7/08S

IBM Ported lools for z/0S: OpenSSH
User's Guide

Version 1 Release 3

<|ll

IBM Confidential SA23-2246-03

IBM Confidential

Note
FBefore using this information and the product it supports, read the information in|‘Notices” on page 529

This edition applies to version 1, release 3, modification 0 of IBM Ported Tools for z/OS (product number
5655-M23) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2010, 2015.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

IBM Confidential

Contents
Figures . Vvii
Tablesix

About thisdocument. Xxi

Who should use this document?xi

z/0S information . . ' |
IBM Ported Tools for z / OS home page R '
Discussion list B

How to send your comments to IBM Xiii

If you have a technical problem . xiii

Summary of changes . . XV

Changes made in IBM Ported Tools for z/ OS

OpenSSH Version 1 Release 3 . XV

Changes made in IBM Ported Tools for z / OS

OpenSSH Version 1 Release 2, as updated Apr11

2014 .oxvi

Changes made in IBM Ported Tools for z/ OS
OpenSSH Version 1 Release 2, as updated
February 2012 . .
Changes made in IBM Ported Tools for z/ OS
OpenSSH Version 1 Release 2 . .

. Xvii
. Xvii

Chapter 1. Introduction to IBM Ported
Tools for z/OS: OpenSSH e e e e e a1
What is OpenSSH?

Chapter 2. What's new or changed in
Version 1 Release 3 of IBM Ported Tools
for z/0S: OpenSSH .

Summary of changes to commands .

New and changed configuration files .

Changed environment variables .

Summary of changes to SYS1.MACLIB

Summary of changes to non-configuration files in
/samples5

gk W w W

Chapter 3. How does IBM Ported Tools
for z/OS: OpenSSH differ from the open
source version?7

What IBM Ported Tools for z/ OS OpenSSH supports 7

What IBM Ported Tools for z/OS: OpenSSH does not

support8

Chapter 4. Migrating to Version 1

Release 3 of IBM Ported Tools for z/OS:

OpenSSH. .11

Considerations when mlgratmg from IBM Ported

Tools for z/OS: OpenSSH Version 1 Release 2 . . . 11
Coexistence considerations11

© Copyright IBM Corp. 2010, 2015

Compatibility considerations.
Migration actions for IBM Ported Tools for z / OS
OpenSSH Version 1 Release 3
Setting up the XPLINK env1ronment for use by
IBM Ported Tools for z/OS: OpenSSH
Changes to the random number support that
might require a migration action
Changes to the sftp command that mlght requlre
a migration action .
Changes to the ssh command that mlght requ1re
a migration action . .
Changes to the ssh_config flle that mlght requlre
a migration action .
Changes to the sshd Command that mlght requlre
a migration action . . 5
Changes to the sshd_config f11e that mlght
require a migration action
Changes to the ssh-keygen command that mlght
require a migration action
Changes to the ssh-keyscan command that mlght
require a migration action
Changes to the ssh-rand-helper command that
might require a migration action . .
Changes to the users running ssh, sftp or scp
client commands that might require a migration
action
Changes to / samples / ssh smf h and FOTSMF77
in SYS1.MACLIB that mlght require a mlgratlon
action . o

Chapter 5. For system administrators

Differences between sftp and FIP . .

What you need to verify before using OpenSSH
Steps for verifying the prerequlsltes for using
OpenSSH .

Setting up the sshd daemon
Steps for creating or editing conflguratlon flles
Setting up server authentication
Steps for setting up server authentlcatlon when
keys are stored in UNIX files
Steps for setting up server authentlcatlon When
keys are stored in key rings . .
Steps for setting up server authentlcatlon w1th
GSS-API (Kerberos). . .
Step for creating the sshd privilege separatlon
user .
Setting up the message catalog for IBM Ported
Tools for z/OS: OpenSSH

Starting the sshd daemon.
Starting sshd as a stand-alone daemon
Ways to start sshd as a stand-alone daemon
Restarting the sshd daemon without bringing it
down
Starting sshd as a daemon runnlng under metd

.11

.11

.12

.12

.13

.13

. 14

. 16

.17

. 18

.19

.19

.19

. 20

21

.21
.21

.21
.23

24

. 26
.27
. 29
. 37
. 37
. 38
. 38
. 38
. 39

.41

41

iii

Restarting the sshd daemon under inetd without

bringing it down42
Stopping the sshd daemon42
Running the sshd daemon in a mult1level -secure
environment L. 44

Verifying security labels for d1rector1es B

Configuring sshd for multilevel security. . . . 44

Considerations for running the OpenSSH
daemon when TERMINAL classes are defined. . 45

Limiting file system name space for sftp users. . . 45
Configuring the system for X11 forwarding. . . . 47
Steps for configuring the system for X11
forwarding 47
When users cannot log in usmg ssh scp or sftp . .48
Using hardware support to generate random
numbers . . . -
Steps for author1zmg users to the random
number generate service (CSFRNG)49
Setting up OpenSSH to collect SMF records . . . 50
Steps for setting up the system to collect
OpenSSH SMF records50
Steps for setting up OpenSSH to collect SMF
records51
Setting up OpenSSH to use ICSF cryptographrc
operations.52
Steps for setting up OpenSSH to use ICSF
cryptographic operatrons B 2
Usage notes58
Setting up OpenSSH to run in FIPS mode58
Steps for setting up OpenSSH to run in FIPS
mode58
Managing OpenSSH user heapo60

Chapter 6. Security topics when using
key rings for key management 61

Choosing between UNIX files and key rings . . . 61
Managing key rings and restricting access to
them6l
Validating Cert1f1cates when usmg key rings . . 62

Chapter 7. Globalization on z/0S

systems 63
Setting up for globalrzatron on z / OS systems . . .63
OpenSSH and globalization64
Configuring the OpenSSH daemon65
Configuring the OpenSSH client 65
Configuring ssh when LC_ALL is set through
shell profiles 66
Configuring ssh when LC ALL is set through the
ENVAR run-time option in CEEPRMxx67
Configuring sftp.68
Configuring scp 68
Configuring scp when LC ALL is set through
shell profiles 70
Configuring scp when LC ALL is set through the
ENVAR run-time option in CEEPRMxx70
Customizing your UNIX environment to run in
another locale71

iV IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Chapter 8. Getting ready to use

OpenSSH73

In this chapter73

Setting up the OpenSSH cl1ent Confrguratron frles .73
Steps for setting up the OpenSSH client

configuration files73
Setting up user authentication 74

Steps for setting up user authentrcahon when

using UNIX files to store keys75

Steps for setting up user authentication when

using key rings to store keys76

Steps for setting up user authentication w1th

GSS-API (Kerberos). . . . 82

Steps for configuring your setup for X11 forwardmg 83

Chapter 9. OpenSSH command

descriptions85
scp — Secure copy (remote flle copy program) . .8
Format.85
Description8
Options. . . .
Environment Varrables T < 4
Exitvalues87
Related information87
Authors . . . B 74
sftp — Secure file transfer program - V4
Format.87
Description88
Options.88
Limitations9
Subcommands91
Environment variables.93
Exit values%
Related information9%
Author P L
sftp-server — SFTP server subsystem I L
Format.9%
Description%
Options.9
Environment Var1ables9%
Related information9
Author9
ssh — OpenSSH cl1ent (remote log1n program) . .9
Format.96
Description9
Options. . . FE N V4
Host key checkmg e (0]
Authentication104
Login session and remote executron106
Escape characters106
X11 forwarding.107
TCP forwarding . . S (14
Running OpenSSH in other locales108
Limitations108
Examples.108
Fileso.o108
Environment Varrables110
Exitvalues112
Related information112
Authors12

IBM Confidential

ssh-add — Add RSA or DSA identities to the
authentication agent .

Format

Description .

Options

Files

Environment varrables

Exit values

Related information

Authors .
ssh-agent — Authentication agent

Format

Description .

Options

Files

Environment Varlables

Exit values

Related information

Authors . .
ssh-askpass — X11 based passphrase dlalog for
OpenSSH. . .

Description .

Files

Environment varrables

Exit values

Related information

Authors .
ssh-keygen — Authentrcatron key generatron
management, and conversion .

Format

Description .

Options .

Moduli generatron

Certificates .

Key revocation lists

Files

Environment varrables

Exit values .

Related information .

Authors . .
ssh-keyscan — Gather ssh pubhc keys .

Format .o .. .

Description .

Options

File formats .

Files

Environment Varlables

Exit values

Usage note . .

Related information .

Authors . .
ssh-keysign — ssh helper program for host based
authentication . . .o

Format

Description .

Files

Environment varrables

Exit values .

Related information .

Authors . .
sshd — OpenSSH daemon .

. 112
. 112
. 112
. 113
. 113
. 114
. 114
. 115
. 115
. 115
. 115
. 115
. 116
. 116
. 117
. 117
. 117
. 117

. 117
. 117
. 118
. 118
. 118
. 118
. 118

. 118
. 118
. 119
. 120
. 125
. 126
. 126
. 127
. 128
. 129
. 129
. 129
. 129
. 129
. 129
. 129
. 130
. 130
. 131
. 131
. 131
. 131
. 131

. 131
. 131
. 131
. 131
. 132
. 132
. 132
. 132
. 132

Format . 132
Description . . 132
Options . 133
Authentication . . 135
Login process . . 136
Format of the authorlzed keys frle . 136
ssh_known_hosts file format . . 139
Running OpenSSH in other locales . . 141
Limitations 141
Files . 141
Environment Varrables . 144
Related information . . 144
Authors . . 144
Chapter 10. OpenSSH files. . 147
OpenSSH client configuration files . 147

ssh_config — OpenSSH client conflguratlon f11es

zos_ssh_config — z/OS-specific system-wide

147

OpenSSH client configuration file . le4
zos_user_ssh_config — z/OS-specific per—user
OpenSSH client configuration file . 167
OpenSSH daemon configuration files .17
sshd_config — OpenSSH daemon Confrguratron
file . .o R V4
zos_sshd conflg —z / OS-specrflc OpenSSH
daemon configuration file . . . 190
Other OpenSSH files . . 195
moduli — System moduli frle . 195
Chapter 11. OpenSSH files Quick
Reference . . 197
Configuration files. . 197
Program-generated files . . . 197
Administrator-generated user files . 197
User-generated files . 198
Chapter 12. SMF Type 119 records for
OpenSSH . . 201
Common SMF Type 119 record format . 201
SMF 119 record subtypes for OpenSSH . . 202
Standard data format concepts . 202
Common TCP/IP identification section for
OpenSSH. . . 203
Common security sectron for OpenSSH . 203
Client connection started (subtype 94) . . 206
Server connection started (subtype 95) . . 207
Server transfer completion record (subtype 96) . 207
Client transfer completion record (subtype 97) . 210
Login failure record (subtype 98) . . 213
Chapter 13. Troubleshootlng . . 215
Performance considerations. . 215
XPLINK is not set up. . . . 215
DNS is not configured properly . . 215
Frequently asked questions. . . 215
Debugging OpenSSH problems . 220
Setting up syslogd to debug sshd. . 220

Contents

A\

IBM Confidential

Chapter 14. OpenSSH messages . . . 223 Consult assistive technologies525
Keyboard navigation of the user interface 525
Appendix A. Accessing MVS data sets Dotted decimal syntax diagrams525

withinsftp.517 Notices 529

. Notices52
Append_lx B. OpenSSH - port Policy for unsupported hardwareb530
forwarding examples 519 Minimum supported hardware 531
OpenSSH - without TCP forwarding 519 Programming Interface Information 531
OpenSSH - with TCP port forwarding 519 Trademarks531
Appendix C. RFCs and Internet drafts 523 Glossaryb533

Appendix D. ACCESSIbIIIty . .« . . . 525 Index.Bb37
Accessibility features52

Vi IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Figures

1.

How the known_hosts file is created when

keys are stored in UNIX files.29
How the server's host keys are set up when

they are stored in real key rings.36
CSFIQUA debug statements57
Using scp when LC_ALL is set through shell
profiles 69
Using scp when LC ALL is set through ENV

in CEEPRMxx.69

Accessmg a remote system usmg ssh w1th
public key authentication when keys are stored
inUNIXfiles.76

© Copyright IBM Corp. 2010, 2015

S

10.

11.

Accessing a remote system using ssh with

public key authentication when keys are stored

in real key rings 82
OpenSSH - without TCP port forwardmg 519
The ssh client is listening on port 2001 for a

connection . . . 520
The application is cormectmg to port 2001 on
the local host (HostA)520

The ssh client accepts the connection on port
2001, forwards the application's data to sshd

on Host B, sshd then forwards the data to the
application's server, listening on Port 27 . . 521

vii

IBM Confidential

viii IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Tables

1. Summary of changes to commands in VIR3 of
IBM Ported Tools for z/OS: OpenSSH .
2. Summary of changes to configuration files in

V1R3 of IBM Ported Tools for z/OS: OpenSSH .

3. List of changed environment variables in V1IR3
of IBM Ported Tools for z/OS: OpenSSH .

4. Summary of changes to SYS1.MACLIB in VIR3
of IBM Ported Tools for z/OS: OpenSSH .

5. Summary of changes to /samples in V1IR3 of
IBM Ported Tools for z/OS: OpenSSH .

6. Changes to the random number support that
might require a migration action

7. Changes to the sftp command that mlght
require a migration action.

8. Changes to the ssh command that mlght
require a migration action.

9. Changes to the ssh_config file that mlght
require a migration action.

10. Changes to the sshd command that mlght
require a migration action. .

11. Changes to the sshd_config file that mlght
require a migration action.

12. Changes to the ssh-keygen command that
might require a migration action .

13. Changes to the ssh-keyscan command that
might require a migration action

14. Changes to the ssh-rand-helper command that
might require a migration action

15. Changes to the users running ssh, sftp or scp
client commands that might require a
migration action .

16. Changes to /samples/ssh_. smf h and
FOTSMEF77 in SYS1.MACLIB that mrght
require a migration action.

17. List of directories and needed permlssmns

18. Values for the _ZOS_OPENSSH_MSGCAT
environment variable . .

19. Setup and configuration problems that can
prevent users from logging in using ssh, scp,
or sftp .

20. Summary of support prov1ded by OpenSSH
VIR2.

© Copyright IBM Corp. 2010, 2015

.13

.13

.13

.15

.17

.17

.18

.19

.19

. 20

. 20

22

. 38

. 48

. 65

21.
22.
23.
24.
25.
26.
27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

Configuration files to copy into /etc
(including permissions) .

Program-generated files (1nc1ud1ng
permissions) .

Administrator- generated flles (mcludlng
permissions) .

User-generated f11es (mcludmg perm1s51ons)
Records types and subtype information
OpenSSH SMF Type 119 record subtype
information and record type

Common TCP/IP identification sectlon for
OpenSSH . .o

Common security section

Client connection started record self deﬁmng
section .

Server connectlon started record self defmmg
section .

Server transfer completlon record
self-defining section .

Server transfer completion record spec1f1c
section .

Server transfer completlon record sectlon:
Host name .

Server transfer completlon record sectlon:
First associated path name . .

Server transfer completion record sectlon:
Second associated path name .

Client transfer completion record self defmmg
section .

Client transfer completlon record spec1f1c
section . .
Client transfer completlon host name sectron
Client transfer completion user name section
Client transfer completion associated path
name section.

Client transfer completlon target path name
section .

Login failure record self defmmg sectlon
Login failure specific section

. 197

. 197

. 197

198
201

. 202

. 203

. 203

. 206

. 207

. 208

. 208

. 209

. 210

. 210

. 210

.21
212
212

. 212

. 212

213

. 213

ix

IBM Confidential

X IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

About this document

This document presents the information you need to set up and use IBM Ported
Tools for z/OS: OpenSSH.

Who should use this document?

This document is for system programmers who run a z/0OS system with z/OS
UNIX System Services (z/OS UNIX), and for their users who use IBM Ported Tools
for z/OS: OpenSSH. On other open systems, some system programmer tasks might
be done by an administrator.

This document assumes the readers are familiar with z/OS systems as well as with
the information for it and its accompanying products.

z/0S information

This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see |z/0S V2R2 Information Roadmap)

To find the complete z/OS® library, go to [BM Knowledge Center|
[(http: / /www.ibm.com /support/knowledgecenter /SSLTBW / welcome)l

IBM Ported Tools for Z/OS home page

The IBM Ported Tools for z/OS home page is located at |www-03.ibm.com/ |
lsystems/z/0s/zos/features /unix/ported /| It contains a brief description of the
IBM Ported Tools for z/OS product, information on how to order it, and
supporting documentation.

To order the IBM Ported Tools for z/0S: OpenSSH product, go to the IBM®

ShopzSeries Web site at [www14.software.ibm.com/webapp/ShopzSeries /|
Customers can report problems found with this product through

their normal support structure.

Discussion list

A mailing list (discussion list) that is not sponsored by IBM might be helpful to
users of OpenSSH. It is at [http:/ /www.openssh.org /list.html} It contains
instructions on subscribing to the OpenSSH mailing list.

To search through past discussions, go to [http:/ /marc.theaimsgroup.com /|

© Copyright IBM Corp. 2010, 2015 xi

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/features/unix/ported/
http://www.ibm.com/systems/z/os/zos/features/unix/ported/
http://www14.software.ibm.com/webapp/ShopzSeries/ShopzSeries.jsp
http://www14.software.ibm.com/webapp/ShopzSeries/ShopzSeries.jsp
http://www.openssh.org/list.html
http://marc.theaimsgroup.com

IBM Confidential

Xii IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

How to send your comments to IBM

We appreciate your input on this documentation. Please provide us with any
feedback that you have, including comments on the clarity, accuracy, or
completeness of the information.

Use one of the following methods to send your comments:

Important: If your comment regards a technical problem, see instead

[a technical problem.”]

* Send an email to [mhvrcfs@us.ibm.com|

¢ Send an email from the |Contact z/OS

Include the following information:
* Your name and address
* Your email address
* Your phone or fax number
¢ The publication title and order number:
IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide
SA23-2246-03
* The topic and page number or URL of the specific information to which your
comment relates
* The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem

Do not use the feedback methods that are listed for sending comments. Instead,
take one or more of the following actions:

* Visit the [[BM Support Portal (support.ibm.com)l

* Contact your IBM service representative.
* Call IBM technical support.

© Copyright IBM Corp. 2010, 2015 xiii

mailto:mhvrcfs@us.ibm.com
http://www.ibm.com/systems/z/os/zos/webqs.html
http://support.ibm.com/

IBM Confidential

Xiv IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Summary of changes

This document contains terminology, maintenance, and editorial changes to
improve consistency and retrievability. Technical changes or additions to the text
and illustrations are indicated by a vertical line to the left of the change.

Changes made in IBM Ported Tools for z/0S: OpenSSH Version 1
Release 3

The information in this document was previously presented in IBM Ported Tools for
z/OS: OpenSSH User’s Guide, SA23-2246-02.

New information

* Support added for GSSAPI (Kerberos only) authentication and key exchange,
including the addition of several GSSAPI options to ssh_config and
sshd_config.

* A new zEnterprise Data Compression (zZEDCCompression) option was added to
zos_ssh_config, zos_ssh_user_config, and zos_sshd_config.

* A new ChannelConvert option was added to zos_ssh_config,
zos_ssh_user_config, and zos_sshd_config.

* A new ProxyUseFdPass option was added to ssh_cenfig.

* Support added to meet FIPS 140-2 specifications, including the addition of
options to zos_ssh_config, zos_ssh_user_config, and zos_sshd_config.

IBM Ported Tools for z/OS: OpenSSH has been upgraded to these Open Source
Software releases, resulting in changes to various commands, messages, and
configuration files.

* OpenSSH 6.4p1

These sections are new for this release.

* [“Certificates” on page 126/ and [“Key revocation lists” on page 126|in topic
“ssh-keygen — Authentication key generation, management, and conversion” on|

page 118.|

+ [“Client connection started (subtype 94)” on page 206/ and [“Server connection|
started (subtype 95)” on page 207]in topic [Chapter 12, “SMF Type 119 records for]
OpenSSH,” on page 201,

Updated information
* The following commands were updated:

— [“scp — Secure copy (remote file copy program)” on page 85|

[‘sftp — Secure file transfer program” on page 87]

— [“sftp-server — SFTP server subsystem” on page 94|

— [“ssh — OpenSSH client (remote login program)” on page 96|

— [“ssh-add — Add RSA or DSA identities to the authentication agent” on page|
112

— [“ssh-agent — Authentication agent” on page 115|

— [“ssh-keygen — Authentication key generation, management, and conversion”|

on page 118|

© Copyright IBM Corp. 2010, 2015 XV

IBM Confidential

— [“ssh-keyscan — Gather ssh public keys” on page 129

— [|“ssh-keysign — ssh helper program for host-based authentication” on page|
131

— [“sshd — OpenSSH daemon” on page 132

OienSSH configuration files were updated, see [Chapter 10, “OpenSSH files,” on|
page 147.

SMF records were updated, see [Chapter 12, “SMF Type 119 records for OpenSSH,”]

[Chapter 14, “OpenSSH messages,” on page 223| contains new and updated
messages.

Deleted information

The command “ssh-rand-helper - Gather random numbers for OpenSSH” has been
removed.

The following messages were removed:

FOTS2227 FOTS2229 FOTS0162 FOTS1420 FOTS1152
FOTS0903 FOTS0989 FOTS1810 FOTS1811 FOTS1812
FOTS1813 FOTS1814 FOTS1815 FOTS1816 FOTS1817
FOTS1818 FOTS1819 FOTS2230 FOTS2234 FOTS2235
FOTS2236 FOTS2237 FOTS2238 FOTS2239 FOTS1390
FOTS1391 FOTS2350 FOTS2352 FOTS2353 FOTS2354
FOTS2355 FOTS2356 FOTS2045 FOTS3003 FOTS1123
FOTS1007 FOTS1820 FOTS1821 FOTS1822 FOTS1823
FOTS1824 FOTS1825 FOTS1826 FOTS1827 FOTS1829
FOTS1596 FOTS1597 FOTS1246 FOTS1288 FOTS2245
FOTS2246 FOTS1941 FOTS1944 FOTS1945 FOTS1946
FOTS1947 FOTS1948 FOTS0146 FOTS1361 FOTS1638
FOTS2051 FOTS2368 FOTS2054 FOTS0884 FOTS1755
FOTS1098 FOTS0960 FOTS0929 FOTS1830 FOTS1831
FOTS1838 FOTS1252 FOTS1296 FOTS1953 FOTS1954
FOTS2065FOTS0815 FOTS1764 FOTS1182 FOTS0931
FOTS0976 FOTS1840 FOTS1841 FOTS1842 FOTS1801
FOTS1843 FOTS1802 FOTS1803 FOTS1804 FOTS1805
FOTS1806 FOTS1807 FOTS1808 FOTS1809 FOTS1261
FOTS1262 FOTS1263 FOTS1264 FOTS1265 FOTS2220
FOTS2224

Changes made in IBM Ported Tools for z/0S: OpenSSH Version 1
Release 2, as updated April 2014

This document contains information that was previously presented in IBM Ported
Tools for z/OS: OpenSSH, SA23-2246-01.

New information
+ New information added to [Chapter 9, “OpenSSH command descriptions,” on|

* New message: FOTS0720

Xvi IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Changes made in IBM Ported Tools for z/OS: OpenSSH Version 1
Release 2, as updated February 2012

This document contains information that was previously presented in IBM Ported
Tools for z/OS: OpenSSH, SA23-2246-00.

New information
* OpenSSH can be set up to use Integrated Cryptographic Service Facility (ICSF)

to implement certain ciphers and MAC (message authentication code)
algorithms. This extension enables OpenSSH to use hardware support when

applicable. See [‘Setting up OpenSSH to use ICSF cryptographic operations” on|

for more information.
* Information from APAR OA34819 was added; see the following topics:
— ["“Managing OpenSSH user heap” on page 60|

+ Information from APAR OA33914 was added; see [‘sftp — Secure file transfer|
[program” on page 87/

* A new term, Integrated Cryptographic Service Facility (ICSF), was added to the
glossary.

Changes made in IBM Ported Tools for z/0S: OpenSSH Version 1
Release 2

The information in this document was previously presented in IBM Ported Tools for
z/OS User’s Guide, SA22-7985-06. The Xvib section is now in IBM Ported Tools for
z/OS: Xvfb User’s Guide, SA23-2216-00.

New information

IBM Ported Tools for z/OS: OpenSSH has been upgraded to these Open Source
Software releases, resulting in changes to various commands, messages, and
configuration files.

* OpenSSH 5.0p1

* OpenSSL 1.0.1¢

e zlib 1.2.3

These topics are new for this release.

* [Chapter 6, “Security topics when using key rings for key management,” on page
61.! This chapter includes [‘Managing key rings and restricting access to them”|
on page 61

* |Chapter 12, “SMF Type 119 records for OpenSSH,” on page 201

The following sections are new for this release.

+ [“What you need to verify before using OpenSSH” on page 21|

[“Steps for verifying the prerequisites for using OpenSSH” on page 21|

* [“Steps for setting up server authentication when keys are stored in key rings” on|

page 29|

+ [“Limiting file system name space for sftp users” on page 45|

* [“Setting up OpenSSH to collect SMF records” on page 50
g up

* |“Steps for setting up user authentication when using key rings to store keys” on|

page 76|
.

Summary of changes xvii

xviii

IBM Confidential

. Izos_user_ssh_config|
* lzos_sshd_config]|

Two new graphics have been added.

+ [Figure 2 on page 36|

+ [Figure 7 on page 82|

New terms have been added to the glossary.

Updated information
* [‘Steps for creating or editing configuration files” on page 24|

* |“Steps for setting up server authentication when keys are stored in UNIX files”|
on page 22|
* |“Steps for setting up user authentication when using UNIX files to store keys”]
on page 75

+ [“Authentication” on page 135|

+ [“User-generated files” on page 198|
* |Appendix C, “RFCs and Internet drafts,” on page 523|

The OpenSSH files are now organized in [Chapter 10, “OpenSSH files,” on page 147
as follows:

+ [“OpenSSH client configuration files” on page 147]

* [“OpenSSH daemon configuration files” on page 171]

+ [“Other OpenSSH files” on page 195|

[Chapter 14, “OpenSSH messages,” on page 223| contains new and updated
messages.

Information from the following APARs have been added:
* APAR OA34210
* APAR OA37278
* APAR OA39283
» APAR OA41089
* APAR OA41247
* APAR OA41704
* APAR OA42286
* APAR OA42873
* APAR OA43100
* APAR OA43934
* APAR OA44038
* APAR OA45001

The term internationalization has been replaced with globalization. The new term has
been added to the glossary.

Deleted information

The chapter “What's new or changed in OpenSSH for 3.8.1p1?” has been deleted
because the updates are now part of the OpenSSH 5.0p1 base.

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Chapter 1. Introduction to IBM Ported Tools for z/OS:

OpenSSH

The OpenSSH program product is one of the ported applications provided by IBM
Ported Tools for z/OS. The current version, which is Version 1 Release 3, can be
installed on z/OS 1.13 and later. Users of the previous release (Version 1 Release 2)
must migrate to the new release as described in [Chapter 4, “Migrating to Version 1|
[Release 3 of IBM Ported Tools for z/OS: OpenSSH,” on page 11| before using the
information in this book.

In this document, OpenSSH refers to the z/OS implementation of OpenSSH. For
the open source documentation, see [http:/ /www.openssh.org]

What is OpenSSH?

© Copyright IBM Corp. 2010, 2015

OpenSSH provides secure encryption for both remote login and file transfer. Some
of the utilities that it includes are:

* ssh, a z/OS client program for logging into a z/OS shell. It can also be used to
log into other platform's UNIX shells. It is an alternative to rlogin.

* scp for copying files between networks. It is an alternative to rcp.

* sftp for file transfers over an encrypted ssh transport. It is an interactive file
transfer program similar to ftp.

* sshd, a daemon program for ssh that listens for connections from clients. The
IBM Ported Tools for z/OS: OpenSSH implementation of sshd supports both
SSH protocol versions 1 and 2 simultaneously.

The default sshd configuration only runs protocol version 2.

Other basic utilities such as ssh-add, ssh-agent, ssh-keysign, ssh-keyscan,
ssh-keygen and sftp-server are also included.

To ensure secure encrypted communications, OpenSSH uses ciphers such as AES,
Blowfish and 3DES.

IBM Ported Tools for z/OS: OpenSSH provides the following z/OS extensions:

¢ System Authorization Facility (SAF) key ring. OpenSSH can be configured to
allow OpenSSH keys to be stored in SAF key rings. See [“Choosing between|
[UNIX files and key rings” on page 61| for more information.

* Multilevel security. It is a security policy that allows the classification of data
and users based on a system of hierarchical security levels combined with a
system of non-hierarchical security categories. See [“Running the sshd daemon in|
fa multilevel-secure environment” on page 44

¢ System Management Facility (SMF). OpenSSH can be configured to collect SMF
Type 119 records for both the client and the server. See [“Setting up OpenSSH to|
[collect SMF records” on page 50| for more information.

* ICSF ciphers and MAC algorithms. OpenSSH can be set up to use Integrated
Cryptographic Service Facility (ICSF) to implement certain ciphers and MAC
(message authentication code) algorithms. This extension enables OpenSSH to
use hardware support when applicable. See [“Setting up OpenSSH to use ICSH
fcryptographic operations” on page 52| for more information.

http://www.openssh.org

2

IBM Confidential

* FIPS 140-2 mode. OpenSSH can be set up to direct all cryptographic operations
to ICSF and System SSL interfaces running in FIPS mode. This extension enables
OpenSSH to meet the FIPS 140-2 specifications. See [“Setting up OpenSSH to run|
[in FIPS mode” on page 58| for more information.

The Internet Engineering Task Force (http:/ /www.ietf.org /) has a Secure Shell
(SECSH) working group whose goal is to update and standardize the popular SSH
protocol. For information about OpenSSH compliancy to SECSH RFCs and internet
drafts, see |[Appendix C, “RFCs and Internet drafts,” on page 523

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

http://www.ietf.org/

IBM Confidential

Chapter 2. What's new or changed in Version 1 Release 3 of
IBM Ported Tools for z/0S: OpenSSH

This topic documents changes that were introduced in Version 1 Release 3 of IBM
Ported Tools for z/OS: OpenSSH, which includes OpenSSH 6.4p1, OpenSSL 1.0.2h,
and zlib 1.2.3. It includes these sections:

* [“Summary of changes to commands”]

* "New and changed configuration files”|

+ [“Changed environment variables” on page 4|

* [“Summary of changes to SYSI.MACLIB” on page 5|

* “Summary of changes to non-configuration files in /samples” on page 5|

Summary of changes to commands

lists commands that were changed in Version 1 Release 3 of IBM Ported
Tools for z/OS: OpenSSH.

Table 1. Summary of changes to commands in V1R3 of IBM Ported Tools for z/0S: OpenSSH

Command

Changes

ssh

The following options are changed: -k, -K

Reference:

°

New and changed configuration files

lists configuration files that were added or changed in Version 1 Release 3
of IBM Ported Tools for z/OS: OpenSSH.

