OVsnmpConfAllocEntry(3) 442
OVsnmpConfAllocWcList(3) 443
OVsnmpConfClose(3) e 444
OVsnmpConfCopyENtry(3) 445
OVsnmpConfCreateEntry(3) 446
OVsnmpConfDbName(3) e 448
OVsnmpConfDeleteCache(3) e 449
OVsnmpConfDeleteEntry(3) 450
OVsnmpConfExportFile(3) 452
OVsnmpConfFileName(3) e 454
OVsnmpConfFreeDest(3) 456
OVsnmpConfFreeEntry(3) 457
OVsnmpConfFreeWcList(3) 459
OVsnmpConfOpen(3) e 460
OVsnmpConflmportFile(3) e 463
OVsnmpConfParseEntry(3) 465
OVsnmpConfPrintCntl(3) 467
OVsnmpConfPrintDest(3) 468
OVsnmpConfPrintEntry(3) e 469
OVsnmpConfReadCntl(3) 470
OVsnmpConfReadDefault(3) 472
OVsnmpConfReadENntry(3) 474
OVsnmpConfReadNextDest(3) e 476
OVsnmpConfReadNextEntry(3) 478
OVsnmpConfReadWcList(3) 480
OVsnmpConfResolveDest(3) 482
OVsnmpConfStoreCntl(3) e 484
OVsnmpConfStoreDefault(3) 486

VI Programmer's Reference

OVsnmpConfStoreEntry(3) 488

OVsnmpCreatePdu(3) 490
OVsnmpDORetry(3) s 492
OVsNMPpPEString(3) 494
OVsnmpFixPdu(3) 495
OVsnmpFreePdu(3) 497
OVsnmpGetRetryInfo(3) 499
OVsnmpIntro(B) e 501
OVsNMpPOPEN(3) 507
OVsnmpRead(3) 510
OVsNMPReECV(3) e 512
OVsNMPSEeNd(3) e 514
OVsnmpTrapOpen(3) 517
OVSPMD_API(3) e 520
OVUTL(3) . . o 522
OVWACKMapCIlose(3) 528
OVwAckUserSubmapCreate(3) 530
OVwAddActionCallback(3) 532
OVwAddAlertCallback(3) 535
OVwAddCallback(3) 539
OVwAddHelpCallback(3) 541
OVWALAINPUL(3) . . . o 543
OVWAddMenultem(3) 545
OVwAddMenultemFunction(3) 547
OVWAddODbjMenultem(3) 550
OVwAddObjMenultemFunction(3) 552
OVwAddToolPalltem(3) 555
OVWAIEtMsg(3) s 558
OVWADIINtro(5) 560
OVwWBeginMapSync(3) 573
OVwCheckAction(3) 575
OVwConfirmAcknowledgeObjectsCB(3) 578
OVwConfirmCapabilityChangeCB(3) 580
OVwConfirmCreateObjectsCB(3) 582
OVwConfirmCreateSubmapsCB(3) s 584
OVwConfirmCreateSymboIsCB(3) 586
OVwConfirmDeleteObjectsCB(3) e 588
OVwConfirmDeleteSubmapsCB(3) 590
OvVwConfirmExplodeObjectCB(3) 592
OvVwConfirmHideSymboIsCB(3) 594
OVwConfirmManageObjectsCB(3) 596
OVwConfirmMoveSymboICB(3) 599
OVwConfirmObjectStatusCB(3) 601
OVwCreateAction(3) e 603
OVWCreateApp(3) o 607
OVwCreateMenu(3) 611
OVwCreateMenultem(3) 613
OVwCreateObjMenultem(3) 616
OVwCreateSubmap(3) 619
OVwCreateSymbol(3) 623
OVwDbAppendEnumConstants(3) 633
OVwDbCreateField(3) 635
OVwDDbCreateObject(3) s 638
OVwDbDeleteObject(3) 641

Contents Vil

OVwDbFieldNameToFieldld(3) 643

OVwDbGetEnumConstants(3) 645
OvwDbGetFieldInfo(3) 648
OVvwDbGetFieldValue(3) 650
OVwDbGetFieldValues(3) e 654
OVwDbGetFieldValuesByObjects(3) 656
OVwDbGetUnigObjectName(3) 658
OVwDbHostnameToObjectld(3) 660
OVWDDbINIt(3) . . . o 662
OVwDbListFields(3) 664
OVwDbListObjectsByFieldValue(3) 667
OVwDbNameToObjectld(3) s 670
OVwDbSelectionNameToObjectld(3) 672
OVwDbSetEnumConstants(3) 674
OvwDbSetFieldValue(3) s 676
OVwDbSetSelectionName(3) 679
OVvwDbUnsetFieldValue(3) e 681
OVwDisplaySubmap(3) 683
OVWDONE(3) . . . o s 685
OVWENdSessionCB(3) e 686
OVWETITOr(3) o 688
OVWEIOrMsg(3) o 689
OVWEventIntro(5) 691
OVWwFileDescriptor(3) e 694
OVwFindMenultem(3) 696
OVwGetAppConfigValues(3) 698
OVwGetAppName(3) s 701
OvwGetConnSymbol(3) 702
OVWGetFirstAction(3) 706
OVwGetFirstMenultem(3) 708
OVwGetFirstMenultemFunction(3) 710
OVwGetFirstObjMenultem(3) 712
OVwGetFirstObjMenultemFunction(3) 715
OVwGetFirstRegContext(3) 717
OvwGetMapInfo(3) 719
OvwGetMenultemPath(3) 721
OVwGetMenuPathSeparator(3) 723
OVwGetObjectinfo(3) 725
OVwGetObjectMenultemPath(3) 727
OVwGetRegContext(3) 729
OVwGetSelections(3) 731
OVwGetSubmapInfo(3) 733
OvwGetSymbollnfo(3) 735
OVwGetSymbolsByObject(3) 737
OVwHighlightObject(3) 739
OVWINIE(3) 741
OVWISIANUII(3) s 743
OVwListObjectsOnNMap(3) s 745
OVWLIstSUbmaps(3) 747
OVWLIStSYymboIS(3) 750
OVwListSymbolTypes(3) s 753
OVwLockRegUpdates(3) 755
OVWMaINLoop(3) s 757
OVWMapCIoseCB(3) 759

Vil Programmer's Reference

OVWMapOpenCB(3) e 761

OVWPeekOVWEVENt(3) 763
OVwPending(3) s 765
OVWwProcessEvent(3) 767
OVWRegIntro(5) s 769
OVwRenameRegContext(3) 795
OVwSaveRegUpdates(3) 797
OVwSelectListChangeCB(3) 799
OVwSetBackgroundGraphic(3) e 801
OVwSetStatusOnObject(3) 803
OvwSetSubmapName(3) 806
OVWSetSYymbolAPpP(3) e 808
OVwSetSymbolBehavior(3) 810
OVwsSetSymbolLabel(3) 813
OVwSetSymbolPosition(3) 815
OVwSetSymbolStatusSource(3) 820
OVwSetSymbolType(3) e 822
OVwShowHelp(3) 825
OVwSubmapCloseCB(3) s 827
OVwWSubmapOpenCB(3) e 829
OVwUserSubmapCreateCB(3) 831
OVwVerifyAdd(3) e 833
OvwVerifyAppConfigChange(3) 839
OVwVerifyConnect(3) 842
OVvwVerifyDeleteSymbol(3) 846
OVwVerifyDescribeChange(3) 849
OVWXIAdINpUt(3) s 852
OVWXIMaINLoop(3) e 855
SnmpCleanup(3) 858
SNMpPCIose(3) 860
SnmpContextToStr(3) 862
SnmpCountVbI(3) 865
SnmpCreatePdu(3) 867
SnmpCreateSession(3) 869
SnmpCreateVbI(3) 872
SnmpDecodeMsg(3) 874
SnmpDeleteVb(3) e 876
SnmpDuplicatePdu(3) 878
SnmpDuplicateVbI(3) 880
SnmpEncodeMsg(3) 882
SnmpEntityToStr(3) 884
SnmpFreeContext(3) 886
SnmpFreeDescriptor(3) 888
SnmpFreeEntity(3) 890
SnmpFreePdu(3) 892
SnmpFreeVbI(3) 894
SnmpGetLastError(3) 896
SnmpGetLastErrorStr(3) L 898
SnmpGetPduData(3) 900
SnmpGetRetransmitMode(3) 903
SnmpGetRetry(3) 905
SnmpGetTimeout(3) e 907
SnmpGetTranslateMode(3) e 909
SNMpGetVDh(3) . . . 911

Contents X

SnmpOidCompare(3) 913

SNMpPOIdCOoPY(3) 915
SnmpOIdTOStr(3) 917
SnNMpPRecVMSG(3) . . . L 919
SnmpRegister(3) L 922
SnmpSelect(3) . . 925
SnmpSendMsg(3) . . . L 927
SnmpSetPduData(3) 930
SnmpSetRetransmitMode(3) 932
SnmpSetRetry(3) 934
SnmpSetTimeout(3) 936
SnmpSetTranslateMode(3) 938
SnmpSetVb(3) . . . e 940
SnmpStartup(3) . . . 942
SnmpStrToContext(3) 945
SnmpSHtrToENtity(3) 948
SnmpStrToOId(3) 951
XnvApplicationShell(3) 953
XnvTopLevelShell(3) e 956
Chapter 3. XOM Package e 959
Class Hierarchy 959
Class Definitions 959
Chapter 4. XMP APl Management Service Packages, 963
General Information 963
OM Class Hierarchies 963
The OM Classes 969
Chapter 5. XMP APl Management Contents Packages 1033
LNV Package Object Identifier 1033
DMI Package Object Identifier 1033
Chapter 6. Using NetView for AIX GTM Data Structures 1061
Basic Structures 1061
Table Structures 1064
Type Structures 1068
Glossary and Bibliography 1077
Glossary . . 1079
Bibliography 1107
NetView for AIX Publications 1107
IBM RISC System/6000 Publications 1107
NetView Publications 1108
TCP/IP Publications for AIX (RS/6000, PS/2, RT, 370) 1108
AIX SNA Services/6000 Publications 1108
Internet Request for Comments (RFCS) 1108
Related Publications 1109

X Programmer's Reference

Tables

FOO0O®ONDOAWN P

ODMDRADNMDMADADNRADNWWWWWWWWWWRNNRNNNNMNNNNNRRRRERRERPR
COONOODUIPWNPOOONDIOPWNRPOOONDDURAWNREOOONDOAMWDN

Graphical User Interface Routines and Their Reference Pages 1
SNMP Routines and Their Reference Pages 12
WIinSNMP Functions and Their Reference Pages 15
XMP Functions and Their Reference Pages 16
Filtering and Thresholding Functions and Their Reference Pages 18
GTM API Routines and Their Reference Pages 18
Collection Facility Routines and Their Reference Pages 21
Client/Server APIs and Their Reference Pages 22
Security Functions and Their Reference Pages 22
Miscellaneous Functions and Their Reference Pages 23
API Introductions and Their Reference Pages 23
Service Primitives 76
Validity of Completion Flag Values 77
Valid CMIS-Service-Error Values for each Confirm Primitive 78
Bitmask Permissions for nvs_getClientPerms APl 388
Output of logging INFORMATIVE messages in the OVEXTERNAL subsystem 526
Output of Tracing in OVEXTERNAL Subsystem 527
Return Codes 563
EUI APl Events and Their Callbacks 691
Widget Resources for XnvApplicationShell oo o 954
Widget Resources for XnvTopLevelShell 957
General Information about the XOM Package 959
Attributes Specific to Encoding 960
Attributes Specific to External 960
Attributes Specific to Object 961
General Information about the Management Service Packages 963
Hierarchical Organization of Management Service OM Classes 964
OM Attributes of an Action-Error Object 971
OM Attributes of an Action-Error-Info Object 972
OM Attributes of an Action-Info Object 973
OM Attributes of an Action-Reply Object 973
OM Attributes of an Action-Type-Id Object 974
OM Attributes of an AE-Title 975
OM Attributes of an Application-Syntax Object 975
OM Attributes of an Attribute Object 976
OM Attributes of an Attribute-Error Object 976
OM Attributes of an Attribute-Ild Object 978
OM Attributes of an Attribute-Id-Error Object 978
OM Attributes of an Attribute-ld-List Object 979
OM Attributes of an AVA Object 979
OM Attributes of a Base-Managed-Object-Id Object 980
OM Attributes of a CMIS-Action-Argument Object 981
OM Attributes of a CMIS-Action-Result Object 982
OM Attribute of a CMIS-Cancel-Get-Argument Object 982
OM Attributes of a CMIS-Create-Argument Object 983
OM Attributes of a CMIS-Create-Result Object 984
OM Attributes of a CMIS-Delete-Argument Object 984
OM Attributes of a CMIS-Delete-Result Object 985
OM Attributes of a CMIS-Event-Report-Argument Object, 986
OM Attributes of a CMIS-Event-Report-Result Object 987

© Copyright IBM Corp. 1992, 1995 Xi

51.
52.
53.
54,
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94,
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.

Xii

OM Attributes of a CMIS-Filter Object 988

OM Attributes of a CMIS-Get-Argument Object 988
OM Attributes of a CMIS-Get-List-Error Object 990
OM Attributes of a CMIS-Get-Result Object 990
OM Attributes of a CMIS-Linked-Reply-Argument Object 991
OM Attributes of a CMIS-Service-Error Object, 992
Problem and Parameter Values for a CMIS-Service-Error Object 992
OM Attributes of a CMIS-Set-Argument Object 994
OM Attributes of a CMIS-Set-List-Error Object, 996
OM Attributes of a CMIS-Set-Result Object 996
OM Attributes of a Communications-Error Object 997
OM Attributes of a Community-Name Object 998
OM Attributes of a Complexity-Limitation Object 998
OM Attributes of a Context Object 999
OM Attributes of a Create-Object-Instance Object 1001
OM Attributes of a Delete-Error Object 1002
OM Attributes of a DS-DN Object 1002
OM Attributes of a DS-RDN Object 1003
OM Attributes of an Entity-Name Object 1003
OM Attributes of an Error Object 1004
OM Attributes of an Error-Info Object 1004
OM Attributes of an Event-Reply Object 1005
OM Attributes of an Event-Type-ld Object 1006
OM Attributes of an External-AC Object 1006
OM Attributes of a Filter-Item Object 1007
OM Attributes of a Get-Info-Status Object, 1008
OM Attributes of an Invalid-Argument-Value Object 1009
OM Attributes of a Library-Error Object 1010
OM Attributes of a Missing-Attribute-Value Object 1011
OM Attributes of a Modification Object 1012
OM Attributes of a Multiple-Reply Object, 1013
OM Attributes of a Network-Address Object 1014
OM Attributes of a No-Such-Action Object 1014
OM Attributes of a No-Such-Action-Id Object 1015
OM Attributes of a No-Such-Argument Object 1015
OM Attributes of a No-Such-Event-Id Object 1016
OM Attributes of a No-Such-Event-Type Object 1016
OM Attributes of an Object-Class Object 1017
OM Attributes of an Object-Instance Object 1017
OM Attributes of an Object-Syntax Object 1018
OM Attributes of a Processing-Failure Object 1018
OM Attributes of a Scope Object 1019
OM Attributes of a Session Object 1021
OM Attributes of a Set-Info-Status Object 1022
OM Attributes of a Simple-Syntax Object 1023
OM Attributes of an SNMP-Get-Argument Object 1024
OM Attributes of an SNMP-Get-Result Object 1024
OM Attributes of an SNMP-Response Object 1025
OM Attributes of an SNMP-Service-Error Object 1025
OM Attributes of an SNMP-Set-Argument Object 1026
OM Attributes of an SNMP-Set-Result Object 1027
OM Attributes of an SNMP-Trap-Argument Object 1027
OM Attributes of a Specific-Error-Info Object 1028
OM Attributes of a Substring Object 1029

Programmer's Reference

105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144,
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.

OM Attributes of a Substrings Object 1030
OM Attributes of a System-Error Object 1030
OM Attributes of a Var-Bind Object 1031
Object Identifiers for LNV Attributes 1033
Information Syntax for LNV Attribute Value 1033
OM Attributes of a CMOT-System-Id 1033
Object Identifiers for DMI Object Classes 1034
Object Identifiers for DMI Attributes 1034
Object Identifiers for DMI Attribute Groups 1037
Object Identifiers for DMI Notifications, 1037
Object Identifiers for DMI Parameters 1038
Object Identifiers for DMI Name Bindings 1038
Object Identifiers for DMI Packages 1038
DMI Attribute Value Syntaxes 1039
DMI Natification Information Syntaxes 1041
DMI Parameter Value Syntaxes 1042
OM Attributes of an Additional-Information L 1042
OM Attributes of an Alarm-Info 1042
OM Attributes of an Alarm-Status 1043
OM Attributes of an Allomorphs 1043
OM Attributes of an Attribute-ldentifier-List o 1043
OM Attributes of an Attribute-List 1043
OM Attributes of a Setof-Attribute-Value-Change-Definition 1043
OM Attributes of an Attribute-Value-Change-Definition 1044
OM Attributes of an Attribute-Value-Change-Info 1044
OM Attributes of an Availability-Status 1044
OM Attributes of a Back-Up-Destination-List 1045
OM Attributes of a Back-Up-Relationship-Object 1045
OM Attributes of a Capacity-Alarm-Threshold 1045
OM Attributes of a Control-Status 1045
OM Attributes of a Setof-Correlated-Notifications 1045
OM Attributes of a Correlated-Notifications 1046
OM Attributes of a Correlated-Notifications-1 1046
OM Attributes of a Setof-Counter-Threshold 1046
OM Attributes of a Counter-Threshold 1046
OM Attributes of a Destination 1047
OM Attributes of a Multiple 1047
OM Attributes of a Setof-Gauge-Threshold 1047
OM Attributes of a Gauge-Threshold 1047
OM Attributes of a Group-Objects 1047
OM Attributes of a Setof-Intervals-Of-Day 1048
OM Attributes of a Intervals-Of-Day 1048
OM Attributes of a Management-Extension L. 1048
OM Attributes of a Monitored-Attributes 1048
OM Attributes of a Notify-Threshold 1048
OM Attributes of a Object-Info 1049
OM Attributes of an Observed-Value 1049
OM Attributes of a Packages L 1049
OM Attributes of a Setof-Prioritised-Object 1049
OM Attributes of a Prioritised-Object 1050
OM Attributes of a Probable-Cause 1050
OM Attributes of a Procedural-Status 1050
OM Attributes of a Proposed-Repair-Actions 1050
OM Attributes of a Relationship-Change-Info 1051

Tables Xili

159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.

Xiv

OM Attributes of a Security-Alarm-Detector 1051

OM Attributes of a Security-Alarm-Info 1051
OM Attributes of a Service-User 1052
OM Attributes of a Simple-Name-Type 1052
OM Attributes of a Specific-ldentifier 1052
OM Attributes of a Specific-Problems 1052
OM Attributes of a State-Change-Info 1053
OM Attributes of a Stop-Time 1053
OM Attributes of a Setof-Supported-Features L. 1053
OM Attributes of a Supported-Features 1053
OM Attributes of a System-Ild 1054
OM Attributes of a System-Title 1054
OM Attributes of a Threshold-Info 1054
OM Attributes of a Threshold-Level-Ind 1055
OM Attributes of a Up 1055
OM Attributes of a Down 1055
OM Attributes of a Tide-Mark 1055
OM Attributes of a Tide-Mark-Info 1055
OM Attributes of a Time24 1056
OM Attributes of a Setof-Week-Mask 1056
OM Attributes of a Week-Mask 1056

Programmer's Reference

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make them available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of the intellectual property
rights of IBM may be used instead of the IBM product, program, or service. The evaluation and verifica-
tion of operation in conjunction with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

500 Columbus Avenue
Thornwood, NY 10594
USA

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

Site Counsel

IBM Corporation

P.O. Box 12195

3039 Cornwallis Road

Research Triangle Park, NC 27709-2195
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement.

This document is not intended for production use and is furnished as is without any warranty of any kind,
and all warranties are hereby disclaimed including the warranties of merchantability and fitness for a par-
ticular purpose.

Trademarks

The following terms, denoted by an asterisk (*) at their first occurrences in this publication, are trademarks
of IBM Corporation in the United States or other countries:

AlX IBM NetView
AlXwindows InfoExplorer PS/2

APPN NETCENTER RISC System/6000
SystemView

The following terms, denoted by a double asterisk (**) at their first occurrences in this publication, are
trademarks of other companies in the United States or in other countries:

© Copyright IBM Corp. 1992, 1995 XV

CompuServe CompuServe, Inc.

Motif Open Software Foundation
NFS SUN Microsystems Inc.
X Window System Massachusetts Institute of Technology

XVi Programmer's Reference

About This Book

The NetView for AIX Programmer's Reference provides reference information for
programmers who are already familiar with the programming tasks involved in cus-
tomizing the IBM* NetView* for AIX* program or in writing or customizing network
management applications that interface with the NetView for AIX program. This
book is to be used in conjunction with the NetView for AIX Programmer's Guide.

Who Should Use This Book

Programmers who are customizing the NetView for AIX program or writing or cus-
tomizing network management applications that are to be used through the
NetView for AIX windows interface should refer to this book for detailed
descriptions of API functions. These programmers should have programming expe-
rience in the following areas:

e C-programming language
e Data communications

¢ Networking

e AIX Operating System

How to Use This Book

This book is most helpful when the reader understands the following book con-
ventions:

¢ Highlighting and naming conventions

e Reference page format (including heading definitions)

Highlighting and Operation Naming Conventions
The following highlighting conventions are used in this book, with the noted

exceptions:

Bold Identifies commands and shell script paths (except in reference
information), default values, user selections, daemon paths (on first
occurrence), and flags (in parameter lists).

Italics Identifies parameters whose actual names or values are to be sup-
plied by the user, and terms that are defined in the following text.

Monospace Identifies subjects of examples, messages in text, examples of

portions of program code, examples of text you might see dis-
played, information you should actually type, and examples used
as teaching aids.

The NetView for AIX operation naming convention used in this book shows the
location of the operation in relation to the menu bar or context menu. The naming
convention follows the format shown in this example:

Monitor..Network Configuration..Addresses
In this example, Monitor is a menu bar or context menu option, Network

Configuration is an operation available from the Monitor submenu, and Addresses
is an option that is available when you select Network Configuration.

© Copyright IBM Corp. 1992, 1995 XVii

Some operations require you to make selections from several layers of submenus
before you reach the submenu containing the operation.

Format of Reference Pages
The detailed descriptions of NetView for AIX commands, daemons, files, and appli-
cations follow the standard reference page format. Each NetView for AIX reference
page may include any of the following sections:

Purpose

Related Functions

Syntax

Dependencies

Description

Parameters

Return Values

Error Codes

Flags

Examples

Implementation Specifics

Libraries

Files

Warning

Related Information

Meaning of Function Numbers

The parenthetical function numbers associated with the heading of each man page
have the following meanings:

XVviii

1 User commands
3 Library routines
4 Files

Programmer's Reference

Brief description of the major function of the subject

List of functions that are related to and are described in
the same reference page as the main function

Syntax showing command line options

Description of any dependencies for the use of the
subject

Detailed description of the functions and uses of the
subject

List of parameters associated with a subject and an
explanation of the parameter and its possible and
default values

List of values returned by the subject upon completion
or failure

List of error codes returned by the subject upon failure

List of command line flags associated with the subject,
with an explanation of the flag, and its possible and
default values

Specific examples showing command usage and
formats of files

Identification of the package of each subject

List of libraries to which you need to link to compile a
program that uses the function

List of files used by the subject

Note about a problem that might involve damage to the
program

List of related subjects in this book, NetView for AIX
documentation, Internet Request for Comments, and
other information sources

5 Administrative files
8 Administrative commands

Note: Some of the reference pages refer to reference pages that are not in the
NetView for AIX Programmer's Reference but that can be accessed through the
man command.

Where to Find More Information

The “Bibliography” on page 1107 describes publications that can be helpful when
using the NetView for AIX program. The Internet Request for Comments (RFC)
documents listed are shipped on the NetView for AIX program installation media
and are installed in the /usr/OV/doc directory.

The following sources provide specific information that is not documented in the
NetView for AIX Version 4 library:

* The /usr/lpp/nv6000/README file provides additional information about the
NetView for AIX program.

» The online help facility provides task, dialog box, and graphical interface infor-
mation to help you use this program.

e For more information about Simple Network Management Protocol (SNMP),
Transmission Control Protocol/Internet Protocol (TCP/IP), and general network
basics, the following list contains recommended reading:

Rose, Marshall T. The Simple Book: An Introduction to Management of
TCP/IP-based Internets. Englewood Cliffs, NJ: Prentice-Hall, 1994. (ISBN
0-13-177254-6)

Comer, Douglas. Internetworking with TCP/IP: Principles, Protocols, and
Architecture, Volume 1. New York, NY: Prentice-Hall, 1991. (ISBN
0-13-468505-9)

Black, Uyless. Network Management Standards. The OSI, SNMP, and
CMOL Protocols. New York, NY: McGraw-Hill, 1992. (ISBN
0-07-005554-8)

About This Book XiX

XX Programmer's Reference

Chapter 1. Function Tables for NetView for AIX Man Pages

The tables in this section provide the following information about the reference pages in this manual:

¢ Name of the function or reference page

¢ Brief description of the purpose

¢ Page number to see in this book for a complete description.

These tables describe the following functions:

¢ Graphical User Interface Routines

¢ SNMP Routines

e XMP Functions

¢ Filtering and Thresholding Functions
e GTM API Routines

¢ Miscellaneous Functions

¢ [ntroductions

¢ Collection Facility Routines

e Security Functions

¢ Client/Server APIs

Graphical User Interface Routines

Table 1 (Page 1 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page
OVwAckMapClose(3) Acknowledges a map close event 528
OVwAckUserSubmapCreate(3) Acknowledges a user submap create event 530
OVwAddActionCallback(3) Registers a callback for a registered action 532
OVwAddAlertCallback(3) Registers handlers of NetView for AlX alerts 535
OVwAddCallback(3) Registers procedures to process NetView for 539
AlIX events
OVwAddHelpCallback(3) Registers a handler for application help 541
requests
OVwAddInput(3) Adds an event source 543
OVwAddMenultem(3) Adds a menu item to a menu 545
OVwAddMenultemFunction(3) Adds a menu item function to a menu item 547
OVwAddObjMenultem(3) Adds an item to the Object Menu 550
OVwAddObjMenultemFunction(3) Adds a function to an Object Menu's menu 552
item
OVwAddToolPalltem(3) Adds a tool item to the Tool Window 555
OVwAlertMsg(3) Issues a NetView for AIX alert message 558
OVwApilntro(5) Provides an overview of the OVw API 560
OVwBeginMapSync(3) Begins map synchronization phase 573
OVwCheckAction(3) Enables applications to check the validity of 575

other NetView for AIX applications' actions

1A callback for an event might not be generated if the event resulted from an API call instead of a graphical user

interface (GUI) action.

© Copyright IBM Corp. 1992, 1995

Table 1 (Page 2 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwcClearBackgroundGraphic(3) Clears the background picture from the speci- 801
fied submap

OVwClearSymbolApp(3) Clears application interest in a symbol 808

OVwConfirmAcknowledgeObjectsCB(3)! Functions as a callback for an acknowledge 578
object event

OVwConfirmAddSymbolCB(3)! Functions as a callback for an add symbol 833
event

OVwConfirmAppConfigCB(3)?! Functions as a callback for an application con- 839
figuration change event

OVwConfirmCapabililtyChangeCB(3)? Functions as a callback for an object capability 580
change event

OVwConfirmCompoundStatusCB(3)?! Functions as a callback for compound status 601
events

OVwConfirmConnectSymbolsCB(3)? Functions as a callback for a connect symbols 842
event

OVwConfirmCreateObjectsCB(3)! Functions as a callback for a create object 582
event

OVwConfirmCreateSubmapsCB(3)?! Functions as a callback for a create submap 584
event

OVwConfirmCreateSymbolsCB(3)! Functions as a callback for a create symbol 586
event

OVwConfirmDeleteObjectsCB(3)? Functions as a callback for a delete object 588
event

OVwConfirmDeleteSubmapsCB(3)! Functions as a callback for a delete submap 590
event

OVwConfirmDeleteSymbolsCB(3)! Functions as a callback for a delete symbol 846
event

OVwConfirmDescribeCB(3)! Functions as a callback for a describe change 849
event

OVwConfirmExplodeObjectCB(3)1 Functions as a callback for an explode object 592
event

OVwConfirmHideSymbolsCB(3)! Functions as a callback for a hide symbol 594
event

OVwConfirmManageObjectsCB(3)? Functions as a callback for a manage object 596
event

OVwConfirmMoveSymbolCB(3)! Functions as a callback for a move symbol 599
event

OVwConfirmObjectStatusCB(3)? Functions as a callback for a change object 601
status event

OVwConfirmSymbolStatusCB(3)? Functions as a callback for a change symbol 601
status event

OVwConfirmUnhideSymbolsCB(3)? Functions as a callback for an unhide symbol 594

event

1A callback for an event might not be generated if the event resulted from an API call instead of a graphical user

interface (GUI) action.

2 Programmer's Reference

Table 1 (Page 3 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page
OVwConfirmUnmanageObjectsCB(3)! Functions as a callback for an unmanage 596
object event
OVwConfirmUnacknowledgeObjectsCB(3)! Functions as a callback for an unacknowledge 578
object event
OVwCopyMaplInfo(3) Allocates memory for OVwMaplnfo structure 719
and returns a pointer to a copy of the speci-
fied map structure
OVwCreateAction(3) Creates the specified action in the current reg- 603
istration context
OVwCreateApp(3) Creates the specified NetView for AlX applica- 607
tion by creating registration information for it
OVwCreateComponentSymbol(3) Creates a symbol representing the object 623
identified by objectld on the child submap of a
component object identified by parentld
OVwCreateComponentSymbolByName(3) Creates a symbol representing the object 623
identified by name on the child submap of a
component object identified by parentld
OVwCreateConnSymbol(3) Creates a connection symbol representing an 623
object identified by objectld between two icon
symbols identified by endpointl and endpoint2
on the submap identified by submapld
OVwCreateConnSymbolByName(3) Creates a connection symbol representing an 623
object identified by name between two icon
symbols identified by endpointl and endpoint2
on a submap of an open map
OVwCreateMenu(3) Creates a menu in the current registration 611
context
OVwCreateMenultem(3) Creates a menu item in the current registration 613
context
OVwCreateObjMenultem(3) Creates a menu item in the current registration 616
context
OVwCreateSubmap(3) Creates a submap 619
OVwCreateSymbol(3) Creates a symbol 623
OVwCreateSymbolByName(3) Creates a symbol representing the object with 623
the name field value indicated by the specified
name
OVwCreateSymbolByHostName(3) Creates a symbol representing the object 623
identified by the specified IP host name
OVwCreateSymbolBySelectionName(3) Creates a symbol representing the object 623
identified by the specified selection name
OVwCreateSymbols(3) Creates symbols 623
OVwDbAppendEnumConstants(3) Appends constants to an existing enumeration 633
OVwDbCreateField(3) Creates a field in the object database 635
OVwDbCreateObject(3) Creates an object in the OVW object database 638

1A callback for an event might not be generated if the event resulted from an API call instead of a graphical user

interface (GUI) action.

Chapter 1. Function Tables for NetView for AIX Man Pages

3

Table 1 (Page 4 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwDbCreateObjectByHostname(3) Creates an object in the OVW object database 638
through a host name

OVwDbCreateObjectBySelectionName(3) Creates an object in the OVW object database 638
through a selection name

OVwDbDeleteField(3) Deletes a field in the object database 635

OVwDbDeleteObject(3) Deletes an object from the OVW object data- 641
base

OVwDbFieldldToFieldName Returns the name of the field that has the field 643
ID fieldld

OVwDbFieldNameToFieldld(3) Returns the field ID of the field that has the 643
field name fieldName

OVwDbFreeEnumConstants Frees the memory allocated for an 645
OVwEnumConstants structure

OVwDbFreeFieldBindList Frees the memory allocated for an 654
OVwrFieldBindList structure

OVwDbFreeFieldInfo Frees the memory allocated for an 648
OVwFieldInfo structure

OVwDbFreeFieldList Frees the memory allocated for an 664
OVwFieldList structure

OVwDbFreeFieldValue Frees the memory allocated for an 650
OVwrFieldValue structure

OVwDbFreeObjectFieldList Frees the memory allocated for an 656
OVwObjectFieldList structure

OVwDbFreeObijectldList Frees the memory allocated for an 667
OVwObjectldList structure

OVwDbGetCapabilityFieldValues Returns a list of all field values for capability 654
fields for a specified object

OVwDbGetEnumConstants(3) Returns a list of all text value sets in the enu- 645
merated data type

OVwDbGetEnumName Translates an index into an enumerated con- 645
stant

OVwDbGetEnumValue Translates an enumerated constant into an 645
index value

OVwDbGetFieldBooleanValue Returns the Boolean value set for a field of 650
type ovwBooleanField for a specified object

OVwDbGetFieldEnumByName Returns the value set for a field of type 650
ovwEnumField for a specified object

OVwDbGetFieldEnumByValue Returns the value set for a field of type 650
ovwEnumField for a specified object

OVwDbGetFieldInfo(3) Returns information about a database field 648

OVwDbGetFieldintegerValue(3) Returns the integer value set for a field of type 650
ovwInitField for a specified object

OVwDbGetFieldStringValue(3) Returns the string value set for a field of type 650

ovwStringField for a specified object

1A callback for an event might not be generated if the event resulted from an API call instead of a graphical user

interface (GUI) action.

4 Programmer's Reference

Table 1 (Page 5 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwDbGetFieldValue(3) Returns the value of a specified field for a 650
specified object

OVwDbGetFieldValues(3) Returns a list of all the field values for a speci- 654
fied object

OVwDbGetFieldValuesByObjects(3) Returns the value set for a specified field for a 656
list of objects

OVwDbGetNameFieldValues(3) Returns a list of all field values for name fields 654
for a specified object

OVwGetObjMenultem(3) Retrieves registration information for the speci- 616
fied object menu item in the current registra-
tion context

OVwDbGetUnigObjectName(3) Returns a unigue name for an object 658

OVwDbHostnameToObjectld(3) Returns the object ID for the object whose IP 660
host name is hostname

OVwDblInit(3) Initializes the OVwDb API 662

OVwDbListFields(3) Returns a list of object database fields 664

OVwDbListObjectsByFieldValue(3) Returns a list of objects from the OVW object 667
database that have a single specific value set
for a field

OVwDbListObjectsByFieldValues(3) Returns a list of objects from the OVW object 667
database that have all the field values speci-
fied by a list of fields

OVwDbNameToObjectld(3) Returns the ObjectID of the object that has a 670
specified name in a specified name field

OVwDbObjectldToHostname(3) Returns the IP hostname for the object identi- 660
fied by objectld

OVwDbObjectldToSelectionName(3) Returns the selection name for the object 672
identified by objectld

OVwDbSelectionNameToObjectld(3) Returns the Objectld of the object that has a 672
selection name matching the value provided
by selectionName

OVwDbSetEnumConstants(3) Sets values for a field of type ovwEnumField 674

OVwDbSetFieldBooleanValue(3) Sets values for a field of type 676
ovwBooleanField

OVwDbSetFieldEnumByName(3) Sets by index the value of a field of type 676
ovwEnumField

OVwDbSetFieldEnumByValue(3) Sets by value the value of a field of type 676
ovwEnumField

OVwDbSetFieldintegerValue(3) Sets the value for a field of type 676
ovwintegerField

OVwDbSetFieldStringValue(3) Sets a value for a field of type ovwStringField 676

OVwDbSetFieldValue(3) Sets the value for the field specified by fieldld 676

for a specified object

1A callback for an event might not be generated if the event resulted from an API call instead of a graphical user

interface (GUI) action.

Chapter 1. Function Tables for NetView for AIX Man Pages

5

Table 1 (Page 6 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwDbSetHostname(3) Sets the value of the IP Hostname field for a 679
specified object

OVwDbSetSelectionName(3) Sets the value of the Selection Name field for 679
a specified object

OVwDbUnsetFieldValue(3) Unsets the value of a specified field for a 681
specified object

OVwDbUnsetFieldValues(3) Unsets the values of fields in a list for a speci- 681
fied object

OVwDeleteAction(3) Deletes the specified action in the current reg- 603
istration context

OVwDeleteApp(3) Deletes the specified NetView for AIX applica- 607
tion registration

OVwbDeleteField(3) Deletes a field in the object database 635

OVwbDeleteMenu(3) Deletes the specified menu from the current 611
registration context

OVwDeleteMenultem(3) Deletes the specified menu item from the 613
current registration context

OVwDeleteObjMenultem(3) Deletes registration information for the speci- 616
fied object menu item in the current registra-
tion context

OVwDeleteSubmap(3) Deletes a submap from the open map 619

OVwDeleteSymbol(3) Deletes the symbol identified by symbolld from 623
the open map

OVwDeleteSymbols(3) Deletes symbols in a list from the open map 623

OVwDisplaySubmap(3) Displays a submap of the open map 683

OVwDoAction(3) Starts any registered application action 575

OVwDone(3) Terminates an application's connection to the 685
NetView for AIX program

OVwENndMapSync(3) Ends map synchronization phase 573

OVwENdSessionCB(3)1 Functions as a callback for an end-of-session 686
event

OVwError(3) Specifies the error code set by the last OVw 688
API call

OVwETrrorMsg(3) Describes OVw API error codes 689

OVwEventintro(3) Introduces NetView for AlX graphical user 691
interface events

OVwrFileDescriptor(3) Accesses the NetView for AIX program's com- 694
munications channel

OVwFindMenultem(3) Finds a menu item 696

OVwFreeActionRegInfo(3) Frees the memory allocated for an 603
OVwActionRegInfo structure

OVwFreeAppRegInfo(3) Frees the memory allocated for an 607

OVwAppRegInfo structure

1A callback for an event might not be generated if the event resulted from an API call instead of a graphical user

interface (GUI) action.

6 Programmer's Reference

Table 1 (Page 7 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwFreeMaplinfo(3) Frees the memory allocated for an 719
OVwMaplnfo structure

OVwFreeObijectinfo(3) Frees the memory allocated for an 725
OVwObjectinfo structure

OVwFreeObjectList(3) Frees the memory allocated for an 745
OVwObjectList structure

OVwFreeSubmaplinfo(3) Frees memory allocated for an 733
OVwSubmaplnfo structure

OVwFreeSubmapList(3) Frees the memory allocated for an 747
OVwSubmaplList structure

OVwFreeSymbolinfo(3) Frees memory allocated for an 735
OVwSymbolinfo structure

OVwFreeSymbolList(3) Frees the memory allocated for an 750
OVwSymbolList structure

OVwFreeSymbolTypeList(3) Frees the memory allocated for an 753
OVwSymbolTypeList structure

OVwGetAction(3) Retrieves registration information for the speci- 603
fied action in the current registration context

OVwGetApp(3) Retrieves registration information for the appli- 607
cation that is the current registration context

OVwGetAppConfigValues(3) Gets application configuration parameters 698

OVwGetAppName(3) Returns the name of the running application 701

OVwGetConnSymbol(3) Gets a connection symbol 702

OVwGetFirstAction(3) Returns the name of the first action registered 706
in the current registration context

OVwGetFirstMenultem(3) Returns the ID of the first menu item regis- 708
tered in the current registration context

OVwGetFirstMenultemFunction(3) Returns the type and argument for the first 710
function bound to a menu item in the current
registration context

OVwGetFirstObjMenultem(3) Returns the ID of the first object menu item 712
registered in the current registration context

OVwGetFirstObjMenultemFunction(3) Returns the type and argument for the first 712
function bound to an object menu item in the
current registration context

OVwGetFirstRegContext(3) Returns the name of the first application in the 717
NetView for AIX program's list of registered
applications

OVwGetMaplnfo(3) Returns information about the open map 719

OVwGetMenultem(3) Retrieves registration information for the speci- 613
fied menu item in the current registration
context

OVwGetMenultemMenu(3) Returns the ID of the menu to which an item 721

is attached

1A callback for an event might not be generated if the event resulted from an API call instead of a graphical user

interface (GUI) action.

Chapter 1. Function Tables for NetView for AIX Man Pages

7

Table 1 (Page 8 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwGetMenultemPath(3) Returns the path location of a menu item in 721
the NetView for AIX menu bar structure

OVwGetMenuPathSeparator(3) Returns the current string used to separate 723
menu labels in a menu path string

OVwGetNextAction(3) Returns the name of the first action registered 706
in the current registration context

OVwGetNextMenultem(3) Returns the ID of the next menu item regis- 708
tered in the current registration context

OVwGetNextObjMenultem(3) Returns the ID of the next object menu item 712
registered in the current registration context

OVwGetNextMenultemFunction(3) Returns the type and argument for the next 710
function bound to a menu item in the current
registration context

OVwGetNextObjMenultemFunction(3) Returns the type and argument for the next 715
function bound to an object menu item in the
current registration context

OVwGetNextRegContext(3) Returns the name of the next application in 717
the NetView for AIX program's list of regis-
tered applications

OVwGetObjectinfo(3) Returns map-specific object information 725

OVwGetObjMenultemMenu(3) Returns the ID of the object menu to which an 727
item is attached

OVwGetObjMenultemPath(3) Returns the path location of a menu item in 727
the NetView for AIX menu bar structure

OVwGetRegContext(3) Returns the name of the current registration 729
context

OVwGetSelections(3) Returns the list of selected objects on the 731
open map

OVwGetSubmaplnfo(3) Returns information about a submap on the 733
open map

OVwGetSymbolinfo(3) Returns information about a symbol on the 735
open map

OVwGetSymbolsByObiject(3) Returns a list of all the symbols that represent 737
an object on the open map

OVwHighlightObject(3) Highlights all the symbols representing a spec- 739
ified object on the open map

OVwHighlightObjects(3) Highlights all the symbols representing the 739
objects in a list on the open map

OVwlInit(3) Initializes an application's connection to the 741
NetView for AIX program

OVwiIsldEqual(3) Compares OVw API IDs 743

OVwiIsldNuli(3) Tests an OVw API ID to determine whether it 743

is NULL

1A callback for an event might not be generated if the event resulted from an API call instead of a graphical user

interface (GUI) action.

8 Programmer's Reference

Table 1 (Page 9 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwListObjectsOnMap(3) Returns a filtered list of the objects on the 745
open map

OVwListSubmaps(3) Returns a filtered list of the submaps on the 747
open map

OVwListSymbols(3) Returns a filtered list of symbols on a submap 750
of the open map

OVwListSymbolTypeCaps(3) Returns a list of the capability field values that 753
would be set if you add an object to the map
using this symbol type

OVwListSymbolTypes(3) Returns a list of all the currently registered 753
symbol types

OVwLockRegUpdates(3) Acquires permission for the application to 755
make subsequent calls that modify NetView
for AIX registration information

OVwMainLoop(3) Defines a while loop that continuously proc- 757
esses NetView for AIX events and
application-registered input events

OVwMapCloseCB(3)! Functions as a callback for a map close event 759

OVwMapOpenCB(3)! Functions as a callback for a map open event 761

OVwPeekInputEvent(3) Determines whether an application's regis- 763
tered input source has input awaiting proc-
essing

OVwPeekOVwEvent(3) Determines whether a specific type of NetView 763
for AIX event is awaiting processing

OVwPending(3) Determines whether a NetView for AIX event 765
or application-registered event is awaiting
processing

OVwProcessEvent(3) Processes a pending NetView for AlX event 767

OVwQueryAddSymbolCB(3)! Functions as a callback for a query add 833
symbol event

OVwQueryAppConfigCB(3)! Functions as a callback for a query application 839
configuration event

OVwQueryConnectSymbolsCB(3)? Functions as a callback for a query connect 842
symbols event

OVwQueryDeleteSymbolsCB(3)1 Functions as a callback for a query delete 846
symbols event

OVwQueryDescribeCB? Functions as a callback for a query describe 849
symbols event

OVwReglntro(5) Introduces NetView for AlX graphical user 769
interface registration files

OVwRenameRegContext(3) Changes the name of a NetView for AIX regis- 795
tration context

OVwRemoveActionCallback(3) Unregisters a callback for a registered action 532

1A callback for an event might not be generated if the event resulted from an API call instead of a graphical user

interface (GUI) action.

Chapter 1. Function Tables for NetView for AIX Man Pages

9

Table 1 (Page 10 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwRemoveAlertCallback(3) Unregisters a callback for a NetView for AIX 535
alert

OVwRemoveCallback(3) Unregisters procedures to process NetView for 539
AlIX events

OVwRemoveHelpCallback(3) Unregisters a callback for application help 541
requests

OVwRemovelnput(3) Removes an event source 543

OVwRemoveMenultem(3) Removes a menu item from a menu in current 545
context

OVwRemoveMenultemFunction(3) Removes a menu item function from a menu 547
item in current context

OVwRemoveObjMenultem(3) Removes a menu item from an object menu in 550
current context

OVwRemoveObjMenultemFunction(3) Removes a menu item function from an object 552
menu item in current context

OVwRemoveToolPalltem(3) Removes a tool item from the Tool Window 555

OVwSaveRegUpdates(3) Saves modifications to registration information 797

OVwSelectListChangeCB(3)! Functions as a callback for a selection list 799
change event

OVwsSetAction(3) Modifies registration information for the speci- 603
fied action in the current registration context

OVwSetApp(3) Modifies registration information for the appli- 607
cation that is the current registration context.

