
Exploiting New
JES2 Interfaces

Tom Wasik
JES2 Development
wasik@us.ibm.com

SHARE, Winter 2004

Project: JES2

Session: 2664
Permission is granted to SHARE Inc. to publish
this presentation in the SHARE proceedings. IBM
retains its right to distribute copies of this
presentation to whomever it chooses.

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 1

The presentation discusses how to use the newer interfaces to JES2 with
some assembler coding examples. It is intended for programmers that may
wish to exploit the interface or to understand what is possible using these
interfaces. What are "new" interfaces? Well new is relative. In my way of
thinking, new is anything that was introduced after I started working with the
product (SP 1.3.6). But for this presentation, I will be talking primarily about
SAPI, Extended status, and Spool browse with a few others thrown in.

Overview

This presentation will cover the following:
What is the SSI and how is it used
Extended status SSI request
SAPI SSI requests
SPOOL Browse
Other SSIs

Who AM I SSI
Notify SSI
SPOOL read SSI

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 2

This presentation will discuss various interfaces to interact with JES2.
Primarily, these interfaces use the Subsystem interface (SSI). I will start with a
quick overview of the SSI and then go into the various SSI calls JES2 supports
and what can be done with them. SPOOL Browse is the only interface that we
will be discussing that does not use the SSI to interface to JES2.
The examples that will be provided show how to use the various interface but
do not do anything useful with the data provided. Also the methods of
obtaining input is often using simple WTORs. In that sense, these are
intended as examples of how to use the interface, rather than complete
programs that an installation would want to use.

What is the SSI
The SSI is an MVS interface to
"Subsystems"

Used as a hook to give info to subsystems
WTO, CMDs, EOT, EOM, etc.

Used as a way to request functions
PSO, SAPI, Extended Status

Each SSI has a number and an SSOB
extension
Subsystem identifies what it supports
Caller can specify subsys to process request

Default, Specific, All

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 3

The SSI is an MVS interface to subsystems. A subsystem in this context is defined as
any program that responds to SSI requests. JES2 and JES3 are two of the major
users of the SSI interface. The SSI functions as both an hook that provides
information to the subsystems when certain events occur, as well as a way to request
information/services from a subsystems. WTO, command, End of task, End of
Memory are all examples of SSIs that are invoked by MVS to tell a subsystem that
something has happened. These SSIs are intended to only be issued by MVS and
listened to by subsystems. PSO, SAPI, Extended Status are all examples of SSIs
that are invoked by applications that are requesting services from a subsystem.
Each SSI has associated with it a number and an SSOB extension. The numbers
(normally stated in decimal) ensures that the proper function is requested. The SSOB
extension is where the parameters for the specific SSI are defined.
Each subsystem must identify to MVS what SSI numbers (function codes) it supports.
The next chart lists the function that JES2 supports (for use by applications).
SSI calls can be directed to the default subsystem (the one the application was
started under), a specific subsystem, or all subsystems. Sending a request to all
subsystems is called a broadcast SSI. Only certain SSIs support being broadcast.
The only SSI available to applications that can be broadcast is the extended status
SSI.

What is the SSI (cont...)

The SSI calls (that applications can use)
which JES2 supports are:

Number Symbol Macro Description
1 SSOBSOUT IEFSSSO Process SYSOUT
2 SSOBCANC IEFSSCS Job cancel
3 SSOBSTAT IEFSSCS Job status
11 SSOBUSER IEFSSUS Destination validation/conversion
20 SSOBRQST IEFSSRR Request job ID
21 SSOBRTRN IEFSSRR Return job ID
54 SSOBSSVI IEFSSVI Subsystem Information
70 SSOBSFS IAZSSSF SJF spool services
71 SSOBSSJI IAZSSJI Job information
75 SSOBSSNU IAZSSNU User notification
79 SSOBSOU2 IAZSSS2 SYSOUT API (SAPI)
80 SSOBESTA IAZSSST Enhanced status information

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 4

This table lists the SSI request that are available to applications that are
supported by JES2. Newer SSIs have the higher numbers. Some of these
SSIs are documented in the z/OS V1R5.0 MVS Using the Subsystem Interface
book (SA22-7642-03). However, most of the newer SSIs have fairly complete
documentation in their SSOB extensions (Macro column in the table).

Invoking the SSI -
Data areas

Register 1 '80'+SSOB@
'SSOB' (SSOBID)
Length (SSOBLEN)
Function ID (SSOBFUNC)
SSIB@ (SSOBSSIB) or zero
SSOB Extension@ (SSOBINDV)
Return code (SSOBRETN)

SSOB (IEFSSOBH)

'SSIB' (SSIBID)
Length (SSIBLEN)
Subsys name (SSIBSSNM)

SSIB (IEFJSSIB)

Length
Function dependent data
:
:

SSOB Extension

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 5

The major data areas that must be filled in to invoke the SSI are the SSOB
and the SSOB extension. If you want to direct the request to a specific
subsystem, then you can also pass an SSIB on the request. The SSOB
extension that is used will depend on the function ID (SSI number) being used.

Invoking the SSI -
Code
 USING SSOB,MYSSOB Establish SSOB addressability
 SPACE 1
 XC MYSSOB,MYSSOB Zero SSOB area
 LA R6,MYSSOB Get address of SSOB
 SPACE 1
 MVC SSOBID,=C'SSOB' Set SSOB eyecatcher
 MVC SSOBLEN,=Y(SSOBHSIZ) Set length of SSOB header
 MVC SSOBFUNC,=Y(SSOBSSxx) Set function code
 MVC SSOBSSIB,=F'0' Use LOJ SSIB
 LA R0,SSOB+SSOBHSIZ Point to SSOB extension
 ST R0,SSOBINDV Point base to extension
 SPACE 1
 USING SSxxxxx,SSOB+SSOBHSIZ SSOB extension addr'blty
 SPACE 1
* Code to set up SSOB extension goes here
 SPACE 1
 LA R6,MYSSOB Point to SSOB
 O R6,=X'80000000' Set HI BIT to indicate last
 ST R6,PARMPTR Save SSOB address in parm
 LA R1,PARMPTR Get pointer to SSOB
 SPACE 1
 IEFSSREQ Invoke the SSI
 SPACE 1
 LTR R15,R15 If this is nonzero
 JNZ SSREQERR we're in big trouble
 CLC SSOBRETN,=A(0) Is there an error?
 JH SSOBERR Yes, process error