Table 2. Summary of changes to configuration files in V1R3 of IBM Ported Tools for z/OS: OpenSSH

Configuration file

Changes

ssh_config

These keywords have been added:

GSSAPIClientldentity
GSSAPIKeyExchange
GSSAPIRenewalForcesRekey
GSSAPIServerldentity
GSSAPITrustDns
ProxyUseFdpass

These keywords have been changed:

GSSAPIAuthentication
GSSAPIDelegateCredentials
Preferred Authentications

Reference:

* bsh_config]

© Copyright IBM Corp. 2010, 2015

IBM Confidential

Table 2. Summary of changes to configuration files in V1R3 of IBM Ported Tools for z/OS: OpenSSH (continued)

Configuration file

Changes

sshd_config

These keywords have been added:
GSSAPICleanupCredentials
GSSAPIKeyExchange
GSSAPIStoreCredentialsOnRekey
GSSAPIStrictAcceptorCheck

These keywords have been changed:

GSSAPIAuthentication
GSSAPICleanupCredentials

Reference:

.

zos_ssh_config

These keywords have been added:
ChannelConvert

FIPSMODE

KexAlgorithmsSource
zEDCCompression

Reference:

* |zos_sshd_config

zos_sshd_config

These keywords have been added:
ChannelConvert

FIPSMODE

KexAlgorithmsSource
zEDCCompression

Reference:

* |zos_sshd_config

zos_user_ssh_config

The following keywords have been added:
ChannelConvert

FIPSMODE

KexAlgorithmsSource

zEDCCompression

Reference:

* |zos_user_ssh_config]|

Changed environment variables

lists environment variables that are changed for Version 1 Release 3 of IBM
Ported Tools for z/0OS: OpenSSH.

Table 3. List of changed environment variables in V1R3 of IBM Ported Tools for z/0OS: OpenSSH

Environment variable

Changes

ZOS_SSH_PRNG_CMDS_TIMEOUT | This environment variable is no longer being used.

Reference: None

4 1BM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Summary of changes to SYS1.MACLIB

lists members of SYSI.MACLIB that were added in Version 1 Release 3 of
IBM Ported Tools for z/OS: OpenSSH.

Table 4. Summary of changes to SYS1.MACLIB in V1R3 of IBM Ported Tools for z/OS: OpenSSH

Sample Changes

FOTSMEF77 New authentication method types were added to the Common Security section.
Reference:
e [Chapter 12, “SMF Type 119 records for OpenSSH,” on page 201|

Summary of changes to non-configuration files in /samples

lists files in the /samples directory that were added in Version 1 Release 3
of IBM Ported Tools for z/OS: OpenSSH.

Table 5. Summary of changes to /samples in V1R3 of IBM Ported Tools for z/0S: OpenSSH

Sample Changes

ssh_smf.h This file contains C mapping macros for OpenSSH SMF Type 119 records and has
been updated. New authentication method types were added to the Common
Security section.

Reference:
* [Chapter 12, “SMF Type 119 records for OpenSSH,” on page 201|

Chapter 2. What's new or changed in Version 1 Release 3 of IBM Ported Tools for z/OS: OpenSSH 5

IBM Confidential

6 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Chapter 3. How does IBM Ported Tools for z/0S: OpenSSH
differ from the open source version?

This topic describes how IBM Ported Tools for z/OS: OpenSSH differs from the
open source version.

What IBM Ported Tools for z/0S: OpenSSH supports

sftp can treat files as binary or text. By default, sftp assumes that files are binary.
Files transferred between EBCDIC and ASCII platforms are not converted. For file
transfers between z/OS and ASCII UNIX platforms, you might need to convert
your files (treat them as text). The sftp ascii subcommand can be used to transfer
files in ASCII between the local host and a remote UNIX host. This subcommand
assumes that the file data on the network should be encoded in ISO/IEC 8859-1.
The sftp binary subcommand can be used to disable this conversion and return to
performing binary file transfers.

scp treats files as text. By default, scp performs ASCII/EBCDIC conversion on
files. For more information about how scp performs conversion, see
[“Globalization on z/OS systems,” on page 63|

ssh, sftp and scp are restricted from using passwords when running in a 3270
environment. The OpenSSH client (ssh) cannot use passwords when being run
from OMVS (which is a 3270 session). sftp and scp invoke ssh as part of their
processing, so they have the same restriction.

IBM Ported Tools for z/OS: OpenSSH has different default settings. IBM Ported
Tools for z/OS: OpenSSH has different default settings than the open source level
of OpenSSH. If you share OpenSSH configuration files among platforms, then you
should be aware of these differences. The differences are:

¢ The daemon configuration (sshd_config) file has both the AllowTcpForwarding
keyword and the Compression keyword set to "no".

* The default ssh_config file has been changed to specify default Ciphers and
MACs algorithms to prefer ICSF hardware accelerated algorithms and AES over
3DES, and SHA over MD5.

* The daemon configuration (sshd_config) file has the Protocol keyword set to 2
as the default setting, which specifies that only protocol version 2 connections
are allowed.

* The client configuration (ssh_config) file has the Protocol keyword set to 2,
which specifies that only protocol version 2 connections are allowed.

* The default locations of z/OS executables might differ than on other platforms,
so the Subsystem specification of sftp might contain a different path on z/OS.
On z/0S it is set to:

Subsystem sftp /usr/1ib/ssh/sftp-server

Provides support unique to z/OS. IBM Ported Tools for z/OS: OpenSSH provides

the following z/OS extensions:

¢ System Authorization Facility (SAF) key ring. OpenSSH can be configured to
allow OpenSSH keys to be stored in SAF key rings. See [“Choosing between|
[UNIX files and key rings” on page 61| for more information.

© Copyright IBM Corp. 2010, 2015 7

IBM Confidential

* Multilevel security. It is a security policy that allows the classification of data
and users based on a system of hierarchical security levels combined with a
system of non-hierarchical security categories. See [“Running the sshd daemon in|
[a multilevel-secure environment” on page 44|

* System Management Facility (SMF). OpenSSH can be configured to collect SMF
Type 119 records for both the client and the server. See [“Setting up OpenSSH to|
[collect SMF records” on page 50| for more information.

* ICSF ciphers and MAC algorithms. OpenSSH can be set up to use Integrated
Cryptographic Service Facility (ICSF) to implement certain ciphers and MAC
(message authentication code) algorithms. This extension enables OpenSSH to
use hardware support when applicable. See [“Setting up OpenSSH to use ICSH
[cryptographic operations” on page 52| for more information.

* FIPS 140-2 mode. OpenSSH can be set up to direct all cryptographic operations
to ICSF and System SSL interfaces running in FIPS mode. This extension enables
OpenSSH to meet FIPS 140-2 specifications. See [“Setting up OpenSSH to run in|
[FIPS mode” on page 58| for more information.

What IBM Ported Tools for z/0OS: OpenSSH does not support

8

IBM Ported Tools for z/OS: OpenSSH does not support the following
functionality:

* AFS token passing

» Kerberos (except through the use of GSS-API)

* Pluggable Authentication Module (PAM)

 Print last log

e Smart cards

» “Keyboard-interactive” user authentication

* TCP wrappers

* Tunnel device forwarding

User-defined subsystems treat data as binary. Subsystems are a feature of SSH
protocol version 2 which facilitate the use of ssh as a secure transport for other
applications such as sftp. However, you can define your own subsystem using the
Subsystem keyword of sshd_config. The subsystem is then invoked as a remote
command. For example:

Subsystem backups /home/billyjc/backups.sh

By default, the network data for a subsystem is treated as binary. Any output
generated by a subsystem will not be displayed correctly between z/OS systems
unless steps are taken to convert the data. The included sftp subsystem must be
treated as binary, but connections for user-defined subsystems that are not binary
may use the ChannelConvert option. The ChannelConvert option may be used in
a Host or Match block to convert data for selected connections. See the description
for ChannelConvert in |“zos_ssh_config — z/OS-specific system-wide OpenSSH|

client configuration file” on page 164/ and [“zos_sshd_config — z/OS-specifid

OpenSSH daemon configuration file” on page 190]

Note: ChannelConvert should be added with caution to zos_ssh_config or
zos_sshd_config so that it does not cause connections to fail, since they are or are
not converting data as required.

IBM Ported Tools for z/OS: OpenSSH does not support multibyte locales. IBM
Ported Tools for z/OS: OpenSSH does not support running in multibyte locales. It
currently only supports single-byte locales that are compatible with ASCII coded
character set ISO/IEC 8859-1. For more information, see [Chapter 7, “Globalization|

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

fon z/0OS systems,” on page 63

Chapter 3. How does IBM Ported Tools for z/OS: OpenSSH differ from the open source version? 9

IBM Confidential

10 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Chapter 4. Migrating to Version 1 Release 3 of IBM Ported
Tools for z/0S: OpenSSH

This information assumes that you are migrating from Version 1 Release 2 of IBM
Ported Tools for z/OS: OpenSSH and that it has been upgraded to OpenSSH 5.0p1
with all the available PTFs applied.

If you are migrating from an unsupported version, you must first migrate to IBM
Ported Tools for z/OS: OpenSSH Version 1 Release 2 that has been upgraded to
OpenSSH 5.0p1 before migrating to IBM Ported Tools for z/OS: OpenSSH Version
1 Release 3.

Considerations when migrating from IBM Ported Tools for z/OS:
OpenSSH Version 1 Release 2

This section describes coexistence and compatibility considerations when migrating
from IBM Ported Tools for z/OS: OpenSSH Version 1 Release 2.

Coexistence considerations

In a sysplex environment, some systems might share the same configuration. They
might also share the ssh_known_hosts or authorized_keys files. However, those
systems might have different versions of ssh or sshd. In that situation, the
previous version of the command might exit with an error message because it does
not support the new features. For a list of the configuration keywords that were
introduced in IBM Ported Tools for z/OS: OpenSSH Version 1 Release 3, see

[Table 2 on page 3| For a list of the ssh known hosts or authorized keys files
options that were introduced, see [“Summary of changes to commands” on page 3|

Tips: When sharing files, consider these tips:

* To avoid sharing the same configuration file, the user can specify the local
configuration file using '-F config_file' for ssh and '-f config_file' for sshd
on the command line.

* To avoid sharing the same ssh_known_hosts file, the user can specify the local
file using the ssh_config GlobalKnownHostsFile or UserKnownHostsFile
keywords.

* To avoid sharing the same authorized_keys file, the user can specify the local
file using the sshd_config AuthorizedKeysFile keyword.

Compatibility considerations

When a newer version of the SSH client is trying to connect to a previous version
of the sshd daemon, connection might not be established due to incompatibility of
the new configuration options. For a list of the configuration keywords that were
introduced in IBM Ported Tools for z/OS: OpenSSH Version 1 Release 3, see

[Table 2 on page 3|

Migration actions for IBM Ported Tools for z/OS: OpenSSH Version 1
Release 3

Migration to IBM Ported Tools for z/OS: OpenSSH Version 1 Release 3 might
require certain actions, which are listed as follows:

© Copyright IBM Corp. 2010, 2015 11

IBM Confidential

+ |“Changes to the random number support that might require a migration action”]

+ |“Changes to the sftp command that might require a migration action” on page

K

+ [“Changes to the ssh command that might require a migration action” on page 13|

. jhanges to the ssh_config file that might require a migration action” on page|
14
. ”JChanges to the sshd command that might require a migration action” on page]
16
. Eljhanges to the sshd_config file that might require a migration action” on pagel
1

+ [“Changes to the ssh-keygen command that might require a migration action” onl|

page 18|

+ |“Changes to the ssh-keyscan command that might require a migration action”

on page 19|

+ |“Changes to the ssh-rand-helper command that might require a migration|
action” on page 19|

* |“Changes to /samples/ssh_smf.h and FOTSMF77 in SYS1.MACLIB that might]
require a migration action” on page 20|

Setting up the XPLINK environment for use by IBM Ported
Tools for z/0S: OpenSSH

Description: Beginning in Version 1 Release 2, IBM Ported Tools for z/OS:
OpenSSH is an XPLINK application. XPLINK (Extra Performance Linkage) is a
type of call linkage that can improve performance in an environment of frequent
calls between small functions.

Is the migration action required? Yes, to ensure optimal performance.

Steps to take: To set up the XPLINK environment (that is, to initialize the
resources necessary to run an XPLINK application), take the following steps:

+ Put the Language Environment® run-time library SCEERUN2 in the LNKLST
member of SYS1.PARMLIB.

* Refer to the provided CEE.SCEESAMP(EDCWLPA) data set member to put the
Language Environment XPLINK runtime modules in the dynamic LPA.

* Mark the run-time library SCEERUN2 as program controlled.

Reference information: The following list provides reference information that
might be helpful.

+ For more information about XPLINK, see |z/OS Language Environment]
[Programming Guidd

 For more information about placing SCEERUN2 in LNKLST, see [z/0S Language

[Environment Customization)
+ For more information about LNKLST, see [z/0S MVS Initialization and Tuning|

Changes to the random number support that might require a
migration action

[Table 6 on page 13|lists the changes to the random number support that might
require a migration action and the accompanying actions.

12 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Table 6. Changes to the random number support that might require a migration action

What changed Migration action needed?

Random number support Yes. If ICSF is not available and configured to provide
. . . . this support, OpenSSH client and server initialization

Previously, this support did n(?t require ICSF. Now, will fail. For more information, see |”Using hardwara

random number support requires ICSE. lsupport to generate random numbers” on page 49|

Action: If there is no cryptography card, ICSF HCR77A0
or later is required. The ICSF PTF for APAR OA45548
must be installed in order to use new ICSF Ciphers and
MAC algorithms. For more information, see |”Usina
hardware support to generate random numbers” on|
page 49| and |“Setting up OpenSSH to use ICSF|
cryptographic operations” on page 52

Changes to the sftp command that might require a migration
action

lists the changes to the sftp command that might require a migration action
and the accompanying actions.

Table 7. Changes to the sftp command that might require a migration action

What changed Migration action needed?

The -P option Yes, if you specify the sftp_server_path. If you specify -P
. _ _ ‘ sftp_server_path, the following message is returned:

Previously, this option was used to specify the FOTS1401 filename Tine Tine number: Bad number

sftp_server_path. Now, this option is used to specify the |pymber
port to connect to on the remote host.
Action: Use the -D option to specify the
sftp_server_path.

Previously, the 1n and symlink subcommands created a | Yes, if you create a symbolic link.
symbolic link from oldpath to newpath on the remote host.

Now, the -s flag is specified the created link with is a Action: Run the sftp Tn subcommand with the -s flag to
symbolic link, otherwise it is a hard link. create a symbolic link or create a hard link without the
flag.

Changes to the ssh command that might require a migration
action

lists the changes to the ssh command that might require a migration action
and the accompanying actions.

Table 8. Changes to the ssh command that might require a migration action

What changed Migration action needed?

The -c option Yes, if you wish to use the updated list to allow the new

ciphers or the updated order of the preferred ciphers.
Previously, the default cipher list did not contain

arcfour128-gcm@openssh.com and arcfour256- Action: Specify the updated default list.
gem@openssh.com. Now the default cipher list contains
arcfour128-gcm@openssh.com and arcfour256-
gem@openssh.com. Most customers will not be affected
by the changed default.

The complete list of ciphers used by ssh can be found in
[“ssh_config — OpenSSH client configuration files” on|

[page 147[see Ciphers).

Chapter 4. Migrating to Version 1 Release 3 of IBM Ported Tools for z/OS: OpenSSH 13

IBM Confidential

Table 8. Changes to the ssh command that might require a migration action (continued)

What changed

Migration action needed?

The -I option

Previously, the argument was the device that ssh should
use to communicate with a smart card used for storing
the user's private RSA key. Now, the argument is the
PKCS#11 shared library ssh should use to communicate
with a PKCS#11 token providing the user's private RSA
key.

No, because the option (-1 smartcard_device) is not
supported on z/OS systems.

The -m option

Previously, the default MACs list did not contain
hmac-md5-etm@openssh.com, hmac-shal-
etm@openssh.com, umac-64-etm@openssh.com,
umac-128-etm@openssh.com, hmac-sha2-256-
etm@openssh.com, hmac-sha2-512-etm@openssh.com,
hmac-ripemd160-etm@openssh.com, hmac-shal-96-
etm@openssh.com, hmac-md5-96-etm@openssh.com,
umac-128@openssh.com, hmac-sha2-256 and
hmac-sha2-512. Now the default cipher list contain
hmac-md5-etm@openssh.com, hmac-shal-
etm@openssh.com, umac-64-etm@openssh.com,
umac-128-etm@openssh.com, hmac-sha2-256-
etm@openssh.com, hmac-sha2-512-etm@openssh.com,
hmac-ripemd160-etm@openssh.com, hmac-shal-96-
etm@openssh.com, hmac-md5-96-etm@openssh.com,
umac-128@openssh.com, hmac-sha2-256 and
hmac-sha2-512.

The complete list of MACs can be found in ["ssh_config]

|— OpenSSH client configuration files” on page 147] (see

MACs).

Yes, if you wish to use the updated list to allow the new
MAC:s or the updated order of the preferred MACs.

Action: Specify the updated default list.

The -R options

Previously, the port argument "0" was not supported.
Now, if the port argument is “0”, the listen port will be
dynamically allocated on the server and reported to the
client at run time.

No, setting the port argument to 0 was considered to be
illegal in the previous version.

Changes to the ssh_config file that might require a migration

action

[Table 9 on page 15|lists the changes to the ssh_config file that might require a
migration action and the accompanying actions.

14 1BM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Table 9. Changes to the ssh_config file that might require a migration action

What changed

Migration action needed?

The Ciphers keyword

Previously, the default cipher list did not contain
arcfour128-gcm@openssh.com and arcfour256-
gecm@openssh.com. Now the default cipher list contains
arcfour128-gcm@openssh.com and arcfour256-
gem@openssh.com. Most customers will not be affected
by the changed default.

The complete list of ciphers can be found in |"ssh_c0nfia
|— OpenSSH client configuration files” on page 147] (see
Ciphers).

Yes, if you wish to use the updated list to allow the new
ciphers or the updated order of the preferred ciphers.

Action: Specify the updated default list.

The ControlPath keyword

Previously, %l in the path was substituted by the local
host name. Now, %l in the path is substituted by the
local host name (including any domain name).

Yes, if you want to use substitute character to substitute
the local host name without any domain name.

Action: Use the %L in the path to substitute the first
component of the local host name.

The GlobalKnownHostsFile keyword

Previously, the default global known hosts file list did
not contain /etc/ssh/ssh_known_hosts2. Now, the default
global known hosts file list contains /etc/ssh/
ssh_known_hosts2.

The complete list of GlobalKnownHostsFile can be
found in [“ssh_config — OpenSSH client configuration|
[files” on page 147| (see GlobalKnownHostsFile).

Yes, if you wish to use the new global known hosts file
or the new order of the preferred global known hosts
file.

Action: Specify the updated default list.

The HostKeyAlgorithms keyword

Previously, the default host key algorithms list did not
contain ecdsa-sha2-nistp256-cert-vO0l@openssh.com,
ecdsa-sha2-nistp384-cert-vOl@openssh.com,
ecdsa-sha2-nistp521-cert-vOl@openssh.com,
ssh-rsa-cert-vO0l@openssh.com , ssh-dss-cert-
v0l@openssh.com, ssh-rsa-cert-v00@openssh.com,ssh-dss-
cert-vO0@openssh.com, ecdsa-sha2- nistp256,ecdsa-sha2-
nistp384, ecdsa-sha2-nistp521. Now the default cipher list
contains ecdsa-sha2-nistp256-cert-v01@openssh.com,
ecdsa-sha2-nistp384-cert-vOl@openssh.com,
ecdsa-sha2-nistp521-cert-vOl@openssh.com,
ssh-rsa-cert-v0l@openssh.com , ssh-dss-cert-
v0l@openssh.com, ssh-rsa-cert-vO0@openssh.com,
ssh-dss-cert-vO0@openssh.com, ecdsa-sha2- nistp256,
ecdsa-sha2-nistp384, ecdsa-sha2-nistp521.

The complete list of host key algorithms can be found in
|“ssh_confie — OpenSSH client configuration files” on|

[page 147(see HostKeyAlgorithms).

Yes, if you wish to use the new host key algorithms or
the new order of the preferred host key algorithms.

Action: Specify the updated default list.

The IdentityFile keyword

Previously, the default identity file list did not contain
~/.ssh/id_ecdsa. Now, the default identity file list
contains ~/.ssh/id_ecdsa. The complete list of identity
file can be found in (see IdentityFile).

Yes, if you wish to use the new identity file or the new
order of the preferred identity file.

Action: Specify the updated default list.

Chapter 4. Migrating to Version 1 Release 3 of IBM Ported Tools for z/OS: OpenSSH 15

IBM Confidential

Table 9. Changes to the ssh_config file that might require a migration action (continued)

What changed

Migration action needed?

The MACs keyword

Previously, the default MACs list did not contain
hmac-md5-etm@openssh.com, hmac-shal-
etm@openssh.com, umac-64-etm@openssh.com,
umac-128-etm@openssh.com, hmac-sha2-256-
etm@openssh.com, hmac-sha2-512-etm@openssh.com,
hmac-ripemd160-etm@openssh.com, hmac-shal-96-
etm@openssh.com, hmac-md5-96-etm@openssh.com,
umac-128@openssh.com, hmac-sha2-256 and
hmac-sha2-512. Now the default cipher list contain
hmac-md5-etm@openssh.com, hmac-shal-
etm@openssh.com, umac-64-etm@openssh.com,
umac-128-etm@openssh.com, hmac-sha2-256-
etm@openssh.com, hmac-sha2-512-etm@openssh.com,
hmac-ripemd160-etm@openssh.com, hmac-shal-96-
etm@openssh.com, hmac-md5-96-etm@openssh.com,
umac-128@openssh.com, hmac-sha2-256 and
hmac-sha2-512.

The complete list of MACs can be found in |”ssh_confi§|
|— OpenSSH client configuration files” on page 147] (see
MAC:s).

Yes, if you wish to use the updated list to allow the new
MAC:s or the updated order of the preferred MACs.

Action: Specify the updated default list.

The RemoteForward keyword

Previously, the port argument "0" was not supported.
Now, if the port argument is “0”, the listen port will be
dynamically allocated on the server and reported to the
client at run time.

No, set the port argument to 0 was considered to be
illegal in the previous version.

The RhostsAuthentication keyword

Previously, this option was supported for protocol
version 1. Now this option is no longer supported for
protocol version 1 on z/OS UNIX.

Yes, if you use RhostsAuthentication for protocol
version 1 in your application. When setting this, you will
receive the following message: filename 1ine
Tine_number: Deprecated option keyword.

Action: Update your application.

The UserKnownHostsFile keyword

Previously, the default user known hosts file list did not
contain ~/.ssh/known_hosts2. Now, the default user
known hosts file list contains ~/.ssh/known_hosts2. The
complete list of UserKnownHostsFile can be found in

[“ssh_config — OpenSSH client configuration files” on|

|Eage 14ZIsee UserKnownHostsFile).

Yes, if you wish to use the new user known hosts file or
the new order of the preferred user known hosts file.

Action: Specify the previous default list.

Changes to the sshd command that might require a migration

action

[Table 10 on page 17]lists the changes to the sshd command that might require a
migration action and the accompanying actions.

16 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Table 10. Changes to the sshd command that might require a migration action

What changed

Migration action needed?

The -b option

Previously, the default number of bits in the ephemeral
protocol version 1 server key was 768. Now, the default
number of bits in the ephemeral protocol version 1 server
key is 1024.

Yes, if you use the ephemeral protocol version 1 server
key which is 768 bits.

Action: Start the sshd daemon with specifying -b 768.

Changes to the sshd_config file that might require a migration

action

El lists the changes to the sshd_config file that might require a migration action

and the accompanying actions.

Table 11. Changes to the sshd_config file that might require a migration action

What changed

Migration action needed?

The AuthorizedKeysFile keyword

Previously, the default value was .ssh/authorized_keys,
but .ssh/authorized keys2 was also searched.

Yes, if you don't use the defaults and have specified
AuthorizedKeysFile and want to continue to search
.ssh/authorized_keys2.

Action: If you specify AuthorizedKeysFile and would
like to search .ssh/authorized_keys2, you must specify
it.

The Ciphers keyword

Previously, the default cipher list did not contain
aes128-gcm@openssh.comand and aes256-
gem@openssh.com. Now the default cipher list contains
aes128-gcm@openssh.com and aes256-gcm@openssh.com.

The complete list of ciphers used by sshd can be found in
[“sshd_config — OpenSSH daemon configuration file” on|

[page 171[see Ciphers).

Yes, if you wish to use the updated list to allow the new
ciphers or the updated order of the preferred ciphers.

Action: Specify the updated default list.

The HostKey keyword

Previously, the default host key was /etc/ssh/
ssh_host_rsa_key and /etc/ssh/ssh_host_dsa_key for
protocol version 2. Now, the default host key for protocol
version 2 is /etc/ssh/ssh_host_rsa_key,
/etc/ssh/ssh_host dsa_key and /etc/ssh/
ssh_host_ecdsa_key.

Yes, if you wish to use host key /etc/ssh/
ssh_host_ecdsa_key for protocol version 2.

Action: Specify the updated default list.

Chapter 4. Migrating to Version 1 Release 3 of IBM Ported Tools for z/OS: OpenSSH 17

IBM Confidential

Table 11. Changes to the sshd_config file that might require a migration action (continued)

What changed

Migration action needed?

The MACs keyword

Previously, the default MAC algorithms list did not
contain hmac-md5-etm@openssh.com,
hmac-shal-etm@openssh.com, umac-64-
etm@openssh.com, umac-128-etm@openssh.com,
hmac-sha2-256-etm@openssh.com, hmac-sha2-512-
etm@openssh.com, hmac-ripemd160-etm@openssh.com,
hmac-shal-96-etm@openssh.com, hmac-md5-96-
etm@openssh.com, umac-128@openssh.com,
hmac-sha2-256 and hmac-sha2-512. Now, the default
cipher list contains hmac-md5-etm@openssh.com,
hmac-shal-etm@openssh.com, umac-64-
etm@openssh.com, umac-128-etm@openssh.com,
hmac-sha2-256-etm@openssh.com, hmac-sha2-512-
etm@openssh.com, hmac-ripemd160-etm@openssh.com,
hmac-shal-96-etm@openssh.com, hmac-md5-96-
etm@openssh.com, umac-128@openssh.com,
hmac-sha2-256 and hmac-sha2-512.

The complete list of MAC algorithms used by sshd can
be found in [“sshd_confie — OpenSSH daemon)|

[configuration file” on page 171 (see MACs)

Yes, if you wish to use the updated list to allow the new
MAC:s or the updated order of the preferred MACs.

Action: Specify the updated default list.

The RhostsAuthentication keyword

Previously, this option was supported for protocol
version 1. Now, this option is no longer supported for
protocol version 1 on z/OS Unix.

Yes, if you use RhostsAuthentication for protocol
version 1 in your application. When setting it, the
following message is returned: FOTS2374 filename Tine
Tine_number: Deprecated option keyword" is returned.

Action: Update your application.

The ServerKeyBits keyword

Previously, the default number of bits in the ephemeral
protocol version 1 server key was 768. Now, the default
number of bits in the ephemeral protocol version 1 server
key is 1024.

Yes, if you use the ephemeral protocol version 1 server
key which is 768 bits.

Action: Start the sshd daemon with specifying -b 768, if
you want to use the old default.

Changes to the ssh-keygen command that might require a

migration action

lists the changes to the ssh-keygen command that might require a

migration action and the accompanying actions.

Table 12. Changes to the ssh-keygen command that might require a migration action

What changed

Migration action needed?

-d option

Previously, -d option as alias of -t dsawas supported.
Now, it is not supported.

Yes, if you use ssh-keygen command with -d option.
Specifying the -d option will return the following error
message: unknown option -- d.

Action: Replace -d by -t dsa.

-b option (used in conjunction with -G)

Previously, the minimum value on the ssh-keygen -b
option used with -G options was 768. Now the minimum
value is 512.

No. Because minimum value 512 is less than 768.

18 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Table 12. Changes to the ssh-keygen command that might require a migration action (continued)

What changed

Migration action needed?

-b option (for RSA)

Previously, the maximum RSA key size on the
ssh-keygen -b option was 32768. Now the maximum size
is 16384.

Yes, if you are using ssh-keygen to generate RSA keys
with a size that is between 16384 and 32768 bits. If you
specify an RSA key size larger than 16384, the following
error message will be returned: key bits exceeds
maximum 16384.

Action: Use ssh-keygen to generate new RSA keys based
on the new size requirement.

Changes to the ssh-keyscan command that might require a

migration action

able 13| lists the changes to the ssh-keyscan command that might require a
migration action and the accompanying actions.

Table 13. Changes to the ssh-keyscan command that might require a migration action

What changed

Migration action needed?

The -t option

Previously, if the -t option was not specified, ssh-keyscan
searches only for SSH protocol version 1 keys ("rsal") by
default. Now, if the -t option is not specified,
ssh-keyscan searches only for SSH protocol version 2
“rsa” and “ecdsa” keys by default.

Yes, if you search protocol version 1 keys ("rsal")
without specifying -t option.

Action: Search protocol version 1 keys ("rsal") with
specifying -t rsal .

Changes to the ssh-rand-helper command that might require a

migration action

lists the changes to the ssh-rand-helper command that might require a
migration action and the accompanying actions.

Table 14. Changes to the ssh-rand-helper command that might require a migration action

What changed

Migration action needed?

The ssh-rand-helper command

Now, the ssh-rand-helper is not supported.

Yes. If no migration action, the following message is
returned: FOTS1949 PRNG is not seeded. Please
activate the Integrated Cryptographic Service
Facility (ICSF).

Action: The new OpenSSH requires that a working
/dev/random device be available to all OpenSSH client
and server jobs. This requires that ICSF be configured to
support /dev/random and that users have SAF authority
to the CSFRNG service.

Changes to the users running ssh, sftp or scp client
commands that might require a migration action

[Table 15 on page 20| lists the changes to the users running the ssh, sftp, or scp
commands that might require a migration action and the accompanying actions.

Chapter 4. Migrating to Version 1 Release 3 of IBM Ported Tools for z/OS: OpenSSH 19

IBM Confidential

Table 15. Changes to the users running ssh, sftp or scp client commands that might require a migration action

What changed

Migration action needed?

Users running ssh, sftp or scp client

commands when collecting SMF records. records.

New SMF subtype records have been added
which requires additional setup.
example:

Yes, if you use ssh, sftp or scp client commands to collect SMF

Action: Setup the users who run ssh, sftp or scp client commands
to have READ access to the BPX.SMF SAF/RACF profile. For

RDEFINE FACILITY BPX.SMF UACC(NONE)
PERMIT BPX.SMF CLASS(FACILITY) ID(userid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Changes to /samples/ssh_smf.h and FOTSMF77 in
SYS1.MACLIB that might require a migration action

lists the changes to /samples/ssh_smf.h and FOTSMF77 in SYS.MACLIB
that might require a migration action and the accompanying actions.

Table 16. Changes to /samples/ssh_smf.h and FOTSMF77 in SYS1.MACLIB that might require a migration action

What changed

Migration action needed?

/samples/ssh_smf.h and SYS1.MACLIB(FOTSMF77)

Now, new Ciphers and MACs, new subtypes (Client
Connection Started 94 and Server Connection Started 95),
and SFTP target path have been updated to the
ssh_smf.h and FOTSMF77.