OVwSetAppConfigValues(3) Sets application configuration parameters 698

OVwsSetBackgroundGraphic(3) Sets the background graphic for a specified 801
submap

OVwSetMenultem(3) Modifies registration information for the speci- 613
fied menu item in the current registration
context

OVwSetObjMenultem(3) Modifies registration information for the speci- 616
fied object menu item in the current registra-
tion context

OVwSetMenuPathSeparator(3) Sets the character string used to separate 723
menu labels in a menu path string to a speci-
fied value

OVwSetRegContext(3) Sets the name of the current registration 729
context to that of the specified application

OVwSetStatusOnObject(3) Sets the status of all symbols on the open 803
map of the specified object that have the
symbol status source ovwObjectStatusSource

OVwsSetStatusOnObjects(3) Sets the object status on multiple objects 803

1A callback for an event might not be generated if the event resulted from an API call instead of a graphical user

interface (GUI) action.

10 Programmer's Reference

Table 1 (Page 11 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page
OVwsSetStatusOnSymbol(3) Sets the status of a specified symbol if the 803
symbol has status source
ovwSymbolStatusSource and if the application
has permission to modify the symbol
OVwSetStatusOnSymbols(3) Sets the symbol status on symbols in a list 803
OVwSetSubmapName(3) Sets the name of a submap 806
OVwSetSymbolApp(3) Sets application interest in a symbol 808
OVwSetSymbolBehavior(3) Sets the behavior of a symbol 810
OVwSetSymbolLabel(3) Sets the label of a symbol 813
OVwSetSymbolPosition(3) Sets the position of a symbol 815
OVwSetSymbolStatusSource(3) Sets the status source of a symbol 820
OVwSetSymbolType(3) Sets the symbol type of a symbol 822
OVwShowHelp(3) Requests presentation of help information 825
OVwSubmapCloseCB(3)! Functions as a callback for a submap close 827
event.
OVwSubmapOpenCB(3)? Functions as a callback for a submap open 829
event
OVwUndoRegUpdates(3) Destroys all changes to registration informa- 797
tion since the last call to
OVwSaveRegUpdates or
OVwLockRegUpdates
OVwUnLockRegUpdates(3) Releases previously acquired update permis- 755
sions
OVwUserSubmapCreateCB(3)?! Functions as a callback for a user submap 831
create event
OVwVerifyAdd(3) Validates the addition of a symbol 833
OVwVerifyAppConfigChange(3) Validates a change of application configuration 839
values
OVwVerifyConnect(3) Validates the user-selected connect operation 842
for two symbols
OVwVerifyDeleteSymbol(3) Validates the deletion of symbols by a user 846
OVwVerifyDescribeChange(3) Validates the change of information describing 849
an object by the user
OVwXtAddInput(3) Registers the NetView for AIX event source 852
with X
OVwXtAppAddinput(3) Registers the NetView for AIX event source 852
with X for a specified X application context
OVwXtAppMainLoop(3) Dispatches NetView for AlX events, input 855

events registered with the NetView for AIX
program, and X events for a specified X appli-
cation context

1A callback for an event might not be generated if the event resulted from an API call instead of a graphical user

interface (GUI) action.

Chapter 1. Function Tables for NetView for AIX Man Pages

11

Table 1 (Page 12 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name

Description

See Page

OVwXtMainLoop(3)

Dispatches NetView for AIX events, input
events registered with the NetView for AIX
program, and X events

855

1A callback for an event might not be generated if the event resulted from an API call instead of a graphical user

interface (GUI) action.

SNMP Routines

Table 2 (Page 1 of 3). SNMP Routines and Their Reference Pages

Routine Name Description See Page

nvSnmpBlockingGetTable(3) Retrieves an entire table from the MIB in a 376
blocking manner

nvSnmpErrString(3) Returns SNMP-specific error strings 379

nvSnmpGetTable(3) Retrieves an entire table from the MIB in a 376
non-blocking manner

nvSnmpGetTableElement(3) Retrieves the specified element from the 376
OVsnmpVarBind structure returned by
nvSnmpBlockingGetTable or one of its related
functions

nvSnmpTrapOpenFilter(3) Opens a session with EMS to receive SNMP 380
filtered traps in a non-X environment

nvSnmpXGetTable(3) Retrieves an entire table from the MIB if 376
XtMainLoop or an equivalent function is used
to manage file I/O multiplexing

nvSnmpXTrapOpenFilter(3) Opens a session with EMS to receive SNMP 380
filtered traps in an X environment

OVsnmpAddNullVarBind(3) Creates and initializes a new OVsnmpVarBind 435
data structure

OVsnmpAddTypedVarBind(3) Creates and initializes a new OVsnmpVarBind 435
data structure and allocates space for the
value of the variable

OVsnmpAddVarBind(3) Allocates space for and initializes an 435
OVsnmpVarBind data structure for getting and
setting variables

OVsnmpBlockingSend(3) Sends an SNMP PDU and receives the 437
response

OVsnmpClose(3) Frees resources allocated by a session 440
created by a call to OVsnmpOpen

OVsnmpConfAllocEntry(3) Allocates dynamic storage for an 442
OVsnmpConfEntry structure

OVsnmpConfAllocWcList(3) Allocates dynamic storage for an 443
OVsnmpConfWclList structure

OVsnmpConfClose(3) Closes an SNMP Configuration Database 444

OVsnmpConfCopyEntry(3) Allocates a new OVsnmpConfEntry and copies 445

12 Programmer's Reference

the contents of the old OVsnmpConfEntry to
the new one

Table 2 (Page 2 of 3). SNMP Routines and Their Reference Pages

Routine Name Description See Page

OVsnmpConfCreateEntry(3) Creates a configuration record in the SNMP 446
Configuration Database

OVsnmpConfDbName(3) Determines the name of the SNMP Configura- 448
tion Database

OVsnmpConfDeleteCache(3) Removes all cached SNMP configuration data 449
from an open database

OVsnmpConfDeleteEntry(3) Deletes a record from the SNMP Configuration | 450
Database

OVsnmpConfExportFile(3) Dumps the contents of the SNMP Configura- 452
tion Database to a file

OVsnmpConfFileName(3) Determines the pathname of the Version 2 454
backward-compatibility SNMP configuration file
associated with the SNMP Configuration Data-
base

OVsnmpConfFreeDest(3) Frees an OVsnmpConfDest structure and its 456
contents

OVsnmpConfFreeEntry(3) Frees an OVsnmpConfEntry structure and its 457
contents

OVsnmpConfFreeWcList(3) Frees an OVsnmpConfWocList structure and its 459
contents

OVsnmpConfOpen(3) Opens an SNMP Configuration database for 460
subsequent use

OVsnmpConfimportFile(3) Replaces the contents of the SNMP Config- 463
uration Database with configuration informa-
tion obtained from a Version 2 compatible
configuration file

OVsnmpConfParseEntry(3) Parses a line in Version 2 ovsnmp.conf file 465
form and produces an OVsnmpConfEntry
structure

OVsnmpConfPrintCntl(3) Prints the database control information to 467
stdout

OVsnmpConfPrintDest(3) Prints the resolved SNMP configuration 468
parameters for the target destination to stdout

OVsnmpConfPrintEntry(3) Prints the SNMP configuration parameters for 469
a target, wildcard, or global default to stdout

OVsnmpConfReadCntl(3) Reads the control parameters of the SNMP 470
Configuration Database

OVsnmpConfReadDefault(3) Reads the global default paramenters in the 472
SNMP Configuration Database

OVsnmpConfReadEntry(3) Reads the parameters for the target node from 474
the SNMP Configuration Database

OVsnmpConfReadNextDest(3) Reads the next configuration entry from the 476
SNMP Configuration Database cache

OVsnmpConfReadNextEntry(3) Reads the next configuration entry from the 478
SNMP Configuration Database

OVsnmpConfReadWcList(3) Reads the wildcard entries from the SNMP 480

Configuration Database as a singly linked list

Chapter 1. Function Tables for NetView for AIX Man Pages

13

Table 2 (Page 3 of 3). SNMP Routines and Their Reference Pages

Routine Name Description See Page

OVsnmpConfResolveDest(3) Returns the resolved SNMP configuration 482
parameters for a target node

OVsnmpConfStoreCntl(3) Stores the control parameters for the SNMP 484
Configuration Database

OVsnmpConfStoreDefault(3) Stores the global default SNMP configuration 486
parameters in the SNMP Configuration Data-
base

OVsnmpConfStoreEntry(3) Stores the SNMP configuration parameters for 488
a target in the SNMP Configuration Database

OVsnmpCreatePdu(3) Allocates an OVsnmpPdu data structure of the 490
specified type

OVsnmpDoRetry(3) Retransmits pending SNMP requests 492

OVsnmpErrString(3) Returns SNMP-specific error strings 494

OVsnmpFixPdu(3) Deletes a variable with an error from an 495
SNMP PDU

OVsnmpFreePdu(3) Frees all memory associated with the speci- 497
fied PDU

OVsnmpGetRetrylnfo(3) Gets information about pending SNMP 499
requests to be retransmitted

OVsnmplntro(5) Introduces the ovsnmp library 501

OVsnmpOpen(3) Establishes an active SNMP session for com- 507
munication with an SNMP agent

OVsnmpRead(3) Receives SNMP messages on all active ses- 510
sions

OVsnmpRecv(3) Receives an SNMP PDU for a specified 512
session

OVsnmpSend(3) Sends an SNMP PDU in non-blocking mode 514

OVsnmpTrapOpen(3) Connects to the trapd daemon and sets up to 517
receive traps in a non-X environment

OVsnmpXClose(3) Frees resources allocated by a session 440
created by a call to OVsnmpXOpen in an X
environment

OVsnmpXOpen(3) Establishes an active SNMP session for com- 507
munication with an SNMP agent in an X envi-
ronment

OVsnmpXSend(3) Sends an SNMP PDU in non-blocking mode in 514
an X environment

OVsnmpXTrapOpen(3) Connects to the trapd daemon and sets up to 517

receive traps in an X environment

WIinSNMP Functions

14 Programmer's Reference

Table 3 (Page 1 of 2). WinSNMP Functions and Their Reference Pages

Routine Name Description See Page

SnmpCleanup(3) Deallocates all WinSNMP application 858
resources

SnmpClose(3) Closes a WinSNMP session 860

SnmpContextToStr(3) Retrieves a textual context descriptor corre- 862
sponding to the given WinSNMP context

SnmpCountVbl(3) Counts the number of varbinds in a varbindlist 865
structure

SnmpCreatePdu(3) Creates an SNMP protocol data unit (PDU) for 867
use in subsequent communication requests

SnmpCreateSession(3) Creates a WinSNMP session and initializes 869
resources for subsequent communication func-
tions

SnmpCreateVbl(3) Creates and initializes a new varbindlist struc- 872
ture

SnmpDecodeMsg(3) Decodes the specified SNMP message 874

SnmpDeleteVb(3) Deallocates resources associated with the 876
specified WinSNMP varbindlist

SnmpDuplicatePdu(3) Duplicates the specified PDU 878

SnmpDuplicateVbl(3) Duplicates the specified varbindlist structure 880

SnmpEncodeMsg(3) Encodes an SNMP message without sending 882
it

SnmpEntityToStr(3) Returns a textual string for the given 884
WIinSNMP entity

SnmpFreeContext(3) Deallocates resources for the specified 886
WIinSNMP context

SnmpFreeDescriptor(3) Deallocates resources associated with the 888
specified WinSNMP descriptor object

SnmpFreeEntity(3) Deallocates resources for the specified 890
WInSNMP entity

SnmpFreePdu(3) Deallocates resources for the specified 892
WinSNMP PDU

SnmpFreeVbl(3) Deallocates resources associated with the 894
specific VBL

SnmpGetLastError(3) Indicates why the last WinSNMP operation 896
failed

SnmpGetLastError(3) Provides a textual description of why the last 898
WIinSNMP operation failed

SnmpGetPduData(3) Extracts data from the specified PDU 900

SnmpGetRetransmitMode(3) Indicates the retransmission mode currently in 903
effect

SnmpGetRetry(3) Retrieves the retry value for the specified 905
entity

SnmpGetTimeout(3) Retrieves timeout information for the specified 907

entity

Chapter 1. Function Tables for NetView for AIX Man Pages

15

Table 3 (Page 2 of 2). WinSNMP Functions and Their Reference Pages

Routine Name Description See Page

SnmpGetTranslateMode(3) Indicates the entity/context translation mode 909
currently in effect

SnmpGetVbh(3) Extracts the varbind identified by the supplied 911
index from a varbindlist structure

SnmpOidCompare(3) Lexicographically compares two object identi- 913
fiers (OIDs)

SnmpOidCopy(3) Duplicates the specified OID 915

SnmpOidToStr(3) Converts a WinSNMP OID into a dotted 917
numeric string

SnmpRecvMsg(3) Retrieves results of a completed SNMP 919
request or trap for the specified session

SnmpRegister(3) Registers the calling application to receive or 922
discontinue trap and inform natifications

SnmpSelect(3) Checks the I/O status of multiple file descrip- 925
tors and message queues, handling SNMP file
descriptors transparently

SnmpSendMsg(3) Sends an SNMP message to the specified 927
destination entity

SnmpSetPduData(3) Updates the specified PDU with data supplied 930
by the calling application

SnmpSetRetransmitMode(3) Sets the retransmission mode for subsequent 932
SnmpSendMsg operations

SnmpSetRetry(3) Sets the number of retries for subsequent 934
communication with the specified entity

SnmpSetTimeout(3) Sets the timeout value for the specific entity 936

SnmpSetTranslateMode(3) Sets the entity/context translate mode 938

SnmpSetVb(3) Adds and updates varbinds in a varbindlist 940
structure

SnmpStartup(3) Initializes and allocates the necessary 942
resources to perform other WinSNMP func-
tions

SnmpStrToContext(3) Defines a WinSNMP context identified by the 945
input string

SnmpStrToEntity(3) Creates a WinSNMP entity identified by the 948
null-terminated input string

SnmpStrTo0id(3) Converts a textual object identifier into an 951
internal WinSNMP OID

XMP Functions

Table 4 (Page 1 of 3). XMP Functions and Their Reference Pages

Routine Name Description See Page

at_array_to_oid(3) Encodes an array of integers into an OID 26

at_free(3) Frees memory that has been allocated by an 27

16 Programmer's Reference

XMP function call

Table 4 (Page 2 of 3). XMP Functions and Their Reference Pages

Routine Name Description See Page

at_oid_match(3) Compares two OM object-identifier values 28

at_oid_to_array(3) Decodes an OID into an array of integers 29

at_oid_to_str(3) Decodes an OID into an ASCII string 30

at_str_to_oid(3) Encodes an ASCII string into an OID 31

mp_abandon(3) Abandons locally the result of a pending, 34
asynchronous operation or notification

mp_action_req(3) Requests an action from managed objects 36

mp_action_rsp(3) Replies to a confirmed action request 39

mp_bind(3) Opens a management session 42

mp_cancel_get_req(3) Cancels in an orderly manner the result of a 44
pending get operation that is executing in
asynchronous mode

mp_cancel_get_rsp(3) Replies to a requested cancel-get operation 47

mp_create_req(3) Creates a new managed-object instance 49

mp_create_rsp(3) Replies to a requested create operation 52

mp_delete_req(3) Deletes managed objects 55

mp_delete_rsp(3) Replies to a requested delete operation 58

mp_error_message(3) Returns an error message describing a partic- 61
ular error

mp_event_report_req(3) Reports a notification emitted by a managed 62
object

mp_event_report_rsp(3) Replies to a previously reported management 65
notification

mp_get_next_req(3) Retrieves the next SNMP management infor- 67
mation

mp_get_req(3) Retrieves management information 69

mp_get_rsp(3) Replies to a requested get operation or 72
get-next operation

mp_initialize(3) Initializes the XOM workspace 75

mp_receive(3) Retrieves the parameter of a management 76
operation or notification

mp_set_req(3) Modifies the attribute values of managed 81
objects

mp_set_rsp(3) Replies to a requested set operation 84

mp_shutdown(3) Frees or discards a workspace 87

mp_unbind(3) Terminates a management session 88

mp_version(3) Negotiates features of the interface and 90
service

mp_wait(3) Suspends the caller until a management 93
message is available from one or more bound
sessions

om_copy(3) Duplicates a private object 396

Chapter 1. Function Tables for NetView for AIX Man Pages

17

Table 4 (Page 3 of 3). XMP Functions and Their Reference Pages

Routine Name Description See Page

om_copy_value(3) Copies a string value from one private object 398
to another

om_create(3) Creates a new private object 400

om_decode(3) Creates an unencoded version of an encoded 402
private object

om_delete(3) Deletes a private or service-generated object 404

om_encode(3) Encodes an OM object 406

om_get(3) Creates a public copy of all or particular parts 408
of a private object

om_instance(3) Checks the class of an object 412

om_put(3) Adds or replaces attributes in a private object 414

om_read(3) Reads a string segment in a private object 417

om_remove(3) Removes attribute values from a private object 419

om_write(3) Writes a segment of a string into a private 421
object

Filtering and Thresholding Functions

Table 5. Filtering and Thresholding Functions and Their Reference Pages

Routine Name Description See Page

nvFilterDefine(3) Creates a new filtering rule or updates an 126
existing rule

nvFilterDelete(3) Removes a filtering rule from a filter file 129

nvFilterErrorMsg(3) Retrieves the error message that corresponds 130
to an nvFilter API error return code

nvFilterFreeNameList(3) Frees the memory allocated during creation of 131
the list of filtering rule names

nvFilterGet(3) Retrieves the contents of a filtering rule 132

nvFilterGetNameList(3) Retrieves a list of all filtering rules in a filter 134
file

OVeDeregister(3) Deregisters the caller from receiving events 425
from the listed network nodes

OVeFilterAttr(3) Builds an event filter attribute that can be used 427
in a call to OVeRegister

OVeRegister(3) Registers the caller with EMS to receive 431
events from the listed network nodes

GTM API Routines

Table 6 (Page 1 of 4). GTM API Routines and Their Reference Pages

Routine Name Description See Page

nvotChangeArcDetails(3) Changes the contents of the details variable 137

18 Programmer's Reference

for the specified arc.

Table 6 (Page 2 of 4). GTM API Routines and Their Reference Pages

Routine Name Description See Page

nvotChangeArciconInGraph(3) Changes the icon representing an arc in a 141
graph.

nvotChangeArcLabellnGraph(3) Changes the label on an arc in a graph. 146

nvotChangeArcStatus(3) Changes one or more status values of an arc. 150

nvotChangeBoxBackground(3) Changes the background image for the child 154
submap of a box graph.

nvotChangeBoxDetails(3) Changes the contents of the details variable 157
for the specified box graph.

nvotChangeBoxIconIinGraph(3) Changes the icon representing a box graph in 160
a graph.

nvotChangeBoxLabellnGraph(3) Changes the label on a box in a graph. 163

nvotChangeBoxPositionInGraph(3) Changes the position of a box graph icon in a 166
graph submap.

nvotChangeGraphBackground(3) Changes the background image for the child 169
submap of a graph.

nvotChangeGraphDetails(3) Changes the contents of the details variable 172
for the specified graph.

nvotChangeGraphlcon(3) Changes the icon and label of orphan graphs, 175
boxes, and vertices.

nvotChangeGraphlconInGraph(3) Changes the icon representing a graph in a 178
graph.

nvotChangeGraphLabellnGraph(3) Changes the label on a graph in a graph. 181

nvotChangeGraphPositionInGraph(3) Changes the position of a graph icon in a 184
graph submap.

nvotChangeRootGraphlcon(3) Changes the icon representing the root graph. 187

nvotChangeRootGraphLabel(3) Changes the label on the root graph. 190

nvotChangeUnderlyingArcicon(3) Changes an underlying arc symbol and label. 193

nvotChangeVertexDetails(3) Changes the contents of the details variable 197
for the specified vertex.

nvotChangeVertexiconinBox(3) Changes the icon representing a vertex in a 200
box graph.

nvotChangeVertexiconIinGraph(3) Changes the icon representing a vertex in a 203
graph.

nvotChangeVertexLabellnBox(3) Changes the label on a vertex in a box graph. 206

nvotChangeVertexLabelInGraph(3) Changes the label on a vertex in a graph. 209

nvotChangeVertexPositionInBox(3) Changes the position of a vertex icon in a box 212
graph submap.

nvotChangeVertexPositionInGraph(3) Changes the position of a vertex icon in a 215
graph submap.

nvotChangeVertexStatus(3) Changes one or more status values of a 218
vertex.

nvotCreateArcIinGraph(3) Creates an arc in a graph. 221

nvotCreateBoxInGraph(3) Creates a box graph in a graph. 227

Chapter 1. Function Tables for NetView for AIX Man Pages

19

Table 6 (Page 3 of 4). GTM API Routines and Their Reference Pages

Routine Name Description See Page
nvotCreateGraph(3) Creates a graph of graph type GRAPH or 232
BOX.
nvotCreateGraphinGraph(3) Creates a graph in a graph. 235
nvotCreateParallelUnderlyingArc(3) Creates an arc that lies under another arc. 240
nvotCreateProvidingSap(3) Creates a SAP of type providing. 245
nvotCreateRootGraph(3) Creates a root graph. 249
nvotCreateSerialUnderlyingArc(3) Creates an arc that lies under another arc. 253
nvotCreateUsingSap(3) Creates a SAP of type using. 258
nvotCreateVertexInBox(3) Creates a vertex in a box graph. 261
nvotCreateVertexInGraph(3) Creates a vertex in a graph. 265
nvotDeleteArc(3) Deletes an arc. 269
nvotDeleteArcFromGraph(3) Deletes an arc from a graph. 272
nvotDeleteBox(3) Deletes a box graph. 276
nvotDeleteBoxFromGraph(3) Deletes a box graph from a graph. 278
nvotDeleteGraph(3) Deletes a graph. 281
nvotDeleteGraphFromGraph(3) Deletes a graph from a graph. 283
nvotDeleteProvidingSap(3) Deletes a SAP of type providing. 286
nvotDeleteUnderlyingArc(3) Deletes an underlying arc relationship to its 289
parent arc.
nvotDeleteUsingSap(3) Deletes a SAP of type using. 292
nvotDeleteVertex(3) Deletes a vertex. 295
nvotDeleteVertexFromBox(3) Deletes a vertex from a box graph. 297
nvotDeleteVertexFromGraph(3) Deletes a vertex from a graph. 299
nvotDone(3) Closes the socket connection to gtmd. 302
nvotFree(3) Frees memory allocated by a get routine. 304
nvotGetArcsinGraph(3) Gets a list of all arcs contained in a graph. 307
nvotGetArcObjectld(3) Gets an arc Objectld from the OVW database. 310
nvotGetBoxesInGraph(3) Gets a list of all box graphs contained in a 314
graph.
nvotGetBoxObjectld(3) Gets a box graph ObjectID from the OVW 317
database.
nvotGetBoxesWhichVertexlsMemberOf(3) Gets a list of all boxes of which a vertex is 320
member
nvotGetError(3) Retrieves the error code set by the last func- 323
tion call.
nvotGetErrorMsg(3) Converts a return code into a string. 326
nvotGetGraphObjectld(3) Gets a graph Objectld from the OVW data- 327
base.
nvotGetGraphsInGraph(3) Gets a list of all graphs contained in a graph. 330
nvotGetGraphsWhichArclsMemberOf(3) Gets a list of all graphs of which an arc is a 333

20 Programmer's Reference

member.

Table 6 (Page 4 of 4). GTM API Routines and Their Reference Pages

Routine Name Description See Page

nvotGetGraphsWhichBoxlsMemberOf(3) Gets a list of all graphs of which a box is 338
member.

nvotGetGraphsWhichGraphlsMemberOf(3) Gets a list of all graphs of which a child graph 341
is a member.

nvotGetGraphsWhichVertexlsMemberOf(3) Gets a list of all graphs of which a vertex is 344
member

nvotGetSapsOnVertex(3) Gets a list of all SAPs associated with a 347
vertex.

nvotGetVertexObjectld(3) Gets a vertex Objectld from the OVW data- 350
base.

nvotGetVerticesInBox(3) Gets a list of all vertices contained in a box 353
graph.

nvotGetVerticesInGraph(3) Gets a list of all vertices contained in a graph. 356

nvotlnit(3) Opens a socket connection to gtmd. 359

nvotSetCenterBoxForGraph(3) Specifies which box graph icon is to be the 362
center of a star graph submap.

nvotSetCenterGraphForGraph(3) Specifies which graph icon is to be the center 365
of a star graph submap.

nvotSetSynchronousCreation(3) Specifies whether OVw object IDs are to be 368
returned in synchronous mode.

nvotVertexHandler(3) Provides open access to all tables, variables, 370
and operations defined in the NetView for AIX
Generic Topology MIB.

Collection Facility Routines

Table 7 (Page 1 of 2). Collection Facility Routines and Their Reference Pages

Routine Name Description See Page

nvCollectionAdd(3) Defines new collections of objects 95

nvCollectionAddCallback(3) Registers procedures to process collection 98
facility events

nvCollectionDelete(3) Deletes a collection definition 100

nvCollectionDone(3) Closes a connection to the collection facility 102
server

nvCollectionError(3) Returns the error code sent by the last col- 103
lection facility API call

nvCollectionErrorMsg(3) Returns a textual description of a collection 104
facility API error code

nvCollectionEvaluate(3) Evaluates a rule and returns a list of objects 105
that fit the rule

nvCollectionFreeDefn(3) Frees memory used for collection facility func- 107
tions

nvCollectionGetAllForObject(3) Obtains a list of all collections the specified 109

object is a member of

Chapter 1. Function Tables for NetView for AIX Man Pages

21

Table 7 (Page 2 of 2). Collection Facility Routines and Their Reference Pages

Routine Name Description See Page

nvCollectionGetlInfo(3) Obtains the description and rule defined for a 111
collection

nvCollectionGetTimestamp(3) Returns the last time a collection was updated 113

nvCollectionintersect(3) Finds the intersection of two collections 114

nvCollectionListCollections(3) Obtains a list of all collections currently 116
defined

nvCollectionModify(3) Modifies a collection definition 117

nvCollectionOpen(3) Establishes a connection to the collection 119
facility server

nvCollectionRead(3) Reads collection facility events 121

nvCollectionResolve(3) Obtains a list of all objects currently in a spec- 122
ified collection

nvCollectionUnion(3) Finds the union of two collections 124

Client/Server APIs

Table 8. Client/Server APIs and Their Reference Pages

Routine Name Description See Page

NVisClient(3) Checks to see if an application is running on a 136
client or a server

OVDefaultServerName(3) Determines the name of the default server to 424
which a client should connect

Security Functions

Table 9. Security Functions and Their Reference Pages

Routine Name Description See Page

nvs_Audit(3) Defines a format for audit entries to be 384
entered in the security lodfile.

nvs_DeleteSecContext(3) Closes a NetView for AIX client's security 386
context with the NetView for AIX security
server.

nvs_getClientPerms(3) Obtains a bitmask representation of the per- 388
missions a user has for different NetView for
AIX functions

nvs_isClientAuthorized Query a user's access to NetView for AlX 391
functions to determine if a user can perform
an action

nvs_SecErrMsg(3) Returns status message from security API 394
calls

nvs_isSecOn(3) Determines whether NetView for AIX security 395

22 Programmer's Reference

is active

Miscellaneous Functions

Table 10. Miscellaneous Functions and Their Reference Pages

Routine Name Description See Page

gtmdump(3) Monitors GTM trap reception and dumps the 32
contents of the GTM database to a file for
problem determination purposes.

OVmib_get_objid_name(3) Converts a MIB variable object identifier to its 433
textual name

OVmib_read_obijid(3) Converts a MIB variable name to its object 434
identifier format

OVsDone(3) Notifies ovspmd that a well-behaved object 520
manager is exiting

OVsilnit(3) Returns a file descriptor for interprocess com- 520
munication with ovspmd

OVsinitComplete(3) Notifies ovspmd when a well-behaved object 520
manager has finished initializing

OVsPMD_API(3) Describes routines for well-behaved daemon 520
process in the NetView for AIX program

OVsReceive(3) Receives a command from ovspmd when 520
called by a well-behaved object manager

OVuLog(3) Enables programs to issue logging messages 522
through the nettl logging facility

OVUTL(3) Enables programs to provide logging and 522
tracing output

OVwTLInit(3) Initializes the software and hostname fields in 522
the logging and tracing output

OVwTrace(3) Enables programs to issue tracing messages 522
through the nettl tracing facility

XnvApplicationShell(3) Functions as the main top-level window for an 953
application managed by the NetView for AIX
graphical user interface

XnvTopLevelShell(3) Functions as the main top-level window for an 956
application managed by the NetView for AIX
graphical user interface

Introductions

Table 11. API Introductions and Their Reference Pages

Page Name Description See Page

OVsnmplntro(5) Introduces the SNMP API 501

OVwApilntro(5) Introduces the OVw (End User Interface) API 560

OVwReglntro(5) Introduces the registration files used by 769

NetView for AIX

Chapter 1. Function Tables for NetView for AIX Man Pages

23

24 Programmer's Reference

Chapter 2. Reference Pages

This chapter contains the reference (man) pages for the NetView for AIX program. These reference
pages are organized alphabetically. You can also access these reference pages through the
Help..NetView for AIX Library menu option or by using the man command.

© Copyright IBM Corp. 1992, 1995

25

at_array_to_oid(3)

at_array _to_oid(3)

Purpose

Encodes an array of integers into an OID

Syntax
#include <xom.h>
#include <xmp.h>

OM_return_code at _array to oid (unsigned int num element,
unsigned int *obj id_array,
OM_string *new_obj id);

Description

The at_array_to_oid creates an Object Identifier string from an array of integers. The XOM API requires
that Object Identifier strings be input to the APl as BER encoded Object Identifiers. The BER encoded
string is returned in malloc'ed memory, which you should free by calling at_free.

Parameters
num_element Specifies the number of elements in the array of integers.
obj_id_array Specifies a pointer to the first integer in the array of integers to be encoded.

new_obj id Specifies a pointer to the newly encoded Object Identifier string. When the string is no
longer needed, the memory can be deallocated with the at_free command.

Return Values

If successful, at_array to oid returns a value of [OM_SUCCESS]. If unsuccessful, at_array to_oid returns
one of the following error codes.

Error Codes

[OM_MEMORY_INSUFFICIENT] The service cannot allocate the main memory it needs to complete
the function.

[OM_POINTER_INVALID] In the C-language interface, a pointer that is not valid was provided
as a function argument or as the receptacle for a function result.

[OM_WRONG_VALUE_LENGTH] An attribute has, or would have, a value that violates the value length
constraints in force.

[OM_WRONG_VALUE_MAKEUP] An attribute has, or would have, a value that violates a constraint of
the value's syntax.

26 Programmer's Reference

at_free(3)

at_free(3)
Purpose

Frees memory that has been allocated by an XMP function call

Syntax

#include <xom.h>
#include <xmp.h>

OM_return_code at_free(void *ptr);

Parameters

ptr Specifies a pointer to the memory that needs to be freed

Return Values

The at_free command always returns [OM_SUCCESS].

Chapter 2. Reference Pages 27

at_oid_match(3)

at_oid_match(3)
Purpose
Compares two OM object identifier values

Syntax

#include <xom.h>
#include <xmp.h>

OM_boolean at_oid match(OM object identifier *x0idl,
OM object_identifier *0id2);

Parameters
oid1 Specifies the first object identifier string
oid2 Specifies the second object identifier string

Return Values

If the strings are equal, at_oid_match returns the constant [OM_TRUE]. If the strings are unequal, it
returns the constant [OM_FALSE].

28 Programmer's Reference

at_oid_to_array(3)

at_oid_to_array(3)

Purpose

Decodes an OID into an array of integers

Syntax

#include <xom.h>
#include <xmp.h>

OM_return_code at oid to_array (OM_string obj id,
unsigned int *num_element,
unsigned int *xobj id_array);

Description

The at_oid_to_array command creates an array of integers from a BER encoded Object Identifier string.
The XOM API returns Object Identifier strings in a BER encoded format. This routine decodes the BER
and places the data into an array of integers allocated by the function. When no longer needed, you
should free the array of integers by calling at_free.

Parameters

obj_id Specifies the BER encoded Object Identifier string

num_element Specifies the number of elements of the array is returned in this integer
obj_id_array Specifies a pointer in which the address of the newly created array will be placed.

The array can be freed by using at_free when no longer needed.

Return Values

If successful, at_oid_to_array returns a value of [OM_SUCCESS]. If unsuccessful, at_oid_to_array returns
one of the following error codes.

Error Codes

[OM_POINTER_INVALID] In the C-language interface, a pointer that is not valid was specified as a
function argument or as the receptacle for a function result.

[OM_WRONG_VALUE_LENGTH]
An attribute has, or would have, a value that violates the value length
constraints in effect.

Chapter 2. Reference Pages 29

at_oid_to_str(3)

at_oid_to_str(3)

Purpose

Decodes an OID into an ASCII string

Syntax

#include <xom.h>
#include <xmp.h>

OM_return_code at oid to_str (OM string obj id,
char *xobj id str);

Description

The at_oid_to_str command creates an ASCII string from a BER encoded Object Identifier string. The
XOM API returns Object Identifier strings in a BER encoded format. This routine decodes the BER and
places the data into an ASCII string of integers separated by periods (for example, 1.3.6.1.2.1.1.2.0). The
memory for the ASCII string is allocated by the interface and should be freed after it is no longer needed
by calling at_free.

Parameters
obj_id Specifies the BER encoded Object Identifier string

obj_id_str Specifies a pointer to the ASCII representation of the object identifier string that is returned in
this pointer. You can free this string by calling at_free.

Return Values

If successful, at_oid_to_str command returns a value of [OM_SUCCESS]. If unsuccessful, at_oid_to_str
command returns one of the following error codes.

Error Codes

[OM_MEMORY _INSUFFICIENT]
The service cannot allocate the main memory it needs to complete the
function.

[OM_WRONG_VALUE_LENGTH]
An attribute has, or would have, a value that violates the value length
constraints in effect.

[OM_WRONG_VALUE_MAKEUP]
An attribute has, or would have, a value that violated a value syntax con-
straint in effect.

30 Programmer's Reference

at_str_to_oid(3)

at_str_to_oid(3)

Purpose

Encodes an ASCII string into an OID

Syntax

#include <xom.h>
#include <xmp.h>

OM_return_code at_str_to oid (char *obj id str,
OM_string *new _obj id);

Description

The at_str_to_oid command creates an Object Identifier string from a character string. The character
string is a sequence of integers represented in ASCII characters separated by periods, (for example,
1.3.6.1.2.1.1.2.0). The XOM API requires that Object Identifier strings be input to the API as BER
encoded Object Identifiers. The BER encoded string is returned in malloc'ed memory, which should be
freed by calling at_free.

Parameters

obj_id_str Specifies a pointer to a string of characters which represent the Object
Identifier

new_obj_id Specifies a pointer to the newly encoded Object Identifier string. When

the string is no longer needed, the memory can be deallocated with the
at_free function.

Return Values

If successful, at_str_to_oid returns a value of [OM_SUCCESS]. If unsuccessful, at_str_to_oid returns one
of the following error codes.

Error Codes

[OM_MEMORY_INSUFFICIENT]
The service cannot allocate the main memory it needs to complete the
function.

[OM_POINTER_INVALID] In the C-language interface, a pointer that is not valid was specified as a
function argument or as the receptacle for a function result.

[OM_WRONG_VALUE_LENGTH]
An attribute has, or would have, a value that violates the value length
constraints in effect.

[OM_WRONG_VALUE_MAKEUP]
An attribute has, or would have, a value that violated a value syntax con-
straint in effect.

Chapter 2. Reference Pages 31

gtmdump(8)

gtmdump(8)

Purpose

Displays the contents of gtmd database

Syntax

gtmdump [-h] [-g filename] [-0 filename] [-d filename]

Description

The gtmdump command is a tool for troubleshooting problems with the GTM database. It provides two
functions:

¢ Provides a complete view of the GTM database

¢ Monitors GTM trap processing

Flags
-h Displays the usage screen.

-g [filename] Causes gtmdump to issue generic GET operations to all Open Topology MIB tables. Each
table entry is printed to the output file. If a filename in not specified, the output is printed
to stdout.

The tables are dumped in the following sequence:

e Vertex

¢ SimpleConnection

¢ UnderlyingConnection

e Arc

¢ UnderlyingArc

e Graph

e Member

e MemberArc

e AttachedArc

e Additional Graph information
e Additional Member information
e Sap

-0 filename Monitor mode. Each processed notification is appended to a file, in a table entry format,
and in the same sequence as they are processed by gtmd. A filename is required if you
specify this option.

-d filename Monitor mode. The function is similar to option [-0], except that the output is in a format
that assists a NetView for AIX support person in analyzing a problem. A filename is
required if you specify this option.

Pressing Enter terminates the options [-0] and [-d].

32 Programmer's Reference

gtmdump(8)

Examples

The following sequence of steps sets up the gtmdump tool to monitor gtmd output. The notifications are
printed in the file 'dump_D.out', which can be sent to NetView for AIX support to create the problem again.

(=Y

. Clear databases

2. Issue ovstart to start daemons
3. gtmdump -d dump_D.out

4. Start discovery/manager process
5

. End gtmdump tool

Related Information

e See ovobjprint.

Chapter 2. Reference Pages 33

mp_abandon(3)

mp_abandon(3)

Purpose

Abandons locally the result of a pending, asynchronous operation or notification

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_abandon(OM private object session,
OM_sint invoke_id);

Description

¢ This function abandons the result of an outstanding, asynchronous function call. The function is no
longer outstanding after this function returns, and the result (or the remaining results, in the case of
multiple linked replies) is never returned by mp_receive.

Note: The abandon function call does not abandon the outstanding asynchronous call itself, but only
its results.

e The mp_abandon function call is successful even if the operation or natification to be abandoned no
longer exists or is not confirmed. In this case, the abandon operation is without effect.

Parameters

session
Specifies the management session in which the confirmed operation or notification was
requested. This is the private object of the OM class Session that was previously returned
from mp_bind.

invoke_id
Specifies the specific outstanding asynchronous operation submitted through the session to be
terminated. If the outstanding operation is a nonconfirmed service, the abandon operation is

without effect. The value of invoke id must be the value returned by the function call that
initiated the asynchronous management operation to be abandoned.

Return Values

If successful, mp_abandon returns the constant [MP_SUCCESS]. If unsuccessful, mp_abandon returns
one of the following error codes.

34 Programmer's Reference

mp_abandon(3)

Error Codes

¢ The constant [MP_NO_WORKSPACE]

¢ The constant [MP_INVALID_SESSION]

¢ The constant [MP_INSUFFICIENT_RESOURCES]

e Any problem value for a Communications-Error

e Any problem value for a System-Error

¢ One of the following problem values for a Library-Error:

[BAD_CLASS] An argument that was not valid was specified.

[BAD_PROCEDURAL_USE]
A linked reply that was not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation is no
longer available.

Related Information
e See “mp_bind(3)” on page 42.

Chapter 2. Reference Pages 35

mp_action_req(3)

mp_action_req(3)

Purpose

Requests an action from managed objects

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_action_req(OM_private_object session,

Description

OM private object context,

OM _object argument,
OM_private_object *result_return,
OM_sint =invoke_id_return);

This function can be requested in a confirmed mode or a nonconfirmed mode. A reply is expected in
confirmed mode, while none is expected in nonconfirmed mode.

This function can be called in both synchronous and asynchronous modes.

Parameters

session

context

argument

result_return

Specifies the management session against which this operation is performed. This
is the private object of the OM class Session that was previously returned from
mp_bind.

Specifies the management context to be used for this operation. This parameter is
a private object of the OM class Context, or the constant
[MP_DEFAULT_CONTEXT]. This parameter defines the modes of operation and
the possible addressing and access-control parameters.

Specifies the information supplied as the parameter of an action to be performed.
This information is an instance of a subclass of the OM class Action-Argument. For
a CMIS action operation, the supplied parameter is an instance of the OM class
CMIS-Action-Argument.

Specifies a private object. Upon successful completion of a synchronous call, when
the operation was requested in a confirmed mode, the result can be one of the
following:

* An instance of the subclass of the OM class Action-Result. For a CMIS action
request, the result is an instance of the OM class CMIS-Action-Result.

¢ An instance of the OM class Multiple-Reply, which is a set of instances of the
subclass of the OM class Linked-Reply-Argument. Each instance of the OM
class CMIS-Linked-Reply-Argument contains one of the following OM attributes:

[ACTION_ERROR] A partial, negative result of a confirmed action opera-
tion.

[ACTION_RESULT] A partial, successful result of a confirmed action opera-
tion.

36 Programmer's Reference

mp_action_req(3)

[PROCESSING_FAILURE]
When processing the operation, a general failure was
encountered after the partial results were sent.

Otherwise, in nonconfirmed mode, no results are expected and the result_return
parameter is undefined. The constant [MP_ABSENT_ OBJECT] indicates the
absence of a result.

In asynchronous mode, this parameter is undefined.

invoke_id_return Specifies the invoke identification of the initiated management operation, when

invoked in asynchronous mode. This value allows the results retrieved through the
mp_receive function to be matched with the original request. In synchronous mode,
this parameter is undefined. It is applicable only in a confirmed mode.

Return Values

If used in asynchronous mode, the return value for mp_action_req indicates whether the action was com-
pleted or whether it was initiated. If used in asynchronous mode, it indicates whether the action was
initiated.

If successfully completed when used in synchronous mode or successfully initiated when used in asyn-
chronous mode, mp_action_req returns the constant [MP_SUCCESS]. If uncompleted when used in syn-
chronous mode or not initiated when used in asynchronous mode, mp_action_req returns an error code.

Error Codes

If unsuccessful, mp_action_req returns one of the following error codes.

The constant [MP_NO_WORKSPACE]

The constant [MP_INVALID_SESSION]

The constant [MP_INSUFFICIENT_RESOURCES]

Any problem value for a Communications-Error

Any problem value for a System-Error

One of the following problem values for a CMIS-Service-Error:

[ACCESS_DENIED] The request operation was not performed due to security reasons.

[CLASS_INSTANCE_CONFLICT]
The managed-object instance is not a member of the specified class.

[COMPLEXITY_LIMITATION] The requested operation was not performed, because an OM attri-
bute, such as scope, filter, or synchronization was too complex.

[INVALID_ARGUMENT_VALUE]
The event argument value was out of range or otherwise inappro-

priate.

[INVALID_FILTER] Contains an assertion that is not valid or an unrecognized logical
operator.

[INVALID_SCOPE] The scope value is not valid.

[NO_SUCH_ACTION] The action type is not recognized.

[NO_SUCH_ARGUMENT] The event or action is not recognized.

[NO_SUCH_OBJECT_CLASS] The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

Chapter 2. Reference Pages 37

mp_action_req(3)

[PROCESSING_FAILURE] A general failure was encountered during the processing of an oper-
ation.

[SYNCHRONIZATION_NOT_SUPPORTED]
This type of synchronization is not supported.

One of the following problem values for a Library-Error:

[BAD_ARGUMENT] An argument that was not valid was specified.

[BAD_CLASS] The OM class of either an argument, result, linked-reply, or error is not sup-
ported for this option.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use on the session.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation is no
longer available.

[SIZE_LIMIT_EXCEEDED]
The maximum number of linked responses, about which the requested service
should return information, has been reached.

[TIME_LIMIT_EXCEEDED]
The maximum elapsed time, within which the requested service must be pro-
vided, has been reached. The OM attribute parameter specifies a
Multiple-Reply object, which contains received partial results. The syntax is
object(Multiple-Reply). This OM attribute can be absent.

Related Information

e See “mp_abandon(3)” on page 34.
e See “mp_action_rsp(3)” on page 39.
e See “mp_bind(3)” on page 42.

e See “mp_receive(3)” on page 76.

38

Programmer's Reference

mp_action_rsp(3)

mp_action_rsp(3)

Purpose

Replies to a confirmed action request

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_action_rsp(OM_private object session,

OM private object context,
OM_object response,
OM_sint invoke_id);

Parameters

session

context

response

Specifies the management session against which this operation is performed. This is the
private object of the OM class Session that was previously returned from mp_bind.

Specifies the management context to be used for this operation. This parameter must be a
private object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT].

Specifies the information supplied as the response to an action. This information can be one of
the following:

¢ An instance of a subclass of the OM class Linked-Reply-Argument. An instance of the OM

class CMIS-Linked-Reply-Argument expresses a partial result (linked reply). This instance
contains one of the following OM attributes:

[ACTION_ERROR] A partial, negative result of a confirmed action operation.
[ACTION_RESULT] A partial, successful result of a confirmed action operation.

[PROCESSING_FAILURE]
When processing the operation, a general failure was encountered
after the partial results were sent.

¢ An instance of a subclass of the OM class Action-Result, which is the information supplied

as the single reply to an action. This reply indicates the successful completion of the oper-
ation. For a CMIS operation, the response is an instance of the OM class
CMIS-Action-Result.

¢ An instance of a subclass of the OM class Service-Error, which indicates the failure of the

action. For a CMIS operation, one of the following problem values for a
CMIS-Service-Error, as well as its associated parameter, can be sent as a reply:

[ACCESS_DENIED] The request operation was not performed due to security
reasons.

[CLASS_INSTANCE_CONFLICT]
The managed-object instance is not a member of the
specified class.

Chapter 2. Reference Pages 39

mp_action_rsp(3)

[COMPLEXITY_LIMITATION] The requested operation was not performed, because an
OM attribute, such as scope, filter, or synchronization was
too complex.

[INVALID_ARGUMENT_VALUE]
The event argument value was out of range or otherwise

inappropriate.
[INVALID_FILTER] Contains an assertion that is not valid or an unrecognized
logical operator.
[INVALID_SCOPE] The scope value is not valid.
[NO_SUCH_ACTION] The action type is not recognized.
[NO_SUCH_ARGUMENT] The event or action is not recognized.

[NO_SUCH_OBJECT_CLASS] The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[PROCESSING_FAILURE] A general failure was encountered during the processing
of an operation.

