7/08S

XML System Services User's Guide

Reference

Version 2 Release 1

and

<|lI!

SA38-0681-00

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 247,

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 2006, 2013.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Tables .

About this document.
Who should use this document .
z/0S information

How to send your comments to IBM
If you have a technical problem.

z/OS Version 2 Release 1 summary of
changes .

Chapter 1. Introduction
What is XML? . .
z/0S XML System Serv1ces

Chapter 2. Overview of z/0S XML

System Services . .

z/0OS XML System Services features

z/0OS XML System Services functions .
Querying XML documents. .
Parsing XML documents without Vahdatlon
Parsing XML documents with validation .

Parsing XML document fragments with vahdatron

Parsing XDBX input streams .
Document processing model .
Output buffer format .
Optimized Schema Representatlon .
String Identifiers .

Memory management .
Enable offload to specialty engmes .

Chapter 3. Querying XML documents .

Header files and data macros.

Chapter 4. Parsing XML documents
Steps for parsing XML documents without
validation .
Support for undefmed namespace preflx toleratron
Loading the validating parser code
Steps for parsing XML documents with Vahdatlon
Using Optimized Schema Representations .
Restricting the root element name .
Parsing XML document fragments with
validation .)
Obtaining 1nformat10n on schema locatlons
Obtaining additional error information .
XML Path language .
Setting up and running the CICS PLT program
Header files and data macros .
Parsed data model .
Common record header
Record (token) types

© Copyright IBM Corp. 2006, 2013

. Vil

. ix
. 1Xx

. Xi

. Xi

. Xiii

oooooooooooxc.nmmypu;%ww N =

o ©

. 1

.12
12
.13
14
.15
. 16

.17
. 19
. 20
.21

22
.23
.24
.24
. 25

Metadata records
Buffer info record
Error info record.
Aux info record . . .
Aux info record - Error_ Locatlon .
Aux info record - ERROR_STRING
Aux info record - EXPECTED_STRING .
Aux info record - TOLERATED_ERROR .
Extended end element record
Default content flag (XEH_ DEFAULT)
31- and 64-bit compatibility .
Length/Value pairs.
String Identifiers.
Record forms.
Record form 0
Record form 1
Record form 2
Record form 3 .
Field values by record type .
Spanning buffers
Splitting records .
Splitting multibyte characters
Processing DTDs
Resolving entity references
Non-representable characters
Namespace declarations .

Using the z/OS XML parser in a multrthreaded

environment . .
Parsing XDBX input streams

Chapter 5. Additional usage
considerations
Recovery considerations .
Encoding support . .
EBCDIC encoding c0n51derat10ns .
Managing memory resources
Using return and reason codes .

. 26
. 26
. 28
. 28
.32
. 35
. 35
. 36
. 36
. 37
. 37
. 37
. 38
. 38
. 39
. 39
. 39
. 40
.41
. 44
. 44
. 45
. 46
. 46
. 46
. 46

. 47
. 47

. 49
.49
.49
. 50
. 50
.51

Chapter 6. z/0S XML parser API: C/C++ 53

Setting the XPLINK(ON) Language Environment
runtime option . .
Support for the Metal C Compller OpthI‘l

Where to find the header files, DLLs and side decks

Using the recovery routine
z/OS XML XL C/C++ API

gxlpControl — perform a parser control functlon

gxlpControl features and functions .
gxlpInit — initialize the z/OS XML parser .
gxlpLoad — load a z/OS XML function .
gxlpParse — parse a buffer of XML text .
gxlpQuery — query an XML document .
gxlpTerminate — terminate a parse instance

OSR generator APT . e
gxlulnitOSRG — initialize an OSR generator
instance

. 53

. 53
53

. 53
. 54

54

. 57
.72
. 76
.77
. 80
.81
. 83

. 83

iii

gxluControlOSRG — perform an OSR generator
control operation

gxluTermOSRG — term1nate an OSR generator
instance

gxluLoadSchema — load a schema 1nt0 the OSR
generator .

gxluSetStrlDHandler — spec1fy the Str1nng
handler for OSR generation .
gxluSetEntityResolver — specify the entrty
resolver for OSR generation .

gxluLoadOSR — load an OSR into the OSR
generator . .

gxluGenOSR — generate an Optrmrzed Schema
Representation (OSR) .

gxluGenStrIDTable — generate StrmgID table
from an OSR .
gxluGetStringIDs — generate Str1ngID table
from an OSR .

gxluFreeStringIDs — free a Strmng table
gxluGetRootElements — retrieve the root
elements from an OSR

gxluFreeRootElements — free a root element
structure . .
gxluGetTargetNamespaces — retrreve the target
namespaces from an OSR .
gxluFreeNamespaces — free a namespace
structure .

GXLPSYM31 (GXLPSYM64) — StrrngID handler

Chapter 7. z/0S XML parser API:

Assembler.

How to invoke the z/OS XML System Servrces
assembler APT . . o
z/0S XML parser Assembler API

API entry points .

Common register conventions .

Using the recovery routine .

GXLICTL (GXL4CTL) — perform a parser
control function

GXLICTL (GXL4CTL) features and funct1ons
GXL1INI (GXL4INI) — initialize a parse
instance .

GXL1PRS (GXL4PRS) — parse a buffer of XML
text. .
GXL1QXD (GXL4QXD) — query an XML
document

GXL1TRM (GXL4TRM) — termmate a parse
instance .

GXL1LOD (GXL4LOD) — load az / OS XML
function . . .o

Chapter 8. z/0S XML System Services

exit interface.

Exit functions .
Common register conventions .

Input registers .

Output registers
Environmental requrrements
Restrictions .

GXLGST31 (GXLGST64) — get memory

iv

z/0S V2R1.0 XML User's Guide and Reference

. 85

. 88

. 89

.91

. 94

. 96

. 98

. 100

. 103
. 104

. 105

. 106

. 106

. 107
108

11

. 111
. 112
. 112
. 112
. 114

. 114

117

. 131

. 135
. 138
. 141

. 142

. 145
. 145
. 145
. 145
. 146
. 146
. 146
. 147

GXLFST31 (GXLFST64) — free memory .
GXLSYM31 (GXLSYM64) — StringID service .
GXLSTRI — StringID service for Language
Environment and Metal C . e

Chapter 9. Diagnosis and problem
determination

XMLDATA IPCS subcommand
Diagnostic Area

SLIP trap for return codes from the z / OS XML

parser . .
ARR recovery routrne

Appendix A. Return codes listed by
value .

Appendix B. Reason codes listed by
value .

Appendix C. xsdosrg command
reference .

Name .

Synopsis .
Description .
Options

Operands.

Example .
Environment Var1ables
Usage notes .

Exit values . .
Related information .

Appendix D. C/C++ header files and
assembler macros
gxlhxmlh - main z/OS XML header f1le

gxlhxeh.h (GXLYXEH) - mapping of the output

buffer record

gxlhxec.h (GXLYXEC) - constants def1n1t1ons
gxlhgxd.h (GXLYQXD) - mapping of the output
from the query XML declaration service
gxlhxd.h (GXLYXD) - mapping of extended
diagnostic area .

gxlhxrh (GXLYXR) - defrnes the return codes and

reason codes.

gxlhxsv.h (GXLYXSV) mapplng of the system

service vector .
gxlhctl.h (GXLYCTL) -
input parameters area
gxlhxft.h (GXLYXFT) - mapplng of the control
feature input output area

mapping of the control

gxlhxosr.h (GXLYXOSR) - mappmg of the OSR

control area .

gxlhosrg.h - OSR generator prototypes
gxlhosrd.h - mapping of the OSR generator
diagnostic area . . . S
gxlhxstr.h - StringID table .

. 149
. 151

. 153

. 155
. 155
. 157

. 158
. 158

. 159

. 161

. 213
. 213
. 213
. 213
. 213
. 213
. 213
. 214
. 214
. 214
. 214

. 215
. 215

. 215
. 216

. 216

. 217

. 218

. 218

. 218

. 218

. 218
. 219

. 219
. 219

Appendix E. Callable services
examples - AMODE 31
GXL1CTL example

GXL1INI example .

GXL1PRS example

GXL1TRM example

Appendix F. Callable services
examples - AMODE 64
GXL4CTL example

GXL4INI example .

GXL4PRS example

GXLATRM example

Appendix G. Exit examples
GXLEFRM (GXLFST example).
GXLEGTM (GXLGST example)
GXLSYM example.

GXLEINT .

GXLEIDI (GXLSYM example module)

GXLEIDR
GXLESTRI

. 221
. 221
222
. 223
. 223

. 225
. 225
. 226
. 227
. 228

. 229
. 229
. 230
. 231
. 231
. 232
. 233
. 233

Appendix H. CICS examples .
Appendix I. Supported encodings

Appendix J. Enabling z/OS ViR12
XML functionality in z/0S V1R10 and
z/0S V1R11

Appendix K. AcceSSIblllty
Accessibility features .

Using assistive technologies .
Keyboard navigation of the user mterface
Dotted decimal syntax diagrams .

Notices .

Policy for unsupported hardware
Minimum supported hardware
Trademarks .

Index .

Contents

. 237

. 239

. 241

. 243
. 243
. 243
. 243
. 243

. 247
. 248
. 249
. 249

. 251

A\

Vi z/0S V2R1.0 XML User's Guide and Reference

Tables

NGk ® =

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

Common record header

Record flag bits .

Record types .

Buffer info record structure

Error info record structure

Aux info record . A

Alternate structure for varlable sectlon of aux
info record (GXLHXEH_AUX_LONG_VALUE
= OFF) .

Alternate structure for Varlable sectlon of aux
info record (GXLHXEH_AUX_LONG_VALUE
= ON) . ..
Aux info record - Error Locatlon

Aux info record - Error_String

Aux info record - Expected_String .

Aux info record - TOLERATED_ERROR
Extended end element record (no StringID)
Extended end element record (StrmgID)
Record form 0. .o .
Record form 1.

Record form 2 (with StrmgID) .

Record form 2 (without StringID) .

Record form 3 (with StringID)

© Copyright IBM Corp. 2006, 2013

.24
.24
. 25
.27
. 28
. 28

.31

.31
.32
. 35
. 35

36
36
37

. 39
. 39
. 39
. 40
. 40

20.
21.
22.
23.
24.

25.
26.
27.
28.
29.
30.
31.
32.
33.

34.
35.

36.
37.
38.

Record form 3 (without StringID) .

Field values by record type

Splittable record types .

Code page CCSID values . .o
z/0S XML parser properties and resources
reset by control functions .

Load module for C/C++ parser.

Caller stubs and associated offsets.
Capability bits

Input register conventions

Output register conventions.

Output access register conventions

Load modules . e
System services input reglster conventlons
System services input access register
conventions . .
System services output reglster conventlons
System services output access register
conventions . .

XMLDATA options.

SLIP examples by release

Code page CCSID values

. 40
.41
. 45
. 49

. 56

. .77
111

. 112

. 113

. 113

. 113

. 144

145

. 146

146

. 146
. 155
. 158
. 239

vii

viili z/0S V2R1.0 XML User's Guide and Reference

About this document

This document presents the information you need to use the z/OS XML System
Services (z/OS® XML) parser.

Who should use this document

This document is for application programmers, system programmers, and end
users working on a z/OS system and using the z/OS XML parser.

This document assumes that readers are familiar with the z/OS system and with
the information for z/OS and its accompanying products.

z/0S information

This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see [z/0OS Information Roadmap)

To find the complete z/OS library, including the z/OS Information Center, see
lz/OS Internet Library (http://www.ibm.com/systems/z/o0s/zos/bkserv /).

© Copyright IBM Corp. 2006, 2013

ix

http://www.ibm.com/systems/z/os/zos/bkserv/

X z/0S V2R1.0 XML User's Guide and Reference

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.

2. Send an email from the['Contact us" web page for z/OS (http:// |
[www.ibm.com /systems /z/0s/zos/webgs.html)|

3. Malil the comments to the following address:
IBM Corporation
Attention: MHVRCFS Reader Comments
Department HGMA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
us

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:

* Your name and address.

* Your email address.

* Your telephone or fax number.

* The publication title and order number:
z/0S V2R1.0 XML User's Guide and Reference
SA38-0681-00

* The topic and page number that is related to your comment.

* The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem

Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:

* Contact your IBM service representative.
* Call IBM technical support.

* Visit the IBM Support Portal at [z/OS support page (http://www.ibm.com /|
[systems/z/support/)}

© Copyright IBM Corp. 2006, 2013 xi

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xil z/0S V2R1.0 XML User's Guide and Reference

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):

* |z/0S Migmtionl

* |2/OS Planning for Installation|
* [2/0S Summary of Message and Interface Changes|
e 1z/OS Introduction and Release Guid

© Copyright IBM Corp. 2006, 2013 xiii

Xiv z/0S V2R1.0 XML User's Guide and Reference

Chapter 1. Introduction

What is XML?

XML allows you to tag data in a way that is similar to how you tag data when
creating an HTML file. XML incorporates many of the successful features of
HTML, but was also developed to address some of the limitations of HTML. XML
tags may be user-defined, by either a DTD or a document written in the XML
Schema language, that can be used for validation. In addition, namespaces can
help ensure you have unique tags for your XML document. The syntax of XML has
more restrictions than HTML, but this results in faster and cheaper browsing. The
ability to create your own tagging structure gives you the power to categorize and
structure data for both ease of retrieval and ease of display. XML is already being
used for publishing, as well as for data storage and retrieval, data interchange
between heterogeneous platforms, data transformations, and data displays. As
these XML applications evolve and become more powerful, they may allow for
single-source data retrieval and data display.

The benefits of using XML vary but, overall, marked-up data and the ability to
read and interpret that data provide the following benefits:

* With XML, applications can more easily read information from a variety of
platforms. The data is platform-independent, so now the sharing of data
between you and your customers can be simplified.

¢ Companies that work in the business-to-business (B2B) environment are
developing DTDs and schemas for their industry. The ability to parse
standardized XML documents gives business products an opportunity to be
exploited in the B2B environment.

¢ XML data can be read even if you do not have a detailed picture of how that
data is structured. Your clients will no longer need to go through complex
processes to update how to interpret data that you send to them because the
DTD or schema gives the ability to understand the information.

¢ Changing the content and structure of data is easier with XML. The data is
tagged so you can add and remove elements without impacting existing
elements. You will be able to change the data without having to change the
application.

However, despite all the benefits of using XML, there are some things to be aware
of. First of all, working with marked up data can be additional work when writing
applications because it physically requires more pieces to work together. Given the
benefits of using XML, this additional work up front can reduce the amount of
work needed to make a change in the future. Second, although it is a
recommendation developed by the World Wide Web Consortium (W3C®), XML,
along with its related technologies and standards including Schema, XPath, and
DOM/SAX APIs, is still a developing technology.

An XML parser is a processor that reads an XML document and determines the
structure and properties of the data. It breaks the data up into discrete units and
provides them to other components. There are two basic types of XML parsers:
non-validating and validating. A non-validating parser checks if a document is
well-formed, but does not check a document against any DTDs or XML Schemas.
A validating parser not only checks if a document is well-formed, but also verifies
that it conforms to a specific DTD or XML Schema.

© Copyright IBM Corp. 2006, 2013 1

z/OS XML System Services

2

z/0OS XML System Services (z/OS XML) is an XML processing component of the
z/0S operating system. It contains an XML parser intended for use by system
components, middleware, and applications that need a simple, efficient, XML
parsing solution. z/OS XML can parse documents either with or without
validation.

Note: The use of the term z/OS XML parser in this document refers specifically to
the z/OS XML System Services parser.
The following are some distinct characteristics of z/OS XML:

* z/0OS XML is an integrated component of z/OS. There is no need to download
or install any additional packages to use it.

* z/0OS XML provides a collection of programming interfaces for callers to use:
— C/C++ and assembler interfaces to the z/OS XML parser itself.

- C/C++,]avam, and UNIX command line interfaces to utility functions that
build binary artifacts required for validation during a parse.

Note: More information on the Java interfaces can be found in the Javadoc
located at /usr/include/java_classes/gx1jdocs.jar.

— Assembler interfaces for user exits that give callers control over how the
z/0OS XML parser interacts with the rest of z/OS.

— C/C++ interfaces to a service similar to a user exit, called a StringID handler,
that allows for shorthand communications between the z/OS XML parser and
the caller.

e The z/OS XML parser utilizes a buffer-in, buffer-out processing model instead of
the event driven model common to SAX parsers. Input to, and output from the
parser may span multiple buffers, allowing the caller to request parses for
documents that are arbitrarily long.

z/0OS XML has minimal linkage overhead in order to reduce CPU usage as
much as possible.

z/0OS XML provides assistive aids to the user in debugging not-well-formed
documents.

* z/0S XML supports a number of character encodings, among them UTE-§,
UTF-16 (big endian), IBM-1047 and IBM-037. There is no need on the part of the

caller to transcode documents to a canonical encoding before calling the z/OS
XML parser. For a full list of these supported encodings, see

[“Supported encodings,” on page 239

 Support for enhanced error information records on a validating parse, see
[“Obtaining additional error information” on page 20.|

* On a non-validating parse, support for toleration of an undefined prefix on an
element or attribute. See[“Support for undefined namespace prefix toleration” on|
[page 12]

The z/OS XML parser is invoked as a callable service and can be used as such.
The callable services stubs are shipped in CSSLIB.

Note about constant names: Some constant names begin with the string "GXLH".
These constants are used solely by C callers. For assembler callers, remove the
"GXLH" portion to get the appropriate constant name.

z/0S V2R1.0 XML User's Guide and Reference

Chapter 2. Overview of z/OS XML System Services

This chapter provides an overview of the z/OS XML System Services; it briefly
describes some of the XML features supported by the z/OS XML System Services
and other technologies used by the z/OS XML parser. The following topics are
discussed within this chapter:

“7/0S XML System Services features”|
“7/0S XML System Services functions” on page 4|

“Document processing model” on page 6|

“Output buffer format” on page 8

“Optimized Schema Representation” on page 8|

[“String Identifiers” on page 8

"’Memory management” on page §|

[“Enable offload to specialty engines” on page §

z/OS XML System Services features

The following is a list of features provided by z/OS XML System Services.
References to additional information on the various features are provided where
appropriate:

An external C and C++ API, see|“z/OS XML XL C/C++ API” on page 54|
An external assembler API, see|Chapter 7, “z/OS XML parser API: Assembler,”]

Support for AMODE 31- and 64-bit callers with data above or below the bar.

Support for UTF-8, UTF-16 (big endian only), IBM-1047, IBM-037, and several
other encodings. See [“Encoding support” on page 49| for more information.

XML processing features
— Parsing with schema validation (validation with DTD not supported)

— Parsing document fragments, see |“Parsing XML document fragments with|
[validation” on page 17

— Parsing of Extensible Dynamic Binary XML (XDBX) streams with validation,
see [“Parsing XDBX input streams” on page 5|

— Support in the parsed data stream for offsets back into the original source
document

— Optionally return fully qualified element names in end element records
— Support for XML 1.0 (fourth edition) and XML 1.1 (second edtion).
- Newline normalization, see ["EBCDIC encoding considerations” on page 50|

— Attribute value normalization
— Omit or return comments in the parsed data stream

— Optionally return significant white space in unique white space records
(instead of character data records)

— Support for namespaces in XML 1.0 (second edition) and XML 1.1, see
[“Namespace declarations” on page 46|

— Entity resolution, see ['Resolving entity references” on page 46|

— Partial DTD processing, see [“Processing DTDs” on page 46|

© Copyright IBM Corp. 2006, 2013

— Dynamic discovery of schema location information, see [“Obtaining

[information on schema locations” on page 19|

- Restrict the root element name, see [‘Restricting the root element name” on|

— Support for obtaining additional error information on a validating parse, see
[“Obtaining additional error information” on page 20

— Support to continue a non-validating parse when an undefined prefix is
encountered.

* User exits for system services, see [Chapter 8, “z/0OS XML System Services exit|
[interface,” on page 145|

* Query service for determining document characteristics, see [Chapter 3
[“Querying XML documents,” on page 9

« Diagnostic support (Chapter 9, “Diagnosis and problem determination,” on page|
155), including:

— Diagnostic area, see [‘Diagnostic Area” on page 157

— Slip trap support, see [‘SLIP trap for return codes from the z/0S XML parser’|
— ARR recovery routine, see [“ARR recovery routine” on page 158
— IPCS formatting, see [“XMLDATA IPCS subcommand” on page 155

* Segmented input and output (the entire document does not have to reside in a
single buffer), see [“Spanning buffers” on page 44|

* Mapping macro interfaces for parsed data

+ |“Enable offload to specialty engines” on page §

z/OS XML System Services functions

z/0S XML System Services include the following three primary functions:

* A query service that allows callers to determine the encoding of the document
and acquire information from the XML declaration.

* Parsing with schema validation

* Parsing without validation

These functions are provided in the form of callable services. A caller can access
these services through the z/0OS XML System Services APIs (for information on the
APIs, see[’z/0S XML XL C/C++ API” on page 54 and [Chapter 7, “z/OS XMILJ

[parser APL: Assembler,” on page 111|). The following two sections provide a
summary of the functions, with pointers on where to go for more information.

Querying XML documents

XML documents have characteristics that affect the way they are parsed, and the
kinds of information that the parser generates during the parse process. One such
characteristic is the encoding scheme of the document, which the z/OS XML
parser must know before parsing. Using the query service will allow the caller to
acquire this information, after which it can then pass it to the z/OS XML parser.
The z/OS XML parser will then be able to use the correct encoding scheme to
parse the document. For more on this service, see [Chapter 3, “Querying XML
ldocuments,” on page 9

Parsing XML documents without validation

The non-validating parse process consists of three fundamental steps: initialize the
parser, parse the document, and terminate the parser. Multiple documents may be

4 z/0S V2R1.0 XML User's Guide and Reference

parsed using either a single instance of the parser, or several distinct instances as
the caller requires. For more information on this procedure and the individual
services called, see [Chapter 4, “Parsing XML documents,” on page 11

Parsing XML documents with validation

Parsing with validation follows the same basic process as for a non-validating
parse, with a couple of differences. Firstly, the validating parser must be loaded
into storage prior to use. Secondly, an additional step is required to load a
pre-processed version of the schema used to validate the document during the
parse. This binary schema, referred to as an Optimized Schema Representation
(OSR) can be loaded once, and used to validate any document that conforms to it.

For more information on loading the validating parser, see [“Loading the validating]
parser code” on page 13.|For more information on OSRs, see [‘Optimized Schema|
Representation” on page 8

Parsing XML document fragments with validation

The validating parser provides support for parsing XML document fragments. The
W3C XML specification allows parsing of such document fragments as external
parsed entities. The document fragment can be the value of a single attribute, as
well as a single element and its descendants. It may be followed by comments and
processing instructions. The parser must be provided ancestor and namespace
context information to ensure proper validation.

The following example illustrates the usefulness of validating parser support for
parsing XML document fragments. Consider a large XML document representing
an employee list of the form:
<root>
<Person>
<name mgr = "NO">Bil1l</name>
<age>60</age>
</Person>
<Person>
<name mgr = "NO">Joe</name>
<age>45</age>
</Person>
</root>

Each Person element is a fragment. If the caller wants to add another Person
element fragment and validate that it adheres to an associated schema, with
validating fragment support, the caller can perform a validating parse of just the
individual fragment to be added and then insert the fragment into the document.
Prior to this support, the caller would have had to perform a validating parse of
the entire document after inserting the new fragment.

For more information on parsing document fragments, see ["Parsing XML

ldocument fragments with validation” on page 17

Note: The non-validating parser does not support fragment parsing.

Parsing XDBX input streams

z/0OS XML supports the parsing of Extensible Dynamic Binary XML (XDBX)
streams with validation. This allows a caller to pass binary XML streams, which
are more compact and which can be processed by the validating parser using
fewer resources. The result is a conventional z/OS XML record stream. See

Chapter 2. Overview of z/OS XML System Services 5

lhttp:/ /www.ibm.com /support/docview.wss?&uid=swg27019354] for more
information on the XDBX binary XML format.

For more information on parsing XDBX input streams, see [Parsing XDBX input|
lstreams” on page 47|

Document processing model

6

There are three main components required for parsing XML documents: input
buffer, z/OS XML parser, and output buffer. These three components and their
interrelationships make up the processing model. There may be more than one
input and output buffer, depending on the size of the document being parsed. If
the document is sufficiently large, the caller may find it necessary to provide it to
the parser in several pieces, using buffer spanning to maintain the document
structure as it is being parsed. Similarly, the caller may need to provide multiple
buffers to contain the data stream that the z/OS XML parser generates. For more
information on how buffer spanning works, see [‘Spanning buffers” on page 44)

Document processing is the creation of the output buffers from the parsed input
data. As the z/OS XML parser traverses through the input buffer, the output buffer
is built. See [“Parsed data model” on page 24| for more information on this format.

The following is a diagram of the processing model using buffer spanning. It
shows both the input and output buffers, where buffers 2-5 represent the
additional buffers created to support a large document.

z/0S V2R1.0 XML User's Guide and Reference

http://www.ibm.com/support/docview.wss?&uid=swg27019354

Input
Buffer

i+ Input
1+ Buffer

OSR
(for validating parses only

Output
Buffer

> z/OS XML parser

Figure 1. Processing model

For more on how to parse XML documents using the z/OS XML parser, see

(Chapter 4, “Parsing XML documents,” on page 11}

Chapter 2. Overview of z/OS XML System Services

7

Output buffer format

The output buffer contains the parsed data stream that results from the parse
process. This data stream will contain the parsed XML document contents, along

with header and any error information that was produced during the parse. For
more information on the format of the output data stream, see|“Parsed data
imodel” on page 24

Optimized Schema Representation

Optimized Schema Representations (OSRs) are pre-processed versions of schemas.
They are more easily and more efficiently handled than schemas in text form.
When parsing with validation, this form of schema is utilized. An OSR API is
provided to assist in the generation, loading and manipulation of these specialized
schemas. For information on how to use OSRs, see ["Using Optimized Schema
Representations” on page 15.| For more information on the OSR API, see[“OSR
enerator API” on page 83, For information on performing a validating parse, see

Chapter 4, “Parsing XML documents,” on page 11}

String Identifiers

String Identifiers (StringIDs) are a special type of output data used to represent
some of the strings that the z/OS XML parser encounters during a parse. A
StringID is a 4 byte numeric value used to represent a complete string of text,
thereby substantially reducing the size of the parsed data stream for documents
containing frequently recurring strings, like namespace references. StringIDs can
only be used if the optional StringlD exit service is activated. For more information
on StringIDs, see [“String Identifiers” on page 38)

Memory management

The z/OS XML parser provides a memory allocation/deallocation exit allowing
callers to provide a pair of allocation/deallocation services. For callers that do not
provide a memory allocation exit, the z/OS XML parser provides an option at
initialization time allowing the caller to specify how the z/OS XML parser's default
routine allocates memory. For more information on these services and the special
initialization time feature, see [‘Managing memory resources” on page 50

Enable offload to specialty engines

8

z/0S XML System Services provides the ability for parsing operations to be run on
specialty processors: an IBM® System z® Application Assist Processor (zAAP) or an
IBM System z10" Integrated Information Processor (zIIP). The z/OS XML parser,
when running in TCB mode, is eligible to run on a ZAAP, in environments in
which one or more zAAPs are configured. The z/OS XML parser, when running in
enclave SRB mode, is eligible to run on a zIIP processor, in environments where
one or more zIIPs are configured. Ancillary z/OS XML System Services, such as
the query service and the control service, as well as the StringID exit and memory
management exits, are not eligible to run on specialty processors. Running of z/OS
XML System Services parsing operations on a specialty processor occurs
transparently to the calling application.

z/0S V2R1.0 XML User's Guide and Reference

Chapter 3. Querying XML documents

About this task

An XML document contains declarations that may need special handling during a
parse. For instance, if the encoding of the document to parse is unknown, the
query service provided by z/OS XML parser can be used to help determine the
encoding in order to provide the correct Coded Character Set IDentifier (CCSID) to
the parser, when the actual parse is performed.

In order for the caller to query an XML document, all the caller needs to do is use
the query service (gxlpQuery for C/C++ callers, GXL1QXD (GXL4QXD) for
assembler callers). This service allows the caller to obtain all the XML
characteristics of the document. These characteristics can be either the default
values or those explicitly contained in an XML declaration. Once these
characteristics are obtained, the caller can then determine the encoding scheme
needed to parse the document, along with any additional steps that may be
needed.

For example, if the document in question uses an encoding scheme of UTE-16, it
will require that the z/OS XML parser also uses the UTF-16 encoding scheme
when parsing this document. The caller would use the query service to ascertain
the encoding type of the document being parsed. Once this information is
acquired, the z/OS XML parser can be initialized using the initialization service
(gxlplnit for C/C++ callers, GXL1INI (GXL4INI) for assember callers, see

(Chapter 4, “Parsing XML documents,” on page 11) passing the encoding scheme to
parse the UTF-16 encoded document.

Note: The query service is the only service that provides support for both UTF-16
(little endian) and UTF-16 (big endian), whereas the other services only support
UTF-16 (big endian).

The CCSID value returned by the query service can be used to invoke Unicode
Services in order to convert the input document into one of the encodings
supported by the z/OS XML parser.

For more information on the query service, see|”gxlpQuery — query an XML}
document” on page 80| for C/C++ callers, and ["GXL1QXD (GXL4QXD) — query|
an XML document” on page 138 for assembler callers. For more information on
document encoding support, see [“Encoding support” on page 49 |

Header files and data macros

This section provides information on the various header files and data macros
associated with the z/OS XML parser query service. The names and purposes of
these files are listed below:

Note: For each item below, the name of the header file is listed first, followed by
the name of the corresponding assembler macro (if any).

gxlhxec.h, GXLYXEC
Contains assorted constant values that are used in the parsed data stream,

© Copyright IBM Corp. 2006, 2013 9

values used for assorted fields of the API, and minimum sizes for data
areas passed to the z/OS XML parser.

gxlhqxd.h, GXLYQXD
Maps the data area returned from the query service.

gxlhxr.h, GXLYXR
Contains mnemonic values that describe the return and reason codes
generated by the z/OS XML parser.

For information on these header files and data macros, see |[Appendix D, “C/C++|
lheader files and assembler macros,” on page 215.|

10 z/0S V2R1.0 XML User's Guide and Reference

Chapter 4. Parsing XML documents

Before the z/OS XML parser can perform a parse on an XML document, it must
first establish a context in which it can operate. This is accomplished when the
caller invokes the initialization routine and passes in a piece of memory where the
z/0OS XML parser establishes a Parse Instance Memory Area (PIMA). This is the
area where the z/OS XML parser creates a base for the internal data structures it
uses to complete the parse process.

Rule: A particular PIMA must only be used during the parse of a single XML
document at a time. Only after the parse is complete and the parse instance is reset
can a PIMA be reused for the parse of another document.

In addition to control information, the PIMA is used as a memory area to store
temporary data required during the parse. When the z/OS XML parser needs more
storage than was provided in the PIMA, additional storage is allocated. Because
allocating additional storage is an expensive operation, the PIMA should be
initially allocated with sufficient storage to handle the expected document size, in
order to optimize memory allocation requests.

Rule: For the non-validating z/OS XML parser, the minimum size for the PIMA is
128 kilobytes. For the validating z/OS XML parser, the minimum size for the
PIMA is 768 kilobytes.

Everything that the z/OS XML parser needs to complete the parse of a document
is kept in the PIMA, along with any associated memory extensions that the parser
may allocate during the parse process. The caller also must provide input and
output buffers on each call to the parse service (gxlpParse for C/C++ callers,
GXLI1PRS (GXL4PRS) for assember callers). In the event that either the text in the
input buffer is consumed or the parsed data stream fills the output buffer, the
z/0S XML parser will return XRC_WARNING, along with a reason code
indicating which buffer (possibly both) needs the caller's attention. It also indicates
the current location and number of bytes remaining in each buffer by updating the
buffer_addr and buffer_bytes_left parameters passed in on the parse request (for
C/C++ callers, see the description of [‘gxlpParse — parse a buffer of XML text” on]
bage 77} for assembler callers, see the description of ["GXL1PRS (GXLAPRS) —|
parse a buffer of XML text” on page 135). This process is referred to as buffer
spanning. For more information, see [“Spanning buffers” on page 44|

If the entire document has been processed when the z/OS XML parser returns to
the caller, the parse is complete and the caller proceeds accordingly. If the caller
requires another document to be parsed, it has the option of terminating the
current parse instance by calling the termination service (gxlpTerminate for C/C++
callers, GXLITRM(GXL4TRM) for assembler callers). This will free up any
resources that the z/OS XML parser may have acquired and resets the data
structures in the PIMA. If the caller needs to parse another document, it will have
to call the initialization service again to either completely re-initialize an existing
PIMA that has been terminated or initialize a new PIMA from scratch.

Another option is to use the finish/reset function of the z/OS XML parser control
service (gxlpControl for C/C++ callers, GXL1CTL (GXL4CTL) for assembler callers)
to reset the PIMA so that it can be reused. This is a lighter-weight operation that
preserves certain information that can be reused across parsing operations for

© Copyright IBM Corp. 2006, 2013 11

multiple documents. This potentially improves the performance for subsequent
parses, since this information can be reused instead of rebuilt from scratch.
Reusing the PIMA in this way is particularly beneficial to callers that need to
handle multiple documents that use the same symbols (for example, namespaces
and local names for elements and attributes). The PIMA can only be reused in this
way when the XML documents are in the same encoding.

Restriction: The following restrictions apply when conducting a validating parse:

* When parsing in non-Unicode encodings, non-representable character entities are
replaced with the "-" character prior to validation. See [“Non-representable]
[characters” on page 46| for more information on non-representable character
entities.

* There is a maximum of 64 KB non-wildcard attributes for a single element, and
64 KB elements in an Al1 group.

Steps for parsing XML documents without validation

About this task

The following steps summarize the process of parsing XML documents using the
z/0OS XML parser:

Procedure

1. Call the initialization service. This establishes the PIMA, which is then used to
create and store the initial data structures required to begin the parse process.

2. Call the parse service to parse the document.

Note: During the parse process and before the end of the document is reached,
if the input buffer is empty or the output buffer is full, a warning is issued and
the parse service is stopped. Otherwise, the parse service will continue until the
document is fully processed.

3. The application processes the output buffer.

4. Determine if there are additional documents to be processed. If so, call the
termination service to terminate the existing parse process, and repeat Steps

1-3.

Tip: For increased performance, the caller can use the control service in place of
the termination and initialization services. The control service enables the PIMA
to be reused, avoiding the need to free resources and initialize a new PIMA.
However, the PIMA can only be reused in this way when the XML documents
are in the same encoding. See[”gxlpControl — perform a parser control|
function” on page 54/ and ["GXL1CTL (GXLACTL) — perform a parser control|
function” on page 114| for more information on the control service.

Support for undefined namespace prefix toleration

12

The default behavior when the non-validating parser encounters an undefined
prefix on an element or attribute is to report a
XRSN_NS_ELEM_PREFIX_NOT_DECL or XRSN_NS_ATTR_PREFIX_NOT_DECL
reason code and terminate the parse. In the event that the caller does not want this
error to terminate the parse, they may use the XEC_CTL_ERROR_HANDLING
control option to override this default behavior and continue parsing. The
“undefined prefix:local name” will then be returned as the local name field in the
output buffer. The XEH_Error_Tolerated bit in the XEH_Flags field will be set in
the record header when this occurs.

z/0S V2R1.0 XML User's Guide and Reference

The XEC_CTL_ERROR_HANDLING control option will enable this feature on a
control call by way of the XERR structure which is mapped by GXLHERR in the
gxlhctlLh file. The XERR_TOL_UNDECL_NS_PREFIX flag in the
XERR_ERROR_TOLERATION field in the XERR structure (when set) will cause the
parser to continue parsing when this condition occurs.

In addition to continuing on this error, an auxiliary information record may be
generated in the output buffer if desired. This will contain the tolerated return and
reason codes and the error offset. In order for this record to be returned the
XERR_ERROR_INFORMATION flag must be set in the XERR_FLAGS field. This
requires the XERR_TOL_UNDECL_NS_PREFIX flag also be set. This new record
will have a type of XEC_TOK_AUX_INFO (0xFOFF) and an AUX type of
XEC_TOLERATED_ERROR (0x0110). For the format of this record, see
frecord - TOLERATED_ERROR” on page 36/

Introduction to data types

There are several data types that can be returned in the output buffer. Therefore,
the caller must know what type of data is being returned to effectively process it.
The following topics discuss the various data types:

* [“Parsed data model” on page 24| - overview of the structures that make up the
data stream produced by the parser.

* [“Length/Value pairs” on page 37|- the default representation of strings that have
been parsed from the original XML document.

* [“String Identifiers” on page 3§ - a unique numeric value returned by the z/OS
XML parser that represents a given text string (a StringID exit service must be
provided by the caller to generate these IDs).

+ |[“Metadata records” on page 26|- data records that contain metadata about the
parse stream or error information

Loading the validating parser code

Prior to parsing XML documents with validation, the validating parser code must
be loaded into storage. To do this, add the validating module, GXLIMODYV, to the
link pack area, which will make it available to all programs on the system. The
size of the GXLIMODYV module is = 3 megabytes. Adding this module to LPA will
reduce the size of the private area in every address space by this amount. If you
have applications that do not use the validating parser that are already storage
constrained, then the LPA approach may not be acceptable to your installation. For
the exact size of GXLIMODYV, run the AMBLIST utility.

If GXLIMODYV is not installed into the link pack area, the application must load it
into storage. In the non-CICS environment, the application can use the GXL*LOD
APIs to load the validating parser into private storage. The load API should be
done once per application instance, making validating parser available for use by
the entire application. For more information on the load APIs, see
lload a z/OS XML function” on page 76

In the CICS® environment, if GXLIMODV is not in the link pack area, it can be
loaded into the CICS private region by running the program list table (PLT)
program, GXLINPLT at CICS start time or as a transaction program. For more
information on setting up and running the CICS PLT program see [“Setting up and|
frunning the CICS PLT program” on page 22| Loading GXLIMODYV into CICS
private will take up approximately 3 megabytes of private storage in each CICS
region where the PLT program is run. If you are running many CICS regions on

Chapter 4. Parsing XML documents 13

the same system, consider using the LPA approach to reduce real storage usage or
paging. For size information of module GXLIMODYV, which is installed in
SYS1.SIEALNKE, use a utility such as AMBLIST.

Steps for parsing XML documents with validation

14

About this task

The following steps summarize the process of parsing XML documents using the
z/0OS XML parser with validation:

Procedure

1. Call the parser load service or run the XML CICS PLT program if in the CICS
environment. This will load the parser into storage. For more information, see
[“Loading the validating parser code” on page 13

2. Call the OSR initialization utility. This establishes the OSR generator Instance
Memory Area (OIMA), which is then used as the work area for the OSR
generator.

3. Call the OSR generator utility. This utility creates an OSR from one or more
text-based schemas passed to the OSR generator instance, using the load
schema utility.

Note: An OSR can be saved and then used for parsing future documents that
share the same schema(s) from which the OSR was generated. As a result, steps
2 and 3 may not be required each time an XML document is parsed using
validation.

4. Call the parser initialization service. This establishes the PIMA, which is then
used to create and store the initial data structures required to begin the parse
process.

5. Call the control service. This will load the generated OSR into the z/OS XML
parser.

6. Call the parse service to parse the document.

Note: During the parse process and before the end of the document is reached,
if the input buffer is empty or the output buffer is full, a warning is issued and
the parse service is stopped. Otherwise, the parse service will continue until the
document is fully processed.

7. The application processes the output buffer.

8. Determine if additional schemas need to be processed. If so, repeat steps 3, 5
and 6. If you want to reuse an existing OSR, use the OSR load utility.

9. Determine if there are additional documents to be processed. If so, call the
termination service to terminate the existing parse process, and repeat steps 1
-7.

Tip: For increased performance, the caller can use the control service in place of
the termination and initialization services. The control service enables the PIMA
to be reused, avoiding the need to free resources and re-initiate a new PIMA.
However, the PIMA can only be reused in this way when the XML documents
are in the same encoding. See [“oxIpControl — perform a parser controll
function” on page 54] and [“GXL1CTL (GXL4CTL) — perform a parser control|
function” on page 114| for more information on the control service.

z/0S V2R1.0 XML User's Guide and Reference

Using Optimized Schema Representations

Optimized Schema Representations (OSRs) are specialized forms of schemas used
during the validating parse process. They can be created from utilities provided by
the OSR generator API. For more information about the OSR generator API, see
[“OSR generator API” on page 83

Setting up the environment
About this task

Before the caller can begin generating OSRs, some environment variables must be
set. The following lists the environment variables that must be set along with their
appropriate values.

Note:

1. The caller should use the proper 31/64-bit versions of the binaries listed below.
Mixing versions of different binaries will result in unpredictable results.

2. The OSR generator is only supported with IBM 31-bit SDK for z/OS, Java 2
Technology Edition, V5 and above.
LIBPATH
must include paths to the following:

¢ For C API callers only (gxlcosrl.dll for 31-bit, gxlcosr4.dll for 64-bit) -
/usr/lib

* For 31-bit callers - /usr/lib/java_runtime
* For 64-bit callers - /usr/lib/java_runtime64
* Java binaries and JVM
— For 31-bit callers -
- /usr/lpp/java/J5.0/bin
- /usr/lpp/java/]5.0/bin/j9vm
— For 64-bit callers -
- /usr/lpp/java/]5.0_64/bin
- /usr/lpp/java/J5.0_64/bin/j9vm
CLASSPATH
must include paths to the following:
* The Java API callers only (gxljapijar) - /usr/include/java_classes

Note:

1. Do not include gxljosrgimpl.jar. It will be loaded from
/usr/include/java_classes

2. Callers of the Java API must choose the 31- or 64-bit version of Java
that they intend to use. They may either specify the explicit path to
the required executable (/usr/lpp/java/]5.0/bin/java for 31-bit,
/usr/lpp/java/]J5.0_64/bin/java for 64-bit), or include the path to
the required Java version in their PATH variable. Users of the C API
and command interfaces do not need to be concerned with this.

Usage tips
Tips are provided below to facilitate the usage of OSRs:

* An OSR is not a schema library. In other words, you should not throw all
necessary schemas into a single OSR and use it similar to a library.

Chapter 4. Parsing XML documents 15

16

* Schemas should reference one another by way of the <xs:import ...> construct.
That is, OSRs are meant to contain hierarchies of schemas, where one or more
schemas reference others to handle increasingly more specific structures in the
source XML document being transformed.

* You should consider creating one schema OSR to validate entire classes of
documents.

The OSR used for validation becomes part of the parse instance, and remains in
use for all validating parse requests until a different one is specified through the
control service. Callers who use buffer spanning to pass documents to and from
the parser in pieces should know that schemas cannot be changed in the middle of
the parse process. A control request to specify a different schema will cause a reset
of the parse instance so that the next parse request must be for a new XML
document.

Note: For callers using schemas written in XML 1.1 format, use
[Technology Edition V6)

Restricting the root element name

While performing a validating parse, the caller has the option to restrict the root
element name to a list of one or more root name or namespace pairs. When
selecting this option, validation is performed on the root name in the document
being parsed. This option is only available for validating parses.

To enable this option, during the parse step the caller must perform a control call
(gxlpControl) with the control option GXLHXEC_CTL_RESTRICT_ROOT prior to
parsing the document to indicate that the root name is to be validated. The caller
must also pass along a data area in the format of GXLHXRR, which contains the
list of root names. Failing to do this will cause an error, resulting in the z/OS XML
parser needing to be reset using CTL_FIN. The root names are specified by a local
name (root name) and an optional URI for the root namespace. The strings passed
in to the control call (gxlpControl) call must be in the encoding of the z/OS XML
parser configured at initialization time.

The control call (gxlpControl) prepares the z/OS XML parser for a new document,
but the current feature set is preserved. Subsequent resets (such as CTL_FEAT) will
not change the current settings of the restrict root element control call. These
settings will still apply when parsing subsequent documents.

The information produced in the output buffer from the subsequent parse does not
change when using this option.

The caller can remove the restriction on the root element name by calling
gxlpControl () with the control option GXLHXEC_CTL_RESTRICT_ROOT and
setting the XRR_ENTRY_COUNT value to '0' in the GXLHXRR data area.

The following is an example call sequence:

gx1plLoad

gxlpInit

gx1pControl (GXLHXEC_CTL_LOAD_OSR)

gx1pControl (GXLHXEC_CTL_RESTRICT_ROOT,GXLHXRR)
gxlpParse

gxlpTerminate

z/0S V2R1.0 XML User's Guide and Reference

http://www.ibm.com/servers/eserver/zseries/software/java/
http://www.ibm.com/servers/eserver/zseries/software/java/

Parsing XML document fragments with validation

Before beginning document fragment parsing, the caller must specify the fragment
path. The namespace binding information is also required when there is
namespace context associated with the fragment path. To load the fragment
context, the caller needs to issue a gxlpControl call with the control option
XEC_CTL_LOAD_FRAG_CONTEXT. This must occur before document fragment
parsing is enabled .

Note: A new OSR with the extra Fragment Parsing Table information is required
in order to parse a document fragment with validation. Pre-z/OS V1R12 OSRs
cannot be used in this parsing environment. To load the OSR, the caller needs to
issue a control call with the control option XEC_CTL_LOAD_OSR. This must occur
before document fragment parsing is enabled.

To enable fragment parsing, the caller needs to issue a gxlpControl call with the
control option XEC_CTL_FRAGMENT_PARSE and set the
XFP_FLAGS_FRAGMENT_MODE bit to 'ON' in the control data structure. This
must occur prior to issuing the gxlpParse call with the XML document fragment
loaded into the input buffer. The z/OS XML parser will perform regular parsing
including well-formedness checking and validation, however the root element is
not required. The XML declaration and Doctype Declaration are not allowed as
part of the document fragment.

If the z/OS XML parser reaches the end of the input buffer, and the parsed
document fragment is well-formed, the z/OS XML parser ends the parse
successfully. If the z/OS XML parser reaches the end of the input buffer, and the
parsed document fragment is not well-formed, the z/OS XML parser will return an
error. Otherwise, the z/OS XML parser will return to request more input or output
buffer space. Fragment parsing with validation is restricted to a single attribute, as
well as a single element and its descendants, optionally followed by comments and
processing instructions. Attempts to parse multiple element fragments with
validation will result in an error . If the caller decides to finish parsing the
document fragment, and the z/OS XML parser returns to request for more input
and output buffer space during fragment parsing, an error will occur. A
gxlpControl call with the control option XEC_CTL_FIN must be issued in order to
parse another document or document fragment.

When the caller finishes parsing a document fragment, they must issue a
gxlpControl call with the control option XEC_CTL_FRAGMENT_PARSE and set
the XFP_FLAGS_FRAGMENT_MODE bit to 'OFF' in the control data structure to
notify the z/OS XML parser that fragment parsing has been disabled.

The following is an example call sequence for a validating fragment parse:
gxlpLoad

gxlpInit

gx1pControl (XEC_CTL_LOAD_OSR)

gx1pControl (XEC_CTL_LOAD_FRAG_CONTEXT, FPATH)

gx1pControl (XEC_CTL_FRAGMENT PARSE) -- enable the fragment mode

gxIpParse

gx1pControl (XEC_CTL_FRAGMENT PARSE) -- disable the fragment mode
gxlpTerminate

If the caller wants to perform document fragment parsing or non-fragment parsing
on a different document, a gxlpControl call with the control option XEC_CTL_FIN
must be issued prior to a gxlpParse call. This XEC_CTL_FIN operation will reset
and prepare the current parse instance for a new document parse. The loaded

Chapter 4. Parsing XML documents 17

18

fragment context will remain in storage and become active when fragment mode is
enabled again. If the next document fragment to be parsed requires different
fragment path or namespace binding information, then a new
XEC_CTL_LOAD_FRAG_CONTEXT control call must be made to update this
information. Failure to load the correct information may cause unexpected results
such as well-formedness or validation errors.

The following is an example call sequence for a validating parse with fragments
from two different documents:

gxTpLoad

gxlpInit

gx1pControl (XEC_CTL_LOAD_OSR)

gx1pParse

gx1pControl (XEC_CTL_LOAD_FRAG_CONTEXT, FPATH1)

gx1pControl (XEC_CTL_FRAGMENT PARSE, BIT:ON) -- enable fragment mode #1
gxlpParse -- parse document fragment #1 partl in FPATH1

gxlpParse -- parse document fragment #1 part2 in FPATHL

gx1pControl (XEC_CTL_FRAGMENT PARSE, BIT:0FF) -- disable fragment mode #1
gx1pControl (XEC_CTL_FIN)

gx1pControl (XEC_CTL_LOAD FRAG_CONTEXT, FPATH2)

gx1pControl (XEC_CTL_FRAGMENT_PARSE, BIT:ON) -- enable fragment mode #2
gx1pParse -- parse document fragment #2 in FPATH2

gx1pControl (XEC_CTL_FRAGMENT PARSE, BIT:0FF) -- disable fragment mode #2
gxIpTerminate

Restrictions: Validation in fragment parsing cannot satisfy all aspects of schema
validation for an arbitrary input string as various aspects of schema validation
refer to other aspects of the document. Although it may be possible to validate
some aspects of the following schema constructs, in general they require the entire
document to be available. The restriction falls into two broad categories: those
things that cannot be validated reasonably and those things that can be validated
in isolation but could possibly fail within the context of a document. The first
category is avoided by requiring the client to ensure that the name of the element
matches the element that it is replacing. The second category includes the
following:

Namespaces
The gxlpControl API allows the establishment of a namespace context in
which to do the validation. If none are provided, it will be assumed that
there are no namespaces bound to prefixes other than those bound within
the input to be validated.

ID/IDREF
This requires knowledge of other portions of the instance document and
will only be validated using the appropriate simple content validator.

Unique elements and attributes
Unique elements and attributes are contained within the subtree of the
element containing the unique schema indicator. If this element is the root
for the document fragment or is a descendant, then the unique element or
attribute can be handled normally. However, if the unique specifier is an
ancestor of the root, there could be collisions which will not be detected.

KEY/KEYREF
This is similar to ID/IDREF in that the KEYs must be unique and
KEYREFs must match a KEY, and similar to unique attributes in that it
must be contained in the subtree. Those aspects that can be checked are
validated, but those aspects that refer to ancestral content are not
validated.

z/0S V2R1.0 XML User's Guide and Reference

Validating attributes and elements with attributes (other than xsi:type)
These attributes are meaningless in fragments and are only validated using
the appropriate simple type validator. This means that the special
characteristics of these attributes will not have an effect. For example,
schemaLocation will not indicate a schema but will just be validated
against string.

xsi:type
When xsi:type is an attribute on an element, it will have the expected
effect. Validating this as a single attribute will result in it being validated
using the qname simple type validator.

DTDs Because the z/OS XML parser is only passed the document fragment, it
has no knowledge of the entity definitions or default attribute values in the
internal DTD subset. Therefore, if the schema contains an attribute with a
type of ENTITY, it will fail. It will also fail if it relies on a default attribute
value defined in the internal DTD subset.

Comments, processing Instructions and annotations
These constructs can be included in the normal ways within an element
being validated.

Attributes that rely on an xsi:type attribute to also be present
When validating an attribute, the attribute is validated using the type
containing the attribute. Therefore, it cannot be a derived attribute or an
attribute only available on a derived type.

The parser cannot determine the actual particle when an element is indicated
The parser cannot determine the actual particle when an element is
indicated. Rather, the designator is used to indicate a type so information
on the particle, such as fixed values and nillable are not checked.

The impact of the validation within its context is not checked
The impact of the validation within its context is not checked. Therefore,
the effects of changing an element to a different element (likewise with
attributes) are not checked. Checking such characteristics requires
validating the parent and document fragment does not provide this
information.

Obtaining information on schema locations

When parsing a document containing schema references, the caller generates and
loads an OSR. In order to make sure that the appropriate OSR is loaded, the caller
must determine which schemas are referenced in the document and their locations.
To this end, the caller can query the XML document for namespaces and schema
locations.

The caller can obtain information on the schema location by initializing the PIMA
with the GXLHXEC_FEAT _SCHEMA_DISCOVERY feature. This will cause the
z/0OS XML parser to pause after parsing the start tag of the root element. The
output buffer is then populated with records as if a normal parse was performed,
with the following additional records: GXLHXEC_TOK_ROOT_ELEMENT and
GXLHXEC_TOK_SCHEMA_LOCATION. GXLHXEC_TOK_ROOT_ELEMENT
contains the root element name and GXLHXEC_TOK_SCHEMA_LOCATION
contains the schema location information. The output buffer will not contain any
start element, attribute value, or namespace declaration records. After the end of
the start tag has been reached and all schema info records have been outputted,
the z/OS XML parser provides the caller an opportunity to load an OSR before the
parse is continued. If the parse is continued, whichever OSR was loaded by a

Chapter 4. Parsing XML documents 19

20

GXLHXEC_CTL_LOAD_OSR operation will be used to validate the document. If
no OSR loading operation has been performed since parser initialization, the parser
must be reset in order to parse again.

The following is an example sequence, with the
GXLHXEC_FEAT_SCHEMA_DISCOVERY enabled:

gx1plLoad

gx1pInit (with GXLHXEC_FEAT_SCHEMA DISCOVERY enabled)
gxlpParse

gx1pControl (GXLHXEC_CTL_LOAD_OSR)

gx1pParse

gxlpTerminate

If the document does not contain either a schemaLocation or
noNamespaceSchemalocation attribute, then
GXLHXEC_TOK_SCHEMA_LOCATION records will not appear in the output
stream .

See [“oxIpInit — initialize the z/OS XML parser” on page 72| and ["GXL1INI|
[(GXL4INI) — initialize a parse instance” on page 131| for more information on
using this feature.

Obtaining additional error information

The default behavior when there is an XML document error is the z/OS XML
parser returns a reason code which identifies the error, and an offset into the
original document which is being parsed. In many cases, this is insufficient as
XML documents are commonly transcoded in transit. Such transcodings can cause
offsets to change in the document, rendering the offsets less useful.

The type of error information that can be provided will necessarily vary by the
particular error encountered. The following are examples of additional error
information that may be made available when an error is encountered:

* A bit indicator which identifies the general location within the document. This
can be XML declaration, DTD, element, miscellaneous, or an attribute which is a
namespace declaration. If the error occurs in entity replacement text, an
additional bit will be set.

* A location string which represents a path-like expression for the ancestor
element node(s) at the point of the error. This will be only applicable when the
error occurs within the XPath addressable portion of the document. There also
will be an associated namespace context provided in order to assist in correctly
identifying the failing location.

* A failed string which represents information taken from the document. For
example, this could be an incorrect element name or an invalid Unicode
character.

* A string which is expected to be present but is missing.

Because element occurrences can be repeated with the same names, it is possible to
also include position information in the path-like expression. However, tracking
element positions will be detrimental to performance even when there is no error.

This additional error information may be obtained for a validating parse by using
the XEC_CTL_ERROR_HANDLING control option along with the XERR structure
which is mapped by GXLHERR in gxlhctl.h to enable this feature. The
XERR_ENH_ERROR_INFORMATION flag will cause additional auxiliary records
to be returned which may contain information on the location of the error, the
string which is in error and also possibly an expected string. The XERR_XD_PTR is

z/0S V2R1.0 XML User's Guide and Reference

where the service will store the address of the diagnostic area, which is mapped by
GXLHXD in the gxlhxd.h file. The XD_LastOutput field is a pointer to the data
area containing these records. This data area is within the PIMA and is formatted
in the same manner as a normal output buffer. It will have a buffer information
record followed by one or more additional records. This data area will be overlaid
on a subsequent call to the z/OS XML parser.

The XERR_ENH_ERROR_LOCATION feature flag may also be specified to request
that position indexes be returned in the XPath expression which represents the
error location. Enabling this feature will impact performance.

In order to explain how element position indexes are tracked, the concept of an
expanded QName needs to be explained. See the following example:

<?xml version="1.0"?>

<root>

<pre:eleml xmins:pre="http://w3.pok.ibm.com">

</pre:eleml>

<pfx:eleml xmlns:pre="http://w3.pok.ibm.com">

</pfx:eleml>

</root>

For the first non-root element, the QName would be pre:eleml and the second
pfx:eleml. However, an expanded QName consists of the namespace URI and the
local name. Two expanded QNames are equal if their namespace URIs and local
names are equal (even if the prefixes are not equal). So in this case, if an error
occurred on the pfx:eleml, the index would be “[2]” since both expanded QNames
are http://w3.pok.ibm.com:eleml. This is a simple example. With default
namespaces, the situation can be more complicated.

XML Path language

XML Path (XPath) is a language for addressing parts of an XML document. It is a
W3C recommendation. XPath is well known and commonly used in XML
applications. This language will be used for specifying location path expressions
which covers most areas of an XML document.

The following are considered nodes in the XPath language:

* Document root

e Elements

* Attributes that are not namespace declarations

* Processing instructions (PIs)

* Comments

e Text

During the progress of a particular parse, constructs will become “XPath
identifiable” when sufficient characters are parsed to uniquely recognize the type

of node and its name (if it has one). The following are the points where this occurs
for each node:

Document root
This is identifiable when the first non-XML declaration structure is
discovered. This will never have a corresponding name.

Element
This is identifiable after the element type is fully parsed. This will be when
either whitespace, a '>' character or a '/' character are encountered after the
element type.

Chapter 4. Parsing XML documents 21

22

Attribute
This is identifiable after the attribute name is fully parsed. This will be
when either whitespace or an '=' character are encountered after the
attribute name.