For more information, see [Chapter 12, “SMF Type 119|

[records for OpenSSH,” on page 201

Yes, if you use ssh_smf.h and FOTSMFE77.

Action: Update your application.

20 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Chapter 5. For system administrators

This topic describes the various tasks that the system administrator handles.

Rule: All files used by IBM Ported Tools for z/OS: OpenSSH (such as key files and
configuration files) must be in the IBM-1047 code set, except for the rc files
(/etc/ssh/sshrc and ~/.ssh/rc). Those files are parsed by /bin/sh and should be
in the code set of the current locale. Do not use the /etc/ssh/sshrc file if there is a
possibility of the users on the system running in different locales.

Restriction: IBM Ported Tools for z/OS: OpenSSH does not run in multibyte
locales.

Differences between sftp and FTP

OpenSSH's sftp and IBM Communications Server’s FTP with System SSL differ
from each other. OpenSSH’s sftp is an Open Source implementation of the IETF
Secure Shell (SECSH) “SSH File Transfer Protocol” Internet Draft. OpenSSH uses a
statically linked OpenSSL cryptographic library, System SSL, or ICSF to perform its
cryptographic functions. OpenSSH provides some key management facilities with
the ssh-keygen command. However, this support is not integrated with System
SSL support provided by IBM. OpenSSH uses the security product when
performing password authentication and when extracting keys from certificates
associated with SAF key rings. The public key authentication processing itself is
overseen by the OpenSSH daemon.

For information about the IETF SECSH internet drafts, see |Appendix C, “RFCs and|
[[nternet drafts,” on page 523

The Communications Server FTP server and client support Transport Layer
Security (TLS). The FTP client and server negotiate the use of TLS based on a
subset of the FTP security negotiation functions documented in RFC 2228. FTP uses
z/0OS System SSL, and therefore can use the cryptographic hardware. For more
information about FTP, see |z/OS Communications Server: IP Configquration Guidel

Because sftp and FTP with System SSL do not use the same protocol, they cannot
communicate with each other to establish a secure session.

Restriction: OpenSSH's sftp support does not include built-in support for MVS™
data sets. For alternate ways to access MVS data sets within sftp, see
[“Accessing MVS data sets within sftp,” on page 517 |

What you need to verify before using OpenSSH

Before using OpenSSH, the system administrator should check that all
prerequisites have been met.

Steps for verifying the prerequisites for using OpenSSH
About this task

Before you begin: Perform the following steps to verify that the prerequisites for
using OpenSSH have been met.

© Copyright IBM Corp. 2010, 2015 21

IBM Confidential

Procedure

1. Using as a reference, check that certain directories were set up
correctly when IBM Ported Tools for z/OS: OpenSSH was installed.

Table 17. List of directories and needed permissions

Directory Permission Owner Notes

/var/empty

755

UID(0) Must be empty. It is used as the home directory for the SSHD
(unprivileged) user. For more information about privilege
separation, see |“Step for creating the sshd privilege separation|
[user” on page 37/

/var/run

755

UID(0) Holds the sshd.pid file, which contains the process ID of the
most recently started OpenSSH daemon. If another directory is
preferred, the PidFile configuration option can be specified in
the daemon's sshd_config file. For more information, see

Also holds the sshd.mm.XXXXXXXX temporary files which are
used for compression with privilege separation.

/etc/ssh

755

UID(0) Holds the configuration files for ssh and sshd.

2. Check that the sshd daemon has been installed with the program control,

APF-authorized, and noshareas extended attributes. To verify that these
extended attributes have been set properly, issue the following shell command:

1s -E1 /usr/sbhin/sshd

The output should be similar to the following example:

(—rwxr——r—— ap-- 2 SYSADM 1 5783552 Jul 9 08:24 /usr/sbin/sshd)

The 'p' indicates that the program control extended attribute is set. The 'a’
indicates that the APF-authorized extended attribute is set. The lack of an 's'
after the 'p' indicates that the noshareas extended attribute is set. If the output
is not correct, then you must set the attributes as follows.

* To set the noshareas extended attribute, issue the following shell command:
extattr -s /usr/sbin/sshd

 If you are a UID(0) user with at least READ access to the
BPX.FILEATTR.PROGCTL resource in the FACILITY class, you can set the
program control extended attribute by issuing the following shell command:
extattr +p /usr/sbin/sshd

* If you are a UID(0) user with at least READ access to the
BPX.FILEATTR.APF resource in the FACILITY class, you can set the

APF-authorized extended attribute by issuing the following shell command:
extattr +a /usr/sbin/sshd

In addition, ensure that the Language Environment run-time libraries are
defined to program control, the standard Language Environment library is
HLQ.CEE.SCEERUN and the XPLINK is HLQ.CEE.SCEERUN2.

SETROPTS WHEN (PROGRAM)

RDEFINE PROGRAM = ADDMEM
("CEE.SCEERUN'/volser/NOPADCHK
"SYS1.LINKLIB'/'#***%xx'/NOPADCHK) UACC(READ)
SETROPTS WHEN(PROGRAM) REFRESH

22 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

3. Check that the ssh, scp, sftp, and sftp-server programs have been installed

with the program control and noshareas extended attributes. To verify that this
extended attribute is set properly, issue the following shell command for each
program:

1s -E1 progname

where progname is /bin/ssh, /bin/scp, /bin/sftp, or /usr/1ib/ssh/sftp-
server.

The output should be similar to the following example:

C—rwxr-xr-x -p- 2 SYSADM 1 5783552 Jul 9 08:24 progname)

The 'p' indicates that the program control extended attribute is set. The lack of
an 's' after the 'p’ indicates that the noshareas extended attribute is set. If the
output is not correct, then you must set the attributes as follows.

* To set the noshareas extended attribute, issue the following shell command:
extattr -s progname

* If you are UID(0) user with at least READ access to the BPX.FILEATTR.APF
resource in the FACILITY class, you can set the program control extended
attribute by issuing the following shell command:

extattr +p progname

Check that the ssh-keysign program has been installed with the noshareas
extended attribute. To verify that this extended attribute is set properly, issue
the following shell command for the program:
1s -ET progname
where progname is /usr/1ib/ssh/ssh-keysign. The output should be similar to
the following example:

C—rwxr—xr—x ---- 2 SYSADM 1 5783552 Jul 9 08:24 progname)

The third - in '----' indicates that the noshareas extended attribute is set. If the
output is not correct, then you must set the noshareas extended attribute. For
example, to set the noshareas extended attribute for /usr/1ib/ssh/ssh-keysign,
issue the following shell command:

extattr -s /usr/1ib/ssh/ssh-keysign

If host-based authentication is used, check that the ssh-keysign program has
been installed with setuid O .

Results

When you are done, you have verified that the prerequisites for using OpenSSH
have been met.

For more information about program control, see [z/0S UNIX System Services|

Setting up the sshd daemon

Before the system administrator can start the sshd daemon, the following setup
tasks must be done:

Chapter 5. For system administrators 23

24

IBM Confidential

The configuration files must be created or edited, as described in

[creating or editing configuration files.”]

Server authentication must be set up as described in |“Steps for setting up server|
authentication when keys are stored in UNIX files” on page 27 and |[“Steps for]
setting up server authentication when keys are stored in key rings” on page 29

The sshd privilege separation user must be created as described in
[creating the sshd privilege separation user” on page 37|

Setting up the message catalog for IBM Ported Tools for z/OS: OpenSSH is an
optional task. The task is described in[‘Setting up the message catalog for IBM|

[Ported Tools for z/OS: OpenSSH” on page 38

Steps for creating or editing configuration files
About this task

Perform the following steps to create or edit the configuration files.

Procedure

1.

Copy the configuration files from the /samples directory to the /etc/ssh
directory. Store them in the IBM-1047 (EBCDIC) code set. Additionally, set the
appropriate mode for some of the copied files.

cp -p /samples/sshd_config /etc/ssh/sshd_config
cp -p /samples/ssh_config /etc/ssh/ssh_config
cp -p /samples/moduli /etc/ssh/moduli

cp -p /samples/zos_sshd_config /etc/ssh/zos_sshd_config
cp -p /samples/zos_ssh_config /etc/ssh/zos_ssh_config
chmod 600 /etc/ssh/sshd_config

chmod 600 /etc/ssh/zos_sshd_config

[Table 21 on page 197]lists the permission and UID settings for each
configuration file.

Note: If you are migrating from a previous release, review your existing
configuration files for any changes that you might want to migrate to the new
release.

Modify the /etc/ssh/sshd_config file to control the SSH server's
authentication methods allowed, protocols, and ciphers supported, port

forwarding, and session control options. For more details, see and
sshd_config

[Appendix B, “OpenSSH - port forwarding examples,” on page 519 has
examples of port forwarding.

Modify the /etc/ssh/ssh_config file to control the SSH client-side
authentication methods, protocols, ciphers, port forwarding settings and session
control options. For more details, see and

Note:

a. The settings in this configuration file provide system defaults. They can be
overridden by the user's ssh configuration in ~/.ssh/config file or by
command-line options.

b. The ssh_config file can be shared across multiple systems with client
configuration options that are tailored to the specific local system being
used. To share the file, preface groups of configuration options with the
Host keyword.

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

4. Configure the TCP port. By default, sshd listens on TCP port 22. Because this

is in the range of ports numbered 1-1023, it is considered to be a privileged
TCP port. Only daemons running as a superuser are allowed to listen on these
ports unless TCP is configured to unrestrict low ports.

You can configure sshd to listen on a different port with the Port keyword or
the -p command-line option (see |sshd_config).

Example: An example of an sshd_config entry is:
Port 1022

If you want to reserve the port for sshd daemon use, add the following lines to
PROFILE.TCPIP within the Port statements:

PORT
22 TCP SSHD* ; port for sshd daemon

The job name must have the wildcard format of SSHD* because as the sshd
daemon starts, it creates child tasks starting with SSHDn where 7 is a number
between 1 and 9. Depending on your system, the resulting daemon task will be
one of these child tasks so a D OMVS,A=ALL will show SSHDn as the daemon
task. Use of this wildcard means that TCP/IP cannot automatically restart the
daemon if it goes down. See |“Starting the sshd daemon” on page 38| for
information about starting the OpenSSH daemon.

Set up random number generation.

* Verify that ICSF is started and can provide secure random numbers. See
[“Using hardware support to generate random numbers” on page 49| For
example, verify that /dev/random provides random data:

head -c100 /dev/random | od -x

(Optional step.) Create an sshrc file. If you need to run host-specific
commands whenever a user logs in to this host, create an /etc/ssh/sshrc file.
It is a shell script run only for SSH logins, not for non-SSH logins (such as
rlogin or telnet). Examples of use are logging or running ssh-agent. If you do
not need to do this, then do not create the file. If you create the file, it must be
a shell script in /bin/sh syntax.

If the TCPIP.DATA file on the system is located in the UNIX file system, for
example, named /etc/resolv.conf, copy /etc/resolv.conf to
/var/empty/etc/resolv.conf.

cp -p /etc/resolv.conf /var/empty/etc/resolv.conf

The OpenSSH daemon runs with privilege separation enabled by default.
During privilege separation, the daemon cleaves itself into two processes, one
with privileges and one without. The unprivileged user (the SSHD privilege
separation user) handles network traffic and everything not requiring special
privileges. This unprivileged process runs in a chroot jail of /var/empty. The
chroot service changes the root directory from the current one to a new one; in
this case, /var/empty. The root directory is the starting point for path searches
of path names beginning with a slash. At some point, the privilege separation
user invokes a TCP/IP system call which requires access to the TCPIP.DATA
file. If this file is stored in the UNIX file system as /etc/resolv.conf, the
privilege separation user will not have access to the file because it is not
located off the new root file system of /var/empty. To make this file visible to

Chapter 5. For system administrators 25

26

IBM Confidential

the privilege separation user, the system administrator should copy
/etc/resolv.conf to /var/empty/etc/resolv.conf.

Tip: Every time the installation changes the TCPIP.DATA statements, the
TCPIP.DATA file must be recopied to the path name located off the /var/empty
root, so that the updated information is found by the privilege separation user.

8. If your system is set up to run in another locale, see [Chapter 7, “Globalization|
fon z/OS systems,” on page 63| for information about setting up your system or
user environment.

Results

When you are done, you have either created or edited the configuration files.

Setting up server authentication

The following are important notes for setting up server authentication.

1. To run ssh-keyscan against a host, the sshd daemon must be running on that
host.

2. Verify all keys gathered via ssh-keyscan by displaying the key fingerprint with
ssh-keygen.

3. For additional security, all host names and addresses can be hashed in the
ssh_known_hosts file. The ssh-keygen and ssh-keyscan commands provide
options for hashing host names and addresses.

4. If ssh-keyscan was not used to gather the host keys, then prepend the host
name or address (for which the keys belong) to each key entry in the
ssh_known_hosts file. ssh-keyscan automatically includes the host name or
address in its output.

5. The system-wide ssh_known_hosts file is in the /etc/ssh directory.

Before the system administrator can start the sshd daemon, server authentication
must be set up. Two types of server authentication are supported: host key
exchange and GSS-API key exchange. During host key exchange, when a client
attempts to establish a secure connection with the server, keys are used to
determine the trustworthiness of the server. Those keys can be stored in either
UNIX files or SAF key rings, or both. For more information about storing the key
rings, see |“Choosing between UNIX files and key rings” on page 61 Optionally, if
GSS-API key exchange is configured on the SSH server and the SSH client, server
identities and keys are managed by the Key Distribution Center (KDC). GSSAPI
(Kerberos) key exchange is compatible with Microsoft Windows® domains and
some Windows SSH products.

You need to know whether you want to use SSH protocol version 1, protocol
version 2, or both. Protocol version 2 is the default. Both protocols support similar
authentication methods, but protocol version 2 is preferred because it provides
additional mechanisms for confidentiality and integrity. Protocol version 1 lacks a
strong mechanism for ensuring the integrity of the connection.

Restriction: If you are using SSH protocol version 1, you cannot use key rings to
hold your keys. You must use UNIX files to hold RSA keys used for SSH protocol
version 1.

The procedures for setting up server authentication are described in the following
sections:

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

+ [“Steps for setting up server authentication when keys are stored in UNIX files”]

* |“Steps for setting up server authentication when keys are stored in key rings” onl|

page 29|

+ [“Steps for setting up server authentication with GSS-API (Kerberos)” on page 37|

Steps for setting up server authentication when keys are
stored in UNIX files
About this task

Perform the following steps to perform setup for server authentication if you are
storing the keys in UNIX files.

Procedure

1. Generate the host keys for the SSH server based on the protocol that you plan
to use. (Host keys allow a client to verify the identity of the server.) The key
files must be stored in the IBM-1047 (EBCDIC) code set. Assuming that the
superuser running these commands is running in the default C locale, the key
files are automatically stored in that code set.

The following command will generate all of the host keys that do not already
exist for all key types (rsal, rsa, dsa, ecdsa):

ssh-keygen -A

To manually generate or replace selected SSH server host keys, use the
following commands.

If you are using SSH protocol version 1, issue:

ssh-keygen -t rsal -f /etc/ssh/ssh_host_key -N ""

If you are using SSH protocol version 2, issue:

ssh-keygen -t dsa -f /etc/ssh/ssh_host dsa key -N ""

ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key -N ""

ssh-keygen -t ecdsa -f /etc/ssh/ssh_host_ecdsa_key -N ""

The use of the -N option in the examples creates an empty passphrase for the
host key. Host keys cannot have passphrases associated with them, because the
daemon would have no way of knowing which passphrase to use with which
host key.

2. Copy the local host's public keys to the ssh_known_hosts file at the remote
host. The client uses the ssh_known_hosts file to verify the identity of the
remote host.

a. Log into the remote host.

b. Append the local host's public keys to the /etc/ssh/ssh_known_hosts file at
the remote host.

If you are using SSH protocol version 1, use:
/etc/ssh/ssh_host_key.pub
If you are using SSH protocol version 2, use:

/etc/ssh/ssh_host_dsa_key.pub
/etc/ssh/ssh_host_rsa_key.pub

You can use cut and paste to append the keys. Because a key is a long line,
verify that the keys were not split across lines. Each key should be exactly
one line of the file.

Chapter 5. For system administrators 27

28

IBM Confidential

If you use FIP to move your public key files to another system, treat the
files as text to enable any necessary conversion between ASCII and
EBCDIC.

c. For each public key added to the remote ssh_known_hosts file, add the host
name of the key to the start of the line. For more information, see
[“ssh_known_hosts file format” on page 139 All host names and addresses
in this file can be hashed for additional security. The ssh-keygen command
provides the -H option for this purpose.

d. Log off the system. Clients logging into the host can now verify the identity
of that host.

3. Gather the public host keys of remote hosts and store them in either a file or a
certificate.

a. If the remote hosts are not z/OS systems or if they are z/OS systems that
do not use key ring support, use ssh-keyscan to redirect the resulting
output to a file. Verify the keys in that file and add them to the previously
created /etc/ssh/ssh_known_hosts file. If you do not verify the keys before
creating the /etc/ssh/ssh_known_hosts file, users might be vulnerable to
attacks. For additional security, the ssh-keyscan command provides the -H
option to hash all host names and addresses in the output. See
for more information.

b. If any remote hosts are z/OS systems with the host keys in a key ring, two
methods of gathering and storing those keys on the local host are available.
Either the public key is stored in the /etc/ssh/ssh_known_hosts file, or the
public key is stored in a certificate associated with a key ring on the local
host. That certificate is identified in the /etc/ssh/ssh_known_hosts file.

1) Use ssh-keyscan as described earlier in this step, or
2) Extract the public host keys from the remote host key ring as follows:
¢ Use ssh-keygen -e on the remote host to export the public host key.
For example:

export _Z0S_SSH_KEY_RING_LABEL="SSHDAEM/SSHDring host-ssh-type"
ssh-keygen -e > host-ssh-type.out

¢ FTP the exported key to the local system.

* Use ssh-keygen -i on the local system to import the public host key
into a UNIX file. For example:

ssh-keygen -i -f host-ssh-type.out >> /etc/ssh/ssh_known_hosts

Results

When you are done, you have performed setup for server authentication in which
keys will be stored in UNIX files. Each time the host keys are regenerated, they
must be redistributed and added to the key ring of the remote system.

[Figure 1 on page 29 shows how the known_hosts file is created when keys are
stored in UNIX files.

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

HOST1 HOST2

1. Create host keys for HOST1

2. Copy public host keys for HOST1 to Or | 2.Run ssh-keyscan against HOST1 to
client (HOST2) gather its public host keys

3. Add host keys for HOST1 to the
ssh_known_hosts file

Now users from HOST2 can identify
HOST1 when they use ssh to log into it

4 Create host keys for HOST2

5. Run ssh-keyscan against HOST2 to or 5. Copy public keys for HOST2 to
gather its public host keys HOST1

6. Add host keys for HOST2 to the
ssh_known_hosts file

Now users from HOST1 can identify
HOST2 when they use ssh to log into it

Figure 1. How the known_hosts file is created when keys are stored in UNIX files

Steps for setting up server authentication when keys are
stored in key rings
About this task

The setup procedure has been divided into three steps:

* [‘Step 1: Generate the host keys for the SSH server” on page 30| Host keys allow
a client to verify the identity of the server.

* |“Step 2: Distribute the public keys from the local host to the remote hosts” on|
page 32| Clients use the ssh_known_hosts file to verify the identity of the remote
host.

* [“Step 3: Gather the public host keys of remote hosts” on page 34| Keys are
verified and then added to the /etc/ssh/ssh_known_hosts file.

Use RACF® or a similar security product that supports key rings when storing key
rings. SSH protocol version 2 is the only version that can be used when storing
keys in key rings. If you want to use protocol version 1, then you must store the
keys in UNIX files as described in |“Steps for setting up server authentication when|
[keys are stored in UNIX files” on page 27 Protocol version 2 provides additional
mechanisms for confidentiality and integrity while protocol version 1 lacks a
strong mechanism for ensuring the integrity of the connection. The key files must
be stored in the IBM-1047 (EBCDIC) code set.

The examples provided for managing key rings and associated objects use the
RACF RACDCERT command. If a different security product is used, consult that

Chapter 5. For system administrators 29

30

IBM Confidential

product's documentation to determine if it contains compatible support. For more
information about the RACDCERT command, the necessary authority required to
use the command, and any other options not described in this documentation,
refer to [z/0OS Security Server RACF Command Language Reference

In the examples, input names that are given in italics are variables that you can
choose. Some of these names in italics contain hyphen characters (-) separating
portions of the name. These hyphens are variable and are not required. The names
given are merely suggestions and are consistently used throughout the examples. If
you customize your own version in one step, that name will likely need to be used
on other command steps as well.

The examples demonstrate using a self-signed certificate. Using a certificate chain,
such as with root and intermediate certificate authority certificates, is supported. If
you will be using more advanced certificate chains than the examples demonstrate,
see [“Validating certificates when using key rings” on page 62| for important
considerations.

Step 1: Generate the host keys for the SSH server

Before you begin: You need to do the following tasks:

* Make sure that a unique user ID that will be used to start the OpenSSH daemon
has already have been set up on your system. A unique user ID is necessary
because RACF uses the user ID, not the UNIX UID, for access control to key
rings. The examples in this step use SSHDAEM as the user ID that starts the
daemon and that also owns the associated host key rings. For more information
about setting up the user ID that will be used to start the OpenSSH daemon, see
[‘Starting sshd as a stand-alone daemon” on page 38

¢ Determine whether you are working with real or virtual key rings because the
setup steps vary depending on the type of key ring is being used. See
[Security Server RACF Security Administrator’s Guidel for more information about
real and virtual key rings.

Perform the following steps to generate the host keys for the SSH server.

1. Create a real key ring if you do not yet have one to use for the host public
keys. Omit this step if you plan to use a virtual key ring. Use the RACDCERT
ADDRING command to create the new key ring, specifying the owning user 1D
and the key ring name. The ID keyword must specify the user ID that will be
starting sshd. The key ring name can be any unique name for this user ID.

For example:
RACDCERT ID(SSHDAEM) ADDRING(SSHDring)

2. Using the RACDCERT GENCERT command, generate a host certificate with
public and private keys based on the algorithms that are supported on the
server (either RSA, DSA, or both). For RSA keys, the minimum size is 768 bits
and the maximum size is 32768 bits. Typically, 2048 bits are considered
sufficient. DSA keys must be exactly 1024 bits as specified by FIPS 186-2. DSA
keys larger than 1024 bits associated with certificates in a key ring are not
supported by OpenSSH.

Do not use variant characters in the label name for the certificate. The sshd
daemon must run only in the C locale and therefore interprets the key files
(that is, the known host and authorized key files) as encoded in code set
IBM-1047.

The following examples demonstrate how to create non-ICSF (Integrated
Cryptographic Storage Facility) certificates in the RACF database.

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Note: ICSF can not be used to store the certificates and associated keys.

* To generate a certificate and an RSA public/private key pair, storing the
private key in the RACF database as a non-ICSF key:
RACDCERT GENCERT ID(SSHDAEM) SUBJECTSDN(CN('host-ssh-rsa-cn'))
SIZE(2048) WITHLABEL('host-ssh-rsa')
* To generate a certificate and a DSA public/private key pair, storing the
private key in the RACF database as a non-ICSF key:
RACDCERT GENCERT ID(SSHDAEM) SUBJECTSDN(CN('host-ssh-dsa-cn'))
SIZE(1024) DSA WITHLABEL('host-ssh-dsa')
The SUBJECTSDN parameter offers several more customizable keywords,
which are not shown in the preceding examples, that can be included in the
distinguished name. The label assigned to the certificate must be chosen to be
unique within the RACF database. The user ID must match the owner of the
key ring.

If real key rings are being used, use the RACDCERT CONNECT command to
connect the certificate to the host key ring. Omit this step if you plan to use
virtual key rings. You must identify the user ID that owns the certificate and
the user ID that owns the key ring. These are typically the same for this
connect command. For example:

RACDCERT CONNECT (ID(SSHDAEM) LABEL('host-ssh-type")
RING(SSHDring) USAGE(PERSONAL)) ID(SSHDAEM)

Add a line in the z/OS-specific zos_sshd_config file for each certificate being
used for a host key.

* For real key rings, add the following line:
HostKeyRingLabel "SSHDAEM/SSHDring host-ssh-type"

* For virtual key rings, add the following line:
HostKeyRingLabel "SSHDAEM/* host-ssh-type"

Restrict access to the key ring. To prevent access to the host private keys by
any other user, permit only the user ID (for example, SSHDAEM) that starts the
sshd daemon. See [“Managing key rings and restricting access to them” on page

for more information. For example:

* To prohibit universal access to SSHDring, using ring-specific profile checking;

RDEFINE RDATALIB SSHDAEM.SSHDring.LST UACC(NONE)
PERMIT SSHDAEM.SSHDring.LST CLASS(RDATALIB) ID(SSHDAEM) ACCESS(READ)

If the RDATALIB class is not yet active and RACLISTed:
SETROPTS RACLIST(RDATALIB) CLASSACT (RDATALIB)

Refresh the class:
SETROPTS RACLIST(RDATALIB) REFRESH

* To prohibit universal access to the SSHDAEM user's virtual key ring, using
ring-specific profile checking:

RDATALIB SSHDAEM.IRR_VIRTUAL_KEYRING.LST UACC(NONE)
PERMIT SSHDAEM.IRR_VIRTUAL_LISTRING.LST CLASS(RDATALIB) ID(SSHDAEM) ACCESS(READ)

If the RDATALIB class is not yet active and RACLISTed:
SETROPTS RACLIST(RDATALIB) CLASSACT(RDATALIB)

Refresh the class:

Chapter 5. For system administrators 31

IBM Confidential

SETROPTS RACLIST(RDATALIB) REFRESH

* To prohibit universal access to any key ring on the system, using global
profile checking:

RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)

If the FACILITY class is not yet active and RACLISTed:
SETROPTS RACLIST(FACILITY) CLASSACT(FACILITY)

Refresh the class:
SETROPTS RACLIST(FACILITY) REFRESH

When you are done with Step 1, you have generated the host keys for the SSH
server. Now go to [“Step 2: Distribute the public keys from the local host to the

|1_‘emote hosts.”|

Step 2: Distribute the public keys from the local host to the
remote hosts

Step 2 is intended for remote hosts that use key rings. If a remote host does not
use key rings, then use ssh-keygen to distribute the public host keys as described
in Step 3 in [“Steps for setting up server authentication when keys are stored in|
[UNIX files” on page 27

Perform the following steps to distribute the public keys from the local host to the
ssh_known_hosts file on the remote host.

1. Export each certificate in DER format without the private key into a data set
using the RACDCERT EXPORT command. Specify the certificate identification
and request CERTDER for the export format. Choose a data set to store the
exported certificate and specify it on the DSN parameter. If the data set
specified for DSN already exists, it is deleted and reallocated by the
RACDCERT EXPORT command.

For example:

RACDCERT EXPORT (LABEL('host-ssh-type')) ID(SSHDAEM)
FORMAT (CERTDER) DSN('host.sshcert.type")

2. Use FIP to distribute each exported certificate data set in binary format to the
remote hosts.

3. On the remote host, if real key rings are being used, create a new key ring if
you do not yet have a key ring to use for the known host public keys. Omit
this step if you plan to use virtual key rings. Use the RACDCERT ADDRING
command, specifying the owning user ID and the key ring name. If you have
not yet created the user ID that will be starting the sshd daemon on this
remote host, do that first. The user ID specified here must be the user ID that
will be running the sshd daemon on this remote host which is assumed to be
SSHDAEM in the following examples. The key ring name can be any unique
name for this user ID.

For example:
RACDCERT ID(SSHDAEM) ADDRING(SSHKnownHostsRing)

4. On the remote host, use the RACDCERT ADD command to add the exported
certificate on the remote host. Specify the data set that you distributed to this
remote host by using FTP. Also specify the user ID that should own the

32 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

certificate and indicate that this certificate is trusted. The user ID specified here
must be the user ID that will be running the sshd daemon on this remote host
which is assumed to be SSHDAEM in the following examples. You will also
specify the label for this certificate on this remote host. This label must be
unique for the user ID within the RACF database and is used to identify this
certificate on future commands and for reference as a known host certificate.

This certificate contains only the public key.
For example:

RACDCERT ADD('host.sshcert.type') ID(SSHDAEM)
WITHLABEL('host-ssh-type') TRUST

On the remote host, if real key rings are being used, use the RACDCERT
CONNECT command to connect each certificate into the known hosts key ring.
Omit this step if you plan to use virtual key rings. You must identify the user
ID that owns the certificate and the user ID that owns the key ring. These will
typically be the same for this connect command.

