
Session 2828
MVS SCP Project

SHARE 92
22 February 1999

James Antognini

antognini @ us.ibm.com

IBM T. J. Watson Research Center
P. O. Box 704

Yorktown Heights NY 10598

Session 2828 SHARE 92

2

22 February 1999

Legalese

IBM, MVS, MVS/ESA, MVS/XA, OS/390 and RACF are
registered trademarks or trademarks of the IBM Corpora-
tion.

Microsoft, Windows and Windows NT are registered trade-
marks of the Microsoft Corporation.

Intel and Pentium are registered trademarks of the Intel Cor-
poration.

UNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Com-
pany Limited.

Session 2828 SHARE 92

3

22 February 1999

Overview

• Introduction.

• The ascent of Windows NT.

• Comparing and contrasting: Similarities, differences.

- Address spaces.

- Storage.

- Scheduling.

- Privileged mode and device drivers.

- IRQL.

- Multistage I/O.

 - Error handling.

 - Filter routines.

- Threads.

- Serialization and synchronization.

- Memory mapping.

- Services.

- Job.

• Conclusions.

Session 2828 SHARE 92

4

22 February 1999

Introduction

• NT is more than a desktop, is challenging Unix systems.

• NT doesn’t (yet) directly confront OS/390, but that com-
munity uses it (front-ends and clients).

• Windows 2000 (NT 5.0) is estimated to be 30-40 million
lines of code, getting near OS/390.

• Basis of comparison is NT 4.0 with SP4 and OS/390 2.6.

• Intel x86 will be the specific NT basis.

Session 2828 SHARE 92

5

22 February 1999

The Ascent of Windows NT

• CP/M –> DOS –> OS/2 –> NT (??)

• At DEC David Cutler led the RPX/11M project, then the
VMS project.

• When DEC cancelled PRISM, the Cutler crew (already
in Seattle) joined Microsoft in 1988 and began NT.

• It’s disputed how much of OS/2 went into NT. But NT
still has an OS/2 subsystem.

• The seminal GUI work was at Xerox PARC, and Apple
picked that up. It was incorporated into Windows.

• Virtual storage and preemptive multitasking were
widely used beginning in the 1960s. Objects became
common in the 1980s. The MACH kernel was a
pioneering layered system.

• So the streams of influence on NT are almost as venera-
ble as those on MVT-MVS-MVS/XA-MVS/ESA-
OS/390.

Session 2828 SHARE 92

6

22 February 1999

Comparing: Address Spaces

• In NT:

- An address space of separately addressable virtual
storage is 4G. The private area (“user space”) is usu-
ally 0-7FFFFFFF.

- Only “kernel-mode” programs may touch 80000000
and higher (“system space”), which is commonly ad-
dressable.

- Process comprises separate virtual storage and threads.

• In OS/390:

- An address space is 2G. Common areas (CSA, SQA,
LPA and nucleus) straddle the 16M line.

- Address space comprises separate virtual storage,
TCBs and SRBs.`

• Commonalities:

- Page is 4K and may be backed.

- Virtual storage isolates programs from each other;
provides more storage than real memory; is a point of
ownership of resources.

- An address space may be swapped out to reclaim its
storage.

Session 2828 SHARE 92

7

22 February 1999

Comparing: Storage

In NT:

- Storage is composed of virtual pages.

- Page can be backed by a real frame and by hard disk
paging space.

- Paged storage may not be currently backed. Non-paged
storage always is.

- A page may be readable and writeable. For user-mode
programs, it may be readable only, or neither readable
nor writeable. Finally, a page may be copy-on-update
(for forking).

- Paged storage is subject to stealing of the frames. The
storage may be locked down (“fixed”). Stolen frames
are kept on a queue for possible reclaim.

- Page tables are allowed to be paged out.

Sound familiar?

Not in NT is storage protection by key.

Session 2828 SHARE 92

8

22 February 1999

Comparing: Scheduling

In NT:

- Work has priority, which subjects it to losing the CPU
in preemption by higher-priority work that becomes
ready.