PI This is identifiable after the PI target is fully parsed. This will be when
either whitespace or a “?” character are encountered after the PI target.

Comment
This is identifiable after the beginning of the comment markup is parsed.
This will be after the “” are encountered.

Text This is identifiable after the “>" of markup within element nodes.

Some structures within an XML document are not identifiable using the XPath
language. The following constructs are not XPath identifiable:

XML declaration
The path location string will be 0 length. This is recognized when “<?xml “
is encountered at the beginning of the document and before the subsequent
“>" is encountered.

Doctype declaration
The path location string will be 0 length. This is recognized when
"<?DOCTYPE " is encountered and before the subsequent “]”.

Namespace declarations
The path location string will denote the containing element node. This is
recognized when “xmlns” is encountered where there should be an
attribute.

While text nodes are XPath identifiable, they will not be uniquely denoted. Instead,
the location path will denote the containing parent element node.

For more information on the format of the auxiliary information records, see
[‘Metadata records” on page 26/

Setting up and running the CICS PLT program

About this task

The GXLINPLT assembler program uses the MVS™ LOAD command on the z/OS
XML System Services module, GXLIMODYV, the validating parser. GXLINPLT is
distributed as part of z/OS and is installed in SYS1.SIEALNKE (GXLINPLT). By
default, it is in the LNKLST.

The following steps are required to add GXLINPLT as a program list table (PLT)
program in CICS and to run at CICS start up:

Procedure

1. Define GXLINPLT to the CICS CSD. See [Appendix H, “CICS examples,” on|
or an example of a job that uses the DFHCSDUP program to define
GXLINPLT to the CICS CSD. See|CICS Resource Definition Guide|for more
information on DFHCSDUP programs. See |CICS Resource Definition Guide| for
more information on the CICS CSD.

2. Add the CICS group that contains the GXLINPLT program in a GRPLST that is
included at CICS startup. Here is an example: add a new group, GXLXMLCG

to GRPLST GXLXMLCL, and add GXLXMLCL to the GRPLST parameter in the
DFH$SIPx file.

z/0S V2R1.0 XML User's Guide and Reference

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.resourcedefinition.doc/csdup/dfhcsdup.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.resourcedefinition.doc/topics/dfha4oq.html

3. Customize the Program Load Table (PLT) to include the z/OS XML System
Services program, GXLINPLT, to run during the second stage of initialization.
For an example of a job to update the PLT table, see [Appendix H, “CICS|
[examples,” on page 237.|For this example, the DFH$SIPx would include the
entry: PLTPI=I1. Next, add the load module where the program (in the above
example, the DFHPLTI1 program) is installed, to the CICS DFHRPL
concatenation.

4. Add the data set where GXLINPLT is installed to the CICS DFHRPL
concatenation. By default, this data set is SYS1.STEALNKE.

Note: GXLINPLT may also run as a CICS transaction.
Results

For more information on how to setup and run CICS PLT programs, see the [CICS
ICustomization Guide|

Header files and data macros

This section provides information on the header files and data macros associated
with the z/OS XML parser. The names and purposes of these files are listed below:

Note: For each item below, the name of the header file is listed first, followed by
the name of the corresponding assembler macro (if any).

gxlhxml.h

Contains prototypes for all of the API entry points, as well as include
statements for all of the other header files that are required for the APL
The Metal C version of this header also includes logic to call either the 31
or 64 bit version of the requested API, depending on the addressing mode
of the caller.

There is no corresponding assembler version of this header file.

gxlhxeh.h, GXLYXEH
Describes all of the structures that the z/OS XML parser generates in the
parsed data stream. This includes both the records that represent the
individual markup and content parsed from the document, as well as
metadata about the data stream itself.

gxlhxec.h, GXLYXEC
Contains assorted constant values that are used in the parsed data stream,
values used for assorted fields of the API, and minimum sizes for data
areas passed to the z/OS XML parser.

gxlhgxd.h, GXLYQXD
Contains the structure that describes the information returned from the
Query XML Declaration (QXD) service. It also contains constants that
enumerate the allowable values for certain fields of the structure.

gxlhxd.h, GXLYXD
Maps the z/OS XML parser extended diagnostic area.

gxlhxr.h, GXLYXR
Contains mnemonic values that describe the return and reason codes
generated by the z/OS XML parser.

Chapter 4. Parsing XML documents 23

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.doc/dfha3/topics/dfha35h.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.doc/dfha3/topics/dfha35h.html

gxlhxsv.h, GXLYXSV
Maps the system service vector that the caller uses to describe the exits
that it provides to the z/OS XML parser.

gxlhctl.h, GXLYCTL
Contains the various structures that are used in the gxlpControl
(GXL1CTL/GXLACTL) service.

gxlhxft.h, GXLYXFT
Maps the input and output area used by the control feature flag of the
gxlpControl GXL1CTL (GXL4CTL) service.

gxlhxosr.h, GXLYXOSR
Maps the input and output area used by the optimized schema
representation.

For information on these header files and corresponding data macros, see
|Appendix D, “C/C++ header files and assembler macros,” on page 215|

Parsed data model

24

This section provides information on the data model used to represent the contents
of the output buffer. The caller needs to understand this data model so that it can
effectively process the parsed data stream that has been created in the output
buffer.

The z/OS XML parser produces a structured data stream resulting from the parse
process. It is a feature that distinguishes the z/OS XML parser from most other
XML parsers. The parsed data stream consists of a set of self-describing records
representing the output of the parser. These records provide a structure to the data
stream that allows a consumer to navigate the data stream as needed. Some of the
records represent the actual semantic content of the parsed document, while others
provide metadata about the parse itself. There may be more than one group of
these records (or record groups) in a single output buffer. This can occur if the
input buffer spans multiple times before the output buffer is filled.

Common record header

Each record in the parsed data stream consists of a common header, followed by
information that is specific to a given record type. The common header has the
following structure:

Table 1. Common record header

Fields

+0 record type (2 bytes) flags (1 byte) reserved (1 byte)

+4 record length

The record type determines the form of the data that immediately follows the
header and which makes up the body of the record. The record flags provide
information about the specific record to which they belong. Each bit of the flags
byte has the following meaning:

Table 2. Record flag bits

Bit

position Name Purpose

0 XEH_CONTINUED This record is continued in the next output
buffer.

z/0S V2R1.0 XML User's Guide and Reference

Table 2. Record flag bits (continued)

Bit

position Name Purpose

1 XEH_NO_ESCAPES There are no characters that need to be
escaped in this record.

2 XEH_DEFAULT This record is supplied with default content
from a DTD or a schema.

3 XEH_ERROR_TOLERATED This record contains an undefined prefix
which is tolerated because this behavior
was requested.

The XEH_No_Escapes flag is provided as an aid to callers that need to re-serialize
the parsed data stream back to an XML document in text form. It is relevant only
for records that represent character data or attribute values (its meaning is
undefined for all other records). It indicates that there are no special characters
present that need to be escaped in the text of the record during re-serialization.
The set of these special characters is made up of "<", ">", "&", and the single and
double quotes. The caller must substitute either one of the well known strings
("&It;", ">", "amp;", "'", """) or a numeric character reference in the
serialized text in order to create a well formed XML document.

Note: Single and double quotes are allowed within character data. If they appear
within character data, they are not considered escaped characters. However, if
single or double quotes exist within attribute values, they are considered escaped
characters.

When this flag is on, the caller can safely avoid scanning the text associated with
the record to look for characters that must be escaped during re-serialization.
When the flag is off, one of the special characters may be present, and such a scan
is required. Note that there are certain instances involving buffer spanning when it
is not possible for the parser to determine that this bit should be set. As a result,
for character data and attribute value records that span multiple output buffers,
the XEH_No_Escapes bit may be off, even when there are actually no characters
that need to be replaced during serialization. If the bit is on though, it will always
be safe to avoid scanning for characters that need escaping.

The flags field is followed by 1 reserved byte and the record length. The record

length contains the total length of the record - including the header. Navigating

from one record to the next is done by moving a pointer, by the specified record
length, from the first byte of the current record header.

Record (token) types

Record types are values used to identify the purpose of each record parsed from
the input document. The record type, along with the data stream options in the
buffer info record (see [“Buffer info record” on page 26), indicates the form of the
record. Record forms are a means of indicating the number of values that make up
the record itself, and are described in a separate section below. Here are the record
types returned by the z/OS XML parser (their definitions are provided in
gxlhxec.h for C and C++ callers, and GXLYXEC for assembler callers):

Table 3. Record types

Token name Meaning

GXLHXEC_TOK_BUFFER_INFO information about the buffer containing
the parsed data stream

Chapter 4. Parsing XML documents 25

Table 3. Record types (continued)

Token name Meaning
GXLHXEC_TOK_ERROR error information
GXLHXEC_TOK_XML_DECL an XML declaration
GXLHXEC_TOK_START_ELEM start of an element
GXLHXEC_TOK_END_ELEM end of an element
GXLHXEC_TOK_ATTR_NAME name of an attribute
GXLHXEC_TOK_ATTR_VALUE value of an attribute
GXLHXEC_TOK_NS_DECL a namespace declaration
GXLHXEC_TOK_CHAR_DATA character data
GXLHXEC_TOK_START_CDATA start of a CDATA section
GXLHXEC_TOK_END_CDATA end of a CDATA section
GXLHXEC_TOK_WHITESPACE a string of white space characters
GXLHXEC_TOK_PI processing instruction
GXLHXEC_TOK_COMMENT a comment
GXLHXEC_TOK_DTD_DATA DOCTYPE declaration information
GXLHXEC_TOK_UNRESOLVED_REF an entity reference that cannot be
resolved
GXLHXEC_TOK_AUX_INFO auxiliary information about individual
items in the parsed data stream
GXLHXEC_TOK_SCHEMA_LOCATION schema location information
GXLHXEC_TOK_ROOT_ELEMENT root element name

The above token names are for the C/C++ callers. Assembler callers use token
names without the prefix "GXLH".

Most of the record types listed above fall into one of four classes, based on the
number of values they contain from the document being parsed. Two of these
record types - the buffer info and error records - are different (see
frecord”and [“Error info record” on page 28)) because they contain metadata about
the information in one of the buffers (input or output), rather than data parsed
from the input stream. The form of the data they contain is unique to the purpose
of the record.

The data structures that describe this data stream can be found in the data model
header file gxlhxeh.h for C/C++ callers, and the mapping macro GXLYXEH for
assembler callers. Data is not aligned on any kind of boundary, and there are no
alignment requirements for the input or output buffers provided by the caller.

Metadata records

Some records contain metadata related to the parsing process. These records are
discussed below.

Buffer info record

Because the data stream that the z/OS XML parser generates in the output buffer
consists of one or more groups of records, each group always begins with the
buffer info record - a record containing metadata about the parsed data stream

26 z/0S V2R1.0 XML User's Guide and Reference

contained in the current output buffer. This record includes the length of the buffer
used by the record group and flags indicating the characteristics of the data
stream.

The following is the structure for the buffer info record, including the record
header:

Table 4. Buffer info record structure

Fields
+0 record type | flags reserved
+4 record length
+8 datastream options
+C parse status | reserved
+10 buffer length used
+14
+18 offset to error record
+20

This record is not allowed to span output buffers, so the continuation flag in the
record flags field of the buffer header will always be zero. The datastream options
contain a flag indicating whether or not StringIDs are in use, plus some of the flags
from the feature flags parameter on the z/OS XML parser init call. These flags
indicate some characteristic of the data in the parsed data stream. The full list of
flags indicate:

* StringlDs are in effect

¢ Comments are stripped (GXLHXEC_FEAT_STRIP_COMMENTS)

* White space is being tokenized (GXLHXEC_FEAT_TOKENIZE_WHITESPACE)

* Returning CDATA as CHARDATA (GXLHXEC_FEAT_CDATA_AS_CHARDATA)
* Validating parser is enabled (GXLHXEC_FEAT_VALIDATE)

* Source offsets are enabled (GXLHXEC_FEAT_SOURCE_OFFSETS)

 Full end tag feature is enabled (GXLHXEC_FEAT_FULL_END)

Note:

1. The GXLHXEC_FEAT* flags in above parentheses are defined in gxlhxec.h for
C/C++ callers and GXLYXEC for assembler callers. For assembler callers,
remove the "GXLH" prefix from the constant names.

2. The buffer info record is mapped out in gxlhxeh.h for C/C++ callers and
GXLYXEH for assembler callers.

The "parser status" field is another set of flags in the buffer info record. If an
unresolved external reference is present in this buffer, the unresolved reference bit
will be on. If a non-representable character reference is present in this or a
subsequent buffer for this document, the non-representable character reference bit
will be on.

The "buffer length used" field indicates the portion of the output buffer consumed
by the group of records represented by this buffer info record. If no buffers are
spanned during the parse process, there will be only one buffer info record present
in the output buffer, representing a single group of records. If buffers are spanned,
there may be several record groups, each with corresponding buffer info records
present in the output buffer. The number of record groups and buffer info records

Chapter 4. Parsing XML documents 27

28

depends on how the caller manages the buffers that are passed to the parser. See
[‘Spanning buffers” on page 44| for more information.

The "error record offset" field indicates the offset from the beginning of the buffer
info record to the beginning of the error info record. If this offset is zero, there is
no error record present in the group of records represented by the buffer info
record.

Error info record

The error info record is placed in the parsed data stream whenever a parsing error
is detected. The offset to the error from the start of the document, along with the
return and reason code generated by the z/OS XML parser when the error was
encountered, are kept in a field of the error info record. Here is the structure of the
record, including the record header:

Table 5. Error info record structure

Fields
+0 record type flags reserved
+4 record length
+8 return code
+C reason code
+10 offset of the error from the start of the document
+14

Note: The error info record is mapped out in gxlhxeh.h for C/C++ callers, and
GXLYXEH for assembler callers.

For information on error codes and how to use them, see [“Using return and reason|
lcodes” on page 51.|

Aux info record

When the source document offsets feature (GXLHXEC_FEAT_SOURCE_OFFSETS)
is selected, or the character reference record
(GXLHXEC_UNREPRESENTABLE_CHARREF_REC) is requested, an information
record is inserted in the output buffer. The record has the following structure:

Table 6. Aux info record

Fields
+0 record type | flags reserved
+4 record length
+8 aux flags | information type
+C -varied information-

The record values are defined as follows:

Record header
This is the standard record header of all records in the data model. The
record type is GXLHXEC_TOK_AUX_INFO.

Aux flags
These flags provide information about the form of the data in the rest of
the record:

z/0S V2R1.0 XML User's Guide and Reference

¢ XEH_AUX_LONG_VALUE - This flag is only used in records which
contain values which can vary in size. This bit will be OFF if the record
contains integer values that are 4 bytes in length. The bit will be ON if
the record contains values that are 8 bytes in length. Any value or record
length fields in the record such as the record length in the header will
always be 4 bytes no matter what the value of this bit is.

All offset values which are under 4GB-1 in magnitude will be
represented as a 4 byte value in the data stream and the
XEH_AUX_LONG_VALUE flag will be OFF. When an offset is
encountered which exceeds 4 GB, then all offset records from that point
on will be represented as 8 byte values in the data stream and the
XEH_AUX_LONG_VALUE will be set ON.

* AUX_ENTITY - This is set for information records that are generated
from entities.

Information type
This value identifies what information is contained in the record. See
information types| for details on the different types.

-varied information-
The contents of the additional information will depend on the information
type and flags. For offset records, this will contain either a 4 or an 8 byte
value which represents the offset of the particular structure from the
beginning of the document. It will be 4 bytes if the
XEH_AUX_LONG_VALUE bit flag bit is OFF in the header. It will be 8
bytes if the XEH_AUX_LONG_VALUE bit flag is ON in the header.

Information types:

GXLHXEC_OFFSET_START_STARTTAG
This is the offset of the ‘<’ at the beginning of an XML start tag. This
record occurs in the datastream immediately preceding the
GXLHXEC_TOK_START_ELEM .

GXLHXEC_OFFSET_END_STARTTAG
This is the offset of the >" at the end of an XML start tag. This record
occurs in the datastream immediately after the last
GXLHXEC_OFFSET_END_ATTRVALUE, if there are attributes, or the
GXLHXEC_OFFSET_END_STARTTAGNAME record if there are no
attributes.

GXLHXEC_OFFSET_END_STARTTAGNAME
This is the offset to the end of the XML start name qname. This record
occurs in the datastream immediately following the
GXLHXEC_TOK_START_ELEM.

GXLHXEC_OFFSET_START_ATTRVALUE
This is the offset of the beginning quote of the attribute value. This record
occurs in the datastream immediately preceding the
GXLHXEC_TOK_ATTR_VALUE.

GXLHXEC_OFFSET_END_ATTRVALUE
This is the offset of the ending quote of the attribute value. This record
occurs in the datastream immediately after the
GXLHXEC_TOK_ATTR_VALUE.

Chapter 4. Parsing XML documents 29

30

GXLHXEC_OFFSET_START_COMMENT
This is the offset of the ‘<’ at the beginning of an XML comment. This
record occurs in the datastream immediately preceding the
GXLHXEC_TOK_COMMENT.

GXLHXEC_OFFSET_END_COMMENT
This is the offset of the ‘>’ at the end of an XML comment. This record
occurs in the datastream immediately following the
GXLHXEC_TOK_COMMENT.

GXLHXEC_OFFSET_START_CDATA
This is the offset of the ‘<’ at the beginning of an XML CDATA. This record
occurs in the datastream immediately preceding the
GXLHXEC_TOK_START_CDATA.

GXLHXEC_OFFSET_END_CDATA
This is the offset of the ‘>’ at the end of an XML CDATA. This record
occurs in the datastream immediately following the
GXLHXEC_TOK_END_CDATA.

GXLHXEC_OFFSET_START_PI
This is the offset of the ‘<’ at the beginning of an XML PI. This record
occurs in the datastream immediately preceding the GXLHXEC_TOK_PL

GXLHXEC_OFFSET_END _PI
This is the offset of the ‘>’ at the end of an XML PI. This record occurs in
the datastream immediately following the GXLHXEC_TOK_PI.

GXLHXEC_OFFSET_START_XMLDECL
This is the offset of the ‘<’ at the beginning of an XML Declaration. This
record occurs in the datastream immediately preceding the
GXLHXEC_TOK_XML_DECL.

GXLHXEC_OFFSET_END_XMLDECL
This is the offset of the “>" at the end of an XML Declaration. This record
occurs in the datastream immediately following the
GXLHXEC_TOK_XML_DECL.

GXLHXEC_OFFSET_START_ENDTAG
This is the offset of the ‘<’ at the beginning of an XML end tag. This record
occurs in the datastream immediately preceding the
GXLHXEC_TOK_END_ELEM.

GXLHXEC_OFFSET_END_ENDTAG
This is the offset of the >" at the end of an XML end tag. This record
occurs in the datastream immediately following the
GXLHXEC_TOK_END_ELEM.

GXLHXEC_OFFSET_START_DTD
This is the offset of the ‘<’ at the beginning of an XML DOCTYPE
declaration. This record occurs in the datastream immediately preceding
the GXLHXEC_TOK_DTD_DATA.

GXLHXEC_OFFSET_END_DTD
This is the offset of the > at the end of an XML DOCTYPE declaration.
This record occurs in the datastream immediately following the
GXLHXEC_TOK_DTD_DATA.

GXLHXEC_OFFSET_START_NSVALUE
This is the offset of the quote at the beginning of an XML namespace
declaration value. This record occurs in the datastream immediately
preceding the GXLHXEC_TOK_NS_DECL.

z/0S V2R1.0 XML User's Guide and Reference

GXLHXEC_OFFSET_END_NSVALUE
This is the offset of the quote at the end of an XML namespace declaration
value. This record occurs in the datastream immediately following the
GXLHXEC_TOK_NS_DECL.

GXLHXEC_OFFSET_ROOT_ELEMENT
This is the offset of the < at the beginning of the root element start tag.
This record occurs in the datastream immediately preceding the
GXLHXEC_TOK_ROOT_ELEMENT.

GXLHXEC_CHARREF_UNREP_REC
This record type contains information about non representable character
references in the document.

Note: This information type contains a different auxiliary information
record than the previous information types. The variable section of the
record is as follows:

Table 7. Alternate structure for variable section of aux info record
(GXLHXEH_AUX_LONG_VALUE = OFF)

Fields
+0 The binary value of the character reference that cannot be represented.
+4 The offset of the character reference that cannot be represented in the
document.
+8 The offset into the string of the previous replacement character's record
in the output record.

If the GXLHXEH_AUX_LONG_VALUE bit is set to 'ON' in the
GXLHXEH_AUX flag, the variable section of the record has the following
structure:

Table 8. Alternate structure for variable section of aux info record
(GXLHXEH_AUX_LONG_VALUE = ON)

Fields
+0 The binary value of the character reference that cannot be represented.
+4 -reserved-
+8 The offset of the character reference that cannot be represented in the
+C document.
+10 The offset into the string of the previous replacement character's record
14 in the output record.

The above information type names are for the C/C++ callers. Assembler callers use
information type names without the "GXLH" prefix.

Entities and default XML structures

If the records are inserted in the output stream via XML entity replacement or
default generation, then offset information records will be generated, and the
varied information field will represent the offset of the ‘; character of the entity
reference in the main document or the >’ character of the element which contains
the default attribute. Also, all information records generated from entities will have
the entity flag bit set ON.

Default XML structures include any of the following:

Chapter 4. Parsing XML documents 31

32

Attributes
These can be generated from DTDs or schemas.

Namespace declarations
These can be generated from DTDs or schemas.

Start tags and end tags
These can be generated from schemas only.

Content
These can be generated from schemas only and only within default start
and end tags.

Interactions with other features
The source offsets feature can interact with other features. The following is a list of
those features, along with an explanation of the interaction:

Strip comments (GXLHXEC_FEAT_STRIP_COMMENTS)
When source offsets are enabled, comment records will continue to be
stripped. However, the source offset information records for comment
markup will continue to be inserted into the output.

CDATA as char data (GXLHXEC_FEAT_CDATA_AS_CHARDATA)
When source offsets are enabled, CDATA will continue to be outputted as
character records. However, the source offset information records for
CDATA markup will continue to be inserted into the output. In this case,
the order of the information records will not be in document order in
relation to the data in the character records.

Validation
Information records will be created when using the validating parser as
well as the non-validating parsing.

Fragment parsing (GXLHXEC_CTL_FRAGMENT_PARSE)
Normally, source offset values are presented based on the beginning of the
XML document, However, when document fragment parsing is enabled,
the source offset values are presented based on the fragment parsing block
constituted by the start and end fragment parsing control call. Therefore,
the source offset will start from zero for every document fragment that is
parsed after the start fragment parsing control call is made.

Aux info record - Error_Location

This is a type of aux info record. This record pertains to the
XEC_CTL_ERROR_HANDLING features. It has the following format:

Table 9. Aux info record - Error_Location

Fields
+0 record type | flags reserved
+4 record length
+8 aux flag | aux type = 0x0101
+C error flags
+10 error location path length
+14 error location path value
+n error namespace context length
+n+4 error namespace context value

z/0S V2R1.0 XML User's Guide and Reference

¢ The record header flags field will always be 0.

* The record length field contains the total length of the record - including the
header

» The XEH_AUXFlag field will always be 0.
¢ The aux record type field will have the value 0x0101 - XEC_ERROR_LOCATION

The flags field (XEH_ErrFlags) consists of the following possible values:

XEH_ERRXMLDECL
Error occurred in the XML declaration or text declaration portion of the
document.

XEH_ERRDTD
Error occurred in the document type declaration portion of the document.

XEH_ERRELEMENT
Error occurred in the element portion of the document.

XEH_ERRMISC
Error occurred within PIs, comments in the prolog, miscellaneous areas of
the document, or between markup.

XEH_ERRREPTEXT
Error occurred within entity replacement text while resolving an entity
reference. This bit will be on in addition to the other bits.

XEH_ERRNSDECL
Error occurs within an attribute which is a namespace declaration.

The error location path field is a string in the form of a length/value pair which
represents the approximate location of the failure.

The namespace context is a list of namespace URIs delimited by '/' characters with
each step corresponding to the same step in the error location path. Each
namespace URI will be surrounded by double quote characters to aid in parsing
the string.

Error location path and namespace context

This is defined as a list of element and attribute nodes in the format of an XPath
expression which denotes the closest ancestor to the failure point which has passed
sufficient well-formedness or validation checks to be XPath identifiable as a node.
If the enhanced error information feature is enabled, then position indexes will be
included in the XPath expression for any nodes whose position is greater than 1.

Note: In the XPath specification, the position is 1 based.

If the XML document includes namespace definitions, then the nodes in the
expression will be namespace prefix qualified as they were in the original XML
document. In addition, the namespace context at the point of the failure is
provided. If no namespaces URIs are applicable at the point of the failure, then the
length of the namespace context field will be 0. If the path denotes a PI or
comment, then the corresponding step in the namespace definition will not be
present.

If fragment parsing is in progress when the error occurs, the path will only include

nodes that had been parsed in the current document fragment. It will not include
nodes which were only passed in by way of the load fragment context CTL call.

Chapter 4. Parsing XML documents 33

The error location path follows the definitions in the XPath 1.0 specification. The
following XPath constructs are used:

b This identifies the root node of the document and includes prolog and
miscellaneous nodes which are XPath identifiable as comments and
processing instructions. If an error occurs in the root element's type
(qname), then the path will be /. If the error location path is present, it will
always begin with '/".

location step
Consists of a node test. The following node tests are supported:

QOName
This corresponds to element nodes in the path and will be a
prefix:localname if the qname is namespace qualified. Elements
using default namespaces will not have a prefix.

@Qname
This corresponds to attribute nodes in the path will be a
prefix:localname if the qname is namespace qualified. This can only
appear at the end of the path.

comment()
This is used when an error occurs in an XPath identifiable
comment.

processing-instruction('name')
This is used when an error occurs in a processing instruction. The
name' is a string which represents the name of the processing
instruction if it was correctly specified in the document.

[n] This is the 1 based position index which will be appended to a
gname if the enhanced location feature is enabled and the position
index of the node is > 1.

Additional usage notes are as follows:
* Location steps are separated by a '/' character.

e If an error occurs in the XML declaration or DOCTYPE, then the error location
length is 0.

* If an error occurs outside the root element with non-XPath identifiable markup
or between markup, then the error location path will be a '/'.

* If an error occurs within a namespace declaration, then the location path will
denote the parent element node.

e If an error occurs within the an attribute and is not XPath identifiable as an
attribute node, the location path will denote the parent element node.

 If an error occurs in a text node, then the location path will denote the parent
element node.

* If the path or namespace context would be longer than 2 gigabytes, then they
are truncated to 2 gigabytes.

Error location and fragment parsing
There are some special considerations when fragment parsing is enabled:

* If the fragment context denotes that the fragment is an attribute value, then the
error location will be a zero length string.

* If the error occurs before or after the main element in the fragment, the error
location will be a zero length string.

34 2/0S V2R1.0 XML User's Guide and Reference

¢ The XEH_ErrFlags field can only have the XEH_ERRXMLDECL bit on if the
error occurs in the text declaration portion of the fragment, or the
XEH_ERRELEMENT bit on if it occurs anywhere else in the fragment.

Aux info record - ERROR_STRING

This is a type of aux info record. This record pertains to the
XEC_CTL_ERROR_HANDLING features. It has the following format:

Table 10. Aux info record - Error_String

Fields
+0 record type | flags reserved
+4 record length
+8 aux flag | aux type = 0x0102
+C failing string length
+10 failing string value

* The record header flags field will always be zero.

* The record length field contains the total length of the record - including the
header

¢ The XEH_AUXFlag field will always be zero.
* The aux record type field will have the value 0x0102 - XEC_ERROR_STRING

The failing string contains a string in the form of a length/value pair from the
document which is associated with the failure. The parser will test the failing byte
sequence. If it is in an US-ASCII displayable range of characters, then the character
itself will be present in the string. If it is not displayable, it will instead be the hex
representation. These will follow the C convention of Oxnn. For example, if a
character is found which is not allowed in an xml document, then it may show
here as 0xC270.

In cases where the XEH_ERRREPTEXT bit is on in the error location record, this
string will contain the entity reference in the main document which led to the error
occurrence.

Aux info record - EXPECTED_ STRING

This is a type of aux info record. This record pertains to the
XEC_CTL_ERROR_HANDLING features. It has the following format:

Table 11. Aux info record - Expected_String

Fields
+0 record type | flags reserved
+4 record length
+8 aux flag | aux type = 0x0103
+C expected string length
+10 expected string value

* The record header flags field will always be zero.

* The record length field contains the total length of the record - including the
header

* The XEH_AUXFlag field will always be zero.
* The aux record type field will have the value 0x0103 - XEC_EXPECTED_STRING

Chapter 4. Parsing XML documents 35

36

The expected string contains a string in the form of a length/value pair which
shows a string which was expected in the document in order for the document to
parse correctly.

If there is more than one option for what is required at any point, this record will
not be present.

Aux info record - TOLERATED ERROR

This is a type of aux info record. This record pertains to the
XEC_CTL_ERROR_HANDLING features. The information data has the following
format:

Table 12. Aux info record - TOLERATED _ERROR

Fields
+0 record type | flags reserved
+4 record length
+8 aux flag | aux type = 0x0110
+C error return code
+10 error reason code
+14 error offset
+18

* The record header flags field will always be zero.

* The record length field contains the total length of the record - including the
header

* The XEH_AUXFlag field will always be zero.

* The aux record type field will have the value 0x0110 -
XEC_TOLERATED_ERROR.

* Error return code, error reason code and error offset depend on the errors.

* The error offset will be a 64-bit field.

* In the event that source offset auxiliary records are also being returned, this

record will immediately follow those records for the element or attribute in the
output buffer.

Extended end element record

If the XEC_FEAT_FULL_END feature is enabled, then the XEC_TOK_END_ELEM
record will be generated as a Record Form 3 instead of Record Form 0. Here are
the contents of the record when StringIDs are disabled:

Table 13. Extended end element record (no StringlD)

Fields
+0 record type flags reserved
+4 record length
+8 length of Lname
+C value of Lname
+10
+14 length of URI

z/0S V2R1.0 XML User's Guide and Reference

Table 13. Extended end element record (no StringlD) (continued)

Fields
+18 value of URI
+1C
+20 length of prefix
+24 value of prefix
+28

Here are the contents of the record when StringIDs are enabled:

Table 14. Extended end element record (StringID)

Fields
+0 record type | flags reserved
+4 record length
+8 StringID of Lname
+C StringID of URI
+10 StringID of prefix

Default content flag (XEH_DEFAULT)

When an output record is generated from a definition in the DTD or schema, the
XEH_DEFAULT flag bit will be set in the record header flags field. This bit will
indicate that an attribute, namespace or element was generated from the DTD or
schema.

31- and 64-bit compatibility
The length and offset fields outlined in the metadata records above are all 64-bit
values, with associated 31-bit versions to provide 31- and 64-bit compatibility.
Assembler callers in 64-bit mode can pass in buffer lengths greater than 2 GB to
GXL4PRS. As a result, the z/OS XML parser may have values in length and offset
fields that are much greater than 2 GB. 31-bit assembler callers are limited to 2 GB,
and should reference the XEH_*31 fields in order to use the proper value. The
XEH_*31 fields are in GXLYXEH . These fields can also be found in gxlhxeh.h for
C/C++ callers.

Note: The offset of the error from the start of the document, when the input
document is segmented and the sum of the segment sizes is greater than 2 GB,
may be a 64-bit value even though the caller may only be 31-bit.

Length/Value pairs

Strings that have been parsed from the original XML document (qualified name
components, character data, comment text, etc.) are, by default, represented by
length/value pairs. This length indicates the actual length of the text represented
by the pair. There are no string terminators, such as a NULL character used to
indicate the end of a piece of text. Length fields may be zero, indicating that a
particular string is not present (for example, the namespace string length for an
element that is not namespace qualified will be zero), and the value length will
also be zero. In the absence of a String Identifier exit (see [‘String Identifiers” on|
page 38)), all strings in the parsed data stream are represented by a length/value
pair.

Chapter 4. Parsing XML documents 37

String Identifiers

This section provides information on the String Identifiers (StringIDs) that can be
passed back to the caller by the z/OS XML parser.

Note: The StringlID exit is an optional service that the caller may supply. If there is
no StringlD exit available, the z/OS XML parser will simply return the actual
length/value pairs for the strings representing localnames, URIs, and prefixes in
the data stream it returns to the caller. See[“Length/Value pairs” on page 37for
more discussion on this topic.

StringIDs are 4 byte numeric values that are used to represent a given string that is
returned from the z/OS XML parser to the caller. StringIDs can be used to
represent the localname (Iname), namespace prefix, and namespace URI for the
following items:

e element names
e attribute names

* namespace declarations

These are the strings in the parsed data stream that are most likely to be repeated.
StringIDs are provided by a caller-supplied service exit that the z/OS XML parser
invokes any time it encounters certain strings that it hasn't seen before. See the
description of the symbol service exit (‘GXLSYM31 (GXLSYM64) — StringID|

service” on page 151)["GXLPSYM31 (GXLPSYM64) — StringID handler” on page]

108) for more details.

Once the z/OS XML parser receives a StringID for a given string, it will record the
ID, and return it in place of the actual Iname, namespace prefix, or namespace URI
string in the parsed data stream that is returned to the caller. The use of StringIDs
reduces the size of the parsed data stream especially for documents with
namespace references. URIs that would normally be returned for every element
and attribute name can be represented in 4 bytes instead of their text that is
generally much longer.

Record forms

The general form of a record created in the parsed data stream contains a fixed
header section, followed by zero or more values. These values may consist of
either a length and value pair, or a single StringID value, depending on the type of
data being represented, and the data stream options that are in use. StringIDs are
used to represent attribute and element name components - the Iname, namespace
URI, and namespace prefix for start element and attribute name records, and the
namespace prefix and URI for namespace declarations. When StringIDs are not in
use, these name components are represented by length and value pairs, just like
other types of data returned in the records that make up the parsed data stream.

Each record begins with a fixed section that contains the record type, a set of flags,
and the length of the entire record. This is followed by the values relevant to the
specific type of information represented by the record. In most cases, these values
represent an individual item parsed from the XML document. The exceptions are
the metadata records (the buffer info and error records), which contain information
describing the input and output streams, but which are not directly related to a
specific item from the XML document.

38 2/0S V2R1.0 XML User's Guide and Reference

The record length field is the value that must be used to navigate from one record
to the next in the parsed data stream. Although the lengths and types of the
individual fields of a record are explained below, the caller must not use these to
calculate the location of subsequent records.

The data stream options contained in the buffer info record of each output bulffer,
and the token types of each record within those buffers uniquely identify the type
of information contained in each record. This type information is reflected in the
record form used for each record. These structures are defined in the header file
[“exIhxeh.h (GXLYXEH) - mapping of the output buffer record” on page 215] For
assembler callers, they are defined in GXLYXEH. Also, see [Table 21 on page 41| for
a description of the various record types.

Record form 0

This is a simple record that is used to describe items in the output stream that
have no associated value. It consists of only a record header.

Table 15. Record form 0

Fields

record type flags reserved

record length

Record form 1

These records describe items in the output stream that have one associated value -
most often a character string.

Table 16. Record form 1

Fields

record type flags reserved

record length

value 1 length

bytes 1 to n of value 1

These records are used to return things like character data to the caller. StringIDs
are never used in these records.

Record form 2

These records describe items in the output stream that contain two values. There
are two variations of this record form, depending on whether or not StringIDs are
being used. Namespace declaration records are examples of these. In the case
where StringIDs are provided by the caller through the GXLSYM31 (GXLSYM64)
StringID service exit, the record form looks like the following:

Table 17. Record form 2 (with StringID)

Fields

record type flags reserved

record length

StringID for value 1

StringID for value 2

Chapter 4. Parsing XML documents 39

When StringlDs are not in use, values one and two are represented as conventional
length and value pairs:

Table 18. Record form 2 (without StringID)

Fields

record type | flags reserved

record length

value 1 length

bytes 1 to n of value 1

value 2 length

bytes 1 to n of value 2

There are other form 2 records that will always use length and value pairs,
regardless of whether or not StringIDs are available. Processing instructions are an
example of this kind of record, since the target and value of a processing
instruction are always returned as strings represented by length and value pairs.

Record form 3

Records of this form are for parsed data that is described by 3 separate values.
These records include those for element and attribute names, which can contain
either StringIDs or length and value pairs, as well as XML declarations, which are
always represented by the length and value pair version of this record form. Here
is what the StringID based version of this form looks like:

Table 19. Record form 3 (with StringlD)

Fields

record type flags reserved

record length

StringID for value 1

StringID for value 2

StringID for value 3

The following is the length and value pair version of the record form:
Table 20. Record form 3 (without StringID)
Fields

record type | flags reserved

record length

value 1 length

bytes 1 to n of value 1

value 2 length

bytes 1 to n of value 2

value 3 length

bytes 1 to n of value 3

40 z/0S V2R1.0 XML User's Guide and Reference

Field values by record type

The following is a complete listing of the descriptions of values for each record
type. The actual type of certain values will differ, depending on the use of
StringID.

Table 21. Field values by record type

Record| Contains | Value | Value

Record type form | StringIDs| number| description
GXLHXEC_TOK_ATTR_NAME 3 No 1 length and
value of Lname
2 length and
value of

namespace URI

3 length and
value of
namespace
prefix

GXLHXEC_TOK_ATTR_NAME 3 Yes 1 StringID of
Lname

2 StringID of
namespace URI

3 StringID of
namespace
prefix

GXLHXEC_TOK_ATTR_VALUE 1 - 1 length and
value of
attribute value

GXLHXEC_TOK_AUX_INFO
GXLHXEC_TOK_BUFFER_INFO N/A |N/A -

GXLHXEC_TOK_COMMENT 1 - 1 length and
value of
comment

GXLHXEC_TOK_CHAR_DATA 1 - 1 length and
value of
character data

GXLHXEC_TOK_DTD_DATA 3 - 1 length and
value of root
element name

2 length and
value of public
identifier

3 length and
value of system
identifier

GXLHXEC_TOK_END_CDATA 0 - - none
GXLHXEC_TOK_END_ELEM 0 - - none

Chapter 4. Parsing XML documents 41

Table 21. Field values by record type (continued)

Record type

Record
form

Contains
StringIDs

Value
number]

Value
description

GXLHXEC_TOK_END_ELEM (only used
when GXLHXEC_FEAT_FULL_END feature
is enabled)

3

No

1

length and
value of Lname

length and
value of
namespace URI

length and
value of
namespace
prefix

GXLHXEC_TOK_END_ELEM (only used
when GXLHXEC_FEAT_FULL_END feature
is enabled)

Yes

StringID of
Lname

StringID of
namespace URI

StringID of
namespace
prefix

GXLHXEC_TOK_ERROR

N/A

N/A

GXLHXEC_TOK_NS_DECL

length and
value of
namespace
prefix

length and
value of
namespace URI

GXLHXEC_TOK_NS_DECL

Yes

StringID of
namespace
prefix

StringID of
namespace URI

GXLHXEC_TOK_PI

length and
value of PI
target

length and
value of PI text

GXLHXEC_TOK_ROOT_ELEMENT

length and
value of
namespace

length and
value of Lname

GXLHXEC_TOK_ROOT_ELEMENT

Yes

StringID of
namespace

StringID of
Lname

z/0S V2R1.0 XML User's Guide and Reference

Table 21. Field values by record type (continued)

Record type

Record
form

Contains
StringIDs

Value
number]

Value
description

GXLHXEC_TOK_SCHEMA_LOCATION

2

No

1

length and
value of
namespace URI

length and
value of schema
URI

GXLHXEC_TOK_SCHEMA_LOCATION

Yes

StringID of
namespace URI

none

GXLHXEC_TOK_START_CDATA

none

GXLHXEC_TOK_START_ELEM

length and
value of Lname

length and
value of
namespace URI

length and
value of
namespace
prefix

GXLHXEC_TOK_START_ELEM

Yes

StringID of
Lname

StringID of
namespace URI

StringID of
namespace
prefix

GXLHXEC_TOK_UNRESOLVED_REF

length and
value of entity
name

GXLHXEC_TOK_WHITESPACE

length and
value of a white
space string

GXLHXEC_TOK_XML_DECL

length and
value for
version

length and
value for
encoding

length and
value for
standalone

The above token names are for the C/C++ callers. Assembler callers use token

names without the "GXLH" prefix.

Chapter 4. Parsing XML documents 43

Spanning buffers

44

The z/OS XML parser is built to handle documents that may be larger than any
single buffer the caller can pass to the z/OS XML parser. When buffers need to be
spanned (because either the text in the input buffer is consumed, or the parsed
data stream fills the output buffer), the z/OS XML parser returns a conditional
success return code (XRC_WARNING), and a reason code that indicates which
buffer caused the spanning condition. The caller then should handle the spanning
buffer, and can optionally manage the other buffer as well.

For example, if the z/OS XML parser indicates that the output buffer is full on a
return to the caller after saving and refreshing the output buffer pointers, the caller
may choose to refill the input buffer with more text to parse before calling the
parse service again to continue the parse process. This will require either moving
the unparsed text to the front of the current input buffer, or to a new input buffer,
and filling in the remainder with more unparsed text. In this way, the caller
potentially reduces the number of times the z/OS XML parser has to return to the
caller because of a spanned buffer during the parse of a document.

The z/0OS XML parser will advance the input and output pointers to the byte after
the last byte that the parser processed in each buffer. Similarly, it will update the
bytes_left parameters to indicate the number of unprocessed or unused bytes in
each buffer. The caller must use the reason code returned from the z/OS XML
parser to tell which buffer must be handled and which buffer may optionally be
handled. The caller cannot rely on either the address values or the bytes_left values
to tell which buffer has spanned.

Splitting records

When building the parsed data stream in the output buffer, the z/OS XML parser
will always ensure that all records are fully formed. Since some records represent
items from the document that may be very long (for example, CDATA, white
space, or comments), certain types of records are deemed to be splittable. In these
cases, the z/OS XML parser will always ensure that the header for the split record
is complete, but the value(s) in the record will only contain a part of the item
being parsed. A flag in the record header will be set to indicate that the record is
continued.

Note: In fragment parsing mode, the flag is set to 'OFF' on a continued character
data record when CDATA is outside an element tag (start and end tag). However,
if CDATA is inside an element that splits, the continuation flag will still be 'ON'".
Split records may span several output buffers if they are very long, or if the output
buffers are relatively short.

Records that represent items of fixed length or that contain multiple values are
mostly deemed to be non-splittable. If there is no room in the current output buffer
to hold them, the entire record will be placed in the next output buffer. These
records represent things like start element tags, attribute names, namespace
declarations, or end element tags.

Note: The one exception to this rule are processing instructions (PIs). Because the
text associated with PIs can be arbitrarily long, they are permitted to split.

If the z/OS XML parser determines that an output buffer is spanned, and requests
another buffer to continue processing, the caller needs to return a new buffer large
enough to contain a minimum set of complete data. If the item that needs to be

z/0S V2R1.0 XML User's Guide and Reference

placed at the beginning of this new buffer is a non-splittable record that doesn't fit,
the z/OS XML parser will return with a return code of XRC_FAILURE, and a
reason code of XRSN_BUFFER_OUTBUF_SMALL.

The z/OS XML parser generally does not split records unless there is a need to -
for example, to fit into a given output buffer. However, the decision to split a
record depends on many factors. There are instances where the z/OS XML parser
will split records of the same type within the same buffer, and this is normal. This
is particularly true for XDBX streams, where the z/OS XML parser generates
records based on the stream of XDBX tags presented by the builder of the stream.
One should not expect, for instance, that the stream of z/OS XML records
generated for a given text document will have records split in the same way as for
an XDBX stream representing the same document.

The following table shows which record types can be split:
Table 22. Splittable record types

Record type Splittable?
GXLHXEC_TOK_ATTR_NAME No
GXLHXEC_TOK_ATTR_VALUE Yes
GXLHXEC_TOK_AUX_INFO No
GXLHXEC_TOK_BUFFER_INFO No
GXLHXEC_TOK_COMMENT Yes
GXLHXEC_TOK_CHAR_DATA Yes
GXLHXEC_TOK_END_CDATA No
GXLHXEC_TOK_END_ELEM No
GXLHXEC_TOK_ERROR No
GXLHXEC_TOK_DTD_DATA No
GXLHXEC_TOK_NS_DECL No
GXLHXEC_TOK_PI Yes
GXLHXEC_TOK_ROOT_ELEMENT No
GXLHXEC_TOK_SCHEMA_LOCATION No
GXLHXEC_TOK_START_CDATA No
GXLHXEC_TOK_START_ELEM No
GXLHXEC_TOK_UNRESOLVED_REF No
GXLHXEC_TOK_WHITESPACE Yes
GXLHXEC_TOK_XML_DECL No

The above token names are for the C/C++ callers. Assembler callers use token
names without the "GXLH" prefix.

Splitting multibyte characters

When a caller segments an input stream for passing to the z/OS XML parser in
several parts, the possibility exists that the end of an input buffer falls in the
middle of a multibyte character. When this happens, the z/OS XML parser will
detect the partial character, and buffer up any bytes for that character from the
current buffer before returning to the caller for more input. When the next buffer
of input arrives, the z/OS XML parser will virtually prefix the saved bytes of the
split character to the beginning of the new buffer, and continue processing. This

Chapter 4. Parsing XML documents 45

relieves the caller from having to ensure that multibyte characters at the end of a
buffer are complete before calling the z/OS XML parser.

Processing DTDs

z/0S XML System Services will handle internal DTDs for the purpose of
processing entity declarations and default attribute value definitions. It only
processes entity declarations and default attribute values from the internal DTD.
Processing instructions that fall within the internal DTD will be returned to the
caller, but no other text from the DTD will be processed. The z/OS XML parser
will return a DTD record in the parsed data stream that contains the name of the
root element, plus the system and public literals that make up the identifier of any
external subset. The content of the internal subset is not returned to the caller.

Resolving entity references

Entities declared in the internal DTD will have all references to them in the root
element resolved. These references will have the text from the entity declaration
substituted for the reference, and there will be no other indications made in the
parsed data stream that an entity reference was present in the parsed document.

Unresolved entities are references to entity names that have no declaration in the
internal DTD. Unresolved entities in the root element are tolerated if there is an
external subset (standalone="no" in the XML declaration). In this case, if the
XEAR_ENTREF_STOP_UNRESOLVED control option is not set, a record of type
XEC_TOK_UNRESOLVED_REF is generated in the parsed data stream, with the
associated value being the name of the entity. Also in this case, if the
XEAR_ENTREF_STOP_UNRESOLVED control option is set, the parse stops and
this condition is flagged as an error. When the document only has an internal
subset (standalone="yes"), all unresolved entities are flagged as errors.

Non-representable characters

By default, when a character reference which cannot be represented in the current
code page is encountered, the z/OS XML parser places a dash (“-”) in the output
stream for that character. The caller may use the XEC_CTL_ENTS_AND_REFS
control call to specify that a different character appear in the output stream. The
caller may also request by way of this control call that an additional output record
be placed in the output stream with more information on the character reference.

Namespace declarations

46

Namespace declaration records are placed in the parsed data stream between the
start and end element records for the elements that contain them. This is different
than in SAX-like environments where the namespace declaration events precede
the start element event for a given element.

Only the namespaces that have been declared within an element, including the
default namespace, will have entries in the parsed data stream for that element.
The caller may construct the complete namespace context for an element by
keeping a stack of namespace declarations as they are encountered in the parsed
data stream. Default namespaces will have URI values, but no associated prefix.
When a default namespace is unset, it is represented in the parsed data stream as a
namespace declaration record with no URI or prefix.

z/0S V2R1.0 XML User's Guide and Reference

Note: The z/OS XML parser is an XML compliant namespace parser only, and not
an XML non-namespace parser. Because of this, if the z/OS XML parser parses a
document compliant with the XML non-namespace standard, it can attribute
namespace characteristics to an element that is not intended to contain
namespaces. This is because non-namespace documents can have a ":" in an
element structure that does not actually indicate a namespace. Thus, if
non-namespace documents are being parsed, the resulting parsed data stream may
not match the expected parsed data stream or the parser may flag the document as
erroneous.

Using the z/OS XML parser in a multithreaded environment

The z/OS XML parser can be called from multiple work units (threads/tasks or
SRBs) to parse multiple documents at the same time, provided that each parse
utilizes a unique Parse Instance Memory Area (PIMA). Multiple work units must
not utilize the same PIMA simultaneously, or the z/OS XML parser will behave
unpredictably. As long as the caller has a separate PIMA that has been initialized
by the z/OS XML parser for each document being processed, multiple documents
can be handled simultaneously. A caller may choose to preallocate a pool of PIMAs
to be used for parse requests. It is the responsibility of the caller to allocate the
PIMA in a subpool that will not be cleaned up while the PIMA is in use. Subpools
tied to the job step task are recommended.

Parsing XDBX input streams

Extensible Dynamic Binary XML (XDBX) is a binary XML form composed of both
numeric and string data. The numeric data is used for several purposes, including
identifying the semantic purpose and length of each associated string in the
stream. See [http:/ /www.ibm.com /support/docview.wss?&uid=swg27019354| for
more information about the format of XDBX streams.

XDBX can be passed to z/OS XML and parsed with validation to create a z/OS
XML record stream, in the same way that regular XML text documents are
handled. See the appropriate parser API section for details about how to initialize
and control a parse instance for XDBX streams. Once the parse instance is
initialized and configured, parsing proceeds in the same way as for regular XML
text input. Non-validating parse requests are not supported for XDBX streams.

Although the API is called the same way for both XML text and XDBX input
streams, there are important differences in the way the parser handles each type of
input. More precisely, there is no need for z/OS XML to perform certain low level
parsing functions on XDBX streams. Key among these is the need for a low-level
scan of the input stream. XDBX streams already have tag fields that describe the
meaning of each string and length fields that delimit the strings' boundaries. The
z/0OS XML parser gains a performance advantage over the validation of XML text
input by using the information already provided in the XDBX form.

z/0OS XML does not re-scan each string of text from an XDBX stream.
Consequently, the no-escapes bit setting is determined entirely from the tag used to
represent a given string. This is important for the 'U' (text), 'b' (attribute), and 'W'
(whitespace) tags in the XDBX stream. If the XDBX stream creator associated these
tags with strings that do in fact contain characters that need to be escaped on
serialization of the stream, z/OS XML will not catch this, and will set the
XEH_NO_ESCAPES bit in the record header for any associated records generated
during validation. Similarly, if a "T" (text), 'y’ (attribute) or a 'C' (CDATA) tag is
used when the associated string has no characters that require escaping for

Chapter 4. Parsing XML documents 47

http://www.ibm.com/support/docview.wss?&uid=swg27019354

48

serialization, the XEH_NO_ESCAPES flag will be off. This is true even when
values are defaulted from the DTD or schema during the validation process.

Another difference from XML text input is that XDBX streams are required to have
all entity references resolved. For this reason, none of the z/OS XML functionality
implemented for managing unresolved entities is relevant for XDBX input. See the
descriptions of the control APIs for more information about how character and
entity references are handled for XDBX streams.

Every XDBX stream begins with a magic number (0XCA3B), and is encoded in
big-endian form. There is no need for a byte-order-mark, and the parse request will
fail if one is present in the XDBX stream.

The following usage notes apply to parsing XDBX streams:

* XDBX input streams may be passed to z/OS XML for parsing with validation
when the GXLHXEC_FEAT_XDBX_INPUT feature is enabled. Attempts to
initialize a parse instance for an XDBX input stream without validation will
result in a failure.

* Validation is performed using an Optimized Schema Representation (OSR) in the
same way as for conventional XML text input. The output of the parser is a
conventional z/OS XML record stream.

» XDBX input streams contain a combination of binary information and UTF-8 text
strings, meaning that the CCSID specified at parser initialization must always be
UTE-8.

¢ Certain other parser features are not currently supported in combination with
XDBX streams:

- GXLHXEC_FEAT_SCHEMA_DISCOVERY

— GXLHXEC_FEAT_SRC_OFFSETS

In addition, some control operations are not allowed when the parser is
initialized to handle XDBX streams. See the section describing the

[— perform a parser control function” on page 54pperation for details of those
functions that are not compatible with XDBX streams.

z/0S V2R1.0 XML User's Guide and Reference

Chapter 5. Additional usage considerations

This chapter provides additional usage information for the z/OS XML parser. The
following topics are discussed:

+ [“Recovery considerations”]

* |“Encoding support”

+ [“Managing memory resources” on page 50|

» |“Using return and reason codes” on page 51|

Recovery considerations

z/0S XML provides an ARR recovery routine. This recovery routine can be turned
on through an initialization option when invoked through the assembler API. For
callers of the C/C++ parse API (gxlpParse), when running in Language
Environment®, the ARR recovery routine is provided by default in most cases. For
more information on the ARR recovery routine, see [“ARR recovery routine” on|

Recovery can also be supplied by the caller. Callers who want to clean up z/OS
XML parser resources should invoke GXL1ITRM (GXL4TRM), the parser
termination service, either when the parse completes or if an unexpected error
occurs during the parse. The termination service will cause all secondary storage to
be freed. It is up to the caller to free the PIMA storage (see[“Managing memory|
fresources” on page 50| for more information).

Encoding support

z/0S XML System Services supports several code pages. The caller must supply
the CCSID of the encoding for the document at the time the z/OS XML parser is
initialized. For a complete listing of the supported code pages, see
[“Supported encodings,” on page 239] The following table lists more commonly

used code pages with their associated CCSID values, along with the equates
provided for the caller.

Table 23. Code page CCSID values

Code page CCSID Equate Names

UTE-8 1208 GXLHXEC_ENC_UTF_8
UTEF-16 (big endian) 1200 GXLHXEC_ENC_UTF_16
EBCDIC/IBM-037 37 GXLHXEC_ENC_IBM_037
EBCDIC/IBM-1047 1047 GXLHXEC_ENC_IBM_1047

Assembler callers use equate names without the "GXLH" prefix.

The query service can be used to query a document's XML declaration so that a
caller can determine if the document has to first be converted to one of the
supported encodings before parsing begins. This function will return a parsed
record for the XML declaration that contains, among other things, a Coded
Character Set IDentifier (CCSID) which can be passed to an encoding conversion
service, such as Unicode Services, to put the document in a form that the z/OS

© Copyright IBM Corp. 2006, 2013 49

XML parser can process. See the description for [‘gxlpQuery — query an XMI]
document” on page 80| or [“GXL1QXD (GXL4QXD) — query an XML document”|

on page 138| for more information.

EBCDIC encoding considerations

There are a couple of EBCDIC encoding considerations to deal with when trying to
parse an XML file on z/OS. The first involves the character set differences between
EBCDIC and Unicode. Because only a small number of Unicode characters can be
represented in EBCDIC, when an EBCDIC encoded XML document is parsed, any
Unicode character entity in the parsed document that does not have an EBCDIC
value is converted into a dash.

Note: The default for an non-representable character is a dash. This can be
overridden with a control call to XEC_CTL_ENTS_AND_REFS.

Secondly, if the EBCDIC XML document has been created or modified on a z/OS
system, then the line ending character is typically a NL (x'15') character. This is
commonly associated with the Unicode NEL character (x'85'). For EBCDIC code
page documents, the z/OS XML parser will accept XML 1.0 documents that have a
NL as a line termination character, and will normalize all line-endings to EBCDIC
NL (NEL). However, because these documents are non-compliant, they may not be
accepted by parsers on other platforms. In general, EBCDIC is not a portable
encoding so IBM does not recommend using EBCDIC for XML documents going
between platforms or on the Internet.

Note: For XML 1.1 documents, NL is legitimate and the z/OS XML parser is
compliant in processing it as such.

Managing memory resources

50

The z/OS XML parser processes a document using memory resources that are
provided by the caller. This storage is passed from caller to z/OS XML parser in
the form of a Parse Instance Memory Area (PIMA). This required data area is used
by the z/OS XML parser to suballocate a call stack, control blocks, and the tables
and trees that are used to hold assorted document-specific information for the
document being parsed. The environment created by the z/OS XML parser in this
memory area completely describes the context of a given document parse.

A memory allocation exit is supported by the z/OS XML parser so that the caller
can provide a pair of allocation/deallocation services. The allocation service will be
called by the z/OS XML parser in the event that a given document causes the
z/0OS XML parser to exhaust the PIMA. For performance reasons, it is best if the
PIMA provided by the invoker is large enough that this exit is not used. However,
the exit gives the z/OS XML parser a means to complete processing of a document
in the event that the memory area provided at initialization time is too small. This
exit is only used to extend the PIMA, and is not used in any way to manage input
or output buffers.

The deallocation service will be called by the z/OS XML parser to free the memory
extension created by the allocation service. The deallocation service will never free
the original PIMA storage.

For callers that do not provide a memory allocation exit, the z/OS XML parser
provides default routines to allocate and free memory. The z/OS XML parser also
provides an option at initialization time allowing the caller to specify how the

z/0S V2R1.0 XML User's Guide and Reference

z/0OS XML parser's default routine allocates memory. This feature should be
specified when PIMAs are used on multiple tasks, in order to prevent task
termination from causing storage extents to be freed before the z/OS XML parser
is done using them. Normally, z/OS XML parser will allocate memory at the task
level. However, when the feature is specified, the z/OS XML parser will allocate
memory at the Job Step Task (JST) level instead.

In both cases, the caller is assuming the responsibility to call GXLITRM
(GXL4TRM) in the event the z/OS XML parser abends and the caller's recovery
gets control.

When no memory allocation exit is provided, the subpool used will be as follows:

* If running in SRB or cross memory mode, subpool 129 will be used. This is JST
related and cannot be freed by unauthorized callers. The key will be the same as
the key at the time the z/OS XML parser is invoked.