For example:

RACDCERT CONNECT(ID(SSHDAEM) LABEL('host-ssh-type')
RING (SSHKnownHostsRing)) 1D(SSHDAEM)

On the remote host, edit the system-wide known_hosts file
/etc/ssh/ssh _known_hosts to add a line for each host certificate connected in
Step The line must contain the host name or host names followed
by zos-key-ring-label="KeyRingOwner/KeyRingName label.” For example:
* For a real key ring (for example, SSHKnownHostsRing), add:

host zos-key-ring-label="SSHDAEM/SSHKnownHostsRing host-ssh-type"
* For a virtual key ring (for example, one owned by SSHDAEM), add:

host zos-key-ring-label="SSHDAEM/* host-ssh-type"

For more information, see the sshd command section [“ssh_known_hosts file|
[format” on page 139)

On the remote host, permit user access to the known hosts key ring. All
OpenSSH client users on this system must have authority to read the public
keys from this key ring. For details about the methods of permitting access, see
[‘Managing key rings and restricting access to them” on page 61]For example:

* To define universal access to the real key ring, SSHKnownHostsRing, using
ring-specific profile checking:
RDEFINE RDATALIB SSHDAEM.SSHKnownHostsRing.LST UACC(READ)

If the RDATALIB class is not yet active and RACLISTed:
SETROPTS RACLIST(RDATALIB) CLASSACT(RDATALIB)

Refresh the class:
SETROPTS RACLIST(RDATALIB) REFRESH

* To define universal access to the SSHDAEM user's virtual key ring, using
ring-specific profile checking:
RDEFINE RDATALIB SSHDAEM.IRR_VIRTUAL_KEYRING.LST UACC(READ)

If the RDATALIB class is not yet active and RACLISTed:
SETROPTS RACLIST(RDATALIB) CLASSACT(RDATALIB)

Chapter 5. For system administrators 33

34

IBM Confidential

Refresh the class:
SETROPTS RACLIST(RDATALIB) REFRESH

* To define (and permit) universal access to any key ring on the system, using
global profile checking;:

RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(UPDATE)

If the FACILITY class is not yet active and RACLISTed:
SETROPTS RACLIST(FACILITY) CLASSACT(FACILITY)

Refresh the class:
SETROPTS RACLIST(FACILITY) REFRESH

8. Log off the remote host.

When you are done with Step 2, you have distributed the public keys on the local
host to the remote hosts. Now go to [“Step 3: Gather the public host keys of remote]

Step 3: Gather the public host keys of remote hosts

Step 3 is intended for remote hosts that use key rings. If a remote host does not
use key rings, then use ssh-keyscan to gather the public host keys, as described in
Step |3 on page 28| in [“Steps for setting up server authentication when keys are|
[stored in UNIX files” on page 27

1. Create a new key ring if you do not yet have one to use for the host public
keys on your local host. Omit this step if you plan to use virtual key rings. Use
the RACDCERT ADDRING command, specifying the owning user ID and the
key ring name. The ID keyword should specify the user ID that will be starting
sshd. The key ring name can be any unique name for the specified user ID. For
example:

RACDCERT ID(SSHDAEM) ADDRING(SSHKnownHostsRing)

2. On the remote host, export each host key certificate in DER format without the
private key and use FIP to distribute it in binary format to the local host. The
RACDCERT EXPORT command can perform this type of export. Specify the
certificate identification and request CERTDER for the export format. Choose a
data set to store the exported certificate and specify it on the DSN parameter. If
the data set specified for DSN already exists, it is deleted and reallocated by
the RACDCERT EXPORT command. For example:

RACDCERT EXPORT (LABEL('host-ssh-type')) ID(SSHDAEM)
FORMAT (CERTDER) DSN('host.sshcert.type')

3. Use FIP to distribute each data set in binary format from the remote host to
the local host.

4. On the local host, add each certificate into the SAF database. Use the
RACDCERT ADD command to add the exported certificate on the remote host.
Specify the data set that you copied from the local host using FTP, the user ID
that should own the certificate, and indicate that this certificate is trusted. The
user ID specified here must be the user ID that will be running the sshd
daemon on this local host. You will also be specifying the label for this
certificate on this local host. This label must be unique for the user ID within

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

the RACF database, and will be used to identify this certificate on future
commands and for reference as a known host certificate.
This certificate will contain only the public key. For example:

RACDCERT ADD('host.sshcert.type') ID(SSHDAEM)
WITHLABEL('host-ssh-type') TRUST

5. Connect each certificate into the known hosts key ring if a real key ring is
being used. Omit this step if you plan to use virtual key rings. The RACDCERT
CONNECT command can be used. You must identify the user ID that owns the
certificate and the user ID that owns the key ring. These will typically be the
same for this connect command. For example:

RACDCERT CONNECT(ID(SSHDAEM) LABEL('host-ssh-type')
RING (SSHKnownHostsRing)) 1D(SSHDAEM)

6. Edit the local host's system-wide known_hosts file /etc/ssh/ssh_known hosts
to add a line for each of the host certificates imported in Step The
line must contain the host name or host names followed by
zos-key-ring-label="KeyRingOwner/KeyRingName label”. For example:
 If a real key ring is being used (for example, SSHKnownHostsRing), issue:
mvshost zos-key-ring-label="SSHDAEM/SSHKnownHostsRing host-ssh-type"

* If a virtual key ring is being used (for example, one owned by SSHDAEM),
issue:
mvshost zos-key-ring-label="SSHDAEM/* host-ssh-type"

For more information, see the sshd command section [“ssh_known_hosts file|
[format” on page 139.|

7. On the local host, permit user access to the known hosts key ring. For details
about the methods of permitting access, see Step |7 on page 33| in [“Step 2/
[Distribute the public keys from the local host to the remote hosts” on page 32|

When you are done with Step 3, you have gathered the public host keys of remote
hosts and edited the local /etc/ssh/ssh_known_hosts file to include the imported
host certificates. Now clients can verify the identity of remote hosts. Each time the
host keys are regenerated in the key ring, they must be redistributed and added to
the key ring of the remote system.

[Figure 2 on page 36| shows a high-level view of the operations performed to set up
the server's host keys when they are stored in real key rings.

Chapter 5. For system administrators 35

IBM Confidential

HOST1

1. Create host keys for HOST1.

>RACDCERT ADDRING SSHDring

>RACDCERT GENCERT ... HOST2
>RACDCERT CONNECT to SSHDring

>Specify zos_sshd_config option HostKeyRingLabel

2. tDiStI.riblitercl;g!Ii%hOSt keys for HOSTH or | 2. Run ssh-keyscan against HOST1 to gather
o client ()- its public host keys.
RACDCERT EXPORT ...
“RAC 3. Add keys for HOST1 to /etc/ssh/ssh_known_hosts.

>FTP the exported certificate to HOST2

If adding to key ring:

>RACDCERT ADDRING SSHKnownHostsRing

>RACDCERT ADD ...

>RACDCERT CONNECT to SSHKnownHostsRing

>Edit /etc/ssh/ssh_known_hosts to identify the
imported certificate

If adding directly to file:
>Add the key to /etc/ssh/ssh_known_hosts

Now users from HOST2 can identify HOST1
when they use ssh to log into it.

4. Create host keys for HOST2.

If storing hosts in key ring:
>RACDCERT ADDRING SSHDring
>RACDCERT GENCERT ...
>RACDCERT CONNECT to SSHDring

If storing keys in UNIX files, use ssh-keygen.
5. Distribute public host keys for HOST2 to client.

>RACDCERT EXPORT ...
>FTP either the exported certificate or UNIX
key file to HOST1

6. Add host keys for HOST2 to /etc/ssh/ssh_known_hosts

If adding to key ring:

>RACDCERT ADDRING SSHKnownHostsRing

>RACDCERT ADD ...

>RACDCERT CONNECT to SSHKnownHostsRing

>Edit /etc/ssh/ssh_known_hosts to identify the
imported certificate

If not adding to key ring:
>Add the key to /etc/ssh/ssh_known_hosts

If HOST2 exported a UNIX key file for its host
key, add it to /etc/ssh/ssh_known_hosts.

Now users from HOST1 can identify HOST2
when they use ssh to log into it.

Figure 2. How the server's host keys are set up when they are stored in real key rings

36 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Steps for setting up server authentication with GSS-API
(Kerberos)
About this task

Perform the following steps to perform setup for server authentication with
GSS-API key exchange.

1. Refer to|z/OS Integrated Security Services Network Authentication Servicel
[Administration| . This reference defines the steps for configuring a Key
Distribution Center (KDC). At a minimum, follow the steps to make the
Network Authentication Service operational and to configure the primary
security server for the realm.

2. For SSH servers, modify the /etc/ssh/sshd_config file to enable the GSS-API
options GSSAPIAuthentication and GSSAPIKeyExchange.

3. Using GSSAPI in SSHD requires the use of a new DLL: /usr/1ib/ssh/
zsshgss.so. The /usr/1ib/ssh directory must be added to the LIBPATH
environment variable for the sshd process. For example, if you are starting an
/etc/ssh/sshd.sh script from BPXBATCH, add this export:
export LIBPATH=$LIBPATH:/usr/1ib/ssh

4. For SSH client machines, modify the /etc/ssh/ssh_config file to enable the
GSSAPI options GSSAPIAuthentication and GSSAPIKeyExchange. These
option may alternatively be enabled in an individual user's ~/.ssh/ssh_config
file or by using command line options on the ssh, sftp, or scp commands.

5. Setup a host-based service principal for the SSH server by adding a Kerberos
segment to the user that SSHD runs under. The principal name, excluding the
realm, must be host/default_host_name, where default_host_name is the fully
qualified lower-case default host name. This should match the name returned
by z/OS UNIX command hostname -r. For example, to associate the principal
for host test.server.myco.com with the SSHDAEM user:

ALTUSER SSHDAEM PASSWORD(password) NOEXPIRED

KERB (KERBNAME ('host/test.server.myco.com'))
ALTUSER SSHDAEM NOPASSWORD

When you are done, you have performed setup for server authentication with
GSS-APL

Step for creating the sshd privilege separation user
About this task

Privilege separation (where the OpenSSH daemon creates an unprivileged child
process to handle incoming network traffic) is enabled in the default configuration
for sshd.

Before you begin: You need to know the new group ID and unused nonzero user
ID that you want to use. The user ID and group ID for the privilege separation
user “SSHD” is not the same user ID that will be used to start the OpenSSH
daemon. The user ID you choose for the SSHD user should be unprivileged.

You must also be logged onto TSO/E with RACF SPECIAL authority. (Instead of
using RACEF, you could use an equivalent security product if it supports the SAF
interfaces required by z/0S UNIX, which are documented in [z/OS Security Server|
[RACF Callable Services|)

Perform the following step to create the sshd privilege separation user.

Chapter 5. For system administrators 37

IBM Confidential

* Set up a user account for the sshd privilege separation user by issuing the
following commands where xxx is an unused group ID, and yyy is an unused
nonzero user ID.

ADDGROUP SSHDG OMVS (GID(xxx))
ADDUSER SSHD DFLTGRP(SSHDG) OMVS(UID(yyy) HOME('/var/empty')

PROGRAM(' /bin/false')) NOPASSWORD
Tip: If you have a user ID naming policy that does not allow you to assign this
user as "SSHD", you can create an "sshd" entry in the user ID alias table, and
map it to the user ID that was actually defined. See [z/0S UNIX System Services|
ﬁ

anning| for more information about the user ID alias table.

When you are done, you have created the sshd privilege separation user.

Setting up the message catalog for IBM Ported Tools for z/OS:
OpenSSH

Setting up the message catalog for IBM Ported Tools for z/OS: OpenSSH is an
optional task. To see message numbers (for example, FOTSnnnn) associated with
OpenSSH error messages, no special OpenSSH message catalog setup is required.
If you do not want to see message numbers, then you must set the environment
variable _ZOS_OPENSSH_MSGCAT="NONE" before running an OpenSSH
command. This setting can be applied to all shell users by exporting it from the
default system-wide user environment files, /etc/profile and /etc/csh.cshrc. The
_ZOS_OPENSSH_MSGCAT environment variable identifies the OpenSSH message
catalog to be used when sending OpenSSH error messages.

Table 18. Values for the _ZOS_OPENSSH_MSGCAT environment variable
Value Result

"openssh.cat" Message numbers are associated with OpenSSH
error messages by default.

"openssh" Message numbers are associated with OpenSSH
error messages if the NLSPATH environment
variable includes the following path:
/usr/lib/nls/msg/%L/%N.cat.

"NONE" Message numbers are not associated with OpenSSH
error messages.

Unset or set to an invalid value Message numbers are associated with OpenSSH
error messages by default.

Starting the sshd daemon

You can start the sshd daemon in one of two ways:

* As a stand-alone daemon, as described in [“Starting sshd as a stand-alone|
As a stand-alone daemon, sshd listens for TCP connections on a port
(default 22), and starts child processes to handle the requested connections.

+ As a daemon running under inetd, as described in [“Starting sshd as a daemon|
[running under inetd” on page 41| The inetd program listens on the specified
port and starts an instance of the sshd daemon for each requested connection.

Starting sshd as a stand-alone daemon
The sshd daemon can be started as a stand-alone daemon.

38 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

This setup assumes that RACF is used as your security product. If you use a
different security product, you need to determine the equivalent setup for that
product. You also need RACF SPECIAL (administrator) authority to perform the
RACEF setup.

You need to decide which user ID will be used to start the daemon. The user ID
might already have been set up on your system. Follow these rules:

¢ The user ID must have a UID of 0 and ACCESS(READ) permission to
BPX.DAEMON.

* Do not choose “SSHD” as the user name to assign to the daemon. The user
name “SSHD” is reserved for the privilege separation user, which is not a
UID(0) user ID.

e If the host system has the BPX.POE resource in the FACILITY class defined, the
UID invoking the OpenSSH daemon must have ACCESS(READ) permission.

* If the SERVAUTH class is active, the user ID might need to be authorized to
some of the network resources protected by the SERVAUTH class. For more
information about the SERVAUTH class, see [z/OS Communications Server: IP|
[Configuration Guidd

Example: The following example assumes that the SSHDAEM user ID is defined as
UID(0) and has READ access to the BPX.DAEMON profile in the FACILITY class.
It also assumes that the SSHDAEM user ID was set up like the OMVSKERN user
ID. For more information about how to set up OMVSKERN, see the section on
preparing RACF in [z/OS UNIX System Services Planning]

SETROPTS CLASSACT (FACILITY)

SETROPTS RACLIST(FACILITY)

RDEFINE FACILITY BPX.DAEMON UACC(NONE)

PERMIT BPX.DAEMON CLASS(FACILITY) ID(SSHDAEM) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

The section on establishing the correct level of security for daemons in [z/0S UNIX]
[System Services Planning| discusses the z/OS UNIX level of security.

Ways to start sshd as a stand-alone daemon

There are several ways to start and restart sshd. The method used depends on the
level of control that the installation has chosen for daemons.

Using BPXBATCH

You can start sshd with a cataloged procedure by using BPXBATCH to invoke a
daemon program located in the z/OS UNIX file system. If you use BPXBATCH as
a started procedure to initiate the SSHD job, it will complete typically with a
return code of CC=0. A forked copy of the daemon will be left running, which is
normal.

Note: ICSF must be running prior to starting sshd.

These steps explain what to do.
1. Create a cataloged procedure.
Example: Following is a sample procedure:

//SSHD PROC

//SSHD EXEC PGM=BPXBATCH,REGION=0M,TIME=NOLIMIT,

// PARM="'PGM /bin/sh -c /etc/ssh/sshd.sh'

//* STDIN and STDOUT are both defaulted to /dev/null

//STDERR DD PATH='/tmp/sshd.stderr',

// PATHOPTS=(OWRONLY,0CREAT,0APPEND) , PATHMODE= (SIRWXU)

Chapter 5. For system administrators 39

40

IBM Confidential

The following is the sample shell script to be used with the preceding sample
procedure. The sample procedure assumes that this sample shell script is stored
in /etc/ssh/sshd.sh and is executable by the caller (for example, chmod 700
/etc/ssh/sshd.sh).

#!/bin/sh

export _EDC_ADD_ERRNO2=1

nohup /usr/sbin/sshd -f /etc/ssh/sshd_config &

sleep 1

Specifying REGION=0M in the JCL is equivalent to specifying
MEMLIMIT=NOLIMIT. Options for altering this behavior include utilizing
IEFUSI to set MEMLIMIT ceilings for your system because IEFUSI settings
override the JCL. Alternatively, you can use SMFPRMxx system default
settings, but this works only if there are no REGION or MEMLIMIT
specifications in the JCL.

2. For this sshd cataloged procedure to obtain control with superuser and daemon
authority, you must add it to the STARTED class.

The procedure in this example is named SSHD because it starts the sshd
daemon. It should not be confused with the SSHD privilege separation user,
which is an unprivileged user ID that the daemon uses to execute unprivileged
areas of code.

Example: This example assumes that the SSHDAEM user ID is defined as
UID(0), and has READ access to the BPX.DAEMON profile in the FACILITY
class. For more information about how to set up SSHDAEM, see
[as a stand-alone daemon” on page 38 Following is an example of a cataloged
procedure:
SETROPTS GENERIC(STARTED)
RDEFINE STARTED SSHD.* STDATA(USER(SSHDAEM)
GROUP (OMVSGRP) TRUSTED(NO))
SETROPTS RACLIST(STARTED) REFRESH
The section about using started procedures in [z/OS Security Server RACH
[Security Administrator's Guidd contains more information about using started
procedures and the STARTED class.

3. To start sshd, issue the following command from the MVS console:
S SSHD
You should see the message IEF6951 on the MVS syslog. The user ID indicated
in the message should be defined as UID(0) with READ access to the
BPX.DAEMON profile in the FACILITY class. The group indicated in the
message should have an OMVS segment containing a GID value. With the
default values from Step El (SSHDAEM and OMVSGRP), the message would
look like the following output: :

IEF695I START SSHD WITH JOBNAME SSHD IS ASSIGNED TO
USER SSHDAEM ,GROUP OMVSGRP

The user ID and group must not be SSHD and SSHDG because this would
indicate that the daemon was started with the SSHD privilege separation user.

If the sshd daemon is terminated, you can issue S SSHD to restart it.

Using the /etc/rc shell script

You can put the command in the /etc/rc shell script to start the daemon
automatically during initialization. For information about starting programs from
/etc/rc, see the section on customizing /etc/rc in[z/OS UNIX System Services|

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

When UNIX systems are initialized (IPLed or restarted), the /etc/rc shell script is
run to perform system initialization functions and to start daemons. If a daemon
terminates, a superuser must restart the daemon.

To start sshd from the /etc/rc shell script, add the following to the /etc/rc file:

Note: ICSF must be running prior to starting sshd.
_BPX_JOBNAME=SSHD /usr/sbin/sshd &

In this example, the _BPX_JOBNAME environment variable is set to assign a job
name of SSHD to the sshd daemon. Doing so allows the operator to have better
control over managing the sshd daemon.

When started from the/etc/rc shell script, stdin and stdout are set to /dev/null

and stderr is set to /etc/log for recording any errors. If you want to separate the
standard error of sshd from that of all /etc/rc error output, you can specify the
sshd command to redirect standard error as follows:

_BPX_JOBNAME=SSHD /usr/sbin/sshd 2>/tmp/sshd.stderr &

If the sshd daemon process is stopped, it must be started by a user ID with
appropriate privileges. For more information about setting up the user ID that will
be used to start the OpenSSH daemon, see |“Starting sshd as a stand-alone
[daemon” on page 38|

From the shell

If you are running with UNIX-level security, (for example, without
BPX.DAEMON), you can start sshd from a superuser ID in the UNIX shell. This
security level is not generally adequate for z/OS systems.

Issue:
_BPX_JOBNAME=SSHD /usr/sbin/sshd &

For an explanation about using &, see [z/0OS UNIX System Services Planning]

Restarting the sshd daemon without bringing it down

If the server configuration files are changed after the sshd daemon is running, the
changes do not affect the daemon, unless a SIGHUP signal is sent to the daemon
process. To restart the sshd daemon, reading the configuration files, including
z/OS-specific files, without terminating existing SSH connections, issue

ki1l -s HUP $(cat /var/run/sshd.pid)

The name of the /var/run/sshd.pid file can be changed by using the sshd_config
keyword PidFile.

SIGHUP does not reset command-line options (which might override the
configuration files). If you want to change a command-line option, the daemon will
have to be stopped and then restarted with the new command-line option.

Starting sshd as a daemon running under inetd

You can start the sshd daemon as a daemon running under inetd.

Chapter 5. For system administrators 41

IBM Confidential

Steps for starting the sshd daemon under inetd
About this task

Before you begin: You need to be familiar with inetd configuration. You should
also be aware that starting sshd through inetd could decrease performance of ssh
connection startup time on your system. For every ssh connection started, inetd
will start a new sshd. The sshd daemon startup incurs some overhead due to basic
initialization and protocol version 1 server key generation.

Perform the following steps to start the sshd daemon under inetd.

Procedure

1. In the TCP/IP services configuration file, add an entry to establish the
connection between TCP/IP and z/OS UNIX. This is the /etc/services file or
the hlq.ETC.SERVICES data set, where hlq is the prefix defined by
DATASETPREFIX in the TCP/IP profile "TCPIP" by default). The format is:

ssh 22/tcp

2. In the /etc/inetd.conf file, add a line similar to the following example:
ssh stream tcp nowait SSHDAEM /usr/sbin/sshd sshd -i

The -i option specifies inetd behavior, with a single connection on a TCPIP
socket attached to sshd's stdin and stdout.

Results

When you are done, you have started the sshd daemon under inetd.

Restarting the sshd daemon under inetd without bringing it

If inetd is currently running, send it a SIGHUP signal to allow the new
configuration files with sshd settings to be read.

Stopping the sshd daemon

42

About this task
To stop the sshd daemon from the MVS console, follow these steps:

Procedure
1. Determine the address space ID (ASID) of the sshd process. Issue:
D A,SSHD*

The ASID of the SSHD daemon will be returned.

2. Using the ASID obtained in Step |1} determine the process ID (PID) of the sshd
process. Issue:

D OMVS,ASID=aaaa

where aaaa is the ASID obtained in Step (1} The PID of the daemon will be
returned.

3. Using the PID obtained in Step |2} stop the sshd daemon. Issue:

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

F BPXOINIT,TERM=pppppppp
where pppppppp is the PID obtained in Step
Results

To stop sshd from z/OS UNIX, follow these steps:

1. Determine the process ID (PID) of the sshd daemon by looking at the contents
of the file /var/run/sshd.pid. By default, the sshd PID is written to
/var/run/sshd.pid when sshd is started. The name of the /var/run/sshd.pid
file can be changed by using the sshd_config keyword PidFile. To find the PID,
issue:

cat /var/run/sshd.pid

The PID of the sshd daemon will be returned.

2. Issue the z/OS UNIX kill command against the PID that was obtained in Step
For example:

ki1l $(cat /var/run/sshd.pid)

or
ki1l pppppppp

where ppppppp is the PID obtained in Step

To stop the sshd daemon with a cataloged procedure using BPXBATCH, follow
these steps:

1. Create a cataloged procedure. For example:

//STOPSSHD PROC

//STOPSSHD EXEC PGM=BPXBATCH,

// PARM='PGM /bin/sh -c /etc/ssh/stopsshd.sh'

//* STDIN and STDOUT are both defaulted to /dev/null

//STDERR DD PATH='/tmp/sshd.stderr’',

// PATHOPTS=(OWRONLY,OCREAT,0APPEND) ,PATHMODE= (SIRWXU)

The following is the sample shell script to be used with the preceding sample
procedure. The sample procedure assumes that this sample shell script is stored
in the /etc/ssh/stopsshd.sh file and is executable by the caller (for example,
chmod 700 /etc/ssh/stopsshd.sh).

#1/bin/sh

ki1l $(cat /var/run/sshd.pid)

By default, the sshd PID is written to the /var/run/sshd.pid file when sshd is
started. If the name of the sshd PID file was changed by using the sshd_config
PidFile keyword then this sample shell script must be changed accordingly.
(The keyword is described in PidFile])

2. For the cataloged procedure to obtain control with superuser and daemon
authority, you must add it to the STARTED class.

Example: This example assumes that the SSHDAEM user ID is defined as
UID(0) and has READ access to the BPX.DAEMON profile in the FACILITY

class. For more information about how to set up SSHDAEM, see [“Starting sshd

las a stand-alone daemon” on page 38|

SETROPTS GENERIC(STARTED)

RDEFINE STARTED STOPSSHD.* STDATA(USER(SSHDAEM)
GROUP (OMVSGRP) TRUSTED(NO))

SETROPTS RACLIST(STARTED) REFRESH

Chapter 5. For system administrators 43

IBM Confidential

The section about using started procedures in [z/OS Security Server RACH
[Security Administrator's Guidd contains more information about using started
procedures and the STARTED class.

3. To stop the sshd daemon, issue the following command from the MVS console:
S STOPSSHD

Whenever the sshd daemon is started, you can issue S STOPSSHD to stop it.

Running the sshd daemon in a multilevel-secure environment

44

The OpenSSH daemon (sshd) can be used on a multilevel-secure system to control
a user's security label at login. Review [/OS Planning for Multilevel Security and the|
[Common Criteria| before using the daemon on a multilevel-secure system.

The OpenSSH daemon will attempt to derive a security label from the user's port
of entry, as defined in a NetAccess profile. To successfully login to a
multilevel-secure system, the login user ID must be permitted to the security label
defined in the NetAccess profile for the client IP address. These checks are
performed for any user invoking ssh, scp, or sftp to perform remote operations on
the multilevel-secure system. For more information about NetAccess profiles and
running daemons in a multilevel-secure environment, see |z/OS Communications|
[Server: IP Confiquration Guidel

Verifying security labels for directories

Verify that the following directories have been assigned the appropriate security
labels.

Directory Permission Owner Security label
/var/empty 755 UID(0) SYSHIGH
/var/run 755 UID(0) SYSLOW
/usr/lib/ssh 755 UID(0) SYSLOW
/etc/ssh 755 UID(0) SYSLOW

Configuring sshd for multilevel security

The OpenSSH daemon must be started by a UID(0) user ID running with a
security label of SYSMULTI, and the user ID must be authorized to the
SERVAUTH NETACCESS profiles. The privilege separation user ("SSHD") must be
assigned and permitted to the SYSMULTI seclabel. Assign a security label of
SYSHIGH to the /var/empty directory.

If the host system has the BPX.POE resource in the FACILITY class defined, the
UID invoking the OpenSSH daemon must have ACCESS(READ) permission.

Guidelines: In a multilevel-secure environment:
1. sshd should not be invoked through inetd.

2. Port forwarding should be disabled because it could allow a user to bypass
NetAccess profile settings. It is disabled by default. See the description of the
sshd_config keywords|AllowTcpForwarding| and [X11Forwarding|

If users are attempting login with password authentication and do not have
authorization to log in from their IP address, then the login will fail at password
entry and a message should be written to the MVS console by the security product.

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

If they are attempting login via public key authentication and do not have
authorization to log in from their IP address, the attempted login will be
terminated before the users enter a passphrase.

The following output is a sample failure of a client public key authentication in a
multilevel-secure environment:

debug3: send_pubkey test
debug2: we sent a publickey packet, wait for reply
Connection closed by UNKNOWN

The OpenSSH daemon writes an error message to the UNIX syslog for these
failures.

Considerations for running the OpenSSH daemon when
TERMINAL classes are defined

The OpenSSH daemon recognizes TERMINAL class settings.

* If the user is attempting login with password authentication and does not have
authorization to log in from their terminal, then the login will fail at password
entry and a message should be written to the MVS console by the security
product.

* If the user is attempting login via public key authentication and does not have

authorization to log in from their terminal, the attempted login will be
terminated before the user enters a passphrase.

The following output is a sample client public key authentication failure when a
TERMINAL class is enabled:

debug3: send_pubkey_test
debug2: we sent a publickey packet, wait for reply
Connection closed by UNKNOWN

The OpenSSH daemon writes an error message to the UNIX syslog for these
failures.

Limiting file system name space for sftp users

Some administrators might want to limit the file system name space that is
accessible by users during file transfer operations. This task can be accomplished
by configuring the sshd daemon to change the root directory of the sftp user
connection. The administrator uses the sshd_config keyword ChrootDirectory to
set up the environment. The keyword is described in [ChrootDirectory|

After the environment has been set up, searches for file system objects (files and
directories) are relative to the user's new root directory. If the new root directory
does not contain a duplicate of the required programs or support files needed by
the user, then the session might not be usable. The "internal-sftp" subsystem can be
used to overcome this setup problem for sftp users. Specifying "internal-sftp" on
either the sshd_config keywords Subsystem or ForcecCommand causes the sshd
daemon to implement an in-process sftp server. Such a server does not require
duplication of the sftp-server command or other support files in the new root
directory in order to connect via sftp. Thus, combining the use of the sshd_config
keyword ChrootDirectory and the "internal-sftp" subsystem enables full sftp file

Chapter 5. For system administrators 45

46

IBM Confidential

transfer functionality, while limiting the file system objects that are accessible to the
user. (The two keywords are described in [Subsystem| and [ForcecCommand})

Note that specifying "internal-sftp" on the sshd_config keyword ForceCommand
enables an in-process sftp server to be the only command to be run, regardless of
the command specified by the user. For example, this prevents the user from
running scp or from starting an interactive shell session via ssh on the server. In
addition, the in-process sftp server allows users without shell access on the server
to still transfer files via sftp. Using the ForcecCommand keyword in this manner
allows the administrator to apply this restriction to a limited set of users when
placed inside a Match keyword as described in

Public key authentication can also be used with the sshd_config keyword
ChrootDirectory. However, the sshd daemon will search for the user's public keys
(see the sshd_config keyword [AuthorizedKeysFile) starting from the original root
directory, not the new root directory specified by the ChrootDirectory keyword.
Therefore, depending on the location of the new root directory, the user might not
have access to their own public keys used during authentication.

Example 1: Use the sshd_config keyword ChrootDirectory and "internal-sftp"
subsystem to cause the sshd daemon to set a user's root directory to the user's
home directory.

Server (name is "serverl") sshd_config keywords:

Subsystem sftp internal-sftp
ChrootDirectory %h

Client (user "employeel", home directory is /u/employeel):

> sftp serverl
Connecting to serverl...
sftp> pwd
Remote working directory: /
sftp> Ts -a

o 00 .profile .sh_history
.ssh myfile

After connecting and setting the root directory, the sshd daemon also attempts to
change the user's current working directory to the user's home directory, relative to
the root directory that is now in effect. For example, if the user's home directory
were /u/employeel, then the sshd daemon would attempt to set the user's current
working directory relative to the root directory (which also happens to be
/u/employeel). Therefore, the sshd daemon sets the user's current working
directory to /u/employeel/u/employeel, if the directory exists. This action might or
might not be what is desired.

Example 2: An example of using the sshd keyword ChrootDirectory and the
"internal-sftp" subsystem for a specific group of users. Users who are members of
the group SFTPUSERS will have their root directory set to "/files/repository" and
be forced into using sftp, regardless of the command they are attempting to run. If
they are not members, their root directory will not be changed when connecting.
They will also not be limited to only using sftp unless other sshd keywords were
in effect for those users, such as a different ForcecCommand in another Match
block.

Server (name is "serverl") sshd_config keywords:

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Subsystem sftp internal-sftp

Match group SFTPUSERS
ChrootDirectory /files/repository
ForceCommand internal-sftp

Client (user "employeel" in group SFTPUSERS, home directory is /u/employeel):

> sftp serverl

Connecting to serverl...
sftp> pwd

Remote working directory: /
sftp> 1s -a
00 filel file2

Configuring the system for X11 forwarding

X11 forwarding allows users who have an account on a UNIX machine to open a
connection to the X11 interface remotely from another computer. Because this
connection uses SSH, the communication between the systems is encrypted. X11
forwarding works only if the system being connected to has both SSH and X11
forwarding enabled.

Guideline: Enable X11 forwarding with caution. Users with the ability to bypass
file permissions on the remote host (for the user's X authorization database) can
access the local X11 display through the forwarded connection. Unauthorized users
might then be able to perform activities such as keystroke monitoring.

Steps for configuring the system for X11 forwarding
About this task

Before you begin: You need to know what local directory you want to copy the
files from /usr/Tpp/tcpip/X11R6/Xamples/clients/xauth to.

Perform the following steps to configure your system for X11 forwarding. The first
two steps explain how to install the xauth sample program.

Procedure

1. Copy the files from the /usr/Tpp/tcpip/X11R6/Xamples/clients/xauth
directory to a local directory.
Example: Copy the files from the /usr/Tpp/tcpip/X11R6/Xamples/clients/
xauth directory to the local directory /u/Billy/XauthBuild.
cp -R /usr/1pp/tcpip/X11R6/Xamples/clients/xauth /u/Billy/XauthBuild

2. Edit the Makefile in your copied directory.
a. Change CFLAGS to:
CFLAGS = -D_ALL_SOURCE -DTCPCONN -DUNIXCONN -I/usr/1pp/tcpip/X11R6/include
b. Change SYSLIBS to:
SYSLIBS = -TXaw -1Xmu -1Xt -1SM -1ICE -1Xext -1X11 -TXau

These changes enable the xauth program to run without using DLLs. If you
want xauth to use DLLs, enable the PermitUserEnvironment sshd
configuration option so that LIBPATH can be read from the user's
environment file. However, because enabling might allow users to bypass
access restrictions, enabling it is not recommended.

Chapter 5. For system administrators 47

IBM Confidential

Compile the code by issuing make. You will need the _C89_CCMODE
environment variable set. To enable it only for this command invocation,
issue make as follows:

€89 CCMODE=1 make
Move the xauth binary to the desired installation location.