- A thread is given at most a quantum of CPU time. Af-
ter that, it can lose the CPU to other work of equal pri-
ority. (OS/390 used time-slicing in the past.)

- An interrupt (e.g., I/O, timer) will temporarily displace
the thread from the CPU and may make higher-priority
work ready to go.

Session 2828 SHARE 92

9

22 February 1999

Comparing: Privileged Mode

In NT:

- User mode (“ring 3”) is like problem state in OS/390.

- Kernel mode (“ring 0”) is like supervisor state in OS/390.

- These causes execution in kernel mode:

NT does not support anything comparable to OS/390’s PC
routines, despite call gates in x86 architecture.

The INT instruction:

- Behaves much like SVC: Status is saved, and control
goes to the OS-defined handler and then to a routine
designated by the instruction operand.

- INT 2E (decimal 46) gives control to the NT exception
handler and then, due to parameters, to the indicated NT
routine (e.g., NtCreateFile).

1. The boot process;

2. Invocation by interrupt (e.g., I/O), by exception (e.g.,
invalid opcode) or by the INT instruction;

or

3. Call by another kernel-mode routine (e.g., an ISR
called by the I/O interrupt handler).

Session 2828 SHARE 92

10

22 February 1999

Comparing: Installing a Device Driver

In NT the device driver is the only supported mechanism
for adding kernel-mode code.

The steps to install:

1. The entry point DriverEntry is loaded at boot due to
registry specification or programmatically. Such regis-
try updating or using the NT services requires Admin-
istrator authority.

2. DriverEntry (in kernel mode, in system space) creates
a device object, possibly with an extension as an an-
chor for objects (“control blocks” manipulated by de-
fined services). The device object might be named
\Device\Ctrl2cap. Driver, device object and extension
are in non-paged storage.

3. DriverEntry creates a symbolic link, \DosDevices\
Ctrl2cap.

4. DriverEntry defines entry points for expected opera-
tions, minimally Create, DeviceControl and Close in
this case.

The driver is ready to offer its services.

Session 2828 SHARE 92

11

22 February 1999

Comparing: Using the Device Driver

A user-mode (or kernel-mode) program can use the driver
through these steps:

1. The program opens the device object by calling Cre-
ateFile with file name \\.\Ctrl2cap. The call goes to a
stub, which issues INT 2E.

2. Running in kernel mode in system space, the NT Open
effector understands the file name to refer to \DosDevic-
es\Ctrl2cap and thus to driver Ctrl2cap. It branches to
Ctrl2cap’s Create entry point with IRQL PASSIVE_-
LEVEL.

3. The driver satisfies itself the program is a legitimate
caller and does any necessary setup.

4. The program gets back a handle from CreateFile.

5. When a service is needed, the program specifies the
handle and driver-defined parameters in calling De-
viceIoControl.

6. The NT DeviceIoControl effector, running privileged,
copies the parameters to non-paged storage in system
space and, with IRQL PASSIVE_LEVEL, branches to
Ctrl2cap’s DeviceControl entry point.

7. The driver checks for a legitimate request and does
whatever. (Touching user space might require locking
down storage or using an APC intermediary.)

8. When done with Ctrl2cap’s services, the program closes
the file handle, which allows Ctrl2cap’s Close entry
point to clean up.

Session 2828 SHARE 92

12

22 February 1999

Comparing: Interrupt Request Level (IRQL)

IRQL has no direct OS/390 analog. IRQL is a scheduling
mechanism composed of a hierarchy of values that mask,
or suppress, “interrupts” (hardware interrupts, software
requests) with lower IRQL.

- The NT scheduler gets control from a routine giving up
the CPU and inherits the IRQL. The scheduler’s mission
is to drain its CPU of queued-up requests at that IRQL
and lower.