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 6

This is the basic code needed to invoke any SSI request. This code sends the
request to the subsystem associated with the address space (uses the life of
job SSIB). This SSIB points to the subsystem that started the address space.
If the address space was started under the master subsystem (does not have
a job structure in JES2 or used request job id), then the request will go to the
MSTR subsystem. If it was started under JES2 (has a job structure that is not
from request jobid) then the request will go to the JES2 instance that started
the address space.
Notice that after the call, there are 2 return codes being checked. The R15
value after the call to IEFSSREQ is a function independent return code defined
in IEFSSOBH. These return code are often not set by the subsystem itself but
rather by the IEFSSREQ logic. The SSOBRETN is a function dependent
return code that is defined in the individual SSOB extensions. These are
always set by the subsystems. Often there will be a third return code (or a
reason code) in the SSOB extension itself to further identify the cause of an
error.

Warnings

Most SSIs require caller to be APF
authorized

Ensure code is properly tested
Examples are just that

Not intended for production
Needs validation of input
May have security issues
Need to add recovery

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 7

Before you start writing code or looking at the examples, some words of
warning.
SSIs requests generally require their callers to be authorized. Since these are
authorized interfaces care must be taken to ensure that the code will not
create an integrity exposure or cause a system failure. Careful review of the
code and lots of testing in a test environment will help minimize the risk.
The examples that are being presented are just that, examples. They are not
intended as production code. In many cases, the examples you are looking at
were written in development to exercise the JES2 SSI supporting code. Not
much care was given to usability, recovery, validating input, error checking,
etc.. The examples are intended to give you something that works that you
can use as a basis for developing your own applications. Some examples may
function exactly as you want them to. That still does not mean they are ready
for a production environment.

Extended Status SSI

Obtain JOB and SYSOUT information
Data in JES2 checkpoint returned

CKPT version used
SSI function 80 (IAZSSST mapping macro)
3 call types

Get job data
Get SYSOUT and JOB data
Release memory

Filters control data returned
Supports directed SSIs and broadcast

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 8

The extended status SSI obtains job and SYSOUT information from the JES2
checkpoint using a checkpoint version (to ensure the consistency of the data
returned). Only data that is in the JES2 checkpoint is available to be returned
via this SSI. Processing in this SSI does not affect the processing in the JES2
address space (since all the code runs in the requesting address space).
There are 3 functions supported, get JOB data, get SYSOUT (and job) data,
and return storage. A very typical characteristic of many of the newer SSIs is
a pair of calls, one to obtain data in storage obtained by the SSI, and then a
memory management call to release the storage. You will see this on many of
the SSI calls.
The requester can filter the data returned based on a wide range of JOB as
well as SYSOUT filters.
The SSI supports both directed an broadcast requests. What this means is
that you do not have to be running under the target subsystem to make this
request. Since this SSI also supports a broadcast request, you can ask all
subsystems (all JES subsystems) on a system to return data in one call.

Extended Status SSI -
SSOB structure

The IAZSSST (SSOB extension) is
structured as follows:

Standard SSOB stuff (Length, eyecatcher, version)
Additional error reason codes (STATREAS, STATREA2)
Function requested (STATTYPE)
Input filter bit masks (STATSELx, STATSSLx)
Input JOB level filter fields
Output area pointers and counts
Input SYSOUT level filter fields

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 9

The SSOB extension is mapped by IAZSSST. The extension is made up of a
number of sections, each representing a different function. Filtering is
accomplished by setting a bit in the appropriate byte and then setting the
corresponding field to the value to filter on. Output areas are chained into the
SSOB extension.

Extended Status SSI -
Output structure

:
STATJOBF
:

IAZSSST

STJQNEXT
STJQSE

STATJQ

STJQNEXT
STJQSE

STATJQ

STATSE

STSEJNXT
STSEJOB

STATSE

STSEJNXT
STSEJOB

STATSE

STSEJNXT
STSEJOB

STATSE

0

STSEJNXT
STSEJOB

0 0

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 10

The output areas returned by extended status are pointed to by STATJOBF in
the SSOB extension (IAZSSST). There are 2 types of output areas.
STATJQs represent a job (JQE). For every job which matched the filter
criteria, a STATJQ is built. STATSE represent an output group (JOE). The
STATSEs are chained out of the STATJQ (so you if you ask for SYSOUT
information, you will always get STATJQs too). The STATSEs point back to
the STATJQs that own them.

Extended Status SSI -
STATJQ

STATJQ

STATJQHD

STATJQTR

STATJ2TR

STATAFFS

STATSCHD

STATSCHS

STATSCLF

Section in the STATJQ
STATJQ - represents job
STATJQHD - describes output areas
STATJQTR - Job Queue Element terse section
STATJ2TR - JQE JES2 terse section
STATAFFS - JQE member affinity section
STATSCHD - JQE scheduling section
STATSCHS - JQE SCHENV affinity section
STATSCLF - JQE SECLABEL affinity section

Sections work like NJE header sections
Each section has a length, ID, and modifier
Use lengths to step through sections
STATJQHD has overall length to end of area
NEVER USE ASSEMBLER LENGTHS EQUs

STATJQHD is only exception
Not all sections are always present

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 11

The STATJQ is composed of a number of sections. The high level DSECT
(STATJQ) has the pointers to the next STATJQ and to any STATSEs. The
length of the STATJQ header is also in the area. Add the length field to the
STATJQ and you point to the STATJQHD. This is a header for the remaining
fields. It has the overall length of the remaining areas. This length is used to
determine when you have reached the end of the variable sections. You add
the STATJQHD length equate (STHDSIZE) to the address of the STATJQHD
to get the first variable section. Each variable section starts with a 2 byte
length (STxxLEN), a 1 byte ID fields (STxxTYPE) and a 1 byte modifier
(STxxMOD). When scanning for or identifying a section, ensure you check
both the type AND modifier to determine what section this is. To get to the
next section, add the STxxLEN field to the current section pointer. Not all
sections are present for all jobs. Also, maintenance or a new release can add
new section types or modifiers to existing types. Ensure you application can
handle unknown types.