3. Configure the server for X11 forwarding.

a.

C.

Verify that the sshd configuration variable UseLogin is disabled. It is
disabled by default.

Change the sshd configuration variable X11Forwarding to "yes".

Verify that the sshd configuration variable X11UseLocalhost is set to "yes".
(The default setting is "yes".)

Set the sshd and ssh configuration variable XAuthLocation to the full path
name of the new xauth executable in both the system-wide ssh and sshd
configuration files. The xauth program might need to support the generate
command in order to allow ssh to successfully set up untrusted X11
forwarding.

Optionally, you can set X11Display Offset to a desired value.

Results

When you are done, you have configured your system for X11 forwarding. Users

will have to configure their setup for X11 forwarding, as described in

[configuring your setup for X11 forwarding” on page 83/

When users cannot log in using ssh, scp or sftp

Certain setup problems or configurations might prevent a user from using ssh, scp
or sftp to login.

Table 19. Setup and configuration problems that can prevent users from logging in using ssh, scp, or sftp

Problem Solution

The user's files and directories are not sufficiently In the sshd_config description, see [StrictModes| and
protected from others. ChrootDirectory

The system administrator limited the number of In the sshd_config description, see The

concurrent connection attempts (unauthenticated users). |default is 10:30:100. You might want to change the

MaxStartups value.

The system administrator denied a particular user, In the sshd_config description, see |KllowUsers|,
group, or IP address to the system. [DenyUsers| [AllowGroups] and [DenyGroups}

In the sshd description, see
In the sshd description, see|/etc/nologi
In the sshd_config description, see [MaxAuthTrie

The user waited too long to enter the password. In the sshd_config description, see

The user is trying to use a certain authentication method |The system administrator might have disabled that
but is failing.

authentication method. See

The user has an incorrect public host key in the Verify the public host key for the remote host, and
known_hosts file.

update the known_hosts file.

48 1BM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

| Using hardware support to generate random numbers

OpenSSH uses hardware support (/dev/random or /dev/urandom) to generate
random numbers. /dev/random is now required and ssh-rand-helper is not used or
provided. ICSF HCR77A0 allows /dev/random to be used without a cryptography
card. If there is no cryptography card, ICSF HCR77A0 or later is required. Starting
with ICSF version HCR77A1, CSE.CSFSERV.AUTH.CSFRNG.DISABLE is now
available. If defined, no SAF authorization checks will be performed. Disabling the
SAF check may improve performance.

Rule: In order for OpenSSH to use the hardware support (/dev/random or
/dev/urandom) to collect random numbers, the Integrated Cryptographic Service
Facility (ICSF) started task must be running and the user ID must have READ
access to the CSFRNG (random number generate service) profile in the RACF
CSFSERV class. If the user ID does not have READ access to the CSFRNG profile,
a RACF warning is issued on the MVS console.

Example: A warning for user WELLIE1 would look like the following output:

ICH4081 USER(WELLIEL) GROUP(SYS1) NAME(WELLIE1)
CSFRNG CL(CSFSERV)

INSUFFICIENT ACCESS AUTHORITY

FROM CSFRNG (G)

ACCESS INTENT(READ) ACCESS ALLOWED(NONE)

For more information about ICSF, see [z/OS Cryptographic Services ICSF Quvervieu)

Steps for authorizing users to the random number generate
service (CSFRNG)

About this task

Before you begin: You need to be sure that the CSFRNG resource profile has been
defined. If it hasn't, then issue the following command where CSFSERYV is the class
name and CSFRNG is the profile name:

RDEFINE CSFSERV CSFRNG UACC(NONE)

Perform the following steps to authorize users to the random number generate
service (CSFRNG):

Procedure

1. Use one of the following commands to give READ access to the CSFRNG
profile, based on your site's security policy:
* To give a user READ access to the CSFRNG profile, where userid is the UID
for the specified user, issue:
PERMIT CSFRNG CLASS(CSFSERV) ID(userid) ACCESS(READ)

If you choose to give READ access to individual users, you need to repeat
this step for each user who requires access.

* To give READ access for a specific group to the CSFRNG profile where
groupid is the GID for the specified group, issue:

PERMIT CSFRNG CLASS(CSFSERV) ID(groupid) ACCESS(READ)
Verify that the intended user IDs are added to the group.

* To give READ access for all RACF-defined users and groups to the CSFRNG
profile, issue:

Chapter 5. For system administrators 49

IBM Confidential

PERMIT CSFRNG CLASS(CSFSERV) ID(*) ACCESS(READ)

Giving all users and groups READ access to the CSFRNG profile is an
unconditional way to authorize users. The security administrator must take
the site's security policy into consideration when deciding whether to give all
RACF-defined users and groups access to CSERNG. [z/0S Cryptographid
[Services ICSF Administrator’s Guidehas information about the CSFRNG profile.

* Starting with ICSF version HCR77A1, you can disable checking of this
resource:

RDEFINE XFACILIT CSF.CSFSERV.AUTH.CSFRNG.DISABLE UACC(READ)
SETROPTS REFRESH RACLIST(XFACILIT)

2. Verify that all user IDs given access to this class have an OMVS segment
defined and are not using the default OMVS segment.

3. Refresh the CSFSERV class.
SETROPTS RACLIST(CSFSERV) REFRESH

Results

When you are done, you have authorized users to the random number generate
service (CSFRNG).

Setting up OpenSSH to collect SMF records

50

You can set up the system and OpenSSH to collect SMF Type 119 records for both
the client and the server.

Steps for setting up the system to collect OpenSSH SMF
records
About this task

Perform the following steps to set up the system to collect OpenSSH SMF records.

Procedure

1. Update the SMFPRMxx parmlib member to activate SMF data collection for
Type 119 and subtype 94, 95, 96, 97, and 98 records. For example:

SYS(TYPE(119(94:98)))

2. Update the SMFPRMxx parmlib member to indicate which SMF exits (IEFU83
or IEFU84) are desired. For example:

SYS(EXITS(IEFU83,IEFU84))

3. In order to collect record subtype 94 (“Client connection started”), the user
running the ssh, sftp, or scp client commands must have READ access to the
BPX.SMF.119.94 SAF/RACEF profile. For example:

RDEFINE FACILITY BPX.SMF.119.94 UACC(NONE)
PERMIT BPX.SMF.119.94 CLASS(FACILITY) ID(userid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

4. In order to collect record subtype 96 (“Server transfer completion record ”), the
user running the sftp-server or scp server commands must have READ access
to the BPX.SMF.119.96 SAF/RACEF profile. For example:

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

RDEFINE FACILITY BPX.SMF.119.96 UACC(NONE)
PERMIT BPX.SMF.119.96 CLASS(FACILITY) ID(userid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

5. In order to collect record subtype 97 (“Client transfer completion record ”), the
user running the sftp or scp client commands must have READ access to the
BPX.SMF.119.97 SAF/RACEF profile. For example:
RDEFINE FACILITY BPX.SMF.119.97 UACC(NONE)

PERMIT BPX.SMF.119.97 CLASS(FACILITY) ID(userid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Results

When you are done, you have set up the system to collect SMF records. For more
information, see:

* /OS MVS System Management Facilities (SMF)|
* |£/OS MVS Initialization and Tuning Referenced

Steps for setting up OpenSSH to collect SMF records

About this task

Before you begin: You need to make sure that the system has been set up to
collect OpenSSH SMF records as described in [“Steps for setting up the system to|
[collect OpenSSH SMEF records” on page 50| You also need to ensure that you have
done the steps listed in [“What you need to verify before using OpenSSH” on page]

Perform the following steps to set up OpenSSH to collect SMF records.

Procedure

1. To enable SMF recording for the client side, in the /etc/ssh/zos_ssh_config
file, set the keyword:

CTientSMF TYPE119_U83

or
ClientSMF TYPE119_U84
Restriction: The ClientSMF keyword can only be set in the z/OS-specific

system-wide OpenSSH client configuration file. See for more
information.

2. To enable SMF recording for the server side, in the /etc/ssh/zos_sshd_config
file, set the keyword:

ServerSMF TYPE119_U83

or
ServerSMF TYPE119_U84

Restriction: The ServerSMF keyword can only be set in the z/OS-specific
OpenSSH daemon configuration file. See [zos_sshd_config| for more information.

Results

When you are done, you have set up OpenSSH to collect SMF records.

Chapter 5. For system administrators 51

IBM Confidential

Setting up OpenSSH to use ICSF cryptographic operations

52

OpenSSH can be set up to use Integrated Cryptographic Service Facility (ICSF) to
implement certain ciphers, MAC (message authentication code) and key exchange
algorithms. This extension enables OpenSSH to use hardware support when

applicable. For more information about ICSF, see [z/OS Cryptographic Services ICSH

Steps for setting up OpenSSH to use ICSF cryptographic
operations
About this task

Perform these steps to use ICSF to implement the following OpenSSH ciphers:
aes128-cbc
aes192-cbc
aes256-cbc
aes128-ctr
aes192-ctr
aes256-ctr
rijndael-cbc@lysator.liu.se (same as aes256-cbc)
3des-cbc
blowfish-cbc
arcfour
arcfour128
arcfour256

ICSF will use CP Assist for Cryptographic Function (CPACF) hardware support
when applicable for the aes128-cbc, aes192-cbc, aes256-cbc, aes128-ctr, aes192-ctr,
aes256-ctr, rijndael-cbc@lysator.liu.se and 3des-cbc ciphers. Any cipher not in the
previous list is not supported by ICSF.

Procedure
1. Verify that ICSF has been started.

2. Verify that the OpenSSH users, including the sshd privilege separation user
and the user that starts the sshd daemon, have READ access to the CSFIQA,
CSF1TRC, CSFITRD, CSF1SKE and CSF1SKD profiles in the RACF CSFSERV
general resource class. See [z/0S Cryptographic Services ICSF Administrator's Guide|
for more information about setting up profiles in the CSFSERV general resource
class.

3. To use ICSF on the client side, set the CiphersSource keyword to "any" or
"ICSF" in the z/OS-specific OpenSSH client configuration files, zos_ssh_config
or zos_user_ssh_config. For example:

CiphersSource any

or
CiphersSource ICSF

4. To use ICSF on the server side, set the zos_sshd_config keyword
CiphersSource to "any" or "ICSF". For example:

CiphersSource any

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

or
CiphersSource ICSF

Modify the client and server side ciphers lists according to the following
requirements:

a. If the CiphersSource keyword is set to "ICSF", modify the ciphers list to
contain only ciphers supported by ICSE.

b. If the CiphersSource keyword is set to "ICSF" and if privilege separation is
enabled, remove the arcfour, arcfour128 and arcfour256 ciphers from the
server side ciphers list.

c. ICSF PKCS #11 services can be configured to operate in compliance with
FIPS 140-2 specifications via the ICSF FIPSMODE installation option. If FIPS
140-2 compliance is required and OpenSSH is not exempt from compliance,
remove the blowfish-cbc, arcfour, arcfour128 and arcfour256 ciphers and all
ciphers not supported by ICSF from the ciphers list. In addition, the
CiphersSource keyword must be set to "ICSF" to ensure that ICSF FIPS 140-2
compliant ciphers are used.

d. (Optional step.) The default client configuration file (ssh_config) now
defaults to prefer ciphers that are implemented by ICSF. Review this list
and reorder to your site's requirements.

Note: The order of the Ciphers list in the server configuration file
(sshd_config) is not significant. You may choose to remove Ciphers that are
not supported by ICSF from either list, but this may result in a failure to
negotiate a session with a partner that does not support any of these
algorithms.

Example ciphers list when setting the CiphersSource keyword to "any". This is
the same as the default list if not specified. While the ciphers list is typically
one long unbroken line, it is not shown as one unbroken line due to space
limitations:

Ciphers aes128-ctr,aesl192-ctr,aes256-ctr,arcfour256,arcfourl2s8,
aes128-gcm@openssh.com,aes256-gcm@openssh.com,aes128-chc,
3des-cbc,aes192-cbc,aes256-cbc,
arcfour,blowfish-cbc,cast128-cbc,rijndael-cbhc@lysator.liu.se

Example client side ciphers list when setting the CiphersSource keyword to
"ICSF" but note that while the ciphers list is typically one long unbroken line, it
is not shown as one unbroken line due to space limitations:

Ciphers aesl28-ctr,aesl92-ctr,aes256-ctr,aes128-cbc,3des-cbc,aes192-cbc,
aes256-chc,blowfish-chc,arcfour256,arcfourl28,arcfour

Example server side ciphers list when setting the CiphersSource keyword to
"ICSF":

Ciphers aesl128-cbc,3des-chc,aes192-chc,aes256-chc,blowfish-chc
Example ciphers list when ICSF FIPS 140-2 compliant ciphers are required:
Ciphers aes128-cbhc,3des-cbc,aes192-cbc,aes256-chc

For more information about ciphers lists, refer to the ssh_config and
sshd_config keyword Ciphers.

Results

When you are done, you have set up OpenSSH to use ICSF to implement the
applicable ciphers.

Chapter 5. For system administrators

53

54

IBM Confidential

Perform these steps to use ICSF to implement the following OpenSSH MAC

algorithms:
hmac-md5
hmac-md5-etm@openssh.com
hmac-md5-96
hmac-md5-96-etm@openssh.com
hmac-shal
hmac-shal-etm@openssh.com
hmac-shal-96
hmac-shal-96-etm@openssh.com
hmac-sha2-256
hmac-sha2-256-etm@openssh.com
hmac-sha2-512
hmac-sha2-512-etm@openssh.com
hmac-ripemd160
hmac-ripemd160@openssh.com
hmac-ripemd160-etm@openssh.com

ICSF will use CP Assist for Cryptographic Function (CPACF) hardware support
when applicable for the hmac-shal and hmac-shal-96, all hmac-sha2 MAC
algorithms and their "-etm@openssh.com” variants. Any MAC algorithm not in the
previous list is not supported by ICSF.

1. Verify that ICSF has been started.

2. Verify that the OpenSSH users, including the sshd privilege separation user
and the user that starts the sshd daemon, have READ access to the CSFIQA,
CSF1TRC, CSF1TRD, and CSFOWH profiles in the RACF CSFSERV general
resource class. See [z/0S Cryptographic Services ICSF Administrator’s Guide for
more information about setting up profiles in the CSFSERV general resource
class.

3. To use ICSF on the client side, set the MACsSource keyword to "any" or "[CSF"
in the z/OS-specific OpenSSH client configuration files zos_ssh_config or
zos_user_ssh_config. For example:

MACsSource any

or
MACsSource ICSF

4. To use ICSF on the server side, set the zos_sshd_config keyword MACsSource
to "any" or "ICSF". For example:

MACsSource any

or
MACsSource ICSF

5. Modify the client and server side MAC algorithms lists according to the
following requirements:

a. If the MACsSource keyword is set to "ICSF", modify the MAC algorithms
list to contain only MAC algorithms supported by ICSE.

b. ICSF PKCS #11 services can be configured to operate in compliance with
FIPS 140-2 specifications via the ICSF FIPSMODE installation option. If FIPS
140-2 compliance is required and OpenSSH is not exempt from compliance,

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

remove the hmac-md5, hmac-md5-96, hmac-ripemd160 and

hmac-ripemd160@openssh.com MAC algorithms and all MAC algorithms

not supported by ICSF from the MAC algorithms list. In addition, the
MACsSource keyword must be set to "ICSF" to ensure ICSF FIPS 140-2
compliant MAC algorithms are used.

c. (Optional step.) The default client configuration file (ssh_config) now

defaults to prefer MACs that are implemented by ICSFE. Review this list and

reorder to your site's requirements.

Note: The order of the MAC:s list in the server configuration file

(sshd_config) is not significant. You may choose to remove MACs that are

not supported by ICSF from either list, but this may result in a failure to
negotiate a session with a partner that does not support any of these
algorithms.

Example MAC algorithms list when setting the MACsSource keyword to "any".
This is the same as the default list if not specified. While the MAC algorithms

list is typically one long unbroken line, it is not shown as one unbroken line
due to space limitations:

MACs hmac-md5-etm@openssh.com,hmac-shal-etm@openssh.com,
umac-64-etm@openssh.com,umac-128-etm@openssh.com,
hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh.com,
hmac-ripemd160-etm@openssh.com,hmac-shal-96-etm@openssh.com,
hmac-md5-96-etm@openssh.com,hmac-md5,hmac-shal,
umac-64@openssh.com,umac-128@openssh.com,hmac-sha2-256,
hmac-sha2-512,hmac-ripemd160,hmac-ripemd160@openssh.com,
hmac-shal-96,hmac-md5-96

Example MAC algorithms list when setting the MACsSource keyword to
"ICSF":

MACs hmac-md5-etm@openssh.com,hmac-shal-etm@openssh.com,
hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh.com,
hmac-ripemd160-etm@openssh.com,hmac-shal-96-etm@openssh.com,
hmac-md5-96-etm@openssh.com,hmac-md5,hmac-shal,
hmac-sha2-256,hmac-sha2-512,hmac-ripemd160,hmac-ripemd160@openssh.com,
hmac-shal-96,hmac-md5-96

Example MAC algorithms list when ICSF FIPS 140-2 compliant MAC
algorithms are required:

MACs hmac-shal-etm@openssh.com,hmac-sha2-256-etm@openssh.com,
hmac-sha2-512-etm@openssh.com,hmac-shal-96-etm@openssh.com,
hmac-shal,hmac-sha2-256,hmac-sha2-512,hmac-shal-96

For more information about MAC algorithms, refer to the ssh_config and
sshd_config keyword MACs.

When you are done, you have set up OpenSSH to use ICSF to implement the
applicable MAC algorithms.

Perform these steps to use ICSF to implement the following OpenSSH
KexAlgorithms:

ecdh-sha2-nistp256
ecdh-sha2-nistp384
ecdh-sha2-nistp521
diffie-hellman-group-exchange-sha256
diffie-hellman-group-exchange-shal
diffie-hellman-group14-shal
diffie-hellman-group1l-shal

Chapter 5. For system administrators

55

56

IBM Confidential

All key exchange algorithms are done in software.

Verify that ICSF has been started.

2. Verify that the OpenSSH users, including the sshd privilege separation user

and the user that starts the sshd daemon, have READ access to the CSFIQA,
CSF1TRC, CSF1GAYV, CSF1GKP, and CSF1DVK profiles in the RACF CSFSERV
general resource class. See [z/0S Cryptographic Services ICSF Administrator’s Guide]
for more information about setting up profiles in the CSFSERV general resource
class.

To use ICSF on the client side, set the KexAlgorithmsSource keyword to "any"
or "ICSF" in the z/OS-specific OpenSSH client configuration files
zos_ssh_config or zos_user_ssh_config. For example:

KexAlgorithmsSource any

or
KexAlgorithmsSource ICSF

To use ICSF on the server side, set the zos_sshd_config keyword
KexAlgorithmsSource to "any" or "ICSF". For example:

KexAlgorithmsSource any

or

KexAlgorithmsSource ICSF

Modify the KexAlgorithmsSource according to the following requirements:

a. The KexAlgorithmsSource keyword must be set to "ICSF" to ensure that
ICSF FIPS 140-2 compliant key exchange algorithms are used.

Example KexAlgorithms list when setting the KexAlgorithmsSource keyword to
"any". This is the same as the default list if not specified. While the
KexAlgorithms list is typically one long unbroken line, it is not shown as one
unbroken line due to space limitations:

KexAlgorithms ecdh-sha2-nistp256,ecdh-sha2-nistp384,
ecdh-sha2-nistp521,diffie-helTman-group-exchange-sha256,
diffie-hellman-group-exchange-shal,diffie-hellman-groupl4-shal,
diffie-hellman-groupl-shal

Example client side KexAlgorithms list when setting the KexAlgorithmsSource
keyword to "ICSF". While the KexAlgorithms list is typically one long unbroken
line, it is not shown as one unbroken line due to space limitations:
KexATlgorithms ecdh-sha2-nistp256,ecdh-sha2-nistp384,
ecdh-sha2-nistp521,diffie-hellman-group-exchange-sha256,
diffie-hellman-group-exchange-shal,
diffie-hellman-groupl4-shal,diffie-helTman-groupl-shal

Example KexAlgorithms list when ICSF FIPS 140-2 compliant KexAlgorithms
are required:

KexAlgorithms ecdh-sha2-nistp256,ecdh-sha2-nistp384,
ecdh-sha2-nistp521,diffie-helIman-group-exchange-sha256,
diffie-hellman-group-exchange-shal,
diffie-hellman-groupl4-shal,diffie-helTman-groupl-shal

For more information about KexAlgorithms lists, refer to the ssh_config and
sshd_config keyword KexAlgorithms.

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

When you are done, you have set up OpenSSH to use ICSF to implement the
applicable key exchange algorithms.

To determine the cipher, MAC, and key exchange algorithm source and FIPS status
used by OpenSSH, start ssh in debug mode and look for debug statements like the
following examples:

debugl: mac_setup_by alg: hmac-shal from source ICSF, used in FIPS mode

debugl: cipher_init: aesl28-cbc from source ICSF, used in FIPS mode

debugl: choose_kex: ecdh-sha2-nistp384 from source ICSF, used in FIPS mode

debugl: mac_setup_by_alg: hmac-shal from source ICSF

debugl: cipher_init: aesl128-cbc from source ICSF

When OpenSSH is set up to use ICSF to implement applicable ciphers or MAC
algorithms, the debug mode also provides ICSF Query Algorithm (CSFIQA) debug
statements to help determine how (for example, by using software or CPACF) ICSF
is implementing the ciphers and MAC algorithms. For example:

~

debug2: —=--=mm e

debug2: CRYPTO SIZE KEY SOURCE

debug2: =---mm e

debug2: AES 256 SECURE COP

debug2: AES 256 SECURE CPU

debug2: DES 56 SECURE cOP

debug2: DES 56 SECURE CPU

debug2: MDC-2 128 NA CPU

debug2: MDC-4 128 NA CPU

debug2: MD5 128 NA SW

debug2: RNGL 8192 NA cop

debug2: RPMD-160 160 NA SW

debug2: RSA-GEN 4096 SECURE cOP

debug2: RSA-KM 4096 SECURE COP

debug2: RSA-SIG 4096 SECURE CcOP

debug2: SHA-1 160 NA CPU

debug2: SHA-2 512 NA CPU

debug2: TDES 168 SECURE CcOP

debug2: TDES 168 SECURE CPU

J

Figure 3. CSFIQUA debug statements. An example of CSFIQA debug statements

For more information about the CSFIQA utility and the information that it returns,
see [z/0S Cryptographic Services ICSF Application Programmer’s Guide Refer to
[Cryptographic Services ICSF System Programmer’s Guidel for more information about
the available cryptographic hardware features.

When modifying the client and server ciphers and MAC algorithms lists, it is
important to note that the client selects the cipher and MAC algorithm to use
during an SSH session from the lists offered by the server. If the client and server
fail to negotiate a cipher or MAC algorithm, the SSH session will end. In addition,
the client can choose any cipher and MAC algorithm from the servers lists even if
the cipher and MAC algorithm is at the end of a list.

ICSF PKCS #11 services can be configured to operate in compliance with FIPS
140-2 specifications by way of the ICSF FIPSMODE installation option. When FIPS
140-2 compliance is required, OpenSSH can use ICSF to implement the aes128-cbc,
aes192-cbc, aes256-cbc, aes128-ctr, aes192-ctr, and aes256-ctr, rijndael-
cbc@lysator.liu.se and 3des-cbc ciphers and the hmac-shal and hmac-sha2 prefixed
MAC algorithms. Other ciphers and MAC algorithms cannot be implemented
using ICSF unless OpenSSH is exempt from FIPS 140-2 compliance. If OpenSSH is
not exempt, OpenSSH will fail at runtime if it uses ICSF to implement a cipher or

Chapter 5. For system administrators 57

IBM Confidential

MAC algorithm that is not FIPS 140-2 compliant. See [z/OS Cryptographic Services|
[[CSF System Programmer’s Guidel for more information about the ICSF FIPSMODE
installation option.

OpenSSH is not a full FIPS 140-2 compliant application even if ICSF is used to
implement the ciphers and MAC algorithms in compliance with FIPS 140-2
specifications.

Usage notes

* OpenSSH uses the session object token, SYSTOK-SESSION-ONLY, to exploit the
ICSF PKCS #11 support.

* Starting with ICSF version HCR77A0, the CLEARKEY.token-label resources in the
CRYPTOZ class is introduced. The CLEARKEY.SYSTOK-SESSION-ONLY resource
should be defined, otherwise users of OpenSSH should have READ access to it.

* Starting with ICSF version HCR77A1, CSE.CSFSERV.AUTH.CSFOWH.DISABLE
and CSE.CSFSERV.AUTH.CSFRNG.DISABLE are introduced. If they are defined,
no SAF authorization checks will be performed. Disabling the SAF check may
improve performance.

* This support applies to SSH protocol version 2 only.

* sshd will not use ICSF to implement the arcfour, arcfour128 and arcfour256
ciphers when privilege separation is enabled.

* ssh and sshd will fail if ICSF ciphers or MAC algorithms are required but ICSF
is not available.

* ICSF ciphers and MAC algorithms are not supported when the ssh -f option or
the ssh ~& escape character are used.

Setting up OpenSSH to run in FIPS mode

58

National Institute of Standards and Technology (NIST) is the US federal technology
agency that works with industry to develop and apply technology, measurements,
and standards. One of the standards published by NIST is the Federal Information
Processing Standard Security Requirements for Cryptographic Modules referred to
as 'FIPS 140-2'. FIPS 140-2 provides a standard by which the integrity of
cryptographic modules and the keys they handle can be measured and assured.

OpenSSH can be setup to run in FIPS 140 mode with z/OS System SSL and
Integrated Cryptographic Service Facility (ICSF) PKCS #11 Service support. This
enables OpenSSH to use hardware cryptography support when applicable. ICSF
HCR77A0 or later is required in FIPS mode. For more information about ICSF, see
[-/OS Cryptographic Services ICSF Overview|

Steps for setting up OpenSSH to run in FIPS mode

About this task

Perform these steps to enable OpenSSH to run in FIPS mode:

Procedure

1. Verify the ICSF is started and running in FIPS 140-2. Refer to z/OS
Cryptographic Services ICSF System Programmer’s Guide section “2.2.1
Parameters in the installation options data set”, which describes the ICSF
FIPSMODE parameter. Also see z/OS Cryptographic Services ICSF Writing
PKCS#11 Applications section “1.5 Operating in compliance with FIPS 140-2”,
which contains information regarding the ICSF setup for FIPS 140 mode.

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

N

10.

1.

Configure SystemSSL for FIPS 140-2. Refer to z/OS Cryptographic Services
System SSL Programming to setup the System SSL support in FIPS 140-2.

Verify that RACF authority is setup properly.

Verify that the OpenSSH users, including the sshd privilege separation user
and the user that starts the sshd daemon, have READ access to the CSFIQA,
CSF1HMG, CSFOWH, CSF1TRC, CSF1TRD, CSFRNG, CSF1GAV, CSF1GKP,
CSF1DVK, CSF1SKE and CSF1SKD profiles in the RACF CSFSERV general
resource class. See [z/0S Cryptographic Services ICSF Administrator’s Guidefor
more information about setting up profiles in the CSFSERV general resource
class.

To enable FIPS mode on the client side, set the FIPSMODE keyword to yes
and set the CiphersSource, MACsSource, KexAlgorithmsSource keywords to
any or ICSF in the z/OS-specific OpenSSH client configuration files,
zos_ssh_config or zos_user_ssh_config.

To enable FIPS 140 mode on the service side, set the FIPSMODE keyword to

yes and set the zos_sshd_config keywords CiphersSource, MACsSource,
KexAlgorithmsSource to any or ICSF.

When setting the CiphersSource, MACsSource and KexAlgorithmsSource
keywords to ICSF, modify the appropriate ciphers, MACs, and key exchange
algorithms lists to only contain ciphers, MACs, and key exchange algorithms
supported by ICSF in FIPS mode rather than those don't. You can further
modify the lists to prefer ciphers, MACs, and key exchange algorithms that
comply with FIPS 140 mode when applicable to those that don't. For more
information about ciphers, MACs and key exchange algorithms lists, refer to
the ssh_config and sshd_config keywords Ciphers, MACs and
KexAlgorithms.

Set protocol keyword to 2 in the configuration files ssh_config and
sshd_config.

Setup key rings for server authentication. See the [“Steps for setting up server
[authentication when keys are stored in key rings” on page 29 |

Setup key rings for user authentication. See the |“Steps for setting up user
lauthentication when using key rings to store keys” on page 76/

(Optional step.) When setting the CiphersSource, MACsSource and
KexAlgorithmsSource keywords to any, modify the appropriate ciphers, MACs
and key exchange algorithms lists so that ciphers, MACs and key exchange
algorithms implemented by ICSF and comply with FIPS 140 mode are allowed
to be used rather than those that do not. You can further modify the lists to
prefer ciphers, MACs and key exchange algorithms that use hardware support
when applicable to those that do not. For more information about ciphers,
MACs and key exchange algorithms lists, refer to the ssh_config and
sshd_config keywords Ciphers, MACs and KexAlgorithms.

Results

Note: FIPS mode applies to protocol version 2 only. FIPS mode support key rings
for key storage only.

When you are done, you have set up OpenSSH to run in FIPS mode.

Chapter 5. For system administrators 59

IBM Confidential

Managing OpenSSH user heap

60

While using OpenSSH, you may encounter situations where the user heap is
exhausted when running with a limited amount of storage. This can be caused by
certain code paths (for example, file transfers via sftp) in OpenSSH making
repeated use of the XL C/C++ runtime library realloc() function. In certain
situations, heap fragmentation can occur, causing future requests to allocate user
heap to fail and causing OpenSSH commands to fail with the following error
message:

"FOTS2050 xrealloc: out of memory"

If you encounter this problem, you can take one of the following actions:

* Set the _CEE_RUNOPTS="HEAP(,,FREE)" environment variable when invoking
OpenSSH commands. Language Environment will free all unused storage after a
call to the XL C/C++ Run-time Library realloc() function, making it unlikely that
the user heap will be exhausted during normal use. However, application
performance might be affected. For more information about heap tuning, see
[z/0S Lanquage Environment Programming Referencel

e Set the _CEE_REALLOC_CONTROL="256K,25" environment variable when
invoking OpenSSH commands. Language Environment will optimize heap
storage reallocation for OpenSSH. See |z/OS XL C/C++ Programming Guide| for
more information about the _CEE_REALLOC_CONTROL environment variable.

* Increase the amount of storage available to the processes running OpenSSH
commands. For example, use a REGION of 32MB or larger and ensure that the
IEFUSI or IEALIMIT exits are not further restricting the region size.

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Chapter 6. Security topics when using key rings for key
management

This topic discusses security topics in connection with key rings. OpenSSH can be
configured to support keys in both UNIX files and key rings for both server and
user authentication.

Choosing between UNIX files and key rings

Using UNIX files to store the keys is the common method supported on all
OpenSSH implementations. Consider what other OpenSSH hosts you will be
communicating with; that is, are they z/OS or non-z/0OS? Also consider whether
the z/OS systems are using key rings.