* If running in task mode (PSATOLD not zero), with
PRIMARY=SECONDARY=HOME, then the subpool chosen will depend on the
authorization state of the caller and on the specification of the
XEC_FEAT_JST_OWNS_STORAGE feature on the GXL1INI (GXL4INI) call. If the
caller is running in key 0-7 or supervisor state, they will be considered
authorized.

— Authorized and JST requested — subpool 129
— Authorized and JST not requested — subpool 229
— Unauthorized and JST requested — subpool 131

— Unauthorized and JST not requested — subpool 0

Note: If running on a subtask which is sharing subpool 0, then this storage
will be owned by the task that owns subpool 0.

These choices of subpool will eliminate the possibility of the z/OS XML parser
running in an authorized state while using problem key storage which could be
freed and reallocated.

Using return and reason codes

The z/OS XML parser API services provide a return and reason code to indicate
the success or failure of the parse process. The return code is a fullword value that
indicates the class of the return status, and takes on one of the following values:

* Success (XRC_SUCCESS)

* Warning (XRC_WARNING) - parsing is successful, but incomplete. This is most
often caused by the z/OS XML parser reaching the end of either the input or the
output buffer.

¢ Failure (XRC_FAILURE) - a terminating failure has occurred. The return
information passed back in the parameters, such as the numbers of bytes left in
the input and output buffers, are valid. The extended diagnostic information
may also contain additional problem determination information that is of use.

¢ Not-well-formed (XRC_NOT_WELL_FORMED) - a terminating failure has
occurred because the input document is not well formed. As with the failure
case above, all return information passed back through the parameters and
extended diagnostic area is valid.

* Fatal (XRC_FATAL) - a terminating error has occurred. None of the return
information is valid.

Chapter 5. Additional usage considerations 51

52

* Not valid (XRC_NOT_VALID) - The document is not valid according to the
specified schema.

In addition to the return code describing the class of error, the reason code
provides more detail. The reason code is only valid when the return code is not
XRC_SUCCESS. When a service of the z/OS XML parser API returns
XRC_SUCCESS, the reason code may have any random value.

The reason code itself is a fullword value, but is made up of two halfwords. The
upper halfword is reserved for a module identifier that is used by IBM Service to
isolate the source of the problem, and the lower halfword indicates the reason why
the parse process was paused or terminated. When checking the value of the
reason code, the caller must be sure to AND the reason code with the reason code
mask (XRSN_REASON_MASK) before testing the value. The declaration of
XRSN_REASON_MASK and all of the defined reason code values are contained in
the GXLYXR macro. A list of the reason codes and their descriptions can be found
in|Appendix B, “Reason codes listed by value,” on page 161]

z/0S V2R1.0 XML User's Guide and Reference

Chapter 6. Z/OS XML parser API: C/C++

This chapter lists the C/C++ callable services interface used for the z/OS XML
parser.

Setting the XPLINK(ON) Language Environment runtime option

If the calling application is compiled without XPLINK and wants to use z/OS
XML System Services, the calling application must set the following option:

export CEE_RUNOPTS="XPLINK(ON)"

If this option is not set, an error will occur once the application is run.

For more information on the XPLINK compiler option, see [z/OS Language]
[Environment Programming Guide|

Support for the Metal C compiler option

Support is provided for callers who wish to use the Metal C compiler option. The
same APIs available to the standard C and C++ callers are also available to Metal
C users, with the following restrictions:

* All parameters must be variables.

¢ The functions do not return values.
Note: Return codes and reason codes are still returned through the parameter
lists.

For more information on how to use the Metal C compiler option, see Metal C
Run-time Library Guide and Reference.

Where to find the header files, DLLs and side decks

Header files for non-Metal C can be found in the z/OS UNIX directory
/usr/include. Header files for Metal C can be found in the z/OS UNIX directory
/usr/include/metal. If you are not using z/OS UNIX, then the non-Metal C
header files can be found in the PDSE SYS1.SIEAHDRV.H . There are no Metal C
header files for the batch environment.

DLLs for non-Metal C can be found in the z/OS UNIX directory /usr/1ib. If you
are not using z/OS UNIX, then the DLLs can be found in SYS1.SIEALNKE . There
are no DLLs for Metal C.

Side decks for non-Metal C can be found in /usr/1ib. If you are not using z/OS
UNIX, then the side decks can be found in SYS1.SIEASID. There are no side decks
for Metal C.

Using the recovery routine

z/0S XML provides an ARR recovery routine to assist with problem determination
and diagnostics. In the C/C++ environment, the recovery routine is provided as
the default setting in most cases and will recover the code and collect dumps for
most abends that occur during a parse. For unauthorized C/C++ callers, an

© Copyright IBM Corp. 2006, 2013 53

http://publibz.boulder.ibm.com/epubs/pdf/ceea21c0.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceea21c0.pdf

IEATDUMP will be taken in data set

userid GXLSCXML.DYYMMDD.THHMMSS.DUMP, where the userid is extracted
from the task level ACEE if present or the address space ACEE, and where
DYYMMDD is the date and THHMMSS is the time the dump was taken. For
authorized C/C++ callers, an SDUMPX will be taken into a system dump data set.
See [“ARR recovery routine” on page 158 for more information.

In order to effectively use the recovery routine, you must set the following runtime
option: TRAP(ON,NOSPIE). If this runtime option is not set, unpredictable
behavior may result with regard to recovery.

z/OS XML XL C/C++ API

gxipControl — perform a parser control function
Description

This is a general purpose service which provides control functions for interacting
with the z/OS XML parser. The function performed is selected by setting the
ctl_option parameter using the constants defined in gxlhxec.h . These functions
include:

GXLHXEC_CTL_FIN
The caller has finished parsing the document. Reset the necessary
structures so that the PIMA can be reused on a subsequent parse, and
return any useful information about the current parse. For more
information on this function, see|“GXLHXEC_CTL_FIN” on page 57)

GXLHXEC_CTL_FEAT
The caller wants to change the feature flags. A GXLHXEC_CTL_FIN
function will be done implicitly.

Note: Some feature flags are not supported on gxlpControl. See
[‘GXLHXEC_CTL_FEAT” on page 58|for a list of these feature flags.
For more information on this function, see [“GXLHXEC_CTL_FEAT” on|

GXLHXEC_CTL_LOAD_OSR
The caller wants to load and use an Optimized Schema Representation
(OSR) for a validating parse. For more information on this function, see
[‘GXLHXEC_CTL_LOAD_OSR” on page 60)

GXLHXEC_ CTL_QUERY_MIN_OUTBUF
The caller is requesting the minimum output buffer size required on a
subsequent parse. This function will also enable the parse to be continued
after a GXLHXRSN_BUFFER_OUTBUF_SMALL reason code has been
received from gxlpParse.

Note: Finish and reset processing is performed by all operations available
through this control service, except
GXLHXEC_CTL_QUERY_MIN_OUTBUF and
GXLHXEC_CTL_LOAD_OSR. See the descriptions of these operations
under ctl_operation for more information.

For more information on this function, see
[“GXLHXEC_CTL_QUERY_MIN_OUTBUE” on page 62

54 2/0S V2R1.0 XML User's Guide and Reference

gxipControl

GXLHXEC_CTL_ENTS_AND_REFS
The caller can request additional flexibility when processing character and
entity references as follows:

When an unresolved entity reference is encountered, the caller can
request that the parser stop processing and return an error record.

When a character reference which cannot be represented in the current
code page is encountered, z/OS XML System Services places a dash (-)
in the output stream for that character. The caller may specify, with this
control call, to output a character other than dash (-) in the output
stream.

When a character reference which cannot be represented in the current
code page is encountered, the caller can request, using this control call,
an additional output record to be generated in the output stream that
contains information about this character reference.

Note:

1.

Finish and reset processing is performed for this control operation. See
[“Usage notes” on page 116for more information.

If the parse instance has been initialized to process XDBX binary XML
streams, then the input stream will never have entity references to
resolve. Performing the GXLHXEC_CTL_ENTS_AND_REFS operation
will have no effect on the output of the parser. In order to prevent
accidental attempted use of this operation in this environment, the
parser will return a failure for this control request if the input is an
XDBX stream.

For more information on this function, see

FFGXLHXEC_CTL_ENTS_AND_REFS” on page 63]

GXLHXEC_CTL_LOAD_FRAG_CONTEXT
The caller wants to load fragment context including fragment path and
namespace binding information for document fragment parsing.

Note:

1.

This control operation does not perform finish and reset processing
through the control service. See the description in ctl_operation for
more information.

Fragment parsing is not supported for XDBX input. For this reason,

attempting to load a fragment context for parse instances initialized to
handle XDBX streams will fail.

For more information on this function, see

'GXLHXEC_CTL_LOAD_FRAG_CONTEXT” on page 64]

GXLHXEC_CTL_FRAGMENT_PARSE
The caller wants to enable or disable document fragment parsing.

Note:

1.

This control operation does not perform finish and reset processing
through the control service. See the description in ctl_operation for
more information.

Fragment parsing is not supported for XDBX input. For this reason,
attempting to enable document fragment parsing for parse instances
initialized to handle XDBX streams will fail.

Chapter 6. z/OS XML parser API: C/C++ 55

gxipControl

For more information on this function, see
[‘GXLHXEC_CTL_FRAGMENT_PARSE” on page 66.|

GXLHXEC_CTL_RESTRICT_ROOT
The caller wishes to restrict the root element name on the next parse. This
operation is only valid when the PIMA has been configured for validation
and schema information is requested. For more information on this

function, see[“GXLHXEC_CTL_RESTRICT_ROOT” on page 69|

GXLHXEC_CTL_ERROR_HANDLING
With this control operation, the caller can do the following for a validating
parse:

* Enable the creation of auxiliary records which can include the location of
an error in the XML document, the string which is in error, and also a
possible expected string.

* Enable position indexes to be present in the error location path in order
to facilitate locating the error.
For a non-validating parse, it can be used to:

* Enable the ability to continue parsing when an undefined prefix is
encountered on an element or attribute. The “prefix:local name” will be
treated as the local name.

* Request an auxiliary information record that contains the tolerated
return and reason codes and the error offset.

For more information on this function, see
[“'GXLHXEC_CTL_ERROR_HANDLING” on page 71|

Performance Implications

The finish-and-reset function allows the caller to re-initialize the PIMA to make it
ready to handle a new XML document. This re-initialization path enables the z/OS
XML parser to preserve its existing symbol table, and avoid other initialization
pathlength that's performed by calling the initialization service. The reset features
function also allows the caller to re-initialize the z/OS XML parser as above and
allows the feature flags to be reset as well.

Usage notes

This callable service is mapped to GXL1CTL (GXL4CTL). Refer tq“Usage notes” on|
of GXL1CTL (GXL4CTL) for usage information. For a list of properties
and resources reset by the control functions, see [‘Properties and resources reset byl
fcontrol functions.”|

Properties and resources reset by control functions

When the control functions are utilized by a caller (the GXL1CTL (GXL4CTL) API
is invoked), some of the z/OS XML parser properties and resources are reset while
others are not. The properties and resources reset and by which control functions
are shown in the following table. Properties and resources not reset by a particular
control function may need to be explicitly restored by a PAB copy.

Table 24. z/OS XML parser properties and resources reset by control functions

Properties and resources Control functions that reset
Loaded OSRs, XML fragment contexts, and None
allowable root names

56 z/0S V2R1.0 XML User's Guide and Reference

gxipControl

Table 24. z/OS XML parser properties and resources reset by control functions (continued)

Properties and resources Control functions that reset

The following control and initialization settings | XEC_CTL_FIN
(listed by features)
XEC_FEAT_STRIP_COMMENTS,
XEC_FEAT_TOKENIZE_WHITESPACE,
XEC_FEAT_CDATA_AS_CHARDATA,
XEC_FEAT_SOURCE_OFFSETS,
XEC_FEAT_FULL_END

Entity resources XEC_CTL_FIN

The following system level resources: recovery None
status, JST owns storage, z/OS XML System
Services exit routines

Parser types (validating and nonvalidating) None

Fragment mode XEC_CTL_FIN. XEC_CTL_FEAT,
XEC_CTL_LOAD_OSR,
XEC_CTL_ENTS_AND_REFS,
XEC_CTL_ERROR_HANDLING

Start of the XML document XEC_CTL_FIN. XEC_CTL_FEAT,
XEC_CTL_LOAD_OSR,
XEC_CTL_ENTS_AND_REFS,
XEC_CTL_ERROR_HANDLING

Error state XEC_CTL_FIN. XEC_CTL_FEAT,
XEC_CTL_LOAD_OSR,
XEC_CTL_ENTS_AND_REFS,
XEC_CTL_ERROR_HANDLING, XEC_
CTL_QUERY_MIN_OUTBUF (only
when RC=8, RSN=
XRSN_BUFFER_OUTBUF_SMALL)

gxlpControl features and functions

GXLHXEC_CTL_FIN
Description

This indicates that the caller wishes to end the current parse at the current position
in the XML document. The PIMA is re-initialized to allow it to be used on a new
parse request. To free up all resources associated with the parse instance, the caller
should use the termination service. If the caller issues this control operation after
document fragment parsing is enabled, then this control operation will disable
document fragment parsing and re-initialize the PIMA for a new parse request.
The loaded fragment context will remain in storage and become active when
fragment mode is enabled.

Syntax

int gxIpControl (void * PIMA,
int ctl_operation,
void * ctl_data_p,
int * rc_p,
int * rsn_p);

Chapter 6. z/OS XML parser API: C/C++ 57

GXLHXEC_CTL_FIN

58

Parameters

PIMA
Supplied parameter

Type: void *

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

ctl_operation
Supplied parameter

Type: int

The name of the parameter containing an integer value initialized to
GXLHXEC_CTL_FIN.

ctl_data_p
Supplied and returned parameter

Type: void *

The name of the parameter that contains the address where the service will
store the address of the diagnostic area, which is mapped by header file
gxlhxd.h . This provides additional information that can be used to debug
problems in data passed to the z/OS XML parser. The diagnostic area resides
within the PIMA, and will be overlaid on the next call to the z/OS XML
parser. If the caller does not wish receive diagnostic information, the NULL
value is used in place of the address of the diagnostic area.

rc_p
Returned parameter

Type: int*
The name of the area where the service stores the return code.

rsn_p
Returned parameter

Type: int*

The name of the area where the service stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Example

void *PIMA;

GXLHXD *ct1DiagArea = NULL;

void *CTL_dataArea = ctlDiagArea;

int TastRetVal, lastRC, TastRSN;

lastRetVal = gx1pControl(PIMA,
GXLHXEC_CTL_FIN,
&CTL_dataArea,
&lastRC,
&TastRSN);

GXLHXEC_CTL_FEAT
Description

This indicates that the caller wishes to re-initialize the z/OS XML parser, as with
the reset-and-finish function above, and in addition, that the caller wishes to reset
some of the feature flags used during the parse.

z/0S V2R1.0 XML User's Guide and Reference

GXLHXEC_CTL_FEAT

Note: The following feature flags are not supported by this service:

* GXLHXEC_FEAT_JST_OWNS_STORAGE

* GXLHXEC_FEAT_RECOVERY

* GXLHXEC_FEAT_VALIDATE

* GXLHXEC_FEAT_SCHEMA_DISCOVERY

* GXLHXEC_FEAT_XDBX_INPUT

Make sure that these feature flags are turned to the OFF state before calling this
service to set the feature flags. If these features need to be changed (for example, if

switching between validating and non-validating parses), the parse instance must
be terminated and re-initialized with the required feature settings.

Syntax

int gxIpControl (void * PIMA,
int ctl_operation,
void * ctl_data_p,
int * rc_p,
int * rsn_p);

Parameters

PIMA
Supplied parameter

Type: void *

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

ctl_operation
Supplied parameter

Type: int

The name of the parameter containing an integer value initialized to
GXLHXEC_CTL_FEAT.

ctl_data_p
Supplied and returned parameter

Type: void *
This parameter must contain the address of a fullword (doubleword), which is
mapped by header file gxlhxft.h. See|”gxlhxft.h (GXLYXFT) - mapping of the]

fcontrol feature input output area” on page 218|for more information on this
header file.

The GXLHXFT_FEAT_FLAGS parameter is an input parameter to the API and
contains the value of feature flags to be used in the subsequent parse. It is
defined as follows:

GXLHXEC_FEAT_STRIP_COMMENTS
This effectively strips comments from the document by not returning
any comments in the parsed data stream. Default: off.

GXLHXEC_FEAT_TOKENIZE_WHITESPACE
This sets the default token value for white space preceding markup in
the root element to an explicit white space value. Default: off — white
space is returned as character data.

Chapter 6. z/OS XML parser API: C/C++ 59

GXLHXEC_CTL_FEAT

GXLHXEC_FEAT_CDATA_AS_CHARDATA
This returns CDATA in records with a CHARDATA token type. The
content of these records may contain text that would normally have to
be escaped to avoid being handled as markup. Default: off.

GXLHXEC_FEAT_SOURCE_OFFSETS
This feature is used to include records in the parsed data stream which
contain offsets to the corresponding structures in the input document.
Default: off.

GXLHXEC_FEAT_FULL_END
This feature is used to expand the end tags to include the local name,
prefix and URI corresponding to the qname on the end tag. Default:
off.

If none of the features are required, pass the name of a fullword field
containing zero. Do not construct a parameter list with a zero pointer in it.

rc_p
Returned parameter

Type: int*
The name of the area where the service stores the return code.

rsn_p
Returned parameter

Type: int*

The name of the area where the service stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Example

void *PIMA;

int TastRetVal, lastRC, TastRSN;

GXLHXFT ft;

ft.XFT_FEAT_FLAGS=0;

void *pft = &ft;

TastRetVal = gx1pControl(PIMA,
GXLHXEC_CTL_FEAT,
&pft,
&lastRC,
&lastRSN);

GXLHXEC_CTL_LOAD_OSR
Description

This indicates that the caller wants to load and use a given Optimized Schema
Representation (OSR) during a validating parse. If the parse prior to invoking this
operation returned a GXLHXRSN_NEED_OSR, this operation will not perform
reset and finish processing.

Syntax

int gxIpControl (void * PIMA,
int ctl_operation,
void * ctl_data_p,
int * rc_p,
int * rsn_p);

60 z/0S V2R1.0 XML User's Guide and Reference

GXLHXEC_CTL_LOAD_OSR

Parameters

PIMA
Supplied parameter

Type: void *
The name of the Parse Instance Memory Area (PIMA) which has been

previously initialized with a call to the initialization service.

ctl_operation
Supplied parameter

Type: int

The name of the parameter containing an integer value initialized to
GXLHXEC_CTL_LOAD_OSR.

ctl_data_p
Supplied and returned parameter

Type: void *

This indicates that the caller wants to load and use a given Optimized Schema
Representation (OSR) during a validating parse. Once an OSR has been loaded,
it remains in use for all validating parse requests until a different OSR is
provided by calling this service again.

This parameter must contain the address of an area containing information
about the OSR to load. This area is mapped by gxlhxosr.h. See |”gxlhxosr.E|
[(GXLYXOSR) - mapping of the OSR control area” on page 218|for more
information on the structures in this header.

rc_p
Returned parameter

Type: int*

The name of the area where the service stores the return code.
rsn_p

Returned parameter

Type: int*

The name of the area where the service stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Example

void *PIMA;

GXLHXOSR *ct1Data;

int TastRetVal, TastRC, TastRSN;

TastRetVal = gx1pControl(PIMA,
GXLHXEC_CTL_LOAD_OSR,
(void *)&ctlData,
&lastRC,
&lastRSN);

Chapter 6. z/OS XML parser API: C/C++ 61

GXLHXEC_CTL_QUERY_MIN_OUTBUF

GXLHXEC_CTL_QUERY_MIN_OUTBUF
Description

This indicates that the caller is requesting the control service to return the
minimum output buffer size required for subsequent parse to complete without
returning an GXLHXRSN_BUFFER_OUTBUF_SMALL reason code. This value is
returned in the XD control block.

Syntax

int gx1pControl (void * PIMA,
int ctl_operation,
void * ctl_data_p,
int * rc_p,
int * rsn_p);

Parameters

PIMA
Supplied parameter

Type: void *

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

ctl_operation
Supplied parameter

Type: int

The name of the parameter containing an integer value initialized to
GXLHXEC_CTL_QUERY_MIN_OUTBUEFE.

ctl_data_p
Supplied and returned parameter

Type: void *

This parameter must contain the address of a fullword (doubleword) where the
service will store the address of the diagnostic area, which is mapped by
header file gxlhxd.h. The field XD_MIN_OB contains the minimum output
buffer size required on the next parse. If some failure other than
GXLHXRSN_BUFFER_OUTBUF_SMALL occurred prior to this call,
GXLHXRSN_CTL_SEQUENCE_INCORRECT will be returned. The XD area
will not be returned.

The diagnostic area resides within the PIMA, and will be overlaid on the next
call to the z/OS XML parser.

rc_p
Returned parameter

Type: int*
The name of the area where the service stores the return code.

rsn_p
Returned parameter

Type: int*

The name of the area where the service stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

62 z/0S V2R1.0 XML User's Guide and Reference

GXLHXEC_CTL_ENTS_AND_REFS

All parameters in the parameter list are required.

GXLHXEC_CTL_ENTS_AND_REFS
Description

This indicates that the caller is requesting additional flexibility when processing
character or entity references. When this option is specified, the ctl_data_p
parameter must also be utilized to specify the specific enhancement being
requested. See the ctl_data_p section below for more information.

Syntax

int gxIpControl (void * PIMA,
int ctl_operation,
void * ctl_data_p,
int * rc_p,
int * rsn_p);

Parameters

PIMA
Supplied parameter

Type: void *

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

ctl_operation
Supplied parameter

Type: int

The name of the parameter containing an integer value initialized to
GXLHXEC_CTL_ENTS_AND_REFS.

ctl_data_p
Supplied and returned parameter

Type: void *

This parameter must contain the address of an area that contains information
about what reference operations are to be processed. This area is mapped by
the XEAR data structure in file gxlhctLh.

rc_p
Returned parameter

Type: int*
The name of the area where the service stores the return code.

rsn_p
Returned parameter

Type: int*

The name of the area where the service stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Chapter 6. z/OS XML parser API: C/C++ 63

GXLHXEC_CTL_ENTS_AND_REFS

64

Example

void *PIMA;

GXLHXEAR ear;

ear.XEAR_VERSION=1;

void *CTL _ear_p = &ear;

int TastRetVal, lastRC, TastRSN;

lastRetVal = gx1pControl(PIMA,
GXLHXEC_CTL_ENTS_AND_REFS,
&CTL_ear_p,
&lastRC,
&TastRSN);

GXLHXEC_CTL_LOAD_FRAG_CONTEXT
Description

This indicates that the caller wants to load fragment context into the z/OS XML
parser. This service allows the caller to load namespace binding information and
fragment paths for document fragment parsing. Namespace binding information is
optional. Fragment path is required . This service must be issued prior to a
GXLHXEC_CTL_FRAGMENT_PARSE control operation that enables document
fragment parsing. If fragment context is already loaded from a prior
GXLHXEC_CTL_LOAD_FRAG_CONTEXT control operation and this service is
called again, the new fragment context will overlay the previously loaded context.
This control operation will not cause finish/reset processing to take place.

Syntax

int gx1pControl (void * PIMA,
int ctl_operation,
void * ctl_data_p,
int * rc_p,
int * rsn_p);

Parameters

PIMA
Supplied parameter
Type: void *

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

ctl_operation
Supplied parameter

Type: int
The name of the parameter containing an integer value initialized to

GXLHXEC_CTL_LOAD_FRAG_CONTEXT.

ctl_data_p
Supplied and returned parameter

Type: void *

This parameter must contain a pointer to where the service will locate the
address of the document fragment context structure, which is mapped by the
header gxlhctl.h. The name of the data structure is GXLHXFC. This structure
allows the caller to provide the fragment path and namespace binding
information to assist document fragment parsing.

z/0S V2R1.0 XML User's Guide and Reference

GXLHXEC_CTL_LOAD_FRAG_CONTEXT

To validate an element during document fragment parsing, the fragment path
represents the path from the root element of the complete document to the root
element of the fragment, which consists of prefixes and localnames. To validate
an attribute during fragment parsing, the fragment path represents the path
from the root element of the complete document to the desired attribute name.
The fragment path is required in order to perform validation in fragment
parsing.

The fragment path syntax is defined below:

FragmentPath ::= ('/' ElementName)* FragmentData
FragmentData ::= '/' ElementName ('/@' AttributeName)?
ETementName ::= QName

AttributeName ::= QName

Namespaces bindings allow unique strings of text that identify a given space
of names to be represented by a prefix. This allows references to elements with
the same name to be differentiated, based on the namespace to which they
belong. These bindings may not be present in the document fragment, and
often these bindings exist in the ancestor elements” start tag that is not part of
the document fragment. The caller can provide a complete context containing
multiple namespace bindings in the GXLHXFC structure. The namespace
binding is optional information.

However, if there is an XML instance document that uses a default namespace,
the caller must still specify a prefix on the element names in the fragment
path. The caller must also specify this prefix along with the namespace URI in
the namespace binding information. The actual prefix does not matter; only the
namespace URI matters, but the prefix will associate each element in the
fragment path with the correct namespace.

Note:

1. All the strings for fragment path and namespace binding passed into the
GXLHXEC_CTL_LOAD_FRAG_CONTEXT control call needs to be in the
encoding of the z/OS XML parser configured at initialization time.

2. If the caller disables document fragment parsing, the namespace contexts
loaded through the GXLHXEC_CTL_LOAD_FRAG_CONTEXT control call
will be removed and will not be available during the non-fragment parsing
mode.

3. When the caller issues a GXLHXEC_CTL_LOAD_FRAG_CONTEXT control
call to load namespace contexts, the namespace contexts will be available
when the z/OS XML parser switches into fragment parsing mode. The
namespace contexts will only get unloaded and replaced if the caller
terminates the parser or issues GXLHXEC_CTL_LOAD_FRAG_CONTEXT
control call again to load new namespace contexts.

rc_p
Returned parameter

Type: int*
The name of the area where the service stores the return code.

rsn_p
Returned parameter

Type: int*

The name of the area where the service stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

Chapter 6. z/OS XML parser API: C/C++ 65

GXLHXEC_CTL_LOAD_FRAG_CONTEXT

All parameters in the parameter list are required.

Example

PIMA;

fragContext;

void * fragParse;

void * ctl_data_p;

int * option_flags;

void * fragbuf; int fragbuf_ Tleft;
void * outbuf; int outbuf_left;
GXLHXFP xfp;

GXLHXFC xfc;

GXLHXFC_ENTRY xfc_entry[1];

char * nspfx_str; char * nsuri_str;
char * fragPath;

int rc, rsn;

/* Perform necessary setup */

void
void

EE

nspfx_str = "ibm";
nsuri_str = "http://w3.ibm.com";
fragPath = "/ibm:root/ibm:person";

/* Perform a reset */
gxTpControl (PIMA,
GXLHXEC_CTL_FIN,
&ctl1_data_p,
rc,
rsn);
/* setup the GXLHXFC structure with namespace binding information */
memset (&xfc,0,sizeof (GXLHXFC));
xfc.XFC_ENTRY_NSCOUNT = 1;

xfc_entry[0] .XFC_ENTRY_NSPFX_LEN = strlen(nspfx_str);

xfc_entry[0] .XFC_ENTRY_NSPFX_PTR = nspfx_str;
xfc_entry[0] .XFC_ENTRY_NSURI LEN = strlen(nsuri_str);
xfc_entry[0] .XFC_ENTRY_NSURI_PTR = nsuri_str;
xfc.XFC_ENTRY_NS_PTR = &xfc_entry
xfc.XFC_FRAGPATH_PTR = fragPath;

xfc.XFC_FRAGPATH_LEN = strlen(fragPath);

fragContext = (voidx)&xfc
/* initialize the GXLHXFP structure with zero and set the enable flag */
memset (&xfp,0,sizeof (GXLHXFP));
xfp.XFP_FLAGS = XFP_FLAGS_FRAGMENT_MODE;
fragParse = (void«*)&xfp
/* Load the fragment parsing contexts */
gx1pControl (PIMA,
GXLHXEC_CTL_LOAD_FRAG_CONTEXT,
&fragContext,
rc,
rsn);

GXLHXEC_CTL_FRAGMENT_PARSE
Description

This indicates that the caller wants to either enable or disable document fragment
parsing. This service will decide whether to enable or disable document fragment
parsing based on the XFP_FLAGS_FRAGMENT_MODE bit set in the ctl_data_p
parameter. Document fragment parsing is disabled by default. This control
operation will not cause finish/reset processing to take place. If the caller wants to
parse a new complete XML document, a GXLHXEC_CTL_FIN control operation
must be called prior to a new parse request. If any error with return code greater
than 4 has occurred during document fragment parsing, a GXLHXEC_CTL_FIN
control operation must be issued in order to resume parsing. Calling the
GXLHXEC_CTL_FIN control operation will disable the document fragment parsing
and unload all fragment contexts.

66 z/0S V2R1.0 XML User's Guide and Reference

GXLHXEC_CTL_FRAGMENT_PARSE

Note:

1.

Document fragment parsing can only be enabled once before disabling.
Likewise, document fragment parsing can only be disabled once before
enabling.

2. If the caller disables document fragment parsing, the parse will end and the
caller is allowed to parse a new document.
Syntax

int gxIpControl (void * PIMA,

int ctl_operation,
void * ctl_data_p,
int * rc_p,

int * rsn_p);

Parameters
PIMA

Supplied parameter
Type: void *

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

ctl_operation

Supplied parameter
Type: int

The name of the parameter containing an integer value initialized to
GXLHXEC_CTL_FRAGMENT_PARSE.

ctl_data_p

Supplied and returned parameter
Type: void *

This parameter must contain a pointer to where the service will locate the
address of the document fragment parsing structure, which is mapped by the
header gxlhctl.h. The name of the data structure is GXLHXFP. This structure
allows the caller to specify whether to enable or disable document fragment
parsing through the XFP_FLAGS_FRAGMENT_MODE bit set in the
XFP_FLAGS field. Document fragment parsing is disabled by default.

The XFP_XD_PTR is where the service will store the address of the diagnostic
area, which is mapped by macro GXLYXD. This provides additional
information that can be used to debug problems in data passed to the z/OS
XML parser. The diagnostic area resides within the PIMA, and will be overlaid
on the next call to the z/OS XML parser.

Tips:

¢ To enable document fragment parsing, set the
XFP_FLAGS_FRAGMENT_MODE bit to on.

¢ To disable document fragment parsing, set the
XFP_FLAGS_FRAGMENT_MODE bit to off.

Note:

Chapter 6. z/OS XML parser API: C/C++ 67

GXLHXEC_CTL_FRAGMENT_PARSE

1. When the caller validates an attribute during fragment parsing, the
document fragment passed to the parser should contain only the desired
attribute’s value.

2. When the caller re-enables document fragment parsing after it has been
disabled, and without calling load fragment context again, the previous
loaded fragment context will be utilized in this new fragment parse. This
includes the fragment path and any namespace binding information.

3. The OSR must be loaded by way of the XEC_CTL_LOAD_OSR control call
prior to enabling fragment parsing.

rc_p
Returned parameter

Type: int*
The name of the area where the service stores the return code.

rsn_p
Returned parameter

Type: int*

The name of the area where the service stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Example

PIMA
fragContext;
void * fragParse;
void * ctl_data_p;
int * option_flags;
void * fragbuf; int fragbuf_left;
void * outbuf; int outbuf left;
GXLHXFP xfp;
GXLHXFC xfc;
GXLHXFC_ENTRY xfc_entry[1];
char * nspfx_str; char * nsuri_str;
char * fragPath;
int rc, rsn;
/* Perform necessary setup */
nspfx_str = "ibm";
nsuri_str = "http://w3.ibm.com";
fragPath = "/ibm:root/ibm:person";
/* Perform a reset */
gxTpControl (PIMA,
GXLHXEC_CTL_FIN,
&ct1 _data_p,
rc,
rsn);
/* setup the GXLHXFC structure with namespace binding information */
memset (&xfc,0,sizeof (GXLHXFC));
xfc.XFC_ENTRY_NSCOUNT = 1;
xfc_entry[0] .XFC_ENTRY_NSPFX_LEN

void
void

* ok kX

strien(nspfx_str);

xfc_entry[0] .XFC_ENTRY_NSPFX_PTR = nspfx_str;
xfc_entry[0] .XFC_ENTRY_NSURI_LEN = strlen(nsuri_str);
xfc_entry[0] .XFC_ENTRY_NSURI_PTR = nsuri_str;
xfc.XFC_ENTRY_NS_PTR = &xfc_entry
xfc.XFC_FRAGPATH_PTR = fragPath;

xfc.XFC_FRAGPATH_LEN = strlen(fragPath);

fragContext = (void*)&xfc

/* initialize the GXLHXFP structure with zero and set the enable flag */
memset (&xfp,0,sizeof (GXLHXFP));

68 z/0S V2R1.0 XML User's Guide and Reference

GXLHXEC_CTL_FRAGMENT_PARSE

xfp.XFP_FLAGS = XFP_FLAGS_FRAGMENT_MODE;
fragParse = (void*)&xfp
/* Load the fragment parsing contexts */
gxTpControl (PIMA,
GXLHXEC_CTL_LOAD_FRAG_CONTEXT,
&fragContext,
rc,
rsn);
/* Note: the OSR must be Toaded at this point */
/* Enable document fragment parsing =*/
gxTpControl (PIMA,
GXLHXEC_CTL_FRAGMENT_PARSE,
&fragParse,
&rc,
&rsn);
/* Parse the desired document fragments */
gxTpParse(PIMA,
option_flags,
&fragbuf,
&fragbuf_left,
&outbuf,
&outbuf_left,
&rc,
&rsn);
/* Disable document fragment parsing */
xfp.XFP_FLAGS = 03
gxTpControl (PIMA,
GXLHXEC_CTL_FRAGMENT_PARSE,
&fragParse,
&rc,
&rsn);

GXLHXEC_CTL_RESTRICT_ROOT
Description

This operation indicates that the caller wishes to restrict the root element name on
the next parse. If the root element name is not any of those listed in the GXLHXRR

data area, this call will cause the parse to stop. This operation will reset the PIMA.

Syntax

int gxIpControl (void * PIMA,
int ctl_operation,
void * ctl_data_p,
int = rc_p,
int * rsn_p);

Parameters

PIMA
Supplied parameter

Type: void *

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

ctl_operation
Supplied parameter

Type: int
The name of the parameter containing an integer value initialized to

GXLHXEC_CTL_RESTRICT_ROOT.

Chapter 6. z/OS XML parser API: C/C++ 69

GXLHXEC_CTL_RESTRICT_ROOT

70

ctl_data_p
Supplied and returned parameter

Type: void *

This parameter contains the address of an area with information about the
restricted root element. This area is mapped by the header file gxlhxrr.h. This
provides a list of names that must contain the name of the root element in
order for the validating parse to succeed.

rc_p
Returned parameter

Type: int*
The name of the area where the service stores the return code.

rsn_p
Returned parameter

Type: int*

The name of the area where the service stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Example

void PIMA;
void * ctl_data_p;
void * rootTable;
void * inbuf; int inbuf_Tleft;
void * outbuf; int outbuf left;
GXLHXRR_ENTRY =*entry;
int * option_flags;
GXLHXRR xrr;
char * root_str; char * rootnsuri_str;
int rc, rsn;
/* Perform necessary setup */
root_str = "personal";
rootnsuri_str = "http://w3.ibm.com";
/* Perform a reset */
gxTpControl (PIMA,

GXLHXEC_CTL_FIN,

&ctl_data_p,

rc,

rsn);
/* setup the GXLHXRR structure with namespace binding information */
memset (&xrr,0,sizeof (GXLHXRR)) ;
xrr.XRR_ENTRY_COUNT = 1;
entry.XRR_ENTRY_ROOT_LEN = strlen(root_str);
entry .XRR_ENTRY_ROOT_PTR = root_str;
entry.XRR_ENTRY_NSURI_LEN = strlen(rootnsuri_str);
entry.XRR_ENTRY_NSURI_PTR = rootnsuri_str;
xrr.XRR_ENTRY = entry;
rootTable = (voidx)&xrr
/* Enable Root Restriction */
gxTpControl (PIMA,

GXLHXEC_CTL_RESTRICT_ROOT,

&rootTable,

rc,

rsn);
/* Parse the desired document fragments */
gxTpParse(PIMA,

option_flags,
&inbuf,

*
*
*
*

z/0S V2R1.0 XML User's Guide and Reference

GXLHXEC_CTL_RESTRICT_ROOT

&inbuf_left,
&outbuf,
&outbuf left,
&rc,
&rsn);
/* Disable document fragment parsing */
xrr.XRR_ENTRY_COUNT = 0;
gxTpControl (PIMA,
GXLHXEC_CTL_RESTRICT_ROOT,
&rootTable,
&rc,
&rsn);

GXLHXEC_CTL_ERROR_HANDLING
Description

With this control operation, the caller can do the following for a validating parse:

* Enable the creation of auxiliary records which can include the location of an
error in the XML document, the string which is in error, and also a possible
expected string.

* Enable position indexes to be present in the error location path in order to
facilitate locating the error.

For a non-validating parse, it can be used to:

* Enable the ability to continue parsing when an undefined prefix is encountered
on an element or attribute. The “prefix:local name” will be treated as the local
name.

* Request an auxiliary information record that contains the tolerated return and
reason codes and the error offset.

Syntax

int gxIpControl (void * PIMA,
int ctl_operation,
void * ctl_data_p,
int * rc_p,
int * rsn_p);

Parameters

PIMA
Supplied parameter

Type: void *

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

ctl_operation
Supplied parameter

Type: int

The name of the parameter containing an integer value initialized to
GXLHXEC_CTL_ERROR_HANDLING.

ctl_data_p
Supplied and returned parameter

Type: void *

Chapter 6. z/OS XML parser API: C/C++ 71

GXLHXEC_CTL_ERROR_HANDLING

72

This parameter contains the address of an area with information about the
error string. This is the XERR data structure which is mapped by GXLHERR in
the header file gxlhctLh.

rc_p

Returned parameter

Type: int*

The name of the area where the service stores the return code.
rsn_p

Returned parameter

Type: int*

The name of the area where the service stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

The enhanced error information for a validating parse is returned by way of the
XERR_XD_PTR and is where the service will store the address of the diagnostic
area, which is in gxlhxd.h file. The XD_LastOutput field is a pointer to the data
area containing these records. This data area is within the PIMA and is formatted
in the same manner as a normal output buffer.

The XEC_TOLERATED_ERROR auxiliary info record for a non-validating parse is
returned in the output buffer. In the event that source offset auxiliary records are
also being returned, this record will immediately follow those records for the
element or attribute in the output buffer.

In addition to enabling or disabling the enhanced error features, this control option
will perform a reset function. The following properties and resources will be reset
by this control option:

* Fragment mode (validating parse only)
* Start of the XML document
* Error state

gxlplnit — initialize the z/0S XML parser

Description

The gxlplnit callable service initializes the PIMA and records the addresses of the
caller's system service routines (if any). The PIMA storage is divided into the areas
that will be used by the z/OS XML parser to process the input buffer and produce
the parsed data stream.

Performance Implications

The initialization of structures used by the z/OS XML parser in the PIMA is only
done once per parse and is therefore unlikely to affect performance. The caller may
choose to reuse the PIMA after each parse to eliminate the overhead of storage
allocation and the page faults that occur when referencing new storage. In this
case, a control operation is required to reset the necessary fields in the PIMA
before parsing can continue. For more information on the control operation, see
[“exlpControl — perform a parser control function” on page 54/

z/0S V2R1.0 XML User's Guide and Reference

gxiplnit

Syntax

int gxIpInit (void * PIMA,
long PIMA_LEN,
int ccsid,
int feature_flags,
GXLHXSV sys_svc_vector,
void * sys_svc_parm,
int * rc_p,
int * rsn_p);

Parameters

PIMA
Pointer to Parse Instance Memory Area (PIMA).

Type: void *

PIMA_Len
Length of PIMA

Type: long

The name of an area containing the length of the Parse Instance Memory Area.
This service validates the length of this area against a minimum length value.
The minimum length of the PIMA depends on whether or not validation will
be performed during the parse:

¢ GXLHXEC_NVPARSE_MIN_PIMA_SIZE (non-validating)

* GXLHXEC_VPARSE_MIN_PIMA_SIZE (validating)

ccsid
Supplied parameter

Type: Integer

The Coded Character Set IDentifier (CCSID) that identifies the document’s
character set. The CCSID value in this parameter will override any character
set or encoding information contained in the XML declaration of the document.
A set of CCSID constants for supported encodings has been declared in
GXLYXEC. See|Appendix I, “Supported encodings,” on page 239 for a full list
of supported encodings.

feature_flags
Supplied parameter

Type: Integer

The name of the area that contains an integer value representing one or more

of the following z/OS XML parser features. OR these flags together as needed

to enable features. Choose any of the following:

¢ GXLHXEC_FEAT CDATA_AS_CHARDATA - return CDATA in records
with a CHARDATA token type. The content of these records may contain
text that would normally have to be escaped to avoid being handled as
markup.

¢ GXLHXEC_FEAT_FULL_END - expand the end tags to include the local
name, prefix and URI corresponding to the gqname on the end tag.

* GXLHXEC_FEAT_JST_OWNS_STORAGE - allocate storage as Job Step
Task (JST) related instead of task related. See the [‘Usage notes” on page 134
below for more information.

Chapter 6. z/OS XML parser API: C/C++ 73

gxliplnit

GXLHXEC_FEAT_RECOVERY - this option is used to turn on the recovery
routine.

Note: Because the recovery routine is automatically enabled for Language
Environment-C, this option is only meaningful when using the Metal C
compiler option.

GXLHXEC_FEAT_SOURCE_OFFSETS - include records in the parsed data
stream which contain offsets to the corresponding structures in the input
document.

GXLHXEC_FEAT_STRIP_COMMENTS - effectively strip comments from
the document by not returning any comments in the parsed data stream.
GXLHXEC_FEAT_TOKENIZE_WHITESPACE - set the default token value
for white space preceeding markup within the context of the root element to

an explicit white space value. Use this value in conjunction with the special
xml:space attribute to determine how such white space gets classified.

¢ GXLHXEC_FEAT_VALIDATE - perform validation while parsing. See

[“Usage notes” on page 134 for details of parsing with validation.

* GXLHXEC_FEAT_SCHEMA_DISCOVERY - report schema location

information and allow for an OSR to be loaded once the information has
been reported. GXLHXEC_FEAT_VALIDATE must also be enabled,
otherwise gxlpInit will return an error. See [“Usage notes” on page 79 for
more information on schema discovery. Default: off.

* GXLHXEC_FEAT_XDBX_INPUT - indicates that the data presented to z/OS

XML in the input buffer is in XDBX binary XML form, rather than
conventional text. This feature requires that GXLHXEC_FEAT_VALIDATE is
also set, and that the encoding specified in the CCSID parameter is UTF-8.
See [“Usage notes” on page 134 for more information on XDBX input
streams. Default: off.

Note: By using the values of off (zero), W3C XML compliant output is
generated. Turning on options GXLHXEC_FEAT_STRIP_COMMENTS and
GXLHXEC_FEAT_CDATA_AS_CHARDATA will cause the output to vary from
standard compliance.

If none of the features are required, pass the name of a fullword field
containing zero. Do not construct a parameter list with a zero pointer in it.

sys_svc_vector
Supplied parameter

Type: GXLHXSV

The name of a structure containing a count of entries that follow and then a
list of 31 (64) bit pointers to system service routines. The GXLHXSV member
XSV_COUNT must have a value of 0 if no services are provided. For more
details on usage, see [“Usage notes” on page 75] For more information on exit
I

chapter.

sys_svc_parm
Supplied parameter

outines, see the [Chapter 8, “z/OS XML System Services exit interface,” on|

Type: void *

The name of the area which is passed to all system service exits. This provides
for communication between the z/OS XML parser caller and its exit routines.
Specify the name of a location containing 0 if no parameter is required for
communication.

74 z/0S V2R1.0 XML User's Guide and Reference

gxiplnit

rc_p
Returned parameter

Type: int*
The name of the area where the service stores the return code.

rsn_p
Returned parameter

Type: int*

The name of the area where the service stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.
Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The
return and reason code are both also set as output parameters. The value of the
reason code is undefined when the return code has no associated reasons. Return
and reason codes are defined in the header file gxlhxrh (see[“gxlhxr.h (GXLYXR) 4
[defines the return codes and reason codes” on page 218). For reason code
descriptions, also see [Appendix B, “Reason codes listed by value,” on page 161)

Example

#include <stdlib.h>
#include <gxlhxec.h>

void * pima_p;
Tong pima_1;
GXLHXSV sysServiceVec;
int rc, rsn;

if (pima_p = malloc(GXLHXEC_MIN_PIMA SIZE))
{ /* pima malloc succeeded x/
pima_1 = GXLHXEC MIN_PIMA SIZE;
sysServiceVec.XSV_COUNT = 0;

gxIpInit(pima_p, pima_1,
GXLHXEC_ENC_UTF_8,
GXLHXEC_FEAT STRIP_COMMENTS,
sysServiceVec,
NULL,
&rc, &rsn);

} /* pima malloc succeeded */
Usage notes

System service exit routines cannot get control in the C/C++ environment. Instead,
they must be coded to the assembler interface.

Addresses passed in the system_service_vec parameter must point to the entry point
of the exit being supplied. To obtain the entry point address of a function in 31-bit
NOXPLINK DLL compiled module, refer to the FDCB structure in z/OS Language
Environment Vendor Interfaces, SA22-7568. Otherwise, taking the address of the
function will return the entry point address.

Chapter 6. z/OS XML parser API: C/C++ 75

gxliplnit

This callable service is a direct map to the callable service GXL1INI (GXLA4INI).
Refer to|“Usage notes” on page 134] of GXL1INI (GXLA4INI) for additional usage
information.

gxlpLoad — load a z/OS XML function
Description

Load a module that implements a z/OS XML function into storage.
Performance Implications
There are no performance implications.

Syntax

int gxlpLoad (int function_code,
void * function_data,
int * rc_p,
int * rsn_p)

Parameters

function_code
Supplied parameter

Type: int

This parameter identifies the z/OS XML function to load. It is the name of an
integer value representing the following function:

XEC_LOD_VPARSE
The validating parse function
See gxlhxec.h for the list of function code constants.

function_data
Returned parameter

Type: void *
Specify a word of zeroes for this parameter.

rc_p
Returned parameter

Type: int*
The name of the area where the service stores the return code.

rsn_p
Returned parameter

Type: int*

The name of the area where the service stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return and Reason Codes:

76 z/0S V2R1.0 XML User's Guide and Reference

gxipLoad

On return from a call to this service, register 15 will contain the return code. The
return and reason code are both also set as output parameters. The value of the
reason code is undefined when the return code has no associated reasons. Return
and reason codes are defined in the header file gxlhxr.h (see[”gxlhxr.h (GXLYXR) 4
(defines the return codes and reason codes” on page 218). For reason code
descriptions, also see|Appendix B, “Reason codes listed by value,” on page 161}

Example
None.
Usage notes

This load step is not required for performing non-validating parsing. This
operation is only required when using the validating parser. The caller does have
the option of loading the load module for the specified function without using this
service - either through the z/OS LOAD macro (assembler interface), or by putting
it in LPA or the extended LPA. Both the LOAD macro and calls to this service are
not allowed when running in an SRB. The use of either interface must be
performed in the task before entering SRB mode.

If the required z/OS XML function is made available, either by LOADing the
executable load module for it or putting the load module in LPA, this service is not
required. Documentation on the LOAD macro can be found in
[Programming: Assembler Services Reference, Volume 2|, and information on how to
load modules into LPA can be found in [z/OS Initialization and Tuning Guidel

The load module associated with the function is as follows:

Table 25. Load module for C/C++ parser

Function code Function performed Load module name
XEC_LOD_VPARSE Validating parser function GXLIMODV

There is no unload service to perform the converse of this function, and none of
the other z/OS XML System Services cause the z/OS XML parser to be unloaded.
The z/0OS XML parser load module will remain in the caller's address space even
if the parser is terminated or reset. If multiple parse requests are to be performed
in the same address space, make sure to load the z/OS XML parser only once,
regardless of whether those parse requests are performed using the same parse
instance (PIMA) or not.

gxlpParse — parse a buffer of XML text
Description

The gxlpParse callable service parses a buffer of XML text and places the result in
an output buffer.

Performance Implications

Ideal performance will be obtained when the PIMA is sufficiently large to contain
all the needed data structures, and the input and output buffers are large enough
to process the entire XML document. During the parsing process, the z/OS XML
parser constructs persistent information in the PIMA that can be reused within a
parse instance. If the caller is going to process multiple documents that contain

Chapter 6. z/OS XML parser API: C/C++ 77

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2A981/CCONTENTS?SHELF=IEA2BK80&DN=SA22-7607-13&DT=20080119082809
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2A981/CCONTENTS?SHELF=IEA2BK80&DN=SA22-7607-13&DT=20080119082809
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2E151/CCONTENTS?SHELF=IEA2BK80&DN=SA22-7591-06&DT=20080119071214

gxipParse

similar sets of symbols (namespaces and local element and attribute names in
particular), then reusing the PIMA will improve performance during the processing
of subsequent documents. If this behavior is not required, the PIMA should be
cleaned up by calling the termination service and reinitialized by calling the
initialization service before using the PIMA for another parse request.

Syntax

int gxlpParse(void * PIMA,
int = option_flags,
void ** input_buffer_addr,
long * input_buffer_bytes left,
void ** output_buffer_addr,
long * output_buffer_ bytes left,
int * rc_p,
int * rsn_p);

Parameters

PIMA
Supplied parameter

Type: void *

The name of the Parse Instance Memory Area (PIMA which has been
previously initialized with a call to the initialization service.

option_flags
Supplied parameter
Type: int*
This parameter must point to a word with the value 0.

input_buffer_addr
Supplied and returned parameter

Type: void **

The name of the area that contains the address of the buffer with the XML text
to parse. The z/OS XML parser updates this parameter to provide important
return information when control returns to the caller. See the[“Usage notes” on|

for details.

input_buffer_bytes_left
Supplied and returned parameter

Type: long *

The name of the area that contains the number of bytes in the input buffer that
have not yet been processed. The z/OS XML parser updates this parameter to
provide important return information when control returns to the caller. See
the [“Usage notes” on page 137 for details.

output_buffer_addr
Supplied and returned parameter

Type: void **

The name of the area that contains the address of the buffer where the z/0OS
XML parser should place the parsed data stream. The z/OS XML parser
updates this parameter to provide important return information when control
returns to the caller. See the [“Usage notes” on page 137 for details.

78 z/0S V2R1.0 XML User's Guide and Reference

gxipParse

output_buffer_bytes left
Supplied and returned parameter

Type: long *

The name of the area that contains the number of available bytes in the output
buffer. When the z/OS XML parser returns control to the caller, this parameter
will be updated to indicate the number of unused bytes in the output buffer.
This buffer must always contain at least a minimum number of bytes as
defined by the GXLHXEC_MIN_OUTBUF_SIZE constant, declared in header
file gxlhxec.h. This service will validate the length of this area against this
minimum length value.

rc_p
Returned parameter

Type: int*
The name of the area where the service stores the return code.

rsn_p
Returned parameter

Type: int*

The name of the area where the service stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.
Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The
return and reason code are both also set as output parameters. The value of the
reason code is undefined when the return code has no associated reasons. Return
and reason codes are defined in the header file gxlhxrh (see[“gxlhxr.h (GXLYXR) 4
[defines the return codes and reason codes” on page 218). For reason code
descriptions, also see|Appendix B, “Reason codes listed by value,” on page 161]

Example
void * PIMA;
int = option_flags;
void * input_buffer_addr; Tong input_buffer_bytes_left;
void * output_buffer_addr; long output_buffer_bytes Teft;
int rc, rsn;
gxTpParse(PIMA,
option_flags,
&input_buffer_addr, &input_buffer_bytes_left,

&output_buffer_addr, &output_buffer_bytes_ left,
&rc, &rsn);

Usage notes

This callable service is a direct map to GXL1PRS (GXL4PRS). Refer to
Inotes” on page 137|of GXL1PRS (GXLAPRS) for usage information.

Chapter 6. z/OS XML parser API: C/C++ 79

gxipQuery
gxlpQuery — query an XML document
Description
This service allows a caller to obtain the XML characteristics of a document. The
XML characteristics are either the default values, the values contained in an XML
declaration or a combination of both.
Performance Implications

There are no performance implications.

Syntax

int gx1pQuery (void * work area,
long work_area_length,
void * input_buffer,
long input_buffer_length,
GXLHQXD #*=* return_data,
int = rc_p,
int * rsn_p);

Parameters

work_area
Supplied parameter
Type: void *

The name of a work area. The work area must be aligned on a doubleword
boundary. If not on a doubleword boundary, results are unpredictable. See the
[“Usage notes” on page 140| for additional details on the use of this area.

work_area_length
Supplied parameter
Type: long

The name of an area containing the length of the work area. The minimum
length of this area is declared as a constant
GXLHXEC_MIN_QXDWORK_SIZE in header file gxlhxec.h . This service
validates the length of this area against this minimum length value.

input_buffer
Supplied parameter

Type: void *

The name of an input buffer containing the beginning of the XML document to
process. See the [‘Usage notes” on page 140| for details.

input_buffer_length
Supplied parameter

Type: long
The name of an area containing the length of the input buffer.

return_data
Returned parameter

Type: GXLHQXD **

80 z/0S V2R1.0 XML User's Guide and Reference

gxlpQuery

The pointer to where the service will return the address of the data which
describes the XML document characteristics. This return information will
contain values that are either extracted from the XML declaration or defaulted
according to the XML standard. This return area is mapped by the header file
gxlhgxd.h (see [“gxlhgxd.h (GXLYQXD) - mapping of the output from the]
lquery XML declaration service” on page 216), and is located within the work
area specified by the work_area parameter. The caller must not free the
work_area until it is done referencing the data returned from this service.

rc_p
Returned parameter

Type: int*
The name of the area where the service stores the return code.

rsn_p
Returned parameter

Type: int*

The name of the area where the service stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.
Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The
return and reason code are both set as output parameters. The value of the reason
code is undefined when the return code has no associated reasons. Return and
reason codes are defined in header file gxlhxr.h (see [“gxlhxr.h (GXLYXR) - defines|
fthe return codes and reason codes” on page 218). For reason code descriptions,
also see[Appendix B, “Reason codes listed by value,” on page 161}

Example

void * work_area;

long work_area_length = XEC_MEM_QIMA_SIZE;

void * input_buffer;

Tong input_buffer_Tength;

GXLHQXD * return_data;

int rc, rsn;

gx1pQuery (work_area, work_area_length, input_buffer,
input_buffer_length, &return_data, &rc, &rsn);

Usage notes

This callable service is a direct map to GXL1QXD (GXL4QXD). Refer to
Inotes” on page 140|of GXL1QXD (GXL4QXD) for usage information.

gxipTerminate — terminate a parse instance
Description

The gxlpTerminate callable service releases all resources obtained (including

storage) by the z/OS XML parser and resets the PIMA so that it can be
re-initialized or freed.

Chapter 6. z/OS XML parser API: C/C++ 81

gxipTerminate

Performance Implications

There are no performance implications.

Syntax

int gxlpTerminate (void * PIMA,
int * rc,
int * rsn);

Parameters

PIMA
Supplied parameter

Type: void *

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

rc Returned parameter
Type: int*
The name of the area where the service stores the return code.

rsn
Returned parameter

Type: int*

The name of the area where the service stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.
Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The
return and reason code are both also set as output parameters. The value of the
reason code is undefined when the return code has no associated reasons. Return
and reason codes are defined in the header file gxlhxr.h (see|’gxlhxr.h (GXLYXR) 4
[defines the return codes and reason codes” on page 218). For reason code
descriptions, also see|Appendix B, “Reason codes listed by value,” on page 161

Example
void * PIMA;

int rc, rsn;
gxTpTerminate (PIMA, &rc, &rsn);

Usage notes

This callable service is a direct map to GXLITRM (GXL4TRM). Refer to
Inotes” on page 142|of GXLITRM (GXLATRM) for usage information.

82 2/0S V2R1.0 XML User's Guide and Reference

gxilpTerminate

OSR generator API

gxlulnitOSRG — initialize an OSR generator instance
Description

Initialize an OSR generator instance. This establishes a context within which the
OSR generator performs operations on schemas, Optimized Schema
Representations (OSRs), and StringID tables. This context is defined by the OSR
generator Instance Memory Area (OIMA).

Performance Implications

The OIMA must be initialized before any OSR generation operations are
performed. If operations are to be performed on different OSRs, the caller may
enhance performance by resetting the OIMA through a control operation (see
gxluControlOSRG), rather than terminating the generator instance and
re-initializing. There are implications for memory consumption that must be
considered when multiple OSRs are created from the same generator instance. See
the usage notes below.