Extended Status SSI -
STATSE

STATSE

STATSEHD

STATSETR

STATSJ2T

STATSJ3T

Section in the STATSE
STATSE - represents SYSOUT group (JOE)
STATSEHD - describes output areas
STATSETR - SYSOUT element terse section
STATSJ2T - SYSOUT JES2 terse section
STATSJ3T - SYSOUT JES3 terse section

Sections work like NJE header sections
Each section has a length, ID, and modifier
Use lengths to step through sections
STATSEHD has overall length to end of area
NEVER USE ASSEMBLER LENGTHS EQUs

STATSEHD is only exception
Not all sections are always present

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 12

The STATSE is also composed of a number of sections. The high level
DSECT (STATSE) has the pointers to the next STATSE and back to the job
level STATJQ. The length of the STATSE header is also in the area. Add the
length field to the STATSE and you point to the STATSEHD. This is a header
for the remaining fields. It has the overall length of the remaining areas. This
length is used to determine when you have reached the end of the variable
sections. You add the STATSEHD length equate (STSHSIZE) to the address
of the STATSEHD to get the first variable section. Each variable section starts
with a 2 byte length (STxxLEN), a 1 byte ID fields (STxxTYPE) and a 1 byte
modifier (STxxMOD). When scanning for or identifying a section, ensure you
check both the type AND modifier to determine what section this is. To get to
the next section, add the STxxLEN field to the current section pointer. Not all
sections are present for all SYSOUT areas. Also, maintenance or a new
release can add new section types or modifiers to existing types. Ensure you
application can handle unknown types.

Extended Status SSI -
Typical logic (JOB info)

Build SSOB

Set filters

Set STATTYPE
to

STATTERS

IEFSSREQ

Did it
work?

No

Exit

Yes

Get next STATJQ

Calc STATJQHD
addr

Get next section

Process section

None

Set STATTYPE
to

STATMEM

None

IEFSSREQ

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 13

A typical logic flow to obtain and process job level information is pictured here.
The application set up the SSOB and filters, invokes the SSI, then processes
the output. Once all the elements have been processed, the storage is freed
with another IEFSSREQ request. Note that once the SSOB is built and
passed to the SSI, it is not updated (except for the STATTYPE). It is important
that application pass the same SSOB into both SSI calls without updating the
fields labeled as output fields.

Extended Status SSI -
Typical logic (SYSOUT info)

Build SSOB

Set filters

Set STATTYPE
to

STATOUTT

IEFSSREQ

Did it
work?

No

Exit

Yes

Get next STATJQ

Calc STATJQHD
addr

Get next section

Process section

None

Set STATTYPE
to

STATMEM

None

IEFSSREQ

Get next STATSE

Calc STATSEHD
addr

Get next section

Process section

None

None

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 14

This flow adds SYSOUT information to the output returned. SYSOUT data
areas are chained into the STATJQ data areas.

Extended Status SSI -
Less typical flows

Set STATOUTT

IEFSSREQ

Exit

Set filters 1

Set filters 2

IEFSSREQ

Process output

Set STATMEM

IEFSSREQ

Set STATTERS

IEFSSREQ

Set STATMEM
IEFSSREQ

Set JOB filters

Find job

Set single job
Set STATOUTT

IEFSSREQ

Process output

Multiple SSI
requests with
different filters can
be made without
freeing the output
areas. This allows
"OR" processing for
filters. For example
if you want
information for
SYSOUT that is
class A or class B.

The first of
multiple calls
can request job
information and
then, select a
job and add the
SYSOUT
information for
one of the jobs
(without a
memory
management
call).

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 15

Multiple SSI calls can be combined to without making a memory management
call. This achieves an "OR" function for filters. Furthermore, the first call can
be a job call that obtains STATJQ data areas, a job can be selected from the
returned data areas, then by setting a single job filter and STATOUTT, the
SYSOUT information for that job will be added to the STATJQ data area
already obtained.

Extended Status SSI -
Other facts

You can set STATTERS and specify
SYSOUT filters

Only STATJQs for jobs that have output that
matches the filters are returned (no STATSEs
returned)

STATSEs have a JOE level token
(STSTCTKN) that can be passed to SAPI to
process the output
STJ2SPOL can be passed to SPOOLIO SSI
to read the JCT for the job

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 16

All filters can be used on all call types. That implies that SYSOUT filters can
be used when job level information is being requested. When this is done,
only jobs that have output that matches the filter will be returned (and only
STATJQs are returned).
The STATSE contains a JOE token that can be passed on the SYSOUT API
(SAPI) to select a specific output group for processing.
The STATJQ contains a SPOOL token that can be passed to the SPOOLIO
SSI to read the JCT for a job.

Extended Status SSI -
Processing routine

If you need high performance and do not
want to use as much memory, use the
processing routine (STATRTN)
Instead of returning data, it is passed to the
processing routine.

For JOBs you get called for each STATJQ
For SYSOUT you get called for each STATSE

Set STATRTN and STATRPRN before SSI
STATPARM maps the R1 parameter list
See STATSSST for more information

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 17

When using the extended status SSI to obtain information on a large number
of jobs, you may want to reduce the amount of storage that is obtained. This is
particularly true if you plan to copy the data obtained into your own work area
and are concerned about having 2 copies of the data in storage at the same
time. To address this, the extended status SSI supports a processing routine.
This routine is called as each output element is generated. If the is a job level
request, then it is called every time a STATJQ is built. If this is an SYSOUT
level request, it is called for every STATSE that is built (the STATJQ is passed
with the STATSE). The processing routine can then copy the data to their own
work area and return to the SSI. A data area can be passed in the IAZSSST
that is passed to the processing routine. Also, the processing routine can set
a field that is passed between calls to the processing routine. The parameter
list is mapped by STATPARM in the IAZSSST macro. Even though a
processing routine is used and no data areas are passed back, a memory
management call is still needed to delete internal work areas that were
obtained.