[SYNCHRONIZATION_NOT_SUPPORTED]
This type of synchronization is not supported.

e The constant [MP_ABSENT_OBJECT], which indicates one of the following possibilities:

— The result is NULL (absent) because no object was selected.
— This is the last response following a chain of linked replies.

invoke_id
Specifies the invoke identification of the requested operation to which the reply applies.

Return Values

If successful, mp_action_rsp returns the constant [MP_SUCCESS.] If unsuccessful, mp_action_rsp returns
one of the following error codes.

Error Codes

¢ The constant [MP_NO_WORKSPACE]

¢ The constant [MP_INVALID_SESSION]

e The constant [MP_INSUFFICIENT _RESOURCES]

¢ Any problem value for a Communications-Error

¢ Any problem value for a System-Error

¢ One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that is not valid was specified.

[BAD_ERROR] A service error that is not valid was specified.

[BAD_LINKED REPLY]
A linked reply that is not valid was specified.

[BAD_RESULT] A result that is not valid was specified.
[BAD_SESSION] A session that was not valid was specified.

40 Programmer's Reference

mp_action_rsp(3)

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NO_SUCH_OPERATION]
The library has no knowledge of the designated operation and notification in
progress, or the response does not match the invoked operation and notifica-
tion.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use in this session.

[SESSION_TERMINATED]
The session was terminated and the results of an outstanding operation are
no longer available.

Related Information
e See “mp_action_req(3)” on page 36.
e See “mp_hind(3)” on page 42.

e See “mp_receive(3)” on page 76.

Chapter 2. Reference Pages 41

mp_bind(3)

mp_bind(3)

Purpose

Opens a management session

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_bind(OM object session,
OM_workspace workspace,
OM_private_object xbound _session_return);

Parameters

session

workspace

bound_session_return

Return Values

Specifies a manager session, together with other details of the service
required. This parameter can be either a public object or a private object.

The constant [MP_DEFAULT_SESSION] can also be used as the value of this
parameter, causing a new session to be created with default values for all its
OM attributes. If the OM attribute requestor-Title is specified, only one session
can be opened with the same value of this OM attribute.

The OM attribute requestor-Title is required for manager sessions that need to
process indications using the mp_receive function call. This is normal for
agents, and for managers that expect to process incoming event reports.

Specifies the workspace (obtained from a call to mp_initialize), which is to be
associated with the session. All function results from management operations
using this session are returned as private objects in this workspace. If the
session parameter is a private object, it must be a private object in this work-
space.

Specifies a private object. Upon successful completion, it contains an instance
of a management session, which can be used as a parameter to other func-
tions (for example, mp_get_req). This parameter is a hew private object if the
value of session was MP_DEFAULT_SESSION or a public object; otherwise, it
is the private object that was supplied as a parameter. If a private object was
supplied, the session provided should not be already in use. The function
supplies default values for any of the OM attributes that were not present in
the session instance supplied as a parameter. This function also sets the
value of the file-Descriptor OM attribute.

If successful, mp_bind returns the constant [MP_SUCCESS]. If unsuccessful, mp_bind returns one of the

following error codes.

42 Programmer's Reference

mp_bind(3)

Error Codes

¢ The constant [MP_NO_WORKSPACE]

¢ The constant [MP_INVALID_SESSION]

¢ The constant [MP_INSUFFICIENT_RESOURCES]

¢ Any problem value for a Communications-Error

¢ Any problem value for a System-Error

¢ One of the following problem values for a Library-Error:

[BAD_ADDRESS] An address that is not valid was specified.
[BAD_SESSION] A session that was not valid was specified.
[BAD_TITLE] A title that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use in this session.

[TOO_MANY_SESSIONS]
Additional management sessions can not be started.

Related Information
e See “mp_unbind(3)” on page 88.

Chapter 2. Reference Pages 43

mp_cancel_get_req(3)

mp_cancel_get req(3)

Purpose

Cancels in an orderly manner the result of a pending get operation that is executing in asynchronous
mode

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_cancel_get_req(OM_private_object session,
OM_private object context,
OM_object argument,
OM_sint xinvoke_id _return);

Description

¢ This function cancels the result of an outstanding, asynchronous mp_get_req function call in an orderly
manner. The mp_get_req function is no longer outstanding after the service confirmation of the
cancel-get operation is received by mp_receive. Any subsequent replies to the get operation are not
returned by mp_receive.

¢ This service is defined as a confirmed service. A single reply is expected.

¢ This function can be called in both synchronous and asynchronous modes.

Parameters

session Specifies the management session in which the get operation was requested.
This is the private object of the OM class Session that was previously returned
from mp_bind.

context Specifies the management context to be used for this operation. This parameter
is a private object of the OM class Context, or the constant
[MP_DEFAULT_CONTEXT]. This parameter defines the modes of operation and
the possible addressing and access-control parameters.

argument Specifies the specific outstanding asynchronous get operation to be terminated.
The supplied parameter is an instance of a subclass of the OM class
Cancel-Get-Argument. For an instance of the OM class
CMIS-Cancel-Get-Argument, the value of the OM attribute get-Invoke-Id must be
the value returned by the mp_get_req function call that initiated the get operation
to be canceled.

invoke_id_return Specifies the invoke identification of the initiated cancel-get asynchronous opera-
tion. This value allows the results retrieved through the mp_receive function to be
matched with the original request. In synchronous mode, this parameter is unde-
fined.

44 programmer's Reference

mp_cancel_get_req(3)

Return Values
The return value for this function indicates whether mp_cancel_get _req was initiated.

If initiated and successfully completed when used in synchronous mode or asynchronous mode,
mp_cancel_get _req returns the constant [MP_SUCCESS.]

If the action did not complete successfully when used in synchronous mode, mp_cancel_get req returns
one of the following error codes.

Error Codes

¢ The constant [MP_NO_WORKSPACE]

The constant [MP_INVALID_SESSION]

The constant [MP_INSUFFICIENT _RESOURCES]

Any problem value for a Communications-Error

Any problem value for a System-Error

One of the following problem values for a CMIS-Service-Error:

[MISTYPED_OPERATION]
The invoke identifier of the get operation does not refer to a get operation.

[NO_SUCH_INVOKE_ID]
The invoke identifier of the get operation is not recognized.

[PROCESSING_FAILURE]
A general failure was encountered during processing of the operation.

¢ One of the following problem values for a Library-Error:
[BAD_CONTEXT] A context argument that was not valid was specified.
[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NO_SUCH_OPERATION]
The library has no knowledge of the designated operation and notification in
progress, or the response does not match the invoked operation and notifica-
tion.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use in this session.

[SESSION_TERMINATED]
The session was terminated and the results of an outstanding operation are
no longer available.

Chapter 2. Reference Pages 45

mp_cancel_get_req(3)

If the action did not complete successfully when used in asynchronous mode, mp_cancel_get_req returns
one of the following error codes:

¢ The constant [MP_NO_WORKSPACE]

¢ The constant [MP_INVALID_SESSION]

¢ The constant [MP_INSUFFICIENT_RESOURCES]

¢ One of the following problem values for a Library-Error:

[BAD_CONTEXT] A context argument that was not valid was specified.
[BAD_SESSION] A session that is not valid was specified.
[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-

ment service. This error is returned if the XMP API cannot clear a tran-
sient system error by retrying the affected system call.

[NO_SUCH_OPERATION] The library has no knowledge of the designated operation and notification
in progress, or the response does not match the invoked operation and
notification.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not
agreed upon for use in this session.

[SESSION_TERMINATED]

The session was terminated and the results of an outstanding operation
are no longer available.

Related Information

¢ See “mp_bind(3)” on page 42.
e See “mp_cancel_get_rsp(3)” on page 47.
e See “mp_receive(3)” on page 76.

46 Programmer's Reference

mp_cancel_get_rsp(3)

mp_cancel_get rsp(3)

Purpose

Replies to a requested cancel-get operation

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_cancel get rsp(OM private object session,

OM_private object context,
OM_object response,
OM_sint invoke_id);

Description

¢ A last reply to the canceled, outstanding get operation has to be issued to indicate the completion of
the get operation. That last reply contains the service error canceled-operation.

¢ No further replies to the canceled operation are issued.

Parameters

session Specifies the management session against which this operation is performed. This is the
private object of the OM class Session that was previously returned from mp_bind.

context Specifies the management context to be used for this operation. This parameter is a private
object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT].

response Specifies the information supplied as the response to a cancel-get operation. This information
can be one of the following:

e The constant [MP_ABSENT_OBJECT], which indicates the successful completion of the

operation.

An instance of a subclass of the OM class Service-Error, which indicates the failure of the
operation.

For an instance of the OM class CMIS-Service-Error, one of the following problem values
for a CMIS-Service-Error, as well as its associated parameter, can be sent as a reply:

[MISTYPED_OPERATION]
The invoke identifier of the get operation does not refer to a get
operation.

[NO_SUCH_INVOKE_ID] The invoke identifier of the get operation is not recognized.

[PROCESSING_FAILURE]
A general failure was encountered during processing of the
operation.

invoke_id Specifies the invoke identification of the requested cancel-get operation to which the reply
applies.

Chapter 2. Reference Pages 47

mp_cancel_get_rsp(3)

Return Values

If successful, mp_cancel_get rsp returns the constant [MP_SUCCESS]. If unsuccessful,
mp_cancel_get_rsp returns one of the following error codes.

Error Codes

¢ The constant [MP_NO_WORKSPACE]

¢ The constant [MP_INVALID_SESSION]

¢ The constant [MP_INSUFFICIENT_RESOURCES]

¢ Any problem value for a Communications-Error

¢ Any problem value for a System-Error

¢ One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_ERROR] A service error that is not valid was specified.

[BAD_PROCEDURAL_USE]
The procedure used for linked replies does not comply with the ISO and
X/Open standards, or the permitted service primitive chaining was violated.

[BAD_SESSION] A session that is not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NO_SUCH_OPERATION]
The library has no knowledge of the designated operation and notification in
progress, or the response does not match the invoked operation and notifica-
tion.

[SESSION_TERMINATED]
The session was terminated and the results of an outstanding operation are
no longer available.

Related Information

e See “mp_bhind(3)” on page 42.
e See “mp_cancel_get _req(3)” on page 44.
e See “mp_receive(3)” on page 76.

48 Programmer's Reference

mp_create_req(3)

mp_create_req(3)

Purpose

Creates a new managed-object instance

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_create req(OM_private object session,

Description

OM private object context,
OM_object argument,

OM_private object *result return,
OM_sint *invoke_id_return);

¢ This function is used to request the creation of a hew managed-object instance.

¢ This function is defined as a confirmed service. A single reply is expected.

¢ This function can be called in both synchronous and asynchronous modes.

Parameters

session

context

argument

result_return

invoke_id_return

Specifies the management session against which this operation is performed. This
is the private object of the OM class Session that was previously returned from
mp_bind.

Specifies the management context to be used for this operation. This parameter is
a private object of the OM class Context, or the constant
[MP_DEFAULT_CONTEXT]. This parameter defines the modes of operation and
the possible addressing and access-control parameters.

Specifies the information supplied as the parameter of a create operation. This
information is an instance of a subclass of the OM class Create-Argument. For a
CMIS create operation, the supplied parameter is an instance of the OM class
CMIS-Create-Argument.

Specifies a private object. Upon successful completion of a synchronous call, the
result may be one of the following:

¢ An instance of a subclass of the OM class Create-Result. For a CMIS opera-
tion, the result is an instance of the OM class CMIS-Create-Result.

e The constant [MP_ABSENT_OBJECT], which may be returned if the requester
of the create operation provided the name of the new managed-object instance.

Specifies the invoke identification of the initiated management operation, when
invoked in asynchronous mode. This value allows the results retrieved through the
mp_receive function to be matched with the original request. In synchronous mode,
this parameter is undefined.

Chapter 2. Reference Pages 49

mp_create_req(3)

Return Values

The return value for this function indicates whether the create operation was completed, if used in syn-
chronous mode, or whether the create operation was initiated, if used in asynchronous mode.

If successful, mp_create_req returns the constant [MP_SUCCESS]. If unsuccessful, mp_create req
returns one of the following error codes.

Error Codes

¢ The constant [MP_NO_WORKSPACE]

¢ The constant [MP_INVALID_SESSION]

e The constant [MP_INSUFFICIENT_RESOURCES]

¢ Any problem value for a Communications-Error

¢ Any problem value for a System-Error

¢ One of the following problem values for a CMIS-Service-Error:

[ACCESS_DENIED]
The request operation was not performed due to security reasons.

[CLASS_INSTANCE_CONFLICT]
The managed-object instance is not a member of the specified class.

[DUPLICATE_MANAGED_OBJECT_INSTANCE]
The new managed-object instance value provided by the invoker of the create operation is
already registered for a managed object of the specified class.

[INVALID_ATTRIBUTE_VALUE]
The attribute value was out of the valid range or otherwise inappropriate.

[INVALID_OBJECT_INSTANCE]
The name of the object instance does not comply with the naming rules.

[MISSING_ATTRIBUTE_VALUE]
A required attribute value was not specified, and a default value was not available.

[NO_SUCH_ATTRIBUTE]
The identifier of an attribute, or an attribute group, is not recognized.

[NO_SUCH_OBJECT_CLASS]
The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[NO_SUCH_REFERENCE_OBJECT]
The reference-object instance is not recognized.

[PROCESSING_FAILURE]
A general failure was encountered during the processing of an operation.

¢ One of the following problem values for a Library-Error:

[BAD_ARGUMENT] An argument that is not valid was specified.

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_SESSION] A session that is not valid was specified.

50 Programmer's Reference

mp_create_req(3)

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use in this session.

[SESSION_TERMINATED]

The session was terminated and the results of an outstanding operation are
no longer available.

[TIME_LIMIT_EXCEEDED]
The maximum elapsed time within which the requested service must be pro-
vided has been reached. The OM attribute parameter specifies a
Multiple-Reply object, which contains received partial results. Its syntax is
object(Multiple-Reply). This OM attribute can be absent.

Related Information
e See “mp_abandon(3)” on page 34.
e See “mp_hind(3)” on page 42.
e See “mp_cancel_get_rsp(3)” on page 47.
e See “mp_receive(3)” on page 76.

Chapter 2. Reference Pages 51

mp_create_rsp(3)

mp_create_rsp(3)

Purpose

Replies to a requested create operation

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_create rsp(OM_private object session,

Parameters

OM private object context,
OM_object response,
OM_sint invoke_id);

session Specifies the management session against which this operation is performed. This is the
private object of the OM class Session that was previously returned from mp_bind.

context Specifies the management context to be used for this operation. This parameter is a private
object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT].

response Specifies the information supplied as the single response to a create operation. This infor-
mation can be one of the following:

An instance of a subclass of the OM class Create-Result, which indicates the successful
completion of the operation. For a CMIS create operation, the response is an instance of
the OM class CMIS-Create-Result.

The constant [MP_ABSENT_OBJECT], which is returned if the create operation was suc-
cessful and if the requester of the create operation provided the name of the new
managed-object instance.

An instance of a subclass of the OM class Service-Error, which indicates the failure of
the requested operation. For a CMIS create operation, one of the following problem
values for a CMIS-Service-Error, as well as its associated parameter, can be sent as a

reply:
[ACCESS_DENIED]
The request operation was not performed due to security reasons.

[CLASS_INSTANCE_CONFLICT]
The managed-object instance is not a member of the specified class.

[DUPLICATE_MANAGED_OBJECT_INSTANCE]
The new managed-object instance value provided by the invoker of the create
operation is already registered for a managed object of the specified class.

[INVALID_ATTRIBUTE_VALUE]
The attribute value was out of the valid range or otherwise inappropriate.

[INVALID_OBJECT_INSTANCE]
The name of the object instance does not comply with the naming rules.

[MISSING_ATTRIBUTE_VALUE]
A required attribute value was not specified, and a default value was not
available.

52 Programmer's Reference

invoke_id

mp_create_rsp(3)

[NO_SUCH_ATTRIBUTE]

The identifier of an attribute, or an attribute group, is not recognized.

[NO_SUCH_OBJECT_CLASS]

The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]

The managed-object instance is not recognized.

[NO_SUCH_REFERENCE_OBJECT]

The reference-object instance is not recognized.

[PROCESSING_FAILURE]

Return Values

A general failure was encountered during the processing of an operation.

Specifies the invoke identification of the requested operation to which the reply applies.

The mp_create_rsp command returns a value to indicate whether the response was completed.

If successful, mp_create_rsp returns the constant [MP_SUCCESS]. If unsuccessful, mp_create_rsp
returns one of the following error codes.

Error Codes

¢ The constant [MP_NO_WORKSPACE]

The constant [MP_INVALID_SESSION]

The constant [MP_INSUFFICIENT_RESOURCES]

Any problem value for a System-Error

Any problem value for a Communications-Error

One of the following problem values for a Library-Error:

[BAD_CLASS]

[BAD_CONTEXT]
[BAD_ERROR]
[BAD_RESULT]
[BAD_SESSION]
[MISCELLANEOUS]

The OM class of an argument, result, linked-reply, or error is not supported for
this operation.

A context argument that was not valid was specified.
A service error that is not valid was specified.

A result that is not valid was specified.

A session that was not valid was specified.

A miscellaneous error occurred during interaction with the system management
service. This error is returned if the XMP API cannot clear a transient system
error by retrying the affected system call.

[NO_SUCH_OPERATION]

The library has no knowledge of the designated operation and notification in
progress, or the response does not match the invoked operation and notifica-
tion.

[SESSION_TERMINATED]

The session is terminated and the results of an outstanding operation is no
longer available.

Chapter 2. Reference Pages 53

mp_create_rsp(3)

Related Information

¢ See “mp_bind(3)” on page 42.
e See “mp_create_req(3)” on page 49.
e See “mp_receive(3)” on page 76.

54 Programmer's Reference

mp_delete_req(3)

mp_delete _req(3)

Purpose

Deletes managed objects

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_delete req(OM_private object session,

Description

OM private object context,
OM_object argument,

OM_private object *result return,
OM_sint *invoke_id_return);

This service is defined as a confirmed service, which can be called in both synchronous and asynchro-
nous modes. A reply is expected.

Parameters

session

context

argument

result_return

invoke_id_return

Specifies the management session against which this operation is performed. This is
the private object of the OM class Session that was previously returned from mp_bind.

Specifies the management context to be used for this operation. This parameter is a
private object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT].
This parameter defines the modes of operation and the possible addressing and
access-control parameters.

Specifies the information supplied as the parameter of a delete operation. This infor-
mation is an instance of a subclass of the OM class Delete-Argument. For a CMIS
delete operation, the supplied parameter is an instance of the OM class
CMIS-Delete-Argument.

Specifies a private object. Upon successful completion of a synchronous call, the
result can be one of the following:

¢ An instance of a subclass of the OM class Delete-Result. For a CMIS operation,
the result is an instance of the OM class CMIS-Delete-Result.

¢ An instance of the OM class Multiple-Reply, which is a set of instances of a sub-
class of the OM class Linked-Reply-Argument. Each instance of the OM class
CMIS-Linked-Reply-Argument contains one of the following OM attributes:

— delete-Error
— delete-Result
— processing-Failure

¢ The constant [MP_ABSENT_OBJECT], which indicates the absence of a result, if
no managed object was selected for the operation.

Specifies the invoke identification of the initiated management operation when invoked
in asynchronous mode. This value allows the results retrieved through the
mp_receive function to be matched with the original request. In synchronous mode,
this parameter is undefined.

Chapter 2. Reference Pages 55

mp_delete_req(3)

Return Values

The return value for this function indicates whether the delete operation was completed if used in synchro-
nous mode; or whether the delete operation was initiated, if used in asynchronous mode.

If successful, mp_delete_req returns the constant [MP_SUCCESS]. If unsuccessful, mp_delete req
returns one of the following error codes.

Error Codes

56

The constant [MP_NO_WORKSPACE]

The constant [MP_INVALID_SESSION]

The constant [MP_INSUFFICIENT_RESOURCES]

Any problem value for a Communications-Error

Any problem value for a System-Error

One of the following problem values for a CMIS-Service-Error:

[ACCESS_DENIED] The request operation was not performed due to security reasons.

[CLASS_INSTANCE_CONFLICT] The managed-object instance is not a member of the specified
class.

[COMPLEXITY_LIMITATION] The requested operation was not performed, because an OM attri-
bute, such as scope, filter, or synchronization was too complex.

[INVALID_FILTER] Contains an assertion that is not valid or an unrecognized logical
operator.

[INVALID_SCOPE] The scope value is not valid.

[NO_SUCH_OBJECT_CLASS] The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[PROCESSING_FAILURE] A general failure was encountered during the processing of an
operation.

[SYNCHRONIZATION_NOT_SUPPORTED]
This type of synchronization is not supported.

One of the following problem values for a Library-Error:

[BAD_ARGUMENT] An argument that was not valid was specified.

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use on the session.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation is no
longer available.

Programmer's Reference

mp_delete_req(3)

[TIME_LIMIT_EXCEEDED]
The maximum elapsed time, within which the requested service must be pro-
vided, has been reached. The OM attribute parameter specifies a
Multiple-Reply object, which contains received partial results. The syntax is
object(Multiple-Reply). this OM attribute can be absent.

Related Information
e See “mp_abandon(3)” on page 34.
¢ See “mp_bind(3)” on page 42.
e See “mp_delete_rsp(3)” on page 58.
e See “mp_receive(3)” on page 76.

Chapter 2. Reference Pages 57

mp_delete_rsp(3)

mp_delete_rsp(3)

Purpose

Replies to a requested delete operation

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_delete rsp(OM_private object session,

OM private object context,
OM_object response,
OM_sint invoke_id);

Parameters

session Specifies the management session against which this operation is performed. This is the
private object of the OM class Session that was previously returned from mp_bind.

context Specifies the management context to be used for this operation. This parameter is a private
object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT.]

response Specifies the information supplied as the response to a delete operation. This information can
be one of the following:

¢ An instance of a subclass of the OM class Linked-Reply-Argument, which expresses a

partial result (linked reply). Each instance of the OM class CMIS-Linked-Reply-Argument
contains only one of the following OM attributes:

— delete-Error
— delete-Result
— processing-Failure

An instance of a subclass of the OM class Delete-Result, which is supplied as the single
reply to a delete operation. This instance indicates the successful completion of the opera-
tion. For a CMIS operation, this response is an instance of the OM class
CMIS-Delete-Result.

An instance of a subclass of the OM class Service-Error. For an instance of the OM class
CMIS-Service-Error, one of the following problem values for a CMIS-Service-Error, as well
as its associated parameter, can be sent as a reply:

[ACCESS_DENIED] The request operation was not performed due to security
reasons.

[CLASS INSTANCE_CONFLICT]
The managed-object instance is not a member of the speci-
fied class.

[COMPLEXITY_LIMITATION] The requested operation was not performed, because an
OM attribute, such as scope, filter, or synchronization was

too complex.

[INVALID_FILTER] Contains an assertion that is not valid or an unrecognized
logical operator.

[INVALID_SCOPE] The scope value is not valid.

58 Programmer's Reference

mp_delete_rsp(3)

[NO_SUCH_OBJECT_CLASS]
The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[PROCESSING_FAILURE] A general failure was encountered during the processing of
an operation.

[SYNCHRONIZATION_NOT_SUPPORTED]
This type of synchronization is not supported.

e The constant [MP_ABSENT_OBJECT], which indicates two possibilities:

— The result is NULL (absent) because no object was selected.
— This is the last response following a chain of linked replies.

invoke_id Specifies the invoke identification of the requested operation to which the reply applies.

Return Values
The mp_delete_rsp command returns a value to indicate whether the response was completed.

If successful, mp_delete_rsp returns the constant [MP_SUCCESS]. If unsuccessful, mp_delete_rsp
returns one of the following error codes.

Error Codes

¢ The constant [MP_NO_WORKSPACE]

The constant [MP_INVALID_SESSION]

The constant [MP_INSUFFICIENT_RESOURCES]

Any problem value for a Communications-Error

Any problem value for a System-Error

One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_ERROR] A service error that is not valid was specified.

[BAD_LINKED_REPLY]
A linked reply that is not valid was specified.

[BAD_RESULT] A result that is not valid was specified.
[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NO_SUCH_OPERATION]
The library has no knowledge of the designated operation and notification in
progress, or the response does not match the invoked operation and notifica-
tion.

Chapter 2. Reference Pages 59

mp_delete_rsp(3)

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use in this session.

[SESSION_TERMINATED]
The session was terminated and the results of an outstanding operation are
no longer available.

Related Information

e See “mp_bind(3)" on page 42.
e See “mp_delete_req(3)” on page 55.
e See “mp_receive(3)” on page 76.

60 Programmer's Reference

mp_error_message(3)

mp_error_message(3)

Purpose
Returns an error message describing a particular error

Syntax

#include <xom.h>
#include <xmp.h>

OM_uint mp_error _message(MP_status error,

OM_uint length,
unsigned char *error_text return);

Description

The requester provides a buffer-address parameter and a buffer-length parameter. The text of the error
message is stored in the buffer of the requester and the length is returned.

Parameters

error Specifies the value that is returned from a function call.

length Specifies the length of the buffer. The error text buffer is an unsigned character
array.

error_text_return Specifies a message describing the error. The error message text is terminated by

a NULL character.

The text of the error is truncated if the length of the error-text buffer is less than the
length of the text of the error message.

Return Values

The return value for mp_error_message indicates the length of the returned message.

Note: If length has the value 0 (zero) and if error_text return is undefined, for example, if it has the
NULL value, this function does not return any text. Instead, the function returns only the length
required to contain the error message.

The mp_error_message function returns no errors. A default error message reports faulty parameters and
other problems.

Chapter 2. Reference Pages 61

mp_event_report_req(3)

mp_event_report_req(3)

Purpose

Reports a notification emitted by a managed object

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_event report req(OM private object session,

Description

OM private object context,
OM_object argument,

OM_private object *result return,
OM_sint *invoke_id_return);

The mp_event_report_req function can be requested in a confirmed or nonconfirmed mode. A reply is
expected in confirmed mode, but none is expected in nonconfirmed mode. An SNMP trap can be sent
only in a nonconfirmed mode.

This function can be called in both synchronous and asynchronous modes.

Parameters

session

context

argument

result_return

invoke_id_return

Specifies the management session against which this operation is performed. This
is the private object of the OM class Session that was previously returned from
mp_bind.

Specifies the management context to be used for this operation. This parameter is
a private object of the OM class Context, or the constant
[MP_DEFAULT_CONTEXT]. This parameter defines the modes of operation and
the possible addressing and access-control parameters.

Specifies the information supplied as the parameter of the notification to be
reported. This information can be one of the following:

e For a CMIS event report, an instance of the OM class
CMIS-Event-Report-Argument
e For an SNMP trap, an instance of the OM class SNMP-Trap-Argument.

Specifies a private object. Upon successful completion of a synchronous call, when
the service was requested in a confirmed mode, the result is one of the following:

¢ An instance of the OM class CMIS-Event-Report-Result
¢ The constant [MP_ABSENT_OBJECT], which indicates the absence of a result.

Specifies the invoke identification of the initiated management operation when
invoked in asynchronous mode. This value allows the results retrieved through the
mp_receive function to be matched with the original request. In synchronous mode,
this parameter is undefined. It is applicable only in a confirmed mode.

62 Programmer's Reference

mp_event_report_req(3)

Return Values

The return value for this function indicates whether the report operation was completed, if used in synchro-
nous mode, or whether the report operation was initiated if used in asynchronous mode.

If successful, mp_event_report_req returns the constant [MP_SUCCESS]. If unsuccessful,
mp_event_report_req returns one of the following error codes.

Error Codes

The constant [MP_NO_WORKSPACE]

The constant [MP_INVALID_SESSION]

The constant [MP_INSUFFICIENT_RESOURCES]

Any problem value for a Communications-Error

Any problem value for a System-Error

One of the following problem values for a CMIS-Service-Error:

[INVALID_ARGUMENT_VALUE]
The event argument value was out of range or otherwise inappropriate.

[NO_SUCH_ARGUMENT] The event or action is not recognized.

[NO_SUCH_EVENT_TYPE]
The event is not recognized.

[NO_SUCH_OBJECT_CLASS]
The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[PROCESSING_FAILURE] A general failure was encountered during the processing of an operation.

One of the following problem values for a Library-Error:

[BAD_ARGUMENT] An argument that was not valid was specified.

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not sup-
ported for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-

ment service. This error is returned if the XMP API cannot clear a tran-
sient system error by retrying the affected system call.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not
agreed upon for use on the session.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation is no
longer available.

[TIME_LIMIT_EXCEEDED]
The maximum elapsed time, within which the requested service must be
provided, has been reached. The OM attribute parameter specifies a
Multiple-Reply object, which contains received partial results. The syntax
is object(Multiple-Reply). This OM attribute can be absent.

Chapter 2. Reference Pages 63

mp_event_report_req(3)

Related Information
e See “mp_abandon(3)” on page 34.
e See “mp_bind(3)" on page 42.
e See “mp_event_report_rsp(3)” on page 65.
e See “mp_receive(3)” on page 76.

64 Programmer's Reference

mp_event_report_rsp(3)

mp_event_report_rsp(3)

Purpose

Replies to a previously reported management notification

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_event report rsp(OM private object session,

Parameters

OM private object context,
OM_object response,
OM_sint invoke_id);

session Specifies the management session against which this operation is performed. This is the
private object of the OM class Session that was previously returned from mp_bind.

context Specifies the management context to be used for this operation. This parameter is a private
object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT]. This parameter
defines the modes of operation and the possible addressing and access-control parameters.

response Specifies the information supplied as the response to a reported event. This information is one
of the following:

¢ An instance of a subclass of the OM class Event-Report-Result, which indicates the suc-
cessful completion of the operation. For a CMIS operation, the response is an instance of
the OM class CMIS-Event-Report-Result.

e The constant [MP_ABSENT_OBJECT], which indicates the absence of a result and means
that the notification was completed successfully.

¢ An instance of a subclass of the OM class Service-Error, which indicates the failure of the
notification:

— For a CMIS operation, an instance of the OM class CMIS-Service-Error. The following

problem values for a CMIS-Service-Error, as well as its associated parameter, can be
sent as a reply:

[INVALID_ARGUMENT_VALUE]
The event argument value was out of range or otherwise
inappropriate.

[NO_SUCH_ARGUMENT] The event or action is not recognized.

[NO_SUCH_EVENT_TYPE]
The event is not recognized.

[NO_SUCH_OBJECT_CLASS]
The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[PROCESSING_FAILURE]
A general failure was encountered during the processing of
an operation.

Chapter 2. Reference Pages 65

mp_event_report_rsp(3)

invoke_id Specifies the returned invoke identification of the reported notification to which the response
applies.

Return Values
The return value for this function indicates whether the response was completed.

If successful, mp_event_report_rsp returns the constant [MP_SUCCESS]. If unsuccessful,
mp_event_report_rsp returns one of the following error codes.

Error Codes

¢ The constant [MP_NO_WORKSPACE]

¢ The constant [MP_INVALID_SESSION]

* The constant [MP_INSUFFICIENT _RESOURCES]

¢ Any problem value for a Communications-Error

e Any problem value for a System-Error

¢ One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that is not valid was specified.

[BAD_ERROR] A service error that is not valid was specified.

[BAD_LINKED-REPLY] A linked reply that is not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NO_SUCH_OPERATION]
The library has no knowledge of the designated operation and notification in
progress, or the response does not match the invoked operation and notifica-
tion.

[SESSION_TERMINATED]
The session was terminated and the results of an outstanding operation are
no longer available.

Related Information

¢ See “mp_bind(3)” on page 42.
e See “mp_event_report_req(3)” on page 62.
e See “mp_receive(3)” on page 76.

66 Programmer's Reference

mp_get_next_req(3)

mp_get_next_req(3)

Purpose

Retrieves the next SNMP management information

Note: Using the get-next function can prevent a manager session from being portable on both the ISO
CMIS and SNMP environments. For this reason, it is recommended that you avoid using this
facility.

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_get_next_req(OM_private_object session,
OM_private_object context,
OM_object argument,
OM private object *result return,
OM_sint *invoke_id_return);

Description

This function supports the SNMP get-next operation. It can be used only when the SNMP package has
been selected using mp_version.

This function is defined as a confirmed service and can be called in both synchronous and asynchronous
modes. A reply is expected.

Parameters

session Specifies the management session against which this operation is performed. This is
the private object of the OM class Session that was previously returned from mp_bind.

context Specifies the management context to be used for this operation. This parameter is a
private object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT].
This parameter defines the modes of operation and the possible addressing and
access-control parameters.

argument Specifies the information supplied as the parameter of a get-next operation is an
instance of the OM class SNMP-Get-Argument.

result_return Specifies a private object. Upon successful completion of a synchronous call, the

result is an instance of the OM class SNMP-Get-Result, which contains a list of the
variables and the values that were read.

invoke _id _return Specifies the returned invoke identification of the management operation, when used
in asynchronous mode. This value allows the results retrieved through the
mp_receive function to be matched with the original request. In synchronous mode,
this parameter is undefined.

Chapter 2. Reference Pages 67

mp_get_next_req(3)

Return Values

The return value for this function indicates whether the operation was completed, if used in synchronous
mode; or whether the operation was initiated, if used in asynchronous mode.

If successful, mp_get_next_req returns the constant [MP_SUCCESS]. If unsuccessful, mp_get_next_req
returns one of the following error codes.

Error Codes

¢ The constant [MP_NO_WORKSPACE]

The constant [MP_INVALID_SESSION]

The constant [MP_INSUFFICIENT_RESOURCES]

Any problem value for a Communications-Error

Any problem value for a System-Error

Any problem value for a SNMP-Service-Error

One of the following problem values for a Library-Error:

Related Information

[BAD_ARGUMENT]
[BAD_CLASS]

[BAD_CONTEXT]
[BAD_SESSION]
[MISCELLANEOUS]

[NOT_SUPPORTED]

An argument that was not valid was specified.

The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

A context argument that was not valid was specified.
A session that was not valid was specified.

A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

An attempt was made to use an option that is not available or was not agreed
upon for use on the session.

[SESSION_TERMINATED]

The session is terminated and the results of an outstanding operation is no
longer available.

[TIME_LIMIT_EXCEEDED]

The maximum elapsed time, within which the requested service must be pro-
vided, has been reached. The OM attribute parameter specifies a
Multiple-Reply object, which contains received partial results. The syntax is
object(Multiple-Reply). This OM attribute can be absent.

[TOO_MANY_OPERATIONS]

Additional management operations cannot be performed, until at least one
asynchronous operation has been completed.

e See “mp_abandon(3)” on page 34.
See “mp_get_rsp(3)” on page 72.
See “mp_bind(3)” on page 42.
See “mp_receive(3)” on page 76.

68

Programmer's Reference

mp_get_req(3)

mp_get req(3)

Purpose

Retrieves management information

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_get req(OM private object session,
OM private_object context,
OM_object argument,
OM_private object *result _return,
OM_sint =invoke_id_return);

Description
¢ This service is defined as a confirmed service. A reply is expected.

¢ This function can be called in both synchronous and asynchronous modes. When used in asynchro-
nous mode, the results of this operation can be discarded locally (through mp_abandon, as with other
asynchronous calls). The remote operation also can be terminated (through mp_cancel_get_req).

Parameters

session Specifies the management session against which this operation is performed. This
is the private object of the OM class Session that was previously returned from
mp_bind.

context Specifies the management context to be used for this operation. This parameter is
a private object of the OM class Context, or the constant
[MP_DEFAULT_CONTEXT]. This parameter defines the modes of operation and
the possible addressing and access-control parameters.

argument Specifies an OM object that provides the information about which attributes are to
be retrieved. This parameter is an instance of a subclass of the OM class
Get-Argument:

e For a CMIS get operation, the supplied parameter is an instance of the OM
class CMIS-Get-Argument.

e For an SNMP get operation, the supplied parameter is an instance of the OM
class SNMP-Get-Argument.

result_return Specifies a private object. Upon successful completion of a synchronous call, the
result can be one of the following:

¢ For a CMIS get operation:
— An instance of the OM class CMIS-Get-Result.

Chapter 2. Reference Pages 69

mp_get_req(3)

— An instance of the OM class Multiple-Reply, which is a set of instances of
the OM class CMIS-Linked-Reply-Argument. Each instance of the OM class
CMIS-Linked-Reply-Argument contains one of the following attributes:

- get-List-Error
- get-Result
- processing-Failure

— The constant [MP_ABSENT_OBJECT], which indicates the absence of a
result, if no managed objects were selected for the operation.

¢ For an SNMP get operation, an instance of the OM class SNMP-Get-Result,
which contains a list of the variables and their values.

invoke_id_return Specifies the returned invoke identification of the management operation, when

used in asynchronous mode. This value allows the results retrieved through the
mp_receive function to be matched with the original request. In synchronous mode,
this parameter is undefined.

Return Values

The return value for this function indicates whether the action was completed, if used in synchronous
mode; or whether it was initiated, if used in asynchronous mode.

If successful, mp_get _req returns the constant [MP_SUCCESS]. If unsuccessful, mp_get req returns one
of the following error codes.

Error Codes

70

The constant [MP_NO_WORKSPACE]

The constant [MP_INVALID_SESSION]

The constant [MP_INSUFFICIENT_RESOURCES]

Any problem value for a Communications-Error

Any problem value for a System-Error

Any problem value for an SNMP-Service-Error

One of the following problem values for a CMIS-Service-Error:

[ACCESS_DENIED]
The request operation was not performed due to security reasons.

[CLASS_INSTANCE_CONFLICT]
The managed-object instance is not a member of the specified class.

[COMPLEXITY_LIMITATION]
The requested operation was not performed, because an OM attribute, such as scope,
filter, or synchronization was too complex.

[GET_LIST_ERROR]
One or more attribute values were not read.

[INVALID_FILTER]
Contains an assertion that is not valid or an unrecognized logical operator.

[INVALID_SCOPE]
The scope value is not valid.

[NO_SUCH_OBJECT_CLASS]
The managed-object class is not recognized.

Programmer's Reference

mp_get_req(3)

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[OPERATION_CANCELLED]
The get operation was canceled by a cancel-get operation, and no further attribute values
will be returned by this invocation of the get service.

[PROCESSING_FAILURE]
When processing the operation, a general failure was encountered after the partial results
were sent.

[SYNCHRONIZATION_NOT_SUPPORTED]
This type of synchronization is not supported.

¢ One of the following problem values for a Library-Error:

[BAD_ARGUMENT] An argument that was not valid was specified.

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use on the session.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation is no
longer available.

[SIZE_LIMIT_EXCEEDED]
The maximum number of linked responses, about which the requested service
should return information, has been reached.

[TIME_LIMIT_EXCEEDED]
The maximum elapsed time, within which the requested service must be pro-
vided, has been reached. The OM attribute parameter specifies a
Multiple-Reply object, which contains received partial results. The syntax is
object(Multiple-Reply). This OM attribute can be absent.

Related Information

e See “mp_abandon(3)” on page 34.

e See “mp_bind(3)” on page 42.

e See “mp_cancel_get req(3)” on page 44.
e See “mp_get_rsp(3)” on page 72.

e See “mp_receive(3)” on page 76.

Chapter 2. Reference Pages 71

mp_get_rsp(3)

mp_get _rsp(3)

Purpose

Replies to a requested get operation or get-next operation

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_get rsp(OM private object session,
OM private_object context,
OM_object response,
OM_sint invoke_id);

Parameters

session Specifies the management session against which this operation is performed. This is the
private object of the OM class Session that was previously returned from mp_bind.

context Specifies the management context to be used for this operation. This parameter is a private
object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT].

response Specifies the information supplied as the response to a get or get-next operation.
The response to a CMIS get operation can be one of the following:

¢ An instance of the OM class CMIS-Linked-Reply-Argument, which expresses a partial result
(linked reply). This parameter contains only one of the following OM attributes:

— get-List-Error
— get-Result
— processing-Failure

¢ An instance of the OM class CMIS-Get-Result, which is the information supplied as the
single reply to a CMIS get operation. It indicates the successful completion of the opera-
tion.

¢ An instance of the OM class CMIS-Service-Error, which indicates either that the operation
has failed or that it has been canceled.

One of the following problem values for a CMIS-Service-Error, as well as its associated
parameter, can be sent as a reply:

[ACCESS_DENIED] The request operation was not performed due to security
reasons.

[CLASS_INSTANCE_CONFLICT]
The managed-object instance is not a member of the specified
class.

[COMPLEXITY_LIMITATION]
The requested operation was not performed, because an OM
attribute, such as scope, filter, or synchronization was too
complex.

[GET_LIST_ERROR] One or more attribute values were not read.

72 Programmer's Reference

mp_get_rsp(3)

[INVALID_FILTER] Contains an assertion that is not valid or an unrecognized
logical operator.
[INVALID_SCOPE] The scope value is not valid.

[NO_SUCH_OBJECT_CLASS]
The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[OPERATION_CANCELLED]
The get operation was cancelled by a cancel-get operation, and
no further attribute values will be returned by this invocation of
the get service.

[PROCESSING_FAILURE]
A general failure was encountered during processing of the
operation.

[SYNCHRONIZATION_NOT_SUPPORTED]
The type of synchronization is not supported.

e The constant [MP_ABSENT_OBJECT], which indicates two possibilities:

— The result is NULL (absent) because no object was selected.
— This is the last response following a chain of linked replies.

The response to an SNMP get operation or an SNMP get-next operation can be one of the
following:

¢ An instance of the OM class SNMP-Get-Result, which indicates the successful completion
of the SNMP get operation or get-next operation. The OM attribute var-Bind-List contains
the list of variables with the values that were read.

¢ An instance of the OM class SNMP-Service-Error, which indicates the failure of the opera-
tion. Any problem value for an SNMP-Service-Error, including its associated parameter,
can be sent as a reply.

invoke_id Specifies the invoke identification of the requested operation to which the reply applies.

Return Values

The mp_get_rsp command returns a value to indicate whether the response was completed.

If successful, mp_get_rsp returns the constant [MP_SUCCESS]. If unsuccessful, mp_get_rsp returns one
of the following error codes.

Error Codes

The constant [MP_NO_WORKSPACE]

The constant [MP_INVALID_SESSION]

The constant [MP_INSUFFICIENT_RESOURCES]

Any problem value for a Communications-Error.

Any problem value for a System-Error.

One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

Chapter 2. Reference Pages 73

mp_get_rsp(3)

Related Information

[BAD_ERROR]
[BAD_LINKED-REPLY]
[BAD_RESULT]
[BAD_SESSION]
[MISCELLANEOUS]

A service error that is not valid was specified.
A linked reply that is not valid was specified.
A result that is not valid was specified.

A session that was not valid was specified.

A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NO_SUCH_OPERATION]

[NOT_SUPPORTED]

The library has no knowledge of the designated operation and notification in
progress, or the response does not match the invoked operation and notifica-
tion.

An attempt was made to use an option that is not available or was not agreed
upon for use in this session.

[SESSION_TERMINATED]

The session was terminated and the results of an outstanding operation are
no longer available.

¢ See “mp_bind(3)” on page 42.

e See “mp_get _req(3)” on page 69.

e See “mp_get _next req(3)” on page 67.
e See “mp_receive(3)” on page 76.

74

Programmer's Reference

mp_initialize(3)

mp_initialize(3)

Purpose

Initializes the XOM workspace

Syntax

#include <xom.h>
#include <xmp.h>

OM_workspace mp_initialize(void);

Description

¢ This function performs any necessary initialization of the API, including the creation of a workspace.
This function also performs any initialization of the API with the underlying MIS provider.

¢ This function must be called before any other management interface functions are called.

¢ This function can be called several times. In this case, each call returns a workspace that is distinct
from other workspaces created by mp_initialize but not yet deleted by mp_shutdown.

Return Values
If successful, mp_initialize returns a handle to a workspace in which OM objects can be created and

manipulated. Only objects that have been created in this workspace can be used as parameters to the
other management interface functions. If unsuccessful, mp_initialize returns NULL.

Related Information
¢ See “mp_shutdown(3)” on page 87.

Chapter 2. Reference Pages 75

mp_receive(3)

mp_receive(3)

Purpose

Retrieves the parameter of a management operation or notification; retrieves the partial result (linked
reply) or the complete result of an asynchronous management operation or notification

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_receive(OM_private_object session,
OM_sint *primitive_return,
OM_sint *mode_return,

OM_sint *completion_flag return,
MP_status =*operation_notification_status_return,
OM_private_object *result_or_argument_return,

OM_sint =invoke_id_return);

Parameters

session Specifies the management session against which this management operation or notification is
performed. This is the private object of the OM class Session that was previously returned

from mp_bind.

This function does not report any problem values for a Communications-Error or a
Service-Error as return values. Any such errors, which relate to the completed asynchronous
operation or notification, are reported in operation_notification_status_return.

primitive_return
Specifies one of the following service primitives:

Table 12. Service Primitives

Indicate Confirm

MP_GET_IND MP_GET_CNF
MP_GET_NEXT_IND MP_GET_CNF
MP_SET_IND MP_SET_CNF

MP_ACTION_IND

MP_ACTION_CNF

MP_CREATE_IND

MP_CREATE_CNF

MP_DELETE_IND

MP_DELETE_CNF

MP_EVENT_REPORT_IND

MP_EVENT_REPORT_CNF

MP_CANCEL_GET_IND

MP_CANCEL_GET_CNF

It determines the management operation or notification of this result or parameter.

This result is valid only if completion_flag_return has the value [MP_T_COMPLETED],

[MP_T_INCOMING], or [MP_T_PARTIAL].

76 Programmer's Reference

mode_return

mp_receive(3)

When the value is [MP_T_CONFIRMED], the invoked management operation or the reported
management naotification has to be confirmed. A reply is expected. When the value is
[MP_T_NON_CONFIRMED], the requested management service is not to be confirmed.

This result is valid only if completion_flag _return has the value [MP_T_INCOMING].

completion_flag_return
Takes one of the following values to indicate the status of outstanding asynchronous operations
or notifications:

[MP_T_COMPLETED]

At least one outstanding asynchronous operation or notification has been completed, and
its result (positive as well as negative) is available.