Syntax

int gx1uInitOSRG (void * oima_p,
unsigned long oima_1,
int feature_flags,
void * sys_svc_parm_p,
int * rc_p,
int * rsn_p)

Parameters

oima_p
Supplied and returned parameter

Type: void *

A pointer to an OSR generator Instance Memory Area (OIMA). This area must
be at least GXLHXEC_MIN_OIMA_SIZE bytes long. It is used as the work area
for the OSR generator.

oima_1l
Supplied parameter

Type: unsigned long

The length of the OSR generator Instance Memory Area (OIMA) pointed to by
the oima_p parameter.

feature_flags
Supplied parameter

Type: int
The name of the area that contains an integer value representing the OSR
generator feature.

sys_svc_parm_p
Supplied parameter

Type: void *

Chapter 6. z/OS XML parser API: C/C++ 83

gxlulnitOSRG

A pointer to an area which is passed to all system service exits, handlers, and
resolvers. This provides for communication between the caller of the z/OS
XML OSR generator and its exit routines. Specify the NULL pointer if no
parameter is required for communication.

rc_p
Returned parameter

Type: int*
A pointer to an area where the service stores the return code.

rsn_p
Returned parameter

Type: int*
A pointer to an area where the utility stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this utility is return code (see below).

Return and Reason Codes:

On return from a call to this utility, register 15 will contain the return code. The
return and reason code are both also set as output parameters. The value of the
reason code is undefined when the return code has no associated reasons. Return
and reason codes are defined in the header file gxlhxr.h (see|“gxlhxr.h (GXLYXR)
[defines the return codes and reason codes” on page 218). For reason code
descriptions, also see|Appendix B, “Reason codes listed by value,” on page 161]

Example

#include <stdlib.h>
#include <gxlhosrg.h>
#include <gxlhxec.h>

void * oima_p;
unsigned long oima_T;
char handler_parms[128];
int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA SIZE))
{ /* oima malloc succeeded */
oima_1 = GXLHXEC_MIN OIMA SIZE;

gx1ulnitOSRG(oima_p, oima_1,
03
(void *)handler_parms,
&rc, &rsn);

/* Use the OSR generation instance to perform schema operations ... */
1 /* oima malloc succeeded */

Usage notes
When creating multiple OSRs, the best practice will usually be to initialize one
generator instance, and use it for all of the generation operations, with control

requests to reset the generator between OSRs. This will consume fewer CPU cycles,

84 2/0S V2R1.0 XML User's Guide and Reference

gxlulnitOSRG

and provide better overall performance than initializing and terminating a
generator instance for each OSR being created or operated upon. However, all
generated OSRs will remain in memory for the duration of the generator instance.
If memory constraints are a concern, or you plan to generate OSRs for either a
large number of schemas, or for schemas that are very large, you may need to
terminate and re-initialize the OSR generator.

gxluControlOSRG — perform an OSR generator control
operation
Description

This is a general purpose utility which provides operations for controlling the
z/0OS XML OSR generator. The operation performed is selected by setting the
ctl_option parameter using the constants defined in gxlhxoc.h and gxlhxec.h. These
functions include:

GXLHXEC_OSR_CTL_FIN
The caller has finished working with a particular OSR. Reset the necessary
structures so that the OIMA can be reused for subsequent generator
operations on a different OSR. Receive extended diagnostic information
about the current context of the OSR generator.

GXLHXEC_OSR_CTL_DIAG
The caller has finished working with a particular OSR. Receive extended
diagnostic information about the current context of the OSR generator.

Performance Implications

The finish-and-reset function allows the caller to re-initialize the OIMA to make it
ready to handle a new OSR. This re-initialization path enables the z/OS XML OSR
generator to avoid one-time initialization pathlength that’s performed by the
initialization service.

Syntax

int gxluControlOSRG(void * oima_p,
int ctl_operation,
void * ctl_data_p,
int * rc_p,
int * rsn_p)

Parameters

oima_p
Supplied parameter

Type: void *
A pointer to an OSR generator Instance Memory Area (OIMA).

ctl_operation
Supplied parameter

Type: int

The name of the parameter containing an integer value representing one of the
following operations:

Chapter 6. z/OS XML parser API: C/C++ 85

86

GXLHXEC_OSR_CTL_FIN
This indicates that the caller wants to end processing on the current
OSR. The OIMA is re-initialized to allow it to be used to process a new,
different OSR. This operation will also return the extended diagnostic
information area that is mapped by the gxlhosrd.h header. This
includes problem determination information relevant to the current
context of the OSR generator.

GXLHXEC_OSR_CTL_DIAG
This indicates that the caller wants to end processing on the current
OSR. This operation will return the extended diagnostic information
area that is mapped by the gxlhosrd.h header. This includes problem
determination information relevant to the current context of the OSR
generator.

ctl_data_p
Supplied and returned parameter
Type: void *
A pointer to an area that will be used for a purpose that depends on the

control operation being performed:

GXLHXEC_OSR_CTL_FIN
A pointer to an area that will receive the address of the extended
diagnostic area mapped by gxlhosrd.h. If NULL is specified for this
parameter, no extended diagnostic information will be returned. See
the usage notes for more about how to use this area.

GXLHXEC_OSR_CTL_DIAG
A pointer to an area that will receive the address of the extended
diagnostic area mapped by gxlhosrd.h. If NULL is specified for this
parameter, no extended diagnostic information will be returned. See
the usage notes for more about how to use this area.

rc_p
Returned parameter

Type: int*
A pointer to an area where the service stores the return code.

rsn_p
Returned parameter

Type: int*

A pointer to an area where the service stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this service is return code (see below).

Return and Reason Codes:

On return from a call to this utility, register 15 will contain the return code. The
return and reason code are both also set as output parameters. The value of the

reason code is undefined when the return code has no associated reasons. Return
and reason codes are defined in the header file gxlhxr.h (see [“gxlhxr.h (GXLYXR) 4

z/0S V2R1.0 XML User's Guide and Reference

[defines the return codes and reason codes” on page 218). For reason code
descriptions, also see|Appendix B, “Reason codes listed by value,” on page 161

Example

#include <stdlib.h>
#include <stdio.h>
#include <gxlhosrg.h>
#include <gxThxec.h>

void * oima_p;

unsigned long oima_1;

char handler_parms[128];
GXLHOSRD = XDArea_p;

int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA SIZE))
{ /* oima malloc succeeded =/
oima_1 = GXLHXEC_MIN_OIMA SIZE;

gx1uInitOSRG(oima_p, oima_1,
0,
(void *)handler_parms,
&rc, &rsn);
} /* oima malloc succeeded */

/* Now perform operations using the generator instance. */
if ((oima_p > 0) && (rc == GXLHXRC_SUCCESS))

{ /* generator ininitialized */
/* generate or Toad an OSR, generate a StringID table, etc */

gxTuControl0SRG(oima_p,
GXLHXEC_OSR_CTL_FIN,
(void *)&XDArea_p,
&rc, &rsn);

if (rc == GXLHXRC_SUCCESS)
{ /* reset succeeded */

if (XDArea_p->strID_RC != 0)
{ /* StringID exit failure */
fprintf(stderr,"StringID exit failure: %08x\n",
XDArea_p->strID _RC);

} /% StringID exit failure */

} /* reset succeeded */

} /* generator ininitialized */
Usage notes

The purpose of the finish-and-reset operation of this service is to reset the
necessary structures and fields within the OIMA to prepare the generator instance
for reuse without the overhead of full initialization. This reset operation uses fewer
CPU cycles than terminating and re-initializing from scratch. However, all schemas
that are loaded, and all OSRs and StringID tables that are generated, remain in
memory for the duration of the OSR generation instance. If you have a large

Chapter 6. z/OS XML parser API: C/C++ 87

88

number of schemas to process, or if the schemas are very large in size, memory
constraints may become an issue. In this case, it will be necessary to terminate and
re-initialize the OSR generator instance.

The extended diagnostic area returned by the GXLHXEC_OSR_CTL_FIN and
GXLHXEC_OSR_CTL_DIAG operations are mapped by gxlhosrd.h. The structure
in this header contains assorted diagnostic information about the particular phase
of OSR generation that may have failed. The fields of this structure may be used
for the duration of the OSR generator instance, but must not be referenced after
the instance is terminated. Doing so may result in unpredictable results.

gxluTermOSRG — terminate an OSR generator instance

Description

The gxlpTermOSRG utility releases all resources obtained by the z/OS XML OSR
generator. It also sets the eyecatcher in the OIMA to prevent it from being reused
by other OSR API functions, with the exception of re-initialilization by
gxlulnitOSRG.

Performance Implications

There are no performance implications.

Syntax

int gxluTermOSRG(void * oima_p,
int * rc_p,
int * rsn_p)

Parameters

oima_p
Supplied parameter

Type: void *
A pointer to an OSR generator Instance Memory Area (OIMA).

rc_p
Returned parameter

Type: int*
A pointer to an area where the service stores the return code.

rsn_p
Returned parameter

Type: int*

A pointer to an area where the service stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.
Return Value:

The value returned by this service is return code (see below).

z/0S V2R1.0 XML User's Guide and Reference

Return and Reason Codes:

On return from a call to this utility, register 15 will contain the return code. The
return and reason code are both also set as output parameters. The value of the
reason code is undefined when the return code has no associated reasons. Return
and reason codes are defined in the header file gxlhxrh (see[“gxlhxr.h (GXLYXR) 4
|deﬁnes the return codes and reason codes” on page 218). For reason code
descriptions, also see|Appendix B, “Reason codes listed by value,” on page 161)

Example

#include <stdlib.h>
#include <stdio.h>
#include <gxThosrg.h>
#include <gxThxec.h>

void * oima_p;
unsigned long oima_1;
char handler_parms[128];
int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN OIMA SIZE))
{ /* oima malloc succeeded =/
oima_1 = GXLHXEC_MIN OIMA SIZE;

gx1ulnitOSRG(oima_p, oima_1,
09
(void *)handler_parms,
&rc, &rsn);
} /* oima malloc succeeded =/

/* Now perform operations using the generator instance. */
if ((oima_p > 0) && (rc == GXLHXRC_SUCCESS))
{ /* generator ininitialized x/

/* generate or load an OSR, generate a StringID table, etc */

gx1uTermOSRG(oima_p,
&rc, &rsn);
/* Do not use any resources that the OSR generator */
/* has allocated from here on. */

} /% generator ininitialized */
Usage notes

This utility does not free the OSR Generator Instance Memory Area (OIMA). It is
up to the caller to free the OIMA after termination completes. gxluTermOSRG will,
however, free any binary OSR bulffers, StringID tables, and extended diagnostic
areas that may have been allocated during the OSR generator instance. Once
termination has completed, you must not reference any of these areas, or any
extended diagnostic areas that may have been created during the generator
instance. It is the caller's responsibility to create persistent copies of these
structures as needed while the generator instance is active.

gxluLoadSchema — load a schema into the OSR generator
Description

This utility is used to load text schemas into the OSR generator. It is called once
for each schema that will be processed to create an Optimized Schema
Representation.

Chapter 6. z/OS XML parser API: C/C++ 89

90

Performance Implications
There are no performance implications.

Syntax

int gxluLoadSchema(void * oima_p,
char * schema_resource_p,
int * rc_p,
int * rsn_p)

Parameters
oima_p
Supplied parameter
Type: void *
A pointer to an OSR generator Instance Memory Area (OIMA).

schema_resource_p
Supplied parameter

Type: char *

A pointer to the schema resource to process. This parameter must contain a
NULL terminated, IBM-1047 text string representing one of the following;:

* The pathname of a file in the z/OS UNIX file system containing the schema
in text form.

* URI specifying the location of the schema text to load. URIs are indicated by
a scheme name, followed by a colon, followed by a relative URI reference.
See RFC 3986 (http://tools.ietf.org/html/rfc3986) for a complete description
of URIs.

Whether the resource passed is a URI or a pathname to a file, the name must
represent an absolute path. Relative paths cannot be processed.

rc_p
Returned parameter

Type: int*
A pointer to an area where the utility stores the return code.

rsn_p
Returned parameter

Type: int*

A pointer to an area where the utility stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this service is return code (see below).
Return and Reason Codes:

On return from a call to this utility, register 15 will contain the return code. The
return and reason code are both also set as output parameters. The value of the

z/0S V2R1.0 XML User's Guide and Reference

http://tools.ietf.org/html/rfc3986

reason code is undefined when the return code has no associated reasons. Return
and reason codes are defined in the header file gxlhxr.h (see|’gxlhxr.h (GXLYXR)
[defines the return codes and reason codes” on page 218). For reason code
descriptions, also see|Appendix B, “Reason codes listed by value,” on page 161

Example

#include <stdlib.h>
#include <stdio.h>
#include <gxThosrg.h>
#include <gxThxec.h>

void * oima_p;

unsigned long oima_1;

char handler_parms[128] ;

char schema_uri[URI_LEN] = "file:///u/user01l/myschema.xsd";
int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN OIMA SIZE))
{ /* oima malloc succeeded =/
oima_1 = GXLHXEC_MIN_OIMA SIZE;

gx1ulnitOSRG(oima_p, oima_1,
05
(void *)handler_parms,
&rc, &rsn);
} /* oima malloc succeeded =/

/* Now perform operations using the generator instance. */
if ((oima_p > 0) && (rc == GXLHXRC_SUCCESS))
{ /* generator initialized */

gxluLoadSchema(oima_p,
schema_uri,
&rc, &rsn);

if (rc == GXLHXRC_SUCCESS)
{/* schema load succeeded =/

/*generate an OSR from the loaded schemax*/

}/* schema load succeeded */

.

} }* generator initialized */
Usage notes

Call this service iteratively to load one or more schemas that will be processed to
create an OSR. Once a schema has been loaded, the schema text buffer specified by
the schema_resource_p parameter may be re-used for other purposes.

gxluSetStriIDHandler — specify the StringlD handler for OSR
generation
Description

This utility allows the caller to specify a StringID handler service to the OSR

generator. The StringID handler utility allows the caller to avoid making StringID
calls at parse time for a number of symbols. This handler must be written in C.

Chapter 6. z/OS XML parser API: C/C++ 91

92

Performance Implications
There are no performance implications.

Syntax

int gxluSetStrIDHandler(void * oima_p,
char = d11_name_p,
char = func_name_p,
int * rc_p,
int * rsn_p)

Parameters

oima_p
Supplied parameter

Type: void *
A pointer to an OSR generator Instance Memory Area (OIMA).

d11_name_p
Supplied parameter

Type: char *

A pointer to the NULL terminated name of the DLL containing the StringID
handler executable. This string must be in the IBM-1047 code page. A NULL
string indicates that the current StringID handler should be unset, and
StringIDs no longer used during the creation of OSRs.

func_name_p
Supplied parameter

Type: char *

A pointer to the NULL terminated name of the StringID handler within the
DLL. This string must be in the IBM-1047 code page. If the dll_name_p
parameter above is NULL, this function name is ignored.

rc_p
Returned parameter

Type: int*
A pointer to an area where the utility stores the return code.

rsn_p
Returned parameter

Type: int*

A pointer to an area where the utility stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.
Return Value:
The value returned by this service is return code (see below).

Return and Reason Codes:

z/0S V2R1.0 XML User's Guide and Reference

On return from a call to this utility, register 15 will contain the return code. The
return and reason code are both also set as output parameters. The value of the
reason code is undefined when the return code has no associated reasons. Return
and reason codes are defined in the header file gxlhxr.h (see[”gxlhxr.h (GXLYXR) 4
(defines the return codes and reason codes” on page 218). For reason code
descriptions, also see|Appendix B, “Reason codes listed by value,” on page 161}

Example

#include <stdlib.h>
#include <stdio.h>
#include <gxThosrg.h>
#include <gxlhxec.h>

void * oima_p;
unsigned long oima_1;
char handler_parms[128];

char d11_name[SIZE]
char func_name[SIZE]
int rc, rsn;

"d11path/d11name.so";
"strIDHandler";

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))
{ /* oima malloc succeeded =/
oima_1 = GXLHXEC MIN_OIMA SIZE;

gx1uInitOSRG(oima_p, oima_1,
0,
(void *)handler_parms,
&rc, &rsn);
} /* oima malloc succeeded */

/* Now set a StringID handler that will be used to =*/
/* create StringIDs when OSRs are generated. */

if ((oima_p > 0) && (rc == GXLHXRC_SUCCESS))
{ /* generator initialized */
gxluSetStrIDHandler (oima_p,
d11_name, func_name,
&rc, &rsn);

if (rc == GXLHXRC_SUCCESS)
{ /* set handler succeeded =/

<continue processing using the StringID handler>

} /* set handler succeeded =/

} }* generator initialized */
Usage notes

This handler differs from the other handlers and resolvers provided to the OSR
generator in that it must be written in C. Both the validating z/OS XML parser
and the OSR generator allow the caller to specify a StringID handler, and by
implementing this handler as a C DLL, the same source may be used in both
environments. A key difference is that this handler must be compiled and linked
with conventional C and Language Environment capabilities for the OSR generator
environment, while it must be built using Metal C for the parser.

The DLL containing the StringID handler will be loaded in order to obtain a
function pointer to it. The function pointer will be kept within the OIMA until a

Chapter 6. z/OS XML parser API: C/C++ 93

StringID is needed during OSR generation. The DLL path must reside in one of the
paths specified in the LIBPATH environment variable.

This routine may be called more than once during an OSR generation instance to
change the StringID handler that the generator uses.

gxluSetEntityResolver — specify the entity resolver for OSR
generation
Description

This utility allows the caller to specify an entity resolver to the OSR generator. This
resolver must be written in Java.

Performance Implications
There are no performance implications.

Syntax

int gxluSetEntityResolver(void * oima_p,
char * class_name_p,
int * rc_p,
int * rsn_p)

Parameters

oima_p
Supplied parameter

Type: void *
A pointer to an OSR generator Instance Memory Area (OIMA).

class_name_p
Supplied parameter

Type: char *

A pointer to the NULL terminated name of a Java class that implements the
XMLEntityResolver interface of the XML4]J parser (see the usage notes below).
This string must be in the IBM-1047 code page. A NULL string indicates that
the current entity resolver should be unset, and the default resolver used
during the creation of the OSR.

rc_p
Returned parameter

Type: int*
A pointer to an area where the utility stores the return code.

rsn_p
Returned parameter

Type: int*

A pointer to an area where the utility stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

z/0S V2R1.0 XML User's Guide and Reference

Return Value:
The value returned by this service is return code (see below).
Return and Reason Codes:

On return from a call to this utility, register 15 will contain the return code. The
return and reason code are both also set as output parameters. The value of the
reason code is undefined when the return code has no associated reasons. Return
and reason codes are defined in the header file gxlhxrh (see|“gxIhxrh (GXLYXR) 4
|defines the return codes and reason codes” on page 218). For reason code
descriptions, also see|Appendix B, “Reason codes listed by value,” on page 161)

Example

#include <stdlib.h>
#include <stdio.h>
#include <gxThosrg.h>
#include <gxThxec.h>

void * oima_p;

unsigned long oima_1;

char handler_parms[128] ;

char class_name[SIZE] = "xml/appl/handlers/EntityResolver";
int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN OIMA SIZE))
{ /* oima malloc succeeded =/
oima_1 = GXLHXEC_MIN_OIMA SIZE;

gx1ulnitOSRG(oima_p, oima_1,
0,
(void *)handler_parms,
&rc, &rsn);
}/* oima malloc succeeded */

/* Now set an entity resolver that will be used during =/
/* OSR generation. */

if ((oima_p > 0) && (rc == GXLHXRC_SUCCESS))
{ /* generator initialized =/
gxluSetEntityResolver(oima_p,
class_name,
&rc, &rsn);

if (rc == GXLHXRC_SUCCESS)
{ /* set resolver succeeded */

<continue processing using the entity resolver>

}/* set resolver succeeded */

} }* generator initialized */
Usage notes
Although this is a C interface, the entity resolver must be implemented in Java.

This resolver will be provided to the XML4] parser, which is used during the OSR
generation process. The resolver must implement the XMLEntityResolver interface

Chapter 6. z/OS XML parser API: C/C++ 95

96

of the Xerces Native Interface (XNI), including the return of an XMLInputSource
object. See the XMLEntityResolver documentation at |http:/ /xerces.apache.org /|
[xerces2-j /javadocs /xni/index.html]

This routine may be called more than once during an OSR generation instance to
change the entity resolver that the generator uses.

gxluLoadOSR — load an OSR into the OSR generator

Description

This utility is used to load an Optimized Schema Representation into the OSR
generator. Once loaded, the OSR may be processed using one of the OSR generator
operations.

Performance Implications

There are no performance implications.

Syntax

int gxluLoadOSR(void * oima_p,
void * osr_p,
int osr_T,
int * rc_p,
int * rsn_p)

Parameters

oima_p
Supplied parameter

Type: void *
A pointer to an OSR generator Instance Memory Area (OIMA).

osr_p
Supplied parameter

Type: void *
A pointer to a buffer containing an OSR.

osr_1
Supplied parameter

Type: int
The length of a buffer containing an OSR.

rc_p
Returned parameter

Type: int*
A pointer to an area where the utility stores the return code.

rsn_p
Returned parameter

Type: int*

A pointer to an area where the utility stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

z/0S V2R1.0 XML User's Guide and Reference

http://xerces.apache.org/xerces2-j/javadocs/xni/index.html
http://xerces.apache.org/xerces2-j/javadocs/xni/index.html

All parameters in the parameter list are required.

Return Value:

The value returned by this service is return code (see below).
Return and Reason Codes:

On return from a call to this utility, register 15 will contain the return code. The
return and reason code are both also set as output parameters. The value of the
reason code is undefined when the return code has no associated reasons. Return
and reason codes are defined in the header file gxlhxrh (see|“gxlhxr.h (GXLYXR) 4
|defines the return codes and reason codes” on page 218). For reason code
descriptions, also see[Appendix B, “Reason codes listed by value,” on page 161]

Example

#include <stdlib.h>
#include <stdio.h>
#include <gxThosrg.h>
#include <gxlhxec.h>

void * oima_p;

unsigned long oima_1;

char handler_parms[128];
char osrbuf[OSR_BUFFER_LEN];
int osrbuf_1;

int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))
{ /* oima malloc succeeded */
oima_1 = GXLHXEC MIN_OIMA SIZE;

gx1uInitOSRG(oima_p, oima_1,
0,
(void *)handler_parms,
&rc, &rsn);
} /% oima malloc succeeded */

<acquire the OSR from a persistent Tocation like a file ...>
/* Load an OSR to be processed. */

if ((oima_p > 0) && (rc == GXLHXRC_SUCCESS))
{ /% generator initialized */
gxluLoadOSR(oima_p,
(void *)osrbuf
osrbuf_1,
&rc, &rsn);

if (rc == GXLHXRC_SUCCESS)
{ /* OSR load succeeded =*/

<process the loaded OSR>

}/* OSR Toad succeeded x/

} }* generator initialized */
Usage notes

Use this utility when you need to query an OSR that has already been created
from one or more human-readable schemas. This is useful, for instance, when a

Chapter 6. z/OS XML parser API: C/C++ 97

98

caller needs access to a StringlD table from an existing OSR. This allows the
StringID table to be used by the validating parser at parse time.

gxluGenOSR — generate an Optimized Schema
Representation (OSR)

Description

This utility generates an optimized representation of one or more XML schemas.
Performance Implications

There are no performance implications.

Syntax

unsigned int gxluGenOSR(void * oima_p,
void ** schema_osr_p_p,
int * rc_p,
int * rsn_p)

Parameters

oima_p
Supplied parameter

Type: void *
A pointer to an OSR generator Instance Memory Area (OIMA).

schema_osr_p _p
Returned parameter

Type: void **

A pointer to an area to receive the address of the optimized schema
representation generated by this utility. See the usage notes below for
important details about this parameter.

rc_p
Returned parameter

Type: int*
A pointer to an area where the utility stores the return code.

rsn_p
Returned parameter

Type: int*
A pointer to an area where the utility stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this utility is the length of the OSR buffer returned to the
caller through the schema_osr_p parameter. If there is a problem during the
generation of the OSR, the value returned will be zero. See the usage notes below
for more information about this value and the OSR buffer returned.

z/0S V2R1.0 XML User's Guide and Reference

Return and Reason Codes:

Register 15 will contain the return value of this utility. The return and reason code
are both set as output parameters. The value of the reason code is undefined when
the return code has no associated reasons. Return and reason codes are defined in

the header file gxlhxrh (see [‘gxlhxrh (GXLYXR) - defines the return codes and
reason codes” on page 218). For reason code descriptions, also see |éEEendix B
“Reason codes listed by value,” on page 161)

Example

#include <stdlib.h>
#include <stdio.h>
#include <gxThosrg.h>
#include <gxThxec.h>

void * oima_p;

unsigned long oima_1;

char handler_parms[128];

char schema_uri[URI_LEN] = "file:///u/user0l/myschema.xsd";
void * osr_p;

int osr_1;

int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA SIZE))
{ /* oima malloc succeeded =/
oima_1 = GXLHXEC_MIN_OIMA SIZE;

gx1uInitOSRG(oima_p, oima_1,
0:
(void *)handler_parms,
&rc, &rsn);
} /% oima malloc succeeded */

/* Load a schema and create an OSR from it. */

if ((oima_p > 0) && (rc == GXLHXRC_SUCCESS))
{ /* generator initialized */
gxluLoadSchema(oima_p,
schema_uri,
&rc, &rsn);

if (rc == GXLHXRC_SUCCESS)
{ /* schema load succeeded */

/* Generate the OSR */

osr_1 = gxluGenOSR(oima_p,
&osr_p,
&rc, &rsn);

if (osr_1 > 0) then
{ /* OSR generate succeeded =*/

<write the OSR out to a persistent repository>
<like a file or a database so that it can be>
<used Tater for parsing a document>

} /* OSR generate succeeded =/

} /% schema Toad succeeded */

} /* generator initialized */

Chapter 6. z/OS XML parser API: C/C++ 99

100

Usage notes

This utility generates Optimized Schema Representations in a manner similar to
the xsdosrg command (see[Appendix C, “xsdosrg command reference,” on page|
. It provides additional flexibility and control by allowing the caller to use the
following handlers to augment the default generator behavior:

StringID handler
This handler generates and/or returns an integer identifier that serves as a
handle for a given string. These strings are most often the components of
qualified names that are encountered in the schema text during processing.
This must be implemented as a C routine, and built for the C Language
Environment. If no StringID handler is specified, then StringIDs will not be
used during the generation of the OSR. All qualified names and other
strings for which IDs could be used will instead be present in the OSR in
their text form. The same handler may be used by the validating parser
when built for the Metal C environment.

entity resolver
A Java routine that receives control when a reference to an external entity
is made from one schema to another through an include, import, or
redefine XML Schema construct. It acquires the external schema from an
appropriate source, and returns it to the OSR generator for further
processing. If no entity resolver is specified, the default entity resolver
from the XML4] parser is used.

One or both of these routines may be specified to the OSR generator through the
xluSetStringID (“gxluSetStrIDHandler — specify the StringID handler for OSR|
eneration” on page 91) and gxluSetEntityResolver (“gxluSetEntityResolver —|

specify the entity resolver for OSR generation” on page 94) utilities. Once set, the

generator will make use of them until they are changed to a different value.

This utility will allocate the buffer used to receive the generated OSR, and will
return the length of the buffer as its return value. The maximum length of an OSR
that will be returned is 2 GB. The buffer remains allocated for the duration of the
OSR generator instance, and gets freed when the instance is terminated. The caller
may use or copy the OSR to another location as long as the instance is active.
Referencing the OSR buffer after the generator instance has been terminated may
result in unpredictable results. This buffer may also be written to a permanent
location, such as a z/OS UNIX file or an MVS data set, so that it can be used again
at some point in the future.

gxluGenStriDTable — generate StringlD table from an OSR

Description

This utility will extract generate and return the StringID table associated with the
current OSR for this generator instance. See the usage notes for a description of
how to make an OSR current.

Performance Implications

There are no performance implications.

z/0S V2R1.0 XML User's Guide and Reference

Syntax

int gxluGenStrIDTable(void * oima_p,
GXLHXSTR *x strid_tb1_p_p,
int * rc_p,
int * rsn_p)

Parameters
oima_p
Supplied parameter
Type: void *
A pointer to an OSR generator Instance Memory Area (OIMA).

strid_tbl_p p
Supplied and returned parameter

Type: GXLHXSTR **

A pointer to an area that will receive the address of a table of containing the
StringIDs that are generated from the current OSR. See the usage notes below
for more details.

rc_p
Returned parameter

Type: int*
A pointer to an area where the utility stores the return code.

rsn_p
Returned parameter

Type: int*

A pointer to an area where the utility stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.
Return Value:

The value returned by this utility is the length of the StringID table returned to the
caller through the strid_tbl_p_p parameter. If StringIDs were not in use when the
current OSR was originally generated, the return value will be zero, and the
pointer specified by strid_tbl_p will remain unchanged. If there is a problem
during the generation of the StringID table, the value returned will be -1. See the
usage notes below for more information about this value, and the StringID table
returned.

Return and Reason Codes:

Register 15 will contain the return value of this utility (see above). The return and
reason code are both set as output parameters. The value of the reason code is
undefined when the return code has no associated reasons. Return and reason
codes are defined in the header file gxlhxrh (see [‘gxlhxr.h (GXLYXR) - defines the]
Ireturn codes and reason codes” on page 218). For reason code descriptions, also
see[Appendix B, “Reason codes listed by value,” on page 161

Chapter 6. z/OS XML parser API: C/C++ 101

Example

#include <stdlib.h>
#include <stdio.h>
#include <gxlhosrg.h>
#include <gxlhxec.h>

void * oima_p;

unsigned long oima_T;

char handler_parms[128];
char osrbuf [OSR_BUFFER_LEN];
int osrbuf_1;

GXLHXSTR =* strIDTb1 p;

int strIDTb1_1;

int osr_1;

int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA SIZE))
{ /* oima malloc succeeded =/
oima_1 = GXLHXEC_MIN_OIMA SIZE;

gx1ulnitOSRG(oima_p, oima_1,
03
(void *)handler_parms,
&rc, &rsn);
}/* oima malloc succeeded */

<acquire the OSR from a persistent Tocation like a file>
/* Load the OSR to operate on. */

if ((oima_p > 0) && (rc == GXLHXRC_SUCCESS))
{ /% generator initialized */
gxluLoadOSR(oima_p,
(void =)osrbuf,
osrbuf_1,,
&rc, &rsn);

if (rc == GXLHXRC_SUCCESS)
{ /* OSR load succeeded =*/

/* Generate the OSR */

strIDTb1_1 = gxluGenSTRIDTable(oima_p,
&strIDTb1 p,
&rc, &rsn);

if (strIDTb1_1 > 0) then
{ /* strID table generated x/

<write the StringID table out to a persistent>
<repository like a file or a database so that>
<it can be used later when parsing a document>

} /* strID table generated =/

}/* OSR Toad succeeded */

} }* generator initialized x/
Usage notes
The StringID table is generated from the OSR that has been made current through

either a gxluGenOSR or a gxluLoadOSR request. The actual length of the StringlD
table is calculated during table generation, and cannot be known ahead of time.

102 z/0S V2R1.0 XML User's Guide and Reference

For this reason, the gxluGenStrIDTable service will return the address and length
of the generated table on success. The table remains allocated for the duration of
the OSR generator instance, and gets freed when the instance is terminated. The
caller may use or copy the StringlD table to another location as long as the
instance is active. Referencing the StringlD table after the generator instance has
been terminated may result in unpredictable results.

StringID tables may be generated from OSRs that were created either with or
without StringIDs. If no StringIDs were used when the OSR was originally
generated, this service will assign the StringID values to return in the table. Callers
who wish to control the values of StringIDs must use the StringID handler
interface at OSR generation time.

The format of the StringID table that the OSR generator creates is defined by the
gxlhxstr.h header file. See the definition of this header file below for more details.

gxluGetStringlDs — generate StringlD table from an OSR
Description

This utility will generate and return the StringID table associated with the supplied
OSR.

Performance Implications

There are no performance implications.

Syntax

GXLHXSTR * gxluGetStringIDs(const void *0SR p,
int *rc_p,
int *rsn_p)

Parameters

OSR_p
Supplied parameter

Type: void *
A pointer to an OSR.

rc_p
Returned parameter

Type: int*
A pointer to an area where the utility stores the return code.

rsn_p
Returned parameter

Type: int*

A pointer to an area where the utility stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

Chapter 6. z/OS XML parser API: C/C++ 103

104

The value returned by this utility is the address of the generated StringID table.
Once this table is no longer needed, it must be freed by a call to gxluFreeStringIDs.
If there is a problem during the generation of the StringID table, the value returned
will be NULL. See the usage notes for gxluFreeStringIDs for more information
about the StringID table returned.

Return and Reason Codes:

The return and reason code are both set as output parameters. The value of the
reason code is undefined when the return code has no associated reasons. Return
and reason codes are defined in the header file gxlhxrh (see|“gxIhxrh (GXLYXR) 4
|defines the return codes and reason codes” on page 218). For reason code
descriptions, also see|Appendix B, “Reason codes listed by value,” on page 161)

gxluFreeStringlDs — free a StringID table

Description

This utility will free a StringID table that was returned from a call to
gxluGetStringIDs

Performance Implications
There are no performance implications.

Syntax

void gxluFreeStringIDs(GXLHXSTR *table p)

Parameters

table_p
Supplied parameter

Type: GXLHXSTR *
The StringlD table to be freed.

All parameters in the parameter list are required.

Return Value:

There are no return values.

Return and Reason Codes:

There are no return and reason codes.

Usage notes

The StringID table that is to be freed must have been generated by a call to

gxluGetStringIDs, and not gxluGenStrIDTable. Attempting to free a string ID table
that was not generated by gxluGetStringIDs will have no effect.

z/0S V2R1.0 XML User's Guide and Reference

gxluGetRootElements — retrieve the root elements from an

OSR

Description

This utility allows the caller to query the OSR generator for a set of all possible
root elements that may be used with this OSR.

Performance Implications
There are no performance implications.

Syntax

const GXLHXRE* gxluGetRootElements(void * osr_p,
int * rc_p,
int * rsn_p)

Parameters

osr_p
Supplied parameter

Type: void *
A pointer to the OSR from which information is to be extracted.

rc_p
Returned parameter

Type: int*
The name of the area where the utility stores the return code.

rsn_p
Returned parameter

Type: int*
The name of an area where the utility stores the reason code. The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this utility is a pointer to a GXLHXRE structure containing
all of the root elements within the OSR. This structure must be freed by
gxluFreeRootElements.

Return and Reason Codes:

The value of the reason code is undefined when the return code has no associated
reasons. Return and reason codes are defined in the header file gxlhxr.h (see
|”gxlhxr.h (GXLYXR) - defines the return codes and reason codes” on page 218). For
reason _code descriptions, also see{Appendix B, “Reason codes listed by value,” on|

Chapter 6. z/OS XML parser API: C/C++ 105

gxluFreeRootElements — free a root element structure
Description

This utility will free a root element structure that was returned from a call to
gxluGetRootElements.

Performance Implications
There are no performance implications.

Syntax

void gxluFreeRootElements (GXLHXRE *table_p)

Parameters

table_p
Supplied parameter

Type: GXLHXRE *

The root element structure to free.
All parameters in the parameter list are required.
Return Value:
There are no return values.
Return and Reason Codes:

There are no return and reason codes.

gxluGetTargetNamespaces — retrieve the target namespaces
from an OSR
Description

This utility allows the caller to query the OSR generator for all target namespaces
that are associated with this OSR.

Performance Implications
There are no performance implications.

Syntax

const GXLHXTN* gxluGetTargetNamespaces(void * osr_p,
int * rc_p,
int * rsn_p)

Parameters

osr_p
Supplied parameter

Type: void *

106 z/0S V2R1.0 XML User's Guide and Reference

A pointer to an OSR from which information is to be extracted.

rc_p
Returned parameter

Type: int*
The name of the area where the utility stores the return code.

rsn_p
Returned parameter

Type: int*
The name of an area where the utility stores the reason code .The reason code
is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this utility is a pointer to a GXLHXTN structure containing
all of the target namespaces associated with the OSR. This structure must be freed
by a call to gxluFreeNamespaces. A schema without a target namespace will be
represented by a URI in the GXLHXTN structure with 0-length.

Return and Reason Codes:

The value of the reason code is undefined when the return code has no associated
reasons. Return and reason codes are defined in the header file gxlhxr.h (see
[“exlhxr.h (GXLYXR) - defines the return codes and reason codes” on page 218). For
reason code descriptions, also see|Appendix B, “Reason codes listed by value,” on|

Usage notes

If the OSR being queried is an OSR generated from a release prior to z/OS V1R12,
the returned list of targetNamespaces will only include namespaces found from the
possible root elements.

gxluFreeNamespaces — free a namespace structure
Description

This utility will free a namespace structure that was returned from a call to
gxluGetTargetNamespaces.

Performance Implications
There are no performance implications.

Syntax

void gxluFreeTargetNamespaces (GXLHXTN *table p)

Parameters

oima_p
Supplied parameter

Chapter 6. z/OS XML parser API: C/C++ 107

Type: GXLHXTN *

The namespace structure to be freed.
All parameters in the parameter list are required.
Return Value:
There are no return values.
Return and Reason Codes:

There are no return and reason codes.

GXLPSYM31 (GXLPSYM64) — StringID handler
Description

This handler accepts an input string and performs a lookup for its corresponding
symbol, which is identical to the string itself. If the symbol has been located, the
exit returns the StringID associated with the symbol. If the string does not have a
defined symbol, a symbol is created for the string and a StringlD is assigned to it.
Performance Implications

There are no performance implications.

Syntax

int gx1pSym31(void ** sys svc_p,
char * string_p,
int string_1,
unsigned int * string_id_p,
int ccsid,
int * handler_diag_p,
int * rc_p)

Parameters

sys_svc_p
Supplied parameter

Type: void **

A pointer to the system service parameter that was passed to the z/OS XML
OSR generator at initialization time.

string_p
Supplied parameter

Type: char *

The string to return an ID for. The length of the string is variable, and is
specified by the string_| parameter.

string_1
Supplied parameter

Type: int

An integer containing the length of the string pointed to by the string
parameter.

108 z/0S V2R1.0 XML User's Guide and Reference

GXLPSYM31 (GXLPSYM64)

string_id_p
Returned parameter

Type: unsigned int *

A pointer to an integer where the handler stores the numeric identifier for the
string. The range of valid values is 1 to 2 GB - 1.

ccsid
Supplied parameter

Type: int

The Coded Character Set IDentifier (CCSID) that identifies the character set of
the string. The z/OS XML parser will provide the same CCSID in this
parameter that the caller of the parser specified at parser initialization time.

handler_diag_p
Returned parameter

Type: int*

A pointer to an integer where the handler can store any diagnostic information
(usually a reason code). This will be stored in the diagnostic area and made
available on the gxluControlOSRG call.

rc_p
Returned parameter

Type: int*

A pointer to an integer where the handler can store a return code. A return
code value of zero means success; any nonzero return code indicates failure.

Return Codes:

The z/OS XML OSR generator uses the convention that the handler will provide a
return code value of zero when successful. Any nonzero value indicates failure. If a
nonzero return code is provided by the exit, the z/OS XML OSR generator saves it
in the extended diagnostic area so that the caller of the parser has access to it by
calling gxluControlOSRG.

Example

None.

Default Implementation

There is no default implementation. If this handler is not specified by the caller,
StringIDs are not used by the z/OS XML OSR Generator.

Chapter 6. z/OS XML parser API: C/C++ 109

GXLPSYM31 (GXLPSYM64)

110 z/0S V2R1.0 XML User's Guide and Reference

Chapter 7. Z/OS XML parser APIl: Assembler

How to invoke the z/0S XML System Services assembler API

This section provides information on how to invoke the z/OS XML System
Services assembler API.

Callers written in assembler can invoke the z/OS XML System Services assembler
API by binding the z/OS XML parser's callable service stubs to their module. The
callable service stubs can be found in SYS1.CSSLIB. Alternatively, the addresses of
the APIs can be obtained from system control blocks. The following is a list of
offsets for the callable services first and second tables (all offsets are in hex):

1. +10 — Pointer to CVT (field FLCCVT in IHAPSA)
2. +220 — Pointer to the callable services first table (field CVTCSRT in CVT)
3. +48 — Pointer to the z/OS XML parser callable services second table (entry 19)

Note: Prior to z/OS V1R7, this field will point to the address of an undefined
callable service. In z/OS V1R7 and later releases, this field is zero until the
z/0OS XML parser initialization routine fills it in. To avoid calling z/OS XML
System Services when it is not present, the caller first needs to verify that it is
running on V1R7 or later, and that this field in the callable services first table is
non-zero.

4. +nn — The offset for each callable service in hex is listed below.
The following stubs are provided for 31- and 64-bit mode callers:

Table 26. Caller stubs and associated offsets

Stub Second Table offset (hex)
GXLI1INI — 31-bit parser initialization 10
GXL1PRS — 31-bit parse 14
GXL1TRM — 31-bit parser termination 18

GXL1CTL — 31-bit parser control operation |1C
GXL1QXD — 31-bit query XML document |20

GXL1LOD — 31-bit load a function 24
GXLA4INI — 64-bit parser initialization 28
GXLA4PRS — 64-bit parse 30
GXL4TRM — 64-bit parser termination 38

GXLACTL — 64-bit parser control operation |40
GXL4QXD — 64-bit query XML document |48
GXLALOD — 64-bit load a function 50

Note: The 64-bit stubs are defined with 8 byte pointers.

Following the offsets to the caller stubs, at offset 78 (hex) from the start of the
second table, is an 8 byte field of bits. These bits indicate the presence of a
particular z/OS XML capability. Callers may reference these bits to determine if the
function or feature that they intend to use is supported by the installed version of
z/0OS XML.

© Copyright IBM Corp. 2006, 2013 111

The following table lists the bits that are defined, along with their descriptions:
Table 27. Capability bits

Capability bit Description

'0000000000000001"X XDBX validation is available

The following assembler code is an example of how to call a z/OS XML parser
service. The example assumes the caller uses the CVT field names instead of hard
coding those offsets.

LLGT 15,CVTPTR R15L -> CVT, R15H = 0

L 15,CVTCSRT-CVT(15) Get the CSRTABLE

L 15,72(15) Get CSR slot 19 (zero based) for XML parser
L 15,16(15) Get address of GXL1INI from XML second table.
BALR 14,15 Branch to XML service.

z/OS XML parser Assembler API

112

This section lists the assembler callable services interface used for the z/OS XML
parser. The following rules apply to some or all of the callable services listed
below:

* The 31- and 64-bit versions of the services were designed to work independently
of one another. For example, the following sequence of calls would not work:
GXL1INI (31-bit service) followed by GXL4PRS (64-bit service).

e The 31- and 64-bit versions of the services are documented together with any
differences for 64- bit shown in parenthesis, after its corresponding 31-bit
description.

e In AMODE 31, all address and length parameters of the z/OS XML parser API
are 4 bytes long. In AMODE 64, these fields are 8 bytes long.

* In AMODE 31, the parsed data stream produced by the z/OS XML parser
contains length fields that are all 31 bits (4 bytes) long. In AMODE 64, the field
in the buffer header representing the length of the output buffer used is 64-bits
(8 bytes) long, while all record length fields in the data stream are 31-bit (4 byte)
values.

API entry points

The z/OS XML parser API contains 5 entry points for each addressing mode
(AMODE) type (31- or 64-bit):

* GXLICTL (GXL4CTL) — perform a parser control operation

e GXLI1INI (GXL4INI) — initialize a parse instance

* GXLI1PRS (GXL4PRS) — parse an input stream

* GXL1QXD (GXL4QXD) — query an XML document

* GXL1TRM (GXL4TRM) — terminate a parse instance

* GXL1LOD (GXL4LOD) — load a function

Common register conventions

The following sections describe common register conventions used for all of the
z/0OS XML parser's callable services.

Input registers
When a caller invokes the z/OS XML parser, these registers have the following
meaning:

z/0S V2R1.0 XML User's Guide and Reference

Table 28. Input register conventions

Register Contents
1 Address of a standard parameter list containing 31 (64) bit
addresses.
14 Return address.

Output registers

When the z/OS XML parser returns to the caller, these registers have the following

meaning:

Table 29. Output register conventions

Register Contents
0-1 Unpredictable
2-13 Unchanged
14 Unpredictable
15 Return code (return code is also a parameter)

Table 30. Output access register conventions

Access Register Contents
0-1 Unpredictable
2-13 Unchanged
14-15 Unpredictable

Environmental requirements
The following are environmental requirements for the caller of any z/OS XML
parser service:

Minimum authorization
any state and any PSW key

Dispatchable unit mode
Task or SRB
Note: GXL1LOD (GXL4LOD) can only operate in Task mode.

Cross memory mode
PASN=HASN=SASN or PASN"=HASN"=SASN

AMODE
31-bit (64-bit)

ASC mode
primary

Interrupt status
enabled for I/O and external interrupts

Locks no locks held

Control parameters
Control parameters and all data areas the parameter list points to must be
addressable from the current primary address space.

Chapter 7. z/OS XML parser API: Assembler 113

114

Using the recovery routine

z/0OS XML provides an ARR recovery routine to assist with problem determination
and diagnostics. This is an optional routine and can be turned on and off as
desired. Sed”ARR recovery routine” on page 158 for more information.

Restriction: When running in either SRB mode or under an existing FRR routine,
the ARR recovery routine cannot be used.

GXL1CTL (GXL4CTL) — perform a parser control function

Description

This is a general purpose service which provides control functions for interacting
with the z/OS XML parser. The function performed is selected by setting the
ctl_option parameter using the constants defined in GXLYXEC. These functions
include:

XEC_CTL_FIN
The caller has finished parsing the document. Reset the necessary
structures so that the PIMA can be reused on a subsequent parse, and
return any useful information about the current parse. For more
information on this function, see[“XEC_CTL_FIN” on page 117

XEC_CTL_FEAT
The caller wants to change the feature flags. A XEC_CTL_FIN function will
be done implicitly.

Note: Some feature flags are not supported on GXLICTL (GXL4CTL). See
[’XEC_CTL_FEAT” on page 118 for information on which feature flags are
not supported.
For more information on this function, see [“XEC_CTL_FEAT” on page 118

XEC_CTL_LOAD_OSR
The caller wants to load and use an Optimized Schema Representation
(OSR) for a validating parse. For more information on this function, see
["XEC_CTL_LOAD_OSR” on page 120.|

XEC_ CTL_QUERY_MIN_OUTBUF
The caller is requesting the minimum output buffer size required on a
subsequent parse. This function will also enable the parse to be continued
after a XRSN_BUFFER_OUTBUF_SMALL reason code has been received
from GXL1PRS(GXL4PRS).

Note: Finish and reset processing is performed by all operations available
through this control service, except XEC_CTL_QUERY_MIN_OUTBUF and
XEC_CTL_LOAD_OSR. See the descriptions of these operations under
ctl_option for more information.

For more information on this function, see
[“XEC_CTL_QUERY_MIN_OUTBUE” on page 121/

XEC_CTL_ENTS_AND_REFS
The caller can request additional flexibility when processing character and
entity references as follows:

* When an unresolved entity reference is encountered, the caller can
request that the parser stop processing and return an error record.

* When a character reference which cannot be represented in the current
code page is encountered, z/OS XML System Services places a dash (-)

z/0S V2R1.0 XML User's Guide and Reference

GXL1CTL (GXL4CTL)

in the output stream for that character. The caller may specify, with this
control call, to output a character other than dash (-) in the output
stream.

* When a character reference which cannot be represented in the current
code page is encountered, the caller can request, using this control call,
an additional output record to be generated in the output stream that
contains information about this character reference.

Note:

1. Finish and reset processing is performed for this control operation. See
[“Usage notes” on page 116 for more information.

2. If the parse instance has been initialized to process XDBX binary XML
streams, then the input stream will never have any entity references to
resolve. Performing the XEC_CTL_ENTS_AND_REFS operation will
have no effect on the output of the parser. In order to prevent
accidental attempted use of this operation in this environment, the
parser will return a failure.

For more information on this function, see ["XEC_CTL_ENTS AND_REFS”|

XEC_CTL_LOAD_FRAG_CONTEXT
The caller wants to load fragment context including fragment path and
namespace binding information for document fragment parsing.

Note:

1. This control operation does not perform finish and reset processing
through the control service. See the description in ctl_option for more
information.

2. Fragment parsing is not supported for XDBX input. For this reason,
attempting to load a fragment context for parse instances initialized to
handle XDBX streams will fail.

For more information on this function, see
[“XEC_CTL_LOAD_FRAG_CONTEXT” on page 124

XEC_CTL_FRAGMENT_PARSE
The caller wants to enable or disable document fragment parsing.

Note:

1. This control operation does not perform finish and reset processing
through the control service. See the description in ctl_option for more
information.

2. Fragment parsing is not supported for XDBX input. For this reason,
attempting to enable document fragment parsing for parse instances
initialized to handle XDBX streams will fail.

For more information on this function, see
[“XEC_CTL_FRAGMENT_PARSE” on page 126

XEC_CTL_RESTRICT_ROOT
The caller can restrict the root element name on the next parse. This
operation is only valid if the PIMA has been configured for validation and

schema information is requested. For more information on this function,
see ["XEC_CTL_RESTRICT_ROOT” on page 128)

XEC_CTL_ERROR_HANDLING
With this control operation, the caller can do the following:

Chapter 7. z/OS XML parser API: Assembler 115

GXL1CTL (GXL4CTL)

* Enable the creation of auxiliary records which can include the location of
an error in the XML document, the string which is in error, and also a
possible expected string.

* Enable position indexes to be present in the error location path in order
to facilitate locating the error.

For more information on this function, see
|”XEC_CTL_ERROR_HANDLING” on page 129.|

Performance Implications

The finish/reset function allows the caller to re-initialize the PIMA to make it
ready to handle a new XML document. This re-initialization path enables the z/OS
XML parser to preserve its existing symbol table, and avoid other initialization
pathlength that's performed by calling GXL1INI (GXL4INI).

Example

For an AMODE 31 example using this callable service, see [‘GXL1CTL example” onl
page 221 For an AMODE 64 example using this callable service, see ['GXLACTL]
example” on page 225

Usage notes

The purpose of the finish/reset function of the GXL1CTL (GXL4CTL) service is to
perform the following:

* Reset the necessary structures and fields within the PIMA to effect a
re-initialization so that it can be reused without the overhead of full
initialization. See the table below for list of structures and fields reset by each
control function.

* Allow the z/OS XML parser to return extended diagnostic information to the
caller in the event of a failure. This allows the caller to identify certain problems
that can be corrected.

* The "finish and reset" operation can be thought of as the most basic control
operation that is a functional subset of all control operations. It resets the state of
the parser to the original state immediately after the parse instance was first
initialized. This state includes the feature flags. If the caller initializes a parse
instance, then changes the feature settings with a feature control operation, and
still later performs a "finish and reset" control operation, the feature flags will
revert back to those settings at the time the parse instance was originally
initialized. If the caller wishes to retain the current feature settings during a
parser reset, they should simply perform another feature control operation with
the current feature set.

e The OSR load operation allows the caller to specify an OSR for the parser to use,
and to bind a handle to associate with to it. The GXLYXOSR macro provides the
interface for passing information to the parser about the OSR. See
[“C/C++ header files and assembler macros,” on page 215|for more details about
how it is used. As mentioned above, "finish and reset" processing will occur as a
part of this load operation. However, the reset will occur through a feature

control operation, using the current feature set. In this way, the current feature
flags for the parse instance are not altered by the OSR load control operation.

* The entities and references operation allows the caller to specify additional
processing with regard to entity and character references. The GXLYCTL macro
provides the interface for passing the information to the control function. As
mentioned above, "finish and reset" processing will occur as part of this control

116 z/0S V2R1.0 XML User's Guide and Reference

GXL1CTL (GXL4CTL)

operation. However, the reset will occur through a feature control operation,
using the current feature set. In this way, the current feature flags for the parse
instance are not altered by the entities and references control operation.

* When document fragment parsing operation is enabled, the z/OS XML parser
will no longer accept non-fragmented documents. If the caller wants to parse a
complete document after enabling document fragment parsing, this service must
be called again to disable document fragment parsing.

¢ When document fragment parsing is enabled, the well-formedness checking in
the subsequent parsing will be confined to the scope of the document fragment.
Well-formedness checking is performed again on the whole document when
document fragment parsing is disabled.

¢ When document fragment parsing is enabled, a whitespace token will be placed
into the output buffer when whitespace is parsed at the end of the input buffer
for each document fragment.

* The OSR context is unaffected by document fragment parsing. Any OSR that is
loaded when document fragment parsing is enabled will still be loaded for the
parse of the fragment, and will remain loaded if fragment parsing is disabled.

For a list of properties and resources reset by the control functions, see
land resources reset by control functions” on page 56

GXL1CTL (GXL4CTL) features and functions

XEC_CTL_FIN
Description

This indicates that the caller wishes to end the current parse at the current position
in the XML document. The PIMA is re-initialized to allow it to be used on a new
parse request. To free up all resources associated with the parse instance, the caller
should use the termination service. If the caller issues this control operation after
document fragment parsing is enabled, then this control operation will disable
document fragment parsing and re-initialize the PIMA for a new parse request.
The loaded fragment context will remain in storage and become active when
fragment mode is enabled.

Syntax

call gxllctl, (PIMA,
ctl_option,
ctl_data,

return_code,
reason_code) ;

Parameters

PIMA
Supplied parameter

Type: Character string

Length:
Variable

The name of the Parse Instance Memory Area (PIMA which has been
previously initialized with a call to GXL1INI (GXL4INI)).

Chapter 7. z/OS XML parser API: Assembler 117

XEC_CTL_FIN

118

ctl_option

Supplied parameter
Type: Integer

Length:
Fullword

The name of a fullword that contains an integer value initialized to
XEC_CTL_FRAGMENT_PARSE.

ctl_data

Supplied and returned parameter
Type: Address

Length:
Fullword (Doubleword)

This parameter must contain the address of a fullword (doubleword) where the
service will store the address of the diagnostic area, which is mapped by macro
GXLYXD. This provides additional information that can be used to debug
problems in data passed to the z/OS XML parser. The diagnostic area resides
within the PIMA, and will be overlaid on the next call to the z/OS XML
parser.

return_code

Returned parameter
Type: Integer

Length:
Fullword

The name of a fullword where the service stores the return code.

reason_code

Returned parameter
Type: Integer

Length:
Fullword

The name of a fullword where the service stores the reason code. The reason
code is only relevant if the return code is not XRC_SUCCESS

All parameters in the parameter list are required.

XEC_CTL_FEAT
Description

This indicates that the caller wishes to re-initialize the z/OS XML parser, as with
the reset-and-finish function above, and in addition, that the caller wishes to reset
some of the feature flags used during the parse.

Note: The following feature flags are not supported by this service:

XEC_FEAT_JST_OWNS_STORAGE
XEC_FEAT_RECOVERY
XEC_FEAT_VALIDATE
XEC_FEAT_SCHEMA_DISCOVERY
GXLHXEC_FEAT_XDBX_INPUT

z/0S V2R1.0 XML User's Guide and Reference

XEC_CTL_FEAT

Make sure that these feature flags are turned to the OFF state before calling this
service to set the feature flags. If these features need to be changed (for example, if
switching between validating and non-validating parses), the parse instance must
be terminated and re-initialized with the required feature settings.

Syntax

call gxllctl, (PIMA,
ct1_option,
ctl_data,

return_code,
reason_code) ;

Parameters

PIMA
Supplied parameter

Type: Character string

Length:
Variable

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

ctl_option
Supplied parameter

Type: Integer

Length:
Fullword

The name of a fullword containing an integer value initialized to
XEC_CTL_FEAT.

ctl_data
Supplied and returned parameter

Type: Address
Type: Fullword (Doubleword)

This parameter must contain the address of a fullword (doubleword), which is
mapped by macro GXLYXFT. See [“exlhxft.h (GXLYXFT) - mapping of the]
fcontrol feature input output area” on page 218[for more information on this
macro.

The XFT_FEAT_FLAGS parameter is an input parameter to the API and
contains the value of feature flags to be used in the subsequent parse. It is
defined as follows:

XEC_FEAT_STRIP_COMMENTS
This effectively strips comments from the document by not returning
any comments in the parsed data stream. Default: off.

XEC_FEAT_TOKENIZE_WHITESPACE
This sets the default token value for white space preceding markup in
the root element to an explicit white space value. Default: off — white
space is returned as character data.

XEC_FEAT_CDATA_AS_CHARDATA
This returns CDATA in records with a CHARDATA token type. The

Chapter 7. z/OS XML parser API: Assembler 119

XEC_CTL_FEAT

120

content of these records may contain text that would normally have to
be escaped to avoid being handled as markup. Default: off.

XEC_FEAT_SOURCE_OFFSETS
This feature is used to include records in the parsed data stream which

contain offsets to the corresponding structures in the input document.
Default: off.

XEC_FEAT_FULL_END
This feature is used to expand the end tags to include the local name,

prefix and URI corresponding to the gname on the end tag. Default:
off.

If none of the features are required, pass the name of a fullword field
containing zero. Do not construct a parameter list with a zero pointer in it.

return_code
Returned parameter

Type: Integer

Length:
Fullword

The name of a fullword where the service stores the return code.

reason_code
Returned parameter

Type: Integer

Length:
Fullword

The name of a fullword where the service stores the reason code. The reason
code is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

XEC_CTL_LOAD_OSR
Description

This indicates that the caller wants to load and use a given Optimized Schema
Representation (OSR) during a validating parse. If the parse prior to invoking this
operation returned a XRSN_NEED_OSR, this operation will not perform reset and
finish processing.

Syntax

call gxllctl, (PIMA,
ct1_option,
ctl_data,

return_code,
reason_code) ;

Parameters

PIMA
Supplied parameter

Type: Character string

z/0S V2R1.0 XML User's Guide and Reference

XEC_CTL_LOAD_OSR

Length:
Variable

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

ctl_option
Supplied parameter

Type: Integer

Length:
Fullword

The name of fullword containing an integer value initialized to
XEC_CTL_LOAD_OSR.

ctl_data
Supplied and returned parameter

Type: Address

Length:
Fullword (Doubleword)

This indicates that the caller wants to load and use a given Optimized Schema
Representation (OSR) during a validating parse. Once an OSR has been loaded,
it remains in use for all validating parse requests until a different OSR is
provided by calling this service again.