- The scheduler looks for ready work at that IRQL and
gives it control. When that IRQL queue is empty, the
scheduler drops the IRQL and looks at the next level’s
queue. Eventually no work remains for the CPU.

Note that IRQL is for scheduling, not serialization: It af-
fects only the current CPU.

A kernel-mode routine can raise or lower its IRQL. The
NT routine effecting the change may accompany the new
level with masking or unmasking of hardware interrupts.
The kernel-mode routine must be careful to call only ser-
vices that work at its current IRQL.

Higher IRQL brings greater importance and more re-
striction.

Session 2828 SHARE 92

13

22 February 1999

Comparing: IRQL continued

Name Remarks

3$66,9(B/(9(/ “Normal” work.

$3&B/(9(/ Highest level allowing thread scheduling.
Used for APC routines.

',63$7&+B/(9(/

Suspends thread scheduling. Page-faulting
disallowed. Used for device-driver Startio
routines, for DPC routines and for most spin
locks.

',54/��
… }
',54/�Q

Device level, e.g., an ISR (device-driver
back-end). Used for ISR spin locks. I/O and
timer interrupts masked. NT in effect asso-
ciates a particular DIRQL with a device.

352),/(B/(9(/ Timer used for profiling.

&/2&.�B/(9(/ Interval timer.

&/2&.�B/(9(/ Interval timer.

,3,B/(9(/ CPU signalling.

32:(5B/(9(/ Power failure.

+,*+(67B/(9(/ Machine-check and bus errors.

Session 2828 SHARE 92

14

22 February 1999

Comparing: Multistage I/O

In NT, this is I/O:

1. A program opens a file, and ultimately a kernel-mode
device driver verifies the request’s legitimacy and cor-
rectness and builds necessary objects. The program
gets back a file handle.

2. The program asks for I/O, specifying the handle and
parameters. The driver routine parses parameters and
calls the device (if not busy) via lower-layer routines,
where IN, OUT or something like is issued.

3. The device finishes and causes an interrupt.

4. The NT trap handler gets control in a random address
space and calls the interrupt dispatcher, which calls the
device driver’s Interrupt Service Routine (ISR).

5. The ISR, getting control at Device IRQL, dismisses
the interrupt, perhaps gathers error information, may
start another I/O and queues up its Deferred Procedure
Call (DPC) routine.

6. The DPC runs in a random address space at DIS-
PATCH_LEVEL IRQL. It does what it can (perhaps
updating structures and driver buffers) and may queue
up an Asynchronous Procedure Call (APC) routine.

7. An APC runs in a specific address space at APC
IRQL. The APC can touch user buffers and may make
final status available to the program.

All very much like OS/390.

Session 2828 SHARE 92

15

22 February 1999

Comparing: Error Handling

NT’s error handling makes possible determinate program
response to errors. For example,

_try
 {
 // begin code coverage

 // end code coverage
 }
 _except(// filter routine (“recovery” exit)
)
 {
 // begin exception handler (“retry”)

 // end exception handler
 }

Notable features:

• Coverage guards specific code with specific error code.

• Coverage can be nested.

• Filter routine gets description of error, can choose to
retry or to let percolate to a higher layer (if any).

But there are differences from OS/390:

• Error coverage has thread granularity.

• Some errors in “higher” kernel-mode states aren’t
caught.

• Unhandled errors typically cause process termination.

• NT’s error handling, distinguished from C’s or
C++’s, gives control a second time to a percolating
filter, after a higher filter elects to handle the error.

Session 2828 SHARE 92

16

22 February 1999

Comparing: Filter Routines

There is no true analog in OS/390.

• A driver can attach a device object of its making to that
of another, target driver, such as the NTFS driver.

• Now the inserting, filter driver sees, and can alter, all
I/O requests made to the target.

All very much like OS/390.

Uses include encryption, compression and virus filtering.

Session 2828 SHARE 92

17

22 February 1999

Comparing: Threads

• Threads are units of work, and most programs run un-
der them.