Extended Status SSI -
Program example

STATUS2 is the example program
Authorized TSO command
"STATUS2 ?" gives a brief explanation of
options

Output is a hex display (dump format) of
SSOB and extension
All output areas returned (STATJQs and
STATSEs)

Useful to see format of data returned

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 18

The STATUS2 program is an example of how to use the extended status SSI.
STATUS2 is an authorized TSO command that takes as input the various
filters that are supported by extended status and builds and IAZSSST (SSOB)
to invoke the SSI. The command syntax can be obtained by issuing
"STATUS2 ?".
The output of the command is very primitive. The SSOB as well as any
STATJQs and STATSEs are displayed in hex format with the EBCDIC
translation (similar to what is seen in a dump). This provides an easy way to
look at what is returned from the SSI call.

SYSOUT API
Allows applications access to SYSOUT

SYSOUT must not be active (busy)
Can only access non-NJE routed SYSOUT
Similar to PSO but with more function

SSI function 79 (IAZSSS2 mapping macro)
3 primary functions

PUT/GET - accesses individual data sets
Count - returns various counts from JOEs
Bulk Modify - Alters SYSOUT characteristics

Filters control what JOEs are processed
Address space must be known to JES

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 19

The SYSOUT API (SAPI) provides a rich set of services that provide information
about SYSOUT on the system. It is intended as an enhancement to the PSO
interface (which is no longer being enhanced). The primary function of SAPI is to act
as a printer application. Since it is a printer application, it can only access non-NJE
bound output that is not already busy on another device. However, it can access
output that is held (JCL type held) as well as non-held. This is to be compatible with
some PSO functions.
Other functions available via SAPI are a count request and a bulk modify request.
Count requests simply look at all the JOEs that match a selection criteria and count
the number of elements that match and accumulate the various counts (e.g. lines,
pages, etc.). This is useful if you are trying to determine how much output is waiting
to be processed.
Bulk modify is similar to the PSO group request. It allows you to make changes to the
characteristics of a set of JOEs with one SAPI call. With bulk modify you can alter the
SYSOUT's class, destination, or release SYSOUT from held status. In addition you
can delete SYSOUT.
What SYSOUT data sets to process is controlled by various filters specified in the
IAZSSS2.
The SAPI SSI requires that the requesting address space have a job structure
associated with the target JES2. Only authorized callers are allowed.

SYSOUT API -
SSOB (IAZSSS2)

IAZSSS2 identifies:
Function to be performed
Filters to select output to be processed
Output information associated with request

One request may need multiple SSI calls
A thread is a set of related SSIs
First call clears SSS2JEST
Last call sets SSS2CTRL on
If done and SSS2JEST is non-zero,
SSS2CTRL call is needed
Errors can cause JES2 to terminate thread

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 20

The IAZSSS2 contains both input and output fields. The input includes the function to
be performed and a set of filters to select which SYSOUT data sets are to be
processed. The output information includes the job and SYSOUT characteristics,
pointers needed to allocate data sets, SWB information, and other fields that may be
needed to process the SYSOUT. Input fields which are valid and output fields that
are returned are based on the function requested. PUT/GET calls return the most
data, bulk modify returns just a success or failure indicator.
When a SAPI request is made, an environment is created to process this request.
The assumption is that multiple requests will be made using this same environment.
The set of requests that share this environment is called a thread. A new thread is
started when a SAPI request is made with SSS2JEST set to zero. This thread is
maintained until either the task that created the thread terminates, or a SAPI call is
made with SSS2CTRL being set on. One task can have multiple threads associated
with it. Threads can be passed between tasks (however it is always owned by the
creating task). Under certain error scenarios, a thread can be terminated by JES2,
but normally, it takes a successful SAPI request with SSS2CTRL set. When
SSS2CTRL is set, the function requested is not performed, except if a JOE is
currently assigned to the thread (from a previous PUT/GET call). Then normal put
processing will occur. Setting SSS2CTRL on a call with SSS2JEST set to zero does
nothing.

SYSOUT API -
Security

PUT/GET and Bulk modify calls perform
JESSPOOL RACF checks

One check per data set (NOT at JOE level)
Data sets (PDDBs) that fail check are ignored
Can cause one JOE to be broken into multiple

5 PDDB JOE, requester cannot access 3rd
PDDB
Bulk modify request to change class
Result 2 JOES, #1 has PDDBs 1, 2, 4, 5; #2
has PDDB 3.

No RACF checks for count request

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 21

SAPI performs RACF checks to ensure that the requester has access to the
SYSOUT. The checks are the standard JESSPOOL class checks made
elsewhere in JES2. UPDATE access is always required. The checks are
made at the SYSOUT data set level (PDDB) not the JOE level. This implies
that an application may be able to access some data sets in a JOE but not
others. Data sets which the application does not have access to are ignored.
The application has no way to know that there are data set which it has no
access to. Security failures can cause a single JOE to be split into multiple
JOEs. For example, if there is a 5 PDDB JOE in which the application has
access to all but PDDB 3, then a bulk modify request to change the class of
this data set can only effect PDDBs 1, 2, 4, and 5. So when the request
completes, there will be 2 JOEs, one with PDDBs 1, 2, 4, and 5 and one with
just PDDB 3.
The security checks apply to PUT/GET and bulk modify request. They do not
apply to count requests.

SYSOUT API -
Typical logic (Count)

No

Exit

Yes

Process counts

Set filters

Set SSS2COUN

IEFSSREQ

Build SSOB

Did it
work?