[MP_T_INCOMING]
An incoming operation or notification indication is available.
[MP_T_NOTHING]

There are neither outstanding asynchronous operations or natifications, nor incoming indi-
cations.

[MP_T_OUTSTANDING]

There are outstanding asynchronous operations or notifications, but none has been com-
pleted (even partially) yet.

[MP_T_PARTIAL]

At least one outstanding asynchronous operation has been processed, and a partial result
is available.

This result is valid only if the return value of the function is [MP_SUCCESS]. The validity of
the other results in that case is given in the following table:

Table 13. Validity of Completion Flag Values

Completion Flag Value Primitive Mode Operation Result or Invoke 1D
or Notifica- Parameter
tion Status
[MP_T_COMPLETED] Yes (*) No Yes Yes (*) Yes
[MP_T_INCOMING] Yes Yes No Yes Yes
[MP_T_NOTHING] No No No No No
[MP_T_OUTSTANDING] No No No No No
[MP_T_PARTIAL] Yes (*) No Yes Yes (*) Yes

Note:
[MP_SUCCESS].

An asterisk (*) indicates that the result is valid only if operation_notification_status_return has the value

operation_notification_status_return

This result is valid only if completion_flag return has the value [MP_T_COMPLETED] or
[MP_T_PARTIAL].

The operation_notification_status _return parameter takes one of the following values to indicate
whether the asynchronous management operation or notification was executed successfully:

The constant [MP_SUCCESS], if the operation or notification was successful

Chapter 2. Reference Pages 77

mp_receive(3)

¢ An instance of the OM class CMIS-Linked-Reply-Argument, containing the partial result of
an asynchronous operation.

* One of the following error values, if an error occurred during execution of the operation or
notification:

— The constant [MP_NO_WORKSPACE]

— The constant [MP_INVALID_SESSION]

— The constant [MP_INSUFFICIENT_RESOURCES]

— Any problem value for a Communications-Error.

— Any problem value for a SNMP-Service-Error

— One of the problem values for a CMIS-Service-Error. The possible error values are
listed for each operation in the following table.

Table 14. Valid CMIS-Service-Error Values for each Confirm Primitive

Error Values ACT CAN CRE DEL EVE GET SET
[ACCESS_DENIED] yes yes yes yes yes
[CLASS_INSTANCE_CONFLICT] yes yes yes yes yes
[COMPLEXITY_LIMITATION] yes yes yes yes
[DUPLICATE_MANAGED_OBJECT] yes

[GET_LIST_ERROR] yes
[INVALID_ARGUMENT_VALUE] yes yes
[INVALID_ATTRIBUTE_VALUE] yes

[INVALID_FILTER] yes yes yes yes
[INVALID_OBJECT_INSTANCE] yes

[INVALID_SCOPE] yes yes yes yes
[MISSING_ATTRIBUTE_VALUE] yes

[MISTYPED_OPERATION] yes

[NO_SUCH_ACTION] yes

[NO_SUCH_ARGUMENT] yes yes
[NO_SUCH_ATTRIBUTE] yes

[NO_SUCH_EVENT_TYPE] yes
[NO_SUCH_INVOKE_ID] yes

[NO_SUCH_OBJECT_CLASS] yes yes yes yes yes yes
[NO_SUCH_OBJECT_INSTANCE] yes yes yes yes yes yes
[NO_SUCH_REFERENCE_OBJECT] yes

[OPERATION_CANCELLED] yes
[PROCESSING_FAILURE] yes yes yes yes yes yes yes
[SET_LIST_ERROR] yes
[SYNCHRONIZATION_NOT_SUPPORTED] yes yes yes yes

Note: The confirm primitives are abbreviated as follows in the table headers:

ACT = MP_ACTION_CNF

CAN = MP_CANCEL_GET_CNF
CRE = MP_CREATE_CNF

DEL = MP_DELETE_CNF

EVE = MP_EVENT_REP_CNF
GET = MP_GET_CNF

SET = MP_SET_CNF

78 Programmer's Reference

mp_receive(3)

result_or_argument_return
Specifies the result of the (partially) completed asynchronous operation or notification, the
parameter of the invoked management operation or the parameter of the reported management
notification.
The value of this result or parameter is the constant [MP_ABSENT_OBJECT] in each of the
following cases:

* The operation was one which does not return a result (for example, mp_cancel_get).
¢ No object was selected for the operation.
e This is the last response following a chain of linked replies.

Otherwise, the OM class of the OM object is the OM class of the result (or partial result) of the
asynchronous operation or notification, or the OM class of the parameter of the invoked opera-
tion or reported notification. The particular class of the OM object can be determined by using
the OM functions.

This result is valid if the return value of the function is [MP_SUCCESS]; completion flag return
has the value [MP_T_COMPLETED] or [MP_T_PARTIAL]; and
operation_notification_status_return has the value [MP_SUCCESS].

This result is also valid if the return value of the function is [MP_SUCCESS], and
completion_flag_return has the value [MP_T_INCOMING].

invoke_id_return
Specifies the invoke identification or notification or the operation for which an error, a result, or
a parameter is being returned.

This result is valid only if the return value of the function is [MP_SUCCESS], and
completion_flag_return has the value [MP_T_COMPLETED], [MP_T_PARTIAL], or
[MP_T_INCOMING].

Return Values

If successful, mp_receive returns the constant [MP_SUCCESS]. If unsuccessful, mp_receive returns one
of the following error codes.

Error Codes

¢ The constant [MP_NO_WORKSPACE]

¢ The constant [MP_INVALID_SESSION]

¢ The constant [MP_INSUFFICIENT_RESOURCES]

¢ Any problem value for a System-Error

¢ One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation are no
longer available.

Chapter 2. Reference Pages 79

mp_receive(3)

Related Information
¢ See “mp_bind(3)” on page 42.

80 Programmer's Reference

mp_set_req(3)

mp_set_req(3)

Purpose

Modifies the attribute values of managed objects

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_set req(OM private object session,
OM private_object context,
OM_object argument,
OM_private object *result _return,
OM_sint =invoke_id_return);

Description

¢ The CMIS service can be requested in a confirmed mode or a nonconfirmed mode. A reply is
expected in a confirmed mode, while none is expected in a nonconfirmed mode. The SNMP service
can be requested only in a confirmed mode.

¢ This function can be called in both synchronous and asynchronous modes.

Parameters

session Specifies the management session against which this operation is performed. This
is the private object of the OM class Session that was previously returned from
mp_bind.

context Specifies the management context to be used for this operation. This argument is a
private object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT].
This parameter defines the modes of operation and the possible addressing and
access-control parameters.

argument Specifies an OM object that provides the information about which attributes are to

be updated. This parameter is an instance of a subclass of the OM class
Set-Argument:

e For a CMIS set operation, the supplied argument is an instance of the OM class
CMIS-Set-Argument.

e For an SNMP set operation, the supplied argument is an instance of the OM
class SNMP-Set-Argument.

Chapter 2. Reference Pages 81

mp_set_req(3)

result_return

invoke_id_return

Return Values

Specifies a private object. Upon successful completion of a synchronous call,
when the operation was requested in a confirmed mode, the result can be one of
the following:

e For a CMIS set operation:
— An instance of the OM class CMIS-Set-Result.

— An instance of the OM class Multiple-Reply, which is a set of instances of a
subclass of the OM class CMIS-Linked-Reply-Argument. This instance con-
tains one of the following OM attributes:

- processing-Failure
- set-List-Error
- set-Result

e For an SNMP set operation, the result is an instance of the OM class
SNMP-Set-Result, which contains the requested list of variables with the values
that were modified.

Otherwise, in nonconfirmed mode, no results are expected. The constant
[MP_ABSENT_OBJECT] denotes the absence of a result.

Specifies the invoke identification of the initiated management operation, when
invoked in asynchronous mode. This value allows the results retrieved through the
mp_receive function to be matched with the original request. In synchronous mode,
this parameter is undefined. It is applicable only in a confirmed mode.

The return value for this function indicates whether the action was completed, if used in synchronous
mode; or whether it was initiated, if used in asynchronous mode.

If successful, mp_set req returns the constant [MP_SUCCESS]. If unsuccessful, mp_set_req returns one
of the following error codes.

Error Codes

¢ The constant [MP_NO_WORKSPACE]

¢ The constant [MP_INVALID_SESSION]

e The constant [MP_INSUFFICIENT_RESOURCES]

¢ Any problem value for a Communications-Error

e Any problem value for a System-Error

e Any problem value for an SNMP-Service-Error

¢ One of the following problem values for a CMIS-Service-Error:

[ACCESS_DENIED] The request operation was not performed due to security reasons.
[CLASS_INSTANCE_CONFLICT]

The managed-object instance is not a member of the specified class.

[COMPLEXITY_LIMITATION] The requested operation was not performed, because an OM attri-

bute, such as scope, filter, or synchronization was too complex.

[INVALID_FILTER] Contains an assertion that is not valid or an unrecognized logical

operator.

82 Programmer's Reference

mp_set_req(3)

[INVALID_SCOPE] The scope value is not valid.
[NO_SUCH_OBJECT_CLASS] The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[PROCESSING_FAILURE] A general failure was encountered during the processing of an oper-
ation.
[SET_LIST_ERROR] One or more attribute values were not modified.

[SYNCHRONIZATION_NOT_SUPPORTED]
This type of synchronization is not supported.

¢ One of the following problem values for a Library-Error:
[BAD_ARGUMENT] An argument that was not valid was specified.

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use on the session.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation are no
longer available.

[SIZE_LIMIT_EXCEEDED]
The maximum number of linked responses, about which the requested service
should return information, has been reached.

[TIME_LIMIT_EXCEEDED]
The maximum elapsed time, within which the requested service must be pro-
vided, has been reached. The OM attribute parameter specifies a
Multiple-Reply object, which contains received partial results. The syntax is
object(Multiple-Reply). This OM attribute can be absent.

[TOO_MANY_OPERATIONS.]
Additional management operations can not be performed until at least one
asynchronous operation has been completed.

Related Information

e See “mp_abandon(3)” on page 34.
e See “mp_bind(3)” on page 42.

e See “mp_receive(3)” on page 76.
e See “mp_set_rsp(3)” on page 84.

Chapter 2. Reference Pages 83

mp_set_rsp(3)

mp_set_rsp(3)

Purpose

Replies to a requested set operation

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_set rsp(OM private object session,
OM private_object context,
OM_object response,
OM_sint invoke_id);

Parameters

session

Specifies the management session against which this operation is performed. This is the
private object of the OM class Session that was previously returned from mp_bind.

context
Specifies the management context to be used for this operation. This parameter is a private
object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT].
response
Specifies the information supplied as the response to the requested set operation.
The response to a CMIS set operation can be one of the following:
¢ An instance of the OM class CMIS-Linked-Reply-Argument, which indicates a partial result
(linked reply). This instance contains one of the following OM attributes:
— processing-Failure
— set-List-Error
— set-Result
¢ An instance of the OM class CMIS-Set-Result, which is supplied as the single reply to a
CMIS set operation and indicates the successful completion of the operation.
¢ An instance of the OM class CMIS-Service-Error, which indicates the failure of the opera-
tion. One of the following problem values for a CMIS-Service-Error, including its associated
parameter, can be sent as a reply:
[ACCESS_DENIED] The request operation was not performed due to security
reasons.
[CLASS_INSTANCE_CONFLICT]
The managed-object instance is not a member of the
specified class.
[COMPLEXITY_LIMITATION] The requested operation was not performed, because an
OM attribute, such as scope, filter, or synchronization was
too complex.
[INVALID_FILTER] Contains an assertion that is not valid or an unrecognized
logical operator.
[INVALID_SCOPE] The scope value is not valid.
84 Programmer's Reference

mp_set_rsp(3)

[NO_SUCH_OBJECT_CLASS] The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[PROCESSING_FAILURE] A general failure was encountered during the processing
of an operation.

[SET_LIST_ERROR] One or more attribute values were not modified.

[SYNCHRONIZATION_NOT_SUPPORTED]
This type of synchronization is not supported.

e The constant [MP_ABSENT_OBJECT], which indicates two possibilities:

— The result is NULL (absent) because no object was selected.
— This is the last response following a chain of linked replies.

The response to an SNMP set operation can be one of the following:

— An instance of the OM class SNMP-Set-Result, which indicates the successful com-
pletion of the SNMP set operation.

The single OM attribute var-Bind-List contains the requested list of variables with the
corresponding values that were modified.

— An instance of the OM class SNMP-Service-Error, which indicates the failure of the
operation. Any problem value for an SNMP-Service-Error, along with its associated
parameter, can be sent as a reply.

invoke_id
Specifies the invoke identification of the requested operation to which the reply applies.

Return Values

The mp_set_rsp command returns a value to indicate whether the response was completed. If successful,
mp_set_rsp returns the constant [MP_SUCCESS]. If unsuccessful, mp_set rsp returns one of the fol-
lowing error codes.

Error Codes

¢ The constant [MP_NO_WORKSPACE]

¢ The constant [MP_INVALID_SESSION]

¢ The constant [MP_INSUFFICIENT_RESOURCES]

¢ Any problem value for a Communications-Error

e Any problem value for a System-Error

¢ One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_ERROR] A service error that is not valid was specified.

[BAD_LINKED_REPLY]
A linked reply that is not valid was specified.

[BAD_RESULT] A result that is not valid was specified.
[BAD_SESSION] A session that was not valid was specified.

Chapter 2. Reference Pages 85

mp_set_rsp(3)

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NO_SUCH_OPERATION]
The library has no knowledge of the designated operation and notification in
progress, or the response does not match the invoked operation and notifica-
tion.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use in this session.

[SESSION_TERMINATED]
The session was terminated and the results of an outstanding operation are
no longer available.

Related Information

¢ See “mp_bind(3)” on page 42.
e See “mp_receive(3)” on page 76.
e See “mp_set req(3)” on page 81.

86 Programmer's Reference

mp_shutdown(3)

mp_shutdown(3)

Purpose

Frees or discards a workspace

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_shutdown(OM_workspace workspace);

Description

¢ This function deletes a workspace established by mp_initialize and enables the service to release
resources.

¢ No other management interface functions should be called after this function, except for mp_initialize.

¢ All the remaining open sessions are closed, all the remaining private OM objects are deleted, and the
workspace is deleted. Service-generated public objects must be deleted by calling om_delete explic-
itly, since they are not affected by mp_shutdown.

Parameters

workspace
Specifies the handle to the workspace.

Return Values

If successful, mp_shutdown returns the constant [MP_SUCCESS]. If unsuccessful, mp_shutdown returns
one of the following error codes.

Error Codes

« [MP_NO_WORKSPACE]
 [MP_INSUFFICIENT _RESOURCES]

Related Information

e See “mp_initialize(3)" on page 75.

Chapter 2. Reference Pages 87

mp_unbind(3)

mp_unbind(3)

Purpose

Terminates a management session

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_unbind(OM private object session);

Description

By terminating a given management session, this function makes the parameter session unavailable
for use with other interface functions (except mp_bind()). This means the results of any outstanding
asynchronous operations, which were initiated using the given session, can no longer be received.
(Such operations can be terminated prematurely.) For this reason, it is recommended that you
process all outstanding asynchronous operations with mp_receive before using mp_unbind.

The unbound session can be used again as an argument to mp_bind, possibly after modification by
the XOM functions. When it is no longer required, the session must be deleted using the om_delete
function call.

Parameters

session Specifies the management session, which is to be unbound. This is the private object of the

OM class Session that was previously returned from mp_bind. The value of the file-Descriptor
OM attribute is [MP_NO_VALID_FILE_DESCRIPTOR] if the function succeeds. The other OM
attributes are unchanged.

Return Values

The mp_unbind command returns a value to indicate whether session was unbound successfully. If suc-
cessful, mp_unbind returns the constant [MP_SUCCESS]. If unsuccessful, mp_unbind returns one of the
following error codes.

Error Codes

88

The constant [MP_NO_WORKSPACE]

The constant [MP_INVALID_SESSION]

The constant [MP_INSUFFICIENT_RESOURCES]
One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

Programmer's Reference

mp_unbind(3)

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation are no
longer available.

This function does not return a Communications-Error or any management service errors.

Related Information
e See “mp_hind(3)” on page 42.

Chapter 2. Reference Pages 89

mp_version(3)

mp_version(3)

Purpose

Negotiates features of the interface and service

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp_version(OM_workspace workspace,
MP_feature feature list[]);

Description

This function negotiates features of the XMP API, which are represented by object identifiers. The CMIS
package and the SNMP package, specified in Chapter 4, “XMP API Management Service Packages” on
page 963, and the Management Contents packages, specified in Chapter 5, “XMP APl Management Con-
tents Packages” on page 1033, are negotiable features.

Parameters
workspace Specifies the handle to the workspace.
feature_list Specifies an ordered sequence of features, each represented by an object identifier. The

sequence is terminated by an object identifier having no components (a length of 0 (zero)
and any value of the data pointer in the C language representation).

Return Values

activated If the function completed successfully, the result contains an ordered sequence of
Boolean values, with the same number of elements as the feature_list. If true, each value
indicates that the corresponding feature is now part of the interface. If false, each value
indicates that the corresponding feature is not available.

In the C language binding, the result is combined with the feature list argument as a
single array of structures of type MP_feature, which is defined as:

typedef struct {
OM object identifier feature;
OM_boolean activated;
} MP_feature;

The mp_version command returns a value to indicate whether the response was completed. If successful,

mp_version returns the constant [MP_SUCCESS]. If unsuccessful, mp_version returns one of the fol-
lowing error codes.

90 Programmer's Reference

mp_version(3)

Error Codes

¢ The constant [MP_NO_WORKSPACE]

* The constant [MP_INSUFFICIENT _RESOURCES]
¢ Any problem value for a System-Error

e The miscellaneous Library-Error

The mp_version command does not return a Communications-Error or any management service error.

Implementation Specifics

Although it should never fail in a production system, you may experience problems with mp_version() calls
in a development environment, where libraries, library paths, object identifiers, and other elements are
constantly changing. If you experience problems with mp_version- that is, if it is unable to load a
package— read the following information.

When a program calls mp_version to request that an OM package be loaded, XMP will do the following:

Step 1. Read the configuration file /usr/OV/conf/xmpcfg.dat. Locate the oid in the configuration and get
the name of the corresponding library file.

Step 2. Call the AIX load() subroutine to bring this library into memory.

The following errors can occur during this process:
¢ The configuration file does not exist.

Execute the command Is -I /Jusr/OV/conf/ixmpcfg.dat and check whether the file is there. If it is not
you will have to reinstall the product or get one from backup.

¢ The configuration file cannot be read.

This may be a file permission problem. Log in as the userid that executes the program that calls
mp_version and execute the command cat /usr/OV/conf/xmpcfg.dat to see whether the file can be
read. If the file is there but cannot be read, log in as root and execute the command chmod 444
/usr/OV/conf/xmpcfg.dat

e The oid in the mp_version package does not match the one in the configuration file.

This is most likely caused by including a header file that is not compatible with the configuration file in
use. Check whether the oid in the call to mp_version matches one of those in the configuration file. If
not, recompile your program with the correct header file or get a new library.

¢ The library cannot be loaded

If your library is present, is readable, and matches an entry in the configuration file, but mp_version
cannot load a package from it, there may be a problem in your library path. If the environment vari-
able LIBPATH is defined in the context of the process, XMP lets the operating system resolve the path
to the library file to be loaded. The system will then check all the directories in the LIBPATH to locate
the library. See the description of the load() routine for more details.

If LIBPATH is not defined, XMP explicitly adds /usr/OV/lib in the front of the library name, so that the
library will be loaded from there.

If you set your LIBPATH make sure that the directory where the libraries reside is part of the LIBPATH
or XMP will not be able to load your OM packages.

Chapter 2. Reference Pages 91

mp_version(3)

Related Information

¢ See “mp_bind(3)” on page 42.
¢ See “mp_initialize(3)" on page 75.

92 Programmer's Reference

mp_wait(3)

mp_wait(3)

Purpose

Suspends the caller until a management message is available from one or more bound sessions

Syntax

#include <xom.h>
#include <xmp.h>

MP_status mp wait(MP_waiting sessions bound session Tist[]
OM_workspace workspace,
OM_uint32 timeout);

Description

Once mp_wait indicates that there are messages available, you should call mp_receive repeatedly until it
returns MP_T_NOTHING or MP_T_OUTSTANDING, that is, until you have received all messages avail-
able) before calling mp_wait again.

Parameters

bound_session_list Specifies a list of management sessions upon which to wait. Each list value is a
private object of the OM class Session, and a flag that indicates if there are any
messages in that session. The last value must be the constant
[MP_DEFAULT_SESSION].

workspace Specifies the workspace (obtained from a call from mp_initialize), in which an
MP_status OM object is created if the return value is something other than the con-
stant [MP_SUCCESS]. Sessions specified in the bound_session_list do not need to
be from this workspace.

timeout Specifies the maximum number of milliseconds for which the requester is sus-
pended before obtaining a response, when there are no messages from the list of
sessions. A value of zero specifies an indefinite timeout.

Return Values

The mp_wait command returns a value to indicate whether the action was completed. If successful,
mp_wait returns the following return values:

¢ The constant [MP_SUCCESS]. A successful completion means either that a message is available
from a session or that the timeout limit has been reached. The mp_receive function must be called to
determine whether a message is available.

¢ Activated(OM_boolean). If the function was completed successfully, this result contains an ordered
sequence of Boolean values, with the same number of elements as the bound_session_list . If true,
each value indicates that the corresponding Session has data waiting in queue. If false, each value
indicates that the corresponding Session does NOT have data waiting in queue.

Chapter 2. Reference Pages 93

mp_wait(3)

In the C binding, this result is combined with the bound_session_list argument as a single array of
structures of type MP_waiting_sessions, which is defined as:

typedef struct {
OM_private_object bound_session;
OM_boolean activated;
} MP_waiting_sessions;

If unsuccessful, mp_wait returns one of the following error codes.

Error Codes

The constant [MP_NO_WORKSPACE]

The constant [MP_INVALID_SESSION]

The constant [MP_INSUFFICIENT _RESOURCES]

Any problem value for a System-Error

One of the following problem values for a Library-Error:

[BAD_ADDRESS] An address that is not valid was specified.
[BAD_SESSION] A session that was not valid was specified.
[BAD_WORKSPACE] A workspace argument that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[SESSION_TERMINATED)]
The session is terminated and the results of an outstanding operation are no
longer available.

Related Information

94

See “mp_bind(3)” on page 42.
See “mp_initialize(3)” on page 75.
See “mp_receive(3)” on page 76.

Programmer's Reference

nvCollectionAdd(3)

nvCollectionAdd(3)

Purpose

Defines new collections of objects

Syntax

#include <OV/ovw_obj.h>
#include <0V/0V_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

int nvCollectionAdd(char *name,
char =desc,
char *rule,
int force);

Description

The nvCollectionAdd function adds a new collection of objects to the Collection Facility. You provide a
name for the collection, a description, and the rule for determining which objects fit into the collection.
Note that this call can be CPU-intensive if the collection is large.

Parameters

name
Specifies the name of the collection

desc
Provides a description of what is in the collection

rule
Provides a rule for determining which objects fit into the collection. The rule is specified using one of
the following constructs:

IN 'objectl object2..."
Selects a list of objects, separated by blanks. If more than one object is speci-
fied, the list must be enclosed in single quotes.

field op value Selects objects in the object database that meet the criteria specified in this
expression, such as isRouter=true.

field is a field in the object database, such as isRouter.

op is one of the following logical operators:

If field or value has spaces in the text (such as 'SNMP sysObjectId'), enclose
the text in single quotes.

Chapter 2. Reference Pages 95

nvCollectionAdd(3)

IN_SUBNET Selects objects within the specified subnet
IN_COLLECTION Selects objects in another previously defined collection.

These rules can be made more complex by joining simple rules with AND, &&, OR, ||, and ! operators
within parentheses. For example, you might specify the following rule:

((isRouter=true) AND ((IN_SUBNET 9.67.96.0) || (IN_SUBNET 9.60.100.0)))

force
Forces the add function if a dependent collection does not exist.

Return Values

If successful, nvCollectionAdd returns a value of 0. If unsuccessful, nvCollectionAdd returns a value of -1.

Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_COLLECTION_EXISTS]
The collection cannot be created because another collection with that
name already exists.

[NV_COLLECTION_INVALID_RULE]
For some reason, the rule cannot be processed. Check the Boolean
logic and any other collection names you specified.

[NV_COLLECTION_FIELD_NOT_VALID]
The field specified in field op value is not a valid field.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to store the new collection information.

[NV_COLLECTION_DEPENDENCY_NOT_FOUND]
The collection being added uses another collection in its definition,
and that collection cannot be found.

[NV_COLLECTION_OVw_ERROR] An error occurred while trying to add the collection to the object data-
base.

Files

When compiling a program that uses nvCollectionAdd, you need to include the following files:

e 0OvwW_obj.h
e OV_nvCollection.h
e OV_nvCollectionErrs.h

Libraries

When compiling a program that uses nvCollectionAdd, you need to link to the following libraries:
{fusr/OVl/lib/libov.a
/usr/OV/lib/libovw.a
/usr/OV/lib/libcollection.a

96 Programmer's Reference

nvCollectionAdd(3)

Related Information
¢ See “nvCollectionAddCallback(3)” on page 98.

¢ See “nvCollectionError(3)” on page 103.

Chapter 2. Reference Pages 97

nvCollectionAddCallback(3)

nvCollectionAddCallback(3)

Purpose

Registers procedures to process collection facility events

Syntax

#include <OV/ovw_obj.h>
#include <0V/0V_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

int nvCollectionAddCallback(nvCollectionEvent event,
nvCollectionCallback callback,
void *callback data);

Description
The nvCollectionAddCallback function adds an application callback procedure for handling the events
associated with the collection facility. Events include:

¢ Adding a new collection

¢ Deleting a collection

¢ Modifying the description or rule for a collection

¢ Adding or removing an object from an existing collection

¢ Collection errors

You should register for the error event if you are registering for any other events. This notifies the
program that the connection to the collection facility daemon (nvcold) has been lost.

Parameters

event
Specifies the collection facility event that should be processed. Collection facility events are as
follows:

NV_COLLECTION_ADDED
New collection was added

NV_COLLECTION_DELETED
Collection was deleted

NV_COLLECTION_DESC_MODIFIED
The description for a collection was modified

NV_COLLECTION_RULE_MODIFIED
The rule for defining which objects belong in the collection was modified

NV_COLLECTION_OBJ_ADDED
An object was added to a collection

NV_COLLECTION_OBJ_DELETED
An object was deleted from a collection

98 Programmer's Reference

nvCollectionAddCallback(3)

NV_COLLECTION_ERROR
An unspecified error occurred.

callback
Specifies a procedure to invoke for the specified event.

callback data
Specifies a pointer to data that is passed to the callback procedure.

Return Values

If successful, the nvCollectionAddCallback return value is 0 (zero). If unsuccessful, it returns -1 (negative
one).

Error Codes
[NV_COLLECTION_SUCCESS] Successful completion.
[NV_OUT_OF_MEMORY] There is not enough memory to complete the operation.

Files

When compiling a program that uses nvCollectionAddCallback, you need to include the following files:

e ovw_obj.h
e OV_nvCollection.h
¢ OV_nvCollectionErrs.h

Libraries

When compiling a program that uses nvCollectionAddCallback, you need to link to the following libraries:
{usr/OV/lib/libov.a
/usr/OV/lib/libovw.a
/usr/OV/lib/libcollection.a

Related Information
¢ See “nvCollectionAdd(3)” on page 95.

Chapter 2. Reference Pages 99

nvCollectionDelete(3)

nvCollectionDelete(3)

Purpose

Deletes a collection definition

Syntax

#include <OV/ovw_obj.h>
#include <0V/0V_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

int nvCollectionDelete(char *name);

Description

The nvCollectionDelete function deletes a collection definition.

Parameters

name
Specifies the name of the collection

Return Values

If successful, nvCollectionDelete returns a value of 0. If unsuccessful, nvCollectionDelete returns a value
of -1.

Error Codes
NV_COLLECTION_SUCCESS Successful operation.

NV_COLLECTION_DOES_NOT_EXIST
The specified collection is not defined and cannot be deleted.

[NV_COLLECTION_DEPENDENCY_EXISTS]
Another collection is dependent on this collection. This collection is
specified as part of another collection's definition.

Files

When compiling a program that uses nvCollectionDelete, you need to include the following files:

e ovw_obj.h
e OV_nvCollection.h
e OV_nvCollectionErrs.h

100 Programmer's Reference

Libraries

nvCollectionDelete(3)

When compiling a program that uses nvCollectionDelete, you need to link to the following libraries:

/usr/OV/lib/libov.a
Jusr/OV/lib/libovw.a
lusr/OV/lib/libcollection.a

Related Information

¢ See “nvCollectionAddCallback(3)” on page 98.

¢ See “nvCollectionError(3)” on page 103.

Chapter 2. Reference Pages

101

nvCollectionDone(3)

nvCollectionDone(3)

Purpose

Closes a connection to the collection facility server

Related Functions

nvCollectionXDone

Syntax

#include <OV/ovw_obj.h>
#include <0V/0OV_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

int nvCollectionDone();

int nvCollectionXDone();

Description
The nvCollectionDone function closes the connection to the collection facility server.

The nvCollectionXDone function should be used if you used nvCollectionXOpen to open the connection to
the server.

Files
When compiling a program that uses nvCollectionDone or nvCollectionXDone, you need to include the
following files:

e Oovw_obj.h
e OV_nvCollection.h
e OV_nvCollectionErrs.h

Libraries
When compiling a program that uses nvCollectionDone or nvCollectionXDone, you need to link to the fol-
lowing libraries:

{fusr/OVl/lib/libov.a

fusr/OV/lib/libovw.a

/usr/OVl/lib/libcollection.a

Related Information
¢ See “nvCollectionOpen(3)” on page 119.
¢ See “nvCollectionXOpen(3)” in “nvCollectionOpen(3)” on page 119.

102 Programmer's Reference

nvCollectionError(3)

nvCollectionError(3)

Purpose

Returns the error code set by the last collection facility API call

Syntax

#include <OV/ovw_obj.h>
#include <0V/0V_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

int nvCollectionError();

Description

The nvCollectionError function returns the error value set by the previous collection facility API call. It can
be tested immediately after a failed collection facility call (either a -1 or a NULL pointer) to determine the
exact reason for the failure.

Examples

The following code example illustrates the way nvCollectionError can be used with nvCollectionErrorMsg:

if (nvCollectionOpen() < 0) {
fprintf(stderr, “foo: %s\n”, nvCollectionErrorMsg(nvCollectionError()));
exit(1);

Files

When compiling a program that uses nvCollectionError, you need to include the following files:

e ovw_obj.h
¢ OV_nvCollection.h
¢ OV_nvCollectionErrs.h

Libraries

When compiling a program that uses nvCollectionError, you need to link to the following libraries:
{usr/OV/lib/libov.a
/usr/OV/lib/libovw.a
/usr/OVl/lib/libcollection.a

Related Information
¢ See “nvCollectionErrorMsg(3)” on page 104.

Chapter 2. Reference Pages 103

nvCollectionErrorMsg(3)

nvCollectionErrorMsg(3)

Purpose

Returns a textual description of a collection facility API error code

Syntax

#include <OV/ovw_obj.h>
#include <0V/0V_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

char * nvCollectionErrorMsg(int error);

Description

The nvCollectionErrorMsg function maps a collection facility API error code to a string that contains text
describing the meaning of the specified error code.

Examples

The following code example illustrates the way nvCollectionError can be used with nvCollectionErrorMsg:

if (nvCollectionOpen() < 0) {
fprintf(stderr, “foo: %s\n”, nvCollectionErrorMsg(nvCollectionError()));
exit(1);

Files

When compiling a program that uses nvCollectionErrorMsg, you need to include the following files:

e 0OVW_o0bj.h
e OV_nvCollection.h
¢ OV_nvCollectionErrs.h

Libraries

When compiling a program that uses nvCollectionErrorMsg, you need to link to the following libraries:
{fusr/OVl/lib/libov.a
{usr/OV/lib/libovw.a
/usr/OV/lib/libcollection.a

Related Information

¢ See “nvCollectionError(3)” on page 103.

104 Programmer's Reference

nvCollectionEvaluate(3)

nvCollectionEvaluate(3)

Purpose

Evaluates a rule and returns a list of objects that fit the rule

Syntax
#include <0V/ovw_obj.h>

#include <0V/0V_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

OVwObjectIdList * nvCollectionEvaluate(char * rule);

Description

The nvCollectionEvaluate function can be used to determine which objects in a network will be included in
collections that use the specified rule.

Parameters

rule

Provides a rule for determining which objects fit into the collection. The rule is specified using one of
the following constructs:

IN 'objectl object2..."

field op value

IN_SUBNET
IN_COLLECTION

Selects a list of objects, separated by blanks. If more than one object is speci-
fied, the list must be enclosed in single quotes.

Selects objects in the object database that meet the criteria specified in this
expression, such as isRouter=true.

field is a field in the object database, such as isRouter.

op is one of the following logical operators:

If field or value has spaces in the text (such as 'SNMP sysObjectId'), enclose
the text in single quotes.

Selects objects within the specified subnet

Selects objects in another previously defined collection.

These rules can be made more complex by joining simple rules with AND, &&, OR, ||, and ! operators
within parentheses. For example, you might specify the following rule:

((isRouter=true) AND ((IN_SUBNET 9.67.96.0) || (IN_SUBNET 9.60.100.0)))

Chapter 2. Reference Pages 105

nvCollectionEvaluate(3)

Return Values

If successful, nvCollectionEvaluate returns a pointer to an OVw object ID list. If unsuccessful,
nvCollectionEvaluate returns NULL.

Error Codes
NV_COLLECTION_SUCCESS Successful operation.

NV_COLLECTION_INVALID_RULE
For some reason, the rule cannot be processed. Check the Boolean
logic and any other collection names you specified.

NV_COLLECTION_FIELD_NOT_VALID
One of the fields specified in the rule is invalid.

Files

When compiling a program that uses nvCollectionEvaluate, you need to include the following files:

e ovw_obj.h
¢ OV_nvCollection.h
e OV_nvCollectionErrs.h

Libraries

When compiling a program that uses nvCollectionEvaluate, you need to link to the following libraries:
{usr/OV/lib/libov.a
{usr/OV/lib/libovw.a
/usr/OVllib/libcollection.a

106 Programmer's Reference

nvCollectionFreeDefn(3)

nvCollectionFreeDefn(3)

Purpose
Frees memory used for collection facility functions

Related Functions

nvCollectionFreelList
nvCollectionFreeChangelList

Syntax

#include <OV/ovw_obj.h>

#include <OV/0V_nvCollection.h>

#include <0V/0V_nvCollectionErrs.h>

void nvCollectionFreeDefn(nvCollectionDefn *defn);

void nvCollectionFreeList(nvCollectionList *Tist);

void nvCollectionFreeChangelList(nvCollectionChangelList *1ist);

Description
The nvCollectionFreeDefn function frees memory used for returning collection definitions.
The nvCollectionFreeList function frees memory used for returning lists of collections.

The nvCollectionFreeChangelList function frees memory used for returning lists of changes to collections.

Parameters

defn
Specifies a pointer to a collection definition.

list
Specifies a pointer to a collection list.

Files
When compiling a program that uses nvCollectionFreeDefn, nvCollectionFreeChangeList, or
nvCollectionFreeList, you need to include the following files:

e 0OvVW_obj.h
e OV_nvCollection.h
e OV_nvCollectionErrs.h

Chapter 2. Reference Pages 107

nvCollectionFreeDefn(3)

Libraries
When compiling a program that uses nvCollectionFreeDefn, nvCollectionFreeChangelList, or
nvCollectionFreeList, you need to link to the following libraries:

{usr/OV/lib/libov.a

{fusr/OVllib/libovw.a

/usr/OV/lib/libcollection.a

108 Programmer's Reference

nvCollectionGetAllForObject(3)

nvCollectionGetAllForObject(3)

Purpose

Obtains a list of all collections the specified object is a member of.

Syntax

#include <OV/ovw_obj.h>
#include <0V/0V_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

nvCollectionList * nvCollectionGetAl1ForObject (OVwObjectId objectid);

Description

The nvCollectionGetAllForObject function returns a list of all collections the specified object is a member
of.

Parameters

objectid
Specifies the object ID of the object for which you want information.

Return Values

If successful, nvCollectionGetAllForObject returns a list of collections. If unsuccessful,
nvCollectionGetAllForObject returns NULL.

Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to complete the operation.

[NV_COLLECTION_DOES_NOT_EXIST]
The specified collection is not defined.

Files

When compiling a program that uses nvCollectionGetAllForObject, you need to include the following files:

e ovw_obj.h
e OV_nvCollection.h
e OV_nvCollectionErrs.h

Chapter 2. Reference Pages 109

nvCollectionGetAllForObject(3)

Libraries

When compiling a program that uses nvCollectionGetAllForObject, you need to link to the following
libraries:

/usr/OV/lib/libov.a

/usr/OV/lib/libovw.a

/usr/OV/lib/libcollection.a

Related Information

¢ See “nvCollectionError(3)” on page 103.

110 Programmer's Reference

nvCollectionGetinfo(3)

nvCollectionGetInfo(3)

Purpose

Obtains the description and rule defined for a collection

Syntax

#include <OV/ovw_obj.h>
#include <0V/0V_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

int nvCollectionGetInfo(char *name,
char **desc,
char *xrule);

Description

The nvCollectionGetinfo function returns the description and the rule that have been defined for the speci-
fied collection. Because the return values for the description and the rule are dynamically allocated, you
must free the strings when they are no longer needed.

Parameters

name
Specifies the collection for which you want information

desc
Specifies the address of a pointer to the description returned for the collection. This will point to the
retrieved data.

rule
Specifies the address of a pointer to the rule returned for the collection. This will point to the retrieved
data.

Return Values

If successful, nvCollectionGetinfo returns a value of 0. If unsuccessful, it returns a value of -1.

Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_DOES_NOT_EXIST]
The specified collection is not defined.

[NV_COLLECTION_OUT_OF MEMORY]
There is not enough memory to store the collection information.

Chapter 2. Reference Pages 111

nvCollectionGetinfo(3)

Files

When compiling a program that uses nvCollectionGetInfo, you need to include the following files:

e 0OvW_obj.h
e OV_nvCollection.h
¢ OV_nvCollectionErrs.h

Libraries

When compiling a program that uses nvCollectionGetInfo, you need to link to the following libraries:
{usr/OVl/lib/libov.a
fusr/OV/lib/libovw.a
/usr/OV/lib/libcollection.a

Related Information
¢ See “nvCollectionError(3)” on page 103.

¢ See “nvCollectionFreeDefn(3)” on page 107.

112 Programmer's Reference

nvCollectionGetTimestamp(3)

nvCollectionGetTimestamp(3)

Purpose

Returns the last time a collection was updated.

Syntax

#include <OV/ovw_obj.h>
#include <0V/0V_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

time_t nvCollectionGetTimestamp(char * name);

Description

The nvCollectionGetTimestamp function can be used to determine the last time a collection was updated.

Parameters

name
Specifies the name of the collection for which a timestamp is to be returned.

Return Values

If successful, nvCollectionEvaluate returns a timestamp. [If unsuccessful, nvCollectionGetAllForObject
returns -1.

Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_DOES_NOT_EXIST]
The collection specified does not exist.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to store the collection information.

Files

When compiling a program that uses nvCollectionGetTimestamp, you need to include the following files:

e ovw_obj.h
¢ OV_nvCollection.h
¢ OV_nvCollectionErrs.h

Libraries

When compiling a program that uses nvCollectionGetTimestamp, you need to link to the following libraries:
{usr/OV/lib/libov.a
/usr/OV/lib/libovw.a
/usr/OVl/lib/libcollection.a

Chapter 2. Reference Pages 113

nvCollectionintersect(3)

nvCollectionintersect(3)

Purpose

Finds the intersection of two collections

Related Functions

nvCollectionListIntersect

Syntax

#include <OV/ovw_obj.h>
#include <OV/0V_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

OVwObjectIdList * nvCollectionIntersect(char *namel,
char *name2);

OVwObjectIdList * nvCollectionListIntersect(char *namel,
OVwObjectIdList *1ist);

Description

The nvCollectionintersect function finds the intersection between two collections. A list is generated of all
objects that are members in both collections.

The nvCollectionListintersect function finds the intersection between a collection and an object ID list. A
list is generated of all objects from the object list that are in the collection.

Parameters

namel
Specifies the name of the first collection to be intersected

nameZ2
Specifies the name of the second collection to be intersected

list
Specifies a list of object IDs.

Return Values

If successful, nvCollectionintersect and nvCollectionListintersect return a list of object IDs. If unsuccessful,
they return NULL.

114 Programmer's Reference

nvCollectionintersect(3)

Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_DOES_NOT_EXIST]
The specified collection is not defined and cannot be intersected.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to store the collection information.

Files
When compiling a program that uses nvCollectionintersect or nvCollectionListintersect, you need to
include the following files:

e ovw_obj.h
¢ OV_nvCollection.h
e OV_nvCollectionErrs.h

Libraries
When compiling a program that uses nvCollectionintersect or nvCollectionListintersect, you need to link to
the following libraries:

{fusr/OV/lib/libov.a

/usr/OV/lib/libovw.a

{usr/OV/lib/libcollection.a

Related Information
¢ See “nvCollectionError(3)” on page 103.
¢ See “nvCollectionUnion(3)” on page 124.

¢ See “nvCollectionListUnion(3)” in “nvCollectionUnion(3)” on page 124.

Chapter 2. Reference Pages 115

nvCollectionListCollections(3)

nvCollectionListCollections(3)

Purpose
Obtains a list of all collections currently defined

Syntax

#include <OV/ovw_obj.h>
#include <0V/0V_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

nvCollectionList* nvCollectionListCollections();

Description

The nvCollectionListCollections function returns a list of all collections that are currently defined. Because
the return values for the description and the rule are dynamically allocated, you must use the
nvCollectionFreeList function to free the strings when they are no longer needed.

Return Values

If successful, nvCollectionListCollections returns a list of defined collections. Otherwise, it returns NULL.

Files

When compiling a program that uses nvCollectionListCollections, you need to include the following files:

e 0ovw_obj.h
e OV_nvCollection.h
e OV_nvCollectionErrs.h

Libraries

When compiling a program that uses nvCollectionListCollections, you need to link to the following libraries:
{fusr/OVl/lib/libov.a
/usr/OV/lib/libovw.a
/usr/OV/lib/libcollection.a

Related Information
¢ See “nvCollectionError(3)” on page 103.

¢ See “nvCollectionFreeList(3)” in “nvCollectionFreeDefn(3)” on page 107.

116 Programmer's Reference

nvCollectionModify(3)

nvCollectionModify(3)

Purpose

Modifies a collection definition

Syntax

#include <OV/ovw_obj.h>
#include <0V/0V_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

int nvCollectionModify(char *name,
char =desc,
char *rule);

Description

The nvCollectionModify function changes the description or rule for an existing collection. Note that this
call can use large amounts of CPU time.

Parameters

name
Specifies the name of the collection to be modified

desc
Specifies the modified description for the collection

rule
Specifies the modified rule for determining which objects are included in the collection. Rules can be
specified with any of the following:

¢ A list of IP addresses
¢ A NetView for AlX field (such as isRouter)
¢ Another collection name

¢ A subnet mask or address

Return Values

If successful, nvCollectionModify returns a value of 0. If unsuccessful, nvCollectionModify returns a value
of -1.

Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_DOES _NOT_EXIST]
The specified collection is not defined and cannot be modified.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to store the modified collection informa-
tion.

Chapter 2. Reference Pages 117

nvCollectionModify(3)

[NV_COLLECTION_INVALID_RULE]
For some reason, the rule cannot be processed. Check the Boolean
logic and any other collection names that you specified.

[NV_COLLECTION_FIELD _NOT_VALID]
A field specified in the rule to be modified is invalid.

[NV_COLLECTION_PARSING_ERROR]
The rule cannot be parsed correctly. Check any logical operators you
specified.

Files

When compiling a program that uses nvCollectionModify, you need to include the following files:

e 0ovw_obj.h
e OV_nvCollection.h
e OV_nvCollectionErrs.h

Libraries

When compiling a program that uses nvCollectionModify, you need to link to the following libraries:
fusr/OVl/lib/libov.a
/usr/OV/lib/libovw.a
/usr/OV/lib/libcollection.a

118 Programmer's Reference

nvCollectionOpen(3)

nvCollectionOpen(3)

Purpose

Establishes a connection to the collection facility server

Related Functions

nvCollectionXOpen

Syntax

#include <OV/ovw_obj.h>
#include <0V/0OV_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

int nvCollectionOpen();

int nvCollectionXOpen();

Description

The nvCollectionOpen function establishes a connection with the collection facility nvcold daemon. If suc-
cessful, nvCollectionOpen returns a file descriptor. This file descriptor can be used later to register for
specific events defined for the collection facility.

nvCollectionXOpen establishes a connection with the collection facility nvcold daemon. Use this routine
when you want X Window System to manage your main loop of your program when it is waiting for event
notification.

Return Values

If successful, nvCollectionOpen returns a positive value greater than zero. If unsuccessful,
nvCollectionOpen returns a negative value.

Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_ALREADY_INITIALIZED]
A connection to the Collection Facility has already been initiated.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to resolve the collection.

[NV_COLLECTION_CONNECTION_LOST]
The connection to the Collection Facility was interrupted.

Chapter 2. Reference Pages 119

nvCollectionOpen(3)

Files

When compiling a program that uses nvCollectionOpen, you need to include the following files:

e 0OvW_obj.h
e OV_nvCollection.h
¢ OV_nvCollectionErrs.h

Libraries

When compiling a program that uses nvCollectionOpen, you need to link to the following libraries:
{usr/OVl/lib/libov.a
fusr/OV/lib/libovw.a
/usr/OV/lib/libcollection.a

Related Information
¢ See “nvCollectionAddCallback(3)” on page 98.