This parameter must contain the address of an area containing information
about the OSR to load. This area is mapped by GXLYXOSR. See |”gxlhxosr.h|
[(GXLYXOSR) - mapping of the OSR control area” on page 218|for more
information about the macro.

return_code
Returned parameter

Type: Integer

Length:
Fullword

The name of a fullword where the service stores the return code.

reason_code
Returned parameter

Type: Integer

Length:
Fullword

The name of a fullword where the service stores the reason code. The reason

code is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

XEC_CTL_QUERY_MIN_OUTBUF
Description

This indicates that the caller is requesting the control service to return the
minimum output buffer size required for subsequent parse to complete without
returning an XRSN_BUFFER_OUTBUF_SMALL reason code. This value is returned
in the XD control block.

Chapter 7. z/OS XML parser API: Assembler 121

XEC_CTL_QUERY_MIN_OUTBUF

122

Syntax

call gxllctl, (PIMA,
ct1_option,
ctl_data,

return_code,
reason_code) ;

Parameters

PIMA
Supplied parameter

Type: Character string

Length:
Variable

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

ctl_option
Supplied parameter
Type: Integer

Length:
Fullword

The name of a fullword containing an integer value initialized to
XEC_CTL_QUERY_MIN_OUTBUE

ctl_data
Supplied and returned parameter

Type: Address

Length:
Fullword (Doubleword)

This parameter must contain the address of a fullword (doubleword) where the
service will store the address of the diagnostic area, which is mapped by macro
GXLYXD. The field XD_MIN_OB contains the minimum output buffer size
required on the next parse. If some failure other than
XRSN_BUFFER_OUTBUF_SMALL occurred prior to this call,
XRSN_CTL_SEQUENCE_INCORRECT will be returned. The XD area will not
be returned.

The diagnostic area resides within the PIMA, and will be overlaid on the next
call to the z/OS XML parser.

return_code
Returned parameter

Type: Integer

Length:
Fullword

The name of the fullword where the service stores the return code.

reason_code
Returned parameter

Type: Integer

z/0S V2R1.0 XML User's Guide and Reference

XEC_CTL_QUERY_MIN_OUTBUF

Length:
Fullword

The name of the fullword where the service stores the reason code. The reason
code is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

XEC_CTL_ENTS_AND_REFS
Description

This indicates that the caller is requesting additional flexibility when processing
character or entity references. When this option is specified, the ctl_data parameter
must also be utilized to specify the specific enhancement being requested. See the
ctl_data section below for more information.

Syntax

call gxllctl, (PIMA,
ct1_option,
ctl_data,

return_code,
reason_code) ;

Parameters

PIMA
Supplied parameter

Type: Character string

Length:
Variable

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

ctl_option
Supplied parameter

Type: Integer

Length:
Fullword

The name of a fullword containing an integer value initialized to
XEC_CTL_ENTS_AND_REFS.

ctl_data
Supplied and returned parameter

Type: Address

Length:
Fullword (Doubleword)

This parameter must contain the address of an area that contains information
about what reference operations are to be processed. This area is mapped by
the XEAR data structure in file GXLYCTL.

return_code
Returned parameter

Type: Integer

Chapter 7. z/OS XML parser API: Assembler 123

XEC_CTL_ENTS_AND_REFS

124

Length:
Fullword

The name of the fullword where the service stores the return code.

reason_code
Returned parameter

Type: Integer

Length:
Fullword

The name of the fullword where the service stores the reason code. The reason
code is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

XEC_CTL_LOAD_FRAG_CONTEXT
Description

This indicates that the caller wants to load fragment context into the z/OS XML
parser. This service allows the caller to load namespace binding information and
fragment paths for document fragment parsing. Namespace binding information is
optional. Fragment path is required . This service must be issued prior to a
XEC_CTL_FRAGMENT_PARSE control operation that enables document fragment
parsing. If fragment context is already loaded from a prior
XEC_CTL_LOAD_FRAG_CONTEXT control operation and this service is called
again, the new fragment context will overlay the previously loaded context. This
control operation will not cause finish/reset processing to take place.

Syntax

call gxllctl, (PIMA,
ctl_option,
ctl_data,

return_code,
reason_code) ;

Parameters

PIMA
Supplied parameter

Type: Character string

Length:
Variable

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

ctl_option
Supplied parameter

Type: Integer

Length:
Fullword

The name of a fullword containing an integer value initialized to
XEC_CTL_LOAD_FRAG_CONTEXT.

z/0S V2R1.0 XML User's Guide and Reference

XEC_CTL_LOAD_FRAG_CONTEXT

ctl_data
Supplied and returned parameter

Type: Address

Length:
Fullword (Doubleword)

This parameter must contain a pointer to where the service will locate the
address of the document fragment context structure, which is mapped by the
macro GXL1CTL (GXL4CTL). The name of the data structure is GXLXFC. This
structure allows the caller to provide the fragment path and namespace
binding information to assist document fragment parsing.

To validate an element during document fragment parsing, the fragment path
represents the path from the root element of the complete document to the root
element of the fragment, which consists of prefixes and localnames. To validate
an attribute during fragment parsing, the fragment path represents the path
from the root element of the complete document to the desired attribute name.
The fragment path is required in order to perform validation in fragment
parsing.

The fragment path syntax is defined below:

FragmentPath ::= ('/' ElementName)* FragmentData
FragmentData ::= '/' ElementName ('/@' AttributeName)?
ElementName ::= QName

AttributeName ::= QName

Namespaces bindings allow unique strings of text that identify a given space
of names to be represented by a prefix. This allows references to elements with
the same name to be differentiated, based on the namespace to which they
belong. These bindings may not be present in the document fragment, and
often these bindings exist in the ancestor elements’ start tag that is not part of
the document fragment. The caller can provide a complete context containing
multiple namespace bindings in the GXLXFC structure. The namespace
binding is optional information.

However, if there is an XML instance document that uses a default namespace,
the caller must still specify a prefix on the element names in the fragment
path. The caller must also specify this prefix along with the namespace URI in
the namespace binding information. The actual prefix does not matter; only the
namespace URI matters, but the prefix will associate each element in the
fragment path with the correct namespace.

Note:

1. All the strings for fragment path and namespace binding passed into the
XEC_CTL_LOAD_FRAG_CONTEXT control call needs to be in the
encoding of the z/OS XML parser configured at initialization time.

2. If the caller disables document fragment parsing, the namespace contexts
loaded through the XEC_CTL_LOAD_FRAG_CONTEXT control call will be
removed and will not be available during the non-fragment parsing mode.

3. When the caller issues a XEC_CTL_LOAD_FRAG_CONTEXT control call to
load namespace contexts, the namespace contexts will be available when
the z/OS XML parser switches into fragment parsing mode. The namespace
contexts will only get unloaded and replaced if the caller terminates the
parser or issues XEC_CTL_LOAD_FRAG_CONTEXT control call again to
load new namespace contexts.

Chapter 7. z/OS XML parser API: Assembler 125

XEC_CTL_LOAD_FRAG_CONTEXT

return_code
Returned parameter

Type: Integer

Length:
Fullword

The name of the fullword where the service stores the return code.

reason_code
Returned parameter

Type: Integer

Length:
Fullword

The name of the fullword where the service stores the reason code. The reason
code is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

XEC_CTL_FRAGMENT_PARSE
Description

This indicates that the caller wants to either enable or disable document fragment
parsing. This service will decide whether to enable or disable document fragment
parsing based on the XFP_FLAGS_FRAGMENT_MODE bit set in the ctl_data
parameter. Document fragment parsing is disabled by default. This control
operation will not cause finish/reset processing to take place. If the caller wants to
parse a new complete XML document, a XEC_CTL_FIN control operation must be
called prior to a new parse request. If any error with return code greater than 4
has occurred during document fragment parsing, a XEC_CTL_FIN control
operation must be issued in order to resume parsing. Calling the XEC_CTL_FIN
control operation will disable the document fragment parsing and unload all
fragment contexts.

Note:

1. Document fragment parsing can only be enabled once before disabling.
Likewise, document fragment parsing can only be disabled once before
enabling.

2. If the caller disables document fragment parsing, the parse will end and the
caller is allowed to parse a new document.

Syntax

call gxllctl, (PIMA,
ctl_option,
ctl_data,

return_code,
reason_code) ;

Parameters

PIMA
Supplied parameter

Type: Character string

126 z/0S V2R1.0 XML User's Guide and Reference

XEC_CTL_FRAGMENT_PARSE

Length:
Variable

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

ctl_option
Supplied parameter

Type: Integer

Length:
Fullword

The name of a fullword containing an integer value initialized to
XEC_CTL_FRAGMENT_PARSE.

ctl_data
Supplied and returned parameter

Type: Address

Length:
Fullword (Doubleword)

This parameter must contain a pointer to where the service will locate the
address of the document fragment parsing structure, which is mapped by the
macro GXLCTL. The name of the data structure is GXLXFP. This structure
allows the caller to specify whether to enable or disable document fragment
parsing through the XFP_FLAGS_FRAGMENT_MODE bit set in the
XFP_FLAGS field. Document fragment parsing is disabled by default.

The XFP_XD_PTR is where the service will store the address of the diagnostic
area, which is mapped by macro GXLYXD. This provides additional
information that can be used to debug problems in data passed to the z/OS
XML parser. The diagnostic area resides within the PIMA, and will be overlaid
on the next call to the z/OS XML parser.

Tips:
¢ To enable document fragment parsing, set the
XFP_FLAGS_FRAGMENT_MODE bit to on.

* To disable document fragment parsing, set the
XFP_FLAGS_FRAGMENT_MODE bit to off.

Note:

1. When the caller validates an attribute during fragment parsing, the
document fragment passed to the parser should contain only the desired
attribute’s value.

2. When the caller re-enables document fragment parsing after it has been
disabled, and without calling load fragment context again, the previous
loaded fragment context will be utilized in this new fragment parse. This
includes the fragment path and any namespace binding information.

3. The OSR must be loaded by way of the XEC_CTL_LOD_OSR control call
prior to enabling fragment parsing.

return_code
Returned parameter

Type: Integer

Length:
Fullword

Chapter 7. z/OS XML parser API: Assembler 127

XEC_CTL_FRAGMENT_PARSE

128

The name of the fullword where the service stores the return code.

reason_code
Returned parameter

Type: Integer

Length:
Fullword

The name of the fullword where the service stores the reason code. The reason

code is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

XEC_CTL_RESTRICT_ROOT
Description

This operation indicates that the caller wishes to restrict the root element name on
the next parse. If the root element name is not any of those listed in the GXLXRR
data area, this call will cause the parse to stop. This operation will reset the PIMA.

Syntax

call gxllctl, (PIMA,
ctl_option,
ctl_data,

return_code,
reason_code) ;

Parameters

PIMA
Supplied parameter

Type: Character string

Length:
Variable

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

ctl_option
Supplied parameter

Type: Integer

Length:
Fullword

The name of the fullword containing an integer value initialized to
XEC_CTL_RESTRICT_ROOT.

ctl_data
Supplied and returned parameter

Type: Address

Length:
Fullword

z/0S V2R1.0 XML User's Guide and Reference

XEC_CTL_RESTRICT_ROOT

This parameter contains the address of an area with information about the
restricted root element. This area is mapped by macro GXLXRR. This provides
a list of names that must contain the name of the root element in order for the
validating parse to succeed.

return_code

Returned parameter
Type: Integer

Length:
Fullword

The name of the fullword where the service stores the return code.

reason_code

Returned parameter
Type: Integer

Length:
Fullword

The name of the fullword where the service stores the reason code. The reason
code is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

XEC_CTL_ERROR_HANDLING
Description

With this control operation, the caller can do the following for a validating parse:

Enable the creation of auxiliary records which can include the location of an
error in the XML document, the string which is in error, and also a possible
expected string.

Enable position indexes to be present in the error location path in order to
facilitate locating the error.

For a non-validating parse, it can be used to:

Enable the ability to continue parsing when an undefined prefix is encountered
on an element or attribute. The “prefix:local name” will be treated as the local
name.

Request an auxiliary information record that contains the tolerated return and
reason codes and the error offset.

Syntax

call gxllctl, (PIMA,
ct1_option,
ctl_data,

return_code,
reason_code) ;

Parameters
PIMA

Supplied parameter
Type: Character string

Chapter 7. z/OS XML parser API: Assembler 129

XEC_CTL_ERROR_HANDLING

Length:
Variable

The name of the Parse Instance Memory Area (PIMA) which has been
previously initialized with a call to the initialization service.

ctl_option
Supplied parameter
Type: Integer

Length:
Fullword

The name of the fullword containing an integer value initialized to
XEC_CTL_ERROR_HANDLING.

ctl_data
Supplied and returned parameter

Type: Address

Length:
Fullword

This parameter contains the address of an area with information about the
error string. This is the XERR data structure mapped by macro GXLXRR.

return_code
Returned parameter

Type: Integer

Length:
Fullword

The name of the fullword where the service stores the return code.

reason_code
Returned parameter

Type: Integer

Length:
Fullword

The name of the fullword where the service stores the reason code. The reason
code is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

The enhanced error information for a validating parse is returned by way of the
XERR_XD_PTR and is where the service will store the address of the diagnostic
area, which is in the macro GXLXRR. The XD_LastOutput field is a pointer to the
data area containing these records. This data area is within the PIMA and is
formatted in the same manner as a normal output buffer.

The XEC_TOLERATED_ERROR auxiliary info record for a non-validating parse is
returned in the output buffer. In the event that source offset auxiliary records are
also being returned, this record will immediately follow those records for the
element or attribute in the output buffer.

130 z/0S V2R1.0 XML User's Guide and Reference

XEC_CTL_ERROR_HANDLING

In addition to enabling or disabling the enhanced error features, this control option
will perform a reset function. The following properties and resources will be reset
by this control option:

* Fragment mode (validating parse only)
e Start of the XML document
* Error state

GXL1INI (GXL4INI) — initialize a parse instance
Description

The GXL1INI (GXL4INI) callable service initializes the PIMA and records the
addresses of the caller's system service routines (if any). The PIMA storage is
divided into the areas that will be used by the z/OS XML parser to process the
input buffer and produce the parsed data stream.

Performance Implications

The initialization of structures used by the z/OS XML parser in the PIMA is only
done once per parse and is therefore unlikely to affect performance. The caller may
choose to reuse the PIMA after each parse to eliminate the overhead of storage
allocation and the page faults that occur when referencing new storage. In this
case, a control operation is required to reset the necessary fields in the PIMA
before parsing can continue.

Syntax

call gx1lini, (PIMA,
PIMA Ten,
ccsid,

feature_flags,
sys_svc_vector,
Sys_svc_parm,
return_code,
reason_code)

Parameters

PIMA
Supplied parameter

Type: Character string

Length:
determined by the PIMA_len parameter

The name of the Parse Instance Memory Area (PIMA). The PIMA must be
aligned on a doubleword boundary, otherwise, results are unpredictable. See
the [“Usage notes” on page 134 below for additional details on the use of this
area.

PIMA_len
Supplied parameter

Type: Integer

Length:
Fullword (Doubleword)

Chapter 7. z/OS XML parser API: Assembler 131

GXL1INI (GXL4INI)

132

The name of an area containing the length of the Parse Instance Memory Area.
This service validates the length of this area against a minimum length value.
The minimum length of the PIMA depends on whether or not validation will
be performed during the parse. This minimum length value can be found in:

¢ XEC_NVPARSE_MIN_PIMA_SIZE (non-validating parse)
¢ XEC_VPARSE_MIN_PIMA_SIZE (validating parse)

ccsid
Supplied parameter

Type: Integer

Length:
Fullword

The Coded Character Set IDentifier (CCSID) that identifies the document’s
character set. The CCSID value in this parameter will override any character
set or encoding information contained in the XML declaration of the document.
A set of CCSID constants for supported encodings has been declared in
GXLYXEC. See|Appendix I, “Supported encodings,” on page 239 for a full list
of supported encodings.

feature_flags
Supplied parameter

Type: Integer

Length:
Fullword

The name of a fullword that contains an integer value representing one or
more of the following z/OS XML parser features. OR these flags together as
needed to enable features. Choose any of the following:

¢ XEC_FEAT_STRIP_COMMENTS - effectively strip comments from the
document by not returning any comments in the parsed data stream.

e XEC_FEAT_TOKENIZE WHITESPACE - set the default token value for
white space preceeding markup within the context of the root element to an
explicit white space value. Use this value in conjunction with the special
xml:space attribute to determine how such white space gets classified.

e XEC_FEAT_CDATA_AS _CHARDATA - return CDATA in records with a
CHARDATA token type. The content of these records may contain text that
would normally have to be escaped to avoid being handled as markup.

* XEC_FEAT_JST_OWNS_STORAGE - allocate storage as Job Step Task (JST)
related instead of task related. See the [“Usage notes” on page 134 below for
more information.

¢ XEC_FEAT_RECOVERY - this turns on the recovery routine.

Note: The following only applies when the feature flag is ON:

— If running in SRB mode, an error message will be returned to the caller.
— If a parse request is made in SRB mode, the parse will fail.

— If there is an FRR, an error message will be returned to the caller during
the parse step.

* XEC_FEAT_SOURCE_OFFSETS - this includes records in the parsed data
stream which contain offsets to the corresponding structures in the input
document.

* XEC_FEAT_FULL_END - this expands the end tags to include the local
name, prefix and URI corresponding to the gname on the end tag.

z/0S V2R1.0 XML User's Guide and Reference

GXL1INI (GXL4INI)

¢ XEC_FEAT_VALIDATE - this initializes a parse instance that allows for
validation during parsing. See the usage notes below for details on
validation.

¢ XEC_FEAT_SCHEMA_DISCOVERY - report schema location information
and allow for an OSR to be loaded once the information has been reported.
XEC_FEAT_VALIDATE must also be enabled, otherwise GXLI1INI (GXL4INI)
will return an error. See |”Usage notes” on page 137| for more information on
schema discovery. Default: off

¢ XEC_FEAT_XDBX_INPUT - indicates that the data presented to z/OS XML
in the input buffer is in XDBX binary XML form, rather than conventional
text. This feature requires that XEC_FEAT_VALIDATE is also set, and that

the encoding specified in the CCSID parameter is UTF-8. See
on page 134

n page 134{for more information on XDBX input streams. Default: off.

Note: By using the values of off (zero), W3C XML compliant output is
generated. Turning on options XEC_FEAT_STRIP_COMMENTS,
XEC_FEAT_TOKENIZE_WHITESPACE and
XEC_FEAT_CDATA_AS_CHARDATA will cause the output to vary from
standard compliance.

If none of the features are required, pass the name of a fullword field
containing zero. Do not construct a parameter list with a zero pointer in it.

sys_svc_vector
Supplied parameter

Type: Structure

Length:
Variable

The name of a structure containing a count of entries that follow and then a
list of 31 (64) bit pointers to system service routines. Specify the name of a
word containing 0 if no services are provided. See the [Chapter 8, “z/0S XML]
[System Services exit interface,” on page 145|chapter for more details.

sys_svc_parm
Supplied parameter

Type: Address

Length:
Fullword (Doubleword)

The name of a parameter which is passed to all system service exits. This
provides for communication between the z/OS XML parser caller and its exit
routines. Specify the name of a location containing 0 if no parameter is
required for communication.

return_code
Returned parameter

Type: Integer

Length:
Fullword

The name of a fullword where the service stores the return code.

reason_code
Returned parameter

Type: Integer

Chapter 7. z/OS XML parser API: Assembler 133

GXL1INI (GXL4INI)

Length:
Fullword

The name of a fullword where the service stores the reason code. The reason
code is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.
Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The
return and reason code are both also set as output parameters. The value of the
reason code is undefined when the return code has no associated reasons. Return
and reason codes are defined in macro GXLYXR. For reason code descriptions, also
see[Appendix B, “Reason codes listed by value,” on page 161)

Example

For an AMODE 31 example using this callable service, see [‘GXL1INI example” on|
page 222] For an AMODE 64 example using this callable service, see [“GXLAIN]|
example” on page 226,

Usage notes

e The z/OS XML parser creates a variety of control blocks, tables, stacks, and
other structures in the Parse Instance Memory Area. The caller must provide an
area that is at least as large as constant XEC_MIN_PIMA_SIZE. In the event
that this area is not large enough to parse the input document, the z/OS XML
parser will allocate additional memory using either the default memory
allocation mechanism or the memory allocation exit that the caller has provided.

* When the PIMA is reused for subsequent parses, the same features, ccsid and
service exits will apply. If any of these values need to change, you should
terminate the parse instance (call GXLITRM (GXL4TRM)) and call GXL1INI
(GXL4INI) again with the options you require.

* When the XEC_FEAT_TOKENIZE_WHITESPACE feature is set, the default
classification for white space that precedes markup within the context of the root
element will be XEC_TOK_WHITESPACE. This token type is returned if either
the white space being parsed does not have an xml:space context, or if the
xml:space setting is 'default’. When the tokenize white space feature is not
enabled, or if the white space does not precede markup, this white space will be
returned in the parsed data stream containing character data with a token type
of XEC_TOK_CHAR_DATA.

* The XEC_FEAT_JST_OWNS_STORAGE feature only applies to callers running
in non-cross memory task mode who take the option of allowing the z/OS XML
parser to allocate additional storage as needed. This feature should be specified
when PIMAs are used on multiple tasks in order to prevent task termination
from causing storage extents to be freed before the z/OS XML parser is done
using them.

* Before requesting the initialization of a validating parse instance, the validation
function must be loaded — either through one of the methods that the system
provides, or by the z/OS XML load service. Failure to do so will result in an
error indicating that the function is not available. See the description of
[“GXL1LOD (GXLALOD) — load a z/OS XML function” on page 142| for more
information.

134 z/0S V2R1.0 XML User's Guide and Reference

GXL1INI (GXL4INI)

* Be sure that the size of the PIMA provided is large enough for the XML
processing function, either validating or non-validating parse, that will be
performed. Also, make sure that there is an appropriate minimum PIMA size
constant defined for each in GXLYXEC.

¢ The performance of a validating parse will be best when the parsed document is
in the UTF-8 encoding. The other encodings supported by z/OS XML System
Services are also supported during a validating parse, but there is significant
additional overhead that will impact performance.

» For usage notes on parsing XDBX input streams, see|“Parsing XDBX input]
[streams” on page 47

GXL1PRS (GXL4PRS) — parse a buffer of XML text
Description

The GXL1PRS callable service parses a buffer of XML text and places the result in
an output buffer.

Performance Implications

Ideal performance will be obtained when the PIMA is sufficiently large to contain
all the needed data structures, and the input and output buffers are large enough
to process the entire XML document. During the parsing process, the z/OS XML
parser constructs persistent information in the PIMA that can be reused within a
parse instance. If the caller is going to process multiple documents that contain
similar sets of symbols (namespaces and local element and attribute names in
particular), then reusing the PIMA will improve performance during the processing
of subsequent documents. If this behavior is not required, the PIMA should be
cleaned up by calling GXLITRM (GXL4TRM) and reinitialized by calling GXL1INI
(GXLA4INI) before using the PIMA for another parse request.

Syntax

call gxllprs, (PIMA,

option_flags,
input_buffer_addr,
input_buffer bytes left,
output_buffer_addr,
output_buffer_bytes_left,
return_code,

reason_code)

Parameters

PIMA
Supplied parameter

Type: Character string

Length:
Variable

The name of the Parse Instance Memory Area (PIMA which has been
previously initialized with a call to GXL1INI (GXL4INI)).

option_flags
Supplied parameter

Type: Integer

Chapter 7. z/OS XML parser API: Assembler 135

GXL1PRS (GXL4PRS)

Length:
Fullword

Specify a word of zeroes for this parameter. In the future, this field will allow
options to be compatibly added to the service.

input_buffer_addr
Supplied and returned parameter

Type: Address

Length:
Fullword (Doubleword)

The name of a fullword (doubleword) that contains the address of the buffer
with the XML text to parse. The z/OS XML parser updates this parameter to
provide important return information when control returns to the caller. See

the [“Usage notes” on page 137 below for details.

input_buffer_bytes_left
Supplied and returned parameter

Type: Integer

Length:
Fullword (Doubleword)

The name of a fullword (doubleword) that contains the number of bytes in the
input buffer that have not yet been processed. The z/OS XML parser updates
this parameter to provide important return information when control returns to
the caller. See the [“Usage notes” on page 137|for details.

output_buffer_addr
Supplied and returned parameter

Type: Address

Length:
Fullword (Doubleword)

The name of a fullword (doubleword) that contains the address of the buffer
where the z/OS XML parser should place the parsed data stream. The z/OS
XML parser updates this parameter to provide important return information
when control returns to the caller. See the [“Usage notes” on page 137| for
details.

output_buffer_bytes_left
Supplied and returned parameter

Type: Integer

Length:
Fullword (Doubleword)

The name of a fullword (doubleword) that contains the number of available
bytes in the output buffer. When the z/OS XML parser returns control to the
caller, this parameter will be updated to indicate the number of unused bytes
in the output buffer. This buffer must always contain at least a minimum
number of bytes as defined by the XEC_MIN_OUTBUEF_SIZE constant,
declared in macro GXLYXEC. This service will validate the length of this area
against this minimum length value.

return_code
Returned parameter

136 z/0S V2R1.0 XML User's Guide and Reference

GXL1PRS (GXL4PRS)

Type: Integer

Length:
Fullword

The name of a fullword where the service stores the return code.

reason_code
Returned parameter

Type: Integer

Length:
Fullword

The name of a fullword where the service stores the reason code. The reason
code is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.
Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The
return and reason code are both also set as output parameters. The value of the
reason code is undefined when the return code has no associated reasons. Return
and reason codes are defined in macro GXLYXR. For reason code descriptions, also
see|Appendix B, “Reason codes listed by value,” on page 161]

Example

For an AMODE 31 example using this callable service, see ["GXL1PRS example” on|
page 223]For an AMODE 64 example using this callable service, see ["GXLAPRY
example” on page 227

Usage notes

* When the z/OS XML parser returns successfully to the caller, the input and
output buffer addresses will be updated to point to the byte after the last byte
successfully processed. The input_buffer_bytes_left and output_buffer_bytes_left
parameters will also be updated to indicate the number of bytes remaining in
their respective buffers. In the event of an error caused by a problem with the
document being parsed, the input buffer address will point to the byte of the
input stream where the problem was detected, and the associated bytesleft value
will indicate the same position in the buffer. An error record will be written to
the parsed data stream indicating the nature of the problem, and the output
buffer address and bytesleft fields will point to the next available byte, as in the
success case. See [Chapter 4, “Parsing XML documents,” on page 11| for more
information about how input and output buffers are managed between the caller
and z/0OS XML parser.

* In cases where parsing terminates because of an error, the z/OS XML parser will
often have partially processed an item from the input document before returning
to the caller. The caller has the option of retrieving the address of the diagnostic
area using the GXL1CTL (GXL4CTL) service. The XD_LastRC/XD_LastRsn
return/reason code combination will contain an indication of the item being
parsed. Retrieving the reason code in this manner is an example of the indirect
method for obtaining a specific reason code.

e The z/OS XML parser will always check that the output buffer length passed to
it is greater than the required minimum (XEC_MIN_OUTBUEF_SIZE). If this
minimum length requirement is not met, the z/OS XML parser will return with

Chapter 7. z/OS XML parser API: Assembler 137

GXL1PRS (GXL4PRS)

138

a return/reason code of XRC_FAILURE/XRSN_BUFFER_OUTBUF_SMALL.
Output buffer spanning will only occur if the caller meets the minimum output
buffer length requirement when the z/OS XML parser is invoked. Once parsing
begins, and the buffer info record has been written to the output buffer, buffer
spanning is enabled. The caller will then receive an end-of-output-buffer
indication when the end of the output buffer is reached. In addition, many
non-splittable records will be larger than the minimum output buffer size. If
there is not enough space in the output buffer for the first record, then
XRC_FAILURE/XRSN_BUFFER_OUTBUF_SMALL will be returned. Therefore,
it's recommended that the output buffer sizes should be large enough to fit the
largest record that is expected to be encountered.

* When schema discovery is enabled, XRSN_NEED_OSR may be returned from a
parse request. This signifies that the parser has finished parsing the root element
start tag and has returned enough information to identify a schema. At this
point, a load OSR operation may be performed without the operation resetting
the parser. If a reset is intended, then an explicit call to GXL1CTL (GXL4CTL)
with the XEC_CTL_FIN option must be made prior to the next parse.

* When the z/OS XML parser returns a failure to the caller, GXL1CTL (GXL4CTL)
must issue the control option XEC_CTL_FIN in order to continue document
fragment parsing or non-fragment parsing.

* When the z/OS XML parser returns successfully to the caller, it indicates the end
of the provided input buffer was reached and the parsed XML data is
well-formed. When document fragment parsing is enabled, this service will
confine well-formedness checking to the scope of the document fragment. This
behavior is enabled and disabled through use of the
XEC_CTL_FRAGMENT_PARSE control operation.

e If the caller disables fragment parsing by calling GXL1CTL (GXL4CTL) with the
control option XEC_CTL_FRAGMENT_PARSE, and the z/OS XML parser
returns to the input or output buffer during document fragment parsing, an
error will occur.

* If the caller performs validation in fragment parsing, the input buffer must be
restricted to a single element and its descendants, optionally followed by
comments and processing instructions.

¢ If the caller performs document fragment parsing on an attribute, the input
buffer should only contain the desired attribute’s value. See the following
example:

XML Document: <root> <pfx:1n attr="attributeValue"/> </root>
Fragment Path = /root/pfx:1n/@attr
Input Buffer = attributeValue

GXL1QXD (GXL4QXD) — query an XML document
Description

This service allows a caller to obtain the XML characteristics of a document. The
XML characteristics are either the default values, the values contained in an XML
declaration or a combination of both.

Performance Implications

There are no performance implications.

z/0S V2R1.0 XML User's Guide and Reference

GXL1QXD (GXL4QXD)

Syntax

call gx1lgxd, (work_area,
work_area_length,
input_buffer,
input_buffer_Tlength,
return_data,
return_code,
reason_code)

Parameters

work_area
Supplied parameter

Type: Character string

Length:
Variable

The name of a work area. The work area must be aligned on a doubleword
boundary. If not on a doubleword boundary, results are unpredictable. See the
[“Usage notes” on page 140| below for additional details on the use of this area.

work_area_len
Supplied parameter

Type: Integer

Length:
Fullword (Doubleword)

The name of an area containing the length of the work area. The minimum
length of this area is declared as a constant XEC_MIN_QXDWORK_SIZE in
macro GXLYXEC. This service validates the length of this area against this
minimum length value.

input_buffer
Supplied parameter

Type: Character string

Length:
Variable

The name of an input buffer containing the beginning of the XML document to
process. See the ["Usage notes” on page 140| below for details.

input_buffer_length
Supplied parameter

Type: Integer

Length:
Fullword (Doubleword)

The name of an area containing the length of the input buffer.

return_data
Returned parameter

Type: Address

Length:
Fullword (Doubleword)

Chapter 7. z/OS XML parser API: Assembler 139

GXL1QXD (GXL4QXD)

140

The name of a fullword (doubleword) where the service will return the address
of the data which describes the XML document characteristics. This return
information will contain values that are either extracted from the XML
declaration or defaulted according to the XML standard. This return area is
mapped by macro GXLYQXD (see [‘exlhgxd.h (GXLYQXD) - mapping of the
butput from the query XML declaration service” on page 216), and is located
within the work area specified by the work_area parameter. The caller must
not free the work_area until it is done referencing the data returned from this
service.

return_code
Returned parameter

Type: Integer

Length:
Fullword
The name of a fullword where the service stores the return code.

reason_code
Returned parameter

Type: Integer
Length:
Fullword

The name of a fullword where the service stores the reason code. The reason
code is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.
Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The
return and reason code are both set as output parameters. The value of the reason
code is undefined when the return code has no associated reasons. Return and
reason codes are defined in macro GXLYXR (see [“gxlhxr.h (GXLYXR) - defines the]
freturn codes and reason codes” on page 218). For reason code descriptions, also
see[Appendix B, “Reason codes listed by value,” on page 161

Example

Usage notes

* The input buffer passed to this service must contain the beginning of the XML
document to process. This service will look for any XML declaration that is
present and extract the version, encoding, and standalone value that are present.
In the event that the document does not contain an XML declaration, or a given
value is missing from the declaration, this service will return an appropriate
default, as specified by the XML standard. On success, the return data address
for this service will contain a pointer into the work area where the return data
has been collected.

* Unlike the GXL1PRS (GXL4PRS) or GXL1CTL (GXL4CTL) services that must be
performed within a parse instance, this service does not require any of the
internal resources that the z/OS XML parser creates in the PIMA during
initialization. It does not advance the input pointer or modify the state of the

z/0S V2R1.0 XML User's Guide and Reference

GXL1QXD (GXL4QXD)

parse in any way. It is a simple standalone service that allows a caller to query
important information about the document before establishing a parse instance
and performing the parse.

* Buffer spanning is not supported by this service, as it is by GXL1PRS
(GXLA4PRS). If either the input buffer or the work area are too small, this service
will terminate with an appropriate return/reason code.

¢ This service is useful for checking to see if a conversion to one of the supported
encodings is required before parsing the document.

* Encoding names supported include the IANA recommended names which have
corresponding IBM CCSID values.

* This service does not provide full well-formedness checking of the input it
processes.

GXL1TRM (GXL4TRM) — terminate a parse instance
Description

The GXL1TRM callable service releases all resources obtained (including storage)
by the z/OS XML parser and resets the PIMA so that it can be re-initialized or
freed.

Performance Implications

There are no performance implications.

Syntax

call gx11trm, (PIMA,
return_code,
reason_code)

Parameters

PIMA
Supplied parameter

Type: Character string

Length:
Variable

The name of the Parse Instance Memory Area (PIMA which has been
previously initialized with a call to GXL1INI (GXL4INI)).

return_code
Returned parameter

Type: Integer

Length:
Fullword

The name of a fullword where the service stores the return code.

reason_code
Returned parameter

Type: Integer

Chapter 7. z/OS XML parser API: Assembler 141

GXL1TRM (GXL4TRM)

142

Length:
Fullword

The name of a fullword where the service stores the reason code. The reason
code is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.
Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The
return and reason code are both also set as output parameters. The value of the
reason code is undefined when the return code has no associated reasons. Return
and reason codes are defined in macro GXLYXR. For reason code descriptions, also
see[Appendix B, “Reason codes listed by value,” on page 161)

Example

For an AMODE 31 example using this callable service, see [‘GXL1TRM example”|
on page 223] For an AMODE 64 example using this callable service, see

“GXLATRM example” on page 228 |

Usage notes

Termination can be requested any time the caller gets control back from the z/OS
XML parser. This service does not free the Parse Instance Memory Area (PIMA) as
a part of termination. If the caller's recovery gets control while a parse is still in
progress, the caller should invoke this termination service to clean up resources.

GXL1LOD (GXL4LOD) — load a zZ/OS XML function

Description

Load a module that implements a z/OS XML function into storage.
Performance Implications

None.

Syntax

call gx11lod(function_code,
function data,
return_code,
reason_code)

Parameters

function_code
Supplied parameter

Type: Integer

Length:
Fullword

This parameter identifies the z/OS XML function to load. It is the name of a
fullword that contains an integer value representing one of the following
functions:

z/0S V2R1.0 XML User's Guide and Reference

GXL1LOD (GXLA4LOD)

XEC_LOD_VPARSE
The validating parse function.
See the GXLYXEC macro for the list of function code constants.

function_data
Supplied parameter

Type: Address

Length:
Fullword (doubleword)

Specify a word of zeroes for this parameter.

return_code
Returned parameter

Type: Integer

Length:
Fullword

The name of a fullword where the service stores the return code.

reason_code
Returned parameter

Type: Integer

Length:
Fullword

The name of a fullword where the service stores the reason code. The reason
code is only relevant if the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.
Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The
return and reason code are both set as output parameters. The value of the reason
code is undefined when the return code is 0 (XRC_SUCCESS). Return and reason
codes are defined in macro GXLYXR, and are dependent on the control function
specified by the caller. For reason code descriptions, also see[Appendix B, “Reason]
fcodes listed by value,” on page 161.|

Usage notes

This load step is not required when performing a non-validating parse. This
operation is only required when using the validating parser. The caller does have
the option of loading the load module for the specified function without using this
service - either through the z/OS LOAD macro, or by putting it in LPA or the
extended LPA. Both the LOAD macro and calls to this service are not allowed
when running in an SRB. The use of either interface must be performed in the task
before entering SRB mode.

If the required z/OS XML function is made available, either by LOADing the

executable load module for it or putting the load module in LPA, this service is not
required. Documentation on the LOAD macro can be found in [z/OS MVS

Chapter 7. z/OS XML parser API: Assembler 143

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2A981/CCONTENTS?SHELF=IEA2BK80&DN=SA22-7607-13&DT=20080119082809

GXL1LOD (GXL4LOD)

144

[Programming: Assembler Services Reference, Volume 2, and information on how to
load modules into LPA can be found in [z/OS MVS Initialization and Tuning|

The load modules associated with each function are as follows:

Table 31. Load modules

Function code Function performed Load module name

XEC_LOD_VPARSE validating parser function GXLIMODV

There is no unload service to perform the converse of this function, and none of
the other z/OS XML System Services cause the z/OS XML parser to be unloaded.
The z/OS XML parser load module will remain in the caller's address space even
if the parser is terminated or reset. If multiple parse requests are to be performed
in the same address space, make sure to load the z/OS XML parser only once,
regardless of whether those parse requests are performed using the same parse
instance (PIMA) or not.

z/0S V2R1.0 XML User's Guide and Reference

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2A981/CCONTENTS?SHELF=IEA2BK80&DN=SA22-7607-13&DT=20080119082809
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2E151/CCONTENTS?SHELF=IEA2BK80&DN=SA22-7591-06&DT=20080119071214
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2E151/CCONTENTS?SHELF=IEA2BK80&DN=SA22-7591-06&DT=20080119071214

Chapter 8. Z/OS XML System Services exit interface

The system services exit interface defines a series of exits that give the original
caller of the GXL1PRS (GXL4PRS) service control over the way the z/OS XML
parser acquires/releases resources, and over certain parser operations. The
interface is implemented as a vector of addresses to routines that perform these
operations. The first word in the vector is a count of the number of addresses
which follow — both NULL addresses indicating that a specific exit is not present,
and non-NULL addresses. If this count is zero, then the z/OS XML parser will use
default services. Similarly, an entry in the system service vector may be left NULL,
and the default service that corresponds to that entry will be used. For the storage
allocation and deallocation exits, either both or neither exit must be specified. The
addresses of the routines are 4 bytes when in AMODE 31 and 8 bytes when in
AMODE 64. The mapping macro GXLYXSV (see [“exlhxsv.h (GXLYXSV) - mapping]
lof the system service vector” on page 218) is available to help set up this structure.

Exit functions

The system services exit interface contains exits to perform the following functions:
* Allocate memory
¢ Free memory

¢ String identifier service — this is used to create a unique 4 byte numerical value
(StringID) that corresponds to a string parsed from the document. This exit
allows the caller to control the individual StringID values that the z/OS XML
parser uses and serves as an efficient mechanism to communicate these values
between caller and parser. If no StringID service is specified, StringlDs are not
exploited by the z/OS XML parser and the parsed data stream will contain only
length/value pairs for all parsed strings.

These exits are all passed the address of a system service work area. This work
area is storage that was obtained by the caller and can be used to store any
information which may make communication between the caller and the exits
easier.

Common register conventions

The following are common register conventions for all of the system service
interface exits:

Input registers

When the z/OS XML parser invokes an exit, these registers have the following
meaning;:

Table 32. System services input register conventions

Register Contents
1 Address of a standard parameter list containing 31 (64) bit
addresses.
13 Address of a 72 (144) byte save area.
14 Return address

© Copyright IBM Corp. 2006, 2013 145

146

Table 33. System services input access register conventions

Access Register Contents

0-15 Unpredictable

Output registers

When an exit returns to the z/OS XML parser, these registers have the following
meaning:

Table 34. System services output register conventions

Register Contents
0-1 Unpredictable
2-13 Unpredictable
14 Return address
15 Unpredictable

Table 35. System services output access register conventions

Register Contents

0-15 Unpredictable

The z/OS XML parser saves all general purpose and access registers prior to
calling the user exit. The user exit must simply return to the address in register 14.
The save area provided can be used for any needs of the exit.

Environmental requirements

The system services exit interface exits are called in the same environment in
which the z/OS XML parser was invoked. This means the following:

Minimum authorization
any state and any PSW key

Dispatchable unit mode
Task or SRB

Cross memory mode
Any PASN, any HASN, any SASN

AMODE
31-bit (64-bit)

ASC mode

primary
Interrupt status

enabled for I/O and external interrupts
Locks no locks held

Control parameters
Control parameters and all data areas the parameter list points to are
addressable from the current primary address space.

Restrictions

These exit routines must not call any of the services provided in the z/OS XML
parser AP, either directly or indirectly.

z/0S V2R1.0 XML User's Guide and Reference

These exit routines are required to use linkage OS. As a result, they will need to be
written in assembler and not C or C++.

The two storage exits, ["GXLGST31 (GXLGST64) — get memory”| and ["GXLFST31|
[(GXLFST64) — free memory” on page 149 must be called together. They cannot be
called independently of one another.

Although the actual name of the entry points to each of these exit services may be
anything the caller wishes, the z/OS XML parser will call these services as if they
had the interfaces listed below.

GXLGST31 (GXLGST64) — get memory
Description
This service allocates an area of memory of the size requested by the z/OS XML
parser. The z/OS XML parser requests memory in large quantities and manages
sub-allocations of this memory within the parser.
Performance Implications

There are no performance implications.

Syntax

call gxlgst31,(sys_svc_parm,
memory_addr,
memory_len,
exit_diag_code,
return_code,
reason_code)

Parameters

Sys_svc_parm
Supplied parameter

Type: Address

Length:
Fullword (Doubleword)

The address of the system service parameter (or zero) that was passed to the
z/0OS XML parser at initialization time.

memory_addr
Returned parameter

Type: Address

Length:
Fullword (Doubleword)

The address of a fullword (doubleword) where the memory allocation exit
should store the address of the allocated memory. If the caller wants to
terminate the parse, then it should set a nonzero return code.

memory_len
Supplied and Returned parameter

Type: Integer

Chapter 8. z/OS XML System Services exit interface ~ 147

GXLGST31 (GXLGST64)

148

Length:
Fullword (Doubleword)

A fullword that contains the length of the memory area requested by the z/OS
XML parser. The exit is allowed to return an area of greater size and set this
parameter to the length returned.

exit_diag_code
Returned parameter

Type: Integer

Length:
Fullword (Fullword)

The name of a fullword where the exit stores any diagnostic information
(usually a reason code). This is stored in the diagnostic area and made
available on the GXL1CTL (GXL4CTL) call.

return_code
Returned parameter

Type: Integer

Length:
Fullword

The name of a fullword where the exit service stores the return code.

reason_code
Returned parameter

Type: Integer

Length:
Fullword

The name of a fullword where the exit service stores the reason code.
Return and Reason Codes:

The z/OS XML parser uses the convention that the exit will provide a return code
value of zero when successful. Any nonzero value indicates failure. If a nonzero
return code is provided by the exit, the z/OS XML parser does not look at the
reason code. Instead, the z/OS XML parser saves the reason code, along with the
return code and the diagnostic code, in the extended diagnostic area so that the
caller of the z/OS XML parser has access to it by calling GXL1CTL (GXLACTL).
The z/OS XML parser will provide return and reason codes to the caller in the
event of a failure by the exit, or if the parser detects a problem with the storage
returned from the exit.

For reason code descriptions, see |[Appendix B, “Reason codes listed by value,” on|

Example

For an example using this exit service, see |"GXLEGTM (GXLGST example)” on|

These examples are located in SYS1.SAMPLIB .

Default Implementation

If the exit is not provided, then the subpool used will be as follows:

z/0S V2R1.0 XML User's Guide and Reference

GXLGST31 (GXLGST64)

¢ If running in SRB or cross memory mode, subpool 129 will be used. This is JST
related and cannot be freed by unauthorized callers. The key will be the same as
the key at the time the z/OS XML parser is invoked.

* If running in task mode (PSATOLD not zero), with
PRIMARY=SECONDARY=HOME, then the subpool chosen will depend on the
authorization state of the caller and on the specification of the
XEC_FEAT_JST_OWNS_STORAGE feature on the GXL1INI (GXL4INI) call. If the
caller is running in key 0-7 or supervisor state, they will be considered
authorized.

— Authorized and JST requested — subpool 129
— Authorized and JST not requested — subpool 229
— Unauthorized and JST requested — subpool 131

— Unauthorized and JST not requested — subpool 0

Note: If running on a subtask which is sharing subpool 0, then this storage
will be owned by the task that owns subpool 0.

These choices of subpool will eliminate the possibility of the z/OS XML parser
running in an authorized state while using problem key storage which could be
freed and reallocated.

The CONTROL setting will be AUTH for authorized callers. This prevents the
storage from being unallocated by an unauthorized caller in the same address
space. The storage will be allocated in the caller's key.

GXLFST31 (GXLFST64) — free memory
Description

This service frees an area of memory previously obtained by the GXLGST31
(GXLGST64) service.

Performance Implications
There are no performance implications.

Syntax

call gx1fst31,(sys_svc_parm,
memory_addr,
memory_len,
exit_diag_code,
return_code
reason_code)

Parameters

sys_svc_parm
Supplied parameter

Type: Address

Length:
Fullword (Doubleword)

The address of the system service parameter that was passed to the z/OS XML
parser at initialization time.

Chapter 8. z/OS XML System Services exit interface 149

GXLFST31 (GXLFST64)

memory_addr
Supplied parameter

Type: Address

Length:
Fullword (Doubleword)

The address of a fullword (doubleword) that contains the address of the
memory to be freed.

memory_len
Supplied parameter

Type: Integer

Length:
Fullword (Doubleword)

A fullword (doubleword) that contains the length of the memory to be freed.
Memory will always be freed in the same quantities under which it was
allocated.

exit_diag_code
Returned parameter

Type: Integer

Length:
Fullword

The name of a fullword where the exit can store any diagnostic information
(usually a reason code).

return_code
Returned parameter

Type: Integer

Length:
Fullword

The name of a fullword where the exit service stores the return code.

reason_code
Returned parameter

Type: Integer

Length:
Fullword

The name of a fullword where the exit service stores the reason code.
Return and Reason Codes:

The z/OS XML parser uses the convention that the exit will provide a return code
value of zero when successful. Any nonzero value indicates failure.

For reason code descriptions, see |[Appendix B, “Reason codes listed by value,” on|

150 z/0S V2R1.0 XML User's Guide and Reference

GXLFST31 (GXLFST64)

Example

For an example using this exit service, see |"GXLEFRM (GXLFST example)” on|
These examples are located in SYS1.SAMPLIB .

Default Implementation

The z/OS XML parser will free all memory obtained. Memory is freed in the same
quantities under which it was allocated. See the MVS assembler services reference
(SA22-7606) for more details on the STORAGE macro.

GXLSYM31 (GXLSYM64) — StringID service
Description

This service accepts an input string and performs a lookup for its corresponding
symbol, which is identical to the string itself. If the symbol has been located, the
exit returns the StringID associated with the symbol. If the string does not have a
defined symbol, a symbol is created for the string and a StringID is assigned to it.
The StringID is then returned to the z/OS XML parser.

Performance Implications

There are no performance implications.

Syntax

call gxlsym3l,(sys_svc_parm,
string,
string_Ten,
string_id,
cecsid,

exit_diag_code,
return_code)

Parameters

sys_svc_parm
Supplied parameter

Type: Address

Length:
Fullword (Doubleword)

The address of the system service parameter that was passed to the z/OS XML
parser at initialization time.

string
Supplied parameter

Type: Character string

Length:
determined by the string_len parameter

The string to return an ID for. The length of the string is variable, and is
specified by the string len parameter.

Chapter 8. z/OS XML System Services exit interface 151

GXLSYM31 (GXLSYM64)

string_len
Supplied parameter

Type: Integer

Length:
Fullword

A fullword that contains the length of the string pointed to by the string
parameter.

string_id
Returned parameter

Type: Unsigned integer

Length:
Fullword

The numeric identifier for the string. The range of valid values is 1 to 2 GB - 1.
The value zero is reserved for use by the z/OS XML parser.

ccsid
Supplied parameter

Type: Integer

Length:
Fullword

The Coded Character Set IDentifier (CCSID) that identifies the character set of
the string. The z/OS XML parser will provide the same CCSID in this
parameter that the caller of the parser specified at parser initialization time.

exit_diag_code
Returned parameter

Type: Integer

Length:
Fullword

The name of a fullword where the exit can store any diagnostic information
(usually a reason code). This will be stored in the diagnostic area and made
available on the GXL1CTL (GXL4CTL) call.

return_code
Returned parameter

Type: Integer

Length:
Fullword

The name of a fullword containing the return code. A return code value of zero
means success; any nonzero return code indicates failure.

Return Codes:

The z/OS XML parser uses the convention that the exit will provide a return code
value of zero when successful. Any nonzero value indicates failure. If a nonzero
return code is provided by the exit, the z/OS XML parser saves it in the extended
diagnostic area so that the caller of the parser has access to it by calling GXL1CTL
(GXLACTL).

152 2/0S V2R1.0 XML User's Guide and Reference

GXLSYM31 (GXLSYM64)

Example

For an example of using this exit service, see|"GXLSYM example” on page 231.|
These examples are located in SYS1.SAMPLIB .

Default Implementation

There is no default implementation. If this exit is not specified by the caller,
StringIDs are not used by the z/OS XML parser. Length/value pairs representing
all strings from the XML text are passed through to the parsed data stream for
return to the caller. See [“String Identifiers” on page 38| for more details about
length/value pairs and StringIDs in the parsed data stream.

GXLSTRI — StringID service for Language Environment and Metal C
Description

This service provides a combination Language Environment and Metal C StringID
service exit for the z/OS XML parser and the OSR generator.

Performance Implications
There are no performance implications.

Syntax

call gx1stri,(sys_svc_parm,
string,
str_len,
stringlID,
ccsid,
diag_code,
return_code)

Parameters

sys_svc_parm
Supplied parameter

Type: Address

Length:
Fullword (Doubleword)

A pointer to the address of the storage to be used for this exit.

string
Supplied parameter

Type: Character string

Length:
determined by the str_len parameter

The string passed in from the OSR generator.

str_len
Supplied parameter

Type: Integer

Chapter 8. z/OS XML System Services exit interface 153

GXLSTRI

Length:
Fullword

The value of the string length passed in from the OSR generator.

stringID
Returned parameter

Type: Unsigned integer

Length:
Fullword

The value of the StringlID set by this exit.

ccsid
Supplied parameter

Type: Integer

Length:
Fullword

The Coded Character Set Identifier passed in from the OSR generator.

diag_code
Returned parameter

Type: Integer

Length:
Fullword

The diagnostic code set by this exit.

return_code
Returned parameter

Type: Integer

Length:
Fullword

The return code set by this exit.

Return Codes:

The z/OS XML parser uses the convention that the exit will provide a return code
value of zero when successful. Any nonzero value indicates failure. If a nonzero

return code is provided by the exit, the z/OS XML parser saves it in the extended
diagnostic area so that the caller of the parser has access to it by calling GXL1CTL

(GXLACTL).

Example

For an example of using this exit service, see ["GXLESTRI” on page 233

Default Implementation

There is no default implementation.

154 2/0S V2R1.0 XML User's Guide and Reference

Chapter 9. Diagnosis and problem determination

The diagnostic facilities of this z/OS XML parser can be used to debug both the
operation of the z/OS XML parser itself and the input XML document. Since
well-formedness checking is an integral part of the parsing process, and since the
complexity of XML documents can be very high, the opportunity for encountering
a flaw in the input stream that is difficult to diagnose is significant. To assist in
diagnosis, the z/OS XML parser provides the following support:

* XMLDATA IPCS subcommand

e Diagnostic Area

¢ SLIP trap for reason codes from z/OS XML parser

* ARR recovery routine

XMLDATA IPCS subcommand

To make it easier to analyze z/OS XML System Services dumps, the XMLDATA
subcommand is provided for use with the IPCS formatter. To use the subcommand,
input the following under IPCS option 6:

COMMAND: XMLDATA address option

The address parameter is the address of the z/OS XML parser’s Parser Anchor
Block (PAB); this is a required parameter. The address parameter accepts both 31-
and 64-bit addresses. If you do not know the value for the address parameter, you
can place a '0' in the address field, and XMLDATA will try to locate the value for
you, for example: XMLDATA 0 TRACE. Although this method is not guaranteed to
work, it is still an available option.

The option parameter allows you to select what information you want to review
within the provided dump (see for a list of options and their descriptions).
If nothing is provided for the option parameter, XMLDATA will use the default
option BASIC. The following table lists the options available for XMLDATA:

Table 36. XMLDATA options

Option Description

BASIC Displays to the screen widely used dump information.
Such information includes the following: the PSW and
any general information during the abend; the value of
the registers; an API trace; a user input parameter list;
feature flags, return code and reason codes; and the last
64 bytes of the input and output buffers.

PARAM Displays the parameter list values for the GXL1PRS or
GXLAPRS entry points.

© Copyright IBM Corp. 2006, 2013 155

156

Table 36. XMLDATA options (continued)

Option

Description

BUFFER (inlen, outlen, fraglen)

Displays the last inlen bytes of the input buffer ending at
where the parser abends, displays the last outlen bytes of
the output buffer and displays the first fraglen bytes of
the fragment buffer. The fragment buffer option is only
available for a non-validating dump. For a validating
dump, the input buffer option will not display the most
current bytes of data at where the z/OS XML parser
abends, but instead the input buffer option will display
from the beginning of the input buffer for inlen bytes that
has been loaded for parsing within the validating z/OS
XML parser. If the length value of zero is provided for a
specific buffer type, that specific buffer information will
be skipped. The inlen, outlen, and fraglen parameters are
all optional. For any that are not specified, the default is
128 bytes.

EXTENT Displays all available free and external extents’
information.
MISC Displays the status of each feature flag, input document

encoding, exit services, return code and reason codes.

TRACE (option)

Displays the trace of the API calls. The option parameter
is optional. Providing ‘ADV’ in the option parameter
displays a more advanced API trace. Otherwise, a simple
API trace will be displayed. (Default is to display a
simple API trace).

PAB

Displays all the defined fields in the PAB.

STRUCT (option, address)

Displays the formatted control blocks including the z/OS
XML parser diagnostic area, element stack, default
attribute record, local name tree, prefix tree, namespace
tree and data buffer. The data buffer option is only
available if the dump is taken with the validation feature
flag turned on. The option parameter is required,
otherwise no control block will be displayed. The options
include the following: XD, XELE, XATT, LN, PEX, URI,
DBUF, respectively. The address parameter is optional and
is only available for local name, prefix, namespace tree
and data buffer option. For local name, prefix, and
namespace trees, if you do not want to display the tree
from the root node, then provide a child node address for
the tree to use as the root node. For data buffer, if you
want to display the details of a specific internal input
buffer, then provide a data buffer address. (For the
address parameter, the default for the trees is the tree root
node address.) If no options or addresses are selected, a
menu of all available options will be displayed.

MARKED

Displays data that was parsed by the z/OS XML parser,
but has not yet been placed in the output buffer, due to
the interruption of an abend. This option is only available
if the dump is taken with the validation feature flag
turned off.

PMM

Displays the formatted Module Map: PMM, Secondary
Table: PST, and System Control: PSC.

HELP

Displays all available options and their descriptions.

z/0S V2R1.0 XML User's Guide and Reference

The following is an example of the XMLDATA subcommand:
XMLDATA 00002940121498028 PAB

Diagnostic Area

On the GXL1CTL (GXL4CTL) call, there is a diagnostic area where the z/OS XML
parser places information that can be useful when debugging a failure or incorrect

behavior in the parser. This area is mapped by macro GXLYXD. The diagnostic

area contains the following fields:

XD_Eye
Eyecatcher GXLYXD

XD_Version
The z/OS XML parser version number.

XD_PAB
Address of Parser Anchor Block for this parse instance.

XD_InBuff
Address of current input buffer.

XD_InBuffOffset
Offset into input buffer where the z/OS XML parser stopped.

XD_OutBuff
Address of current output buffer.

XD_OutBuffOffset
Offset into output buffer where the last valid entry can be found.

XD_StorageRequested
Amount of storage that requested for request that failed.

XD_LastRC
Return code from the last call to GXP1PRS (GXP4PRS).

XD_LastRSN
Reason code from the last call to GXP1PRS (GXP4PRS).

XD_StorageRC
Return code from call to STORAGE.

XD_StorageRsn
Reason code from call to STORAGE.

XD _Iarv64Rc
Return code from call to IARV64.

XD_Iarv64Rsn
Reason code from call to JARV64.

XD_StorExitRc
Return code from storage exit.

XD_StorExitRsn
Reason code from storage exit.

XD_StorExitDiag
The diagnostic code from the storage exit.

XD_SymExitRc
Return code from symbol exit.

Chapter 9. Diagnosis and problem determination

157

XD_SymExitDiag
The diagnostic code from symbol exit.

XD_SymbolLength
Length of the symbol which was rejected by the user symbol exit routine.

XD_IFA_RC
The return code from the request to run on a zZAAP.