Set SSS2CTRL

IEFSSREQ

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 22

A count request starts by building the SSOB (IAZSSS2) and setting the
selection criteria for the JOEs to be counted. The SSOB is set to be a
SSS2TYPE of SSS2COUN. The IEFSSREQ is then issued and the results
checked. Return codes come back in R15 (IEFSSREQ return code),
SSOBRETN (SAPI return code) and SSS2REAS (SAPI reason code). If the
request worked, the counts are stored in SSS2LNCT (line count), SSS2PGCT
(page count) and SSS2CDS (JOE count).
Once the call completes, the thread that was created is still active. If the task
is terminated, then the thread will be terminated. However, if you want to
terminate the thread before the task terminates, another call must be made
with SSS2CTRL set on. This tells JES to terminate the thread without
performing the count function that is still set in SSS2TYPE.

SYSOUT API -
Typical logic (Bulk Modify)

Set filters

Set SSS2BULK

Build SSOB

Set modification

No

Exit

Yes

Indicate success

Did it
work?

Set SSS2CTRL

IEFSSREQ

IEFSSREQ

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 23

A bulk modify request is very similar to a count request. It starts by building
the SSOB (IAZSSS2) and setting the selection criteria for the JOEs to be
modified. In addition, fields that indicate the type of modification are also set in
SSS2UFLG. The SSOB is set to be a SSS2TYPE of SSS2BULK. The
IEFSSREQ is then issued and the results checked. Return codes come back
in R15 (IEFSSREQ return code), SSOBRETN (SAPI return code) and
SSS2REAS (SAPI reason code). If the request worked, the output groups
have been modified.
Once the call completes, the thread that was created is still active. If the task
is terminated, then the thread will be terminated. However, if you want to
terminate the thread before the task terminates, another call must be made
with SSS2CTRL set on. This tells JES to terminate the thread without
performing the bulk modify function that is still set in SSS2TYPE.

SYSOUT API -
Typical logic (PUT/GET)

Set filters

Set SSS2PUGE

Build SSOB

No

Wait for ECB

Got a data
set?

IEFSSREQ

Yes

End of JOE
processing

No

Yes

Start of JOE
processing

Unallocate data
set

Allocate data set

Read data

IEFSSREQ

Last PDDB
in JOE?

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 24

This logic shows a typical application that selects JOEs that match some
criteria, process the JOEs, then wait for more JOEs to become available. As
illustrated, this is an unending process. A real application would have a
command to halt the process or it would exit when no work was found.
The processing starts with setting the selection criteria, indicating it is a
PUT/GET calls, then invoking the SAPI SSI. If no SYSOUT is returned, then
the process waits for JES2 to post that work is available. If a SYSOUT data
set was returned (a JOE), then processing starts with setup for the new JOE
(Header processing, data set allocation, etc.). The first data set is allocated,
opened, and read. Once it has been read and processed, the data set is
closed and unallocated. If there are more data sets in this JOE, then another
SAPI SSI call is made to dispose of the first data set and get then next data
set. If the last data set for the JOE (SSS2DSL is on) was just processed, then
cleanup processing for the JOE is done. Another SAPI SSI call is made and
the last data set is disposed and a JOE is obtained and the processing
continues.

SYSOUT API -
Put/Get Advanced topics

SYSOUT characteristics
Most JOE/PDDB fields returned
SWBs (TUs or SWA) available
NJE job and data set headers
RACF security token

Disposition processing
Keep or "process" the data set
Hold the data set (system or JCL)
Change attributes
Don't show to thread/address space again

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 25

The output area in the IAZSSS2 contains all the traditional characteristics of
the SYSOUT and owning job. These are the fields obtained from the JOE,
JQE, JCT, and PDDB. In addition, the output SWBs (data from OUTPUT JCL
statements) and the NJE job/data set headers are also made available (the
NJE headers are only available if the job or output arrived via NJE). The
RACF security token associated with the output is also made available.
When the SAPI application completes processing of a SYSOUT data set, it
has a number of options on what to do with it (set in SSS2DISP). The primary
options are to "process" the data set (same as a printer does when it prints a
data set), keep the data set (with or without a system hold), JCL hold the data
set, release the data set, and you can also ask that the data set not be shown
to this address space or thread again. The do not show options apply until the
instance (address space or thread) terminates or until some attribute of the
output is changed ($T command). Additionally, there are a number of
attributes about the output that can be altered..

SYSOUT API -
Put/Get Advanced topics (cont)

Do not have to completely process JOEs
Can change selection criteria mid JOE
Can change request type mid JOE

One thread can process count, bulk modify,
and PUT/GET requests

If selection or request changes, next call does
a PUT with old rules and then new request
Acts like a "PUT/COUNT" or "PUT/BULK"
request

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 26

When selecting JOEs for processing, you do not have to completely process
the entire JOE you were handed. You can choose to process some data sets
and then stop, or change what you are doing. For example, perhaps you want
to process all output for a job once you select a job. You could do a selection
based on a criteria like SYSOUT class, then when a JOE is selected, change
your filters to the JOBID of the output you were handed and do a COUNT
request (to see how much output there is for this job), then create a regular
data set large enough to handle the output, and finally start doing PUT/GET
calls with the JOBID filter. When all the available data sets for the job have
been processed, you could update your filter to be just a SYSOUT filter again
and look for another job. Note, when you switch requests (in this case change
the type to count), you must define what to do with the data set you were
handed (in this example, you would indicate to keep the data set). The count
request in this case is really a "PUT/COUNT" request. It PUTs the JOE you
were handed and then COUNT with the new filter.