¢ See “nvCollectionError(3)” on page 103.

120 Programmer's Reference

nvCollectionRead(3)

nvCollectionRead(3)

Purpose

Reads collection facility events

Syntax

#include <OV/ovw_obj.h>
#include <0V/0V_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

int nvCollectionRead(int sock fd);

Description

The nvCollectionRead function reads the specified socket, and if there is a collection facility event, it calls
the callback routine for that event as specified on a nvCollectionAddCallback call. The sock_fd variable
specifies the socket on which the response will be received. If there is no data available,
nvCollectionRead will not take any action and will return.

This call should be used within a select loop or similar construct. You do not need to use this call if you
used nvCollectionXOpen rather than nvCollectionOpen.

Parameters

sock fd
Specifies the TCP socket to watch for collection facility events.

Files

When compiling a program that uses nvCollectionRead, you need to include the following files:

e ovw_obj.h
¢ OV_nvCollection.h
¢ OV_nvCollectionErrs.h

Libraries

When compiling a program that uses nvCollectionRead, you need to link to the following libraries:
{usr/OV/lib/libov.a
/usr/OV/lib/libovw.a
/usr/OV/lib/libcollection.a

Related Information
¢ See “nvCollectionDone(3)” on page 102.
¢ See “nvCollectionOpen(3)” on page 119.
¢ See “nvCollectionError(3)” on page 103.

¢ See “nvCollectionErrorMsg(3)” on page 104.

Chapter 2. Reference Pages 121

nvCollectionResolve(3)

nvCollectionResolve(3)

Purpose

Obtains a list of all objects currently in a specified collection

Syntax

#include <OV/ovw_obj.h>
#include <0V/0V_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

OVwObjectIdList *nvCollectionResolve(char *name);

Description

The nvCollectionResolve function returns a list of all objects currently included in the specified collection.

Parameters

name
Specifies the name of the collection

Return Values

If successful, nvCollectionResolve returns a pointer to an OVw object ID list. If unsuccessful,
nvCollectionResolve returns NULL.

Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_DOES_NOT_EXIST]
The collection specified cannot be found in the list of defined col-
lections.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to resolve the collection.

Files

When compiling a program that uses nvCollectionResolve, you need to include the following files:

e ovw_obj.h
e OV_nvCollection.h
e OV_nvCollectionErrs.h

122 Programmer's Reference

Libraries

nvCollectionResolve(3)

When compiling a program that uses nvCollectionResolve, you need to link to the following libraries:

/usr/OV/lib/libov.a
Jusr/OV/lib/libovw.a
lusr/OV/lib/libcollection.a

Related Information
¢ See “nvCollectionGetInfo(3)” on page 111.

¢ See “nvCollectionListCollections(3)” on page 116.

Chapter 2. Reference Pages

123

nvCollectionUnion(3)

nvCollectionUnion(3)

Purpose

Finds the union of two collections

Related Functions

nvCollectionUnionList

Syntax

#include <OV/ovw_obj.h>
#include <0V/0OV_nvCollection.h>
#include <0V/0V_nvCollectionErrs.h>

OVwObjectIdList = nvCollectionUnion(char *namel,
char *name2);

OVwObjectIdList =* nvCollectionListUnion(char *namel,
OVwObjectIdList *1ist);

Description

The nvCollectionUnion function finds the union between two collections. A list is generated of all objects
in each of the collections.

nvCollectionListUnion finds the union between a collection and an object list. A list is generated of all
objects from the object list as well as those in the collection.

Parameters

namel
Specifies the name of the first collection

nameZ2
Specifies the name of the second collection

list
Specifies a list of object IDs.

Return Values

If successful, nvCollectionUnion and nvCollectionListUnion return a pointer to an OVw object ID list. If
unsuccessful, they return NULL.

Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_DOES _NOT_EXIST]
One of the specified collections is not defined.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to store the collection information.

124 Programmer's Reference

nvCollectionUnion(3)

Files
When compiling a program that uses nvCollectionUnion or nvCollectionUnionList, you need to include the
following files:

e ovw_obj.h
¢ OV_nvCollection.h
¢ OV_nvCollectionErrs.h

Libraries
When compiling a program that uses nvCollectionUnion or nvCollectionUnionList, you need to link to the
following libraries:

/usr/OV/lib/libov.a

{usr/OV/lib/libovw.a

/usr/OVl/lib/libcollection.a

Related Information
¢ See “nvCollectionintersect(3)” on page 114.

¢ See “nvCollectionListintersect(3)” in “nvCollectionintersect(3)” on page 114.

Chapter 2. Reference Pages 125

nvFilterDefine(3)

nvFilterDefine(3)

Purpose

Creates new filtering rule or updates existing rule

Syntax

#include <nvFilter.h>

int nvFilterDefine (struct FilterNode *Filter, char *FileName, char *FilterStr, int Update);

Description

The nvFilterDefine function creates a new filtering rule or updates an existing rule. An include file,
/usr/OV/include/nvFilter.h, is provided. This file contains the function prototypes and the filter structure.
The structure has the following definition:

struct FilterNode

{

char *FilterName;
char *FilterDescription;
struct FilterNode *Next;

FilterName Specifies a pointer to the name of a filtering rule.

FilterDescription Specifies a pointer to the description of a filtering rule. This field is optional.
If no description exists, the pointer to the description is NULL.

Next Specifies a pointer to the next FilterNode. This field is used only by the
nvFilterGetNameList API.

Parameters

Filter Specifies a pointer to a filter structure containing the name of the filtering rule
and optionally a description of the rule.

FileName Specifies a pointer to the path and name of the filter file.

FilterStr Specifies a pointer to the content of the filtering rule.

Update Specifies 0 (zero) for do not update and 1 for update content if rule exists.

Keyword Syntax

! NOT (logical negation)
&& AND (logical and)

Il OR (logical or)

The following list describes the keywords in the syntax used to define filters.

CLASS=value
SNMP enterprise match on enterprise ID. Value is given in dot notation, for example, 1.2.3.4.55

126 Programmer's Reference

nvFilterDefine(3)

IP_ADDR=value
SNMP agent-addr match on IP address. Value is given in dot notation, for example, 192.155.13.57.
Registration for an IP_ADDR permits receipt of agent-generated traps, as well as internal events
related to that IP_ADDR.

LOGGED_TIME <= time_string
Time that was logged before the time in time_string, where time_string has the form
dd:mm:yy:hh:mm:ss (24 hour clock, GMT)

LOGGED _TIME >= time_string
Time that was logged after the time in time_string, where time_string has the form dd:mm:yy:hh:mm:ss
(24 hour clock, GMT)

PRESENT = SNMP_TRAP
Presence of SNMP Trap

SNMP_TRAP=value
Match on SNMP Generic Trap Type, where the Generic Type is an integer

SNMP_SPECIFIC=value
Match on SNMP Specific Trap Type, where the Specific Type is an integer

TIME _PERIOD=time _constant
Relative time period (integer seconds) for frequency filters

THRESHOLD <= frequency
Number of event occurrences is less than or equal to frequency (integer) during TIME_PERIOD

THRESHOLD >= frequency
Number of event occurrences is greater than or equal to frequency (integer) during TIME_PERIOD

Note: When included in an expression for nvSnmpTrapOpenFilter, the keywords THRESHOLD and
TIME_PERIOD must be ANDed (never ORed) and grouped within parentheses as in the following
example:

filter = PRESENT=SNMP_TRAP && (THRESHOLD <= 5 && TIME_PERIOD = 30)

Specifying more than 250 filter objects will result in an error.

Return Values

If successful, nvFilterDefine returns 0 (zero). If unsuccessful, it returns one of the following nonzero error
codes.

Error Codes

[NVFILTER_FILE_ACCESS ERROR] The filter file could not be accessed. Check the file permissions
and try again.

[NVFILTER_MEMORY_ACCESS_ERROR]
Memory could not be allocated.

[NVFILTER_DUPLICATE_FILTERNAME] The filter name already exists in the file and the caller did not
specify an update.

[NVFILTER_MAX BUFFERSIZE_EXCEEDED]
The filter contents, the filter description, plus the keywords
exceeded 20K bytes, which is the maximum buffer size.

Chapter 2. Reference Pages 127

nvFilterDefine(3)

Libraries

When you are compiling a program that uses nvFilterDefine, you need to link to the following library:
/usr/OV/lib/libnvfilter.a

Related Information
¢ See “nvFilterDelete(3)” on page 129.
¢ See “nvFilterErrorMsg(3)” on page 130.
¢ See “nvFilterFreeNameList(3)” on page 131.
¢ See “nvFilterGet(3)” on page 132.
¢ See “nvFilterGetNameList(3)” on page 134.

128 Programmer's Reference

nvFilterDelete(3)

nvFilterDelete(3)

Purpose

Removes a filtering rule from the filter file

Syntax

#include <nvFilter.h>

int nvFilterDelete(char *RuleName, char *FileName);

Description

The nvFilterDelete function removes a filtering rule from the filter file. An include file,
/usr/OV/include/nvFilter.h, is provided. This file contains the function prototype.

Parameters
RuleName Specifies a pointer to the name of the filtering rule to delete.
FileName Specifies a pointer to the path and name of the filter file.

Return Values

If successful, nvFilterDelete returns 0 (zero). If unsuccessful, it returns one of the following nonzero error
codes.

Error Codes
[INVFILTER_FILE_NOT_FOUND] The specified filter file was not found.

[NVFILTER_FILE_ACCESS ERROR] The filter file could not be accessed. Check the file permissions
and try again.

[NVFILTER_MEMORY_ACCESS_ERROR]
Memory could not be allocated.

[NVFILTER_FILTERNAME_NOT_FOUND]
The specified filtername was not found in the file.

Libraries

When compiling a program that uses nvFilterDelete, you need to link to the following library:
/usr/OV/lib/libnvfilter.a

Related Information
¢ See “nvFilterDefine(3)” on page 126.

See “nvFilterErrorMsg(3)” on page 130.

See “nvFilterFreeNamelList(3)” on page 131.

See “nvFilterGet(3)” on page 132.

See “nvFilterGetNameList(3)” on page 134.

Chapter 2. Reference Pages 129

nvFilterErrorMsg(3)

nvFilterErrorMsg(3)

Purpose
Retrieves the error message that corresponds to an nvFilter API return code

Syntax

#include <nvFilter.h>
char *nvFilterErrorMsg(int Retcode);

Description

The nvFilterErrorMsg function retrieves the error message that corresponds to an nvFilter API return code.
An include file, /usr/OV/include/nvFilter.h, is provided. This file contains the function prototype.

Parameters

Retcode Specifies the return code from an unsuccessful nvFilter API call.

Return Values

If successful, nvFilterErrorMsg returns the error message. If unsuccessful, it returns a NULL string.

Libraries

When compiling a program that uses nvFilterErrorMsg, you need to link to the following library:

lusr/OV/lib/libnvfilter.a

Related Information
¢ See “nvFilterDefine(3)” on page 126.
¢ See “nvFilterDelete(3)” on page 129.
¢ See “nvFilterFreeNameList(3)” on page 131.
¢ See “nvFilterGet(3)” on page 132.
¢ See “nvFilterGetNamelList(3)” on page 134.

130 Programmer's Reference

nvFilterFreeNameList(3)

nvFilterFreeNamelList(3)

Purpose

Frees the memory allocated during the creation of a list of filtering rule names

Syntax

#include <nvFilter.h>

void nvFilterFreeNamelList (struct FilterNode *FilterList);

Description

The nvFilterFreeNameList function frees the memory allocated during the creation of the list of filtering rule
names. An include file, /usr/OV/include/nvFilter.h, is provided. This file contains the function prototypes
and the filter structure. The structure has the following definition:

struct FilterNode
{

char *FilterName;
char *FilterDescription;
struct FilterNode *Next;

}
FilterName Specifies a pointer to the name of a filtering rule.

FilterDescription Specifies a pointer to the description of a filtering rule. The field is optional. If no
description exists, the pointer to the description is NULL.

Next Specifies a pointer to the next FilterNode. This field is used only by the
nvFilterGetNameList API.

Parameters

FilterList Specifies a pointer to the first item in the filter list.
Return Values There is no return parameter.

Libraries

When compiling a program that uses nvFilterFreeNameList, you need to link to the following library:
/usr/OV/lib/libnvfilter.a

Related Information
¢ See “nvFilterDefine(3)” on page 126.
¢ See “nvFilterDelete(3)” on page 129.
¢ See “nvFilterErrorMsg(3)” on page 130.
¢ See “nvFilterGet(3)” on page 132.
¢ See “nvFilterGetNameList(3)” on page 134.

Chapter 2. Reference Pages 131

nvFilterGet(3)

nvFilterGet(3)

Purpose

Retrieves the contents of the filtering rule

Syntax

#include <nvFilter.h>

int nvFilterGet (struct FilterNode *Filter, char =*FileName,
char *Buffer, int *BuflLen, int Expand);

Description

The nvFilterGet function retrieves the contents of the filtering rule. This function returns the first occur-
rence of the filter name. An include file, /usr/OV/include/nvFilter.h, is provided. This file contains the
function prototypes and the filter structure. The structure has the following definition:

struct FilterNode

{
char *FilterName;
char *FilterDescription;
struct FilterNode =*Next;

}
FilterName Specifies a pointer to the name of a filtering rule.

FilterDescription Specifies a pointer to the description of a filtering rule. This field is optional. If no
description exists, the pointer to the desciption is NULL.

Next Specifies a pointer to the next FilterNode. This field is used only by the
nvFilterGetNamelList API.

Space is allocated for the rule description on each call to the nvFilterGet routine. Your application is
responsible for deallocating this memory between calls to this routine. This technique is illustrated in
NetView for AIX Programmer's Guide.

Parameters

Filter Specifies a pointer to a filter structure containing the name of the filtering rule. If a
description exists for the specified rule, it is returned in the FilterDescription field.

FileName Specifies a pointer to the path and name of the filter file.

Buffer Specifies a pointer to the memory location where the rule will be written. If this field
is NULL, an error is returned and the length of the filtering rule will be returned in
the BufLen parameter.

BufLen Specifies a pointer to the size of the buffer. If the buffer is too small, an error is
returned and BufLen is changed to reflect the actual size of the filtering rule.

Expand Specifies 0 (zero) for do not expand references to other filtering rules and

hostnames, and 1 for expand the references.

132 Programmer's Reference

nvFilterGet(3)

Return Values

If successful, nvFilterGet returns 0 (zero), unless the buffer field is NULL. If so, nvFilterGet returns
[NVFILTER_INSUFFICIENT_SPACE]. If unsuccessful, it returns one of the following nonzero error codes.

Error Codes
[NVFILTER_FILE_NOT_FOUND] The specified filter file was not found.

[NVFILTER_FILE_ACCESS_ERROR]
The filter file could not be accessed. Check the file permissions and
try again.

[NVFILTER_MEMORY_ACCESS_ERROR]
Memory could not be allocated.

[NVFILTER_INSUFFICIENT_SPACE]
The buffer was too small for the specified filtering rule. BufLen is set
to the size of the rule.

[NVFILTER_FILTERNAME_NOT_FOUND]
The specified filtername was not found in the file.

[NVFILTER_HOSTNAME_RESOLUTION_ERROR]
The reference to a hostname could not be resolved.

[INVFILTER_FILTER_RESOLUTION_ERROR]
The reference to another filtering rule could not be expanded.

[NVFILTER_FILTER_REFERENCE_ERROR]
The filtering rule has an incorrect format.

[NVFILTER_TIME_FORMAT_ERROR]
The time has an incorrect format. It must be in the format HH:MM:SS.

Libraries

When compiling a program that uses nvFilterGet, you need to link to the following library:
/usr/OV/lib/libnvfilter.a

Related Information
¢ See “nvFilterDefine(3)” on page 126.
¢ See “nvFilterDelete(3)” on page 129.
¢ See “nvFilterErrorMsg(3)” on page 130.
¢ See “nvFilterFreeNameList(3)” on page 131.
¢ See “nvFilterGetNamelList(3)” on page 134.

Chapter 2. Reference Pages 133

nvFilterGetNameList(3)

nvFilterGetNamelList(3)

Purpose

Retrieves a list of all filtering rules in a filter file

Syntax

#include <nvFilter.h>

int nvFilterGetNamelList (char *FileName, struct FilterNode **FilterList);

Description

The nvFilterGetNameList function retrieves a list of all the unique filtering rule names in the filter file. If the
filter file contains duplicate names, the nvFilterGetNameList function does not return these duplicates. An
include file, /usr/OV/include/nvFilter.h, is provided. This file contains the function prototypes and the filter
structure. The structure has the following definition:

struct FilterNode

{
char *FilterName;
char *FilterDescription;
struct FilterNode *Next;

}
FilterName Specifies a pointer to the name of a filtering rule.

FilterDescription Specifies a pointer to the description of a filtering rule. This field is optional. If no
description exists, the pointer to the description is NULL.

Next Specifies a pointer to the next FilterNode. This field is used only by the
nvFilterGetNameList API.

Parameters

FileName Specifies the path and name of the filter file.

FilterList Specifies the address of a pointer to be set by nvFilterGetNamelList. If the function
returns successfully, it will contain the address of the first FilterNode in the linked
list.

Return Values

If successful, nvFilterGetNameList returns 0 (zero). If unsuccessful, it returns one of the following nonzero
error codes.

Error Codes
[NVFILTER_FILE_NOT_FOUND] The filter file was not found.

[NVFILTER_FILE_ACCESS_ERROR] The filter file could not be accessed. Check the file permissions
and try again.

[INVFILTER_MEMORY_ACCESS_ERROR]
Memory could not be allocated.

134 Programmer's Reference

nvFilterGetNameList(3)

[NVFILTER_FILTER_FILE_EMPTY] The specified filter file is empty.

[NVFILTER_INCORRECT_FILTER_FILE_FORMAT]
The specified filter file did not contain any filtering rules that were in
the correct format.

Libraries

When compiling a program that uses nvFilterGetNameList, you need to link to the following library:

lusr/OV/lib/libnvfilter.a

Related Information
¢ See “nvFilterDefine(3)” on page 126.
¢ See “nvFilterDelete(3)” on page 129.
¢ See “nvFilterErrorMsg(3)” on page 130.
¢ See “nvFilterFreeNamelList(3)” on page 131.
¢ See “nvFilterGet(3)” on page 132.

Chapter 2. Reference Pages 135

NVisClient(3)

NVisClient(3)

Purpose

Checks to see if an application is running on a client or a server
Syntax

#include <nvDefServ.h>

int NVisClient ();

Description

The NVisClient function determines whether an application is running on a NetView for AIX client or
server, for example, a distributed application that has daemons on both the server and clients.

Applications that are launched from the menu bar and are installed on each client probably do not need to
know if they are running on a client or server.

Return Values

If the machine is a server, NVisClient returns a value of 0 (FALSE). If the machine is a client, NVisClient
returns a value of 1 (TRUE).

Files

When compiling a program that uses NVisClient, you need to include the following files:

* nvDefServ.h

Libraries

When compiling a program that uses NVisClient, you need to link to the following library:

/usr/OV/lib/libovw.a

Related Information
¢ See “OVDefaultServerName(3)” on page 424.

136 Programmer's Reference

nvotChangeArcDetails(3)

nvotChangeArcDetails(3)

Purpose

Changes the contents of the details variable in the database

Syntax

nvotReturnCode nvotChangeArcDetails (
nvotNameBindingType arcNameBinding,
nvotProtocolType aEndpointProtocol,
char * akndpointName,
nvotProtocolType zEndpointProtocol,
char * zEndpointName,
int arcIndexId,
nvotOctetString = arcDetails)

Description

The nvotChangeArcDetails routine changes the contents of the details variable associated with the arc
named by aEndpoint, zEndpoint and arcindexId.

An arc connects arc endpoints: two vertices, two graphs, a vertex to a graph or a graph to a vertex. An
arc is recognized and referenced by its aEndpoint, zEndpoint and arcindexId.

The arcNameBinding parameter helps to identify the arc endpoints. See the following parameters section
for a detailed description. The arcNameBinding must always be compatible with the values passed in the
aEndpointProtocol and zEndpointProtocol parameters.

Endpoints of class graph must exist; otherwise, the arc details are not changed and the error codes
NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST or

NVOT_Z ENDPOINT_GRAPH_DOES_NOT_EXIST are set. The GTM interface does not support auto-
matic creation of graphs.

If an endpoint of class vertex does not exist, it is automatically created. Also, the arc is created with
default values and the details changed. This is part of GTM's recovery strategy for lost traps. However, a
vertex endpoint is NOT created if the other endpoint is a reference to a nonexistent graph.

The nvotProtocolType is a union of an enumerated type with a char pointer as defined in the nvotTypes.h
file. Special care must be taken when setting aEndpointProtocol and zEndpointProtocol. Setting these
variables to a nvotVertexProtocolType value if arcNameBinding identifies the endpoint as a graph causes
unpredictable errors. This is similar to setting a char pointer to an integer value.

Parameters

arcNameBinding Specifies the class of the objects in each endpoint of the arc. An endpoint can
be either a vertex or a graph. The following values are supported:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates that either endpoint is a vertex

ARC_VERTEX_GRAPH_NAME_BINDING
Indicates that aEndpoint is a vertex and zEndpoint is a graph

Chapter 2. Reference Pages 137

nvotChangeArcDetails(3)

ARC_GRAPH_VERTEX_NAME_BINDING
Indicates that aEndpoint is a graph and zEndpoint is a vertex

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates that either endpoint is a graph

If any value other than the preceding values is used, it is rejected by the GTM
interface and the error code NVOT_INVALID _NAME_BIND is set.

Arcs can be handled based on their direction. For more information about the
direction of arcs, see “nvotlnit(3)” on page 359. Regardless of which direction
was set in the nvotlnit routine, the arcNameBinding parameter always identi-
fies what value is set in the aEndpointProtocol and zEndpointProtocol vari-
ables.

aEndpointProtocol/zEndpointProtocol

Specifies the protocol of the object identified as the aEndpoint or zEndpoint,
respectively, of this arc. If aEndpoint or zEndpoint is to be a vertex,
aEndpointProtocol or zEndpointProtocol, respectively, must be set with a value
from the enumerated type nvotVertexProtocolType, which is defined in the file
nvotTypes.h. Otherwise, aEndpoint or zEndpoint is a graph, and
aEndpointProtocol or zEndpointProtocol, respectively, is a pointer to a valid
character string in memory.

akEndpointName/zEndPointName

arcindexid

arcDetails

Return Values

nvotReturnCode

Error Codes
[NVOT_SUCCESS]

Specifies the name of the object identified as the aEndpoint or zEndpoint,
respectively, of this arc. Both the endpoint name and the endpoint protocol
are required to identify the object at one of the endpoints of this arc. This
parameter can be any string of characters. Once specified, the same name
must be used in any reference to this graph.

Distinguishes an arc from other arcs between the same endpoints. (Two
endpoints can be connected by several different arcs.) The arcindexld is an
integer value.

Contains particular information that applications store for future retrieval. The
information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(arcDetails->octetString, (char *) applStruct, sizeof(applStruct))
and arcDetails->octetLength = sizeof(applStruct). Although nvotOctetString
allows for any size strings and the interface does not check the size of
boxDetails, any character exceeding 256 is truncated by the NetView for AlX
object database.

The nvotChangeArcDetails routine returns an nvotReturnCode that can
assume the values described in the following error codes section.

Successful operation.

[NVOT_ENDPOINT_GRAPH_INVALID_INDEX]

138 Programmer's Reference

The endpoint graph index is not valid. An endpoint graph protocol
or name must not be NULL.

nvotChangeArcDetails(3)

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_ARC_INVALID INDEX] The arc index is not valid. It must be a positive integer.

[NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The graph defined as the A endpoint of the arc does not exist in
the GTM database.

[NVOT_Z ENDPOINT_GRAPH_DOES NOT_EXIST]
The graph defined as the Z endpoint of the arc does not exist in
the GTM database.

[NVOT_INVALID _NAME_BINDING] The name binding is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples

The following example stores the character string mystring in the myLineArcDetails variable of the arc
created in the example in “nvotCreateArcinGraph(3)” on page 221.

#include <nvot.h>

nvotReturnCode rc;
char myString [50] = {"The quick brown fox jumped over the lazy dogs back"};

[*xxxrrrrrrrkkxx Define vertices V1 and V2 sxxxxxxkkkkkkksss/

nvotProtocolType oneEndpoint.vertexProtocol = STARLAN;
char * oneEndpointName = "My Vertex_V1";
nvotProtocolType otherEndpoint.vertexProtocol = STARLAN;
char * otherEndpointName = "My Vertex V2;

char * myLineArcLabel = "My Line_Arc";

int arcNumber = 1;

nvotOctetString * myLineArcDetails = NULL;

myLineArcDetails.octetString = malloc (sizeof (myString));
myLineArcDetails.octetlLength = (sizeof (myString));
memcpy (mylLineArcDetails.octetString, :myString, sizeof (myString));

if ((rc = nvotChangeArcDetails (ARC_VERTEX_VERTEX_NAME_BINDING,
oneEndpoint1Type,

Chapter 2. Reference Pages 139

nvotChangeArcDetails(3)

oneEndpointName,

otherEndpoint,

otherEndpointName,

arcNumber,

myLineArcDetails)) == NVOT_SUCCESS)

printf ("myString has been stored in %s.\n", myLineArcLabel);
else

printf ("Error occurred storing myString in %s.\n", myLineArclLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ Jusr/OV/lib/libnvot.a

Files

nvot.h

Related Information
¢ See “nvotCreateArcinGraph(3)” on page 221.

140 Programmer's Reference

nvotChangeArclconinGraph(3)

nvotChangeArciconinGraph(3)

Purpose

Changes an arc icon in a graph

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeArcIconInGraph (
nvotGraphProtocolType graphProtocol,
char * graphName,
nvotNameBindingType arcNameBinding,
nvotProtocolType aEndpointProtocol,
char * aEndpointName,
nvotProtocolType zEndpointProtocol,
char * zEndpointName,
int arcIndexId,
char * icon)

Description

The nvotChangeArciconinGraph routine changes the icon representing the arc identified by
aEndpointProtocol, zEndpointName, zEndpointProtocol, zEndpointName, and arcindexld that is associated
with the graph identified by graphProtocol and graphName.

The containing graph must exist. Otherwise, the arc icon is not changed and the error code
NVOT_GRAPH_DOES_NOT_EXIST is returned.

An arc connects arc endpoints: two vertices, two graphs, a vertex to a graph, or a graph to a vertex. An
arc is recognized and referenced by its aEndpoint, zEndpoint and arcindexld. The following parameters
are required:

e graphProtocol

e graphName

¢ aEndpointProtocol
¢ aEndpointName
¢ zEndpointProtocol
e zEndpointName
¢ arcindexld

If one of these parameters is not provided, the error code NVOT_GRAPH_INVALID_INDEX or
NVOT_ARC_INVALID_INDEX is returned.

The arcNameBinding parameter helps to identify the arc endpoints. See the parameters section for a
detailed description. The arcNameBinding must always be compatible with the values passed in the
aEndpointProtocol and zEndpointProtocol parameters.

Endpoints of class graph must exist. Otherwise the arc icon is not changed and either the error code

NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST or
NVOT_Z_ENDPOINT_GRAPH_DOES_NOT_EXIST is returned.

Chapter 2. Reference Pages 141

nvotChangeArclconinGraph(3)

If endpoints of class vertex do not exist, they are automatically created and the arc icon is changed. This
is part of the GTM's recovery strategy for lost traps. However, a vertex endpoint is NOT created and the
arc icon is not changed if the other endpoint is a reference to a nonexistent graph.

The nvotProtocolType is a union of an enumerated type with a char pointer as defined in the nvotTypes.h
file. Special care must be taken when setting the aEndpointProtocol and zEndpointProtocol parameters.
To set these variables with an nvotVertexProtocolType value if arcNameBinding identifies the endpoint as
a graph causes unpredictable errors. This is similar to setting a char pointer to an integer value.

To be supported by the nvotChangeArclconinGraph routine, the icon must be a valid option selected from
the file /usr/OV/conf/C/oid_to_sym. However, if the icon is not passed, it must be set to NULL. A pointer
that is not valid can cause unpredictable errors. If NULL is passed, the arc icon is changed to the default
symbol Connection:Generic .

Parameters

graphProtocol Specifies the protocol of the graph that contains the arc. This is the graph of
which this arc is a member arc. For more information, refer to the file
/usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph that contains the arc. Both the graphName
and graphProtocol parameters are required to identify the containing graph.
This parameter is a string of characters used to create the graph.

arcNameBinding Specifies the class of the objects in each endpoint of the arc. An endpoint can

be either a vertex or a graph. The following values are supported:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates that either endpoint is a vertex.

ARC_VERTEX_GRAPH_NAME_BINDING
Indicates that aEndpoint is a vertex and zEndpoint is a graph

ARC_GRAPH_VERTEX_NAME_BINDING
Indicates that aEndpoint is a graph and zEndpoint is a vertex.

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates either endpoint is a graph

If a value other than those in the preceding list is used, it is rejected by the
GTM interface and the error code NVOT_INVALID_NAME_BIND is set.

Arcs are handled based on their direction. For more information about arc
direction, see “nvotlnit(3)” on page 359. Regardless of the selection made in
the nvotlnit routine, arcNameBinding always identifies what value is set in the
aEndpointProtocol and zEndpointProtocol variables.

aEndpointProtocol/zEndpointProtocol
Specifies the protocol of the object identified as the aEndpoint or
aEndpointProtocol, respectively, of this arc. If aEndpoint or zEndpoint is a
vertex, aEndpointProtocol or zEndpointProtocol, respectively, must be set to a
value from the enumerated type nvotVertexProtocolType defined in the file
nvotTypes.h. Otherwise, aEndpoint or zEndpoint is a graph, and
aEndpointProtocol or zEndpointProtocol, respectively, is a pointer to a valid
character string in memory.

142 Programmer's Reference

nvotChangeArclconinGraph(3)

aEndpointName Specifies the name of the object identified as the aEndpoint of this arc. Both
the aEndpointName and aEndpointProtocol parameters are required to identify
the object at the aEndpoint of this arc. This parameter can be any string of
characters. Once specified, the same name must be used in any reference to
this graph.

arcindexid Distinguishes an arc from other arcs between the same endpoints. (Two
endpoints can be connected by several different arcs.) The arcindexld is an
integer value.

icon Specifies a new symbol to represent the arc in the NetView for AIX external
user interface. The symbol can be a line, a dotted line, and so forth. For
details about selecting an icon, refer to the file /usr/OV/conf/C/oid_to_sym.

Return Values

nvotReturnCode The nvotChangeArclconInGraph routine returns an nvotReturnCode that can
assume the values described in the following error codes section.

Error Codes

[NVOT_SUCCESS] Successful operation.
[NVOT_GRAPH_INVALID _INDEX] The graph index is not valid. A graph protocol or name must
not be NULL.

[NVOT_ENDPOINT_GRAPH_INVALID_INDEX]
The endpoint graph index is not valid. An endpoint graph
protocol or name must not be NULL.

[NVOT_VERTEX_INVALID _INDEX] The vertex index is not valid. A vertex protocol must be a
positive integer and a vertex name must not be NULL.

[NVOT_ARC_INVALID INDEX] The arc index is not valid. It must be a positive integer.

[NVOT_GRAPH _DOES NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_A_ENDPOINT_GRAPH_DOES NOT_EXIST]
The graph defined as the A endpoint of the arc does not exist
in the GTM database.

[NVOT_Z_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The graph defined as the Z endpoint of the arc does not exist
in the GTM database.

[NVOT_INVALID_NAME_BINDING] The name binding is not valid. It must be a humber defined
in the nvotTypes.h file.
[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a con-

nection with gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY] Memory allocation error. The system might be out of
memory.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during
operation. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

Chapter 2. Reference Pages 143

nvotChangeArclconinGraph(3)

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples

The following example changes the icon of the arc created in the example in “nvotCreateArcinGraph(3)”
on page 221

#include <nvot.h>
nvotReturnCode rc;

[*xkHxrxrkkkxxkx* Define the parent graph Fhkkkhhkkhhhkrkhhhkrkrk /[

nvotGraphProtocolType myGraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char * myGraphName = "My Graph";
[*xxxrrrxrrrkkkx Define vertices V1 and V2 sxxxxxxxkkkkkksss/
nvotProtocolType oneEndpoint.vertexProtocol = STARLAN;
char * oneEndpointName = "My Vertex_V1";
nvotProtocolType otherEndpoint.vertexProtocol = STARLAN;
char * otherEndpointName = "My Vertex V2;

[*xFkkrrkkkrxxkkkx Define arcs attributes *#xsxkksskxkkkrktkrhhhrkrrhhrkrrrrs/

char * myDotDashArcIcon = "1.3.6.1.2.1.2.2.1.3.53.4";
char * myLineArcLabel = "My_Line_Arc"
int arcNumber = 1;

if ((rc = nvotChangeArcIconInGraph (myGraphProt,
myGraphName,
ARC_VERTEX_VERTEX_NAME_BINDING,
oneEndpoint,
oneEndpointName,
otherEndpoint,
otherEndpointName,
arcNumber,
myDotDashArcIcon)) == NVOT_SUCCESS)

printf ("Arc icon of %s changed.\n", myLineArcLabel);
else

printf ("An error occurred changing %s icon.\n", myLineArcLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ Jusr/OV/lib/libnvot.a

Files

nvot.h

144 Programmer's Reference

nvotChangeArclconinGraph(3)

Related Information

¢ See “nvotChangeArcLabellnGraph(3)” on page 146.
¢ See “nvotCreateArcinGraph(3)” on page 221.

Chapter 2. Reference Pages 145

nvotChangeArcLabellnGraph(3)

nvotChangeArcLabellinGraph(3)

Purpose

Changes an arc label in a graph

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeArcLabelInGraph (
nvotGraphProtocolType graphProtocol,
char * graphName,
nvotNameBindingType arcNameBinding,
nvotProtocolType aEndpointProtocol,
char * aEndpointName,
nvotProtocolType zEndpointProtocol,
char * zEndpointName,
int arcIndexId,
char * Tabel)

Description

The nvotChangeArcLabellnGraph routine changes the label of the arc identified by aEndpointProtocol,
zEndpointName, zEndpointProtocol, zEndpointName, and arcindexld that is associated with the graph
identified by graphProtocol and graphName.

The containing graph must exist. Otherwise, the arc label is not changed and the error code
NVOT_GRAPH_DOES_NOT_EXIST is returned.

An arc connects arc endpoints: two vertices, two graphs, a vertex to a graph, or a graph to a vertex. An
arc is recognized and referenced by its aEndpoint, zEndpoint and arcindexld. The following parameters
are required:

e graphProtocol

e graphName

¢ aEndpointProtocol
¢ aEndpointName
¢ zEndpointProtocol
e zEndpointName
¢ arcindexld

If one of these parameters is not provided, the error code NVOT_GRAPH_INVALID_INDEX or
NVOT_ARC_INVALID_INDEX is returned.

The arcNameBinding parameter helps to identify the arc endpoints. See the parameters section for a
detailed description. The arcNameBinding must always be compatible with the values passed in the
aEndpointProtocol and zEndpointProtocol parameters.

Endpoints of class graph must exist. Otherwise the arc icon is not changed and either the error code

NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST or
NVOT_Z_ENDPOINT_GRAPH_DOES_NOT_EXIST is returned.

146 Programmer's Reference

nvotChangeArcLabellnGraph(3)

If endpoints of class vertex do not exist, they are automatically created and the arc icon is changed. This
is part of the GTM's recovery strategy for lost traps. However, a vertex endpoint is NOT created and the
arc icon is not changed if the other endpoint is a reference to a nonexistent graph.

The nvotProtocolType is a union of an enumerated type with a char pointer as defined in the nvotTypes.h
file. Special care must be taken when setting the aEndpointProtocol and zEndpointProtocol parameters.
To set these variables with an nvotVertexProtocolType value if arcNameBinding identifies the endpoint as
a graph causes unpredictable errors. This is similar to setting a char pointer to an integer value.

The label parameter is a character string displayed under a symbol in the NetView for AIX EUI. Usually, it
is a human-readable character string that helps to visually identify a network resource. Although the label
must be a valid pointer, NULL is accepted. A pointer that is not valid can cause unpredictable errors. If
NULL is passed, a concatenation of aEndpointName + zEndpointName + arcindexId is displayed in place
of the label.

Parameters

graphProtocol Specifies the protocol of the graph that contains the arc. This is the graph of
which this arc is a member arc. For more information, refer to the file
/usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph that contains the arc. Both the graphName
and graphProtocol parameters are required to identify the containing graph.
This parameter is a string of characters used to create the graph.

arcNameBinding Specifies the class of the objects in each endpoint of the arc. An endpoint can

be either a vertex or a graph. The following values are supported:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates that either endpoint is a vertex.

ARC_VERTEX_GRAPH_NAME_BINDING
Indicates that aEndpoint is a vertex and zEndpoint is a graph

ARC_GRAPH_VERTEX_NAME_BINDING
Indicates that aEndpoint is a graph and zEndpoint is a vertex.

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates either endpoint is a graph

If a value other than those in the preceding list is used, it is rejected by the
GTM interface and the error code NVOT_INVALID _NAME_BIND is set.

Arcs are handled based on their direction. For more information about arc
direction, see “nvotlnit(3)” on page 359. Regardless of the selection made in
the nvotlnit routine, arcNameBinding always identifies what value is set in the
aEndpointProtocol and zEndpointProtocol variables.

aEndpointProtocol/zEndpointProtocol
Specifies the protocol of the object identified as the aEndpoint or
aEndpointProtocol, respectively, of this arc. If aEndpoint or zEndpoint is a
vertex, aEndpointProtocol or zEndpointProtocol, respectively, must be set to a
value from the enumerated type nvotVertexProtocolType defined in the file
nvotTypes.h. Otherwise, aEndpoint or zEndpoint is a graph, and
aEndpointProtocol or zEndpointProtocol, respectively, is a pointer to a valid
character string in memory.

Chapter 2. Reference Pages 147

nvotChangeArcLabellnGraph(3)

aEndpointName Specifies the name of the object identified as the aEndpoint of this arc. Both
the aEndpointName and aEndpointProtocol parameters are required to identify
the object at the aEndpoint of this arc. This parameter can be any string of
characters. Once specified, the same name must be used in any reference to
this graph.

arcindexid Distinguishes an arc from other arcs between the same endpoints. (Two
endpoints can be connected by several different arcs.) The arcindexld is an
integer value.

label When you click the right mouse button on an arc symbol, a pull-down menu is
displayed. In its upper line, the menu shows a label for the arc. The arc label
parameter specifies a string of characters to be displayed in this pull-down
menu.

Return Values

nvotReturnCode The nvotChangeArcLabellnGraph routine returns an nvotReturnCode that can
assume the values described in the following error codes section.

Error Codes

[NVOT_SUCCESS] Successful operation.
[NVOT_GRAPH_INVALID INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_ENDPOINT_GRAPH_INVALID _INDEX]
The endpoint graph index is not valid. An endpoint graph protocol
or name must not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_ARC_INVALID_INDEX] The arc index is not valid. It must be a positive integer.
[NVOT_GRAPH_DOES NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The graph defined as the A endpoint of the arc does not exist in
the GTM database.

[NVOT_Z ENDPOINT_GRAPH_DOES NOT_EXIST]
The graph defined as the Z endpoint of the arc does not exist in
the GTM database.

[NVOT_INVALID _NAME_BINDING] The name binding is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

148 Programmer's Reference

nvotChangeArcLabellnGraph(3)

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples

The following example changes the label of the arc created in the example in “nvotCreateArcinGraph(3)”

on page 221

#include <nvot.h>
nvotReturnCode rc;

[*xkHxrxrkkkxxkx* Define the parent graph Fhkkkhhkkhhhkkkhhkkrk

nvotGraphProtocolType myGraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char * myGraphName = "My Graph";
[*xxxrrrxrrrkkkx Define vertices V1 and V2 sxxxxxxkkkkkkksss/
nvotProtocolType oneEndpoint.vertexProtocol = STARLAN;
char * oneEndpointName = "My Vertex_V1";
nvotProtocolType otherEndpoint.vertexProtocol = STARLAN;
char * otherEndpointName = "My Vertex V2;

[*xFkkrrkkkrxxkkkx Define arcs attributes *#xsxkksskxkkkrktkrhhhrkrrhhrkrrrrs/

char * myDotDashArcLabel = "My Dotted_Arc"
char * myLineArcLabel = "My Line Arc"
int arcNumber = 1;

if ((rc = nvotChangeArcLabelInGraph (myGraphProt,
myGraphName,
ARC_VERTEX_ VERTEX NAME_BINDING,
oneEndpoint,
oneEndpointName,
otherEndpoint,
otherEndpointName,
arcNumber,
myDotDashArcLabel)) == NVOT_SUCCESS)

printf ("Arc label of %s changed.\n", myLineArclLabel);
else

printf ("An error occurred changing %s Tlabel.\n", myLineArclLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ /usr/OV/lib/libnvot.a

Files

nvot.h

Related Information

¢ See “nvotChangeArciconIinGraph(3)” on page 141.
¢ See “nvotCreateArcinGraph(3)” on page 221.

Chapter 2. Reference Pages

149

nvotChangeArcStatus(3)

nvotChangeArcStatus(3)

Purpose

Changes the status of an arc

Syntax

nvotReturnCode nvotChangeArcStatus (
nvotNameBindingType arcNameBinding,
nvotProtocolType aEndpointProtocol,
char * akndpointName,
nvotProtocolType zEndpointProtocol,
char * zEndpointName,
int arcIndexId,
statusType arcStatus)

Description

The nvotChangeArcStatus routine changes the status of an arc named by aEndpoint, zEndpoint and
arcindexld.

An arc connects arc endpoints: two vertices, two graphs, a vertex to a graph, or a graph to a vertex. An
arc is recognized and referenced by its aEndpoint, zEndpoint and arcindexId.

The arcNameBinding parameter helps to identify the arc endpoints. See the following parameters section
for a detailed description. The arcNameBinding must always be compatible with the values passed in the
aEndpointProtocol and zEndpointProtocol parameters.

Endpoints of class graph must exist; otherwise the arc status is not changed and the error codes
NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST or

NVOT_Z ENDPOINT_GRAPH_DOES_NOT_EXIST is set. The GTM interface does not support automatic
creation of graphs.

If an endpoint of class vertex does not exist, it is automatically created. Also, the arc is created with
default values and the status changed. This is part of the GTM's recovery strategy for lost traps.
However, a vertex endpoint is NOT created if the other endpoint is a reference to an nonexistent graph.

The nvotProtocolType is a union of an enumerated type with a char pointer as defined in the nvotTypes.h
file. Special care must be taken when setting aEndpointProtocol and zEndpointProtocol. Setting these
variables to a nvotVertexProtocolType value if arcNameBinding identifies the endpoint as a graph causes
unpredictable errors. This is similar to setting a char pointer to an integer value.

The arcStatus parameter reflects the status of a network connection. The statusType is defined in the file
nvotTypes.h. The possible values are mapped into a combination of four status attributes: operational
state, alarm status, availability status, and unknown status. For a detailed explanation, see the section
about state management variables in the NetView for AIX Programmer's Guide. If the value passed is not
valid, the operation is rejected and error code NVOT_INVALID_STATUS is returned.

150 Programmer's Reference

Parameters

arcNameBinding

nvotChangeArcStatus(3)

Specifies the class of the objects in each endpoint of the arc. An endpoint can
be either a vertex or a graph. The following values are supported:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates that either endpoint is a vertex

ARC_VERTEX_GRAPH_NAME_BINDING
Indicates that aEndpoint is a vertex and zEndpoint is a graph

ARC_GRAPH_VERTEX_NAME_BINDING
Indicates that aEndpoint is a graph and zEndpoint is a vertex

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates that either endpoint is a graph

If any value other than the preceding values is used, it is rejected by the GTM
interface and the error code NVOT_INVALID_NAME_BIND is set.

Arcs can be handled based on their direction. For more information about the
direction of arcs, see “nvotlnit(3)” on page 359. Regardless of which direction
was set in the nvotlnit routine, the arcNameBinding parameter always identi-
fies what value is set in the aEndpointProtocol and zEndpointProtocol vari-
ables.

aEndpointProtocol/zEndpointProtocol

Specifies the protocol of the object identified as the aEndpoint or zEndpoint,
respectively, of this arc. If aEndpoint or zEndpoint is to be a vertex,
aEndpointProtocol or zEndpointProtocol, respectively, must be set with a value
from the enumerated type nvotVertexProtocolType, which is defined in the file
nvotTypes.h. Otherwise, aEndpoint or zEndpoint is a graph, and
aEndpointProtocol or zEndpointProtocol, respectively, is a pointer to a valid
character string in memory.

akEndpointName/zEndPointName

arcindexld

arcStatus

Return Values

nvotReturnCode

Specifies the name of the object identified as the aEndpoint or zEndpoint,
respectively, of this arc. Both the endpoint name and the endpoint protocol
are required to identify the object at one of the endpoints of this arc. This
parameter can be any string of characters. Once specified, the same name
must be used in any reference to this graph.

Distinguishes an arc from other arcs between the same endpoints. (Two
endpoints can be connected by several different arcs.) The arcindexld is an
integer value.

Specifies a set of values to represent the status of a connection. This param-
eter is a combination of MIB variables OperationalState, AlarmStatus,
AvailabilityStatus and UnknownStatus. The statusType is defined in the file
nvotTypes.h.

The nvotChangeArcStatus routine returns an nvotReturnCode that can assume
the values described in the following error codes section.