XD_EndOfDocRC
Return code from a finished parse.

XD_EndOfDocRSN
Reason code from a finished parse.

XD_MIN_OB
Minimum output buffer size required on next parser call.

XD_LastOutput
Output buffer area in PIMA containing enhanced error records.

SLIP trap for return codes from the z/0S XML parser

To obtain a dump on a specific reason code from any of the z/OS XML parser
callable services, use the release appropriate SLIP example in the following table:

Table 37. SLIP examples by release

z/OS release | SLIP example

V111 or SLIP SET,IF,A=SYNCSVCD,RANGE=(10?+2207+487+82+E),
higher DATA=(4G!+FO!+b2,EQ,XXXX) ,
SDATA=(CSA,LPA, TRT, SQA, RGN, SUM) , j=jobname , END

where xxxx is one of the 4 digit (2 byte) reason codes listed in
[‘Reason codes listed by value,” on page 161| that is to be trapped and j=jobname is
the optional jobname that is expected to issue the error (for example, j=IBMUSER).

ARR recovery routine

158

z/0OS XML provides an ARR recovery routine to assist with problem determination
and diagnostics. This recovery routine can be turned on through an initialization
option when invoked through the assembler API. For callers of the C/C++ parser
API (gxlpParse), when running in Language Environment, the ARR recovery
routine is provided by default in most cases. For C or C++ callers who are running
in either SRB mode or under an existing FRR routine, the z/OS XML ARR will not
be provided, as it would not work properly in those environments.

If the z/OS XML parser abends, the z/OS XML ARR routine will get control and
will collect dumps and return to the caller with a XRC_FATAL return code. For
unauthorized callers, an IEATDUMP will be taken in data set

userid. GXLSCXML.DYYMMDD. THHMMSS.DUMP, where DYYMMDD is the date
and THHMMSS is the time the dump was taken. The task level ACEE is used to
obtain the userid. If there is no task level ACEE, the address space level ACEE is
used. If there is no address space level ACEE, a dump is not taken. For authorized
callers, an SDUMPX will be taken into a system dump data set.

If the user would like to continue parsing, he must terminate and re-initialize a
PIMA following any abend in the z/OS XML parser.

z/0S V2R1.0 XML User's Guide and Reference

Appendix A. Return codes listed by value

This section lists return codes by value and describes them.

Hex Value Return Code

0000 XRC_SUCCESS

0004 XRC_WARNING

0008 XRC_FAILURE

000C XRC_NOT_WELL_FORMED
0010 XRC_FATAL

0014 XRC_LOAD_FAILED

0018 XRC_NOT_VALID

© Copyright IBM Corp. 2006, 2013

Description

The z/OS XML parser service was successful.

The z/OS XML parser service has partial success.
Processing failed. Returned data areas and parms valid.
The document is not-well-formed.

Processing failed. Returned data areas or output
parameters cannot be relied on to contain valid data.
The load of the specified service failed. The return code
from the LOAD macro is returned in the reason code
field.

The document is not valid according to the specified
schema.

159

160 z/0S V2R1.0 XML User's Guide and Reference

Appendix B. Reason codes listed by value

This section describes reason codes, listing them by hexadecimal value and
describing actions to correct the error.

Reason code value

0000

XRSN_SUCCESS
The z/OS XML parser service was successful.

Action: None

1000

XRSN_PIMA_NOT_INITIALIZED
The PIMA passed to a z/OS XML parser service is unusable.

Action: The PIMA passed has not been initialized with a call to the
z/OS XML parser initialization service GXL1INI or GXL4INI or the
PIMA address is incorrect.

1001

XRSN_PIMA_SMALL
The length of the PIMA is too small.

Action: The size of the PIMA passed on GXL1INI or GXL4INI must be
at least the minimum required size for the requested features. Refer to
the z/OS XML User's Guide for the correct minimum value.

1002

XRSN_PIMA_RESIDUAL_DATA
Initialization has already been done on this PIMA.

Action: The GXL1INI or GXL4INI service has been called to initialize
the PIMA, but the PIMA storage has already been initialized. You must
call GXL1TRM or GXL4TRM before the PIMA can be reinitialized to
guarantee that all resources have been cleaned up.

1004

XRSN_PIMA_INCONSISTENT_STATE
The z/OS XML parser exited without cleaning up.

Action: Attempt to collect a dump of the problem. The joblog for the
address space should contain a symptom dump which identifies the
abend code. If running from a user address space, allocate a
SYSMDUMP DD and recreate the problem. If running in some system
address space, use SLIP to get a dump of the abend. Contact your
system administrator for help in getting the dump and possibly
contacting IBM.

1005

XRSN_CTL_DATA_PARM_INVALID
The CTL_DATA parm is invalid.

Action: It is null, but is a required input parmameter for this feature
flag. Call the ctl function again, passing in the required parameter.

1006

© Copyright IBM Corp. 2006, 2013

XRSN_IMODV_NOT_LOADED
The validating parser has not been loaded.

Action: Invoke the GXL1LOD or GXL4LOD to load the validating
parser. Call initialization again, after a successful load.

161

Reason code value

1007

XRSN_CTL_DATA_VERSION_INVALID
The input control block version is invalid.

Action: The version field in the input control block is set to an invalid
value.

1008

XRSN_CTL_XEAR_RC_INVALID
The XEAR_REPLACEMENT_CHAR_LENGTH is invalid.

Action: The XEAR_REPLACEMENT_CHAR_LENGTH field is set to an
invalid value. It must be set to one.

1100

XRSN_STORAGE_31_GET_ERROR
Unable to allocate memory.

Action: If your application does not already call GXL1CTL after the
parse, add a call to GXL1CTL. The address returned by GXL1CTL
points to an area mapped by GXLYXD. Extract the return and reason
code from the XD area, pertaining to storage access failures that
occurred using the STORAGE macro. Contact your system
administrator for help in interpreting these values.

1101

XRSN_STORAGE_64_GET_ERROR
Unable to allocate memory.

Action: If your application does not already call GXL1CTL after the
parse, add a call to GXL1CTL. The address returned by GXL1CTL
points to an area mapped by GXLYXD. Extract the return and reason
code from the XD area, pertaining to storage access failures using the
IARV64 service. Contact your system administrator for help in
interpreting these values.

1140

XRSN_STORAGE_GET_EXIT_TOO_SMALL
The storage returned from get storage exit is too small.

Action: If your application does not already call GXL1CTL after the
parse, add a call to GXL1CTL. The address returned by GXL1CTL
points to an area mapped by GXLYXD. Extract the return and reason
code from the XD area, pertaining to storage exit failure. Contact your
system administrator for help in interpreting these values.

1143

XRSN_STORAGE_31_SFREE_ERROR
Single failure when attempting to free storage.

Action: Contact your system administrator.

1144

XRSN_STORAGE_31_MFREE_ERROR
Multiple failures when attempting to free storage.

Action: Contact your system administrator.

1145

XRSN_STORAGE_64_SFREE_ERROR
Single failure when attempting to free storage.

Action: Contact your system administrator.

162 z/0S V2R1.0 XML User's Guide and Reference

Reason code value

1146

XRSN_STORAGE_64_MFREE_ERROR
Multiple failures when attempting to free storage.

Action: Contact your system administrator.

1147

XRSN_STORAGE_CORRUPTED_ERROR
Storage header has been corrupted.

Action: Contact your system administrator.

1148

XRSN_INPUT_BUFFER_ACCESS_ERROR
The user abended when trying to access the input buffer.

Action: Check the input buffer parameter and length passed into the
parser to be sure they are correct. If the input parameters are correct,
Contact your system administrator. .

1149

XRSN_INPUT_BUFFER_ACCESS_ERROR_ND

The user abended when trying to access the input buffer. No dump
was taken.

Action: Check the input buffer parameter and length passed into the
parser to be sure they are correct. If the input parameters are correct,
Contact your system administrator. .

1150

XRSN_OUTPUT_BUFFER_ACCESS_ERROR
The user abended when trying to access the output buffer.

Action: Check the output buffer parameter and length passed into the
parser to be sure they are correct. If the output parameters are correct,
Contact your system administrator. .

1151

XRSN_OUTPUT_BUFFER_ACCESS_ERROR_ND

The user abended when trying to access the output buffer. No dump
was taken.

Action: Check the output buffer parameter and length passed into the
parser to be sure they are correct. If the output parameters are correct,
Contact your system administrator. .

1152

XRSN_PIMA_ACCESS_ERROR
The user abended when trying to access the PIMA.

Action: Check the PIMA parameter and length passed into the parser
to be sure they are correct. If the PIMA parameters are correct, Contact
your system administrator. .

1153

XRSN_PIMA_ACCESS_ERROR_ND

The user abended when trying to access the PIMA. No dump was
taken.

Action: Check the PIMA parameter and length passed into the parser
to be sure they are correct. If the PIMA parameters are correct, Contact
your system administrator. .

Appendix B. Reason codes listed by value 163

164

Reason code value

1154

XRSN_UNKNOWN_ERROR
An unknown abend occurred.

Action: Contact your system administrator.

1155

XRSN_UNKNOWN_ERROR_ND
Unknown abend occurred and no dump was taken.

Action: Contact your system administrator.

1156

XRSN_STORAGE_OBTAIN_FAILED
A storage obtain request failed

Action: Contact your system administrator.

1157

XRSN_STORAGE_OBTAIN_FAILED_ND
A storage obtain request failed, no dump taken

Action: Contact your system administrator.

1201

XRSN_PARM_ENCODING_SPEC_INVALID
The ccsid passed is not supported.

Action: The CCSID parameter on the call to GXL1INI or GXL4INI is
not one of the supported character encodings. Pass only permitted
CCSID parameters. See the documentation of the GXL1INI service for
supported ccsid constants.

1202

XRSN_PARM_FEATURE_FLAG_INVALID
Undefined feature flag is set

Action: The feature flag parameter passed to GXL1INI or GXL4INI or
GXL1CTL or GXL4CTL has an undefined bit set or a bit that is invalid
for this api set. You can only set features that are defined or supported
on the api.

1203

XRSN_PARM_UNSUPPORT_ENCODING
XML encoding string is not supported.

Action: The encoding string in the XML declaration is not supported.
Use only the supported encoding names.

1204

XRSN_OPERATION_FLAG_INVALID
Undefined operation flag is set.

Action: The operation flag is set to an invalid value.

1300

XRSN_BUFFER_INBUF_SMALL
The input buffer size is too small.

Action: The query service was not able to parse a complete XML
declaration. The caller needs to pass more of the document to the
service.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

1301

XRSN_BUFFER_INBUF_END
The end of the input buffer has been reached.

Action: This is a normal reason code for spanning buffers.

1302

XRSN_BUFFER_OUTBUF_SMALL
The output buffer was too small to contain the next item.

Action: The caller must reset the parser, then parse the document again
from the beginning, passing in a larger output buffer.

1303

XRSN_BUFFER_OUTBUF_END
The end of the output buffer has been reached

Action: This is a normal reason code for spanning buffers.

1304

XRSN_BUFFER_INOUTBUF_END
The end of both buffers have been reached

Action: This is a normal reason code for spanning buffers.

1305

XRSN_STORAGE_GET_EXIT_ERROR
Application storage exit unable to allocate memory.

Action: If your application does not already call GXL1CTL after the
parse, add a call to GXL1CTL. The address returned by GXL1CTL
points to an area mapped by GXLYXD. Extract the return and reason
code from the XD area, pertaining to storage access failures. Contact
your system administrator for help in interpreting these values.

1307

XRSN_STORAGE_SFREE_EXIT_ERROR
User free storage exit has one failure.

Action: Contact your system administrator.

1308

XRSN_STORAGE_MFREE_EXIT_ERROR
User free storage exit has multiple failures.

Action: Contact your system administrator.

1309

XRSN_DYNAMIC_CODE_CHANGE
z/OS XML parser was re-installed.

Action: Caller needs to terminate the parser and restart with parser
initialization.

1310

XRSN_SYM_EXIT_ERROR
The symbol exit returned an error.

Action: Contact the owner of the symbol exit and have them debug the
problem.

Appendix B. Reason codes listed by value 165

166

Reason code value

1400

XRSN_DEALLOC_EXIT_MISSING
Allocation exit specified without deallocation exit

Action: The service exit specification on a call to GXL1INI or GXL4INI
contains an exit to allocate storage, but no exit to deallocate storage.
Either both or neither is required.

1401

XRSN_ALLOC_EXIT_MISSING
Deallocation exit specified without allocation exit

Action: The service exit specification on a call to GXL1INI or GXL4INI
contains an exit to deallocate storage, but no exit to allocate storage.
Either both or neither is required.

1403

XRSN_OPTN_UNKNOWN
Unsupported value set on the options parameter.

Action: Refer to the API documentation for the correct values to pass to
this service.

1404

XRSN_QXDWORK_AREA_SMALL
Query service work area length is too small.

Action: Pass a bigger area.

1405

XRSN_INTERNAL_ERROR
Internal error in the z/OS XML parser.

Action: Contact your system administrator.

1407

XRSN_FEATURE_FLAG_INVALID_IN_ENV

The recovery feature flag is on, but the program either has an existing
FRR or is in SRB mode. This feature is not valid in these environments.

Action: Reinitialize the parse with the recovery feature flag turned off.

1408

XRSN_INVALID_OPTION
The operation being performed is not valid for this service.

Action: Refer to the API documentation to determine which parsing
services this option is valid for.

1500

XRSN_SVC_UNKNOWN
The code specified for the svc_code parameter is invalid.

Action: Refer to the API documentation for the correct values for the
svc_code parameter.

1501

XRSN_NO_OSR_SPECIFIED
No OSR has been loaded via a CTL call.

Action: Perform a CTL_LOAD_OSR operation via CTL with a nonzero
XOSR_OSR_PTR.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

1502 XRSN_NO_SCHEMAS_SPECIFIED

Either the schema vector parameter passed was NULL, or the number
of schemas specified in the vector was zero.

Action: Pass in a valid schema vector that contains one or more text.
schemas to process.

1503 XRSN_NO_OSR_BUFFER_SPECIFIED

No OSR buffer was for generation.

Action: Pass in the address of a buffer to receive a generated OSR.
1504 XRSN_OSR_INVALID

The data within the OSR is invalid.

Action: Ensure that the correct address of the OSR is being passed.
1505 XRSN_NEED_OSR

All schema location information has been returned from the instance
document. A LOAD_OSR operation may be necessary to validate this
document.

Action: If an OSR has been loaded and can be used to validate the
instance document, no special action is necessary. Otherwise, load an
OSR to validate this document.

1506 XRSN_NO_FRAGPATH_SPECIFIED

No fragment path has been loaded via a CTL call.

Action: Perform a load fragment context operation via CTL with a
fragment path.

1508 XRSN_CTL_FRAGPATH_INCORRECT

The provided fragment path is incorrect.

Action: Change the Fragment Path to correct the error and retry.

1509 XRSN_OSR_INCOMPATIBLE

The OSR is incompatible with the specified feature

Action: Change the document or schema to correct and retry.

1510 XRSN_XRR_INVALID

The data within the XRR is invalid.

Action: Ensure that the correct address of the XRR is being passed.
1511 XRSN_CTL_FRAG_PREV_ENABLED

Document fragment parsing is already enabled. Issuing this control call
is not allowed.

Action: Please disable fragment parsing and retry.

Appendix B. Reason codes listed by value 167

168

Reason code value

1512 XRSN_CTL_FRAG_PREV_DISABLED
Document fragment parsing is already disabled. Issuing this control
call is not allowed.
Action: Please enable fragment parsing and retry.

1513 XRSN_CTL_SEQUENCE_INCORRECT
This control call cannot be issued under the present parse conditions.
Action: Correct the sequence of calls and retry.

1514 XRSN_CTL_FRAG_NSCONTEXT_INCORRECT
The provided fragment NS context is incorrect.
Action: Change the Fragment namespace context to correct the error
and retry.

1515 XRSN_CTL_FRAGPATH_ROOT_RESTRICTED
The fragment path root element is invalid.
Action: The provided fragment path's root element does not match
with the Restricted Root Elements. Correct the error and retry.

1516 XRSN_CTL_XDBX_NO_ENTITIES
No entities are present in XDBX streams.
Action: XDBX input streams will not contain any entity references. The
entities-and-references operation has no effect in this case.

2000 XRSN_COMMENT_INCOMPLETE
The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended within
comment markup.
Action: Change the document to correct the error and retry.

2001 XRSN_CDATA_INCOMPLETE
The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended within
CDATA markup.
Action: Change the document to correct the error and retry.

2002 XRSN_PI_INCOMPLETE
The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended within
processing instruction markup.
Action: Change the document to correct the error and retry.

2003 XRSN_ATTR_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended within
attribute markup.

Action: Change the document to correct the error and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

2004

XRSN_ENDTAG_NOT_REACHED

The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended without
reaching the document element end tag.

Action: Change the document to correct the error and retry.

2006

XRSN_TAG_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended within an
element start tag.

Action: Change the document to correct the error and retry.

2007

XRSN_NS_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended within
namespace declaration markup.

Action: Change the document to correct the error and retry.

2008

XRSN_XML_DECL_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended within
the XML declaration.

Action: Change the document to correct the error and retry.

2009

XRSN_DTD_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended within
doctype declaration markup.

Action: Change the document to correct the error and retry.

2010

XRSN_SUBSET_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended within
internal subset markup.

Action: Change the document to correct the error and retry.

2011

XRSN_SUBSET_ELEM_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended within an
element declaration.

Action: Change the document to correct the error and retry.

2012

XRSN_SUBSET_NOTATION_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended within a
notation declaration.

Action: Change the document to correct the error and retry.

Appendix B. Reason codes listed by value 169

170

Reason code value

2013

XRSN_SUBSET_COMMENT_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended within
comment markup.

Action: Change the document to correct the error and retry.

2015

XRSN_SUBSET_PEREF_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended within a
parameter entity reference.

Action: Change the document to correct the error and retry.

2016

XRSN_SUBSET_ENTITY_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended within an
entity declaration.

Action: Change the document to correct the error and retry.

2017

XRSN_SUBSET_ATTL_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended within an
attribute list declaration.

Action: Change the document to correct the error and retry.

2018

XRSN_MARKUP_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended within
markup.

Action: Change the document to correct the error and retry.

2019

XRSN_DOC_ELEM_NOT_FOUND

The GXL1CTL (GXL4CTL) API was called with the finish option and
the input document was not complete. The document ended without
finding the document element.

Action: Change the document to correct the error and retry.

2020

XRSN_LENGTH_VALUE_INVALID

The length value is incorrect because the upper most bit of a length
variable's value is not zero, and the variable type is defined as 31 bit.

Action: Correct the length value and retry.

2021

XRSN_FRAGMENT_INVALID
The parsed document fragment is incorrect.

Action: Change the document fragment to correct the error and retry.

2022

XRSN_DOCUMENT_INVALID
The parsed document is incorrect.

Action: Change the document to correct the error and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

2024

XRSN_PREV_OUTBUF_PENDING
The parsed data is pending for output.

Action: Parse the document again with the neccessary output buffer.

3000

XRSN_ATTR_DUPLICATE
Duplicate attributes were found.

Action: Change the document to correct the error and retry.

3001

XRSN_NS_DUPLICATE
Duplicate namespace declaration found.

Action: Change the document to correct the error and retry.

3002

XRSN_NS_ATTR_PREFIX_NOT_DECL
Namespace prefix on attribute not declared.

Action: Change the document to correct the error and retry.

3003

XRSN_NS_ELEM_PREFIX_NOT_DECL
Namespace prefix on element tag not declared.

Action: Change the document to correct the error and retry.

3004

XRSN_ENC_DETECTED_INVALID
Encoding detected during query is unsupported.

Action: During the query service, an unsupported byte sequence is
found at the beginning of the document.

3006

XRSN_CHAR_ERROR
Incorrectly encoded character found in the input stream.

Action: Contact your system administrator.

3007

XRSN_COMMENT_DASH_MISSING
Comment without starting dash found.

Action: Check the document for a comment markup missing a dash in
the beginning and correct the document.

3008

XRSN_COMMENT_CHAR_INVALID
Comment markup contains incorrect character.

Action: Change the document to correct the error and retry.

3009

XRSN_COMMENT_RIGHT_ANGLE_MISSING

Comment is missing the ending angle bracket at the end of the
markup.

Action: Change the document to correct the error and retry.

3010

XRSN_CDATA_KEYWORD_INVALID
CDATA keyword expected but not found.

Action: Change the document to correct the error and retry.

Appendix B. Reason codes listed by value 171

172

Reason code value

3011

XRSN_CDATA_LEFT_BRACKET_MISSING
Left square bracket expected in CDATA markup.

Action: Change the document to correct the error and retry.

3013

XRSN_CDATA_CHAR_INVALID
A character was found that is not allowed within a CDATA section.

Action: Change the document to correct the error and retry.

3017

XRSN_PI_CHAR_INVALID

A character was found that is not allowed within a Processing
Instruction.

Action: Change the document to correct the error and retry.

3018

XRSN_ATTR_NAME_CHAR_INVALID
A character was found that is not allowed within an attribute name.

Action: Change the document to correct the error and retry.

3019

XRSN_ATTR_LNAME_CHAR_INVALID

A character was found that is not allowed within an attribute local
name.

Action: Change the document to correct the error and retry.

3020

XRSN_ATTR_EQUAL_MISSING

An incorrect character was found after the attribute name, and the

n_mn

only character allowed is "=".

Action: Change the document to correct the error and retry.

3021

XRSN_ATTR_QUOTE_MISSING

An incorrect character was found after the attribute "=" character, and
the only characters allowed here is either white space, or a single or

double quote.

Action: Change the document to correct the error and retry.

3022

XRSN_ATTR_VALUE_CHAR_INVALID
An incorrect character was found in an attribute value.

Action: Change the document to correct the error and retry.

3023

XRSN_ATTR_REF_CHAR_INVALID

An incorrect character was found in entity reference in an attribute
value.

Action: Change the document to correct the error and retry.

3024

XRSN_ATTR_REF_NAME_CHAR_INVALID

An incorrect character was found in entity reference in an attribute
value.

Action: Change the document to correct the error and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

3025

XRSN_ATTR_REF_VALUE_INVALID

Incorrect character found in character entity reference in an attribute
value.

Action: Change the document to correct the error and retry.

3026

XRSN_CONTNT_REF_CHAR_INVALID

An incorrect character was found in entity reference in element
content.

Action: Change the document to correct the error and retry.

3027

XRSN_CONTNT_REF_NAME_INVALID

An incorrect character was found in entity reference in element
content.

Action: Change the document to correct the error and retry.

3028

XRSN_CONTNT_REF_VALUE_INVALID

An incorrect character was found in character entity reference in
element content.

Action: Change the document to correct the error and retry.

3029

XRSN_MARKUP_INVALID
An incorrect character is found within markup.

Action: Change the document to correct the error and retry.

3030

XRSN_CONTNT_CHAR_INVALID
An incorrect character is found in element content

Action: Change the document to correct the error and retry.

3031

XRSN_TAG_ELEMNAME_INVALID
An incorrect character is found in an element tag name

Action: Change the document to correct the error and retry.

3032

XRSN_TAG_LNAME_INVALID
An incorrect character is found in an element tag name.

Action: Change the document to correct the error and retry.

3033

XRSN_TAG_CHAR_INVALID
An incorrect character is found in an element start tag.

Action: Change the document to correct the error and retry.

3034

XRSN_TAG_EMPTY_INVALID

An incorrect character is found after the "/" character to end the
element tag. The only character allowed is a greater than symbol to
end the empty element tag.

Action: Change the document to correct the error and retry.

Appendix B. Reason codes listed by value 173

174

Reason code value

3035

XRSN_ENDTAG_NAME_MISMATCH

At the element end tag, a mis-match element name is found compared
to the name of the start element

Action: Change the document to correct the error and retry.

3036

XRSN_ENDTAG_EMPTY_TAG_INVALID

An incorrect character is found in the element end tag after the
element name. The only characters allowed after the name is white
space or the greater than symbol.

Action: Change the document to correct the error and retry.

3038

XRSN_NS_CHAR_INVALID
Incorrect character found in namespace URIL

Action: Change the document to correct the error and retry.

3039

XRSN_NS_WHITESPACE_CHAR_INVALID

Incorrect character in namespace declaration. Expecting either white

n_mn

space or "=".

Action: Change the document to correct the error and retry.

3040

XRSN_NS_PFX_NAME_INVALID

An incorrect character is found in the prefix name portion of a
namespace declaration.

Action: Change the document to correct the error and retry.

3041

XRSN_NS_QUOTE_MISSING

n_n

Incorrect character in namespace declaration after the character.
Expected a single or double quote or a white space character.

Action: Change the document to correct the error and retry.

3042

XRSN_NS_REF_CHAR_INVALID

An incorrect character was found in entity reference in a namespace
declaration.

Action: Change the document to correct the error and retry.

3043

XRSN_NS_REF_NAME_CHAR_INVALID

An incorrect character was found in entity reference in a namespace
declaration.

Action: Change the document to correct the error and retry.

3044

XRSN_NS_REF_VALUE_INVALID

Incorrect character found in character entity reference in a namespace
declaration.

Action: Change the document to correct the error and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

3045 XRSN_DTD_DOCTYPE_INVALID

Incorrect character found while parsing DOCTYPE keyword.

Action: Change the document to correct the error and retry.

3046 XRSN_XML_VER_VALUE_INVALID

An incorrect XML version number was specified. The only allowed
values are "1.0" or "1.1".

Action: Change the document to correct the error and retry.

3047 XRSN_XML_VER_KEYWORD_INVALID

The characters do not match the word "version"

Action: Change the document to correct the error and retry.
3048 XRSN_XML_VER_EQUAL_MISSING

n_mn

Expected white space or character after "version".

Action: Change the document to correct the error and retry.
3049 XRSN_XML_VER_QUOTE_MISSING

n_n

An incorrect character is detected after the where it is expected to
be a single quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

3050 XRSN_XML_CHAR_INVALID

In the XML Declaration after the close of the version value, an
incorrect character is detected.

Action: Change the document to correct the error and retry.
3051 XRSN_XML_NAME_CHAR_INVALID

Incorrect character in XML Declaration. Expected either "s" for
standalone, "e" for encoding, white space or "?".

Action: Change the document to correct the error and retry.

3052 XRSN_XML_ENC_KEYWORD_INVALID

The characters do not match the word "encoding".

Action: Change the document to correct the error and retry.

3053 XRSN_XML_ENC_EQUAL_MISSING

n_n

Expected white space or "=" character after "encoding".

Action: Change the document to correct the error and retry.
3054 XRSN_XML_ENC_QUOTE_MISSING

n_n

An incorrect character is detected after the where it is expected to
be a single quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

Appendix B. Reason codes listed by value 175

176

Reason code value

3055

XRSN_XML_ENC_CHAR_INVALID

An incorrect character is detected in the XML Declaration encoding
value.

Action: Change the document to correct the error and retry.

3056

XRSN_XML_STD_KEYWORD_INVALID
The characters do not match the word "standalone"

Action: Change the document to correct the error and retry.

3057

XRSN_XML_STD_VALUE_INVALID

An incorrect value for standalone was specified. The only allowed
values are "yes" or "no".

Action: Change the document to correct the error and retry.

3058

XRSN_XML_STD_EQUAL_MISSING

n_n

Expected white space or character after "standalone".

Action: Change the document to correct the error and retry.

3059

XRSN_XML_STD_QUOTE_MISSING

n_n

An incorrect character is detected after the "=" where it is expected to
be a single quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

3060

XRSN_XML_END_CHAR_INVALID

An incorrect character is detected at the end of the XML declaration,
where "?>" is expected.

Action: Change the document to correct the error and retry.

3061

XRSN_ENTITY_NOT_DEFINED
Entity not defined or not defined correctly.

Action: Change the document to correct the error and retry.

3062

XRSN_CHAR_INVALID

An incorrect character was detected in the document. Either white

"n_n

space or "<" was expected.

Action: Change the document to correct the error and retry.

3063

XRSN_PROLOGUE_CHAR_INVALID

The initial character in the document was incorrect. Either white space

or "<" was expected. Possibly the document encoding does not match
the parser encoding specified during initialization.

Action: Change the document to correct the error and retry.

3064

XRSN_XML_DECL_NOT_ALLOWED

Any Characters other than the Byte Order Mark (BOM) are not
allowed before the XML declaration in the XML document.

Action: Change the document to correct the error and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

3065

XRSN_MULTIPLE_DOC_ELEMENTS

Multiple elements were found at the document level. Only one is
allowed.

Action: Change the document to correct the error and retry.

3066 XRSN_ENTITY_LOOP_REF
An entity refers directly, or indirectly to itself. Recursion is not
allowed.
Action: Change the document to correct the error and retry.
3067 XRSN_NS_URI_EMPTY
A non-default namespace declaration contains a URI value of zero
length and the XML version is 1.0.
Action: Change the document to correct the error and retry.
3068 XRSN_INVALID_CHAR_SEQ
An invalid character sequence found in the content portion of the
document.
Action: Change the document to correct the error and retry.
3069 XRSN_ENTITY_MARKUP_INCOMPLETE
Incomplete markup in entity.
Action: Change the document to correct the error and retry.
3070 XRSN_TEXT_DECL_INCOMPLETE
The text declaration markup is not well-formed. The document ended
within the text declaration.
Action: Change the document to correct the error and retry.
3071 XRSN_TEXT_VER_VALUE_INVALID
An incorrect version number was specified in the text declaration. The
only allowed values are "1.0" or "1.1".
Action: Change the document to correct the error and retry.
3072 XRSN_TEXT_VER_KEYWORD_INVALID
The characters do not match the word "version"
Action: Change the document to correct the error and retry.
3073 XRSN_TEXT_VER_EQUAL_MISSING
Expected white space or "=" character after "version"
Action: Change the document to correct the error and retry.
3074 XRSN_TEXT_VER_QUOTE_MISSING

n_mn

An incorrect character is detected after the "=" where it is expected to
be a single quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

Appendix B. Reason codes listed by value 177

178

Reason code value

3075

XRSN_TEXT_CHAR_INVALID

Incorrect character detected after the close of the version value in the
text declaration.

Action: Change the document to correct the error and retry.

3076

XRSN_TEXT_NAME_CHAR_INVALID

Incorrect character in text declaration. Expected either "e" for encoding,
white space or "?".

Action: Change the document to correct the error and retry.

3077

XRSN_TEXT_ENC_KEYWORD_INVALID
The characters do not match the word "encoding".

Action: Change the document to correct the error and retry.

3078

XRSN_TEXT_ENC_EQUAL_MISSING

n_n

Expected white space or character after "encoding".

Action: Change the document to correct the error and retry.

3079

XRSN_TEXT_ENC_QUOTE_MISSING

n_n

An incorrect character is detected after the "=" where it is expected to
be a single quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

3080

XRSN_TEXT_ENC_CHAR_INVALID

An incorrect character is detected in the text declaration encoding
value.

Action: Change the document to correct the error and retry.

3081

XRSN_TEXT_END_CHAR_INVALID

An incorrect character is detected at the end of the text declaration,
where "?>" is expected.

Action: Change the document to correct the error and retry.

3082

XRSN_TEXT_DECL_NOT_ALLOWED

text declaration is only allowed in the beginning of each fragment
scope defined by start and end fragment control operation.

Action: Change the document to correct the error and retry.

3085

XRSN_ENTITY_UNRESOLVABLE
Entity references in document fragment cannot be resolved.

Action: Provide the necessary entities and retry.

5000

XRSN_DTD_NAME_CHAR_INVALID

An incorrect character is detected after the root element name of the
document type declaration where only "SYSTEM", "PUBLIC", square
bracket, or greater than characters are allowed.

Action: Change the document to correct the error and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

5001 XRSN_DTD_CHAR_INVALID

Incorrect character found in document type declaration.

Action: Change the document to correct the error and retry.

5002 XRSN_DTD_EXTERNALID_INVALID

The external ID keyword does not match the word "SYSTEM" or
"PUBLIC".

Action: Change the document to correct the error and retry.

5003 XRSN_DTD_QUOTE_MISSING

Incorrect quotation delimiter after external identifier. It is expected to
be a single quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

5004 XRSN_DTD_FILENAME_INVALID

Incorrect character in external identifier filename.

Action: Change the document to correct the error and retry.

5005 XRSN_SUBSET_CHAR_INVALID

Incorrect character in internal subset of the DTD.

Action: Change the document to correct the error and retry.

5006 XRSN_SUBSET_MARKUP_INVALID

An incorrect character is detected within the markup keyword in the
internal subset of the doctype declaration.

Action: Change the document to correct the error and retry.
5007 XRSN_ELEM_CONTNT_CHAR_INVALID

An incorrect character is found in the element content portion of the
element type declaration located in the internal subset of the doctype
declaration.

Action: Change the document to correct the error and retry.
5008 XRSN_ELEM_CHAR_INVALID

Incorrect character in element declaration in DTD.

Action: Change the document to correct the error and retry.

5009 XRSN_ELEM_LNAME_INVALID

An incorrect character is found in the element name portion of an
element declaration.

Action: Change the document to correct the error and retry.

5010 XRSN_ELEM_ELEMNAME_INVALID

An incorrect character is found in the element name portion of an
element declaration.

Action: Change the document to correct the error and retry.

Appendix B. Reason codes listed by value 179

Reason code value

5011 XRSN_NTTN_CHAR_INVALID
Incorrect character in notation declaration in DTD.

Action: Change the document to correct the error and retry.

5012 XRSN_NTTN_NAME_INVALID
An incorrect character is found in the notation declaration name.

Action: Change the document to correct the error and retry.

5013 XRSN_NTTN_ID_INVALID

The external or public identifier string in the notation declaration does
not match with the word "SYSTEM" or "PUBLIC".

Action: Change the document to correct the error and retry.

5014 XRSN_NTTN_QUOTE_MISSING

Incorrect quotation delimiter after external identifier. It is expected to
be a single quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

5015 XRSN_NTTN_FILENAME_INVALID
Incorrect character in notation identifier literal.

Action: Change the document to correct the error and retry.

5020 XRSN_PEREF_NAME_CHAR_INVALID
Incorrect character in parameter entity reference in DTD.

Action: Change the document to correct the error and retry.

5021 XRSN_ENTY_NAME_CHAR_INVALID
Incorrect character in entity declaration name in DTD.

Action: Change the document to correct the error and retry.

5022 XRSN_ENTY_CHAR_INVALID
Incorrect character in entity declaration in DTD.

Action: Change the document to correct the error and retry.

5023 XRSN_ENTY_VALUE_INVALID
Incorrect character in entity declaration value in DTD.

Action: Change the document to correct the error and retry.

5024 XRSN_ENTY_REF_CHAR_INVALID

An incorrect character was found in entity reference in an entity
declaration.

Action: Change the document to correct the error and retry.

180 2z/0S V2R1.0 XML User's Guide and Reference

Reason code value

5025

XRSN_ENTY_REF_NAME_INVALID

Incorrect character was found in entity reference in an entity
declaration.

Action: Change the document to correct the error and retry.

5026

XRSN_ENTY_REF_VALUE_INVALID

Incorrect character found in character entity reference in an entity
declaration.

Action: Change the document to correct the error and retry.

5027

XRSN_ENTY_QUOTE_MISSING

Incorrect quotation delimiter in entity declaration in DTD. It is
expected to be a single quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

5028

XRSN_ENTY_EXTERNALID_INVALID

The external or public identifier string in the entity declaration does
not match with the word "SYSTEM" or "PUBLIC".

Action: Change the document to correct the error and retry.

5029

XRSN_ENTY_FILENAME_INVALID
Incorrect character in entity identifier value.

Action: Change the document to correct the error and retry.

5030

XRSN_ENTY_NDATA_INVALID
Incorrect character in entity NDATA declaration in DTD.

Action: Change the document to correct the error and retry.

5031

XRSN_ENTY_NDATA_NAME_INVALID
An incorrect character is found in the entity NDATA declaration name.

Action: Change the document to correct the error and retry.

5040

XRSN_ATTL_ELEMNAME_INVALID

An incorrect character is found in the attribute list declaration element
name in the DTD.

Action: Change the document to correct the error and retry.

5041

XRSN_ATTL_CHAR_INVALID

An incorrect character is found in the attribute list declaration in the
DTD.

Action: Change the document to correct the error and retry.

5042

XRSN_ATTL_NAME_CHAR_INVALID

An incorrect character is found in the attribute list declaration attribute
name in the DTD.

Action: Change the document to correct the error and retry.

Appendix B. Reason codes listed by value 181

182

Reason code value

5043

XRSN_ATTL_LNAME_CHAR_INVALID

An incorrect character is found in the attribute list declaration attribute
name in the DTD.

Action: Change the document to correct the error and retry.

5044

XRSN_ATTL_TYPE_INVALID

Incorrect character in attribute list declaration type. The type must
match one of these strings:
"ID","IDREF","IDREFS","ENTITY","ENTITIES",
"CDATA","NMTOKEN","NMTOKENS" or "NOTATION".

Action: Change the document to correct the error and retry.

5045

XRSN_ATTL_ENUMLIST_CHAR_INVALID

Incorrect character is found in the attribute list declaration enumerated
list.

Action: Change the document to correct the error and retry.

5046

XRSN_ATTL_DEFVALUE_CHAR_INVALID

Incorrect character is found in attribute list declaration default.
Expected white space, "#", or a single or double quote

Action: Change the document to correct the error and retry.

5047

XRSN_ATTL_DEF_VALUE_INVALID

Incorrect character is found in attribute list declaration default value.
Expected "REQUIRED", "IMPLIED", or "FIXED".

Action: Change the document to correct the error and retry.

5048

XRSN_ATTL_QUOTE_MISSING

Incorrect character is found in attribute list declaration default value.
Expected single quote, double quote or white space.

Action: Change the document to correct the error and retry.

5049

XRSN_ATTL_REF_CHAR_INVALID

An incorrect character was found in entity reference in an attribute list
declaration.

Action: Change the document to correct the error and retry.

5050

XRSN_ATTL_REF_NAME_INVALID

An incorrect character was found in entity reference in an attribute list
declaration.

Action: Change the document to correct the error and retry.

5051

XRSN_ATTL_REF_VALUE_INVALID

Incorrect character found in character entity reference in an attribute
list declaration.

Action: Change the document to correct the error and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

7001

XRSN_OIMA_NOT_INITIALIZED
The OIMA provided is unusable.

Action: Change the schema and retry.

7002

XRSN_OIMA_NOT_USABLE
The OIMA provided is unusable because a previous reset failed.

Action: Change the schema and retry.

7003

XRSN_OIMA_SMALL
The OIMA provided is too small.

Action: Change the schema and retry.

7005

XRSN_OIMA_RESIDUAL_DATA
The OIMA is already initialized.

Action: Change the schema and retry.

7007

XRSN_JVM_START_FAILED
The Java Virtual Machine failed to start.

Action: Change the schema and retry.

7008

XRSN_JVM_STOP_FAILED
The Java Virtual Machine failed to stop.

Action: Change the schema and retry.

7009

XRSN_CTLOPTN_UNSUPPORTED

The operation specified for the control parameter is unsupported.

Action: Ensure that the control options specified are valid when
specified together.

7010

XRSN_ALTOSR_NOTLOADED
The Alternate OSR code is not loaded.

Action: Change the schema and retry.

7011

XRSN_JAVACLASS_NOT_FOUND
Java class not found by the ClassLoader.

Action: Change the schema and retry.

7019

XRSN_FUNC_NAME_NULL
The specified function name is null.

Action: Change the schema and retry.

7021

XRSN_DLL_OPEN_FAILED
Open for the specified DLL failed.

Action: Change the schema and retry.

Appendix B. Reason codes listed by value

183

Reason code value

7023 XRSN_FUNC_RETRIEVE_FAILED
Retrieve for the specified DLL function failed.

Action: Change the schema and retry.

7027 XRSN_JAVA_METHOD_NOT_FOUND

The Java method cannot be found in the class. See the diagnostic area
for the method name.

Action: Change the schema and retry.

7029 XRSN_JAVA_METHOD_CALL_FAILED
A Java method call failed.

Action: Change the schema and retry.

7031 XRSN_DLL_CLOSE_FAILED
Close for the specified DLL failed.

Action: Change the schema and retry.

7033 XRSN_JNI_METHOD_FAILED
A JNI method returned with an exception.

Action: Change the schema and retry.

7035 XRSN_OBJECT_NOT_CREATED
Failed to create a new Java object.

Action: Change the schema and retry.

7037 XRSN_SCHEMA_NOT_LOADED
No schemas have been loaded into the OSR generator.

Action: Change the schema and retry.

7039 XRSN_OIMAPTR_NOT_PROVIDED
No OIMA pointer has been specified.

Action: Change the schema and retry.

7043 XRSN_GEN_OSR_ASM_FAILED
OSR generation failed in the assemble phase.

Action: Change the schema and retry.

7045 XRSN_GEN_OSR_COMP_FAILED
OSR generation failed in the compile phase.

Action: Change the schema and retry.

7046 XRSN_GEN_OSR_FAILED
OSR generation failed.

Action: Change the schema and retry.

184 2/0S V2R1.0 XML User's Guide and Reference

Reason code value

7049

XRSN_OSR_NOT_VALID
The OSR to load is not valid.

Action: Change the schema and retry.

7050

XRSN_OSR_MALLOC_FAILED
The OSR generator could not allocate memory.

Action: Change the schema and retry.

7051

XRSN_OSR_MFREE_FAILED
The OSR generator could not free memory.

Action: Change the schema and retry.

7055

XRSN_JAVAEXCEPTION_DIAG_FAILED
Could not save the Java exception in the diagnostic area.

Action: Change the schema and retry.

7057

XRSN_JAVAEXCEPTION_INCOMPLETE
The Java exception saved in the diagnostic area is incomplete.

Action: Change the schema and retry.

7059

XRSN_JAVARSNCODE_NOT_FOUND
Unable to obtain the reason code set by the Java exception.

Action: Change the schema and retry.

7061

XRSN_INCORRECT_SCHEMA_URI
The URI specified is incorrect.

Action: Change the schema and retry.

7063

XRSN_JAVARSNCODE_UNKNOWN
No specific reason code was set by Java.

Action: Change the schema and retry.

7065

XRSN_SCHEMA_URI_NOT_FOUND
The schema identified by the specified URI is not found.

Action: Change the schema and retry.

7067

XRSN_SCHEMA_LOAD_FAILED
Unable to load the specified schema.

Action: Change the schema and retry.

7069

XRSN_OSR_URI_NOT_FOUND
The OSR identified by the specified URI is not found.

Action: Change the schema and retry.

Appendix B. Reason codes listed by value

185

Reason code value

7071 XRSN_STRINGID_SYSSVC_NULL
The system service parameter specified is null.

Action: Change the schema and retry.

7079 XRSN_JAVAERRORMESSAGE_INCOMPLETE
The Java error information saved in the diagnostic area is incomplete.

Action: Change the schema and retry.

7081 XRSN_SCHEMA_INCORRECT
The specified schema contains an error that caused an exception.

Action: Change the schema and retry.

7082 XRSN_SCHEMA_WARNING
The specified schema contains an error that caused a warning.

Action: Change the schema and retry.

7083 XRSN_JAVAERRORMESSAGE_DIAG_FAILED
The Java error information saved in the diagnostic area is not valid.

Action: Change the schema and retry.

7087 XRSN_OSR_UNSUPPORTED_FEATURE
An unsupported feature flag was specified.

Action: Change the schema and retry.

7089 XRSN_OSR_PARM_NOT_SPECIFIED
No OSR parameter was specified.

Action: Change the schema and retry.

7091 XRSN_SCHEMA_PARM_NOT_SPECIFIED
No schema parameter was specified.

Action: Change the schema and retry.

7093 XRSN_STRIDTBL_PARM_NOT_SPECIFIED
No stringID table parameter was specified.

Action: Change the document to correct the error and retry.

7095 XRSN_JAVAPROPERTY_MALFORMED_URL
A well-formed URL could not be constructed for the specified class.

Action: Contact your system administrator.

7096 XRSN_ENTITY_RESOLVER_NOTFOUND
The entity resolver could not be found.

Action: Change the schema and retry.

186 z/0S V2R1.0 XML User's Guide and Reference

Reason code value

7097

XRSN_JAVAPROPERTY_CLASS_NOTFOUND
The OSR generator classes could not be found.

Action: Contact your system administrator.

7099

XRSN_CLSLOADER_ACCESS_FAILED
The OSR generator classes could not be loaded.

Action: Contact your system administrator.

7101

XRSN_CLSLOADER_INSTANTIATION_FAILED
The OSR generator classes could not be instantiated.

Action: Contact your system administrator.

7103

XRSN_OSR_NOT_LOADED
No OSRs have been loaded into the OSR generator.

Action: Change the schema and retry.

7107

XRSN_JVM_OUT_OF_MEMORY
The Java Virtual Machine is out of memory.

Action: Contact your system administrator.

7109

XRSN_JVM_STACK_OVERFLOW
The Java Virtual Machine stack overflow occurs.

Action: Contact your system administrator.

7111

XRSN_JVM_INTERNAL_ERROR
Internal error has occurred in the Java Virtual Machine.

Action: Contact your system administrator.

7113

XRSN_JVM_UNKNOWN_ERROR
An unknown and serious exception has occurred in the JVM.

Action: Contact your system administrator.

8000

XRSN_XML_QUOTEREQUIREDINENTITYVALUE
An entity value must begin with a single or double quote.

Action: Change the document or schema to correct and retry.

8001

XRSN_XML_INVCHARINENTITYVALUE
An invalid XML character was found in the literal entity value.

Action: Change the document or schema to correct and retry.

8002

XRSN_XML_INVCHARINSYSTEMID
An invalid XML character was found in a system identifier.

Action: Change the document or schema to correct and retry.

Appendix B. Reason codes listed by value

187

188

Reason code value

8003

XRSN_XML_INVCHARINPUBLICID
An invalid XML character was found in a public identifier.

Action: Change the document or schema to correct and retry.

8004

XRSN_XML_INVCHARINDOCTYPEDECL
An invalid XML character was found in a document declaration.

Action: Change the document or schema to correct and retry.

8005

XRSN_XML_INVCHARININTERNALSUBSET
An invalid XML character found in the internal subset of the DTD.

Action: Change the document or schema to correct and retry.

8006

XRSN_XML_INVCHARINEXTERNALSUBSET
An invalid XML character found in the external subset of the DTD.

Action: Change the document or schema to correct and retry.

8007

XRSN_XML_INVCHARINIGNORESECT

An invalid XML character was found in the excluded conditional
section.

Action: Change the document or schema to correct and retry.

8008

XRSN_XML_QUOTEREQUIREDINSYSTEMID
A system identifier must begin with either a single or double quote.

Action: Change the document or schema to correct and retry.

8009

XRSN_XML_SYSTEMIDUNTERMINATED
A system identifier must end with a matching quote.

Action: Change the document or schema to correct and retry.

8010

XRSN_XML_QUOTEREQUIREDINPUBLICID
A public identifier must begin with a single or double quote.

Action: Change the document or schema to correct and retry.

8011

XRSN_XML_PUBLICIDUNTERMINATED
A public identifier must end with a matching quote.

Action: Change the document or schema to correct and retry.

8012

XRSN_XML_PUBIDCHARILLEGAL
A public identifier character is not permitted.

Action: Change the document or schema to correct and retry.

8013

XRSN_XML_ENTITYVALUEUNTERMINATED
The literal value for the entity must end with a matching quote.

Action: Change the document or schema to correct and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

8014

XRSN_XML_SPACEREQDINDECL

White space is required after DOCTYPE in the document type
declaration.

Action: Change the document or schema to correct and retry.

8015

XRSN_XML_ROOTELEMENTTYPEREQUIRED

A root element type must appear after DOCTYPE in the document
type declaration.

Action: Change the document or schema to correct and retry.

8016

XRSN_XML_DOCTYPEDECLUNTERMINATED

A document type declaration for the root element type must end with

nn

a >.

Action: Change the document or schema to correct and retry.

8017

XRSN_XML_PEREFERENCEWITHINMARKUP

A parameter entity reference cannot occur within markup in the
internal subset of the DTD.

Action: Change the document or schema to correct and retry.

8018

XRSN_XML_PEREFINCOMPLETEMARKUP

A parameter entity reference cannot occur within the internal subset of
the DTD.

Action: Change the document or schema to correct and retry.

8019

XRSN_XML_MARKUPNORECOGNIZEDINDTD

The markup declarations contained or pointed to by the document
type declaration must be well-formed.

Action: Change the document or schema to correct and retry.

8020

XRSN_XML_XMLSPACEDECLARATIONILLEGAL

The attribute declaration for xml:space must be given an enumerated
type whose only possible values are default and preserve.

Action: Change the document or schema to correct and retry.

8021

XRSN_XML_SPACEREQDETYPEINEDECL
A space is required before an element type.

Action: Change the document or schema to correct and retry.

8022

XRSN_XML_ETYPEREQDINELEMENTDECL
An element type is required in an element declaration.

Action: Change the document or schema to correct and retry.

8023

XRSN_XML_SPACEREQDINELEMENTDEC

White space is required after the element type in the element type
declaration.

Action: Change the document or schema to correct and retry.

Appendix B. Reason codes listed by value 189

190

Reason code value

8024

XRSN_XML_CONTENTSPECREQDINEDECL

A constraint is required after the element type in the element type
declaration.

Action: Change the document or schema to correct and retry.

8025

XRSN_XML_ELEMENTDECLUNTERMINATED
The declaration for an element must end with ">".

Action: Change the document or schema to correct and retry.

8026

XRSN_XML_OPENPARENORELEREQDINCHIL
A "(" or an element type is required in the declaration of an element.

Action: Change the document or schema to correct and retry.

8027

XRSN_XML_CLOSEDPARENREQDINCHIL
A")" is required in the declaration.

Action: Change the document or schema to correct and retry.

8028

XRSN_XML_ELEMTYPEREQDINMIXEDCON
An element type is required in mixed content.

Action: Change the document or schema to correct and retry.

8029

XRSN_XML_CLOSEPARENTREQDINMIXEDCON
A")"is required in the declaration of an element.

Action: Change the document or schema to correct and retry.

8030

XRSN_XML_MIXEDCONTENTUNTERMINATED

The mixed content model must end with ")*" when the types of child
elements are constrained.

Action: Change the document or schema to correct and retry.

8031

XRSN_XML_SPACEREQDINATTLISTDECL
White space is required after !ATTLIST in an attribute list declaration.

Action: Change the document or schema to correct and retry.

8032

XRSN_XML_ELEMTYPEREQDINATTLISTDECL
An element type is required in an attribute list declaration.

Action: Change the document or schema to correct and retry.

8033

XRSN_XML_SPACEREQDINATTDEF
White space is required after !ATTLIST in an attribute list declaration.

Action: Change the document or schema to correct and retry.

8034

XRSN_XML_ATTRNAMEREQDINATTDEF

The attribute name must be specified in the attribute list declaration
for the element.

Action: Change the document or schema to correct and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

8035

XRSN_XML_SPACEREQDBATINATTDEF

White space is required before an attribute type in an attribute list
declaration.

Action: Change the document or schema to correct and retry.

8036

XRSN_XML_ATTTYPEREQDINATTDEF

The attribute type is required in the declaration of the attribute for the
element.

Action: Change the document or schema to correct and retry.

8037

XRSN_XML_SPACEREQDBDDINATTDEF

White space is required before the default declaration in an attribute
list declaration.

Action: Change the document or schema to correct and retry.

8038

XRSN_XML_DEFDECLREQDINATTDEF

The attribute default is required in the declaration in an attribute list
declaration.

Action: Change the document or schema to correct and retry.

8039

XRSN_XML_SPACEREQDANOTINNOTTYPE
White space must follow NOTATION in the attribute declaration.

Action: Change the document or schema to correct and retry.

8040

XRSN_XML_OPENPARENREQDINNOTTYPE
The "(" character must follow NOTATION in the attribute declaration.

Action: Change the document or schema to correct and retry.

8041

XRSN_XML_NAMEREQDINNOTTYPE

The notation name is required in the notation type list for the attribute
declaration.

Action: Change the document or schema to correct and retry.

8042

XRSN_XML_NOTTYPEUNTERMINATED
The notation type list must end with a ")" in the attribute declaration.

Action: Change the document or schema to correct and retry.

8043

XRSN_XML_NMTOKREQDINENUM

The name token is required in the enumerated type list for the
attribute declaration.

Action: Change the document or schema to correct and retry.

8044

XRSN_XML_ENUMUNTERMINATED
The enumerated type list must end with ")" in the attribute declaration.

Action: Change the document or schema to correct and retry.

Appendix B. Reason codes listed by value 191

192

Reason code value

8045

XRSN_XML_SPACEREQDINDEFDECL
White space must appear after FIXED in the attribute declaration.

Action: Change the document or schema to correct and retry.

8046

XRSN_XML_INCLUDESECTUNTERMINATED
The included conditional section must end with "".

Action: Change the document or schema to correct and retry.

8047

XRSN_XML_IGNORESECTUNTERMINATED

The excluded conditional section must end with "".

Action: Change the document or schema to correct and retry.

8048

XRSN_XML_NAMEREQDINPEREF

The entity name must immediately follow the "%" in the parameter
entity reference.

Action: Change the document or schema to correct and retry.

8049

XRSN_XML_SEMICOLONREQDINPEREF
The parameter entity reference must end with the semicolon delimiter.

Action: Change the document or schema to correct and retry.

8050

XRSN_XML_SPACEREQDBENINENTITYDECL

White space is required before the entity name in the entity
declaration.

Action: Change the document or schema to correct and retry.

8051

XRSN_XML_SPACEREQDBPINPEDECL

White space is required before the percent sign in the parameter entity
declaration.

Action: Change the document or schema to correct and retry.

8052

XRSN_XML_SPACEREQDBEINPEDECL

White space is required between the "%" and the entity name in the
parameter entity declaration.

Action: Change the document or schema to correct and retry.

8053

XRSN_XML_ENTITYNAMEREQINEDECL
The name of the entity is required in the entity declaration.

Action: Change the document or schema to correct and retry.

8054

XRSN_XML_SPACEREQDAENAMEINEDECL

White space is required between the entity name and the definition in
the entity declaration.

Action: Change the document or schema to correct and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

8055

XRSN_XML_SPACEREQDBNDATAINUEDECL
White space is required before NDATA in the declaration for the entity.

Action: Change the document or schema to correct and retry.

8056

XRSN_XML_SPACEREQDBNNAMEINUEDECL

White space is required between "NDATA" and the notation name in
the declaration for the entity.

Action: Change the document or schema to correct and retry.

8057

XRSN_XML_NOTATIONNAMEREQDINUEDECL

The notation name is required after NDATA in the declaration for the
entity.

Action: Change the document or schema to correct and retry.

8058

XRSN_XML_ENTITYDECLUNTERMINATED
The declaration for the entity must end with ">".

Action: Change the document or schema to correct and retry.

8059

XRSN_XML_EXTERNALIDREQD

The external entity declaration must begin with either SYSTEM or
PUBLIC.

Action: Change the document or schema to correct and retry.

8060

XRSN_XML_SPACEREQDBPLINEXTERNALID
White space is required between PUBLIC and the public identifier.

Action: Change the document or schema to correct and retry.

8061

XRSN_XML_SPACEREQDAPLINEXTERNALID

White space is required between the public identifier and the system
identifier.

Action: Change the document or schema to correct and retry.

8062

XRSN_XML_SPACEREQDBSLINEXTERNALID
White space is required between SYSTEM and the system identifier.

Action: Change the document or schema to correct and retry.

8063

XRSN_XML_URIFRAGINSYSTEMID

The fragment identifier should not be specified as part of the system
identifier.

Action: Change the document or schema to correct and retry.

8064

XRSN_XML_SPACEREQDBNNINNOTATIONDECL

White space is required before the notation name in the notation
declaration.

Action: Change the document or schema to correct and retry.

Appendix B. Reason codes listed by value 193

194

Reason code value

8065

XRSN_XML_NOTATIONNAMEREQDINNOTDECL
The name of the notation is required in the notation declaration.

Action: Change the document or schema to correct and retry.

8066

XRSN_XML_SPACEREQDANNINNOTATIONDECL

White space is required after the notation name in the notation
declaration.

Action: Change the document or schema to correct and retry.

8067

XRSN_XML_NOTATIONDECLUNTERMINATED
The declaration for the notation must end with a ">".

Action: Change the document or schema to correct and retry.

8068

XRSN_XML_UNDECLAREDELEMINCONTSPEC
The content model of the element refers to the undeclared element.

Action: Change the document or schema to correct and retry.

8069

XRSN_XML_DUPLICATEATTDEF
There is a duplicate attribute definition found.

Action: Change the document or schema to correct and retry.

8070

XRSN_XML_ROOTELEMTMUSTMATCHDOCTDECL
The root element type must match the document type declaration.

Action: Change the document or schema to correct and retry.

8071

XRSN_XML_IMPROPERDECLNESTING

The replacement text of a parameter entity must include properly
nested declarations.

Action: Change the document or schema to correct and retry.

8072

XRSN_XML_WSINELEMCONTENTWHENSA

White space must not occur between elements declared in an external
parsed entity with element content in a standalone document.

Action: Change the document or schema to correct and retry.

8073

XRSN_XML_REFTOEXTDECLAREDENTWHENSA

The reference to an entity declared in an external parsed entity is not
permitted in a standalone document.

Action: Change the document or schema to correct and retry.

8074

XRSN_XML_EXTENTITYNOTPERMITED

The reference to an external entity is not permitted in a standalone
document.