SYSOUT API -
Put/Get Advanced topics (cont)

All SYSOUT token types valid input for SAPI
selection

JOE tokens - extended status
Client tokens - Allocation
Data set tokens - SAPI

Terminate thread using SSS2CTRL
IAZSSS2 still validated
Check return code because request can fail
When in doubt, use SSS2PUGE type (least
likely to fail)
Thread terminated when SSS2JEST is zero

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 27

Processing using SAPI can be enhanced by using SYSOUT token to select specific output to
process. SYSOUT tokens take 3 forms. JOE tokens represent an entire JOE and can be obtained
from the extended status interface. This allows the application to use extended status to determine
which JOEs to process (using whatever selection process they want) and then using SAPI to actually
process the data sets.
Client tokens are obtained at the time a dynamic allocation creates a SYSOUT data set. These
tokens represent a single SPIN data set. Using client tokens, an application can directly allocate for
processing a specific data set that was created earlier.
Data set tokens are part of the SYSOUT characteristics that are returned when SAPI selects a data
set for processing. One way these tokens can be used is by selecting OUTPUT using normal SAPI
selection but not actually processing the data set. The data set tokens can be saved and the data
set returned with KEEP specified (and perhaps do not show to thread again). At a later time, data
sets can be selected in the order that the application wants for processing. Or the data sets can be
read using SPOOL browse in any order that the application wants and later deleted.
All SAPI requests create a thread. These threads must be terminated when no longer needed.
Failing to terminate threads can increase system overhead. Threads are normally terminated when
the creating task terminates. However, if multiple threads are being processed by one long running
task, then the application must terminate the threads that are no longer needed by issuing a SAPI
request with SSS2CTRL set. These calls go through normal validation processing but the only
processing that occurs is the PUT portion of a PUT/GET. A thread exists if the creating task exists
and SSS2JEST is non-zero. This is important because request with SSS2CTRL set can fail. When
this happens, you may need to issue a request with SSS2PUGE set since it performs the least
validation.

SYSOUT API -
Put/Get Advanced topics (cont)

What about CLONE JOEs?
Multiple JOEs point to same set of PDDBs
Clone JOEs created when

/*JOBPARM COPIES=
$N PRTnnnn

Splitting PDDBs from one JOE would affect
other (CLONE) JOE
Restriction: All data sets in a CLONE JOE
MUST be process the same
SSS2DSH is on if processing CLONE JOE

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 28

Clone JOEs exist when multiple JOEs point to the same set of PDDBs. Third
qualifier in JOE id indicate clone JOEs. JOE with ids of 1.1.1 and 1.1.2 are
clones. Clone JOEs are created when JOBPARM COPIES= is specified
(greater than 1) or a printer is repeated ($N PRTnnn command). They can
also be created by an exit that does a $#ADD passing in an existing JOE as
the prototype. The problem with clone JOEs is caused by the fact that PDDBs
are associated with JOEs using the first 2 operands of the JOE id. So with
clone JOEs, one PDDB is actually associated with multiple PDDBs. If SAPI
were to move a PDDB to a new JOE, it would not only affect the JOE being
processed, but also the clone JOE. This side effect can cause data to be lost.
As a result of this, there is a restriction when processing clone JOEs that all
data sets must be processed the same way (you cannot split data sets out of a
clone JOE). SAPI sets the SSS2DSH bit when it is processing a clone JOE.

SYSOUT API -
Program examples

There are 3 sample TSO programs
All are authorized TSO commands
SAPICNT is sample count request
SAPIBULK is a sample bulk modify
SAPIOUT is a sample PUT/GET command

Using a "?" option displays operand
information

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 29

There are 3 example programs for SAPI. Each program explores a different
type of the SAPI request. All are authorized TSO commands. SAPICNT and
SAPIBULK are examples of count and bulk modify requests. The two
examples are similar except that SAPIBULK includes modification operands
that SAPICNT does not. SAPIOUT is a very primitive OUTPUT command that
processes data sets that match the input criteria and displays the output on the
terminal.
All samples take as input a "?" which displays simple help.

SPOOL Browse

Not an SSI, rather parameter on dynamic
allocation

Authorized allocation key (Browse token)
Mapped by IAZBTOKP

Can access any data set on SPOOL
SYSIN, SYSOUT, JCL

Data set can be busy on a device
Data set can still be open

Instorage (unwritten) buffers are available
On executing system only

Allocation can be by client or data set token

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 30

SPOOL browse is not an SSI, but rather a subsystem dynamic allocation.
Processing is triggered by an authorized key that contains a browse token
(mapped by IAZBTOKP). This browse token, along with the data set name,
identifies the data set to browse. SPOOL browse can access any data set on
SPOOL including SYSIN and SYSOUT data sets and the input JCL. Data sets
can be busy on a device, or even still open by the creating address space. For
data sets that are still open, the unwritten (instorage) buffers can be read (if
the reading application is on the same system as the writing application).
Browse can also use client or data set tokens to allocate a data set.

SPOOL Browse -
IAZBTOKP

ID length (4)
ID ('BTOK')
Version length (2)
Type(0-3)
Version(3)
SPOOL token length(4)
SPOOL token
Job key length(4)
Job key
ASID length(2)
ASID
Receiver length(8)
Receiver
Log string length(0-255)
Log string length
Log string

There are 3 token types:
0 or 1 - Original browse
token

SPOOL token is IOT MTTR
2 - Reserved for SAPI
3 - SYSOUT Token

SPOOL token is client or
data set (SAPI) token

Receiver and Log string are
for RACF checks

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 31

The browse token is used to identify to JES2 what data set to allocate. There
are 2 forms available to applications (the third is reserved for use by SAPI).
The first form sets a type field to either x'00' or x'01'. This form can be used by
applications that do not have a data set or client token available. The other
form that can be used by applications is a type 3 token (type field of x'03'). In
this form, the application passes either the client or data set token of the data
set to allocate in the IAZBTOKP.
Receiver and log string parameters are used for RACF calls.