• They have priority, are an error boundary and own re-
sources (e.g., timers). When a thread terminates, its re-
sources are cleaned up.

• Threads may wait on various events.

• To get a specific thread’s context (addressability), a
new thread in the process is required, or an APC may
be queued to the existing thread, much like an IRB.

• Differences from OS/390: Only threads have priority;
the process does not. And there are no lightweight
threads like SRBs.

Session 2828 SHARE 92

18

22 February 1999

Comparing: Serialization and Synchronization

• Kernel-mode routines can define and use spin locks.

• Objects may be acquired with shared or exclusive control,
like ENQ.

• Threads may wait on events such as I/O, timers and ob-
jects to be signalled.

Session 2828 SHARE 92

19

22 February 1999

Comparing: Memory Mapping

• Processes can share real frames by mapping pages to
them. If a file is what is mapped, it is used for paging
space.

• The mapped memory is subject to access control.

• OS/390 has IARVSERV to share memory and DIV for
files. Only linear VSAM files are supported.

Session 2828 SHARE 92

20

22 February 1999

Comparing: Services

Rather like OS/390’s subsystems and STCs, services pro-
vide important functions. Some characteristics:

• They execute with designated authority, typically that
of system account.

• Usually they are started automatically late in boot,
before operator logon.

• A service’s start-up can depend on that of other
services. NT’s successful start-up can be affected by
that of services.

• A service runs in a process, with its own thread.

• The Service Control Manager is used to start services
and to pass other control directives and is network-
aware. Thus SCM is somewhat like Master/JESx
subsystems, CONSOLE, OMVS and XCF.

Examples of services: Anti-virus shields, TCP/IP, spooler,
the logon service. Some device drivers are started via
SCM, too.

Session 2828 SHARE 92

21

22 February 1999

Comparing: Job

Appearing in Windows 2000, the job groups processes for
purposes of management (e.g., priority, working set mini-
mum and maximum) and security.

In OS/390, there is the enclave for similar purposes.

Both mechanisms are relatively recent introductions.

Session 2828 SHARE 92

22

22 February 1999

Conclusions

• The list of similarities could have been longer, and a
few more differences could have been adduced.

• Coming from different backgrounds and having differ-
ent aims, OS/390 and Windows NT are involved,
highly evolved systems that look like one another.

• I/O handling is very similar. Virtual addressability and
the interrupt-driven, preemptive scheduler/dispatcher
are rather similar.

• But scheduling, with IRQL in NT and more execution
states (e.g., cross-memory) in OS/390, is different, too.

• The fundamental purpose of each is expediting units of
work and handling interruptions generated by that
work, so that mechanisms like IRQL seem less impor-
tant.

Brothers? No. But probably cousins, one or two degrees
removed.

Session 2828 SHARE 92

23

22 February 1999

References

These visuals and the paper are available via anonymous
FTP:

ftp://ftp.s390.ibm.com/u/ftp/os390/xmemsrvc/OS390andWinNT.zip

• Ctrl2cap is a sample device driver. RegMon includes Inst-
drv, a sample routine to install a device driver. Both at
http://www.sysinternals.com.

• Inside Windows NT (second edition), David A. Solomon.
Microsoft Press, 1998. A wide-ranging survey of NT, in-
cluding many internals.

• Intel Architecture Software Developer’s Manual, volume
3: System Programming Guide, order number 243192
(this series of manuals pertains to Pentium II). Intel Cor-
poration, 1997. The architecture and the instructions.

• Microsoft Windows NT 4 Device Driver Kit (DDK); this
is part of the Microsoft Developer Network subscription.
Specification of kernel services; numerous examples.

• Showstopper!, G. Pascal Zachary. Free Press, 1994.
Blow-by-blow account of the development of Windows
NT 3.0.

• Windows NT Device Driver Development, Peter G. Vis-
carola and W. Anthony Mason. Macmillan, 1998. Excep-
tionally thorough introduction to Windows NT and to
writing device drivers.