Action: Change the document or schema to correct and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

8075

XRSN_XML_ATTVALCHANGEDDURNORMWHENSA

The value of an attribute must not be changed by normalization in a
standalone document.

Action: Change the document or schema to correct and retry.

8076

XRSN_XML_DEFATTNOTSPECIFIED

An attribute has a default value and must be specified in a standalone
document.

Action: Change the document or schema to correct and retry.

8077

XRSN_XML_CONTENTINCOMPLETE
The content of an element type is incomplete.

Action: Change the document or schema to correct and retry.

8078

XRSN_XML_CONTENTINVALID
The content is invalid.

Action: Change the document or schema to correct and retry.

8079

XRSN_XML_ELEMENTNOTDECLARED
An element must be declared.

Action: Change the document or schema to correct and retry.

8080

XRSN_XML_ATTRIBUTENOTDECLARED
An attribute must be declared.

Action: Change the document or schema to correct and retry.

8081

XRSN_XML_ELEMENTALREADYDECLARED
An element type must not be declared more than once.

Action: Change the document or schema to correct and retry.

8082

XRSN_XML_IMPROPERGROUPNESTING

The replacement text of a parameter entity must include properly
nested pairs of parentheses.

Action: Change the document or schema to correct and retry.

8083

XRSN_XML_DUPTYPEINMIXEDCONTENT
A duplicate type found in a mixed content declaration.

Action: Change the document or schema to correct and retry.

8084

XRSN_XML_NOTATIONONEMPTYELEMENT

For compatibility, an attribute of type NOTATION must not be
declared on an element declared EMPTY.

Action: Change the document or schema to correct and retry.

Appendix B. Reason codes listed by value 195

196

Reason code value

8085

XRSN_XML_ENTITIESINVALID

Attribute value of type ENTITIES must be the name of one or more
unparsed entities.

Action: Change the document or schema to correct and retry.

8086

XRSN_XML_ENTITYINVALID

An attribute value of type ENTITY must be the name of an unparsed
entity.

Action: Change the document or schema to correct and retry.

8087

XRSN_XML_IDDEFTYPEINVALID

An ID attribute must have a declared default of #iMPLIED or
#REQUIRED.

Action: Change the document or schema to correct and retry.

8088

XRSN_XML_IDINVALID
An attribute value of type ID must be a name.

Action: Change the document or schema to correct and retry.

8089

XRSN_XML_IDNOTUNIQUE
An attribute value of type ID must be unique within the document.

Action: Change the document or schema to correct and retry.

8090

XRSN_XML_IDREFINVALID
An attribute value of type IDREF must be a name.

Action: Change the document or schema to correct and retry.

8091

XRSN_XML_IDREFSINVALID
An attribute value of type IDREFS must be one or more names.

Action: Change the document or schema to correct and retry.

8092

XRSN_XML_ATTVALUENOTINLIST
An attribute value is not in the list.

Action: Change the document or schema to correct and retry.

8093

XRSN_XML_NMTOKENINVALID
An attribute value of type NMTOKENS must be a name token.

Action: Change the document or schema to correct and retry.

8094

XRSN_XML_NMTOKENSINVALID

An attribute value for type NMTOKENS must be one or more name
tokens.

Action: Change the document or schema to correct and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

8095

XRSN_XML_ELEMWITHIDREQD
An element with an ID is required.

Action: Change the document or schema to correct and retry.

8096

XRSN_XML_MORETHANONEIDATTR
A second attribute of type ID is not permitted.

Action: Change the document or schema to correct and retry.

8097

XRSN_XML_MORETHANONENOTATTR
A second attribute of type NOTATION is not permitted.

Action: Change the document or schema to correct and retry.

8098

XRSN_XML_DUPTOKENINLIST
The enumerated type list must not contain duplicate tokens.

Action: Change the document or schema to correct and retry.

8099

XRSN_XML_FIXATTVALUEINVALID
A FIXED attribute value is invalid.

Action: Change the document or schema to correct and retry.

8100

XRSN_XML_REQDATTNOTSPECIFIED
An attribute is required and must be specific for the element type.

Action: Change the document or schema to correct and retry.

8101

XRSN_XML_ATTDEFINVALID

The default value must meet the lexical type constraints declared for
the attribute.

Action: Change the document or schema to correct and retry.

8102

XRSN_XML_IMPROPERCONDSECTNESTING

The replacement text of the parameter entity must include properly
nested conditional sections.

Action: Change the document or schema to correct and retry.

8103

XRSN_XML_NOTATIONNOTDECLFORNOTTATT

The notation must be declared when referenced in the notation type
list for the attribute.

Action: Change the document or schema to correct and retry.

8104

XRSN_XML_NOTATIONNOTDECLFORUPEDECL

The notation must be declared when referenced in the unparsed entity
declaration.

Action: Change the document or schema to correct and retry.

Appendix B. Reason codes listed by value 197

Reason code value

8105 XRSN_XML_UNIQUENOTNAME
Only one notation declaration can declare a given name.

Action: Change the document or schema to correct and retry.

8106 XRSN_XML_REFTOEXTENTITY
The external entity reference is not permitted in an attribute value.

Action: Change the document or schema to correct and retry.

8107 XRSN_XML_PENOTDECLARED
The parameter entity was referenced but not declared.

Action: Change the document or schema to correct and retry.

8108 XRSN_XML_REFTOUNPENTITY
The unparsed reference is not permitted.

Action: Change the document or schema to correct and retry.

8109 XRSN_XML_RECURSIVEREFERENCE
A recursive reference was found.

Action: Change the document or schema to correct and retry.

8110 XRSN_XML_RECURSIVEPEREFERENCE
A recursive PE reference was found.

Action: Change the document or schema to correct and retry.

8111 XRSN_XML_ENCODINGNOTSUPPORTED
The encoding is not supported in the entity.

Action: Change the document or schema to correct and retry.

8112 XRSN_XML_ENCODINGREQD

A parsed entity not encoded in either UTF-8 or UTF-16 must contain
an encoding declaration.

Action: Change the document or schema to correct and retry.

8200 XRSN_IMP_UNABLETOCONVERTCHAR
Unable to convert an out of range unicode character.

Action: Change the document or schema to correct and retry.

8201 XRSN_IMP_INSUFFINPUTTODECCHAR
There is insufficient input to decode the character.

Action: Change the document or schema to correct and retry.

8202 XRSN_IMP_MISSING2NDHALFOFPAIR
A surrogate pair is missing its second half for a unicode character.

Action: Change the document or schema to correct and retry.

198 2/0S V2R1.0 XML User's Guide and Reference

Reason code value

8203

XRSN_IMP_INVAL2NDHALFOFPAIR

An invalid second half of a surrogate pair for a unicode character was
found.

Action: Change the document or schema to correct and retry.

8204

XRSN_IMP_INVAL1STHALFOFPAIR

An invalid first half of a surrogate pair for a unicode character was
found.

Action: Change the document or schema to correct and retry.

8205

XRSN_IMP_BOMREQD
A byte order mark is required.

Action: Change the document or schema to correct and retry.

8206

XRSN_IMP_INVUTFSSURENCODING
An invalid UTF-8 surrogate encoding found.

Action: Change the document or schema to correct and retry.

8207

XRSN_IMP_PARTIALMPCHARSEQ
A partial multipart character sequence found.

Action: Change the document or schema to correct and retry.

8208

XRSN_IMP_INCONSISTENTENC
An encoding name and byte stream contents are inconsistent.

Action: Change the document or schema to correct and retry.

8209

XRSN_IMP_INVUTF8CHARENC
An invalid UTF-8 character encoding was found.

Action: Change the document or schema to correct and retry.

8210

XRSN_IMP_RUNTIMEIOERROR
A runtime IO error has occurred.

Action: Change the document or schema to correct and retry.

8212

XRSN_MULTIFRAGMENT _NOT_ALLOWED

Multiple elements values are not allowed in the document fragment
for validation in fragment parsing.

Action: Change the document fragment with a single element and retry.

8400

XRSN_DEM_ROOTELEMENTREQD
The root element is required in a well-formed document.

Action: Change the document or schema to correct and retry.

Appendix B. Reason codes listed by value 199

200

Reason code value

8401

XRSN_DEM_INVCHARINCDSECT

An invalid XML character was found in the CDATA section of the
document.

Action: Change the document or schema to correct and retry.

8402

XRSN_DEM_INVCHARINCONTENT

An invalid XML character was found in the element content of the
document.

Action: Change the document or schema to correct and retry.

8403

XRSN_DEM_INVCHARINMISC

An invalid XML character was found in the markup after the end of
the element content.

Action: Change the document or schema to correct and retry.

8404

XRSN_DEM_INVCHARINPROLOG
An invalid XML character was found in the prolog of a document.

Action: Change the document or schema to correct and retry.

8405

XRSN_DEM_CDENDINCONTENT

The character sequence must not appear in content unless used to
mark the end of a CDATA section.

Action: Change the document or schema to correct and retry.

8406

XRSN_DEM_CDSECTUNTERMINATED
The CDATA section must end with .

Action: Change the document or schema to correct and retry.

8407

XRSN_DEM_EQREQDINXMLDECL
The equal character must follow the keyword in the XML declaration.

Action: Change the document or schema to correct and retry.

8408

XRSN_DEM_QUOTEREQDINXMLDECL
This value in the XML declaration must be a quoted string.

Action: Change the document or schema to correct and retry.

8409

XRSN_DEM_XMLDECLUNTERMINATED
The XML declaration must end with ?>.

Action: Change the document or schema to correct and retry.

8410

XRSN_DEM_VERSIONINFOREQD
The version is required in the XML declaration.

Action: Change the document or schema to correct and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

8411 XRSN_DEM_MARKUPNOTRECINPROLOG

The markup in the document preceding the root element must be
well-formed.

Action: Change the document or schema to correct and retry.

8412 XRSN_DEM_MARKUPNORECINMISC

The markup in the document following the root element must be
well-formed.

Action: Change the document or schema to correct and retry.
8413 XRSN_DEM_SDDECLINVALID

The standalone document declaration must be yes or no.

Action: Change the document or schema to correct and retry.

8414 XRSN_DEM_ETAGREQD

End-tag is required.

Action: Change the document or schema to correct and retry.

8415 XRSN_DEM_ELEMUNTERMINATED

The element must be followed by either attribute specifications, > or

/>.

Action: Change the document or schema to correct and retry.
8416 XRSN_DEM_EQREQDINATTR

The attribute name must be followed by the = character.

Action: Change the document or schema to correct and retry.
8417 XRSN_DEM_ATTRNOTUNQ

The attribute was already specified for the element.

Action: Change the document or schema to correct and retry.

8418 XRSN_DEM_ETAGUNTERM

The end-tag for the element must end with a > delimiter.

Action: Change the document or schema to correct and retry.

8419 XRSN_DEM_MARKUPNORECINCONT

The content of elements must consist of well-formed character data or
markup.

Action: Change the document or schema to correct and retry.
8420 XRSN_DEM_ELEMENTMISMATCH

The element must start and end within the same entity.

Action: Change the document or schema to correct and retry.

Appendix B. Reason codes listed by value 201

202

Reason code value

8421

XRSN_DEM_INVALCHARINATTRVAL
An invalid XML character was found in the attribute value.

Action: Change the document or schema to correct and retry.

8422

XRSN_DEM_INVALCHARINCOMM
An invalid XML character was found in the comment.

Action: Change the document or schema to correct and retry.

8423

XRSN_DEM_INVALCHARINPI
An invalid XML character was found in the processing instruction.

Action: Change the document or schema to correct and retry.

8424

XRSN_DEM_QUOTEREQDINATTRVAL

The value of an attribute must begin with either a single or double
quote character.

Action: Change the document or schema to correct and retry.

8425

XRSN_DEM_LESSTHANINATTRVAL
The value of the attribute must not contain the < character.

Action: Change the document or schema to correct and retry.

8426

XRSN_DEM_ATTRVALUNTERM
The attribute value must end with the matching quote character.

Action: Change the document or schema to correct and retry.

8427

XRSN_DEM_INVALCOMMSTART
The comment must begin with a comment start sequence.

Action: Change the document or schema to correct and retry.

8428

XRSN_DEM_DASHDASHINCOMM
A double hyphen is not allowed in a comment.

Action: Change the document or schema to correct and retry.

8429

XRSN_DEM_COMMENTUNTERM
The comment must end with a comment ending sequence.

Action: Change the document or schema to correct and retry.

8430

XRSN_DEM_PITARGETREQD
The processing instruction must begin with the name of the target.

Action: Change the document or schema to correct and retry.

8431

XRSN_DEM_SPACEREQDINPI

A white space character is required between the processing instruction
target and the data.

Action: Change the document or schema to correct and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

8432

XRSN_DEM_PIUNTERMINATED
The processing instruction must end with ?>.

Action: Change the document or schema to correct and retry.

8433

XRSN_DEM_RESERVEDPITARGET

The processing instruction target matching [xX][mM][IL] is not
allowed.

Action: Change the document or schema to correct and retry.

8434

XRSN_DEM_VERNOTSUPPORTED
The XML version specified is not supported.

Action: Change the document or schema to correct and retry.

8435

XRSN_DEM_DIGREQDINCHARREF

A decimal representation must immediately follow the &# in the
character reference.

Action: Change the document or schema to correct and retry.

8436

XRSN_DEM_HEXREQDINCHARREF

A hexadecimal representation must immediately follow the &#x in the

character reference.

Action: Change the document or schema to correct and retry.

8437

XRSN_DEM_SEMICOLONREQDINCHARREF
The character reference must end with a semicolon delimiter.

Action: Change the document or schema to correct and retry.

8438

XRSN_DEM_INVCHARREF
The character reference contains an invalid character.

Action: Change the document or schema to correct and retry.

8439

XRSN_DEM_NAMEREQDINREF

The entity name must immediately follow the & in the entity reference.

Action: Change the document or schema to correct and retry.

8440

XRSN_DEM_SEMICOLONREQDINREF
The reference to the entity must end with a semicolon delimiter.

Action: Change the document or schema to correct and retry.

8441

XRSN_DEM_EQREQDINTDECL
The = character is required in the text declaration.

Action: Change the document or schema to correct and retry.

8442

XRSN_DEM_QUOTEREQDINTDECL
The value in the text declaration must be a quoted string.

Action: Change the document or schema to correct and retry.

Appendix B. Reason codes listed by value

203

Reason code value

8443 XRSN_DEM_SPACEREQDINTDECL

White space is required between the version and the encoding
declaration.

Action: Change the document or schema to correct and retry.

8444 XRSN_DEM_TEXTDECLUNTERM
The text declaration must end with ?>.

Action: Change the document or schema to correct and retry.

8445 XRSN_DEM_ENCDECLREQD
The encoding is required in the text declaration.

Action: Change the document or schema to correct and retry.

8446 XRSN_DEM_ENCDECLINV
The encoding name is invalid.

Action: Change the document or schema to correct and retry.

8447 XRSN_DEM_ENTNOTDECL
A general entity was referenced but not declared.

Action: Change the document or schema to correct and retry.

8448 XRSN_DEM_COLONINNAME

Namespaces disallow a colon character except in element types or
attribute names.

Action: Change the document or schema to correct and retry.

8449 XRSN_DEM_TWOCOLONSQN

Namespaces allows only one colon character in element types or
attribute names.

Action: Change the document or schema to correct and retry.

8450 XRSN_DEM_PREFDECL
The namespace prefix was not declared.

Action: Change the document or schema to correct and retry.

8451 XRSN_DEM_PREFLEGAL

The namespace name for prefix xml is not bound to a legal namespace
name.

Action: Change the document or schema to correct and retry.

8452 XRSN_DEM_NSNAMEEMPTY
The namespace name declared for the prefix may not be empty.

Action: Change the document or schema to correct and retry.

204 z/0S V2R1.0 XML User's Guide and Reference

Reason code value

8453 XRSN_DEM_NSRSRD

The namespace prefix is bound to the reserved namespace name.

Action: Change the document or schema to correct and retry.

8454 XRSN_DEM_NSPREFRSRD

The namespace prefix "xmlIns" must not be declared.

Action: Change the document or schema to correct and retry.

8500 XRSN_XDBX_DOCID_INCORRECT

The document identifier for the XDBX stream must be "#xCA #x3B".

Action: Change the document to correct the error and retry.

8501 XRSN_XDBX_HDRLEN_INCORRECT

The length of the XDBX document header is a one byte value. This
value does not including the magic number or the length byte itself.
The value must be at least "#x5" for the XDBX major version 1.

Action: Change the document to correct the error and retry.

8502 XRSN_XDBX_VERSION_NOT_SUPPORTED

This version of the XDBX document encoder is not supported.

Action: Change the document to correct the error and retry.

8503 XRSN_XDBX_STRIDS_NOT_USED

The stringID encoding flag is missing from the header of the XDBX
stream.

Action: Change the document to correct the error and retry.
8504 XRSN_XDBX_STRID_NOT_FOUND

An attempt was made to resolve a stringID that has not been specified.

Action: Change the document to correct the error and retry.

8505 XRSN_XDBX_STREAM_INCORRECT

One or more bytes from the XDBX input stream are incorrect.

Action: Change the document to correct the error and retry.

8506 XRSN_XDBX_TAG_UNEXPECTED

The current tag in the XDBX stream is not expected.

Action: Change the document to correct the error and retry.

8507 XRSN_XDBX_SEQ_UNSUPPORTED

Sequences of XDBX items are not supported.

Action: Change the document to correct the error and retry.
8508 XRSN_XDBX_STRID_INCORRECT

The value of the StringID is not a legitimate positive number.

Action: Change the document to correct the error and retry.

Appendix B. Reason codes listed by value 205

206

Reason code value

8509

XRSN_XDBX_STANDALONE_INCORRECT

The standalone value is incorrect. The only recognized values are 0
(FALSE) or 1 (TRUE).

Action: Change the document to correct the error and retry.

8510

XRSN_XDBX_MISSING_ROOT_ELEMENT
The XDBX stream requires at least one element and none were found.

Action: Change the document to correct the error and retry.

8511

XRSN_XDBX_DUPLICATE_STRID
The StringID value is duplicate of one of the previous ones.

Action: Change the document to correct the error and retry.

8600

XRSN_VME_INVATTVALUE
The attribute value is not valid with respect to its type.

Action: Change the document or schema to correct and retry.

8601

XRSN_VME_INVATTVALUEFORFIXED

The attribute value is not valid with respect to its fixed value
constraint.

Action: Change the document or schema to correct and retry.

8602

XRSN_VME_CONTENTFOREMPTYELEM

The element may not contain any character data or child elements
because the element type is EMPTY.

Action: Change the document or schema to correct and retry.

8603

XRSN_VME_NONWSCHARINELEMONLYCONT

The element cannot have non-white space character data because the
type's content type is element-only.

Action: Change the document or schema to correct and retry.

8604

XRSN_VME_EXPELEMNOMATCH
An expected element match was not found.

Action: Change the document or schema to correct and retry.

8605

XRSN_VME_REQDELEMMISSING
The required element or one of its substitutions is required.

Action: Change the document or schema to correct and retry.

8606

XRSN_VME_STRICTWCREQTDECL

The matching wildcard is strict, but no declaration can be found for
the element.

Action: Change the document or schema to correct and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

8607

XRSN_VME_EXPECTENDTAG

An end tag is expected. Invalid content is found. No child element is
expected at this point.

Action: Change the document or schema to correct and retry.

8608

XRSN_VME_ELEMNOTINCHOICE

An unexpected element was found. The element was not one of the
choices.

Action: Change the document or schema to correct and retry.

8609

XRSN_VME_ELEMDUP
A duplicate element or one of its substitutions was found.

Action: Change the document or schema to correct and retry.

8610

XRSN_VME_EMPTYTABINCOMPCONT

An empty element tag is not expected. The content of the element is
not complete.

Action: Change the document or schema to correct and retry.

8611

XRSN_VME_UNEXPECTEDENDELEM

An unexpected end element event is found. The content of the element
is incomplete.

Action: Change the document or schema to correct and retry.

8612

XRSN_VME_UNDECLATT
The attribute found is not allowed to appear in the element.

Action: Change the document or schema to correct and retry.

8613

XRSN_VME_REQDATTMISSING
The attribute must appear on the element.

Action: Change the document or schema to correct and retry.

8614

XRSN_VME_MULTIWILDIDS
ID values must be unique.

Action: Change the document or schema to correct and retry.

8615

XRSN_VME_WILDIDFORBID

The attribute is a wildcard ID. But there is already an attribute derived
from the ID among the attribute uses.

Action: Change the document or schema to correct and retry.

8616

XRSN_VME_NONNILLELEM

Attribute "xsi:nil" must not appear on the element, because the nillable
property is false.

Action: Change the document or schema to correct and retry.

Appendix B. Reason codes listed by value 207

208

Reason code value

8617

XRSN_VME_NILFORBIDWFIXEDVC

There must be no fixed value constraint for the element because
"xsimil" is specified.

Action: Change the document or schema to correct and retry.

8618

XRSN_VME_XSITVALINV
The attribute value "xsi:type" of the element is not a valid QName.

Action: Change the document or schema to correct and retry.

8619

XRSN_VME_XSITVALDOESNOTEXIST
The value cannot be resolved to a type definition for the element.

Action: Change the document or schema to correct and retry.

8620

XRSN_VME_XSITYPEVALNOTALLOWED
The type is not validly derived from the type definition of the element.

Action: Change the document or schema to correct and retry.

8621

XRSN_VME_VCINVFORCURTYPE

The value constraint of the element is not a valid default value for the

type.

Action: Change the document or schema to correct and retry.

8622

XRSN_VME_FIXEDVCFAILURE

The value does not match the fixed value constraint value for the
element.

Action: Change the document or schema to correct and retry.

8623

XRSN_VME_IDREFMISSINGID
There is no ID/IDREF binding for IDREF.

Action: Change the document or schema to correct and retry.

8624

XRSN_VME_ELEMHASABSTYPE
The type definition cannot be abstract for the element.

Action: Change the document or schema to correct and retry.

8625

XRSN_VME_INVSIMPLECONT
Invalid value of element.

Action: Change the document or schema to correct and retry.

8626

XRSN_VME_DUPKEY
A duplicate key value was declared for an identity constraint.

Action: Change the document or schema to correct and retry.

8627

XRSN_VME_DUPUNIQUE
A duplicate unique value was declared for an identity constraint.

Action: Change the document or schema to correct and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

8628

XRSN_VME_FIELDMULTMATCH

A field matches more than one value within the scope of its selector.
The fields must match unique values.

Action: Change the document or schema to correct and retry.

8629

XRSN_VME_KEYNOTENOUGHVALS
Not enough values were specified for a key identity constraint.

Action: Change the document or schema to correct and retry.

8630

XRSN_VME_IDCKEYREFMISSINGKEY
A keyref is missing a corresponding key.

Action: Change the document or schema to correct and retry.

8631

XRSN_VME_ABSELEMERROR
The abstract element cannot be used to validate the element content.

Action: Change the document or schema to correct and retry.

8632

XRSN_VME_UNEXPECTEDROOT
The root element is not defined in the schema.

Action: Change the document or schema to correct and retry.

8800

XRSN_DVE_SIMPLETYPEINVVAL
Simple type is invalid.

Action: Change the document or schema to correct and retry.

8801

XRSN_DVE_IDMULTVAL
There are multiple occurrences of the ID value.

Action: Change the document or schema to correct and retry.

8802

XRSN_DVE_FACETLENVAL
The value is not facet-valid with respect to the length for this type.

Action: Change the document or schema to correct and retry.

8803

XRSN_DVE_FACETMAXEXCVAL
The value is not facet-valid with respect to maxExclusive for this type.

Action: Change the document or schema to correct and retry.

8804

XRSN_DVE_FACETMAXINCVAL
The value is not facet-valid with respect to maxInclusive for this type.

Action: Change the document or schema to correct and retry.

8805

XRSN_DVE_FACETMAXLENVAL
The value is not facet-valid with respect to maxLength for this type.

Action: Change the document or schema to correct and retry.

Appendix B. Reason codes listed by value 209

210

Reason code value

8806

XRSN_DVE_FACETMINEXCVAL
The value is not facet-valid with respect to minExclusive for this type.

Action: Change the document or schema to correct and retry.

8807

XRSN_DVE_FACETMININCVAL
The value is not facet-valid with respect to minInclusive for this type.

Action: Change the document or schema to correct and retry.

8808

XRSN_DVE_FACETMINLENVAL
The value is not facet-valid with respect to minLength for this type.

Action: Change the document or schema to correct and retry.

8809

XRSN_DVE_FACETPATTERNVAL
The value is not facet-valid with respect to the pattern for this type.

Action: Change the document or schema to correct and retry.

8810

XRSN_DVE_FACETTOTDIGVAL
The value has a mismatch in total number of digits for the type.

Action: Change the document or schema to correct and retry.

8811

XRSN_DVE_FACETFRACTDIGVAL
The value has a mismatch in fraction digits for this type.

Action: Change the document or schema to correct and retry.

8812

XRSN_DVE_FACETENUMVAL

The value is not facet-valid with respect to the enumeration for this
type. It must be a value from the enumeration.

Action: Change the document or schema to correct and retry.

8900

XRSN_FRAG_FRAGPATH_ERROR

For each element in the fragment path, a forward slash must be
included following by a valid Qname.

Action: Change the document or schema to correct and retry.

8901

XRSN_FRAG_INFO_NOTFOUND

The generated OSR must have fragment parsing information inorder to
perform a fragment parse.

Action: Change the document or schema to correct and retry.

8902

XRSN_FRAG_SLASH_AFTER_ATTR
The attribute name must be the last thing in the fragment path.

Action: Change the document or schema to correct and retry.

z/0S V2R1.0 XML User's Guide and Reference

Reason code value

8903

XRSN_FRAG_ELEMATTR_NOTFOUND

The element or the attribute name in the fragment path cannot be
found in the OSR.

Action: Change the document or schema to correct and retry.

8904 XRSN_FRAG_INVALID_TYPE
The declared type in the OSR is invalid.
Action: Change the document or schema to correct and retry.
8905 XRSN_FRAG_ATTR_INVALID
During the validation of the attribute value with the = OSR shows the
attribute value is invalid.
Action: Change the document or schema to correct and retry.
8906 XRSN_FRAG_ATTR_ERROR
Error parsing an attribute fragment.
Action: Change the document or schema to correct and retry.
8907 XRSN_FRAG_ATTR_QUOTE_MISSING
A matching single/double quotes are required for the attribute value
passed in as the fragment.
Action: Change the document or schema to correct and retry.
8908 XRSN_FRAG_ATTR_UNTERMINATED
A matching single/double quotes are required for the attribute value
passed in as the fragment.
Action: Change the document or schema to correct and retry.
8909 XRSN_FRAG_ATTR_QUOTE_INCORRECT
The attribute value must be contained within a matching
single/double quote, and no characters are allowed after the ending
quote except whitespaces.
Action: Change the document or schema to correct and retry.
8910 XRSN_CTL_RESET_REQUIRED

A Control Reset call is required.

Action: Prior parse has detected, issue control reset the parser and
retry.

Appendix B. Reason codes listed by value 211

212 z/0S V2R1.0 XML User's Guide and Reference

Appendix C. xsdosrg command reference

Name

xsdosrg - generate an optimized schema representation (OSR) file

Synopsis

xsdosrg [-v] [-0 output_file] [-] list_file] | (input_file [input_file ...])

Note: The 1 option signifies a lower case L, not an upper case I. The option
signifies lower case O, not zero.

Description
A z/0S UNIX shell command that creates an optimized schema representation
(OSR) from one or more schemas which can be used by the z/OS XML System
Services validating parser.
Options
xsdosrg accepts the following command line switches:
-v This option produces verbose output during the generation of the OSR.
This is for problem determination purposes only.
-0 This option identifies the name of the output file that will contain the
generated OSR.
-1 This option identifies the list of file names containing the text schemas to
process.
Operands
xsdosrg contains the following operands:
input_file
The name of the file containing the text version of an XML schema. At
least one input file must be specified, either with this operand, or through
the file list operand.
list_file A list of schema names in text form that will be used to create the
optimized schema representation. The text in this file must be in the
current local codepage so that the command can open each file in the list.
output_file
The output_file operand is the name of the file that will contain the
optimized schema representation. This file name defaults to out.osr if no
name is specified.
Example

xsdosrg -o myschema.osr myschema.xsd

© Copyright IBM Corp. 2006, 2013 213

xsdosrg

Environment variables

See [“Setting up the environment” on page 15|for information on setting and using
environment variables.

Usage notes

One or more schemas may be processed by the xsdosrg command into a single
optimized schema representation. Multiple schema names may be specified either
directly on the command line or using the file list operand with the -1 option. Use
either the input file operand or the list option to specify a list of schemas to
process. Do not use both methods on the same command invocation.

This command provides a simplified interface to the OSR generation utility. See
“oxluGenOSR — generate an Optimized Schema Representation (OSR)” on page
98| which allows greater control over the behavior of the generation process and
the characteristics of the generated OSR.

The codepage of the text contained in the list file for the -1 option is managed in
the same way as any other z/OS UNIX System Services command (for example,
cp). The localization variables above and file tags may be used to set the proper
code page so that file names can be handled properly.

Exit values
The following list contains the exit values generated by this command:
0 Success
4 No schema specified
16 OSR creation failed

Related information

gxluGenOSR is a C routine that also invokes the OSR generator. It provides greater
control over the behavior of the generation process and the characteristics of the
generated OSR. See [‘gxluGenOSR — generate an Optimized Schema|
[Representation (OSR)” on page 9§ for more information.

gxIOSRGenerator is a Java method that can be used to invoke the OSR generator.
Information on this method can be found in the Java APIL.

214 z/0S V2R1.0 XML User's Guide and Reference

Appendix D. C/C++ header files and assembler macros

The z/OS XML System Services API includes several sets of structures, variables
and constants that the caller uses to provide input to and receive output from the
assorted processing services of the API. These definitions are contained in parallel
sets of C/C++ header files and assembler macros. The header files are named
gxlh*h, and are found in the /usr/include directory. The assembler macros are
named GXLY* and are installed in SYS1.MACLIB.

The names of the C/C++ and assembler macros are similar. For example, the
output buffer record mapping is contained in /usr/include/gxThxeh.h, while the
assembler version of the same mapping is in SYST.MACLIB(GXLYXEH). In
addition to the parallel nature of these headers and macros, the C/C+ headers
come in regular Language Environment run-time and Metal C versions. Both
versions have the same file names, but the Language Environment run-time
versions are in /usr/include, while the Metal C versions are in
/usr/include/metal. See|“z/0S XML XL C/C++ API” on page 54 for more details
about these differences.

All of the core parser services have C/C++ interfaces (both Language Environment
C and Metal C) and assembler interfaces. In addition, there are a set of utility
services to generate Optimized Schema Representations (OSRs) from text schemas.
These utility services are implemented in Language Environment C/C++ and Java.
As a result, there are Language Environment C/C++ headers that have no
corresponding assembler macro or Metal C version.

These are the header files and assembler macros of the z/OS XML processing APL
The header file names are listed first, followed by the assembler macro names in
parentheses (if there is a corresponding macro).

gxlhxml.h - main z/0S XML header file

This is the main z/OS XML C/C++ header file that a caller should include in
order to use the z/OS XML C/C++ APL It contains prototypes for all of the API
entry points, as well as include statements for all of the other header files that are
required for the APL. The Metal C version of this header also includes logic to call
either the 31 or 64 bit version of the requested API, depending on the addressing
mode of the caller.

There is no corresponding assembler version of this header file.

gxlhxeh.h (GXLYXEH) - mapping of the output buffer record

This mapping describes the form of the parsed data stream returned from the
z/0OS XML parser. It contains the following:

A structure describing the fixed portion of a record in the data stream. This
includes the record type and assorted flags describing the characteristics of the
record.

e A structure to map the length value pairs (if there are any) that make up the
variable portion of the record.

© Copyright IBM Corp. 2006, 2013 215

* A structure describing the format of string identifiers (StringIDs) used to

represent the strings associated with a record when the StringIDs feature is
enabled.

* Structures to map the special records that represent buffer information (data
stream metadata), error information, and auxiliary information.

The items defined in this mapping provide a complete interface for the caller to
make use of the parsed data stream returned from a parse request. See
[“Parsing XML documents,” on page 11for more a more detailed explanation of the
z/0OS XML parsed data stream.

gxlhxec.h (GXLYXEC) - constants definitions

This header and assembler macro contain constant values that are a key part of the
z/0OS XML API. They include the following:

* Record/token types. These identify the semantic meaning of a record in the
parsed data stream.

* Feature flags. These are the z/OS XML parser features that the caller enables
when making an initialization or control request.

* Minimum work area sizes for the z/OS XML parser and query XML declaration
services. There are unique minimum work area sizes for the z/OS XML parser,
depending on whether or not validation is required.

* The minimum output buffer size.

* The allowable option flag values for the control function service.

e Assorted OSR generator constants.

¢ CCSID constants for all of the encodings that z/OS XML supports.

* Type identifiers for the data contained in source offset information records.

This is the header (macro) that contains all of the well known and required values
for the z/OS XML APL

gxlhqxd.h (GXLYQXD) - mapping of the output from the query XML
declaration service

216

This header (macro) contains the structure that describes the information returned
from the Query XML Declaration (QXD) service. It also contains constants that
enumerate the allowable values for certain fields of the structure. The types of data
returned in this area include the following:

* The type of encoding that the service was able to auto-detect. This is not a
CCSID, but an indication as to whether the document is in UCS, UTF, or
EBCDIC form. It also gives an indication of whether the document is big-endian
or little-endian for certain encoding types.

* The CCSID of the document that the service was able to auto-detect. This value
is suitable to pass to the z/OS XML parser initialization service to let the z/OS
XML parser know the encoding of the document.

Note: The QXD service is capable of detecting CCSIDs that are not supported by
the z/OS XML parser.

* The version and release number from the "version" keyword value in the XML
declaration.

e The CCSID from the "encoding" keyword value in the XML declaration. It may
be the case that the detected encoding does not match the CCSID from the XML
declaration. This could happen if the document has been transcoded from the

z/0S V2R1.0 XML User's Guide and Reference

original encoding to the detected encoding. If this is the case, the auto-detected
value is the CCSID that should be used when initializing the parser.

Flags indicating which keyword values in the XML declaration were actually
present.

A flag to indicate how the auto-detected encoding value was determined. In
certain cases, it's not possible to actually detect the encoding based on the bytes
examined. In this case, the XML spec requires a parser to treat the document as
if it were UTF-8 encoded, and this is what the QXD service will provide in the
auto-detect value. A flag will be set in the flags field to indicate that the
encoding was actually undetected, and that the encoding returned is the default
UTE-8 value.

The overall length of the XML declaration.

See [“exlpQuery — query an XML document” on page 80| or |”GXL1QXD|

[(GXL4QXD) — query an XML document” on page 138|for more details about how

to acquire and use this data area.

gxlhxd.h (GXLYXD) - mapping of extended diagnostic area

This header (macro) contains the structure describing the extended diagnostic area
that is returned when there is a failure in the z/OS XML parser. It is returned
whenever the caller requests a control operation through the gxlpControl
(GXL1CTL/GXLACTL) service. The particular area that it is used to map depends
on the control operation performed:

*XEC_CTL_FIN (finish, and reset the parser) — this header (macro) maps the area
pointed to directly by the ctl_data_p parameter of the gxlpControl
(GXL1CTL/GXL4CTL) service.

*XEC_CTL_FEAT (reset the parser with different features) — this header (macro)
maps the area pointed to by the XFT_XD_PTR field of the GXLHXFT (GXLYXFT)
structure.

*XEC_CTL_LOAD_OSR (reset the parser and load an OSR for validation) — this
header (macro) maps the area pointed to by the XOSR_XD_PTR field of the
GXLHXOSR (GXLYXOSR) structure.

This mapping contains several types of key information that are of use for problem
determination. Some of the more useful fields include the following:

The address of the main parser anchor block. This is not generally useful for a
caller, but is important for IBM service purposes.

The input and output buffer addresses, and the current offsets into each. This
shows which data the z/OS XML parser was processing at the time of the error.

The size of the last memory allocation request made by the z/OS XML parser.

Return and reason codes from the last memory allocation request made by the
z/0S XML parser.

Return and reason codes from system service exits (if exits are provided by the
caller).

Return code from the last request to switch to a specialty engine.

A pointer to an area in the PIMA that is in the format of an output buffer, that
contains enhanced error information for a validating parse when this
information is requested.

Appendix D. C/C++ header files and assembler macros 217

gxlhxr.h (GXLYXR) - defines the return codes and reason codes

This contains all of the return and reason codes returned by z/OS XML. Each
return and reason code has a descriptive comment. Also included is a reason code
mask - *XRSN_REASON_MASK that is used to facilitate access to the low order 2
bytes of the reason code full word.

gxlhxsv.h (GXLYXSV) - mapping of the system service vector

Maps the area used to make assorted exit routines available to the z/OS XML
parser. A complete description of the exits that can be specified and how to
provide them can be found in [Chapter 8, “z/OS XML System Services exit]

linterface,” on page 145)

gxlhctl.h (GXLYCTL) - mapping of the control input parameters area

This header file and macro contain the various structures that are used in the
gxlpControl (GXL1CTL/GXL4CTL) service. Each structure is used for a specific
control call and passed to the control service on the ctl_data_p parameter. See the
description of the ctl_data_p parameter in [“gxlpControl — perform a parser]|

control function” on page 54| or the ctl_data parameter in[“GXLI1CTL (GXL4CTL)|

L perform a parser control function” on page 114 for more details about the use of

this structure.

gxlhxft.h (GXLYXFT) - mapping of the control feature input output area

This structure describes the area that is passed in to and back from the gxlpControl
(GXL1CTL/GXLA4ACTL) service through the ctl_data_p (ctl_data) parameter. It is
used to map this area when the caller is changing the parser feature settings by
specifying the *XEC_CTL_FEAT value for the ctl_operation (ctl_option) parameter.

This structure includes an integer (fullword) value that contains the required
features to reset. There are some features that cannot be reset, and which require
that the parse instance to be terminated and re-initialized. This structure also
contains the address of a fullword area in which the z/OS XML parser will place a
pointer to the extended diagnostic area. This is the area that is mapped by
gxlhxd.h (GXLYXD).

See the description of the ctl_data_p parameter in[“gxlpControl — perform aJ
parser control function” on page 54, or the ctl_data parameter in|“GXL1CTL]
(GXLACTL) — perform a parser control function” on page 114| for more details
about the use of this structure.

gxlhxosr.h (GXLYXOSR) - mapping of the OSR control area

218

This structure describes the area that is passed in to and back from the gxlpControl
(GXL1CTL/GXLA4CTL) service through the ctl_data_p parameter. It should be used
to map this area when the caller is loading an OSR for a validating parse by
specifying the *XEC_CTL_LOAD_OSR value for the ctl_operation (ctl_option)
parameter.

This structure holds the address of a buffer that contains the OSR, plus an optional
name string that will be associated with the OSR. This name is currently optional,
but it is recommended that every different OSR loaded be given a unique name.
This can be useful for problem determination purposes in the event of an error.

z/0S V2R1.0 XML User's Guide and Reference

This structure also contains the address of a fullword area in which the parser will

place a pointer to the extended diagnostic area. This is the area that is mapped by
gxlhxd.h (GXLYXD).

See the description of the ctl data_p parameter in|“gxlpControl — perform a|
parser control function” on page 54 or the ctl data parameter in|”GXL1CTI_l
(GXLACTL) — perform a parser control function” on page 114| for more details
about the use of this structure.

gxlhosrg.h - OSR generator prototypes

This header contains includes for all of the OSR generator utility services, as well
as the prototypes for those services. There are no Metal C or assembler macro
versions of this header file.

gxlhosrd.h - mapping of the OSR generator diagnostic area

This header contains the structure that maps the extended diagnostic area returned
from the OSR generator utility — similar to the way that gxlhxd.h (GXLYXD)
describes the extended diagnostic area returned by the z/OS XML parser. Some of
the more useful fields include the following:

* The address of the OSR generator Instance Memory Area (OIMA).
* The last return and reason code issued by the OSR generator.
¢ The last return and reason code issued by the StringID exit.

* An area containing a Java exception that may have been the cause of the failure.
Some of the OSR generator is implemented in Java, so this area will contain the
exception information when an error occurs in the Java code.

There are no Metal C or assembler macro versions of this header file.

gxlhxstr.h - StringID table

StringIDs are numeric values that are substituted for certain character strings that
are encountered during the parse process. They can save space in the parsed data
stream, and possibly improve performance if there are large numbers of repeated
strings in the XML document being parsed. This can be the case with documents
that make heavy use of namespaces with long URIs.

A caller may specify a StringID exit for the OSR generator to use, such that when a
string is encountered, it will call the exit to either generate a new ID, if the string
hasn't been seen before, or return an existing ID for strings which have been
previously encountered. As the generator acquires these StringIDs, it saves them
away in a table, and substitutes them for the strings that they represent within the
OSR. The z/OS XML parser implements a similar behavior when it parses an XML
document using StringIDs.

It will often be the case that the caller needs to use the same set of StringIDs at
OSR generation time, and when a validating parse is performed with that OSR.
The OSR generator API contains the gxluGenStrIDTable service that allows the
caller to extract the StringID table from the OSR so that the table can be imported
by the StringID exit used during the parse process. See |”gxluGenStrIDTab1e —|
lzenerate StringID table from an OSR” on page 100|for more details about how this
service works.

Appendix D. C/C++ header files and assembler macros 219

This header file contains the structure definitions that describe the format of the
StringID table that is exported from the OSR generator. The table is broken down
into a fixed portion that contains information about the table, and a variable length
portion containing the individual entries of the table. These are the structures that
the StringlD exit service can use to import the StringID table in preparation for a
validating parse.

There are no Metal C or assembler macro versions of this header file.

220 z/0S V2R1.0 XML User's Guide and Reference

Appendix E. Callable services examples - AMODE 31

GXL1CTL example

The following code calls the GXL1CTL service to change the feature bits for the
z/0OS XML parser. For the callable service, see |”GXL1CTL (GXLACTL) — perform a|
parser control function” on page 114|AMODE 64 callers use [‘GXLACTL example”|

on page 2251
khkkkkkkhkkhkkkhhkkhkhhkkhhkkhhkkhhkhhhkkhhhkkhhkkhhkhhhkkhhkhhkkhhkkhhkkhhkkhhkkhkhkkh,xx
* Setup parameter 1list to call GXL1CTL. *
* Then call GXLICTL. *
kkhkkkkhkkhkhkkhkkhkhhkkhhkkhhkkhhkhhkkhhkhkkhhkkhhkhkhkkhkhkkhhkhkkhkkhkhkkhkhkkhkkhkhkkkx
* Call GXL1CTL(PIMA, (00)
* CTL Option, (04)
* CTL Data, (08)
* Return Code, (12)
* Reason_Code) (16)
*

LA R9,SAMPLE_PIMA_PTR

L R9,0(R9)

ST R9,Parser_Parm

SLR R4,R4

LA R10,SAMPLE CTL_OPTION

ST R10,Parser_Parm+4

LA R10,SAMPLE_CTL_DATA

ST R10,Parser_Parm+8

LA R10,SAMPLE_CTL_RC

ST R10,Parser Parm+12

LA R10,SAMPLE_CTL_RSN

ST R10,Parser_Parm+16
khkkkkkkkkkkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhhhhhhhhhkhhhhhhhhkhhhkkkkxx

LLGT R15,CVTPTR

L R15,CVTCSRT-CVT(R15)

L R15,72(R15)

L R15,28(R15)

LA R1,Parser_Parm

BALR R14,R15

B e e o e o T T T T e T T e T S e e

* Description of the SAMPLE Structure:

EEE R R e e e e e e T e T T e e S e e e L e s L e e Lt

SAMPLE DSECT Memory storage area
SAMPLE_HEADER DS 0D

SAMPLE_EYE_CATCHER DS CL8 eye-catcher string
SAMPLE_RETCODE DS 1F

SAMPLE_RSNCODE DS 1F

SAMPLE_PIMA PTR DS 1F

SAMPLE_PIMA_LEN DS 1F

SAMPLE_INIT_FEAT DS 1F

SAMPLE_INIT_RC DS 1F

SAMPLE_INIT_RSN DS 1F

SAMPLE_CTL_OPTION DS 1F

SAMPLE_CTL_DATA DS 1F

SAMPLE_CTL_RC DS 1F

SAMPLE_CTL_RSN DS 1F

SAMPLE_TERM_RC DS 1F

SAMPLE_TERM_RSN DS 1F

SAMPLE_FLAGS1 DS 1F

SAMPLE_FLAGS?2 DS 1F

SAMPLE_END DS OX

© Copyright IBM Corp. 2006, 2013 221

GXL1CTL example

EE R

NULL_Value DC 1D'0'
CCSID DS 1F
PARSER_PARM DS 8A

GXL1INI example

The following code initializes the PIMA and records the addresses of the caller’s
system service routines (if any). For the callable service, see|“GXL1INI (GXLA4INI)
— initialize a parse instance” on page 131] AMODE 64 callers use ["GXL4INT]]

example” on page 226.|

B o e e T R T e e T T T e L

* Setup parameter Tist to call GXL1INI. *
* Then call GXLLINI. *
khkkhkhkhkhkhkhkhkhkhkhkhkkhhhhhhhkhkhhkhkhhdhdhhhdhdhhdhdhdhdhdhdhdhdhhhhhhhhhhhhkhkhxx
* Call GXLLINI(PIMA, (00)

* PIMA_LEN, (04)

* CCSID, (08)

* Feature_Flags, (12)

* Sys_SVC Vector, (16) Will be set to NULL

* Sys_SVC_parm, (20) Will be set to NULL

* Return_Code, (24)

* Reason_Code) (28)

*

LA R9,SAMPLE_PIMA_PTR

L R9,0(R9)

ST R9,Parser_Parm

LA R10,SAMPLE_PIMA_LEN

ST R10,Parser_Parmt+4

SLR R4,R4

LA R10,XEC_ENC_IBM_037(R4)

ST R10,CCSID

LA R10,CCSID

ST R10,Parser_Parm+8

LA R10,SAMPLE_INIT_FEAT

ST R10,Parser Parm+12

LA R10,NULL_Value

ST R10,Parser_Parm+16

ST R10,Parser_Parm+20

LA R10,SAMPLE_INIT_RC

ST R10,Parser_Parm+24

LA R10,SAMPLE_INIT_RSN

ST R10,Parser Parm+28
hhhkkkhhhkhhhkhhhhdhhdrhhhhhhdhhdhhhdhrhhhhhhdhhdhhhdhrddrhhrhdhrd

LLGT R15,CVTPTR

L R15,CVTCSRT-CVT (R15)

L R15,72(R15)

L R15,16(R15)

LA R1,Parser_Parm

BALR R14,R15

B e e e e T T T e R T e S T e et et L

* Description of the SAMPLE Structure:

R o e e T T e T T e e S e e S e e s L e s L e L

SAMPLE DSECT Memory storage area
SAMPLE_HEADER DS 0D
SAMPLE_EYE_CATCHER DS CL8 eye-catcher string
SAMPLE_RETCODE DS 1F
SAMPLE_RSNCODE DS 1F
SAMPLE_PIMA PTR DS 1F
SAMPLE_PIMA_LEN DS 1F
SAMPLE_INIT_FEAT DS 1F
SAMPLE_INIT_RC DS 1F
SAMPLE_INIT_RSN DS 1F

SAMPLE_CTL_OPTION DS 1F

222 z/0S V2R1.0 XML User's Guide and Reference

GXL1INI example

SAMPLE_CTL_DATA DS IF
SAMPLE_CTL_RC DS 1F
SAMPLE_CTL_RSN DS 1F
SAMPLE_TERM_RC DS 1IF
SAMPLE_TERM_RSN DS 1F
SAMPLE_FLAGS1 DS 1F
SAMPLE_FLAGS?2 DS 1F
SAMPLE_END DS 0X
khhkkkhhkhkhhhhhhhhhhdhhhhhhhhhhhhhdrhhrhhhhhhdrhdhrhhhhhhdhhdhrhdrdrhhrisk
NULL Value DC 1D'0"
CCSID DS 1IF
PARSER_PARM DS 8A

GXL1PRS example

The following code parses a buffer of XML text and places the result in an output
buffer. For the callable service, see |”GXL1PRS (GXLAPRS) — parse a buffer of XMLI
ftext” on page 135] AMODE 64 callers use |[“GXLAPRS example” on page 227

*/**
*/ PARSE
*/**
* CALL GXLIPRS(PIMA,OPTION_FLAGS,INBUF_PTR,INBUF_LEN,OUTBUF PTR,
* OUTBUF_LEN,RC,RSN);

L 002,PARM_PTR(,003_PARM_PTR_PTR)

L 10,PIMA_PTR(,002)

ST ©10,GAL00001

LA ©10,0PTION_FLAGS(,@02)

ST ©10,GALO0001+4

LA ©10,INBUF_PTR(,002)

ST ©10,GAL00001+8

LA ©10,INBUF_LEN(,002)

ST ©10,0AL00001+12

LA 10,0UTBUF_PTR(,@02)

ST ©10,0AL0O0001+16

LA ©02,0UTBUF_LEN(,@02)

ST 002,0ALO0001+20

LA @10,RC
ST @10,@ALO0001+24
LA @02,RSN

ST 002,BALO0001+28

0 @ALO00O1+28,X'80"

L 010,CS$CVT

L 002,CS$CSRT+544(,010)

L 010,CS$CSRFT+72(,002)

L @15,GXLST31+20(,010)

LA @01,RALO0001

BALR ©14,015
PARSE_RC = RC;
002,PARM_PTR(,003_PARM_PTR_PTR)
010,RC

ST @10,PARSE_RC(,@02)

x PARSE_RSN = RSN;

L 010, RSN

ST ©10,PARSE_RSN(,002)
END DO_PARSE;

*

—rl

* %

GXL1TRM example

The following code releases all resources obtained (including storage) by the z/OS
XML parser and resets the PIMA so that it can be re-initialized. For the callable
service, see [“GXL1TRM (GXL4ATRM) — terminate a parse instance” on page 141.|
AMODE 64 callers use [“GXLATRM example” on page 228

Appendix E. Callable services examples - AMODE 31 223

GXL1TRM example

B R R R R R R R R R R R R R R o R R R R R S S S S

* Setup parameter Tist to call GXL1TRM. *
* Then call GXL1TRM. *
B T R P e *kx
* Call GXL1TRM(PIMA, (00)
* Return_Code, (04)
* Reason_Code) (08)

*

LA R10,SAMPLE_PIMA_PTR

L R10,0(R10)

ST R10,Parser_Parm

LA R10,SAMPLE_TERM_RC

ST R10,Parser_Parm+4

LA R10,SAMPLE_TERM_RSN

ST R10,Parser_Parm+8
""""""" P e e

LLGT R15,CVTPTR

L R15,CVTCSRT-CVT (R15)

L R15,72(R15)

L R15,24(R15)

LA R1,Parser_Parm

BALR R14,R15

R R R R o o o e e T R T T T T T T Tt L

* Description of the SAMPLE Structure:

R e e e T T T T R T T T e T T e s T e s L Tt L

SAMPLE DSECT Memory storage area
SAMPLE_HEADER DS 0D

SAMPLE_EYE_CATCHER DS CL8 eye-catcher string
SAMPLE_RETCODE DS 1F

SAMPLE_RSNCODE DS 1F

SAMPLE_PIMA_PTR DS 1F

SAMPLE_PIMA_LEN DS 1F

SAMPLE_INIT_FEAT DS 1F

SAMPLE_INIT_RC DS 1F

SAMPLE_INIT_RSN DS 1F

SAMPLE_CTL_OPTION DS 1F

SAMPLE_CTL_DATA DS 1F

SAMPLE_CTL_RC DS 1F

SAMPLE_CTL_RSN DS 1F

SAMPLE_TERM_RC DS 1F

SAMPLE_TERM_RSN DS 1F

SAMPLE_FLAGS1 DS 1F

SAMPLE_FLAGS?2 DS 1F

SAMPLE_END DS OX
kkhkkkkhkkkhkkhkhkkhhkkhhkhkhhkhhkkhhkhkhhkhhhkkhhkhkhhkhkhhkhkhkkhhkkhhkhkhkkhkhkkhkhkkhhkkhkkhkhkkhkk*
NULL_Value DC 1D'0!