SPOOL Browse -
IAZBTOKP type 1

Type 1 calls with SPOOL token = 0
DSN= is name of data set to allocate

can contain generic characters
DSN must have jobname and jobid
Job key is optional (will be validated if
passed)

Type 1 calls with SPOOL token <> 0
Token is MTTR of IOT with PDDB for DS
DSN= name of data set (no generics)
Job key is required

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 32

Type 1 calls come in 2 flavors. If SPOOL token=0 (BTOKIOTP=0) then JES2
will locate the data set to allocate from the data set name passed. The data
set name is the standard JES2 SPOOL data set name
 userid.jobname.jobid.Ddskey.dsname
In this flavor, the jobname and jobid must be specified. But the fields may be
specified as generics. The minimum data set name is
 .JOBNAME.J0123456.
If a job key is passed (BTOKJKEY), then it is used to ensure that the correct
data set is allocated. However, the job key can be passed as zero.
The other flavor of type 1 calls specify an IOT spool address in the SPOOL
token (BTOKIOTP = IOTMTTR). In this flavor, the full data set name must be
specified with no generic, and the job key must be set. This is lower overhead
than the first flavor but requires more knowledge of JES2 internals.

SPOOL Browse -
IAZBTOKP type 3

Type 3 calls pass a SYSOUT token
BTOKSPLT can be client or data set token

Client token from allocation
Data set (SAPI) token from SSS2DSTR

JOE token cannot be used
Job key (BTOKJKEY) is ignored
DSN= is also ignored

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 33

Type 3 calls pass in a SYSOUT token (client or data set) in BTOKSPLT.
These are the tokens passed from a client token allocation or from a SAPI
request (SSS2DSTR). JOE tokens from extended status are not supported.
For type 3 calls, the job key and DSN= passed on the allocation are ignored.

SPOOL Browse -
IAZBTOKP other fields

ASID (BTOKASID)
If zero, no unwritten buffers obtained
If non-zero, attempt to get unwritten buffers

 ASID of running address space that is
writing SYSOUT
x'FFFF' have JES2 figure out ASID

Receiver (BTOKRCID)
Passed to RACF as RECEIVER= on AUTH
call

Log string (BTOKLSDL & BTOKLSDA)
Passed to RACF as LOGSTR=

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 34

JES2 will attempt to obtain unwritten buffers if BTOKASID is non-zero. It can
either specify the ASID on local system where data set is being written, or a
x'FFFF'. A value of x'FFFF' tells JES2 to figure out what ASID the job is
running on.
Receiver (BTOKRCID) is the userid the output is routed to (passed as
RECEIVER= on RACF AUTH call). If the value passed is the same as the
owner of the SYSOUT (in the token associated with the job) then RACF will
permit access without needing a profile in the JESSPOOL class.
The log string (BTOKLSDL and BTOKLSDA) is information passed on the
RACF AUTH call. This value is placed in the audit record for the request.

SPOOL Browse -
Special DSN=

Some nonstandard DSN= are supported
Type 1 calls with SPOOL token = 0

userid.jobname.jobid.JCL
userid.jobname.jobid.JESJCLIN
userid.jobname.jobid.JESJCL
userid.jobname.jobid.JESMSGLG
userid.jobname.jobid.JESYSMSG

JESMSGLG and JESYSMSG attempt to link
spun JESLOG data sets

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 35

To allocate system data sets without having to know the data set key, you can
use the special data set names specified. These data set names are only
valid if the corresponding data sets exist. JCL and JESJCLIN refer to the input
JCL for the job. JESJCL is the JCL listing (JCL images) that were output from
the converter. JESMSGLG and JESYSMSG are the JES2 message log and
system messages data sets. If the job specifies JESLOG=SPIN, the
JESMSGLG and JESYSMSG data set names attempts to link together the
SPIN data sets into one logical data set for processing.

SPOOL Browse -
Allocation TUs

Required allocation TUs
DALSSREQ - 'Subsystem request' to allocate
a data set
DALBRTKN - Browse token
DALDSNAM - Name of the data set
DALSTATS - DISP = SHR
DALRTDDN - Return DDNAME - (optional)

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 36

When invoking allocation, the listed keys are needed. DALSSREQ is the
name of the subsystem that the allocation is to be directed to.

SPOOL Browse -
Program example

BROWSE is sample application
Authorized program (not TSO application)
WTOR to request DSN and whether instorage
buffers are wanted
Allocates data set
Uses IEBGENR to copy selected data set to
output DD

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 37

The sample program uses WTORs to determine what data set to allocate and
whether instorage buffers are wanted. It then allocates the data set (a type 1
token is used with SPOOL token=0). If the allocation succeeds, then
IEBGENR is used to copy the SPOOL data set to an output DD.

Who-am-I SSI

Gets subsystem information
SSI function 54 (IEFSSVI mapping macro)
Supports unauthorized callers
Directed SSI (does not require job structure)

Returned information has fixed and variable
section
WHOAMI is program example

Program invokes SSI and issue WTOs

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 38

The Who Am I SSI (Subsystem Version Information) gets information about a
subsystem. It supports unauthorized callers and directed SSI requests.
Callers are not required to have a job structure associated with the JES2 that
is processing the request. The output has a static section that is common to
all subsystems. That is followed by a variable section with subsystem
dependent data. The variable section has a KEYWORD='VALUE' format that
is similar to REXX assignment statements.
The example program issues the SSI request and issues WTOs with the
response.

Who-am-I SSI -
Data returned

SSVIVERS=z/OS 1.5
SSVIFMID=HJE7708
SSVICNAM=JES2
NO USER DATA PRESENT,
JES_NODE='POK ',JES_MEMBERNAME='IBM1',
DYNAMIC_OUTPUT='YES',INITIATOR_RESTART='YES',
MULTIPLE_STCTSO='YES',FOUR_DIGIT_DEVNUMS='YES',
AUTO_RESTART_MANAGER='YES',
SAPI='YES',SAPI_CHARS='NO',
CLIENT_PRINT='YES',TSO_SYSOUT_CLASS='G,H',
WTR_SYSOUT_CLASS='A,B,C,D,E,F,I,J,K,L,M,N,O,
P,Q,R,S,T,U,V,W,X,Y,Z,0,1,2,3,4,5,6,7,8,9',
COMMAND_PREFIX='$'

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 39

This is the output from the sample WHOAMI SSI. The first 3 fields listed are in
the base section of the SSOB (IEFSSVI). The later fields are the variable data
that is returned.