Chapter 2. Reference Pages 151

nvotChangeArcStatus(3)

Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_ENDPOINT_GRAPH_INVALID_INDEX]
The endpoint graph index is not valid. An endpoint graph protocol
or name must not be NULL.

[NVOT_VERTEX_INVALID INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_ARC_INVALID INDEX] The arc index is not valid. It must be a positive integer.

[NVOT_INVALID_STATUS] The status is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_A_ENDPOINT_GRAPH_DOES NOT_EXIST]
The graph defined as the A endpoint of the arc does not exist in
the GTM database.

[NVOT _Z ENDPOINT_GRAPH_DOES NOT_EXIST]
The graph defined as the Z endpoint of the arc does not exist in
the GTM database.

[NVOT_INVALID _NAME_BINDING] The name binding is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples

The following example changes the status of one the arcs created in the example given in
“nvotCreateArcinGraph(3)” on page 221.

#include <nvot.h>

nvotReturnCode rc;

nvotProtocolType oneEndpoint.vertexProtocol = STARLAN;
char * oneEndpointName = "My Vertex_V1";
nvotProtocolType otherEndpoint.vertexProtocol = STARLAN;
char * otherEndpointName = "My Vertex V2;

char * myLineArcLabel = "My_Line_Arc";

int arcNumber = 1;

nvotStatusType myLineArcStatus = STATUS_MARGINAL;

if ((rc = nvotChangeArcStatus (ARC_VERTEX_VERTEX_NAME_BINDING,

152 Programmer's Reference

nvotChangeArcStatus(3)

oneEndpoint,

oneEndpointName,

otherEndpoint,

otherEndpointName,

arcNumber,

myLineArcStatus)) == NVOT_SUCCESS)

printf ("Arc status of arc %s changed.\n", myLineArclLabel);
else

printf ("An error occurred changing %s status.\n", myLineArcLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ /usr/OV/lib/libnvot.a

Files

nvot.h

Related Information

¢ See “nvotCreateArcinGraph(3)” on page 221.
¢ See “nvotGetArcsinGraph(3)” on page 307.
¢ See “nvotlnit(3)” on page 359.

Chapter 2. Reference Pages 153

nvotChangeBoxBackground(3)

nvotChangeBoxBackground(3)

Purpose

Changes the background of a box map

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeBoxBackground (
nvotGraphProtocolType boxProtocol,
char * boxName,
char * boxBackground)

Description

The nvotChangeBoxBackground routine changes the image displayed in the background of the submap
into which the box given by boxProtocol and boxName is exploded.

The protocol and name parameters uniquely identify objects in the GTM database. The boxProtocol and
boxName parameters are required. If one of these parameters is not provided, the error code
NVOT_BOX_INVALID_INDEX is returned.

If the graph specified does not exist in the GTM database, its submap does not exist either and the error
code NVOT_BOX DOES NOT_EXIST is returned.

If a graph that matches boxProtocol and boxName but whose graphType attribute is not set to BOX exists
in the GTM database, its background is not changed and either NVOT_GRAPH_ALREADY_EXIST or
NVOT_OTHER_TYPE_GRAPH_EXIST is returned.

Parameters

boxProtocol Specifies the protocol of the child box graph. For more information about
specifying a box graph's protocol, refer to the file /Jusr/OV/conf/oid_to_protocol.

boxName Specifies the name of the child box graph. Both the boxName and
boxProtocol parameters are required to uniquely identify the child box graph.
This parameter is a string of characters used to create the box graph.

boxBackground Specifies an image to be displayed in the background of the submap into

which this box is exploded. Background is usually an image of a geographic
region that helps to illustrate a submap. You can select a background image
from among the bitmap files in the default directory /usr/OV/backgrounds .

Return Values

nvotReturnCode The nvotChangeBoxBackground routine returns an nvotReturnCode that can
assume the values described in the following error codes section.

Error Codes
[NVOT_SUCCESS] Successful operation.

154 Programmer's Reference

nvotChangeBoxBackground(3)

[NVOT_BOX_INVALID INDEX] The box index is not valid. A box graph protocol or name must
not be NULL.

[NVOT_BOX_DOES _NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_GRAPH_ALREADY EXIST] A graph already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_OTHER_TYPE_GRAPH_EXIST]
Another type of graph exists. This call is attempting to create a
graph, box, or root graph with a protocol and name already used
for a graph of type INVALID or OTHER.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.
A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:
nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples
The following example changes the background in the submap of the graph created in the example in
“nvotCreateGraphIinGraph(3)” on page 235.

#include <nvot.h>
nvotReturnCode rc;

nvotGraphProtocolType my STARLAN GraphsProt = "1.3.6.1.2.1.2.2.1.3.11";
char * myBox_STARLAN_GraphName = "My Box_STARLAN_Graph";

char * my_NEW_BackgroundMap = "usa";

if ((rc = nvotChangeBoxBackground (my_ STARLAN GraphsProt,
myBox_STARLAN_GraphName,
my_NEW_BackgroundMap)) == NVOT_SUCCESS)

printf ("Background of box graph %s changed.\n", myBox_ STARLAN_ GraphName) ;
else

printf ("Error occurred changing %s background.\n",myBox STARLAN GraphName) ;
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
e [usr/OV/lib/libnvot.a

Chapter 2. Reference Pages 155

nvotChangeBoxBackground(3)

Files

nvot.h

Related Information

¢ See “nvotCreateRootGraph(3)” on page 249.
¢ See “nvotCreateGraphinGraph(3)” on page 235.
¢ See “nvotCreateBoxInGraph(3)” on page 227.

156 Programmer's Reference

nvotChangeBoxDetails(3)

nvotChangeBoxDetails(3)

Purpose

Changes the contents of the details variable in the GTM database

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeBoxDetails (
nvotGraphProtocolType boxProtocol,
char * boxName,

nvotOctetString =* boxDetails)

Description

The nvotChangeBoxDetails routine changes the contents of the details variable associated with the box
graph identified by boxProtocol and boxName.

The protocol and name parameters uniquely identify objects in the GTM database. The boxProtocol and
boxName parameters are required. If one of these parameters is not provided, the error code
NVOT_BOX_INVALID_INDEX is returned.

If the box graph specified does not exist in the GTM database, the operation is rejected and the error code
NVOT_BOX_DOES_NOT_EXIST is returned.

If a graph that matches boxProtocol and boxName but whose graphType attribute is not set to BOX exists
in GTM database, its details variable is not changed and either NVOT_GRAPH_ALREADY_EXIST or
NVOT_OTHER_TYPE_GRAPH_EXIST is returned.

Parameters

boxProtocol Specifies the protocol of the box graph. For more information about specifying
a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the box graph. Both the boxName and boxProtocol
parameters are required to uniquely identify the box graph in the GTM data-
base. This parameter is a string of characters used to create the box graph.

boxDetails Contains particular information that applications store for future retrieval. The

information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(boxDetails->octetString, (char *) applStruct,
sizeof(applStruct)) and boxDetails->octetLength = sizeof(applStruct). Although
nvotOctetString allows for any size strings and the interface does not check
the size of boxDetails, any character exceeding 256 is truncated by the
NetView for AIX object database.

Return Values

nvotReturnCode The nvotChangeBoxDetails routine returns an nvotReturnCode that can
assume the values described in the following error codes section.

Chapter 2. Reference Pages 157

nvotChangeBoxDetails(3)

Error Codes

[NVOT_SUCCESS] Successful operation.
[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol or name must
not be NULL.

[NVOT_BOX_DOES _NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_GRAPH_ALREADY EXIST] A graph already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_OTHER_TYPE_GRAPH_EXIST]
Another type of graph exists. This call is attempting to create a
graph, box, or root graph with a protocol and name already used
for a graph of type INVALID or OTHER.

[NVOT_GTMD_INVALID _RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc !'= NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples

The following example stores the contents of myStruct snd myString into the boxDetails variable attri-
bute of My_Box.

#include <nvot.h>
typedef struct { int varl;
int var2;
} structType;

structType myStruct = { 11, 22 };
char myString [50] = ["The quick brown fox jumped over the lazy dogs back"];

nvotOctetString myBoxDetails;

char * auxDetailsPtr;

myBoxDetails.octetString = malloc (sizeof (myStruct) + sizeof (myString));
myBoxDetails.octetLength = (sizeof (structType) + sizeof (myString));
auxDetailsPtr = myBoxDetails.octetString;

memcpy (myBoxDetails.octetString, (char) :myStruct, sizeof (myStruct));
auxDetailsPtr = myBoxDetails.octetString + sizeof (myStruct);
memcpy (auxDetailsPtr, :myString, sizeof (myString));

nvotReturnCode rc;

158 Programmer's Reference

nvotChangeBoxDetails(3)

nvotGraphProtocolType myBoxProt = "1.3.6.1.2.1.2.2.1.3.17";
char * myBoxName = "My Box";

if ((rc = nvotChangeBoxDetails (myBoxProt,
myBoxName,
:myBoxDetails)) == NVOT_SUCCESS)

printf ("myString has been stored in %s.\n", myBoxName);
else

printf ("Error occurred storing myString in %s.\n", myBoxName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
e [usr/OV/lib/libnvot.a

Files

nvot.h

Related Information

¢ See “nvotCreateRootGraph(3)” on page 249.
¢ See “nvotCreateBoxInGraph(3)” on page 227.

Chapter 2. Reference Pages 159

nvotChangeBoxIconIinGraph(3)

nvotChangeBoxlconInGraph(3)

Purpose

Changes a box graph icon in a graph
Syntax

#include <nvot.h>

nvotReturnCode nvotChangeBoxIconInGraph (
nvotGraphProtocolType graphProtocolParent,

char graphNameParent,
nvotGraphProtocolType boxProtocol,
char * boxName,

char * icon)

Description

The nvotChangeBoxlconInGraph routine changes the icon representing the box graph identified by
boxProtocol and boxName and that is displayed in the submap of the graph identified by
graphProtocolParent and graphNameParent.

The protocol and name parameters uniquely identify objects in the GTM database. The
graphProtocolParent, graphNameParent, boxProtocol and boxName parameters are required. If one of
these parameters is not provided, the error code NVOT_GRAPH_INVALID_INDEX is returned.

If either the parent or box graph does not exist in the GTM database, the box graph icon is not changed
and the error code NVOT_GRAPH_DOES_NOT_EXIST or NVOT_BOX_DOES_NOT_EXIST is returned.
Automatic creation of box graphs is not supported.

To be supported by the nvotChangeBoxlconInGraph routine, the icon must be a valid option selected from
the file /usr/OV/conf/C/oid_to_sym. However, if the icon is not passed, it must be set to NULL. A pointer
that is not valid can cause unpredictable errors. If NULL is passed, the box graph icon is changed to the
default symbol Computer:Generic .

Parameters

graphProtocolParent Specifies the protocol of the containing graph. For more information about
specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the containing graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph in GTM the database. This parameter is a string of characters used to
create the parent graph.

boxProtocol Specifies the protocol of the child box graph. For more information about
specifying a box graph's protocol, refer to the file /Jusr/OV/conf/oid_to_protocol.

boxName Specifies the name of the child box graph. Both the boxName and
boxProtocol parameters are required to uniquely identify the child box graph.
This parameter is a string of characters used to create the box graph.

icon Specifies a symbol to represent the child box graph in the NetView for AlIX

EUI. Valid symbols are defined in the file /Jusr/OV/conf/C/oid_to_sym.

160 Programmer's Reference

nvotChangeBoxIconinGraph(3)

Return Values

nvotReturnCode The nvotChangeBoxlconInGraph routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

Error Codes

[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must
not be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol and name

must not be NULL.

[NVOT_BOX_DOES_NOT_EXIST] The box graph does not exist in the GTM database.
[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or

member table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY] Memory allocation error. The system might be out of

memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a con-

nection with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during

operation. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc !'= NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples

The following example changes the icon of the box created in the example in “nvotCreateBoxInGraph(3)”
on page 227.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType my STARLAN_GraphsProt = "1.3.6.1.2.1.2.2.1.3.11";

char

char
char

if (rc

* myRoot_STARLAN_GraphName = "My_Root_Graph";

myBox_STARLAN_GraphName = "My_Box_STARLAN_Graph";
my_NEW_BoxIcon = "1.3.6.1.2.1.2.2.1.3.9.10";

= nvotChangeBoxIconInGraph (my_ STARLAN_GraphsProt,
myRoot STARLAN_GraphName,
my_STARLAN GraphsProt,
myBox_STARLAN_GraphName,
my NEW BoxIcon) == NVOT_SUCCESS)

Chapter 2. Reference Pages 161

nvotChangeBoxIconIinGraph(3)

printf ("Box icon of box graph %s changed.\n", myBox STARLAN GraphName);
else

printf ("An error occurred changing %s icon.\n", myBox STARLAN_ GraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ /usr/OV/lib/libnvot.a

Files

nvot.h

Related Information

¢ See “nvotCreateBoxInGraph(3)” on page 227.
¢ See “nvotChangeBoxLabellnGraph(3)” on page 163.

162 Programmer's Reference

nvotChangeBoxLabellnGraph(3)

nvotChangeBoxLabellnGraph(3)

Purpose

Changes a box graph label in a graph

Syntax
#include <nvot.h>
nvotReturnCode nvotChangeBoxLabelInGraph (
nvotGraphProtocolType graphProtocolParent,
char * graphNameParent,
nvotGraphProtocolType boxProtocol,
char * boxName,
char * label)
Description

The nvotChangeBoxLabellnGraph routine changes the label of the box graph identified by boxProtocol and
boxName and displayed in the submap of the graph identified by graphProtocolParent and
graphNameParent.

The protocol and name parameters uniquely identify objects in the GTM database. The
graphProtocolParent, graphNameParent, boxProtocol and boxName parameters are required. If one of
these parameters is not provided, the error code NVOT_GRAPH_INVALID_INDEX is returned.

If either the parent or child box graph does not exist in the GTM database, the box label is not changed
and the error code NVOT_GRAPH_DOES_NOT_EXIST or NVOT_BOX_DOES_NOT_EXIST is returned.
Automatic creation of box graphs is not supported.

The label parameter is a character string displayed under a symbol in the NetView for AIX EUI. Usually, it
is a human-readable character string that helps to visually identify a resource in a topology map. Although
the label must be a valid pointer, NULL is accepted. A pointer that is not valid can cause unpredictable
errors. If NULL is passed, the boxName string is displayed in place of the label.

Parameters

graphProtocolParent Specifies the protocol of the containing graph. For more information about
specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the containing graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph in GTM the database. This parameter is a string of characters used to
create the parent graph.

boxProtocol Specifies the protocol of the child box graph. For more information about
specifying a box graph's protocol, refer to the file /Jusr/OV/conf/oid_to_protocol.

boxName Specifies the name of the child box graph. Both the boxName and

boxProtocol parameters are required to uniquely identify the child box graph.
This parameter is a string of characters used to create the box graph.

Chapter 2. Reference Pages 163

nvotChangeBoxLabellnGraph(3)

label Specifies a human-readable character string to be displayed under the box
graph symbol in the NetView for AIX EUI. This parameter must be a valid
character string or NULL.

Return Values

nvotReturnCode The nvotChangeBoxLabellnGraph routine returns an nvotReturnCode that can
assume the values described in the following error codes section.

Error Codes

[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_GRAPH_DOES NOT_EXIST] A graph does not exist in the GTM database.

[NVOT _BOX_INVALID INDEX] The box index is not valid. A box graph protocol or name must
not be NULL.

[NVOT_BOX DOES NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_GTMD_INVALID RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET _ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples

The following example changes the label of the box graph created in the example in
“nvotCreateBoxInGraph(3)” on page 227.

#include <nvot.h>
nvotReturnCode rc;
nvotReturnCode rc;

nvotGraphProtocolType my STARLAN GraphsProt = "1.3.6.1.2.1.2.2.1.3.11";

char * myRoot_STARLAN_GraphName = "My Root_Graph";
char * myBox_STARLAN_GraphName = "My_Box_STARLAN_Graph";
char * my_NEW BoxLabel = "My Workstation Box";

164 Programmer's Reference

nvotChangeBoxLabellnGraph(3)

if (rc = nvotChangeBoxLabelInGraph (my STARLAN GraphsProt,
myRoot STARLAN GraphName,
my_STARLAN GraphsProt,
myBox_STARLAN_GraphName,
my_NEW BoxLabel) == NVOT_SUCCESS)

printf ("Box icon of box graph %s changed.\n", myBox_ STARLAN GraphName);
else

printf ("An error occurred changing %s icon.\n", myBox_ STARLAN_GraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ Jusr/OV/lib/libnvot.a

Files

nvot.h

Related Information

¢ See “nvotCreateBoxInGraph(3)” on page 227.
¢ See “nvotChangeBoxlconIinGraph(3)” on page 160.

Chapter 2. Reference Pages 165

nvotChangeBoxPositioninGraph(3)

nvotChangeBoxPositionInGraph(3)

Purpose

Changes the position of a box graph icon in a graph submap

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeBoxPositionInGraph (
nvotGraphProtocolType graphProtocolParent,
char * graphNameParent,
nvotGraphProtocolType boxProtocol,
char * boxName,
nvotPositionType newPosition)

Description

The nvotChangeBoxPositionInGraph routine changes the position of a symbol representing the box graph
identified by boxProtocol and boxName and associated with the graph identified by graphProtocolParent
and graphNameParent.

The parent graph must have been created with the layout algorithm set to NONE_LAYOUT.

The protocol and name parameters uniquely identify objects in the GTM database. The
graphProtocolParent, graphNameParent, boxProtocol, and boxName parameters are required. If one of
these parameters is not provided, the error code NVOT_GRAPH_INVALID_INDEX is returned.

If the parent graph does not exist or it exists but its graphType is not set to GRAPH, the box position is
not changed and the error code NVOT_GRAPH_DOES NOT_EXIST is returned.

If the box graph does not exist or it exists but its graphType is not set to BOX, the box position is not
changed and the error code NVOT_BOX_DOES_NOT_EXIST is returned. Automatic creation of graph is
not supported.

The nvotPositionType parameter, as defined in the file nvotTypes.h, accepts the following four variables:
xCoordinate, yCoordinate, xGrid and yGrid. The xGrid and yGrid variables determine a scale on which the
coordinate system is defined.

The grid and coordinate do not necessarily determine the exact physical location in the window where the
symbol is displayed. However, they determine a virtual position for the symbol based on the virtual size of
the submap.

The symbol size can be affected either by the grid values or by the coordinate values. For example, if the
symbol position is set too far from the center or from another symbol, x and y grid are reset to a value that
keeps the distances proportional and allows all symbols in the submap to be displayed. This placement of
symbolx has the effect of a zoomout.

For best results, use the same xGrid and yGrid values for all symbols in the same submap.

166 Programmer's Reference

nvotChangeBoxPositioninGraph(3)

Parameters

graphProtocolParent Specifies the protocol of the parent graph. For more information about speci-
fying a graph's protocol, refer to the file /Jusr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the parent graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph.

boxProtocol Specifies the protocol of the box graph. For more information about specifying
a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the box graph. Both the boxName and boxProtocol
parameters are required to uniquely identify the box graph. This parameter is
a string of characters used to create the box graph.

newPosition Specifies the values of the variables xCoordinate, yCoordinate, xGrid and

yGrid in a structure defined in the file nvotTypes.h.

Return Values

nvotReturnCode The nvotChangeBoxPositionInGraph routine returns an nvotReturnCode that
can assume the values described in the following error codes section.

Error Codes

[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_GRAPH_DOES NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol or name must
not be NULL.

[NVOT_BOX_DOES_NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_GTMD_INVALID _RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc !'= NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Chapter 2. Reference Pages 167

nvotChangeBoxPositioninGraph(3)

Examples

The following example changes the position of a child box graph.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType my STARLAN GraphsProt = "1.3.6.1.2.1.2.2.1.3.11";

char * myRoot STARLAN GraphName = "My Root Graph";

char * myBox_STARLAN_GraphName = "My_Box_STARLAN_Graph";

nvotPositionType myBoxGraphPosition = { 500, /* xCoordinate */
500, /* yCoordinate =*/
1000, /* xGrid */

1000 /* yGrid */
}s

if ((rc = nvotChangeBoxPositionInGraph (my_ STARLAN GraphsProt,
myRoot STARLAN_GraphName,
my_STARLAN_GraphsProt,
myBox_STARLAN GraphName,
myBoxGraphPosition)) == NVOT_SUCCESS)

printf ("Positioning of graph %s symbol changed.\n",
myBox_STARLAN_GraphName) ;
else
printf ("An error occurred changing %s icon position.\n",
myBox_STARLAN_GraphName) ;
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
e [usr/OV/lib/libnvot.a

Files

nvot.h

Related Information

¢ See “nvotCreateBoxInGraph(3)” on page 227.
¢ See “nvotChangeGraphPositioninGraph(3)” on page 184.

168 Programmer's Reference

nvotChangeGraphBackground(3)

nvotChangeGraphBackground(3)

Purpose

Changes the background of a graph map

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeGraphBackground (
nvotGraphProtocolType graphProtocol,
char * graphName,
char * graphBackground)

Description

The nvotChangeGraphBackground routine changes the image displayed in the background of the submap
into which the graph given by graphProtocol and graphName is exploded.

The protocol and name parameters uniquely identify objects in the GTM database. The graphProtocol and
graphName parameters are required. If one of these parameters is not provided, the error code
NVOT_GRAPH_INVALID_INDEX is returned.

If the graph specified does not exist in the GTM database, its submap does not exist either and the error
code NVOT_GRAPH_DOES NOT_EXIST is returned.

If a graph that matches graphProtocol and graphName but does not have its graphType attribute set to
GRAPH exists in the GTM database, its background is not changed and either
NVOT_BOX_ALREADY_EXIST or NVOT_OTHER_TYPE_GRAPH_EXIST is returned.

Parameters

graphProtocol Specifies the protocol of the root graph. For more information about specifying
a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the root graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the root graph in the GTM data-
base. This parameter is a string of characters used to create the root graph.

graphBackground Specifies an image to be displayed in the background of the submap into

which this graph is exploded. Background is usually an image of a geographic
region that helps to illustrate a submap. You can select a background image
from among the bitmap files in the default directory /usr/OV/backgrounds .

Return Values

nvotReturnCode The nvotChangeGraphBackground routine returns an nvotReturnCode that can
assume the values described in the following error codes section.

Chapter 2. Reference Pages 169

nvotChangeGraphBackground(3)

Error Codes

[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID _INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_GRAPH_DOES NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_BOX ALREADY EXIST] A box already exists with the same protocol and name for which

this call is attempting to create a graph, box, or root graph.

[NVOT_OTHER_TYPE_GRAPH_EXIST]
Another type of graph exists. This call is attempting to create a
graph, box, or root graph with a protocol and name already used
for a graph of type INVALID or OTHER.

[NVOT_GTMD_INVALID _RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc !'= NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples

The following example changes the background in the submap of the graph created in the example in
“nvotCreateGraphIinGraph(3)” on page 235.

#include <nvot.h>
nvotReturnCode rc;

nvotGraphProtocolType mySDLCGraphsProt = "1.3.6.1.2.1.2.2.1.3.17";
char * myChi1dSDLCGraphName = "My Child_SDLC Graph";

char * my_NEW_BackgroundMap = "usa";

if ((rc = nvotChangeGraphBackground (mySDLCGraphsProt,
myChi1dSDLCGraphName,
my_NEW_BackgroundMap)) == NVOT_SUCCESS)

printf ("Graph background of graph %s changed.\n", myChi1dSDLCGraphName);
else

printf ("Error occurred changing %s background.\n", myChildSDLCGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

170 Programmer's Reference

Libraries
¢ /usr/OV/lib/libnvot.a

Files

nvot.h

Related Information
¢ See “nvotCreateRootGraph(3)” on page 249.

¢ See “nvotCreateGraphinGraph(3)” on page 235.

¢ See “nvotCreateBoxInGraph(3)” on page 227.

nvotChangeGraphBackground(3)

Chapter 2. Reference Pages

171

nvotChangeGraphDetails(3)

nvotChangeGraphDetails(3)

Purpose

Changes the contents of the details variable in the database

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeGraphDetails (
nvotGraphProtocolType graphProtocol,
char * graphName,

nvotOctetString =* graphDetails)

Description

The nvotChangeGraphDetails routine changes the contents of the details variable associated with the
graph identified by graphProtocol and graphName.

The protocol and name parameters uniquely identify objects in the GTM database. The graphProtocol and
graphName parameters are required. If one of these parameters is not provided, the error code
NVOT_GRAPH_INVALID_INDEX is returned.

If the graph specified does not exist in the GTM database, the operation is rejected and the error code
NVOT_GRAPH_DOES_NOT_EXIST is returned.

If a graph that matches graphProtocol and graphName but whose graphType attribute is not set to
GRAPH exists in the GTM database, its details variable is not changed and either
NVOT_BOX_ALREADY_EXIST or NVOT_OTHER_TYPE_GRAPH_EXIST is returned.

Parameters

graphProtocol Specifies the protocol of the graph. For more information about specifying a
graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the graph in the GTM database.
This parameter is a string of characters used to create the graph.

graphDetails Contains particular information that applications store for future retrieval. The

information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(graphDetails->octetString, (char *) applStruct,
sizeof(applStruct)) and graphDetails->octetLength = sizeof(applStruct).
Although nvotOctetString allows for any size strings and the interface does not
check the size of graphDetails, any character exceeding 256 is truncated by
the NetView for AlX object database.

Return Values

nvotReturnCode The nvotChangeGraphDetails routine returns an nvotReturnCode that can
assume the values described in the following error codes section.

172 Programmer's Reference

nvotChangeGraphDetails(3)

Error Codes

[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID _INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_GRAPH_DOES NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_BOX ALREADY EXIST] A box already exists with the same protocol and name for which

this call is attempting to create a graph, box, or root graph.

[NVOT_OTHER_TYPE_GRAPH_EXIST]
Another type of graph exists. This call is attempting to create a
graph, box, or root graph with a protocol and name already used
for a graph of type INVALID or OTHER.

[NVOT_GTMD_INVALID _RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.
A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:
nvotReturnCode rc;

If (rc !'= NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples

The following example stores the contents of myStruct into the graphDetails variable attribute of
My_Graph.

#include <nvot.h>

typedef struct { int varl, int var2 } structType;

structType myStruct = { 11, 22 };
nvotOctetString myGraphDetails;

myGraphDetails.octetString = malloc (sizeof (structType));
myGraphDetails.octetLength = sizeof (structType);

memcpy (myGraphDetails.octetString, (char *) :myStruct, sizeof (structType));
nvotReturnCode rc;

nvotGraphProtocolType myGraphProt = "1.3.6.1.2.1.2.2.1.3.17";
char * myGraphName = "My Graph";

if ((rc = nvotChangeGraphDetails (myGraphProt,
myGraphName,
:myGraphDetails)) == NVOT_SUCCESS)

Chapter 2. Reference Pages 173

nvotChangeGraphDetails(3)

printf ("myStruct has been stored in %s.\n", myGraphName);
else

printf ("Error occurred storing myStruct in %s.\n", myGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
e [usr/OV/lib/libnvot.a

Files

nvot.h

Related Information

¢ See “nvotCreateRootGraph(3)” on page 249.
¢ See “nvotCreateGraphinGraph(3)” on page 235.

174 Programmer's Reference

nvotChangeGraphlcon(3)

nvotChangeGraphlcon(3)

Purpose

Changes the icon and label of orphan graphs, boxes, and vertices

Related Functions

nvotChangeGraphLabel
nvotChangeBoxIcon
nvotChangeBoxLabe
nvotChangeVertexlcon
nvotChangeVertexLabel
Syntax
#include <nvot.h>
nvotReturnCode nvotChangeGraphIcon (
nvotGraphProtocolType graphProtocol,
char * graphName,
char * icon)
nvotReturnCode nvotChangeGraphLabel (
nvotGraphProtocolType graphProtocol,
char * graphName,
char * label)

nvotReturnCode nvotChangeBoxIcon (
nvotGraphProtocolType boxProtocol,
char * boxName,
char * 1icon)

nvotReturnCode nvotChangeBoxLabel (
nvotGraphProtocolType boxProtocol,

char * boxName,
char * label)
nvotReturnCode nvotChangeVertexIcon (
nvotVertexProtocolType vertexProtocol,
char * vertexName,
char * icon)
nvotReturnCode nvotChangeVertexLabel (
nvotVertexProtocolType vertexProtocol,
char * vertexName,
char * label)

Description

Usually graph, vertex, and box symbol and label information is stored in the member table. This is to
allow for the display of a particular symbol on each graph submap where these objects belong.

However, underlying arc endpoint objects might not be members of upper level graphs and therefore do
not carry symbol and label information to be displayed in the arc submap. These orphan graphs, boxes,

Chapter 2. Reference Pages 175

nvotChangeGraphlcon(3)

or vertices carry their symbol and label information in their own primary table (for example, graph and
vertex tables).

The protocol and name uniquely identify objects in the GTM database. Thus, graphProtocol, graphName,
boxProtocol, boxName, vertexProtocol, and vertexName are mandatory parameters. If they are not speci-
fied, the operation is not successful and a non-zero return code is set.

If a graph or box does not exist in the GTM database, and the interface has been initialized with
CheckOn=TRUE, the icon and label for the object will not be changed, and the error
NVOT_GRAPH_DOES_NOT_EXIST or NVOT_BOX_DOES_NOT_EXIST is returned. Automatic creation
of graphs is not permitted.

If a vertex does not exist in the GTM database, it is automatically created, and its icon or label is set
according to these routines.

Although the icon and label are the target of these routines, they are not mandatory. The icon must be a
valid option chosen from the usr/OV/conf/C/oid_to_sym file. If these parameters are not passed, they
must be set to NULL. A pointer that is not valid might cause unpredictable errors. If NULL is passed in
the icon parameter, the default value Network:Generic is used for graphs, Computer:Generic is used for
boxes, and Cards:Generic is used for vertices. If NULL is passed in the label parameter, the
graphName, boxName, or vertexName is used.

Parameters

graphProtocol, boxProtocol, vertexProtocol
Specifies the protocol of the graph, box, or vertex. For more information on specifying a graph pro-
tocol, see the /usr/OV/conf/oid_to_protocol file. Vertex protocol is an enumerated type defined in the
file nvotTypes.h.

graphName, boxName, vertexName
Specifies the name of the graph, box, or vertex. It is a string of characters previously used to create
the object.

graphicon, boxIcon, vertexicon
Specifies a symbol to represent the graph, box, or vertex on the OVW display. Valid symbols are
defined in the file /usr/OV/conf/C/oid_to_sym.

graphLabel, boxLabel, vertexLabel
Specifies the label under the graph, box, or vertex symbol on the OVW display. Label is any string of
characters.

Return Values

nvotReturnCode These routines return an nvotReturnCode that can assume the values
described in the error codes section.

Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol must be a posi-
tive integer and a graph name must not be NULL.

[NVOT_GRAPH_DOES NOT_EXIST] The specified graph is not found in the GTM database.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box protocol must be a positive
integer and a box name must not be NULL.

176 Programmer's Reference

[NVOT_BOX_DOES_NOT_EXIST]
[NVOT_VERTEX_INVALID_INDEX]

[NVOT_GTMD_INVALID_RESPONSE]

nvotChangeGraphlcon(3)

The specified box is not found in the GTM database.

The vertex index is not valid. A vertex protocol must be a posi-
tive integer and a vertex name must not be NULL.

GTM invalid response. A query to a graph or member table
returned an unexpected response from GTMd.

[NVOT_ERROR_ALLOCATING_MEMORY]

[NVOT_NOT_INITIALIZED]

[NVOT_SOCKET_ERROR]

Memory allocation error. The system might be out of memory.

Not initialized. Issue the nvotlnit routine to establish a con-
nection with gtmd.

There is a socket error. The connection went down during
operation. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the routine nvotGetErrorMsg as in the following

example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)

printf ("%s\n", nvotGetErrorMsg (rc));

Libraries

¢ libnvot.a

Files

e nvot.h

Related Information

¢ See “nvotCreateGraph(3)” on page 232.

Chapter 2. Reference Pages 177

nvotChangeGraphlconinGraph(3)

nvotChangeGraphlconIinGraph(3)

Purpose

Changes a graph icon in a graph

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeGraphIconInGraph (
nvotGraphProtocolType graphProtocolParent,
char * graphNameParent,
nvotGraphProtocolType graphProtocol,
char * graphName,
char * icon)

Description

The nvotChangeGraphlconinGraph routine changes the icon representing the graph identified by
graphProtocol and graphName and displayed in the submap of the graph identified by
graphProtocolParent and graphNameParent.

The protocol and name parameters uniquely identify objects in the GTM database. The
graphProtocolParent, graphNameParent, graphProtocol, and graphName parameters are required. If one
of these parameters is not provided, the error code NVOT_GRAPH_INVALID_INDEX is returned.

If either the parent or child graph does not exist in the GTM database, the graph icon is not changed and
the error code NVOT_GRAPH_DOES_NOT_EXIST is returned. Automatic creation of graphs is not sup-
ported.

To be supported by the nvotChangeGraphlconinGraph routine, the icon must be a valid option selected
from the file /usr/OV/conf/C/oid_to_sym. However, if the icon is not passed, it must be set to NULL. A
pointer that is not valid can cause unpredictable errors. If NULL is passed, the graph icon is changed to
the default symbol Network:Network .

Parameters

graphProtocolParent Specifies the protocol of the containing graph. For more information about
specifying a graph protocol, refer to the file /Jusr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the containing graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph in the GTM database. This parameter is a string of characters used to
create the parent graph.

graphProtocol Specifies the protocol of the child graph. For more information about speci-
fying a graph protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the child graph. Both the graphName and
graphProtocol parameters are required to uniquely identify the child graph.
This parameter is a string of characters used to create the child graph.

icon Specifies a symbol to represent the child graph in the NetView for AIX EUI.

Valid symbols are defined in the file /Jusr/OV/conf/C/oid_to_sym.

178 Programmer's Reference

nvotChangeGraphlconinGraph(3)

Return Values

nvotReturnCode The nvotChangeGraphlconinGraph routine returns an nvotReturnCode that
can assume the values described in the following error codes section.

Error Codes

[NVOT_SUCCESS] Successful operation.
[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_GRAPH_DOES _NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_GTMD_INVALID _RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc !'= NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples

The following example changes the icon of the graph created in the example in
“nvotCreateGraphIinGraph(3)” on page 235.

#include <nvot.h>
nvotReturnCode rc;

nvotGraphProtocolType mySDLCGraphsProt = "1.3.6.1.2.1.2.2.1.3.17";

char * myRootSDLCGraphName = "My Root Graph";
char * myChi1dSDLCGraphName = "My Child_SDLC_Graph";
char * mySDLCGraphIcon = "1.3.6.1.2.1.2.2.1.3.10.11";
if (rc = nvotChangeGraphIconInGraph (mySDLCGraphsProt,
myRootSDLCGraphName,
mySDLCGraphsProt,

myChi1dSDLCGraphName,
mySDLCGraphIcon) == NVOT_SUCCESS)

printf ("Graph icon of graph %s changed.\n", myChildSDLCGraphName);
else

printf ("An error occurred changing %s icon.\n", myChildSDLCGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Chapter 2. Reference Pages 179

nvotChangeGraphlconinGraph(3)

Libraries
¢ /usr/OV/lib/libnvot.a

Files
nvot.h

Related Information

¢ See “nvotCreateGraphinGraph(3)” on page 235.
¢ See “nvotChangeGraphLabellinGraph(3)” on page 181.

180 Programmer's Reference

nvotChangeGraphLabellnGraph(3)

nvotChangeGraphLabellnGraph(3)

Purpose

Changes a graph label in a graph

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeGraphLabelInGraph (
nvotGraphProtocolType graphProtocolParent,
char * graphNameParent,
nvotGraphProtocolType graphProtocol,
char * graphName,
char * label)

Description

The nvotChangeGraphLabellnGraph routine changes the label of the graph identified by graphProtocol
and graphName that is displayed in the submap of the graph identified by graphProtocolParent and
graphNameParent.

The protocol and name parameters uniquely identify objects in the GTM database. The
graphProtocolParent, graphNameParent, graphProtocol and graphName parameters are required. If one
of these parameters is not provided, NVOT_GRAPH_INVALID_INDEX is returned.

If either the parent or child graph does not exist in GTM database, the graph label is not changed and the
error code NVOT_GRAPH_DOES NOT_EXIST is returned. Automatic creation of graphs is not sup-
ported.

The label parameter is a character string displayed under a symbol in the NetView for AIX EUI. Usually, it
is a human-readable character string that helps to visually identify a resource in a topology map. Although
the label must be a valid pointer, NULL is accepted. A pointer that is not valid can cause unpredictable
errors. If NULL is passed, the graphName string is displayed in place of the label.

Parameters

graphProtocolParent Specifies the protocol of the containing graph. For more information about
specifying a graph protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the containing graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph in the GTM database. This parameter is a string of characters used to
create the parent graph.

graphProtocol Specifies the protocol of the child graph. For more information about speci-
fying a graph protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the child graph. Both the graphName and

graphProtocol parameters are required to uniquely identify the child graph.
This parameter is a string of characters used to create the child graph.

Chapter 2. Reference Pages 181

nvotChangeGraphLabellnGraph(3)

label Specifies a human-readable character string to be displayed under the graph
symbol in the NetView for AIX EUI. It must be a valid character string or
NULL.

Return Values

nvotReturnCode The nvotChangeGraphLabellnGraph routine returns an nvotReturnCode that
can assume the values described in the following error codes section.

Error Codes

[NVOT_SUCCESS] Successful operation.
[NVOT_GRAPH_INVALID INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_GRAPH_DOES NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_GTMD_INVALID RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT _INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc !'= NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples

The following example changes the label of the graph created in the example in
“nvotCreateGraphinGraph(3)” on page 235.

#include <nvot.h>
nvotReturnCode rc;

nvotGraphProtocolType mySDLCGraphsProt = "1.3.6.1.2.1.2.2.1.3.17";

char * myRootSDLCGraphName = "My_Root_Graph";
char * myChi1dSDLCGraphName = "My Child_SDLC Graph";
char * my NEW _SDLC GraphLabel = "My NEW _SDLC Graph";
if (rc = nvotChangeGraphLabelInGraph (mySDLCGraphsProt,
myRootSDLCGraphName,
mySDLCGraphsProt,
myChi1dSDLCGraphName,

my_NEW_SDLC_GraphLabel) == NVOT_SUCCESS)

182 Programmer's Reference

nvotChangeGraphLabellnGraph(3)

printf ("Graph icon of graph %s changed.\n", myChildSDLCGraphName);
else

printf ("An error occurred changing %s icon.\n", myChildSDLCGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ /usr/OV/lib/libnvot.a

Files

nvot.h

Related Information

¢ See “nvotCreateGraphinGraph(3)” on page 235.
¢ See “nvotChangeGraphlconIinGraph(3)” on page 178.

Chapter 2. Reference Pages 183

nvotChangeGraphPositionInGraph(3)

nvotChangeGraphPositioninGraph(3)

Purpose

Changes position of a graph icon in a graph submap

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeGraphPositionInGraph (
nvotGraphProtocolType graphProtocolParent,
char * graphNameParent,
nvotGraphProtocolType graphProtocol,
char * graphName,
nvotPositionType newPosition)

Description

The nvotChangeGraphPositioninGraph routine changes the position of a symbol representing the graph
identified by graphProtocol and graphName and associated with the graph identified by
graphProtocolParent and graphNameParent.

The parent graph must have been created with layout algorithm set to NONE_LAYOUT.

The protocol and name parameters uniquely identify objects in the GTM database. The
graphProtocolParent, graphNameParent, graphProtocol and graphName parameters are required. If one
of these parameters is not provided, the error code NVOT_GRAPH_INVALID_INDEX or
NVOT_BOX_INVALID_INDEX is returned.

If the parent graph or the child graph does not exist or they exist but their graphType attribute is not set to
GRAPH, the child graph symbol position is not changed and the error code
NVOT_GRAPH_DOES_NOT_EXIST is returned. Automatic creation of the child graph is not supported.

The nvotPositionType, as defined in the file nvotTypes.h, accepts the following four variables:
xCoordinate, yCoordinate, xGrid and yGrid. The xGrid and yGrid variables determine a scale on which the
coordinate system is defined.

The grid and coordinate do not necessarily determine the exact physical location in the window where the
symbol is displayed. However, they determine a virtual position for the symbol based on the virtual size of
the submap.

The symbol size can be affected either by the grid values or by the coordinate values. For example, if the
symbol position is set too far from the center or from another symbol, x and y grid are reset to a value that
keeps the distances proportional and allows all symbols in the submap to be displayed. This placement of
symbols has the effect of a zoomout.

For best results, use the same xGrid and yGrid values for all symbols in the same submap.

184 Programmer's Reference

Parameters

graphProtocolParent

graphNameParent

graphProtocol

graphName

newPosition

Return Values

nvotReturnCode

Error Codes
[NVOT_SUCCESS]

nvotChangeGraphPositionInGraph(3)

Specifies the protocol of the parent graph. For more information about speci-
fying a graph's protocol, refer to the file /Jusr/OV/conf/oid_to_protocol.

Specifies the name of the parent graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph.

Specifies the protocol of the child graph. For more information about speci-
fying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

Specifies the name of the child graph. Both the graphName and
graphProtocol parameters are required to uniquely identify the child graph.

This parameter is a structure defined in the file nvotTypes.h that specifies the
values of the variables xCoordinate, yCoordinate, xGrid and yGrid.

The nvotChangeGraphPaosition routine returns an nvotReturnCode that can
assume the values described in the following error codes section.

Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not

be NULL.

[NVOT_GRAPH_DOES _NOT_EXIST] A graph does not exist in the GTM database.
[NVOT_GTMD_INVALID _RESPONSE] The GTM response is not valid. A query to a graph or member

table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]

[NVOT_NOT_INITIALIZED]

[NVOT_SOCKET_ERROR]

Memory allocation error. The system might be out of memory.

Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.

There is a socket error. The connection went down during opera-
tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the

following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)

printf ("%s\n", nvotGetErrorMsg (rc));

Chapter 2. Reference Pages 185

nvotChangeGraphPositionInGraph(3)

Examples

The following example changes the position of a child graph symbol.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType mySDLCGraphsProt = "1.3.6.1.2.1.2.2.1.3.17";

char * myRootSDLCGraphName = "My Root Graph";

char * myChiT1dSDLCGraphName = "My_Child_SDLC_Graph";

nvotPositionType myGraphPosition = { 500, /* xCoordinate =*/
500, /* yCoordinate */
1000, /* xGrid */
1000 /* yGrid */

bs

if ((rc = nvotChangeGraphPositionInGraph (mySDLCGraphsProt,
myRootSDLCGraphName,
mySDLCGraphsProt,
myChi1dSDLCGraphName,
myGraphPosition)) == NVOT_SUCCESS)

printf ("Positioning of graph %s symbol changed.\n", myChildSDLCGraphName);
else
printf ("An error occurred changing %s icon position.\n",
myChi1dSDLCGraphName) ;
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ /usr/OVl/lib/libnvot.a

Files

nvot.h

Related Information

¢ See “nvotCreateGraphinGraph(3)” on page 235.
¢ See “nvotChangeBoxPositionInGraph(3)” on page 166.

186 Programmer's Reference

nvotChangeRootGraphicon(3)

nvotChangeRootGraphicon(3)

Purpose

Changes a root graph icon

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeRootGraphIcon (
nvotGraphProtocolType graphProtocol,
char * graphName,
char * icon)

Description

The nvotChangeRootGraphlcon routine changes the icon representing the root graph identified by
graphProtocol and graphName and displayed in the NetView for AIX root map.

The protocol and name parameters uniquely identify objects in the GTM database. The graphProtocol and
graphName parameters are required. If one of these parameters is not provided, the error code
NVOT_GRAPH_INVALID_INDEX is returned.

If the root graph specified does not exist in the GTM database, the icon does not exist and the error code
NVOT_ROOT_GRAPH_DOES_NOT_EXIST is returned.

If a graph that matches graphProtocol and graphName but is not a root graph exists in the GTM database,
its icon is not changed and an error code such as NVOT_GRAPH_ALREADY_EXIST,
NVOT_BOX_ALREADY_EXIST, or NVOT_OTHER_TYPE_GRAPH_EXIST is returned.

To be supported by the nvotChangeRootGraphlcon routine, the icon parameter must be a valid option
selected from the file /usr/OV/conf/C/oid_to_sym. However, if the icon is not passed, it must be set to
NULL. A pointer that is not valid can cause unpredictable errors. If NULL is passed, the root graph icon
is changed to the default symbol Network:Network .

Parameters

graphProtocol Specifies the protocol of the root graph. For more information about specifying
a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the root graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the root graph in the GTM data-
base. This parameter is a string of characters used to create the root graph.

icon Specifies a symbol to represent the root graph in the NetView for AIX EUI.

Valid symbols are defined in the file /Jusr/OV/conf/C/oid_to_sym.

Return Values

nvotReturnCode The nvotChangeRootGraphlcon routine returns an nvotReturnCode that can
assume the values described in the following error codes section.

Chapter 2. Reference Pages 187

nvotChangeRootGraphlcon(3)

Error Codes

[NVOT_SUCCESS] Successful operation.
[NVOT_GRAPH_INVALID _INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_ROOT_GRAPH_DOES NOT_EXIST]
The root graph does not exist. A root graph must be created
before issuing this call.

[NVOT_GRAPH_ALREADY EXIST] A graph already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_BOX _ALREADY EXIST] A box already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_OTHER_TYPE_GRAPH_EXIST]
Another type of graph exists. This call is attempting to create a
graph, box, or root graph with a protocol and name already used
for a graph of type INVALID or OTHER.

[NVOT_GTMD_INVALID RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET _ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples

The following example changes the icon of the root graph created in the example in
“nvotCreateRootGraph(3)” on page 249.