CCSID DS 1F

PARSER_PARM DS 8A

224 z/0S V2R1.0 XML User's Guide and Reference

Appendix F. Callable services examples - AMODE 64

GXL4CTL example

The following code calls the GXL4CTL service to change the feature bits for the
z/0OS XML parser. For the callable service, see |”GXL1CTL (GXLACTL) — perform a|
parser control function” on page 114|AMODE 31 callers use [‘GXLI1CTL example”|

on page 2211
dhkkhkkhkhkhkhkhkkhkhhkhhhhhhhhkhkhhdhkhdhdhdhhdhdhhdhdhdhhdhhhhhhhhhhhhhhdkdkhkhxkx
* Setup parameter 1list to call GXLACTL. *
* Then call GXLACTL. *
khkkkkhkkkhkhkkkhhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhhhkhhhhkhhhhhhhhhhhhhhkhkhkkxkx
* Call GXLACTL(PIMA, (00)

* CTL Option, (08)

* CTL_Data, (16)

* Return_Code, (24)

* Reason_Code) (32)

*

LA R9,SAMPLE_PIMA_PTR

LG R9,0(R9)

STG R9,Parser_Parm

SLGR R4,R4

LA R10,SAMPLE CTL_OPTION

STG R10,Parser_Parm+8

LA R10,SAMPLE_CTL_DATA

STG R10,Parser_Parm+16

LA R10,SAMPLE_CTL_RC

STG R10,Parser_Parm+24

LA R10,SAMPLE_CTL_RSN

STG R10,Parser_Parm+32
khkkkkkkkkkkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhhhhhhhhhkhhhhhhhhkhhhkkkkxx

LLGT R15,CVTPTR

L R15,CVTCSRT-CVT (R15)

L R15,72(R15)

LG R15,64(R15)

LA R1,Parser_Parm

BALR R14,R15

B e e o e o T T T T e T T e T S e e

* Description of the SAMPLE Structure:

EEE R R e e e e e e T e T T e e S e e e L e s L e e Lt

SAMPLE DSECT Memory storage area
SAMPLE_HEADER DS 0D

SAMPLE_EYE_CATCHER DS CL8 eye-catcher string
SAMPLE_RETCODE DS 1F

SAMPLE_RSNCODE DS 1F

SAMPLE_PIMA PTR DS 1D

SAMPLE_PIMA_LEN DS 1F

SAMPLE_INIT_FEAT DS 1F

SAMPLE_INIT_RC DS 1F

SAMPLE_INIT_RSN DS 1F

SAMPLE_CTL_OPTION DS 1F

SAMPLE_CTL_DATA DS 1F

SAMPLE_CTL_RC DS 1F

SAMPLE_CTL_RSN DS 1F

SAMPLE_TERM_RC DS 1F

SAMPLE_TERM_RSN DS 1F

SAMPLE_FLAGS1 DS 1F

SAMPLE_FLAGS?2 DS 1F

SAMPLE_END DS OX

© Copyright IBM Corp. 2006, 2013 225

GXL4CTL example

EE R

NULL_Value DC 1D'0'
CCSID DS 1F
PARSER_PARM DS 16A

GXLA4INI example

The following code initializes the PIMA and records the addresses of the caller’s
system service routines (if any). For the callable service, see|“GXL1INI (GXLA4INI)
— initialize a parse instance” on page 131] AMODE 31 callers use [‘GXL1INT]]

example” on page 222

B o e e T R T e e T T T e L

* Setup parameter Tist to call GXL4INI. *
* Then call GXL4INI. *
khkkhkhkhkhkhkhkhkhkhkhkhkkhhhhhhhkhkhhkhkhhdhdhhhdhdhhdhdhdhdhdhdhdhdhhhhhhhhhhhhkhkhxx
* Call GXLAINI(PIMA, (00)

* PIMA_LEN, (08)

* CCSID, (16)

* Feature_Flags, (24)

* Sys_SVC Vector, (32) Will be set to NULL

* Sys_SVC_parm, (40) Will be set to NULL

* Return_Code, (48)

* Reason_Code) (56)

*

LA R9,SAMPLE_PIMA_PTR

LG R9,0(R9)

STG R9,Parser_Parm

LA R10,SAMPLE_PIMA_LEN

STG R10,Parser_Parm+8

SLGR R4,R4

LA R10,XEC_ENC_IBM_037(R4)

ST R10,CCSID

LA R10,CCSID

STG R10,Parser_Parm+16

LA R10,SAMPLE_INIT_FEAT

STG R10,Parser_Parm+24

LA R10,NULL_Value

STG R10,Parser_Parm+32

STG R10,Parser_Parm+40

LA R10,SAMPLE_INIT_RC

STG R10,Parser_Parm+48

LA R10,SAMPLE_INIT_RSN

STG R10,Parser_Parm+56
hhhkkkhhhkhhhkhhhhdhhdrhhhhhhdhhdhhhdhrhhhhhhdhhdhhhdhrddrhhrhdhrd

LLGT R15,CVTPTR

L R15,CVTCSRT-CVT (R15)

L R15,72(R15)

LG R15,40(R15)

LA R1,Parser_Parm

BALR R14,R15

B e e e e T T T e R T e S T e et et L

* Description of the SAMPLE Structure:

R o e e T T e T T e e S e e S e e s L e s L e L

SAMPLE DSECT Memory storage area
SAMPLE_HEADER DS 0D
SAMPLE_EYE_CATCHER DS CL8 eye-catcher string
SAMPLE_RETCODE DS 1F
SAMPLE_RSNCODE DS 1F
SAMPLE_PIMA PTR DS 1D
SAMPLE_PIMA_LEN DS 1F
SAMPLE_INIT_FEAT DS 1F
SAMPLE_INIT_RC DS 1F
SAMPLE_INIT_RSN DS 1F

SAMPLE_CTL_OPTION DS 1F

226 z/0S V2R1.0 XML User's Guide and Reference

GXL4INI example

SAMPLE_CTL_DATA DS IF
SAMPLE_CTL_RC DS 1F

SAMPLE_CTL_RSN DS 1F

SAMPLE_TERM_RC DS 1IF

SAMPLE_TERM_RSN DS 1F

SAMPLE_FLAGS1 DS 1F

SAMPLE_FLAGS?2 DS 1F

SAMPLE_END DS 0X
khhkkkhhkhkhhhhhhhhhhdhhhhhhhhhhhhhdrhhrhhhhhhdrhdhrhhhhhhdhhdhrhdrdrhhrisk
NULL Value DC 1D'0"

CCSID DS 1IF

PARSER_PARM DS 16A

GXL4PRS example

The following code parses a buffer of XML text and places the result in an output
buffer. For the callable service, see |”GXL1PRS (GXL4PRS) — parse a buffer of XMLI
ftext” on page 135/ AMODE 31 callers use [“GXL1PRS example” on page 223]

*/*** */
/ DO_PARSE */
*/*** */
*

*D0_PARSE:

* PROCEDURE;
DO_PARSE STM @14,012,@SA00004
STMH @14,012,6SHO0004
* CALL GXL4PRS(PIMA,OPTION_FLAGS,INBUF_PTR,INBUF_LEN,OUTBUF_PTR,
* OUTBUF_LEN,RC,RSN);
LG @02,PARM_PTR(,@03_PARM_PTR_PTR)
LG ©10,PIMA_PTR(,002)
STG ©10,BAX00001
LA ©10,0PTION_FLAGS(,@02)
STG ©10,GAX00001+8
LA ©10,INBUF_PTR(,002)
STG ©10,BAX00001+16
LA ©10,INBUF_LEN(,002)
STG ©10,BAX00001+24
LA ©10,0UTBUF_PTR(,@02)
STG ©10,0AX00001+32
LA ©02,0UTBUF_LEN(,@02)
STG 002,GAX00001+40

LA @10,RC
STG ©10,BAX00001+48
LA @02,RSN

STG ©02,BAX00001+56
L 010,CS$CVT
LLGTR ©10,010
L 002,CS$CSRT+544(,010)
LLGTR 02,002
L ©10,CS$CSRFT+72(,002)
LLGTR ©10,010
LG @15,GXLST64+48(,010)
LA @01,0AX00001
BASR 14,015
* PARSE_RC = RC;
LG ©02,PARM_PTR(,003_PARM_PTR PTR)
L 010,RC
ST @10,PARSE_RC(,@02)
x PARSE_RSN = RSN;
L 010,RSN
ST ©10,PARSE_RSN(,002)
* END DO_PARSE;

*

@ELOO004 DS OH

Appendix E. Callable services examples - AMODE 64 227

GXL4PRS example

@EFO0004 DS OH

@ERO0004 LMH @14,@12,@SHO0004
LM @14,@12,@SA00004
BR @14

GXL4TRM example

The following code releases all resources obtained (including storage) by the z/OS
XML parser and resets the PIMA so that it can be re-initialized. For the callable
service, see ["GXL1TRM (GXL4TRM) — terminate a parse instance” on page 141.|
AMODE 31 callers use [“GXLITRM example” on page 223

B o e e T R T e e T T T e L

* Setup paramter 1list to call GXL4ATRM. *
* Then call GXL4TRM. *
kkhkkkkkkkhkkhkhkkkhhkkkhkkhkhkkhhkhkhhkkhkhkkhhkkhhkhkhkkhkhkkhhkkhhkkhkkhkkkhkkkhkk,*x
* Call GXLATRM(PIMA, (00)
* Return_Code, (08)
* Reason_Code) (16)

*

LA R10,SAMPLE_PIMA PTR

LG R10,0(R10)

STG R10,Parser_Parm

LA R10,SAMPLE_TERM_RC

STG R10,Parser_Parm+8

LA R10,SAMPLE_TERM_RSN

STG R10,Parser_Parm+16
khkkhkhkhkhkhkhkhkhkhkhkhkkhkhhhhkhhkhkhkhkhkhkhhhdhhhhhhdhdhdhhdhdhhdhhhhhhhhhhhkhix

LLGT RI15,CVTPTR

L R15,CVTCSRT-CVT (R15)

L R15,72(R15)

LG R15,56(R15)

LA R1,Parser_Parm

BALR R14,R15

EE R S R R L

B R R R R R R R o o o e R T R T T T T T S T T S L

* Description of the SAMPLE Structure:

R e e e e T T T R T T S e T L e s S e s L Lt L T

SAMPLE DSECT Memory storage area
SAMPLE_HEADER DS 0D

SAMPLE_EYE_CATCHER DS CL8 eye-catcher string
SAMPLE_RETCODE DS 1F

SAMPLE_RSNCODE DS 1F

SAMPLE_PIMA_PTR DS 1D

SAMPLE_PIMA_LEN DS 1F

SAMPLE_INIT_FEAT DS 1F

SAMPLE_INIT_RC DS 1F

SAMPLE_INIT_RSN DS 1F

SAMPLE_CTL_OPTION DS 1F

SAMPLE_CTL_DATA DS 1F

SAMPLE_CTL_RC DS 1F

SAMPLE_CTL_RSN DS 1F

SAMPLE_TERM_RC DS 1F

SAMPLE_TERM_RSN DS 1F

SAMPLE_FLAGS1 DS 1F

SAMPLE_FLAGS?2 DS 1F

SAMPLE_END DS OX
kkhkkkkhkkhkhkkhkhkkhhkhkkhhkhkhhkhhkkhhkhkhhkhhhkkhhkhkhhkhkhhkhhkkhhkkhhkhkhkkhkhkkhkhkkhhkkhkkhkhkkhkk*
NULL_Value pDC 1D'0!

CCSID DS 1F

PARSER_PARM DS 16A

228 z/0S V2R1.0 XML User's Guide and Reference

Appendix G. Exit examples

GXLEFRM (GXLFST example)

Restrictions: The following restrictions apply to this example:

* This sample was designed to be a basic example of a memory service exit, and
was not designed with other system considerations in mind, such as the z/OS
XML parser running in cross memory mode, SRB mode, or in a different key, for
instance.

* This sample is not designed to work with any other service exits. The exit
workarea is assumed to be used by this memory service exit only. (Note that
both GXLGST and GXLFST services are considered as one service exit). As a
result, this memory service exit can only work independently, with no other
service exits running.

This sample frees an area of memory passed by the z/OS XML parser. For the exit
service, see[“GXLFST31 (GXLFST64) — free memory” on page 149 AMODE 31
callers use GXLE1FRM. AMODE 64 callers use GXLE4FRM.

Register 14 is used to store the return address, which must be kept intact in order
to exit this subroutine correctly.

This example assumes register one, which is passed in from the caller, contains the
address of the parameter list. The following input variables are used in the
example:

SYS_SVC_PARM
Address of storage area that the caller of the z/OS XML parser wants to
pass on to the exit.

MEMORY_LEN
Contain the length of the memory area requested to be free.

The following output variables are used in the example:

MEMORY_ADDR
The address of the memory to be freed.

EXIT_DIAG_CODE
Contains diagnostic information.

XSM_DC_INVALID_EYECATCHER_STR
Eye catcher is incorrect.

XSM_DC_FAIL_FREE_MEM31
Fail to release storage memory.

RETCODE

XSM_RC_FAILURE
Unable to free memory

XSM_RC_SUCCESS
The storage macro released the allocated memory successfully
(greater than zero if deallocation failed).

EXIT _DIAG_CODE

© Copyright IBM Corp. 2006, 2013 229

GXLEFRM (GXLFST example)

XSM_DC_INVALID_EYECATCHER_STR
Eye catcher is incorrect.

XSM_DC_FAIL_FREE_MEM31
Fail to release storage memory.

GXLEGTM (GXLGST example)

230

Restrictions: The following restrictions apply to this example:

* This sample was designed to be a basic example of a memory service exit, and
was not designed with other system considerations in mind, such as the z/OS
XML parser running in cross memory mode, SRB mode, or in a different key, for
instance.

* This sample is not designed to work with any other service exits. The exit
workarea is assumed to be used by this memory service exit only. (Note that
both GXLGST and GXLFST services are considered as one service exit). As a
result, this memory service exit can only work independently, with no other
service exits running.

This sample allocates an area of memory of the size requested by the z/OS XML
parser. For the exit service, see [*GXLGST31 (GXLGST64) — get memory” on page|
AMODE 31 callers use GXLEIGTM. AMODE 64 callers use GXLEAGTM.

Register 14 is used to store the return address, which must be kept intact in order
to exit this subroutine correctly.

This example assumes register one, which is passed in from the caller, contains the
address of the parameter list. The following input variables are used in the
example:

SYS_SVC_PARM
Address that was passed to the z/OS XML parser at initialization time.

MEMORY_LEN
Contains the length of the memory area requested by the z/OS XML
parser.

The following output variables are used in the example:

MEMORY_ADDR
The address of the allocated memory.

EXIT_DIAG_CODE
Contains diagnostic information.

XSM_DC_INVALID_EYECATCHER_STR
Eye catcher is incorrect.

XSM_DC_INVALID_GET_MEM_LEN
Memory length is out of bound.

XSM_DC_FAIL_ALLOCATE_MEM31
Storage memory allocation failed.

RETCODE

XSM_RC_FAILURE
Unable to allocate memory.

z/0S V2R1.0 XML User's Guide and Reference

GXLEGTM (GXLGST example)

XSM_RC_SUCCESS
The storage macro allocated the memory successfully (greater than
zero if allocation failed).

GXLSYM example

Restrictions: The following restrictions apply to this example:

* This example was designed to be a basic example of a StringID service exit. It
was not designed with other system considerations in mind, such as the z/OS
XML parser running in cross memory mode, SRB mode, or in a different key, for
instance.

* This example is not designed to work with any other service exits. The exit
workarea is assumed to be used by this StringID service exit only. As a result,
this StringID service exit can only work independently, with no other service
exits running.

Note: This exit example is divided into the following 4 modules:

:

+ [“GXLEIDI (GXLSYM example module)” on page 232
* [“GXLEIDR” on page 233|

For the exit service, see [“GXLSYM31 (GXLSYM64) — StringID service” on page|
AMODE 31 callers use GXLSYM31. AMODE 64 callers use GXLSYM64.

GXLEINI

This example module does the following:

* Validates the caller specification and determines whether to use user defined or
default values for storage size.

* Initializes all variables in XSI. (XSI is the data structure for the StringID sample
exit).

Register 14 is used to store the return address, which must be kept intact in order
to exit this subroutine correctly.

This example module assumes register one, which is passed in from the caller,
contains the address of the parameter list. The following input variables are used
in the example:

STRID_AREA_ADDR
Address of the XSI storage area.

STRID_AREA_LEN
Total length of the XSI Storage area.

STRID_MAX_NUM
The maximum number of StringIDs allowed.

SYM_MAX_SIZE

The maximum string length for each symbol.
The following output variables are used in this example module:
RETCODE

XSI_RC_FAILURE
If the storage area failed to initialize.

Appendix G. Exit examples 231

GXLEINI

XSI_RC_SUCCESS
If the storage area successfully initialized.

DIAG_CODE
Contains diagnostic information.

XSI_DC_SYMBOL_STORAGE_TOO_SMALL
Storage size is too small.

GXLEIDI (GXLSYM example module)

This example module does the following:
* Search for an identical string in the tree.

* Inserts a string into a tree and returns a unique StringlD. This is done as
follows:

1. Check first to make sure the length of the string is within the maximum
symbol buffer size.

2. Inserts the string into the root if the tree is empty or searches down the tree
to find the appropriate empty leaf node.

3. When the insert node location is found, its address will be passed to the
INSERT_STRING subroutine. The subroutine will create a new leaf node and
then insert the string.

4. Return the StringID if the string inserted successfully.
Note: This is the actual exit pointed to in the SYS_SVC_VECTOR table.

Register 14 is used to store the return address, which must be kept intact in order
to exit this subroutine correctly.

This example module assumes register one, which is passed in from the caller,
contains the address of the parameter list. The following input variables are used
in the example module:

SYS_SVC_PARM
Address of storage area that the caller of the z/OS XML parser wants to
pass to the exit. It also contains the XSI structure information.

STR The string that will be inserted into the tree.

STRLEN
Length of the current string needed to be inserted. Length is derived from
the number of bytes of the characters in the string.

CCSID Identifier for the string's character set.

The following output variables are used in the example module:
STRID The index of the inserted or found string.

EXIT_DIAG_CODE
Contains diagnostic information.

XSI_DC_INCORRECT_PARM_STRLEN
String length is out of bound.

XSI_DC_OUT_OF_STORAGE_SPACE
Allocated storage is full.

XSI_DC_INCORRECT_EYE_CATCHER
Eye catcher is incorrect.

232 z/0S V2R1.0 XML User's Guide and Reference

GXLEIDI (GXLSYM example module)

XSI_DC_MAX_OUT_ID_LIST_ENTRIES
StringID list is full.

RETCODE

XRC_FAILURE
Failed to insert or search for STR.

XRC_SUCCESS
String was inserted or found.

GXLEIDR

This example module uses the input StringID to access a table and returns the
address and length of the string associated with the StringID. The string is saved
in the storage pointed to by SYS_SVC_PARM during the initialization of the parser
(GXLINI) and in StringID processing (GXLEINI).

Register 14 is used to store the return address, which must be kept intact in order
to exit this subroutine correctly.

This example module assumes register one, which is passed in from the caller,
contains the address of the parameter list. The following input variables are used
in the example module:

SYS_SVC_PARM
Address of storage area that the caller of the z/OS XML parser wants to
pass to the exit. It also contains the XSI structure information.

STRID StringlD used for indexing the list.

The following output variables are used in the example module:

STR_ADDR
Address of string from requested StringID.

STRLEN
The length of the string found by StringID.

DIAG_CODE
Contains diagnostic information.

XSI_DC_INCORRECT_StringID_OUTOFBOUND
STRID length is out of bound.

XSI_DC_INCORRECT_ID_LOCATION_ERROR
StringID does not match.

XSI_DC_INCORRECT_EYE_CATCHER
Eye catcher is incorrect.

RETCODE

XSI_RC_FAILURE
The string cannot be retrieved.

XSI_RC_SUCCESS
The string was retrieved successfully.

GXLESTRI

Restrictions: The following restrictions apply to this example:

Appendix G. Exit examples 233

GXLESTRI

* This sample was designed to be a basic example of a StringID service exit, and
was not designed with other system considerations in mind, such as the z/OS
XML parser running in cross memory mode, SRB mode, or in a different key, for
instance.

* This sample is not designed to work with any other service exits. The exit
workarea is assumed to be used by this service exit only. As a result, this
memory service exit can only work independently, with no other service exits
running.

This sample does the following:

* Initializes the structure (referred to herein as XSI).

¢ Searches for a string in the list and then returns its ID if the string is found.
* Inserts new strings.

* Validates memory requirements based on user input.

* Defines the default values.

* Initializes all variables in XSI.

The purpose of this StringID service exit routine is to demonstrate how a
combination of Language Environment/Metal C StringlID service exits could be
written for the z/OS XML parserand the OSR generator.

Guidelines for using this exit with the z/OS XML parser: When this StringID

service exit routine is used as an exit to the z/OS XML parser, the following

guidelines apply:

* A prolog and epilog are required. This is used to set up DSA linkage. More
details are below.

* The work area must be large enough to accommodate a DSA at the head of the
work area, along with space for the stack frames. (This sample contains a main
routine, a few local variables, and calls a subroutine on the first call for
initialization.)

* The work area and immediately following the DSA and the stack space contains
the storage that will be mapped to the XSI structure.

Guidelines for using this exit with the OSR generator: When this StringID
service exit routine is used as an exit to the OSR generator, the following
guidelines apply:

* A prolog and epilog are NOT required.

¢ The main routine name must be exported.

* The entire work area is mapped to the XSI structure defined here and must be
large enough to accommodate this.

The user must pass in the value of available storage space for the XSI structure to
this exit via the storage_size member in the XSI structure. Here is an example,
when using the exit for the z/OS XML parser:

// Allocate storage.

stringIDArea = malloc(40960);

// Clear storage.

memset (stringIDArea,0,40960);

// Adjust pointer past DSA/frame(s) to beginning
// of storage available to the XSI structure.
ptr_val = (unsigned Tong) (stringIDArea);

ptr_val += XSI_DSA_SPACE;

XSI xsi_ptr = (XSI)(ptr_val) ;

234 z/0S V2R1.0 XML User's Guide and Reference

GXLESTRI

// Set storage size and adjust for DSA/frame(s).
xsi_ptr->storage_space = 40960;
xsi_ptr->storage_space -= XSI_DSA SPACE;

When using the exit for the OSR generator, use the following example:

// Allocate storage.

stringIDArea = malloc(40960);

// Clear storage.

memset (stringIDArea,0,40960) ;

XSI xsi_ptr = (XSI)(stringIDArea) ;
// Set storage size.
xsi_ptr->storage_space = 40960;

Register 14 is used to store the return address, which must be kept intact in order
to exit this subroutine correctly.

This example assumes register one, which is passed in from the caller, contains the
address of the parameter list. The following variables are used in the example:

SYS_SVC_PARM
A pointer to the address of the storage to be used for this exit.

STRING
The string passed in from the OSR generator.

STR_LEN
The value of the string length passed in from the OSR generator.

STRINGID
The value of the string ID set by this exit.

CCSID The Coded Character Set Identifier passed in from the OSR Generator.

DIAG_CODE
The diagnostic code set by this exit.

RETURN_CODE
The return code set by this exit.

A description of the XSI structure is provided below. The XSI structure includes the
XSI header and StringlD array list.

EYE _CATCHER
The eye catcher for this structure. Used to confirm initialization.

VERSION
The version number for this exit.

STORAGE_SPACE
The value of the size of storage allocated for this exit.

DIAG_CODE
The diagnostic code set by the exit.

NEXT_ID
The next available value for the StringID.

INDEX
The index of the next XSI_NODE to update.

STRINGLIST
An array of XSI_NODE that is populated with the StringlD, strings and
their lengths.

Appendix G. Exit examples 235

GXLESTRI

A description of the prolog and epilog is provided below:
Prolog for AMODE 31, Changes for AMODE 64 are in parenthesis

ST(G)M 14,12,12(13)
L(G) 15,0(1)

L(G) 15,0(15)
ST(G) 15,8(,13)
ST(G) 13,4(,15)
LR(G) 13,15

MEND

Save entry regs in callers area
Load address of Users storage
Load the actual storage

Save caller DSA in prev

Save current DSA in callers

Set start of storage to DSA

Epilog for AMODE 31, Changes for AMODE 64 are in parenthesis

L(G) 13,4(13)
LM(G) 14,12,12(13)
BR 14

MEND

236 z/0S V2R1.0 XML User's Guide and Reference

Load the previous DSA
Restore the registers
Return

Appendix H. CICS examples

The example below shows how to define GXLINPLT to the CICS CSD:
//GXLCSD JOB <your jobcard>

/1%

//* Function:

/1%

/1%

//* definitions required for XML System Services.

//* 1t defines one resource group:

//* GXLXMLCG contains definitions needed for XML system services
//* The user must install group GXLXMLCG, it is recommended to
//* add group GXLXMLCG to the current grouplist for the CICS

//* region or add to grouplist GXLXMLCL as is shown below.

//* Before using this sample job replace the default parameter
//* values with the values of your CICS installation.

/1%
//***/
//*- - SET SYMBOLIC PARAMETERS

/1%

//SETCID SET CID='CICS410.CICS' ! Qualifier for CICS Tibrary
//SETCSD SET CSD='TTCICS4.CICS' ! Qualifier for target CICS CSD
//DFHCSDUP EXEC PGM=DFHCSDUP,REGION=4M

//STEPLIB DD DISP=SHR,DSN=&CID..SDFHLOAD

//DFHCSD DD DISP=SHR,DSN=&CSD..DFHCSD

//SYSPRINT DD SYSOUT=+

//SYSIN DD *

*
*
*

delete the group GXLXMLCG

DELETE GROUP(GXLXMLCG)

*
*
*
*

Add the group to GRPLIST GXLXMLCL

ADD GROUP(GXLXMLCG) LIST(GXLXMLCL)

EE I

*
*
*

/*
//

Programs
Define GXLINPLT as a program in group GXLXMLCG

DEFINE PROGRAM(GXLINPLT) GROUP(GXLXMLCG) LANGUAGE (ASSEMBLER)
DESCRIPTION(XML PLT Program required by XML System Services)
CONCURRENCY (QUASTIRENT) DATALOCATION(ANY) EXECKEY (USER)

Note that CONCURRENCY(QUASIRENT) ensures that the program
runs under the CICS QR TCB, which is what we want.

Below is a sample job to update the PLT table:

//SUIMGLQ JOB <JOBCARD>
/1%

//TABLEASM EXEC DFHAUPLE
//ASSEM.SYSUT1 DD =

TITLE 'DFHPLTI1 - ADD GXLINPLT TO PLT TABLE'

This is the sample of the DFHCSDUP job to create the resource

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

-%/

R R e o e T T R T TR R T R T R S e L R e L R L e

*

* % X

MODULE NAME = DFHPLTI1

DESCRIPTIVE NAME = LIST OF PROGRAMS TO BE EXECUTED DURING CICS

© Copyright IBM Corp. 2006, 2013

*

*
*
*

237

SYSTEM INITIALIZATION

FUNCTION =

THIS LIST SPECIFIES THE GXLXMLCG GXLINPLT PROGRAM TO BE EXECUTED
DURING CICS TS SYSTEM INITIALIZATION SO GXLIMODV GETS LOADED

AT THE RIGHT LEVEL SO IT CAN BE USED BY TRANSACTION PROGRAMS.
THIS PROGRAM REQUIRED SYSTEM INITIALIZATION PARAMETER

PLTPI=I1.

L I R R
L I T R

B o e o e T T T R R S R S S R L R S L E e e
*

DFHPLT TYPE=INITIAL,SUFFIX=I1

PROGRAMS SPECIFIED BEFORE THE DFHDELIM PROGRAM ARE RUN
DURING SECOND INITIALIZATION STAGE.
PROGRAMS SHOULD ALSO BE DEFINED TO CICS BY DFHCSDUP OR RDO

E R I

DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM

PROGRAMS THAT SHOULD BE RUN IN THE THIRD INITIALIZATION
PHASE (IF ANY) CAN BE SPECIFIED BELOW.
PROGRAMS SHOULD ALSO BE DEFINED TO CICS BY DFHCSDUP OR RDO

* Ok X X X

DFHPLT TYPE=ENTRY,PROGRAM=GXLINPLT
DFHPLT TYPE=FINAL

END

238 z/0S V2R1.0 XML User's Guide and Reference

Appendix I. Supported encodings

The following table displays the encodings supported by z/OS XML System
Services. Displayed in the table are the code page names, associated CCSID and
equate names. Assembler callers use equate names without the "GXLH" prefix.

Rule: If you require a different encoding, you must first convert to one of the
below before invoking the z/OS XML parser.

Table 38. Code page CCSID values

Code page CCSID Equate Names

UTE-8 1208 GXLHXEC_ENC_UTE_8
UTEF-16 (big endian) 1200 GXLHXEC_ENC_UTEF_16
EBCDIC/IBM-037 37 GXLHXEC_ENC_IBM_037
EBCDIC/IBM-273 273 GXLHXEC_ENC_IBM_273
EBCDIC/IBM-277 277 GXLHXEC_ENC_IBM_277
EBCDIC/IBM-278 278 GXLHXEC_ENC_IBM_278
EBCDIC/IBM-280 280 GXLHXEC_ENC_IBM_280
EBCDIC/IBM-284 284 GXLHXEC_ENC_IBM_284
EBCDIC/IBM-285 285 GXLHXEC_ENC_IBM_285
EBCDIC/IBM-297 297 GXLHXEC_ENC_IBM_297
EBCDIC/IBM-500 500 GXLHXEC_ENC_IBM_500
EBCDIC/IBM-871 871 GXLHXEC_ENC_IBM_871
EBCDIC/IBM-1047 1047 GXLHXEC_ENC_IBM_1047
EBCDIC/IBM-1140 1140 GXLHXEC_ENC_IBM_1140
EBCDIC/IBM-1141 1141 GXLHXEC_ENC_IBM_1141
EBCDIC/IBM-1142 1142 GXLHXEC_ENC_IBM_1142
EBCDIC/IBM-1143 1143 GXLHXEC_ENC_IBM_1143
EBCDIC/IBM-1144 1144 GXLHXEC_ENC_IBM_1144
EBCDIC/IBM-1145 1145 GXLHXEC_ENC_IBM_1145
EBCDIC/IBM-1146 1146 GXLHXEC_ENC_IBM_1146
EBCDIC/IBM-1147 1147 GXLHXEC_ENC_IBM_1147
EBCDIC/IBM-1148 1148 GXLHXEC_ENC_IBM_1148
EBCDIC/IBM-1149 1149 GXLHXEC_ENC_IBM_1149

© Copyright IBM Corp. 2006, 2013 239

240 z/0S V2R1.0 XML User's Guide and Reference

Appendix J. Enabling z/0S V1R12 XML functionality in z/OS
V1R10 and z/OS V1R11

Functionality was added to z/OS XML System Services in z/OS 1.12 that is
available in z/OS 1.10 and z/OS 1.11 with APAR OA32251; PTFs UA59081 and
UA59082. This APAR includes support for schema discovery, parsing of XML
document fragments and restrict root support.

Schema discovery enhances the usability of the validating parser by allowing the
caller to query the XML document schema locations detailed in the
“schemalLocation” and “noNamespaceSchemal.ocation” attributes, in addition to
the root element namespace and local name. Following this, the caller will have the
opportunity to load an OSR without having to reset the parse. See
finformation on schema locations” on page 19for more information on schema
discovery support.

Parsing of document fragments without obtaining and parsing an entire document
is now supported when parsing in z/OS XML System Services with schema
validation. . See [“Parsing XML document fragments with validation” on page 17for
more information on fragment parsing.

Restrict root support allows an z/OS XML System Services caller to restrict the
root name against a given root element name or a list of root element names when
performing a validating parse. See [‘Restricting the root element name” on page
or more information on restrict root support.

To enable the support in z/OS 1.10 and z/OS 1.11 environments, the caller must
complete the following steps:

1. Load GXLIMOD?2, the alternate validating parser into memory for use by the
application.

¢ The alternate parser, GXLIMOD?2, contains support for the z/OS 1.12 XML
System Services functions. To load the z/OS 1.12 version of the validating
parser using the GXLILOD(GXL4LOD) API, specify
XEC_LOD_VPARSE_ALT for the function_code. See[“exIpLoad — load al
z/OS XML function” on page 76and |[“GXL1LOD (GXL4LOD) — load a z/OS
XML function” on page 142for more information on loading a validating
parser.

2. Parse with an OSR that supports the full z/OS 1.12 functionality.

* An OSR generated on a z/OS 1.12 system can be used on a z/0S 1.10 or
z/0S 1.11 system with APAR OA32251 installed and GXLIMOD?2 loaded.
This OSR will fully support all the functions listed above.

* To generate an OSR on a z/OS 1.10 or z/OS 1.11 system that fully supports
the z/OS 1.12 functionality listed above using the xsdosrg command, specify
the —a option on the command. OSRs that were generated on z/OS 1.10 and
z/0S 1.11 systems without the —a option can be used with the alternate
parser, but will not fully support all the new functions listed above.

* To generate an OSR on a z/OS 1.10 or a z/OS 1.11 system that fully supports
the z/OS 1.12 functionality listed above using the C interface, specify
GXLHXEC_OSR_ALT for the feature_flags field on the gxlulnitOSRG
interface.

© Copyright IBM Corp. 2006, 2013 241

242

¢ To generate an OSR that supports the full z/OS 1.12 functionality using the
Java interface, specify type=0SRINI_ALT on the newOSRGenerator method in
the gxIOSRGenerator class, when generating an OSR.

The following is a list of examples:
* C example of loading the alternate validating parser (GXLIMOD?2)

int f_code = GXLHXEC_LOD_VPARSE_ALT;
int f_data = 0;
int lodRet = 0;

int TodRsn = 0;
/* load the alternalte parser */

gx1pLoad(f_code,
f_data,
&lodRet,
&TodRsn) ;

xsdosrg example of generating a z/OS 1.12 functional level OSR
xsdosrg -a -0 test.osr test.xsd
C example of generating a z/OS 1.12 functional level OSR

void * myOIMA = NULL; /* OSR generator instance memory area */
Tong myOIMALength = GXLHXEC_MIN OIMA SIZE; /* length of OIMA x/
void * sysSvcWorkarea = NULL;

featureFlags = GXLHXEC_OSR_ALT; /+ Alternate OSR requested */
int lTocalRC = 0;

int TocalRSN = 0;

myOIMA = malloc(GXLHXEC_MIN OIMA SIZE);

localRetVal = gxTulnitOSRG(myOIMA,
myOIMALength,
featureFlags,
sysSvcWorkarea,
&localRC,
&TocalRSN);

* Java example of generating a z/OS 1.12 functional level OSR

/* When issuing newOSRGenerator, specify type =
gx10SRGenerator(gx10SRGenerator.0SRINI_ALT) */

/* This will tell subsequent calls to generate an alternate osr */

myOSRGen = gx10SRGenerator.newOSRGenerator(gx10SRGenerator.0SRINI_ALT);

z/0S V2R1.0 XML User's Guide and Reference

Appendix K. Accessibility

Accessible publications for this product are offered through the lz/OS Information|
which is available at fwww.ibm.com/systems/z/os/zos/bkserv /|

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation

Attention: MHVRCEFS Reader Comments

Department H6MA, Building 707

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

* Use assistive technologies such as screen readers and screen magnifier software
¢ Operate specific or equivalent features using only the keyboard
* Customize display attributes such as color, contrast, and font size.

Using assistive technologies

Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPE. Refer to |z/OS TSO/E|
[Primer} z/OS TSO/E User’s Guide} and [z/OS ISPF User’s Guide Vol I| for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPE, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center] using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 2006, 2013 243

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

244

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1%,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

* ? means an optional syntax element. A dotted decimal number followed by the ?
symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

* ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

z/0S V2R1.0 XML User's Guide and Reference

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

* means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.

+ means a syntax element that must be included one or more times. A dotted
decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix K. Accessibility 245

246 z/0S V2R1.0 XML User's Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law
IBM Japan, Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2006, 2013 247

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel

IBM Corporation

2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware

248

Various z/0OS elements, such as DESMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

z/0S V2R1.0 XML User's Guide and Reference

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware

The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.

+ For information about software support lifecycle, see: [[BM Lifecycle Support for|
[z/OS (http:/ /www.ibm.com /software/support/systemsz/lifecycle /)|

* For information about currently-supported IBM hardware, contact your IBM
representative.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at |"Copyright ana|
ftrademark information"|at[www.ibm.com/legal / copytrade.shtml|

Adobe, Acrobat, and PostScript are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.

DB2” is a registered trademark of International Business Machines Corporation in
the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 249

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

250 z/0S V2R1.0 XML User's Guide and Reference

Index
A

accessibility 243
contact IBM 243
features 243
address 44
AMODE 146
ARR recovery routine 49, 158
ASC mode 146
assembler API entry points 112
assembler API environment
requirements 113
assistive technologies 243
attribute names 38
aux flags
AUX_ENTITY 28
XEH_AUX_LONG_VALUE 28
aux info record
-varied information- 29
aux flags
AUX_ENTITY 28
XEH_AUX_LONG_VALUE 28
information type 29
CHARREF_UNREP_REC 31
OFFSET_END_ATTRVALUE 29
OFFSET_END_CDATA 30
OFFSET_END_COMMENT 30
OFFSET_END_DTD 30
OFFSET_END_ENDTAG 30
OFFSET_END_NSVALUE 31
OFFSET_END_PI 30
OFFSET_END_STARTTAG 29

C

CCSID 49
CICS PLT program, running 22
CICS PLT program, setting up 22
CLASSPATH 15
code page
EBCDIC/IBM-037 49
EBCDIC/IBM-1047 49
UTF-16 (big endian) 49
UTF-8 49
common register conventions 112
compiler option, Metal C 53
control feature,

CTL_ENTS_AND_REFS 63, 123
control feature,

CTL_ERROR_HANDLING 71, 129
control feature, CTL_FEAT 58, 118
control feature,

CTL_FRAGMENT_PARSE 66, 126
control feature,

CTL_LOAD_FRAG_CONTEXT 64, 124
control feature, CTL_LOAD_OSR 60,

120
control feature,

CTL_QUERY_MIN_OUTBUF 62, 121
control feature,

CTL_RESTRICT_ROOT 69, 128
control feature, GXLHXEC_CTL_FIN 57
control feature, XEC_CTL_FIN 117
control parameters 146
controlling OSR generator 85

OFFSET_END_STARTTAGNAME 29 controlling parser, assembler 114

OFFSET_END_XMLDECL 30
OFFSET_ROOT_ELEMENT 31
OFFSET_START_ATTRVALUE 29
OFFSET_START_CDATA 30
OFFSET_START_COMMENT 30
OFFSET_START_DTD 30
OFFSET_START_ENDTAG 30
OFFSET_START_NSVALUE 30
OFFSET_START_PI 30
OFFSET_START_STARTTAG 29
OFFSET_START_XMLDECL 30
record header 28
TOK_AUX_INFO 28
Aux info record 35, 36
Aux info record, Error_Location 32
aux info record, ERROR_STRING 35
AUX_ENTITY 28

B

B2B 1
BASIC 155
BUFFER 155

buffer length used field 27
business-to-business 1
bytes_left 44

© Copyright IBM Corp. 2006, 2013

controlling parser, C/C++ 54

cross memory mode 51, 146

CTL_ENTS_AND_REFS 55, 63, 123

CTL_ERROR_HANDLING 56, 129

CTL_FEAT 54,58, 118

CTL_FIN 54, 57

CTL_FRAGMENT_PARSE 17, 55, 66,
126

CTL_LOAD_FRAG_CONTEXT 17, 55,
64, 124

CTL_LOAD_OSR 54, 60, 120

CTL_QUERY_MIN_OUTBUF 54, 62, 121

CTL_RESTRICT_ROOT 56, 69, 128

D

data macros 9, 23
data model 24
defining GXLINPLT to the CICS

CSD 237
diagnosis and problem

determination 155

XMLDATA IPCS subcommand 155

diagnostic area 157
dispatchable unit mode 146
DLLS, locating 53
document processing model, overview 6
Document Type Definition 1

DID 1
DTDs
processing 46

E

earlier releases, enabling
functionality 241
EBCDIC 50
EBCDIC encoding considerations 50
EBCDIC/IBM-037 49
EBCDIC/IBM-1047 49
element names 38
enabling functionality in earlier
releases 241
enabling offloads to specialty engines,
overview 8
ENC_IBM_037 49
ENC_IBM_1047 49
ENC_UTF_16 49
ENC_UTF_8 49
encoding support 49
entity references
resolving 46
entity resolver 100
entity resolver, OSR generator 94
ENTS_AND_REFS 55, 114
equate names
ENC_IBM_037 49
ENC_IBM_1047 49
ENC_UTF_16 49
ENC_UTF_8 49
error information, obtaining
additional 20
error location 34
error location path 33
error record offset field 28
Error_Location, aux info record 32
ERROR_STRING, aux info record 35
examples
GXL1CTL 221
GXLI1INT 222
GXL1PRS 223
GXL1TRM 223
GXL4CTL 225
GXL4INI 226
GXL4PRS 227
GXLATRM 228
GXLESTRI 234
GXLFST 229
GXLGST 230
GXLSYM 231
exit service
GXLFST31(GXLFST64) 149
GXLGST31(GXLGST64) 147
GXLPSYM31 (GXLPSYM64) 108
GXLSTRI 153
GXLSYM31 (GXLSYM64) 151
EXPECTED_STRING 35
Extensible Dynamic Binary XML 47
EXTENT 155

251

F

FEAT_CDATA_AS_CHARDATA 27,73
FEAT_FULL_END 27, 36, 73
FEAT_JST_OWNS_STORAGE 73
FEAT_RECOVERY 74
FEAT_SCHEMA_DISCOVERY 19, 74
FEAT_SOURCE_OFFSETS 27, 28, 74
FEAT_STRIP_COMMENTS 27, 74
FEAT_TOKENIZE_WHITESPACE 27, 74
FEAT_VALIDATE 27,74
FEAT_XDBX_INPUT 74, 133

features list 3

fragment parsing 34

free a root element 106

free namespace structure 107

free StringID table 104

functions list 4

G

generating OSR 98
generating StringID table 100, 103
GXL*CTL 24
GXL*QXD 23
GXL*XD 23
GXL*XEC 23
GXL*XEH 23
GXL*XFT 24
GXL*XOSR 24
GXL*XR 23
GXL*XSV 24
GXL1CTL

example 221
GXL1CTL (GXL4CTL) 114, 152, 154, 157
GXLIINI

example 222
GXL1INI (GXL4INI) 131, 148
GXLILOD (GXL4LOD) 142
GXL1PRS

example 223
GXL1PRS (GXL4PRS) 135, 145
GXL1QXD (GXL4QXD) 138
GXL1TRM

example 223
GXLITRM (GXLATRM) 49, 51, 141
GXLACTL

example 225

GXLAINI
example 226
GXL4PRS 37
example 227
GXL4TRM
example 228
GXLESTRI
example 234
GXLFST

example 229
GXLFST31 (GXLFST64) 146
GXLGST

example 230
GXLGST31 (GXLGST64) 146
gxlhctlLh 24, 218
gxlhosrd.h 219
gxlhosrg.h 219
gxlhgxd.h 23, 216
gxlhxd.h 23, 217

252

GXLHXEC_CTL_ERROR_HANDLING 71
gxlhxech 23, 27, 216
gxlhxeh.h 23, 27, 28, 215
gxlhxfth 24, 218
gxlhxmlh 23, 215
gxlhxosr.h 24, 218
gxlhxrh 23, 218
gxlhxstrh 219
gxlhxsv.h 24, 218
gxlpControl 54
gxlpInit 72
gxlpLoad 76
gxlpParse 49, 77, 158
gxlpQuery 80
GXLPSYM31 (GXLPSYMé64) 108
gxlpTerminate 81
GXLSYM

example 231
GXLSYM31 (GXLSYM64) 39
gxluControlOSRG 85
gxluFreeNamespaces 107
gxluFreeRootElements 106
gxluFreeStringIDs 104
gxluGenOSR 98
gxluGenStrIDTable 100
gxluGetRootElements 105
gxluGetStringIDs 103
gxluGetTargetNamespaces 106
gxlulnitOSRG 83
gxluLoadOSR 96
gxluLoadSchema 89
gxluSetEntityResolver 94
gxluSetStrIDHandler 91
gxluTermOSRG 88
GXLYCTL 24, 218
GXLYQXD 23, 216
GXLYXD 23, 157, 217
GXLYXEC 23, 27, 216
GXLYXEH 23, 27, 28, 37, 215
GXLYXFT 24, 218
GXLYXOSR 24, 218
GXLYXR 23, 52, 218
GXLYXSV 24, 218

H

header files 23

header files, locating 53
headers 9

HELP 155

HTML 1

info record

Aux info record 28

compatibility
31-bit 37
64-bit 37

content flag 37

default XML structures 31
attributes 32
content 32
end tags 32
namespace declarations 32
start tags 32

z/0S V2R1.0 XML User's Guide and Reference

info record (continued)
entities 31
error record 28
extended end element record 36
interactions with other features 32
FEAT_CDATA_AS_CHARDATA 32
FEAT_STRIP_COMMENTS 32
fragment parsing 32
validation 32
parsed data stream 26
XEH_DEFAULT 37
initializing OSR generator 83
initializing parser, assembler 131
initializing parser, C/C++ 72
input registers 112
interrupt status 146
invoking the z/OS XML System Services
APIs 111
IPCS 4, 155

J

JST 148

K

keyboard
navigation 243
PF keys 243

shortcut keys 243

L

language, XML Path 21
length/value pairs 37
LIBPATH 15
list of features 3
list of functions 4
load function
assembler interface 142
C/C++ interface 76
loading OSR 96
loading parser, assembler 142
loading parser, C/C++ 76
loading schema 89
loading the validating parser code 13
locks 146
LOD_VPARSE 76

M

managing memory resources 50
MARKED 155
memory
free 149
get 147
memory management, overview 8
metadata records 26
MIN_OIMA_SIZE 83
MIN_QXDWORK_SIZE 80
minimum authorization 146
MISC 155
multithreaded environment
using the parser 47

N

namespace

declarations 46
namespace context 33
namespace declarations 38
namespaces 1
navigation

keyboard 243
non-representable characters 46
Notices 247
NVPARSE_MIN_PIMA_SIZE 73

(o)

OFFSET_END_ATTRVALUE 29
OFFSET_END_CDATA 30
OFFSET_END_COMMENT 30
OFFSET_END_DTD 30
OFFSET_END_ENDTAG 30
OFFSET_END_NSVALUE 31
OFFSET_END_PI 30
OFFSET_END_STARTTAG 29
OFFSET_END_STARTTAGNAME 29
OFFSET_END_XMLDECL 30
OFFSET_ROOT_ELEMENT 31
OFFSET_START_ATTRVALUE 29
OFFSET_START_CDATA 30
OFFSET_START_COMMENT 30
OFFSET_START_DTD 30
OFFSET_START_ENDTAG 30
OFFSET_START_NSVALUE 30
OFFSET_START_PI 30
OFFSET_START_STARTTAG 29
OFFSET_START_XMLDECL 30
OIMA 83
optimized schema representation,
overview 8
Optimized Schema Representations 15
Optimized Schema Representations, tips
for using 15
OSR generator
control operation
C/C++ interface 85
entity resolver
C/C++ interface 94
free a root element
C/C++ interface 106
free namespace structure
C/C++ interface 107
free StringID table
C/C++ interface 104
generate OSR
C/C++ interface 98
generate StringID table
C/C++ interface 100, 103, 105
load OSR
C/C++ interface 96
load schema
C/C++ interface 89
retrieving target namespaces
C/C++ interface 106
StringID handling
C/C++ interface 91
OSR generator instance
initialize
C/C++ interface 83

OSR generator instance (continued)
terminate
C/C++ interface 88

OSR_CTL_DIAG 85, 86
OSR_CTL_FIN 85, 86
OSRs 15
OSRs, tips for using 15
output buffer 24
output buffer format, overview 8
output registers 113
overview of z/OS XML System

Services 3

P

PAB 155
PARAM 155
parse instance
initialize
assembler interface 131
terminate
assembler interface 141
C/C++ interface 81
parse status field 27
parser
initialize
C/C++ interface 72
parser control function
perform
assembler interface 114
C/C++ interface 54
parsing
restricting root element name 16
parsing with validation
xml document fragments 17
parsing with validation, overview 5
parsing with validation, steps 14
parsing without validation, overview 4
parsing without validation, steps 12
parsing XDBX input streams 47
parsing XDBX input streams,
overview 5
parsing XML document fragments with
validation, overview 5
parsing XML documents 11
PMM 155

Q

query function, C/C++ 80
querying function, assembler 138
querying function, description 9
querying function, overview 4
querying service, description 9
querying XML documents 9

R

reason code

reason code

obtaining a dump 158

reason codes 51

listed by value 161
record flag bits 24
record forms 38

0 39

record forms (continued)
1 39
2 39
3 40
record header 24
record type
values 41
record types 25
TOK_ATTR_NAME 25
TOK_ATTR_VALUE 25
TOK_AUX_INFO 25
TOK_BUFFER_INFO 25
TOK_CHAR_DATA 25
TOK_COMMENT 25
TOK_DTD_DATA 25
TOK_END_CDATA 25
TOK_END_ELEM 25
TOK_ERROR 25
TOK_NS_DECL 25
TOK_PI 25
TOK_START_CDATA 25
TOK_START_ELEM 25
TOK_UNRESOLVED_REF 25
TOK_WHITESPACE 25
TOK_XML_DECL 25
recovery considerations 49
recovery routine 158
recovery routine, C/C++ 53
restricting root element name
parsing 16
retrieving target namespaces 106
return codes 51
listed by value 159
root elements, retrieving 105
running CICS PLT program 22
runtime option, XPLINK 53

S

schema locations 19
Schema, XML 1
sending comments to IBM xi
setting up CICS PLT program 22
setting up OSR environment 15
shortcut keys 243
side decks, locating 53
SLIP trap 158
spanning buffers 44
splitting multibyte characters 45
splitting records 44
splitting records, XDBX streams 45
SRB 51, 148
string identifiers 38
string identifiers, overview 8
string representation

default 37
StringID handler 100
StringID handler, exit service 108
StringID handler, OSR generator 91
StringID service 151, 153
STRUCT 155
Summary of changes xiii
supported encodings 239
System Services Exit Interface 145

common register conventions 145

input registers 145
output registers 146

Index 253

System Services Exit Interface (continued)

environmental requirements 146
exit functions

allocate memory 145

free memory 145

string identifier service 145
restrictions 146

T

task mode 51
tasks

parsing with validation

steps 14
parsing without validation
steps 12

terminating OSR generator 88
terminating parser, assembler 141
terminating parser, C/C++ 81
TOK_ATTR_NAME 41
TOK_ATTR_VALUE 29, 41
TOK_AUX_INFO 28, 41
TOK_BUFFER_INFO 41
TOK_CHAR_DATA 41
TOK_COMMENT 30, 41
TOK_DTD_DATA 30, 41
TOK_END_CDATA 30, 41
TOK_END_ELEM 30, 36, 41
TOK_ERROR 41
TOK_NS_DECL 30, 31, 41
TOK_PI 30, 41
TOK_ROOT_ELEMENT 41
TOK_SCHEMA_LOCATION 41
TOK_START_CDATA 30, 41
TOK_START_ELEM 29, 41
TOK_UNREP_CHARREF 31
TOK_UNRESOLVED_REF 41, 46
TOK_WHITESPACE 41
TOK_XML_DECL 30, 41
TOLERATED_ERROR 36
TRACE 155

U

X

XD_Eye 157
XD_larv64Rc 157
XD_larv64Rsn 157
XD_IFA_RC 158
XD_InBuff 157
XD_InBuffOffset 157
XD_LastRC 157
XD_LastRSN 157
XD_OutBuff 157
XD_OutBuffOffset 157
XD_PAB 157
XD_StorageRC 157
XD_StorageRsn 157
XD_StorExitDiag 157
XD_StorExitRc 157
XD_StorExitRsn 157
XD_SymbolLength 158
XD_Version 157
XDBX input streams
parsing 47
XDBX input streams, parsing 47

XEAR_ENTREF_STOP_UNRESOLVED 46
XEC_ CTL_QUERY_MIN_OUTBUF 114

XEC_CTL_ENTS_AND_REFS 114

XEC_CTL_ERROR_HANDLING 115

XEC_CTL_FEAT 114
XEC_CTL_FIN 114, 117
XEC_CTL_FRAGMENT_PARSE 115

XEC_CTL_LOAD_FRAG_CONTEXT 115

XEC_CTL_LOAD_OSR 114
XEC_CTL_RESTRICT_ROOT 115

XEC_FEAT_CDATA_AS_CHARDATA 132

XEC_FEAT_FULL_END 132

XEC_FEAT_JST_OWNS_STORAGE 132,

148
XEC_FEAT_RECOVERY 132

XEC_FEAT_SCHEMA_DISCOVERY 133

XEC_FEAT_SOURCE_OFFSETS 132

XEC_FEAT_STRIP_COMMENTS 132
XEC_FEAT_TOKENIZE_WHITESPACE 132

XEC_FEAT_VALIDATE 133
XEC_LOD_VPARSE 143
XEC_MIN_OUTBUE_SIZE 136

XMLDATA IPCS subcommand options

(continued)

MARKED 155
MISC 155

PAB 155

PARAM 155

PMM 155

STRUCT 155

TRACE 155
XRC_FAILURE 44, 51
XRC_FATAL 51
XRC_NOT_VALID 51
XRC_NOT_WELL_FORMED 51
XRC_SUCCESS 51
XRC_WARNING 44, 51

XRSN_BUFFER_OUTBUF_SMALL 44

XRSN_REASON_MASK 52
xsdosrg

command description 213
xsdosrg command 213

y4

z/OS XML parser 1,2
z/0OS XML System Services 2

z/0OS XML System Services features

list 3

z/0OS XML System Services functions

list 4

z/0OS XML System Services, overview 3

XEC_MIN_QXDWORK_SIZE 139
XEC_NVPARSE_MIN_PIMA_SIZE 132
XEC_VPARSE_MIN_PIMA_SIZE 132
XEH_AUX_LONG_VALUE 28, 29
XEH_Default 24

undefined namespace prefix toleration,
support for 12

updating PLT table, sample job 237

user interface

ISPF 243

TSO/E 243 XEH_No_Escapes flag 25
using the recovery routine 114 XFP_FLAGS_FRAGMENT_MODE 17
UTF-16 (big endian) 49 XML 1.0 50
UTE-8 49 XML 1.1 50

XML document
query

V assembler interface 138

C/C++ interface 80
xml document fragments
parsing with validation 17
XML Path language 21
W XML Schema 1
W3C 1 XMLDATA IPCS subcommand 155
World Wide Web Consortium 1 XMLDATA IPCS subcommand options
BASIC 155
BUFFER 155
EXTENT 155
HELP 155

VPARSE_MIN_PIMA_SIZE 73

254 z/0S V2R1.0 XML User's Guide and Reference

Product Number: 5650-Z0OS

Printed in USA

SA38-0681-00

	Contents
	Tables
	About this document
	Who should use this document
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. Introduction
	What is XML?
	z/OS XML System Services

	Chapter 2. Overview of z/OS XML System Services
	z/OS XML System Services features
	z/OS XML System Services functions
	Querying XML documents
	Parsing XML documents without validation
	Parsing XML documents with validation
	Parsing XML document fragments with validation
	Parsing XDBX input streams

	Document processing model
	Output buffer format
	Optimized Schema Representation
	String Identifiers
	Memory management
	Enable offload to specialty engines

	Chapter 3. Querying XML documents
	Header files and data macros

	Chapter 4. Parsing XML documents
	Steps for parsing XML documents without validation
	Support for undefined namespace prefix toleration
	Loading the validating parser code
	Steps for parsing XML documents with validation
	Using Optimized Schema Representations
	Setting up the environment
	Usage tips

	Restricting the root element name
	Parsing XML document fragments with validation
	Obtaining information on schema locations
	Obtaining additional error information
	XML Path language
	Setting up and running the CICS PLT program

	Header files and data macros
	Parsed data model
	Common record header
	Record (token) types

	Metadata records
	Buffer info record
	Error info record
	Aux info record
	Entities and default XML structures
	Interactions with other features

	Aux info record - Error_Location
	Error location path and namespace context
	Error location and fragment parsing

	Aux info record - ERROR_STRING
	Aux info record - EXPECTED_STRING
	Aux info record - TOLERATED_ERROR
	Extended end element record
	Default content flag (XEH_DEFAULT)
	31- and 64-bit compatibility

	Length/Value pairs
	String Identifiers
	Record forms
	Record form 0
	Record form 1
	Record form 2
	Record form 3

	Field values by record type
	Spanning buffers
	Splitting records
	Splitting multibyte characters

	Processing DTDs
	Resolving entity references
	Non-representable characters
	Namespace declarations
	Using the z/OS XML parser in a multithreaded environment
	Parsing XDBX input streams

	Chapter 5. Additional usage considerations
	Recovery considerations
	Encoding support
	EBCDIC encoding considerations

	Managing memory resources
	Using return and reason codes

	Chapter 6. z/OS XML parser API: C/C++
	Setting the XPLINK(ON) Language Environment runtime option
	Support for the Metal C compiler option
	Where to find the header files, DLLs and side decks
	Using the recovery routine
	z/OS XML XL C/C++ API
	gxlpControl — perform a parser control function
	Properties and resources reset by control functions

	gxlpControl features and functions
	GXLHXEC_CTL_FIN
	GXLHXEC_CTL_FEAT
	GXLHXEC_CTL_LOAD_OSR
	GXLHXEC_CTL_QUERY_MIN_OUTBUF
	GXLHXEC_CTL_ENTS_AND_REFS
	GXLHXEC_CTL_LOAD_FRAG_CONTEXT
	GXLHXEC_CTL_FRAGMENT_PARSE
	GXLHXEC_CTL_RESTRICT_ROOT
	GXLHXEC_CTL_ERROR_HANDLING

	gxlpInit — initialize the z/OS XML parser
	gxlpLoad — load a z/OS XML function
	gxlpParse — parse a buffer of XML text
	gxlpQuery — query an XML document
	gxlpTerminate — terminate a parse instance

	OSR generator API
	gxluInitOSRG — initialize an OSR generator instance
	gxluControlOSRG — perform an OSR generator control operation
	gxluTermOSRG — terminate an OSR generator instance
	gxluLoadSchema — load a schema into the OSR generator
	gxluSetStrIDHandler — specify the StringID handler for OSR generation
	gxluSetEntityResolver — specify the entity resolver for OSR generation
	gxluLoadOSR — load an OSR into the OSR generator
	gxluGenOSR — generate an Optimized Schema Representation (OSR)
	gxluGenStrIDTable — generate StringID table from an OSR
	gxluGetStringIDs — generate StringID table from an OSR
	gxluFreeStringIDs — free a StringID table
	gxluGetRootElements — retrieve the root elements from an OSR
	gxluFreeRootElements — free a root element structure
	gxluGetTargetNamespaces — retrieve the target namespaces from an OSR
	gxluFreeNamespaces — free a namespace structure
	GXLPSYM31 (GXLPSYM64) — StringID handler

	Chapter 7. z/OS XML parser API: Assembler
	How to invoke the z/OS XML System Services assembler API
	z/OS XML parser Assembler API
	API entry points
	Common register conventions
	Input registers
	Output registers
	Environmental requirements

	Using the recovery routine
	GXL1CTL (GXL4CTL) — perform a parser control function
	GXL1CTL (GXL4CTL) features and functions
	XEC_CTL_FIN
	XEC_CTL_FEAT
	XEC_CTL_LOAD_OSR
	XEC_CTL_QUERY_MIN_OUTBUF
	XEC_CTL_ENTS_AND_REFS
	XEC_CTL_LOAD_FRAG_CONTEXT
	XEC_CTL_FRAGMENT_PARSE
	XEC_CTL_RESTRICT_ROOT
	XEC_CTL_ERROR_HANDLING

	GXL1INI (GXL4INI) — initialize a parse instance
	GXL1PRS (GXL4PRS) — parse a buffer of XML text
	GXL1QXD (GXL4QXD) — query an XML document
	GXL1TRM (GXL4TRM) — terminate a parse instance
	GXL1LOD (GXL4LOD) — load a z/OS XML function

	Chapter 8. z/OS XML System Services exit interface
	Exit functions
	Common register conventions
	Input registers
	Output registers
	Environmental requirements
	Restrictions

	GXLGST31 (GXLGST64) — get memory
	GXLFST31 (GXLFST64) — free memory
	GXLSYM31 (GXLSYM64) — StringID service
	GXLSTRI — StringID service for Language Environment and Metal C

	Chapter 9. Diagnosis and problem determination
	XMLDATA IPCS subcommand
	Diagnostic Area
	SLIP trap for return codes from the z/OS XML parser
	ARR recovery routine

	Appendix A. Return codes listed by value
	Appendix B. Reason codes listed by value
	Appendix C. xsdosrg command reference
	Name
	Synopsis
	Description
	Options
	Operands
	Example
	Environment variables
	Usage notes
	Exit values
	Related information

	Appendix D. C/C++ header files and assembler macros
	gxlhxml.h - main z/OS XML header file
	gxlhxeh.h (GXLYXEH) - mapping of the output buffer record
	gxlhxec.h (GXLYXEC) - constants definitions
	gxlhqxd.h (GXLYQXD) - mapping of the output from the query XML declaration service
	gxlhxd.h (GXLYXD) - mapping of extended diagnostic area
	gxlhxr.h (GXLYXR) - defines the return codes and reason codes
	gxlhxsv.h (GXLYXSV) - mapping of the system service vector
	gxlhctl.h (GXLYCTL) - mapping of the control input parameters area
	gxlhxft.h (GXLYXFT) - mapping of the control feature input output area
	gxlhxosr.h (GXLYXOSR) - mapping of the OSR control area
	gxlhosrg.h - OSR generator prototypes
	gxlhosrd.h - mapping of the OSR generator diagnostic area
	gxlhxstr.h - StringID table

	Appendix E. Callable services examples - AMODE 31
	GXL1CTL example
	GXL1INI example
	GXL1PRS example
	GXL1TRM example

	Appendix F. Callable services examples - AMODE 64
	GXL4CTL example
	GXL4INI example
	GXL4PRS example
	GXL4TRM example

	Appendix G. Exit examples
	GXLEFRM (GXLFST example)
	GXLEGTM (GXLGST example)
	GXLSYM example
	GXLEINI
	GXLEIDI (GXLSYM example module)
	GXLEIDR

	GXLESTRI

	Appendix H. CICS examples
	Appendix I. Supported encodings
	Appendix J. Enabling z/OS V1R12 XML functionality in z/OS V1R10 and z/OS V1R11
	Appendix K. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