Notify SSI

Send notify message to user
SSI function 75 (IAZSSNU mapping macro)
Directed SSI (does not require job structure)

Destination can be user on another node or
member
MSG is program example

Authorized TSO command to send a message
to a node.userid
MSG ? gives quick help

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 40

The notify SSI can be used by an application to send a notify message to a
user in the MAS or on another NJE node.
The sample program is an authorized TSO command that issued a message
to a node.userid.

SPOOL Read SSI

SSI reads blocks from SPOOL
Subfunction of SSI function 71 (IAZSSJI
mapping macro)
Functions SSJISIRS and SSJISIOM
(IAZSPLIO mapping macro)
Directed SSI (does not require job structure)

Any MTTR can be read from SPOOL
No security checks made

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 41

SPOOL read is a subfunction of the job information SSI 71. The SSI 71 SSOB
extension is mapped by IAZSSJI. SSI 71 acts as a router for various JES SSI.
The extension has a function code to identify what subfunction is needed and
a pointer to a function dependent data area. The functions for SPOOL read
are SSJISIOM (read data area) and SSJISIRS (free work areas).
SSI 71 requires callers to be authorized and supports directed SSI requests.
Callers are not required to have a job structure associated with the JES2 that
is processing the request.
This SSI will allow any record on SPOOL to be read including signature
records associated with tracks. The SSI deals with relative vs. absolute track
addressing.
There are no security checks made when using this SSI. Since the application
using the SSI must be authorized, it is up to the application to ensure that the
caller should have access to the data being read.

SPOOL Read SSI -
Data areas

Register 1 '80'+SSOB@

'SSOB' (SSOBID)
Length (SSOBLEN)
Function ID (SSOBFUNC)
SSIB@ (SSOBSSIB) or zero
SSOB Extension@ (SSOBINDV)
Return code (SSOBRETN)

SSOB (IEFSSOBH)

'SSIB' (SSIBID)
Length (SSIBLEN)
Subsys name (SSIBSSNM)

SSIB (IEFJSSIB)

'SSJI' (SSJIID)
Length (SSJILEN)
Version (SSJISVR)
Request (SSJIFREQ)
Data Area (SSJIUSER)

IAZSSJI

'SPIO' (SPIOSSID)
Length (SPIOLEN)
MTTR (SPIOSPAD)
Validation fields
Output pointer (SPIOOUTA)

IAZSPLIO

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 42

This is the data areas associated with the SPOOL read SSI. It is the normal
data area associated with an SSI request plus the extra function dependent
data area (IAZSPLIO).

SPOOL Read SSI -
Typical Flow

No

Exit

Yes

Process record

Set MTTR and
validation fields

Set SSJISIOM

IEFSSREQ

Build SSOB

Did it
work?

Set SSJISIRS

IEFSSREQ

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 43

Like other JES2 SSI calls, the SPOOL I/O SSI is a pair of calls. The first call
reads in the data and returns a pointer to the data area. The second call
returns the memory that was obtained. On the first call, the application must
ensure that SPIOSTRP is set to zero. After that, the application must keep
track of the IAZSPLIO, not altering SPIOSTRP, until the memory management
call is made. If SPIOSTRP is non-zero, a memory cleanup call is needed.
The memory associated with the SPOOL I/O request is owned by the task that
made the first request and will be freed when the task terminates or when a
memory management call is made. Multiple SSI requests can be made
without a memory management call, however, the data from each call is read
into the same output buffer (i.e. SPIOOUTA always will point to the same
storage). If you want to have 2 data areas in storage at the same time, you
must either copy the data to local storage or use one IAZSPLIO data area per
request.

SPOOL Read -
Program example

SPOOLRD is an authorized program
Uses WTORs to determine what to read

MTTR, CB type, JOBNAME, JOBID, Job key,
Data set key
Asks whether instorage buffers are needed

Output is WTOs about what was read
Print is dump format of record read

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 44

The SPOOLRD example is an authorized program that reads a single block
from SPOOL. The input is obtained using WTORs. It includes not only the
MTTR to read but also any validation fields that are to be passed. The ASID
of a running address space can be passed to obtain unwritten (instorage) HDB
data areas (only valid when a control block type of HDB is passed).
The output is a brief display via WTOs of what was read and a print data set
that contains a hex dump of the record read.

Summary

Gone through brief overview of newer SSIs
Some less new than others

Examples are a good starting point for how
to code to interfaces
Real value comes in combining multiple
SSIs
More features are being added all the time
Using the Subsystem Interface great starting
point

Looking at DSECTs can fill in holes

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 45

The completes the quick tour of the newer SSI requests (and a couple older
requests that may have been overlooked). The examples provided are intended as
a starting point to build applications that interact with JES2. Though the examples
tend to stress one interface at a time, the real value comes in combining interfaces
to develop more complete applications.
These are not dead interfaces, they are constantly being updated with new
features. New features are discussed at SHARE and in the Using the Subsystem
Interface book. That book is a great resource for learning about the interfaces.
However, looking at the DSECT that are involved in the interface often fills in some
of the missing holes. SSI 71 is a great example. It is a router for many JES2
functions, not all are fully documented. Here is a complete list of the functions
available and the related data areas:
SSJIFOBT (4) IAZDSERV CKPT version obtain
SSJIFREL (8) IAZDSERV CKPT version return
SSJIFJCO (12) IAZJBCLD JOBCLASS info obtain
SSJIFJCR (16) IAZJBCLD JOBCLASS info return
SSJISIOM (20) IAZSPLIO Read SPOOL block
SSJISIRS (24) IAZSPLIO Free SPOOL block storage
SSJICVDV (28) IAZCVDEV Convert device id
There are lots of things you can do with the SSI, all it takes is a little exploring

Questions?

Exploiting New JES2 Interfaces SHARE Session 2664

© IBM Corporation 2004 46