#include <nvot.h>
nvotReturnCode rc;
nvotGraphProtocolType myRootGraphProt = "1.3.6.1.2.1.2.2.1.3.17";

char * myRootGraphName = "My Root_Graph";
char * my NEW RootGraphIcon = "1.3.6.1.2.1.2.2.1.3.9.11";

if ((rc = nvotChangeRootGraphIcon (myRootGraphProt,
myRootGraphName,
my NEW_RootGraphIcon)) == NVOT_SUCCESS)

printf ("Graph icon of graph %s changed.\n", myRootGraphName);
else

188 Programmer's Reference

nvotChangeRootGraphicon(3)

printf ("An error occurred changing %s icon.\n", myRootGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ /usr/OVl/lib/libnvot.a

Files

nvot.h

Related Information

¢ See “nvotCreateRootGraph(3)” on page 249.
¢ See “nvotChangeRootGraphLabel(3)” on page 190.

Chapter 2. Reference Pages 189

nvotChangeRootGraphLabel(3)

nvotChangeRootGraphLabel(3)

Purpose

Changes a root graph label

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeRootGraphlLabel (
nvotGraphProtocolType graphProtocol,
char * graphName,
char * label)

Description

The nvotChangeRootGraphLabel routine changes the label under the icon of the root graph identified by
graphProtocol and graphName and displayed in the NetView for AIX root map.

The protocol and name parameters uniquely identify objects in the GTM database. The graphProtocol and
graphName parameters are required. If one of these parameters is not provided, the error code
NVOT_GRAPH_INVALID_INDEX is returned.

If the root graph specified does not exist in the GTM database, the label does not exist and the error code
NVOT_ROOT_GRAPH_DOES_NOT_EXIST is returned.

If a graph that matches graphProtocol and graphName but is not a root graph exists in the GTM database,
its label is not changed and an error code such as NVOT_GRAPH_ALREADY_EXIST,
NVOT_BOX_ALREADY_EXIST, or NVOT_OTHER_TYPE_GRAPH_EXIST is returned.

The label parameter is a character string displayed under a symbol in the NetView for AIX EUI. Usually, it
is a human-readable character string that helps to visually identify a resource in a topology map. Although
the label must be a valid pointer, NULL is accepted. A pointer that is not valid can cause unpredictable
errors. If NULL is passed, the graphName string is displayed in place of the label.

Parameters

graphProtocol Specifies the protocol of the root graph. For more information about specifying
a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the root graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the root graph in the GTM data-
base. This parameter is a string of characters used to create the root graph.

label Specifies a human-readable character string to be displayed under the root

graph symbol in the NetView for AIX EUI. This parameter must be a valid
character string or NULL.

Return Values

nvotReturnCode The nvotChangeRootGraphLabel routine returns an nvotReturnCode that can
assume the values described in the following error codes section.

190 Programmer's Reference

nvotChangeRootGraphLabel(3)

Error Codes

[NVOT_SUCCESS] Successful operation.
[NVOT_GRAPH_INVALID _INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_ROOT_GRAPH_DOES NOT_EXIST]
The root graph does not exist. A root graph must be created
before issuing this call.

[NVOT_GRAPH_ALREADY EXIST] A graph already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_BOX _ALREADY EXIST] A box already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_OTHER_TYPE_GRAPH_EXIST]
Another type of graph exists. This call is attempting to create a
graph, box, or root graph with a protocol and name already used
for a graph of type INVALID or OTHER.

[NVOT_GTMD_INVALID RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET _ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples

The following example changes the label of the root graph created in the example in
“nvotCreateRootGraph(3)” on page 249.

#include <nvot.h>
nvotReturnCode rc;
nvotGraphProtocolType myRootGraphProt = "1.3.6.1.2.1.2.2.1.3.17";

char * myRootGraphName = "My Root_Graph";
char * my NEW RootGraphLabel = "My NEW RootGraphLabel";

if ((rc = nvotChangeRootGraphLabel (myRootGraphProt,
myRootGraphName,
my_NEW_RootGraphLabel)) == NVOT_SUCCESS)

printf ("Graph icon of graph %s changed.\n", myRootGraphName);
else

Chapter 2. Reference Pages 191

nvotChangeRootGraphLabel(3)

printf ("An error occurred changing %s icon.\n", myRootGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ /usr/OVl/lib/libnvot.a

Files

nvot.h

Related Information

¢ See “nvotCreateRootGraph(3)” on page 249.
¢ See “nvotChangeRootGraphicon(3)” on page 187.

192 Programmer's Reference

nvotChangeUnderlyingArclcon(3)

nvotChangeUnderlyingArclcon(3)

Purpose

Changes an underlying arc symbol and label

Related Functions
nvotChangeUnderlyingArcLabel

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeUnderlyingArcIcon (

nvotNameBindingType
nvotProtocolType
char *
nvotProtocolType
char *

int
nvotNameBindingType
nvotProtocolType
char *
nvotProtocolType
char *

int

char *

nvotReturnCode nvotChangeUnderlyingArcLabel (

arcNameBindingParent,
akndpointProtocolParent,
aEndpointNameParent,
zEndpointProtocolParent,
zEndpointNameParent,
arcIndexIdParent,
arcNameBinding,
aEndpointProtocol,
aEndpointName,
zEndpointProtocol,
zEndpointName,
arcIndexId,

ulalcon)

nvotNameBindingType arcNameBindingParent,
nvotProtocolType aEndpointProtocolParent,
char *aEndpointNameParent,
nvotProtocolType zEndpointProtocolParent,
char *zEndpointNameParent,

int arcIndexIdParent,
nvotNameBindingType arcNameBinding,
nvotProtocolType akEndpointProtocol,

char *aEndpointName,
nvotProtocolType zEndpointProtocol,

char *zEndpointName,

int arcIndexId,

char xulalLabel)

Description

These routines change the icon and label for an underlying arc. The icon is the symbol used to display

the arc on a submap. The label is a human-readable string that is displayed when you press the right

mouse button on the symbol of an arc.

The first six parameters identify the parent arc. The next six identify the underlying arc. All these parame-

ters are mandatory.

The parent arc as well as the underlying arc must exist in order for these routines to complete success-

fully.

Chapter 2. Reference Pages

193

nvotChangeUnderlyingArclcon(3)

Parameters

arcNameBindingParent and arcNameBinding
Specifies the class of the objects in each endpoint of the parent arc and the underlying arc, respec-
tively. The endpoint can be a vertex or a graph. The allowed values are:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates that either of the endpoints is a vertex.

ARC_VERTEX_GRAPH_NAME_BINDING
aEndpoint is a vertex and zEndpoint is a graph.

ARC_GRAPH_VERTEX_NAME_BINDING
aEndpoint is a graph and zEndpoint is a vertex.

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates either of the endpoints is a graph.

A value other than those in the previous list is rejected by the interface and the error code
NVOT_INVALID_NAME_BINDING is set.

a/zEndpointProtocolParent and a/zEndpointProtocol
Specifies the protocol of the object identified as the endpoint of the parent arc and the underlying arc,
respectively. If aEndpoint is to be a vertex, aEndpointProtocol must be set to a value from the enu-
merated type nvotVertexProtocolType defined in the file nvotTypes.h. Otherwise, aEndpoint is a
graph, and aEndpointProtocol is a pointer to a valid character string in memory.

a/zEndpointNameParent and a/zEndpointName
Specifies the name of the object identified as the endpoint of the parent arc and the underlying arc,
respectively. The endpointName and endpointProtocol are required to identify the object at a certain
endpoint of an arc. It must be the same string of characters used in the creation of the underlying arc.

arcindexidParent and arcIndexld
Specifies indexes (integer values) that distinguish one arc among others between the same endpoints,
respectively, of the parent arc and the underlying arc.

It is possible to connect the same two endpoints with several arcs. This parameter provides the
means to distinguish between arcs named by the same endpoints.

ulalcon
Specifies a new symbol to represent this underlying arc in the OVW display. The symbol can be a
line, a dotted line, and so on. Refer to the /usr/OV/conf/C/oid_to_sym for details on how to choose an
icon.

ulaLabel
Specifies a string of characters that represents the label for the arc. This arc label is displayed in the
upper line of the drop down menu that is shown when the right mouse button is clicked on an arc
symbol.

Return Values

nvotReturnCode The nvotChangeUnderlyingArclcon routine returns an nvotReturnCode that can
assume the values described in the error codes section.

Error Codes
[NVOT_SUCCESS] Successful operation.

194 Programmer's Reference

[NVOT_VERTEX_INVALID_INDEX]

[NVOT_GRAPH_INVALID_INDEX]

[NVOT_ARC_INVALID_INDEX]

[NVOT_ULA_INVALID_INDEX]

[NVOT_ARC_DOES_NOT_EXIST]

[NVOT_INVALID _NAME_BINDING]

nvotChangeUnderlyingArclcon(3)

The vertex index is not valid. A vertex protocol must be a posi-

tive integer and a vertex name must not be NULL.

The graph index is not valid. A graph protocol must be a posi-

tive integer and a graph name must not be NULL.

The arc index is not valid. An arc protocol must be a positive

integer and an arc name must not be NULL.

The ULA index is not valid. A ULA protocol must be a positive

integer and a ULA name must not be NULL.

The parent arc for which you are creating an underlying arc

does not exist in the GTM database.

Invalid name binding. The name must be a number defined in

nvotTypes.h.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED]

[NVOT_SOCKET_ERROR]

Not initialized. Issue the nvotlnit routine to establish a con-

nection with gtmd.

There is a socket error. The connection went down during

operation. Issue the nvotlnit routine again.

The example below changes one of the underlying arcs created in the example given in the routine
“nvotCreateParallelUnderlyingArc(3)” on page 240 with a new symbol and label.

#include <nvot.h>

nvotReturnCode RC;

nvotProtocolType akndpointProtocolParent.vertexProtocol = STARTLAN;
char = aEndpointNameParent = "My Vertex V1";
nvotProtocolType zEndpointProtocolParent.vertexProtocol = STARTLAN;
char = zEndpointNameParent = "My Vertex V2";

int arcIndexIdParent = 1;

nvotProtocolType akndpointProtocol.vertexProtocol = STARTLAN;

char = aEndpointName = "My Vertex V3";

nvotProtocolType zEndpointProtocol.vertexProtocol = STARTLAN;

char = zEndpointName = "My Vertex V4";

int arcIndexId =1

char = newIcon = "1.3.6.1.2.1.2.2.1.3.54.4";

char * newLabel = "New_Label_For_V1V2_Ula";

RC = nvotChangeUnderlyingArcIcon (ARC_VERTEX VERTEX NAME BINDING,

aEndpointProtocolParent, aEndpointNameParent,
zEndpointProtocolParent, zEndpointNameParent,
arcIndexIdParent,
ARC_VERTEX VERTEX NAME BINDING,
aEndpointProtocol, aEndpointName,
zEndpointProtocol, zEndpointName,

arcIndexId, newlIcon);

printf("Change Ula Icon = %s\n", nvotGetErrorMsg(RC));

RC = nvotChangeUnderlyingArcLabel (ARC_VERTEX_ VERTEX_ NAME_BINDING,

akndpointProtocolParent, aEndpointNameParent,
zEndpointProtocolParent, zEndpointNameParent,

Chapter 2. Reference Pages

195

nvotChangeUnderlyingArclcon(3)

arcIndexIdParent,
ARC_VERTEX VERTEX NAME BINDING,
aEndpointProtocol, aEndpointName,
zEndpointProtocol, zEndpointName,
arcIndexId, newLabel);

printf("Change Ula Label = %s\n", nvotGetErrorMsg(RC));

Libraries

¢ libnvot.a

Files

¢ nvot.h

Related Information
¢ See “nvotCreateSerialUnderlyingArc(3)” on page 253.
¢ See “nvotCreateParallelUnderlyingArc(3)” on page 240.

196 Programmer's Reference

nvotChangeVertexDetails(3)

nvotChangeVertexDetails(3)

Purpose

Changes the contents of the details variable in the GTM database

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeVertexDetails (
nvotVertexProtocolType vertexProtocol,
char * vertexName,
nvotOctetString =+ vertexDetails)

Description

The nvotChangeVertexDetails routine changes the contents of the details variable associated with the
vertex identified by vertexProtocol and vertexName.

The protocol and name parameters uniquely identify objects in the GTM database. The vertexProtocol
and vertexName parameters are required. If one of these parameters is not provided, the error code
NVOT_VERTEX_INVALID_INDEX is returned.

If the vertex does not exist in the GTM database, it is automatically created with default attribute values
and has its details variable set to the value passed in vertexDetails. This is part of GTM's recovery
strategy for lost traps.

Parameters

vertexProtocol Specifies the protocol of the vertex. Vertex protocol is an enumerated type
defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. This parameter can be any string of charac-
ters that, in conjunction with vertexProtocol, identifies a vertex in the GTM
database.

vertexDetails Contains particular information that applications store for future retrieval. The

information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(vertexDetails->octetString, (char *) applStruct,
sizeof(applStruct)) and vertexDetails->octetLength = sizeof(applStruct).
Although nvotOctetString allows for any size strings and the interface does not
check the size of vertexDetails, any character exceeding 256 is truncated by
the NetView for AlX object database.

Return Values

nvotReturnCode The nvotChangeVertexDetails routine returns an nvotReturnCode that can
assume the values described in the following error codes section.

Chapter 2. Reference Pages 197

nvotChangeVertexDetails(3)

Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_GTMD_INVALID _RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc !'= NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples

The following example stores the contents of myStruct into the vertexDetails variable of My_Vertex.
#include <nvot.h>
typedef struct { int varl, int var2 } structType;

structType myStruct = { 11, 22 };
nvotOctetString myVertexDetails;

malloc (sizeof (structType));
(sizeof (structType)) };

myVertexDetails.octetString
myVertexDetails.octetlLength

memcpy (myVertexDetails.octetString, (char *) :myStruct, sizeof (structType));

nvotReturnCode rc;
nvotVertexProtocolType myVertexProt = STARLAN;
char * myVertexName = "My Vertex";

if ((rc = nvotChangeVertexDetails (myVertexProt,
myVertexName,
:myVertexDetails)) == NVOT_SUCCESS)

printf ("myStruct has been stored in %s.\n", myVertexName);
else

printf ("Error occurred storing myStruct in %s.\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

198 Programmer's Reference

Libraries
¢ /usr/OV/lib/libnvot.a

Files

nvot.h

Related Information
¢ See “nvotCreateRootGraph(3)” on page 249.

¢ See “nvotCreateGraphinGraph(3)” on page 235.

nvotChangeVertexDetails(3)

Chapter 2. Reference Pages

199

nvotChangeVertexlconinBox(3)

nvotChangeVertexlconinBox(3)

Purpose

Changes a vertex icon in a box

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeVertexIconInBox (
nvotGraphProtocolType boxProtocol,
char * boxName,
nvotVertexProtocolType vertexProtocol,
char * vertexName,
char * icon)

Description

The nvotChangeVertexlconInBox routine changes the icon representing the vertex identified by
vertexProtocol and vertexName and associated with the box graph identified by boxProtocol and
boxName.

The protocol and name parameters uniquely identify objects in the GTM database. The boxProtocol,
boxName, vertexProtocol and vertexName parameters are required. If one of these parameters is not
provided, the error code NVOT_BOX_INVALID_INDEX or NVOT_VERTEX_INVALID_INDEX is returned.

If the containing box graph does not exist, the vertex icon is not changed and the error code
NVOT_BOX_DOES_NOT_EXIST is returned.

If the vertex does not exist in the GTM database, it is automatically created with default attribute values
and has its icon changed. This is part of GTM's recovery strategy for lost traps.

To be supported by the nvotChangeVertexiconlnBox routine, the icon must be a valid option selected from
the file /usr/OV/conf/C/oid_to_sym. However, if the icon is not passed, it must be set to NULL. A pointer
that is not valid can cause unpredictable errors. If NULL is passed, the vertex icon is changed to the
default symbol Cards:Generic .

Parameters

boxProtocol Specifies the protocol of the containing box graph. For more information about
specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the box graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the box graph in the GTM data-
base. This parameter is a string of characters used to create the graph.

vertexProtocol Specifies the protocol of the vertex. Vertex protocol is an enumerated type
defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. This parameter can be any string of charac-
ters that, in conjunction with vertexProtocol, identifies a vertex in GTM data-
base.

200 Programmer's Reference

nvotChangeVertexiconlnBox(3)

icon Specifies a symbol to represent the vertex in the NetView for AIX EUI. Valid
symbols are defined in the file /usr/OV/conf/C/oid_to_sym.

Return Values

nvotReturnCode The nvotChangeVertexiconlnBox routine returns an nvotReturnCode that can
assume the values described in the error codes section.

Error Codes

[NVOT_SUCCESS] Successful operation.
[NVOT_BOX_INVALID INDEX] The box index is not valid. A box graph protocol or name must
not be NULL.

[NVOT_VERTEX_INVALID _INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_BOX _DOES NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_GTMD_INVALID _RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the

following example:

nvotReturnCode rc;

If (rc !'= NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples

The following example changes the icon of the vertex created in the example in
“nvotCreateVertexInBox(3)” on page 261. Icon is changed to Cards:Generic .

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType myBoxProt = "1.3.6.1.2.1.2.2.1.3.11";

char * myBoxName = "My Box_Graph";
nvotVertexProtocolType myVertexProt = STARLAN;
char * myVertexName = "My Vertex";

char * myVertexIcon "1.3.6.1.2.1.2.2.1.3.1.1";
if (rc = nvotChangeVertexIconInBox (myBoxProt,
myBoxName,
myVertexProt,
myVertexName,

Chapter 2. Reference Pages 201

nvotChangeVertexlconinBox(3)

myVertexIcon) == NVOT_SUCCESS)

printf ("Vertex icon of vertex %s changed.\n", myVertexName);
else

printf ("An error occurred changing %s icon.\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ Jusr/OV/lib/libnvot.a

Files

nvot.h

Related Information

¢ See “nvotCreateVertexinBox(3)” on page 261.

202 Programmer's Reference

nvotChangeVertexlconinGraph(3)

nvotChangeVertexlconinGraph(3)

Purpose

Changes a vertex icon in a graph

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeVertexIconInGraph (
nvotGraphProtocolType graphProtocol,
char * graphName,
nvotVertexProtocolType vertexProtocol,
char * vertexName,
char * icon)

Description

The nvotChangeVertexlconlnGraph routine changes the icon representing the vertex identified by
vertexProtocol and vertexName and which is associated with the graph identified by graphProtocol and
graphName.

The protocol and name parameters uniquely identify objects in GTM database. The graphProtocol,
graphName, vertexProtocol and vertexName parameters are required. parameters, If one of these param-
eters is not provided, the error code NVOT_GRAPH_INVALID_INDEX or
NVOT_VERTEX_INVALID_INDEX is returned.

If the containing graph does not exist, the vertex icon is be changed and the error code
NVOT_GRAPH_DOES_NOT_EXIST is returned.

If the vertex does not exist in the GTM database, it is automatically created with default attribute values
and has its icon changed. This is part of GTM's recovery strategy for lost traps.

To be supported by the nvotChangeVertexiconinGraph routine, an icon must be a valid option selected
from the file /usr/OV/conf/C/oid_to_sym. However, if an icon is not passed, it must be set to NULL. A
pointer that is not valid can cause unpredictable errors. If NULL is passed, the vertex icon is changed to
the default symbol Cards:Generic .

Parameters

graphProtocol Specifies the protocol of the containing graph. For more information about
specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the graph in the GTM database.
This parameter is a string of characters used to create the graph.

vertexProtocol Specifies the protocol of the vertex. Vertex protocol is an enumerated type
defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. This parameter can be any string of charac-
ters that, in conjunction with vertexProtocol, identifies a vertex in GTM data-
base.

Chapter 2. Reference Pages 203

nvotChangeVertexlconinGraph(3)

icon Specifies a symbol to represent the vertex in the NetView for AIX EUI. Valid
symbols are defined in the file /usr/OV/conf/C/oid_to_sym.

Return Values

nvotReturnCode The nvotChangeVertexlconInGraph routine returns an nvotReturnCode that
can assume the values described in the following error codes section.

Error Codes

[NVOT_SUCCESS] Successful operation.
[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_VERTEX_INVALID _INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_GRAPH_DOES NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_GTMD_INVALID _RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the

following example:

nvotReturnCode rc;

If (rc !'= NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

204 Programmer's Reference

nvotChangeVertexlconinGraph(3)

Examples

The following example changes the icon of the vertex created in the example in
“nvotCreateVertexInGraph(3)” on page 265.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType my STARLAN GraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char * my_STARLAN_GraphName = "My STARLAN_Graph";
nvotVertexProtocolType myVertexProt = STARLAN;

char * myVertexName = "My Vertex";

char * myVertexIcon = "1.3.6.1.2.1.2.2.1.3.12.1";

if (rc = nvotChangeVertexIconInGraph (my_STARLAN GraphProt,
my_STARLAN_GraphName,
myVertexProt,
myVertexName,
myVertexIcon) == NVOT_SUCCESS)

printf ("Vertex icon of vertex %s changed.\n", myVertexName);
else

printf ("An error occurred changing %s icon.\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ [usr/OV/lib/libnvot.a

Files

nvot.h

Related Information
¢ See “nvotCreateVertexInGraph(3)” on page 265.

Chapter 2. Reference Pages 205

nvotChangeVertexLabellnBox(3)

nvotChangeVertexLabellnBox(3)

Purpose

Changes the label of a vertex in a box

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeVertexLabelInBox (
nvotGraphProtocolType boxProtocol,
char * boxName,
nvotVertexProtocolType vertexProtocol,
char * vertexName,
char * label)

Description

The nvotChangeVertexLabellnBox routine changes the label of a vertex identified by vertexProtocol and
vertexName and associated with the box graph identified by boxProtocol and boxName.

The protocol and name parameters uniquely identify objects in the GTM database. The boxProtocol,
boxName, vertexProtocol, and vertexName parameters are required. If one of these parameters is not
provided, the error code NVOT_BOX_INVALID_INDEX or NVOT_VERTEX_INVALID_INDEX is returned.

If the containing box graph does not exist, the vertex label is not changed and the error code
NVOT_BOX_DOES_NOT_EXIST is returned.

If the vertex does not exist in the GTM database, it is automatically created with default attribute values
and has its label changed. This is part of GTM's recovery strategy for lost traps.

Label is a character string displayed under a symbol in the NetView for AIX EUIL. Usually, it is a human-
readable character string that helps to visually identify a network resource. Although the label parameter
must be a valid pointer, NULL is accepted. A pointer that is not valid can cause unpredictable errors. If
NULL is passed, the vertexName string is displayed in place of the label.

Parameters

boxProtocol Specifies the protocol of the containing box graph. For more information about
specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the box graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the box graph in the GTM data-
base. This parameter is a string of characters used to create the graph.

vertexProtocol Specifies the protocol of the vertex. Vertex protocol is an enumerated type
defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. This parameter can be any string of charac-
ters that, in conjunction with vertexProtocol, identifies a vertex in GTM data-
base.

label Specifies a symbol to represent the vertex in the NetView for AIX EUI. Valid

symbols are defined in the file /usr/OV/conf/C/oid_to_sym.

206 Programmer's Reference

nvotChangeVertexLabellnBox(3)

Return Values

nvotReturnCode The nvotChangeVertexLabellnBox routine returns an nvotReturnCode that can
assume the values described in the following error codes section.

Error Codes

[NVOT_SUCCESS] Successful operation.
[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol or name must
not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_BOX_DOES_NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_GTMD_INVALID _RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the

following example:

nvotReturnCode rc;

If (rc !'= NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Chapter 2. Reference Pages 207

nvotChangeVertexLabellnBox(3)

Examples

The following example changes the label of the vertex created in the example in
“nvotCreateVertexInGraph(3)” on page 265.

#include <nvot.h>

nvotReturnCode rc;
nvotGraphProtocolType myBoxProt = "1.3.6.1.2.1.2.2.1.3.11";
char * myBoxName = "My Box_Graph";

nvotVertexProtocolType myVertexProt = STARLAN;

char * myVertexName = "My Vertex";
char * myVertexLabel = "My NEW STARLAN Vertex";
if (rc = nvotChangeVertexLabelInGraph (myBoxProt,
myBoxName,
myVertexProt,
myVertexName,

myVertexLabel) == NVOT_SUCCESS)
printf ("Vertex label of vertex %s changed.\n", myVertexName);
else

printf ("An error occurred changing %s Tabel.\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ [usr/OV/lib/libnvot.a

Files

nvot.h

Related Information

¢ See “nvotCreateVertexinBox(3)” on page 261.

208 Programmer's Reference

nvotChangeVertexLabellnGraph(3)

nvotChangeVertexLabellnGraph(3)

Purpose

Changes the label of a vertex in a graph

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeVertexLabelInGraph (
nvotGraphProtocolType graphProtocol,
char * graphName,
nvotVertexProtocolType vertexProtocol,
char * vertexName,
char * label)

Description

The nvotChangeVertexLabellnGraph routine changes the label of a vertex identified by vertexProtocol and
vertexName and associated with the graph identified by graphProtocol and graphName.

The protocol and name parameters uniquely identify objects in GTM database. The graphProtocol,
graphName, vertexProtocol and vertexName parameters are required. If one of these parameters is not
provided, the error code NVOT_GRAPH_INVALID_INDEX or NVOT_VERTEX_INVALID _INDEX is
returned.

If the containing graph does not exist, the vertex label is not changed and the error code
NVOT_GRAPH_DOES_NOT_EXIST is returned.

If the vertex does not exist in the GTM database, it is automatically created with default attribute values
and has its label changed. This is part of GTM's recovery strategy for lost traps.

Label is a character string displayed under a symbol in an NetView for AIX window. Usually, it is a human
readable character string that helps to visually identify of a network resource. Although the label param-
eter must be a valid pointer, NULL is accepted. Invalid pointer can cause unpredictable errors. If NULL is
passed, the vertexName string is displayed in place of the label.

Parameters

graphProtocol Specifies the protocol of the containing graph. For more information about
specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the graph in the GTM database.
This parameter is a string of characters used to create the graph.

vertexProtocol Specifies the protocol of the vertex. Vertex protocol is an enumerated type
defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. This parameter can be any string of charac-
ters that, in conjunction with vertexProtocol, identifies a vertex in GTM data-
base.

Chapter 2. Reference Pages 209

nvotChangeVertexLabellnGraph(3)

label Specifies a symbol to represent the vertex in the NetView for AIX EUI. Valid
symbols are defined in the file /usr/OV/conf/C/oid_to_sym.

Return Values

nvotReturnCode The nvotChangeVertexLabellnGraph routine returns an nvotReturnCode that
can assume the values described in the following error codes section.

Error Codes

[NVOT_SUCCESS] Successful operation.
[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_VERTEX_INVALID _INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_GRAPH_DOES NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_GTMD_INVALID _RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the

following example:

nvotReturnCode rc;

If (rc !'= NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

210 Programmer's Reference

nvotChangeVertexLabellnGraph(3)

Examples

The following example changes the label of the vertex created in the example in
“nvotCreateVertexInGraph(3)” on page 265.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType my STARLAN GraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char * my_STARLAN_GraphName = "My STARLAN_Graph";
nvotVertexProtocolType myVertexProt = STARLAN;

char * myVertexName = "My Vertex";

char * myVertexLabel = "My NEW STARLAN Vertex";

if (rc = nvotChangeVertexLabelInGraph (my_ STARLAN GraphProt,
my_STARLAN_GraphName,
myVertexProt,
myVertexName,
myVertexLabel) == NVOT_SUCCESS)

printf ("Vertex label of vertex %s changed.\n", myVertexName);
else

printf ("An error occurred changing %s label.\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ /usr/OVl/lib/libnvot.a

Files

nvot.h

Related Information
¢ See “nvotCreateVertexInGraph(3)” on page 265.

Chapter 2. Reference Pages 211

nvotChangeVertexPositionInBox(3)

nvotChangeVertexPositionInBox(3)

Purpose

Changes position of a vertex icon in a box submap

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeVertexPositionInBox (
nvotGraphProtocolType boxProtocol,
char * boxName,
nvotVertexProtocolType vertexProtocol,
char * vertexName,
nvotPositionType newPosition)

Description

The nvotChangeVertexPositionInBox routine changes the position of a symbol representing the vertex
identified by vertexProtocol and vertexName and associated with the box graph identified by boxProtocol
and boxName.

The containing box must have been created with layout algorithm set to NONE_LAYOUT.

The protocol and name parameters uniquely identify objects in the GTM database. The boxProtocol,
boxName, vertexProtocol and vertexName parameters are required. If one of these parameters is not
provided, the error code NVOT_BOX_INVALID_INDEX or NVOT_VERTEX_INVALID_INDEX is returned.

If the containing box does not exist or it exists but its graphType attribute is not set to BOX, the vertex
symbol position is not changed and the error code NVOT_BOX_DOES _NOT_EXIST is returned.

If the vertex does not exist in the GTM database, it is automatically created with default attribute values.
Its member association to the parent box is also created and its symbol position is set to the values in
newPosition. This is part of GTM's recovery strategy for lost traps.

The nvotPositionType, as defined in the file nvotTypes.h, accepts the following four variables:
xCoordinate, yCoordinate, xGrid, and yGrid. The variables xGrid and yGrid determine a scale on which
the coordinate system is defined.

The grid and coordinate do not necessarily determine the exact physical location in the window where the
symbol is displayed. However, they determine a virtual position for the symbol based on the virtual size of
the submap.

The symbol size can be affected either by the grid values or by the coordinate values. For example, if the
symbol position is set too far from the center or from another symbol, x and y grid are reset to a value that

keeps the distances proportional and allows all symbols in the submap to be displayed. This placement of
symbols has the effect of a zoomout.

For best results, use the same xGrid and yGrid values for all symbols in the same submap.

212 Programmer's Reference

nvotChangeVertexPositionInBox(3)

Parameters

boxProtocol Specifies the protocol of the containing box. For more information about spec-
ifying a box graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the box graph. Both the boxName and boxProtocol
parameters are required to uniquely identify the box in the GTM database.
This parameter is a string of characters used to create the box.

vertexProtocol Specifies the protocol of the vertex. Vertex protocol is an enumerated type
defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. It can be any string of characters that, in
conjunction with vertexProtocol, identifies a vertex in the GTM database.

newPosition This parameter is a structure defined in the file nvotTypes.h that specifies the

values of the variables xCoordinate, yCoordinate, xGrid and yGrid.

Return Values

nvotReturnCode The nvotChangeVertexPositioninBox routine returns an nvotReturnCode that
can assume the values described in the following error codes section.

Error Codes

[NVOT_SUCCESS] Successful operation.
[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol or name must
not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_BOX_DOES_NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_GTMD_INVALID _RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc !'= NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Chapter 2. Reference Pages 213

nvotChangeVertexPositionInBox(3)

Examples

The following example changes the position of the vertex symbol in the box graph submap.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType myBoxGraphProt = "1.3.6.1.2.1.2.2.1.3.17";

char * myBoxGraphName = "My_Box_Graph";

nvotVertexProtocolType myVertexProt = SDLC;

char * myVertexName = "My Vertex";

nvotPositionType myVertexPosition = { 100, /* xCoordinate =/
100, /* yCoordinate */
1000, /* xGrid */
1000 /* yGrid */

}s

if ((rc = nvotChangeVertexPositionInBox (myBoxGraphProt,
myBoxGraphName,
vertexProt,
vertexName,
myVertexPosition)) == NVOT_SUCCESS)

printf ("Positioning of vertex %s symbol changed.\n", myVertexName);
else

printf ("Error occurred changing %s symbol position.\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ /usr/OVl/lib/libnvot.a

Files

nvot.h

Related Information

¢ See “nvotCreateBoxInGraph(3)” on page 227.
¢ See “nvotChangeVertexPositionInGraph(3)” on page 215.

214 Programmer's Reference

nvotChangeVertexPositionInGraph(3)

nvotChangeVertexPositionInGraph(3)

Purpose

Changes position of a vertex icon in a graph submap

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeVertexPositionInGraph (
nvotGraphProtocolType graphProtocol,
char * graphName,
nvotVertexProtocolType vertexProtocol,
char * vertexName,
nvotPositionType newPosition)

Description

The nvotChangeVertexPositionInGraph routine changes the positioning of a symbol representing the
vertex identified by vertexProtocol and vertexName and associated with the graph identified by
graphProtocol and graphName.

The containing graph must have been created with layout algorithm set to NONE_LAYOUT.

The protocol and name parameters uniquely identify objects in the GTM database. The graphProtocol,
graphName, vertexProtocol and vertexName parameters are required. If one of these parameters is not
provided, the error code NVOT_GRAPH_INVALID_INDEX or NVOT_VERTEX_INVALID_INDEX is
returned.

If the containing graph does not exist or it exists but its graphType attribute is not set to GRAPH, the
vertex symbol position is not changed and the error code NVOT_GRAPH_DOES NOT_EXIST is returned.

If the vertex does not exist in the GTM database, it is automatically created with default attribute values.
Its member association to the parent graph is also created and its symbol position is set to the values in
newPosition. This is part of GTM's recovery strategy for lost traps.

The nvotPositionType, as defined in the file nvotTypes.h, accepts the following four variables:
xCoordinate, yCoordinate, xGrid, and yGrid. The xGrid and yGrid variables determine a scale on which
the coordinate system is defined.

The grid and coordinate do not necessarily determine the exact physical location in the window where the
symbol is displayed. However, they determine a virtual position for the symbol based on the virtual size of
the submap.

The symbol size can be affected either by the grid values or by the coordinate values. For example, if the
symbol position is set too far from the center or from another symbol, x and y grid are reset to a value that
keeps the distances proportional and allows all symbols in the submap to be displayed. This placement of
symbols has the effect of a zoomout.

For best results, use the same xGrid and yGrid values for all symbols in the same submap.

Chapter 2. Reference Pages 215

nvotChangeVertexPositionInGraph(3)

Parameters

graphProtocol Specifies the protocol of the containing graph. For more information about
specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the graph in the GTM database.
This parameter is a string of characters used to create the graph.

vertexProtocol Specifies the protocol of the vertex. Vertex protocol is an enumerated type
defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. This parameter can be any string of charac-
ters that, in conjunction with vertexProtocol, identifies a vertex in GTM data-
base.

newPosition This parameter is a structure defined in the file nvotTypes.h that specifies the

values of the variables xCoordinate, yCoordinate, xGrid and yGrid.

Return Values

nvotReturnCode The nvotchangeVertexPositionInGraph routine returns an nvotReturnCode that
can assume the values described in the following error codes section.

Error Codes

[NVOT_SUCCESS] Successful operation.
[NVOT_GRAPH_INVALID INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT _VERTEX INVALID INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_GRAPH_DOES NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

216 Programmer's Reference

Examples

nvotChangeVertexPositionInGraph(3)

The following example changes the position of the vertex in the root graph submap to the upper left

corner.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType myRootGraphProt = "1.3.6.1.2.1.2.2.1.3.17";

char * myRootGraphName = "My Root_Graph";

nvotVertexProtocolType myVertexProt = SDLC;

char * myVertexName = "My Vertex";

nvotPositionType myVertexPosition = { 0, /* xCoordinate */
0, /* yCoordinate */
1000, /* xGrid */
1000 /* yGrid */

}S

if ((rc = nvotChangeVertexPositionInGraph (myRootGraphProt,
myRootGraphName,
vertexProt,
vertexName,
myVertexPosition)) == NVOT_SUCCESS)

printf ("Positioning of vertex %s symbol changed.\n", myVertexName);

else

printf ("Error occurred changing %s symbol position.\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ /usr/OV/lib/libnvot.a

Files

nvot.h

Related Information
¢ See “nvotCreateVertexIinGraph(3)” on page 265.

¢ See “nvotChangeVertexPositioninBox(3)” on page 212.

Chapter 2. Reference Pages

217

nvotChangeVertexStatus(3)

nvotChangeVertexStatus(3)

Purpose

Changes the status of a vertex

Syntax

#include <nvot.h>

nvotReturnCode nvotChangeVertexStatus (
nvotVertexProtocolType vertexProtocol,
char * vertexName,
statusType vertexStatus)

Description

The nvotChangeVertexStatus routine changes the status of a vertex identified by vertexProtocol and
vertexName in the GTM database. This routine consequently changes the color of the symbol repres-
enting the vertex in the NetView for AIX EUL.

The protocol and name parameters uniquely identify of objects in the GTM database. The vertexProtocol
and vertexName parameters are required. If one of these parameters is not provided, the error code
NVOT_VERTEX_INVALID_INDEX is returned.

If the vertex does not exist in the GTM database, it is automatically created with default attribute values
and has its status changed. This is part of GTM's recovery strategy for lost traps.

The vertexStatus reflects the status of a network resource. The statusType is defined in the file
nvotTypes.h. The possible values are mapped into a combination of four status attributes: operational
state, alarm status, availability status, and unknown status. For a detailed explanation, see the section
about state management variables in the NetView for AIX Programmer's Guide. You can handle these
status attribute individually through the basic routine calls. If the value passed is not valid, the operation is
rejected and error code NVOT_INVALID STATUS is returned.

Parameters

vertexProtocol Specifies the protocol of the vertex. Vertex protocol is an enumerated type
defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. This parameter can be any string of charac-
ters that, in conjunction with vertexProtocol, identifies a vertex in the GTM
database.

vertexStatus Specifies a set of values to represent the status of a resource. This parameter

is a combination of MIB variables OperationalState, AlarmStatus,
AvailabilityStatus and UnknownStatus. The statusType is defined in the file
nvotTypes.h.

Return Values

nvotReturnCode The nvotChangeVertexStatus routine returns an nvotReturnCode that can
assume the values described in the following error codes section.

218 Programmer's Reference

nvotChangeVertexStatus(3)

Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_INVALID_STATUS] The status is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_GTMD_INVALID _RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc !'= NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples

The following example changes the status of the vertex created in the example in
“nvotCreateVertexInGraph(3)” on page 265.

#include <nvot.h>
nvotReturnCode rc;
nvotVertexProtocolType myVertexProt = STARLAN;
char * myVertexName = "My Vertex";
nvotStatusType myVertexStatus = STATUS_CRITICAL;
if ((rc = nvotChangeVertexStatus (myVertexProt,
myVertexName,
myVertexStatus) == NVOT_SUCCESS)
printf ("Vertex status of vertex %s changed.\n", myVertexName);
else

printf ("An error occurred changing %s status.\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

Libraries

lusr/OVl/lib/libnvot.a

Files

nvot.h

Chapter 2. Reference Pages 219

nvotChangeVertexStatus(3)

Related Information
¢ See “nvotCreateVertexInGraph(3)” on page 265.

220 Programmer's Reference

nvotCreateArcInGraph(3)

nvotCreateArcinGraph(3)

Purpose

Creates an arc in a graph

Syntax

OVwObjectId nvotCreateArcInGraph (
nvotGraphProtocolType graphProtocol,

char * graphName,
nvotNameBindingType arcNameBinding,
nvotProtocolType aEndpointProtocol,
char * akndpointName,
nvotProtocolType zEndpointProtocol,
char * zEndpointName,

int arcIndexId,

char * icon,

char * label,
nvotOctetString * arcDetails,
nvotStatusType status);

Description

The nvotCreateArcinGraph routine creates an arc and associate it with a graph. The graph containing the
arc must exist. Otherwise the arc will not be created and an error code will be set. An arc can connect
two vertices, two graphs, a vertex to a graph, or a graph to a vertex. The vertices and graphs connected
by arcs are called arc endpoints. An arc is recognized and referenced by its aEndpoint, zEndpoint and
arcindexlId.

The arcNameBinding parameter helps to identify the arc endpoints. A detailed description follows in the
item Parameters. The arcNameBinding must be compatible with the values passed in the
aEndpointProtocol and zEndpointProtocol parameters.

Endpoints of class graph must exist. Otherwise, the arc will not be created and an error code will be set.
The GTM interface does not support automatic creation of graphs.

Endpoints of class vertex are automatically created if they do not exist. This is part of the GTM recovery
strategy for lost traps. However, a vertex endpoint will NOT be created if the other endpoint refers to a
nonexistent graph.

An arc can be a member of several graphs at the same time. If the arc already exists, this routine creates
a new association between the arc and a graph. That is, it causes the arc to appear in another graph's
submap.

The nvotProtocolType parameter is a union of an enumerated type with a char pointer as defined in
<nvotTypes.h> file. Special care must be taken when setting aEndpointProtocol and zEndpointProtocol.
Setting these variables to a nvotVertexProtocolType value when arcNameBinding identifies the endpoint
as a graph causes unpredictable errors. This is similar to setting a char pointer to an integer value for the
GTM interface to handle.

The icon, label and arcDetails parameters are the only optional parameters. If they are not passed, they
must be set to NULL. Pointers that are not valid might cause unpredictable errors. If NULL is passed, the

Chapter 2. Reference Pages 221

nvotCreateArcinGraph(3)

default Connection:Generic symbol is assumed for icon and the concatenation of aEndpointName +
zEndpointName + arcIindexId is displayed in place of label.

The status parameter must be set to one of the values defined in the <nvotTypes.h> file. Otherwise, the
routine is rejected and the error NVOT_INVALID_STATUS is set. The status value passed to this routine
is mapped into other NetView for AIX state values according to the table shown in the NetView for AIX
Programmer's Guide.

Parameters

graphProtocol Specifies the protocol of the graph with which this arc is associated. This is
the graph of which the arc will be a member. For more information, refer to
the file /Jusr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph with which the arc is associated. Both the
graphName and the graphProtocol are required to identify the parent graph.
This parameter can be any string of characters. Once specified, the same
name must be used in any reference to this graph.

arcNameBinding Specifies the class of the objects in each endpoint of the arc. The endpoint

can be either a vertex or a graph. The supported values are:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates that either of the endpoints are vertices

ARC_VERTEX_GRAPH_NAME_BINDING
Indicates that aEndpoint is a vertex and zEndpoint is a graph

ARC_GRAPH_VERTEX_NAME_BINDING
Indicates that aEndpoint is a graph and zEndpoint is a vertex

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates that either of the endpoint are graphs.

If any value other than those in the preceding list is used, it is rejected by the
interface and the error code NVOT_INVALID_NAME_BINDING will be set.

Arcs are handled based on their direction. For more information about the arc
direction, see “nvotlnit(3)” on page 359. Regardless of the selection made in
the initialization session, arcNameBinding always identifies the value set in
aEndpointProtocol and zEndpointProtocol variables.

aEndpointProtocol/zEndpointProtocol
Specifies the protocol of the object identified as the aEndpoint or zEndpoint,
respectively, of this arc. If the endpoint is a vertex, the endpoint protocol
(aEndpointProtocol or zEndpointProtocol) must be set with a value from the
enumerated type nvotVertexProtocolType defined in the file <nvotTypes.h>.
Otherwise, the endpoint is a graph, and the endpoint protocol must be a
pointer to a valid character string in memory.

aEndpointName/zEndpointName
Specifies the name of the object identified as the aEndpoint or zEndpoint,
respectively, of this arc. Both the endpoint name and the endpoint protocol
are required to identify the object at the aEndpoint or zEndpoint of this arc.
This parameter can be any string of characters. Once specified, the same
name must be used in any reference to this graph.

222 Programmer's Reference

arcindexld

icon

label

arcDetails

status

Return Values
OVwObjectld

Error Codes

nvotCreateArcInGraph(3)

Distinguishes an arc from other arcs between the same endpoints. (Two
endpoints can be connected by several different arcs.) This parameter is an
integer value.

Specifies the symbol that represents the arc in the NetView for AIX EUI. The
symbol can be a line, a dotted line, and so forth. For more information about
selecting an icon, see the file /usr/OV/conf/C/oid_to_sym.

Specifies a string of characters that identifies an arc in the pull-down menu
accessed by clicking the right mouse button on an arc symbol.

Contains particular information that applications store for future retrieval. The
information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(arcDetails->octetString, (char *) applStruct, sizeof(applStruct))
and arcDetails->octetLength = sizeof(applStruct). However, although
nvotOctetString allows for any size strings and the interface does not check
the size of arcDetails, any character exceeding 256 is truncated by the
NetView for AlX object database.

Specifies the status of the arc. Arc status is an enumerated type defined in
the file <nvotTypes.h>. For more details, see the NetView for AIX Program-
mer's Guide.

When the application is running in synchronous mode, (that is, when the
nvotSetSynchronousCreation routine has been called with a non-zero value),
the nvotCreateArcinGraph routine issues the create arc operation to GTM.
The routine remains in a finite loop until the NetView for AIX program returns
the OVwObijectld of the arc just created. OVwObijectld is a positive integer. If
an error occurs or the loop times out, the routine returns OVwNullObjectld.
When the application is running in asynchronous mode (that is, when the
nvotSetSynchronousCreation routine has been called with a zero value or has
never been called), the nvotCreateArcInGraph routine issues the create arc
operation to GTM and imediately returns OVwNullObjectld. In either case,
upon return, an error code is available through a call to the routine
nvotGetError. Refer to “nvotSetSynchronousCreation(3)” on page 368 for
more details on OVwObijectld.

When the routine completes and returns control to its caller, an error internal variable is set. A call to the
routine nvotGetError returns the error code set at the last API call. The error variable is reset upon
entering and set before exiting this call to the API. All possible error codes set by this call and their
related message strings are:

[NVOT_SUCCESS]

Successful operation.

[NVOT_GRAPH_INVALID INDEX] The graph index is not valid. A graph protocol and/or name must

not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive

integer and a vertex name must not be NULL.

[NVOT_ARC_INVALID_INDEX] The arc index is not valid. It must be a positive integer.

Chapter 2. Reference Pages 223

nvotCreateArcinGraph(3)

[NVOT_ENDPOINT_GRAPH_INVALID _INDEX]
The endpoint graph index is not valid. An endpoint graph protocol
and/or name must not be NULL.