On the other hand, key rings provide commonality with other z/OS products that
store keys in the security product. They can be real or virtual key rings. To use
SAF key rings, you must have RACF or an alternative security product with
compatible support. Authority must also be given to user IDs to manage the key
rings. For more information about key rings, see [z/0S Security Server RACF Security|
[Administrator’s Guide

Restriction: If you are using SSH protocol version 1, you cannot use key rings to
hold your keys. You must use UNIX files to hold RSA keys used for SSH protocol
version 1.

Managing key rings and restricting access to them

Authorized applications use commands or system services provided by the
security product to manage key rings. This documentation typically refers to RACF
commands when presenting examples of how to set up key rings. If a different
security product is used, consult that product's documentation to determine
whether it contains compatible support. For more information about the RACF
commands referred to in this documentation, the necessary authority required to
use the commands, and any other options not described in this documentation, see
[z/0S Security Server RACF Command Language Reference

To restrict access to key rings, two methods are available: global profile checking

and ring-specific profile checking.

* Ring-specific profile checking, which has precedence over global profile
checking, uses a resource with one of the following formats to provide access
control to a specific key ring.

— For real key rings: <KeyRingOwner>.<KeyRingName>.LST

— For virtual key rings: <KeyRingOwner>.IRR_VIRTUAL_KEYRING.LST

For more details about name restrictions and other considerations for using
ring-specific profile checking, see the description of RACF authorization in the
R_datalib interface section in [z/OS Security Server RACF Callable Services,

* Global profile checking uses the IRR. DIGTCERT.LISTRING resource in the
FACILITY class and applies to all key rings.

Guideline: Global profile checking applies to all key rings. Ring-specific profile
checking applies to a specific key ring. Ring-specific checking has precedence over

© Copyright IBM Corp. 2010, 2015 61

62

IBM Confidential

global profile checking. The method that is chosen must work with the methods of
permitting and securing access to other key rings being used for OpenSSH key
management or other key ring usage on your system. Because of the wide scope of
coverage that global profile checking provides, ring-specific profile checking is
typically the more appropriate method to use.

Validating certificates when using key rings

Each time a certificate is accessed to retrieve a public or private key, OpenSSH asks
System SSL to validate the certificate first. Some of the checks performed on the
certificate and all certificates in the certification chain include verifying that the
current time is within the validity period, checking that the certificate is not
revoked, and ensuring that the certification chain leads to a certificate obtained
from a trusted data source. For a complete list of the items being validated, see the
usage information for the gsk validate_certificate system call in [z/OS Cryptographid
[Services System SSL Programming|

Although the examples used in this book do not demonstrate using root and
intermediate certificate authority (CA) certificates, they are supported in the
certification chain of certificates used by z/OS OpenSSH key ring support.
OpenSSH treats the key ring as a trusted certificate source. Because of this, for
OpenSSH to successfully validate the certification chain, all certificates in the chain
must be connected to the same key ring as the end entity certificate.

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Chapter 7. Globalization on z/OS systems

This topic discusses globalization on z/OS systems and the changes that must be
made in order for OpenSSH to fit the globalization model.

Setting up for globalization on z/OS systems

Setting up your system or user environment for globalization on z/OS systems is a
little different from what most users are accustomed to when setting up
globalization on ASCII platforms. On z/OS systems, an extra step is typically
needed when changing the locale. This step involves setting the character set
conversion for the controlling terminal to use the correct ASCII and EBCDIC coded
character sets. This action is necessary because most PC terminal emulators require
ASCII data, but the z/OS shells use EBCDIC data.

For example, when using a PC emulator to interactively log into an ASCII UNIX
operating system, a user will:

* On the PC, change the emulator's coded character set to match the coded
character set of the remote session's locale.

* In the UNIX shell, assign the environment variable LC_ALL to a new locale,
where the ASCII coded character set of that locale matches the emulator's
setting.

When interactively logging into an EBCDIC z/OS UNIX operating system, the user

will:

* On the PC, change the emulator's coded character set to match the ASCII coded
character set of the remote session's locale. For example, the user might change
the translation settings in their emulator to use coded character set ISO/IEC
8859-2 (Latin-2).

* In the UNIX shell:

— Assign the environment variable LC_ALL to a new locale, whose EBCDIC
coded character set is compatible with the ASCII coded character set used in
the emulator. To determine if a coded character set is compatible with a
particular locale, refer to the section in [z/OS XL C/C++ Programming Guide that
discusses locales supplied with z/OS XL C/C++.

For example, a user might issue:

export LC_ALL=Hu_HU.IBM-1165
LC_ALL can be assigned after making the ssh connection by using the
SendEnv ssh keyword to send the client's LC_ALL environment variable to
the server. The server must be configured to accept this variable using the
AcceptEnv sshd keyword. Before using this support, the client's LC_ALL
variable must be set to a locale that is a valid locale name on the z/OS server.
Refer to the descriptions of the ssh_config keyword and the
sshd_config keyword for more information about these options.

— If a terminal type (tty) is allocated, issue the chcp command to assign the
EBCDIC and ASCII coded character sets, as appropriate. The specified ASCII
coded character set should match that of the client emulator's setting.

For example, a user might issue:
chcp -a 1S08859-2 -e IBM-1165

© Copyright IBM Corp. 2010, 2015 63

IBM Confidential

On z/0S systems, in daemons such as rlogind, telnetd, and sshd, conversion
between ASCII and EBCDIC occurs in the forked daemon process which handles
the user's connection. This process allocates the terminal (tty) for the end user. On
ASCII platforms, no conversion is necessary.

OpenSSH and globalization

64

OpenSSH assumes that all text data traveling across the network is encoded in
ISO/IEC 8859-1 (Latin-1). Specifically, OpenSSH treats data as text and performs
conversion between the ASCII Latin-1 coded character set and the EBCDIC-coded
character set of the current locale in the following scenarios:

* ssh login session

* ssh remote command execution

* scp file transfers

* sftp file transfers when the ascii subcommand is specified

The OpenSSH daemon (sshd) can understand and handle non-Latin-1 coded
character sets on the network for interactive sessions, specifically sessions with a
tty allocated. However, not all EBCDIC-coded character sets are compatible with
ISO 8859-1. To determine if a coded character set is compatible with a particular
locale, see the information about locales supplied with z/OS XL C/C++ in
[C/C++ Programming Guidd

Warning: If there is no one-to-one mapping between the EBCDIC coded character
set of the session data and ISO 8859-1, then nonidentical conversions might occur.
Specifically, substitution characters (for example, IBM-1047 0x3F) are inserted into
the data stream for those incompatible characters. See [“Configuring the OpenSSH]
[daemon” on page 65 and [“Configuring the OpenSSH client” on page 65| for more
information.

Sessions that are considered interactive include:
* The ssh login session when a tty is allocated. This is the default behavior.
* The ssh remote command execution, when the -t option is used to allocate a tty.

The following scenarios are considered noninteractive and continue to interpret
network data as ISO 8859-1:

* The ssh login session when the -T option is specified (which disables tty
allocation.)

¢ The ssh remote command execution when the -t option is not specified. The
default behavior is not to allocate a tty for remote command execution.

* The scp file transfers
* The sftp file transfers when the ascii subcommand is specified

The support provided by IBM Ported Tools for z/OS: OpenSSH is summarized in
[Table 20 on page 65 It lists the expected coded character set for the network data
during both interactive and noninteractive OpenSSH sessions with various peers.

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Table 20. Summary of support provided by OpenSSH V1R2

Client is
Scenario |Session is: running: Server is running: | Coded character set of network data is:
1 Interactive z/0S z/0S ASCII coded character set as defined by the
chcp setting.
Restriction: The z/OS client expects Latin-1,
so the ASCII coded character set must be
handled accordingly on the server side. See
[“Configuring the OpenSSH daemon”| for
more information.
2 Interactive Non-z/0OS UNIX |z/0S ASCII coded character set as defined by the
(such as AIX®, chep setting.
Linux) or PC
3 Interactive z/0S Non-z/0S UNIX |ISO 8859-1
(such as AIX,
Linux) or PC
4 Noninteractive z/0S z/0S ISO 8859-1
5 Noninteractive Non-z/0OS UNIX |z/0S ISO 8859-1
(such as AIX,
Linux) or PC
6 Noninteractive z/0S Non-z/0OS UNIX |ISO 8859-1
(such as AIX,
Linux) or PC

Note that some OpenSSH sessions transfer data as binary. In other words, no
character translation is performed. These include:

* sftp sessions (when the ascii subcommand is not used)

* Port-forwarded sessions

¢ Xl1-forwarded sessions

Limitation: IBM Ported Tools for z/OS: OpenSSH does not support multibyte
locales.

Configuring the OpenSSH daemon

The OpenSSH daemon (sshd) must be run in the POSIX C locale. In most cases,
this occurs without any action on behalf of the user. However, an alternate locale
could inadvertently be picked up through the shell profile of the user ID invoking
the daemon, or through the ENVAR run-time option in CEEPRMxx member of
SYS1.PARMLIB. You can enforce LC_ALL=C by using STDENYV in the BPXBATCH
job that starts the daemon.

For more information about the POSIX C locale, see [z/0S XL C/C++ Programming|

Configuring the OpenSSH client

The OpenSSH daemon (sshd) can understand and handle non-Latin-1 coded
character sets for interactive sessions, specifically those with a tty allocated.
However, the OpenSSH client (ssh) still expects network data to be encoded in ISO
8859-1.

Chapter 7. Globalization on z/OS systems 65

IBM Confidential

If the EBCDIC coded character set for your sessions is compatible with ISO 8859-1,
the following setup is not required. To determine if a coded character set is

compatible with a particular locale, refer to the section on locales supplied with
2/08S XL C/C++ in [z/OS XL C/C++ Programming Guidel

If chep is issued in your environment, verify that the SSH peer supports the
specified ASCII coded character set.

For example, if you are using a PC to connect directly to z/OS, you issue the chcp
command in the remote z/OS shell to assign the ASCII-coded character set for the
terminal to match that of the PC emulator. The daemon inherits the chcp setting to
translate the network data accordingly. The SSH peer, the PC emulator, must also
support the new ASCII coded character set. This can be determined by checking
your emulator's configuration.

If you are issuing the ssh client from z/OS to connect to a z/OS platform running
in another locale, you need to verify that the ASCII coded character set of the
remote session (set by chep) is ISO 8859-1, which is what the z/OS ssh client
expects.

Warning: If there is no one-to-one mapping between the EBCDIC coded character
set of the session data and ISO 8859-1, then nonidentical conversions might occur.
Specifically, substitution characters (for example, IBM-1047 0x3F) may be inserted
into the data stream for those incompatible characters.

If the EBCDIC coded character set of your target locale is not compatible with ISO
8859-1, then nonidentical conversions may occur in either of these scenarios:

* You are running in the target locale when issuing the ssh command locally.

* You are running in the target locale in your remote ssh session.

To avoid nonidentical conversions, you can force the ssh client process to run in
the C locale. Note also that the remote session's shell must also be configured to
run in either the C locale or a locale with a coded character set that is compatible
with ISO 8859-1.

To force the local ssh client process to run in a C locale, you can run ssh as
follows:

LC_ALL=C ssh [arguments]
where arguments represents the remainder of the arguments passed to ssh.

You can set up a shell alias to avoid repeatedly typing the previous command. For
example:

alias ssh="LC_ALL=C ssh"

Configuring ssh when LC_ALL is set through shell profiles
If all the following are true for your environment:
* Your system is configured to run in a locale other than the default C locale
* The corresponding ASCII coded character set for your locale is not ISO 8859-1
* You changed the system-wide locale by setting LC_ALL through shell profiles
(for example, /etc/profile or $HOME/.profile.)

then perform the following steps as part of your OpenSSH system-wide setup.

66 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

If you have changed the locale at a system-wide level, consider defining this alias
in an area where it can be picked up by all users and inherited by all subshells.
Shell aliases are typically defined through the file named by the ENV variable of
/bin/sh. Users may have defined their own ENV setting in one of their shell
profiles. For this setup, the ENV variable should be exported so it is inherited by
subshells.

e For /bin/sh users, this alias should be defined in the ENV file.
* For /bin/tcsh users, this alias should be defined in /etc/csh.cshrc.

Steps to follow for setting up a system-wide alias for ssh

The steps assume that you are using the /bin/sh shell.

1. Create a UNIX file /etc/ssh/.sshalias that contains the following line:
alias ssh="LC_ALL=C ssh"

2. Ensure that the UNIX permissions for this file are world-readable. From the
UNIX prompt, issue:
chmod 744 /etc/ssh/.sshalias

3. Notify users to either add the ssh alias to their ENV file or read in the previous
ENV file from their user-defined ENV file. For example, users can add to their
ENV file the following line, which reads in (or “sources”) the new ssh alias file
using the dot command:
. /etc/ssh/.sshalias

4. Verify that the ssh alias is set properly. From a new UNIX shell, issue:

> alias ssh
ssh="LC_ALL=C ssh"

>

Configuring ssh when LC_ALL is set through the ENVAR
run-time option in CEEPRMxx

If all the following statements are true for your environment
* Your system is configured to run in a locale other than the default C locale
* The corresponding ASCII code page for your locale is not ISO 8859-1

* You changed the system-wide locale by setting LC_ALL through the ENVAR
run-time option in a CEEPRMxx member of SYS1.PARMLIB or through the
operator command SETCEE.

— For information about SETCEE, see [z/0S MVS System Commands}

— |/OS MVS Initialization and Tuning Reference contains information about the
ENVAR run-time option for CEEPRMxx.

then perform the following steps as part of your OpenSSH system-wide setup.

Create an alias for the ssh command which forces ssh to run in a C locale. This
alias should be defined in an area where it will be picked up by all users and all
subshells, even when a login shell is not used. Shell aliases are typically defined
through the file named by the ENV variable of /bin/sh. The ENVAR run-time
option in CEEPRMxx can also be used to set a shell alias.

Steps to follow for setting up a system-wide alias for ssh
through the ENVAR run-time option of CEEPRMxx

1. Create a UNIX file /etc/ssh/.sshalias which contains the following line:
alias ssh="LC_ALL=C ssh"

2. Ensure that the UNIX permissions for this file are world-readable. From the
UNIX prompt, issue:

Chapter 7. Globalization on z/OS systems 67

68

IBM Confidential

chmod 744 /etc/ssh/.sshalias

3. Notify users to define this alias if they already have created their own ENV file.
Users might have defined their own ENV setting in one of their shell profiles.
Their ENV setting is not inherited for remote command execution or remote
ssh processes, because these are not login shells. However, ENV will be
initialized to their own setting for interactive shells, where users might later be
issuing the ssh command. Their ENV setting overrides the ENVAR setting
through CEEPRMxx, so they need to pick up your alias for local ssh command
invocations.

» For /bin/sh users, this alias should be defined in the file specified by the
ENV variable.

e For /bin/tcsh users, this alias should be defined in /etc/csh.cshrc.

The subsequent examples all assume that one is working with /bin/sh users.

Notify users to either add the ssh alias to their ENV file or read in your ENV
file from their ENV file. For example, users might add to their ENV file the
following line, which reads in (or “sources”) the new ssh alias file using the
dot command:

/etc/ssh/.sshalias

4. Issue the operator command SETCEE to change the CEEPRMxx setting
dynamically. For example:

SETCEE CEEDOPT,ENVAR('LC_ALL=Hu_HU.IBM-1165",'ENV=/etc/ssh/.sshalias')
5. Verity that the ssh alias is set properly. From a new UNIX shell, issue:

> echo $ENV
/etc/ssh/.sshalias
> alias ssh
ssh="LC_ALL=C ssh"

>

Configuring sftp

By default, sftp treats files as binary. Use sftp if you do not want your data files
altered. If you want your data files translated between ASCII and EBCDIC, use
iconv to convert the files at the start or end of the sftp transfer.

If you have existing sftp jobs that use the ascii sftp subcommand: The ascii sftp
subcommand converts between ASCII ISO 8859-1 and the EBCDIC of the current
locale. If the file data on the network is in a coded character set that is not ISO
8859-1, then you must adjust existing jobs to transfer files as binary and use iconv
for the data conversion.

Configuring scp

By default, scp treats files as text. It assumes that all data going over the network
is encoded in ASCII coded character set ISO 8859-1. The EBCDIC coded character
set of the current locale is used for data conversion. On the remote system, the
locale of the scp process is determined by how LC_ALL is initialized on that
system. If LC_ALL is set through a shell profile (for example, /etc/profile), then
it will not be inherited by the remote scp process. Specifically, the remote scp
process will run in a C locale. [Figure 4 on page 69| shows the change in locales; for
example, if a user on Host GERMANY running in locale De_DE.IBM-273 uses scp
to transfer a file to a remote host, the file contents are converted from IBM-273 to
ISO 8859-1 to go over the network and from ISO 8859-1 to IBM-1047 on the target
system.

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Host Germany Host Germany?2
Host configured Host configured
to run in locale to run in locale
De_DE.IBM-273 De_DE.IBM-273

Scp process /Scp process
running in locale | running in

De_DE.IBM-273 | | Data in 1SO8859-1| |C locale

Figure 4. Using scpo when LC_ALL is set through shell profiles

If LC_ALL is set through the ENVAR run-time option in the CEEPRMxx member,
then the new locale is inherited by the remote scp process. Specifically, the
EBCDIC coded character set of that locale is used. See for an example of
using scp when LC_ALL is set through ENV in CEEPRMxx. If a user on Host
GERMANY running in locale De_DE.IBM-273 uses scp to transfer a file to a remote
host, the file contents are converted from IBM-273 to ISO 8859-1 to go over the
network, and from ISO 8859-1 to IBM-273 on the target system.

Host Germany Host Germany?2
Host configured Host configured
to run in locale to runin locale
De_DE.IBM-273 De_DE.IBM-273

SCp process / SCp process
running in locale | running in locale

De_DE.IBM-273 | | Data in 1ISO8859-1| | De_DE.IBM-273

Figure 5. Using scp when LC_ALL is set through ENV in CEEPRMxx

Warning: If a file is encoded in an EBCDIC coded character set whose compatible
ASCII coded character set is not ISO 8859-1, then nonidentical conversions might
occur. Specifically, substitution characters (for example, IBM-1047 0x3F) might
replace characters that do not have a mapping between the specified EBCDIC
coded character set and ISO 8859-1. To determine if a coded character set is
compatible with a particular locale, see the information about locales supplied with
z/0OS XL C/C++ in z/OS XL C/C++ Programming Guide.

If the EBCDIC coded character set for your sessions is compatible with ISO 8859-1
and the preceding text conversions are satisfactory for your environment, the
following setup is not required.

If you have existing scp jobs
If you are changing the locale on a system whose ASCII coded character set is not
Latin-1 and you have existing scp jobs configured, you can:

Chapter 7. Globalization on z/OS systems 69

70

IBM Confidential

* Convert those jobs to use sftp.

* Force scp to treat files as though they are encoded in IBM-1047, so substitution
characters are not introduced. This can be done through a shell alias, as
described in [“Configuring scp when LC_ALL is set through shell profiles.”|

* If you intend to configure a new locale through a shell profile, then continue to
[‘Configuring scp when LC_ALL is set through shell profiles.”|

 If you intend to configure a new locale using CEEPRMxx to specify run-time
options, then continue to [‘Configuring scp when LC_ALL is set through the]
[ENVAR run-time option in CEEPRMxx."]

Configuring scp when LC_ALL is set through shell profiles

If all the following are true for your environment:
* Your system is configured to run in a locale other than the default C locale
* The corresponding ASCII coded character set for your locale is not ISO 8859-1

* You changed the system-wide locale by setting LC_ALL through shell profiles
(for example, /etc/profile or $HOME/.profile.

* You do not want to convert existing scp workloads to sftp workloads

then perform the following steps as part of your OpenSSH system-wide setup.

If you have changed the locale at a system-wide level, consider defining this alias
in an area where it can be picked up by all users and inherited by all subshells.
Shell aliases are typically defined through the file named by the ENV variable of
/bin/sh. Users might have defined their own ENV setting in one of their shell
profiles. For this setup, the ENV variable should be exported so it is inherited by
subshells.

» For /bin/sh users, this alias should be defined in the ENV file.

e For /bin/tcsh users, this alias should be defined in /etc/csh.cshrc.

Steps to follow for setting up a system-wide alias for scp

The steps assume that you are using the /bin/sh shell.

1. Create a UNIX file, /etc/ssh/.sshalias, that contains the following line:
alias scp="LC_ALL=C scp"

2. Ensure that the UNIX permissions for this file are world-readable. From the
UNIX prompt, issue:
chmod 744 /etc/ssh/.sshalias

3. Notify users to either add the scp alias to their ENV file or read in the previous
ENV file from their user-defined ENV file. For example, users can add to their
ENV file the following line, which reads in (or “sources”) the new scp alias file
using the dot command:

/etc/ssh/.sshalias
4. Verity that the scp alias is set properly. From a new UNIX shell, issue:

> alias scp
scp="LC_ALL=C scp"

>

Configuring scp when LC_ALL is set through the ENVAR
run-time option in CEEPRMxx

If all the following are true for your environment:
* Your system is configured to run in a locale other than the default C locale

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Customizing your UNIX environment to run in another locale

To configure your UNIX environment to run in another locale, see the section on

¢ The corresponding ASCII code page for your locale is not ISO 8859-1

* You changed the system-wide locale by setting LC_ALL through the ENVAR
run-time option in a CEEPRMxx member or through the SETCEE operator
command.

— For information about SETCEE, see [z/OS MVS System Commands}

- |/OS MVS Initialization and Tuning Referencel contains information about the
ENVAR run-time option for CEEPRMxx.

* You do not want to convert existing scp workloads to sftp workloads

then perform the following steps as part of your OpenSSH system-wide setup.

Steps to follow for setting up a system-wide alias for scp
through the ENVAR run-time option of CEEPRMxx

1. Create a UNIX file /etc/ssh/.sshalias that contains the following line:
alias scp="LC_ALL=C scp"

2. Ensure the UNIX permissions for this file are world-readable. From the UNIX

prompt, issue:
chmod 744 /etc/ssh/.sshalias

3. Notify users to define this alias if they already have created their own ENV file.
Users might have defined their own ENV setting in one of their shell profiles.

Their ENV setting is not inherited for remote command execution or remote

scp processes, because these are not login shells. However, ENV is initialized to

their own setting for interactive shells, where users might later be issuing the

scp command. Their ENV setting overrides the ENVAR setting through
CEEPRMXx, so they need to pick up your alias for local scp command
invocations.

* For /bin/sh users, this alias must be defined in the file specified by the ENV

variable.
* For /bin/tcsh users, this alias must be defined in /etc/csh.cshrc.

The subsequent examples all assume that you are working with /bin/sh users.

Notify users to either add the scp alias to their ENV file or read in your ENV

file from their ENV file. For example, users can add to their ENV file the
following line, which reads in (or “sources”) the new scp alias file using the
dot command:
/etc/ssh/.sshalias

4. Issue the SETCEE operator command to change the CEEPRMxx setting
dynamically. For example:
SETCEE CEEDOPT,ENVAR('LC_ALL=Hu_HU.IBM-1165','ENV=/etc/ssh/.sshalias")

5. Verify that the scp alias is set properly. From a new UNIX shell, issue:

> echo $ENV
/etc/ssh/.sshalias
> alias scp
scp="LC_ALL=C scp"

>

customizing for your national code page in [z/OS UNIX System Services Planningl

Rule: All files used by OpenSSH (such as key files and configuration files) must be

in the IBM-1047 coded character set, with the exception of therc files

(/etc/ssh/sshrc and ~/.ssh/rc). The rc files are parsed by /bin/sh and should be

Chapter 7. Globalization on z/OS systems

71

IBM Confidential

in the coded character set of the current locale. Do not use the /etc/ssh/sshrc file
if there is a possibility of the users on the system running in different locales.

Warning: While it is possible to set LC_ALL through the ENVAR run-time option
of the CEEPRMxx member, configuring the locale in this way might cause
unexpected results. Specifically, it is possible that daemons or long-running
processes might expect to run in a C locale. Verify that all these processes support
running in your alternate locale. Additionally, some system administration user IDs
might need to run in a C locale, for editing configuration files which expect to be
encoded in IBM-1047.

72 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Chapter 8. Getting ready to use OpenSSH

This topic discusses the setup tasks that the user must do. It includes the steps for
generating user keys, which is a required step, and also discusses how to set up
the system for X11 forwarding, which is an optional step.

Requirement: All files used by OpenSSH (such as key files and configuration files)
must be in the IBM-1047 code set, with the exception of the rc files
(/etc/ssh/sshrc and ~/.ssh/rc). The rc files are parsed by /bin/sh and must be in
the code set of the current locale. Do not use the /etc/ssh/sshrc file if users on
the system might be running in different locales.

Restriction: OpenSSH does not run in multibyte locales.

In this chapter

This chapter covers the following subtasks.

Subtasks Associated procedure (see . . .)

Setting up the OpenSSH client configuration ||“Steps for setting up the OpenSSH client]
files configuration files”]

Setting up user authentication “Steps for setting up user authenticatio

when using UNIX files to store keys” onl

[page 75|

“Steps for setting up user authentication|
when using key rings to store keys” on page|
76

Configuring your setup for X11 forwarding ||“Steps for configuring your setup for X11|
forwarding” on page 83|

Setting up the OpenSSH client configuration files

The settings in the OpenSSH client configuration files (ssh_config and
zos_user_ssh_config) provide system defaults and can be overridden by
command-line options. By prefacing groups of configuration options with the Host
keyword, you can share these configuration files across multiple systems with
client configuration options that are tailored to the specific local system being used.

Steps for setting up the OpenSSH client configuration files
About this task

Before you begin: You must be running in the default C locale before performing
these steps.

Procedure
1. Customize the OpenSSH client configuration file.

a. Copy the sample ssh_config configuration file from the /samples directory
to your ~/.ssh directory.

cp /samples/ssh_config ~/.ssh/config
chmod 644 ~/.ssh/config

© Copyright IBM Corp. 2010, 2015 73

IBM Confidential

b. Modify the ~/.ssh/config file to control the SSH client-side authentication
methods attempted, protocols and ciphers supported, and session control
options. For details, see and [zos_user_ssh_config]

Note: If you are migrating from a previous release, review your existing
configuration files for any changes that you might want to migrate to the new
release.

2. Customize the z/OS-specific per-user client configuration file.

a. Copy the sample zos_user_ssh_config file from the /samples directory to
the ~/.ssh directory.

cp /samples/zos_user_ssh_config ~/.ssh/zos_user_ssh_config
chmod 644 ~/.ssh/zos_user_ssh _config

b. Modify the zos_user_ssh_conile to_control the z/OS-specific per-user

client options. For details, see|ssh|and

Results

When you are done, you have set up the OpenSSH client configuration files.

Setting up user authentication

74

Before clients can verify their identities to the server, user authentication must be
set up first. While passwords may be used for authentication, SSH public key and
GSS-API (Kerberos) authentication are more secure. For SSH public key
authentication, a user creates both a public and private key and then transfers a
copy of the public key to the SSH server being accessed. The private key is kept on
the user’s local machine and is used to verify the identity of the user when the
user attempts to connect to the SSH server. The public and private keys must be
correct for the server to allow the connection. Those keys can be stored in either
UNIX files or SAF key rings, or both. For more information about storing the key
rings, see [“Choosing between UNIX files and key rings” on page 611f GSS-API
authentication is configured on the SSH server and the SSH client, then this
mechanism may be used so that identities and keys are managed by the Key
Distribution Center (KDC). This mechanism is compatible with Microsoft
Windows® domains and some Windows SSH products.

Restriction: If you are using SSH protocol version 1, you cannot use key rings to
hold your keys. You must use UNIX files to hold RSA keys used for SSH protocol
version 1.

The procedures for setting up user authentication are described in the following
sections:

* |“Steps for setting up user authentication when using UNIX files to store keys”|

on page 75|

* |“Steps for setting up user authentication when using key rings to store keys” on|

page 76|

+ [“Steps for setting up user authentication with GSS-API (Kerberos)” on page 82|

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Steps for setting up user authentication when using UNIX files
to store keys
About this task

Perform the following steps to set up user authentication.

Procedure

1. Generate public and private key pairs, based on the SSH protocol you plan to
use, protocol version 1 or protocol version 2.

If you are using SSH protocol version 1, issue:
ssh-keygen -t rsal

If you are using SSH protocol version 2, issue:
ssh-keygen -t rsa
ssh-keygen -t dsa

2. On the remote host, distribute the public keys to all remote hosts that you plan
to log in to, using public key authentication. By default, OpenSSH uses the
authorized_keys file to store these public keys. [Figure 6 on page 76| shows an
example of the steps to follow in order to create an authorized_keys file when
keys are stored in UNIX files.

a. Create or edit the ~/.ssh/authorized_keys file for your accounts on both
local and remote systems.

b. Append the public keys to the ~/.ssh/authorized_keys file as follows:

* To enable local users to log into a remote account, append the local user's
public keys (those ending with a "pub” suffix) to the remote user's
~/.ssh/authorized keys file.

* To enable remote users to log into a local account, append the remote
user's public keys (those ending with a "pub" suffix) to the local user's
~/.ssh/authorized_keys file.

You can append the public keys by using cut and paste. Because a key is a
long line, make sure that the keys are not split across lines. Each key should
be exactly one line of the file.

If you use FIP to copy your public key files to another system, treat the
files as text to enable any necessary conversion between ASCII and
EBCDIC.

3. On the remote host that you plan to log into, verify that your home directory
(for example, ~/), the .ssh subdirectory, and the authorized_keys file are not
writable by other users. The default configuration of the OpenSSH daemon
enables StrictModes, which verifies these settings before allowing public key
authentication.

Results

When you are done, you have set up user authentication. Every time you
regenerate the keys, you must update the authorized_keys file on remote systems.

Chapter 8. Getting ready to use OpenSSH 75

IBM Confidential

Example of user authorization when using UNIX files to store
keys

An employee named Bill has two accounts on two systems where UNIX files are
used to store keys. His user name on HOST1 is BILLY. On HOST2, his user name
is WILLIAM. While logged into HOST1, he wants to be able to access HOST2
using ssh with public key authentication. shows how the process would

work.

HOST1

1. Bill logs into HOST1 as BILLY

2. Create a public and private key pair
for BILLY HOST2

>ssh-keygen -t rsa

3. Display BILLY’s public key

4. Bill logs into HOST2 as WILLIAM

5. Cut and paste BILLY’s
public key into William’s
~/.ssh/authorized_keys file

Now BILLY from HOST1 can ssh to
WILLIAM on HOST2

>ssh william@host2

Figure 6. Accessing a remote system using ssh with public key authentication when keys are stored in UNIX files

Steps for setting up user authentication when using key rings

to store keys
About this task

The setup procedure has been divided into two steps:

* [“Step 1. Construct the key ring” on page 77]
* |“Step 2. Distribute the public keys to all remote hosts” on page 79|

76 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Notes about the command example
The examples for managing key rings and associated objects use the RACDCERT
RACF command. If you are using an alternate security product, consult that
product's documentation to determine if it contains compatible support. For more
information about the RACDCERT command, the necessary authority required to
use the command, and any other options not described, see lz/OS Security Server|
[RACF Command Language Referencel

In the examples, input names that are given in italics are variables, which you can
choose. Some of these names in italics contain hyphen characters (-) separating
portions of the name. These hyphens are variable and are not required. The names
given are suggestions and are consistently used throughout the examples (for
example, if you customize your own version in one step, that name will likely
need to be used on other command steps as well).

The examples demonstrate using a self-signed certificate. Using a certificate chain,
such as with root and intermediate certificate authority certificates, is supported. If
you will be using more advanced certificate chains than the examples demonstrate,
see [“Validating certificates when using key rings” on page 62| for important
considerations.

Step 1. Construct the key ring
In this step, you will construct a key ring, if one is needed, generate certificates,
connect them to the user's key ring, and set up permission to access the key ring.

Before you begin: You need to know the following facts:

* Which protocol version you will be using. If you are using SSH protocol version
1, you cannot use key rings to hold your keys. You must use UNIX files to hold
RSA keys used for SSH protocol version 1.

* Whether you are working with real or virtual key rings because the setup steps
vary depending on the type of key ring is being used. See [z/OS Security Server]
[RACF Security Administrator’s Guide| for more information about real and virtual
key rings.

1. Create a real key ring if you do not yet have one for your keys. Omit this step
if you plan to use a virtual key ring. If you already have a key ring or are
using a virtual key ring, go to Step [2} Use the RACDCERT ADDRING
command to create the new key ring, specifying the owning user ID and the
key ring name. The ID keyword must specify the user ID that will be
authenticating with the keys within it. The key ring name can be any unique
name for this user ID.

Example: To define the SSHring key ring, issue:
RACDCERT ADDRING(SSHring) 1D(userID)

On this command example, and all that follow, the ID() keyword can be
omitted if the invoking user is the same as the authenticating user ID.

2. Using the RACDCERT GENCERT command, generate a certificate with public
and private keys, based on the algorithms that are supported on the server
(either RSA, DSA, or both.) For RSA keys, the minimum size is 768 bits, the
maximum size is 32768 bits. Typically, 2048 bits is considered sufficient. DSA
keys must be exactly 1024 bits as specified by FIPS 186-2. OpenSSH does not
support DSA keys larger than 1024 bits that are associated with certificates in a
key ring.

Do not use variant characters in the label name for the certificate.

Chapter 8. Getting ready to use OpenSSH 77

IBM Confidential

Although the examples demonstrate how to create non-ICSF (Integrated
Cryptographic Storage Facility) certificates in the RACF database, ICSF can also
be used to store the certificate and associated keys for RSA only. These can be
generated by software using ICSF or by hardware using a PCI Cryptographic
Coprocessor (PCICC). For more information, refer to [z/OS Cryptographic Services|
[[CSF Administrator’s Guide
* To generate a certificate and an RSA public/private key pair, storing the
private key in the RACF database as a non-ICSF key:
RACDCERT GENCERT SUBJECTSDN(CN('unig-ssh-rsa-cn')) SIZE(2048)
WITHLABEL('unig-ssh-rsa') ID(userID)
* To generate a certificate and a DSA public/private key pair, storing the
private key in the RACF database as a non-ICSF key:
RACDCERT GENCERT SUBJECTSDN(CN('unig-ssh-dsa-cn')) SIZE(1024) DSA
WITHLABEL('unig-ssh-dsa') ID(userID)
The SUBJECTSDN parameter offers additional customizable keywords, which
are not documented in this section, that can be included in the distinguished
name. The label assigned to the certificate must be unique within the RACF
database.

3. If real key rings are being used, use the RACDCERT CONNECT command to
connect the certificate to the user's key ring. Omit this step if virtual key rings
are being used. If you are not the certificate owner, you must identify the user
ID that owns the certificate. If you are not the key ring owner, you must
identify the user ID that owns the key ring. These will normally be the same
for this connect command.

RACDCERT CONNECT(ID(userID) LABEL('unig-ssh-type') RING(SSHring)
USAGE (PERSONAL)) ID(userID)

4. Update the user's z/OS-specific per-user client configuration file
(~/.ssh/zos_user_ssh_config) to indicate the location of the user's keys when
using key rings.

* If real key rings are being used, add the following line:
IdentityKeyRinglLabel "userID/SSHring unig-ssh-type"

e If virtual key rings are being used, add the following line:
IdentityKeyRinglLabel "userID/* uniq-ssh-type"

5. Permit access to the key ring for the user, using either ring-specific profile
checking or global profile checking. These are discussed in

[rings and restricting access to them” on page 61

For example:
* To define individual user access to the real key ring, SSHring, using
ring-specific profile checking;:

RDEFINE RDATALIB userID.SSHring.LST UACC(NONE)
PERMIT userID.SSHring.LST CLASS(RDATALIB) ID(userID) ACCESS(READ)

If the RDATALIB class is not yet active and RACLISTed:
SETROPTS RACLIST(RDATALIB) CLASSACT(RDATALIB)

Refresh the class:
SETROPTS RACLIST(RDATALIB) REFRESH

* To define individual user access to the virtual key ring, using ring-specific
profile checking:

78 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

RDEFINE RDATALIB userID.IRR_VIRTUAL_KEYRING.LST UACC(NONE)
PERMIT userID.IRR_VIRTUAL_LISTRING.LST CLASS(RDATALIB) ID(userID) ACCESS(READ)

If the RDATALIB class is not yet active and RACLISTed:
SETROPTS RACLIST(RDATALIB) CLASSACT(RDATALIB)

Refresh the class:
SETROPTS RACLIST(RDATALIB) REFRESH

* To define individual user access, using global profile checking:
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(READ)

If the FACILITY class is not yet active and RACLISTed:
SETROPTS RACLIST(FACILITY) CLASSACT(FACILITY)

Refresh the class:
SETROPTS RACLIST(FACILITY) REFRESH

Step 2. Distribute the public keys to all remote hosts

In this step, you will distribute the public keys to all remote hosts that you plan to
log in to, using public key authentication. [Figure 7 on page 82| shows an example
of the steps to follow in order to create an authorized_keys file when keys are
stored in key rings.

1. Export the public keys to remote hosts that store user's keys in a UNIX file (the
authorized_keys file).

* On the local host, use ssh-keygen -e to export the public key into a UNIX
file.

Example:
_Z0S_SSH_KEY_RING_LABEL="userID/SSHring unig-ssh-type" ssh-keygen -e > unig-ssh.type
* Use FTP to distribute the unig-ssh.type file to the remote host.

* On the remote host, use ssh-keygen -i to import the public key, appending it
to the authorized_keys file:

ssh-keygen -i -f unig-ssh.type >> ~/.ssh/authorized_keys

* You have now completed distribution of the public keys to remote hosts that
store user keys in a UNIX files . If you have other remote hosts that store
user keys in key rings, then continue on to the next step to export the public
keys to remote hosts. Otherwise, you have completed Step 2.

2. Export the public keys to remote hosts that store users's keys in a certificate
associated with a key ring. First, the public keys must be exported from the
certificate. The RACDCERT EXPORT command can perform this type of export.
Specify the certificate identification and request CERTDER for the export
format. Choose a data set to store the exported certificate and specify it on the
DSN parameter. If the data set specified for DSN already exists, it is deleted
and reallocated by the RACDCERT EXPORT command.

If the public key will be stored in a certificate associated with a key ring on the
remote host, then export the certificate in DER format (without the private key)
into a data set for each public key that needs to be distributed to remote hosts.
For example:

RACDCERT EXPORT (LABEL('unig-ssh-type')) ID(userID)
FORMAT (CERTDER) DSN('userid.sshcert.type')

Chapter 8. Getting ready to use OpenSSH 79

80

IBM Confidential

Use FTP to distribute the exported certificate data set in binary format to the
remote hosts.

On the remote host, create a real key ring if you do not yet have one for your
keys. Omit this step if you plan to use a virtual key ring.

RACDCERT ID(userID) ADDRING(SSHAuthKeysRing)

On the remote hosts, add each user certificate into the user's SAF database.

The RACDCERT ADD command can be used to add the exported certificate on
the remote host. Specify the data set that you copied to the remote host using
FTP, the user ID that should own the certificate, and indicate that this certificate
is trusted. The specified user ID must be the user ID that you want to be able
to connect to from the local host with the matching key. You will specify the
label for this certificate on this remote host. This label must be unique for the
user ID within the RACF database, and is used to identify this certificate on
future commands and in authorized key files.

This certificate only contains the public key.
Example:

RACDCERT ADD('userid.sshcert.type') 1D(userID)
WITHLABEL('unig-ssh-type') TRUST

On the remote hosts, connect each certificate to the user's key ring.

The RACDCERT CONNECT command can be used to connect each certificate
to the user's key ring if real key rings are being used. Omit this step if virtual
key rings are being used and go to Step El You must identify both the user ID
that owns the certificate and the user ID that owns the key ring. These will
normally be the same for this connect command.

Example:

RACDCERT CONNECT(ID(userID) LABEL('unig-ssh-type')
RING (SSHAuthKeysRing) USAGE(PERSONAL)) ID(userID)

On the remote host, edit the authorized_keys file to add one line containing the
zos-key-ring-label option for each public key that was added to the key ring. (See
[“Format of the authorized_keys file” on page 136|in the sshd command section
for more information.)

For example:

* If a real key ring is being used, add the following line:
zos-key-ring-label="userID/SSHAuthKeysRing unig-ssh-type"
 If a virtual key ring is being used, add the following line:

zos-key-ring-label="userID/* uniqg-ssh-type"

On the remote host, permit access to this key ring for the user. There are two
ways to provide access: ring-specific profile checking and global profile

checking. Both are discussed in [“Managing key rings and restricting access to|
[them” on page 61

For example:
* To define individual user access to the real key ring, SSHAuthKeysRing,
using ring-specific profile checking:

RDEFINE RDATALIB userID.SSHAuthKeysRing.LST UACC(NONE)
PERMIT userID.SSHAuthKeysRing.LST CLASS(RDATALIB) ID(userID) ACCESS(READ)

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

If the RDATALIB class is not yet active and RACLISTed:
SETROPTS RACLIST(RDATALIB) CLASSACT(RDATALIB)

Refresh the class:
SETROPTS RACLIST(RDATALIB) REFRESH

* To define individual user access to the virtual key ring, using ring-specific
profile checking:

RDEFINE RDATALIB userID.IRR_VIRTUAL_KEYRING.LST UACC(NONE)
PERMIT userID.IRR_VIRTUAL_KEYRING.LST CLASS(RDATALIB) ID(userID) ACCESS(READ)

If the RDATALIB class is not yet active and RACLISTed:
SETROPTS RACLIST(RDATALIB) CLASSACT(RDATALIB)

Refresh the class:
SETROPTS RACLIST(RDATALIB) REFRESH

* To define individual user access, using global profile checking:
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(READ)

If the FACILITY class is not yet active and RACLISTed:
SETROPTS RACLIST(FACILITY) CLASSACT(FACILITY)

Refresh the class:
SETROPTS RACLIST(FACILITY) REFRESH

When you are done, you have set up user authentication when using key rings to
store keys. Every time the user keys are regenerated in the key ring, they must be
redistributed and added to the key ring on the remote systems that contain the
authorized keys.

Example of user authorization when keys are stored in key rings

Chapter 8. Getting ready to use OpenSSH 81

HOST1

1. Bill logs into HOST1 as BILLY.

2. Create a public and private key pair
via certificate management and
associate it with a key ring for BILLY.

>RACDCERT ADDRING ...
>RACDCERT GENCERT ...
>RACDCERT CONNECT ...

3. Identify the key ring and certificate to
OpenSSH by editing the local
~/.ssh/zos_user_ssh_config file.

4. Distribute the certificate to other
z/OS hosts.

>RACDCERT EXPORT

>FTP the exported certificate to
HOST2

Now BILLY from HOST1 can ssh to
WILLIAM on HOST2.

>ssh WILLIAM@HOST2

HOST2

5. Bill logs into HOST2 as WILLIAM.

6. Import the exported certificate that
was sent from HOST1.

>RACDCERT ADDRING ...
>RACDCERTADD ...
>RACDCERT CONNECT ...

7. Edit WILLIAM’s ~/.ssh/authorized_keys

file to identify the imported certificate.

IBM Confidential

Figure 7. Accessing a remote system using ssh with public key authentication when keys are stored in real key rings

Steps for setting up user authentication with GSS-API

(Kerberos)

About this task

Perform the following steps to perform setup for user authentication with

GSS-APL

Procedure

1. For SSH servers, modify the /etc/ssh/sshd_config file to enable the GSS-API
option GSSAPIAuthentication. It is a good idea to also enable option
GSSAPIKeyExchange, so that server authentication can be done with GSS-API
key exchange if supported by the client.

2. For SSH client machines, modify the /etc/ssh/ssh_config file to enable the
GSSAPI option GSSAPIAuthentication. It is a good idea to also enable option
GSSAPIKeyExchange, so that server authentication can be done with GSS-API

82 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

key exchange if supported by the server. These option may alternatively be
enabled in an individual user's ~/.ssh/ssh_config file or by using command
line options on the ssh, sftp, or scp commands.

3. For z/OS machines that run a KDC, refer to |z/OS Cryptographic Services ICSH
[Administrator’s Guidefo define user local principals for the z/OS userids that
run the SSH client. For example:

ALTUSER userid PASSWORD(password) NOEXPIRED KERB(KERBNAME('userid'))

4. For z/0OS SSH servers where the KDC is not on z/OS, the following command
allows you to map a foreign principal to a local z/OS userid:
RDEFINE KERBLINK /.../foreign.realm/userid APPLDATA('userid')

5. On the SSH client, use the kinit command to obtain a ticket granting ticket
from the KDC. For z/OS client machines running a KDC, the kinit -s
command will obtain a ticket for the current z/OS userid without prompting
for a password. For z/OS client machines that do not run a KDC, specify the
principal name on the kinit command and respond to the prompt for a
password.

Results

When you are done, you have performed setup for user authentication with
GSS-APL

Steps for configuring your setup for X11 forwarding

About this task

X11 forwarding allows users who have an account on a UNIX machine to open a
connection to the X11 interface remotely from another computer. Because this
connection uses SSH, the communication between the systems is encrypted. X11
forwarding will only work if the system being connected to has both SSH and X11
forwarding enabled.

Before you begin: You need to know whether the system administrator has
configured sshd on the remote host for X11 forwarding as described in
[configuring the system for X11 forwarding” on page 47|

Perform the following steps to configure your system for X11 forwarding.

Procedure
1. Enable X11 forwarding for your local SSH client. You can do this in one of two
ways:

a. Set the ForwardX11 configuration variable to yes in your ~/.ssh/config file.
This can be done on a per-host basis. This is useful if you want to always
enable X11 forwarding.

b. Invoke ssh with the -X option. Use this if you want to enable X11
forwarding for this session only.

2. In your local SSH configuration file (*/.ssh/config), specify the location of the
xauth program on the remote system. This step is required only if the xauth
program is installed somewhere other than the default location
(/usr/X11R6/bin/xauth). The xauth program might need to support the
generate command in order to allow ssh to successfully set up untrusted X11
forwarding.

Chapter 8. Getting ready to use OpenSSH 83

IBM Confidential

Provided is an example of a ssh configuration file entry, using the default xauth
location:

XAuthLocation /usr/X11r6/bin/xauth

3. In your remote user account, if xauth is compiled to use DLLs, then set
LIBPATH in ~/.ssh/environment to include /usr/1ib.

For example:
LIBPATH=/usr/1ib

Results

When you are done, you have configured your setup for X11 forwarding.

84 1BM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

Chapter 9. OpenSSH command descriptions

scp — Secure copy (remote file copy program)

Format

scp [-12346BCpqrv] [—c cipher] [-F ssh_config] [-i identity_file] [-1 limit] [-o
ssh_option] [-P port] [-S program] [[user@]host1:]filel ... [[user@]host2:]file2

Description

scp copies files between hosts on a network. It uses ssh for data transfer and uses
the same authentication and provides the same security as ssh. rcp (remote copy)
is a traditional UNIX utility that allows a user to copy files between remote hosts.
Copies between two remote hosts are also permitted. When copying between two
remote hosts, only options -v, -r and -p are passed to the remote host regardless of
what the user specifies on the command line. Unlike rcp, scp asks for passwords,
password phrases, or passphrases if they are needed for authentication.

File names can contain a user and host specification to indicate that the file is to be
copied to the host or from the host. To prevent scp from treating the names
containing "' as specifiers, local file names can be made explicit by using absolute
or relative path names.

IPv6 addresses can be specified by enclosing the address in square brackets.

scp assumes that files are text. Files copied between EBCDIC and ASCII platforms
are converted.

If the source path name is a symbolic link, scp copies the file to which the
symbolic link points. In other words, symbolic links are followed.

OpenSSH can be configured to collect SMF client and server transfer completion
records that are associated with scp. See |“Setting up OpenSSH to collect SMF|
records” on page 50| for more information. See [Chapter 12, “SMF Type 119 records|
for OpenSSH,” on page 201| for more information about the SMF client and server
transfer completion records (subtypes 97 and 96 respectively). SMF records are not
collected for local-to-local copies.

OpenSSH can be set up to use ICSF to implement certain ssh ciphers and MAC
algorithms. This extension enables scp (via ssh) to use hardware support when

applicable. See [‘Setting up OpenSSH to use ICSF cryptographic operations” on|
for more information.

OpenSSH can be set up to run in FIPS mode. This extension enables scp to comply
with FIPS 140-2 mode when applicable. See [“Setting up OpenSSH to run in FIPS|
[mode” on page 58| for more information. OpenSSH can be set up to use ICSF to
implement certain ssh Key Exchange algorithms. See [“Setting up OpenSSH to use
[[CSF cryptographic operations” on page 52| for more information.

Restriction: The maximum full path name length is 1023 bytes for files processed
by scp. Exceeding this maximum might result in unexpected behavior.

© Copyright IBM Corp. 2010, 2015 85

scp

86

IBM Confidential

Options
-1 Specifies that scp is to use protocol version 1 only.
-2 Specifies that scp is to use protocol version 2 only.
-3 Copies between two remote hosts are transferred through the local host.
Without this option, the data is copied directly between the two remote
hosts.

Note: This option disables the progress meter.

—4 Forces scp to use IPv4 addresses only. If both —4 and -6 are specified, scp
uses the option that appears last on the command line.

-6 Forces scp to use IPv6 addresses only. If both —4 and -6 are specified, scp
uses the option that appears last on the command line.

-B Selects batch mode; while in batch mode, prompts are not issued for
passwords, password phrases, or passphrases, but they are still required
for OpenSSH. To avoid password prompts, use public-key authentication
with an ssh-agent or host-based authentication.

—c cipher
Selects the cipher to use for encrypting the data transfer. This option is
directly passed to ssh. For more information, see the ssh or the
ssh_config keyword

-C Enables compression. Passes the —C flag to ssh to enable compression.

—F ssh_config
Specifies an alternative per-user configuration file for ssh. This option is
directly passed to ssh. This option has no effect on the z/OS-specific
configuration files.

-i identity_file
Selects the file from which the identity (private key) for RSA, DSA, or
ECDSA authentication is read. This option is directly passed to ssh. For
more information, see

-1 Limits the used bandwidth, specified in Kbits.

-0 ssh_option
Can be used to pass options to ssh in the format used in the ssh_config
configuration file. This option is useful for specifying options for which
there is no separate scp command-line flag. For full details of the available
options and their values, see |ssh_conﬁg_§l The z/OS-specific per-user
OpenSSH client configuration options (see |Zos_user_ssh_conﬁg|) can be

specified on -o, but the z/OS-specific system-wide options (see
zos_ssh_config) cannot.

For example:

1. To use protocol version 1:
scp -oProtocol=1
2. To disable password authentication:
scp -oPasswordAuthentication=no
-p Preserves modification times, access times, and modes from the original
file.
-P port
Specifies the port to connect to on the remote host.

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential scp

-q Quiet. Disables the progress meter as well as the warning and diagnostic
messages from ssh.

I -1 Recursively copies entire directories.

[Note: scp follows symbolic links encountered in the tree traversal.

=S program
I Name of program to use for the encrypted connection. The program must
I understand ssh options. On z/OS, if this option is specified, then scp will
I hang unless the program provides SMF information.

-v Verbose mode. Causes scp and ssh to print debugging messages about
their progress, which is helpful in debugging connection, authentication,
and configuration problems.

Environment variables

_ZOS_OPENSSH_DEBUG
Contains z/OS-specific debug information. This environment variable is
only used internally and is not for external specification.

_ZOS_OPENSSH_DEBUG_TIMESTAMP
If this variable is specified to YES, it will contain the timestamp in the
debug information. If it is specified to CPU, the CPU time will be used as
the timestamp.

_ZOS_OPENSSH_MSGCAT
Identifies the OpenSSH message catalog to be used when sending
OpenSSH error messages.

_ZOS_SMEF_FD
Set to the file descriptor number used for interprocess communication
during SMF-related processing. This environment variable is only used
internally and is not for external specification.

Exit values

0 Successful completion

>0 An error occurred.

Related information

sftp, ssh, sshd, ssh-add, ssh-agent, ssh_config, ssh-keygen, zos_ssh_config,
zos_user_ssh_config

Authors

Timo Rinne and Tatu Ylonen

sftp — Secure file transfer program

Format

| sftp [1246Cpqrv] [-B buffer_size] [-b batchfile] [-ccipher] [-Dsftp_server_path] [-F
| ssh_config] [-iidentity_file] [-1limit] [-o ssh_option] [-P port] [-R num_requests] [-S
program] [-s subsystem | sftp_server] host

sftp [[user@]host[:file [file]]]

Chapter 9. OpenSSH command descriptions 87

sftp

88

IBM Confidential

sftp [[user@]host[:dir[/]]]

sftp -b batchfile [user@]host

Description

sftp is an interactive file transfer program similar to ftp which performs all
operations over an encrypted ssh transport. It uses many features of ssh, such as
public key authentication and compression.

sftp connects and logs into the specified host and then enters a subcommand
mode.

* The second usage format retrieves files automatically if a non-interactive
authentication method is used; otherwise it does so after successful interactive
authentication.

* The third usage format allows sftp to start in a remote directory.

* The fourth usage format allows for automated sessions using the -b option. In
such cases, you might have to configure public key authentication to eliminate
the need to enter a password at connection time. For more information, see

and
IPv6 addresses can be specified by enclosing the address in square brackets.

By default, sftp assumes files are binary. Files copied between EBCDIC and ASCII
platforms are not converted. Use the ascii subcommand to transfer files in ASCII
between the local host and the remote host.

OpenSSH can be configured to collect SMF client transfer completion records that
are associated with sftp. See [“Setting up OpenSSH to collect SMF records” on page|
50| for more information. See [Chapter 12, “SMF Type 119 records for OpenSSH,” on|

age 201| for more information about the SMF client transfer completion records
(subtype 97).

OpenSSH can be set up to use ICSF to implement certain ssh ciphers and MAC
algorithms. This extension enables sftp (via ssh) to use hardware support when

applicable. See [‘Setting up OpenSSH to use ICSF cryptographic operations” on|
for more information.

OpenSSH can be set up to run in FIPS mode. This extension enables sftp to

comply with FIPS 140-2 mode when applicable. See [“Setting up OpenSSH to run in|
[FIPS mode” on page 58| for more information. OpenSSH can be set up to use ICSF
to implement certain ssh Key Exchange algorithms. Sed“Setting up OpenSSH to|
[use ICSF cryptographic operations” on page 52| for more information.

Restriction: The maximum full path name length is 1023 bytes for files processed
by sftp. Exceeding this maximum might result in unexpected behavior.

Options

-1 Specifies the use of SSH protocol version 1. Because SSH protocol version 1
does not support subsystems, you must specify —s with an sftp-server path
when using this option. This option is only supported if both the local and
remote hosts are z/OS systems.

-2 Forces SSH to try protocol version 2 only. If both -1 and -2 are specified,

sftp uses the option that appears last on the command line.

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

sftp

-4 Forces SSH to use IPv4 addresses only. If both —4 and -6 are specified, sftp
uses the option that appears last on the command line.

-6 Forces SSH to use IPv6 addresses only. If both -4 and -6 are specified, sftp
uses the option that appears last on the command line.

-b batchfile
Batch mode reads a series of commands from an input batchfile instead of
stdin. Because it lacks user interaction, use it in conjunction with
noninteractive authentication. A batchfile of '-' can be used to indicate
standard input. sftp ends and the exit value is set to nonzero only if any of
the following commands fail: get, put, reget,rename, In, rm, rmdir, mkdir,
cd, 1s, led, chmod, chown, chgrp, lpwd, df, symlik and lmkdir. For an
exception, see [“Limitations” on page 90| This option causes sftp to pass
-oBatchMode=yes to ssh.

Ending on error can be suppressed on a command-by-command basis by
prefixing the command with a '-' character.

For example:
-rm /tmp/filex

-B buffer_size
Specifies the size of the buffer that sftp uses when transferring files. Larger
buffers require fewer round trips at the cost of higher memory
consumption. The default is 32768 bytes. If specifying buffer_size >
INT_MAX, sftp only allocates INT_MAX at most. For more information,
see [“Limitations” on page 90

—c cipher
Selects the cipher to use for encrypting the data transfers. This option is
directly passed to ssh.

-C Enables compression. This option is passed to ssh.

-D sftp-server_path
Connects directly to the local sftp-server (instead of by way of ssh). This
option might be used in debugging the client and server.

Restriction: When this option is specified, SMF client transfer completion
records (subtype 97) are not collected.

—F ssh_config
Specifies an alternative per-user ssh_config configuration file for ssh. This
option is directly passed to ssh. It has no effect on the z/OS-specific
configuration files.

—i identity_file
Selects the file from which the identity (private key) for public key
authentication is read. This option is directly passed to ssh. See page for
more information.

-1 limit
Limits the used bandwidth, specified in Kbit/s.
-0 ssh_option

Can be used to pass options to ssh in the format used in the ssh_config
and zos_user_ssh_config configuration files. This is useful for specifying

options for which there is no separate sftp command-line flag. For full
details of the available options and their values, see and

lzos_user_ssh_config| The z/OS-specific per-user OpenSSH client

Chapter 9. OpenSSH command descriptions 89

sftp

90

IBM Confidential

configuration options can be specified on -o, but the z/OS-specific
system-wide options (see 20s_ssh_config) cannot.

Example: To specify an alternate port, use:

sftp -oPort=24

sftp always passes the following options to ssh:
¢ ForwardX1l=no

* ForwardAgent=no

¢ PermitLocalCommand=no

* ClearAllForwardings=yes

-p Preserves modification times, access times, and modes from the original
files transferred.

=P port
Specifies the port to connect to on the remote host.

-q Quiet mode: disables the progress meter as well as warning and diagnostic
messages from ssh.

- Recursively copy entire directories when uploading and downloading.

Note: sftp does not follow symbolic links found in tree traversal.

-R num_requests
Specifies the number of requests that can be outstanding at any one time.
Increasing this might slightly improve file transfer speed, but increases
memory usage. The default is 16 outstanding requests.

—s subsystem | sftp_server
Specifies the SSH protocol version 2 subsystem or the path for an sftp
server on the remote host. An sftp-server path is useful for using sftp over
SSH protocol version 1 or when the remote sshd does not have an sftp
subsystem configured.

=S program
Name of the program to use for the encrypted connection. The program
must understand ssh options. On z/OS, if this option is specified, then
sftp will hang unless the program provides SMF information.

-v Enables verbose mode. This option is also passed to ssh. Multiple —-v
options increase the verbosity. You can specify up to three -v options.

Limitations

Due to limitations in the SECSH protocol with regards to EBCDIC platforms, sftp
used with SSH protocol version 1 is only supported from z/OS to z/OS. (For
information about the IETF SECSH internet drafts, see [Appendix C, “RFCs and|
[[nternet drafts,” on page 523).

The biggest buffer size that can be allocated is 2147483647(INT_MAX) bytes.
INT_MAX is defined in limits.h.

When using put -p in conjunction with -b, if a failure occurs when preserving
permissions or access time on the remote system, sftp will not exit and the exit
value will not be set to nonzero.

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential sftp

Subcommands

sftp understands a set of commands (subcommands) similar to those of ftp.

The following rules apply:
¢ Commands are not case sensitive.
* Path names that contain spaces must be enclosed in quotes.

* Glob characters (also called wildcard characters) in path names must be escaped
with backslash characters (\). For more information about wildcard characters,
refer to the section on file name generation in the sh command description in
[z/OS UNIX System Services Command Referencel

* Characters preceded by an unescaped pound sign (#) are treated as a comment.
Input up to but not including the next newline is discarded.

ascii ~ Changes the data transfer type to ASCIL

For outgoing files, convert from EBCDIC code page of the current locale
into ASCII before transferring them to the remote host. For incoming files,
convert from ASCII into the code page of the current locale before
restoring them on the local host.

Restriction: The ascii subcommand is only valid for file transfers between
UNIX platforms. It is not valid for file transfers between Windows and
UNIX platforms.

binary Changes the data transfer type to binary. This is the default.
bye Quits sftp.

cd path
Changes the remote directory to path.

led path
Changes the local directory to path.

chgrp grp path
Changes group of file path to grp. grp must be a numeric GID. path can
contain glob characters and match multiple files.

chmod mode path
Changes permissions of file path to mode. path can contain glob characters
and match multiple files.

chown own path
Changes owner of file path to own. own must be a numeric UID. path can
contain glob characters and match multiple files.

df [-hi] [path]
Display usage information for the filesystem holding the current directory
(or path if specified). If the -h flag is specified, the capacity information
will be displayed using "human-readable" suffixes. The -i flag requests
display of inode information in addition to capacity information. This
command is only supported on servers that implement the
“statvfs@openssh.com" extension.

exit Quits sftp.

get [-aPpr] remote-path [local-path]
Retrieves the remote-path and stores it on the local machine. If the local
path name is not specified, it is given the same name it has on the remote
machine. remote-path can contain glob characters and match multiple files.
If it matches multiple files and local-path is specified, then local-path must

Chapter 9. OpenSSH command descriptions 91

sftp

92

IBM Confidential

specify a directory. If the —P or —p flag is specified, then the file's full
permissions and access time are copied as well.

If the -a flag is specified, then attempt to resume partial transfers of
existing files.

Note:

Resumption assumes that any partial copy of the local file matches the
remote copy. If the remote file differs from the partial local copy then the
resultant file is likely to be corrupt.

If the -r flag is specified, then directories will be copied recursively. In this
case, the local directory will be created if it does not already exist.

Note:
sftp does not follow symbolic links when performing recursive transfers.

help Displays help text.

11s [Is-options [pathl]
Displays local directory listing of either path or current directory if path is
not specified. Is-options is case sensitive. Is-options can contain any flags
supported by the local system's Is command. path can contain glob
characters and match multiple files.

Imkdir path
Creates local directory specified by path.

In [-s] oldpath newpath
Creates a symbolic link from oldpath to newpath on the remote host. If the
-s flag is specified, the created link is a symbolic link, otherwise it is a
hard link. Same as symlink if -s is specified.

Ipwd Prints local working directory.

Is [-1afhlnrSt] [path]
Displays remote directory listing of either path or current directory if path
is not specified. path can contain glob characters and match multiple files.

The following flags are recognized and the behavior of Is is altered

accordingly:

-1 Produces single-column output.