[NVOT_INVALID_STATUS] The status is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_GRAPH_DOES _NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_A _ENDPOINT_GRAPH_DOES NOT_EXIST]
The graph defined as the A endpoint of the arc does not exist in
the GTM database.

[NVOT_Z ENDPOINT_GRAPH_DOES NOT_EXIST]
The graph defined as the Z endpoint of the arc does not exist in
the GTM database.

[NVOT _INVALID _NAME BINDING] The name binding is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.

[NVOT_SOCKET _ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotinit routine again.

[NVOT_OVW_TIMED _OUT] NetView for AIX timeout. The timeout value passed to

nvotSetSynchronousCreation might not be enough for the com-
plete operation processing, or the connection to the NetView for
AIX database might be down. Try increasing the timeout value.

Examples
A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

The following example creates one arc between two vertex points. Before creating the arc, you must:
1. Create a root graph (see the example in “nvotCreateRootGraph(3)” on page 249).

2. Create two vertices (V1 and V2) inside the graph (see the example in “nvotCreateVertexinGraph(3)”
on page 265).

224 Programmer's Reference

nvotCreateArcInGraph(3)

#include <nvot.h>

OVwObjectId arcld;

nvotReturnCode rc;

nvotBooleanType synchMode = FALSE;

[*xxHxrxkkkkxxkkx* Define the parent graph T A
nvotGraphProtocolType myGraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char * myGraphName = "My Graph";
[*xxxrrrxrxrxkkx Define vertices V1 and V2 xxxxxxxkkkkkkksss/
nvotProtocolType oneEndpoint.vertexProtocol = STARLAN;
char * oneEndpointName = "My Vertex_V1";
nvotProtocolType otherEndpoint.vertexProtocol = STARLAN;
char * otherEndpointName = "My Vertex V2;

[*xkrrrrkkrxxkkx Define arc attributes xxxsksxrxskskrrrkrrrhhkrrrhhrrrr/

char * myLineArcIcon = "1.3.6.1.2.1.2.2.1.3.1.4";
char * myLineArcLabel = "My Line Arc";
nvotOctetString * myLineArcDetails = NULL;

nvotStatusType myLineArcStatus = STATUS_NORMAL;

int arcNumber = 1;

if (nvotSetSynchronousCreation (TRUE) == NVOT_SUCCESS)
synchMode = TRUE;

/* Create one line arc with arcIndexId = 1 */

if ((arcId = nvotCreateArcInGraph (myGraphProt,
myGraphName,
ARC_VERTEX_ VERTEX_ NAME_BINDING,
oneEndpoint,
oneEndpointName,
otherEndpoint,
otherEndpointName,
arcNumber,
myLineArcIcon,
myLineArcLabel,
myLineArcDetails,
myLineArcStatus) > OVwNullObjectId)

printf ("%s OVwObjectId is : %d\n", myLineArcLabel, arcld);
else

{
if (synchMode)
printf ("An error occurred creating arc %s\n", myLineArclLabel);

}

printf ("Operation result : %s\n", nvotGetErrorMsg (nvotGetError()));

Libraries
¢ /usr/OV/lib/libnvot.a

Files

nvot.h

Chapter 2. Reference Pages

225

nvotCreateArcinGraph(3)

Re

226

lated Information

See “nvotDeleteArcFromGraph(3)” on page 272.
See “nvotChangeArciconinGraph(3)” on page 141.
See “nvotChangeArcLabellnGraph(3)” on page 146.
See “nvotGetArcsinGraph(3)” on page 307.

See “nvotSetSynchronousCreation(3)” on page 368.

See “nvotlnit(3)” on page 359.

Programmer's Reference

nvotCreateBoxInGraph(3)

nvotCreateBoxInGraph(3)

Purpose

Creates a box in a graph
Syntax

#include <nvot.h>

OVwObjectId nvotCreateBoxInGraph (
nvotGraphProtocolType graphProtocolParent,

char * graphNameParent,
nvotGraphProtocolType boxProtocol,
char * boxName,
nvotlLayoutType boxLayout,

char * boxBackground,
char * icon,

char = Tabel,
nvotOctetString * boxDetails);

Description

The nvotCreateBoxInGraph routine creates a box graph and associates it with a parent graph. A box
graph can be a member of more than one parent graph at the same time. Thus, if the box already exists,
this routine creates a new association between the box and a parent graph.

The parent, or containing, graph must exist; otherwise, the box graph is not created and an error code is
set.

The protocol and name parameters together uniquely identify objects in the gtmd database. These param-
eters are required for both the parent and box graphs.

The boxLayout parameter is required. However, if -1 (don't care) is passed, NONE_LAYOUT is assumed,
any other value is rejected, and the error code NVOT_INVALID_LAYOUT is set. Positioning the symbols
in the submap for the vertices and graphs members (submap) of a NONE_LAYOUT box graph requires
additional work.

Box background, icon, label and boxDetails are optional parameters. However, if they are not passed,
they must be set to NULL. Pointers that are not valid might cause unpredictable errors. If NULL is
passed, the default “Computer:Generic” symbol is assumed for icon and the boxName string is dis-
played in place of the label.

Parameters

graphProtocolParent Specifies the protocol of the parent graph. For more information about speci-
fying a graph protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the parent graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph.

boxProtocol Specifies the protocol of the child box graph. For more information about

specifying a graph protocol, refer to the file /usr/OV/conf/oid_to_protocol.

Chapter 2. Reference Pages 227

nvotCreateBoxInGraph(3)

boxName

boxLayout

boxBackground

icon

label

boxDetails

Return Values
OVwObjectld

Error Codes

Specifies the name of the child box graph. Both the boxName and the
boxProtocol parameters are required to uniquely identify the box graph. This
parameter can be any string of characters. Once specified, the same name
must be used in any reference to this box graph.

Specifies the layout of the child box graph. If -1 is passed, NONE_LAYOUT is
assumed. Future changes in the box layout are not supported.

Specifies an image to be displayed in the background of the submap into
which this box graph is exploded. A background is usually an image of a
geographic region that helps to illustrate a submap. You can select a back-
ground image from among the bitmap files in the default directory
/usr/OV/backgrounds.

Specifies the icon to represent this box in the NetView for AIX EUI. For infor-
mation about selecting an icon, refer to the file /usr/OV/conf/C/oid_to_sym.

Specifies the label under the box graph icon in the NetView for AIX EUI. The
label can be any string of characters.

Contains particular information that applications store for future retrieval. The
information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(boxDetails->octetString, (char *) applStruct,
sizeof(applStruct)) and boxDetails->octetLength = sizeof(applStruct). However,
although nvotOctetString allows for any size strings and the interface does not
check the size of boxDetails, any character exceeding 256 will be truncated by
the NetView for AlX object database.

When the application is running in synchronous mode, (that is, when the
nvotSetSynchronousCreation routine has been called with a non-zero value),
this routine issues the create box operation to GTM and stands in a finite loop
until the NetView for AIX program sends back the OVwObijectld of the box
graph just created. OVwObijectld is a positive integer. If an error occurs or
the loop times out, this routine returns OVwNullObjectld. When the application
is running in asynchronous mode, (that is, when the
nvotSetSynchronousCreation routine has been called with a zero value or has
never been called), this routine issues the create box operation to GTM and
imediately returns OVwNullObjectld. In either case, upon return, an error code
is available through a call to the nvotGetError routine. For more information
about OVwObijectld, see “nvotSetSynchronousCreation(3)” on page 368.

When the routine completes and returns control to its caller, an error internal variable is set. A call to the
routine nvotGetError returns the error code set at the last API call. The error variable is reset upon
entering and set before exiting this call to the API. All possible error codes set by this call and their
related message strings are:

[NVOT_SUCCESS]

Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must

228 Programmer's Reference

not be NULL.

nvotCreateBoxInGraph(3)

[NVOT_BOX_INVALID INDEX] The box index is not valid. A box graph protocol and/or name
must not be NULL.

[NVOT_INVALID _LAYOUT] Invalid layout. The layout must be a number defined in the
nvotTypes.h file.

[NVOT_INVALID_STATUS] The status is not valid. It must be a number defined in the

nvotTypes.h file.
[NVOT_GRAPH_DOES NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotlnit routine again.

[NVOT_OVW_TIMED_OUT] NetView for AIX timeout. The timeout value passed to

nvotSetSynchronousCreation might not be enough for the com-
plete operation processing, or the connection to the NetView for
AIX database might be down. Try increasing the timeout value.

[NVOT_OVW _OBJECT_ID_NOT_AVAIL]
An error occurred in creating the object ID for this element.

[NVOT_PROTOCOL_WAS NOT_REGISTERED]
The protocol was not registered in the
/usr/OV/conf/oid_to_protocol file.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

Examples

The following example creates a root graph and then a box graph as member of the root graph.

#include <nvot.h>

OVwObjectId rootGraphld;
OVwObjectId boxGraphld;
nvotReturnCode rc;

nvotGraphProtocolType my STARLAN GraphsProt = "1.3.6.1.2.1.2.2.1.3.11";

char * myRoot STARLAN GraphName = "My Root Graph";

char * myRoot_STARLAN_GraphLabel = "My_Root_ STARLAN_Graph";
char * myRootGraphBackgroundMap = "south_america";

char * myBox_STARLAN_GraphName = "My_Box_STARLAN_Graph";
char * myBox_STARLAN_GraphLabel = "My_Box_STARLAN_Graph";
char * myBoxBackgroundMap = "brazil";

Chapter 2. Reference Pages 229

nvotCreateBoxInGraph(3)

nvot
char

LayoutType my_STARLAN_GraphsLayout = POINT_TO_POINT_RING_LAYOUT;
* my_STARLAN_GraphsIcon = "1.3.6.1.2.1.2.2.1.3.11.10";

nvotOctetString =* myRootGraphDetails = NULL;
nvotOctetString =* myChildGraphDetails = NULL;

ro

rc
if
{

}

el

otGraphId = nvotCreateRootGraph (my_ STARLAN GraphsProt,

myRoot_STARLAN_GraphName,
my_STARLAN GraphslLayout,
myRootGraphBackgroundMap,
my_STARLAN_GraphsIcon,
myRoot_STARLAN_GraphlLabel
myRootGraphDetails);

= nvotGetError();

((rc == NVOT_SUCCESS) OR (rc == NVOT_ROOT_GRAPH_ALREADY EXIST))

if (synchMode)
printf ("%s OVwObjectId is : %d\n", myRoot STARLAN GraphLabel,
rootGraphld);
else
printf ("Root graph created but Object Id not available.\n");

boxGraphId = nvotCreateBoxInGraph (my STARLAN GraphsProt,
myRoot STARLAN GraphName,
my_STARLAN_GraphsProt,
myBox_STARLAN_GraphName,
my_STARLAN_GraphsLayout,
myBoxBackgroundMap,
my_STARLAN_GraphsIcon,
myBox_STARLAN_GraphLabel
myChildGraphDetails);

if ((rc = nvotGetError()) == NVOT_SUCCESS)
{
if (synchMode)
printf ("%s OVwObjectId is : %d\n", myBox STARLAN GraphLabel,
boxGraphId);
else
printf ("Box graph created but Object Id not available.\n");
}

else
printf ("An error occurred creating box graph %s\n",
myBox_STARLAN GraphLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (nvotGetError()));

se
printf ("An error occurred creating root graph %s\n",
myRoot STARLAN GraphLabel);

printf ("Operation result : %s\n", nvotGetErrorMsg (nvotGetError()));

Libraries
¢ /usr/OV/lib/libnvot.a

Files

nvot

230

.h

Programmer's Reference

nvotCreateBoxInGraph(3)

Related Information

¢ See “nvotCreateRootGraph(3)” on page 249.

¢ See “nvotCreateVertexinGraph(3)” on page 265.

¢ See “nvotCreateGraphinGraph(3)” on page 235.

¢ See “nvotDeleteBoxFromGraph(3)” on page 278.

¢ See “nvotChangeBoxlconIinGraph(3)” on page 160.

¢ See “nvotChangeBoxLabellnGraph(3)” on page 163.

¢ See “nvotChangeBoxPositioninGraph(3)” on page 166.
¢ See “nvotGetBoxesInGraph(3)” on page 314.

¢ See “nvotSetSynchronousCreation(3)” on page 368.

Chapter 2. Reference Pages 231

nvotCreateGraph(3)

nvotCreateGraph(3)

Purpose

Creates a graph of graph type GRAPH or BOX

Related Functions

nvotCreateBox

Syntax

#include <nvot.h>

OVwObjectlId nvotCreateGraph (nvotGraphProtocolType graphProtocol,
char * graphName,
nvotLayoutType graphlLayout,
char * graphBackground)

OVwObjectlId nvotCreateBox (nvotGraphProtocolType boxProtocol,
char * boxName,
nvotLayoutType boxLayout,
char * boxBackground)

Description

These routines create graphs with graphType attribute set to GRAPH or BOX. They are meant to create
graphs and boxes that will become endpoints of underlying arcs. See “nvotCreateSerialUnderlyingArc(3)”
on page 253 and “nvotCreateParallelUnderlyingArc(3)” on page 240 for more explanation. Graphs and
boxes created through these routines will be much like orphan graphs, in that they will not be correlated to
any other parent graph, and will not be displayed before they become underlying arc endpoints unless an
explicit call to nvotCreateGraphinGraph or nvotCreateBoxInGraph makes reference to these graphs
later on.

The protocol and name uniquely identify objects in the GTM database. Both parameters are mandatory.

The layout and background are also required because they cannot be changed later on.

Parameters

graphProtocol and boxPrototol
Specifies the protocol of the graph or box. For more information on how to specify a graph protocol
refer to the /usr/OV/conf/oid_to_protocaol file.

graphName and boxName
Specifies the name of the graph or box. The graphName and graphProtocol make up unique informa-
tion required to identify the graph in the GTM database.

graphLayout and boxLayout
Specifies the layout of the graph or box. If -1 is passed, NONE_LAYOUT is assumed. Note that
future changes in the graph layout are not allowed.

graphBackground and boxBackground
Specifies an image to be displayed in the background of the submap into which this graph or box is
exploded. Background usually is an image of a geographic region which helps in illustrating a

232 Programmer's Reference

nvotCreateGraph(3)

submap. A background image can be chosen from among the bitmap files in the default directory
/usr/OV/backgrounds.

Return Values

OVwObjectld When running the application in synchronous mode,
(nvotSetSynchronousCreation with a positive timeout value has been called),
this routine will issue the create graph operation to GTM and stand in a finite
loop until OVw sends back the OVwObjectld of the graph or box just created.
OVwObijectld is a positive integer. If an error occurs or the loop times out, this
routine returns ovwNullObjectld. When running the application in asynchro-
nous mode (nvotSetSynchronousCreation with a zero time value has been
called), this routine will issue the create graph or create box operation to GTM
and immediately return ovwNullObjectld. In either case, upon return, an error
code is available through a call to the routine nvotGetError. Refer to
“nvotSetSynchronousCreation(3)” on page 368 for more details on
OVwObijectld.

Error Codes

When the routine completes and returns control to its caller, an error internal variable is set. A call to the
routine nvotGetError returns the error code set at the last API call. The error variable is reset upon
entering and set before exiting this call to the API. All possible error codes set by this call and their
related message strings are:

[NVOT_SUCCESS] Successful operation

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol must be a positive
integer and a graph name must not be NULL.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box protocol must be a positive
integer and a box name must not be NULL.

[NVOT_PROTOCOL_WAS NOT_REGISTERED]
The protocol was not registered in the /usr/OV/oid_to_protocol file.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the routine nvotGetErrorMsg as in the example
bellow:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

Examples
The example below creates two graphs which are not members of any other graph and which might be

endpoints of underlying arcs as shown in the examples given in “nvotCreateSerialUnderlyingArc(3)” on
page 253 and “nvotCreateParallelUnderlyingArc(3)” on page 240.

Chapter 2. Reference Pages 233

nvotCreateGraph(3)

#include <nvot.h>
OVwObjectId ovwid;
nvotGraphProtocolType SDLCGraphProt = "1.3.6.1.2.1.2.2.1.3.17";

ovwid = nvotCreateGraph (SDLCGraphProt,
"SDLC_Endpoint_0",
POINT_TO_POINT LAYOUT,
"brazil.gif");

fprintf(fdOutput, "CreateGraph= %s\n", nvotGetErrorMsg(nvotErrno));
fprintf(fdOutput, "SDLC_Endpoint 0 = %d\n\n",ovwid);

ovwid = nvotCreateGraph (SDLCGraphProt,
"SDLC_Endpoint_1",
POINT_TO POINT_LAYOUT,
"argentina.gif");

fprintf(fdOutput, "CreateGraph= %s\n", nvotGetErrorMsg(nvotErrno));
fprintf(fdOutput, "SDLC_Endpoint_1 = %d\n\n",ovwid);

Libraries
¢ Jusr/OV/lib/libnvot.a

Files

¢ nvot.h

Related Information
¢ See “nvotCreateParallelUnderlyingArc(3)” on page 240
¢ See “nvotCreateSerialUnderlyingArc(3)” on page 253

234 Programmer's Reference

nvotCreateGraphinGraph(3)

nvotCreateGraphIinGraph(3)

Purpose

Creates a graph in a graph
Syntax

#include <nvot.h>

OVwObjectlId nvotCreateGraphInGraph (
nvotGraphProtocolType graphProtocolParent,

char * graphNameParent,
nvotGraphProtocolType graphProtocol,

char * graphName,
nvotlLayoutType graphChildLayout,
char * graphChildBackground,
char * icon,

char = Tabel,
nvotOctetString * graphChildDetails);

Description

The nvotCreateGraphlnGraph routine creates a graph and associates it with a parent graph. A child graph
can be a member of several parent graphs at the same time. If the child graph already exists, the
nvotCreateGraphlnGraph routine creates a new association between the child graph and a parent graph
so that the child graph is displayed on another parent graph's submap.

The parent, or containing, graph must exist; otherwise, the child graph is not created and an error code is
set. The protocol and name parameters together uniquely identify objects in the GTM database. These
parameters are required for both parent and child graphs.

The graphChildLayout parameter is required. If -1 (don't care) is passed, NONE_LAYOUT is assumed.
any other value is rejected, and the error code NVOT_INVALID_LAYOUT is set. Positioning the symbols
in the submap for the vertices and graphs members (submap) of a NONE_LAYOUT graph requires addi-
tional work. Also, further changes to the graph layout attribute are not supported.

The graphChildBackground, icon, label and graphChildDetails parameters are the only optional parame-
ters. If they are not passed, they must be set to NULL. Pointers that are not valid might cause unpredict-
able errors. If NULL is passed, the default “Network:Network” symbol is assumed for icon and the
graphName string is displayed in place of the label.

Parameters

graphProtocolParent Specifies the protocol of the parent graph. For more information about speci-
fying a graph protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the parent graph. Both the graphNameParent and
graphProtocolParent parameters are to uniquely identify the parent graph.

graphProtocol Specifies the protocol of the child graph. For more information about speci-

fying a graph protocol, refer to the file /usr/OV/conf/oid_to_protocol.

Chapter 2. Reference Pages 235

nvotCreateGraphinGraph(3)

graphName

graphChildLayout

graphChildBackground

icon

label

graphChildDetails

Return Values
OVwObjectld

Error Codes

Specifies the name of the child graph. Both the graphName and
graphProtocol parameters are required to uniquely identify the child graph.
This parameter can be any string of characters. Once specified, the same
name must be used in any reference to this graph.

Specifies the layout of the child graph. If -1 is passed, NONE_LAYOUT is
assumed. Future changes in the graph layout are not supported.

Specifies an image to be displayed in the background of the submap into
which this child graph is exploded. A background is usually an image of a
geographic region that helps to illustrate a submap. You can select a back-
ground image from among the bitmap files in the default directory
/usr/OV/backgrounds.

Specifies the icon to represent the child graph in the NetView for AIX EUI. For
more information about selecting an icon, refer to the file
/usr/OV/conf/C/oid_to_sym.

Specifies the label under the graph icon in the NetView for AIX EUI. A label
can be any string of characters.

Contains particular information that applications store for future retrieval. The
information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(graphChildDetails->octetString, (char *) applStruct,
sizeof(applStruct)) and graphChildDetails->octetLength = sizeof(applStruct).
However, although nvotOctetString allows for any size strings and the interface
does not check the size of graphChildDetails, any character exceeding 256 will
be truncated by the NetView for AlIX object database.

When the application is running in synchronous mode, (that is, when the
nvotSetSynchronousCreation routine has been called with a non-zero value),
the nvotCreateGraphInGraph routine issues the create graph operation to
GTM and stands in a finite loop until the NetView for AIX program returns the
OVwObijectld of the graph just created. OVwObjectld is a positive integer. If
an error occurs or the loop times out, this routine returns OVwNullObjectld.
When the application is running in asynchronous mode, (that is, when the
nvotSetSynchronousCreation routine has been called with a zero value or has
never been called), the nvotCreateGraphinGraph routine issues the create
graph operation to GTM and immediately returns OVwNullObjectld. In either
case, upon return, an error code is available through a call to the nvotGetError
routine. For more information about OVwObijectld, see
“nvotSetSynchronousCreation(3)” on page 368.

When the routine completes and returns control to its caller, an error internal variable is set. A call to the
routine nvotGetError returns the error code set at the last API call. The error variable is reset upon
entering and set before exiting this call to the API. All possible error codes set by this call and their
related message strings are:

[NVOT_SUCCESS]

236 Programmer's Reference

Successful operation.

nvotCreateGraphinGraph(3)

[NVOT_GRAPH_INVALID INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_INVALID _LAYOUT] Invalid layout. The layout must be a number defined in the
nvotTypes.h file.

[NVOT_GRAPH_DOES NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.

[NVOT_SOCKET _ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotlnit routine again.

[NVOT_OVW_TIMED_OUT] NetView for AIX timeout. The timeout value passed to

nvotSetSynchronousCreation might not be enough for the com-
plete operation processing, or the connection to the NetView for
AIX database might be down. Try increasing the timeout value.

[NVOT_OVW _OBJECT _ID_NOT_AVAIL]
An error occurred in creating the object ID for this element.

[NVOT_PROTOCOL_WAS NOT_REGISTERED]
The protocol was not registered in the
/usr/OV/conf/oid_to_protocol file.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

Examples

The following example creates a root graph and then a child graph as member of the root graph.

#include <nvot.h>

OVwObjectId rootGraphld;
OVwObjectId childGraphld;
nvotReturnCode rc;

nvotGraphProtocolType mySDLCGraphsProt = "1.3.6.1.2.1.2.2.1.3.17";

char * myRootSDLCGraphName = "My Root Graph";

char * myRootSDLCGraphLabel = "My _Root_SDLC_Graph";
char * myRootGraphBackgroundMap = "south_america";
char * myChildSDLCGraphName = "My_Child_SDLC_Graph";
char * myChi1dSDLCGraphLabel = "My_Child_SDLC_Graph";
char * myChildGraphBackgroundMap = "brazil";
nvotlLayoutType mySDLCGraphsLayout = POINT_TO POINT_RING_LAYOUT;

char * mySDLCGraphsIcon = "1.3.6.1.2.1.2.2.1.3.11.11";
nvotOctetString =* myRootGraphDetails = NULL;
nvotOctetString * myChildGraphDetails = NULL;

Chapter 2. Reference Pages 237

nvotCreateGraphinGraph(3)

rootGraphId = nvotCreateRootGraph (mySDLCGraphsProt,
myRootSDLCGraphName,
mySDLCGraphsLayout,
myRootGraphBackgroundMap,
mySDLCGraphsIcon,
myRootSDLCGraphLabel
myRootGraphDetails);
rc = nvotGetError();
if ((rc == NVOT_SUCCESS) OR (rc == NVOT_ROOT_GRAPH_ALREADY_ EXIST))
{
if (synchMode)
printf ("%s OVwObjectId is : %d\n", myRootSDLCGraphLabel, rootGraphlId);
else
printf ("Root graph created but Object Id not available.\n");

childGraphId = nvotCreateGraphInGraph (mySDLCGraphsProt,
myRootSDLCGraphName,
mySDLCGraphsProt,
myChi1dSDLCGraphName,
mySDLCGraphsLayout,
myChildGraphBackgroundMap,
mySDLCGraphsIcon,
myChi1dSDLCGraphLabel
myChildGraphDetails);

if ((rc = nvotGetError()) == NVOT_SUCCESS)

{
if (synchMode)
printf ("%s OVwObjectId is : %d\n", myChildSDLCGraphLabel, childGraphld);
else
printf ("Child graph created but Object Id not available.\n");
}

else
printf ("An error occurred creating graph %s\n", myChildSDLCGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (nvotGetError()));

}

else
printf ("An error occurred creating root graph %s\n", myRootSDLCGraphLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (nvotGetError()));

Libraries
¢ /usr/OVl/lib/libnvot.a

Files

nvot.h

Related Information

¢ See “nvotCreateRootGraph(3)” on page 249.

¢ See “nvotCreateVertexIinGraph(3)” on page 265.

¢ See “nvotDeleteGraphFromGraph(3)” on page 283.

¢ See “nvotChangeGraphlconinGraph(3)” on page 178.

¢ See “nvotChangeGraphLabelinGraph(3)” on page 181.

¢ See “nvotChangeGraphPositioninGraph(3)” on page 184.
¢ See “nvotGetGraphsIinGraph(3)” on page 330.

238 Programmer's Reference

nvotCreateGraphinGraph(3)

¢ See “nvotSetSynchronousCreation(3)” on page 368.

Chapter 2. Reference Pages 239

nvotCreateParallelUnderlyingArc(3)

nvotCreateParallelUnderlyingArc(3)

Purpose

Creates an arc that lies under another arc

Syntax

nvotReturnCode nvotCreateParallelUnderlyingArc (
nvotNameBindingType arcNameBindingParent,

nvotProtocolType aEndpointProtocolParent,
char * akndpointNameParent,
nvotProtocolType zEndpointProtocolParent,
char * zEndpointNameParent,

int arcIndexIdParent,
nvotNameBindingType arcNameBinding,
nvotProtocolType akndpointProtocol,

char * aEndpointName,
nvotProtocolType zEndpointProtocol,

char * zEndpointName,

int arcIndexId,

char * ulalcon,

char * ulalLabel)

Description

An arc symbol in the ovw screen can actually be made up of several underlying arcs. NetView for AIX
open topology provides the UnderlyingArc table as a means for storing underlying arcs in the database
and displaying them in the ovw display.

Underlying arcs can be connected to each other either in a serial or parallel fashion. This routine creates
an arc that lies under a parent arc and is displayed in parallel to other underlying arcs at the same level.

The first six parameters identify the parent arc. The parent arc must exist before the underlying arc can
be created. If the parent arc does not exist, NVOT_ARC_DOES_NOT_EXIST is returned.

The arcNameBinding, aEndpointProtocol, aEndpointName, zEndpointProtocol, zEndpointName and
arcindexld parameters identify the underlying arc.

Note: There is a possibility that the underlying arc will have the same name as its parent arc, such as
when their endpoints are actually the same and their indexlds have erroneously been set to the
same value. This error should be avoided because the NVOT API does not check for this, but
gtmd does and it will reject the trap.

The arcNameBinding parameter helps in identifying the uderlying arc endpoints. The arcNameBinding
value must be compatible with the values passed in the aEndpointProtocol and zEndpointProtocol parame-
ters.

Endpoints of the class graph must exist. If they do not, the underlying arc is not created and an error
code is set. The NVOT API does not allow for automatic creation of graphs or boxes.

Usually, graphs and boxes are created as members of upper-level graphs through calls to routines

nvotCreateGraphinGraph and nvotCreateBoxInGraph. However, most of the time, the graph or box
endpoints of underlying arcs are not members of any upper-level graph. In other words, they exist as

240 Programmer's Reference

nvotCreateParallelUnderlyingArc(3)

orphan graphs or boxes and are displayed only in the arc submap. Because the automatic creation of
graphs or boxes is not allowed, two routines are available to allow for the creation of these orphan graphs
or boxes (refer to “nvotCreateGraph(3)” on page 232).

Endpoints of class vertex are automatically created if they do not exist. This is part of the GTM recovery
strategy for lost traps. However, a vertex endpoint is not created if the other endpoint is a reference to a
nonexistent graph.

The ulalcon and ulaLabel parameters are optional. If they are not passed, they must be set to NULL.
Pointers that are not valid can cause unpredictable errors. If the parameters are set to NULL, the default
Connection:Generic symbol is assumed for ulalcon, and the concatenation of aEndpointName +
zEndpointName + arcIindexld is displayed in place of ulaLabel.

Parameters

arcNameBindingParent and arcNameBinding
Specifies the class of the objects in each endpoint of the parent arc and the underlying arc, respec-
tively. The endpoint can be a vertex or a graph. The allowed values are as follows:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates either of the endpoints are vertices.

ARC_VERTEX_GRAPH_NAME_BINDING
aEndpoint is a vertex and zEndpoint is a graph.

ARC_GRAPH_VERTEX_NAME_BINDING
aEndpoint is a graph and zEndpoint is a vertex.

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates either of the endpoints are graphs.

Any value other than the above is rejected by the interface and the error code
NVOT_INVALID_NAME_BINDING is set.

a/zEndpointProtocolParent and a/zEndpointProtocol
Specifies the protocol of the object identified as the endpoint, respectively, of the parent arc and the
underlying arc. If aEndpoint is to be a vertex, aEndpointProtocol must be set to a value from the
enumerated type nvotVertexProtocolType defined in the the file <nvotTypes.h>. Otherwise, aEndpoint
is a graph, and aEndpointProtocol is a pointer to a valid character string in memory.

a/zeEndpointNameParent and a/zEndpointName
Specifies the name of the object identified as the endpoint of the parent arc and the underlying arc,
respectively. The endpointName and endpointProtocol are required to identify the object at a certain
endpoint of an arc. The name can be any string of characters. However, once specified, the same
name must be used in any reference to the object.

IndexIldParent and arcindexld
Specifies indexes (integer values) that distinguish an arc from others between the same endpoints of
the parent arc and the underlying arc, respectively.

It is possible to connect the same two endpoints with several arcs; this variable is provided to give you
a means for distinguishing between arcs named by the same endpoints.

ulalcon
Specifies the symbol to represent this underlying arc in OVw display. The symbol may be a line, a
dotted line, and so on. Refer to the /usr/OV/conf/C/oid_to_sym file for details on how to choose an
icon.

Chapter 2. Reference Pages 241

nvotCreateParallelUnderlyingArc(3)

ulaLabel
Specifies a string of characters that represent an arc label to be displayed in the drop down menu
shown when the right mouse button is clicked on an arc symbol. This is also true for an underlying
arc.

Return Values

nvotReturnCode The nvotCreatParallelUnderlyingArc routine returns an nvotReturnCode that
can assume the values described in the following error codes section.

Error Codes

[NVOT_SUCCESS] Successful operation.
[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a
positive integer and a vertex name must not be NULL.
[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol must be a
positive integer and a graph name must not be NULL.
[NVOT_ARC_INVALID_INDEX] The arc index is not valid. An arc protocol must be a positive
integer and an arc name must not be NULL.
[NVOT_ULA_INVALID_INDEX] The ULA index is not valid. A ULA protocol must be a posi-
tive integer and a ULA name must not be NULL.
[NVOT_ENDPOINT_INVALID_INDEX] The endpoint index is not valid. An endpoint protocol must be
a positive integer and an endpoint name must not be NULL.
[NVOT_ARC_DOES_NOT_EXIST] The parent arc for which you are creating an underlying arc

does not exist in the GTM database.

[NVOT_A ENDPOINT_GRAPH_DOES NOT_EXIST]
The aEndPoint graph specified for the underlying arc does not
exist in the GTM database.

[NVOT_Z_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The zEndPoint graph specified for the underlying arc does not
exist in the GTM database.

[NVOT_INVALID_NAME_BINDING] The name binding is not valid. It must be a number defined
in the nvotTypes.h file.

[NVOT_ERROR_ALLOCATING_MEMORY] Memory allocation error. The system might be out of

memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a con-
nection with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during

operation. Issue the nvotlnit routine again.

A printable message string is accessible through a call to the routine nvotGetErrorMsg as in the following
example:

242 Programmer's Reference

nvotCreateParallelUnderlyingArc(3)

This example illustrates how to create two arcs in parallel underlying
an arc previously created.

#include <nvot.h>

nvotReturnCode
nvotProtocolType
char *
nvotProtocolType
char *

int
nvotProtocolType
char *
nvotProtocolType
char *

int
nvotProtocolType
char *
nvotProtocolType
char *

int

char *

RC =

RC;

akndpointProtocolParent.vertexProtocol

STARTLAN;

aEndpointNameParent = "My Vertex_VI1";

zEndpointProtocolParent.vertexProtocol =

STARTLAN;

zEndpointNameParent = "My Vertex V2";
arcIndexIdParent = 1;

akEndpointProtocoll.vertexProtocol

STARTLAN;

aEndpointNamel = "My Vertex V3";

zEndpointProtocoll.vertexProtocol

STARTLAN;

zEndpointNamel = "My Vertex V4";

arcIndexIdl = 1;

aEndpointProtocol2.vertexProtocol

STARTLAN;

aEndpointName2 = "My Vertex V5";

zEndpointProtocol2.vertexProtocol

STARTLAN;

zEndpointName2 = "My Vertex V6";

arcIndexIdl = 1;
icon = "1.3.6.1.

printf("Create First Parallel Ula

RC =

printf("Create Second Parallel Ula

Libraries

¢ /usr/OV/lib/libnvot.a

Files

¢ nvot.h

2.1.2.2.1.3.54.4";

nvotCreateParallelUnderlyingArcIcon (

ARC_VERTEX_VERTEX_NAME_BINDING,
akEndpointProtocolParent, aEndpointNameParent,
zEndpointProtocolParent, zEndpointNameParent,
arcIndexIdParent,
ARC_VERTEX_ VERTEX_ NAME_BINDING,
aEndpointProtocoll, aEndpointNamel,
zEndpointProtocoll, zEndpointNamel,
arcIndexIdl, icon, "Ula_V1v2 1");

= %s\n", nvotGetErrorMsg(RC));

nvotCreateParallelUnderlyingArcIcon (

ARC_VERTEX VERTEX NAME BINDING,
aEndpointProtocolParent, aEndpointNameParent,
zEndpointProtocolParent, zEndpointNameParent,
arcIndexIdParent,
ARC_VERTEX_VERTEX_NAME_BINDING,
akEndpointProtocol2, aEndpointName2,
zEndpointProtocol2, zEndpointName2,
arcIndexId2, icon, "Ula_V1V2 2");

= %s\n", nvotGetErrorMsg(RC));

Chapter 2. Reference Pages

243

nvotCreateParallelUnderlyingArc(3)

Related Information
¢ See “nvotCreateArcinGraph(3)” on page 221.
¢ See “nvotCreateSerialUnderlyingArc(3)” on page 253.

244 programmer's Reference

nvotCreateProvidingSap(3)

nvotCreateProvidingSap(3)

Purpose

Creates a SAP of SAP type PROVIDING

Syntax

#include <nvot.h>

nvotReturnCode nvotCreateProvidingSap (
nvotVertexProtocolType vertexProtocol,
char * vertexName,
nvotVertexProtocolType sapProtocol,
char * sapName) ;

Description

Vertices represent communication entities or interfaces across various protocol layers. The SAP object
class represents the logical relationship between two vertices inside a computer. If a communication entity
in a given protocol layer uses the services of a lower layer entity through a service point, a vertex repres-
enting an N-layer entity uses a SAP provided by a vertex representing an entity in layer N-1. Likewise, a
vertex representing an entity in layer N can provide a SAP for use by other vertices representing entities in
layer N+1. An interface or communication entity can provide its services to more than one entity in an
upper layer at the same time. However, a SAP always establishes only one association.

In terms of open topology map representation, the SAP object creation is a means to correlate vertex
symbols in box submaps.

The following rules apply to correlation of vertex symbols and representation of submaps and symbols:

¢ Although a vertex can be a member of a graph of type GRAPH, vertices correlated by a SAP should
be entities running inside the same computer. This computer is represented by a graph of type BOX.
It is recommended that you use SAPs to correlated vertices that are members of BOXES. Although
the interface does not check whether the vertex referenced by the SAP is a member of a GRAPH,
using a vertex that is a member of a graph of type GRAPH might produce unpredictable results.

¢ To avoid a rapid increase in the database, open topology merges vertices' objects’ information into
one object when a SAP is created. Some of the information merged is based on the protocol used.
The SAP creation must take different protocol values in the variables vertexProtocol and sapProtocol.
Otherwise, the vertex symbol referenced by sapProtocol and sapName disappears from the display.

Saps can be used to correlate either non-IP/IP or non-IP/non-IP objects:

¢ NonlP/IP correlation:

IP topology might have discovered a node running IP on top of a given interface card. Consider that a
non-IP management application is to represent an entity of its own protocol such as an interface card,
providing its services to an IP entity. But, the non-IP application does not yet know of the existence of
the IP side. The non-IP application is to provide correlation. Given that the non-IP management
application has already created a vertex V1 to represent its entity card, a SAP to correlate non-IP
vertex V1 with the interface card already discovered by the IP side would look like this:

vertexProtocol Set to the value of V1 protocol.

vertexName Set to the value of V1 name.

Chapter 2. Reference Pages 245

nvo

tCreateProvidingSap(3)

sapProtocol Set the value of the protocol defined in the interface card or, if the protocol is not
known, use OTHER_PROTOCOL as defined in the file nvotTypes
nvotVertexProtocolType. To avoid breaking the preceding rule (see the rule on
page 245), the field must not assume the same value of the vertexProtocol.

sapName Set to the value of the universal address of the interface card. For the correlation
to take effect for a given computer, this field must be set to the value set in the
field SNMP ifPhysAddr of the corresponding IP node. If the interface is a Token
Ring card, for example, this field is set to its MAC address.

Non-IP/non-IP correlation:

Different protocol BOX graphs B1 and B2 contain, respectively, vertices V1 and V2. A SAP correlation
of these vertices V1 and V2 indicates that they are running in the same box. This means that boxes
B1 and B2 would be the same computer. So, open topology would merge the information of B1 and
B2. This case is similar to the non-IP/IP correlation except that, instead of a non-IP box graph and an
IP node being correlated, two non-IP box graphs are correlated.

Another case is a single BOX graph that contains two vertices V1 and V2. In both cases, a SAP to
correlated vertices V1 and V2 would be:

vertexProtocol Set to the value of V1 protocol.
vertexName Set to the value of V1 name.
sapProtocol Set to the value of V2 protocol.
sapName Set to the value of V2 name.

For example, a Token Ring interface can provide its services to SNA Services and TCP/IP stacks
inside the same box. The LLC layer entity would provide two distinct SAPs, one for SNA Services and
another for TCP/IP. The example in this man page illustrates such a piece of topology.

The nvotCreateProvidingSap routine creates a SAP uniquely identified by the values of the
sapProtocol and sapName parameters. The vertex identified by vertexProtocol and vertexName uses
the service of this SAP.

If the vertex providing this SAP does not yet exist in the gtmd database, it is automatically created.
However, the automatic creation of a vertex requires future calls to routines
nvotChangeVertexlconlnBox, nvotChangeVertexLabellnBox, nvotChangeVertexiconinGraph or
nvotChangeVertexLabellnGraph for accurate display by the NetView for AlIX program.

It does not make sense to create a using SAP when a providing SAP does not exist. If you create a
using SAP when a providing SAP does not exist, and later issue a request to create a providing SAP
with reference to the SAP created (using the same sapProtocol and sapName values), a new SAP will
not be created. Instead, the request will cause two vertices to be associated through a common SAP.

All parameters in this routine are required.

Parameters

vertexProtocol Specifies the protocol of the vertex providing the SAP. The vertex protocol is
an enumerated type defined in the file <nvotTypes.h>.

vertexName Specifies the name of the vertex providing the SAP. This parameter can be
any string of characters. Once specified, the same name must be used in any
reference to this vertex.

sapProtocol Specifies the protocol of the vertex in which the SAP is defined. This is the
protocol of the vertex providing this SAP. For more information, see the
example in this man page.

246 Programmer's Reference

nvotCreateProvidingSap(3)

sapName The sapName or sapAddressName parameter identifies a SAP provided by an
N-level entity to an N+I-level entity. This parameter is a character string con-
taining an IP address, a SNA physical and logical unit address, and so on.
For more information, see the example in this man page.

Return Values

nvotReturnCode The nvotCreateProvidingSap routine returns an nvotReturnCode that can
assume the values described in the error codes section.

Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_SAP_INVALID_INDEX] The SAP index is not valid. A SAP protocol must be a positive
integer and a SAP name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotlnit routine to establish a connection
with gtmd.
[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-

tion. Issue the nvotlnit routine again.

[NVOT_PROTOCOL_WAS NOT_REGISTERED]
The protocol was not registered in the
/usr/OV/conf/oid_to_protocol file.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

Examples

The following example illustrates how to represent a SAP provided by a Token Ring interface card.

#include <nvot.h>

nvotReturnCode rc;

[*xkxxxxkxxx%x Define LAN vertex (Vl) R e T

nvotVertexProtocolType myLNM_Prot = LANBRIDGE;
char * myLNM_Name = "LAN Vertex";

[*xxxxxxkxx%x%x Define Token Ring SAP Hkkkhkkkkhhhkhrhhhkrrrk/

nvotVertexProtocolType myTokenRingProt = IS088025 TOKENRING;
char * myTokenRingAddr = "10005AA8D718";

if ((rc = nvotCreateProvidingSap (myLNM_Prot,

myLNM_Name,
myTokenRingProt,

Chapter 2. Reference Pages 247

nvotCreateProvidingSap(3)

myTokenRingAddr)) == NVOT_SUCCESS)

printf ("Sap created successfully");
else
printf ("Error : %s\n", nvotGetErrorMsg (rc));

Libraries
¢ Jusr/OV/lib/libnvot.a

Files

nvot.h

Related Information

¢ See “nvotSetSynchronousCreation(3)” on page 368.

248 Programmer's Reference

nvotCreateRootGraph(3)

nvotCreateRootGraph(3)

Purpose

Creates a root graph
Syntax

#include <nvot.h>

OVwObjectId nvotCreateRootGraph (
nvotGraphProtocolType graphProtocol,

char * graphName,
nvotlLayoutType graphLayout,
char * graphBackground,
char * icon,

char * label,
nvotOctetString * graphDetails);

Description

The nvotCreateRootGraph creates a root graph. A root graph is not a member of any other graph. This
routine does not support the changing of a graph or box into a root graph.

In the following cases, a root graph is not created, an error code is returned, and the interface returns
OVwNullObjectld.

¢ A non-root graph or box that matches graphProtocol and graphName exists in the GTM database. In
this case, the error code NVOT_GRAPH_ALREADY_EXIST or NVOT_BOX_ ALREADY_EXIST is set.

¢ A root graph that matches graphProtocol and graphName exists. In this case, the error code
NVOT_ROOT_GRAPH_ALREADY_EXIST is set.

¢ A graph with the graphType attribute set to INVALID_GRAPH or OTHER_GRAPH already exists in
GTM database. In this case, the error code NVOT_OTHER_TYPE_GRAPH_EXISTS is set.

The graphProtocol and graphName parameters are required because together they uniquely identify
graphs in the GTM database.

The graphLayout parameter is required. However, if -1 (don't care) is passed, NONE_LAYOUT is
assumed, any other value is rejected, and the error code NVOT_INVALID LAYOUT is set. Positioning the
symbols in the submap for the vertices and graphs members (submap) of a NONE_LAYOUT root graph
requires additional work. Also, further changes to the graph layout attribute are not supported.

The graphBackground, icon, label and graphDetails are the only optional parameters. However, if they are
not passed, they must be set to NULL. Pointers that are not valid can cause unpredictable errors. If
NULL is passed, the default “Network:Network” symbol is assumed for icon and the graphName string is
displayed in place of the label. Also, the submap background is cleared.

Parameters

graphProtocol Specifies the protocol of the root graph. For more information, refer to the file
/usr/OV/conf/oid_to_protocol.

Chapter 2. Reference Pages 249

nvotCreateRootGraph(3)

graphName Specifies the name of the root graph. Both the graphName and the
graphProtocol are required to uniquely identify the root graph. This parameter
can be any string of characters. Once specified, the same name must be
used in any reference to this graph.

graphLayout Specifies the layout of the submap into which this graph can be exploded in
the NetView for AIX EUI. This parameter is an enumerated type defined in the
file <nvotTypes.h>. NONE_LAYOUT is assumed if -1 is passed. Once the
graph is created, the graph layout attribute cannot be changed.

graphBackground Specifies an image to be displayed in the background of the submap into
which this root graph is exploded. A background is usually an image of a
geographic region that helps in illustrating a submap. You can select a back-
ground image from among the bitmap files in the default directory
/usr/OV/backgrounds.

icon Specifies the icon to represent this root graph in the NetView for AIX EUI. For
information about selecting an icon, refer to the file /usr/OV/conf/C/oid_to_sym.

label Specifies the label under the root graph icon in the NetView for AIX EUI. The
label can be any string of characters.

graphDetails Contains particular information that applications store for future retrieval. The
information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(graphDetails->octetString, (char *) applStruct,
sizeof(applStruct)) and graphDetails->octetLength = sizeof(applStruct).
However, although nvotOctetString allows for any size strings and the interface
does not check the size of graphDetails, any character exceeding 256 will be
truncated by the NetView for AlX object database.

Return Values

OVwObjectld When the application is running in synchronous mode (that is, when the
nvotSetSynchronousCreation routine has been called with a non-zero value),
the nvotCreateRootGraph routine issues the create root graph operation to
GTM and stands in a finite loop until the NetView for AIX program returns the
OVwObijectld of the root graph just created. OVwObijectld is a positive integer.
If an error occurs or the loop times out, the routine returns OVwNullObjectld.
When the