-a Lists files beginning with a dot (.).

-f Does not sort the listing. The default sort order is lexicographical.
-h When used with a long format option, use unit suffixes: Byte,

Kilobyte, Megabyte, Gigabyte, Terabyte, Petabyte, and Exabyte in
order to reduce the number of digits to four or fewer using powers
of 2 for sizes (K=1024, M=1048576, and so forth).

-1 Displays additional details including permissions and ownership
information.

-n Produces a long listing with user and group information presented
numerically.

-r Reverses the sort order of the listing.

-S Sorts the listing by file size.

-t Sorts the listing by last modification time.

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

sftp

lumask umask
Sets local umask to umask.

mkdir path
Creates remote directory specified by path.

progress
Toggles display of progress meter.

put [-Ppr] local-path [remote-path]
Uploads local-path and stores it on the remote machine. If the remote-path
name is not specified, it is given the same name it has on the local
machine. local-path can contain glob characters and match multiple files. If
it matches multiple files and remote-path is specified, then remote-path must
specify a directory. If the —P or —p flag is specified, then the file's
permissions and access time are copied as well.

If the -r flag is specified, then directories will be copied recursively. In this
case, the remote directory must already exist.

Note:

sftp does not follow symbolic links when performing recursive transfers.

When using put -p with -b, if a failure occurs when preserving
permissions or access time on the remote system, sftp will not exit and the
exit value will not be set to nonzero.

pwd Displays the remote working directory.
quit Quits sftp.

reget [-Ppr] remote-path [local-path]
Resume download of remote-path. Equivalent to get with the -a flag set.

rename oldpath newpath
Renames the remote file from oldpath to newpath.

rmdir path
Removes the remote directory specified by path.

rm path
Deletes the remote file specified by path.

symlink oldpath newpath
Creates a symbolic link from oldpath to newpath on the remote host. Same
as In.

version
Displays the sftp version.

! Escapes to local shell.

! command
Executes command in the local shell.

? Synonym for help.

Environment variables

_ZOS_OPENSSH_DEBUG
Contains z/OS-specific debug information. This environment variable is
only used internally and is not for external specification.

Chapter 9. OpenSSH command descriptions 93

sftp IBM Confidential

_ZOS_OPENSSH_DEBUG_TIMESTAMP
If this variable is specified to YES, it will contain the timestamp in the
debug information. If it is specified to CPU, the CPU time will be used as
the timestamp.

_ZOS_OPENSSH_MSGCAT
Identifies the OpenSSH message catalog to be used when sending
OpenSSH error messages.

_ZOS_SMF_FD
Set to the file descriptor number used for interprocess communication
during SMF-related processing. This environment variable is only used
internally and is not for external specification.

Exit values

0 Successful completion

>0 An error occurred. This exit value only occurs when -b batchfile is used
and any of the following commands fail: get, put, rename, In, rm, rmdir,
mkdir, cd, 1s ,lcd, chmod, chown, chgrp, Ipwd, and Imkdir. For an
exception, see [“Limitations” on page 90

Related information

scp, ssh, ssh-add, ssh_config, ssh-keygen, sftp-server, sshd, zos_ssh_config,
zos_user_ssh_config

Author

Damien Miller

sftp-server — SFTP server subsystem

Format
sftp-server [-ehR] [-dstart-directory] [-f log_facility] [-1 log_level] [-uumask]

Description

sftp-server is a program that implements the server side of the SFTP protocol. It
expects client requests from standard input and writes responses to standard
output. sftp-server is not intended to be called directly, but by specifying the
sshd_config keyword Subsystem. See for more information about the
keyword.

OpenSSH can be configured to collect SMF server transfer completion records that
are associated with sftp-server. See [‘Setting up OpenSSH to collect SMF records”|
on page 50| for more information. See [Chapter 12, “SMF Type 119 records for
OpenSSH,” on page 201| for more information about the SMF server transfer
completion records (subtype 96).

OpenSSH can be set up to use ICSF to implement certain sshd ciphers and MAC
algorithms. This extension enables sftp-server (by way of sshd) to use hardware
support when applicable. See [‘Setting up OpenSSH to use ICSF cryptographid
[operations” on page 52| for more information.

sftp-server can convert the files with specified file extensions configured by
SftpServerConvert in the zos_sshd_config file.4 See [SftpServerConvert| for more

94 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

sftp-server

information. For outgoing files, sftp-server converts the files from EBCDIC code
page of the current locale into ASCII before transferring them to the remote client
host. For incoming files, sftp-server converts the files from ASCII into the code
page of the current locale before restoring them on the local host.

OpenSSH can be set up to run in FIPS mode. This extension enables sftp-server to
comply with FIPS 140-2 mode when applicable. See [‘Setting up OpenSSH to run in|
[FIPS mode” on page 58| for more information. OpenSSH can be set up to use ICSF
to implement certain ssh Key Exchange algorithms. Sed”Setting up OpenSSH to|
[use ICSF cryptographic operations” on page 52| for more information.

Restriction: The maximum full path name length is 1023 bytes for files processed
by sftp-server. Exceeding this maximum might result in unexpected behavior.

Options

—d start-directory
Specifies an alternate starting directory for users. The pathname may
contain the following tokens that are expanded at runtime: %% is replaced
by a literal '%’, %d is replaced by the home directory of the user being
authenticated, and %u is replaced by the username of that user. The default
is to use the user's home directory. This option is useful in conjunction
with the sshd_config ChrootDirectory option.

-e sftp-server sends log messages to standard error instead of the system log.

—f log_facility
Specifies the facility code that is used when logging messages from
sftp-server. The possible values are: DAEMON, USER, AUTH, LOCALQ,
LOCALL, LOCAL2, LOCAL3, LOCAL4, LOCALS5, LOCAL6, LOCAL?. The
default is AUTH.

For more information about these log facilities, see the syslog daemon
section in |z/OS Communications Server: IP Configuration Reference,

-h Displays a summary of options.

-1 log_level
Specifies which messages will be logged by sftp-server. The possible
values are: QUIET, FATAL, ERROR, INFO, VERBOSE, DEBUG, DEBUGI,
DEBUG?2, and DEBUG3. INFO and VERBOSE log transactions that
sftp-server performs on behalf of the client. DEBUG and DEBUGI are
equivalent. DEBUG2 and DEBUGS3 each specify higher levels of debugging
output. The default is ERROR.

These logging levels are similar to the syslog daemon priority codes, which
are described in the syslog daemon section in [z/0S Communications Server:|
([P Confiquration Reference}

-R Places this instance of sftp-server into a read-only mode. Attempts to
open files for writing, as well as other operations that change the state of
the file system, will be denied.

-uumask
Sets an explicity umask to bet applied to newly-created files and
directories, instead of the user's default mask.

Note: For logging to work if -e is not specified, sftp-server must be able to access

/dev/1og. Use of sftp-server in a chroot configuration therefore requires that
syslogd establish a logging socket inside the chroot directory.

Chapter 9. OpenSSH command descriptions 95

sftp-server IBM Confidential

Environment variables

_Z0OS_OPENSSH_DEBUG
Contains z/OS-specific debug information. This environment variable is
only used internally and is not for external specification.

_ZOS_OPENSSH_DEBUG_TIMESTAMP
If this variable is specified to YES, it will contain the timestamp in the
debug information. If it is specified to CPU, the CPU time will be used as
the timestamp.

_ZOS_OPENSSH_MSGCAT
Identifies the OpenSSH message catalog to be used when sending
OpenSSH error messages.

_ZOS_SFTP_SERVER_CONVERT
Contains file extensions which are allowed to perform the text file
conversion on zOS sftp-server. It is only used internally and is not for
external specification.

_ZOS_SMF_FD
Set to the file descriptor number used for interprocess communication
during SMF-related processing. This environment variable is only used
internally and is not for external specification.

Related information
sftp, ssh, sshd, sshd_config, zos_sshd_config

Author
Markus Friedl

ssh — OpenSSH client (remote login program)

Format

ssh [-1246AaCfgKkMNnqsTtVvXxYy] [-b bind_address] [—c cipher_spec] [-D
[bind-address:] port] [-E log_file] [—e escape_char] [-F configfile] [-1 pkcs11] [-i
identity_file] [-L [bind-address:]port:host:hostport] [-1 login_name] [-m mac_spec] [-O
ctl_cmd] [-o option] [-p port] [-Q protocol_feature] [-R [bind-address:] port:host:hostport]
[-S ctl_path] [-W host:port] [-w local_tun [:remote_tun]] [user@] hostname [command]

Description

ssh (SSH client) is a program for logging into a remote machine and for executing
commands on a remote machine. It is an alternative to rlogin and rsh and
provides secure encrypted communications between two untrusted hosts over an
insecure network. X11 connections and arbitrary TCP ports can also be forwarded
over the secure channel.

ssh connects and logs into the specified host name (with optional user name). If
command is specified, instead of a login shell being executed, command is executed
on the remote host. Users must prove their identity to the remote machine using
one of several methods, depending on the protocol version used.

Tip: To avoid problems when running as a user that shares a UID, run ssh with

the -F option to specify a user-specific ssh_config file. The file should set the
IdentityFile, User, and UserKnownHostsFile keywords to the proper user-specific

96 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

ssh

values. You should also specify a user-specific zos_user_ssh_config file using the
~Z0OS_USER_SSH_CONFIG environment variable.

OpenSSH can be set up to use ICSF to implement certain ssh ciphers and MAC
algorithms. This extension enables ssh to use hardware support when applicable.
See [“Setting up OpenSSH to use ICSF cryptographic operations” on page 52| for
more information.

OpenSSH can be set up to run in FIPS mode. This extension enables ssh to comply
with FIPS 140-2 mode when applicable. See [“Setting up OpenSSH to run in FIPS|
[mode” on page 58| for more information. OpenSSH can be set up to use ICSF to
implement certain ssh Key Exchange algorithms. See [“Setting up OpenSSH to use|
[[CSF cryptographic operations” on page 52| for more information.

Options

-1 Forces ssh to try protocol version 1 only. If both -1 and -2 are specified,
ssh uses the option that appears last on the command line.

-2 Forces ssh to try protocol version 2 only. If both -1 and -2 are specified,
ssh uses the option that appears last on the command line.

-4 Forces ssh to use IPv4 addresses only. If both —4 and -6 are specified, ssh
uses the option that appears last on the command line.

-6 Forces ssh to use IPv6 addresses only. If both —4 and -6 are specified, ssh
uses the option that appears last on the command line.

-a Disables forwarding of the authentication agent connection.

-A Enables forwarding of the authentication agent connection. This can also be
specified on a per-host basis in a ssh_config configuration file.

Guideline: Enable agent forwarding with caution. Users with the ability to
bypass file permissions on the remote host (for the agent's UNIX-domain
socket) can access the local agent through the forwarded connection.
Attackers cannot obtain key material from the agent. However, they can
perform operations on the keys that enable them to authenticate using the
identities loaded into the agent.

Restriction: This option is not supported if running in FIPS mode.

-b bind_address
Use bind_address on the local machine as the source address of the
connection. This option is useful only on systems with more than one
address.

Rule: The bind_address must be the same address family (IPv4 or IPv6) as
the remote host name specified on the ssh command line.

—c cipher_spec
Selects the cipher to use for encrypting the session.

For protocol 1 specifications:

3des 3des (Triple-DES) is an encrypt-decrypt-encrypt triple with three
different keys. It is the default.

blowfish
Blowfish is a secure fast block cipher.

des Specifying des is strongly discouraged due to cryptographic

Chapter 9. OpenSSH command descriptions 97

ssh IBM Confidential

weakness. It is supported only in ssh for interoperability with
legacy protocol 1 implementations that do not support the 3DES
cipher.

For protocol version 2 specifications, ciphers can be specified in order of
preference in a comma-separated list. Valid ciphers include:

3des-cbc
Triple-DES (3DES) algorithm

aes128-cbc
Advanced Encryption Standard (AES) CBC mode with 128-bit key

aes128-ctr
Advanced Encryption Standard (AES) CTR mode with 128-bit key

aes192-cbc
Advanced Encryption Standard (AES) CBC mode with 192-bit key

aes192-ctr
Advanced Encryption Standard (AES) CTR mode with 192-bit key

aes256-cbc
Advanced Encryption Standard (AES) CBC mode with 256-bit key

aes256-ctr
Advanced Encryption Standard (AES) CTR mode with 256-bit key

arcfour
Arcfour algorithm

arcfour128
Arcfour algorithm with 128-bit key

arcfour256
Arcfour algorithm with 256-bit key

aes128-gcm@openssh.com
Advanced Encryption Standard (AES) GCM mode with 128-bit key.

aes256-gcm@openssh.com
Advanced Encryption Standard (AES) GCM mode with 256-bit key.

blowfish-cbc
Blowfish algorithm

cast128-cbc
CAST algorithm

rijndael-cbc@lysator.liu.se
Same as Advanced Encryption Standard (AES) CBC mode with
256-bit key

The cipher is typically one long unbroken line; in the following example
the cipher is not shown as one unbroken line due to space limitations. See
the ciphers keyword in for default list.

The ciphers list might need to be modified based on the ciphers source
used. For more information, see the CiphersSource keyword in the
z/OS-specific OpenSSH client configuration files zos_ssh_config or
zos_user_ssh_config.

-C Requests compression of all data (including stdin, stdout, stderr, and data
for forwarded X11 and TCP connections). The compression level can be
controlled by the CompressionLevel option for protocol version 1. The

98 IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

ssh

default value can be set on a per-host basis in the ssh_config configuration
file; for more information about the Compression and CompressionLevel

options, see [ssh_config

-D [bind_address:1port

Specifies a local dynamic application-level port forwarding. This type of
dynamic port forwarding works by allocating a socket to listen to port on
the local side, optionally bound to the specified bind_address. Whenever a
connection is made to this port, it is forwarded over the secure channel
and the application protocol is used to determine where to connect from
the remote machine. Currently, the SOCKS4 and SOCKS5 protocol are
supported and ssh will act as a SOCKS server. Only a superuser can
forward privileged ports. Dynamic port forwardings can also be specified
in the ssh_config configuration file.

IPv6 addresses can be specified with an alternative syntax:

[bind_address / lport or by enclosing the address in square brackets. Only the
superuser can forward privileged ports. By default, the local port is bound
in accordance with the GatewayPorts setting. However, an explicit
bind_address can be used to bind the connection to a specific address. The
bind_address of "localhost" indicates that the listening port is to be bound
for local use only, while an empty address or *' indicates that the port
should be available from all interfaces.

[Appendix B, “OpenSSH - port forwarding examples,” on page 519| has
examples of port forwarding.

-E log_file

Append debug logs to 1og_file instead of standard error.

—e escape_char

Sets the escape character for sessions with a pty (the default is " ~"). The
escape character is only recognized at the beginning of a line. The escape
character followed by a dot ('.") closes the connection, followed by
Control-Z suspends the connection, and followed by itself sends the escape
character once. Setting the character to "none" disables any escape
characters and makes the session fully transparent.

Requests ssh to go to the background before command execution. This is
useful if ssh is going to ask for passwords, password phrases, or
passphrases, but the user wants it in the background. This implies —n. The
recommended way to start X11 programs at a remote site is ssh —f host
xterm.

If the ExitOnForwardFailure configuration option is set to “yes”, then a
client started with -f will wait for all remote port forwards to be
successfully established before placing itself in the background.

Restriction: This option is not supported if running in FIPS mode, or Key
Exchange algorithms are implemented using ICSE.

-F configfile

)

Specifies an alternative per-user ssh_config configuration file. If an
ssh_config configuration file is given on the command line, the
system-wide ssh_config configuration file (/etc/ssh/ssh_config) will be
ignored. The default for the per-user ssh_config configuration file is
~/.ssh/config. This option has no effect on the z/OS-specific configuration
files.

Allows remote hosts to connect to local forwarded ports.

Chapter 9. OpenSSH command descriptions 99

ssh

100

IBM Confidential

—i identity_file

Selects a file from which the identity (private key) for RSA, DSA or ECDSA
authentication is read. The default is ~/.ssh/identity for protocol version
1. For protocol version 2, the default is ~/.ssh/id_rsa, ~/.ssh/id_dsa and
~/.ssh/id_ecdsa. Identity files can also be specified on a per-host basis in
the ssh_config configuration file. It is possible to have multiple —i options
(and multiple identities specified in the ssh_config configuration file).

For a given protocol, identity files are tried in the order they are specified.
If key ring certificates have been separately specified, then they will always
be tried before identity files. The certificates are used in the order they
were specified, followed by the identity files in the order they were
specified. The key ring certificates could be specified either via a
command-line option by specifying one or more IdentityKeyRingLabel
options on the -o option, or by specifying the IdentityKeyRingLabel
keyword in the zos_user_ssh_config file (the z/OS-specific per-user client
configuration file).

However, if an identity is loaded in an agent, regardless of whether it
originated from a key ring certificate or from a file, then that identity will
be tried first.

To sum it up, the order that identities are tried are as follows:

Identities in the agent.

The key ring certificates on the command-line option

Key ring certificates specified in a zos_user_ssh_config file

Identity files on the command-line option, and then

S

Identity files specified in an ssh_config configuration file.

Restriction: This option is not supported if running in FIPS mode.

-I pkes1l

(-I is the uppercase — i). Not supported on z/OS UNIX. Specifies which
smart card device to use. Specify the PKCS#11 shared library ssh should
use to communicate with a PKCS#11 token providing the user's private
RSA key.

Disables forwarding (delegation) of GSS-API credentials to the server.

GSS-API stands for Generic Security Services Application Programming
Interface. It is a generic API for handling client-server authentication.
Because it provides security services to callers in a generic way,
supportable with a range of underlying mechanisms and technologies, it
allows for source-level portability of applications to different environments.
The only mechanism currently supported on z/OS UNIX is Kerberos V5
For more details, check IETF standard RFC 2743 at fhttp:/ /www.ietf.org /|

rfc/rfc2743.txthttp: / /www.ietf.org /rfc/rfc2743.txt.

Enables GSS-API authentication and forwarding (delegation) of GSS-API
credentials to the server. If running in FIPSMODE, this option is not
supported even if its value is specified.

-1 login_name

Specifies the user to log in as on the remote machine. This option can also
be specified on a per-host basis in the ssh_config configuration file.

—L [bind-address:1port:host:hostport

Specifies that port on the local (client) host is to be forwarded to the given
host and port on the remote side. This works by allocating a socket to
listen to port on the local side, optionally bound to the specified

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

http://www.ietf.org/rfc/rfc2743.txt
http://www.ietf.org/rfc/rfc2743.txt

IBM Confidential

ssh

bind_address. When a connection is made to this port, it is forwarded over
the secure channel and a connection is made to host port hostport from the
remote machine. Port forwardings can also be specified in the ssh_config
configuration file. Only a superuser can forward privileged ports.

IPv6 addresses can be specified with an alternative syntax:
[bind_address / Jport / host / hostport or by enclosing the address in square
brackets.

By default, the local port is bound in accordance with the GatewayPorts
setting. However, an explicit bind_address can be used to bind the
connection to a specific address. The bind_address of "localhost" indicates
that the listening port be bound for local use only, while an empty address
or *' indicates that the port should be available from all interfaces.

[Appendix B, “OpenSSH - port forwarding examples,” on page 519| has
examples of port forwarding.

—m mac_spec

-M

-n

For protocol version 2, a comma-separated list of MAC (message
authentication code) algorithms can be specified in order of preference.
ssh_config contains a description of

The MAC algorithms list might need to be modified based on the MAC
algorithm source used. For more information, see the MACsSource
keyword in the z/OS-specific OpenSSH client configuration files,
zos_ssh_config or zos_user_ssh_config.

Places the ssh client into master mode for connection sharing. Multiple -M
options puts ssh into master mode with confirmation required before slave
connections are accepted. ssh_config contains a description of

ControlMaster

Redirects stdin from /dev/null (prevents reading stdin). This option must
be used when ssh is run in the background. A common trick is to use this
to run X11 programs on a remote machine.

For example:
ssh —n shadows.cs.hut.fi emacs &

Result: An emacs session is started on shadows.cs.hut.fi and the X11
connection is automatically forwarded over an encrypted channel. The ssh
program is put in the background. This does not work if ssh needs to ask
for a password, password phrase, or passphrase; see the —f option.

Specifies that a remote command not be executed. This is useful for just
forwarding ports (protocol version 2 only). This option overrides the -t
option.

-0 option

Can be used to give options in the format used in the ssh_config and
zos_user_ssh_config configuration files. This is useful for specifying
options for which there is no separate command-line flag. For full details
of the available options and their values, see and
|zos_user_ssh_configl The z/OS-specific per-user OpenSSH client

configuration options can be specified on -o, but the z/OS specific
system-wide options (see z0s_ssh_config) cannot.

For example:

ssh -oHostbasedAuthentication=no Billy@us.pok.ibm.com

Chapter 9. OpenSSH command descriptions 101

ssh

102

IBM Confidential

-O ctl_cmd
Controls the master process of a multiplexed connection. When the -O
option is specified, the ctl_cmd argument is interpreted and passed to the
master process. Valid commands are "check” (check that the master process
is running) and "exit" (request the master to exit).

—p port
Port to connect to on the remote host. This can be specified on a per-host

basis in the ssh_config configuration file.
—-q Quiet mode. Suppresses most warning and diagnostic messages.

—-Q protocol_feature
Queries ssh for the algorithms supported for the specified version 2
protocol_feature. The following is a list of features that can be queried:
“cipher” (supported symmetric ciphers), “MAC” (supported message
integrity codes), “KEX” (key exchange algorithms), “key” (key types).
Protocol features are treated case insensitively.

-R [bind_address:1port:host:hostport
Specifies that the given port on the remote (server) host is to be forwarded
to host and port on the local side. A socket is allocated to listen to port on
the remote side; when a connection is made, it is forwarded over the
secure channel and a connection is made to host port hostport from the local
machine. Port forwardings can also be specified in the ssh_config
configuration file. Privileged ports can be forwarded only when logging in
as superuser on the remote machine. IPv6 addresses can be specified by
enclosing the address in square brackets or using an alternative syntax:
[bind_address/|port/host/hostport.

By default, the listening socket on the server is bound to the loopback
interface only. The default can be overridden by specifying a bind_address.
An empty bind_address, or the address "', indicates that the remote socket
should listen on all interfaces. Specifying a remote bind_address will only
succeed if the server's GatewayPorts option is enabled as described in

If the port argument is “0”, the listen port will be dynamically allocated on
the server and reported to the client at run time. When used together with
-O forward, the allocated port will be printed to the standard output.

-s Can be used to request invocation of a subsystem on the remote system.
Subsystems are a feature of SSH protocol version 2, which facilitates the
use of ssh as a secure transport for other applications such as sftp. The
subsystem is specified as the remote command.

For example:
ssh -s host subsystem_name

User-defined subsystems (those that are not built-in) are only supported
when both the OpenSSH client and server are running on a z/OS system.
See |“Limitations” on page 108| for more information.

-S ctl_path
Specifies the location of a control socket for connection sharing on the
string none to disable connection sharing. For more information, see the
descriptions of the ssh_config keywords [ControlMaster| and |[ControlPath}

—t Forces pty allocation. This option can be used to execute arbitrary
screen-based programs on a remote program, which can be very useful, for
example, when implementing menu services. Multiple —t options force pty

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

-V

ssh

allocation, even if ssh has no local tty. Both single and multiple uses of —t
will be overridden by either the -T or —-N options.

Disables pty allocation. This option overrides the —t option.

Verbose mode. Causes ssh to print debugging messages about its progress.
This is helpful in debugging connection, authentication, and configuration

problems. Multiple —v options increase the verbosity. You can specify up to
three -v options.

Displays the current OpenSSH and OpenSSL version information and exits.

-w local_tunl:remote_tun]

Not supported on z/OS UNIX. Requests tunnel device forwarding with the
specified devices between the client (local_tun) and the server (remote_tun).

The devices can be specified by numerical ID or the keyword "any", which
uses the next available tunnel device. If remote_tun is not specified, it
defaults to "any". See also the descriptions of the ssh_config options
[Tunnel| and [TunnelDevice} If the Tunnel option is unset, it is set to the
default tunnel mode, which is "point-to-point".

-W host:port

=X

-y

Requests that standard input and output on the client be forwarded to host
on port over the secure channel. Implies -N, -T, ExitOnForwardFailure and
ClearAllForwardings. Works with Protocol version 2 only.

Note: On z/0OS UNIX, the forwarded connection to the remote host and
port will not be translated.

Disables X11 forwarding.

Enables X11 forwarding. This can also be specified on a per-host basis in
the ssh_config configuration file.

X11 forwarding should be enabled with caution. Users with the ability to
bypass file permissions on the remote host (for the user's X authorization
database) can access the local X11 display through the forwarded
connection. An attacker may then be able to perform activities such as
keystroke monitoring.

For this reason, X11 forwarding is subjected to X11 SECURITY extension
restrictions by default. See the description of the ssh -Y option and the
ssh_config option [ForwardX11Trusted| for more information.

Send log information to the UNIX syslog (syslogd). By default, this
information is sent to stderr.

Enables trusted X11 forwarding. Trusted X11 forwardings are not subjected
to the X11 SECURITY extension controls.

ssh can additionally obtain ssh_config configuration data from a per-user
configuration file and a system-wide ssh_config configuration file. For file format
and configuration options, see ssh can also obtain z/OS-specific
configuration data from a system-wide zos_ssh_config configuration file and
per-user zos_user_ssh_config configuration file. For file format and configuration
options, see [zos_ssh_config|and [zos_user_ssh_config]

Host key checking

In host key checking, ssh automatically maintains and checks a database
containing identification for all hosts it has ever been used with. Host keys are

Chapter 9. OpenSSH command descriptions 103

ssh

104

IBM Confidential

stored in ~/.ssh/known_hosts in the user's home directory. Additionally, the
/etc/ssh/ssh_known_hosts file is automatically checked for known hosts. Any new
hosts can be automatically added to the user's file. If a host's identification
changes, ssh warns about this and disables password authentication to prevent
server spoofing or man-in-the-middle attacks, which could otherwise be used to
circumvent the encryption. The ssh_config keyword StrictHostKeyChecking can be
used to control logins to machines whose host key is not known or has changed.
The keyword is described in StrictHostKeyChecking}

Because of the difficulty of comparing host keys just by looking at hex strings,
there is also support to compare host keys visually, using random art. By setting
the VisualHostKey option to “yes”, a small ASCII graphic gets displayed on every
login to a server, no matter if the session itself is interactive or not. By learning the
pattern a known server produces, a user can easily find out that the host key has
changed when a completely different pattern is displayed. Because these patterns
are not unambiguous however, a pattern that looks similar to the pattern
remembered only gives a good probability that the host key is the same, not
guaranteed proof.

To get a listing of the fingerprints along with their random art for all known hosts,
the following command line can be used:

$ ssh-keygen -1v -f ~/.ssh/known_hosts

If the fingerprint is unknown, an alternative method of verification is available:
SSH fingerprints verified by DNS. An additional resource record (RR), SSHFD, is
added to a zonefile and the connecting client is able to match the fingerprint with
that of the key presented. SSHFP DNS records are not currently supported by
z/0OS UNIX.

Authentication

The OpenSSH SSH client supports SSH protocol version 1 and protocol version 2.
Protocol version 2 is the default. These settings can be altered using the ssh_config
Protocol option (described in , or enforced using the -1 and -2 options.
Both protocols support similar authentication methods, but protocol version 2 is
preferred because it provides additional mechanisms for confidentiality (the traffic
is encrypted using, for example, AES, 3DES, Blowfish, CAST128, or Arcfour) and
integrity (for example, hmac-md>5, hmac-shal, hmac-sha2-256, hmac-sha2-512,
umac-64, umac-128, hmac-ripemd160). Protocol version 1 lacks a strong mechanism
for ensuring the integrity of the connection.

The methods available for authentication are:
* Host-based authentication (disabled by default). See [“Host-based authentication”]

* Public key authentication. See [“Public key authentication” on page 105|

* Challenge-response authentication (not supported on z/0OS UNIX). See
[‘Challenge-response authentication” on page 106,

* Password authentication. See [“Password authentication” on page 106
* GSSAPI-based authentication. See section on GSSAPI/Kerberos..

Authentication methods are tried in the order listed previously, though protocol
version 2 has a configuration option to change the default order: the sshd_config
keyword Preferred Authentications. The keyword is described in

[Preferred Authentications]

IBM Ported Tools for z/OS: OpenSSH V1.3.0 User's Guide

IBM Confidential

ssh

Host-based authentication

In host-based authentication, if the machine the user logs in from is listed in
/etc/hosts.equiv or /etc/shosts.equiv on the remote machine, and the user
names are the same on both sides, or if the files ~/.rhosts or ~/.shosts exist in
the user's home directory on the remote machine and contain a line containing the
name of the client machine and the name of the user on that machine, the user is
considered for login. Additionally, the server must be able to verify the client's host
key for the login to be permitted. (See the description of [~/ .ssh/known_hosts| and
[/etc/ssh/ssh_known_hosts]) This authentication method closes security holes due
to IP spoofing, DNS spoofing, and routing spoofing.

For more information about host-based authentication, refer to the ssh_config
keyword [Hostbased Authentication]

Guideline: The /etc/hosts.equiv, ~/.rhosts, and rlogin/rsh protocol in general,
are inherently insecure and the administrator should disable them if security is
desired.

Public key authentication

In public key authentication, the scheme is based on public key cryptography,
using cryptosystems where encryption and decryption are done using separate
keys, and it is not feasible to derive the decryption key from the encryption key.
Each user creates a public/private key pair for authentication purposes. The server
knows the public key, and only the user knows the private key. ssh implements
public key authentication protocol automatically, using one of the following
algorithms: RSA, DSA or ECDSA. Protocol version 1 is restricted to using only RSA
keys, but protocol version 2 can use any.

The ~/.ssh/authorized_keys file lists the public keys that are permitted for logging
in. When the user logs in, ssh tells the server which key pair it would like to use
for authentication. The client proves that it has access to the private key and the
server checks that the corresponding public key is authorized to accept the
account.

One method of creating a key pair is by running ssh-keygen. This action stores the
private key in ~/.ssh/identity (protocol version 1), ¥/.ssh/id_dsa (protocol
version 2 DSA), ~/.ssh/id_ecdsa (protocol version 2 ECDSA), or ~/.ssh/id_rsa
(protocol version 2 RSA) and stores the public key in ~/.ssh/identity.pub
(protocol version 1), ~/.ssh/id_dsa.pub protocol version 2 DSA),
~/.ssh/id_ecdsa.pub protocol version 2 ECDSA), or ~/.ssh/id_rsa.pub (protocol
version 2 RSA) in the user's home directory. The user then copies the public key to
the ~/.ssh/authorized_keys file in the home directory on the remote machine. The
authorized_keys file corresponds to the conventional ~/.rhosts file, and has one
key per line, though the lines can be very long. After this, the user can log in
without giving the password.

Another method of creating a key pair is by using digital certificates associated
with a SAF key ring, either real or virtual. See |[“Steps for setting up user|
lauthentication when using key rings to store keys” on page 76/ for more
information about using SAF key rings to manage your keys.

A variation on public key authentication is available in the form of certificate
authentication: instead of a set of public/private keys, signed certificates are used.
This has the